
DOCTORAL THESIS

ARTIFICIAL INTELLIGENCE FOR
AUTOMATED DECISION-MAKING IN

ERROR-PATTERN RECOGNITION

Author:
Felip GUIMERÀ CUEVAS

Supervisors LMU:
PD Dr. Helmut SCHMID

PD Dr. Stefan LANGER

Supervisors BMW:
Dr. Iryna BASTIAN

Dr. Raphael WEINGARTNER

CENTER FOR INFORMATION AND LANGUAGE PROCESSING

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

In collaborative partnership with:

BMW GROUP

EXAMINATION DATE: JULY 10, 2024

Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy.

https://www.cis.uni-muenchen.de/ueber_uns/index.html
https://www.lmu.de/en/
https://www.bmw.de/

ARTIFICIAL INTELLIGENCE FOR
AUTOMATED DECISION-MAKING IN

ERROR-PATTERN RECOGNITION

INAUGURAL DISSERTATION

for the attainment of the Doctorate in Philosophy of the
Ludwig-Maximilians-Universität München

submitted by
Felip GUIMERÀ CUEVAS

from
Barcelona (Catalonia-Spain)

2024

ii

Academic supervisor: PD Dr. Helmut SCHMID

Academic co-supervisor: PD Dr. Stefan LANGER

Date of the oral examination: July 10, 2024

iii

Declaration of Authorship
I, Felip GUIMERÀ CUEVAS, declare that this thesis titled, “Artificial Intelligence for
Automated Decision-Making in Error-Pattern Recognition”, and the work presented
in it are my own and have originated as a result of my own original research.

I affirm the following:

• This thesis comprises original content that has neither been previously sub-
mitted for a degree or any other qualification at this University or any other
institution. In cases where specific sections incorporate or build upon any pre-
viously submitted work, appropriate acknowledgment is provided to indicate
the connection with prior contributions.

• Whenever I have consulted the published or unpublished work of others, I
have diligently attributed them, providing accurate and complete references.

• Except for duly acknowledged quotations and references, this thesis represents
the result of the entirety of my own research. In instances where the thesis
is based on collaborative work with others, I have provided transparent ac-
knowledgment and referencing of their contribution.

• The thesis and the work presented within it are the independent outcomes of
my individual research efforts, and I have delineated the extent and scope of
my contributions.

• This doctoral thesis is the result of my own independent research. Language
aids such as Grammarly, QuillBot, and GPT 3.5 & 4 based large language mod-
els were utilized to enhance the clarity and coherence of the writing. Unless
explicitly cited and referenced, the entirety of the content of methodologies,
findings, and results, originates from my own research endeavors and experi-
ments.

• I have duly acknowledged all main sources of assistance and financial support.

Signed: Felip Guimerà Cuevas

Date: February 28, 2024

v

Artificial Intelligence for
Automated Decision-Making in

Error-Pattern Recognition
by Felip GUIMERÀ CUEVAS

ABSTRACT

The demand for integrating Artificial Intelligence (AI) into diverse systems con-
tinues to expand rapidly. With growing reliance on AI, there is a constant need
to deliver increasingly more dependable and robust solutions. This thesis aims to
address common Machine Learning (ML) challenges and offers solutions in the
field of automated decision-making and pattern recognition. It explores, presents,
and analyzes novel methods and algorithms for Representation Learning, focusing
on "Neural Architecture & Data Representation", "Manifold & Embedding Learn-
ing", and "Data Integration & Analysis".

The contributions of this thesis include1: (1) a novel neural architecture based on
complex-valued neural networks, (2) a framework for encoding hierarchical one-to-
many relationship databases into contextualized numeric data representations, (3)
an adaptive and robust feature normalization and pre-processing technique, (4) a
method for synthetic data augmentation on hierarchical databases, (5) a contrastive
Representation Learning framework for tree structures, (6) extending and gener-
alizing hierarchical Embedding Learning to multiple data views, (7) methods and
diverse loss functions for Manifold Representation Learning and Clustering, (8) ap-
proaches for automated textual description generation for cluster groups, (9) a qual-
ity evaluation metric for clustering under coarse label uncertainty, (10) methods for
determining representative textual labels for clustering accurate sensor data with in-
exact annotations, (11) a Transfer Learning approach to distilling insights from ML
models trained on different data sets, (12) a novel approach to Out-of-Distribution
Detection and Novelty Detection by leveraging mismatches in model calibration
alignment, and (13) a method for representative sampling within quantile windows
in data streams of unknown final length.

1A detailed list of contributions is given in 1.5 [Research Contribution Summary].

vii

Center for Information and Language Processing
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

BMW GROUP

DOCTORAL THESIS
In fulfillment of the requirements for the degree of Doctor of Philosophy.

Artificial Intelligence for Automated Decision-Making in
Error-Pattern Recognition

by Felip GUIMERÀ CUEVAS

CONTEXT & OVERVIEW

The rapid growth of available data and computational power has presented a huge
opportunity for Artificial Intelligence (AI) to be integrated into various systems
more effectively, robustly, and reliably than ever before. Although there are many
well-established design patterns and promising solutions, there is still a strong need
and desire to continuously develop more and more advanced AI models. Machine
Learning (ML), a sub-branch of AI, employs algorithms and statistical models to
learn and adapt based on available training data. ML is advancing rapidly, pro-
ducing solutions that are increasingly stronger in many aspects: more successful,
scalable, resilient, capable, efficient, etc.

This doctoral thesis is dedicated to addressing various challenges associated with
Automated Decision-Making and Error Pattern Recognition within the field of ML
and Deep Learning (DL). The contributions of this work build upon and go beyond
typical or existing methods by extending, improving, and offering new alternative
approaches. The research focuses on devising new (optimized) solutions for differ-
ent relevant domains, particularly in Representation Learning. It takes into account
diverse data types, including hierarchical graphs, images, data streams, and text;
aiming to devise novel methodologies and approaches to provide new insights and
generate optimized solutions.

A comprehensive literature review on many topics is provided, offering an inclu-
sive introduction and a thorough understanding of the research’s motivations and
context. Within this context, the thesis introduces novel algorithms and refinements,
highlighting issues within these domains and approaches, and proposes alternative
solutions and improvements. The contributions offer valuable viewpoints and in-
sights into general ML (i.e. DL), including manifold and embedding learning, latent
space aggregations, neural architectures, outlier detection, clustering, graph-based
learning models, and more.

In summary: this doctoral thesis aims to contribute to the advancement of AI
methods (Chapter 1.5). It focuses on ML-based solutions for automated decision-
making and error pattern recognition. The thesis introduces novel methods for
manifold, embedding and representation learning, outlier detection, clustering, and
graph-based DL. The goal is to help enhance AI model performance, efficiency, and
robustness; across various data types and for common use cases.

https://www.cis.uni-muenchen.de/ueber_uns/index.html
https://www.lmu.de/en/
HTTPS://WWW.BMW.DE/

ix

Center for Information and Language Processing
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

BMW GROUP

DISSERTATION
In Erfüllung der Anforderungen für den Abschluss des Grades Doctor of Philosophy.

Künstliche Intelligenz zur automatisierten
Entscheidungsfindung und Fehlermustererkennung

vorgelegt von Felip GUIMERÀ CUEVAS

KONTEXT & ÜBERBLICK

Die stetig steigende Nachfrage nach der Integration von künstlicher Intelligenz (KI)
in verschiedene Systeme reflektiert den starken Bedarf an automatisierbaren, effek-
tiven, robusten und vertrauenswürdigen Lösungen. Mit dem kontinuierlich wach-
senden Fortschritt des maschinellen Lernens (ML) und Deep Learnings (DL) werden
immer bessere und leistungsfähigere Algorithmen und Methoden entwickelt, die
auf einer Vielzahl von sehr unterschiedlichen Datentypen anwendbar sind. Dabei
entstehen fortlaufend neue Möglichkeiten und Verbesserungen für immer robuste-
re Lösungen, sodass der Wunsch und die Erwartung an noch leistungsstärkere und
effizientere KI-Modelle stetig wächst, insbesondere um immer komplexere und an-
spruchsvollere Probleme lösen zu können. Dies wird vor allem durch gleichzeitige
Fortschritte in der Hardware ermöglicht, welche die Verarbeitung größerer und um-
fangreicherer Datensätze und Datenmengen zunehmend effizienter macht, sodass
immer größere und leistungsfähigere KI-Modelle angewendet werden können.

Diese Dissertation konzentriert sich auf die Bewältigung verschiedener relevan-
ter Herausforderungen im Bereich der automatisierten Entscheidungsfindung und
Fehlermustererkennung. Besonderer Fokus wird auf Representation Learning ge-
legt, um zur Optimierung verschiedener relevanter Bereiche beizutragen. Dabei
werden eine Vielzahl von Datentypen wie hierarchische Graphen, Bilder, Daten-
ströme und Texte berücksichtigt. Das Ziel ist es, durch neuartige oder verbesserte
Methoden und Ansätze neue Erkenntnisse zur Generierung optimierter Lösungen
beizutragen. Diese erlauben wertvolle Perspektiven und Einblicke in ML und DL,
insbesondere in den Bereichen Manifold und Representation Learning, Ausreißer-
und Anomalieerkennung, Clustering, Graphen-basierte Lernmodelle und mehr. Zu-
dem bietet die Dissertation eine umfassende Literaturübersicht, um ein gründliches
Verständnis der Methoden und Beweggründe der Forschung zu erleichtern.

Zusammenfassend: diese Doktorarbeit2 zielt darauf ab, zum Fortschritt von KI-
Methoden und ML-Modellen beizutragen, und konzentriert sich dabei auf die Berei-
che automatisierte Entscheidungsfindung und Fehlermustererkennung, die in der
Industrie von großer Bedeutung sind. Es werden verschiedene Algorithmen, Op-
timierungen, Anpassungen und Lösungsansätze präsentiert, um die Qualität, Ef-
fizienz und Robustheit von KI-Lösungen für verschiedene Anwendungsfälle und
Probleme zu verbessern.

2Die Dissertation ist in Englischer Sprache verfasst. Eine kurze übersetzte Gesamtzusammenfas-
sung auf Deutsch ist im Anhang D dargeboten.

https://www.cis.uni-muenchen.de/ueber_uns/index.html
https://www.lmu.de/en/
HTTPS://WWW.BMW.DE/

xi

Center for Information and Language Processing
LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

BMW GROUP

TESI DOCTORAL
En compliment dels requisits per a l’obtenció del grau de Doctor of Philosophy.

Intel·ligència Artificial per a la presa de decisions
automatitzada i el reconeixement de patrons d’errors

presentada per Felip GUIMERÀ CUEVAS

CONTEXT I RESUM

L’augment constant de la demanda per a la integració de la Intel·ligència Artificial
(IA) en diversos sistemes reflecteix una necessitat crucial de solucions automatitza-
bles, eficients, robustes i fiables. Amb el progrés continu en l’Aprenentatge Automà-
tic (AA) i l’Aprenentatge Profund (AP), s’estan desenvolupant algoritmes i mètodes
cada vegada més sofisticats i potents, aplicables a una àmplia gamma de tipus de
dades molt diversos. Això porta a noves possibilitats i millores emergents contínu-
ament per a solucions cada vegada més efectives, alimentant el desig i l’expectativa
de models d’IA encara més competents i optimitzats, especialment per abordar pro-
blemes cada cop més complexos i exigents. Aquest avanç és impulsat principalment
per millores simultànies en el hardware, que fan que el processament de conjunts de
dades més grans i extensos sigui cada vegada més eficient, permetent així l’aplicació
de models d’IA (molt) més potents.

Aquesta tesi doctoral es centra en abordar diversos reptes rellevants en el camp
de la presa de decisions automatitzada i el reconeixement de patrons d’errors. Es
posa especial èmfasi en l’aprenentatge de varietats i la representació per contribuir
a solucions optimitzades en diferents àrees rellevants. La tesi considera una diversa
varietat de tipus de dades, com gràfics jeràrquics, imatges, fluxos de dades i tex-
tos. L’objectiu aquí és aportar nous coneixements a la generació de diverses so-
lucions optimitzades mitjançant mètodes i enfocaments nous o millorats. La tesi
ofereix perspectives i coneixements valuosos sobre AA i AP, especialment en àrees
com l’aprenentatge de la representació de varietats, les agregacions de varietats, la
detecció d’anomalies, la clusterització, els models d’aprenentatge basats en gràfics,
etc. Finalment, la tesi també proporciona una revisió exhaustiva de la literatura per
facilitar una comprensió profunda dels mètodes i de les motivacions de la recerca.

En resum, aquesta tesi doctoral té com a objectiu contribuir a l’avanç de mètodes
i models d’IA, centrant-se en el camp de la presa de decisions automatitzada i el
reconeixement de patrons d’errors en entorns industrials. Es presenten nous algo-
ritmes, adaptacions i solucions amb l’objectiu de millorar la qualitat, l’eficiència i la
robustesa dels models d’IA per a diverses aplicacions.

https://www.cis.uni-muenchen.de/ueber_uns/index.html
https://www.lmu.de/en/
HTTPS://WWW.BMW.DE/

xiii

Acknowledgements
I would like to state my sincere gratitude to the following individuals and organiza-
tions whose support was invaluable throughout my academic journey:

Academic Mentors

• Dr. Helmut Schmid: I am deeply grateful for his consistent guidance, great
feedback, and active engagement in technical discussions that positively influ-
enced my doctoral thesis.

• Prof. Benjamin Roth and Dr. Thomy Phan: Their exceptional teaching during
my graduate studies sparked my passion for Artificial Intelligence, especially
in Machine and Deep Learning.

Professional Support

• Dr. Iryna Bastian and Dr. Raphael Weingartner: I am thankful for the excep-
tional opportunity and trust they placed in me, providing constant personal
support and encouragement throughout my doctoral research.

• BMW Group: Their confidence in me, provision of resources, and financial
support have been instrumental in conducting my research. I am grateful for
their significant contribution to my academic endeavors.

Collaborators and Supporters

I extend my gratitude to all individuals with whom I collaborated, received feedback
from, and engaged in technical discussions. Their insights and feedback contribu-
tions have greatly enriched my research and learning experience. Again, this holds
particularly true for the BMW Group, as they fully financed this research project,
and provided access to essential resources and data.

Family Support

Finally, I express my heartfelt thanks to my parents and family. Their unwavering
motivation, emotional support, and encouragement have been pivotal not just dur-
ing my thesis but throughout my life. Their influence has played a defining role in
shaping the person I am today, and for that, I am immensely grateful.

“If a machine is expected to be infallible, it cannot also be intelligent.”
— Alan Turing.

“As our circle of knowledge expands, so does the circumference of darkness surrounding it.”

- Albert Einstein

“I refuse to say anything beyond five years because I don’t think we can see much beyond five
years.”

- Geoffrey Hinton

xv

Contents

Declaration of Authorship iii

Abstract v

Context & Overview (English) vii

Kontext & Überblick (Deutsch) ix

Context i Resum (Català) xi

Acknowledgements xiii

Preface xxix

1 Contributions 1
1.1 Research Motivation . 1
1.2 Research Scope . 2
1.3 Research Challenges . 2
1.4 Research Contribution Scope . 2
1.5 Research Contribution Summary . 3

2 Background 7
2.1 Big Data . 7
2.2 Artificial Intelligence . 8

2.2.1 Definition & Philosophy . 8
2.2.2 Rule-based Systems . 9
2.2.3 Paradigms of Machine learning 9

Unsupervised Learning . 10
Supervised Learning . 10
Self-Supervised Learning . 10
Reinforcement Learning . 11
Hybrid Learning Methods . 11

2.2.4 Weakly-Supervised Learning . 11
2.2.5 Challenges in Unsupervised Clustering Methods 12
2.2.6 Rule-based vs. Machine Learning 12
2.2.7 Model Generalization . 15

2.3 Data Encoding & Dimensionality . 15
2.4 The Curse & Blessing of Dimensionality 18

2.4.1 The Curse of Dimensionality . 18
Distance Concentration . 19
Data Sparsity . 19
Combinatorics . 20
Other . 20

2.4.2 The Blessing of Dimensionality 20

xvi

2.5 Data Augmentation . 21
2.5.1 Assessing Generated Data Quality 21

2.6 Optimization . 22
2.6.1 Gradient Descent . 23
2.6.2 Back-Propagation . 25

2.7 Neural Networks . 26
2.8 Transformers . 28
2.9 Clustering & Kleinberg’s Theorem . 31
2.10 Model Evaluation . 32

2.10.1 Generalization & Overfitting . 33
2.10.2 Clustering Evaluation . 33

Intrinsic Clustering Evaluation 33
Extrinsic Clustering Evaluation & Uncertainty 34

3 Motivation 37
3.1 Neural Networks Based on Complex Numbers with Weights Con-

strained along the Unit Circle . 37
3.2 Deep Learning for Hierarchical Databases with Recursive One-to-Many

Relations . 38
3.3 Addressing Uncertainty and Completeness in the B3 Cluster Evalua-

tion Metric . 38
3.4 Automated Textual Description Generation of Clusters 39
3.5 Normalization of Heterogeneous Feature Distributions 40
3.6 Out-of-Distribution Detection . 41
3.7 Manifold Data Representation and Clustering 42
3.8 Representative Data Stream Sampling for Trajectories 42

4 Introduction 45
4.1 Framing the Context: Use Cases, Challenges, & Data 45

4.1.1 Framing the Context: Example Use Cases 45
Plant Growth Tracking in Greenhouses: Multifaceted Obser-

vation Records . 45
Hierarchical Data Structures: Entities, Relationships, and At-

tributes . 47
4.1.2 Framing the Context: Formal Definition 48
4.1.3 Composition of Multiple Hierarchical Data Sources 49
4.1.4 Data Quality . 50
4.1.5 Data Processing . 50
4.1.6 Problem Statement . 51

4.2 Previous Methods Employed in Real-World Applications 52
4.2.1 Concerns . 52

4.3 Machine Learning for Automated Error-Pattern Detection 53
4.3.1 Challenges in Machine Learning 54

Expensive Development . 54
Data & Need for Custom Tailoring 54
Reasoning, Uncertainty, and Reliability 55

4.4 Neural Networks Based on Complex Numbers with Weights Con-
strained along the Unit Circle . 56

4.5 Deep Learning for Hierarchical Databases with Recursive One-to-Many
Relations . 57

xvii

4.6 Determining Representative Textual Labels for Clustering Accurate
Sensor Data with Inexact Annotations 59

4.7 Explainable and Interpretable AI . 61
4.7.1 Supervised Cluster Evaluation Metric 61

4.8 Automated Textual Description Generation of Clusters 64
4.9 Non-linear Normalization of Heterogeneous Feature Distributions with

Adaptive Tanh-Estimators . 66
4.10 Transferring Knowledge Across Input Domains: Distilling Insights

from Machine Learning Models Trained on Different Datasets 69
4.11 Model Calibration for Out-of-Distribution Detection 70
4.12 Manifold Data Representation and Clustering 74
4.13 Representative Sampling in Data Streams 76

5 Preceding Project Endeavors 79
5.1 Overview . 79
5.2 Data Encoding . 80

5.2.1 Categorical Univalent Features 80
5.2.2 Tabular Data . 81
5.2.3 Text Data . 82

5.3 Dimensionality Reduction . 82
5.4 Error-Pattern Inference . 83

6 Related Work 85
6.1 Neural Networks Based on Complex Numbers 85
6.2 Heterogeneous Graph Learning . 86
6.3 Robust Feature Normalization . 88
6.4 Model Output Calibration . 90
6.5 Supervised Clustering Evaluation . 93
6.6 Manifold Clustering . 94
6.7 Evaluating Generated Content against References 95

6.7.1 BERT-score . 96
6.7.2 BART-score . 96
6.7.3 BLEURT-score . 97

6.8 Text Generation Strategies . 97
6.9 Large Language Models: Prompt Engineering 98
6.10 Representative Sampling in Data Streams 100

6.10.1 Background on Reservoir-Sampling 100
Reservoir-Sampling . 100
Biased Reservoir-Sampling . 101
Decaying Reservoir Sampling . 101
Sliding Window Sampling . 101
Quantiles in Data Streams . 101
Spatio-Temporal Trajectories . 102

6.10.2 Related Work on Data Stream Sampling 102

7 Methods 105
7.1 Neural Networks Based on Complex Numbers with Weights Con-

strained along the Unit Circle . 105
7.1.1 Convolutional Layer . 105
7.1.2 Numerical Stability . 105
7.1.3 Weight Initialization . 105

xviii

7.1.4 Alternative Normalization Correction Factor 105
7.1.5 Enhanced Complex Neurons with Linear Weight Scaling 105

7.2 Data Representation & Encoding . 106
7.2.1 Hierarchical Data Interpretation 106
7.2.2 Tree-Data Encoding . 108
7.2.3 Non-Hierarchical Entity Encoding for Feature Vectors 110
7.2.4 Composite Graphs: Shared Data Structures for Reducing Mem-

ory Overhead & Ensuring Uniqueness 112
7.2.5 Encoding Determinism . 113

7.3 Feature Pre-Processing . 113
7.3.1 Numeric Feature Normalization 114
7.3.2 Ideal Spread Factor . 116

Trainable Spread Factor . 116
Spread Value . 116

7.3.3 Time-Stamps Encoding . 117
7.3.4 Ordinal Feature Encoding . 117

7.4 Tree-Data Augmentation . 118
7.5 Self-Supervised Contrastive Representation Learning on Tree Structures120

7.5.1 Loss Function . 122
Reconstruction- & Composition Loss: Auto-Encoders 123
Similarity- & Contrast Loss: Embeddings 124
Classification Loss . 126
Total Loss . 127

7.5.2 Neural Network Forward Call 129
7.5.3 Embedding Layer . 130
7.5.4 Extraction Layer . 130
7.5.5 Batching . 131
7.5.6 Model Architecture . 131
7.5.7 Example . 132
7.5.8 Model Improvements . 133

Adaptive Look-up Embeddings 134
Residual Attention Mechanism 135
Inception Networks . 136
Siamese Networks . 137
Mean Teacher Networks . 139
Complex-Valued Neural Networks 140
Label Smoothing . 140
Focal Smoothing . 142
Combining Focal- & Label smoothing 143
Dropout . 144
Class Imbalance . 144
Feature Independence . 146
Lipschitz Continuity & Spectral Normalization 146
Kernel Embeddings & Pooling Layer 147

7.5.9 Efficient Contrastive Representation Learning 151
Negative Sampling-Based Contrastiveness 151
Class-Label Based Contrastive Representation Learning 152
Mean-Teacher Average Class-Label Contrastiveness 153

7.5.10 Residual Information Preservation 154
Fully Connected Residual Blocks and Basis Learning 154

7.5.11 Training & Inference . 157

xix

7.5.12 Full Model Composition . 158
7.6 Concatenated Representation Learning 160

7.6.1 Handling Duplicate Instances . 162
7.6.2 Memory Efficient Similarity Search 163
7.6.3 Optimized Memory-Efficient Graph Batching 164

7.7 Manifold Data Representation and Clustering 166
7.7.1 Taylor Approximation Smoothing 166

Manifold Clustering . 172
7.8 Clustering Strategy . 172
7.9 Supervised Clustering Quality Evaluation 173

7.9.1 Background . 174
7.9.2 αMax-B-Cubed: A Supervised Metric for Addressing Uncer-

tainty in Cluster Evaluation. 174
7.9.3 Extension to Imbalanced Data Sets 178

7.10 Automated Textual Description Generation of Clusters 179
7.10.1 Formal Specification . 179
7.10.2 Contrastive Language-Image-Based Pooling 180

CLIP Gradient-Guided Pooling Search 180
CLIP Weighted Pooling . 181

7.10.3 Synthetic Boosting of Target Captions 181
7.10.4 Caption Selection . 182
7.10.5 Quality Evaluation . 182

7.11 Prompt Manipulation on Large Language Models for Customized Text
Summarization and Structured Analysis 183

7.12 Determining Representative Textual Labels for Clustering Accurate
Sensor Data with Inexact Annotations 184
7.12.1 Harmonic Mean of Intuitive Heuristics 184

Cluster Centrality Measures for HDBSCAN 186
7.12.2 Lowest Auto-Regressive Modelling Loss over Cluster Embed-

ding . 187
Example of a Loss Metric Explanation 188

7.13 Transferring Knowledge across Input Domains: Distilling Insights from
Machine Learning Models Trained on Different Datasets 188

7.14 Model Output Calibration & Novelty Detection 190
7.14.1 Score Adjustment . 193
7.14.2 Calibration Discrepancy with Label Aggregations 193
7.14.3 Hybrid ODD: Embedding- and Prediction-based 194

7.15 Percentile Ranked Scores . 195
7.16 Representative Data Stream Sampling for Trajectories 195

7.16.1 Decaying Quantile Chain-Sampling 196
7.16.2 Full Quantile-Sampling . 204

8 Experimental Methods 207
8.1 Hardware . 207
8.2 High Dimensional Data Visualization 207
8.3 Adaptive Complex-Valued Bi-Nonlinear Neural Networks 209
8.4 Adaptive Tanh-Normalization . 209
8.5 Determining Representative Textual Labels for Clustering Accurate

Sensor Data with Inexact Annotations 209
8.5.1 Quality Assessment of Textual Generations 210

8.6 Model Output Calibration & Novelty Detection 211

xx

9 Analysis & Results 213
9.1 Adaptive Complex-Valued Bi-Nonlinear Neural Networks 213

9.1.1 XOR-Problem . 213
9.1.2 Minimal Networks & Expressive Power 213
9.1.3 Classification . 213

9.2 Loss-Weighting . 213
9.3 Embeddings . 215

9.3.1 Clustering Representations . 215
9.3.2 Hierarchical Dependent Embedding Representations 216

Large Errors at Root-Nodes (Upper Levels) 217
Large Errors at Leaf-Nodes (Lower Levels) 218
Implications . 218

9.4 Deep Learning for Hierarchical Databases with Recursive One-to-Many
Relations . 218
9.4.1 Unsupervised Deep Clustering 218
9.4.2 Supervised Classification . 219
9.4.3 Aggregation Function . 220

9.5 Manifold Clustering & Embedding . 222
9.5.1 Preservation of Identifying Structures 223

Taylor Approximation Error During Training 226
9.5.2 Taylor Approximated Clustering 228
9.5.3 Non-Smoothness of DNN Landscapes and Taylor Approxima-

tion . 229
9.6 Supervised αMax-B3 Clustering Evaluation Metric 230

9.6.1 Comparison of αMax-B3 and Traditional B3 on Synthetic Data . 230
9.6.2 Imbalanced Data Set . 230
9.6.3 Evaluation of Automatic Uncertainty Determination 231
9.6.4 Uncertainty Estimation and Extrapolation 232
9.6.5 Results on Real-World Data . 233

9.7 Cluster Explainability using Natural Language 235
9.7.1 Visual Illustration of Embedding Aggregations 235
9.7.2 Generative Captioning Results of Aggregated Embedding Vec-

tors . 235
9.7.3 Exploring Manifold Aggregation Strategies for Generating Rep-

resentative Image Cluster Descriptions 236
9.8 Normalization of Heterogeneous Feature distributions with Adaptive

Tanh-Estimators . 240
9.8.1 Classification With Neural Networks 240
9.8.2 Analytical Optimization . 242

9.9 Model Output Calibration & Novelty Detection 245
9.9.1 Score Adjustment . 245
9.9.2 Results on Model Output Calibration & Novelty Detection . . . 246

9.10 Clustering Strategy: Prediction-based Sub-Clustering 250

10 Discussion 253
10.1 Neural Expressive Power & Bi-Nonlinear Complex-valued Based Neu-

ral Networks . 253
10.2 Hierarchical Heterogeneous Graph Neural Networks for Deep Learn-

ing on Recursive One-to-Many Databases 254
10.3 Leveraging Knowledge Distillation and Domain Adaptation in Train-

ing for Transfer Learning . 256

xxi

10.4 Robust Non-linear Normalization of Heterogeneous Feature Distribu-
tions with Adaptive Tanh-Estimators . 257

10.5 Supervised αMax-B3 Clustering Evaluation Metric 259
10.5.1 Determining Representative Textual Labels for Clustering Ac-

curate Sensor Data with Inexact Annotations 260
10.6 Automated Textual Description Generation of Clusters 262
10.7 Misaligned Output Calibration for Out-of-Distribution Detection . . . 263
10.8 Representative Sampling in Data Streams 265
10.9 Clustering on Latent Manifold Structures 266

11 Summary & Conclusions 269
11.1 Neural Architecture and Data Representation 270

11.1.1 Complex-valued based Neural Networks 270
11.1.2 Hierarchical Heterogeneous Graph Neural Networks 270
11.1.3 Synthetic Data Augmentation for Tree Structures 271
11.1.4 Contrastive Representation Learning & Loss-Weighting 271
11.1.5 Concatenated Representation Learning & Separate Data Training271

11.2 Feature Pre-Processing & Representation Learning 272
11.2.1 Robust Non-linear Normalization of Heterogeneous Feature

Distributions with Adaptive Tanh-Estimators 272
11.2.2 Completeness and Uncertainty in Cluster Evaluation 272
11.2.3 Representation Learning and Manifold Clustering 272
11.2.4 Manifold Aggregations of Latent Spaces for Generating Tex-

tual Descriptions of Clusters . 273
11.2.5 Determining Representative Textual Labels for Clustering Ac-

curate Sensor Data with Inexact Annotations 273
11.3 Knowledge Transfer, Outlier Detection, and Sampling 274

11.3.1 Transfer Learning via Knowledge Distillation 274
11.3.2 Misaligned Calibration for Out-of-Distribution Detection 274
11.3.3 Representative Sampling in Data Streams 274

11.4 Concluding Words . 275

A Out-of-Distribution Detection 277
A.1 Proofs . 277

B Clustering 279
B.1 Unsupervised Clustering of Hierarchical Databases 279
B.2 Proofs . 280

B.2.1 Theorem 1 . 280
B.2.2 Proposition 1 . 280
B.2.3 Corollary 1 . 281
B.2.4 Theorem 2 . 281
B.2.5 Proposition 2 . 281
B.2.6 Corollary 2 . 282
B.2.7 Generalization to Multiple Clusters 282
B.2.8 Proof of Coherence for αMax-B3

δ 283
B.2.9 Proof of Non-Monotonicity . 283
B.2.10 Theorems’ Inequality Implications 284
B.2.11 Proof of α-Plateau . 285

xxii

C From Missteps to Milestones: Understanding Failed Attempts 287
C.1 Failed Prototype Attempt: Automated Textual Description Generation 287

C.1.1 Methods . 287
Training objective . 288
Cluster-wise gradient accumulation 289
Prototype discussion . 289

C.2 Sensor-Driven Textual Observation Report Prediction 290
C.2.1 Prototype Discussion . 290

D Deutsche Zusammenfassung 293
D.1 Zusammenfassung . 293

D.1.1 Forschungsmotivation . 293
D.1.2 Forschungsbereich . 294
D.1.3 Forschungsherausforderungen 294
D.1.4 Beitragsumfang der Arbeit . 295
D.1.5 Zusammenfassung der Beiträge 295

NEURONALE ARCHITEKTUR UND DATENREPRÄSENTATION . . 295
DIMENSIONSREDUKTION UND DARSTELLUNGSSUCHE 296
DATENINTEGRATION UND ANALYSE 297

Bibliography 299

xxiii

List of Figures

2.1 Example of a rule-based decision tree. 9
2.2 Supervision problematic . 12
2.3 AI paradigms . 14
2.4 Space partition . 20
2.5 Convex vs. Non-Convex . 23
2.6 Gradient descent . 24
2.7 Neural network . 26
2.8 Stacked Neural network . 27
2.9 Transformer model . 29

3.1 Using natural language to explain clusters. 40

4.1 Data dependency relations. 46
4.2 Illustrating the data acquisition process. 47
4.3 Hierarchical data structure composed of a primary root entity con-

taining subsidiary elements. 48
4.4 Abstract data dependency relations. 48
4.5 Different HDBs integrated into a larger unified DB. 50
4.6 Big picture of applying ML. 54
4.7 Quality implications based on deterministic and non-deterministic clus-

ter aggregations and separations. 64
4.8 Second-order Taylor approximation error (TA-error) from a source to

other points in a simple 2D space. Points with larger TA-errors, or that
are distant from the source, are less likely to align with the source. This
can be used as a pairwise measure. 76

4.9 A manifold clustering illustration, where nearby points on a shared
(smooth) manifold yield pairwise good (aligned) Taylor approxima-
tions. Proximity and locally good approximations indicate clusters.
Proximity in Euclidean space differs from proximity in the manifold
space. Same-colored points share the same local manifold. 77

5.1 Overview of the pipeline proposed in (agreement, n.d.). 80
5.2 Cardinality linearization from (agreement, n.d.) 81

7.1 Graph interpretation of data. 106
7.2 Node features. 107
7.3 Data base database graph. 108
7.4 Node encoding. 110
7.5 Non-hierarchical entity modification. 111
7.6 Composite graphs. 112
7.8 Graph-data augmentation. 118
7.9 Non-transitiveness of the Jaccard metric. 121
7.10 Reconstruction loss using Auto-Encoders. 123

xxiv

7.11 Classification loss. 127
7.13 Recursive model architecture. 132
7.14 Full recursive model architecture. 133
7.15 Example of embedding generation. 134
7.16 Adaptive look-up embeddings. 135
7.17 Attention integration. 137
7.18 Output-Inception. 138
7.19 Siamese networks and self-attention. 138
7.20 Attention integration. 154
7.21 Information preservation . 155
7.22 Information preservation. 155
7.23 Virtual nodes . 156
7.24 Full custom model composition. 158
7.25 Embedding concatenation and model forwarding. 160
7.26 Suggested approach for separating data into train and test sets after

identifying and removing duplicates to ensure data split consistency
across different data views. 162

7.27 Similarity search using different methods. 164
7.28 Using implicit nested matrix representations to avoid unnecessary

and excessive padding in batch processing. 165
7.29 Illustration of the manifold approximation concept. 168
7.30 Illustration of the main architecture of ATLAS. 171
7.31 Performing sub-clustering on clusters to extract deeper and finer sub-

patterns. 173
7.32 Conceptual illustration of the cluster aggregation and consolidation

step for generating super-sets. 175
7.33 A graphical representation demonstrating the behavior of η

[j]
α across

varying values of α using a fixed configuration of points as an example.177
7.34 The full training architecture for generating CLIP-search-based clus-

ter descriptions. 181
7.35 The Harmonic Clustering Score as the harmonic mean of three intu-

itive score heuristics. Ranking by this score identifies the most "rep-
resentative" elements; since achieving a good score requires all three
heuristics to yield high scores. 186

7.36 Identifying the optimal representative pair within a cluster by sorting
pairs according to their auto-regressive modeling loss relative to their
cluster’s embedding . 187

7.37 Transferring knowledge across input domains by distilling insights
from models trained/fitted on different data sets. 189

7.38 Sequence chaining for ϕ = 1 . 197
7.39 The single-path forward chaining probability for various quantile val-

ues ϕ. 199
7.40 Inverse weighting relative to reachability likelihood. 200

8.1 An example of how multiple visualizations using UMAP on the same
data may provide different outcomes. 208

9.1 Comparing the distribution of adjusted and multiplied weights de-
rived from random losses. 215

9.2 Comparing the distribution of adjusted and multiplied weights de-
rived from random losses. 215

xxv

9.3 Projecting clustered random vectors. 216
9.4 The embedding projection and the closest points of random instances

within some clusters are visualized. The images of the instances are
from the data set (Rebrickable®, 2022). 219

9.5 The results of a classification and semi-supervised task are displayed
for the ten most frequent classes. The upper graphs relate to the
Rebrickable® DB; the lower ones to the synthetic data. 220

9.6 Projection of latent representations for FMNIST using different archi-
tectures. Classification labels were obtained by splitting the origi-
nal ten label indices into two classification groups A & B (based on
whether the label indices are even or odd). 224

9.7 An example of too-weak AEs that fail to effectively interpret the un-
derlying data and preserve structural identity as intended (finding
and preserving sub-labels). 225

9.8 Accuracy and normalized Taylor approximation error during training
on three different architectures. 227

9.9 Comparison between HDBSCAN clustering on the Euclidean distance
vs. AP using the TA error. 228

9.10 Multiple clustering assignments are evaluated using clustering scores
and depicted visually. The optimal clustering consists of five classes.
A finer and purer sub-clustering should have better scores compared
to a coarser and less pure clustering. The proposed αMax-B3 met-
ric, being a variation of the standard B3, generates more robust and
fair scores. It prioritizes correct extraction of sub-clusters over in-
correct super-clusters, while still penalizing non-homogeneous super-
clusters when the number of sub-clusters becomes excessive. 231

9.11 The B3, αMax-B3, and αMax-B3
δ scores on an imbalanced data set of

five labels. The performance was evaluated based on different cluster
counts k. On coarse clusters (k ≤ 5), B3 and αMax-B3 perform equally.
However, αMax-B3 performs fairer on finer sub-clusters (k ≥ 5) than
B3 since it gives more weight to sub-clusters under uncertainty. αMax-
B3

δ accounts for class imbalance; which results in differences in k < 5. . 232
9.12 A comparison of different pooling operations on UMAP projected im-

age cluster groups from synthetic data and the COCO data set. De-
picted are: mean-, median-, max-, GM-, and instance GM pooling. . . . 236

9.13 [Extract 1] A sample of CCs generated from TextCaps data (Sidorov et
al., 2020) using diverse pooling techniques; with corresponding BERT-
scores. Cluster captions were produced by passing the pooled repre-
sentation through a decoder, applying a sampling decoding strategy,
and choosing the caption with the highest BERT-score. Four clusters
are shown, each with a random subset of nine cluster instances. 237

9.14 [Extract 2] A sample of CCs generated from TextCaps data (Sidorov et
al., 2020) using diverse pooling techniques; with corresponding BERT-
scores. Cluster captions were produced by passing the pooled repre-
sentation through a decoder, applying a sampling decoding strategy,
and choosing the caption with the highest BERT-score. Four clusters
are shown, each with a random subset of nine cluster instances. 238

9.15 Comparing normalized output distributions and performance. 241
9.16 Results on classification tasks. 241
9.17 Results on classification tasks. 242
9.18 tanh-normalization using different spread values. 243

xxvi

9.19 Wasserstein loss against different spread values. 244
9.20 Class distances in an embedding space 246
9.21 An embedding projection showing inliers and outliers. 249
9.22 Analyzing sub-cluster data hierarchies in Sklearn’s diabetes data set;

identifying core points, clusters, and outliers. 250
9.23 Analyzing sub-cluster data hierarchies in Sklearn’s California housing

data set; identifying core points, clusters, and outliers. 250

B.1 The embedding projection and the closest points of random instances
within some clusters are visualized. The images of the instances are
from the data set (Rebrickable®, 2022). The results are independent
of the ones shown in Figure 9.4.1; it depicts a completely different
training run (on the same data set). 279

C.1 An overview of an initial prototype training architecture pipeline (i.e.
first attempt) for generating cluster descriptions. 288

C.2 Learning from textual observations and training decoder models for
automatic text generation out of sensor data. 290

xxvii

List of Tables

2.1 Top Large Language Models . 30

9.1 Class-weighted F1 classification scores of various models with differ-
ent model sizes and learning rates. µ represents the model size ra-
tio to BERT-mini for a given model; η is the learning rate. Bert was
used without positional encoding; token order was randomly sam-
pled each time before truncation. The median sequence length was
234 (mean ∼ 367). Bert employed the default maximum sequence
length of 512. However, to emulate a situation where the textual DB
encoding exceeds the sequence length limit, a modified version with
a limit of 128 (a fourth of the maximal sequence windows) was also
evaluated; denoted by *Bert. 221

9.2 A comparison of scores against ground truth uncertainty. n denotes
the number of real sub-clusters merged under the same visible coarse
label. Automatically determining α yielded here the same scores as
using the real uncertainty value (i.e. α = n−1

n). 233
9.3 A comparison of scores from merged data sets of varying levels of un-

certainty (sub-cluster tuples) under different degrees of noise, number
of instances, and cluster classes. (m,n) denotes m coarse labels; each
comprising n sub-clusters. ∅n−1

n is the average uncertainty of both
merged data sets. c denotes the total number of total number of real
classes. 233

9.4 Estimating data uncertainty by extrapolating α and comparing it to
the actual uncertainty. The extrapolation was perfect for consistent
data sets with a uniform cluster uncertainty. For inconsistent data un-
certainty, e.g. merging two different sets with different uncertainties,
the extracted α was not perfect but approximated the uncertainty well. 234

9.5 Comparison of model evaluation on real and coarse labels for CI-
FAR100 sub-labels using B3 and αMaxB-CUBED; both, for automatic
estimation of α and using the real α. VITb−32 (Dosovitskiy et al., 2020)
was used as base model; at multiple different accuracy levels. 234

9.6 Average text similarity scores for different pooling methods using var-
ious metrics with different scales. Higher scores indicate better per-
formance; the average and maximum cluster-wise score using a brute-
force search is included as a reference. 239

9.7 The average relative rank (smaller is better) of the scores among all
methods per decoding strategy. 240

9.8 Approximate probability density coverage. 244
9.9 Ideal spread values. 245
9.10 Average Out-of-Distribution Area Under the Receiver Operating Char-

acteristic Curve (ROC AUC) scores on trivial synthetic clusters for
multiple simple classifiers. 246

xxviii

9.11 Average Out-of-Distribution Area Under the Receiver Operating Char-
acteristic Curve (ROC AUC) scores on real-world data. The column
"alg_log" represents the application of the outlier-detection algorithm
on the logits, while "alg_pred" its application on the predictions. The
columns "max[alg_log, ϵ]" and "max[alg_pred, ϵ]" represent the ROC
AUC scores computed based on the maximum of the algorithm and
ϵ, using either the logits or the predictions, respectively. 247

xxix

Preface

Disclaimer: This doctoral thesis was made possible thanks to a joint collaboration
between the Ludwigs Maximilians University Munich and the BMW Group as part
of an Industrial Doctoral Program. Financial support was provided by the BMW
Group throughout the entire collaboration period. Any possible privacy-related in-
formation was either omitted or anonymized in compliance with the BMW Group’s
guidelines. Large language models contributed to maintaining grammatical accu-
racy and fluency in the composition; as the author of the thesis, I (Felip GUIMERÀ

CUEVAS) retain full content responsibility.

Target Audience: This thesis represents the culmination of years of specialization
and focused dedication in the field of Artificial Intelligence (AI). It is an exciting mo-
ment for me to present this work to the academic community. Through my thesis,
I have come to especially appreciate the open research community in the field of
AI, which has enabled me to keep pace with the latest developments in this fast-
changing field. Being involved in the forefront of AI research has been a very excit-
ing experience. Hence, a key endeavor in the writing of this thesis was to make it
also accessible to a diverse range of readers (with varying levels of familiarity with
AI). It can be read and understood without any (major) background in the subject,
from start to finish. The thesis is of particular interest to those interested in Repre-
sentation Learning and extracting meaningful patterns from data.

Terminology: Philosophically speaking, this dissertation, authored by "me" (Felip
GUIMERÀ CUEVAS), stands not only as a reflection of my own research endeavors
but also acknowledges the invaluable support, guidance, and contributions of the
academic community and my loved ones (emotional support). Therefore, the use of
"We" is both justified and necessary to recognize the collective effort that has made
this work possible; and will, thus, be employed throughout this thesis. For instance,
instead of stating "I propose", the expression "We propose" will be utilized. This
choice of terminology implicitly includes the influence of numerous academic arti-
cles that have shaped or inspired my research (Bibliography). In essence, this thesis
adopts the use of "We" in place of "I / Me".

https://www.lmu.de/en/
https://www.bmw.de/
https://www.bmwgroup.jobs/de/en/students/entry-programmes/phd-programme.html

1

Chapter 1

Contributions

This doctoral thesis explores, discusses, and proposes various (new) methods and
algorithms in the field of Artificial Intelligence (AI), which will be introduced in
Chapter 7 [Methods]. It is essential for readers, especially those without a Deep
Learning background, to have a basic understanding of the reasons behind their pro-
posal and usage, as well as their interrelationships and contextual placement within
AI. Therefore, it is important to first establish a foundation of fundamental concepts
and terms in the AI field before going into deeper mathematical and technical de-
tails. The fast-paced nature of AI development makes it difficult to keep up with the
latest advancements. For those entering the field, it is imperative to not only remain
aware of the most recent publications and breakthroughs but also to discern where
to commence their literature review and learning. Basic background knowledge in
this immense field is particularly essential for situating this thesis and its AI methods
within a context. The goal of this thesis is to pave the way for further advancements
and solutions in the field of AI. An inclusive literature overview not only facilitates
this process but also guarantees the effective use of pre-existing knowledge, thereby
reducing redundancy in research efforts in future work.

To bridge the gaps in understanding, this thesis will provide different sections
that will motivate the need for different AI methods and solutions, highlight why we
need them, provide the necessary mathematical and algorithmic background, out-
line variants and previous work, and illustrate how AI solutions can be approached
by diverse methods. Overall, the thesis presents related work of relevant literature,
but the reader is strongly encouraged to (extensively) explore the cited references
and literature reviews to gain an even deeper understanding of the topic, improve
overall comprehension, and situate the thesis into the right context.

1.1 Research Motivation

This thesis is the result of a previous data analysis project that demonstrated the po-
tential of AI methods in terms of efficiency and effectiveness (see Chapter 5). This
led to the current thesis, which was first aimed at improving or completely redesign-
ing the previous model and methodology to obtain even more robust and efficient
results. Strong and scalable AI solutions are highly desirable due to their broad ap-
plicability and adaptability to various complex problems, such as prediction, classi-
fication, similarity search, semantic search, outlier detection, and out-of-distribution
detection, particularly relevant to the industry. In this regard, deep embeddings play
a crucial role and represent contextualized numerical representations of entities. Ob-
taining good numerical representations is challenging, but it allows for immense po-
tential in many different applications and is, thus, incredibly impactful. Once such
an AI model architecture or algorithmic method is developed for generating deep

2 Chapter 1. Contributions

embeddings, it can be applied to many different use cases; making research in AI
methods a highly rewarding investment.

1.2 Research Scope

The research scope covered in this thesis includes various domains such as Machine
Learning, Deep Learning, Embeddings, Manifold Learning, Outlier Detection, and
Clustering. Nonetheless, the primary project branch is Representation Learning;
which here includes identifying meaningful and efficient representations for com-
plex unconventional data type instances and data structures. From this primary
branch, diverse sub-branches have emerged, addressing, improving, and tackling
different sub-topics and applications/downstream tasks; either directly or indirectly
related to Deep Embeddings or Manifold Learning, yet always situated within the
domain of Machine Learning.

1.3 Research Challenges

Evaluation is a fundamental aspect of scientific research since it allows us to assess
the quality of a method and compare it to other methods. Any method without
representative or formal means of quantitative assessment (or comparison to other
methods) may be deemed useless. However, in the field of Machine Learning, evalu-
ating methods is challenging due to the trade-offs between the inherent advantages
and disadvantages of different methods in many aspects. Different methods typi-
cally excel in different tasks, and some may e.g. be more efficient but less effective;
or the other way around. Thus, conducting a "fair" evaluation is not always straight-
forward, and biased evaluations can lead to incorrect conclusions. For example, in
clustering, different algorithms may perform well on different data sets, and there is
no universal algorithm that outperforms all others in every aspect.

Therefore, it is essential to not only rely on empirical results but also use math-
ematical verification or proofs. Mathematical proofs guarantee certain behaviors,
unlike empirical results (which require extensive evaluation to confidently assess re-
liability and significance). Hence, in this thesis, we aimed to find a balance between
empirical results and mathematical validation; i.e., when appropriate.

1.4 Research Contribution Scope

The research presented in this thesis constitutes an essential part of an industrial doc-
toral project program that combines theory with practical applications. However,
this thesis specifically concentrates on encapsulating the theoretical and analytical
groundwork carried out within the project; and does not provide privacy-sensitive
information. It presents theoretical solutions and approaches that were developed
to address the underlying research problem. The thesis itself is entirely centered on
providing foundational theoretical knowledge and does, in particular, not include
implementation or application details. This separation between theoretical contri-
butions and implementation details allows for a clear presentation of foundational
academic knowledge, which ensures that the concepts can be applied beyond the
current project and be generalized to other (different) use cases.

1.5. Research Contribution Summary 3

The key contributions of this thesis are outlined in the methods and results chap-
ters, along with their respective discussions. The motivation, introduction, and re-
lated work sections serve to provide a comprehensive overview of previously pub-
lished studies in the academic literature, which entail common background knowl-
edge that we deem fundamental for situating this thesis into context. While ex-
tensive references are provided for these related works and introductory chapters,
many aspects are generally considered basic and already well-known background
knowledge. To differentiate our work from previous studies, and highlight our con-
tributions in this thesis, all our main (novel) contributions, starting primarily from
the methods chapter, are summarized and delineated in the paragraphs below:

1.5 Research Contribution Summary

The following are the primary novel academic contributions of this thesis to the
knowledge in the field. This is in addition to our literature review contribution but
constitutes original "novel" methodologies. Briefly summarized, we have divided
our work into different main areas:

• NEURAL ARCHITECTURE AND DATA REPRESENTATION

– Introduced a novel neural architecture based on complex-valued neural
networks (Chapter 7.1): Traditional neural networks use real-valued pa-
rameters to process and analyze input data. Our novel complex-valued
neural architecture uses complex-valued-based equivalent parameters in-
stead. This architecture offers several unique properties over traditional
neural networks, including the very interesting property that neural in-
puts can never be surpassed or eliminated by weights.

– Proposed a framework for encoding hierarchical one-to-many relation-
ship databases into contextualized numeric data representation (Chap-
ter 7.2): One-to-many relationship databases, common in many domains,
can be challenging to encode effectively and preprocess for Machine Learn-
ing algorithms and applications. Our framework uses a hierarchical data
representation approach that maps the one-to-many relationships into a
unified tree structure. This approach enables us to process, analyze, and
learn from one-to-many relationship databases efficiently and effectively.

– Proposed an adaptive and robust feature normalization and preprocess-
ing method (Chapter 7.3): Effective feature normalization and prepro-
cessing methods are crucial for improving and ensuring the performance
of Machine Learning models. We focused on enhancing robustness and
training convergence by reducing the effect of outliers and improving
feature scaling (FS). Specifically, we achieved this by introducing an im-
provement to the Tanh-Normalization method for feature values that cal-
culates an optimal scaling, thereby avoiding the need for (unnecessary)
adjustments to model weights due to an initially poor, sub-optimal FS.

– Developed a method for synthetic data augmentation on hierarchical
databases (Chapter 7.4): Data augmentation is a crucial technique used to
improve the performance of Machine Learning algorithms. Our method
generates synthetic data samples for tree structures for (complex) hierar-
chical databases. This enables us to increase the size and diversity of the
training data to improve the performance of models trained on this data.

4 Chapter 1. Contributions

• MANIFOLD AND EMBEDDING LEARNING

– Introduced a contrastive Representation Learning framework for tree
structures (Chapter 7.5): Representations are crucial for the success of
many Machine Learning tasks. Our contrastive framework can be applied
to (hierarchical) tree structures to learn more representative embeddings
while being flexible in operating in an unsupervised, semi-supervised,
supervised, or even self-supervised manner. This approach has the po-
tential to extract meaningful embeddings for hierarchical database enti-
ties to enable the application of further downstream tasks that require
contextualized numerical representations.

– Extended and generalized the hierarchical database embedding learn-
ing framework to unify multiple data views through concatenated Rep-
resentation Learning (Chapter 7.6): Concatenated Representation Learn-
ing is a technique where embeddings learned from different parts of the
input data are concatenated to form a unified intermediate representa-
tion, from which a final embedding is then learned or derived. Our solu-
tion thus is to concatenate multiple data views from different hierarchical
databases into a single unified database, by first computing the database
representations of the individual hierarchical data views and then learn-
ing a joint embedding representation for further downstream tasks. This
also enhances the scalability and adaptability of our framework to larger
and more intricate databases.

– Designed methods and diverse loss functions for manifold Represen-
tation Learning and Clustering (Chapter 7.7): Manifold Representation
Learning and Clustering are particularly important for high-dimensional
data with complex structures. Our methods use (i) manifold learning
techniques to reduce dimensionality while preserving important informa-
tion and, (ii) clustering algorithms to partition the data set into groups.
This is done using multiple loss functions together in a special neural
training architecture (particularly designed for hierarchical data).

– Developed approaches for automated textual description generation of
cluster groups (Chapter 7.10): Cluster groups can be challenging to in-
terpret, especially in high-dimensional data. Our approaches generate
automated textual descriptions that provide useful insights into the clus-
tering group’s characteristics and help human users to better understand
the clusters’ properties. These descriptions provide a single, concise, and
natural summary of each cluster, conveying the essence without delving
into specific (different) details about individual cluster instances.

• DATA INTEGRATION AND ANALYSIS

– Introduced a B3-based supervised evaluation metric for clusters under
label uncertainty (Chapter 7.9.2): Clustering under label uncertainty (i.e.
inexact, coarse labels) is a challenging problem that is commonly encoun-
tered in many real-world applications and data sets. Our proposed qual-
ity evaluation metric for clusterings is specifically designed to account for
coarse labels. It draws attention to a potential flaw in the widely-used B3

cluster evaluation metric. B3 assumes and satisfies multiple desired, in-
tuitive formal clustering constraints that, however, may not be optimal or
accurate when dealing with poor, imperfect, and uncertain labels. This is

1.5. Research Contribution Summary 5

particularly relevant and the case for coarse labels, where multiple enti-
ties may share the same (super-) label under some degree of uncertainty.

– Proposed methods for determining representative textual labels for clus-
tering accurate sensor data with inexact labels (Chapter 7.12): Accurate
sensor data with inexact labels is a challenge that arises in many real-
world applications. Our proposed methods determine representative tex-
tual labels that summarize the data’s characteristics, even when the data
set has inexact labels. For example, it is often of interest to rank textual
annotations based on their suitability to represent identified clusters in
high-quality sensor data. However, the textual data may be potentially
different in terms of quality and, particularly, not aligned with the sensor
data. The goal here may then be to find the best representative annotation
while accounting for these uncertainties in the textual quality.

– Proposed a transfer learning approach to distilling insights from Ma-
chine Learning models trained on different data sets (Chapter 7.13):
Transfer learning is a powerful method that enables us to use the knowl-
edge gained from one data set to enhance the performance of Machine
Learning models trained on other data sets. This becomes particularly
useful when the original training data is unavailable, and/or retraining
on a new data set would compromise the insights learned from the origi-
nal. Our approach, based on knowledge distillation, distills the necessary
insights from pre-trained models and effectively transfers them to new
models. This approach also works well when different units have their
unique data sets with similar or equal objectives/labels. By training in-
dividual models on their respective data sets, the insights learned can
then be e.g. shared with a master model. This distillation is also useful
e.g. when one model has been trained on an easier but less precise data
set but one wants to learn from a more complex but more accurate and
precise data set, while still leveraging and incorporating the knowledge
extracted from the easier data set.

– Introduced a novel approach to out-of-distribution detection and nov-
elty detection, leveraging mismatches in model calibration alignment
(Chapter 7.14): Model calibration is typically essential for accurate predic-
tions, but we argue that mismatches in calibration can also be exploited to
detect out-of-distribution samples or novelties in samples. Our proposed
approach uses precisely these mismatches to detect out-of-distribution
samples and outliers with high accuracy in comparison to other methods.

– Developed a method for representative sampling within quantile win-
dows in data streams of unknown final length (Chapter 7.16): Sam-
pling representative data streams is challenging, particularly when the
final length of the stream is unknown. Sampling from data streams of
unknown sizes is considered to be non-trivial due to dynamic data char-
acteristics, limited memory, time constraints, and potential for sampling
bias. Specialized algorithms and techniques have been developed to ad-
dress different challenges such as via reservoir sampling and count-based
sampling. We go a step further and address the problem of quantile sam-
pling, which involves sampling from a data stream within a sliding non-
fixed quantile window. We demonstrate how our proposed quantile sam-
pling algorithm aligns with specific mathematical sampling properties.

7

Chapter 2

Background

2.1 Big Data

The number of available, accessible, and collectible data is growing yearly at an ex-
ponential rate (Chen, Mao, and Liu, 2014) and typically entails massive amounts of
unstructured data. From data, one can extract knowledge, and from knowledge one
can obtain new insights and value. However, identifying, extracting, and obtaining
such knowledge from raw data are not the only challenges that arise. Managing,
processing, and handling given data sets effectively and efficiently are only some of
the very many complex challenges that need to be addressed and overcome (McAfee
et al., 2012; Marx, 2013; Wu et al., 2013). Among these challenges characterizing Big
Data (Kapil, Agrawal, and Khan, 2016), the six most key and well-known ones are:

• Value: The utility and value of data might be hidden or unstructured and
usually need to be extracted and identified.

• Volume: Data comes in huge volumes and must be stored and accessed effec-
tively, requiring scalable solutions for handling size and processing capacity.

• Velocity: Data changes and arrives quickly, exhibits rapid changes and in-
fluxes, and needs to be processed efficiently.

• Variety: Data can have different forms, structures, encodings, frequencies, and
taxonomies, requiring solutions handling its heterogeneity.

• Veracity: The quality of data is not always reliable and might be considered
questionable, conflicting, noisy, or even false.

• Variability: The structure or meaning of data can often change rapidly, leading
to inconsistencies or fluctuations that may occur over time.

These challenges are commonly referred to as the Six-Vs (Andreu-Perez et al.,
2015). The buzzword "Big Data", therefore, relates overall to all gathering and accu-
mulations of massive data that cope with such complex challenges and deal with the
explosion of available information and data streams. The process of actually analyz-
ing and extracting knowledge is often referred to as "Data Mining" to find patterns
or summarize the data, such that it becomes understandable and useful. Typical pat-
terns (i.e. relationships, models, etc.) of interest are often correlations, rules, clusters,
graphs, (hierarchical) tree structures, and recurrent patterns (Hand, 2007).

Data itself plays a central role in Artificial Intelligence (AI), especially in the sub-
field of Machine Learning (ML), which will be introduced and discussed in the next
section. Particularly ML algorithms rely on extensive data sets to identify these pat-
terns and make meaningful and correct predictions.

8 Chapter 2. Background

Take-Away

The growth of available data is exponential and presents challenges in terms
of managing its volume, velocity, variety, veracity, and variability. These
challenges, known as the Six-Vs, are key in the field of Big Data, which in-
volves analyzing and extracting knowledge from large amounts of unstruc-
tured data. Data plays a central role in Artificial Intelligence, particularly in
Machine Learning.

Keywords

Big Data • Data Analytics • Challenges • Six-Vs • Unstructured Data.

2.2 Artificial Intelligence

2.2.1 Definition & Philosophy

Artificial intelligence (AI), although nowadays being used permanently under many
contexts and highly hyped thanks to influential marketing sources, as well as due
to hitting more and more headlines after consistently achieving incredible results
(Wang et al., 2016a; Campbell, Hoane Jr, and Hsu, 2002; Buchanan, 2005) on many
completely distinct fields and domains in industry and research, the technical and
philosophical interpretation (Sloman, 1971; Haugeland, 1997) and definition of AI
itself remains a debatable rabbit-hole with many rightfully distinct interpretations
and, therefore, varies widely from literature to literature. Over the past few decades,
various approaches and efforts have emerged to identify, define, characterize, and
implement new and improved AI systems (Minsky, 1961; McCarthy, 1998; Russell
and Norvig, 2002; Nilsson, 2014).

To convey the essence of AI to different audiences, I’d use varying levels of com-
plexity and detail: If I was forced to define AI in three words to make a child under-
stand AI, I would cite my personal, subjective favorite, interpretation from the MIT
OpenCourseWare 6.034 (Winston., 2010):

THINKING, PERCEPTION, REACTION

If I was forced to define AI in a sentence to a grown up understand AI, I would
then cite the more advanced definition from Winston., 2010:

REPRESENTATIONS THAT SUPPORT MODELS TARGETED AT:
THINKING, PERCEPTION, REACTION

And I was ultimately forced to define AI for a Computer Science student, I would
cite the full definition from Winston., 2010:

ALGORITHMS ENABLED BY CONSTRAINTS EXPOSED BY

REPRESENTATIONS THAT SUPPORT MODELS TARGETED AT:
THINKING, PERCEPTION, REACTION

Yet, if I was forced to answer "How does AI work?" in one word, I‘d opt for:

MATHEMATICS

2.2. Artificial Intelligence 9

Interestingly, if you asked an AI large language model like GPT 3.5 Turbo (Ab-
dullah, Madain, and Jararweh, 2022) to define AI in three words, it outputs e.g.
"Learning, predicting, adapting"; and as a sentence: "AI processes data using algo-
rithms to learn patterns, enabling it to make predictions or decisions without explicit
programming".

In technical terms, AI can be divided into two main approaches: Rule-based Sys-
tems (RBS) and Machine Learning (ML). Although both come under the umbrella of
AI, they are fundamentally different, and choosing one over the other can have sig-
nificant impacts on the model’s effectiveness, reliability, safety, and interpretation.

In general, the goal of AI is to build models that can automatically perceive, rea-
son, comprehend, and learn from complex data or situations to react accordingly.
This involves creating algorithms, machines, and techniques that enable decision-
making. AI is a rapidly evolving field of research driven by advances in algorithms,
computing power, data collection, and the availability of large-scale data sets. It
draws heavily on concepts from statistics, probability theory, linear algebra, calcu-
lus, and optimization theory.

2.2.2 Rule-based Systems

In RBS, developers (i.e. people) define a set of rules and the logic for how a model
makes decisions. For example, one could define a set of IF/ELSE rules and infer
a decision based on properties: "IF IT RAINS, THEN TAKE THE CAR, ELSE GO BY

FOOT. These rules can be convoluted and nested in any possible way, with different
logical operations, and can be visualized in the form of decision trees (Figure 2.1):

FIGURE 2.1: Example of a rule-based decision tree that classifies six
different types of animals based on certain criteria.

2.2.3 Paradigms of Machine learning

In ML, models themselves figure out how to best achieve goals (usually minimiz-
ing a loss function; which is equivalent to maximizing a reward score) and self-
sufficiently adapt and improve the model by learning from data; and so, the rules
are not explicitly written or derived, but self-learned. Many sub-fields exist within

10 Chapter 2. Background

the area of ML, yet, the entire span can be categorized roughly into the following
main ML paradigms:

1. Unsupervised methods: Do not require labeled data for training.

2. Supervised methods: Rely on labeled data for training and inference.

3. Self-supervised methods: Utilize the inherent structure within data to create
labels for training.

4. Reinforcement Learning methods: Use trial-and-error to learn optimal actions
in an environment.

5. Hybrid methods: Combine multiple techniques to achieve better performance
in machine learning tasks.

Unsupervised Learning

Unsupervised learning methods refer to types of algorithms that learn patterns from
unlabeled data (Barlow, 1989; Ghahramani, 2003; Khanum et al., 2015). The most
prominent unsupervised methods are for clustering (Ruspini, 1969; Xu and Wun-
sch, 2008; Madhulatha, 2012), anomaly detection (Chandola, Banerjee, and Ku-
mar, 2009; Eskin et al., 2002; Schlegl et al., 2017), Latent variable learning (Everett,
2013; Valpola, 2015) and graphical-models (Newman, Watts, and Strogatz, 2002;
D’Andrea, Ferri, and Grifoni, 2010), as well as for dimensionality reduction (Van
Der Maaten, Postma, Herik, et al., 2009) and association learning (Cios et al., 2007).
Since obtaining labeled data can be very tedious, difficult, costly, and slow, unsuper-
vised methods often offer an attractive solution; but may be more challenging.

Supervised Learning

Supervised methods (Caruana and Niculescu-Mizil, 2006; Bzdok, Krzywinski, and
Altman, 2018; Muhammad and Yan, 2015) differ from unsupervised methods in that
they require labeled (i.e. ground-truth) data, where each data point is already as-
signed a label. The goal is to train a model using this labeled data and subsequently
employ the trained model to predict labels for new, previously unseen, and unla-
beled data. In general, the success of any model in making accurate predictions
on new data depends essentially on its ability to generalize the patterns learned
from the labeled (training) data. Supervised learning has many applications across
various domains (Tiwari, 2022) including classification, regression tasks, ranking,
sequence labeling, semantic segmentation, and even image-to-text generation via
large generative language models.

Self-Supervised Learning

Self-supervised learning methods, also often referred to as "pretext"1 tasks, can be
thought of as a hybrid of supervised and unsupervised learning. In particular, self-
supervised learning diverges from the supervised and unsupervised paradigm by
generating its own (self-) supervised label (i.e. ground-truth) directly from the data
itself; without the need for extrinsically labeled examples (the labels are e.g parts

1The term pretext underscores that a given task serves as a preliminary step (other than the main
objective), offering so a pretext for obtaining "useful" (Zhang, Isola, and Efros, 2017) representations.

2.2. Artificial Intelligence 11

of or embedded within the data itself). The main idea is to make use of the knowl-
edge inherent (hidden) in vast amounts of unlabeled data by learning intermediate
(strong, meaningful) representations that encode semantic or structural information
useful for further downstream tasks. Being "useful" refers to a representation that
is adaptable for various tasks, especially those unknown during the training phase
(Zhang, Isola, and Efros, 2017). Overall, the key objective of self-supervised learn-
ing is to capture the underlying structure of raw data without explicitly relying on
(extrinsic) labeled examples; it allows us to avoid the high cost of annotating large
data sets, as we can extract useful information from unlabeled data; without having
to label it beforehand (Weng, 2019; Jaiswal et al., 2021).

Reinforcement Learning

In Reinforcement learning (RL) the idea is that agents in a certain environment - typi-
cally formulated as a Markov decision process (MDP) (Feinberg and Shwartz, 2012)
- perform actions to maximize a long term, cumulative reward based on observations
(Sutton and Barto, 2018; Kaelbling, Littman, and Moore, 1996; Li, 2017). The map-
ping of observations to actions itself is called a policy. Thereby, a balance between
exploratory- and exploitative behavior must be established (Coggan, 2004; Thrun,
1992); i.e, how much should the agent try out new actions, strategies, etc. to improve
the current policy and gain new knowledge, and how much of our current knowl-
edge do we (confidently) want to exploit. The agent then continually optimizes its
policy based on the rewards it obtains.

Hybrid Learning Methods

Hybrid models can be seen as models that combine different approaches, such as
semi-supervised learning (Chapelle, Scholkopf, and Zien, 2009; Zhu, 2005; Zhu
and Goldberg, 2009) which uses labeled data as well as (a large amount of) unla-
belled data. Another example of a hybrid approach is semi-supervised reinforce-
ment learning (Finn et al., 2016) where a reward function can e.g. only be evaluated
using labeled Markov decision processes (MDPs) and an agent must generalize its
policy to states it might encounter in a set of unlabeled MDPs. Other relevant strate-
gies in hybrid methods include unsupervised pretraining + supervised fine-tuning
and active learning + supervised learning, both of which hold considerable impor-
tance in natural language processing. Additionally, transfer learning is also an ex-
ample of a flexible strategy that can integrate elements of both learning paradigms:
supervised (fine-tuning with labeled data on a particular task) and unsupervised
(pretraining on an unlabeled large data set or corpus).

2.2.4 Weakly-Supervised Learning

Supervised learning approaches use a large number of training samples to build
prediction models. However, since the data-labeling procedure is expensive, it is of-
ten difficult to obtain accurate supervision information, such as exact ground-truths.
To address this challenge, machine-learning algorithms with "weak supervision" are
used. Weak supervision refers to a set of techniques that require less supervision
and are split into three main areas (Zhou, 2018): incomplete supervision, where only
a portion of the training data is labeled; inexact supervision, where only coarse or
meta labels are provided; and incorrect supervision, where the given labels are not
necessarily ground-truth.

12 Chapter 2. Background

2.2.5 Challenges in Unsupervised Clustering Methods

Unsupervised clustering algorithms face an inherent problem when clustering/-
grouping based on similarity measures. This is due to the model’s perception or
interpretation of the term "similarity" differing from the expected one (e.g. of a de-
veloper). Consider Figure 2.2 for example, where we group images of digits from
the MNIST data set in an unsupervised manner, i.e. without labels. But how does
the model know what we’re looking for? If, for example, the model computes sim-
ilarity based on pixel values, it will not find clusters based on parity. Similarly, if it
clusters based on parity, it will fail to cluster the images based on the pixel values.
Even if the model were to cluster the images based on both, parity and pixel values,
it would still fail the task if the true purpose was to cluster based on common factors
(i.e. denominators). This is important to remember and must be handled explicitly,
which may need a semi-supervised learning strategy and hence a shift away from
entirely unsupervised learning. Overall, performing clustering on "something" is
always feasible; the real question is rather "how beneficial" it is.

Therefore, unsupervised clustering encounters difficulties in determining simi-
larity without clear guidance, often leading to divergence from human expectations.
To address this, one can try to more explicitly define the clustering task or incor-
porate human expertise and domain knowledge. Other techniques such as feature
engineering, representation learning, and dimensionality reduction can also aid in
aligning the model’s perception of similarity with the desired results. Additionally,
iterative clustering refinement and the evaluation of the practical utility of clusters
may prove necessary or helpful, while interpretability-enhancing methods can pro-
vide more transparent insights and explanations.

FIGURE 2.2: Demonstrating clustering ambiguity and diverse clus-
tering combinations in unsupervised settings [using the MNIST data

set (Mu and Gilmer, 2019)].

2.2.6 Rule-based vs. Machine Learning

Although Rule-based Systems (RBS) and Machine Learning (ML) are both impor-
tant key concepts in AI, they have significant differences that lead to decisive con-
sequences. While ML was developed due to the many intrinsic limitations of RBSs,
each approach has its own pros and cons and different purposes and applications.

2.2. Artificial Intelligence 13

To start with RBSs, they have a clear advantage in that they are easy to under-
stand, comprehend, and retrace. In fact, anyone with no background in computer
science can easily grasp the concept of rule-based systems. For instance, in a deci-
sion tree, given any input and its corresponding output, the reason why that input
yielded its corresponding output can always be traced back simply by looking at the
path it took within the tree. This feature of RBSs provides a strong advantage due to
their implementation, explainability, and interpretability. Safety can be ensured in
RBSs by controlling their outputs (i.e. decisions) and checking all possible paths.

However, there is one major and critical problem: Manually devising RBSs is
not scalable, complex, and erroneous. Imagine that we have a data set of various
vehicle defects and have already built a decision tree that can determine the precise
cause of each defect. But, what happens when we want to add new defects to the ex-
isting tree? In this case, we would need an expert who has domain knowledge and
can help us to build new rules. However, this process can be quite tedious and labo-
rious, and it can be a challenge to ensure that we cover all possible causes and keep
track of all exceptions. Also, what if there are more individual exceptions than gen-
eralizable rules? What if we forget a rule or if the causes of previous defects change
due to upgrades or modifications in the vehicle manufacturing process? Moreover,
what if the rules themselves change faster than we can update them (e.g. recall the
six Vs; Chapter 2.1)?

Consider now a scenario where we aim to categorize defects based on comments
obtained from a user source. Specifically, we consider the following comment:

"The defect is due to damage to the engine."
One might consider the naive trivial rule, if the words [damage ∧ engine] occur, then
classify the defect as "damaged engine". Now let’s consider the following comment:

"The defect is not due to damage to the engine."
We, therefore, might naively modify our rule accordingly:

[damage ∧ engine ∧¬ not]
Next, we receive the following comment:

"The defect isn’t due to damage to the engine."
... and we naively modify our rule accordingly:

[damage ∧ engine ∧¬ not ∧¬ isn’t]
... but next, we receive the following:

"The defect wasn’t due to damage to the engine."
... and adapt by naively updating the rules:

[damage ∧ engine ∧¬ not ∧¬ isn’t ∧¬ wasn’t]
... and next, we receive the following new input:

No damage was found on the engine."
... and adapt by naively updating the rules:

[damage ∧ engine ∧¬ not ∧¬ isn’t ∧¬ wasn’t ∧¬ no]
... and next, we receive the following new input:

"The defect is due to the harmed engine."
... and adapt by naively updating the rules:

[(harm ∨ damage) ∧ engine ∧¬ not ∧¬ isn’t ∧¬ wasn’t ∧¬ no]
... and next, we receive the following new input:

"Engine damaged."
... and adapt by naively updating the rules:

[(harm ∨ damage ∨ damaged) ∧ engine ∧¬ not ∧¬ isn’t ∧¬ wasn’t ∧¬ no]

14 Chapter 2. Background

But even after modifying and expanding our rules to fit all the above situations,
countless exceptions would still remain unaccounted for and incorrect, such as:

"The defect might be due to damage to the engine."

Engine totally fine, but tank damaged"

"Engine is damaged, no other part were harmed."

"I check the engine, the tank, the windows and all was damaged."

One quickly and easily sees that such an approach is not scalable, practical, or
even sensible. This becomes even more evident when trying to apply it to more
complex data such as images, videos, or audio. Thus, RBS suffers from significant
drawbacks such as being inflexible, incapable of handling unknown scenarios, re-
quiring extensive time and resources for rule creation and maintenance, having lim-
ited understanding and potential inaccuracies, and carrying the risk of bias due to
questionable assumptions or incomplete data.

ML on the other hand, handles this scenario differently using probabilities, statis-
tics, and mathematics in general. Instead of trying to completely mimic an expert’s
decision process, ML merely either learns based on the results of the experts (e.g
supervised learning with labeled data) or from extracting patterns of raw or prepos-
sessed data (e.g unsupervised learning), where outputs or predictions are inferred
relative to combinations of input variables and parameters. Also, unlike RBS, if
we were to generate a new model based on new data (i.e. vehicles and defects),
we would not have to repeat the process of generating the rules, but would sim-
ply re-run the ML algorithm to either re-train or fine-tune on the new specific data
set. However, ML methods need a large set of data to effectively train and achieve
satisfying performance. Additionally, ML methods come at the expense of explain-
ability and interpretability and there is still heavy research and projects devoted to
this problem (Molnar, 2020; Du, Liu, and Hu, 2019; Samek, Wiegand, and Müller,
2017; Burkart and Huber, 2021; Bhatt et al., 2020), i.e, given an input and its corre-
sponding output, answering "why does that output correspond to that input" remains
an active and open challenge.

A visual summary illustration of the primary paradigms that are key in Artificial
Intelligence is given in Figure 2.3 below.

FIGURE 2.3: A graphical illustration of the main paradigms in Artifi-
cial Intelligence.

2.3. Data Encoding & Dimensionality 15

2.2.7 Model Generalization

We are interested in training a model that generalizes well to new and unseen data.
This is to ensure its practical applicability and reliability across various (new) sce-
narios. A common technique is to split all our available data into three disjoint data
sets: Training-, Test-, and Validation data. One then trains the model on the train-
ing set, but then tests its effectiveness (e.g. accuracy, precision, recall, etc.) on the
test set. The purpose of the validation set is to try out different hyper-parameters, i.e.
parameters that are not learned by the model but pre-fixed by the developer.

One must use a separate data set for each purpose as otherwise we risk over-
adapting the configuration of the hyper-parameters on our data; known by the name
of over-fitting. The opposite, i.e. when the data model fails to learn the training data,
is similarly referred to as under-fitting (Koehrsen, 2018). Over- and under-fitting are
general terms and, therefore, not exclusively bound to any specific type of learning
algorithms, but should always be avoided when trying to train and define a gener-
alized model. Yet, there exist multiple different ways to counteract both problems
(Browne, 2000; Jabbar and Khan, 2015; Aalst et al., 2010).

Take-Away

AI may be defined as the development of intelligent machines that can per-
ceive, reason, and take actions based on goals. Rule-based methods rely on
explicitly defined rules, while Machine Learning methods learn patterns from
data. Unsupervised clustering can be quite tricky to get it right. Weakly su-
pervised learning aims to learn from noisy or imperfect labels. Model gener-
alization refers to the ability of a model to perform well on unseen data.

Keywords

Machine Learning • Clustering • Weak Supervision • Model Generalization.

2.3 Data Encoding & Dimensionality

For "Artificial Intelligence" to be applied to data, especially in Machine Learning,
raw data has to be first transformed into a format that can be used for further pro-
cessing, i.e. training and prediction. Data encoding is the process of converting data
from one form to another. The input encoding is typically done in the form of a
numeric input vector encoding. The term dimensionality refers to the number (di-
mensions) of feature input variables; e.g. the size (i.e. dimension) of the encoding
vector. Overall, there exist multiple different approaches to pre-processing and en-
coding data depending on the type of the data. Typically, one distinguishes between
the following different main types of data:

1. Numerical data refers to quantitative values that can be either discrete (whole
numbers) or continuous (decimals). Ensuring consistent scales and addressing
missing values are important challenges when encoding numerical data.

• Discrete (e.g x ∈ Z)

• Continuous (e.g x ∈ R)

16 Chapter 2. Background

2. Categorical data classifies variables into different categories. Binary data has
two categories, ordinal data has a specific order, and nominal data has un-
ordered categories. Choosing the appropriate encoding method for categorical
data based on its type and number of categories is a challenge.

• Binary (e.g ON, OFF)

• Ordinal (e.g BAD, ALRIGHT, GOOD, AMAZING, ...)

• Nominal (e.g GERMANY, SPAIN, USA, CHINA, FRANCE, ...)

3. Text data is unstructured information in the form of sentences, paragraphs, or
documents. Tokenization, removing special characters and stop words, han-
dling large textual documents, and capturing word semantics with accurate
methods are challenges in effectively encoding text data.

• Natural language (e.g "Hello world!")

• Coding language (e.g "private int x = 42;")

• ...

4. Time series data records values at different points in time where the order is
of great significance. Challenges in encoding time series data include handling
trends, missing observations, irregular time points, and selecting appropriate
models for analysis or forecasting.

• Cyclic (Values that repeat at regular intervals; e.g., seconds, minutes, hours,
days, weeks, months, quarters, seasons, etc.)

• Non-Cyclic (Values that lack regular repetition; e.g., specific years, decades,
centuries, time intervals, etc.)

5. Audio, Images, and Video data represent sensory information and require
specific pre-processing methods for encoding. Challenges include transform-
ing audio signals into (semantic) numerical representations, handling varia-
tions in formats or quality, and transforming pixels into numerical arrays or
embedding representations for images and videos.

6. Graphs & Networks represent relationships between entities (e.g. social net-
works, protein-protein interactions, etc.). Challenges in encoding graph data
involve determining the appropriate representation, handling missing or noisy
data, and dealing with differently-sized graphs.

7. Etc. ...

Especially in the case of non-numeric values, it is not trivial to define what a
"good" encoding scheme is as it depends on multiple factors, especially its use case
and actual application. Overall, a "good" encoding is any encoding that provides
maximum utility and effectiveness for its (specific) purpose, which can, for example,
be characterized by considering the following questions:

• "How accurately can we reconstruct the original input from its encoding?"

• "Do similar inputs yield similar encodings, while dissimilar inputs result in
distinct encodings?"

• "Is the encoding minimal, i.e. can we achieve comparable model effectiveness
with a smaller encoding?"

2.3. Data Encoding & Dimensionality 17

• "What is the speed and efficiency of generating the encoding?"

• "How well does the encoding scheme scale?"

• "Does the encoding maintain relationships, associations, and correlations within
the data?"

• "Is the encoding an injective function?"

• "Does the encoding remain robust against noise or data perturbations?"

• "Does the encoding contribute to interpretability or provide meaningful in-
sights into the data?"

• "Are there any inherent biases or limitations in the encoding that might affect
its performance or applicability?"

• "Can the encoding preserve privacy or anonymize sensitive information when
handling such data?"

• Etc. ...

It is further important to be aware of the differences and relationships between
data encoding, data compression, data embedding (Hotho, Nürnberger, and Paaß, 2005;
Almeida and Xexéo, 2019; Tian, 2003) and dimensionality reduction (Lee and Verley-
sen, 2007; Van Der Maaten, Postma, Herik, et al., 2009; Tenenbaum, De Silva, and
Langford, 2000) and we hereon encourage the interested reader to review the respec-
tive parts in literature. But overall, the following differences hold: (i) a data encoding
transforms data into a different representation, (ii) a compression reduces size while
preserving information, and (iii) an embedding maps data into a lower-dimensional
space while maintaining its inherent, semantic structure or relationships.

Hence, both data compression and data embeddings are ways of encoding in-
formation (they serve different purposes and utilize different techniques), but not
all data encodings involve compression or embeddings. Given a fixed (initial) en-
coding, performing dimensionality reduction can be seen as lowering the number
of dimensions for that given encoding; e.g. with the goal to encode similar data into
similar (new, lower-dimensional) data representations (i.e. encodings, embeddings)
that are smaller than the corresponding original representations. Compression can
be lossy or lossless; and encodes information "smaller" than the original representa-
tion, however, the main goal is to reconstruct the exact original data as lossless and
accurately as possible. Therefore, dimensionality reduction can be seen as a form
of lossy compression, but compression is not the same as dimensionality reduction
(both decrease data volume, but: dimensionality reduction prioritizes preserving
utility for specific tasks; compression primarily aims at minimizing size without in-
formation loss).

Embeddings, on the other hand, follow a different concept and were (first) typ-
ically used in conjunction with words, sentences, documents, etc. in natural lan-
guage processing (NLP); where each word is "embedded" (i.e. encoded) in a vec-
tor space, such that words that are closer in the space denote a similar meaning.
Commonly, two words are considered similar if they occur in similar contexts (Gold-
berg and Levy, 2014), rather than solely co-occurring frequently, as seen in earlier
methods like GLOVE (Pennington, Socher, and Manning, 2014), which relied on co-
occurrence statistics within a corpus to generate word representations. However,
co-occurrence-based approaches lacked the robustness needed to accurately learn

18 Chapter 2. Background

meaningful word similarities due to limitations in contextual comprehension, poly-
semy resolution, and adaptability across various tasks.

There exist several hypotheses in the literature that address assumptions on what
a "good" embedding is (Ouali, Hudelot, and Tami, 2020):

• Smoothness Assumption: Data points that are close together in the feature
space should have labels or meanings that are equal or similar.

• Cluster Assumption: Dense regions of data points form clusters and points
within the same clusters should hold the same label or meaning.

• Low-density Separation Assumption: Decision boundaries of classes should
be located in low-density (sparse) regions.

• Manifold Assumption: High-dimensional data can be represented on a low-
dimensional manifold.

Regardless of the transformation scheme used, the output is always an encoded
data instance with a certain dimensionality. In the next section, we will discuss the
implications of encodings with large dimensions and why dimensionality matters.

Take-Away

When preparing data for Artificial Intelligence (AI), it is crucial to carefully
consider the data encoding method and its dimensionality. Feature encoding
methods vary depending on the type of data being processed, such as numer-
ical, categorical, text, time series, audio, images, graphs, etc. The effectiveness
of data representations can depend on factors like information loss, quality
of reconstruction, similarity or semantic preservation, efficiency, scalability,
consideration of contextual relationships, and the actual use case.

Keywords

Data Preparation • Pre-Processing • Encoding • Dimensionality

2.4 The Curse & Blessing of Dimensionality

"The curse and blessing of dimensionality" is a common phrase used in mathematical
sciences, but particularly in ML, that is concerned with the benefits and issues aris-
ing when dealing with high-dimensional functions or data (i.e. encodings). High-
dimensionality can seen as a curse (Bellman, 1961; Köppen, 2000; Indyk and Mot-
wani, 1998) or, contrarily, as a blessing (Gorban and Tyukin, 2018; Anderson et al.,
2014; Kainen, 1997). However, it can also be acknowledged as both, a curse and
blessing (Donoho et al., 2000) and therefore plays an important role when develop-
ing any ML model.

2.4.1 The Curse of Dimensionality

The curse of dimensionality, first introduced by Bellman, 1961, refers to issues aris-
ing in high-dimensional spaces that do not occur in low-dimensional spaces. The
curse refers to situations in which the number of data points is significantly smaller
compared to the actual dimensionality of the data. As the number of dimensions

2.4. The Curse & Blessing of Dimensionality 19

increases, the volume of the space also expands rapidly, making the data points
sparser. To achieve reliable outcomes, exponentially more data is required as the
dimensionality increases.

It can also refer to the perceived difficulty in systematically exploring a complex,
multi-dimensional space, accurately estimating a general function within that space,
integrating functions across multiple dimensions, and challenges associated with
navigating and analyzing high-dimensional data or scenarios (Donoho et al., 2000).

In the following, we will introduce some of the many notorious and common
issues that arise when dealing with high-dimensional spaces.

Distance Concentration

Distance metrics play an important role in ML applications as they allow for measur-
ing the similarity and dissimilarity of data instances and can be defined in a multi-
tude of different ways (Li and Li, 2010). However, such distance metrics suffer from
a phenomenon called distance concentration that occurs in high dimensional spaces
whereas dimensionality grows, so do the distance values, consequently lowering
the contrast provided by such typical distance metrics (Beyer et al., 1999). I.e, the
Euclidean distance for two given random vectors v⃗(d), w⃗(d) of dimension d with in-
dependent and identically distributed variables increases the higher d is (as there are
more variables involved):

||⃗v(d) − w⃗(d)||2 =

√√√√ d

∑
i=1

(
v[i]
(d) − w[i]

(d)

)2
(2.1)

In other words, as the number of dimensions in a vector space increases, the
distances between points in that space also increase, up to a point where the max-
imum distance between a reference point and any list of randomly sampled points
converges (in expectation) against its minimum distance to that reference point (Ag-
garwal, Hinneburg, and Keim, 2001); meaning the smallest distance approaches (or
equals) the largest distance:

lim
d→∞

E

[
distmax

(d) − distmin
(d)

distmin
(d)

]
= 0 ⇐⇒ lim

d→∞
E

[
distmin

(d)

distmax
(d)

]
= 1 (2.2)

Therefore, the concept of neighborhoods (e.g. k-nearest-neighbours, k-Means,
etc.) becomes unstable due to the distance between the nearest and furthest neighbor
collapsing; which is a serious concern. Further, it holds that any two i.i.d. randomly
drawn vectors tend to be mutually orthogonal to each other, i.e. that:

lim
d→∞

v⃗T
(d)w⃗(d) = 0 (2.3)

Data Sparsity

Let us assume a d-dimensional space partitioned into equal subsections of size m > 0
within a valid interval range of size r. The number of cells n increases exponen-
tially with n = (r/m)d. Suppose further k points are randomly placed in such
d-dimensional space. The lower d is, the fewer empty partitions exist; with more
points per partition. The higher d is, however, the more empty partitions emerge,
with each non-empty partition having crucially fewer points in it. In fact, given a
fixed k, augmenting d rapidly leads to the number of partitions clearly exceeding

20 Chapter 2. Background

that of the points; and consequently many empty partitions (Figure 2.4). A naive

measure of data sparsity is the ratio of points to cells ρ = n
k = (r/m)d

k .

FIGURE 2.4: Data Sparsity: Illustration of the partitioning of dimen-
sional spaces into cells.

Combinatorics

Assuming the simplest case of binary variables, i.e. variables with just two possible
values, given d dimensions the number of possible combinations rapidly explodes
to 2d and is known under the name of combinatorial explosion (Schuster, 2000).

Other

Many more problems, challenges, and complexities arise when dealing with high-
dimensional data, especially in anomaly detection, machine learning, hypothesis
reasoning, optimization, and numerical integration; but also concerning computa-
tional limitations and bottlenecks, visualization, interpretability and explainability,
reduced sample efficiency, overfitting, and many more.

2.4.2 The Blessing of Dimensionality

The blessing of dimensionality, on the other hand, is concerned about the benefits
such high-dimensional settings enable, but are less popular in comparison. These
include increased information capacity, enhanced discriminative power, and the
ability to transform some non-convex problems into convex ones, as well as some
non-linear problems into linear decidable problems in higher dimensions (such as
the notorious XOR problem). Moreover, these advantages can extend to diverse ap-
plications, such as measuring phenomena within the geometry of Banach spaces,
where random fluctuations can be well controlled in very high dimensions, as well
as the success of asymptotic methods which enable statements to be made where
"moderate dimensions would be too complicated." (Donoho et al., 2000).

2.5. Data Augmentation 21

Take-Away

Machine Learning (ML) faces challenges due to high dimensionality such
as concentrated distances, data sparsity, and complexities in data handling.
However, it also provides benefits like increased information capacity and
improved discriminative power. It is crucial to understand these dynamics to
develop effective ML models and manage data efficiently. Ultimately, there is
a clear underlying compromise between complexity and simplicity.

Keywords

Machine Learning • High Dimensionality • Challenges • Compromise

2.5 Data Augmentation

Usually, the amount of actual available and accessible (labeled) data is limited and
often insufficient for performing effective ML, i.e. the overall final performance of a
given ML model is not only dependent on the quality of the data it is being trained
upon but also crucially on the size of the respective data set (Barbedo, 2018). Gather-
ing and obtaining such data is generally not only challenging and time-consuming,
but also error-prone, and one of the reasons why rule-based methods are still com-
monly applied instead of ML approaches; namely due to deficient data sets.

Data augmentation (Van Dyk and Meng, 2001; Zhong et al., 2020; Wong et al.,
2016; Perez and Wang, 2017) refers to synthetically generating new (similar, related)
data instances from a given limited data set, thereby essentially increasing the size
(entropy) of the data set. Data augmentation also helps to counteract over-fitting
on ML models and is typically a non-complex procedure that can be quickly and
easily implemented and integrated; especially without modifying the existing model
architecture, e.g. by adding slight modifications or perturbations to already existing
(data) instances, applying diverse (strong) augmentations, or combining different
instances in different (stochastic) ways.

Depending on the type of data, different data augmentation strategies exist. For
instance, augmenting, adding noise, or manipulating text data varies fundamen-
tally from doing the same for image data. Similarly, the augmentation techniques
for graph networks differ from those used for audio or numerical data. It’s impor-
tant to note that data augmentation might not always be beneficial, and excessively
strong data manipulations can actually hinder the learning process. This is because,
although appropriate image data augmentation improves model robustness by ex-
posing it to diverse variations, excessive modifications may ultimately confuse the
model, reducing its ability to generalize and perform well on unseen data. Finding
the right balance is crucial for effective machine learning.

2.5.1 Assessing Generated Data Quality

A question remains: What is the right data augmentation, and how can we evaluate
its quality? This is important because incorrect data augmentation can harm training
effectiveness, result in longer training time, and add necessary complexity.

In their work "Affinity and Diversity: Understanding Data Augmentation Mech-
anisms" (Gontijo-Lopes et al., 2020) the authors go into the fundamental aspects

22 Chapter 2. Background

of data augmentation and introduce two "interpretable and easy-to-compute mea-
sures": Affinity and Diversity.

"Affinity" measures how much an augmentation alters the learned data distri-
bution by a model, while "Diversity" gauges the complexity of the augmented data
concerning the model and learning process. The authors report that neither measure
singularly predicts the effectiveness of data augmentation; but instead, optimizing
both Affinity and Diversity together influences performance.

Take-Away

Data scarcity in Machine Learning can be addressed by data augmenta-
tion. This involves generating additional instances of similar data to enhance
model performance. However, excessive or unrealistic modifications from
augmentation can hinder a model’s ability to generalize. "Affinity" and "Di-
versity" are intuitive quality metrics.

Keywords

Data scarcity • Data Augmentation • Model Performance • Generalization

2.6 Optimization

Optimization plays a crucially important role in mathematics and any related field
(Rao, 2019; Chong and Zak, 2004), and, therefore, consequently establishes the fun-
damental back-bone of many ML algorithms (Sra, Nowozin, and Wright, 2012; Sun
et al., 2019), but also for many more applications. The idea of optimization problems is
to minimize a given objective function subject to constraints. Commonly, one de-
fines such objective function as a loss-function minimization problem. Minimizing
a "loss" function can be viewed as the equivalent of maximizing a "score" function
(e.g. simply by multiplying by minus one). In fact, the key to training any ML model
is always to optimize the model in such a way that it performs "optimal" in regards
to pre-defined (usually fixed) loss functions. The more complex the loss function is,
the harder or more infeasible and intractable it becomes to solve the problem "ex-
actly" (numerically). Additionally, the loss function is often even defined without
concrete knowledge about the implicit loss-space and it is up to the optimization al-
gorithm to "figure out" how to traverse the search space or, generally speaking, how
to minimize the loss.

Convex-Optimization (Boyd, Boyd, and Vandenberghe, 2004; Ben-Tal and Ne-
mirovski, 1998) is a sub-field of optimization that particularly focuses on convex
functions (Roberts, 1993), i.e. continuous function where the value at the midpoint
of any two (arbitrary but fixed) points is less than or equal to the mean of the values
of those points. Another way to think of convex functions is functions that do not
exceed the segment line between any two function values. Figure 2.5 provides an
example for both, a convex and non-convex function, on a one-dimensional input
function. The contrary to convex functions is called concave functions. Convex or
concave problems are regarded as easy to solve (both, theoretically and practically).

However, most problems we encounter are generally high dimensional, very
complex, and especially non-convex. Still, they often comprise properties of con-
vex functions near local minima or maxima which might be exploited. Non-convex

2.6. Optimization 23

FIGURE 2.5: Visualizing two simple one-dimensional input convex
and non-convex functions.

problems present challenges because they can have multiple local minima or max-
ima, making it difficult to determine the global optimum. Escaping from local to
global optima in optimization tasks can e.g. be achieved through the utilization of
diverse optimization techniques, including heuristics, or stochastic approaches.

Generally, we are interested in finding or approximating global minima, since
that is where the best possible solution configuration lies for any given loss function.
However, such global minima must not be unique. Multiple global minima could
exist within a problem space and provide different optimal solutions, e.g. revealing
the diversity and richness of potential configurations within given constraints and
objectives.

In the following subsections, we will introduce the prominent and very powerful
approach to solving optimization problems, called gradient descent (GD). We will
further introduce the concept of back-propagation that is typically used to perform
GD for solving optimizations. GD, however, is used for minimization problems, the
analogy for maximization problems is called gradient ascend.

2.6.1 Gradient Descent

Gradient Descent (GD) is an iterative type of optimization algorithm for finding a (lo-
cal) minimum within a differentiable function by repeatedly taking steps (descend-
ing) in the negative direction of the gradient on a given point (Ruder, 2016; Qian,
1999; Andrychowicz et al., 2016). GD works for spaces of any number of finite and
infinite dimensions and can be applied to a system of linear and non-linear equa-
tions. When the loss-space is convex it converges towards a global solution, since
then any local minimum is also a global minimum. Since real-world problems are
seldom convex, different techniques, variations and methods exist to try converging
to a mostly global solution (Bottou, 2010; Du et al., 2019; Bottou, 2012) In its most
simple form, GD can be described by the following formula:

v⃗n+1 := v⃗n − η∇L(⃗vn) (2.4)

where ∇L is the gradient of the loss function L and η the learning rate (the step-
size), and vn represents a parameter configuration at time-step n. In other words, the
idea is the following: Since the optimal solution lies on a minimum, given our cur-
rent position in a loss-space, we descent along the direction of the steepest descent
until our gradient is zero, which would imply we reached our optimal solution.

24 Chapter 2. Background

Another way of imagining gradient descent is that of a downwards-rolling ball
in a bumpy field. The obvious challenge here is not to get trapped in local min-
ima. Again, local minima do not necessarily represent optimal or even "good" solu-
tions. In fact, solutions found at local minima can be extremely bad, even though
they might be relatively "close" to the position of the global minima within the
search space. The output of classical GD, especially the iterative path it traverses, is
very much dependent on the initial starting point, however, different starting points
could, especially in the case of a unique global solution on convex cases, lead to the
same solution. In other words, the trajectory and ultimate solution of gradient de-
scent (which also relies on the optimization algorithm) are not inherently unique.
An illustration of the iterative gradient step path is given in Figure 2.6.

FIGURE 2.6: Visualizing the iterative step-path of gradient descent on
four different loss spaces for two different starting points.

There are numerous approaches and techniques aimed at preventing GD from
converging towards suboptimal local solutions. These methods include employ-
ing diverse sampling algorithms (Yazan and Talu, 2017), incorporating momentum
(Qian, 1999), or utilizing adaptive optimizers like Adam (Kingma and Ba, 2014); and
its very effective, powerful and renowned variant AdamW (Loshchilov and Hut-
ter, 2017). However, interestingly, it has also been observed that, for many real-
world problems and random loss functions in Deep Neural Networks, converging
towards local minima can (but does not necessarily) achieve similar performance
than one would obtain at global minima, or seem to be not affected by bad local min-
ima; that is, that many search spaces consist of many approximately equally good
sub-solutions compared to the optimal solution or finding a global minimum may
not be necessary and may even reduce overfitting (Swirszcz, Czarnecki, and Pas-
canu, 2016; Choromanska et al., 2015). In particular, Choromanska et al., 2015 show
that for random loss functions in large-size decoupled networks, the lowest critical
values of a random loss function form a layered structure and they are located in a

2.6. Optimization 25

well-defined band lower-bounded by the global minimum, and that the number of
local minima outside that band diminishes exponentially with the size of the NN.

Moreover, many local minima are situated on saddle points and, thus, contain
sub-dimensional paths to escape such local optima (Dauphin et al., 2014). In fact,
particularly for neural networks it has been further observed that optimal solutions
are not isolated points, but instead connected through paths, i.e. simple curves of
near-constant loss. (Draxler et al., 2018; Izmailov et al., 2018).

2.6.2 Back-Propagation

Back-Propagation (BP) is an effective and widely used technique for calculating the
gradients of loss functions. This method has proven to be very successful and has
become the most popular and standard approach for optimization tasks, particularly
in the context of artificial neural networks (Rumelhart et al., 1995; Riedmiller and
Braun, 1993; LeCun et al., 1989). Additionally, the idea of BP itself invoked interest
and speculation in whether or not it may offer insights for understanding learning
in the cortex (Lillicrap and Santoro, 2019; Lillicrap et al., 2020). BP computes the
gradient of a loss function relative to trainable parameters (i.e. weights) and is often
used in conjunction with automatic differentiation (Paszke et al., 2017).

For example, suppose we have a composite loss function L which aggregates
multiple sub-functions fi together, based on an input x. We are now interested in
adapting the weight parameter wj at function f j, i.e. for L ≜ fi(fi−1(... f1(f0(x)));
i > j ≥ 0. We now look for the gradient ∂L

∂wj
which we can calculate by applying the

(backward) chain rule:

∂L
∂wj

=
∂L
∂ fi
· ∂ fi

∂ fi−1
· ∂ fi−1

∂ fi−2
· . . . ·

∂ f j+1

∂ f j
·

∂ f j

∂wj
(2.5)

and, therefore, perform the gradient update with:

wj := wj − η
∂L
∂wj

(2.6)

Therefore, BP serves as a method to compute the gradient of a model’s loss func-
tion relative to its parameter weights. Throughout the training, BP propagates the
loss error backward through the model, calculating the gradient of the loss function
for each parameter weight using calculus principles such as the chain rule. Optimiz-
ers such as AdamW leverage these gradients derived from BP to adjust the weights
during BP, aiming to minimize the loss function and thereby enhance the model’s
performance; using GD. These optimizers update the weights by considering the
gradient information obtained through the BP process.

In summary, while BP determines the gradients crucial for optimizing models,
optimizers like AdamW utilize these gradients to modify the models’ weights in a
manner that reduces the loss function via GD.

26 Chapter 2. Background

Take-Away

Optimization, a fundamental concept in mathematics, extends across vari-
ous disciplines; particularly Machine Learning (ML). It involves minimizing
a loss function within defined constraints. In ML, this includes training mod-
els using methods such as Gradient Descent (GD) to navigate intricate ter-
rains and minimize predefined loss functions. While convex optimization of-
fers straightforward solutions, real-world problems often involve non-convex
functions, posing greater challenges.

Keywords

Optimization • Loss Function • Gradient Descent • Convex Optimization

2.7 Neural Networks

The entire span of Neural Networks (NNs), together with all its very many variations
(Schmidhuber, 2015; Gurney, 2018; Weng, 2017; Albawi, Mohammed, and Al-Zawi,
2017; Xu et al., 2018) and applications (Vellido, Lisboa, and Vaughan, 1999; Hunt
et al., 1992; Zhang, 2000), goes far beyond the scope and feasible boundaries of this
thesis. Yet we will give a short high- to low-level introduction to what an artificial
NN is and how it works; since it is essential to following along this doctoral thesis
and comprehending the fundamentals of modern AI.

Artificial NNs are inspired by the behavior of the human brain, specifically,
the interconnection of neurons and information transfer. The goal is to recognize
patterns and, thus, solve given tasks (i.e. minimizing an objective function: the
loss function). Neurons in the human brain are inter-connected with each other by
synapses which allows the exchange and flow of information (Suzuki, 2013).

On an abstract high-level, NNs mimic such behavior: they receive an input,
propagate it toward different neurons, and produce an output (Figure 2.7). Each
neuron is thereby connected with all the outputs from the previous layer (or the in-
put layer). Connections establish (trainable) weights that are applied to each input
respectively.

FIGURE 2.7: Depicting a simple one-layer neural network with three
input- and two output values (without bias neuron).

2.7. Neural Networks 27

Further, artificial NNs can be seen as modular blocks that can be arbitrarily
stacked or combined in any creative way. That is, the output of a NN can function as
the input for another NN, block, or neuron (e.g. Figure 2.8). The term Deep Learning
(DL), thereby, refers to any NN with more than one hidden layer. A single-layered
NN is also called a single layer perceptron, whereas similarly, a deep NN (DNN) with
more than one hidden layer is referred to as multilayer perceptron. An NN with just an
input layer, one hidden layer, and an output layer is not classified as a DL model; it’s
more precisely labeled as a "shallow" or single-layer NN. Correspondingly, a "nar-
row" NN denotes a specific type of NN characterized by fewer neurons or nodes
within its hidden layers when compared to wider networks.

There is one very important component of NNs, namely the activation function.
The purpose of activation functions is to break the linearity between layers. Acti-
vation functions are fundamentally important and transform the output of a neuron
by applying non-linear functions (i.e. mappings) to the neuron’s output to generate
the actual neuron’s (new) output. Omitting activation function results in a DNN
collapsing into a single-layered perceptron. I.e., without non-linear activation func-
tions, a multi-layer perception network is equivalent to a single perceptron network
with no hidden layer and the same number of input and output neurons: it essen-
tially collapses into a linear regression model (the network as a whole, regardless
of the number of layers, basically computes a linear combination of the input fea-
tures). There exist an endless number of non-linear activation functions, but one
typically uses commonly applied (well-known) transformations that showed good
results (Sharma and Sharma, 2017); there have also been approaches to making the
model learn or adapt these functions (Agostinelli et al., 2014; Qian et al., 2018).

FIGURE 2.8: Exemplary modular combination of NNs into one larger
network with eight input neurons and four output neurons.

28 Chapter 2. Background

In general2, during forward propagation, every neuron within an NN performs
a forward pass by calculating a weighted sum of its inputs, incorporating a bias term,
and then applying an activation function to generate an output. Together, these col-
lective forward passes contribute to the overall forward (layer) propagation process.
This process occurs layer by layer up to the final layer. Mathematically, for a neuron
indexed by j, with input vector x⃗[j], weight vector w⃗[j], bias term b[j], and activation
function ϕ, its output y[j] is given by:

y[j] = ϕ

(
b[j] +

d[j]

∑
i=1

w[j]
i x[j]i

)
(2.7)

where each neuron has its own (single) bias; and the input and weight vectors
both have the same dimension d[j] ≜ dim(x⃗[j]) = dim(w⃗[j]).

Take-Away

Neural Networks (NNs) are mathematical systems that draw inspiration
from the structure and functioning of the human brain. These systems com-
prise interconnected nodes called neurons, which are similar to the neurons
in the brain that are connected by synapses. The purpose of NNs is to identify
patterns and solve problems by processing information through these inter-
connected nodes. They take an input, transmit it through multiple layers of
neurons, and generate an output. Deep Learning involves NNs with multiple
hidden layers, which enables them to recognize complex patterns. NNs utilize
activation functions that introduce non-linearities, essential for their ability to
model complex relationships in data. Ultimately, NNs serve as powerful tools
for tasks like classification, regression, image and speech recognition, natural
language processing, and various other AI applications.

Keywords

Neural Networks • Neurons • Deep Learning • Activation Functions • AI

2.8 Transformers

The Transformer model is considered a "revolutionary" architecture in the field of AI
and especially in the area of natural language processing (NLP) (Lin et al., 2022; Gho-
jogh and Ghodsi, 2020). The milestone was set by the paper - Attention is All You Need
(Vaswani et al., 2017) published by Google Brain and Google Research members.
This significantly outperformed existing state-of-the-art models; not only training
faster but also achieving better final evaluation results. Transformer models have
gained massive popularity among AI practitioners in industry and academia. Since
then, many variations have emerged - e.g Linformer (Wang et al., 2020a), Performer
(Choromanski et al., 2020), Longformer (Beltagy, Peters, and Cohan, 2020), Reformer
(Kitaev, Kaiser, and Levskaya, 2020), etc. - and are referred to as “X-formers” (Tay
et al., 2020). The application areas of transformers vary widely but are commonly

2In more complex NN architectures, the forward equation can be modified to fit specific structures,
especially those with different layer types like convolutional and recurrent layers. For instance, Con-
volutional Neural Networks create feature maps by convolving filters; Recurrent Neural Networks
update hidden states based on previous states.

2.8. Transformers 29

applied to in NLP and computer vision tasks (Wolf et al., 2020a; Khan et al., 2021c).
Figure 2.9 below shows an illustration from Vaswani et al., 2017 depicting the classic
transformer model architecture.

FIGURE 2.9: Transformer model architecture with multi-head atten-
tion and scaled dot-product [Architecture from Vaswani et al., 2017].

Transformers are a crucial component of Large Language Models (LLMs), which
can be thought of as AI systems that can generate responses to user prompts that
are similar to or resemble human-like responses. They are trained on massive text
data sets using advanced DL techniques. LLMs and the attention mechanism used
by them have completely revolutionized the field of NLP and are used in many ap-
plications such as text summarization, information extraction, question answering,
text classification, conversation, code generation, reasoning, etc. During inference,
LLMs are guided by a (user-defined) prompt (Saravia, 2022). In-context learning al-
lows for temporary learning from these prompts. Prompt engineering is crucial in
the use of LLMs. It involves selecting words, phrases, symbols, and formats to direct
the model’s output. Effective prompt design significantly impacts response length
and detail, requiring creativity and precision.

Therefore, a Transformer is a specific type of DNN architecture, while LLMs
represent scaled-up implementations of that architecture in size, parameters, and
training data. The exact scaling factor from the original Transformer architecture
to current LLMs, however, varies significantly depending on the specific LLM; but
typically represents a very substantial increase (by several orders of magnitude).

There exist multiple different variants of LLMs (Saravia, 2022). Some of the most
renowned transformer models and powerful LLMs that stand out as significant mile-
stones in the field are shown in Table 2.1 below:

LLMs require complex architectures, pre-training, and innovative approaches to
improve natural language understanding tasks. A brief summary outlining the fun-
damental key components and basis for LLMs derived from literature are:

30 Chapter 2. Background

TABLE 2.1: Top Large Language Models

Year (Month) Model Year (Month) Model
2018 (June) GPT 2020 (May) GPT-3
2018 (Oct) BERT 2020 (Jul) BART
2019 (July) RoBERTa 2022 (Mar) InstructGPT
2019 (Nov) GPT-2 2022 (Apr) PaLM
2019 (Oct) T5 2022 (Nov) BLOOM
2019 (Jun) XLNet 2022 (Nov) ChatGPT
2019 (Sep) ALBERT 2023 (Feb) LLaMA
2019 (Sep) CTRL 2023 (Mar) GPT-4

... ... 2023 (Mar) PanGu-Σ

...

- Transformers’ Core Components:

1. Self-Attention Mechanism: Allows to efficiently capture word relationships;
surpassing traditional networks in understanding long-range dependencies
(Vaswani et al., 2017; Shaw, Uszkoreit, and Vaswani, 2018).

2. Multi-Head Attention: Improves focus on different aspects within input se-
quences by employing multiple attention weight sets (Vaswani et al., 2017;
Cordonnier, Loukas, and Jaggi, 2020; Niu, Zhong, and Yu, 2021; Ma et al.,
2019).

3. Positional Encoding: Provides sequential information by embedding the po-
sition of tokens within a sequence, helping the model differentiate between
different positions (although not all models utilize positional encoding; and
various versions exist). This facilitates learning and processing of long-term
sequential relationships and dependencies (Dufter, Schmitt, and Schütze, 2022;
Ke, He, and Liu, 2020; Chu et al., 2021; Lin et al., 2022).

4. Feedforward Neural Networks: Processes and transforms information ob-
tained from the self-attention layers within the transformer architecture (Schmid-
huber, 2015).

- Foundations for Large Models:

1. Scale: Larger models with a greater number of parameters to capture complex
patterns; consisting of multiple self-attention and feedforward layers (Villalo-
bos et al., 2022).

2. Pre-training on Vast Text Corpora: Models are prepared through tasks such as
masked language modeling or next word prediction, which significantly im-
prove contextual language comprehension (Kalyan, Rajasekharan, and Sangeetha,
2021; Edwards et al., 2020).

3. Efficient Training Techniques: Cutting-edge approaches such as gradient check-
pointing and parallel computing are employed to minimize memory consump-
tion and accelerate training. (Shen et al., 2023; Xiao et al., 2023).

4. Transfer Learning: Better downstream task performance and domain adapta-
tion with less labeled data can be done by fine-tuning on (smaller) data sets of
interest (Zhuang et al., 2020; Alyafeai, AlShaibani, and Ahmad, 2020).

2.9. Clustering & Kleinberg’s Theorem 31

- Challenges and Progress:

1. Computational Demands: High computational resources limit accessibility
for researchers and organizations (Thompson et al., 2020; Hadi et al., 2023;
Rillig et al., 2023).

2. Ethical Considerations: Concerns arise regarding biases, AI misuse, and en-
vironmental impact; necessitating responsible practices in development and
deployment (Khan et al., 2021a; Weidinger et al., 2021; Head et al., 2023).

3. Continual Advancements: Ongoing research aims to improve efficiency, inter-
pretability, and accessibility through techniques like sparse attention mecha-
nisms and model compression (Shao et al., 2021). Furthermore, while the range
of LLM variations in the technological core of AI is decreasing, the complexity
of these technologies is increasing. This suggests that innovations within the
essential AI technologies are becoming more distinct from each other despite
being rooted in the same core. (Leusin, Jindra, and Hain, 2021).

Take-Away

The Transformer is an advanced technology based on Google’s "Attention is
All You Need" approach. It has revolutionized natural language processing
(NLP) by enhancing speed and accuracy. The Transformer has been upgraded
with different iterations like Linformer, Performer, and other "X-formers," for
different applications. Transformers are the cornerstone of large language
models (LLMs) and use vast amounts of text data to perform tasks like sum-
marization and question-answering. They rely on self-attention, multi-head
attention, positional encoding, and neural networks. LLMs are scalable and
pre-train on huge corpora, making use of transfer learning and efficient tech-
niques. However, there are challenges, like high computational demands,
ethical concerns, and ongoing advancements focusing on efficiency and in-
terpretability that make it different from other AI technologies.

Keywords

Large Language Models • Transformer • Attention is All You Need • Natural
Language Processing • Foundations • Challenges.

2.9 Clustering & Kleinberg’s Theorem

The concept of clustering is straightforward: given a diverse set of elements, group
them together using "some sort" of similarity measure. These elements are com-
monly represented as a set of points in a (often high-dimensional) vector space.
In the context of DNN, an intermediate latent (lower-dimensional) representation
vector is frequently extracted and used for clustering, rather than original (high-
dimensional) raw features. Ideally, points in the same cluster are close together and
points in different clusters are far apart, i.e. similar points should be close together,
while dissimilar points far apart. The term "similar" is hereby defined vaguely since
it is often not clear or easy to define or specify what "similar" means; particularly in
unsupervised settings. Therefore, the distances between the points are commonly
used to represent or indicate similarities; the closer the points are, the more similar
(hopefully) they are.

32 Chapter 2. Background

The idea of clustering may appear simple and straightforward at first, but build-
ing a general framework in practice is quite challenging, and various clustering
methodologies and algorithms have been developed throughout the years (Rai and
Singh, 2010; Xu and Tian, 2015; Berkhin, 2006; Xu and Wunsch, 2005). Indeed, the au-
thors of "An Impossibility Theorem for Clustering" (Kleinberg, 2002) even presented
an example of three simple properties for which no clustering function could satisfy
all three at the same time, exposing inevitable trade-offs. Kleinberg’s impossibil-
ity theorem outlines three basic, intuitive, and plausible key properties of a desired
clustering function, and establishes that no clustering function can simultaneously
fulfill all three properties:

1. Scale-Invariance: The clustering should remain unchanged when the data is
equally stretched in all directions.

2. Consistency: If distances between clusters increase or within clusters decrease
due to data stretching, the clustering shouldn’t alter.

3. Richness: The clustering function should have the capability to generate any
arbitrary partition of data points.

Follow-up work (Ben-David and Ackerman, 2008) proposed considering "clus-
tering quality measurements" (CQM) as the object to be axiomatized rather than
"clustering functions" and proposed a revised set of criteria (axioms) for such mea-
sures. That is, they argue that, even though no clustering function can exist that
satisfies all of Kleinberg’s properties, there can be a CQM that satisfies a set of ax-
ioms and evaluates the quality of clustering. The authors show that the clustering-
quality framework is richer and more flexible than clustering functions because it al-
lows the postulation of axioms that capture the features expressed by Kleinberg’s
axioms without producing a contradiction. They propose the CQM as a function
that, given a data set and its clustering, determines how "good" the grouping is.
Evaluation of clustering methods is thus important, due to the difficulty of devel-
oping a unified clustering framework that is independent of any specific algorithm,
objective function, or generative model.

Take-Away

Clustering groups elements by similarity in high-dimensional spaces, with the
evaluation of methods crucial due to inherent trade-offs outlined by Klein-
berg’s theorem and the necessity for adaptable frameworks like clustering-
quality measures.

Keywords

Clustering • Similarity measures • Evaluation, Kleinberg’s Theorem

2.10 Model Evaluation

The purpose of model evaluation is to assess the "effectiveness and quality" of a model.
The quality evaluation metric or criterion does not necessarily have to correspond to
the training loss function; in fact, it typically does not. E.g., not only may it not be
differentiable, but its purpose may also be to consider the performance of a model

2.10. Model Evaluation 33

under a specific (e.g. even different) objective criterion. In particular, even if a train-
ing loss function is perfectly optimized (e.g. by a loss error of zero), this does not,
by any means, guarantee that this respective loss function actually properly reflects
the underlying problem task (and complexity) in the first place. However, directly
optimizing for the real or intended target objective (i.e. loss) is often infeasible, too
complex, or presents other issues and challenges; so a different (proxy) loss is used
instead. The loss may also just be a heuristic (the true target objective is unknown).

It is important to be aware of the difference between both concepts. E.g., if we
consider metrics like accuracy, precision, recall, or F1-scores, such metrics rely on
binary predictions ("is" or "is not" of category X), whereas the loss function relies
on a numeric output value. Here, we are free to choose any loss objective (e.g. F1,
accuracy, etc.) for a given loss function (e.g. cross-entropy, logistic-regression, etc.).

2.10.1 Generalization & Overfitting

Model generalization refers to how well it performs on new, different (test) data.
Overfitting is when a model fails to generalize and learn patterns for new data. These
are fundamental concepts, very well-known, and extensively reviewed and explored
in literature (Ying, 2019; Hawkins, 2004; Srivastava et al., 2014). Overfitting can hap-
pen due to a variety of reasons, such as (excessive) training noise, learning too spe-
cific, uncommon details, or when training on data that is not well representative of
the overall real data distribution; but also due to many other reasons like insufficient
training data, too complex model architectures with too many parameters, leaking
target information into features (data leakage), highly correlated features, improper
hyperparameter tuning, outliers in the training data, imbalanced data and labels,
(excessive) feature engineering, etc. Techniques like regularization, cross-validation,
and early stopping help mitigate overfitting (improve generalization). For details on
overfitting and solutions, we refer back to the respective literature; and Section 2.2.7.

2.10.2 Clustering Evaluation

For assessing the cluster quality, there are two main approaches (Amigó et al., 2009):
intrinsic and extrinsic methods. (i) Intrinsic evaluation examines the quality of clus-
ters based on data or characteristics without ground truth labels. (ii) Extrinsic eval-
uation compares clusters against external benchmarks or ground truths (i.e. labels).

Intrinsic Clustering Evaluation

Intrinsic clustering evaluation metrics are ways to evaluate the effectiveness of clus-
tering algorithms without relying on external information, such as labels. These
metrics assess the quality of clusters formed within data and are thus called "intrin-
sic" metrics. Common metrics include the Silhouette Coefficient (cohesion within
clusters and the separation between clusters), Davies-Bouldin Index (cluster com-
pactness and separation), Calinski-Harabasz Index (cluster dispersion ratio), Dunn
Index (cluster compactness and separation), Gap Statistic (optimal cluster number),
etc. Each metric focuses on different aspects. Choosing the right metric depends
on the data set and goals. For a deeper understanding, we encourage the reader to
review the corresponding literature (Xu and Wunsch, 2005; Wegmann et al., 2021;
Tomašev and Radovanović, 2016).

34 Chapter 2. Background

Extrinsic Clustering Evaluation & Uncertainty

Notice: Our work and findings on αMax-B-CUBED (presented in this thesis) have
been publicly released on OpenReview-Venue (Guimerà Cuevas and Schmid, n.d.).

As already mentioned before (Section 2.2.4), Weak Supervision is a branch of ML
in which the model is trained using noisy, incomplete, or inexact annotations instead
of complete and accurate ones (Zhou, 2018). A model may be designed to deal with
noise and uncertainty in annotations to make the best possible predictions based on
the information given. Because producing high-quality labels is typically very costly,
weak supervision is often used to generate additional cheaper, but lower-quality la-
beled data. "Inaccurate training data" contains defects or erroneous labels. The term
"inexact data" refers to training data with imprecise labels, such as coarse categories
or probabilistic labels. Inexact supervision can result in a model with lesser predic-
tion confidence, but also in misleading conclusions during supervised evaluation of
clustering results. Cluster quality evaluation with inexact labels refers to the process
of evaluating the performance of a clustering method when the ground truth labels
are not fully known or are too generic. "Incomplete training data" refers to data that
lacks key information or characteristics.

Therefore, evaluation metrics and clustering algorithms that address or ensure
cluster quality under inexact, inaccurate, or incomplete data or labels (i.e. uncer-
tainty) are important here. Data clustering with partial supervision, where data
is neither completely nor accurately labeled, was e.g. approached using a fuzzy
clustering-based technique that uses available data knowledge to supervise the clus-
tering process (Bouchachia and Pedrycz, 2006). The adjusted Rand Index (Rand,
1971) measures the similarity between the real and predicted (cluster) labels while
adjusting for chance; related to accuracy. Here, "chance" refers to the possibility of
achieving a specific outcome by random. This involves considering that the agree-
ment between the true and predicted labels might occur by (pure) coincidence; es-
pecially for clusterings that do not appropriately group data points. Normalized
Mutual Information (Press et al., 2007) assesses the mutual information between the
real and predicted cluster labels, normalized by the entropy of both; where entropy
can be regarded as a measure of uncertainty. The Fowlkes-Mallows index (FMI)
(Fowlkes and Mallows, 1983) computes the geometric mean of precision and recall
between true and generated clusters. FMI tries to measure uncertainty by calculating
precision and recall over both the number of correct and incorrect predictions.

Determining the quality of clustering results is a non-trivial task and the inter-
pretation of clusters is commonly hindered by the lack of objective criteria (Rand,
1971). In a famous work on extrinsic clustering evaluation (Amigó et al., 2009), the
authors propose formal constraints on cluster quality evaluation metrics. They em-
phasize that metrics should be intuitive, clarify limitations, be formally provable,
and allow to distinguish between different metric families based on their mathemat-
ical foundations. They present four constraints on quality measurements

Amigó et al., 2009 demonstrate that out of many commonly used metrics (e.g.
set matching metrics, counting pairs metrics, entropy metrics, edit-distance based
metrics, etc.), only the B-CUBED (B3) metric (Bagga and Baldwin, 1998) satisfies all
four constraints, while the others do not.

B3, however, assumes that labels are accurate and represent a "ground truth".
This leads to issues on inexact or coarse labels (i.e. label uncertainty) (Chapter 3.3).
Uncertainty in labels can harm the accuracy and quality of the evaluations as we
cannot accurately assign data points to their true (real) labels; i.e. if the labels are not
clearly defined or well-known, any evaluation depending on it will be uncertain.

2.10. Model Evaluation 35

Take-Away

Weak supervision involves training a model using incomplete, inaccurate, or
inexact labels. When the annotations are inexact, it can lead to a model with
lower prediction confidence. Model evaluation goes beyond optimizing the
loss function and involves assessing the "effectiveness" of a model using dif-
ferent metrics, such as accuracy, precision, and recall. For clustering, there
exist various (supervised) metrics to evaluate the cluster quality. However,
among many metrics, only B3 satisfies four fundamental formal constraints si-
multaneously. B3 assumes accurate labels as a ground truth, which can cause
problems when dealing with coarse labels and uncertainty.

Keywords

Weak Supervision • Model Evaluation • Clustering Quality • B3 Metric

37

Chapter 3

Motivation

3.1 Neural Networks Based on Complex Numbers with Weights
Constrained along the Unit Circle

Notice: Our work and findings on complex-valued NNs (presented in this thesis)
have been published in Guimerà Cuevas, Phan, and Schmid, 2023. It was inspired
and builds upon our previous research (Guimerà Cuevas and Phan, 2021), but differs
significantly as it has been substantially improved and modified (both the complex
architecture and its mathematical framework); thus, constitutes novel contributions.
In particular, this novel contribution has been accepted for publication, after peer
review. The Version of Record is available online at: https://link.springer.com/
chapter/10.1007/978-3-031-33374-3_28. Use of this Version is subject to the pub-
lisher’s Manuscript terms of use. Therefore, please refer to Guimerà Cuevas, Phan,
and Schmid, 2023 for specific details.

Traditional real-valued neural networks (NNs) can diminish neural inputs by as-
signing weights of zero or overpower other inputs through extremely large weights.
However, large weights are undesirable as they can destabilize the network and
cause exploding gradients, necessitating effective regularization. This thesis pro-
poses a new architecture for feed-forward and convolutional layers that restricts
weights to the unit circle, ensuring that neural connections cannot be entirely re-
moved - which guarantees that no incoming information is lost due to inactive neu-
rons - or weakened by the weights. The neural network’s decision boundaries are
redefined by representing weights as phase rotation angles and inputs as ampli-
tude modulations, with the trainable weights consistently maintained within a fixed
range. Our method can be seamlessly incorporated into existing layers without alter-
ing the original network structure. The classification performance was validated on
standard computer vision datasets using ShuffleNetv2, ResNet18, and GoogLeNet
at high learning rates.

Take-Away

Enforcing weight constraints within the unit circle in the neural network ar-
chitecture can prevent or counteract input suppression or information loss.

Keywords

Neural Architecture • Complex Numbers • Unit Circle • Weight Constraints

https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28
https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28

38 Chapter 3. Motivation

3.2 Deep Learning for Hierarchical Databases with Recur-
sive One-to-Many Relations

To generate or learn HDB embeddings, the first step is to devise an efficient and
effective encoding method for the raw HDBs, coupled with a model architecture
capable of processing the respective encoding type effectively.

Standard deep learning (DL) methods, however, face a major challenge when
dealing with hierarchical databases (or graphs) that contain recursive one-to-many
relationships (HDBs). HDBs are typically heterogeneous with complex topological
inter-relationships, which traditional neural architectures are unable to process di-
rectly due to their requirement for a fixed-size linear vector representation of the
input data. This architectural limitation renders them incapable of supporting non-
linear graph structures, which is essential for processing HDBs. The term "non-
linear" here refers to the inadequacy of a simple linear encoding of raw HDBs to
capture heterogeneous features, structures, and topology.

Consequently, processing hierarchical graph-structured data (i.e. HDBs) requires
specific techniques that can handle their complex characteristics, such as variable-
sized inputs, local and relational information, graph-specific model (feed-forward)
operations, permutation invariance, and preservation of topological and structural
information. Traditional DL methods fall short here of adequately handling these
complexities; (brute-force) linearly encoding graphs and forwarding them naively
through a DNN is, overall, not a good solution. To process hierarchical graph-
structured data most effectively and directly, targeted solutions are necessary.

Homogeneous Graph Neural Networks (GNNs) are also unsuitable for HDBs
since they are designed to operate on graphs with identical node and edge features.
Although specialized heterogeneous GNNs are capable of representing and process-
ing heterogeneous graphs, they may not be optimally designed for HDBs because
they do not directly leverage the graph’s hierarchy and its loop-free relational struc-
ture. Therefore, we propose a new DL architecture designed specifically for HDBs.
Unlike heterogeneous GNNs, our method combines and aggregates topological and
feature information by using a uni-directional bottom-up forward propagation ap-
proach in which higher-level representations rely solely on lower-level representa-
tions. We validate our approach exemplary on synthetic and real-world hierarchical
Rebrickable® data in supervised and unsupervised tasks, showing its effectiveness
and outperformance of naive brute-force transformer-based and GNN approaches.

Take-Away

Standard Deep Learning struggles with complex hierarchical databases due
to their heterogeneity, recursive nature, and variable input size.

Keywords

Hierarchical databases • Graph Neural Networks • Recursive relationships

3.3 Addressing Uncertainty and Completeness in the B3 Clus-
ter Evaluation Metric

Notice: Our work and findings on αMax-B-CUBED (presented in this thesis) have
been publicly released on OpenReview-Venue (Guimerà Cuevas and Schmid, n.d.).

3.4. Automated Textual Description Generation of Clusters 39

Assessing the quality of clustering results is a crucial and challenging task. The
B-CUBED (B3) precision and recall evaluation metric has gained popularity due to
its ability to meet four formal constraints: homogeneity, completeness, rag bag, and
size vs. quantity. However, the ’completeness’ constraint, which demands that items
of the same category be grouped in the same cluster, can pose problems for finer
clustering algorithms that identify sub-clusters within clusters. This issue is partic-
ularly pronounced when the available labels are imprecise and coarse, resulting in
uncertain and fuzzy cluster evaluations.

To address this, we propose a modified evaluation metric: αMax-B3. Our ap-
proach accounts for completeness and uncertainty in subgroup evaluation by reor-
ganizing clusters into super-sets based on the most prevalent label and evaluating
them alongside the original clusters using a modified weighted B3 metric. The ex-
tent of uncertainty, given by α, can be either explicitly specified or automatically
estimated.

Take-Away

A modified evaluation metric called αMax-B3 is proposed to address the is-
sue of completeness and uncertainty in subgroup evaluation in the B3 clus-
tering algorithm. αMax-B3 reorganizes clusters into super-sets based on the
most prevalent label and evaluates them alongside the original clusters using
a modified weighted B3 metric. The extent of uncertainty, given by α, can be
specified explicitly or automatically estimated.

Keywords

B3 Clustering • Completeness • Uncertainty • Modified Evaluation Metric

3.4 Automated Textual Description Generation of Clusters

Generating accurate and concise descriptions for image clusters involves a complex
intersection of computer vision and natural language processing. This thesis under-
scores that basic statistical and geometrical manifold aggregation methods on neigh-
boring cluster instances can already produce surprisingly effective results without
additional training. By simply leveraging the inherent manifold information within
a generative model, different representative textual cluster descriptions can be gen-
erated and sampled. When combined with a population-based decoding strategy,
these descriptions can further be substantially improved. In other words: already by
using simple mathematical techniques on groups of nearby manifold points, we can
effectively generate descriptions for clusters (without extra training); we can further
improve the description quality using additional (more special, targeted) strategies.

We explore various pooling and decoding methods and find that even very sim-
ple (naive) aggregations like the average cluster embedding vector can yield con-
cise and representative cluster descriptions. We observe that the effectiveness of the
text decoding depends on the pooling approach chosen. Moreover, we introduce
and compare two contrastive Language-Image-based pooling methods: a gradient-
guided pooling optimization for a unified manifold, and a contrastive weighted av-
eraging approach. Our experiments are evaluated on the COCO-2017 (Lin et al.,
2014) and TextCaps (Krause et al., 2017; Sidorov et al., 2020) data sets.

40 Chapter 3. Motivation

Finding "any" clusters during clustering is always possible. However, the ul-
timate question is: what do these clusters represent, and how useful and relevant
are the clusters? This is where cluster explanation or interpretation (XAI) comes
into play. We want short, straightforward descriptions of arbitrary but fixed clus-
ters. That is, once we’ve identified potential clusters, it would be really helpful if we
could extract some (textual) explanation for these clusters (Figure 3.1). The benefits
of adopting natural language for explanation are that (1) it is simple to comprehend
and interpret, (2) it allows us to highlight keywords in the sentence that are crucial
for a specific cluster assignment, and (3) it helps us to determine semantic similari-
ties across different clusters.

FIGURE 3.1: Using language to explain clusters: A text comment is
created for a cluster of images that serves as a common description of
all instances; [Figures from TextCaps data set (Sidorov et al., 2020)].

Take-Away

Computer vision and NLP can be combined to create textual descriptions for
image clusters. Textual explanations for clusters aid comprehension and can
highlight essential keywords, enhancing cluster interpretability.

Keywords

Clustering • Interpretability • Computer Vision • NLP • Textual Explanation

3.5 Normalization of Heterogeneous Feature Distributions

Please note: This contribution has been accepted for publication, after peer review
in Guimerà Cuevas and Schmid, 2024b. The Version of Record is available online.

Heterogeneous feature distributions occur when the numeric values of the fea-
tures within a data set are distributed differently, indicating dissimilarities and vari-
ations in their characteristics. Dealing with heterogeneous feature distributions in
data analysis or ML tasks requires employing methods like normalization, feature
scaling (FS), or other specialized algorithms to help align the distributions and en-
hance the performance and reliability of the analysis or ML tasks.

ML models rely on structured, machine-readable data representations. Ensuring
numerical values are appropriately scaled is therefore crucial for optimal processing.

3.6. Out-of-Distribution Detection 41

Improper or poor FS can lead to skewed or biased models with imbalanced weights
assigned to features, causing inefficient or ineffective learning; making it difficult
for the model to converge effectively to an optimal solution. Traditional methods of
FS also fall short in handling outliers within data sets, which can disrupt statistical
assumptions and further diminish model accuracy and performance.

Non-linear Tanh-Estimators (TE) have been shown to provide a robust approach
to feature normalization (i.e. FS). However, they apply a global fixed scaling factor
to all features, raising concerns regarding its applicability to diverse, heterogeneous
feature value distributions. In this thesis, we propose an improved TE refinement
that utilizes the Wasserstein distance to estimate the optimal scaling factor of each
feature distribution; making the individual normalized feature output distributions
most similar to a given (ideal) target distribution, such as a standard Gaussian.

Our results show that such a feature-adaptive normalization approach can clearly
outperform the currently established TE method in the literature in terms of conver-
gence speed by allowing for better initial training starts by reducing or eliminat-
ing the need to re-adjust model weights during early training phases due to inade-
quately scaled features. Therefore, in this thesis, we aim to highlight, explore, and
present an analytical perspective on the (bad) practice of utilizing a single constant
global spread value in the context of FS for numeric data representations; and pro-
pose a solution. We empirically evaluate our approach on common toy computer
vision data sets, synthetic data, and a real-world tabular data set.

Take-Away

Utilizing Tanh-Estimators with Wasserstein distance-optimized spread values
for adaptive feature scaling enhances convergence speed and robustness.

Keywords

Feature Scaling • Outliers • Tanh-Estimators • Adaptive Normalization

3.6 Out-of-Distribution Detection

Please note: Our work and findings on Calibration Misalignment as a Post-hoc
Approach for Out-of-Distribution Detection in Deep Neural Networks (presented in
this thesis) have been accepted for publication in conference proceedings (Guimerà
Cuevas and Schmid, 2024a).

Out-of-distribution (OOD) detection plays a crucial role in the broader field of
outlier detection, as it focuses on distinguishing between instances that conform
to the distribution of the training set and those that are anomalous. The primary
objective of this work is to propose a novel post-hoc method for identifying OOD
examples in DNNs. In this thesis, we present a methodology that leverages the mis-
alignment of multi-class output calibration to detect OOD examples effectively. To
quantify the disparity in output probability calibration for individual classes, we
adopt a one-vs-rest approach that considers the normalized total probability mass
across all class calibrations. Furthermore, we consider the discrepancy in probabil-
ity mass between the combined probabilities of class pairs and the expected sum of
their individual calibrated probabilities. This magnitude of probability mass mis-
alignment serves as a valuable indicator for identifying OOD examples. To validate
the effectiveness of our approach, we conducted experiments that demonstrate how

42 Chapter 3. Motivation

the proposed discrepancy and probability misalignment successfully differentiates
between OOD examples and in-distribution examples. Notably, our method detects
anomalous behavior when presented with outliers, showcasing its ability to identify
OOD examples. Additionally, we compared our prediction-based OOD approach
with common embedding-based anomaly detection methods on widely used com-
puter vision data sets. Encouragingly, our method outperformed these traditional
approaches, further highlighting its potential and applicability in real-world scenar-
ios. OOD detection is key to ensuring the reliability and robustness of ML models.

Take-Away

Leveraging discrepancies and misalignments in output probability calibra-
tions can help detect out-of-distribution examples within DNNs.

Keywords

Out-of-distribution • Probability Calibration • Anomaly Detection • DNN

3.7 Manifold Data Representation and Clustering

Data exploration relies on assumptions like smoothness & continuity (points close in
the input space are likely to have the same label/output.; and small input changes
yield gradual output changes), manifold presence (data lies on low-dimensional man-
ifolds, but is embedded in high-dimensions), and clustering (data form distinct clus-
ters; points in the same cluster are more likely to share labels/outputs), to uncover
patterns or structures within the data. Based on these assumptions, we propose a
hypothesis: by manipulating the latent representations of data and creating an ar-
tificial manifold space, it may be possible to discover subgroups within (labeled)
data. To achieve this, we aim to minimize manifold approximation errors for sim-
ilar labeled points and maximize these errors for dissimilar labeled points. This is
because instances on the same manifold are likely to have distinct characteristics
that form separate clusters. Therefore, nearby points that can be accurately approxi-
mated based on the local shape of the manifold are more likely to belong to the same
subgroup; i.e. compared to distant points or those with poor approximations.

Take-Away

Analyzing latent manifolds may help in identifying subgroups.

Keywords

Data Assumptions • Manifold Approximation • Latent Spaces • Subgroups

3.8 Representative Data Stream Sampling for Trajectories

Applying ML to analyze patterns within data stream trajectories poses a significant
challenge due to their continuous influx of new data, often arriving at varying rates
or intervals. This variability can differ not only across different streams or input sig-
nals but also within the same stream. Additionally, employing DL, outlier detection,

3.8. Representative Data Stream Sampling for Trajectories 43

real-time classification, and clustering within this context faces further challenges
when dealing with the dynamic, evolving, and intermittent nature of these streams
or trajectories (e.g. streams terminating at different time-stamps or temporarily halt-
ing for an unknown length but still continuously gathering data from the most re-
cent state). Managing the complete history of multiple data streams concurrently
becomes non-trivial and difficult due to memory limitations, requiring an algorith-
mic or strategic approach to determine which trajectory records should be preserved
and which should be discarded. Discarding a record deletes it forever from memory;
and is deemed unrecoverable.

Addressing this, we propose a method centered around reservoir sampling, aim-
ing to uphold a representative trajectory at every time step. To achieve this, we
maintain a representative sample sequence within a designated quantile window.
However, devising a solution is challenging as the size of the quantile window is
not fixed; it dynamically expands with the length of the data stream. The key chal-
lenge lies in sampling "representative" data stream trajectories while being unable
to store the entire sequence in memory. Consequently, with each new incoming data
element, the decision must be made whether to include it or permanently discard
it. Focusing on different quantiles provides a means to analyze specific segments
of the trajectory, such as newer samples, allowing for targeted analysis within this
complex data environment.

A quantile window provides distinct advantages over fixed sliding windows or
basic reservoir sampling in certain scenarios due to its adaptability and ability to
capture varying (recent) data distributions more effectively: (1) Quantile windows
dynamically adjust their size according to the stream’s length, maintaining a con-
sistent proportion of data points rather than a fixed count. This adaptiveness may
prove particularly advantageous when handling fluctuating data arrival rates and
different input densities. In contrast to fixed sliding windows, which retain a set
number of recent data points, representative sampling accommodates such vary-
ing data densities, ensuring a more representative sample. Also, in situations with
skewed or irregular data distributions, fixed sliding windows might only capture
a limited subset of the data and thus patterns. However, sampling windows can
here efficiently represent the distribution without needing to store the entire data
sequence or know the distribution in advance. (2) Moreover, focusing on different
quantiles, such as newer or older sample intervals, quantile windows can facilitate
targeted exploration of specific segments of interest within the data. This may yield
better insights than using a fixed sliding window, especially when distinct changes
or trends occur in various parts of the data stream.

Ultimately, the choice between different windowing or sampling approaches de-
pends on the specific requirements, characteristics, or parts of the data stream under
analysis and the intended goal. For example, some analyses might prioritize real-
time processing and adaptability, while others focus on accurately representing the
general distribution and identifying non-specific, overall trends in the data.

44 Chapter 3. Motivation

Take-Away

Examining data stream trajectories through Machine Learning presents chal-
lenges owing to the continuous influx of new incoming data and limitations in
memory capacity. In this context, conventional reservoir sampling can uphold
a representative sample for every timestamp. Quantile windows, depending
on the scenario, can provide advantages over fixed sliding windows or tradi-
tional reservoir sampling due to their flexibility in adjusting quantile window
sizes to accommodate various data lengths. In general, determining whether
to use windowing or sampling methods depends on the precise needs and
objectives of the analysis of the data stream.

Keywords

Data Stream Trajectories • Reservoir Sampling • Quantile Window

45

Chapter 4

Introduction

Over the last few decades, the volume of data has grown exponentially and become
increasingly volatile (see Chapter 2.1; six-Vs). Many tasks within the industry have
become costly, time-consuming, and prone to errors; making them increasingly dif-
ficult to manage manually. Without automation, these tasks can become tedious and
often impossible to track efficiently. In the previous chapter, we motivated the im-
portance and necessity of Artificial Intelligence (AI), explained why common rule-
based approaches cannot keep up with modern complex problems (such as natu-
ral language), and discussed some of the main concepts, approaches, and domains
within the field of AI.

In this chapter, we introduce the central research topic forming the backbone of
this doctoral thesis. We highlight major challenges and specifically focus on topics
addressing the essential demand for Machine Learning (ML) methods (i.e. AI sys-
tems, strategies, or algorithms) for automated error-pattern detection; which is par-
ticularly relevant in the industry. "Automated error-pattern detection" recognizes er-
rors/patterns within systems or data; minimizing or eliminating the need for human
intervention and oversight. Automated pattern detection techniques have many ap-
plications and use cases across various tasks and domains: they can be utilized to
detect anomalies and recurring patterns, predict outcomes, classify and group new
data instances, identify similar patterns or inputs, facilitate decision-making, con-
duct efficient analyses, and overall enable a wide array of other use cases, solutions,
and downstream tasks.

Disclaimer: To maintain full compliance with imposed industrial privacy guide-
lines, any potentially sensitive information has been anonymized. As a result, the
examples provided are chosen as purely illustrative and do not contain any real data
or represent exemplary scenarios.

4.1 Framing the Context: Use Cases, Challenges, & Data

This section outlines the application context and data structure of the thesis for au-
tomated ML and pattern recognition; starting with an illustrative example for better
understanding.

4.1.1 Framing the Context: Example Use Cases

Plant Growth Tracking in Greenhouses: Multifaceted Observation Records

Imagine a use case of observing plants growing in a greenhouse (see Figure 4.1).
Each time a plant is watered, a record is generated and stored in a large database.
These plant records are created for each watering, and a plant can have multiple

46 Chapter 4. Introduction

records depending on the frequency of its watering. Importantly, different plants
may require different watering schedules; and thus such records can be produced
at different rates. We will refer to these records as "observations". Some recorded
features, e.g. the type of fertilizer used or the light intensity, might be irrelevant
overall but are still recorded and included in the observation record just in case they
could be useful somehow. Each observation can contain various types of data. Let us
assume the primary categories are plant-, branch growth- and environmental sensor
data (and so, we have multiple interconnected HDBs).

FIGURE 4.1: Visual representation highlighting the structure, depen-
dencies, and relationships within a subset of sensor data. The data
structure depicted is a hierarchical and recursive network of intercon-
nected databases. Each database can link to additional sub-databases,

all encapsulating a root database ("observation").

Plant data may store general information about the species of the plant. Environ-
mental data consists of multiple sensor data captured as a snapshot from a moment
of interest (e.g. the plant is checked for pests, or from the actual moment it shows
signs of dehydration) via a read-out. Sensor data can consist of specific information
about growth, leaf color, and pest infestation, and can be gathered by multiple sen-
sors, but different plants may have different sensors and thus collect different types
of data, potentially in different rates, quantities, and qualities. Additionally, one ob-
servation may record the growth of multiple branches, which themselves consist of
several sub-branches, and recursively so on. Some observations might only record
slight growth, whilst others might record significant growth. Data can, therefore,
differ greatly. Environmental conditions, such as temperature and humidity, might
also vary depending on the climate or time of day the observation was made, which
can have different implications for each plant species (e.g a succulent plant will re-
quire less water compared to other species and will show different hydration levels
in the observation record). Plants do not always have comparable features and can
differ in their observable characteristics, such as the development of flowers or fruit.

Furthermore, for each observation, the responsible employee has the freedom to

4.1. Framing the Context: Use Cases, Challenges, & Data 47

draft a custom report that can cover various aspects, such as noteworthy observa-
tions or potentially suspicious behavior. As these reports are subject to individual
interpretation and can be influenced by personal mood, the quality and quantity of
the information contained within can vary significantly among different employees.

Figure 4.2 below illustrates the data acquisition procedure graphically:

FIGURE 4.2: The process of data collection: Different plant species are
examined by different employees who collect the data and transmit it

to a centralized database. [Images created via DALL-E 3, 2023].

Moreover, these comments may be written in different languages, depending on
the person, although the majority are (translated) into English. These comments
do not follow any standardized format and can be considered "free-text.", i.e. ser-
vice personnel have the freedom to rephrase the comments using their own words,
resulting in variations in formality and vocabulary. There are multiple comment
fields available to address various aspects of plant observation separately, but the
service personnel might not necessarily follow these. This means that even though
each comment field is designated for specific aspects of plant observation, person-
nel might e.g. copy-paste the same text into all fields to avoid leaving them empty.
They may also write the wrong text in the wrong field or leave some fields empty
altogether if they simply do not care. And occasionally, when in a bad mood, some
might even deliberately write inaccurate or nonsensical information.

Hierarchical Data Structures: Entities, Relationships, and Attributes

Consider a hierarchical data structure composed of primary entities containing sub-
sidiary elements (Figure 4.3). An illustrative instance of such structures involves
envisioning a country as a fundamental entity. Each country can be decomposed
into different regions, wherein the number of regions may differ from one country
to another. These regions further comprise diverse localities such as cities, villages,
or towns, each potentially (but not necessarily) containing additional entities like
schools, medical facilities, public transportation stations, etc.

For instance, a school, as one of these subsidiary entities, can be classified into
different types including universities, primary schools, kindergartens, and others.
Within a school, there exist multiple components like classes; which again further en-
compass different students or pupils. Delving deeper, each of these entities features
a set of different characteristics of various types and sizes. I.e., a country may have
characteristics like GDP, spoken languages, population size, neighboring countries,

48 Chapter 4. Introduction

and climate. Conversely, pupils may exhibit traits such as name, gender, academic
performance metrics (such as average, best, and worst grade), number of friends,
and nationality. Hence, not only is the structure of the linkage between these entities
crucial, but also very importantly the specific values associated with the different
attributes; thus both the structure itself and its accompanying features.

FIGURE 4.3: Hierarchical data structure composed of a primary root
entity containing subsidiary elements.

4.1.2 Framing the Context: Formal Definition

Consider a database consisting of multiple sub-databases connected in a hierarchi-
cal structure, creating a directed database graph network without any loops. Each
database may encompass different features and feature types, and not all instances
of a given database must include all features; but must be a subset of it. A com-
pact high-level illustration depicting the hierarchical data dependency graph with
recursive 1 : n connections is given in Figure 4.4 below:

FIGURE 4.4: Abstract illustration depicting a hierarchical data depen-
dency graph, visualized recursively. Each group (entity) is intricately
connected to n subordinate entities, maintaining a strict hierarchical
structure where connections ascend downwards (i.e., no upward or
lateral movements within the same hierarchy level), resulting in a
strict 1:n hierarchical database. The hierarchical nature ensures a tree-

like structure, inherently free of cycles.

4.1. Framing the Context: Use Cases, Challenges, & Data 49

This data structure (Figure 4.4) can be formally represented through the use and
notation of Graph Theory. In this context, the hierarchical data structure can be rep-
resented as a special case of a Directed Acyclic Graph. Let G denote the graph rep-
resenting the data structure, and let V and E represent the set of vertices (database
entities) and edges (database relationships) in G, respectively. The graph G can then
be characterized and defined by the tuple G := (V, E, Ω), where:

• V = {v1, v2, v3, . . .} is the set of vertices v, each representing an entity.

• E = {(vi, vj) | vi, vj ∈ V} is the set of edges, with (vi, vj) indicating a directed
edge from vertex vi to vertex vj.

• Ωv = {ω1, ω2, ω3, . . .} is the set of feature attributes for an entity v ∈ V, where
ω denotes individual attributes (i.e. features).

• Ω = {Ωv1 , Ωv2 , Ωv3 , . . .} is the set of attribute sets for all entities V.

The edges in E adhere to a direct superiority relation denoted as≺. If (vi, vj) ∈ E,
it implies that vertex vi is directly superior to vertex vj within the hierarchy, and so:

(vi, vj) ∈ E =⇒ vi ≺ vj ∧ ¬∃vk ∈ V : vi ≺ vk ∧ vk ≺ vj (4.1)

The acyclic nature of the graph implies that no sequence of edges forms a cycle:

¬∃v1, v2, . . . , vn ∈ V : (v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1) ∈ E (4.2)

This means we cannot start at a vertex, follow directed edges, and return again to
that same vertex (which would be a cycle). This property is key for maintaining the
hierarchical DB structure. In other words, the hierarchical data structure G is formally
characterized as a set of vertices V (DB entities), interconnected by edges E without
loops (DB relationships), and each entity v ∈ V has its set of attributes Ωv.

Given the set of all DB entities V, let D be the set of all DBs. Each entity v ∈ V is
associated, denoted by v 7→ D, with (exactly) one DB D ∈ D. The following holds:

∀v ∈ V, ∃!D ∈ D : v 7→ D and ∀v 7→ D : Ωv ⊆ ΩD (4.3)

where ∃! is the uniqueness quantification ("there exists one and only one"); ΩD
is the feature set of D. In simpler terms, for every entity v in V, there exists a unique
DB D in D, such that v is associated with D, and the feature set of v is a subset of the
feature set of D; i.e., the set of features Ωv that an entity v can hold is always a subset
of the feature set ΩD of its corresponding DB D. An entity is a concrete realization
(i.e. instance) of its DB D; but may not necessarily exhibit all its features. Different
entities v ∈ V can, hence, have different feature attributes Ωv; they may vary in both
type and the number of features (count) across different DBs; within the same DB,
only in count. Each v is linked to a single D, but each D can be linked to multiple v.

4.1.3 Composition of Multiple Hierarchical Data Sources

It is possible to integrate multiple independent HDB structures or data sources into
a single, larger unified DB (Figure 4.5). This allows input data to include features
from diverse aggregations of multiple different HDBs or sources, each with poten-
tially varying levels of importance, relevance, features, meaning, quality, and size.
Such sources can include not only other HDBs but also other feature input types like
textual documents, images, etc. However, this integration poses further challenges,

50 Chapter 4. Introduction

such as longer processing times for intricate data sources (e.g. larger [nested] HDBs)
and potential performance bottlenecks during training; if e.g. trained end-to-end.

FIGURE 4.5: Different HDBs integrated into a larger unified DB.

4.1.4 Data Quality

Data labels, if available at all, may not always accurately represent the actual ground
truth and can be unreliable or vague. For instance, a particular issue with an en-
tity could have multiple underlying root causes or error patterns, which may not
match or correlate with the class labels. Some features and observations, particu-
larly if they are not collected from objective sensor data but obtained in some other
unreliable and uncertain way (e.g. textual data and reports), may not be entirely
accurate, representative, or true, as they could be (considerably) influenced by sub-
jective perceptions, biases, outliers, etc. This is especially true when working with
textual data that is gathered from very different sources and people: it presents well-
known (non-trivial) challenges inherent to natural language processing, including
synonymy, antonymy, ambiguity, contextual meaning, grammatical accuracy, and
more. Since ML models "learn" from data, the quality of the data has a crucial effect
on the effectiveness and performance of the model; and poor data quality poses extra
challenges. This holds true for both the label quality and the raw feature quality.

4.1.5 Data Processing

Our objective is to detect (error) patterns in a very large collection of observations;
which we will refer to as "defects". These defects are of great interest as they help us
categorize patterns and identify the causes of problems, allowing for more in-depth
analysis. However, a defect may have multiple underlying causes, including both
known and unknown problems, making the scenario more complicated than simple
multi-label classification. Our goal is to determine these, possibly overlapping, la-
bels and defects (by learning useful embedding representations of the data objects
and applying pattern recognition techniques to them). Once we have identified (po-
tential) defects, we want to find general rules that match these patterns; allowing us
to classify and organize these (previously unknown) defects. This helps us to clas-
sify and organize previously unknown defects. Once we have extracted new defect
types (generalizable patterns), any subsequent new observation that does not satisfy

4.1. Framing the Context: Use Cases, Challenges, & Data 51

these (new, old) rules requires special attention and must be handled separately; it
could be an outlier or a new (unknown) defect. In fact, if many new observations do
not fit, it may even indicate that the extracted patterns are not well representative,
incomplete, or that the data has changed too much (rendering rules obsolete).

Identifying patterns is important in the industry as it helps improve product
quality, identify potential causes and correlations between defects, and prevent sim-
ilar defects from occurring in the future. Not only does this reduce maintenance, and
improve product robustness, reliability, and safety; but it can also enhance a com-
pany’s reputation for quality, and increase customer satisfaction (hence, extending
beyond immediate [quality] improvements; also encompassing long-term benefits).

4.1.6 Problem Statement

The objective is to create a model that can analyze a dataset with different types of
observations at varying sample rates, quantities, and qualities. The model should
be able to identify important variables that influence the outcome, predict the result
based on input variables, detect outliers, and locate similar objects. Moreover, the
model should provide insights into the patterns of the dataset. This multifaceted
problem, thus, entails addressing the following key components:

1. Heterogeneous Data Management: Efficiently handling diverse data types,
particularly focusing on large hierarchical databases.

2. Predictive Modeling: Developing accurate prediction capabilities to offer valu-
able insights for new, future observations.

3. Anomaly Detection: Detecting and addressing anomalies that may impact
analysis and predictions, and identifying (new, rare) patterns that require spe-
cial attention.

4. Similarity Assessment: Identifying and grouping entities based on similarity,
shared characteristics, or behaviors; facilitating comparison and analysis.

5. Pattern Recognition: Establishing generalizable rules and identifying data re-
lationships influencing outcomes or displaying patterns.

6. Interpretable Patterns: Identifying important features (i.e. variables) and ex-
plaining inherent patterns, behaviors, and relationships; enabling informed
decision-making and action.

Take-Away

Integrating diverse data sources and formats, such as sensor data and cus-
tomizable reports, into a complex hierarchical database network structure and
systematically organizing relationships between various entities and their at-
tributes, is a major challenge. Ensuring data quality, especially when deal-
ing with subjective information like textual data, is also a major hurdle to
overcome. The ultimate goal is to analyze complex, unconventional data to
identify patterns or anomalies and use them to improve quality, detect irreg-
ularities, reduce expenses, and enable the application of Machine Learning.

Keywords

Pattern & Anomaly Detection • Predictive Modeling • Heterogeneous Data

52 Chapter 4. Introduction

4.2 Previous Methods Employed in Real-World Applications

Following Chapter 4.1, this thesis will focus on automated decision-making and er-
ror pattern recognition by learning meaningful "embedding" representations (see
upcoming Chapters 4.3 & 4.5). Prior to the start of this thesis, error patterns were
identified through laborious, tedious, and time-consuming manual analysis of the
data; trying to come up with general rules that would (so was the hope) system-
atically classify defects. In reality, however, such rules were mostly guided and
motivated by heuristics and simple observations. The rules essentially comprised
a collection of conjunctions and disjunctions of conditions. Generally, given a con-
catenation operator ⊗ ∈ [∧,∨] and a set of Boolean properties ψ ∈ Ψ, such rules can
be equivalently reduced and rewritten in a Disjunctive Normal Form (DNF); every
Boolean formula can be transformed into DNF (Pfahringer, 2017):

Rule :=
∨ ∧

ψi∈Ψ

[¬]ψi (4.4)

where [¬] denotes an optional negation parameter. For example, one possible
rule could be:

Rule← [ψ0 ∨ (ψ1 ∧ ψ2) ∨ (¬ψ0 ∧ ¬ψ3)]
One benefit of having the rules represented in DNF is the ability to quickly ver-

ify in linear time complexity whether a given configuration satisfies any clause or
not. This is because every clause in DNF operates independently via OR opera-
tions. To verify whether a configuration fulfills the rule, we can simply check if an
individual clause applies. If the configuration meets any of these clauses, the entire
rule (presented as a collection of clauses joined by disjunctions) is considered satis-
fied. Additionally, if we transform all rules to DNF, we obtain a unified rule-system
template. Yet, the transformation of logical expressions into DNF may result in an
exponential expansion of the expression’s size and might not consistently generate
the most efficient representation, considering that converting very complex logical
expressions into DNF can be computationally intensive.

However, as mentioned earlier (Chapter 2.2.2 & 2.2.6), RBSs (i.e. rules in DNF)
have many drawbacks and limitations; importantly: they do not determine any (e.g.
semantic, meaningful) "embedding representation" of the data.

4.2.1 Concerns

Much like the limitations of RBSs we previously demonstrated for NLP tasks (see
Chapter 2.2.6), creating these (DNF) rules presents equivalent problems. This holds
regardless of whether the data being handled is textual or non-textual, such as tab-
ular data. Devising such rules demands an extensive amount of time, involving the
manual examination of raw data to discern patterns and subsequently formulating
correct rules. Yet, these rules often fail to generalize effectively, potentially leading
to the misclassification of defects and thereby further weakening the RBS. Even if
possessing expertise in the field, independently formulated rules are easily subjec-
tive, influenced by personal and different experiences, considerations, observations,
and heuristics. This subjectivity, lacking any rigorous mathematical validation, jus-
tification, or optimization, easily results in the creation of redundant or inaccurate
rules, leading to numerous inconsistencies and problems.

To summarize, key shortcomings include: (1) time-consuming rule creation, (2)
challenges in recognizing patterns from raw data, (3) ineffective rule generalization,
(4) possible misclassification of defects, (5) subjectively formulated rules, (6) absence

4.3. Machine Learning for Automated Error-Pattern Detection 53

of mathematical reasoning, (7) redundancy in rule creation, (8) inaccuracies and in-
consistencies in RBSs, (9) lack of optimization, (10) scalability concerns, (11) main-
tenance difficulties, (12) conflicting rules and interdependencies, (13) limited adapt-
ability in dynamic environments, (14) cost and resource intensiveness, and (15) risks
of overfitting and underfitting; among others.

In the next section, we will discuss the advantages of using automated AI sys-
tems (particularly ML models), as a promising alternative and better solution.

Take-Away

Prior to this thesis, error patterns were manually identified, leading to rule-
based systems based on heuristics and simple observations. These lacked
generalizability and mathematical support. Consequently, the limitations of
manual rules in defect classification prompted the exploration of Artificial In-
telligence, especially Machine Learning, as a more promising alternative.

Keywords

Error Patterns • Rule-based Systems • Heuristics • Defect Classification

4.3 Machine Learning for Automated Error-Pattern Detection

The growing demand for automation is clear: aiming for scalable and efficient sys-
tems. However, while automation alone does not assure optimal solutions, lever-
aging ML principles enables us to automatically approximate an optimal solution
in a mathematically sound way. ML approaches involve merging automation and
optimization to create a model capable of effective (automatized, optimal) learning
and prediction; eliminating the need for human intervention. Although the learning
phase might be time-intensive, ranging from minutes to potentially weeks or even
longer (depending on the model’s complexity and dataset size), the prediction phase
is very fast, typically occurring in real-time.

The primary objective can be defined as follows: developing an ML model capa-
ble of automatically understanding, learning, extracting, and extrapolating patterns
from large databases. When presented with new, previously unseen data, this model
should effectively apply the learned (generalizable) patterns and knowledge to gen-
erate new, accurate predictions.

ML involves several sequential stages: first, data preprocessing, e.g. to clean, nor-
malize, and extract features from raw data, etc.; preparing it so for model training.
Next, the ML model is trained to learn patterns and relationships given that prepro-
cessed data. Hyperparameter optimization takes place during this training phase;
thereby tweaking (i.e. adjusting) internal non-learnable parameters to improve the
model’s performance. Once fully (optimally) trained, the model moves to the pre-
diction (or inference) phase; applying its learned generalized insights to make pre-
dictions to new, previously unseen data. Inference is commonly near instantaneous
(while training may often require a substantial amount of time and resource power;
depending on the model, data, desired effectiveness, etc.).

Figure 4.6 below illustrates, in a very simplified manner, the high-level idea of
ML in a general, basic supervised setting (for automatic error-pattern detection);
focusing on learning from observations and predicting outcomes for new instances.
The three phases (pre-processing, training, and inference) were omitted for clarity.

54 Chapter 4. Introduction

FIGURE 4.6: A simplified illustration demonstrating the idea of su-
pervised ML for error-pattern detection; showcasing the process of

learning from observations to predict outcomes for new instances.

4.3.1 Challenges in Machine Learning

Before we dive deeper into ML, it is important to understand the challenges of de-
veloping and deploying ML models (AI systems). While we will not further focus
on these challenges in this work, it is important to keep them in mind to understand
the drawbacks and risks of deploying and developing ML models. Moreover, these
challenges are general and not exclusive to the field of identifying error patterns.
Therefore, in this section, we will briefly summarize three key (yet often neglected)
challenges in ML. This is by far not an extensive list and we encourage the reader
to review the corresponding literature (L’heureux et al., 2017; Paleyes, Urma, and
Lawrence, 2022; Zhou et al., 2017; Sze et al., 2017):

Expensive Development

Setting up serious ML models can be expensive and is usually more beneficial for
long-term investments. To start, an ML team usually is composed of several dis-
tinct roles (e.g. Data Engineer, Data Scientist, Statistician & Analyst, Applied Ma-
chine Learning Engineer, etc.). Each role has its own specific application area, which
makes ML a very interdisciplinary field. Many tasks arise implicitly when using ML,
such as data gathering, data processing, model architecture search, model optimiza-
tion, pipeline and workflow design, efficient, modular, and scalable implementation,
setting up the right ML infrastructure, and many more. A low-level understanding
of ML models requires a solid background in mathematics, statistics, and computer
science; and technology changes and obsoletes rapidly. A high-level understanding
is easier to obtain; yet lacking a detailed understanding restricts the ability to effec-
tively adapt or apply ML techniques (and their many variants) to different practical
use cases (domains). Overall, the development of ML technology and conducting
respective research is expensive.

Data & Need for Custom Tailoring

Each use case is different, encompassing diverse types, quantities, and qualities
of data, often carrying inherent uniqueness (e.g. challenges, objectives, constraints,
complexities). While the overarching goal of ML is to enable autonomous (optimal)

4.3. Machine Learning for Automated Error-Pattern Detection 55

learning without constant intervention from domain experts, ideally operating in-
dependently on the specific task at hand (i.e. not being explicitly programmed), each
project presents its own distinct challenges.

In other words, variances in data, ranging from types and structures to the quan-
tity and quality available, significantly influence the ML process and final model
effectiveness. Hence, the pivotal role of data cannot be overstated. It plays a crucial
role in ML systems and acquiring good data (or any substantial and relevant data)
is often the first big challenge to overcome. A general rule of thumb is as follows:
If the input is bad, so will the output. Or more informally but commonly stated
among practitioners: "Garbage in, garbage out" or even "What you put in is what
you get out". However, this is also a dangerously tempting justification for many
individuals seeking to downplay model effectiveness: by simply blaming the data.

Essentially, the quality of the input directly influences the quality of the output.
ML models are complex mathematical constructs; they do not possess magical "AI"
capabilities. If the input lacks informative content or is full of obscured, noisy, or dis-
torted patterns, the task of deriving generalized, applicable patterns becomes very
challenging; if not outright impossible. Therefore, the type and quality of the input
data greatly determine the success and efficacy of machine learning models. In many
cases, a universal solution simply does not apply. Each use case tends to come with
its unique set of constraints, limitations, or varying objectives. The ability to effec-
tively tailor an ML model and fine-tune the data and learning procedures according
to the specific demands of that use case is key; especially considering particular nu-
ances inherent in each use case. Viewing an AI system as a singular black-box capa-
ble of handling any input, generating any desired output, and seamlessly adapting
to every conceivable use case is fundamentally just wrong. Despite being obvious
and apparent, this understanding is typically absent among non-AI practitioners.

Reasoning, Uncertainty, and Reliability

Notice: Our work and findings on αMax-B-CUBED (presented in this thesis) have
been publicly released on OpenReview-Venue (Guimerà Cuevas and Schmid, n.d.).

ML is often viewed as an opaque black-box model. An input comes in, an output
comes out. For those unfamiliar with ML and AI, questions like "How does it work?"
or "What drives its predictions?" naturally arise. These black-box models are, in fact,
highly complex and typically quite convoluted (even to individuals with strong AI
backgrounds); posing serious challenges in AI reasoning and managing uncertainty.
These challenges, thus, persist as active areas of research (Gawlikowski et al., 2021;
Angelov and Soares, 2020).

Guaranteeing assurances regarding a model’s performance is, therefore, non-
trivial and difficult. Developing reliable, accurate, and comprehensive formal verifi-
cation techniques remains an ongoing challenge (Huang et al., 2017; Leofante et al.,
2018). The opacity of these models often also raises ethical concerns, e.g. about bi-
ases, especially in critical decision-making applications like healthcare and criminal
justice (Li, Ruijs, and Lu, 2023; Smith, 2021). Model reliability is a very complex
task that involves numerous further concerns; e.g. the notorious vulnerability of DL
models to adversarial inputs or attacks1; which can cause a model to make incorrect
(high-confident) predictions (Biggio and Roli, 2018). Overall, the interpretability of
ML models and explainable AI are topics of great interest in this regard, i.e. to im-
prove reliability and counteract uncertainty (Xu et al., 2019).

1Adversarial attacks are not relevant to our thesis but serve to highlight the complexity of ensuring
model quality and providing reliable assurances. For more details, see Chakraborty et al., 2018.

56 Chapter 4. Introduction

Take-Away

Machine Learning (ML) automates pattern identification via optimized mod-
els, learning (generalizable) rules from large datasets; enabling effective (real-
time) predictions on new data. Implementing ML presents challenges includ-
ing cost, customization needs, and complexities in reasoning and reliability.

Keywords

ML • Error-Pattern Detection • Automation and Optimization • Challenges

4.4 Neural Networks Based on Complex Numbers with Weights
Constrained along the Unit Circle

Notice: Our work and findings on complex-valued NNs (presented in this thesis)
have been published in Guimerà Cuevas, Phan, and Schmid, 2023. It was inspired
and builds upon our previous research (Guimerà Cuevas and Phan, 2021), but differs
significantly as it has been substantially improved and modified (both the complex
architecture and its mathematical framework); thus, constitutes novel contributions.
In particular, this novel contribution has been accepted for publication, after peer
review. The Version of Record is available online at: https://link.springer.com/
chapter/10.1007/978-3-031-33374-3_28. Use of this Version is subject to the pub-
lisher’s Manuscript terms of use. Therefore, please refer to Guimerà Cuevas, Phan,
and Schmid, 2023 for specific details.

Deep Learning, the prevalent approach in Machine Learning, typically employs
Deep Neural Networks (DNNs) that use real-valued (RV) weights to determine
activation function outputs, thereby shaping decision boundaries between classes
(Goodfellow et al., 2016; LeCun, Bengio, and Hinton, 2015). Non-linear activation
functions are crucial to these models, as they prevent DNNs from collapsing into
single-layer perceptrons, which are limited by linear decision boundaries, as exem-
plified by the notorious XOR problem (Rosenblatt, 1957).

This thesis details a novel technique for computing decision boundaries by in-
tegrating complex numbers into a bi-nonlinear neural network. Unlike traditional
Complex-Valued Neural Networks (CVNNs), this approach uses RV weights as an-
gles representing complex unit numbers, which are then scaled by the magnitude
of the inputs and summed. This method offers several advantages over previous
CVNN approaches: (1) Weights do not cancel inputs when set to zero, (2) Com-
plex back-propagation is not necessary, (3) Neural inputs remain in the real domain,
and (4) The weight matrix is RV. Additionally, this model avoids the need for ex-
plicit input mapping to complex phases and eliminates the risk of exploding gradi-
ents, making it easier to integrate into existing architectures without modifications
(Aizenberg, 2011a; Amin and Murase, 2009; Philipp, Song, and Carbonell, 2017).

Take-Away

We propose a new technique using complex numbers in Neural Networks that
computes decision boundaries without explicit input mapping. It preserves
information, prevents input suppression, and seamlessly integrates into exist-
ing models without altering their architecture.

https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28
https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28

4.5. Deep Learning for Hierarchical Databases with Recursive One-to-Many
Relations

57

Keywords

Complex Numbers • Neural Networks • Non-linear Decision Boundaries

4.5 Deep Learning for Hierarchical Databases with Recur-
sive One-to-Many Relations

In Section 4.1, we have presented examples of (real-world) use cases where databases
(DB) are structured hierarchically and highlighted how individual entities across dif-
ferent DBs may exhibit different characteristics and features (both in type and quan-
tity). This poses many challenges, making the application of standard DL non-trivial
and not directly possible in such cases (i.e. data structures).

The application of DL to hierarchical databases (HDBs) is of great interest as it
allows for the analysis of complex and large hierarchically structured datasets (these
are commonly encountered; especially in the industry). HDBs are widespread and
can be found in many different scenarios where data can be arranged in tree-like
structures, with nodes representing entities or objects, and links representing specific
relationships (such as dependencies or connections between them). While DL is
typically used to analyze individual entities within a database (DB) table, there is
a growing need to explore relationships between entities across different tables and
DB network structures. Extracting complex patterns and insights from a DB and
its hierarchical interconnections can greatly enhance understanding, particularly in
terms of its topological HDB structure (determined by the [relational] links between
HDB entities). This, combined with the individual features of each HDB entity, can
be highly useful for various tasks, especially if a meaningful semantic single vector
representation is required; as is often the case for downstream applications.

Semantic representations can be obtained through Embedding Learning; which
is an important concept in ML, used to represent data as continuous vectors. "Em-
beddings" are semantic mathematical representations that transform data into a vec-
tor space (typically, of fixed dimension). Often, embeddings are relatively low-
dimensional representations of objects in high-dimensional spaces that distill inher-
ent information (not the same as compression; see Chapter 2.3); enabling so efficient
analysis and further processing, e.g. for subsequent downstream tasks. They typi-
cally capture (different) semantic meanings of inputs (often in relation to other in-
puts) and can be learned automatically by a model. The main idea is that similar
items are represented by similar vectors; which helps to capture meaningful rela-
tionships between items. Embeddings can often be (and are) reused across different
models and are especially renowned in the context of natural language processing
(NLP) (Almeida and Xexéo, 2019), typically in conjunction with word embeddings;
including respective evaluation methods (Bakarov, 2018). Similarly, graph embed-
dings (Goyal and Ferrara, 2018) and network representation learning (Zhang et al.,
2018) aim at "embedding" graphs into low-dimensional vector spaces while preserv-
ing network information (e.g. vertices, topological structure, etc.). Embeddings can
be used for retrieving similar objects (Hjaltason and Samet, 2003), zero-shot learning
(Zhang and Saligrama, 2015), anomaly detection (Hu et al., 2016), graph problems
(Cai, Zheng, and Chang, 2018; Goyal and Ferrara, 2018), clustering (Xu and Wunsch,
2005), model predictions (Adya and Collopy, 1998), and for many other DL applica-
tions. Finding "good" (latent) embedding representations for instances is, thus, of
great importance for many different downstream tasks, since effective embedding

58 Chapter 4. Introduction

representations can improve model performance by capturing the inherent structure
of the data more accurately. In other words, embeddings can simplify data dimen-
sionality and complexity, which facilitates processing and evaluation; and, therefore,
play a key role in many DL systems and applications.

"Pre-trained" embeddings are pre-existing numerical representations that encode
semantic meaning or context (typically pre-trained on large datasets and models).
They facilitate efficient learning for various tasks by either fine-tuning the respec-
tive pre-trained ML model or directly adapting the embeddings. This saves com-
putational time by leveraging existing knowledge instead of training from scratch,
simply utilizing pre-trained embeddings and continuing learning from there. Mean-
ingful pre-trained embeddings often contribute to improved generalization by dis-
tinguishing between similar and dissimilar objects, preserving relationships or indi-
vidual characteristics, and capturing semantic nuances within the data.

Although DL on DBs is becoming increasingly more relevant for many applica-
tions, it still poses many non-trivial challenges. There are only relatively few ap-
proaches to using DL methods for solving (common, basic) DB problems (Wang et
al., 2016b); especially in comparison to other fields in AI. DL on relational DBs is
considerably more difficult and differs greatly from traditional DL methods on tab-
ular data, images, natural language, etc. in the way the input data is structured
and defined. Large-scaled DB systems are also computationally hard to analyze and
process efficiently, such that special distributed infrastructure and techniques are
often needed for good performance and efficient analysis, exploration, and process-
ing (e.g. parallel training or multitenant resource scheduling) (Mayer and Jacobsen,
2020). HDBs are special types of DBs where relations implicitly form a hierarchy
holding a root instance and loop-free recursive 1:n connections to further sub-tables.
Each table may store different features and have further sub-tables. Recursive HDBs
typically have more than one hierarchy level. They are commonly found in com-
positional settings, e.g. where a piece may be made of many sub-pieces, and each
sub-piece can be recursively composed of an arbitrary number of further sub-pieces.
Finding representative embeddings for HDBs is key to many downstream tasks.

In traditional DL settings, data takes a straightforward form such as numeric
values, textual data, pixel images, video, audio, etc. For these types of inputs, there
are already successfully established architectures and basic models that can work
directly on these types of inputs. In these cases, the focus is often mainly on the
model architecture for effectively performing downstream tasks and optimally gen-
erating embedding representations. However, for DBs (especially for HDBs), it is not
possible to simply feed the DB into a model and somehow obtain embedding rep-
resentations. The forward pass function of a traditional neural network processes
data in the form of a fixed-size linear vector. However, HDBs have a complex graph
structure, with varying features, topology, and size, where entities are connected
through recursive one-to-many relationships. Representing such data in a linear for-
mat is not easy or even optimal and may require a more complex input structure and
data processing strategy. Therefore, traditional neural architectures are not suitable
for processing graphs, as they are designed for vector data (not graphs). Thus, it is
necessary to map the DB to a knowledge representation that can be processed by
the model in the first place. This step alone is challenging and fundamental. Poor
input representations can destroy underlying data patterns, worsen data encoding
quality, and lose information and potentially important data correlations (therefore,
strong representations are essential). In other words, effectively converting a het-
erogeneous HDB into a structured knowledge representation or appropriate data
format is essential for maintaining data integrity and enabling efficient processing.

4.6. Determining Representative Textual Labels for Clustering Accurate Sensor
Data with Inexact Annotations

59

Equally crucial is the processing function (i.e., the mathematical definition) of the
corresponding DL model.

This thesis proposes an efficient and scalable method for applying DL to HDBs.
It enables DL-based optimization (on HDBs) and can be used to learn representative
embedding vectors (which can then be utilized for various downstream tasks; as is
typical in DL). The different DB hierarchy levels can be automatically and indepen-
dently weighted to improve overall model training and performance. Our recursive
architecture can handle any number of hierarchy levels, and it integrates the un-
derlying HDB structure directly into the model. The main novelty of our method
lies in its definition of the model’s forward-pass, architecture, and training strategy
for processing HDB instances. It allows for an effective, direct processing of HDBs,
without compromising data quality during input transformation and forward pro-
cessing. Moreover, the proposed approach offers flexibility in handling different
feature types (i.e., multimodal data).

Take-Away

Deep Learning (DL) can be applied to support Hierarchical Databases
(HDBs), which organize data in tree-like structures. Embedding Learning, an
important Machine Learning technique, converts data into continuous vec-
tors for tasks such as retrieval, anomaly detection, model predictions, etc.
However, applying DL to HDBs presents many challenges in terms of data
processing, effectiveness, and computational costs; yet, DL on HDBs is very
relevant for many real-world use cases.

Keywords

Hierarchical Databases • DL • Embeddings • Representation Learning

4.6 Determining Representative Textual Labels for Cluster-
ing Accurate Sensor Data with Inexact Annotations

Imagine a dataset containing information from sensors and textual sources. The sen-
sor data typically offers accuracy and objectivity, whereas textual data may vary in
quality: being inaccurate, imprecise, or irrelevant. When seeking patterns within
sensor data, clustering directly using this sensor data alone proves effective (since
sensor data is precise and reliable). However, additionally including textual data
within the clustering procedures can be problematic due to potential noise and in-
accuracies, especially when the textual data quality is low, noisy, etc. This can sig-
nificantly affect the accuracy of clustering, making it harder to identify meaningful
patterns and even destroy, obscure, or hide patterns of interest that would otherwise
be found if we were clustering on the sensor data alone.

Yet, there may still be reasons and motivations to use the textual data for other
specific purposes, such as identifying the most representative textual comments for
the identified sensor clusters. However, this again poses several further difficulties
since the textual data does not necessarily match the sensor data; it can/should, but
does not necessarily have to. The most representative sensor instance for a cluster,
such as the data instance closest to the cluster centroid, may e.g. be a low-quality
textual annotation. As a result, a key and central issue is assessing whether the tex-
tual annotations are suitable and indicative of the total cluster regarding the sensor

60 Chapter 4. Introduction

data. We will refer to this as: clustering accurate sensor data with inexact annota-
tions. "Inexact" here refers to the uncertainty and variability in the quality levels of
individual annotations; potentially (but not necessarily) causing deviations from the
the underlying objective sensor data.

Consider the following sensor data: {"LIGHT": 982,"SOUND": 55.7,"UV": 3,"CO2":
560,"MOTION": TRUE}. Several annotations could be given, among which may be of
poor quality or unrelated. Some possible textual annotations could be:

1. "The indoor environment is comfortable, but the slightly elevated CO2 levels could be
an area of concern to improve ventilation." [Good Quality]

2. "Elevated CO2 levels; requires attention to ventilation." [Moderate Quality]

3. "Nothing special; I think, couldn’t find anything, but unsure." [Low Quality]

4. "I don’t like this job, I will quit." [Off-topic/Low Quality]

5. "The light level is at 982, suggesting the area is well-lit. The sound level is 55.7, which
is pretty low. The ultraviolet index is at 3, indicating that the level of radiation is
minimal. The gadget is also detecting the carbon dioxide (CO2) level, which is at 560
ppm, suggesting that the air quality may be improved [...]." [Good Quality]

Hence, textual data may be unreliable, but sensor data is considered objective
and can be clustered with reliable confidence. Therefore, clustering (solely) on tex-
tual data may well be problematic because it may identify patterns that do not repre-
sent or align with the sensor data; that is, it will find patterns within the textual data
but not necessarily corresponding to the sensor data of interest. Combining low-
quality textual data with high-quality sensor data for clustering can, thus, result in
inaccurate results, as we may be adding low-quality data to the high-quality sensor
data during clustering. Consequently, it makes sense to evaluate the quality of the
associated textual annotations and identify the most fitting or representative ones
that align with the sensor clusters to filter out and identify high-quality annotations
against low-quality annotations. The fundamental questions are: "Which annotation
best captures the essence of the cluster?" and "What distinguishes the vast majority
of cluster instances?". This can be addressed by first adopting a probabilistic view-
point assessing it differently and asking for: "What annotation is most likely to act as
the best (possible) replacement?"; and similarly "What is most likely to distinguish the
vast majority of cluster instances?". Finding the best representative textual annotation,
however, might be difficult in such inexact setting, especially if the clusters have
many possible (different) interpretations. As a consequence, we will define "the best
cluster representation" as the annotation with the highest probability of being the
most representative combination of sensor- and textual data for the cluster instances
(in comparison to the other available annotations); the respective scores will be used
to establish a ranking of representation quality. We will do this by determining and
calculating scores that balance the representative quality of sensor data against the
quality of textual data; and produce a quality ranking with a focus on extracting
top-quality representations.

4.7. Explainable and Interpretable AI 61

Take-Away

Combining sensor data with textual data in clustering presents a challenge
due to the objective nature of sensor data compared to the subjective and
noise-prone characteristics of textual data. An issue arises when aiming to
extract the most relevant textual annotations for clusters identified by sensor
data, as poor-quality annotations can distort cluster patterns.

Keywords

Clustering • Textual data • Sensor data • Annotations • Quality Ranking

4.7 Explainable and Interpretable AI

Notice: Our work and findings on αMax-B-CUBED (presented in this thesis) have
been publicly released on OpenReview-Venue (Guimerà Cuevas and Schmid, n.d.).

4.7.1 Supervised Cluster Evaluation Metric

The evaluation of clustering methods and their results is a complex task due to the
lack of clear-cut criteria for determining the quality of clusters (Rand, 1971). While
clustering may seem simple in theory, it is difficult to create a general framework
that works for all cases (Rai and Singh, 2010; Xu and Tian, 2015; Berkhin, 2006; Xu
and Wunsch, 2005). In fact, in "An Impossibility Theorem for Clustering" (Kleinberg,
2002)", an example of three simple properties was presented for which no cluster-
ing function could satisfy all three at the same time, exposing inevitable trade-offs.
Follow-up work (Ben-David and Ackerman, 2008) proposed considering clustering
quality measurements as the object to be axiomatized rather than clustering func-
tions and proposed a revised set of criteria (axioms) for such measures. The authors
show that the clustering-quality framework is richer and more flexible than cluster-
ing functions because it allows the postulation of axioms that capture the features
expressed by Kleinberg’s axioms without producing a contradiction. Evaluation of
clustering methods is thus important, due to the difficulty of developing a unified
clustering framework that is independent of any underlying algorithm, objective, or
model. Approaches to formalizing such qualitative objective criteria are mainly dis-
tinguished between two categories: Intrinsic and Extrinsic metrics. Intrinsic methods
rely on inherent properties of the clustering results, while Extrinsic methods use ex-
ternal ground truths to infer the quality and effectiveness of clustering results. Such
ground truth can e.g. be the labels of the data instances. Overall, evaluating the
effectiveness of clustering methods and their outcomes remains a complex task.

In the earlier section (Chapter 2.10.2), the discussion centered on extrinsic cluster-
ing evaluation metrics and B3 (Amigó et al., 2009); where formal parameters for eval-
uation metrics were highlighted, emphasizing intuitive comprehension, limitations
clarification, formal provability, and differentiation among metric families based on
mathematical principles. To recap, four constraints on quality measurements were
introduced: homogeneity, completeness, rag bag, and size versus quantity:

• Homogeneity: Clusters should not contain items from different categories.

– E.g., a cluster of flowers should not mix with non-flowers.

62 Chapter 4. Introduction

• Completeness: Items from the same category should be clustered together.

– E.g., different types of flowers should be together in a single cluster, not
spread across different (non-flower) clusters.

• Rag Bag: Disorder should be less detrimental in a disordered cluster than in a
clean cluster.

– E.g., plants that do not fit well with other clusters can have a separate
"miscellaneous" cluster; rather than forcing them into other clusters.

• Cluster homogeneity: A small error in a large cluster should be preferred over a
high number of small errors in small clusters.

– E.g., misclassifying some flowers into a large tree cluster is less impactful
than han having some misclassifications of trees spread across numerous
smaller non-tree clusters.

Again, it was demonstrated that among commonly employed metrics, only the
extrinsic B3 metric meets all four constraints, while others do not. For a graphical
illustration of these constraints, refer to Amigó et al., 2009.

Clustering has two main components: the clustering method and the data repre-
sentation. Different clustering algorithms identify different patterns and subgroups
because they have different concepts of neighborhoods, assumptions about data dis-
tribution, strengths, and weaknesses, or use different distance or similarity metrics
and interpretations. When the data representation is fixed, different clustering al-
gorithms will produce different results, each with its own degree of success. For
example, K-means (Ahmed, Seraj, and Islam, 2020) is a well-known and commonly
used clustering algorithm noted for its simplicity and efficiency, particularly when
dealing with spherical, well-separated clusters. Hierarchical clustering (Murtagh
and Contreras, 2012) builds a hierarchy of clusters by merging smaller clusters into
bigger ones and may find clusters of any shape, generating either hard or soft clus-
ters. DBSCAN (Schubert et al., 2017) is a density-based clustering approach that
discovers clusters of various forms and is resistant to outliers. Gaussian Mixture
Models (Reynolds et al., 2009) are probabilistic models that assume the data is cre-
ated by various Gaussian distributions, resulting in soft clusters that work well for
data with complex cluster forms. Spectral Clustering (Von Luxburg, 2007) finds clus-
ters by using the eigenvectors of a similarity matrix and is suited for data with a
non-linear structure that is difficult to separate using linear approaches. Selecting
the most appropriate clustering algorithm can then be done through appropriate
evaluation, and therefore the correctness of the evaluation method is key here. On
the other hand, a different perspective is to have a fixed clustering algorithm, but
have the data representation be trainable, e.g. using different and trainable deep
embedding of NNs for "deep clustering" (Zhou et al., 2022a; Caron et al., 2018; Bo
et al., 2020), where a model learns how to best and optimally project and generate
an effective data representation; i.e. given a fixed clustering algorithm.

For inexact labels in a weakly supervised context, the clustering evaluation of
the model should account for this uncertainty. Another concern of employing a
sub-optimal cluster metric is over-optimizing that (sub-optimal) metric e.g. without
considering the true structure of the data; in the case of coarse labels, this means
without considering sub-labels. A poor metric choice can also bias the evaluation
towards a given number of clusters rather than representing the true structure. This
is especially important for imbalanced datasets.

4.7. Explainable and Interpretable AI 63

B3 can be seen as a "precision and recall metric" for clusters. Following Amigó et
al., 2009, two items that share a category are correctly related if and only if they occur
in the same cluster. An item’s B3 precision is the fraction of objects in its cluster that
have the item’s category. The average precision of all items in the distribution is used
to calculate the overall B3 precision score. The B3 recall is analogous. Utilizing the
B3 algorithm enables a numerical evaluation of the clustering assignments’ quality.
However, it should be noted that the B3 algorithm does not factor in imbalanced
datasets; i.e. datasets where the distribution of classes or categories within the data
is skewed and unequal.

B3, however, makes a very strong assumption: It presupposes that the ground
truth labels are exact and that there are no (relevant) sub-clusters inside groups of
equally labeled instances. As an example, suppose a data collection has n ·m labels,
but these labels are not visible or known in advance. Instead, the visible labels are
m groups containing n items in pairs, but one is still interested in discovering (i.e.
identifying) the unknown number of sub-clusters n. Say, two clustering algorithms
are given, CA (which finds the m super-sets) and CB (which finds the n ·m subsets).
Although method CB is obviously the preferred one, the B3 algorithm would favor
algorithm CA since CB has a lower recall per cluster ("completeness"). As a result,
one can argue and consider that the attribute "completeness" is problematic in such
circumstances, meaning that an extrinsic assessment using the coarse labels as the
reference can be problematic here. That is, the constraint that "different clusters
should contain items from different categories" (Amigó et al., 2009) can fail to select
the right model here when using the conventional B3 metric. Now, suppose there
were no more subgroups and the true labels were the aforementioned m labels. In
such a case, one would obviously want a measure that favors model CA over model
CB. A fundamental challenge is, therefore, to construct a metric that provides a fair
assessment of the clustering quality in both balanced and imbalanced data sets while
adjusting for ground-truth label uncertainty. This is especially challenging when the
true structure and nature (ground truth) of the data are unknown.

Yet, it is still possible to take advantage of a simple overall observation. Because
of not having any 100% reliable way of comparing to ground truth, the process of
breaking a set of clusters into multiple newer ones is fraught with "uncertainty."
Assuming m (possibly sub-) clusters and a deterministic aggregation function that
unifies clusters into super-sets, by then grouping clusters together into (less) super-
clusters, one can now move from "uncertainty" closer to "certainty" since it allows
one to conclude: If the newly grouped clusters were of high quality, then super-
clusters are also "more likely" to be of high quality. By contraposition, if the super-
clusters are "less likely" to have good quality, i.e. are of lower quality, then so are the
sub-clusters (Figure 4.7).

Based on this motivation, we can propose a new method to evaluate the cluster-
ing quality to address the term "completeness" in the conventional B3 metric.

64 Chapter 4. Introduction

FIGURE 4.7: Quality implications based on deterministic and non-
deterministic cluster aggregations and separations.

Take-Away

Evaluating clustering methods can be difficult due to the lack of universally
accepted criteria for measuring cluster quality across various scenarios. Each
clustering algorithm has its own strengths and weaknesses, leading to differ-
ent evaluation metrics based on the characteristics of the data and analysis
objectives. This requires exploring both intrinsic and extrinsic metrics and
addressing constraints to improve evaluation methods. To meet several qual-
ity constraints and reveal how algorithm characteristics affect success rates,
the B-CUBED (B3) metric has been a focus. However, there is criticism about
B3 for its limitations in assessing imbalanced datasets and handling uncer-
tainty in clustering subgroups. However, B3 is a supervised metric, but for
unsupervised problems, different metrics are employed.

Keywords

Clustering • Evaluation Metrics • B-CUBED • Algorithm Characteristics

4.8 Automated Textual Description Generation of Clusters

Clustering, as already motivated, is a fundamental concept in Data Mining and ML;
and particularly in DL. Its primary goal is to group objects that share similarities
(Berkhin, 2006; Caron et al., 2018). A multitude of different clustering algorithms
are available, including methods based on cluster centroids, data density, data dis-
tribution, and data hierarchies. The key challenge centers around accurately defin-
ing the notion of "similarity" and also in identifying suitable representation vectors

4.8. Automated Textual Description Generation of Clusters 65

for the data. Advancements in NN-based approaches have demonstrated remark-
able effectiveness in both data representation learning and dimensionality reduc-
tion, particularly in capturing visual similarities within images (Bengio, Courville,
and Vincent, 2013; Hinton and Salakhutdinov, 2006). Similar data representations,
or representations/embeddings close in the manifold space, typically indicate some
sort of (semantic) similarity, commonality, etc.

In the field of image captioning, DNNs are often used to generate a textual de-
scription of an image utilizing VisionEncoderDecoder transformer models (ViED)
(Li et al., 2021b). These models combine pre-trained vision encoders, such as ViT
(Dosovitskiy et al., 2020) and Swin (Liu et al., 2021), with pre-trained language
model decoders like GPT2 (Radford et al., 2019), Llama2 (Touvron et al., 2023), or
other LLMs to guide the generation of an auto-regressive language model. Training
is typically (very) resource-intensive and requires powerful hardware and also sub-
stantial amounts of labeled image data. Consequently, pre-trained models are often
used and often (partly) frozen and/or fine-tuned for specific tasks.

Recall, that manifold embeddings are used to represent high-dimensional data
in a more compact, lower-dimensional space, i.e. a subspace contained within the
feature space (Li et al., 2022). This enables the grouping of data points according to
their proximity on the identified manifolds, rather than their positions in the input
feature space. DNNs are particularly well-suited for generating semantic manifolds
in general; and ViEDs in the context of image captioning.

Text decoding strategies are used to generate text from a language model by
identifying the most likely word sequence among potential outputs, and selecting
the next tokens based on the context of preceding words. Several common decoding
strategies exist (Wolf et al., 2020b), like Greedy-search, which selects the word with
the highest probability at each time step, or Multinomial sampling, a method that
randomly selects the next token according to the model’s probability distribution.
Beam-search maintains multiple potential sequences at each step, while Beam-search
multinomial sampling combines beam-search with multinomial sampling. Diverse
beam search focuses on generating a diverse set of beam sequences by optimizing
for diversity-augmented objectives. Sampling strategies can also be used to stochas-
tically generate multiple sequences (k-sequence sampling).

Population-based sampling involves selecting a representative sample from a
larger population, where sample candidates are chosen from a diverse pool of po-
tential solutions to a problem. The function used to assess the quality of each sample
is known as the score-function (Bäck and Schwefel, 1993): a specific type of objective
function that quantifies how effectively a given candidate solution achieves a desired
or optimal goal. This is valuable when a model is trained to optimize a differentiable
objective loss, which acts as a proxy for or approximates another non-differentiable
metric loss of interest. In such cases, multiple candidate solutions may be generated,
and the one with the highest metric loss is selected.

In this work, we demonstrate that, already by employing simple statistical and
geometric methods to combine latent states of instances within a cluster, we can ob-
tain a generative model for generating concise cluster descriptions. In particular,
when used with a population-based decoding sampling method ranked by a score
function, the model can produce even more representative and concise cluster cap-
tions that closely match the textual content of all individual image captions within
the cluster on average.

66 Chapter 4. Introduction

Take-Away

Clustering is the process of grouping similar objects based on their similari-
ties. Deep Neural Networks are used in image captioning through VisionEn-
coderDecoder (ViED) transformer models. These networks are effective in
learning data representations and reducing dimensions, particularly in cap-
turing visual similarities in images. A generative model for generating concise
cluster descriptions can be developed using simple statistical and geometric
methods operating directly on the respective ViED manifold space.

Keywords

Clustering • Algorithms • DNNs • Image Captioning • Transformer Models

4.9 Non-linear Normalization of Heterogeneous Feature Dis-
tributions with Adaptive Tanh-Estimators

Please note: This contribution has been accepted for publication, after peer review in
Guimerà Cuevas and Schmid, 2024b. The Version of Record is available online. And
so, our following work and findings on Tanh-Estimators (detailed in this thesis) were
presented by us in conference proceedings (Guimerà Cuevas and Schmid, 2024b).

Knowledge representation (KR) is the process of arranging and organizing infor-
mation such that a computer can interpret and manipulate it. The goal of KR is to
express information, concepts, and associations in a precise manner that a computer
can understand. There are several ways to represent data, with feature vectors be-
ing one of the most typical for many applications and data types. A feature vector
is a numerical representation of a data instance in which each feature relates to a
different attribute or characteristic of the instance. Feature scaling (FS), also known
as data normalization, is a data pre-processing technique that is used to adjust the
range and scope of variables (i.e. features). Effective pre-processing of numeric data-
and knowledge representations is crucial for good model performance, as the ranges
of feature values can vary widely, yet comparable domains are usually essential for
optimal training. When it comes to training time, convergence, and performance,
adequate FS might be the difference between generating a strong or weak model,
or even the difference between complete failure and success. Furthermore, espe-
cially for neural networks, gradient descent converges much quicker with FS than
without it. Different types of data (e.g. tabular data, images, sound waves, time
series, text, etc.) may support different normalization techniques. Non-linear trend
removal, for example, does not apply to textual data. Methods on tabular data,
however, are commonly widely applicable since they typically operate on numeri-
cal values, which are prevalent in most data domains. Re-scaling through min-max
normalization, mean/median normalization, standardization (alias Z-score normal-
ization), and scaling to unit length are some of the most popular methods for tabular
features. Other non-linear transformations include translations to uniform distri-
butions (e.g. with quantile transformations) or Gaussian distributions (e.g. with
power transformations), and polynomial feature generation. There are numerous
more methods, such as data discretization, -clipping, or log-scaling. FS is a sub-field
of data pre-processing and is considered its own building block, separated from re-
lated concepts such as data cleaning, - transformation, -integration, noise detection,

4.9. Non-linear Normalization of Heterogeneous Feature Distributions with
Adaptive Tanh-Estimators

67

or missing value-imputation (García et al., 2016). Data pre-processing and feature
normalization are well explored, and there are several extensive reviews available
in the literature (García, Luengo, and Herrera, 2015; Subasi, 2020; Jayalakshmi and
Santhakumaran, 2011; Li et al., 2021a).

The domain range and distribution of feature values are, hence, crucial in ma-
chine learning. Outliers are data points that deviate considerably from the rest of the
observations in a particular data collection (Miller, 1993; Chiang, Pell, and Seasholtz,
2003; Rousseeuw and Hubert, 2011), e.g. extreme statistical points at the tails of
feature distributions or points that come from a completely different distribution
(out-of-distribution). Outliers can have a negative impact and mislead the training
process, resulting in longer training times, poorer generalization, inferior perfor-
mance, or the violation of statistical assumptions. There are many different types of
outliers (Foorthuis, 2018). They are classified as univariate or multivariate, i.e. inde-
pendent or dependent on other features, and further divided into three categories:
point anomalies, conditional outliers, and collective outliers. Point anomalies (a.k.a.
global outliers or simple anomalies) are simply individual data points that stand out
and are e.g. exceptionally different from the rest. They exist independently and do
not rely on any specific condition or context to be considered unusual. E.g. a sin-
gle sunflower in a field of shorter flowers stands out due to its significantly greater
height. Conditional outliers (a.k.a. local outliers or conditional anomalies) stand out
within specific subsets or conditions of the data, but might otherwise not be out-
liers from a global perspective. E.g., within a group of the same plant species, one
plant may display slower growth than the rest when placed in a specific environ-
ment. Collective outliers (a.k.a. contextual outliers) involve a group of data points
that "together" collectively stand out from the rest of the dataset. In other words,
individually, these points might not be considered outliers, but together, they form a
subset that is (significantly) different. E.g., a sudden cluster of equally-colored flow-
ers in a garden full of many vibrant-colored (different) flowers stands out; however,
individually these flowers would not.

The Tanh-estimator (TE) normalization, first introduced by (Hampel et al., 2011),
aims to mitigate and suppress univariate outliers for point anomalies. This normal-
ization technique employs a tanh function in conjunction with a fixed spread factor
on feature values that have independently been pre-scaled feature-wise (Equation
7.4); squishing and bounding extreme values inside a desired range. Prior to the
actual TE normalization, the pre-scaling stage utilizes the Hampel function (Hampel,
1974; Shevlyakov, Morgenthaler, and Shurygin, 2008) for robust estimation that min-
imizes the influence of anomalies by lowering the importance of points towards the
distribution’s tails. A trade-off between robustness and optimality can be imposed
by changing the function’s hyper-parameters e.g. to produce stronger or weaker ef-
fects on the distribution tails. The tanh spread factor parameter, on the other hand,
influences the standard deviation of the pre-scaled feature distributions, stretching
or contracting them respectively. In Latha and Thangasamy, 2011, a modified tanh-
normalization was proposed, wherein the raw features’ mean and standard devia-
tion were used instead of the Hampel function.

However, by employing a (single) normalization spread value that ultimately
represents a constant, fixed manipulation parameter that is applied to all features,
TE essentially introduces a new hyper-parameter that needs manual adjustment,
experimentation, tweaking, etc. Thus, incorrect or unfortunate spread values may
squish or stretch the value distribution excessively hard/soft, which may be harmful
to training. As a result, the idea of having a fixed spread value for all features with

68 Chapter 4. Introduction

possibly even very different distributions is questionable. That is, given large fea-
ture input dimensions, manually tuning and estimating the spread value of features
may be very time-consuming, tedious, impracticable, or at a certain point simply
unfeasible, i.e. non-scalable.

In this thesis, we propose and introduce the heterogeneous Wasserstein tanh-
estimator (WTE), an adaptive form of tanh-normalization that automatically esti-
mates the ideal spread factors that minimize the Wasserstein Distance (WD) (Panare-
tos and Zemel, 2019) of different heterogeneous feature distributions versus a target
distribution (e.g. Gaussian). WTE builds upon and improves upon follow-up work
Latha and Thangasamy, 2011 on the tanh-normalization, which applies the tanh di-
rectly on the standardized features without applying the Hampel estimator for effi-
ciency reasons. Overall, WTE can clearly enhance the convergence speed compared
to relying on a single fixed default spread-value (e.g., 0.01), particularly in the initial
phases of training. Our method’s essential qualities are as follows:

• It minimizes the distribution disparity between normalized features and a tar-
get distribution to prevent poor or sub-optimal feature distributions.

• It requires no hyper-parameter tuning and finds the ideal spread value via
simple scalar minimization methods (e.g. Brent (Brent, 1971)).

• The pre-processing can (optionally) be incorporated into the model’s training
loss and optimized accordingly.

For instance, it’s often advantageous to aim for output distributions closely re-
sembling a Gaussian distribution across all features originating from diverse value
distributions. In this context, WTE efficiently identifies the optimal spread value
for each feature, aligning them with the Gaussian distribution as closely as feasible.
By minimizing discrepancies, this approach better ensures a more effective initial
training phase, mitigating the need for weight readjustments as a result of weak or
suboptimal FS. Therefore, the model is better positioned to quicker and easier learn
from the data.

Aiming for Gaussian-style distributions can be advantageous in various situ-
ations and is intuitive, but it might not necessarily be suitable for all datasets or
models. Hence, in this work, we employ the Gaussian distribution as an example
distribution while framing this work within the concept of a "target distribution."

Take-Away

Knowledge Representation organizes data for computer understanding.
When dealing with numerical data represented as feature vectors, it’s typi-
cally necessary to scale adequately them to improve model performance. Out-
liers, representing extreme data points, can harm the training process. The
Tanh-estimator normalization technique handles outliers, but assigning uni-
form spread values to heterogeneous and different feature distributions might
hinder the training progress. Instead, we can leverage the Wasserstein Dis-
tance to automatically determine the (different) optimal spread values. This
enhances training convergence by reducing differences between normalized
features and target distributions; all without the need for manual tweaking.

4.10. Transferring Knowledge Across Input Domains: Distilling Insights from
Machine Learning Models Trained on Different Datasets

69

Keywords

Feature Scaling • Preprocessing • Wasserstein Distance • Outliers • Tanh

4.10 Transferring Knowledge Across Input Domains: Distill-
ing Insights from Machine Learning Models Trained on
Different Datasets

Real-world data is often intricate and complex. Analyzing it by hand can be tiresome
and imprecise. This can lead to only a small fraction of easily understandable data
being looked at, i.e. to only some of the data being analyzed at a given time or even
at all. And so, this often leads to prioritizing general and abstract information while
overlooking important but less obvious (i.e. more specific) data. For example, man-
ual categorization may only be conducted on the more general and abstract intuitive
data, while the more specific data is left unanalyzed. Furthermore, the integration of
new sensors or hardware can potentially unveil previously inaccessible data, which
had not been accounted for in the initial analysis; but might be too complex for in-
tuitive human understanding. Old data may also become outdated or unobtainable
(i.e. not available or accessible anymore) e.g. due to changes in environments, up-
dated tools (like software modifications), changes in laws, restrictions, etc.

For example, a specific use case can be in predictive maintenance for industries
such as manufacturing. There may be different data sources that can be exploited to
train ML models. By combining insights from different data, a more accurate and
reliable model may be built.

Hence, by distilling and building insights from different data- and knowledge
sources, a better and more reliable model can be constructed; in particular by build-
ing upon previously extracted and learned knowledge. This aligns with the idea of
transferring knowledge among input/output domains. It involves harnessing in-
sights and information obtained from diverse datasets or sources, e.g. to enhance
the effectiveness and resilience of other ML models.

Take-Away

Manually analyzing complex real-world data is slow and can overlook nu-
anced details, e.g. resulting in an incomplete analysis. Employing Machine
Learning on different data sources may be either necessary and crucial in cases
of limited access to old data, or of explicit interest e.g. to allow for more effec-
tive predictive models despite being more challenging; leveraging different
dataset insights and prior knowledge can enhance model accuracy, reliability,
and training efficiency by capitalizing and building upon already established
knowledge and facts.

Keywords

Knowledge Transfer • Complex Data • Distilling Insights • Challenges

70 Chapter 4. Introduction

4.11 Model Calibration for Out-of-Distribution Detection

Please note: Our following work and findings on Calibration Misalignment as
a Post-hoc Approach for Out-of-Distribution Detection in Deep Neural Networks
(presented in this thesis) have been accepted for publication in conference proceed-
ings (Guimerà Cuevas and Schmid, 2024a).

Calibrating the output of a statistical or ML model is a common step for fine-
tuning its predictions to more accurately reflect the true probabilities of the events
it predicts on average (Vaicenavicius et al., 2019; Bella et al., 2010). The goal is to
achieve a "well-calibrated" model that reflects the observed distributions in the data,
ensuring reliable and trustworthy predictions by mitigating both overconfidence
and underconfidence. For example, in a binary classification model predicting an
outcome based on input features, rounding output probabilities to 0 or 1 can result
in inappropriate accounting for prediction uncertainty. Overly confident scores may
be assigned to marginally probable instances and excessively cautious scores to in-
stances with probabilities close to but below the decision threshold. Overall, the
classification accuracy of a classifier remains unaffected and is not influenced by the
calibration process as long as the ranking of the class probabilities is maintained.

It has been observed that modern NN models often exhibit poor calibration, with
increasing classification accuracy corresponding to worsening probability miscali-
bration error (Guo et al., 2017). Thus, model calibration becomes a valuable method
to ensure well-calibrated probabilities for predictive ML models and -systems. How-
ever, it is important to recognize that the calibration process can be laborious and
may not always be necessary depending on the specific application.

Model calibration in predictive models can fail in different scenarios, but there
are diverse methods available to assess and monitor the calibration quality (Kuhn,
Johnson, et al., 2013). If a model is overfitting the training data, it may struggle to
generalize effectively to new data, resulting in poor calibration even if it appears
well-calibrated on the training set. To mitigate this, data is typically divided into
training, development, and test sets. The model is trained on the training set, cali-
brated on the development set, and finally evaluated on the test set. Poor calibration
may also arise if the test data originates from a different distribution than the train-
ing data, causing the model’s predictions to deviate. In both cases, the model may
perform well on the training data but fail to generalize accurately to unseen data.
Furthermore, inadequate calibration can occur if the sample size used for calibration
is too small. The accuracy of estimated probabilities plays a critical role in model
calibration, and with limited data, it becomes challenging to obtain accurate proba-
bility estimates, leading to sub-optimal or weak calibration. Hence, while calibrat-
ing output probabilities may improve the trustworthiness of predictions, it does not
guarantee optimal model performance on new, unseen data.

Additionally, it is essential to note that statistical calibration provides an average
measure of confidence and does not determine the confidence level for a particular
instance and its corresponding specific model prediction. This distinction is signif-
icant because there may be a need to ascertain the confidence level for individual
instances, rather than relying solely on the average confidence across a dataset of
interest. Taking into account "instance-specific confidence" may be of very relevant
importance as it allows us to assess the performance of a model on individual ex-
amples. That is, unlike statistical calibration, which provides an average measure of
confidence, instance-specific confidence offers a more precise evaluation of the confi-
dence level for a particular instance. By comparing model confidence with statistical
confidence, we can uncover patterns or clusters within the data. For instance, if the

4.11. Model Calibration for Out-of-Distribution Detection 71

model consistently underestimates or overestimates the expected statistical confi-
dence for certain groups or examples, it may suggest an irregularity in the model
(e.g. a bias towards those groups) or indicate potential anomalies and outliers.

Traditional evaluation measures such as accuracy, precision, and recall provide
valuable insights into a model’s predictive capabilities by assessing its accuracy in
classifying instances into appropriate categories. However, as motivated earlier,
achieving good overall performance is often insufficient. It is crucial to also iden-
tify cases where the model is prone to making inaccurate predictions. In particular,
classification can fail when dealing with outlier instances that originate from a differ-
ent distribution compared to the training data, known as out-of-distribution (OOD)
samples. Although model calibration adjusts the output probabilities to align with
the classification accuracy, calibration also assumes that new samples originate from
the same distribution as the calibration set (the development set); which is assumed
to but could be different and diverging from the training and test set. It is important
to note that both accuracy and model calibration, despite being related, represent
distinct concepts. It is possible to achieve high (test) accuracy but low calibration,
or vice versa. E.g., consider a classifier that randomly assigns predictions relative
to the class frequencies in the data. Although this classifier may be well-calibrated,
its performance on new and previously unseen data will be poor and randomly bi-
ased, resulting in lower accuracy. To effectively identify OOD samples, it is generally
necessary to have a model that performs sufficiently well and accurately, otherwise,
it can be challenging to detect OOD samples if the model has not even properly
learned the true training distribution. In simpler terms, if a model has not learned
the underlying real patterns of the data it was trained on, it will be hard to correctly
recognize instances that deviate from those patterns and that do not.

State-of-the-art ML models perform well on train and test data but assume that
real-world data is from the same distribution, i.e. that the data used for training
and testing represent the complete universe of possible examples. This assump-
tion, known as the closed-world assumption (Prince, 2022; Yang et al., 2022; Fei and
Liu, 2016; Parmar et al., 2023), poses a challenge and is not met when encountering
OOD data, which are therefore atypical samples. One fundamental assumption in
OOD detection is the unavailability of large volumes of such atypical samples. If
such samples were accessible, then supervised learning could be simply employed
to classify them as typical or atypical instead. Thus, per definition, direct train-
ing on OOD examples is not feasible. Otherwise, training on such OOD samples
would invalidate their "out-of-distribution" status because incorporating them into
the training set would render them "in-distribution", thereby contradicting the initial
and fundamental definition of being "out-of-distribution".

There are five primary scenarios and reasons for OOD examples (Prince, 2022):

1. Unexpected inputs: Stemming from measurement inaccuracies, missing data,
erroneously included information, or data that does not belong to the dataset,
these inputs deviate from the norm. The data here itself is not typical.

2. Defects: Most of the data sample is typical, but a localized portion exhibits an
inconsistency or anomaly. The data sample as a whole is typical and belongs
in the dataset, but there is a specific part of it that has a problem or defect.

3. Distribution shift: Occurs when the observed data’s distribution changes over
time. It happens when (at some point) the model encounters data in real-world
use that significantly differs from that it was trained on.

72 Chapter 4. Introduction

4. Statistical outliers: Atypical examples might arise if the initial distribution dis-
plays heavy tails. Though not strictly OOD examples, effectively managing
these instances can pose a challenge for an ML model.

5. Malicious activity: Deliberate manipulation of the ML system’s output by an
adversary through the introduction of unusual and targeted inputs; such as
adversarial attacks.

The concept of OOD detection encompasses several closely related tasks, such as
outlier detection, anomaly detection, novelty detection, multi-class OOD detection,
and open-set recognition. However, these terms are sometimes used interchange-
ably or inconsistently in the literature, so caution is advised when referring to them.
A comprehensive overview and big-picture perspective are provided by Prince, 2022
(for a visual overview of the hierarchical terminology see Prince, 2022). Below is a
concise summary of the key distinctions:

1. Outlier detection involves identifying and eliminating infrequent or improb-
able instances in an unlabeled dataset, often done before actually applying the
data to downstream tasks or training the model.

2. Anomaly detection involves determining if a new example belongs to the
same distribution as an unlabelled dataset of in-distribution examples.

3. Novelty detection involves determining a score for a new example indicating
its novelty in regards to an unlabelled initial dataset. It is typically assumed
that a novel instance comes from a new region or mode of a changing proba-
bility distribution or something not seen during training.

4. Open-set recognition is when a labeled dataset with known classes is pro-
vided, and the objective is to determine whether a new example belongs to
one of these known classes or to an unseen class.

5. Multi-class OOD detection utilizes a labeled training set to determine whether
a new, unseen example belongs to one of the known classes or if it should be
classified as an outlier. It is similar to open-set recognition but focuses on iden-
tifying non-typical data that may be corrupted or different in some way and
do not (primarily) belong to previously unseen classes.

Yet, often only the following two main scenarios are distinguished: outlier detec-
tion and novelty detection (Pimentel et al., 2014). In outlier detection, the training
data is contaminated by outliers, and the goal is to model the regions where the ma-
jority of the data is concentrated while ignoring the anomalous observations. On the
other hand, novelty detection assumes clean training data and aims to determine if
a new observation belongs to the same distribution as the training data or not. In
this case, an outlier is also referred to as a novelty.

Outlier detection methods can be classified into different categories based on var-
ious criteria, such as clustering, classification, neighbor-based, statistical, information-
theoretic, and spectral methods (Belhaouari et al., 2021). However, a more gen-
eral distinction can be made between two types of approaches: embedding-based
and prediction-based. Embedding-based approaches transform data into a lower-
dimensional space and use the transformed data to identify anomalies. Prediction-
based approaches train a model on a dataset and use the model to predict the output
of new data points. If the prediction differs significantly from the actual output, the

4.11. Model Calibration for Out-of-Distribution Detection 73

data point is considered an outlier. The choice of approach for anomaly detection
depends on various assumptions, factors, and trade-offs.

These factors include (Belhaouari et al., 2021): (1) Labeled data availability and
quality: In prediction-based approaches, labeled data is typically required for train-
ing models through supervised or semi-supervised learning. Conversely, embedding-
based approaches can utilize unlabeled data through unsupervised or self-supervised
learning. Embedding-based approaches are better suited when labeled data is scarce,
unreliable, or expensive to obtain. (2) Data complexity and dimensionality: By
projecting data into a latent space, embedding-based approaches reduce data di-
mensionality and complexity. This transformation enables easier differentiation be-
tween normal and anomalous data. (3) Interpretability and explainability of results:
Prediction-based approaches often yield more interpretable and explainable results
by establishing connections between predictions and input features. On the other
hand, embedding-based approaches generate more abstract and obscure represen-
tations that may be more difficult to comprehend or justify. Therefore, prediction-
based approaches may e.g. be interesting and preferred for applications that priori-
tize interpretability and explainability. (4) Data type and format: Embedding-based
approaches can detect outliers in any unlabeled dataset that possesses a meaning-
ful numerical representation. Prediction-based approaches, however, are primarily
suitable for labeled prediction datasets (e.g. classification or regression).

Outlier detection is a fundamental problem in ML that has many applications
in domains such as fraud detection, anomaly detection, data cleaning, and quality
control (Singh and Upadhyaya, 2012; Smiti, 2020; Bansal, Gaur, and Singh, 2016).
Again, its main objective is to identify objects that significantly deviate from the
majority of objects within a given dataset.

In this thesis work, we present a new method for identifying OOD instances us-
ing a prediction-based approach. We build our approach on the premise that while
statistical confidence offers a general evaluation of a model’s prediction confidence,
it does not factor in the variation in the model’s calibration across different instances
and neglects the degree to which the model’s predicted probabilities accurately align
with its calibration for a given instance. Our approach directs its attention specifi-
cally to this misalignment. Our method involves several steps: First, the probability
estimates of a multi-class classification are adjusted by training separate calibration
models for each class using a weighted one-vs-rest approach. The inclusion of class
weighting is important here because it addresses the inherent imbalance between
positive and negative classes in one-vs-rest models. These calibration models are
used to transform the original probabilities into calibrated probabilities. We then
measure the difference in misalignment between the calibration of each class and
the sum of the complement calibrations. The idea is that atypical and abnormal in-
stances or outliers will exhibit a greater misalignment, as they are also OOD for the
calibration process. Our approach takes advantage of the differences in the binary
one-vs-rest model calibrations among all classes. We utilize the norm of the discrep-
ancy vector, which we term "surprisal," as a measure of confidence estimation in the
output predictions. This ultimately aids in the recognition of OOD instances and
improves novelty detection.

In a broader context, we distinguish between two fundamental concepts: "relia-
bility" and "certainty," which represent varying degrees and types of discrepancies.
"Reliability" pertains to the statistical accuracy confidence of a model, reflecting how
well the model’s average performance aligns with actual probabilities. Calibration,
for example, is therefore in general employed to enhance the average reliability of

74 Chapter 4. Introduction

predictive outputs, ensuring they better correspond to the true expected probabil-
ities. Conversely, "certainty" denotes the calibration confidence of the model for a
specific prediction or instance. It represents the level of confidence we hold regard-
ing the output for a given and specific input. For instance, a model might exhibit
high overall reliability, yet display significant uncertainty about a particular input.
Importantly, this certainty is distinct from the output probability of a class (i.e. the
softmax score). An overly confident output, for instance, could even raise suspicion,
especially in cases of OOD predictions.

By making this distinction, it becomes evident that we seek both a reliable overall
model and certain input-specific predictions. In fact, if the model lacks reliability,
certainty about individual predictions also diminishes. The concept of "surprisal," as
we will define it, measures the extent of disparities between reliability and certainty
across all class predictions, i.e. output predictions. This serves as an indicator of
"anomaly," which we will leverage for the detection and identification of outliers, i.e.
instances that deviate from the established patterns of the model; thereby assisting
in the detection of OOD instances.

We will demonstrate that depending on the magnitude of this error vector, di-
verse interpretations and measurements arise. For instance, a measure of "novelty"
can emerge and be integrated, indicating and considering the degree of unexpected-
ness; with lower values suggesting higher reliability, and higher values indicating
greater anomalies. This is tied to a level of "confidence" which is determined and
affected by the vector norm (i.e., magnitude), providing insights into the degree of
model certainty during prediction (for a specific object). Therefore, the most se-
vere anomalies are regarded as those with high surprise scores, which correspond to
those with high novelty and low confidence scores.

Take-Away

Calibrating Machine Learning models is crucial for accurate predictions, but
many neural network models lack calibration despite high accuracy. Detect-
ing out-of-distribution (OOD) samples is challenging. Various OOD detection
tasks exist, and this work proposes a new method using class-specific calibra-
tion models and a "surprisal" metric to improve novelty detection by iden-
tifying outlier instances. Surprisal identifies OOD anomalies by examining
differences in model certainty, assuming a valid reliable model is provided,
and leveraging concepts like "novelty" and "confidence." It identifies serious
anomalies through high novelty and low confidence scores.

Keywords

Calibration • Out-of-Distribution Detection • Novelty Detection • Anomalies

4.12 Manifold Data Representation and Clustering

The rise of Big Data has repeatedly emphasized the need and significance of clus-
tering and outlier detection, essential tasks in both data analysis and ML (Estivill-
Castro, 2002). Clustering uncovers patterns and relationships in datasets by group-
ing similar data points according to their similarity. Meanwhile, outlier detection
identifies data points that deviate significantly from the rest, facilitating the de-
tection of anomalies and trend identification. In the context of DNNs, clustering,

4.12. Manifold Data Representation and Clustering 75

and outlier detection are accomplished by employing techniques like centroid-based
clustering, hierarchical clustering, density-based clustering, numerous different sta-
tistical methods, distance-based methods, and density-based methods on the learned
representations of the DNN. However, assessing and comprehending the quality
and effectiveness of clustering and outlier detection is difficult because the defini-
tion of a "cluster" is often vague and simplistic. This challenge is e.g. also further
exacerbated by the uncertainty surrounding the number of actual clusters present.

Besides tedious human expert evaluation and indirect evaluation techniques that
assess the usefulness of the method for its intended purpose (Feldman, Sanger, et al.,
2007), the evaluation of clustering and outlier detection can be achieved, as already
mentioned in previous sections, through formal intrinsic and extrinsic metric assess-
ments. To recap briefly: Intrinsic evaluation employs a cluster quality score, whereas
extrinsic evaluation compares the output of clustering to ground truth labels. While
extrinsic evaluation is often preferred, it is not always feasible since ground truth
labels may not always be (easily or fully) available (Amigó et al., 2009). Intrinsic
evaluation methods include statistical analysis, such as setting the threshold for out-
lier detection based on empirical rules, e.g., three standard deviations below and
above the mean (Pukelsheim, 1994). Lastly, clustering involves dividing data into
groups such that items in the same cluster are more similar or related to in some
ways than those in other clusters (Bramer, 2007; Rokach and Maimon, 2005).

Latent manifolds are lower-dimensional subspaces of data embedded within
higher-dimensional spaces that are often used to analyze and identify the structure
underlying the data (Tenenbaum, De Silva, and Langford, 2000). Manifold cluster-
ing is a technique based on the assumption that data is distributed along a manifold
of much lower dimension than the input space (Souvenir and Pless, 2005). However,
manifold clustering is challenging because manifolds can have arbitrary dimensions,
curvature, and shape, and can be very close to one another (Chen, Lv, and Zhang,
2017). Overall, it aims to partition the data into clusters corresponding to different
manifolds present in (and learned from) the dataset.

The Taylor expansion (Thomas, 1992) is given by an infinite series of terms that
are expressed in relation to the derivatives of a function at a single point. Generally,
for most common functions, the function and the sum of its Taylor series are nearly
identical near that point. The Taylor approximation is, thus, a mathematical tech-
nique that utilizes polynomials to approximate functions. Taylor’s theorem asserts
that any smooth function can be closely approximated around a specified point us-
ing a polynomial termed its Taylor polynomial. Specifically, the k-th order Taylor
polynomial approximates a function, differentiable k times, around a given point by
employing a polynomial of degree k.

In this thesis, we employ neural Taylor approximations to tackle the problem of
manifold clustering, e.g. to use for outlier detection. We utilize Taylor’s theorem,
which states that a smooth function can be approximated by a polynomial near a
specific point, to approximate the manifold using polynomial functions. This en-
ables us to analyze and identify the data’s underlying structure by considering the
errors in the Taylor approximation. This is motivated by the expectation, that points
residing on the same manifold are likelier to exhibit a smaller manifold approxi-
mation error compared to points situated far apart and on different manifolds. An
illustration is given in Figures 4.8 & 4.9 below.

76 Chapter 4. Introduction

FIGURE 4.8: Second-order Taylor approximation error (TA-error)
from a source to other points in a simple 2D space. Points with larger
TA-errors, or that are distant from the source, are less likely to align

with the source. This can be used as a pairwise measure.

Take-Away

Clustering and outlier detection are key concepts in data analysis that are
closely connected. Evaluating their quality poses a challenge, but intrinsic
and extrinsic metric assessments can be employed. Manifold clustering is
also challenging, due to the arbitrary dimensions, shape, and curvature of la-
tent manifold structures. To address this problem, we present a neural Taylor
approximation-based approach for clustering. It involves approximating the
manifold using polynomial functions and analyzing the errors in the Taylor
approximation to reveal patterns in the underlying structure of the data.

Keywords

Manifold Clustering • Taylor Expansion • Neural Taylor Approximation

4.13 Representative Sampling in Data Streams

Data streams and time series are both concepts in the field of data analysis, but they
refer to different things. A data stream is a continuous flow of data that is generated
over time, and the data can be infinite. ML on data streams focuses on developing
algorithms that can operate on this continuously generated data in real-time. A time
series, on the other hand, is a (also a finite or infinite) sequence of data points that are
collected at different time intervals, but each data point further has a corresponding
timestamp or order index. So, while every time series can be seen as a data stream
due to the sequential arrival of data points over time, it’s important to note that not
all data streams are time series. A data stream, however, transitions into a time series
when its data points are organized and indexed based on a specific time order. Also,
another slight distinction lies in how they are managed: data streams are commonly
handled in real-time. Thus, all incoming data is typically handled and considered
immediately. On the other hand, time series data tends to be stored and examined
retrospectively, allowing for the analysis of trends, patterns, anomalies, etc. over
specific periods or intervals after (part of) the data has been collected.

4.13. Representative Sampling in Data Streams 77

FIGURE 4.9: A manifold clustering illustration, where nearby points
on a shared (smooth) manifold yield pairwise good (aligned) Taylor
approximations. Proximity and locally good approximations indicate
clusters. Proximity in Euclidean space differs from proximity in the
manifold space. Same-colored points share the same local manifold.

Analyzing data streams (and hence time series) is an important topic with wide-
ranging applications in many areas. Unsurprisingly, the success of ML has therefore
also generated increased interest in its application to data streams. However, data
streams have unique characteristics, posing novel and non-trivial challenges for ML.
First, data streams are very large, potentially infinite, and continuously evolving;
and new data points are generated in real-time, unlike in traditional ML datasets
where the data is typically static. This makes many methods such as clustering, out-
lier detection, etc. notably harder since patterns in the data can now also evolve and,
hence, change (e.g. two unconnected clusters can suddenly be connected; densities
in the clusters may change, etc.). Here, the phenomenon of concept drift is preva-
lent. Concept drift refers to the situation where the statistical properties of the data
change over time. This gradual or sudden transformation renders previously trained
ML models progressively obsolete and ineffective. Continuous monitoring, adapta-
tion, and retraining of the ML models may, hence, be necessary to accommodate
shifting data distributions. This is important because such changes can render the

78 Chapter 4. Introduction

previously identified patterns, rules, associations, and assumptions of the learned
models invalid; consequently undermining their generalizability.

ML for data streams presents challenges. Streams may be gathered from diverse
sources and, thus, arrive at different frequencies; and their arrival rates may unpre-
dictably change or fluctuate. Adapting ML to account for this potential variability
is important. Also, unlike traditional datasets with fixed and static data points and
features, data streams typically (as already mentioned) possess an unknown and
potentially infinite length. Moreover, since they originate from various sources, the
data gathered may show differences in data quality, feature distribution, and feature
correlation. Such disparities in data result in additional difficulties in applying ML
models. In particular, different sources may experience different types and amounts
of noise; in which case addressing noise reduction emerges as a crucial concept.

Memory constraints represent primary concerns for (infinite) data streams. Since
data streams are continuous and potentially unbound in length (or often extremely
large), it is not possible to store all the data points in memory for training the ML
models; especially when many of such data streams exist simultaneously (e.g. trajec-
tory streams for different entities). Therefore, the ML algorithms must be designed
to work with memory constraints, while still maintaining high accuracy; which can
often result in a trade-off. Furthermore, data streams often contain irrelevant or
contaminated data records. Standard methods of data cleaning and preprocessing
may not work well because the data keeps coming in continuously. Hence, ML algo-
rithms must be robust and able to filter out irrelevant data points in real-time. Lastly,
the concept of "order" is crucial; i.e. the order in which data arrives can significantly
influence the meaning and performance of the ML models. ML algorithms must
take into account the temporal ordering of the data points and adapt to changes
in the underlying distribution over time. This requires specialized algorithms such
as online learning and online clustering. These characteristics make ML on data
streams a challenging task that requires the development of specialized algorithms
and methods capable of handling such continuous streams of data efficiently.

In this thesis, we propose an online sampling method based on Reservoir Sam-
pling for maintaining a representative data stream sample that does not rely on prior
knowledge of the data stream’s length and can handle infinite streams. Our method
extends to maintaining a representative sample across different quantiles of the data
distribution. Overall, it ensures that each new incoming element in the stream has
an equal uniform chance at any time of being sampled despite having an initially un-
known or infinite total length; and holds interesting mathematical properties. These
properties establish the criteria for defining a "representative sample".

Take-Away

Challenges in data streams include variable input length, concept drift, vary-
ing data arrival rates, and memory limitations. Specialized algorithms are
needed to address these issues. The Reservoir Sampling family stands out by
effectively handling infinite streams without prior length knowledge, ensur-
ing certain mathematical guarantees.

Keywords

Data Streams • Time Series • Real-time Data Analysis • Reservoir Sampling

79

Chapter 5

Preceding Project Endeavors

Disclaimer: Exact details on the preceding project are governed by a non-disclosure
agreement imposed by the BMW Group. Consequently, this section has been written
in compliance with the terms of this agreement.

Before this dissertation, an initial effort was made to employ ML to address in-
terests in identifying error patterns within the context of a preceding Master thesis
project (agreement, n.d.). However, due to the brevity of the said thesis and lim-
itations in the methods used, satisfactory and reliable results were not achieved.
Nonetheless, the potential of utilizing ML in this context was clearly demonstrated
and subsequently paved the way for this doctoral thesis.

Due to the imposed non-disclosure agreement, the subsequent sections of this
chapter will provide only a theoretical and abstract overview of the approach that
inspired and led to this thesis, along with a discussion of key shortcomings in previ-
ous attempts and approaches. Some of the underlying reasons for these weaknesses
will also be explored, and some suboptimal or unsuccessful choices related to model
architecture and encoding representations will be explained. Implementation details
and past results are, thus, not included in compliance with this agreement. Please
note that this section should not be interpreted as a critique of the quality of the
previous work, but rather its effectiveness. The ultimate goal is to highlight some
key limitations of previous methods to better motivate and understand the reasons
and necessity of the novel techniques that will be presented in this thesis. In fact,
to better understand the context of this doctoral thesis, it is important and key to be
aware of "why" previous methods fell short of expectations and how this knowledge
shapes our future approach.

5.1 Overview

Figure 5.1 shows the overall structure of an ML process pipeline. The pipeline sys-
tem is divided into two parallel tracks where one track represents explanatory- and
the other for predictive modeling. The explanatory track is meant for human inter-
pretability, whereas the predictive track focuses on predicting and determining the
defect patterns, which are then passed back to the explanatory track to serve as class
labels for rule learning. Due to the inherent trade-off between accuracy and inter-
pretability, a straightforward rule-based system might sacrifice generalizability and
effectiveness, whereas a more intricate system, although more powerful, might lack
transparency. This trade-off is an inevitable aspect to consider.

Briefly summarized, the objective was to leverage AI techniques to derive inter-
pretable rules and conduct an automated search for generalizable patterns within
data. This particularly involved generating easy-to-understand decision rules rel-
ative to a model’s output predictions; i.e. the identified patterns. Additionally, a

80 Chapter 5. Preceding Project Endeavors

FIGURE 5.1: Overview of the pipeline proposed in (agreement, n.d.).

central objective was to understand and interpret data classifications even when
ground-truth labels were absent or imperfect. This was approached using different
ML models and methods; aimed to capture intricate patterns automatically, robustly,
and reliably. The goal was also to mitigate the negative impact of (potentially) low-
quality data labels and handle an unreliable set of observable features. Data was
given in multiple formats, such as text, complex structured sensor data, etc. This
alone already posed a serious challenge: handling complex, unconventional multi-
modal and heterogeneous data.

5.2 Data Encoding

Data cannot simply be "fed" into an ML model; it has to first be encoded. The type
of encoding is dependent upon the underlying structure and format of the data. In
our case, the input data does not come in a conventional tabular form that is easily
vectorizable (due to the multiple 1:n relations within the database); see Chapter 4.1
for details (and examples) on the hierarchical structure. In particular, complexities
arise due to multi-modality, such as data that contains e.g. numerical, categorical,
textual, and timestamp features. Data encoding and pre-processing play a crucial
role, with poor choices of coding strategies quickly resulting in insufficient model
effectiveness, poor performance, etc. In this section, we will now present how this
was (naively) approached before the start of this work.

5.2.1 Categorical Univalent Features

Given categorical features, the approach used previously was to encode these cat-
egories with one-hot-coded vectors, which are particularly easy to understand, im-
plement, and integrate, and are good for small underlying problems with a rather
limited and small number of categories. However, this simple and trivial coding
approach - and in line with the "no-free-lunch" theorem - has several disadvantages.

The dimensionality of the encoding vectors corresponds to the total number of
different categories and therefore scales linearly in each case. Suppose we have a
total of k different categories (e.g. vehicle parts, etc.) for a particular characteristic.
An obvious consideration would be the question of whether it is really necessary to

5.2. Data Encoding 81

have sparse vectors of size k that are zero everywhere except in one place. In general,
one-hot vector encodings encounter many challenges like high dimensionality and
so the susceptibility to the curse of dimensionality, the inability to capture or reflect
semantic relations, increased sparsity, suboptimal handling of ordinal variables, and
struggles with accommodating new categories (such as when a category emerges in
the test set that wasn’t in the training data).

Instead, encoding the information into a smaller, stable, compact, and contex-
tual embedding vector would be more practical. This approach not only diminishes
dimensionality and complexity (thereby reducing and improving training time) but
could also enhance model quality and effectiveness, e.g. in tasks like clustering.
This improvement can be particularly relevant if these dense vector representations
further capture distinct (semantic) meanings or logical relationships.

5.2.2 Tabular Data

The approach used in the master thesis was cardinality linearization (CardL), i.e. brute-
forcing all possible combinations with respective entities into one very large vector.
CardL adds path-dependent dummy columns to create a wide-format tabular data
encoding on an arbitrary recursive chain of entities (Figure 5.2).

FIGURE 5.2: Example of cardinality linearization as done previously.

However, such a procedure also has decisive disadvantages. First, the dimen-
sionality of the vectors explodes exponentially with the number of relational connec-
tions. For example, suppose we have k groups with ni categories of coding sizes and
features of size mi per group. Then the total number of combinations is ∏k−1

0=i nimi.
which can quickly scale up to unacceptable magnitudes.

Secondly, this approach results in unfilled feature values for features that only
appear in specific categories (see red box in Figure 5.2). The application of data
imputation to counteract this issue is not a sensible strategy as the respective parts
would be very sparse and distort the data considerably, which would consequently
have an effect on the ML models.

Additional concerns involve the scalability of computations, declining model
performance, reduced interpretability (caused by sparsity), and heightened main-
tenance complexity, rendering it less practical and inefficient for use.

82 Chapter 5. Preceding Project Endeavors

So overall, by aiming to consolidate relational connections and features into a
single expansive vector, CardL presents significant drawbacks that could be miti-
gated and avoided with an improved encoding structure.

5.2.3 Text Data

At first, text data was processed using tedious and time-intensive manual regex rules
and similar methods, which fell significantly short of being optimal, time-efficient,
and scalable1. Text data was then later encoded using elementary pre-trained mod-
els such as BERT in a somewhat simplistic manner. While groundbreaking upon
BERT’s release, this approach may now be considered a naive solution or baseline
approach and lacks the effectiveness required in many of today’s complex appli-
cations. Particularly, it lacks the incorporation of use-case-specific architectures and
derived loss functions; especially to account for use-case-specific challenges and lim-
itations. Fine-tuning and domain adaptation are often necessary.

Thus, although employing pre-trained BERT models for clustering and embed-
ding generation is very common and has proven to show great results, recent ad-
vancements in specialized models, architectures, (unsupervised) learning techniques,
etc. have emerged; including larger and stronger language models. For instance, ad-
vanced techniques like augmented SBERT have demonstrated improved results in
encoding and utilizing semantic meaning and context within sentences. This can
enhance performance across a range of NLP tasks, such as measuring sentence sim-
ilarity, conducting semantic searches, question answering, etc.

Also, given that the text data can be presented in various languages, the use
of multilingual language models here may be interesting. This differs from alter-
native approaches like disregarding non-English data or automatically translating
them into English. In fact, translating texts into English requires caution as it can
readily result in inaccuracies and potential loss or corruption of information, thereby
introducing additional uncertainty and complexity to the pipeline.

5.3 Dimensionality Reduction

To reduce dimensionality, the CardL-encoded tabular data underwent processing
via a Stacked Denoising Auto-Encoder (Vincent et al., 2010). The intention was to at-
tain a more concise and better representation while preserving meaningful semantic
information. Denoising Auto-Encoders (AE), variations of conventional AEs, aim to
mitigate the risk of learning mere identity functions by intentionally corrupting in-
put signals (e.g., using noise), forcing the model to identify and eliminate this noise
during learning.

However, several crucial considerations arise with this method, particularly con-
cerning the nature of the data and its encoding. The concept of denoising becomes
challenging when handling sparse input vectors dominated by zero entries (as in
one-hot encodings and CardL); e.g. because randomly deactivating vector compo-
nents (setting them to zero) has minimal impact, etc.

Another criticism is the unnecessarily large input dimensionality from the CardL
and the complexity introduced into the AE, which can result in having to use much
larger models to effectively handle this, which thus increases training time, lowers
prediction quality, and increases prediction error. In fact, if decoding is not done

1We have clearly outlined and opposed the utilization of rule-based (regex) systems for NLP use
cases in Chapter 2.2.6 and provided examples.

5.4. Error-Pattern Inference 83

accurately and crucial factors are misunderstood, it can lead to unintended conse-
quences. Also, an overly small embedding dimension or bottleneck layer in AEs can
limit the models’ ability to represent complex data; in particular, if the bottleneck is
too strong given such large input data (due to CardL). This can lead to information
loss, reduced expressiveness, lower performance, etc. It’s crucial to strike a balance
between dimensionality reduction for efficiency and maintaining enough informa-
tion for the model to learn effectively. In particular, when the embedding dimension
is insufficient, the model may struggle to learn and represent the complex relation-
ships and patterns present in the data; as a result, it may not generalize well; that
is, a small embedding dimension can frequently lead to underfitting rather than
overfitting. Similarly, an excessively large embedding dimension may contribute
to overfitting by allowing the model to memorize noise in training data. With the
CardL encoding, the primary concern lies in having embedding dimensions that are
too small, leading to an overly abrupt bottleneck; and so, a performance loss.

Ultimately, CardL + AE also does not directly consider the essential hierarchical
and relational aspects of the data, failing to fully and effectively utilize its valuable
structural and relational information.

5.4 Error-Pattern Inference

Identification of error patterns was conducted via both: ordinal clustering on the
input features and deep clustering on the deep representations, i.e. clustering on the
raw input encodings or on the embedding layer of the AE. Clustering on inputs
has the disadvantage that it does not actually "learn" patterns, but instead simply
groups similar input representations that are close together in the space. However,
semantically similar inputs may be dissimilar in the input space.

Deep clustering is much better in that it clusters on "learned" embedded repre-
sentations. Yet, when performing deep clustering on self-supervised AEs, correla-
tions, and patterns regarding labels are not considered or learned. Although one
might argue that these labels might be incomplete and incorrect and should thus not
be considered during learning, one could equally argue that leaving them out could
be even worse as we would disregard learning from implicit important information
that would otherwise be very hard to learn or extract from solely the model’s inputs.

Take-Away

A preceding Machine Learning project aimed to detect error patterns in com-
plex hierarchical data is discussed, which faced limitations due to methodol-
ogy constraints and a tight timeline. Challenges included issues with data
encoding, particularly the use of one-hot encoding for categorical features
and cardinality linearization on complex database structures, leading to high-
dimensional sparse vectors, and more. Methods like Stacked Denoising Auto-
Encoders for dimensionality reduction struggled with sparse input vectors
and did not fully leverage hierarchical structures. Naive error pattern infer-
ence methods such as ordinal clustering and deep clustering proved ineffec-
tive and overlooked label correlations, disregarding valuable information.

Keywords

Preceding Approaches • Flaws • Encoding • Dimensionality • Error Patterns

85

Chapter 6

Related Work

6.1 Neural Networks Based on Complex Numbers

Notice: Our work and findings on complex-valued NNs (presented in this thesis)
have been published in Guimerà Cuevas, Phan, and Schmid, 2023. It was inspired
and builds upon our previous research (Guimerà Cuevas and Phan, 2021), but dif-
fers significantly as it has been substantially improved and modified (both the com-
plex architecture and its mathematical framework); thus, constitutes novel contribu-
tions. In particular, this novel contribution has been accepted for publication, after
peer review. The Version of Record is available online at: https://link.springer.
com/chapter/10.1007/978-3-031-33374-3_28. Use of this Accepted Version is sub-
ject to the publisher’s Manuscript terms of use. Therefore, please refer to Guimerà
Cuevas, Phan, and Schmid, 2023 for specific details.

Complex-Valued Neural Networks (CVNNs) have been explored since the 1990s
(Bassey, Qian, and Li, 2021; Little, Gustafson, and Senn, 1990; Hirose, 1992; Clarke,
1990), but their development lagged behind real-valued (RV) networks due to the
complexity of complex-valued (CV) back-propagation (Liu et al., 2017). Modern
frameworks have mitigated these challenges, but designing CVNNs still presents
difficulties, particularly in mapping real numbers to complex ones and defining suit-
able activation functions. Effective learning requires the network to be holomorphic,
satisfying the Cauchy-Riemann (CR) equations (Ahlfors, 1953), yet most loss func-
tions of interest are RV or non-holomorphic.

CVNN architectures are often defined by their activation functions, with non-
holomorphic functions categorized as split activations: Type A (bounded real and
imaginary parts) or Type B (bounded magnitude) (Kuroe, Yoshid, and Mori, 2003).
While CVNNs typically handle CV variables and parameters (Hirose, 2003; Hi-
rose, 2012), some only require CV weights. Early CV back-propagation methods
emerged in the 1990s (Leung and Haykin, 1991; Benvenuto and Piazza, 1992), and
MVNs for complex numbers were introduced in 1992 (Aizenberg and Aizenberg,
1992), evolving to incorporate advanced back-propagation and periodic activation
functions (Aizenberg, Moraga, and Paliy, 2005; Aizenberg, Paliy, and Astola, 2006;
Aizenberg et al., 2016; Lupea, 2012; Aizenberg and Moraga, 2007; Aizenberg, 2011b).

A Type A activation function fC(z) = fR(x) + i fR(y), using the sigmoid func-
tion, was shown to improve generalization by forming orthogonal decision bound-
aries (Nitta, 2004). Additionally, RV inputs have been mapped to complex numbers
for use in CVNNs (Amin and Murase, 2009). CVNNs have also been adapted for
convolutional layers, including techniques for batch normalization and weight ini-
tialization (Trabelsi et al., 2017).

https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28
https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28

86 Chapter 6. Related Work

6.2 Heterogeneous Graph Learning

As we will demonstrate later, the task of applying DL to HDBs can be reduced to
a heterogeneous graph-learning (HGL) problem. This chapter aims to present a ba-
sic summary and overview of pertinent research on the topic of HGL. A full and
extensive summary of existing literature is given by Wang et al., 2022a.

GNNs are suitable when data is obtained from non-Euclidean domains and rep-
resented as graphs with complex relationships (Wu et al., 2020). However, tradi-
tional and commonly used GNNs are designed for homogeneous graphs, in which
all nodes have the same features, and all relations indicate the same type of rela-
tion. Hierarchical GNNs (Sobolevsky, 2021) aim to unify conventional neural net-
works with GNNs by connecting layers both externally and internally, but they still
struggle with processing nodes that have different database features, even with a
hierarchical graph-like model design. Heterogeneous graphs (HGs) are graphs with
structural interconnections (edges) that link nodes of multiple types; with each node
containing unstructured or structured information. That is, HGs contain data with
various entities and diverse relationships. The goal is to obtain a meaningful vector
representation for each node or graph, which allows for further downstream appli-
cations (Zhang et al., 2019). This is difficult not just because of the diversity of nodes
and edges, but also because of the heterogeneity of feature attributes and content.
In particular, applying standard GNN message-passing to HGs is not straightfor-
ward since the node and edge features of different types can (obviously) not be pro-
cessed by the same functions owing to variations in feature type and dimension. The
feature aggregation in conventional message-passing GNNs, however, is based on
an aggregation function that assumes all nodes have the same features and feature
types (in particular, equal feature dimensions). Therefore, two main challenges of
HGs are (Wang et al., 2022a): (1) The complex structure caused by different types of
nodes and edges; (2) The heterogeneity of feature attributes.

A selection of typical methods that use both graph structure and feature at-
tributes to learn low-dimensional node representations for HGs is given below (see
the comprehensive survey by Wang et al., 2022a):

• GCN (Schlichtkrull et al., 2018): Graph Convolutional Networks update node
representations by passing messages between neighboring nodes in a graph.
By stacking multiple GCN layers, the network learns increasingly complex
representations of the graph, from capturing simple local connectivity patterns
in the first layer to more global patterns that span longer distances in deeper
layers. The hierarchical representations learned by GCNs can improve per-
formance on downstream tasks that require capturing complex dependencies
between nodes in the graph. To handle heterogeneity, GCNs use feature vec-
tors associated with each node and edge that encode their type and attributes.
These vectors are transformed by learnable weight matrices before being prop-
agated through the message-passing scheme.

• HetGNN (Zhang et al., 2019): A Heterogeneous GNN model that uses sepa-
rate embedding layers for each feature type and using attention mechanisms to
dynamically weigh the importance of different feature types during message
passing.

• MAGNN (Fu et al., 2020): Employs a combination of Meta-path-based and
Attention-based aggregation with GNNs to capture the complex relationships
between nodes and edges of different types. It learns node embeddings by

6.2. Heterogeneous Graph Learning 87

computing embeddings for each node along the specified meta-paths and then
aggregating them using an attention-based weighted sum. Finally, the latent
vectors obtained from multiple meta-paths are fused to produce the final node
embeddings.

• HetSANN (Hong et al., 2020): A Heterogeneous Structural Attention Neural
Network for HGs that encodes the structural information of HGs without re-
lying on meta-paths. It achieves informative representations by employing an
HG structural attention mechanism, which directly attends to the neighboring
nodes and edges to generate node embeddings. This allows the model to cap-
ture the local and global structural information of the HGs and enables it to
learn embeddings for downstream tasks.

• HGT (Hu et al., 2020): A Heterogeneous Graph Transformer architecture that
draws inspiration from the Transformer model used in natural language pro-
cessing. HGT thus also employs attention mechanisms to learn node and edge
representations, which allows it to selectively focus on different parts of the
graph during both training and inference.

• GATNE (Cen et al., 2019): A Graph ATtention NEtwork that employs a skip-
gram model to optimize the embeddings obtained. It involves predicting the
context nodes of a target node based on its embedding.

• GTN (Yun et al., 2019): A Graph Transformer Network that uses multiple
Graph-Transformer layers to perform message passing and feature updating
operations on the nodes and edges of the graph, and attention mechanisms
to focus on important parts of the graph. By identifying meaningful links
between nodes that were not originally connected, GTNs can generate novel
graph structures.

• RSHN (Zhu et al., 2019): A Relation Structure-aware Heterogeneous GNN
that embeds both nodes and edges in HGs without prior knowledge such as
meta-paths. It integrates a Coarsened Line GNN to reveal edge-centric rela-
tion structural features that respect the latent associations of different types
of edges based on the coarsened line graph, followed by a Heterogeneous
GNN to leverage implicit messages from neighbor nodes and edges propa-
gating among nodes in heterogeneous graphs.

Overall, multiple approaches have been explored for encoding knowledge in re-
lational DBs. Further intents involve complete brute-force denormalizing of the DB
by materializing the full join of all tables or representing it as a knowledge graph
(KG) (Arora and Bedathur, 2020). Another approach is to use word embeddings
to enable semantic queries in relational databases in an unsupervised manner, with
vectors that encode contextual relationships (Bordawekar and Shmueli, 2017). Ad-
ditionally, symbolic representations can be encoded into a continuous vector space
by learning embeddings for entities and operators for relations (Bordes et al., 2011).
Efficient, easy-to-train, and scalable holographic embeddings using circular corre-
lations have also been proposed for creating vector space representations of entire
knowledge bases or graphs, and for link prediction (Nickel, Rosasco, and Poggio,
2016). For directed graphs, another successful method for link prediction denotes
relationships by translations operating on low-dimensional embeddings of entities
(Bordes et al., 2013). Relational ML techniques for KGs are discussed in several re-
view papers, including Nickel et al., 2015; Xu et al., 2018; Cai, Zheng, and Chang,

88 Chapter 6. Related Work

2018. It is important to note that although KGs and DBs are often used interchange-
ably, the key distinction is that KGs focus on encoding semantic relations and con-
cepts, while DBs store actual data facts (Brodie and Mylopoulos, 1986).

This work aims to address the challenges of DL for HDBs by directly exploit-
ing the hierarchical structure and conducting uni-directional message-passing from
the bottom of the HDB tree upwards. This involves recursively aggregating sub-
node representations and mapping them to embeddings of fixed predefined sizes,
with the option to consider entity-wise importance weights. Unlike heterogeneous
GNNs, this approach leverages the topological information of the hierarchical data,
taking into account that inaccuracies or noise on higher-level nodes may have a
greater impact than those on leaf nodes. This is achieved by (optionally) specifi-
cally ensuring that information is not lost, or at least information loss is minimized,
at each hierarchy level; and can be prioritized (i.e. weighted) accordingly. In addi-
tion, not all HDB tables may be equally relevant or informative. Thus, this work also
introduces a way to better ensure optimal relevance weighting (i.e. consideration) of
entities given a specific objective, e.g. classification. Each objective loss can also fur-
ther directly be optimized at each individual level of the hierarchy; not only at the
highest level (i.e. the root).

6.3 Robust Feature Normalization

Please note: Our contribution on "Adaptive Tanh-Normalization" has been accepted
for publication, after peer review in Guimerà Cuevas and Schmid, 2024b. The Ver-
sion of Record is available online.

Tanh-normalization has been shown to be effective on multiple tasks (Bhanja and
Das, 2018; Jain, Nandakumar, and Ross, 2005; Ribaric and Fratric, 2005). It counts
as being very robust to noise but is more intricate to compute than other simple
methods (e.g. z-scores). TE was originally (Hampel et al., 2011) defined as:

ϕ(x) :=
1
2

[
tanh

(
0.01

(x− µΨ)

σΨ

)
+ 1
]

(6.1)

µΨ, σΨ are the mean and standard deviation of the Hampel estimator (HE) scores
(Hampel, 1974; Shevlyakov, Morgenthaler, and Shurygin, 2008). The HE is a three-
part re-descending M-estimator (Hampel, 1973); it can entirely reject gross outliers
while not totally dismissing moderate outliers using the re-descending function Ψ:

Ψ(x) =

x, 0 ≤ |x| ≤ a
a sign(x), a ≤ |x| ≤ b
a(c−|x|)

c−b sign(x), b ≤ |x| ≤ c
0, c ≤ |x|

(6.2)

The parameters a, b, c ∈ R have an effect on points at the distribution tails and
determine the robustness of the estimator.1 Note that Ψ itself is not the normal-
ization. If the influence of a high number of distribution tail-points is minimized
based on the parameters, the estimate becomes more robust to outliers but less effi-
cient (optimal). Here, "efficiency" refers to utilizing data for precise estimates. A less

1Ψ functions are non-decreasing near the origin, but decreasing (towards zero) far from the origin.
Andrew’s Sine Function (Hinkley, 1973) and Tukey’s Biweight Function (Beaton and Tukey, 1974) are
alternatives to Hampel’s Ψ function. Redescending M-estimators to handle outliers are also used in
regression contexts (Khan et al., 2021b).

6.3. Robust Feature Normalization 89

efficient FS may distort the data more but can be more resilient to noise and varia-
tions. Therefore, in contrast, if the estimate is influenced by a large number of tail
points, it becomes less robust but more efficient (linear dependencies are better pre-
served). The tanh-distribution in the transformed domain has a mean of 0.5 and a
standard deviation of about 0.01. The spread of the normalized scores is determined
by the constant (i.e. 0.01) in the tanh-normalization equation (Jain, Nandakumar,
and Ross, 2005). By definition, the range of the tanh-estimator is [0, 1], but it can
easily be constraint linearly within the range of [−1, 1] using the normalization of
ϕ′(x) := tanh

(
0.01 (x−µΨ)

σΨ

)
.

Choosing the right Hampel parameters is crucial but challenging. Thus, a mod-
ified tanh-normalization (Latha and Thangasamy, 2011) was proposed that instead
used the raw features’ mean and standard deviation rather than the Hampel scores;
considerably simplifying and rewriting the normalization of each feature x ∈ X to
ϕ′′X(x) := tanh(0.01 · x); where x is the respective standardized value. The intrinsic
complexity associated with the Hampel function was so fully removed, resulting in
a less complex formula (i.e. simpler computation). They did, however, still employ
a default constant value of 0.01 (which will be referred to as the spread-value in this
paper); and can be seen as a configurable hyper-parameter. Thus, although the nor-
malization is now both robust and fast to compute, it still requires correct spread
parameter estimations (Jain, Nandakumar, and Ross, 2005) or manual tweaking; as
also noticed by Atrey et al., 2010, where the constant factor in the tanh normalization
for the fingerprint modality was increased to 0.1. Further, apart from its use in tanh
estimators, other work (Nandakumar et al., 2007) also reported e.g. that face match
scores generated using a multi-layer perceptron classifier and a tanh non-linearity
function presented problems: the outputs peaked at -1 and 1, resulting poor perfor-
mance. This shows the importance of properly pre-scaling features before applying
the tanh function.

The tanh function was also utilized in different FS approaches. For example,
Linear-Tanh-Linear (LTL) (Singh and Gupta, 2007) was presented for biometric sys-
tems and is based on the tanh-estimator over a set of scores OG

k and a set of imposter
scores OI

k for a characteristic k. It maps the non-overlapping region of imposter
scores to a constant value of zero and the non-overlapping region of scores to a con-
stant value of one. The tanh-estimator is then used to map the values of the over-
lapping region between OG

k and OI
k via a nonlinear tanh function (again with fixed

spread-value 0.01). The authors concluded that LTL is also efficient and robust. Fur-
thermore, the tanh-function’s resilience to anomalies has also found application in
trimmed estimators (Leonowicz, Karvanen, and Shishkin, 2005) for robust averaging
when the number of trials is small and the data is highly non-stationary or contains
outliers; and also used to compress over-large values on images to decrease their
effect on later stages of processing (Tan and Triggs, 2010). Lastly, a similar robust
normalization method, yet without the use of tanh, is the double sigmoid normal-
ization (Cappelli, Maio, and Maltoni, 2000), which converts scores within a region
linearly and scores outside the region non-linearly. However, it also necessitates
cautious tweaking of parameters.

Returning to the implications of selecting the spread value α, there is no justi-
fication for why any given fixed α should always be optimal for all feature distri-
butions. In essence, it’s far more plausible that each feature distribution will have
its own (ideal) spread value, and that a spread of e.g. 0.01 may even be counter-
productive for training in certain cases. Previous work on tanh-normalization has
not sufficiently addressed this concern, and given the impact of feature scaling, a
robust and adaptable feature normalizing approach is highly desirable. Therefore,

90 Chapter 6. Related Work

this work addresses the challenge of calculating the feature-wise ideal spread-value
α by building on previous work (Latha and Thangasamy, 2011) which computes the
mean and variance of the features without the Hampel estimator and instead utilizes
feature-based standardization. Rather than using a predetermined, fixed default
spread, this paper will outline and propose a different technique for directly identi-
fying the best α̇ in tanh(α̇x); and its key importance in terms of training convergence
will be highlighted and discussed.

6.4 Model Output Calibration

Please note: Our work and findings on Calibration Misalignment as a Post-hoc
Approach for Out-of-Distribution Detection in Deep Neural Networks (presented in
this thesis) have been accepted for publication in conference proceedings (Guimerà
Cuevas and Schmid, 2024a).

Model calibration is an important aspect of ML, as it allows to align the output
probabilities of a model with the true probabilities of the data; such as given in the
real-world. Various methods exist and can be used for model calibration:

A naive calibration method is Histogram Binning (Zadrozny and Elkan, 2001),
which involves partitioning the predicted probabilities into a fixed number of bins
and estimating the true probabilities by calculating the mean or mode of the predic-
tions in each bin. This approach is simple to implement and can work fast and well
for models with already overall "more or less" well-calibrated probabilities. How-
ever, it may not be effective for models with complex probability distributions.

Platt scaling (Platt et al., 1999) is another popular method for model calibration
that involves fitting a logistic regression model to the predicted probabilities, using
the true class labels as the target variable. The output of this calibration model can
then be used to adjust the probabilities predicted by the original model. Platt scal-
ing is widely used and has been shown to be effective for a wide range of models.
However, logistic calibration is designed to handle class scores that are normally
distributed, but this assumption may not hold true for various classifiers; e.g. the lo-
gistic curve family does not encompass the identity function; and thus uncalibrate a
perfectly calibrated classifier (Kull, Silva Filho, and Flach, 2017). Isotonic regression
is a non-parametric method (Zadrozny and Elkan, 2002), which fits a non-decreasing
function to the predicted probabilities. Although it is a powerful method, it is prone
to overfitting, particularly on smaller datasets (Kull, Silva Filho, and Flach, 2017).
Beta calibration (Kull, Silva Filho, and Flach, 2017) was therefore proposed to ad-
dress these issues by using a calibration map based on the Beta distribution. Temper-
ature scaling (Guo et al., 2017) is also a simple and effective method for calibrating
the outputs of a model, by adjusting the logits (i.e. the pre-softmax outputs) by a tem-
perature parameter, and then applying the softmax function to derive the predicted
probabilities. The temperature parameter can be tuned to optimize calibration per-
formance and has been shown to be effective in improving the calibration of DNNs.
Matrix- and vector scaling (Guo et al., 2017) is a multi-class extension of Platt scaling
that involves learning a linear transformation of the logits that maps them onto the
calibrated probabilities. This transformation can be represented by a matrix, which
is learned from a calibration dataset. Once learned, the matrix can be applied to
the logits of new examples to obtain the calibrated probabilities. Vector scaling is a
variant of matrix scaling that uses a diagonal weight matrix to reduce the number of
parameters. Dirichlet calibration (Kull et al., 2019) is another method that can also
handle multi-class classification problems that uses a Dirichlet distribution to model

6.4. Model Output Calibration 91

the relationship between the predicted probabilities and the true probabilities of the
classes. It consists of log-transforming the uncalibrated probabilities, applying a lin-
ear layer, and then performing a softmax function. Other approaches are Bayesian
methods (Gelman et al., 1995), maximum-likelihood calibration (Saerens, Latinne,
and Decaestecker, 2002), etc.

Outlier detection is the identification of unusual data within a dataset that de-
viates from the norm. This can be seen as a one-class classification problem where
a model is trained exclusively on normal data and subsequently used to detect ab-
normal data based on a distance measure and threshold (Pimentel et al., 2014). For
novelty detection, various methods exist, including statistical techniques, NNs, sup-
port vector machines, and clustering approaches (Markou and Singh, 2003; Pang et
al., 2021; Salehi et al., 2021; Ding et al., 2014); usually categorized into probabilistic
methods, linear models, proximity-based approaches, outlier ensembles, or graph-
based methods. The effectiveness of each method varies depending on the data
characteristics and distribution, data assumptions, and application domain. Chal-
lenges in novelty detection include handling high-dimensional data, concept drifts,
imbalanced data, and noise (Seliya, Abdollah Zadeh, and Khoshgoftaar, 2021; Gruhl,
Sick, and Tomforde, 2021; Din et al., 2021; Wang et al., 2023; Wang et al., 2020b).

Overall, these approaches can further be categorized as (Prince, 2022; Boukerche,
Zheng, and Alfandi, 2020): one-class classification, probability, and generative mod-
els, statistical methods, reconstruction methods, model consistency methods, and
auxiliary task methods. These approaches differ in how they define and measure
the similarity between new examples and the in-distribution data. One-class clas-
sification (Ruff et al., 2018; Salehi et al., 2021) trains a classifier to distinguish be-
tween in-distribution and out-of-distribution examples. Probability and generative
models (Nalisnick et al., 2018; Eduardo et al., 2020) fit a probability distribution
to the in-distribution data and classify examples with low probability as out-of-
distribution. Statistical methods (Ren et al., 2019; Morningstar et al., 2021; Wang,
Bah, and Hammad, 2019) compare the statistics of the input example to those of
the in-distribution data and classify examples with anomalous statistics as out-of-
distribution. Reconstruction methods (Abati et al., 2019; Chen et al., 2017) train an
autoencoder to encode and decode the in-distribution data and classify examples
with poor reconstruction quality as out-of-distribution. Model consistency methods
(Xiao et al., 2021; Choi, Jang, and Alemi, 2018) train (multiple) models or ensembles
on the in-distribution data and classify examples where the models disagree as out-
of-distribution. Auxiliary task methods (Liu et al., 2018; Golan and El-Yaniv, 2018)
train a model to perform a secondary task on the in-distribution data and classify
examples where the performance on this task is low as out-of-distribution.

Methods can also be divided into ad-hoc and post-hoc OOD methods: Ad-hoc
methods involve integrating OOD detection into the model training process, where
the model not only learns its main task (e.g., classification or regression) but also ex-
tends the training to prepare to detect OOD instances. Conversely, post-hoc methods
analyze the model’s output to detect OOD instances without influencing the training
or modifying the training architecture; conducting OOD detection afterward.

Examples of ad-hoc methods are (Prince, 2022): OOD detectors for NNs using
temperature scaling, noise or decomposition (Liang, Li, and Srikant, 2017; Hsu et al.,
2020), the membership loss (Perera and Patel, 2019) (which is used in addition to the
standard cross-entropy loss), or other architectural changes on the training, e.g. that
integrate an auto-encoder and perform classification on the bottleneck layer.

Post-hoc methods include: OpenMax (Bendale and Boult, 2016; Ge et al., 2017)

92 Chapter 6. Related Work

which estimates confidence levels in predictions using softmax scores and probabil-
ity distributions, but also methods that detect outliers based on density e.g. Local
Outlier Factor (LOF) (Breunig et al., 2000), Local Correlation Integral (LOCI) (Pa-
padimitriou et al., 2003), Global-Local Outlier Scores from Hierarchies (GLOSH)
(Campello et al., 2015), clustering membership strengths (McInnes, Healy, and As-
tels, 2017a) which represent the level of belongingness of a data point to a cluster,
etc. These methods use different ways and assumptions to measure how much a
data point differs from its surroundings. For example, LOF assesses a point’s den-
sity to its neighboring points, identifying outliers in low-density areas surrounded
by higher-density ones. It determines outlier scores for each point by comparing its
local density to the average density of its neighbors: A high LOF score denotes an
outlier; a low score indicates membership in a dense cluster. Thus, the LOF score
can be seen as the reachability distance ratio of a point’s neighbors to its own.

LOCI, instead, calculates an outlier score based on the variation of the local
neighborhood, called the multi-granularity deviation factor (MDEF), which can be
thought of as the degree of deviation of the density of a point’s neighborhood from
the average density of the neighborhoods of the points in the neighborhood. It marks
as outliers the samples that have a large MDEF value. LOCI autonomously de-
tects outliers, requiring no user input (i.e. calculates the cut-off to check whether
a point is an outlier), and can generate LOCI plots for individual points, providing
visual insights into local data density, clusters, and micro-clusters. That is, LOCI not
only identifies isolated single outliers but also groups of outlier clusters (aka micro-
clusters). Efficient computations of LOCI utilize speed-enhancing approximations.

GLOSH is a method for detecting outliers in data, meaning that they deviate sig-
nificantly from their surroundings. It can detect both local and global outliers, where
local outliers deviate from their local neighborhood, and global outliers deviate from
the overall data distribution. This means that GLOSH is capable of identifying out-
liers that may significantly differ from nearby points without necessarily being out-
liers on a global scale. GLOSH assigns an outlier score to each point by measuring
its density relative to the densities of other points in the same and lower-level clus-
ters. The clusters are obtained using different linkage methods, e.g. by applying a
hierarchical clustering algorithm, such as HDBSCAN (McInnes, Healy, and Astels,
2017a), to the data. Points that belong to low-density clusters or that are far from
the core of their clusters have high outlier scores. This allows GLOSH to identify
global outliers, but also outliers that are only conspicuous in their local context but
not globally. GLOSH is similar to previous outlier detection methods such as LOF
and LOCI which also use density-based criteria to find outliers.

HDBSCAN itself can also find outliers by computing cluster probabilities of data
points based on how long their clusters persist in the condensed tree. Low prob-
abilities indicate outliers or border points. Cluster probabilities and outlier scores
use different formulas, as they measure different aspects of clustering: persistence
and density, respectively. So, the clustering probabilities center around the degree
to which a point represents a cluster, whereas the outlier scores center around how
effectively a point aligns with a cluster. These are different concepts.

Overall, the key difference between LOF, LOCI, and GLOSH is: LOF relies on
distance metrics for proximity measurement, LOCI operates on correlation concepts,
and GLOSH is centered on hierarchical principles.

Other common methods include One-Class-SVM (Schölkopf et al., 2001) and Iso-
lation Forests (Liu, Ting, and Zhou, 2008) One-Class-SVM is based on the idea of
fitting a hyperplane in a high-dimensional feature space that separates the normal
data from the origin. It maps the data into a nonlinear space using a kernel function

6.5. Supervised Clustering Evaluation 93

and a parameter to regulate the fraction of outliers. Isolation Forests are built on the
idea of separating anomalies using random feature space partitions. It constructs a
decision (binary) tree ensemble that iteratively splits the data along a random fea-
ture and a random value. Because anomalies are easier to isolate, they are expected
to have shorter average path lengths in the trees than the usual data.

SUOD (Accelerating Large-Scale Unsupervised Heterogeneous Outlier Detec-
tion) (Zhao et al., 2021) is a system that speeds up the detection of outliers in large-
scale datasets. It uses three techniques that work well together: random projection to
lower the dimensionality of high-dimensional data (data level), pseudo-supervised
approximation to simplify complex models (model level), and balanced parallel
scheduling to balance the workload in distributed settings (task level). These tech-
niques can be turned on or off as needed. SUOD claims to detect outliers in large
datasets fast and accurately.

Numerous further algorithms and techniques exist; a comprehensive benchmark
overview is provided by (Han et al., 2022).

In this work, we focus on post-hoc OOD detection methods which do not in-
fluence the original training of the model and are applied directly on the outputs
of models. Particularly, we demonstrate that OOD instances can be identified by
examining the disparities in model calibrations and predictions.

6.5 Supervised Clustering Evaluation

Notice: Our work and findings on αMax-B-CUBED (presented in this thesis) have
been publicly released on OpenReview-Venue (Guimerà Cuevas and Schmid, n.d.).

Weak Supervision (WS) is a branch of ML in which the model is trained using
noisy, incomplete, or inexact annotations instead of complete and accurate labels
(Zhou, 2018). In WS, a model is designed to deal with noise and uncertainty in an-
notations and make the best possible predictions based on the information given.
Because producing high-quality labels is typically very costly, weak supervision is
often used to generate additional cheaper, but lower-quality labeled data. Inaccurate
training data contains defects or erroneous labels. The term "inexact" refers to train-
ing data with imprecise labels, such as coarse categories or probabilistic labels. In-
exact supervision can result in a model with lesser prediction confidence, but also in
misleading conclusions during supervised evaluation of clustering results. Cluster
quality evaluation with weak labels, thus, refers to the process of evaluating the per-
formance of a clustering method when the ground truth labels are not fully known,
missing, noisy, uncertain, or too generic. "Incomplete" training data refers to data
that lacks key information, labels, or characteristics.

There exist different evaluation metrics that address cluster quality evaluation
with weak labels or uncertainty. E.g., data clustering with partial supervision, where
data is neither completely nor accurately labeled, can be approached using a fuzzy
clustering-based technique to leverage available data knowledge to supervise the
clustering process (Bouchachia and Pedrycz, 2006). The Adjusted Rand Index (Rand,
1971) measures the similarity between the real and predicted (cluster) labels while
adjusting for chance; related to accuracy. "Chance" refers to the possibility of achiev-
ing a specific outcome by random chance in the context. This involves considering
the possibility that the agreement between the true and predicted labels might oc-
cur by coincidence, even if the clustering method is not appropriately grouping the
data points. Normalized Mutual Information (Press et al., 2007) evaluates the mu-
tual information between the real and predicted cluster labels, normalized by the

94 Chapter 6. Related Work

entropy of both; where the entropy can be regarded as a measure of uncertainty. The
Fowlkes-Mallows Index (FMI) (Fowlkes and Mallows, 1983) computes the geomet-
ric mean of precision and recall between true and generated clusters. Uncertainty
in the true labels might affect the accuracy of the clustering results because it may
be difficult to accurately assign data points to their true labels if the actual labels are
not clearly defined or known. FMI compensates for this uncertainty by calculating
precision and recall using both the number of correct and incorrect predictions.

B3 can be seen as a "precision and recall metric" for clusters. Following (Amigó
et al., 2009), two items that share a category are correctly related if and only if they
occur in the same cluster. An item’s B3 precision is the fraction of objects in its cluster
that have the item’s category. The average precision of all items in the distribution is
used to calculate the overall B3 precision. The B3 recall is analogous. The B3 cluster-
ing algorithm has gained a lot of attention and received improvements and refine-
ments to adapt to different situations. The adapted B3 metrics (Moreno and Dias,
2015) were proposed for imbalanced datasets. The authors claim that the original
family of B3 metrics is not well adapted when datasets are imbalanced. The Cluster-
Identity-Checking Extended B3 (CICE-B3) (Rosales-Méndez and Ramírez-Cruz, 2013)
was proposed as a new evaluation measure for overlapping clustering algorithms
consisting of a new approach to determining precision, recall, and the F-measure,
which analyzes object pairings that co-occur in clusters and/or classes. Critics have
also pointed out that B3 overestimates performance by crediting clustering for plac-
ing an element within its own cluster (Heusden, Kamps, and Marx, 2022); which
prompted the revised metric "Elements Like Me (ELM)".

In this work, however, we further show how the standard B3 metric may not
perform optimally or lead to misleading comparisons when assessing different clus-
tering outcomes under label uncertainty; e.g. when dealing with coarse labels. To
overcome this issue, a modified mathematical metric formula for B3 is suggested
that integrates cluster group super-aggregation into its scoring function.

6.6 Manifold Clustering

As already highlighted, cluster analysis is a crucial and key field in ML; and ex-
plainable AI is a very active area of research and experimentation (Gunning et al.,
2019; Saisubramanian, Galhotra, and Zilberstein, 2020; Xu et al., 2019). Cluster
interpretability and explainability refer to the ability to understand and interpret
the results of a clustering algorithm. A major challenge here is how to effectively,
transparently, and reliably explain the results and automate this process, especially
since unsupervised numeric clustering typically cannot be directly understood by
humans without any further analysis or interpretative tools. Of course, manually
analyzing each cluster is not scalable and tedious, and randomly selecting a sub-
set of instances from a cluster and extrapolating their characteristics to the entire
cluster is obviously not effective at all. This is related to a concept referred to as Vi-
sual Interpretation (VI): the transformation of information into interactive and visual
forms, such as graphs or images, to facilitate understanding and (manual) analysis
(Healy, 2018). However, VI has many limitations, including being non-formal (in
a mathematical sense), unreliable, subjective, and time-intensive. Consequently, a
systematic and automated approach is often imperative for accurately explaining
the results yielded by AI- or clustering algorithms. Automated feature-based model
interpretability tools, such as SHAP (Lundberg and Lee, 2017) and LIME (Ribeiro,
Singh, and Guestrin, 2016), can help understand the characteristics that drive a given

6.7. Evaluating Generated Content against References 95

cluster assignment, making the results more interpretable, e.g. by highlighting pix-
els or image sections that are most important to the cluster assignment; the explana-
tion can be a simple heat map over the pixel score values.

Manifolds are a crucial concept in NNs, and the knowledge encoded in latent
semantic manifold spaces has been extensively researched and exploited for clus-
tering: McConville et al., 2021 proposed a combined training of clustering and non-
clustering loss that first computes the embedding using an autoencoder, then searches
for underlying manifolds e.g. using UMAP (McInnes, Healy, and Melville, 2018),
and finally performs clustering on the newly learned latent manifold representa-
tions. SMCE (Elhamifar and Vidal, 2011) is an algorithm that performs clustering
and dimensionality reduction of data in multiple nonlinear manifolds, handling
close, non-uniform sampling, and holes, and estimates intrinsic dimensions. Deep
Embedding Networks (Huang et al., 2014) employ autoencoders to derive reduced
representations from raw data, applying constraints to maintain locality and group
sparsity, which are then clustered. Robust Continuous Clustering (Shah and Koltun,
2017) learns condensed data representations by integrating simultaneously repre-
sentation learning and clustering. Similarly, Shah and Koltun, 2018 also performs
joint nonlinear dimensionality reduction and clustering by embedding data into a
lower-dimensional space using an autoencoder. Leveraging knowledge about man-
ifolds was also proposed in DMMC (Chen, Lv, and Zhang, 2017), which discovers
clusters for unlabeled data residing on distinct manifolds. It is motivated by the
assumption from Rodriguez and Laio, 2014 that close points are on the local of a
manifold and should have comparable representations, i.e., cluster centers are sur-
rounded by neighboring points with lower local density and are relatively far from
any points with greater local density.

More recently, Li et al., 2022 argued that performing manifold clustering with
neural networks requires two fundamental ingredients: a domain-specific constraint
that ensures manifold identification, and a learning method for embedding manifolds to
linear subspaces in the feature space. This was e.g. used in NMCE (Yu et al., 2020),
a method that combines data augmentation with principles of MCR2 and outper-
forms autoencoder-based deep subspace clustering. NMCE follows the principles
of respecting domain-specific constraints, not collapsing manifold embeddings, and
linearizing and separating identified manifold embeddings.

In this thesis, we put attention on exploring manifold aggregations of latent rep-
resentations to interpret clusters on a descriptive textual approach. This is useful e.g.
for generating tags for image clusters, identifying important words for clustering
decisions, or calculating cluster similarities based on semantic textual similarities.
Our results demonstrate that even basic manifold aggregation methods, especially
when coupled with a population-based score-function selection, can create concise
and representative cluster descriptions. This is achieved by leveraging the implicit
semantic understanding embedded in clusters within the inherent latent manifold
structure of large vision and language models.

Moreover, we also explore clustering via manifold identifications by determining
approximation errors and similarities in the Taylor Approximation of the manifold
space; proposing a new approach and algorithm for clustering manifolds.

6.7 Evaluating Generated Content against References

Comparative text analysis plays a vital role in evaluating text generation models,
benchmarking their performance, ensuring high quality, estimating human parity,

96 Chapter 6. Related Work

and optimizing the models. Evaluating the quality and similarity of text data is non-
trivial; yet, as language models become more effective, novel robust metrics have
emerged.

In this work, we will emphasize and center around three deep learning methods
to assess the quality (i.e., similarity) of a model’s generated prediction text against a
(set of) reference text(s); namely BERT-score (Zhang* et al., 2020), BART-score (Yuan,
Neubig, and Liu, 2021), and BLEURT-score (Sellam, Das, and Parikh, 2020). BERT-
score uses BERT’s pre-trained contextual embeddings and cosine similarity for eval-
uation; it provides precision, recall, and F1 measures. BART-score uses the BART
pre-trained model for text generation-based evaluation; it offers different perspec-
tives such as coherence, semantic coverage, informativeness, fluency, or actuality.
BLEURT-score measures how well a candidate fluently conveys the intended mean-
ing of a reference. It operates as a trained regression model metric.

6.7.1 BERT-score

BERT-score (Zhang* et al., 2020) leverages BERT’s contextual embeddings, aligning
candidate and reference sentences via cosine similarity. It was shown to correlate
with human judgment. It calculates precision, recall, and F1 for text quality assess-
ment. It is designed to measure the similarity between a reference (ground truth)
sentence and a candidate (generated) sentence. BERT-score is a supervised matching
metric that measures the semantic equivalence between a reference and a target. It
employs token-level matching functions within the distributed representation space,
leveraging the continuous vector spaces of the word embeddings; i.e., it calculates
token similarity by utilizing contextual embeddings derived from BERT.

6.7.2 BART-score

BART-score (Yuan, Neubig, and Liu, 2021) is a metric designed for evaluating text
generation. It is straightforward in concept and has shown good empirical per-
formance, surpassing other top-scoring metrics. BART-score leverages BART, an
encoder-decoder pre-trained model, to convert the generated text to or from a ref-
erence output or source text. The underlying assumption is that models trained to
perform this conversion will yield higher scores for better-generated text. That is,
it is expected that: the better (e.g. fluent, semantic similar, etc.) a given text is to
a reference text, the better the scores will be; and so the evaluation is seen as a text
generation problem. BART-score is claimed to be resource-efficient in terms of param-
eters and data; its architecture does not include any additional parameters beyond
what is used during pre-training. BART-score is trained in an unsupervised manner;
i.e. it does not require any human judgments for training/learning. Overall, BART-
score supports various evaluation scenarios based on different generation directions
(see Yuan, Neubig, and Liu, 2021 for more details):

• BART-Faithfulness: Measures the likelihood of generating the hypothesis from
a source document. It can evaluate factuality, relevance, coherence, and flu-
ency of the target text.

• BART-Precision: Assesses how likely a hypothesis could be constructed based
on the gold reference. It is useful for precision-focused evaluation.

• BART Recall: Quantifies how easily a gold reference could be generated by a
hypothesis.

6.8. Text Generation Strategies 97

• BART-F-score: Considers both Precision and Recall. It provides a broad eval-
uation of the semantic overlap between reference texts and generated texts.

So, therefore, BART-score is a measure of how well a candidate sentence can be
generated from a source sentence using the BART model. It’s important to under-
stand that the score is not intended to return a probability of one when the candidate
and reference sentences are identical. Instead, the score depends on the quality of
the BART model’s training and the similarity between the candidate and reference
sentences in terms of content and style.

6.7.3 BLEURT-score

BLEURT (Sellam, Das, and Parikh, 2020) is an ML-based metric; also typically used
to evaluate Natural Language Generation systems. It takes a sentence pair as input:
a reference (typically human-generated) and a candidate (machine-generated). The
score ranges between 0 and 1 (approximately); and indicates the extent to which
a candidate is fluent and conveys the meaning of the reference. BLEURT captures
non-trivial semantic similarities between sentences, providing a robust evaluation.
As stated in the original paper, BLEURT was introduced as a metric for generating
text based on references in English; utilizing end-to-end training (future research is
expected to focus on expanding its evaluation capabilities to include multilingual
evaluation). Overall, BLEURT is a supervised metric in the sense that it requires
human judgments to train; trained as a regression model.

6.8 Text Generation Strategies

Decoding is the process of selecting output tokens to generate text. There are several
text decoding strategies that can be used to generate text from a language model.
These strategies are used to select the most likely sequence of words from a set of
possible outputs. Some common text decoding strategies (Wolf et al., 2020b) include:

• Greedy-search: Selects the word with the highest probability at each time step.

• Contrastive-search: Optimizes for a diversity-augmented objective.

• Multinomial sampling: Randomly selects the next token based on the model’s
probability distribution.

• Beam-search: Keeps track of multiple potential sequences at each step.

• Beam-search multinomial sampling: Combines beam search with multino-
mial sampling.

• Diverse beam-search: Generates a diverse set of beam sequences by optimiz-
ing for a diversity-augmented objective.

For sampling strategies, one can therefore stochastically generate "multiple" can-
didate sequences (multi-sequence sampling).

98 Chapter 6. Related Work

6.9 Large Language Models: Prompt Engineering

To recap: Large Language Models (LLMs) are sophisticated DL algorithms that ex-
cel in natural language processing tasks (Kaddour et al., 2023). Their large model
size is made possible by AI accelerators that can process vast amounts of text data
efficiently (Reuther et al., 2020). LLMs are essentially artificial DNNs that can have
billions to trillions of weights and are trained through self-supervised and semi-
supervised learning. The widely used Transformer architecture (Vaswani et al., 2017)
is integral to LLMs.

LLMs can generate human-like responses to prompts given by a user. LLMs
are (pre-) trained on huge datasets of text, often containing billions of words, using
state-of-the-art DL techniques. LLMs revolutionized natural language processing
and have many applications and use cases, including classifying, translating, pre-
dicting, and generating text, summarization, question answering, and even writing
software code. They are active across many different sectors, including healthcare,
finance, and entertainment; playing roles such as chatbots, and AI assistants. Fa-
mous examples of LLMs are the GPT models from OpenAI (OpenAI, 2023), PaLM
from Google (Chowdhery et al., 2022), LLaMa from Meta (Touvron et al., 2023), and
Falcon from UAE’s Technology Innovation Institute (Penedo et al., 2023).

A prompt is a "message" that guides and influences the AI model in carrying
out its task; typically in the context of text- or image models. The main purpose is
to generate text that a generative AI model can understand. "In-context learning"
enables the model to gain knowledge from brief prompts. Prompt engineering (for
a full and extensive survey and overview, see Saravia, 2022; Weng, 2023) is a key
concept when working with LLMs. It consists of (carefully) selecting and designing
the appropriate words, phrases, symbols, and formats to guide the model.

Prompts act as inputs or queries users give to obtain specific responses from a
model. It affects the response length and detail. Efficient prompt engineering is
crucial in achieving the desired outcomes with LLMs. It can require creativity and
careful attention to detail, involving delimiters, output formats, condition checks,
few-shot prompting, and task completion steps. Prompt engineering is an important
task/skill for anyone working with LLMs; which is experiencing more relevance as
more organizations implement LLMs to automate tasks and improve productivity.
A well-defined prompt can assist in getting the most out of their LLMs and is, thus,
important. Beside prompts, temperature, top-k, top-p, frequency penalty, and pres-
ence penalty are examples of other controls that impact model output behavior.

For example, if you ask the model, "What are the benefits of plants?" it might ask
for clarification because there are many types of plants with different benefits. How-
ever, if you specify the type of plant, such as "What are the benefits of aloe vera?",
the model would generate a specific response about the benefits of aloe vera. There-
fore, the way a prompt is formulated directly influences and determines the model’s
response. And so, it is important to be clear and specific in the prompt to guide
the model to generate a desired response type. This is known as prompt engineer-
ing, which is used to direct LLMs to produce specific outcomes without altering their
weights. Prompt engineering is an empirical discipline, implying that its methods
can produce varied results on different models; typically requiring extensive testing
and heuristic approaches (Weng, 2023).

Multiple approaches exist for prompt design/engineering. E.g., two common
approaches for language model fine-tuning are: zero-shot and few-shot learning.
The former involves inputting the task text directly into the model but may result

6.9. Large Language Models: Prompt Engineering 99

in imprecise or ambiguous responses. In contrast, few-shot learning includes high-
quality examples to improve model outputs. However, there are limitations to the
length of input and output text, and the choice of prompt format, training examples,
and order can greatly impact performance; e.g., an extensive prompt increases the
actual text, thus, ultimately decreasing the amount of free-text that can be inputted
or analyzed. In general, to avoid bias in few-shot prompt learning, it is suggested to
select diverse and relevant examples in random order and to choose an order that
prevents extremely unbalanced or overconfident predictions when the validation set
is limited. Also, increasing model size or adding more training examples may not
necessarily reduce variance in different permutations of examples, and the effective-
ness of specific example orders may vary depending on the model (Lu et al., 2021).

Few-shot examples help a model understand task instructions but require more
tokens and, again, have input length limitations due to context constraints. This
leads to the question of why not simply provide direct task instructions through
instruction prompting. However, accurately describing a task may be difficult; and
may require specific and precise information. Overall, one should then emphasize
actions to be taken (positive actions) rather than actions to avoid (negative actions)
(Saravia, 2022). Few-shot learning was also combined with instruction prompting
via in-context instruction learning (Ye et al., 2023).

Self-consistency sampling (Wang et al., 2022b) is a technique that involves gen-
erating multiple candidate outputs and then selecting the best one based on specific
criteria, heuristics, quality measures, etc.; which one(s) to use depend on the actual
task. That is, to evaluate the quality of the outputs, a metric or measurement sys-
tem is needed. E.g., one approach for selecting the best output is to use ensemble
methods, e.g. combining multiple metrics or criteria.

Chain-of-thought (CoT) prompting (Wei et al., 2022) breaks down reasoning into
a series of concise sentences, providing step-by-step logic and reasoning. The result
is an output of reasoning chains or rationales that guide the user towards a final
answer. CoT is particularly advantageous for complex reasoning tasks, especially
when working with extremely large LLMs. However, for simple tasks, the benefits
of CoT prompting are minimal. Interestingly, it was observed (Fu et al., 2022) that
when separating CoT steps, the newline ’\n’ symbol is more effective than using
’step i’, a dot ’.’, or a semicolon ’;’. Additionally, using ’Question:’ instead of the
abbreviation ’Q:’ was also beneficial.

Automatic prompt design is an interesting concept for automatically optimizing
the series of prefix tokens to increase the likelihood of obtaining an intended output
for a given input. By treating prompts as trainable parameters, they can be opti-
mized through known techniques; such as via gradient descent on the embedding
space. Several methods, such as AutoPrompt (Shin et al., 2020), Prefix-Tuning (Li
and Liang, 2021), P-tuning (Liu et al., 2023), Prompt-Tuning (Lester, Al-Rfou, and
Constant, 2021), and APE (Zhou et al., 2022b), have been developed for automatic
prompt design. In fact, even an LLM itself can be used and utilized to generate or
propose suitable prompts for a given example (or set of examples).

A prompt may consist of multiple different parts (Saravia, 2022):

1. Instruction: The specific task for the model to perform.

2. Context: External information to improve responses.

3. Input Data: Input or question to find a response for.

4. Output Indicator: Type/format of output.

100 Chapter 6. Related Work

A full prompt example may therefore be the following example:

• Instructions:

– Generate a summary of the latest developments in AI research.

• Context:

– The audience for the summary consists of non-experts in AI.

• Input Data:

– The latest developments in AI research.

• Output Indicator:

– Present the summary in bullet points.

– The summary must not be longer than 350 words.

– Use language that non-experts in computer science can easily understand.

So overall, as a general guideline when creating prompts for models, it is con-
sidered useful to start with simple prompts and only then gradually add more el-
ements until one achieves more optimal results. It is important to experiment and
iterate with prompts for better outcomes. Specificity, simplicity, and conciseness can
enhance the effectiveness of prompts, as well as breaking down large tasks into sim-
pler subtasks. Short clear commands such as "Write", "Classify", "Summarize", or
"Translate" can already strongly guide the model’s actions. It is sensible to experi-
ment with different keywords and data and provide specific and relevant context for
the task at hand. Providing examples is, as explained, an intuitive yet effective ap-
proach to achieving desired outputs. It is key to avoid imprecise language; instead
being direct and specific is important. This includes avoiding negative phrasing and
focusing on what the model should do rather than what it should not do.

6.10 Representative Sampling in Data Streams

6.10.1 Background on Reservoir-Sampling

Many different variants and implementations of Reservoir Sampling (RS) exist, each
with its own optimizations, improvements, and intended use cases. Our objective
here is to present a brief and concise summary of the different common algorithmic
sampling methods; while we again encourage the reader to review the respective lit-
erature (Bressan and Lu, 2009) for a more comprehensive and detailed understand-
ing. Overall: RS enables progressive sampling in a single pass in both, dynamic and
large static datasets.

Reservoir-Sampling

Reservoir Sampling (Vitter, 1985) is a probabilistic algorithm designed for randomly
selecting k samples from an indefinitely long data stream of unknown length. In
this context, the parameter k may signify the memory constraint, specifying the total
number of items to retain. RS maintains a reservoir, which is a static collection such
as an array or list with a fixed size k. At any given moment, the reservoir always

6.10. Representative Sampling in Data Streams 101

contains a random sample of≤ k elements drawn from the input stream in a uniform
and random manner.

Mathematically, RS can be formally described as: Let there be a data stream de-
noted as S with a length of N (which may be finite or infinite). The objective is to
stochastically select a sample of size k (where k ≤ N) from the stream to be stored in
an array R of length k. RS begins by initially populating R with the first k elements
from S. Then, for all k < i ≤ n, the following steps are performed:

1. Generate a random integer j within the range 1 to i.

2. If j ≤ k, substitute the j-th element of R with the element S[i] from the stream.

At any given time-step, R contains a random sample of ≤ k elements, chosen
uniformly and independently at random from the S; where each element had an equal
probability of 1/i of being included in R.

Biased Reservoir-Sampling

In biased reservoir sampling, a random sample of size k from a population of size
N is selected, where each element in the population is assigned a weight or prob-
ability pi. The selection is biased to reflect these probabilities, ensuring elements
with higher weights are more likely to be included. The RS algorithm was extended
(Chao, 1982) to handle arbitrary sampling probabilities.

Decaying Reservoir Sampling

Decaying reservoir sampling (Aggarwal, 2006; Cormode et al., 2009) is also meant
to obtain a random sample of fixed size from a continuously arriving data stream.
However, it works by assigning decaying probabilities of keeping the elements in the
reservoir, with a higher probability given to more recent elements. This ensures that
recent elements are more likely to be included and remain in the reservoir sample
than older elements, while still allowing for older elements to have a (small) chance
of being selected; controlled by an exponential decaying factor, which determines
the rate at which the probabilities decrease over time.

Sliding Window Sampling

Sliding Window Sampling continuously samples a data stream using a fixed-size
window (Braverman, Ostrovsky, and Zaniolo, 2009; Jayaram, Woodruff, and Zhou,
2022; El Sibai et al., 2015). It differs from normal reservoir sampling by maintaining
a sample of the most recent data points given a sliding window size. RS may here
be limited within that sliding window.

Quantiles in Data Streams

A quantile query (Buragohain and Suri, 2009), formally defined, is a statistical anal-
ysis that seeks to identify a value, denoted as v, within a dataset S, such that its
rank, denoted as rank(v, S), aligns with a specified quantile ϕ ∈ [0, 1]. Mathemat-
ically, this can be represented as v = arg minv′∈S |rank(v′, S)− ϕ · |S||, where: v is
the desired value, rank(x, S) is the rank of a data point x in the sorted dataset S, ϕ
is the target quantile, with ϕ ∈ [0, 1], and |S| represents the size of the dataset S. In
essence, a quantile query aims to find a value within the dataset that corresponds to
a specific quantile of the data distribution.

102 Chapter 6. Related Work

Spatio-Temporal Trajectories

A spatial-temporal trajectory T in an n-dimensional space vector is a mathematical
construct representing the movement of an object or entity through space and time.
It can be defined as a sequence of data points (⃗zi, ti), where z⃗i is an n-dimensional
vector representing the object’s spatial location at time ti.

Mathematically, a spatial-temporal trajectory in an n-dimensional space vector
can be represented as: T := ((⃗z1, t1), (⃗z2, t2), . . . , (⃗zN , tN)), where N is the (current)
number of data points in the trajectory; and ti is strictly-monotonically increasing.
T may extend infinitely, constituting an unbounded series of spatial locations along
with respective timestamps (⃗zi, ti); over a continuous stream of points over time.

6.10.2 Related Work on Data Stream Sampling

Again, processing and sampling of data streams is an important topic and multiple
extensive reviews and surveys exist in the literature for data streams (Almeida et
al., 2023; Gaber, Zaslavsky, and Krishnaswamy, 2007; Haas, 2016; Kolajo, Daramola,
and Adebiyi, 2019; Sibai et al., 2016). Data-stream sampling combines traditional
database sampling techniques with adaptations for streams of infinite lengths. Com-
monly, two approaches are stationary and (sliding) windows. Following Haas, 2016,
a stationary window has fixed endpoints, which could either be specific timestamps
or positions within the stream. In contrast, a sliding window has dynamic endpoints
that move alongside time. Here, sampling becomes more intricate since expired el-
ements must be removed, making it a more challenging task to sustain an optimal
sample size (Haas, 2016).

The authors also mention so-called "generalized" windows; here a data stream
consists of operations that can insert and delete items into/from the window. In
fact, a standard sliding window is a special case where items are deleted in the same
order that they are inserted.

Sampling from a stationary window can be achieved e.g. through techniques
such as Bernoulli Sampling or Poisson Sampling (Särndal, Swensson, and Wretman,
2003). However, a notable drawback of both Bernoulli and Poisson sampling meth-
ods is the inherent uncontrollable (non-deterministic) variability in the sample size.
Another naive approach is using Stratified Sampling (Parsons, 2014). It involves
partitioning the window into distinct intervals, referred to as "strata", and extracting
a predetermined sample size from each of these strata. E.g., the simplest method for
a sample of size k is to pick every mth element (where m equals N/k); this approach
lacks statistical context for the entire window and can lead to unrepresentative sam-
ples if the incoming data has periodicity matching the sampling rate (Haas, 2016).
Biased Sampling by "halving" (Haas, 2016) is a statistical technique for obtaining a
biased sample from a larger group. It works as follows: The population is split into
L strata, each with m = N/L elements. A running sample R of size k is started
with a simple random sample (SRS) from the first stratum. In each step, half of the
elements in R are randomly swapped with elements from an SRS of the next stra-
tum. The likelihood of an element from a stratum being in the final sample decreases
geometrically as its index decreases.

Sampling from a sliding window expires older elements falling outside the win-
dow range and focuses on the most recent data. To maintain a sample of a specified
size, elements that expire must be immediately removed. It can further be distin-
guished between sequence-based windows, which e.g. hold the N most recent el-
ements, and timestamp-based windows, which store elements received within the

6.10. Representative Sampling in Data Streams 103

past t time units (Babcock, Datar, and Motwani, 2002). However, it is important to
note that in generalized windows, elements can be removed in any order. Addition-
ally, the sliding window size for "valid" elements to be sampled can be larger than
the actual size of the reservoir. Still, in the case of standard sliding windows (from
"left to right"), which eliminate the oldest elements and include the newest elements,
the window size corresponds obviously to the sample size.

Since memory is limited and smaller than the total incoming (infinite) data, pre-
cise quantile computation is not possible, and the best achievable solution is an ap-
proximation since any data not explicitly stored is irretrievably lost (Buragohain and
Suri, 2009). Recent research has focused on achieving provable-quality approxima-
tions of quantiles, aiming to provide epsilon-approximate quantile summaries of a
sequence of data elements. These summaries allow quantile queries within a cer-
tain precision, primarily defined by the size of the summary data structure. Ran-
dom sampling, however, though easy to implement, requires a relatively large sam-
ple size to achieve an expected level of approximation accuracy. There are several
variants of quantile summaries, including those for distributed data streams, slid-
ing windows, biased estimations, and duplicate-insensitive quantiles (Buragohain
and Suri, 2009), and many approaches for maintaining quantile summaries in data
streams (Chen and Zhang, 2020; Liang, Li, and Liu, 2019; Lin et al., 2004).

On the other hand, trajectory sampling is a method that involves selecting a sub-
set of data points from a (very) long or infinite trajectory to extract a meaningful
representation while preserving essential characteristics. This is useful for (1) reduc-
ing computational complexity, as analyzing the complete trajectory can be computa-
tionally intensive, (2) data reduction, as the full trajectory may contain redundant or
irrelevant information, and (3) facilitating visualization and interpretation by work-
ing with a much smaller subset of data. Sampling from infinite trajectories is directly
related to data streams, especially in the context of real-time analysis; involving con-
tinuous, ongoing processing as it arrives. Representative trajectory (i.e. data stream)
sampling is also an important concept for measuring the similarity or distance of
different (infinite) trajectories (Su et al., 2020; Tao et al., 2021; Toohey and Duckham,
2015; Magdy et al., 2015; Wang et al., 2013), and particularly of interest in the context
of DL (Li et al., 2018b; Fang et al., 2022; Yang et al., 2021).

105

Chapter 7

Methods

In this chapter, we present the novel methods and strategies developed to effectively
address and solve the core problem discussed in this thesis work. Building upon the
concepts outlined in the previous Chapters 2 - 6, this section assumes a foundational
understanding of ML methodologies and terminologies. A concise summary of all
contributions was provided in Chapter 1 [Contributions].

7.1 Neural Networks Based on Complex Numbers with Weights
Constrained along the Unit Circle

Notice: Our work and findings on complex-valued NNs (presented in this thesis)
have been published in Guimerà Cuevas, Phan, and Schmid, 2023. It was inspired
and builds upon our previous research (Guimerà Cuevas and Phan, 2021), but dif-
fers significantly as it has been substantially improved and modified (both the com-
plex architecture and its mathematical framework); thus, constitutes novel contribu-
tions. In particular, this novel contribution has been accepted for publication, after
peer review. The Version of Record is available online at: https://link.springer.
com/chapter/10.1007/978-3-031-33374-3_28. Use of this Accepted Version is sub-
ject to the publisher’s Manuscript terms of use. Therefore, please refer to Guimerà
Cuevas, Phan, and Schmid, 2023 for specific details on sections:

7.1.1 Convolutional Layer

7.1.2 Numerical Stability

7.1.3 Weight Initialization

7.1.4 Alternative Normalization Correction Factor

7.1.5 Enhanced Complex Neurons with Linear Weight Scaling

Take-Away

To mitigate problems associated with weight regularization, weight sup-
pression, and information loss due to zero weights, it is possible to utilize
complex-valued NNs instead of their real-valued NNs. This alternative not
only addresses the mentioned issues but also enhances the network’s expres-
siveness, albeit at the cost of increased computational complexity.

https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28
https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28

106 Chapter 7. Methods

Keywords

Complex-valued Neural Networks • Weight Regularization • Expressiveness

7.2 Data Representation & Encoding

We have already introduced the raw structure of the input data in Chapter 4.1. In this
section, we will outline our encoding method (i.e. input transformation/prepara-
tion) for hierarchically encoding HDBs into special tree structures based on graphs,
which will then serve as the input for our model.

7.2.1 Hierarchical Data Interpretation

Given multiple HDB entities with various relationships, both to groups and recur-
sively to subgroups, we can interpret and represent this inherent structure of such
hierarchical arrangements as "trees" (Figure 7.1). A given tree structure can here take
any arbitrary shape, specifically with a varying number of (sub-) nodes at each level.
It may also be entirely asymmetrical, display inconsistent depths along sub-paths,
and encode multiple diverse (heterogeneous) features for different node types. That
way, we can easily model 1 : n relations in a hierarchical manner where the order of
sub-nodes (aka child nodes) is irrelevant, i.e. undefined and holds no significance;
which is exactly what we want since we are dealing with quantitative relations (this
is very important).

FIGURE 7.1: Interpreting raw data as graph structures.

Each tree node may then hold (i.e. store) any number and type of features (Fig-
ure 7.1), such as categorical values, numerical values, etc. Therefore, different nodes

7.2. Data Representation & Encoding 107

hold different features. E.g., one node may represent a specific sensor; and different
sensors collect different features. And so, not only the tree structure is important,
but also the feature values. In other words, the meaning/representation of the tree
structure extends beyond its topology and also encompasses the specific feature val-
ues associated with each node.

FIGURE 7.2: Visualizing feature storage within tree-nodes.

However, the encoding in Figure 7.1, as presented, would have a downside: not
all child nodes must have the same features (and feature dimensions); and so feature
aggregations cannot be directly performed. Ideally, nodes under a common parent
node would share the same features, and nodes under different parent nodes can/-
would have distinct feature types, counts, and values (Figure 7.2).

Therefore, we further propose grouping nodes from the same HDB table entity
under a common virtual node; guaranteeing so that all sub-nodes of any given parent
node have equivalent features. An illustration of transforming an HDB into a tree-
like graph with virtual nodes is given in Figure 7.3.

The important key points of the encoding can, hence, be summarized as:

• Hierarchical Structure Representation:

– HDB entities with multiple diverse relationships can be interpreted as
hierarchical structures.

– Representation of this structure is akin to "trees" with arbitrary shapes,
varying node counts, asymmetry, and inconsistent depths.

• Node Features:

– Each tree node can store various features and feature types, e.g. categori-
cal and numerical values.

– Different nodes may represent different entities; such as sensors collecting
different features.

• Importance of Tree Structure and Features:

– The meaning of the tree structure goes beyond its topology; it is also in-
fluenced by the feature values assigned to each node.

108 Chapter 7. Methods

FIGURE 7.3: Top-left: Original HDB (Hierarchical Database). Top-
right: Corresponding tree-like graph representation. Bottom: Final
transformation with virtual nodes ensuring equal color distribution

among child nodes. Different colors denote distinct DB tables.

– Both the structure and feature values shape the overall representation.

• Virtual Nodes:

– Nodes from the same HDB table entity are grouped under a common
"virtual" node.

– This ensures that all sub-nodes of a parent node have equivalent features;
and so, feature consistency.

7.2.2 Tree-Data Encoding

Now that we have a high-level picture of the encoding scheme, the next step is the
actual encoding of the tree structure, in particular, the encoding of the individual
nodes. The 1 : n relations of the HDB are represented hierarchically as trees. Each
node in a respective HDB tree structure is assumed1 to have all the features of its
corresponding "DB table", although not all tables must exist as nodes, and each table
can have an arbitrary number of sub-tables (i.e. child nodes) and features; including
different feature types and dimensions. DB tables on the same hierarchical level are
separated and rejoined by virtual parent nodes, such that every child node of a par-
ticular virtual node now belongs to the same DB table. Each node further contains
a dynamic feature vector representing all of its sub-trees. This encoding pattern is
designed recursively. A node’s representation consists of two components:

1In Section 7.2.3, we propose an approach to encode non-hierarchical entities. This can be used for
and applied to cases where nodes only have a subset of a DB table’s features. Individual features are
transformed into nodes, addressing missing features as they become missing nodes.

7.2. Data Representation & Encoding 109

• A feature representation v⃗ f eat,

• and a sub-embedding representation v⃗sub.

The feature representation vector stores the encoding of features from the corre-
sponding DB table; as well as a node identification feature to assure the distinction of
different node types or node instances (i.e. node graph paths, or node instances) as
part of the feature vector. A node’s complete encoding is therefore a representation
of itself plus that of its sub-graph. Formally, let ω ∈ Ω denote a node instance of all
possible nodes Ω with respective sets of direct child nodes θi ∈ Ωω. Note, that any
node may be the root node of a sub-graph. We will denote the whole set of nodes
within its corresponding sub-tree (including the root ω) as Ω△ω .

Let v⃗ω be the feature and sub-embedding combination, defined as:

v⃗ω := v⃗ω, f eat ⊕ v⃗ω,sub (7.1)

where ⊕ is the concatenation operation. Nodes without any features (e.g. the
root node) have consequently v⃗ω ≜ v⃗ω,sub. The challenge and art here is determining
a representative v⃗ω,sub for all sub-nodes; Features v⃗ω, f eat are fixed per definition. Let
Uω := {v⃗θ1 , ..., v⃗θ|Ωω |

} be the union of all sub-embeddings for all child nodes θi ∈ Ωω

of a given node ω:

Uω ≜

v⃗θ1

v⃗θ2

...
v⃗θ|Ωω |

 =

[⃗vθ1, f eat ⊕ v⃗θ1,sub]
[⃗vθ2, f eat ⊕ v⃗θ2,sub]

...
[⃗vθ|Ωω |, f eat ⊕ v⃗θ|Ωω |,sub]

 (7.2)

Note that the child-collection Uω has no order. It is very important to provide
a permutation-independent mapping since a graph has no "ordering" of its child
nodes, just as a DB has no "ordering" of its sub-tables. Otherwise, we would have
many different representations for the same entity, which is obviously unacceptable.
An illustration of a node’s composition is given in Figure 7.4 below:

A child-matrix representation of Uω be denoted as Uω ∈ R|Ωω |×|⃗vθ |. The number
of columns in the child-matrix Uω corresponds to the encoding size |⃗vθ | of the con-
catenation of the feature- and child-encoding (which is equal for all nodes within a
common parent; e.g. virtual node). The number of rows corresponds to the number
of child nodes and can vary between nodes. Leaf nodes have no child nodes and
so their node encoding is their feature encoding. The actual row permutation of Uω

is irrelevant; the final embedding encoding will (and must) be permutation inde-
pendent, again, just as a DB has no concept of "ordering" for its (sub-)tables; there
should only be one deterministic representation per instance2.

Let fΩ denote a function for any instance ω ∈ Ω that returns the embedding
representation of a given child-collection, so that any child-matrix with arbitrary
ordering of rows has the same embedding as the child-collection, i.e. a mapping,
so that ∀Uω ,U′ω : fΩ(U′ω) = fΩ(Uω) =: fΩ(Uω) holds for any two explicit matrix
representations of Uω. Using the recursive definition v⃗ω,sub := fΩ(Uω), it follows:

v⃗ω,sub ≜ fΩ(
⋃

θ∈Ωω

{v⃗θ}) = fΩ
(⋃

θ∈Ωω

{[⃗vθ, f eat ⊕ v⃗θ,sub]}
)

(7.3)

2Ensuring consistent and deterministic embedding representations is essential for stability, effective
training, and generalization, similarity search, clustering, instance discrimination, etc.

110 Chapter 7. Methods

FIGURE 7.4: Visualizing the recursive node encoding scheme based
on node features and child nodes.

A proper definition of the embedding function fΩ is of great importance for the
final effectiveness and utility of the model. As we will show later, we will use a DNN
to train and learn an optimal configuration of weights to calculate and determine
meaningful representations (Section 7.5).

7.2.3 Non-Hierarchical Entity Encoding for Feature Vectors

If we consider Figure 4.5 again, we can recall that not all data entities of interest need
to exhibit a hierarchical structure (e.g. data can be an aggregation of many different
sources; including non-HDB structures). We will refer to such non-HDB data entities
as non-hierarchical entities (NHEs). NHEs, however, can still hold multiple feature
values of different types (e.g. categorical, numerical, time-stamps, etc.); and come
in various forms (e.g. textual, numeric, etc.). Our focus will now shift to NHEs
represented as feature vectors, denoted as FVs (inherently a subset of NHEs).

A simple way to deal with multiple FVs is to concatenate the various features
directly, usually after preprocessing, and processing them as a whole; and/or to
manipulate FVs further, e.g. generating a lower-dimensional representation like an
embedding for the corresponding entity to reduce dimensionality.

FVs typically include a range of different features, especially numerous categor-
ical ones. However, when integrating these features, there may be instances where
certain features (e.g. categories) are missing or not directly applicable, resulting in
the presence of missing values in the FV. Managing these missing values requires
careful consideration. For instance, a simplistic approach like imputing missing val-
ues with zeros or the mean value may not accurately represent the data, potentially
being incorrect or not being a meaningful interpretation (e.g., calculating the mean
of categorical variables is nonsensical).

7.2. Data Representation & Encoding 111

Therefore, since missing values are very common in our use case, we will adopt
a distinct alternative approach by employing the same model architecture approach
proposed for the hierarchical trees; albeit in a slightly modified manner. We will in-
terpret and transform the FV (i.e. NHE) entity as/into a hierarchical structure. This
approach offers some interesting advantages: Firstly, it ensures framework consis-
tency as all embeddings are computed using the same underlying architecture and
logic. Secondly, it can leverage a specific type of contrastive learning through a graph
similarity index/approach. For instance, using the Jaccard coefficient, we would
otherwise not be able to calculate tree-node intersections and therefore always re-
sult in an overlap of zero. Finally, missing values or entries are not an issue, as these
represent merely "non-existent" nodes; posing no problem at all and not requiring
any other special handling or missing value imputations. This is particularly useful
in cases where we have lots of missing categorical and entity-specific data.

Figure 7.5 below shows the transformation of an NHE into a hierarchical equiv-
alence that can function as an input for our model and follows the hierarchical (tree-
like) encoding scheme. The new data structure encodes categorical features as child
nodes and, therefore, enables us to apply common graph similarity metrics (such
as the Jaccard coefficient, etc). It employs a trainable look-up table for categorical
variables as explicit child nodes and retains numeric features as node attributes. Al-
ternatively, one could also encode the numeric features all as individual child nodes
(i.e. with no features in the parent node) as well.

FIGURE 7.5: Depicting the data-structure transformation of non-
hierarchical entities. On the left is the raw entity with all its features
and categories; on the right is the respective transformed version that

can function as input for our model.

112 Chapter 7. Methods

7.2.4 Composite Graphs: Shared Data Structures for Reducing Memory
Overhead & Ensuring Uniqueness

Traditionally, graphs are trained collectively, such as in batches or contrastive meth-
ods. The embeddings of individual graph nodes are processed and inferred sep-
arately and independently. However, training graphs in isolation has some draw-
backs. When using independent graphs, the same node entity may have non-unique
representations across different graphs, resulting in inconsistent and confusing (e.g.
biased or misleading) downstream analysis. Moreover, duplicate node entries can
lead to redundancy and cause memory overhead, especially for larger datasets. E.g.,
if we have identical sub-graphs in multiple trees, then we would have to store the
same data structure multiple times. Note, that duplicate nodes, sub-graphs, etc.
must also very importantly have identical features to be considered "duplicates";
otherwise, the node’s embedding can not be shared since the node represents differ-
ent data. That is, duplicates are identical in features and topology.

Therefore, a composite approach that utilizes a shared data structure may offer
some advantages here. It enables multiple graphs to "point" the same node entity,
ensuring that each entity only occurs exactly once, and hence has only one embed-
ding (i.e. a unique node representation). It further reduces memory usage since there
are no duplicate nodes; depending on the dataset, this may be significant. Then, dur-
ing training or inference, however, only nodes from the corresponding graph are ac-
tive while nodes from other graphs are deactivated. This is important to ensure that
the graphs are processed independently. Otherwise, information from other graphs,
which are not of interest, can propagate up the model or to the root node. That is,
we are effectively only interested in the shared embedding/information; we do not
want any influence or information from other (sub)-nodes that are not part of the
actual graph. Figure 7.6 depicts this idea.

FIGURE 7.6: Illustration of a composite graph approach. Top: tra-
ditional method, defining each graph separately. Bottom: merging
graphs by connecting nodes with identical features (e.g. for the same
entity), ensuring each entity has only one representation. Graphs are
trained in isolation (but in context), i.e. considering only nodes con-

tained in the original graph.

7.3. Feature Pre-Processing 113

7.2.5 Encoding Determinism

The encoding transformation from a raw source file (e.g. CSV) to a graph structure is
deterministic and unique, including feature normalization and categorical encoding.
As a result, the inverse transformation (from the graph back to the original raw CSV
file) is deterministic and unique as well. This is very useful since we can now easily
compare the original file to the reconstruction to ensure that our transformation is
correct (Figure 7.7). In other words, this implies that reversing the encoding process
applied to transform data into a graph will yield the (exact) original CSV file. This
reversibility can be leveraged and is advantageous for validation, hence, facilitat-
ing a straightforward comparison between the initial file and the reconstructed file
derived from the graph structure. Validating that the reconstructed CSV file aligns
with the original one confirms that the series of transformations used to convert data
into a hierarchical tree-based graph structure and subsequently back were correct
and accurate, ensuring no loss or corruption of information occurred. Otherwise,
on the other hand, non-deterministic mapping between the CSV file and the graph
structure would complicate reconstruction, making validation more intricate and re-
quiring storing (i.e. remembering) non-deterministic operations; which would add
an additional layer of complexity in this scenario.

FIGURE 7.7: Determinism and uniqueness of data encoding.

Take-Away

We can interpret hierarchical data as trees and express graphs and instances
as (a set of) matrices. This enables us to avoid many of the limitations, chal-
lenges, and problems that would otherwise be encountered when utilizing a
brute-force linearized one-dimensional vector encoding.

Keywords

Hierarchical Data • Trees • Matrices • Encoding • Representation Uniqueness

7.3 Feature Pre-Processing

Feature scaling and normalization play a central role in ML applications and of-
ten decisively influence the success of an ML model (Singh and Singh, 2020). It is
therefore important to adequately perform feature pre-processing such as adequate
scaling, normalization, or standardization of feature values.

114 Chapter 7. Methods

7.3.1 Numeric Feature Normalization

Please note: Our contribution of "Tanh-Normalizations" has been accepted for pub-
lication, after peer review in Guimerà Cuevas and Schmid, 2024b. The Version of
Record is available online.

Although many linear and non-linear methods exist (e.g min-max normaliza-
tion, mean-std standardization, quantile transformers, etc.) we will use and propose
a novel scaling method based on the tanh-estimator (Hampel et al., 2011) since it has
shown to be very robust and highly efficient (Bhanja and Das, 2018; Jain, Nandaku-
mar, and Ross, 2005; Ribaric and Fratric, 2005). Our contribution here was peer-
reviewed and accepted for publication.

The tanh-estimator (Hampel et al., 2011) is defined as:

ϕ(x) :=
1
2

[
tanh

(
0.01

(x− µΨ)

σΨ

)
+ 1
]

(7.4)

where µΨ, σΨ are the mean and standard deviation of the scores of the Hampel
estimator. Per definition, the range of the tanh-estimator is [0, 1], but we can con-
strain it linearly within the range of [−1, 1] using the normalization of ϕ′(x) :=
tanh

(
0.01 (x−µΨ)

σΨ

)
. One reason for constraining the outputs at an interval with zero

mean is that "convergence is usually faster if the average [...] is close to zero" (Le-
Cun et al., 2012). This heuristic should also hold for hidden layers, which is also
why Batch-Normalization (Ioffe and Szegedy, 2015) is often applied to the outputs of
activation functions.

Choosing the right Hampel parameters, however, is crucial and challenging. A
modified tanh-normalization was proposed (Latha and Thangasamy, 2011) that used
the raw features’ mean and standard deviation rather than the Hampel scores. The
intrinsic complexity associated with the Hampel function was fully removed, result-
ing in a less complex formula (i.e. less. computation). They did, however, employ
a default constant value of 0.01, which we will refer to as the spread-value and may
still be seen as a configurable hyper-parameter which we denote as α. The correct
choice of α is still critical since it regulates the spread-value of the output prior to the
non-linear tanh transformation, hence affecting the effective distributions of the fea-
tures, which we may still wish to keep close to, for example, a Gaussian distribution.
We will propose an adaptive method that directly builds upon the modification as
suggested by (Latha and Thangasamy, 2011). The reason for determining the spread
factor automatically is to avoid further hyper-parameters and adapt the formula to
custom data. We will compute and minimize divergence against a target distribu-
tion using the Wasserstein distance (WD) (Rüschendorf, 1985). Formally, the p-th WD
between two probability distributions u, v is defined as:

WDp(u, v) := inf
π∈Π(u,v)

(∫
R×R

d(x, y)p dπ(x, y)
)1/p

(7.5)

where Π is the set of joint distributions π for (x ∼ u, y ∼ v) with marginals u, v.
For p = 1 and d(x, y) := |x− y|, it follows (Ramdas, Trillos, and Cuturi, 2017):

WD(u, v) = inf
π∈Π(u,u)

∫
R×R
|x− y|dπ(x, y) =

∫ ∞

−∞
|U(t)−V(t)|dt (7.6)

where U, V are the cumulative distribution functions (CDF) of u, v respectively.
Informally, the WD metric may be thought of as the smallest "cost" of converting one

7.3. Feature Pre-Processing 115

probability distribution to another.
Under the premise that the optimal data distribution of feature values follows

a target distribution with desired properties; such as having zero mean, unit vari-
ance (LeCun et al., 2012), (e.g a standard Gaussian); the modified normalization pro-
posed by (Latha and Thangasamy, 2011) is sub-optimal due to the constant spread
value for all features. Exemplary, we will use a standard Gaussian as our target. Let
FZ be the standard normal distribution’s CDF of the standard Gaussian Z. Thus,
fZ(x) := e−x2/2

√
2π

. Let µx, σx be, respectively, the mean and standard deviation of a
feature distribution for a specific feature x ∈ R. We replace the fixed spread value
with a tunable α:

ϕα
X(x) := tanh

(
α · x− µx

σx

)
(7.7)

The goal is to determine the best α for each feature such that the output distribu-
tion of ϕα

X follows our (desired) target distribution. Fϕα
X
(x) be the CDF of ϕα

X(x):

Fϕα
X
(x) :=

∫ x

−∞
ϕα

X(t)dt (7.8)

We define the objective loss LWD per feature using Equation 7.6:

LWD(α) :=
∫ ∞

−∞
|FZ(t)− Fϕα

X
(t)|dt (7.9)

The normalized feature values are constrained to the range [−1, 1], whereas the
Gaussian is defined for all real values. One may define the KDE for values < −1
as zero and > 1 as one, to allow a direct comparison; or use a truncated Gaussian
at a quantile q ∈]0, 1[, scaled to a domain of [−1, 1]. Let pp f be the percent point
function (alias. quantile function) of fZ such that FZ

(
pp f (q)

)
= q.

Then, for x ∈ [pp f (q), pp f (1− q)], f q
Z(x) defines the q-truncated Gaussian. Low

q values have greater min/max values, which squish the central mass towards the
center, whereas high values distribute the mass more towards the tails. The pa-
rameter q, thus, determines the density coverage of the truncation. By varying the
standard deviation of the truncated Gaussian, we can choose distributions where
the probability mass is either concentrated in the middle or distributed more evenly.

To assure equivalent domains (i.e. [−1, 1]), we define f̂ q
Z(x) := 2 · f q

Z(x)−min(f q
Z)

max(f q
Z)

− 1.

Let F̂q
Z(t) be the respective KDE function. The new truncated loss then is:

Lq
W(α) :=

∫ 1

−1
|F̂q

Z(t)− Fϕα
X
(t)| dt (7.10)

Direct minimization of Lq
W over α is not convex, as can be seen in Figure 9.19,

where convexity is broken for several different feature distributions around α ≈
0.6. However, when a normal Gaussian is used as the target distribution (and also
for several other distributions), we observe that the loss function Lq

W(α) is quasi-
convex (Figure 9.19), which implies a single (global) minimum. Thus, to calculate
the optimal spread per feature given q, the efficient numerical optimization method
Brent3 (Brent, 1971) can be leveraged. Alternatively, other gradient-free algorithms
(Brent, 2013) may also be used, but because this pre-processing step will only be

3E.g. Brent uses a fast-converging secant technique or inverse quadratic interpolation, but if re-
quired, adapts a more robust bisection approach.

116 Chapter 7. Methods

executed once, performance here is not critical. The optimum spread value α̇ that
minimizes Lq

W(α) is:

7.3.2 Ideal Spread Factor

The ideal spread values (Eq.7.7) are incorporated into the MTN formula (Latha and
Thangasamy, 2011), wherein the static spread value of e.g. 0.01 is replaced by the
corresponding ideal α̇ of each feature. Consequently, the ideal transformation func-
tion for each individual feature becomes:

hα̇(x) := tanh
(

α̇(x− µX)

σX

)
(7.11)

Trainable Spread Factor

Once α̇ has been pre-computed independently for each feature, it may be left con-
stant/fixed and does not need to be altered. In many machine learning domains,
one can here additionally learn a training-objective-specific spread value γ (to fine-
tune α̇) as part of the training process, e.g. via back-propagation optimization. Let
τ > 0 be a trainable parameter. Then, a corresponding trainable tanh-estimator hγ

can be defined by simply setting γ := τα̇, and so, hγ(x) := tanh
(τα̇(x−µX)

σX

)
. By ad-

justing τ, we can learn the ideal spread of the feature distribution during training
end-to-end. Because the backward optimization here is solely dependent on τ, α̇ is
still only computed once before the training and can be reused for different training
runs. The model can now "learn" which normalization (i.e. spread factor) is the best
for optimizing a specific model loss and training objective; also in conjunction with
other features. Recall that otherwise α̇ is determined independently of other features
and specific training goals.

Spread Value

To summarize the role of the spread value: the parameter α in the feature normal-
ization plays a crucial role, as extreme values can disrupt the normalization process.
If α is too large, most values get close to one, while a too-low value drives them to-
ward zero, counteracting the actual normalization goal. Determining the optimal α
relies on the desired distribution; and can e.g. be visualized through the KDE graph
for a tanh-normalized Gaussian. Standardization seeks zero mean and unit standard
deviation without altering the distribution shape. Our proposed optimization pro-
cess involves minimizing the Wasserstein Distance (WD) loss between the output
KDE and the desired distribution. The optimal spread value is denoted as α̇; and
is pre-computed. Note, how the search for the best α involves minimizing the WD
loss rather than WD itself (we are constrained to only adjust the spread value as the
independent variable; we cannot otherwise modify the distribution of features). Op-
tionally, we can learn a further parameter τ, and use τα̇ as the final effective spread;
where τ is optimized to minimize an objective loss (not the WD anymore).

The ultimate value of α significantly influences the tanh normalization’s KDE
and, subsequently, the WD. It also affects the range and quantile distribution of the
transformed features. Overall, using a standard spread of 0.01 is suboptimal, and
relying on random guesses or manual adjustments is neither practical nor sensible.
An automatic mathematically motivated method is therefore needed (which we term
Wasserstein Tanh-Normalization).

7.3. Feature Pre-Processing 117

7.3.3 Time-Stamps Encoding

Time can be measured cumulatively or cyclically. Cumulative time characteristics
measure the total time elapsed since a given starting point. However, we are often
interested in finding correlations and patterns between cyclic time properties (e.g.
24-hour day cycles, 12-month year cycles, etc.). In such a case, using a cumulative
representation would be sub-optimal.

Yet, when dealing with time-stamps in the format of YEAR-MONTH-DAY and
HOUR:MIN:SEC (e.g 2014-09-17 12:12:26) we are interested in both encoding strate-
gies, cumulative for "years" and cyclical for the rest. As for the cumulative part, we
can simply accept the raw score, whereas, for the cyclical part, we can use the con-
ventional encoding approach of applying periodic functions, similar to the concept
of complex numbers. In fact, we can map each time feature xt (e.g hour) - normalized
by the maximum of its domain xmax

t (e.g 24 hours) - respectively onto the complex
unit-circle with:

ft(xt) := cos
(

2π
x

xmax
t

)
+ i sin

(
2π

x
xmax

t

)
(7.12)

where i is the complex imaginary number. Note that the feature "days" is cyclic
but a month can vary in length. One might use the mean length of the synodic
month, which is approximately 29.53059 days, and cap respectively any greater val-
ues. A better method, however, is to instead encode the day of the year as a value
between [1,365] for regular years (neglecting leap years of 366 days); and map this
on the unit-circle.

7.3.4 Ordinal Feature Encoding

Some numerical features have an ordinal structure, e.g. the software version for a
specific prototype. However, it cannot be guaranteed that after the data set has been
divided into train and test sets, the train set will contain all of the versions. This
can be problematic when trying to derive an appropriate encoding of those versions
(e.g. in the test set or when predicting new data), since they were not included in the
train set and, therefore no direct ordinal equivalent exists.

For example, suppose the train set has an explicit mapping of versions to values
{v.0 : 0, v.1 : 1, v.2 : 2}. If a new version v.1.15 needed to be encoded, there would
not exist any corresponding matching version. In other words, we can not directly
expect the ordinal encoding of the test set to work on previously unseen data.

One possible intuitive way of solving this is to map the version to its closest
neighbor (i.e. version) and assign its encoding. Following the example above, ver-
sions v.0.4, v.1.15, v.1.7, v.2.3 would be respectively mapped as {v.0.4 : 0, v.1.15 :
1, v.1.7 : 2, v.2.3 : 2}. This can be seen as a hierarchical order-preserving encoding
approach; where unseen/non-matching instances are mapped to their closest hier-
archical index position.

Take-Away

Proper pre-processing and scaling of feature values is critical for effective
training. Different data types necessitate different processing methods. For
numerical features, we recommend using an adaptive outlier resilient normal-
ization technique that automatically adjusts to the data distribution.

118 Chapter 7. Methods

Keywords

Pre-processing • Scaling • Feature Values • Effective Training • Adaptive
Outlier Resilient Normalization

7.4 Tree-Data Augmentation

By using hierarchical graphs, we have the ability to effectively expand the size of
the dataset synthetically by generating new artificial graph instances through the
process of augmentation. There are numerous approaches and possible ways to data
augmentation, but we will be adopting a straightforward "merge & sample" tech-
nique (Figure 7.8). Initially, we select a random subset of k graphs from the complete
pool of graphs Θ ⊆ Ω, based on a fixed probability value p, and merge them to-
gether into a unified tree. Subsequently, we generate a random sub-graph from this
newly formed union tree. Furthermore, this can be repeated several times to create
as many new synthetic hierarchical trees as required. Additionally, selecting differ-
ent values for k or sub-sampling on multiple multiple times are also viable options.

FIGURE 7.8: Synthetically generating new graphs from given graphs
(in this case out from a total of two graphs).

If p−1 := |Θ|, then we sample - and consequently augment the data - based
on a uniform distribution; inversely to the number of instances. However, by doing
so we would have problems when dealing with imbalanced (e.g. biased) data sets
where given groups or subgroups exist more often than other hierarchical graph
structures. In fact, we would be over-sampling those structures and under-sampling
rarer ones and, thus, have a bias in our augmentation. To counteract this, we can use
conditional sampling that samples graphs based on their rareness. A straightforward

7.4. Tree-Data Augmentation 119

question here is how to define the "rareness" of a given graph, but we can here e.g.
simply use the average graph similarity - e.g. Jaccard-Coefficient (JC) - against other
graphs; or more advanced approaches like determining similarities (or conducting
clustering) in the latent embedding/manifold space. This is based on the motivation
that rare graphs are those that have low similarities to others, whereas graphs with
frequently occurring structures and patterns yield higher average similarity scores
and are, thus, less of interest as they are less novel (i.e. special).

As an example, let us again consider the JC score for two graphs - which essen-
tially measures the overlap of graphs relative to their total sizes - and is defined as4:

JC(ω, ω′) :=
|Ω△ω ∩Ω△ω′ |
|Ω△ω ∪Ω△ω′ |

=
|Ω△ω ∩Ω△ω′ |

|Ω△ω |+ |Ω△ω′ | − |Ω
△
ω ∩Ω△ω′ |

. (7.13)

Then, given a graph instance, we can define the total similarity score for an in-
stance ω ∈ Ω by using JC-based similarity scores e.g. on either sub-graph similari-
ties or full-graph similarities.

JC-subgraph-score(ω) =
Ω\ Ω△ω

∑
ω′

JC(ω, ω′)

JC-graph-score(θ) =
Θ\{θ}

∑
θ′

JC(θ, θ′)

(7.14)

The JC-graph-score calculates the JC score for entire graphs, while the JC-subgraph-
score calculates it for every possible sub-graph. Computing the JC-subgraph score
is, thus, extremely computationally expensive and absolutely impractical. However,
it can still be used in conjunction with a Monte Carlo score approximation. Still, we
suggest using the JC-graph-score instead; it is much more computationally feasible.

The full JC score matrix can be retrieved by generating (e.g. pre-computing) the
pairwise symmetric Jaccard similarity matrix once and then summing up or averag-
ing the respective rows (or columns; as the matrix is symmetric). However, comput-
ing such a JC matrix scales quadratically with the number of graphs and might be-
come somewhat computationally expensive for very large datasets. However, since
it is symmetric; we only need to compute the upper/lower triangle matrix of it:

ν⃗ := Edim=1

1 JD(θ0, θ1) JD(θ0, θ2) · · · JD(θ0, θ|Θ|−1)

JD(θ1, θ0) 1 · · · · · ·
JD(θ2, θ0) 1 · · ·
· · · · · · 1

JD(θ|Θ|−1, θ0) · · · · · · 1

 ≜

νθ0

νθ1

νθ2

· · ·
ν|Θ|−1

(7.15)

Overall, given average similarity scores ν⃗ ∈ [0, 1]|Θ|×|Θ| of all graphs θ ∈ Θ, we
can then easily build an inversely related score distribution:

pθ = 1− νθ

∑Θ
θ̂

νθ̂

(7.16)

Note, that νθ ∈ [0, 1], and we subtract the normalized probability from one as
we are interested in sampling uncommon tree structures as well to avoid generating

4Recall, Ω△ω is the set of all nodes within a given sub-tree with root ω (including ω).

120 Chapter 7. Methods

biased structural overlaps, and so prevent over-sampling; i.e. we want to also sam-
ple those structures which have low similarities to all other trees and, thus, occur
less frequent. In other words: we want our data augmentation to be balanced and
not biased. Moreover, one could also apply an (inverse) Soft-Max probability trans-
formation, e.g. to avoid probabilities of zero; or also simply just use the standard
inverse proportional probability score transformation.

Take-Away

Data augmentation can help to improve training by creating additional and
new (synthetic) data. In our case, we can directly produce new data by merg-
ing and combining numerous different trees at random. Typically, we aim
to avoid over-sampling common patterns and under-sampling less frequent
(i.e., minority) ones: the synthetic data should not be biased.

Keywords

Data Augmentation • Synthetic Generation • Merging • Combining Graphs

7.5 Self-Supervised Contrastive Representation Learning on
Tree Structures

We are interested in learning meaningful representations for a set of (hierarchical)
tree structures so that they can be easily used in other ML models or for tasks such
as clustering, object similarity detection, outlier identification, or other subsequent
downstream processing. To achieve this, we will first employ a self-supervised-
based approach by determining and extracting similarity properties from the avail-
able dataset. Then, we will train a model in a semi-supervised manner to learn to
embed similar trees close to each other, while ensuring that dissimilar trees are far
apart. In other words, the closer two trees are in terms of similarity, the closer they
should be in the embedding space. Conversely, the more dissimilar two trees are,
the farther apart they should be.

We measure the similarity between two hierarchical trees ω{i,j} ∈ Θ in the dataset
using a similarity score function denoted as ≃ (ωi, ωj). It is important to note that
we can use any desired similarity function, such as graph-based, embedding, or
kernel-based distance metrics. It is worth mentioning that the similarity relation is
not an equivalence relation because it is not necessarily transitive, i.e.,

ω0 ≃ ω1 ∧ω1 ≃ ω2 ≠⇒ ω0 ≃ ω2 (7.17)

For instance, the Jaccard coefficient does not satisfy the triangle inequality. Figure
7.9 below illustrates this exemplary for a pair of three hierarchically structured trees.
Thus, when calculating the embeddings, we must make sure that the embeddings
of the pair (ω0, ω1) and (ω1, ω2) are close in the embedding space, but not the pair
(ω0, ω2).

Additionally, a similarity score function may not satisfy the properties of a dis-
tance metric, as the triangle inequality may not hold. That is, when choosing a sim-
ilarity function ≃ (ωi, ωj) one has to pay special attention to whether or not the

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 121

FIGURE 7.9: Illustration of the non-transitiveness of tree structures
over the Jaccard similarity relation.

function itself defines a distance metric d. For a given function d(ωi, ωj) to be consid-
ered as such, the four criteria positivity, identity, symmetry, and triangle inequality
must always hold:

1. Positivity: d(ωi, ωj) ≥ 0

2. Identity: d(ωi, ωj) = 0⇔ ωi = ωj

3. Symmetry: d(ωi, ωj) = d(ωj, ωi)

4. Triangle inequality: d(ωi, ωk) ≤ d(ωi, ωj) + d(ωj, ωk)

Overall, one can then make certain assumptions or not, depending on whether
it is a metric or not. Again, if we take JC as an example, we can form the Jaccard

distance (JD) metric via JD(ω0, ω1) := 1− JC(ω0, ω1) =
|Ω△ω0∪Ω△ω1 |−|Ω

△
ω0∩Ω△ω1 |

|Ω△ω0∪Ω△ω1 |
. The

fact that JD is a proper metric on finite collections was proven by Kosub, 2019.
An important distinction needs to be made between two types of hierarchies:

strict and non-strict. In strict hierarchies, nodes can only overlap if they share the
same parents from that node to the root node. For example, in cases of part-groups
and sub-parts, a part can only overlap with a different part if they belong to the
same sub/parent group. On the other hand, non-strict hierarchies do not consider
the parent path-nodes and only focus on the actual node itself. A good example
of this is environmental conditions, where it may or may not have been recorded
for specific (distinct) parts. Thus, in strict hierarchies, similarity is determined and
assessed based on the parent-path nodes, whereas in non-strict hierarchies, the focus
is solely on the overlaps between nodes, regardless of their parent nodes.

Furthermore, it is worth noting that nodes can also contain features. Therefore,
when comparing graphs, it is possible for a graph with a lower Jaccard coefficient
to be considered more "similar" if the feature values within each overlapping node
are more alike compared to a graph with a higher Jaccard score but significantly
different feature values. Hence, relying solely on the Jaccard coefficient as a metric
is inadequate (i.e. poor, insufficient) for accurately defining similarity. However, it

122 Chapter 7. Methods

does offer useful initial approximations and provides a general understanding of the
concept of similarity.

We therefore propose and adopt a recursive DL architecture that generates repre-
sentative embeddings for each of the active sub-trees in the hierarchy. This approach
follows a bottom-up strategy; beginning from the leaf nodes and propagating hier-
archical information upwards towards the root node. This generates a final root-
representation vector, representing the entire graph, which is then used to establish
similarities, detect clusters, and identify outliers.

Take-Away

Determining similarity on graphs in an unsupervised setting is a challenging
task due to the lack of clear definition and interpretation of the term "sim-
ilarity." Similarity can be defined based on structural/topological similarity,
similarity in feature values, or based on both.

Keywords

Unsupervised Setting • Graph Similarity • Unclear Definition • Interpreta-
tion • Structure Similarity

7.5.1 Loss Function

Defining a sensible and accurate loss function is of great importance as it serves as
the core foundation for our ML optimization. Failing to establish a "good" loss or
training objective will result in our model optimizing its weights based on a sub-
optimal loss function. We must, thus, not overlook or underestimate the signifi-
cance of the loss function as it directly influences and shapes the quality of the em-
beddings; and thus the performance and effectiveness of further downstream tasks.
That is, training (graph) embeddings over a poor/bad loss will inevitably lead to
poor/inadequate embedding representations. To ensure quality and counteract this,
we incorporate five essential properties into our loss function:

1. Reconstruction: How accurately can we recreate the original input (graph,
sub-tree, etc.) back from our embedding representation?

2. Composition: Does the embedding capture the independent nature of the
child nodes while still representing the entire graph composition as a whole?
Are the features within the embeddings uncorrelated with each other?

3. Similarity: Do the pairwise similarities between embeddings align with the
similarity/distance function, such as ≃ (ωi, ωj) or d(ωi, ωj)?

4. Contrast: Are similar embeddings close together and dissimilar embeddings
far apart in the embedding space? Does the embedding space maintain the
neighborhood of similar graphs?

5. Classification: Is it possible to predict and determine the class label directly
from the embeddings accurately?

Note, that contrast may be considered as an implication of similarity, i.e. if the
similarity loss is perfect, then one might argue that so is contrast loss as a conse-
quence. However, optimizing the similarity directly might be too complex/difficult

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 123

to achieve and, moreover, might also not have the same relevance. For example,
sometimes our ultimate goal may be to have good "contrasting" representations,
which might entail compromising on encoding local similarities accurately. So in-
stead of accurately wanting to represent the degree of similarity among similar ob-
jects, we might just want to focus effectively on differentiating/classifying between
"different" instances. So overall, capturing the exact level of similarity between ob-
jects can be challenging, but distinguishing between similar and dissimilar objects
can be relatively much easier and also more relevant. To achieve this, we divide
the loss into multiple components and assign separate weights to each component
based on our preferences. This approach grants us more precise control over the
embedding generation/learning process.

Similar applies to composition and reconstruction, where composition could be re-
garded as an implication of the reconstruction quality.

Reconstruction- & Composition Loss: Auto-Encoders

Reconstruction losses can typically be modeled using Auto-Encoders (AE) where the
goal is to reconstruct or approximate the original input out of its latent space (em-
bedding). Unlike typical AEs, our input is not in tabular form, but instead given as
a hierarchical graph, which we map, as explained earlier, into matrices (Figure 7.10).
The idea is that if the embedding perfectly represents and encodes the input data
and no information was lost, distorted, corrupted, etc., then one should be able to (in
theory) perfectly reconstruct the original input from it. And so, the more accurately
we can approximate this reconstruction, the higher the quality of our representation
or embedding vector can be assumed to be.

FIGURE 7.10: Illustration of the concept of reconstruction losses using
Auto-Encoders (AE). Here, an input matrix is fed into an AE and its

reconstruction output is compared against the original input.

Let U be an input matrix, and Û its corresponding reconstruction. The recon-
struction loss can be calculated by measuring the difference of pairwise matrix-
component values, e.g by using the mean squared error (MSE):

reconstruction loss ≡ lossrec := E
[
(U − Û)

◦2]
(7.18)

where [.]◦[.] is the Hadamard power. For the composition loss, we try to enforce a
zero correlation between distinct row entries (child) of the original and reconstructed
matrix, while simultaneously assuring perfect correlation between equivalent rows:

124 Chapter 7. Methods

composition loss ≡ losscomp := E
[
(Cos(U, Û)− I)◦2

]
(7.19)

where Cos(U, Û) denotes the respective cosine similarity matrix:

Cos(U, Û) :=
UÛT

||U||2||Û||2
(7.20)

and I the identity matrix with ones in the diagonal and zeros elsewhere.

Similarity- & Contrast Loss: Embeddings

We want similar trees to yield similar embeddings. We will train our models by
ensuring these properties hold for any random-batch combination of data instances
(i.e. trees). Let Y be the symmetric similarity/distance matrix with ones along the
diagonal for any arbitrary but fixed batch (e.g. the pairwise Jaccard matrix). We can
compute Y during runtime for each batch individually, or use dynamic program-
ming and pre-computation to efficiently retrieve entries of the matrix Y. Alterna-
tively, we could also use a label matrix, with components one if the label matches
and zero otherwise. Let Z be the embedding matrix of U. We then define the simi-
larity loss as:

similarity loss ≡ losssim :=
(Corr(Z, Z)− Y)◦2(

ˆmax
[
1− Y, Y

])◦2 (7.21)

where, again, ◦ denotes here the Hadamard power, ˆmax the element-wise max-
operation, and Corr(Z, Z) refers to the Pearson correlation matrix, defined as:

Corr(A, B) :=
E[(A− µA)(B− µB)

T]

σAσB
(7.22)

with µ, σ respectively being the mean and the standard deviation. Essentially,
we are calculating the error ratio against the maximum possible squared similarity
error and constraining the loss into a range between zero and one. It is also pos-
sible to omit the denominator and simply regard the numerator as the loss. One
could also use the cosine similarity here instead; but notice how when the mean is
zero the cosine similarity yields the same results as the Pearson correlation. In gen-
eral, correlation and cosine similarities have different interpretations. Overall, we
chose correlation to also better enforce embedding representations with linear rela-
tionships.

We then further define the pairwise embedding similarity score on trees based
on the correlation between their respective embeddings:

ES(ω, ω′) := |1− Corr
(

fΩ(ω), fΩ(ω
′)
)
| = |1− Corr(z, z′)| (7.23)

where, again, fΩ(ω) = z is the embedding function for any ω ∈ Ω. As we
trained the correlation to be either zero or one, we can expect Corr(z, z′) to return
values in the range of ≈ [0, 1]. Yet, to actually guarantee values between zero and
one, we can define ÊS(ω, ω′) which scales or bounds the values accordingly. Thus,
with ÊS(ω, ω′) ∈ [0, 1] , an embedding similarity of 0 indicates a perfect (positive)
correlation, i.e. similarity, whereas a value of one denotes total non-correlation, i.e
maximum dissimilarity.

The implementation of the contrast loss, however, is slightly more intricate. Let
v⃗ω represent a set of pairwise similarities for a specific instance ω. For instance, if

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 125

we were using the Jaccard distance, v⃗JD,ω would be the Jaccard similarity vector for
a given node ω, calculated as v⃗JD,ω :=

[
JD(ω, ω0), JD(ω, ω1), ..., JD(ω, ω|Θ|)

]
. Sim-

ilarly, if we were using embedding similarity, v⃗ES,ω would be the corresponding em-
bedding similarity vector v⃗ES,ω :=

[
1− ÊS(ω, ω0), 1− ÊS(ω, ω1), ..., 1− ÊS(ω, ω|Θ|)

]
.

To generalize, let v⃗≃,ω :=
[
1− ≃ (ω, ω0), 1− ≃ (ω, ω1), ..., 1− ≃ (ω, ω|Θ|)

]
be

the similarity array for a given similarity (or distance) function ≃ (., .). Let further
a⃗rg≃,ω be the vector corresponding to the arg-sort of v⃗≃,ω for a given node ω:

a⃗rg≃,ω := argsort[⃗v≃,ω] = argsort
[(
≃ (ω, ω0),≃ (ω, ω1), ...,≃ (ω, ω|Θ|)

)]
(7.24)

and so, argsort returns the indices that would sort a given vector in descending
order (not unique for vectors containing duplicate values). We define the inverse
binary operation gather that reorders a given vector v⃗ based on a sequence of indices,
such that the actual sorting operating sort[⃗v] ≜ gather

[
argsort[⃗v], v⃗

]
.

Let v⃗Y,θ denote our target/ground truth reference similarity array for θ. We then
define the resemblance error ϵ as a measure of how well the distance ordering is
respected:

ϵres := ∑
θ∈Θ

(sort[⃗v≃,θ]− gather[a⃗rgY,θ , v⃗≃,θ])
2 (7.25)

Simultaneously, we want to maximize the contrast between similar and dissim-
ilar embeddings. We can achieve this using a similar logic, but instead subtracting
the reversed (flipped) sorted embedding distances. We, therefore, define the flipped
resemblance error as:

ϵ f lip := ∑
θ∈Θ

(sort[⃗v≃,θ]− gather[reverse(a⃗rgY,θ), v⃗≃,θ])
2 (7.26)

This allows us to define the overall contrast loss as:

Contrast loss ≡ lossA
con :=

ϵres

ϵ f lip + λ
(7.27)

for a small λ to prevent the edge-case of zero division. Overall, we are trying
to minimize the loss by either minimizing the resemblance error or maximizing the
contrast. Also, instead of using the Euclidean distance as contrast, we can also use
the sum of the correlations of all corresponding embedding pairs (similar to before):

lossB
con :=− ∑

θ∈Θ
Corr(sort[⃗v≃,θ], gather[a⃗rgY,θ , v⃗≃,θ])

2

+ ∑
θ∈Θ

Corr(sort[⃗v≃,θ], gather[reverse(a⃗rgY,θ), v⃗≃,θ])
2 (7.28)

Moreover, we also propose a further alternative exponential contrast loss: Let D
represent the Euclidean distance matrix between each pair of embeddings. As D is
symmetric, we focus on its lower triangular matrix LD. Likewise, let LY be the lower
triangular matrix of Y (as it is also symmetric). The exponential contrast loss is then
calculated as follows:

Contrast loss ≡ lossC
con := ∑(e◦−LD − LY)

◦2 (7.29)

By integrating the exponential function, smaller differences between elements
of LD and LY are even further amplified, resulting in a larger contrast loss. This

126 Chapter 7. Methods

amplification, thus, helps to increase the discriminative nature of the loss function;
and focuses more on optimizing for more "severe" errors.

Also, note how exact pairwise full ground truth similarity scores or metrics are
not crucially necessary. Instead, instances can also be deemed similar if they share
the same label (e.g. classification label) and different otherwise; as already men-
tioned earlier. I.e., we can also just work with labels that indicate either similarity or
dissimilarity, and we do not necessarily need the exact degree of similarity.

However, the formulas mentioned above are only applicable if there is a defined
reference similarity score array for every pair of graph instances (i.e. if we know Y).
However, even without any ground truths (unsupervised learning), we can still per-
form contrastive learning in a self-supervised manner. One approach is to augment
and manipulate the graph and assign positive similarities to different augmented
versions of the same graph while setting similarities between different graphs to
zero. Another approach is to pretend that in every batch, half of the graphs are sim-
ilar and half are not (randomly chosen each time). By repeatedly doing this, we aim
for that similar objects will be easier to cluster together and dissimilar objects easier
to tear apart.

Classification Loss

Given instances with corresponding class labels, we can compute and optimize the
classification loss on the predictions induced by the respective graph embeddings.
We (can) use the classification loss in addition to the above-defined losses (Figure
7.11); as part of a multi-loss function. Classification losses are typically calculated
using the cross entropy loss; defined using pairs of probability predictions ŷi with
corresponding ground truth labels yi:

Cross-entropy loss ≡ lossclas :=
dim(ŷ)−1

∑
i=0

−yi log(ŷi) (7.30)

The probability scores for ŷi are then obtained using the Softmax function, which
is defined as: softmax(ŷi) = exp(ŷi)/∑

dim(ŷ)−1
j=0 exp(ŷj).

Classification can be performed at the root level, as well as at any other level
within the tree. In such cases, it could be beneficial to assign importance weights
to the classification loss based on the tree level. This way, the embedding of the
root node could e.g. have the highest weight, while the embeddings of the bottom
nodes would have progressively smaller weights. This is also motivated by the fact
that the root node "sees" the entire tree, and, therefore, can and should provide the
most accurate result. In contrast, lower levels of the hierarchy have limited visibility
of the data, and are thus more likely to have prediction errors and uncertainties,
particularly when crucial information is only available higher up. Consequently,
their prediction errors should carry less weight (e.g. during optimization).

Conducting classification at deeper levels can positively contribute to the overall
performance and identify the correct classification/label much earlier; it can for-
ward that classification information upwards, and also shape the sub-embeddings
accordingly. In fact, optimizing solely on the highest level (i.e. root node) could even
be (quite) hard otherwise: principles of algorithmic "divide-and-conquer".

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 127

FIGURE 7.11: Enhancing the model to support classification losses.

Total Loss

Let L := {L0,L1, ..} be a set of different loss functions (and/or regularization terms,
constrain-penalties, etc.). We can compose the total loss - alias objective loss - for
the optimization process respectively by a (weighted) sum of all individual losses,
typically done in the form of:

Ltotal :=
|L|−1

∑
i=0

αiLi (7.31)

However, the performance of the model is absolutely sensitive to the choice of
the weighting values α; obviously in addition to the individual loss values them-
selves. In fact, each loss function can yield different loss magnitudes as they can op-
erate on different scales, complexities, etc. Hence, even small loss magnitudes can
hold significant value, while large magnitudes do not necessarily indicate greater
importance. Therefore, the significance of a loss cannot (and should not) be solely
determined by its magnitude.

There exist several methods for composing weighting schemes, such as using
multi-objective optimization (Sener and Koltun, 2018), gradient normalization (Chen
et al., 2018), or using uncertainty (Kendall, Gal, and Cipolla, 2018). Yet, these meth-
ods are not always suited for a single-task setting, which is why multi-loss weight-
ing with coefficient of variations (CoV-Weighting) was proposed (Groenendijk et al.,
2021). CoV-Weighting is based on the idea that a loss with a constant value should
not be optimized further, but variance alone is insufficient as a metric since losses
with larger scales can also have larger variances. Although in the following we
will summarize the math behind CoV-Weighting, we highly recommend reading
the original paper for a more in-depth understanding and motivation. Overall, we
will be applying CoV-Weighting to our multi-loss objective (consisting of L).

Let µ, σ respectively denote the mean and standard variation. First, deriving
observations from a ratio scale is required for a valid calculation of the coefficient of
variation, and thus the authors propose scaling the losses for each time-step t via:

128 Chapter 7. Methods

ℓi,t :=
Li,t

µLi,t−1

(7.32)

The coefficient of variation cℓi for a given loss then divides the standard deviation
of ℓi by its mean value:

cℓi :=
σℓi

µℓi

(7.33)

The corresponding weight αi at time-step t is then:

αi,t :=
cℓi,t

∑j cℓj,t

=
σℓi

µℓi ∑j cℓj,t

(7.34)

For computational efficiency, mean and standard deviations are calculated in-
crementally without the need of having to store past observations using Welford’s
algorithm (Welford, 1962). They first keep track of the exponential moving averages:

µL,t = (1− 1
t
)µL,t−1 +

1
t
Lt

µl,t = (1− 1
t
)µl,t−1 +

1
t

lt

(7.35)

and then calculate the incremental standard deviation σt :=
√

Mt, via:

Mt = (1− 1
t
)Mt−1 +

1
t
(lt − µt)(lt − µt−1) (7.36)

Unlike the paper, however, we will use a slightly different but mathematically
equivalent formula to determine the standard deviation, yielding a somewhat more
convenient version for code (Finch, 2009; Weisstein, n.d.):

Mt = (1− 1
t
)
(
Mt−1 +

1
t
(lt − µl,t−1)

2) (7.37)

We can further limit the exponential averaging window size t to tmax by sim-
ply setting t ← max(t, tmax), to eliminate older scores. Furthermore, we recom-
mend having a ramp-up phase for the first tmin epochs to allow for more stable
weight scores, especially as scores at the start of the training may change dramat-
ically throughout the first epochs.

However, there are two minor possible concerns with CoV-Weighting: (1) it as-
sumes that all losses are equally essential to optimize. The loss weights are deter-
mined based on the properties seen during model training, incorporating a measure
of uncertainty to balance the losses, but the importance of losses is viewed in terms
of model optimization rather than the user’s preferences (e.g. priorities). For ex-
ample, perhaps the classification- and reconstruction loss should be given higher
importance and weight than a secondary loss like feature decorrelation or -contrast.
(2) It is based on the assumption that a loss term is satisfied when its variance ap-
proaches zero. It does not consider, however, that not optimizing it anymore may
again worsen that loss and "unlearn" what it had already learned. Furthermore,
losses may not always be independent of one another; for example, only via co-
occurring optimization may two specific losses result in the most optimal model
performance.

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 129

As a result, we recommend the CoV-Weighting to be slightly rewritten by nor-
malizing the weights to a mean of one and accommodating loss priorities using a
combination of priority- and CoV-Weighting scores:

α̂i,t := pi(1 + cℓj,t −E[αi,t])

= pi
(
1 + cℓi,t −

1
|L|∑j

cℓj,t

∑k cℓk,t

)
= pi

(
1 + cℓi,t −

1
|L|∑j cℓj,t

∑
j

cℓj,t

)
= pi(1 + cℓi,t −

1
|L|)

(7.38)

where pi > 0 is a priority weight. The new weight is therefore proportional to
the average of user priority and model loss importance. Now, the model can be
optimized to not only minimize losses but also achieve specific objectives that are
important to the user / to a use case. This simple modification provides us with
great flexibility and adaptability during the training process. Note, that an intuitive
alternative approach would be to simply multiply each loss by |L| (see Chapter 9.2).

Take-Away

When solving for various objectives, multiple loss functions are typically em-
ployed. In general, not all losses are equally difficult, relevant or important to
optimize during the training. Here, a key factor that determines the overall ef-
fectiveness is the selection of appropriate weights for these individual losses.
By incorporating proper adaptive & automated weighting, we can enhance
training efficiency and improve model performance.

Keywords

Multiple Loss Functions • Optimizing Objectives • Proper Weights • Auto-
mated Weighting • Efficient Training

7.5.2 Neural Network Forward Call

Let k, m, n ∈ N+. To utilize DNNs for generating embeddings, we need to modify
the network’s forward call logic to handle matrix inputs. In our case, the input is
a matrix X (or a batch of matrices), represented as X ∈ Rk×m. Traditional neural
networks are designed to take input as vectors or batches of vectors. Thus, it is not
possible to just "feed" batches of matrices into the model. Hence, we redefine the
forward pass function of the DNN for a given layer as the matrix product of U and
the layer’s weight matrix W ∈ Rm×n, followed by adding (via broadcasting) a bias
vector b ∈ Rn. This is then passed through a non-linear activation function g:

h(X) := g(XW + b⃗) (7.39)

The very first layer will have X = U (the child-matrix) as input, where k = |Θω|
corresponds to the number of total child nodes from a given node ω, and, respec-
tively, m = dim(⃗vθ, f eat ⊕ v⃗θ,child) equals the respective encoding size. In particular,
notice how the weight dimensions are independent of the number of child nodes,

130 Chapter 7. Methods

and solely depend on the child-encoding size/dimension. Note that when dealing
with batches, Equation 7.39 is simply applied independently to each matrix along
the batch dimension.

7.5.3 Embedding Layer

Let h∗k (Uω) = hk(hk−1(...(h0(Uω)))) denote the hidden state of forwarding Uω through
multiple layers up to the embedding layer k. We define zUω as the one-dimensional
vector sum along the column-dimension with components:

z[i]Uω
:=
|Θω |−1

∑
j=0

h∗k (Uω)
[j,i] (7.40)

We explicitly use the sum and not the average during pooling, since the mean
does average out information about the number of child nodes.

Further, let the weighted and biased standardized vector be denoted by π(⃗zUω):

π(⃗zUω) := w⃗ ◦
(z⃗Uω − µz⃗Uω

σ⃗zUω

)
+ b⃗ (7.41)

with w⃗, b⃗ respectively trainable weight and bias terms; ◦ is the Hadamard prod-
uct. This is based on the concept of layer normalization with element-wise affine
transformations. Then, based on an activation function g, we define the embedding
function femb(.) as:

femb(Uω) := g
(
π(⃗zUω)

)
(7.42)

Note, how if g can also be chosen as being the identity function. Overall, this
approach, however, presupposes that all sub-nodes are equally important, which
may not be the case. Some sub-nodes (alone or in combination with others) are likely
to be more relevant and decisive, and should thus contribute to and influence the
embedding more strongly. A solution often applied in graph neural networks is the
use of the attention mechanism (Veličković et al., 2017), that assigns attention scores
(i.e. importance weights) α⃗ to each neighboring graph. We can incorporate this idea,
and obtain embeddings using a weighted attention-based weighted aggregation:

a[i]Uω
:=
|Θω |−1

∑
j=0

α[j]h∗k (Uω)
[j,i] (7.43)

and finally use: femb(Uω) ≜ g
(
π(⃗aUω)

)
. For simplicity, we will use the notation

zω := femb(Uω) to denote the embedding (i.e. the representation vector) of ω. Also,
recall that femb(Uω) = femb(Uω) for any matrix representation Uω of Uω.

7.5.4 Extraction Layer

Given a one-dimensional embedding vector zω := femb(Uω), we wish to build a
matrix with the same dimensions as the input matrix Uω ∈ R|Θω |×m. However,
when we use the pooling operation (i.e. the mean operation), we lose information
on the original dimensionality value of |Θω| (e.g. the number of child nodes). The
reconstruction step, on the other hand, is essential for the implementation of an auto-
encoder and calculating the reconstruction loss. Furthermore, we must preserve the
row identity relationship to each child, which could easily be overlooked during the

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 131

pooling procedure. To conclude, we would be attempting to build a matrix Ûω from
a vector zω derived from the previous input matrix Uω. This, however, results in
information loss. As a result, we propose doing the reconstruction using h∗k (Uω)
(which determines zω) instead. The idea is illustrated in Figure 7.12 below:

FIGURE 7.12: Bottleneck reconstruction: We use the last latent bottle-
neck matrix to rebuild the original input rather than the latent repre-
sentation vector. This prevents a strong information loss during the
reconstruction process. The reconstruction is Uω → h∗k (Uω)→ Ûω.

7.5.5 Batching

For batching, we simply concatenate the respective child-matrices Uω0, Uω1, ... along
a new third dimension and (dynamically) pad them equivalently to equal size, which
we will refer to as U∗. However, special care must be taken when computing aver-
ages (or attention scores) over padded sequences, as we do not wish to perform
calculations on (potentially variable-sized) padding entries.

7.5.6 Model Architecture

Instead of using a single (huge) AE, we will build upon the concept of divide-and-
conquer by recursively defining and interconnecting multiple smaller AEs (one per
tree level). That is, the embedding output of a tree’s level-associated AE will be
(part of) the input of the AE for the respective level above (Figures 7.13 & 7.14).
Information is, thus, propagated upwards; using a bottom-up approach. That is,
for each child of a given node, first the corresponding embedding is calculated and
concatenated with the corresponding child’s feature vector, yielding the child-matrix
U. Therefore, it is obvious that the representation of parent nodes - especially that of
the root node - can only be calculated once the embeddings of all child nodes have
been calculated. In other words, the algorithm begins by computing the embeddings
of the lowest levels and then propagating the results upwards, with higher-level
representations encompassing those below them. And so, utilizing AEs at each level
of the tree aids in mitigating information loss or corruption that may occur per level.
This architecture is defined recursively.

Therefore, by repeatedly applying this recursive model architecture to the whole
input tree, we obtain a complete DNN embedding model (Figure 7.14). The resulting
final embedding of the tree is simply the output of the highest level (i.e. root node).
Such a recursive approach also enables us to assign different weights to the losses
(and also different losses) for each hierarchy level, providing so more adaptability;

132 Chapter 7. Methods

FIGURE 7.13: The recursive model structure. The output of the lower
model (blue) is part of the input for its direct superior model (red).

e.g. giving more emphasis/importance to the losses on the upper levels and less
focus/importance on the lower ones.

Let L[j]
total be the loss as defined in Equation 7.31 for a given level j. Then we

define the total model’s loss as:

Lmodel
total :=

levels−1

∑
j=0

wjL
[j]
total (7.44)

where wj is an (optional) associated weight for level i. In other words, the total
loss of the model consists of the weighted sum of all level losses.

Alternatively, we can also an even more flexible variation using weights αj,i:

L′model
total :=

levels−1

∑
j=0

wj

|L|−1

∑
i=0

αj,iLi (7.45)

7.5.7 Example

Figure 7.15 shows exemplary an illustration of how the input matrix and the node
embedding are retrieved for a given layer on a node with three child nodes.

First, the child node features and -encodings of all child nodes are concatenated
into a single matrix and then passed through the DNN (i.e. AE). The respective em-
bedding layer is then used as the child encoding of the child nodes’ parent node.
The algorithm then subsequently continues to propagate information upwards for
all remaining nodes in the same manner until it reaches the root node.

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 133

FIGURE 7.14: The recursive composition of the HDB model structure.

Take-Away

Instead of trying to solve the problem at once, we adopt a "divide and con-
quer" strategy by arranging multiple models in a recursive/hierarchical man-
ner. This gives us more control over the learning process and helps us uncover
and determine more effective intermediate vector representations. These rep-
resentations are passed on to higher levels until reaching the root node, ulti-
mately representing the entire tree structure.

Keywords

Divide and Conquer • Hierarchical Stacking • Recursive Models

7.5.8 Model Improvements

With a clear understanding of the basic architecture and model, we can now concen-
trate on implementing effective adaptations that yield even greater improvements.
These adaptations may complicate the model definition and add to the computa-
tional load, but the improved model quality justifies their use.

134 Chapter 7. Methods

FIGURE 7.15: Exemplary illustration of input matrix generation
based on child nodes for a given layer.

Adaptive Look-up Embeddings

Instead of using a fixed encoding scheme - such as One-Hot-Encoding - we can in-
tegrate an adaptive look-up embedding system (similar to embedding-layers as in
Kocmi and Bojar, 2017 and Neishi et al., 2017).

The input to our model is, therefore, no longer "simply" the concatenation of the
node-encoding plus child-embedding (Equation 7.5), but the concatenation of an
adaptive embedding from a look-up table. These embeddings are "adaptive" in the
sense that they support gradient calculation and, thus, can be optimized e.g. by the
back-propagation pass. Initially, these vector embeddings are randomly initialized
and tend to be pairwise orthogonal since the dot product of two randomly sam-
pled vectors in high dimensions converges to zero with increasing size. Each node
(i.e. token) then holds a unique index to access its corresponding vector through a
look-up table. Although the look-up itself is not differentiable, the vector values are
and since we have a bijective function from tokens to embedding vectors we can so
optimize the embedding corresponding to each node (Figure 7.22).

It may also make sense to freeze the embedding layers (e.g, after a portion of the
total training epochs) to allow the model to focus only on feature values and sub-
embedding representations to prevent it from merely optimizing categorical embed-
dings without consideration of the other features.

In addition, the size of the learnable categorical embeddings can be determined
by the number of unique categories. Specifically, if a category contains a large
number of entities, it may require a higher dimensional space to effectively cap-
ture and encode all semantic relationships and differences. Conversely, if a cate-
gory contains only a few entities, it may require fewer dimensions. A commonly
used convention/rule-of-thumb for a good starting point is to use approximately
the square root of the number of distinct categories. Thus, to determine the embed-
ding size nc for a category c with k different unique entities and a fixed maximum

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 135

FIGURE 7.16: Integrating adaptive look-up embeddings.

dimension d, we suggest using one of the following two bounded formulas:

nc = min(k, d), (7.46)

nc = min(
√

k, d). (7.47)

We will be using Equation 7.46; it ensures that the embedding size does not ex-
ceed the maximum dimension d, regardless of the number of entities in the category.
Overall, both formulas allow for flexibility in the embedding size based on the num-
ber of entities in each category.

Take-Away

Adaptive look-ups allow the model to dynamically determine and optimize
embeddings. Unlike one-hot-encodings, these representations are dense, can
encode semantic information, and are of much lower dimension.

Keywords

Adaptive Look-Up Embeddings • Dense Representations • Lower Dimension

Residual Attention Mechanism

Drawing inspiration from transformers and attention mechanisms (Vaswani et al.,
2017), we can enhance our model by incorporating self-attention, specifically using
the scaled dot-product. This approach enables us to prioritize important parts of the
input by calculating attention scores and scaling the corresponding features accord-
ing to their relative significance/importance. To address the issue of information
loss we can introduce residual network connections (He et al., 2016; Zagoruyko and

136 Chapter 7. Methods

Komodakis, 2016) (as also utilized and adopted in transformers). These direct con-
nections allow for bypassing certain layers and can help prevent vanishing gradi-
ents, thus increasing training stability. Residual connections also serve as a means
of preserving the original input state representation. That is, first, we apply self-
attention to the input vector using the scaled dot-product. Then, we add the input
vector to the attention vector and perform layer-normalization. Finally, we pass the
result through a feed-forward pass and add the previously normalized scores to the
output vector of the forward pass (Figure 7.17). The result is then passed through an
activation function (e.g. to the next layer).

Residual connections, in their most basic form, are defined by y := F(x) + x,
and so the dimension of F(x) must be that of x. Equal dimension can be achieved
e.g. by either maintaining the same dimension throughout all layers of the model or
utilizing residual blocks where equal dimensions are enforced; residual connections
are then only applied within each block and not between different blocks.

We further also incorporate layer-normalization in all layers, except the last one, of
the decoder. Skipping the last one is essential to ensure that the output range of the
decoder’s last layer is the same as that of the input vectors. Otherwise, the decoder
may not be able to accurately reconstruct the original input vector. Although one
could argue that layer-normalizers usually use trainable scaling and bias factors, we
still decided not to normalize the last layer; as this does still not fully mitigate or
circumvent the problem.

Take-Away

To enable the model to effectively utilize and identify the most relevant fea-
tures, we can implement a residual self-attention mechanism.

Keywords

Self-Attention Mechanism • Relevance Identification • Feature Utilization

Inception Networks

Inception networks were initially proposed by Google and have seen multiple im-
provements and variations since (Szegedy et al., 2015; Szegedy et al., 2016; Szegedy
et al., 2017). The motivation was to increase effectiveness, and performance and to
leverage the computational budget of training deep neural networks, in particular
of CNN networks and computer vision, but inspiration of it has also been found in
other areas such as the Dueling Deep Q-network (DDQN) in reinforcement learning
(Wang et al., 2016c).

The main idea is to run parallel network blocks that share the same input and are
concatenated into one output, instead of running one huge layer block. We can build
upon the idea of inception networks and DDQN and use the same principles to bet-
ter learn (i.e. auto-encode) the individual components - node embedding, features,
child embeddings - of the input vectors.

At the end of a decoder module, we add three concurrent layers respectively
and use their concatenated output as the regression target (Figure 7.18). Although it
might look like a "just" simple change in the network’s architecture, inception net-
works are indeed very powerful. Additionally, in doing so we can apply different
activation and transformation functions to each of the components, which is espe-
cially useful e.g. if their value-domains differ and unalike re-scaling is needed.

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 137

FIGURE 7.17: Integrating residual self-attention and normalization
[part of the figure shows an extract from the transformer architecture

(Vaswani et al., 2017)].

In fact, it is also absolutely possible to use inception networks within the en-
coder/decoder modules in any other combination, size, and complexity.

Take-Away

We can enhance the decoder by allowing it to focus more on rebuilding indi-
vidual parts using the inception strategy.

Keywords

Enhanced Decoder • Inception Strategy • Focus Enhancement

Siamese Networks

Siamese neural networks (SiaNNs) are neural network models that use several - typi-
cally two - parallel and identical modules with shared weights. SiaNNs aim to learn
hidden representations of input vectors. The output generated by a Siamese neural
network can be interpreted as the semantic similarity, e.g. between two given input

138 Chapter 7. Methods

FIGURE 7.18: Applying feature-inception to the model.

vectors (Wang et al., 2016c). SiaNNs have also been used in hierarchical models on
class-level trees, where neighboring classes are recursively merged to encode global
context information (Ge, 2018).

We propose to incorporate and use SiaNNs in conjunction with self-attention
by passing the raw input vector along with the output of its attention mechanism
through a SiaNN, and then use their average as the input for the subsequent mod-
ule/layer (Figure 7.19).

FIGURE 7.19: Applying Siamese neural networks and self-attention
to the model.

Yet, SiaNNs also come with drawbacks such as increased computational and
memory requirements. Nonetheless, it is worth considering that they can also serve
as an efficient alternative to utilizing two completely different parallel DNNs (e.g.,
in large inception networks). This, in fact, even requires fewer weights since the
Siamese weights are reused; unlike having two separate DNNs.

Overall, SiaNNs have been widely employed in various tasks (Chicco, 2021). In
general, SiaNNs use similarity measures and pairwise comparisons to learn data
representation. They compare objects using identical DNNs and calculate similarity
scores. They can be leveraged and trained to maximize similarity between similar

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 139

objects and minimize it between dissimilar ones. Often, different augmentations of
the same input are fed through both SiaNN components, and an equal representa-
tion is trained to be learned. Instead, we here apply self-attention as our SiaNN’s
input "variation" to learn a robust representation, and then take the average of both
output representations to use it as the propagating output representation.

Take-Away

Siamese networks (1) feature fewer weights than two separate models and (2)
are generally considered more robust to class imbalance and lack of data (as
in One-shot learning applications), i.e., few occurrences per class are sufficient
for Siamese networks to recognize them.

Keywords

Feature Efficiency • Robustness to Class Imbalance • One-Shot Learning •
Self-Attention Siamese Input

Mean Teacher Networks

Different data augmentations or transformations on the same input data should not
influence the predictions of models and result in equal (or very similar) representa-
tions (Weng, 2021). Consistency Regularization (alias Consistency Training) is a field
concerned with trying to maintain this assumption. It has been applied to self- and
semi-supervised methods, particularly for utilizing unlabelled data whilst learning
in a supervised manner (Ouali, Hudelot, and Tami, 2020; Weng, 2019).

Mean teachers (Tarvainen and Valpola, 2017) is an improvement over previous
methods such as π-model (Sajjadi, Javanmardi, and Tasdizen, 2016) and Temporal
Ensembling (Laine and Aila, 2016). The π-model uses an unsupervised loss to mini-
mize the difference between two data passes with transformations. Instead, Tempo-
ral Ensembling maintains an exponential moving average of model predictions per
epoch to improve performance. Mean Teacher Networks, on the other hand, main-
tain a moving average of the weights in the model (which is not necessarily limited
to being averaged per epoch).

We can complement (or alternatively even replace) the SiaNNs respectively by a
Mean Teacher architecture that uses a teacher and student network. Alternatively,
using Dual Students5 - a modification of Mean Teachers that replaces the teacher
with a second student (Ke et al., 2019), is also an option.

Take-Away

Mean Teacher Networks may be used to better ensure that randomness inside
a model does not change the network’s outputs and latent representations (for
the same input).

Keywords

Mean Teacher Networks • Consistent Outputs • Randomness Control

5Dual Students is an interesting/promising approach also particularly for semi-supervised settings
where only part of the data is labeled.

140 Chapter 7. Methods

Complex-Valued Neural Networks

Instead of simply using conventional real-valued-based NNs, we also integrate the
proposed approach of complex-valued networks. Complex-valued networks may
have higher computational overhead but potentially offer better neural expression.
To optimize the performance, we can adjust the number of layers in the DNNs as
needed. The (angular) weights are initialized randomly within the range of [−π, π]
to cover the entire angles of the unit circle. Note that, although a range of [0, 2π] is
mathematically equivalent, the difference is that in the former case, the mean value
is centered around zero, and in the latter case not. This subtle difference can make
a difference in the case of DL as it has an impact on the back-propagation gradients;
also, symmetry around zero is always a good convention.

Take-Away

We constrain the complex-valued network weights at [−π, π] by applying a
modulo operation. The complex-valued network can be directly created by
simply replacing the real-valued neurons.

Keywords

Complex-Valued Neural Network • Weight Constraints • Modulo Operation

Label Smoothing

Label smoothing (Szegedy et al., 2016) is a well-known technique that introduces
noise from a distribution to labels, typically to prevent over-fitting by not allowing
the model to become over-confident. In essence, it introduces a (small) degree of
uncertainty by attributing non-zero probabilities to incorrect classes during train-
ing, thus preventing the model from overly relying on its training data and, hence,
mitigating the risk of overfitting. Recent work has shown that label smoothing en-
courages instances from the same class to group in tight clusters, thereby resulting in
loss of information about resemblances between instances of different classes (Müller,
Kornblith, and Hinton, 2019); and is so not good for knowledge distillation. Lukasik
et al., 2020, however, argued that this observation applies specifically to non-noisy
labels. Instead, they showed that label smoothing competes with loss-correction
under label noise; and when distilling models from noisy data, incorporating label
smoothing for the teacher proves advantageous.

We can, thus, use label smoothing to explore the trade-off between identifying
tighter, more compact clusters versus less tight, more overlapping clusters; and it
also helps us in addressing label uncertainty and noise. Given a noise distribution
u(y|x) over classes y ∈ Y and data x ∈ X (e.g a uniform distribution), the smoothed
label loss for a prediction q(y|x) and a real ground truth p(y|x) is:

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 141

L′ = − ∑
xi∈X

∑
yj∈Y

[
(1− ϵ)p(yj|xi) + ϵu(yj|xi)

]
log q(yi|xi)

= − ∑
xi∈X

{[
(1− ϵ) ∑

yj∈Y
p(yj|xi)log q(yi|xi)

]
+

[
ϵ ∑

yj∈Y
u(yj|xi)log q(yi|xi)

]}

= − ∑
xi∈X

{
(1− ϵ)Hi(p, q) + ϵHi(u, q)

}
(7.48)

where ϵ ∈ [0, 1] denotes a smoothing factor, and H(., q) the distribution entropy
of q given a target distribution:

Hi(g, q) := ∑
yj∈Y

p(yj|xi)log q(yi|xi) (7.49)

In particular, if q(yj|xi) is the Softmax function on the logit q̂(yj|xi), we can fur-
ther simplifyH(g, q), for g ∈ {p, u}, to:

Hi(g, q) = ∑
yj∈Y

g(yj|xi)log
(

eq̂(yj|xi)

∑yk∈Y eq̂(yk |xi)

)

= ∑
yj∈Y

g(yj|xi)

[
q̂(yj|xi)− log

(
∑

yk∈Y
eq̂(yk |xi)

)] (7.50)

If y is an instance’s only given class label, such that p(y|x) ∈ {0, 1} is an indicator
function, with ∀xi ∈ X ∃!y ∈ Y : p(y|xi) = 1 ∧ ∀yj ̸= y : p(yj|xi) = 0, then the
above formula reduces to:

Hi(g, q) ≜ q̂(y|xi)− log
(

∑
yk∈Y

eq̂(yk |xi)
)

(7.51)

Likewise, for a uniform distribution u = 1
||Y|| it follows:

Hi(u, q) = ∑
yj∈Y

1
||Y||

[
q̂(yj|xi)− log

(
∑

yk∈Y
eq̂(yk |xi)

)]

= Eyj∈Y

[
q̂(yi|xi)− log

(
∑

yk∈Y
eq̂(yk |xi)

)] (7.52)

And so, for both, uniform noise and one-hot-encoded labels, we have:

142 Chapter 7. Methods

(1− ϵ)Hi(p, q) + ϵHi(u, q)

= (1− ϵ)

[
q̂(y|xi)− log

(
∑

yk∈Y
eq̂(yk |xi)

)]
+ ϵEyj∈Y

[
q̂(yi|xi)− log

(
∑

yk∈Y
eq̂(yk |xi)

)]

= Eyj∈Y

[
(1− ϵ)

(
q̂(y|xi)− log

(
∑

yk∈Y
eq̂(yk |xi)

))
+ ϵ

(
q̂(yi|xi)− log

(
∑

yk∈Y
eq̂(yk |xi)

))]
= (1− ϵ)q̂(y|xi) + ϵEyj∈Y

[
q̂(yj|xi)

]
− log

(
∑

yk∈Y
eq̂(yk |xi)

)
(7.53)

which gives us the loss:

L′ = − ∑
xi∈X

{
(1− ϵ)Hi(p, q) + ϵHi(u, q)

}
= − ∑

xi∈X

{
(1− ϵ)q̂(y|xi) + ϵEyj∈Y

[
q̂(yj|xi)

]
− log

(
∑

yk∈Y
eq̂(yk |xi)

)} (7.54)

and, thus, the average (i.e. mean) loss L′ is:

L′ = Exi∈X

log
(

∑
yk∈Y

eq̂(yk |xi)
)
− (1− ϵ) q̂(y|xi)︸ ︷︷ ︸

Prob. class label

−ϵ Eyj∈Y
[
q̂(yj|xi)

]︸ ︷︷ ︸
Mean prob. all classes

 (7.55)

Take-Away

Label Smoothing is a noise-introducing regularization approach for labels,
where a small amount of probability mass is distributed to other classes. This
can reduce overfitting and enhance the generalization of the model. Utilizing
label smoothing can prevent the network from becoming overly confident.

Keywords

Label Smoothing • Regularization • Preventing Model Overconfidence

Focal Smoothing

Given y as the ground-truth class label; let q∗(., .) be defined as:

q∗(yj|xi) =

{
q(yj|xi), if yj = y
1− q(yj|xi), otherwise

(7.56)

where q(yj|xi) is the predicted probability of yj ∈ Y for xi ∈ X.
Focal smoothing (Lin et al., 2017) is a way of dealing with imbalanced (labeled)

data. It builds upon the cross-entropy loss and for the binary case it is defined as:

FL∗(yj|xi) := −
[
1− q∗(yj|xi)

]γ log q∗(yj|xi) (7.57)

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 143

where γ > 0 is the tunable focusing parameter which down-weights easy examples
and allows to focus more on training on hard negatives. In the binary case, q∗(yj|xi)
is the probability of the true class. For multi-class, this can easily be adapted to:

FL(yj|xi) := −
[
1− q(yj|xi)

]γ log q(yj|xi) (7.58)

Combining Focal- & Label smoothing

We can combine focal- with label smoothing by incorporating FL(yj|xi) intoHi(g, q)
(Equation 7.49); and instead use:

H[FL]
i (g, q) := ∑

yj∈Y
p(yj|xi)

[
1− q(yj|xi)

]γ log q(yj|xi) = − ∑
yj∈Y

p(yj|xi)FL(yj|xi)

(7.59)
If we are using an indicator function (i.e. one-hot-encoded probabilities), this

further reduces to applying the focal loss to the true label probability; thus, combin-
ing focal loss with label smoothing (Equation 7.48), this yields:

L′′ := − ∑
xi∈X

{
(1− ϵ)H[FL]

i (p, q) + ϵH[FL]
i (u, q)

}
= − ∑

xi∈X

{
(1− ϵ) [1− q̂(y|xi)]

γHi(p, q) + ϵH[FL]
i (u, q)

} (7.60)

Moreover, if using a Softmax function on the logits q̂, we further have:

L′′ := − ∑
xi∈X

{
(1− ϵ) [1− q̂(y|xi)]

γ
[

q̂(y|xi)− log
(

∑
yk∈Y

eq̂(yk |xi)
)]

+ ϵH[FL]
i (u, q)

}
(7.61)

Note how we can only do the reduction trick on p, and not u, because u is not
one-hot-encoded (e.g. u ∼ uniform). And so, the overall average loss for one-hot-
encoded ground-truth labels and a Softmax function is:

L′′ := Exi∈X

[
(1− ϵ) [1− q̂(y|xi)]

γ
[

log
(

∑
yk∈Y

eq̂(yk |xi)
)
− q̂(y|xi)

]
− ϵH[FL]

i (u, q)

]
(7.62)

Take-Away

Addressing class imbalance can be done by modifying the traditional cross-
entropy loss. This may involve reducing the loss associated with well-
classified instances and increasing otherwise; i.e. distinguishing between easy
and hard examples. A suitable approach in this context is the application of
"focal loss," which can be enhanced further by incorporating label smoothing.

Keywords

Class Imbalance • Altered Cross-Entropy • Focal Loss • Label Smoothing

144 Chapter 7. Methods

Dropout

Dropout is a common method used to regularize DL models and counteract overfit-
ting. It randomly "drops out" a portion of network units; setting them to zero during
training. Dropout can be applied to both input vectors (or matrices) and individual
neurons to prevent units from over co-adapting (Srivastava et al., 2014). We can use
dropout to try to remove and/or induce noise if the goal is to learn better general-
izable patterns, and so avoid over-fitting or learning identity functions. Dropout is
typically only active during training and, hence, omitted during evaluation or de-
ployment. There are several main variants of Dropout in the literature:

1. Standard dropout: The most commonly used type of dropout. During train-
ing, neurons are randomly dropped out with a fixed probability p, and the
remaining activation outputs are scaled by 1/(1− p) (Srivastava et al., 2014).

2. Alpha dropout: Similar to standard dropout, but the dropped elements are
scaled and shifted to maintain zero mean and unit standard deviation, rather
than being set to zero (Klambauer et al., 2017).

3. Drop connect: Similar to standard dropout, but it is applied to the connections
between neurons, rather than the neurons themselves (Wan et al., 2013).

4. Gaussian dropout: A variant that introduces Gaussian noise to the input (e.g.
Kingma, Salimans, and Welling, 2015).

5. MaxOut: A variant which takes the maximum value across a set of linear com-
binations of the input variables; can approximate any continuous function to
an arbitrary precision (Goodfellow et al., 2013).

Take-Away

Dropout is a fundamental concept that randomly sets neural entries to zero
(i.e. removes them). This prevents neurons in a layer from optimizing their
weights simultaneously, promoting diverse convergence towards the same
goal. This is crucial as an excessive correlation between neurons can otherwise
significantly compromise a model’s generalization ability; also resulting in
redundant neurons/models that could be more efficiently compressed/lever-
aged (Bonnin, 2017).

Keywords

Dropout • Weight Decorrelation • Generalization • Regularization

Class Imbalance

We can further account for class imbalances by applying weights that are inverse to
the label frequencies. If Lxi denotes the absolute instance loss for a specific xi ∈ X,
so that the total loss is L = ∑xi∈X Lxi , and yi ∈ Y is a label, then the balanced loss
(inspired from King and Zeng, 2001) is:

L := ∑
xi∈X

|X|
#yi|Y|

Lxi =
|X|
|Y| ∑

xi∈X

Lxi

#yi
(7.63)

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 145

where |X|, |Y| are respectively the total number of instances and different labels
in the entire data set, #yi the frequency of a particular label yi. Since we are dealing
with several hierarchical levels in our case, we define different #ylevel

i scores for each
individual level based on the total frequency of that label occurring only in that
particular (tree-) hierarchy level. Hence, the class weight is wy := |X|

|Y|#ylevel
i

. Overall,

other more naive trivial, yet worse, alternatives are 1/#yi or 1/
√

#yi. In particular,
this is because one key property of Equation 7.63 is that it has a mean weight of one:

µw =
∑xi∈X

|X|
#yi |Y|

|X| =
∑xi∈X

1
#yi

|Y|

=
∑xi∈X #y0

1
#y0
· ... · #yi

1
#yi

|Y| =
|Y| · 1
|Y| = 1

(7.64)

In contrast, e.g. wy = 1/#yi would instead have a mean of µw = |Y|/|X|. Also,

even the intuitive normalized adaptation ŵy =
#y−1

i

∑yj∈Y #y−1
j

has a mean of:

µŵ =

∑xi∈X
#y−1

i

∑yj∈Y #y−1
j

|X| =
∑xi∈X #y−1

i

|X|∑yj∈Y #y−1
j

=
|Y|

|X|∑yj∈Y #y−1
j

(7.65)

Since ∑yj∈Y #y−1
j ≤ |Y| =⇒ µŵ ≥ |Y|

|X| , we know that normalizing the weight
scores by the inverse label frequency would here increase the mean, and so, not
normalizing the scores actually has a lower mean. Therefore, defining a weighted
total loss via such normalized scores ŵ is not recommended, and even worse than
setting wi = 1/#yi where at least µŵ ≤ 1 defines a supremum. Thus, it is better to
use the level-wise inverse weighting wy := |X|/(|Y|#ylevel

i).
Yet, while training with frequency-inverse class weights does help against the

model’s bias toward dominant classes to some extent, relying solely on re-weighting
the loss by inverse class frequency still often results in poor performance when deal-
ing with real-world data with (very) large class imbalance (Cui et al., 2019). The
authors argue here that, as the sample size increases, the incremental value of a new
data point diminishes; and so, propose a different approach to assess data overlap by
associating each sample with a small nearby region rather than a single point. They
introduce the concept of sample volume, termed as the "effective number of samples",
which they calculate using a straightforward formula. This re-weighting scheme,
thus, leverages that "effective number of samples" of each class to rebalance the loss;
i.e. uses it as the class weight wy. Overall, this approach was shown to be able to
significantly improve performance, specifically on long-tailed datasets.

Based on that, we determine the class weights as follows:

vy := (1− β#ylevel
)/(1− β)

wy :=
v−1

y |Y|
∑yj∈Y v−1

yj

:=
|Y|

vy ∑yj∈Y v−1
yj

(7.66)

where β ∈ [0, 1) is a hyper-parameter, and vy is the effective number of samples,
i.e. the sample volume; β = 0 denotes no re-weighting and β → 1 approaches re-
weighing relative to inverse class frequency (Cui et al., 2019). Note how we regard

146 Chapter 7. Methods

the concept of (and determine the) sample volume "level-wise" for each hierarchy
level; i.e. we use level-wise sample volumes.

Take-Away

To upweight uncommon class instances and downweight frequent class in-
stances, one approach is to employ traditional class weights, inversely pro-
portional to their occurrence frequency. Alternatively, a more sophisticated
strategy involves calculating class weights using the effective number of sam-
ples, as proposed by (Cui et al., 2019).

Keywords

Class Weighting • Rare Class Upweighting • Common Class Downweighting
• Effective Number of Samples

Feature Independence

It is known that DNNs work better if input variables are decorrelated, as correlation
can reduce the eccentricity of the error surface (LeCun et al., 2012). Similarly, we can
wish to force the loss function to consider the feature independence (i.e. decorrela-
tion) within embedding variables. This can be done easily by simply introducing an
additional loss function that penalizes correlation between the features of the em-
bedding vectors.

Take-Away

We can improve the embeddings by lowering the correlation between the vec-
tor representations’ feature components.

Keywords

Embedding Enhancement • Correlation Reduction • Feature Independence

Lipschitz Continuity & Spectral Normalization

Spectral normalization was proposed in Miyato et al., 2018 as a weight normaliza-
tion technique to control the Lipschitz constant by constraining the spectral norm
of layers. For a given real-valued function f , Lipschitz continuity is given when
| f (x1)− f (x2)| ≤ K|x1 − x2|, where K ∈ R+ is the Lipschitz constant. The small-
est value of K is denoted by || f ||Lip. More formally, || f ||Lip := sup f (σ(W)) for the

spectral norm σ(W) := maxh:h ̸=0
||Ah||2
||h||2 = maxh:||h||2≤1||Wh||2 of a matrix W. The

spectral norm σ(W) is equivalent to the largest singular value of W, which can
be efficiently approximated using thepower iteration method (Mises and Pollaczek-
Geiringer, 1929). Regularization then occurs by transforming the weights using:

spec(W) :=
W

σ(W)
(7.67)

In the case of complex-valued networks, however, the spectral normalization
must be rewritten so that it fits into the complex weight matrix. Therefore, given an

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 147

angle-weight matrix, we perform spectral normalization on both the imaginary and
real matrix components:

Wnew : = spec
(
cos(W)

)
+ i · spec

(
sin(W)

)
=

cos(W)
σ
(
cos(W)

) + i · sin(W)
σ
(
sin(W)

) (7.68)

Take-Away

We can also perform spectral regularization on complex bi-nonlinear net-
works by simply rescaling the real- and imaginary weight tensors by their
respective spectral norms of the weight matrices.

Keywords

Spectral Regularization • Complex-based Bi-Nonlinear Networks • Rescaling
Weight Tensors • Spectral Norms • Weight Matrices

Kernel Embeddings & Pooling Layer

Eventually, we have to transform our latent DNN matrix representation into a vec-
tor (i.e. embedding). We refer to this as the "pooling operation". Pooling operations,
however, e.g. naively aggregating column vectors in a matrix, can have inherent lim-
itations that may not be evident at first. While we do aim for embedding/pooling
functions to be agnostic to the order of rows (there is no "ordering" of child nodes),
we still want to ensure that distinct elements do not (or are not likely to) end up with
identical representations. For instance, a mapping that chooses the maximum value
in each column is independent of the order of rows but strongly injective, and so, eas-
ily produces identical representations for very "different" matrices that only coincide
in their maximum value per column and have otherwise no similarity. In general,
we want to prevent this. In other words: whenever we apply a pooling/embedding
operation on a (deep latent) matrix, we want to ensure that the pooling operation,
which converts it into a vector representation, captures as much information about
that instance as it can; i.e. the aim is to minimize the loss of information here as
much as possible, such that different instances only then have similar or equivalent
representations, if their latent matrices are similar. In fact, imagine processing an
entity through multiple deep neural layers to attain an "optimal" latent intermedi-
ate matrix representation; only to then apply a suboptimal and poor vector pooling
operation on it that would completely "destroy" the entire progress and encoded
knowledge. This would just totally undermine the quality and expressiveness of
that good matrix representation we had before.

Also, conventional summation or averaging of columns, although commonly ap-
plied as pooling operations, do not effectively capture all the relationships between
entries within a matrix, specifically not across columns. This means that the pool-
ing operation does not explicitly take into account the associations between pairwise
columns and rows, leading to a less expressive possible representation and, hence, to
a potential loss of valuable information. Additionally, although the model’s encoder
and decoder layers are trained and optimized on matrices, training (i.e. the model
weights; the forward function) is typically applied to each row (i.e., child) unless

148 Chapter 7. Methods

special mechanisms like attention, etc. are used. Therefore, to address these limita-
tions and explicitly consider pairwise aggregations of columns and rows, the pool-
ing layer is key here and should, therefore, consider aggregations not only single-
column-wise but also across multiple columns; i.e. pairwise. Overall, this under-
scores the importance and relevance of defining a good and pooling operation.

Kernels are a way to represent data. It allows us to map objects (i.e. non-linear ob-
servations) to a high dimensional space, e.g. to then allow for straightforward com-
parisons of intricate properties, perform classification, etc. The respective mapping
is referred to as the kernel function. Given a kernel function k : X × X → R for an
input domain X of size |Uω| ×mX , the kernel trick uses a "feature map" φ : X →H

over the reproducing kernel Hilbert space H of dimensions nH ×mH:

k(x, x′) = ⟨φ(x), φ(x′)⟩H (7.69)

where x, x′ ∈ X . Because the inner product is a measure of alignment, it auto-
matically provides a measure of similarity between points. A kernel is called char-
acteristic if the mapping is injective. Many different kernel functions exist (Muan-
det et al., 2016); a well known example of such is e.g. the standard Gaussian kernel
k(x, x′) = exp(−||x− x′||2). A sufficient condition on the kernel K to ensure that DK
is a valid kernel (i.e. metric) is that K must be a positive definite kernel. Kernels can
also be used to compute kernel distances DK; e.g. between sets of vectors or pairs of
individual points (Phillips and Venkatasubramanian, 2011).

Kernel methods are computations that operate in a high-dimensional and implicit
feature space without explicitly calculating the data’s coordinates in that space. They
instead compute e.g. the inner products of all data pairs in the feature space; which
can then e.g. be used to compute kernel distances. Lastly, kernel embeddings of dis-
tributions (Muandet et al., 2016) is a non-parametric method in which a (probability)
distribution is represented as a reproducing kernel Hilbert space element (Smola
et al., 2007). Overall, in our context, we are interested in finding strong numeric
vector representations of matrices with variable row sizes. A strong derivation of a
one-dimensional embedding vector from a matrix (i.e. for the pooling operation) is
crucial here, and we will propose a method based on the idea of kernel embeddings
for feature matrices.

Following earlier notations, Uω is a matrix representation of vector elements
x⃗i, x⃗j ∈ Uω. Let h∗(Uω) = hk(hk−1(...(h1(Uω)))) denote the hidden state of size
|Uω| ×mk after forwarding Uω through k layers; h∗(Uω) be the set of rows in h∗(Uω).
A pooling operation is required to transform the hidden state matrix h∗(Uω) to a vec-
tor. Let 1n ∈ {1}|Uω | be a vector full of ones, then zUω := 1mk h∗(Uω) = ∑|Uω |

i=1 h∗(xi)
naively provides a possible trivial pooling; the sum6 of columns. However, such
pooling only considers column-wise aggregations (no row-column correlations). Joint
distribution kernel embeddings (JDE) (Muandet et al., 2017) can be used here to better
encode the latent matrix information. Let δ(i, j) be the indexing function:

δ(i, j) := (i− 1)|Uω|+ j (7.70)

A full enumeration on the Cartesian product of h∗(Uω) can be pairwise identified
by {

(
h∗(x⃗i), h∗(x⃗j)

)
δ(i,j) : 1 ≤ i, j ≤ |Uω|}. And so, rewriting

(
h∗(x⃗i)δ(i,j), h∗(x⃗j)δ(i,j)) :=

(h∗(x⃗i), h∗(x⃗j)
)

δ(i,j) gives us the required format for JDEs, such that it holds:

6The sum is preferred over using the average or maximum for pooling aggregations in graphs since
mean and maximum do not result in most expressive GNNs (Xu et al., 2018).

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 149

E[h∗(Uω)⊗ h∗(Uω)] ≜
1
|Uω|2

|Uω |

∑
j,i=1

h∗(x⃗i)δ(i,j) ⊗ h∗(x⃗j)δ(i,j) (7.71)

where ⊗ is the tensor product. By equivalence of a tensor and a linear map, this
can be interpreted as an uncentered cross-covariance operator (Song et al., 2009).
When applied to matrices, the tensor product is also referred to as the Kronecker
product (i.e., a special case of it). In fact, if we consider matrices as linear map-
pings, then the Kronecker product corresponds to the tensor product of linear map-
pings. However, the Kronecker product of matrices of size |Uω| × |Uω| with itself
produces a matrix with |Uω|2 × |Uω|2 dimensions. Its complexity, when calculated
via a straightforward approach, would be O(|Uω|4) due to the computation of all
(new) matrix elements. This is prohibitively expensive for large matrices.

Instead, we propose a JDE-based kernel-embedding (KE) that scales with com-
plexity O(|Uω|2 + |Uω|). Given h∗ [j]i as the j-th element of h∗(x⃗i), it follows from the
distributive law over the Kronecker product for a matrix representation Uω, that:

h∗(Uω)⊗ h∗(Uω) =

h∗(1)1 · · · h∗ [mk]

1
...

. . .
...

h∗(1)|Uω | · · · h∗ [mk]
|Uω |

⊗ h∗(Uω)

=

h∗(1)1 h∗(Uω) · · · h∗ [mk]

1 h∗(Uω)
...

. . .
...

h∗(1)|Uω |h
∗(Uω) · · · h∗ [mk]

|Uω |h
∗(Uω)

(7.72)

Since h∗(x⃗i)⊗ h∗(x⃗j) denotes a sub-matrix block, it then follows directly that:

E[h∗(x⃗i)⊗ h∗(x⃗j)] :=
1
|Uω|2

|Uω |

∑
i=1

|Uω |

∑
j=1

h∗(x⃗i)⊗ h∗(x⃗j)

≜
1
|Uω|2 ∑

block wise

 h∗(x⃗1)⊗ h∗(x⃗1) · · · h∗(x⃗1)⊗ h∗(x⃗|Uω |)
...

. . .
...

h∗(x⃗|Uω |)⊗ h∗(x⃗1) · · · h∗(x⃗|Uω |)⊗ h∗(x⃗|Uω |))

=
1
|Uω|2 ∑

block wise

h∗ [1]

(1)h
∗(Uω) · · · h∗ [mk]

(1) h∗(Uω)
...

. . .
...

h∗ [1]
(|Uω |)h

∗(Uω) · · · h∗ [mk]
(Uω)

h∗(Uω)

=
1
|Uω|2 ∑

block wise

(
h∗(Uω)⊗

h∗ [1]

(1) · · · h∗ [mk]
(1)

...
. . .

...
h∗ [1]

(|Uω |) · · · h∗ [mk]
(Uω)

)

=
1
|Uω|2 ∑

block wise
h∗(Uω)⊗ h∗(Uω)

=
h∗(Uω)

|Uω|2 ∑ h∗(Uω)

(7.73)

where ∑ h∗(Uω) denotes the matrix summation of (all) entries; notice how it is
a scalar. Based on that, the final KE(.) is defined over the kernel matrix KUω with

150 Chapter 7. Methods

components K[i,j]
Uω

:= h∗ [j]i ∑ h∗(Uω); and so:

KE(Uω) :=
1|Uω |KUω

|Uω|2
=

∑|Uω |
i=1 K[i,:]

Uω

|Uω|2
=

∑|Uω |
i=1 h∗(xi)∑ h∗(Uω)

|Uω|2
=

∑ h∗(Uω)

|Uω|2
zUω

(7.74)
which returns a single vector representation for the latent matrix h∗(Uω); where

1|Uω | ∈ {1}|Uω | is the one-vector of dimension |Uω|; and zUω the column-wise pool-

ing aggregation (as mentioned earlier). Notice how the term ∑ h∗(Uω)
|Uω |2 represents a

scalar (i.e. a scale factor). This, however, implies that h∗(Uω) must not be standard-
ized beforehand (e.g. via layer normalization), as:

ĥ∗(Uω) :=
h∗(Uω)− µh∗(Uω)

σh∗(Uω)
=⇒ ∑ ĥ∗(Uω) = 0 =⇒ KE(Uω) = 0|Uω | (7.75)

where µh∗(Uω), σh∗(Uω) are the mean and standard deviation of Uω, and 0 the zero
vector. That is, standardizing KE(Uω) would nullify the stretch constant, which we
denote by λω; here being 1

|Uω |2 ∑ h∗(Uω). Moreover, standardization, unless explic-
itly accounted for, is not independent of the padding (it uses full |Uω|) and can re-
sult in a zero division (i.e. zero standard deviation) in situations where h∗(Uω) =
0 ∨ ∑ h∗(Uω) = 0. Also, it does not guarantee a non-zero sum, i.e. ∑ h∗(Uω) ̸= 0.
As a result, we propose a different (yet more intricate) mapping for λω; based on the
same JDE principles as above. It involves the use of the strict lower triangular ma-
trix L−1 (excluding the diagonal) of the absolute correlation matrix Corr[MT

Uω
, MUω]

of the Gram matrix MUω := h∗(Uω)Th∗(Uω); mapped through a non-linear function:

ẑ∗Uω
:= ϕ

(
ẑU

∑ |L−1{Corr[MT
Uω

, MUω]}|
mk(mk−1)

2︸ ︷︷ ︸
stretch factor: λω

)
= ϕ

(
ẑUE

[
|L−1{Corr[MT

Uω
, MUω]}|

])

(7.76)
which is our final kernel embedding formula78; ϕ is a non-linear function, ẑU the

standardization of ẑUω , and mk the embedding dimension of h∗. Notice how mk(mk−1)
2

is the number of elements in the strict lower-triangular matrix L−1. A Gram matrix,
in general, represents the inner products of all vector pairs in a given set. When the
vectors are normalized, the Gram matrix is equivalent to the set’s correlation matrix.
However, since we showed earlier that we Uω should not be normalized for the KE,
we use the correlation over the Gram matrix, instead of computing the correlation
over Uω. The pooling layers are defined recursively in a bottom-up manner where
the deepest levels of the hierarchy are passed first. Equation 7.76 has the benefit
of being independent of padding rows within batches, considers cross-correlations,
and empirically demonstrates good results. Most importantly, the pooling operation
is row-invariant. Overall, the KE can be thought of applying sum-pooling and then
multiplying an instance-specific scalar λω which encodes some "stretch" or "scaling"

7Depending on the specific dimensions of the features mk, if the stretch factor values returned by
λω = E[|L−1{Corr[MT

U , MU]}|] are too small (e.g. therefore negatively impacting training), we can set
λω = 0.5(mk)

2 instead. This results in (slightly) larger stretch values and consequently smaller overall
embedding magnitudes.

8Alternatively, ẑ∗Uω
:= ϕ(ẑUαλω) might be used; where α is a (learnable) scaling for λω

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 151

information, where similarly correlated matrices have similar stretch factors. ẑ∗Uω

also shares principles concerning the expressive power of neighborhood aggrega-
tions in graph neural networks (Xu et al., 2018), where any injective multi-set func-
tion g may be represented as g(X) = ϕ

(
∑x∈X f (x)

)
for certain (non-linear) functions

ϕ, f (Xu et al., 2018).
Referring back to the original kernel embedding "trick", the representation ob-

tained using Equation 7.73 has the advantage inherent in kernel methods while alle-
viating the disadvantage of increased computational expense, where for two input
matrices of size (n0 ×m0), (n1 ×m1), the Kronecker product (KP) would otherwise
be defined over a (n0n1 × m0m1) block matrix. We could also leverage the kernel
similarity (i.e. kernel distance) between all instances given a batch of z-embeddings
(Phillips and Venkatasubramanian, 2011), by training the model to decrease the ker-
nel distance between equally labeled instances while maximizing the distance be-
tween unalike labeled ones (as in contrastive representation learning), e.g. using the
maximum mean discrepancy between the average embeddings for all instances of
the respective labels classes (see Section 7.5.9).

Take-Away

Instead of simply computing the average per column and losing valuable in-
formation, a different approach is to utilize a Kernel Embedding to encode
"more" inter-correlated information into the embedding representations.

Keywords

Kernel Embedding • Information Preservation • Avoiding Information Loss

7.5.9 Efficient Contrastive Representation Learning

Negative Sampling-Based Contrastiveness

An entire contrastive correlation matrix needs |Z|2 pair-wise comparisons when
there are |Z| many embeddings (i.e. samples). Because such matrix scales quadrat-
ically, this may be computationally costly, especially on bigger batch sizes. Negative
sampling (Goldberg and Levy, 2014) employs a negative objective, specified exclu-
sively on a portion of a corpus (i.e. batch), rather than the entire corpus.

Based on this idea, we can use an adaptation of this negative sampling technique
to perform negative sampling-based optimization. Let p+i,j ∈ P+ denote a positive
pair (zi, zj) of instances with identical labels, and likewise, let p−i,j ∈ P−⊂ ⊂ P− be a
negative pair; where P−⊂ is a (random) subset of a desired cardinality of pure nega-
tive pairs P−:

LNS = − ∑
p+i,j∈P+

log
[
σ(zT

i , zj)
]
− ∑

p−i,j∈P−⊂

log
[
σ(−zT

i , zj)
]

(7.77)

where σ is the logistic sigmoid function. Alternatively, we can use (i.e. enforce)
correlation instead:

L′NS = − ∑
p+i,j∈P+

Corr[zi, zj] + ∑
p−i,j∈P−⊂

Corr[zi, zj] (7.78)

152 Chapter 7. Methods

Although strictly spoken it is a different objective than the original contrastive
loss, negative sampling is a form of noise contrastive estimation against random
negative samples. Note that this approximation may not make much sense for ex-
tremely imbalanced data if most elements in a batch have the same label, i.e. when
there are many more negative pairs than positive ones in the full correlation matrix.
In case of unbalanced labels, we can e.g. simply select a subset of positive pairs
P+
⊂ ⊂ P+, such that their cardinalities are about equal, i.e. |P−⊂ | = |P+

⊂ |.

Class-Label Based Contrastive Representation Learning

Further, to enforce contrastiveness, we can also train a model to correlate the em-
bedding representations of equally labeled instances while imposing uncorrelation
at instances of differing labels in a slightly different way. Given k entities, we can
e.g. construct a correlation matrix Rk×x to accomplish this; similar to Zbontar et al.,
2021; Hessel et al., 2021. The computation of an instance-based correlation matrix,
however, grows quadratically with the number of entities. Also, one may wonder if
imposing or preventing correlation between "instances" is the best approach.

Instead, we propose to first compute correlation instance-wise (i.e. we compute
the correlation between pairwise instances), and after some training epochs, then
over the mean representation vector of the corresponding class labels; i.e. in regards
to the average embedding vector of instances with identical/equivalent class labels.
Not only does this reduce the computational overhead considerably (we have fewer
labels than instances; computation scales quadratically), but it also allows for a more
flexible contrastive representation method that focuses on the overall contrastive-
ness between classes, rather than that of individual instances.

Let zy = E[zy] be the average embedding representation of a class y for embed-
ding vectors zy with a respective label y. Likewise, zy|κ denotes the average repre-
sentation of the last κ (e.g. batch/train) iterations and Z|κ the embedding matrix of
the mean representations of all classes and Y the symmetric label instance matrix
that has entries one if two instances have the same label and zero otherwise. Then,
given k instances of an instance embedding matrix Z and c class labels:

L1 = ∑
(
Corr(Z, Zy|κ)−Y

)◦2
= ∑

(corr(z1, zy1|κ) · · · corr(z1, zyc|κ)
...

. . .
...

corr(zk, zy1|κ) · · · corr(zk, zyc|κ)

−Y

)◦2
(7.79)

defines a contrastiveness loss we can optimize for. Alternatively, another ap-
proach is to prioritize and focus on the correlation between the average representa-
tion of class labels:

L2 = E
[(

Corr(Zy|κ)−Y
)◦2]

= E

 1 · · · corr(zy1|κ, zyc|κ)

...
. . .

...
corr(zyc|κ, zy1|κ) · · · 1

− 1

◦2

=
|Y|(|Y| − 1)

2 ∑

 0 · · · 0
...

. . .
...

corr(zyc|κ, zy1|κ)
2 · · · 0

 =
|Y|(|Y| − 1)

2 ∑ L−1

[
Corr(Zy|κ)−Y

)◦2]
(7.80)

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 153

where L−1(.) is the strict lower triangular matrix (i.e. without the diagonal), and
1 is the identity matrix. We use the strict lower-triangular matrix since the loss is
symmetric; thus avoiding redundant operations that would otherwise only increase
computational overhead. Overall, by optimizing the loss using the equation above,
we do guarantee distinct representations for different labels, but do not (explicitly)
enforce similar embeddings for instances with the same label. This is why we pro-
pose training in different stages, i.e. first instance-wise, then mean-embedding-wise,
then label-wise.

Mean-Teacher Average Class-Label Contrastiveness

Let Z|κ, 1 be defined as above and, similarly, Ẑ|κ the mean representation obtained
using a "mean teacher network" as in 7.5.8. The loss:

L3 = ∑
(
Corr(Z|κ, Ẑ|κ)− 1

)
(7.81)

then provides a class contrastiveness loss whose computation complexity also
scales with the number of classes/labels rather than the number of (batched) in-
stances, essentially likewise allowing for a substantial computational performance
improvement.

Hence, as we are using mean-teacher networks, we must further also "efficiently"
maintain track of the average embeddings of all occurrences over all epochs and
batches. Keeping track of all past and current embeddings during training and then
just averaging all of them by demand is a brute-force strategy that is unacceptably
slow, costly, and impractical. Instead, a cumulative moving average is a considerably
better and more efficient approach. Overall, the vector representations are provided
by the batches within every episode. A cumulative moving average in its basic form
is only accurate if all random batches are of identical size, which is not always the
case for the very final batch (e.g. for a batch size of four, a set of nine instances would
yield two batches of size four and one batch of size one). However, we can simply
modify the cumulative moving average to accommodate this (edge-) case. Let zn
denote the running mean for representations zj with 1 ≤ j ≤ n, i.e. zn = 1

n ∑n
j=1 zj.

For a new zn+1, it follows trivially:

zn+1 =
zn+1 + ∑n

j=1 zj

n + 1
=

zn+1 + nzn

n + 1
= zn +

zn+1 − zn

n + 1
(7.82)

Similarly, for means of batches zp, z′q, with p, q respectively being the size of the
batches, the mean zp,q is:

zp,q =
pzp + qz′q

p + q
(7.83)

Take-Away

To achieve an effective representation, we want to encode "similar" entities in
a similar manner while ensuring that "dissimilar" objects are represented dif-
ferently and far apart. Thus, we employ a contrastive representation strategy
that encourages a strong correlation among similarly labeled instances and
decorrelation among differently labeled instances.

154 Chapter 7. Methods

Keywords

Contrastive Representation Strategy • Similarity & Dissimilarity • Correla-
tion for Alike Instances • Decorrelation for Unalike Instances

7.5.10 Residual Information Preservation

The forwarding layers create intermediate latent representations by merging sub-
embeddings and node features. To better ensure the preservation and consider-
ation of information from the sub-embedding matrix, we can adopt principles of
residual blocks (Zagoruyko and Komodakis, 2016) and then concatenate the Kernel-
embedding of the sub-representation matrix to the node’s intermediate represen-
tation (i.e. embedding). This concatenated information is then passed as a whole
through an additional layer; yielding the final and residual node representation vec-
tor. Integrating residual preservation becomes particularly useful when dealing with
nodes with many features; especially many categorical features of large dimensions.
To enhance this process further, we can additionally employ an AE (especially for
node levels with, again, high feature dimensions). The residual block idea is de-
picted in Figure 7.20 below:

FIGURE 7.20: Preservation of sub-embedding information using a
residual block-based approach.

Fully Connected Residual Blocks and Basis Learning

The above concept of residual blocks may be extended not just to "within" or "suc-
cessive" layers, but also "across" (all) hierarchy levels in the tree structure. Each
level j generates a collection of embeddings (one for each node), which may be ex-
pressed as a matrix Xj (each row represents a node’s vector representation). We can

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 155

then project each matrix Xj into a one-dimensional vector, again, using Kernel em-
beddings; yielding so a one-dimensional embedding for each level (each of which of
possibly different dimensions). We can then combine these additional level-wise em-
beddings and pass them e.g. through a feed-forward layer (with a consistent output
dimension) to eventually obtain a graph’s final embedding (i.e. full representation);
Figure 7.21 illustrates the main:

FIGURE 7.21: Preservation of sub-embedding information using a
residual block-based approach over all levels.

Additionally, we may use fully and densely interconnected residual blocks to
achieve a more expressive model architecture in terms of maintaining sub-embedding
information (Figure 7.22):

FIGURE 7.22: Full information preservation of sub-embeddings using
a residual block "within" and "between" levels.

Yet, we can do even better: Li et al., 2015 proposed an interesting approach for
sub-graph embeddings utilizing the concept of virtual nodes. These new so-called
"virtual" nodes establish virtual connections with other nodes; and the virtual con-
nections are then utilized to retrieve the node embeddings of all these interconnected
nodes to ultimately yield a single combined embedding that represents or encapsu-
lates the entire set of all those nodes (e.g. by further propagating the combined rep-
resentation through additional layers, etc.). Specifically, in our hierarchical setting,
we can introduce a virtual node for each hierarchy level, establishing so connections

156 Chapter 7. Methods

to all nodes within that level. This ensures that the virtual embeddings are level-
wise semantically meaningful, as the combined vector representation can capture
correlations, patterns, etc. among all nodes at a given level; in particular, also among
child nodes under different direct parent nodes. The embeddings of these virtual
nodes are then further propagated upwards (again, via a residual layer block) to the
root level. This is illustrated in Figure 7.23 below:

FIGURE 7.23: Fully connected residual blocks with virtual nodes.

A remaining question at this point, however, is how to (best) merge these vir-
tual residual node embeddings together to produce a final graph embedding repre-
sentation, especially when the hierarchy contains multiple sub-levels. We can also
introduce importance scores (i.e. weights) for each level and aggregate the embed-
dings accordingly. This can be achieved through attention scores or assigning higher
importance/scores to levels higher in the hierarchy. When manually setting the
weights, however, it is unclear how these hyper-parameter weights should be op-
timally set for a given specific loss function or objective. We can also leverage and
explore basis learning, which is utilized for graph learning on heterogeneous graphs;
i.e. relational graph convolutional networks (Schlichtkrull et al., 2018).

Overall, notice how learning from residual block layers for aggregations of vir-
tual node connections enables the model to learn from cross-correlations; since nodes
are now inter-connected when training the model. This stands in contrast to e.g.
an otherwise simplistic and raw averaging of sub-node embeddings, which would
not ensure that the average of independent node representations is any meaning-
ful. Instead, by training using virtual nodes and residual layer blocks, nodes with-
out a common parent are now also implicitly trained together (via a common vir-
tual node); and so, the final aggregated representation is meaningful and optimized
(again, this is otherwise not achieved via an independent simple node averaging).

Assume n virtual nodes υi, for 1 ≤ i ≤ n; each having an input matrix Vi := Uυi

(i.e., Vi is the child-matrix of the virtual node υi). Let ẑ∗Vi
denote the respective KE

(Equation 7.76). ẑ∗V := [ẑ∗V1
⊕ ... ⊕ ẑ∗Vn

] be the concatenation of the vectors ẑV∗i of
dimension mV. Given σ as a non-linear (activation) function and τ as a linear feed-
forward layer, the non-weighted (final) embedding would be zV := σ

(
τ(ẑ∗V)

)
. Let

α⃗υ ∈ Rn be importance scores of virtual nodes; and α⃗ ∈ RmV . It be α⃗[m] ≡ α⃗
[i]
υ iff

index m refers to Vi in ẑ∗ [m]
V . Given τ, custom (e.g. use-specific) weight-scores α⃗,

learnable importance weights w⃗j, and a bias bj, the j-th neuron’s output is, therefore:

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 157

z[j]V ≜ σ
(
bj +

|ẑ∗V|

∑
m=1

α[m]w[m]
j ẑ∗V

[m]
)

= σ
(
bj +

n

∑
i=1

α
[i]
υ

|ẑV∗i
|

∑
m=1

w[m+∑a<i |ẑVa |]
j ẑ∗Vi

[m]
)

≡ σ

(
bm +

n

∑
j=1

αiτi
(
ẑVi

))
(7.84)

In other words, the final embedding vector zV can be obtained by calculating the
weighted sum of "individual" layer outputs τi(ẑVi), instead of passing a weighted
"concatenated" vector altogether through a linear layer. This is nice because it points
out the option to easily substitute the linear layers τi with any other feed-forward
layer types or modules; demonstrating great flexibility in generating diverse aggre-
gated weighted embedding representations.

Overall, the α scores are normalized to first (1) add inter-weight dependencies;
and second (2) ensure a mean-weight (i.e. importance) of one. Similar to Section
7.5.8, given n hierarchy levels, we perform the score weight normalization as fol-

lows: α̂
[i]
υ := nα

[i]
υ

∑n
j=1 α

[j]
υ

, and so, E[α̂
[i]
υ] = 1. If α⃗υ is chosen to be trainable, Equation

7.84 then shares similarities to basis learning (Schlichtkrull et al., 2018) in relational
GNNs, as mentioned before, without having shared weight matrices.

Having introduced the concept of residual blocks across levels, RCs within levels
can be defined analogously. Given Uω :=

⋃
θi∈Ωω

{v⃗θi , f eat ⊕ v⃗θi ,sub}, its sub-embedding

matrix be Sω :=
⋃

θi∈Ωω

{v⃗θi ,sub}. Then, we define the within-level RC as:

ẑ∗(U,S) := ϕU(ẑ∗UλU) + ϕS(ẑ∗SλS) (7.85)

where ẑ∗U, ẑ∗S are the KE (Equation 7.76) for Uω, Sω, respectively; ϕU, ϕS are non-
linear functions with equal output dimension; λU, λS are the kernel stretch factors.

Take-Away

One approach to enhance the preservation of sub-embedding information
is by employing residual (block-based) layers. Allowing the model to "learn"
the importance of the residual components, or performing densely intercon-
nected residual connections across all levels, are also options. In general,
many residual methods and variations can be applied here in this context.

Keywords

Information Preservation • Residual Layer Blocks • Dense Residuals

7.5.11 Training & Inference

Because we are only interested in the final embedding vector during model predic-
tion or -evaluation, we can deactivate and completely remove the decoder compo-
nent, decreasing computation time and eliminating unnecessary computations over-
all. Moreover, during inference, the network undergoes slight modifications, such
as the removal of dropout layers, the use of pre-computed statistical variables (e.g.
batch normalization parameters), etc. Additionally, the inference hardware can also

158 Chapter 7. Methods

differ and is often cheaper, as there is no need for intensive back-propagation; thus,
allowing for specialized GPUs designed exclusively for inference tasks.

Take-Away

For inference, decoder modules are redundant and can be ignored/removed.

Keywords

Redundant Decoder Modules • Differences in Training vs. Inference

7.5.12 Full Model Composition

Based on the above extensions and concepts, we can combine them to establish a
foundational model for a consolidated final NN layer architecture. An abstract high-
level illustration is presented in Figure 7.24 below:

FIGURE 7.24: Forming a foundational unified hierarchical graph
auto-encoder neural layer over a composition of multiple different

concepts and ideas.

Given a model’s input matrix U, it is first passed through a self-attention layer
(e.g. scaled dot product); yielding the attention matrix U◦. Both matrices are then
passed independently of each other through two distinct Siamese encoder modules
and then pooled using kernel embeddings; outputting a total of four temporary
intermediate output representation matrices ZA,1,Z◦A,2,ZB,1, and Z◦B,2, and each of
which is then pooled using kernel embeddings into vectors z⃗A,1 ,⃗z◦A,2 ,⃗zB,1, and z⃗◦B,2.

To consolidate both (pairwise) Siamese outputs, we perform basic vector ag-
gregation, for instance, by computing their means. Let z⃗A := 0.5(⃗zA,1 + z⃗◦A,2) and

7.5. Self-Supervised Contrastive Representation Learning on Tree Structures 159

z⃗B := 0.5(⃗zB,1 + z⃗◦B,2). Following this, we normalize z⃗A to achieve unit size and com-
pute the norm for z⃗B. The final embedding z⃗ is, overall, given by:

z⃗ :=
z⃗A

||⃗zA||
· ||⃗zB||

λdim(⃗zB)
(7.86)

where λdim(⃗zB) is the expected norm of a random Gaussian N (0, σIdim(⃗zB)) of di-
mension dim(⃗zB) with zero mean and standard deviation σ. Its expectation can be
derived via the Gamma-function Γ (Chandrasekaran et al., 2012), i.e. the expected
magnitude of the norm of a random Gaussian vector x is known to be:

E
[
||x||2

]
= σ
√

2
Γ(dim(x⃗)+1

2)

Γ(dim(x⃗)
2)

(7.87)

and so we set λdim(⃗zB) := E
[
||x||2

]
accordingly. Γ(ϵ) quickly leads to enormously

large numbers (e.g., as can be easily seen for positive natural numbers n, Γ(n) =
(n − 1)!), and so, Γ(ϵ) quickly leads to computational overflows. Using Sterling’s
formula, we can approximate Γ-quotients (Tricomi, Erdélyi, et al., 1951):

Γ(x + β)

Γ(x + α)
≈ xβ−α (7.88)

Setting β := dim(⃗zB)+1
2 and α := dim(⃗zB)

2 , we know γ := β− α = 0.5, and so for a
standard Gaussian with σ = 1:

σ
√

2
Γ(dim(x⃗)+1

2)

Γ(dim(x⃗)
2)

≈
√

2dim(⃗zB)
0.5 =

√
2dim(⃗zB) (7.89)

However, following the inequality from Chandrasekaran et al., 2012, stating that:

dim(⃗zB)√
dim(⃗zB) + 1

≤ λdim(⃗zB) ≤
√

dim(⃗zB) (7.90)

provides a tight bound, given that we have
√

dim(⃗zB) <
√

2dim(⃗zB), we actually
obtain a better "efficient" approximation using λdim(⃗zB) ≈

√
dim(⃗zB).

Referring back to Equation 7.86, since we are multiplying a unit-vector times a
scalar to obtain z⃗, this operation can be seen as angle · magnitude (note the similarity
to complex-valued networks). In this context, the use of self-attention (applied to
one of the inputs per Siamese network) ensures that the correlation (i.e., attention
scores) among the row vectors of the input matrix are taken into account during
computations; and its Siamese output is then averaged with the Siamese output of
the non-correlated input to yield a robust (combined) intermediate representation.
Again, this is done for each of both Siamese networks; yielding the matrices ZA, ZB.

For the inception-based decoder, the average Z := 0.5(ZA ◦ ZB) is forwarded
as input (◦ being the Hadamard product). The reconstruction loss is computed in
regard to the original input U. Unless being on the root-level, the embedding z⃗ is
then further propagated upwards; this is all then done repeatedly (i.e. recursively)
until reaching it.

160 Chapter 7. Methods

Take-Away

The final model is formed by consolidating diverse techniques into a unified,
advanced, single model. While the framework permits multiple modifica-
tions, the core architecture remains a hierarchical auto-encoder. However, in-
corporating additional techniques should be approached cautiously, as it may
increase model complexity and training time.

Keywords

Main Model Integration • Single Architecture • Hierarchical Auto-Encoder

7.6 Concatenated Representation Learning

Consider now data entities that have multiple different data sources/views (e.g. hi-
erarchical graphs, images, text documents, etc.); and for each of which we have rep-
resentative embedding vectors/functions. The embedding representations can be
merged by concatenating them into a unified larger single vector. Let ϕ ∈ Φ denote
data instances from a set of entities, and be Θ0, Θ1, ..., Θk the k distinct data views.
Thus, each ϕ is associated with a corresponding θi ∈ Θi, where 0 ≤ i < k, and let
θ

ϕ
i represent this association for a particular ϕ. We write fΘi(ϕ) ≡ fΘi(θ

ϕ
i) to de-

note the embedding function (producing a representation vector) of a given ϕ for its
respective θ

ϕ
i . The concatenated representation is so:

fΘ(ϕ) := fΘo(ϕ)⊕ fΘ1(ϕ)...⊕ fΘk(ϕ) = [fΘo(ϕ), fΘ1(ϕ), ..., fΘk(ϕ)] (7.91)

where ⊕ is the vector concatenation operation. We split the respective embed-
ding set { fΘ(ϕ) : ϕ ∈ Φ} as usual into training and test sets and feed it further
into another DNN (Figure 7.25). Also, observe how the inputs now solely consist of
standard numeric linearized vector values; i.e. concatenated vectors.

FIGURE 7.25: Illustration of feeding the concatenated vector repre-
sentations into a further model; e.g. to learn a unified embedding.

7.6. Concatenated Representation Learning 161

Yet, it is crucial to maintain consistency and separation between training and test
entities, ensuring that their intersection is always zero (i.e. disjoint). Specifically, for
subsets Φtrain ⊂ Φ ⊃ Φtest, it must hold that Φtrain ∩Φtest = 0. Additionally, for all
0 ≤ i < k, ΦΘi

train ⊂ Φtrain ⊃ ΦΘi
train and ΦΘi

test ⊂ Φtest ⊃ ΦΘi
test. The same applies if an

additional development set is introduced for hyper-parameter optimization.
By learning a final representation based on the concatenation of all individual

data view embeddings, we can capture patterns across different representations and
allow the model to jointly associate all data views (i.e. the concatenation); e.g. with
respect to labels or other objective functions. If the embeddings are trained inde-
pendently and then detached of gradients at the time of the concatenation, this also
offers two further main advantages (over utilizing a single, end-to-end, large model):

(1) First, as data view representations can be trained separately, updating or in-
troducing a new data view (e.g., in future time) only requires retraining the concate-
nated model along with the modified/new data view. There is no need to retrain
the other models, i.e. the otherwise single very large model; and also across the en-
tire dataset (i.e. other data views). This saves a lot of time and reduces the need for
repetitive training (why go over data that has not changed?). Overall, this makes the
model much more flexible and scalable. Additionally, since individual data views
are trained independently, this further allows for parallel training.

(2) Data views may vary in size, complexity, and form. When dealing with a sin-
gle larger model, training can encounter bottlenecks if, for instance, one data view is
a shallow hierarchical structure while another is deeply layered. Calculating a sin-
gle unified embedding requires, thus, waiting until all data views have propagated
information upwards; and back-propagation also has to "wait" until information is
transferred downwards (during training). Furthermore, because there is no gradi-
ent cut at the "concatenation level" and all sub-views are trained in correlation across
their data structure and features (rather than solely via their final embedding repre-
sentations), gradient calculation and optimization are far more complex, large and
so computationally intensive; e.g. for hierarchical structures, gradients must flow
down to the very bottom of all tress to all leave nodes. In contrast, if the data views/
embeddings are learned independently, gradients are only computed and calculated
up to the concatenated vector (i.e. the gradient cut); without propagating gradients
to the lowest (i.e. deepest) hierarchy levels.

Take-Away

Instead of training a single extensive model incorporating all data views
jointly, an alternative approach involves training individual models for each
data view independently. The embeddings generated from these views can
then be concatenated into a single concatenated vector; which is then passed
through a last (non-hierarchical) model to produce the final embedding. This
offers two advantages: (1) enhanced flexibility, and (2) improved computa-
tional performance.

Keywords

Independent Data Training • Concatenated Embedding Representations

162 Chapter 7. Methods

7.6.1 Handling Duplicate Instances

Entities may encompass instances of data views, e.g. hierarchical structures, where
(sub-)trees or data parts are entirely identical. As we want a generalizable model
that does not simply "fit" the most common data instance, it is imperative to remove
duplicates inside corresponding data views. However, eliminating duplicated in-
stances here is not a totally straightforward task, as entities might share identical
instances only within specific sub-data views but not in combination with others;
i.e. as a whole, they are not unique, but within individual data views, they are
duplicates. Eliminating duplicate entities throughout the entire dataset, but selec-
tively merely based on duplication within a specific subview, can not only greatly
diminish the overall effective data size but also carries the risk of losing important
information. On the other hand, not removing and retaining such duplicates can in-
troduce issues like computational overhead, bias, overfitting, etc. Overall, when re-
moving duplicates, careful consideration is essential, especially when splitting data
into training and test sets, to ensure consistency between the two (this gets more
complex when additionally using a development set). It is crucial to prevent any
overlap between training and test sets across all data views to ultimately ensure an
effective final model.

A solution is depicted in Figure 7.26. First, we identify duplicates within a data
view containing instances θi ∈ Θ. Notice how θi = θj for ids i ̸= j is possible
(i.e. be aware of the difference between data and ids). We partition all instances
accordingly into sets Θ⊥, Θ≡, respectively containing duplicate-free data (Θ⊥) and
duplicates (Θ≡); with {i : θi ∈ Θ⊥} ∩ {i : θi ∈ Θ≡} = ∅, ∀θi ,θj∈Θ⊥ : θi ̸= θj, Θ≡ ⊂
Θ⊥, Θ⊥ ∪ Θ≡ = Θ. Then, each Θκ, for κ ∈ {⊥,≡}, is split into further train and
test sets Θtrain

κ , Θtest
κ . In other words, for each instance, if its inclusion in Θ⊥ does not

lead to duplicates, we add it there; otherwise, we add it to Θ≡. We then train the
data view using only Θtrain

⊥ , Θtest
⊥ . Since Θ≡ is per definition a set of duplicates, we

can "infer" the corresponding embeddings later over Θ⊥ (for each duplicate in Θ≡,
one correspondence in Θ⊥ exists).

FIGURE 7.26: Suggested approach for separating data into train and
test sets after identifying and removing duplicates to ensure data split

consistency across different data views.

7.6. Concatenated Representation Learning 163

That is, when given multiple further data views, we maintain a consistent train
and test split by defining the "entire" training set as Θtrain

⊥ ∪Θtrain
≡ ; and analogously,

the test set as Θtest
⊥ ∪Θtest

≡ . Duplicates within each new data view are then also iden-
tified, respectively constrained to that training and test set partition, and removed
accordingly; i.e. respecting the integrity of that partition. To establish an effective
initial partition Θ⊥, Θ≡, the initial split should be performed on the data view con-
taining the highest number of duplicates.

Take-Away

Duplicates are removed during training to avoid biasing the model, overfit-
ting, unnecessary computations, etc. However, we must maintain consistency
across all data views when splitting into train/test sets.

Keywords

Duplicate Data Removal • Bias Avoidance • Data Split Consistency

7.6.2 Memory Efficient Similarity Search

Let R be a set of reference texts, and T be a set of target texts. Let s : R× T → [0, 1]
be a function that measures the similarity between a reference text and a target text;
where 0 indicates no similarity and 1 indicates maximum similarity. We want to find
the reference text r∗ ∈ R such that r∗ = arg maxr∈R ∑t∈T s(r, t). However, the naive
brute-force search operation, which involves a nested loop, results in a prohibitively
expensive time complexity of O(nm); including multiple model forward passes.

A somewhat better approach is to use a batching-based strategy, which forwards
batches consisting of copies of the same and different reference texts together in a
common batch through the score metric function. This allows the metric function to
make use of vectorized operations to speed up the evaluation. The metric score out-
puts are then all assigned to the corresponding reference text and the mean score is
calculated per reference text. Ultimately, the reference text with the highest average
score is selected. However, the performance is directly dependent on the batch size;
which could be small/limited depending on the available hardware resources.

A yet more efficient method consists of first forwarding all individual instances
through the model in batches, caching the hidden model states (the output logits
of the model), and then concatenating the hidden states. These concatenated states
are then subsequently forwarded, again via batching, through the metric function.
This avoids unnecessary repetitive computations and considerably speeds up score
predictions. The different approaches are illustrated in Figure 7.27.

Take-Away

To efficiently assess the similarity between references and targets, we pass
instances in batches through a model, cache hidden states, concatenate, and
subsequently forward them (again in batches) through a metric function. This
allows for a faster evaluation compared to a naive brute-force search.

164 Chapter 7. Methods

FIGURE 7.27: Similarity search using different methods.

Keywords

Batching • Similar Reference Text Retrieval • Efficient Evaluation

7.6.3 Optimized Memory-Efficient Graph Batching

Graphs can greatly vary in size; i.e. they can have different numbers of nodes, levels,
etc. When batching multiple graph instances together, the graphs are, thus, padded
to fit the size of the largest graph in the batch. For example, consider a data set con-
taining n graphs with an average of k nodes per graph, but a portion p of the data set
contains extremely large graphs with an average of m nodes. If we randomly sample
with a batch size of n/p, we can expect to have around one large graph per batch
on average, thus, the padding dimension would be m (even though about all but
one instance do not require padding at all). This is very inefficient because padding

7.6. Concatenated Representation Learning 165

consumes a considerable amount of memory; which can slow down training and
increase computational costs. The greater the difference between n and m, the more
severe this is. The total memory complexity is O(m(n/p)). In other words, naive
batching is an inefficient use of computational resources, as padding might only be
necessary to handle a few outliers; but is applied to all instances in the batch.

Hence, instead of storing all nodes as an explicit full padded matrix represen-
tation, we can use implicit representations, such as nested tensor matrices9 (Figure
7.28). A nested tensor is a data structure that enables the efficient representation of
data with non-uniform shapes. It is analogous to a regular tensor, i.e. a matrix, but
differs in that not all dimensions (must) have uniform sizes; some dimensions can be
irregular. This allows for more flexibility in representing data with varying shapes;
and avoids (unnecessary) padding.

FIGURE 7.28: Using implicit nested matrix representations to avoid
unnecessary and excessive padding in batch processing.

Take-Away

Graphs vary in size with different numbers of nodes, levels, etc. When batch-
ing multiple graph instances, they are padded to match the size of the largest
graph in the batch, resulting in inefficient memory usage. To address this,
implicit representations like nested tensor matrices can be used, providing a
more efficient and flexible approach that avoids unnecessary padding. This is
particularly beneficial when dealing with greatly varying sizes and outliers.

Keywords

Graphs • Batch Processing • Irregular Dimensions • Padding • Inefficiencies

9PyTorch currently supports Nested Tensors as a prototype data structure.

166 Chapter 7. Methods

7.7 Manifold Data Representation and Clustering

Li et al., 2022 recently suggested in their work on Neural Manifold Clustering and
Embedding (NMCE) that attaining manifold clustering with DNNs requires two fun-
damental ingredients: a domain-specific constraint that ensures the identification of
the manifolds, and a learning algorithm for embedding each manifold to a linear
subspace. NMCE follows three principles:

• The clustering and the representation must adhere to domain-specific con-
straints, such as local neighborhoods, local linear interpolation, or augmen-
tation invariances.

• The embedding of a specific manifold must not collapse.

• The embeddings of manifolds must reside in different linear subspaces.

They achieve this by optimizing over two losses:

LNMCE(X) := λ0MCR2(X)︸ ︷︷ ︸
learning algorithm

+ λ1Aug(X)︸ ︷︷ ︸
identity constraint

(7.92)

where λ{0,1} are weighting parameters, MCR2 is the Maximum Coding Rate Re-
duction objective (Yu et al., 2020) and Aug(x) a constraint function loss over data
augmentation on x. Equation 9.7 above can be written into a more general form:

L(X) := λ0C(x)︸ ︷︷ ︸
learning algorithm

+ λ1D(X)︸ ︷︷ ︸
identity constraint

(7.93)

where C represents any objective for subspace feature learning.
Therefore, to ensure that the structure of the data is retained (i.e. not destroyed,

e.g. by the DNN), alternatively to MCR2, we can here also use an AE module10 as the
identity constraint loss function. As for the learning algorithm, we can use a classi-
fication loss; enhancing and encouraging so linear separability between individual
classes/groups (i.e., manifolds). Therefore, our overall learning objective loss is:

L′(X) := λ0Class(x)︸ ︷︷ ︸
learning algorithm

+ λ1AE(X)︸ ︷︷ ︸
identity constraint

(7.94)

7.7.1 Taylor Approximation Smoothing

The kth-order Taylor expansion around a point a of a k-differentiable function f (x)
is the power series:

f (x) =
k

∑
n=0

f (n)(a)
n!

(x− a)n (7.95)

where f (k)(a) is the kth derivative of f (a) and f (0)(a) := f (a). Generally, Taylor
polynomial approximations to functions improve as k grows; although convergence
is not always assured. If f (x) is infinitely differentiable, its Taylor series is:

10For learning diverse and discriminative representations, Yu et al., 2020 suggested using MCR2 over
AEs due to the necessity for a robust and principled representation learning approach when handling
intricate multi-modal data structures; overall, the authors argue that AEs can have certain challenges
when trying to capture diverse subclass structures.

7.7. Manifold Data Representation and Clustering 167

f (x) =
∞

∑
n=0

f (n)(a)
n!

(x− a)n (7.96)

Given several variables, the Taylor expansion of a function f (x) of n variables
around the vector point a ∈ Rd in multi-index notation is:

f (x) = ∑
|α|≥0

1
α!

Dα f (a)(x− a)α (7.97)

where α = (α1, . . . , αn) is the multi-index, α! = α1! · ... · αn!, |α| = α1 + ... + αn,
(x− a)α = (w1 − a1)

α1 · ... · (wn − an)αn , and Dα f (a) is the mixed partial derivative

Dα f (a) = ∂|α| f
∂wα1

1 ···∂wαn
n
(a). Explicitly, this is equivalent to (Duistermaat et al., 2010):

f (x1, ..., xd) =
∞

∑
n1=0
· · ·

∞

∑
nd=0

(
∂n1+···+nd f
∂xn1

1 ···∂x
nd
d

)
(a1, ..., ad)

n1! · · · nd!
(x1 − a1)

n1 · · · (xd − ad)
nd (7.98)

A DNN is essentially a differentiable mathematical function y = f (x) that maps an
input vector x of dimension n to an output vector y; and so, this can also be approx-
imated using a Taylor polynomial. The gradients of a DNN are typically computed
with respect to the network’s weights, but they can also be computed in regard to
the input vector. Let x0 be an input vector of a DNN function f . Then, Taylor’s the-
orem can be applied to approximate f around a point a, with components a[i]; for

0 ≤ i < n. The Jacobian matrix J, whose components are denoted by [Jya]ji := ∂y[j]

∂a[i]
,

which is equivalent to J =

[
∂f

∂a[0]
· · · ∂f

∂a[k−1]

]
, defines the first-order Taylor ap-

proximation of the DNN around a:

f (x) ≈ f (a) + J(x− a) + o(||x− a||), (7.99)

where || · || denotes the Euclidean norm and o(||x − a||) indicates an upper-
bound that is not asymptotically tight, i.e. that the error of the approximation de-
creases faster than x− a as x approaches a. We denote first-order Taylor approxima-
tion of f for a as f a

T1
.

Likewise, yet assuming twice differentiability on f , the second-order Taylor ap-
proximation could be used; which is computationally more demanding but takes
into account the curvature of the function by using the symmetric Hessian matrix H
at x with entries H fi,j =

∂2 f
∂x[i] ∂x[j]

. The approximation is:

f (x) ≈ f x0
T1
(x) +

1
2
(x− x0)

TH(x− x0) (7.100)

The trade-off for addressing the curvature with the second-order Taylor approx-
imation is the substantially higher computational complexity (compared to the first-
order Taylor approximation without considering curvature). In general, the quality
of the Taylor approximation improves with decreasing ||x− a|| and deteriorates with
increasing distance.

To describe and justify relationships between data, it is common to assume that
the data follows at least one of the following distributions:

168 Chapter 7. Methods

• Smoothness: Similar inputs should yield similar model outputs.

• Continuity: Close points are more likely to have the same label

• Manifolds: Data usually resides on latent manifolds of significantly smaller
dimensions.

• Clustering: Data tends to concentrate into different clusters. Points inside a
cluster are more likely to have the same label.

Combining these assumptions motivates the following thoughts:

Supposition 1 Instances on the same manifold are more likely to have characteristics that
distinguish them from those on other manifolds and hence may form their own cluster.

Supposition 2 Points that can be well approximated pairwise by predicting their position
following the extrapolated local shape of the manifold around a particular point (e.g. lin-
early or through curvature) are more likely to be on the same manifold than points with
pairwise high approximation errors.

The idea of Supposition 2 is illustrated in Figure 7.29 below. It considers that
points on the same manifold are more likely to have similar underlying characteris-
tics, whereas points on separate manifolds do not. The white and red dots are on two
different manifolds. When following the local manifold shape (e.g., linearly, through
curvature, etc.) around a given point, the approximation between white points is
substantially better than the approximation between red and white points. Their
Euclidean distance may be small, but their manifold approximation is large. The
accuracy of the approximation (obviously) depends on the smoothness and quality
of the manifold landscape.

FIGURE 7.29: Illustration of the manifold approximation concept.

Thus, putting Suppositions 1 and 2 together leads to the following hypothesis:

Hypothesis 1 Subgroups within labeled data can be found by identifying the data’s latent
representations and building an artificial manifold space by forcing close points on the man-
ifold of likewise labeled data to produce low manifold approximation errors while keeping
those for points with dissimilar labels large.

7.7. Manifold Data Representation and Clustering 169

Because we can manipulate a DNN’s landscape by optimizing (i.e. decreasing)
the prediction error over the Taylor expansion, smoothing out the landscape in this
way can lead to changes in manifold sharpness (see Foret et al., 2020 for a thorough
explanation of how smoothness influences generability). This allows us to further
motivate the following observation:

Assumption 1 Optimizing for a low Taylor approximation error can impact the smoothness
of the manifold landscape and, consequently, influence model performance.

In other words, reducing the TA error could not only help us in identifying man-
ifolds, but it may also change (i.e. improve) manifold smoothness and, hence, model
performance. We propose the following Taylor-based manifold algorithm, which is
divided into three main stages:

1. A warm-up phase in which a DNN model is trained using a classification loss
on the embedding layer of an AE (together with reconstruction loss of the AE).

2. A smoothing phase in which a sub-module of the DNN further attempts to
reduce the TA between the latent representations of equally labeled instances
and their final output embeddings.

3. A clustering phase where we extract clusters based on the TA error.

Given an input x, let m be an AE model consisting of three (non-linear) parts:
an encoder module mα with noise perturbed outputs, a fully connected intermedi-
ate module mβ, and a decoder module mγ, such that a full model forward pass be
defined as:

m(x) := mγ

(intermediate output zx
β︷ ︸︸ ︷

mβ

(
mα(x)︸ ︷︷ ︸

encoder output zx
α

+ η[j]︸︷︷︸
noise ∈ N (0,σ2)

))
︸ ︷︷ ︸

decoder output zx
γ

(7.101)

where η[j] := N (0, σ2) is noise in form a Gaussian with standard deviation
σ > 0. zx

ϕ for ϕ ∈ {α, β, γ} be the respective latent vector representations of the
sub-modules’ outputs, and wx

α := zx
α + η[j]. We denote��▽wα as the gradient-free (de-

tached) copy of wα. Let further T�▽wx
α
(mβ,��▽wx

α) be the TA error matrix on mβ where
gradients for back-propagation are computed only for the Jacobean J (or Hessian H)
over the network in regard to the gradient detached input vector ��▽wα. This forces
the network to optimize the model’s approximation landscape rather than the la-
tent vectors of the input points. Also, the gradient tree is smaller, so performing
back-propagation is therefore computationally faster (i.e. has fewer operations). For
notation, we write mδ(x) ≜ mδ(z

x
β) as a separate classification module, defined for

outputs zx
β of the intermediate module mβ, which outputs scores for class labels.

In other words, our TA-based approach involves mapping input vectors into
manifolds and then optimizing the TA based on those latent manifold representa-
tions. To retain the identity structure of the data, we utilize an auto-encoder, and
to guide the learning algorithm from an unsupervised to a more supervised con-
text, we incorporate a classification module. Our goal is to obtain suitable latent
representations that encode information and semantics from both the labels and the
data itself. By performing the TA over latent representations, we can ensure that the

170 Chapter 7. Methods

distances between vectors are much smaller than if we were using raw input data.
However, we must optimize the model’s landscape rather than the vector coordi-
nates by performing gradient-detach procedures. This, which we term approximated
latent spaces (ATLAS), is summarized in the following pseudo-code (Algorithm 1):

Algorithm 1: Approximated latent spaces (ATLAS)
Data: Inputs xi ∈ X with labels yi ∈ Y
Parameters: Phase lengths p1, p2 ∈N;
Initialize: Encoder mα, Taylor model mβ, decoder mγ and classification
module mδ.;

k← 0;
// Warm-up phase
while k < p1 do

Train sub-modules without Taylor approximation loss.;
k← k + 1

// Smoothing phase
while k− p1 < p2 do

ϵ← 0;
Extract embeddings��▽wα,��▽zβ.;
foreach y := label do

ϵ← ϵ+ classification loss +auto-encoder loss;
Ω := {xi : yi = label}
foreach xi ∈ Ω do

ϵ← ϵ + ∑
x̂i∈Ω
||Tw

xi
α
(mβ,wx̂i

α),��▽wx̂i
β ||1;

Back-propagate and optimize over ϵ.;
k← k + 1

finally
foreach y:= label do

Ω := {xi : mδ(xi) = label}
Z := {zxi

α : xi ∈ Ω};
Cluster Ω using TZ(mβ, Z) as metric;

To summarize, we follow a three-phase approach for training our model. In the
first phase, we train the model on a pure classification and AE task. This helps
to generate strong initial (i.e. representative) latent vectors which are then used for
further Taylor optimization. If we try to optimize the model over the Taylor error
from the start, it can result in highly unstable training. The warm-up phase ensures
that the model possesses meaningful initial vectors and more stable sub-modules.
Furthermore, as the TA lowers with increasing distance between points, we use clas-
sification to encourage the network to generate more compact representations for
instances with identical labels.

In the second phase, we fine-tune the network landscape to produce good Taylor
approximations with low errors. To prevent the intermediate model from producing
"none-sense" and avoid a trivial collapsing solution (Li et al., 2022), we continue to
train the TA loss alongside the classification and reconstruction losses. This also
ensures that the model does not fully erase semantics previously encoded in the
embeddings. Such an approach is similar to the NMCE loss (as in Equation 9.7),
where a learning algorithm and an identity-preserving constraint are applied jointly:

7.7. Manifold Data Representation and Clustering 171

CLA(xi, yi) := Classification loss of xi given label yi

AE(xi) := ||xi −m(xi)||2
TA(xi) := ∑

x̂i∈Ω
||Txi(mβ, zx̂i

α),��▽zx̂i
β ||1

ϵxi := TA(xi) + CLA(xi, yi)︸ ︷︷ ︸
≜ learning algorithm

+ AE(xi)︸ ︷︷ ︸
≜ identity constraint

(7.102)

where Ω := {xi : mδ(xi) = label}. Figure 7.30 illustrates the main concept of
ATLAS graphically:

FIGURE 7.30: Illustration of the main architecture of ATLAS.

The third and last phase is to perform the actual clustering. Instead of utilizing
the conventional Euclidean distance between vectors as a distance metric for cluster-
ing, we cluster based on the average pairwise TA error of points on model mβ. I.e.,
given xi, xj ∈ X, we define their approximation score smβ

(higher is better) as:

Sxi(mβ, xj) := exp

(
||T

�▽w
xi
α
(mβ,��▽w

xj
α)||1 − µTxi

σTxi

)

Ŝxi(mβ, xj) :=
Sxi(mβ, xj)

∑xk∈X Sxi(mβ, xk)

smβ
(xi, xj) := −min

[
Sxi(mβ, xj), Sxj(mβ, xi)

]
(7.103)

where µTxi
, σTxi

are respectively the mean and standard deviation of the TA errors
over a given instance xi to all xk ∈ X. We use the negative smallest Softmax scores
from the normalized TA errors of instances as a clustering similarity metric. Note,
that sxi(mβ, xj) does not conform to a distance metric since it does not satisfy the
triangle inequality; which is required for a distance function.

172 Chapter 7. Methods

Manifold Clustering

Because our TA-based score smβ
(xi, xj) is a similarity metric rather than a distance

metric. Note how not all clustering algorithms directly support similarities. There-
fore, for clustering, we employ Affinity propagation (AP) (Frey and Dueck, 2007),
which performs clustering using message passing between pairs until convergence.
This works well for similarity metrics and determines the number of clusters auto-
matically (but we could use any other similarity-based clustering method instead).

Take-Away

Neural Manifold Clustering (NMCE) is a clustering technique that is specif-
ically designed for DNNs that operate within complex geometric structures
known as manifolds. The aim of NMCE is to group data points by map-
ping these manifolds onto linear subspaces, while also considering specific
domain constraints. To achieve this, we can combine NMCE with Tay-
lor approximation-based principles to identify points on the same manifold;
which can help in subgroup retrieval/clustering. The idea involves training a
DNN, then smoothing or optimizing latent manifolds using TAs, and finally
performing clustering based on the TA errors.

Keywords

Manifold Clustering • Deep Embeddings • Taylor Approximation Errors

7.8 Clustering Strategy

In a (semi-) supervised setting, given a set of embedding vectors, a naive technique
would be to run a clustering algorithm simply on the entire vector set. However, we
can do better. Instead, a more effective approach would be to perform n independent
clusterings only on the embeddings with equal class prediction. If a classifier with n
classes has already been trained, then using the predicted class labels (instead of the
original labels) allows us to classify and cluster previously unseen instances that lack
(coarse) labels; we simply predict (super-) labels using the classifier. In other words,
we can focus the clustering group-wise on only those points that share the same
prediction. This prevents the clustering algorithm from grouping instances with
different labels together (assuming good accuracy for the classification module). In
doing so, we effectively narrow down the clustering scope to only those points that
have at least a common super/coarse label; trying to then find sub-clusters within
each of those groups respectively. In fact, clustering could be done here repeatedly
multiple times; i.e., after obtaining clusters within each class, we can further sub-
cluster individual clusters by running a (possibly different) clustering algorithm to
identify even deeper sub-clusters (Figure 7.31). Some implications are the following:

1. Fine-grained clustering: By performing independent clustering on embed-
dings with equal class predictions, clusters are intended to be more internally
homogeneous with respect to their predicted labels. This can potentially reveal
more subtle patterns within each predicted class.

2. Utilizing classifier predictions: Using predicted labels (instead of original la-
bels) allows for clustering of new unseen instances without (coarse) labels.

7.9. Supervised Clustering Quality Evaluation 173

3. Mitigating the impact of incorrect groupings: If the classifier employed to
generate label predictions is accurate and effective, it helps to avoid severe in-
correct clustering assignments. Grouping data points based on their predicted
labels prevents instances with different (coarse-) labels but similar embeddings
from being mistakenly clustered together.

4. Hierarchical clustering: Refining clusters through sub-clustering can expose
deeper structures and relationships within each predicted class.

5. Enhanced interpretability: Visualizing hierarchical sub-cluster patterns within
classes can aid exploration and decision-making, as well as provide more un-
derstandable insights into complex data structures and their distribution.

Again, it’s important to note that the success of this method heavily relies on
the accuracy of the initial classifier’s predictions and the suitability of the clustering
algorithms chosen for both the primary and sub-clustering tasks. Additionally, the
computational complexity increases when doing multiple iterations.

FIGURE 7.31: Performing sub-clustering on clusters to extract deeper
and finer sub-patterns.

Take-Away

One approach to cluster embedding vectors is by grouping only those in-
stances respectively together with identical predicted class labels, rather than
clustering the entire set indiscriminately. Clustering can also be then (re-) ap-
plied iteratively by sub-clustering identified clusters repeatedly.

Keywords

Sub-Clustering • Sub-Pattern Identification • Label-Clustering • Refinement

7.9 Supervised Clustering Quality Evaluation

The B-Cubed (B3) algorithm (see Section 2.10.2, Amigó et al., 2009) can be used to
numerically assess the quality of clustering assignments. However, it presupposes
that the ground truth labels are exact and that there are no (relevant) sub-clusters
inside groups of equally labeled objects. As an example, suppose we have m ·n many
real, but to us unknown, total labels that can be divided into n sub-groups of pairs

174 Chapter 7. Methods

of m, yielding so only n (observable) coarse classification labels; i.e. we only have an
a priori knowledge of a subset of all ground-truth labels. We now want to discover
(i.e. extract) all m · n sub-clusters. Imagine we now have two clustering algorithms,
A (which finds n coarse super-sets) and B (which finds all mn real labels/subsets).
Although method B is obviously the one we want, the B3 algorithm would, however,
favor algorithm A; since B has a lower recall per cluster ("completeness", as in Figure
??). As a result, the constraint "completeness" can be problematic; meaning that
the extrinsic B3 evaluation in its current form can be misleading when dealing with
coarse and imprecise labels.

7.9.1 Background

Consider a data set X consisting of elements xk with corresponding labels yk ∈ Y.
Let Cj ⊂ X be a cluster, indexed by j, such that the clusters are mutually disjoint,
meaning ∀j,i : Ci ∩ Cj = ∅. The set of all clusters be C, and the union of all clusters
is
⋃

Cj∈C Cj = X, and so all elements belong to (exactly) one single cluster. Let the
indicator function for two elements xk, xm ∈ X be denoted by 1X : X × X → {0, 1}.
1X returns a value of one iff both elements share the same label and belong to the
same cluster; otherwise zero:

1X(xk, xm) :=

{
1 if yk = ym ∧ ∃Cj∈C : xk, xm ∈ Cj ,
0 otherwise.

(7.104)

The B3 cluster score, which is based on precision, recall, and the Fβ-score, is then
defined via (Amigó et al., 2009) :

P(X) := Exk

[
Exm|∃Cj∈C :xk ,xm∈Cj

[1X(xk, xm)]
]

R(X) := Exk

[
Exm|yk=ym [1X(xk, xm)]

]
B3(X) := Fβ(X) ≜

(1 + β2)P(X)R(X)

β2P(X) + R(X)

(7.105)

7.9.2 αMax-B-Cubed: A Supervised Metric for Addressing Uncertainty in
Cluster Evaluation.

Notice: Our work and findings on αMax-B-CUBED (presented in this thesis) have
been publicly released on OpenReview-Venue (Guimerà Cuevas and Schmid, n.d.).

When attempting to identify sub-clusters within coarse ground-truth categories,
the assumption that elements belonging to the same super-category should be grouped
together ("completeness") can be problematic. Instead, we propose a modified eval-
uation metric called αMax-B3. The core idea involves combining clusters based on
their most frequent (i.e. occurring) label and consolidating them into new label-
aggregated cluster sets. αMax-B3 is then calculated over a score weighting over
the consolidated sets and the original clusters, utilizing a trade-off parameter α for
ground-truth uncertainty.

First, for a given cluster Cj, we define the most frequent label of all its elements
as the cluster label:

ŷj := argmax
y∈Y

|{xk ∈ Cj : yk = y}| (7.106)

7.9. Supervised Clustering Quality Evaluation 175

Next, super-sets Sy are generated by merging clusters with equal max-pooled
cluster labels ŷ:

Sy :=
⋃

Cj∈C

{xk ∈ Cj : ŷj = y} ≜
⋃

Cj∈C

{xk ∈ Cj : y = argmax
y′∈Y

|{xk ∈ Cj : yk = y′}|}

(7.107)
A corresponding super-set for a particular label may be empty if that label never

reaches the majority within any cluster; in which case it is just disregarded and ig-
nored. In the unlikely event that argmax is not unique, the cluster is simply not
merged, left as it is, and does not count as a new super-set. Thus, given |Y| labels,
at most |Y|-many new super-sets Sy are generated. The super-set generation is illus-
trated in Figure 7.32 below:

FIGURE 7.32: Conceptual illustration of the cluster aggregation and
consolidation step for generating super-sets.

The final αMax-B3 scores are then (a weighted average of) the B3 scores between
the new (non-empty) super-sets Ŝ := {Sy : Sy ̸= ∅}, and the original cluster sets
C. Let P[y](Cj) denote the B3 precision score of label y on elements in a cluster C,
and R[y](Cj) respectively that of the recall. Let K be a set of cluster indices. We
denote the weighted average precision score over multiple clusters as the expecta-
tion E[

∧
k∈K P[y](Ck)] := ∑k∈K |Ck|yP[y](Ck)/|

⋃
k∈K Ck|y; the weighted recall score is

defined analogously.

Thm. 1 Let Ci, Cj be disjoint clusters. Then: E[P[y](Ci) ∧ P[y](Cj)] ≥ P[y](Ci ∪ Cj).

Theorem 1 (Proof B.2.1) shows that the precision score of the super-set is always
less than or equal to the average precision score of the individual subsets. This im-
plies a monotonically decreasing relationship in precision, which is crucial as it yields
no fluctuations in score translations. A "decrease" in precision scores is not concern-
ing because the actual cluster assignments of the elements remain unchanged; only

176 Chapter 7. Methods

additional super-clusters are created. The evaluation of the cluster assignments is
simply done on a different "scale"; whether scores are higher or lower in comparison
is not directly relevant, but having a smooth monotonic transition is important. A
stricter definition of Theorem 1 gives Proposition 1:

Prop. 1 E[P[y](Ci) ∧ P[y](Cj)] = P[y](Ci ∪ Cj) ⇐⇒ P[y](Ci) = P[y](Cj).

This means that the average of the precision scores of two clusters for a given
label y will only be equal to that of their super-cluster iff the precisions of both
sub-clusters are the same (Proof B.2.2). It can be directly inferred from Theorem
1 and Proposition 1 that the translation is strictly monotonically decreasing when
P[y](Ci) ̸= P[y](Cj), as we established both a "less equal" and an "equality" relation-
ship. Without equality, Theorem 1 reduces to "strictly less" (Proof B.2.3).

Cor. 1 E[P[y](Ci) ∧ P[y](Cj)] > P[y](Ci ∪ Cj) ⇐⇒ P[y](Ci) ̸= P[y](Cj).

Analogously, let R[y](C) be recall scores of label y on elements in a cluster Cj.

Thm. 2 Let Ci, Cj be two disjoint clusters. Then: E[R[y](Ci) ∧ R[y](Cj)] ≤ R[y](Ci ∪ Cj).

This, again, yields a monotonic score translation, but this time, B3 recall is higher
on super-sets (Proof B.2.4). A stricter definition on Theorem 2 yields (Proof B.2.5):

Prop. 2 E[R[y](Ci) ∧ R[y](Cj)] = R[y](Ci ∪ Cj) ⇐⇒ R[y](Ci) = 0∨ R[y](Cj) = 0.

And similarly, Theorem 2 and Proposition 2 imply the translation is strictly mono-
tonically increasing whenever R[y](Ci) ̸= 0∧ R[y](Cj) ̸= 0 (Proof B.2.6).

Cor. 2 E[R[y](Ci) ∧ R[y](Cj)] < R[y](Ci ∪ Cj) ⇐⇒ R[y](Ci) ̸= 0∧ R[y](Cj) ̸= 0.

Overall, the translation of the super-set scores (individually for precision and
recall) is monotonic - respectively decreasing and increasing. However, the Fβ mea-
sure, which is a composite function involving sums and products of both decreasing
and increasing monotonic functions, does itself not necessarily exhibit monotonicity.
Furthermore, although Theorems 1 & 2 refer pairwise to two clusters, they also still
hold for any number of clusters as can be verified by repeatedly merging pairwise
two clusters inductively (Proof B.2.7).

Let S be the collection of all clusters. A super-set Si ⊂ S is the union of a specific
list of clusters indexed by Cj, i.e., Si :=

⋃
j∈J Cj, where J represents the respective

set of cluster indices. Each Cj is always assigned to exactly one Si. The set of all
identified super-clusters be denoted by Ŝ. Elements in Ŝ are mutually disjoint. The
number of elements in a collection is denoted by |Si|, |Cj|; and |Si|y, |Cj|y is the num-
ber of elements with label y in the respective collection; |y| be the total number of all
elements with label y. Naively, one may now want to assign weights to the clusters
based on their cardinality. Since each cluster index j is uniquely associated with a
super-set index i, using j is sufficient to represent the weight. Let η[j] be the weight
assigned to cluster Cj, which naively is calculated as the ratio of the number of el-
ements in Cj to the total number of elements in Si. Using this naive cluster weight,
we can derive the following equalities:

η[j] :=
|Cj|
|Si|

=
|Cj|
|Si|
·
|y||Si|y|Cj|y
|y||Si|y|Cj|y

=

|Si |y
|Si |
|Cj|y
|Cj|

/

|Si |y
|y|
|Cj|y
|y|

=
P[y](Si)

P[y](Cj)
/

R[y](Si)

R[y](Cj)
(7.108)

7.9. Supervised Clustering Quality Evaluation 177

Hence, we can express the ratio η[j] of the cluster size to its super-set in terms

of precision and recall. Theorems 1, 2 imply ECj∈Si [
P[y](Cj)

P[y](Si)
] ≥ 1 ⇐⇒ P[y](Si) ≤

E[P[y](Cj)]; and
R[y](Cj)

R[y](Si)
≤ 1 ⇐⇒ R[y](Cj) ≤ R[y](Si); given that |Cj|y ≤ |Si|y (Proof

B.2.10); implying E[η[j]] ≤ 1 and the equivalence:

E[η[j]] = E

[P[y](Si)R[y](Cj)

P[y](Cj)R[y](Si)

]
= E

[P[y](Si)

P[y](Cj)

min[R[y](Si), R[y](Cj)]

max[R[y](Si), R[y](Cj)]

]
= E

[min[P[y](Si), P[y](Cj)]

max[P[y](Si), P[y](Cj)]

]
·

min[R[y](Si), R[y](Cj)]

max[R[y](Si), R[y](Cj)]
≤ 1

(7.109)

Note that E[η[j]] ≤ 1 ≠⇒ ∀j : η[j] ≤ 1; Let α ∈ [0, 1] be a cluster-specific local
uncertainty indicator. We can write a slightly modified non-monotonic α-weighted
expression of Equation 7.109 as:

η
[j]
α =

min[P[y](Si), αP[y](Cj)]

max[P[y](Si), αP[y](Cj)]
·

min[αR[y](Si), R[y](Cj)]

max[αR[y](Si), R[y](Cj)]
(7.110)

where it holds 0 ≤ η
[j]
α ≤ 1, with limα→0 E[η

[j]
α] = 0+ and limα→1 E[η

[j]
α] =

E[η[j]]+; both approaching from above. Therefore, it can be either η
[j]
α ≤ E[η[j]]

or η
[j]
α ≥ E[η[j]] for different α. Thus, non-monotonic (see Proof B.2.9). In fact, it is

min(p, αq) = max(p, αq) ⇐⇒ α = p/q.
For arbitrary but fixed precision and recall scores, the function η

[j]
α over α has two

"inversion points": p1 :=
P[y](Si)

P[y](Cj)
and p2 :=

R[y](Cj)

R[y](Si)
, and so ∀min(p1,p2)≤α≤α′≤max(p1,p2) :

η
[j]
α = η

[j]
α′ , which means that given fixed scores of precision and recall, η

[j]
α has a func-

tion maxima plateau of score uncertainty in the interval [min(p1, p2), max(p1, p2)]
(Proof B.2.11). The weight function ηα over α for sample values is plotted below in

Figure 7.33. It reaches a maximum of one iff: max
[
η
[j]
α

]
= 1 ⇐⇒ P[y](Si)

P[y](Cj)
=

R[y](Cj)

R[y](Si)
.

FIGURE 7.33: A graphical representation demonstrating the behavior
of η

[j]
α across varying values of α using a fixed configuration of points

as an example.

178 Chapter 7. Methods

The local uncertainty score η
[j]
α can be seen as the "super-set cluster importance"

which weighs how important the score of the corresponding super-set is over the
original cluster Cj. E.g., when the local uncertainty is zero, then α-Max-B3 is equiva-
lent to B3. Although α can be set manually, we assume no prior knowledge of label
uncertainty and set α := min(p1, p2) as the default choice for extracting the highest
possible η

[j]
α weight with minimal uncertainty.

Let Q ∈ {C, S}, xk ∈ Cj. We write Qk|q ≡ xk ∈ Qq and k|j ≡ j. The final αMax-B3

score is the Fβ score using:

Pα(X) ≜
1
|X| ∑

xk∈X
η
[k|j]
α P(Sk|i) + (1− η

[k|j]
α)P(Ck|j)

Rα(X) ≜
1
|X| ∑

xk∈X
η
[k|j]
α R(Sk|i) + (1− η

[k|j]
α)R(Ck|j)

(7.111)

7.9.3 Extension to Imbalanced Data Sets

Dealing with imbalanced class distributions during evaluation can pose several prob-
lems. A straightforward averaging of Fβ scores does not take into account the label
imbalance. Similarly, conventional weighted averaging, which assigns weights in-
verse to frequency, may not be appropriate either. This is because it fails to consider
the diminishing value of new data points as the number of items increases. The
reason is, that when the volume of samples is large, there is an overlap in data infor-
mation, and new data points are more likely to be close copies of existing ones. This
is known as the effective number of samples (ENS) (Cui et al., 2019). The ENS mea-
sures the volume of a collection of n samples, given a hyper-parameter δ ∈ [0, 1),
and is defined by the simple formula vδ(n) := (1 − δn)/(1 − δ). Let |yk| denote
the frequency of label a yk ∈ Y in the data set. The normalized inverse weight is
wδ(xk) := vδ(|yk|)−1/ ∑Y

yi
vδ(|yi|)−1; and δ is as a hyper-parameter. Cui et al., 2019

proposed a unified default value of δ = (|X| − 1)/|X|; which we will be adopting.
wδ(.) is then incorporated to define the balanced αMax-B3

δ :

P[δ]
α (X) ≜ ∑

xk∈X

1
|yk|

wδ(xk)Pα(xk)

R[δ]
α (X) ≜ ∑

xk∈X

1
|yk|

wδ(xk)Rα(xk)

(7.112)

where Pα(xk) := η
[k|j]
α P(Sk|i) + (1− η

[k|j]
α)P(Ck|j) is the precision score of a given

element xk; Rα(xk) is defined analogously for recall.
As mentioned in Cui et al., 2019, δ = 0 corresponds to no re-weighting, thus,

δ = 0 =⇒ P[δ]
α (X) = Pα(X) ∧ R[δ]

α (X) = Rα(X); while δ → 1 approaches re-
weighting on inverse class frequency. Theorems 1 and 2 remain true also for the
imbalanced δ-weighted version of precision Pδ

[y] and recall Rδ
[y]. The case δ = 0 is

trivial, but it also holds for any fixed δ ∈ [0, 1), i.e. Pδ
[y](Ci) + Pδ

[y](Cj) ≥ Pδ
[y](Ci ∪

Cj) and Rδ
[y](Ci) + Rδ

[y](Cj) ≤ Rδ
[y](Ci ∪ Cj). This becomes evident upon canceling

out the weighting factor δ on respectively both sides of the inequality (Proof B.2.8).
The cancellation of the η

[k|j]
α terms implies that any other weighting function can

be used in place of the ENS and the theorems still hold true. Though essentially

7.10. Automated Textual Description Generation of Clusters 179

an extension of the other, we have here independently addressed the δ-weighted
version separately for conceptual clarity.

Take-Away

The B-Cubed evaluation method assumes that labels are exact and does not
address the possibility of valid sub-labels. This can lead to wrong evaluations
and model conclusions. We suggest a modified B-Cubed metric that consid-
ers predominant labels in clusters via super-classes and calculates a weighted
loss over the "goodness" of original- and super-clusters. Specifically, we in-
corporate an uncertainty parameter α that allows us to account for potential
(and varying) degrees of uncertainty in the ground truth labels.

Keywords

Clustering evaluation • B-Cubed • Label Uncertainty • Revised Metric

7.10 Automated Textual Description Generation of Clusters

We exploit the fact that images within a cluster have a semantic connection. This is
due to the definition of clustering, which inherently groups "similar" items together.
Our focus now is on generating descriptions for such clusters; not arbitrary groups
of images. Our approach involves three stages:

• Instance Captioning: A ViED transformer model is first trained on annotated
data and subsequently fine-tuned on a dataset of interest to enhance the cap-
tioning quality. If annotations are unavailable there, the pre-trained model is
simply used to generate instance-wise captions (without fine-tuning).

• Cluster Captioning: The ViED is frozen. Image clusters are identified on the
vision encoder’s output. For each cluster, a pooling method is applied to obtain
a respective cluster representation vector.

• Caption Selection: Multiple candidate sequences are generated using Top-K
(Fan, Lewis, and Dauphin, 2018) and Top-P (Holtzman et al., 2019) sampling.
Each is evaluated based on an automatic evaluation metric measuring the av-
erage text similarity to the cluster. The highest-scoring sequence is chosen as
the most representative cluster caption.

7.10.1 Formal Specification

Let X = {x1, . . . , xn} denote a finite set comprising n instances, and C = {C1, . . . , Cm}
represent a set of m clusters. Each cluster Cj constitutes a non-empty subset of X,
satisfying Cj ⊆ X and Cj ̸= ∅ for j = 1, . . . , m. We perform fine-tuning on an
instance captioning architecture that involves an encoder model (E) and a trans-
former decoder (D), connected through cross-attention and equipped with a Lan-
guage Model Head (LM-Head). This fine-tuning process utilizes the dataset (X, T),
where T = {t1, t2, . . . , tn} represents the textual captions corresponding to instances
in X and each caption tn corresponds to instance xn. The encoder E maps each in-
stance xi ∈ X to a latent representation zi = E(xi), yielding a set of latent represen-
tations Z = {z1, z2, . . . , zn}. Let Zm respectively denote those for Cm. We denote the

180 Chapter 7. Methods

text decoding strategy, which generates token sequences based on token probabili-
ties, as ϱ. We represent text generation using decoder D with decoding strategy ϱ as
D|ϱ. Thus, the ViED model is expressed as D(E(xi)), and its text generation is given
by D|ϱ(E(xi)). Note that D(E(xi)) ̸= D|ϱ(E(xi)). The behavior of ϱ varies between
training and inference due to the difference between the auto-regressive language
modeling loss during training, which generates subsequent sequence words consid-
ering the preceding words in the ground-truth target caption, and the inference pro-
cess, which generates words based on previously generated words in earlier steps.
In our notation, we use ϱ to denote the inference process. To generate cluster de-
scriptions, we leverage the diverse generation capacity of D|ϱ and infer over a single
cluster representation vector. We denote a vector pooling operation on the hidden
states by •[.], so that •[Zm] =: ν•m. Since encoders E, Etext are frozen during training,
ν•m is constant and can be cached. The entire forward pass of the model is:

ŷm = D|ϱ(ν
•
m) ≜ D|ϱ

(
• [E(Cm)]

)
(7.113)

Multiple cluster captions (CCs) may be sampled as part of the decoding strat-
egy ϱ over latent cluster representation ν•m. We denote the set of CCs by Ŷm =

{ŷ(1)m , ŷ(2)m , . . . , ŷ(k)m }, where ŷ(j)
m is the j-th generated candidate CC.

7.10.2 Contrastive Language-Image-Based Pooling

We employ a CLIP-based model (Radford et al., 2021) to align images with their cor-
responding textual descriptions. This alignment is achieved by training the model
on vision and text encoder outputs generated from captions. The CLIP model com-
prises a text encoder, denoted as Etext, and two linear projection layers: one for
the text encoder and another for the vision encoder E. During training, we opti-
mize the CLIP InfoNCE loss (Oord, Li, and Vinyals, 2018) using (batches of) image
embeddings Z and text embeddings Ztext := Etext(T). This maximizes the align-
ment between matching image-text pairs while minimizing alignment between non-
matching pairs. The projector layers are important as they ensure manifold compati-
bility, which allows us to calculate a CLIP score (Hessel et al., 2021) similarity matrix
for hidden vision and text encoder states. Thus, given cluster Cm, for each instance’s
hidden state we can now compute the average CLIP score similarity to all captions
in the cluster. This produces a CLIP score weighting matrix S, with a shape of n× n.
More formally, S is defined as S := CLIP-SCORE(Ztext

m , Zm).

CLIP Gradient-Guided Pooling Search

We can leverage the trained CLIP model to search for the most optimal pooling vec-
tor ν•m that yields the highest CLIP score when considering all the instance captions
of a specific cluster Cm. In essence, we want the model to find/learn the most rep-
resentative vector, parting from a basic mean-pooling approach. It’s worth noting
that text generation is inherently non-differentiable. In other words, we cannot di-
rectly optimize the generated captions given the visual embeddings11. This non-
differentiability arises because the tokenization process disrupts the flow of gra-
dients, preventing the update of the vision encoder parameters in response to the

11Categorical Reparameterization with Gumbel-Softmax (Jang, Gu, and Poole, 2016) allows back-
propagation through discrete operations, but this does not provide an "easy" solution to the non-
differentiability problem in our generative context. Also, the Straight-Through Estimator (STE) (Tiele-
man, Hinton, et al., 2012) is not suitable because it assumes the gradient of the non-differentiable
operation is constant.

7.10. Automated Textual Description Generation of Clusters 181

loss. Instead, we fine-tune the visual embeddings based on the descriptions. Conse-
quently, optimization focuses on refining ν•m with respect to T (Figure 7.34).

FIGURE 7.34: The full training architecture for generating CLIP-
search-based cluster descriptions.

CLIP Weighted Pooling

Rather than using a uniform weighted mean pooling approach, which weighs all
instances equally, we can utilize CLIP similarity scores to assign greater weights to
instances that demonstrate higher similarity to other instances within the cluster.
These instances are often more representative, informative, or valuable. Instances
with lower similarity may be too specific or less relevant to the cluster, and as such,
should have a lesser influence on the embedding pooling process. We do this by
calculating a score-weighted average of the hidden states from the vision and text
encoders. The image-to-texts CLIP scores be respectively s := ∑n

i=0 S[i,:]. ŝ is the
normalized probability. The CLIP-weighted pooling then is: ∑n

i=1 ŝ[i]Z[:,i]
m ; n is the

number of instances in Cm.

7.10.3 Synthetic Boosting of Target Captions

To generate synthetic captions in the neighborhood of existing embeddings, we can
create random normalized linear combinations of the hidden vision embeddings
and forward them through the text decoder. This is similar to computing a ran-
dom weighted mean of the embeddings. Various random sampling methods exist,
such as Monte Carlo (Hammersley, 2013), Latin Hypercube (McKay, Beckman, and
Conover, 2000), or Sobol (Sobol, 2001). This allows us to generate new captions by
combining existing embeddings in a probabilistic manner with more control over
the generation process and coverage of the embedding space. Let Sm be the syn-
thetic embedding matrix of a tensor contraction between a probability distribution

182 Chapter 7. Methods

P of shape ’sample-size’ × ’embedding-size’ and the hidden embeddings Zm; with
matrix components S[i,k]

m = ∑j P[i,j]Z[j,k]
m , where i, j, k represent the sample index, em-

bedding index, and embedding dimension index, respectively. Textual neighbor-
hood captions are then obtained via D|ϱ(Sm).

7.10.4 Caption Selection

We evaluate the quality of generated cluster captions (CCs) using an automatic met-
ric Q. It quantifies the similarity between each candidate CC ŷ(j)

m and the set of
reference targets for corresponding cluster instances Tm := {ti ∈ T : xi ∈ Cm}, yield-
ing a scalar cluster score value q(j)

m := Q(ŷ(j)
m , Tm) ≜ E[Q(ŷ(j)

m , ti)]|ti∈Tm that indicates

the average semantic similarity between candidate CC ŷ(j)
m and reference targets in

set Tm. This requires that dataset X has corresponding textual instance-wise target
annotations. If dataset X lacks captions (i.e., if T = ∅), we can infer instance-wise
captions using the pre-trained ViED model, provided it is domain-compatible to the
dataset used for pre-trained, and set:

T ← {D|ϱ(E(x1)), . . . , D|ϱ(E(xn))} (7.114)

The most appropriate CC representation is then the cluster caption with the high-
est average metric score ranked across all target candidates, identified by y(j)

m :=
argmax

ŷ(j)
m

Q(ŷ(j)
m , Tm). In other words, all candidate CCs are compared to the cor-

responding set of reference targets using an evaluation metric Q, and the one with
the highest average score is selected as the most representative cluster description.
The number of candidate descriptions to sample during decoding can be viewed as
a hyperparameter k. In general, sampling decoding strategies select words typically
proportional to word probabilities, and increasing k can lead to better and more di-
verse CCs; but at a higher computational cost.

7.10.5 Quality Evaluation

The goal is to generate cluster captions that closely match textual descriptions of in-
dividual cluster images in terms of semantic similarity. We assess this using three
key metrics: BLEURT (Sellam, Das, and Parikh, 2020), BERT-Score (BERT-Score),
and BART-score (Yuan, Neubig, and Liu, 2021), collectively denoted as Q. These
metrics measure text similarity by capturing semantic meaning in words and sen-
tences. Additionally, BERT-Score and BART-Score provide insights via precision,
recall, and F-scores. We excluded the CLIP score from the evaluation for fairness
since we already optimized for it.

Take-Away

We can generate concise and descriptive captions for image clusters through
a three-step process: (1) Training a ViED model for individual image cap-
tions. (2) Creating cluster representations and deriving captions. (3) Selecting
the most representative cluster caption using text similarity metrics. Further-
more, we can integrate techniques like Contrastive Language-Image-based
pooling and synthetic boosting of captions.

7.11. Prompt Manipulation on Large Language Models for Customized Text
Summarization and Structured Analysis

183

Keywords

Image • Clustering • ViED Transformer • Clusters Caption Generation

7.11 Prompt Manipulation on Large Language Models for Cus-
tomized Text Summarization and Structured Analysis

A different powerful approach to summarize and explain clusters is by viewing the
problem as a text-to-text generation problem (in contrast to image-to-text); using
prompt engineering with large language models. For example, if we have identified
a set of clusters, each with a textual description, we can pass the concatenation of all
texts through a large language model, such as Llama2. In Llama2, the prompt and
message template is given by:

<s>[INST] <<SYS>> {{ system_prompt }} <</SYS>>
{{user_msg}} [/INST] {{ model_answer}} </s>

where ‘system_prompt‘ is the model’s internal prompt, ‘user_msg‘ is a given
query text (e.g., user input), and ‘model_answer‘ is the output/response of the model.
This allows us to leverage the power of large language models to generate informa-
tive and comprehensive summaries of clusters. The default prompt for Llama2 is:

Llama2 Default System Prompt (Touvron et al., 2023)

"You are a helpful, respectful, and honest assistant. Always answer as
helpfully as possible, while being safe. Your answers should not

include any harmful, unethical, racist, sexist, toxic, dangerous, or
illegal content. Please ensure that your responses are socially
unbiased and positive in nature. If a question does not make any

sense, or is not factually coherent, explain why instead of answering
something not correct. If you don’t know the answer to a question,

please don’t share false information".

This template can be exploited by replacing the prompt with a summarization
prompt, such as "What do these documents have in common?". However, unlike
the approach described in Section 7.10, this method would not take raw inputs (e.g.
images) into account and would only operate on textual documents. Nevertheless,
we can combine both ideas by using a custom (vision) encoder and Llama2’s text
decoder to generate informative summaries of clusters.

Take-Away

Prompt-based engineering in large language models like Llama2 can be used
to effectively summarize text clusters quickly. However, this method focuses
solely on textual data and lacks integration with images or correlation be-
tween image representations and textual embeddings. Integrating a vision
encoder with Llama2’s text decoder could yield comprehensive summaries
incorporating both textual and visual data within clusters.

Keywords

Prompt Engineering • Large Language Models • Textual Summarization

184 Chapter 7. Methods

7.12 Determining Representative Textual Labels for Cluster-
ing Accurate Sensor Data with Inexact Annotations

We have a set of accurate sensor data and a set of annotations that may or may not
be accurate. We are, thus, dealing with uncertainty here. Our task is to rank the
annotations based on how well they represent the clusters in the sensor data. We
need to determine which annotation is the best representation for a set of clustered
sensor data while keeping in mind that the annotations may well be subjective, im-
precise, wrong, irrelevant, or omit essential information, but likewise, also possibly
very informative, accurate, and providing much extra information not included in
the sensor data. The challenge is that the textual data is not aligned with the sensor
data, so we need to account for strong uncertainty in the quality of the annotations.

We provide two separate methods for distinguishing "representative" annota-
tions from "non-representative" annotations. The first method relies on the harmonic
mean of three intuitive heuristics. The second one is based on the instance-wise low-
est auto-regressive modeling loss over the cluster embedding.

7.12.1 Harmonic Mean of Intuitive Heuristics

We propose a method that uses the harmonic mean of three clustering score heuris-
tics: sensor centrality, textual centrality, and textual cluster size. We will use the
following observation and assumption: the closer a sensor data point is to the clus-
ter center12, the more likely a corresponding textual comment is to be descriptive of
the whole cluster since sensor data is accurate and reliable; and, thus, its respective
cluster centroid is a good heuristic13 of a point that is likely to represent the entire
cluster. In contrast, if a sensor data point is an outlier or on the periphery of a cluster,
the chance that its description is representative of the entire cluster is substantially
lower; since a textual comment is based on its sensor data, so if a particular sensor
data already has a lower quality, then the corresponding textual comment is also less
likely to be of representative quality.

Let S, T here now denote sets of embeddings for sensor and textual data, respec-
tively. (si, ti) be a fixed pair of embedded sensor data si ∈ S with corresponding
embedded textual data ti ∈ T. C[S]

j ⊆ S denotes the cluster assignment with index

j on the sensor data S. For each cluster C[S]
j , we perform clustering on the subset

set Tj := {ti ∈ T : si ∈ C[S]
j } to obtain a set C[Tj] of cluster assignments, where

∀
C
[Tj]

k ∈C[Tj]
: C

[Tj]

k ⊆ Tj ⊆ T. We use z[S]j , z
[Tj]

k to denote the cluster centrality embed-

ding vectors14 (see Section 7.12.1) of C[S]
j and C

[Tj]

k , respectively. Let the Euclidean

distance score d[.]m (x) for C[.]
m over the cluster centrality vector z[.]m be given by:

d[.]m (xi) :=
∥∥∥xi − z[.]m

∥∥∥
2

(7.115)

12This only applies to convex clusters. For non-convex clusters, we can use clustering membership
strengths instead of centroids (see Section 7.12.1).

13Ultimately, factors like data distribution, cluster shape, density, dimensionality, and outliers influ-
ence the quality of a centroid in representing a cluster.

14We employ the term "centrality vectors" because not every clustering algorithm or cluster has a
concept of centrality, i.e. a centroid. Clusters can be non-convex, and thus, the average of all cluster
points might even lie outside the cluster set itself.

7.12. Determining Representative Textual Labels for Clustering Accurate Sensor
Data with Inexact Annotations

185

where ∥·∥2 denotes the (Euclidean) norm; [.] is either [C[S]
j] or [C

[Tj]

k]; m a corre-
sponding cluster index.

We are interested in calculating probability scores, and the Softmax function is
an intuitive and common solution here; well-known defined as: σ(x) = ex/ ∑x′∈X ex′

for an element x ∈ X. To prevent numerical instability in computing the Softmax
function where exponentials become very large due to large scores in the distance
function, the "shift-trick" can be used, which subtracts the maximum score from each
value. It maintains proportionality to the original function, since for any vector X
and any (single) arbitrary but fixed scalar constant c, the identity holds:

σ(x + c) =
ex+c

∑x′∈X ex′+c =
exec

∑x′∈X ex′ec =
exec

ec ∑x′∈X ex′ =
ex

∑x′∈X
= σ(x) (7.116)

and therefore in particular σ(x−max[X]) = σ(x). This prevents overflow issues
by ensuring that the largest exponential value is zero. The shift-trick for Softmax,
however, can still result in large negative values, but this does not cause numerical
instability to the same exponential extent. Overall, σ(x−max[X]) will always return
a value between 0 and 1 (since e−∞ → 0 and e0 = 1). We rewrite the distance score
via the shift-trick to:

d̂[.]m (xi) := d[.]m (xi)− max
xi′∈C[.]

m

[d[.]m (xi′)] (7.117)

for [.] ∈ {S, Tj}.We write i|k|j to indicate that ti ∈ C
[Tj]

k , and set ti|k|j ≡ ti; i.e.
si 7→ i|k|j be uniquely identifiable via i. Then, we define the three (normalized)
heuristic scores:

Sensor distance score: ϱ
[S]
j (si) :=

d̂[S]j (si)

∑si′∈C[S]
j

d̂[S]j (si′)
= σ

(
d̂[S]j (si)

)

Textual distance score: ϱ
[Tj]

k (ti) :=
d̂
[Tj]

k (ti)

∑ti′∈Tj
d̂
[Tj]

k (ti′)
= σ

(
d̂
[Tj]

k (ti)
)

Textual cluster size score: ϱi|k|j := σ

|C[Tj]

k | − max
C
[Tj]

k ∈C[Tj]

[
|C[Tj]

m |
]

(7.118)

where |.| denotes cardinality. The harmonic mean of the clustering scores is:

H(i|k|j) :=
3

1
ϱ
[S]
j (si)

+ 1

ϱ
[Tj]

k (ti)
+ 1

ϱi|k|j

=
3ϱ

[S]
j (si)ϱ

[Tj]

k (ti)ϱi|k|j

ϱ
[S]
j (si)ϱi|k|j + ϱ

[Tj]

k (ti)ϱi|k|j + ϱ
[S]
j (si)ϱ

[Tj]

k (ti)

(7.119)
H(i|k|j) defines a relative ranking of the most appropriate pairs (si|k|j, ti|k|j), and

thus, we directly obtain a (cluster-wise) ranking for annotations ti|k|j ≡ ti. The three
heuristics and H(.) are depicted in Figure 7.35 below. Although weighting the in-
dividual clustering scores is also an option, per default we give each score equal
weight and avoid fine-tuning weight parameters.

186 Chapter 7. Methods

FIGURE 7.35: The Harmonic Clustering Score as the harmonic mean
of three intuitive score heuristics. Ranking by this score identifies the
most "representative" elements; since achieving a good score requires

all three heuristics to yield high scores.

In summary, the Harmonic Clustering Score ranking is determined by three fac-
tors: (1) the distance between a sensor data point and the center of its assigned sen-
sor data cluster, (2) the distance between the textual data point and the center of
its assigned cluster on the textual data, and (3) the size of the respective projected
textual cluster. These three clustering heuristics are combined using the harmonic
mean, which penalizes smaller scores strongly, to yield a single scalar representation
metric score; providing us so with a score ranking function.

Using the ranking obtained from the harmonic mean in this way, we can deter-
mine the most appropriate annotation for a given sensor data point. This ranking
can also help us identify the most representative sensor data points for a given tex-
tual cluster (i.e., the other way round). To do this, we first cluster the textual data
and then filter/sub-cluster the sensor data accordingly. Overall, this approach han-
dles large datasets with a high number of sensor data points and textual annotations
efficiently and automatically (i.e. it is particularly very scalable to large data vol-
umes); and so, allows us to efficiently identify correlations between different data
modalities in large data sets.

Cluster Centrality Measures for HDBSCAN

Cluster centers are typically represented by either the mean (e.g. center of mass)
or the geometric median (the point with the shortest distance to all cluster points).
Centroid-based clustering methods also allow the clustering algorithm itself to di-
rectly identify the cluster centers (i.e. centroids). However, HDBSCAN is a density-
based clustering algorithm that detects clusters by identifying high-density regions
separated by low-density regions. Unlike centroid-based techniques like k-means,

7.12. Determining Representative Textual Labels for Clustering Accurate Sensor
Data with Inexact Annotations

187

HDBSCAN does not assign centers to clusters. Density-based algorithms can work
on non-convex geometries, so, computing the average of all points (which may be
located outside the cluster) does not necessarily provide an accurate estimate of the
cluster’s center.

Yet, we can still extract for each individual cluster sample a measure of its mem-
bership strength to its assigned cluster; especially for HDBSCAN (McInnes, Healy,
and Astels, 2017b). Noise points are here assigned a probability of zero, while points
within clusters are assigned values that are proportional to their degree of persis-
tence within the cluster. As we apply the Softmax function on the scores in conjunc-
tion with the reparametrization shift-trick (Equation 7.117), the final scores for the
outliers will not be zero; but rather very small. This is intentional and good, as we
do not want to completely discard (potential) outliers during evaluation; notice how
if one term in the harmonic mean is zero, the entire harmonic mean is zero (strictly
speaking, it is "undefined").

7.12.2 Lowest Auto-Regressive Modelling Loss over Cluster Embedding

An alternative approach to identifying the best representative pair (si, ti) is to rank
them based on their auto-regressive modeling loss over their cluster embedding
(Figure 7.36). This solution builds on the method explained in Section 7.10, where
the aim was to produce a single textual description for a specific cluster. To achieve
this, the model was first trained to predict the captions of individual instances, fol-
lowed by the training of a projection layer (optional) to create a single description for
a given cluster over a single corresponding cluster vector representation (represent-
ing all instances). Non-representative instances, those with sensor embeddings far
from the cluster center or with inadequate or incorrect cluster descriptions, will then
have higher (average) convergence loss during prediction and, hence, are expected
to be more challenging to train/fit than the representative instances.

FIGURE 7.36: Identifying the optimal representative pair within a
cluster by sorting pairs according to their auto-regressive modeling

loss relative to their cluster’s embedding

We can organize the pairs (si, ti) according to their model loss, where lower loss
values indicate better representations. Pairs with lower auto-regressive loss values

188 Chapter 7. Methods

are considered superior representations of the cluster, as they indicate a smaller dif-
ference between the predicted and actual descriptions. Conversely, pairs with high
loss values are deemed not representative.

Example of a Loss Metric Explanation

Consider a group of data points that represent different types of fruits. A model
is trained to predict what each fruit is (via clustering), such as "apple", "banana",
"orange", and so on. The model also includes a projection layer and an LM-Head that
generates a single text description for the whole cluster group of fruits. However,
if a data point representing a "car" is present in this group, it will be considered an
outlier. The reason is that the model will have difficulty in accurately predicting
its description, leading to a higher loss value. The pair associated with this outlier
instance would, thus, also be ranked lower respectively. Similarly, suppose we take
a "banana" object that is correctly clustered as a fruit instance, but its description is
incorrect, such as "This object represents a vehicle". If we pass the "banana" through
the trained model, the loss value will also be higher; hence, ranked lower. The reason
is that the description is not representative of the group/cluster of fruits and, so,
diverges from all the other instances in the cluster.

Take-Away

We can evaluate alignments of textual annotations based on their ability to
represent clusters discovered in sensor data by determining the harmonic
mean of three basic heuristics: sensor cluster centrality, textual cluster size,
and textual cluster centrality.

Keywords

Uncertain Textual Annotations • Accurate Sensor Data • Harmonic Mean

7.13 Transferring Knowledge across Input Domains: Distill-
ing Insights from Machine Learning Models Trained on
Different Datasets

Transferring knowledge across different input domains refers to extracting and uti-
lizing insights from ML models that have been trained on different datasets. This
might be done due to a variety of reasons, such as reusing knowledge of past data
that is no longer accessible; improving model performance; effectiveness, and ro-
bustness by leveraging insights from different fields; or generating new explainable
rules on more complex data while learning from the labels of easier datasets.

Distilling insights involves methods such as transfer learning, domain adapta-
tion, feature engineering, domain transformation, and model distillation. In our
case, we are particularly interested in transferring labeled knowledge from a weaker
model to a stronger and larger model. This stronger model has access to a more com-
plex and accurate database that is completely different from the one accessed by the
weaker model. Ultimately, the intention is to then extract a third model, which is
weaker, but more explainable and solely depends on the new dataset (not the old
one); yet still maintaining and respecting the original labels from the first dataset.
This is illustrated in Figure 7.37 below:

7.13. Transferring Knowledge across Input Domains: Distilling Insights from
Machine Learning Models Trained on Different Datasets

189

FIGURE 7.37: Transferring knowledge across input domains by dis-
tilling insights from models trained/fitted on different data sets.

Alternatively, consider a use case where a model that is not particularly robust,
provides labels from a somewhat unreliable and imprecise database. Our goal is to
craft a model tailored for a much more precise (but intricate) data source, yet still
ultimately aiming for simplicity and ease of explanation; e.g. in label classification.
However, simpler models typically sacrifice accuracy, are weaker, and thus much
less effective. In particular, creating such a weaker but interpretable model directly
from that new, more complex database poses many challenges: e.g., it might easily
struggle to extract the original model’s knowledge and patterns; or lack the expres-
siveness needed to identify and extract correlations and non-linear patterns within
the more complex data source.

Therefore, a good solution involves implementing and training an intermediary
ML model. That is, we train a strong and sophisticated robust model (the interme-
diary model) with the capability to comprehend and extract the (necessary) infor-
mation inherent in the first dataset by distilling knowledge and prediction labels
from the corresponding initial (weaker) model; but instead, and only using the new
and complex dataset. Following a successful model training on that complex new
dataset, we can leverage this intermediary model to construct a simpler, more ex-
plainable new model by distilling interpretable "rules" from it; thus, forming a new
explanatory model. This now-established interpretable model, therefore, now solely
derives its rules directly from the complex dataset; not from the original (e.g. less
accurate) dataset. So in essence, this procedure transfers knowledge, adapts it to a
new data source, and derives an interpretable model using only explanations over
that new data source; thereby rendering old knowledge useful (i.e. reusable) in a
completely different and new input domain.

190 Chapter 7. Methods

Take-Away

Transferring knowledge across input domains involves using insights from
ML models trained on different datasets. This can be done through trans-
fer learning, domain adaptation, feature engineering, domain transformation,
and model distillation. We can here transfer knowledge from a weaker to a
stronger intermediary model, to then extract a simpler, yet more explainable,
model (on the new dataset). This repurposes old knowledge from old do-
mains to new domains.

Keywords

Knowledge Transfer and Distillation • Explainability and Interpretability •
Diverse Data Sources • Domain Adaptation

7.14 Model Output Calibration & Novelty Detection

Please note: This contribution has been accepted for publication after peer review
in Guimerà Cuevas and Schmid, 2024a and has been presented in the conference
proceedings.

The objective is to calibrate the output probability estimates of a model for a
multi-class classification problem with k classes, such that the calibrated probabili-
ties reflect the model’s prediction confidence both statistically and on a per-instance
basis. Notice, how conventional calibration focuses on statistical "on-average" cal-
ibration. Given an instance i in a dataset, let p⃗i ∈ Rk denote the learned output
probability vector of the model, where ∑k−1

j=0 p[j]i = 1. So for each class index j, we

define the corresponding one-vs-rest binary classification probabilities as p[j]i , repre-

senting the probability of instance i belonging to class j, and ¬p[j]i = 1− p[j]i , repre-
senting the complement probability of instance i not belonging to class j. Note that
¬p[j]i = ∑j′ ̸=j p[j

′]
i , implying that ¬p[j]i is equal to the sum of probabilities of instance

i belonging to all other classes except class j. This observation will be used later to
quantify the level of novelty in the discrepancy between the calibrated probabilities
and the original probabilities. Hence, we consider two vectors: p⃗i and ¬ p⃗i ≜ 1− p⃗i,
where 1 is a vector of ones of the corresponding size.

To calibrate the model, we fit k separate class-weighted one-vs-rest calibration
models, denoted as Ξj, where each calibration model is responsible for calibrating
the probability estimates of the original model for a specific class j. Class weighting
is essential to address the inherent imbalance in binary one-vs-rest models. Cali-
bration is performed on a distinct development set that does not overlap with the
training set used for the original model, ensuring that the calibration models are not
biased towards the training set. Ξj calibrates the probability estimate of the orig-
inal model for class j, ensuring it accurately reflects the true probability of an in-
stance belonging to class j or not. In essence, it calibrates the probability estimate
to make decisions about whether an instance belongs to class j or not. Since each
calibration model Ξj is trained independently, they result in different calibration
adjustments for each class. While the goal is usually to maintain class-prediction
rankings during calibration, we are particularly interested in examining these dif-
ferences in calibration among the classes. To capture this, we construct the weight

7.14. Model Output Calibration & Novelty Detection 191

vector w⃗i := [Ξ0(p[0]i), Ξ1(p[1]i), . . . , Ξk−1(p[k−1]
i)]T, representing the calibrated posi-

tive scores for all classes. As it does not form a probability vector, we normalize it
to p⃗i

∗ = w⃗i/(1Tw⃗i). The final calibrated class prediction ŷ is then simply the class
index with the highest probability. And so, the calibrated class vector is given by:

p⃗i
∗ =

1

∑k−1
j=0 Ξj(p[j]i)

Ξ0(p[0]i)

Ξ1(p[1]i)
...

Ξk−1(p[k−1]
i)

 (7.120)

Let’s now consider the following difference ϵ
[ŷ]
i := p∗i

[ŷ] − Ξŷ(pi
[ŷ]), which is the

difference in the calibrated binary class probability over the transformed probability
across all other calibrated predictions:

ϵ
[ŷ]
i =

w[ŷ]
i

1Tw⃗i
− w[ŷ]

i =
w[ŷ]

i (1− 1Tw⃗i)

1Tw⃗i
(7.121)

and following, with ϵ⃗i := p∗i − w⃗i, then:

1T ϵ⃗i =
k−1

∑
j=0

ϵ
[j]
i =

k−1

∑
j=0

w[j]
i (1− 1Tw⃗i)

1Tw⃗i
=

(1− 1Tw⃗i)

1Twi

k−1

∑
j=0

w⃗[j]
i

=
(1− 1Tw⃗i)

1Tw⃗i
1Tw⃗i = 1− 1Tw⃗i

(7.122)

Knowing that 1T p⃗i ≜ 1, it immediately follows that in a perfectly calibrated
model p⃗i = w⃗i =⇒ 1T ϵ⃗i = 0; however, the converse is not true, i.e. 1T ϵ⃗i = 0 ≠⇒
p⃗i = w⃗i, since 1− 1Tw⃗i = 0 ⇐⇒ 1 = 1Tw⃗i ⇐⇒ 1Tw⃗i = 1T p⃗i ⇍⇒ w⃗i = p⃗i.

Knowing that ∀j : 0 ≤ w[j]
i ≤ 1, an alternative is to calculate the sum of abso-

lute error differences (the L1 vector norm), which also eliminates the possibility of
positive and negative ϵ

[j]
i values canceling each other out:

∥ϵ⃗i∥1 = 1T|ϵ⃗i| ≜
k−1

∑
j=0
|ϵ[j]i | =

k−1

∑
j=0

∣∣∣∣w[j]
i (1− 1Tw⃗i)

1Tw⃗i

∣∣∣∣ = |1− 1Tw⃗i|
1Twi

k−1

∑
j=0

w⃗[j]
i = |1− 1Tw⃗i|

(7.123)
We may also consider the L2 norm (i.e. Euclidean distance) ∥ϵ⃗i∥2 instead:

∥ϵ⃗i∥2 =

√√√√k−1

∑
j=0

(ϵ
[j]
i)2 =

√√√√k−1

∑
j=0

(
w[j]

i (1− 1Tw⃗i)

1Tw⃗i

)2

=

√(1− 1Tw⃗i

1Tw⃗i

)2

√√√√k−1

∑
j=0

(w⃗[j]
i)2 =

|1− 1Tw⃗i|
1Tw⃗i

∥w⃗i∥2

= ∥ϵ⃗i∥1
∥w⃗i∥2
1Tw⃗i

= ∥ϵ⃗i∥1︸ ︷︷ ︸
novelty

∥w⃗i∥2
∥w⃗i∥1︸ ︷︷ ︸

confidence

(7.124)

Formula 7.124 breaks down the magnitude of the error into two components. The
first component is the magnitude of the difference between 1 and the sum of the cal-
ibrated probabilities, ∥ϵ⃗i∥1 = |1− 1Tw⃗i|, and measures how well the independently

192 Chapter 7. Methods

calibrated outputs align to a probability distribution. Given a perfect alignment, the
sum of the calibrated probabilities is 1, and the component will yield 0. The second
component, ∥w⃗i∥2

∥w⃗i∥1
, represents how "spread out" the elements of w⃗i are. In general, a

vector with a higher quotient (magnitude divided by the sum of its components) will
have more "spread out" components, while a vector with a lower quotient will have
more concentrated components. Increased variance in the probability predictions in-
dicates that certain predictions carry more probability weight, which in turn implies
higher confidence in the model. Conversely, in the absence of variance, such as when
output probabilities are evenly or equally predicted, there is a lack of confidence as
all outputs have comparable probabilities. The spread is minimal, when all predic-
tions are equal, and maximal when all predictions are zero except one (with then
p[ŷ]i = 1); due to the square term dominating the sum term. Consequently, if all com-

ponents have the same prediction confidence w, i.e. ∀0≤j<kw[j]
i ≜ w, then we have

∥w⃗i∥2 =
√

∑k−1
j=0 (w

[j]
i)2 =

√
kw2

i =
√

kwi. Also, 1Tw⃗i = ∑k−1
j=0 w[j]

i = ∑k−1
j=0 wi = kw.

Therefore, we get ∥w⃗i∥2
∥w⃗i∥1

= w
√

k
kw = 1√

k
. If all classes except one have a zero prediction

and the remaining one a prediction of one, then we have ∥w⃗i∥2 = 1 and ∥w⃗i∥1 = 1.
Therefore, ∥w⃗i∥2

∥w⃗i∥1
= 1. Hence, we have a boundary of ∥w⃗i∥2

∥w⃗i∥1
∈ [1√

k
, 1]. On the other

hand, the novelty score ∥w⃗i∥1 is in the range of [0, k], since ϵ
[j]
i ∈ [0, 1]. Therefore,

∥ϵ⃗i∥2 ∈ [0 · 1√
k
, 1 · 1] = [0, 1] is automatically guaranteed, i.e. ∥ϵ⃗i∥2 is bounded be-

tween zero and one; and increases proportionally with both the level of novelty and
confidence.

Novelty measures the degree of unexpectedness, with higher values indicat-
ing greater novelty. Confidence represents the level of certainty or assurance, with
higher values indicating greater model certainty. Multiplying these two components
yields a measure of the magnitude or impact of an (unexpected) prediction. In par-
ticular, ϵi is an instance-specific measure of calibration quality for a class. A positive
ϵ
[j]
i means the model is overconfident in predicting class j, and the corresponding

calibration model Ξj requires adjustments. On the other hand, a negative ϵ
[j]
i implies

that the model is underconfident in predicting class j, and the calibration adjust-
ment made by the corresponding calibration model Ξj is too strong. If ϵ

[j]
i is near

zero, the model is well-calibrated for class j. The value of ϵi reflects the extent of
miscalibration, with higher magnitudes indicating greater miscalibration, hence ϵi
can be perceived as a degree of "novelty". The average value of ϵi offers insight
into whether the model is expected to be over or underconfident across all classes.
However, its vector magnitude ∥ϵ⃗i∥2 represents the confidence-weighted novelty,
which gives a better understanding of prediction errors by considering both novelty
and confidence in the prediction. This helps identify areas where unexpected errors
occur with high confidence.

Equation 7.124 also holds true for any arbitrary Lρ norm ∥ϵ⃗i∥ρ :=
(

∑k−1
j=1 |ϵ

[j]
i |p
)1/ρ

;

which can be seen given that: ∥ϵ⃗i∥ρ =
(∣∣ 1−1Tw⃗i

1Tw⃗i

∣∣ρ)1/ρ ∥w⃗i∥ρ = ∥ϵ⃗i∥1
∥w⃗i∥ρ

∥w⃗i∥1
. Notice,

how in particular, the L∞ norm corresponds per definition to the maximum value in
a vector, and therefore:

∥ϵ⃗i∥∞ = ∥ϵ⃗i∥1
∥w⃗i∥∞
∥w⃗i∥1

= ∥ϵ⃗i∥1
w⃗i

[ŷ]

∥w⃗i∥1
= ∥ϵ⃗i∥1︸ ︷︷ ︸

novelty

· p∗[ŷ]i︸︷︷︸
max. confidence

(7.125)

7.14. Model Output Calibration & Novelty Detection 193

Thus, when considering the L∞ norm, the second term is the maximum confi-
dence value (i.e. output probability of its prediction ŷ).

7.14.1 Score Adjustment

To calculate the error norm ||⃗ϵ||, we need to consider the impact of calibration mis-
matches on low probability class scores compared to high scores. Larger scores have
a diminishing effect on smaller scores in the probability distribution. For example, if
the predicted class has no mismatch but other classes do, the contribution from those
mismatches will be limited if the main class has a high probability. Or to put it in
a different way, consider a scenario where there are no mismatches in the predicted
class (the class with the highest Softmax score), but there are mismatches among
the other classes. If the main class has a high probability (e.g. 95%), any additional
contribution from the other mismatches will be considerably reduced and limited
within the remaining probability mass (i.e. 5%).

To address this issue, one approach is to assign weights to each mismatch score
based on their (normalized) complement probability:

∥ϵ⃗i∥∝
ρ :=

∥∥∥∥ k(1− p⃗i
∗)

1T(1− p⃗i
∗)
◦ ϵ⃗i

∥∥∥∥
ρ

=

∥∥∥∥ k(1− p⃗i
∗)

k− 1
◦ ϵ⃗i

∥∥∥∥
ρ

≜ ∥∝⃗i ◦ ϵ⃗i∥ρ (7.126)

where ◦ is the Hadamard product and ∝⃗i be the proportional normalized com-
plement weight vector; multiplying by the class size k is a common practice when
working with sample weights, as it ensures that the weighted average of the sam-
ples is equal to the unweighted average. Yet, given a closer look, we can realize that
∥ϵ⃗i∥∝

ρ is proportional to the following:

∥ϵ⃗i∥∝
ρ ≜ ∥∝⃗i ◦ ϵ⃗i∥ρ =

k
k− 1

∥¬ p⃗i
∗ ◦ ϵ⃗i∥ρ ∼ ∥¬ p⃗i

∗ ◦ ϵ⃗i∥ρ
(7.127)

where k is the number of classes. Considering mismatches for low probability
classes leverages “dark knowledge” Hinton, Vinyals, and Dean, 2015, i.e. knowl-
edge encoded in the relative probabilities of incorrect outputs, which we can use for
mismatch scoring.

7.14.2 Calibration Discrepancy with Label Aggregations

Let C be a set of k distinct classes. Our goal is to quantify the calibration error
discrepancies for each class. To capture additional error differences, we suggest
extending the error vector ϵ⃗ to higher dimensions by combining pairwise labels
using a subset or all (k

2) label pairs under a single label and evaluating their cal-
ibration accuracy. Let us denote an arbitrary instance as i and its corresponding
probability vector as p⃗i, where p[j]i represents the probability assigned to class j.
Given that the prediction is determined by the class index with the highest prob-
ability (i.e. the argmax operation), the probabilities p[j]i and p[j

′]
i are mutually ex-

clusive for j ̸= j′; meaning that their joint-conditional probability is zero for any
pair of classes, i.e. P(ŷ = j ∩ ŷ = j′) = 0 =⇒ P(ŷ = j|ŷ = j′) = 0. To
ensure clarity in notation, we introduce Pi(j) to denote the probability of the pre-
dicted class being j for instance i. With this notation, we can express the probability
Pi(j∪ j′) ≜ Pi(j) + Pi(j′)− Pi(j∩ j′) ≡ Pi(j) + Pi(j′); for j ̸= j′. Rewriting this expres-
sion gives 0 = Pi(j∪ j′)− Pi(j)− Pi(j′). Since we can identify each class combination

194 Chapter 7. Methods

pair (j, j′) by an enumeration, without loss of generality j < j′, we define an index-
ing function χ(j, j′) 7→ {1, · · · , k} to uniquely identify each pair by an index. Hence,
we define the difference:

ϵ•i
[χ(j,j′)] = Θ[Pi(j ∪ j′)]−Θ[Pi(j)]−Θ[Pi(j′)] (7.128)

where Θ[·] is the calibration function. Ideally, ϵ
[χ(j,j′)]
i = 0, indicating that the

aggregated pairwise labels do not exhibit any calibration discrepancy. Similar to
Equation 7.127, we can incorporate the normalized complement weight vector ∝⃗•i
with components ∝⃗•[χ(j,j′)]

i := (k
2)(1−Θ[Pi(j∪j′)])

∑κ ̸=κ′ 1−Θ[Pi(κ∪κ′)] .

Analogously, let λ be an integer such that 1 < λ < k. We can generalize the
formula for multiple different sized λ-tuple class pairs Jλ of size λ as:

ϵ•i/λ
[χ(Jλ)] = Θ[Pi(

⋃
j∈Jλ

j)]− ∑
j∈Jλ

Θ[Pi(j)] (7.129)

The normalization in ∝⃗•i/λ1
occurs analogously; with 1T(1− p⃗n) = (k

n) − (k−1
n−1)

(Proof A.1). The total loss is then the magnitude of the concatenated class error
discrepancies and all λn-pair aggregations for each instance:

∥⃗ϵi∥∝
ρ =

∥∥ (∝⃗i ◦ ϵ⃗i)︸ ︷︷ ︸
k class errors

H
⊕
(
∝⃗•i/λ1

◦ ϵ⃗•i/λ1

)︸ ︷︷ ︸
(k

λ1
) class-pair errors

H
⊕ · · ·

H
⊕
(
∝⃗•i/λn

◦ ϵ⃗•i/λn

)︸ ︷︷ ︸
(k

λn) class-pair errors

∥∥
ρ

(7.130)

where
H
⊕ represents the horizontal-concatenation operation. Since the number

of pairs scales binomially, but we have the identity (k
λ) = (k

k−λ), one simple choice
for the values of λ would be to use λ1 := 2, λ2 := k − 2. Alternatively, we could
choose any two distinct values for λ1 and λ2 such that 1 < λ1 < λ2 < k. However,
choosing larger values for λ increases the number of pairs considerably due to the
rapid growth of the binomial coefficient.

7.14.3 Hybrid ODD: Embedding- and Prediction-based

We can make OOD decisions by combining the results of multiple models, such as
averaging or selecting the maximum value. This allows us to create a hybrid OOD
outlier score function for a new instance zi, using the maximum of the base model
and the calibration mismatch over their unified probability scores. Unified scores
(Kriegel et al., 2011) are necessary because raw scores from different models may
not be directly comparable. We define ΦXj as the unifying score function for a model
Πj over instances in X . The hybrid outlier score π is then given by:

π(zi) = max{ΦX0
(
Π0(zi)

)
, · · · , ΦXj

(
Πj(zi)

)
, ΦXj+1

(
∥ϵ⃗i∥∝

ρ

)
} (7.131)

where ΦXj is the "unifying score function" for Πj over X (Kriegel et al., 2011):

erf(x) :=
2√
π

∫ x

0
e−t2

dt

ΦXj (zi) :=
1
2

[
1 + erf

(
Πj(zi)− µX

σX
√

2

)] (7.132)

7.15. Percentile Ranked Scores 195

µX , σX are respectively the mean and standard deviation of Πj(X); The Gauss
error, erf(x), represents the likelihood that a single measurement’s error x > 0 falls
within a fixed range. It is known that, for a normal distribution with zero mean and
standard deviation of 1√

2
, erf(x) gives the probability of the variable being within

the symmetric range of [−x, x]. However, if the variable conforms to a normal dis-
tribution with a standard deviation σ (and mean zero), the probability is given by
erf(x

√
2

σ). Overall, by dividing the result by 2 and adding 1, we ensure that the prob-
ability falls between 0 and 1.

7.15 Percentile Ranked Scores

To handle uneven distributions of raw probability scores, we suggest calibrating
scores based on their percentiles relative to other scores. Outliers will here deviate
more likely from the reference data distribution, making it easier to detect anoma-
lies. When calibrating probabilities, an outlier’s class probability may draw mass
from other predictions, leading to significant percentile variations due to ranking
changes. We use the formula ΞΨ

j (pi
[j]) := Ξj

(
Ψ(pi

[j])), where Ψ(.) is the percentile
transformation that converts probability data into percentiles using reference data;
the other formulas are updated accordingly. The percentile transformation finds the
left and right indices of the input probabilities in sorted reference data and calculates
the percentiles as their average.

Take-Away

Model-generated probabilities can be calibrated to improve confidence esti-
mation and accuracy. In a multi-class setup, using separate calibration mod-
els for each class allows comparison between predicted and actual values.
This helps identify outliers that do not fit expected training data distribu-
tions; showing poorer calibration alignment precisely due to being out-of-
distribution (since the calibration itself was trained on in-distribution data).
Error metrics norms like L1 and L2 quantify such misalignments, revealing
different insights into model miscalibration and unexpected prediction errors.

Keywords

Model Calibration • Out-of-Distribution Detection • Calibration Discrepancy

7.16 Representative Data Stream Sampling for Trajectories

Let TN be a spatial-temporal trajectory in a multi-dimensional vector space, repre-
sented as TN = ((⃗z1, t1), (⃗z2, t2), . . . , (⃗zN , tN)), where N denotes the number of data
points in the current trajectory. In this context, we define a quantile-subset Qϕ ⊂ T as:

Qϕ := {(⃗zi, ti) ∈ T | i ≥ arg min
j<N
|j− ϕ · N|} (7.133)

Essentially, Qϕ is a subset of a trajectory that starts from the ϕ-th quantile position
and continues to the end. This is useful for focusing on a specific subset of the
trajectory for analysis or processing. When ϕ approaches 1, it focuses on the latter

196 Chapter 7. Methods

(i.e. the newer) part of the trajectory, hence, including data points closer to the end.
Conversely, when ϕ approaches 0, then respectively on the entire (i.e. full) trajectory.

7.16.1 Decaying Quantile Chain-Sampling

We consider the challenge of maintaining Qϕ given a continuous data stream tra-
jectory with an unknown or infinite size. We can only store a limited number of
samples, denoted as k; thus |Qϕ| ≤ k. We employ an adaptation inspired by Reser-
voir Chain Sampling, named Decaying Quantile Chain-Sampling (DQCS) (Alg. 2).

Algorithm 2: Decaying Quantile Reservoir Sampling (DQRS-Update)
Indexing: Starting at one;
Input: ei (element at time-step i), ϕ (quantile), k (max. size), Q (reservoir);
Notation: ⊎|Q{j}

ϕ | := max(1, |Q{j}
ϕ |), and |Q{j}

ϕ | is the reservoir size at
time-step j;

Function RandomUnusedQuantileIndex(Q, ϕ, a, b):
∆ϕ

b ← ⌈ϕ · b⌉;
Ω← {c ∈N \ Q.KEYS() | a + 1 ≤ c ≤ a + ∆ϕ

b };
P(ei) := ∑i−1

j=⌊(i−1
1+ϕ)⌋+1

⊎|Q{j}
ϕ |P(ej)⌈ϕj⌉−1;

return

{
RANDOM(Ω) ∼ 1

P(ei)
if Ω ̸= ∅

NONE otherwise

if i ∈ Q.KEYS() then
(ej, τ)← Q[i];
DELETE Q[i];
t← RandomUnusedQuantileIndex(Q, ϕ, j, i);
∆ϕ

τ ← ⌈ϕ · τ⌉
if t ̸= NONE ∧ t− j > ∆ϕ

τ then
Q[t]← (ej, i);
return;

end
else if |Q| ≥ k then

return;
end
t = RandomUnusedQuantileIndex(Q, ϕ, i, i);
if t ̸= NONE then

Q[t]← (ei, i);
end

The DQCS-Update method employs a sampling approach within a specified
quantile window, drawing elements from a set without replacement. It operates us-
ing a quantile-reservoir Q with a maximum capacity of k as follows: when time-step
j resides in Q, it links to an index tj representing a forthcoming item to replace the
current one. This replacement index is selected from the respective quantile window
of the current step, inversely proportional to each index’s reachability probability in
the chain, ensuring a final sample based on a uniform distribution. Upon the arrival
of time-step tj, a potential new free (non-linked) future chain index t is sampled
within the ∆ϕ

τ quantile window, with τ initially set to j. If a free t is found and
t > ∆ϕτ, τ is updated with the new replacement index t, and the chain-replacement

7.16. Representative Data Stream Sampling for Trajectories 197

index of ej is reassigned to et. Otherwise, if either the time-step is not a chain index
or the reservoir is not full (|Q| < k), the current item is replaced (if a chain index)
or inserted (if |Q| < k) into the reservoir. Afterwards, in either case, a future chain
index within the current quantile window range is then, again, randomly chosen.

"Chain"-sampling occurs automatically, as a new item’s replacement index is
then immediately assigned; forming a "chain" of replacement indices. The size of the
replacement window grows based on the quantile ϕ. When a replacement is needed
for a reservoir item due to a replacement-chain index at time-step i, the replacement
probability considers the new window size and current quantile ratio. For time-shift
adjustment, the algorithm compares the previously sampled future chain index tj
with a newly sampled index ti within the current window size. If ti exceeds the pre-
vious window size (ti − j > ∆ϕ

τ), the replacement chain index updates ti as the new
chain replacement index while keeping the reservoir item unchanged (tj is ignored).
Otherwise, the item in the reservoir is replaced by the current item of time-step tj.
This ensures the newly sampled index always falls within the quantile range to re-
place expired items in the quantile range while updating the sampling probability to
reflect the new (current) quantile window size. This is because chaining consistently
selects subsequent indices within the quantile window, and if an item has expired,
ti cannot surpass ∆ϕ

τ , since the minimum possible new index would be outside the
quantile window.

The reasoning behind this is motivated as follows: We use the short-notation
Ia|b := [a + 1, a + ∆ϕ

b] to denote intervals. Now, consider an item in a reservoir
sampled at time-step j with a chain-replacement time index tj within the interval
Ij|j = [j + 1, j + ∆ϕ

j], where ∆ϕ
j = ⌈ϕj⌉ is the length of the interval, denoting the

current quantile window size for 0 < ϕ < 1. In standard chain sampling, when
the current time-step is i = tj, the item is immediately replaced. However, in our
scenario, the window size depends on i as ∆ϕ

i = ⌈ϕti⌉. This causes a discrepancy
between the probability of selecting the replacement index at time-step j and that at
i, due to the altered window size. To resolve this, we uniformly and independently
sample another index t within the interval Ij|i = [j + 1, j + ∆ϕ

i] and compare it to

the old replacement index tj. If t− j > ∆ϕ
j , it becomes the new replacement index,

and the item in the reservoir is not yet replaced. Let’s also now further consider
the probability of an item at a (current) time-step i to be selected in the set of chain-
mappings M{.} := Q{.}ϕ .KEYS(); M denotes the current one. Let Q{i}ϕ denote the

reservoir at time-step i. We know |Q{i}ϕ | ≤ ⌈ϕi⌉ ≤ k. Every item is chained to a

uniform random item within the quantile window size ∆ϕ
i . Thus, every item i >

1 itself has ∆ϕ
i−1 many possible incoming paths. This forms a reachability graph

(Figure 7.38).

FIGURE 7.38: Sequence chaining for ϕ = 1

The probability of reaching a par-
ticular node by following a single ran-
dom path is the summation of probabil-
ities that: the previous nodes connected
to it are reached times that link lead-
ing to the node of interest is randomly
uniformly selected from all its outgo-
ing links. According to the law of total
probabilities, given P(1) := 1, this can
be (recursively) defined for i > 1 given a set of indices R(i) from which i can be

198 Chapter 7. Methods

reached (i.e. chained) for 0 < ϕ ≤ 1, as:

P(i) := ∑
j∈R(i)

P(j)× 1

∆ϕ
j

=
i−1

∑
j=min{j≥i−⌈ϕj⌉}

P(j)
⌈ϕj⌉ =

i−1

∑
j=⌊(i−1

1+ϕ)⌋+1

P(j)
⌈ϕj⌉ (7.134)

Notice how: ⌊(i−1
1+ϕ)⌋+ 1 = min{j ≥ i− ⌈ϕj⌉} offers a direct analytical solution

for retrieving the starting index j.
In practical applications, precise floating-point accuracy holds importance here,

due to the strict truncation of the "floor" operation. Without it, there might be occa-
sional deviations around one index off the minimum value. However, identifying
and fixing such minor errors is straightforward; simply by checking if the index sat-
isfies the condition; and correcting otherwise.

As j ≥ i − ⌈ϕj⌉ ≥ i − ϕj− 1, we know j ≥ ⌊(i−1
1+ϕ)⌋+ 1 ≥ i−1

1+ϕ ≥ ⌊(
i−1
1+ϕ)⌋. Let

j∗ := min{j ≥ i − ⌈ϕj⌉}. Then, j∗ ≥ i − ⌊(i−1
1+ϕ)⌋, must also hold, but this implies

j∗ = ⌊(i−1
1+ϕ)⌋ as this would otherwise contradict that j∗ is the minimum integer

satisfying this condition.

With reservoir size |Qϕ|, multiple chain-paths exist. Let ⊎|Q{tj}
ϕ | := max(1, |Q{tj}

ϕ |)

denote a minimum count of one. Notice how |Q{tj}
ϕ | ≤ ⌈ϕj⌉ . Subsequently, it is

PQϕ
(1) := 1 and:

PQϕ
(i) :=

i−1

∑
j=⌊(i−1

1+ϕ)⌋+1

⊎|Q{j}
ϕ |

⌈ϕj⌉ × PQϕ
(j) (7.135)

If we know we reached an index t < i in any mapping M{<i} before, then:

PQϕ
(i | t ∈ M{<i}) :=

i−1

∑
j=⌊(i−1

1+ϕ)⌋+1

⊎|Q{j}
ϕ |

⌈ϕj⌉ ×

PQϕ

(j | t ∈ M{<i}) if j > t
1 if j = t
0 otherwise

(7.136)
The probabilities are depicted in Figure 7.39 below; exemplary for the initial

chaining-probability and the conditional chaining-probability:
PQϕ

(i) can also be explicitly expressed in matrix form (instead of recursive). Lets

denote λ|i := ⌊(i−1
1+ϕ)⌋+ 1 and ρ(j′, j)

1

∆ϕ

j′
if j > j′ ≥ λ|j

0 otherwise
; then:

PQϕ
(i) =

[
ρ(i− λ|i, i) · · · ρ(i− 1, i)

] PQϕ
(λ|i)
...

PQϕ
(i− 1)

 (7.137)

And since, without loss of generality assuming the array be sorted in ascending
order with a the smallest and z the largest index, it is:

7.16. Representative Data Stream Sampling for Trajectories 199

FIGURE 7.39: The single-path forward chaining probability for vari-
ous quantile values ϕ.

PQϕ
(a)

...
PQϕ

(z)

 =

ρ(λ|a, a) · · · ρ(λ|z, a) · · · ρ(z− 1, a)
...

. . .
...

...
. . .

ρ(λ|a, z) · · · ρ(λ|z, z) · · · ρ(z− 1, z)

PQϕ
(λ|a)
...

PQϕ
(λ|z)
...

PQϕ
(z− 1)

 (7.138)

And so, we can repeatedly stack matrices into one closed-form solution:

PQϕ
(i) =

[
· · ·
]
×

 · · ·

...
. . .

...
· · ·

×
· · · ×

 · · ·

...
. . .

...
· · ·

×

...

...

...

 (7.139)

However, this explicit matrix form needs quadratic matrix storage space; but
can now perform optimized vectorized matrix operations. Also, notice how inner
matrices are often sparse towards the end.

Size ⊎|Q{j}
ϕ | is limited to k and is the number of chains at time-step j. For a single

chaining path, the term ⊎|Q{j}
ϕ | in PQϕ

(i | m ∈ M{<i}) is replaced with one, denoted
via P(i | m ∈ M{<i}); here we only have a single spot in the reservoir. A different
perspective here is to consider this as the result of reaching different indices based on
the number of paths (rather than the reachability likelihood). Similarly, the number
of possible different incoming chain-paths for i > 1 can be defined recursively, given

200 Chapter 7. Methods

κ(1) := 0, as the number of totally different paths in the previous step plus the
number of incoming steps :

κ(i) := κ(i− 1) + (i− 1)− λ = κ(i− 1) + i− 2− ⌊(i− 1
1 + ϕ

)⌋ (7.140)

Similarly, if we know we have already reached index t, then:

κ(i | t ∈ M{<i}) := i− 2− ⌊(i− 1
1 + ϕ

)⌋+
{

κ(i− 1 | t ∈ M{<i}) if i > t
0 otherwise

(7.141)

To achieve a uniform distribution, we use a transition probability that is inversely
proportional to its reachability likelihood (Figure 7.40):

FIGURE 7.40: Inverse weighting relative to reachability likelihood.

However, for that, we need to determine the state transition probabilities of
reaching a specific index given a current index; which requires adjusting the tran-
sition probability of one node, which in turn impacts the probability of reaching
subsequent nodes. This means we must re-adjust the reachability formula, but this
creates a recursive cycle that depends on both past and future probabilities and pre-
cludes a closed-form solution. Consequently, we must iteratively approximate the
probability, beginning with P∗[1](i) := P(i), and iterating for m > 1.

P∗[m](i)←
i−1

∑
j=λ

P∗[m−1](i)
−1

∑
j+∆ϕ

j
j′=j+1 P∗

[m−1](j′)−1
× P∗[m](j) = P∗[m−1](i)

−1
i−1

∑
j=λ

P∗[m](j)

∑
j+∆ϕ

j
j′=j+1 P∗

[m−1](j′)−1

(7.142)
where, m represents the number of iterations. It be P∗ := P∗[inf]. The conditional

probability formula P∗[m](i | t ∈ M{<i}) updates in a similar way:

P∗[m](i | t ∈ M{<i})←
i−1

∑
j=λ

P∗[m−1](i | t ∈ M{<j+1})−1

∑
j+∆ϕ

j
j′=j+1 P∗

[m−1](j′ | t ∈ M{<j+1})−1
× P∗[m](j | t ∈ M{<i})

(7.143)
Yet, this approximation quickly becomes too expensive for large iterations due to

the cyclic nature of future and past probabilities. As a solution, a few observations

7.16. Representative Data Stream Sampling for Trajectories 201

can be computed and curve fitting prediction can be utilized to impute missing data
for all indices as an approximation like in regression. However, this technique is
primarily important mostly for early indices where probability reachability differ-
ences are (still) significant. After a certain number of indices, the differences become
more and more insignificant and can eventually be neglected. Thus, a truly perfectly
uniform sample is rather more useful for theoretical analysis than for practical ap-
plication. Therefore, alternatively, a somewhat less precise but much more efficient
approximation can be used as a trade-off; given an index threshold θ ∈ N+ (analo-
gously for the conditional probability):

P∗[m](i)
∆≈ P∗[θ](min[i, θ])−1

i−1

∑
j=λ

P∗[m](min[j, θ])

∑
j+∆ϕ

j
j′=j+1 P∗

[θ]
(min[j′, θ])−1

(7.144)

Given such a threshold, the probability vector can be determined more efficiently
using a basic linear algebra trick. This involves employing a transition matrix, which
encodes the probability of transitioning from one index to another. The θ−explicit
reachability probability state matrix, denoted as S[m], stores the transition proba-
bilities for the first θ indices. The term θ−explicit indicates that the matrix is ex-
plicitly provided for indices j and i, where j, i ≤ θ, but implicitly otherwise; i.e.,
S[j,i]
[m]
← S[min(θ,j),min(θ,i)]

[m]
. This saves both computation and memory. Initially, the j-th

row is set to be that of the reachability probability state, i.e. S[j,:]
[1] := P(i). Then, the

state of the m-th approximation can then be determined via the transition matrix T
up to a time-step t ≥ i, j:

T[j,i]
[m]

= S[j,i]
[m]

−1
j+∆ϕ

j

∑
c=j+1

S[j,c]
[m]

−1

︸ ︷︷ ︸
row−sum.

S[j,i]
[m+1] = ∑

0<c≤t
S[j,c]
[m]

T[c,i]
[m]︸ ︷︷ ︸

matrix−mult.

(7.145)

In cases where there is a division by zero, the respective entry is set to zero.
This faster computation, combined with pre-computed probability approximations
or caching past results, results in an efficient approximation. The conditional ap-
proximation follows a similar approach but has the advantage of using a dynamic
threshold. Again, this can be achieved by setting the respective entries in the tran-
sition matrix to zero; "removing" past or expired instances. That is, old entries can
be omitted. The matrix can also be dynamically reshaped by setting e.g. θ′ := θ + t,
where t represents the most recent observation of interest. Similarly, to establish
a lower bound threshold θ, setting θ′ := min(θ, t). When using multiple chaining
paths, t should be the minimum of all the observed paths.

Overall, by traversing a path using the (approximated) inverse probability, we
can approximate a uniform distribution. In other words, if well approximated, the
graph traversal provides an about uniform selection with 1

⌈ϕj⌉ probability on the final
transition probabilities for choosing the next chain on a single path; i.e., we multiply
the transition probabilities by the inverse probability P∗(tj | j ∈ M{<tj})−1.

A uniform probability means that each index has an equal chance of being chained.
Overall, given ⊎|Q{j}

ϕ | many potential replacement spots in the reservoir at time-
step i, there are equally many (non-independent) concurrent chaining paths. So, the

202 Chapter 7. Methods

probability of chaining Pr{tj ∈ M} is:

Pr{tj ∈ M} ≜
⊎|Q{tj}

ϕ |
⌈ϕj⌉ (7.146)

The chaining probability fluctuates greatly at the start of a stream but then de-
creases rapidly as the stream size increases. Already after some time-steps, this dis-
crepancy becomes quickly negligible. To avoid computational overhead, we can use
an approximate error threshold ϵ and assume the reachability probability is 1/⌈ϕi⌉
once the discrepancy is below this threshold. In that case, we have the approxima-
tion Pr{tj ∈ M | ϵ} ≈ k

⌈ϕj⌉ (by that time the reservoir is assumed to be full; i.e. no
empty spots).

At a specific time-step j, the likelihood of chain-selecting item tj and subse-
quently adding it to the reservoir at time-step i = tj, thus not re-chaining j to a
new future random free time-step index t, is expressed as follows:

Pr{tj ∈ M ∧ t− j ≤ ∆ϕ
j } = Pr{tj ∈ M} × Pr{tj − j ≤ ∆ϕ

j | tj ∈ M} (7.147)

where tj ∼ Ij|j, t ∼ Ij|i are inversely sampled relative to their chaining-probability
to ensure a uniform selection within the respective intervals. Then, the probability
Pr{t− j ≤ ∆ϕ

j | tj ∈ M} represents the proportion of the interval I(j, i) "to the left"

of j ≤ ∆ϕ
j . If both t and tj were randomly selected variables from a perfect uniform

distribution, it would follow:

Uniform =⇒ Pr{t− j ≤ ∆ϕ
j | tj ∈ M} =

∣∣∣∣Ij|j
∣∣∣∣∣∣∣∣Ij|i
∣∣∣∣ = ∆ϕ

j

∆ϕ
i

=
⌈ϕj⌉
⌈ϕi⌉

(7.148)

Further, notice how we can not assume that both (overlapping) intervals have
equally likely probability masses since we are sampling inversely to the chaining
likelihood. Therefore, the total probability of insertion at tj is:

Pr{tj ∈ M} × Pr{t− j ≤ ∆ϕ
j | tj ∈ M} =

⊎|Q{j}
ϕ |

∆ϕ
j

∆ϕ
j

∆ϕ
i

=
⊎|Q{j}

ϕ |
⌈ϕj⌉

⌈ϕj⌉
⌈ϕi⌉ =

⊎|Q{j}
ϕ |

⌈ϕi⌉
(7.149)

Hence, notice how the probability of being re-chained (i.e., not being replaced) is:

Pr{t− j > ∆ϕ
j | | tj ∈ M} = 1−

∆ϕ
j

∆ϕ
i

=
∆ϕ

i − ∆ϕ
j

∆ϕ
i

=
⌈ϕi⌉ − ⌈ϕj⌉
⌈ϕi⌉

(7.150)

and because ⌈ϕi⌉ ≥ ⌈ϕj⌉ due to j ≤ i, the probability is zero if and only if
⌈ϕi⌉ = ⌈ϕj⌉; i.e. is removed automatically once it is out of the quantile range (which
is the case when the next window size is equal the previous one).

Using the law of total probability, we verify that indeed the probabilities are
consistent and correct:

7.16. Representative Data Stream Sampling for Trajectories 203

1 = Pr{tj /∈ M}+ Pr{tj ∈ M}
⇐⇒ Pr{tj /∈ M} = 1− Pr{tj ∈ M}

= 1−
[
Pr{tj ∈ M} × Pr{t− j ≤ ∆ϕ

j | tj ∈ M}+ Pr{tj ∈ M} × Pr{t− j > ∆ϕ
j | tj ∈ M}

]
= 1−

⊎|Q{j}
ϕ |

⌈ϕi⌉ +
⊎|Q{j}

ϕ |
⌈ϕj⌉

⌈ϕi⌉ − ⌈ϕj⌉
⌈ϕi⌉

= 1−

⊎|Q{j}
ϕ |

⌈ϕi⌉ +
⊎|Q{j}

ϕ |
⌈ϕj⌉

⌈ϕi⌉ − ⌈ϕj⌉
⌈ϕi⌉

= 1−

⊎|Q{j}
ϕ |⌈ϕj⌉

⌈ϕi⌉⌈ϕj⌉ +
⊎|Q{j}

ϕ |⌈ϕi⌉ − ⊎|Q{j}
ϕ |⌈ϕj⌉

⌈ϕi⌉⌈ϕj⌉

= 1−

⊎|Q{j}
ϕ |⌈ϕj⌉+ ⊎|Q{j}

ϕ |⌈ϕi⌉ − ⊎|Q{j}
ϕ |⌈ϕj⌉

⌈ϕi⌉⌈ϕj⌉

= 1−
⊎|Q{j}

ϕ |⌈ϕi⌉
⌈ϕi⌉⌈ϕj⌉ = 1−

⊎|Q{j}
ϕ |

⌈ϕj⌉ = Pr{tj /∈ M}
(7.151)

Also, note that ⊎|Q{j}
ϕ | ≤ k, but almost always ⊎|Q{j}

ϕ | = k, particularly when k is
small or i is large. If an item ej is present in the reservoir at time-step j, it will remain

there until it is replaced in its next chained step tj. We will represent this as ↓i=tj
j ,

indicating that at time-step j, item ei is chosen as the replacement for item ej:

Pr{tj ∈ M ∧ ↓i=tj
j } = Pr{tj ∈ M} × Pr{↓i=tj

j | tj ∈ M} =
⊎|Q{i}ϕ |

∆ϕ
j

1
⊎|Q{i}ϕ |

=
1

∆ϕ
j

(7.152)
The survival probability that an item ej which has been inserted but not (yet)

removed at a current time-step i > j will now also not be replaced in the next time-
step, and thus re-chained to a new index t, is:

Pr{ej ∈ Q{i}ϕ | ej ∈ Q{i−1}
ϕ } = 1−

(
Pr{i ∈ M ∧ ↓i=tj

j } × Pr{t− j ≤ ∆ϕ
j }
)

= 1−

 1

∆ϕ
j

×
∆ϕ

j

∆ϕ
i

 = 1− 1

∆ϕ
i

= 1− 1
⌈ϕi⌉

(7.153)

However, we perform re-chaining repeatedly until substitution, so the above for-
mula is not entirely corresponding. Each incoming chain index either replaces the
previous one or is re-chained to a future one. To ensure continuous interval overlap
without reusing "used" probability mass, the index of the re-chained index is always
used as the reference. Let τ|j denote the current (non-fixed, last) chain index for an
index j. Initially, τ|j ← j. Therefore, the probability that a given chain index is not
replaced, but re-chained, given the last chain index, is:

204 Chapter 7. Methods

Pr{t− j > ∆ϕ
τ|j} = 1−

∆ϕ
τ|j

∆ϕ
i

=
∆ϕ

i − ∆ϕ
τ|j

∆ϕ
i

(7.154)

Again, notice how the probability is zero if and only if ∆ϕ
i = ∆ϕ

τ|j . Hence, the
probability i = t{τ|j}, that an index is selected as the subsequent chain index for a
specific j, is:

Pr{i = t{τ|j}} ≡ Pr{i− j > ∆ϕ
τ|j} ×

1

∆ϕ
i − ∆ϕ

τ|j

=

0 if ∆ϕ
i = ∆ϕ

τ|j
1

∆ϕ
i

otherwise
(7.155)

Thus the total survival probability Ψ|i(ej) := Pr{ej ∈ Q{[j+1,i]}
ϕ } of remaining in

the reservoir from time-step j + 1 up to i > j is:

Ψ|i(ej) = ∏
i≥j′>j

(
1− (Pr{j′ = t{τ|j}} × Pr{j′ − j ≤ ∆ϕ

τ|j})
)

≡ ∏
i≥j′>j

1−

0 if ∆ϕ

i = ∆ϕ
τ|j

1
∆ϕ

j′
×

∆ϕ
τ|j

∆ϕ

j′
otherwise

=

0 if ∆ϕ

i = ∆ϕ
τ|j

∏i≥j′>j
(∆ϕ

j′)
2−∆ϕ

τ|j

(∆ϕ

j′)
2

otherwise

(7.156)

And so, given current index i, the maximum life-span interval for a selected in-
dex j is the interval [j + 1, j + ∆ϕ

i], since it always holds ∆ϕ
i ̸= ∆ϕ

τ|j , and therefore:

Ψ|j+∆ϕ
i
(ej) = ∏

j+∆ϕ
i ≥j′>j

(∆ϕ
j′)

2 − ∆ϕ
τ|j

(∆ϕ
j′)

2
(7.157)

This formula tells us that, if i is small, the expected life-span of an index j (i.e.
always being re-chained), is much smaller than when i is large, since limj′→∞ =⇒
(∆ϕ

j′)
2−∆ϕ

τ|j

(∆ϕ

j′)
2
≈ 1; which means that for large i, the life-span is about ∆ϕ

i (linearly to the

quantile window); but initially, it is not.
Overall, as a general formula, the total probability p[j,i] that an item ej is in the

reservoir at a time-step i ≥ j is the product of the probability of it being included
in the reservoir initially and the probability of it not being replaced until time-step
i. The removal of expired items is guaranteed because the product becomes zero if a
term is zero, which occurs when it lies outside the quantile window:

p[j,i] ≜
⊎|Q{j}

ϕ |

∆ϕ
j

×
{

1 if j = i
Ψ|i(ej) otherwise

(7.158)

7.16.2 Full Quantile-Sampling

The full quantile-sampling algorithm for a trajectory is then the following:

7.16. Representative Data Stream Sampling for Trajectories 205

Algorithm 3: Representative Trajectory Sampling (RT-Sampling)
Input : T (trajectory stream)
Require: 0 < ϕ ≤ 1 (quantile), k (max. size per reservoir)
Output : Trajectory samples (ordered by time-step)

Function Balance(Ξ, Q):
Check if any element was added or deleted in the last update of Q;
if deleted (⃗zj, tj) then

Delete storage reference (Q, j) 7→ (⃗zj, tj) from Ξ;

if added (⃗zi, ti) then
Insert storage reference (Q, i) 7→ (⃗zi, ti) into Ξ;

Initialize FIFO-queue Qtop (max. size k);
Qϕ ← New empty quantile-reservoir (max. size k);
Initialize self-balancing data structure Ξ of storage references (balanced on
time-steps);

while new (zi, ti) ∈ T; i ∈N+ do
ei ← (zi, ti);
FIFO-Update (ei, Qtop) & Balance(Ξ, Qtop);
DQCS-Update (ei, ϕ, k, Qϕ) & Balance(Ξ, Qϕ);
yield Ξ.DATA();

The RT-Sampling algorithm is designed to handle a continuous trajectory stream
by ensuring that representative samples are maintained at any time (i.e. time-step).
It accomplishes this by utilizing a FIFO queue to track recent entries, effectively
creating a sliding window, and employing a quantile array to keep representative
samples within a specified quantile range (over the complete data stream history so
far; without actually storing the entire trajectory).

To efficiently handle the random time-step order across reservoirs, RT-Sampling
uses a self-balancing data structure Ξ. This structure maintains ordered reference
pointers for stored elements, facilitating real-time additions and deletions as new
data arrives and older data expires. Storing references to item locations in the reser-
voir as pointers ensures efficient retrieval at any given time. Notice here how, ul-
timately, the goal is to also maintain a chronological sampled trajectory "efficiently".
Naively sorting the entire reservoir each time anew is not efficient.

Take-Away

A decaying quantile chain-sampling algorithm can be designed for sampling
from continuous (infinite) data streams, such as spatial-temporal trajectories,
where the goal is to maintain a real-time sample within a quantile range of a
size based on the stream’s current length. Keeping the quantile sample within
memory constraints, representative, and including only valid, non-expired
items, is challenging. The term "representative" in this context can be math-
ematically defined, e.g. by examining, establishing, and ensuring (specific)
mathematical properties.

Keywords

Dynamic Quantile Window • Chain-Sampling • Reachability Likelihood

207

Chapter 8

Experimental Methods

8.1 Hardware

Training DNNs typically requires significant computational resources, relying on
GPUs, TPUs, or specialized AI hardware accelerators instead of CPUs. This ex-
tends beyond just training and applies to evaluation and inference stages as well,
although, for inference, more specific hardware solutions can be utilized due to the
absence of back-propagation calculations. DNN training, thus, involves intensive
iterative calculations, including large matrix multiplications, back-propagation op-
erations, and other optimization algorithms. This computational complexity is, in
particular, effectively managed through parallel processing.

Choosing the right DL hardware depends on several factors such as model and
dataset size, desired training duration, cost considerations associated with (parallel)
training, etc. Hence, we utilized a diverse array of different GPU hardware (types
and quantities), matched to the specific requirements of each model, training objec-
tives, and use cases.

Take-Away

Training neural networks usually demands substantial computational power,
requiring the use of GPUs, TPUs, or dedicated AI hardware accelerators in-
stead of CPUs.

Keywords

Hardware • Deep Neural Networks • GPUs • TPUs • Computational Power

8.2 High Dimensional Data Visualization

Visualization is often used to cross-check results, gain a better intuition and under-
standing of the results, and compare different outcomes quickly and easily. How-
ever, visualizations are no proofs, nor do they validate any empirical findings; rather,
they aid in "supporting" theories. In the context of ML, it is often advantageous to
visualize complex high-dimensional data. However, because visualization may only
be done in two or (at most) three dimensions, high-dimensional data must here be
compressed (e.g. projected). Uniform Manifold Approximation and Projection for
Dimension Reduction (UMAP) (McInnes, Healy, and Melville, 2018) appeared as a
practical and scalable and new manifold learning methodology for dimensionality
reduction. Currently, UMAP is frequently employed as the primary option for data
and embedding visualization.

208 Chapter 8. Experimental Methods

UMAP received a lot of attention, and it was even noted and described by Google
researchers, who created a very famous interactive blog post called Andy Coenen,
2019, in which they, among other things, underlined the following key considera-
tions when working with UMAP visualizations:

• Hyperparameters matter.

• Cluster sizes in the UMAP plot mean nothing.

• Distances between clusters might not mean anything.

• Random noise does not always look random.

• UMAP algorithm is stochastic.

Figure 8.1 gives an example of the stochastic property of UMAP where visual-
izations on the same data yield different results on each run.

FIGURE 8.1: An example of how multiple visualizations using UMAP
on the same data may provide different outcomes.

Take-Away

Visualizations are a powerful tool, but should always be taken with a grain of
salt, keeping inherent limitations and drawbacks in mind.

Keywords

Visualization • High Dimensional Data • Dimensionality Reduction • UMAP

8.3. Adaptive Complex-Valued Bi-Nonlinear Neural Networks 209

8.3 Adaptive Complex-Valued Bi-Nonlinear Neural Networks

Notice: Our work and findings on complex-valued NNs (presented in this thesis)
have been published in Guimerà Cuevas, Phan, and Schmid, 2023. It was inspired
and builds upon our previous research (Guimerà Cuevas and Phan, 2021), but differs
significantly as it has been substantially improved and modified (both the complex
architecture and its mathematical framework); thus, constitutes novel contributions.
In particular, this novel contribution has been accepted for publication, after peer
review. The Version of Record is available online at: https://link.springer.com/
chapter/10.1007/978-3-031-33374-3_28. Use of this Version is subject to the pub-
lisher’s Manuscript terms of use. Therefore, please refer to Guimerà Cuevas, Phan,
and Schmid, 2023 for specific details.

8.4 Adaptive Tanh-Normalization

Please note: This contribution has been accepted for publication, after peer review
in Guimerà Cuevas and Schmid, 2024b. The Version of Record is available online.

We used several common statistical distributions for analysis, including an Alpha-
Gamma distribution with parameters α = γ = 4.0, a generalized Pareto distri-
bution with parameter ξ = 1, a symmetric bi-modal distribution with parameters
location=-3, scale=1, size=10, etc. We further created an artificial synthetic classifi-
cation set of size 10,000 with ten classes. Each class in the synthetic set consisted of
two Gaussian distributed clusters spanning along the vertices of a hyper-cube. To
introduce covariance, features were independently drawn and then randomly (lin-
early) combined within each cluster. Outliers are restricted to mixtures of Gaussian
distributions, which may be a limitation here. Additionally, 5% of the labels were
randomly assigned, introducing multivariate outliers. A small feed-forward neural
network with four hidden layers, each containing 64 neurons, was used to classify
the synthetic data. The Gaussian Error Linear Unit was chosen as the activation
function. Synthetic data sets are useful for benchmarking because they offer con-
trol of data properties and allow quick and deliberate performance testing. WTE
was also evaluated on four commonly used toy computer vision datasets (Fashion-
MNIST, EMNIST, CIFAR10, and CIFAR100) using ResNet9. Pixel values were nor-
malized after applying a gray-scale conversion; images were re-scaled to a size of
32x32. We used classification performance over time as the evaluation metric. As a
real-world dataset, CDC Diabetes Health Indicators (Teboul, 2023) was used. For a
fair and accurate evaluation, each training iteration involved initializing the model
weights identically for all different FS methods. That is, model weight initialization
was identical for all methods within a training run but different between different
runs. The results were averaged across five runs. Cosine annealing was used as the
learning rate scheduler, starting at 0.001.

8.5 Determining Representative Textual Labels for Cluster-
ing Accurate Sensor Data with Inexact Annotations

Experiments are evaluated on the COCO-2017 (Lin et al., 2014) and TextCaps (Krause
et al., 2017) annotated image datasets. Both are large benchmarks with diverse im-
ages and multiple descriptions per image. We experimented with raw unprocessed
captions for COCO-2017 and paraphrased preprocessed captions on TextCaps. Dur-
ing training, the target caption was randomly selected each time. The ViED model

https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28
https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28

210 Chapter 8. Experimental Methods

was initialized with a pre-trained SWINV2 (Liu et al., 2022) as the encoder and GPT2
(Radford et al., 2019) as the decoder, connected through cross-attention. The ViED
model was fine-tuned on each dataset, respectively. Clusters were obtained via
HDBSCAN (Campello, Moulavi, and Sander, 2013), a density-based clustering al-
gorithm, with a minimum cluster size of 15 to avoid small clusters. Our approach
is versatile, as it is not tied to specific clustering algorithms, encoders, or decoders,
and it is modality-independent. It can be applied to any-to-text modality, not strictly
or necessarily limited to images.

As text similarity metrics, we used BERT-Score with "distilbert-base-uncased"
(Sanh et al., 2019; Zhang* et al., 2020) as the base model, BART-Score with "distilbart-
cnn-12-6" (Yuan, Neubig, and Liu, 2021), as well as BLEURT with "BLEURT-20-D6"
(Sellam, Das, and Parikh, 2020). Similarity between CCs and reference texts was
determined by the average score. Distilled models were used to speed up the eval-
uation procedure. We chose BERT, BART, and BLEURT since they are famous text
similarity metrics that use transformer models to capture nuanced semantics and
context and are effective for evaluating generated texts.

We compared various basic pooling techniques, including the mean, median, ge-
ometric median (GM), medoid, maximum, and random pooling (vector sampled
from a normal distribution). We explored various text generation strategies, in-
cluding greedy-search, k-sequence sampling, multinomial sampling, beam-search,
beam-search multinomial sampling, and diverse beam-search (Wolf et al., 2020b).
These strategies yield varying degrees of diversity and coherence in the generated
text. Additionally, as a reference, the maximum and average intra-cluster similarity
of all original labels was determined (brute-force). For performance reasons, we here
randomly selected one caption from each instance as a candidate but still evaluated
against all the (multiple) target captions of all cluster instances.

8.5.1 Quality Assessment of Textual Generations

A modification to BERT-score is the re-scaled BERT-Score (Zhang* et al., 2020). It has
been widely accepted in the natural language processing community as a reliable
and robust measure for evaluating text generation models as a metric of quality as-
sessment. BERT-score itself uses Roberta-Large as the base model. It is known to
provide strong assertive performance on a wide range of natural language under-
standing tasks, and its ability to provide a single, scalar score for each generated
text as a measure of text similarity. Additionally, BERT-Score has been found to be
computationally efficient and able to handle variations in text length.

As stated by the authors, the re-scaled BERT-Score is a modification of the orig-
inal BERT-Score that aims to improve its interpretability by introducing a re-scaling
factor. The original BERT-Score calculates a sentence-level similarity score by using
cosine similarities between the contextual embeddings of the tokens in the refer-
ence text and the generated text. The numerical range of the original BERT-Score
is between -1 and 1, in accordance with the underlying cosine similarity. To make
the BERT-Score more interpretable, a baseline value is subtracted from the original
BERT-Score, resulting in a more intuitive numerical range. This baseline value is
obtained by averaging the BERT-Scores of a large number of random sentence pairs
from a specific corpus. The re-scaled BERT-Score preserves the correlation with hu-
man judgments as measured by Pearson’s and Kendall’s coefficients. However, it
is important to note that the re-scaling process is not guaranteed to have a range
between 0 and 1; but is typically the case. Re-scaling is done using the following
simple linear adjustment on a baseline ϵ:

8.6. Model Output Calibration & Novelty Detection 211

x̂ =
x− ϵ

1− ϵ
(8.1)

The re-scaled BERT-score’s default baseline ϵ is empirically determined based on
the Common Crawl dataset (Wenzek et al., 2019).

8.6 Model Output Calibration & Novelty Detection

Please note: This contribution has been accepted for publication after peer review
in Guimerà Cuevas and Schmid, 2024a and has been presented in the conference
proceedings.

For evaluation, we focused on DL scenarios that produce both: embedding rep-
resentations and classification probabilities. We took three approaches: (1) We fine-
tuned a pre-trained ResNet18 model (He et al., 2016) on a specific dataset (inliers)
and forwarded a different OOD dataset (outliers) through the model. The goal was
to identify elements as either an inlier or an outlier, respectively. The penultimate
layer vector representation was used as the feature representation for the baseline al-
gorithms. (2) Given one dataset, we trained only half of the classes and regarded the
other half as outliers. (3) We conducted experiments against synthetically generated
data in form of cluster groups (inliers) and uniformly sampled points outside the
clusters (outliers). Here the raw features (instead of deep embeddings) were used
by the baseline outlier detection algorithms.

All results represent the average of 15 independent runs. We used the score ad-
justed formula 7.130 (with λ1 = 2, λ2 = k − 2) and compared it against multiple
different common outlier detection algorithms (Zhao, Nasrullah, and Li, 2019; Han
et al., 2022): ECOD, SAMPLING, QMCD, ABOD, OCSVM, MCD, COF, LOF, HBOS,
LODA, IFOREST, INNE, SUOD, HDBSCAN; as well as against an ensemble method
which was the maximum unified score (Kriegel et al., 2011) from these models. Ad-
ditionally, we considered hybrid models, which represented the highest combined
score achieved by pairing a particular baseline algorithm with our proposed OOD
approach (for all baselines respectively). Evaluation was done using the "Area Un-
der the Curve" (AUC) metric since it works well for binary classification problems
(outlier or not); measuring the entire area underneath the ROC curve from (0,0) to
(1,1). AUC provides an aggregated measure of performance across all possible clas-
sification thresholds. We chose BetaCalibration over Isotonic regression to prevent
plateaus; and performed percentile-wise calibration using ΞΦ

ŷ (pi
[j]).

213

Chapter 9

Analysis & Results

9.1 Adaptive Complex-Valued Bi-Nonlinear Neural Networks

Notice: Our work and findings on complex-valued NNs (presented in this thesis)
have been published in Guimerà Cuevas, Phan, and Schmid, 2023. It was inspired
and builds upon our previous research (Guimerà Cuevas and Phan, 2021), but differs
significantly as it has been substantially improved and modified (both the complex
architecture and its mathematical framework); thus, constitutes novel contributions.
In particular, this novel contribution has been accepted for publication, after peer
review. The Version of Record is available online at: https://link.springer.com/
chapter/10.1007/978-3-031-33374-3_28. Use of this Version is subject to the pub-
lisher’s Manuscript terms of use. Therefore, please refer to Guimerà Cuevas, Phan,
and Schmid, 2023 for specific details on the following:

9.1.1 XOR-Problem

9.1.2 Minimal Networks & Expressive Power

9.1.3 Classification

Take-Away

An adaptive bi-nonlinear layer design can effectively mitigate extreme neural
weights by maintaining weights within a unit circle, thus preventing exces-
sive weight dominance or suppression of other neural inputs. The complex-
valued layers exhibit effectiveness, particularly at high learning rates, and of-
fer improved problem-solving neural expressiveness; they can solve the XOR
problem. However, the forward pass of the model requires dual matrix mul-
tiplications due to the real and imaginary components.

Keywords

Bi-Nonlinear Layers • Complex-Numbers • Unit Circle • Learning Rates •
Expressiveness & Effectiveness

9.2 Loss-Weighting

To account for a more robust, yet dynamic loss weighting, we mentioned that one
approach is to calculate the dynamic weight values for the loss functions by center-
ing the loss values around one (Equation 7.38). If |L| denotes the number of losses,
and E the mean average, then we know that:

https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28
https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28

214 Chapter 9. Analysis & Results

E[f (x)] := E
[
1 +

x
∑0≤i<|L| xi

− 1
|L|
]

= 1 + E

[
x

∑0≤i<|L| xj

]
− 1
|L|

= 1 +
1
|L|

[
∑

0≤i<|L|

xi

∑0≤j<|L| xi

]
− 1
|L|

= 1 +
1
|L|

[
∑0≤i<|L| xi

∑0≤j<|L| xi

]
− 1
|L|

= 1 +
1
|L| −

1
|L|

= 1

(9.1)

i.e. the expected mean loss weight is one. As mentioned earlier, there are two
approaches here:

1. Adjusted weights: Calculating the loss weights by modifying the Softmax of
the losses. It adds one to the softmax output and subtracts the reciprocal of the
total number of losses:

weightsadj = 1 + so f tmax(x)− 1
|L|

2. Multiplied weights: The standard method where the weights are calculated
by multiplying the Softmax output by the total number of losses:

weightsmul = |L| × so f tmax(x)

The Adjusted method has the advantage of being less sensitive to outliers, but
the disadvantage is that it might underweight significant losses. On the other hand,
the Multiplicative method maintains the original proportion of the softmax output
and is so more sensitive to the nuances of the data. However, this becomes a draw-
back in the presence of outliers, as it is more sensitive to them. This can be seen by
visualizing the histogram distribution and their standard deviation with increasing
|L|. Overall, choosing between both methods depends on the data and the use case.

Figure 9.1 illustrates the histogram distributions of individual loss weights of
10.000 vectors for different numbers of losses (|L| be here referred to as the "loss
dimensionality"). The std. graph for increasing |L| is shown in Figure 9.2.

Take-Away

Traditional loss weighting does not produce an expected mean loss weight of
one, but rather 1/||L|. However, we can enforce a mean of one by rewriting
the formula over a simple linear transformation.

Keywords

Loss Weighting • Linear Transformation • Expected Mean • Variance

9.3. Embeddings 215

FIGURE 9.1: Comparing the distribution of adjusted and multiplied
weights derived from random losses.

FIGURE 9.2: Comparing the distribution of adjusted and multiplied
weights derived from random losses.

9.3 Embeddings

9.3.1 Clustering Representations

To gain initial insights into the potential clustering quality, we can contrast our clus-
tered representation with that of randomly clustered points and observe key differ-
ences. Overall, it is well-known that clustering becomes progressively more difficult
in higher dimensions.

Let M ∈ Rm×n be a matrix that contains m random vectors of dimension n. We
can then apply a clustering algorithm (e.g. K-Means) to the rows of M and visualize

216 Chapter 9. Analysis & Results

the clustering results by projecting the vectors and their clusters (i.e. labels) into a
two-dimensional plane using principal component analysis (PCA). If we analyze
the spatial distribution of all points and cluster centroids, we see that the centroids
tend to condense towards the center with increasing dimensionality n, and thus the
cluster groups gradually become more mixed and disordered, and eventually visu-
ally hard to separate from one another (Figure 9.3). Recall that in high-dimensional
spaces, randomly drawn vectors tend to be increasingly orthogonal to one another
as the dimensionality increases.

FIGURE 9.3: Projecting the clustering results of random vectors using
PCA onto a two-dimensional plane. The colors of the points indicate
the labels, whereas the cluster centroids are depicted as big red circles.

Take-Away

Clustering becomes increasingly challenging as dimensions increase.

Keywords

• Clustering • Random Points • Matrix Representation • Dimensionality

9.3.2 Hierarchical Dependent Embedding Representations

In a hierarchical tree structure where nodes contain feature representations and fea-
tures of their subtrees, it is already intuitive that mistakes occurring higher in the
structure carry greater impact than those lower down. For instance, an error in
the feature representation at the topmost (root) node holds more weight and con-
sequence than an error found at a lower-level node, such as a leaf node. That is,
the impact of errors or inaccuracies within a hierarchical relational structure varies
depending on their specific location within the hierarchy. And so, since the top root
node embedding summarizes (i.e. represents) the entire structure, any mistake here
severely misrepresents and considerably influences the overall understanding (i.e.
encoding) of the tree. Errors in lower-level nodes, however, affect smaller portions
and have less impact on the overall structure.

9.3. Embeddings 217

To mathematically quantify this error, let ϵ represent the percentage of (expected)
information error in embedding a node’s subtree. For instance, ϵ = 5% indicates 5%
information error during the encoding process into a single vector representation.
Let ϵθ be the error at node θ; ω ≺ θ denotes that ω is a direct child-node of θ, and ⊥
indicates a leaf node.

One approach to quantifying the severity of the information error involves con-
sidering the cumulative impact of errors at different hierarchical levels by focusing
on the integrity of the information throughput η := 1− ϵ:

I⊥ := η⊥ and Iθ := ηθ ·E[Iω≺θ] (9.2)

If we assume a constant error ϵ, then η is also constant, and so:

E[Iω≺θ] = η#level−1 =⇒ Iθ = η#level (9.3)

The deviation from unity then represents the expected information error:

Lθ = 1− Iθ (9.4)

and so, the total error is given by Lroot. Overall, this allows us to quantify the
error (and the integrity) numerically and compare it to different model configura-
tions. In practice, the error rate may not be constant (i.e. equal) for all levels. If
we have limitations on computational power, this helps us optimize the distribution
of computational resources to achieve the highest embedding quality Iroot. Deter-
mining the corresponding ϵ values can be tricky, yet employing different metrics or
heuristics such as the level-wise AE reconstruction- or classification losses can help.

Notice that the primary goal or intention may not necessarily be to preserve all
input information. Certain details may not be relevant or required for achieving
specific (training) objectives, and hence may not contribute to (or be reflected in) the
semantic manifold. In such cases, the concept of information "error" (which could be
misunderstood as information "loss") can be better reframed as information "distor-
tion", which may convey the essence of the situation more accurately. The formula
here, however, remains unchanged. The fundamental key conceptual difference lies
in that we are not trying to preserve all input data but preserve all relevant "char-
acteristic" information. So in other words, distortion or error refers to inadvertently
modifying the optimal embedding representation intended for a particular objective.

Large Errors at Root-Nodes (Upper Levels)

Errors occurring at a root node level have a severe and disproportionate impact on
the entire respective hierarchical structure; since they significantly distort the rep-
resentation of the whole tree structure; no matter how "good" the representation
quality has been so far. In fact, let us assume a perfect encoding without any infor-
mation error for all non-root nodes, and so ϵ¬root := 0. Yet, for the root node, the
error be ϵroot. Obviously, the final encoding error for the entire tree structure then
equals ϵroot. This can be very problematic, even unacceptable, if ϵroot is large.

To illustrate this better, consider an extreme scenario where ϵroot = 100%. In this
case, despite achieving flawless encoding for all other subtrees, nodes, and features
with perfect representations, the resulting final embedding of the root node, and
thus the entire tree, would be entirely erroneous, inaccurate, and "random", because
the extreme error at the root node causes a complete misrepresentation; rendering
so the overall tree encoding essentially meaningless and, therefore, useless.

218 Chapter 9. Analysis & Results

Large Errors at Leaf-Nodes (Lower Levels)

Similarly, let ϵ⊥ denote an error specifically at a leaf node, while ϵ¬⊥ := 0 represents
error-free encoding for non-leaf nodes. The impact of an error ϵ⊥ at this (lower) level
remains constrained within the subtree originating from that specific leaf node. It
does not compromise the quality of other subtrees or nodes within the hierarchy.
The error is still propagated upwards, but its influence is minimal (due to the expec-
tation operation E[.]); having so only a limited effect on nodes beyond its immediate
hierarchical level.

Implications

Given a fixed computational resource budget for ensuring embedding quality, it is
more effective to prioritize higher-level nodes over lower-level ones, as well as nodes
with a large number of sub-nodes in their subtree. Overall, the goal here is to min-
imize Lroot. A simple practical approach is to distribute resources according to the
number of sub-children and the hierarchical level (the root being the highest level).
This is consistent with the argument that error implications become less severe fur-
ther down the hierarchy than higher up, and errors in nodes with fewer sub-nodes
are less severe than errors on a node representation encapsulating many subnodes (a
bigger portion of the tree would be misrepresented/distorted). As a result, focusing
resources on higher-level nodes and those that contain larger subgraphs with more
nodes is logical.

Take-Away

Errors at the root node have a far-reaching global impact, distorting the entire
hierarchical representation; the distortion propagates across the entire struc-
ture. In contrast, errors at leaf nodes have local effects, influencing only the
subtree rooted at that particular leaf without significantly altering the broader
tree’s overall representation.

Keywords

Root Node Errors • Hierarchical Representation • Propagation of Errors

9.4 Deep Learning for Hierarchical Databases with Recur-
sive One-to-Many Relations

9.4.1 Unsupervised Deep Clustering

Figure 9.4 displays the (unsupervised) deep representations of the projected embed-
dings, as well as instances that are near together in the embedding space.

An interesting observation is that these instances were not grouped or organized
(i.e. embedded) based on visual similarities, but rather solely by their components.
Furthermore, even though we did not have information about how the individual
parts are assembled into whole objects, the model still managed to find interesting
and good similarities between the objects (even visual ones); encoding similar ob-
jects closely together in the embedding space. Again, remarkably, this was achieved
purely based on the compositional hierarchical characteristics of the objects.

9.4. Deep Learning for Hierarchical Databases with Recursive One-to-Many
Relations

219

FIGURE 9.4: The embedding projection and the closest points of ran-
dom instances within some clusters are visualized. The images of the

instances are from the data set (Rebrickable®, 2022).

9.4.2 Supervised Classification

A strictly supervised classification objective and a semi-supervised classification
task with identity preservation (using AEs) were examined. Ablation tests were
conducted on the real-world Rebrickable® set and on synthetic data, with kernel
embeddings (KEs) and residual connections (RCs) turned on and off. Overall, using
RC had the best supervised task performance. However, in the semi-supervised task
with identity preservation, KE and RC demonstrated the best test set performance
on the real-world data, and the best training convergence on synthetic data (Figure
9.5). Omitting both, RC and KE, resulted in the poorest test performance for the
Rebrickable® set; but performance was good on the train set. KE + RC produced
the best results on the test set but showed somewhat slower training convergence
on the train set. The synthetic data set was similar: on the pure classification task,
using RC achieved top performance; excluding KE and RC also on the train set, but
produced the poorest results on the semi-supervised task, where the best training
convergence was obtained by KE + RC (second-best convergence performance was
using only RC). This suggests that RCs may be most effective for pure classification
tasks, whereas using KEs + RCs may yield the best results for semi-supervised tasks
requiring identity- or information preservation.

Moreover, we also evaluated performance by comparing it against a brute-force
transformer-based approach directly applied to a textual representation of the data
(sentences correspond to a forced textual encoding of individual root-to-leaf paths;

220 Chapter 9. Analysis & Results

FIGURE 9.5: The results of a classification and semi-supervised task
are displayed for the ten most frequent classes. The upper graphs

relate to the Rebrickable® DB; the lower ones to the synthetic data.

entire objects represented as a collection of these paths/sentences), serving as a
straightforward baseline. We evaluated the classification performance of two Bert
models (mini, and small; Turc et al., 2019) and compared them with two versions of
the HDB-model that, respectively, had a comparable number of trainable weights to
Bert-mini and Bert-small. To evaluate their performance, we conducted experiments
on a larger classification task consisting of 50 labels. We used the weight ratio of a
model with respect to the baseline of Bert-mini ("model/BERT-mini") as µ to denote
the model size discrepancy. A value of µ greater than one indicates that the cor-
responding model has more weights than Bert-mini; a value smaller than one that
it has fewer weights. The weight ratios for the HDB-models were 1.01 and 3.64,
while the ratios for the Bert models were 1.00 (mini) and 3.71 (small). The KE
was excluded here as identity-preservation was not a relevant task (only classifica-
tion); but residual connections were still used. The results are shown in Table 9.1
below. Because the models differed in architecture and size, we compare the best
achieved average score for each model across multiple runs with different learning
rates, trained for 25 epochs in total.

9.4.3 Aggregation Function

Training occurs in batches consisting of instances represented as graphs. Due to
variations in graph sizes, a simplistic approach involves padding to ensure uniform

9.4. Deep Learning for Hierarchical Databases with Recursive One-to-Many
Relations

221

TABLE 9.1: Class-weighted F1 classification scores of various mod-
els with different model sizes and learning rates. µ represents the
model size ratio to BERT-mini for a given model; η is the learning
rate. Bert was used without positional encoding; token order was ran-
domly sampled each time before truncation. The median sequence
length was 234 (mean ∼ 367). Bert employed the default maximum
sequence length of 512. However, to emulate a situation where the
textual DB encoding exceeds the sequence length limit, a modified
version with a limit of 128 (a fourth of the maximal sequence win-

dows) was also evaluated; denoted by *Bert.

Epoch
Train Test

model[µ] lr. η 1 5 10 15 20 25 1 5 10 15 20 25
1e−3 0.71 0.91 0.97 0.99 1.0 1.0 0.62 0.7 0.72 0.74 0.75 0.75

HDB-v1[µ=1.01] 1e−4 0.51 0.75 0.86 0.9 0.92 0.92 0.47 0.65 0.7 0.72 0.72 0.73
2e−5 0.22 0.38 0.52 0.58 0.6 0.6 0.21 0.35 0.48 0.53 0.54 0.54

1e−3 0.66 0.87 0.96 0.99 1.0 1.0 0.58 0.69 0.73 0.75 0.75 0.76
HDB-v2[µ=3.64] 1e−4 0.74 0.96 0.99 1.0 1.0 1.0 0.63 0.72 0.73 0.74 0.74 0.74

2e−5 0.39 0.69 0.83 0.89 0.91 0.91 0.35 0.58 0.67 0.69 0.7 0.7

1e−3 0.02 0.03 0.02 0.03 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.02
Bert-mini[µ=1.00] 1e−4 0.11 0.5 0.73 0.81 0.85 0.85 0.11 0.46 0.64 0.69 0.71 0.71

2e−5 0.02 0.15 0.27 0.35 0.38 0.38 0.02 0.15 0.26 0.33 0.36 0.36

1e−3 0.01 0.02 0.02 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.01
Bert-small[µ=3.71] 1e−4 0.2 0.71 0.89 0.94 0.96 0.97 0.2 0.64 0.75 0.78 0.79 0.79

2e−5 0.02 0.38 0.59 0.68 0.72 0.72 0.02 0.37 0.55 0.63 0.66 0.66

1e−3 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02
*Bert-mini[µ=1.00] 1e−4 0.11 0.42 0.56 0.63 0.66 0.66 0.11 0.4 0.51 0.57 0.59 0.59

2e−5 0.02 0.13 0.25 0.31 0.34 0.34 0.02 0.13 0.24 0.3 0.32 0.32

1e−3 0.01 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02
*Bert-small[µ=3.71] 1e−4 0.16 0.57 0.7 0.76 0.79 0.79 0.16 0.53 0.63 0.67 0.69 0.69

2e−5 0.02 0.34 0.5 0.57 0.59 0.6 0.02 0.33 0.47 0.53 0.55 0.55

batch matrices, facilitating representation in matrix form. When employing aggre-
gation functions, it’s essential to ensure that the aggregation process remains unaf-
fected by padding, relying solely on the actual instance data. This consideration can
be easily overlooked, such as when computing the mean of the matrix, where the
division should be by the effective non-zero rows; not the total number of rows.

We can easily show that the proposed embedding aggregation method is "padding-
independent." Let M ∈ Rm×n be a matrix of dimensions m by n, and Z ∈ Rk×n

denote a zero-padding matrix with matching column dimensions but differing row

dimensions. Let P ∈ R(m+k)×n represent the resulting padding matrix: P =

[
M
Z

]
.

Then, it is evident that PTP = MT M, but P is not equal to M. Also 1TP = 1T M;
for 1 being a corresponding sized one vector. Since M has no padding and remains
independent of Z, any transformations based on PTP and 1TP are also unaffected by
Z and, hence, "padding-independent"; and so a valid post-aggregation operation.

222 Chapter 9. Analysis & Results

Take-Away

• We used our proposed unsupervised deep clustering and embedding
technique to find similarities among Rebrickable® objects based solely
on their compositional features. We found visually similar instances in
a close embedding space; even without (explicitly) considering visual
features.

• We analyzed supervised classification with strict supervision and semi-
supervised tasks using AEs to preserve identity. The results differed de-
pending on whether we used Kernel Embeddings (KEs) and/or Resid-
ual Connections (RCs). RCs worked well in pure classification, while
a combination of RCs and KEs was superior in semi-supervised tasks
with identity/information preservation.

• We conducted a comparative analysis between a brute-force Bert model-
based approach and our proposed HDB architecture; for different model
sizes (i.e. amounts of learnable parameters); on a classification task of 50
labels. Particularly at comparable model sizes, our proposed HDB solu-
tion clearly performed much better, and further, even achieved similar
performance with much fewer parameters.

• When training on batches of graph instances, specialized padding ag-
gregations are necessary. Our proposed aggregation function is inher-
ently padding-independent.

Keywords

Clustering • Deep Embeddings • Padding-Independent • Graph Instances

9.5 Manifold Clustering & Embedding

To describe and justify relationships between data, the underlying distribution of
data is commonly based on the following assumptions (Learning, 2006):

• Smoothness: Similar inputs should yield similar model outputs.

• Continuity: Close points are more likely to share the same label

• Manifolds: Data resides on latent manifolds of (much) smaller dimensions.

• Clustering: Data tends to concentrate into different clusters. Points inside a
cluster are more likely to have the same label.

Recall, as mentioned in Chapter 6.6, "Manifold Clustering & Embedding" aims
to learn a vector representation for each manifold and assign each data point to a
manifold. Recently, Li et al., 2022 argued that two key elements are needed for
performing manifold clustering with NNs: a domain-specific constraint for mani-
fold identification and a learning method for embedding manifolds into linear sub-
spaces in the feature space. The Neural Manifold Clustering and Embedding (NMCE)
integrated these concepts through data augmentation and the principles of Maxi-
mal Coding Rate Reduction (MCR2)(Yu et al., 2020), a technique for learning diverse

9.5. Manifold Clustering & Embedding 223

and discriminative representations. NMCE adhered to the principles that the clus-
tering and representation should respect domain-specific constraints, that Manifold
embeddings should not collapse, and that identified manifold embeddings should
be linearized and separated. The NMCE objective loss for data X was overall as
follows:

LNMCE(X) := λ0MCR2(X)︸ ︷︷ ︸
learning algorithm

+ λ1D(X)︸ ︷︷ ︸
identity constraint

(9.5)

where λ0,1 are weighting parameters. We bring this again to mind as it has a nice
resemblance to our methodology (as mentioned in Chapter 7.7); where our forward-
pass f (x) can be equivalently expressed as:

Loss(X) := λ0Classification(X)︸ ︷︷ ︸
learning algorithm

+ λ1Auto-Encoder(X)︸ ︷︷ ︸
identity constraint

(9.6)

We also mentioned the use of multiple different loss functions (Chapter 7.5.1),
and so, we have L := {Lrec,Lcomp,Lsim,Lcon}. Hence, in our case, this changes to:

Ltotal := λclasLclas + λconLcon︸ ︷︷ ︸
learning algorithm

+ λrecLrec + λsimLsim + λcompLcomp︸ ︷︷ ︸
identity constraint

(9.7)

So Lclas,Lcon are accordingly learning algorithms, and Lrec,Lsim,Lcomp respec-
tively identity constrains.

Take-Away

To achieve effective manifold clustering with neural networks, two general
essential ingredients are required: a domain-specific constraint that ensures
manifold identification and a learning algorithm for embedding each man-
ifold to a linear subspace in the feature space (Li et al., 2022).

Keywords

Manifold Clustering • Domain-Specific Constraint • Learning Algorithm

9.5.1 Preservation of Identifying Structures

Building on the concepts of Li et al., 2022 regarding identity-preserving constraints
and manifold clustering, we show that combining an unsupervised reconstruction
loss of an AE with a supervised classification loss can preserve the data’s (identity)
structure whilst also effectively separating (i.e. classifying) the data into separate
clusters. In particular, we show (Figures 9.6, 9.7) that relying solely on an AE loss
does not effectively produce distinct and separable clusters. Conversely, utilizing
only a classification loss, while now capable of distinguishing and separating clus-
ters, fails to preserve and encode distinctive (i.e. identifying) structures; this occurs
because all sub-groups within a label are treated equally, causing instances within
clusters to become mixed and disorganized; losing so their "identity". However,
combining an AE loss with a classification loss allows optimizing for both: separat-
ing data clusters based on labels and preserving the intrinsic structural identity. This
ultimately leads to more enhanced and meaningful vector representations.

224 Chapter 9. Analysis & Results

FIGURE 9.6: Projection of latent representations for FMNIST using
different architectures. Classification labels were obtained by split-
ting the original ten label indices into two classification groups A & B

(based on whether the label indices are even or odd).

It is important to note, however, that the quality of the preservation of identify-
ing structures in this context is heavily reliant on the AE. In particular, if the model is
unable to properly encode or decode the underlying data (for example, if the model
is too weak given the data’s underlying complexity or distribution), the model’s de-
termined manifolds may not be representative of identifying patterns and may fail
to encode this information into the embeddings. In other words, the importance of
choosing the right AE model for a given data collection should not be underesti-
mated. Figure 9.7 shows cases where the AE fails to interpret the data as intended.

9.5. Manifold Clustering & Embedding 225

FIGURE 9.7: An example of too-weak AEs that fail to effectively inter-
pret the underlying data and preserve structural identity as intended

(finding and preserving sub-labels).

At first, the cluster(s) appear(s) to be distributed randomly with no visible coher-
ence, pattern, or grouping. However, this does not (necessarily) mean that the AE is
completely unable to encode (and decode) the data, or that the representations are
of absolutely no quality. The embedding vectors may still contain (in some sense)
semantic or logical information, just not in a way that efficiently groups, identifies,
or showcases items with equivalent ground sub-labels together; i.e. not in the way
it was intended. For example, we could have wished for correctly classifying over
coarse labels, yet still maintain and not destroy sub-label identities; but a model
that is too weak might only succeed in correctly classifying data and fail to preserve
identifying distinctions among (latent) groups of sub-labels.

Thus, by having a means of quality measurement for the identity-preservation,
we can detect whether the model is too weak or not (the same applies to the classi-
fication loss). In the above scenario, the AE serves as this metric; but in general, we
can e.g. also use the metrics/losses proposed in Chapter 7.7.

Take-Away

We can use a multi-loss approach employing an Auto-Encoder (AE) for pre-
serving identity and a classification task as a learning algorithm to produce
robust latent vector representations. The AE component maintains identity
consistency, while the classification task guarantees a clear separation of la-
bels. Solely relying on either AE losses or classification has drawbacks.

226 Chapter 9. Analysis & Results

Keywords

Multi-Loss • Auto-Encoder • Classification • Embedding Representations

Taylor Approximation Error During Training

Figure 9.8 below shows the average classification accuracy and the corresponding
normalized Taylor approximation error (TE) across five iterations on different data
sets. The evaluation encompasses three architectural modules: Classification (CL),
Auto-Encoder (AE), and Classification+Auto-Encoder (CL+AE). To introduce coarse
labels, the original ten labels were paired (modified) into a total of five groups (i.e.
coarse labels), merging pairwise two original labels under a single new one. While
some individual differences were found in the results of all the modified data sets,
the collective overall empirical observations reveal a number of interesting insights
and implications; some of which are not trivially intuitive at first; primarily: (1)
discrepancies in train/test error scores, (2) rate of change in the loss error, and (3)
variance in the approximation error.

Train/Test error score discrepancies: AE showed almost no difference in TE
between test and training sets, i.e. the average error curves were nearly identical,
CL+TA showed a moderate difference, and CL showed a significantly large differ-
ence between training and test error. When the train and test accuracy scores di-
verged, so did the train and test for TA. This, we believe, may be due to overfitting.
Overfitting is easier on a classification task than on an auto-encoder regression task.
When overfitting occurs, the TA approximation degrades. On MNIST, CL+AE did
not show any divergence in the test and train curves; but had the highest error rate.

Rate of change: CL had the strongest rate of decline in the train-TE. In FM-
NIST (and to a lesser extent in EMNIST), the autoencoder (AE) initially decreased
rapidly but then started to increase after a few training epochs. This means that
while CL+AE and CL showed a decline in TE towards the end of training, AE in-
stead showed an increase. If we interpret a high TE as indicating that similar input
data result in more unpredictable output differences, we can infer that the classifi-
cation layer maintains predictability and robustness throughout training, whereas
the AE becomes less robust (though more effective due to reduced AE error). Even
if two input vectors are close, they can still be on different manifolds and thus end
up further apart in the output. However, on the MNIST and CIFAR10 data set, this
reverse incline did not occur, which could indicate that the manifolds were encoded
further apart or that the manifolds were not representative enough so that (numeric)
details did not matter. Interestingly, in MNIST, the test error on CL reduced (rather
than increasing as in the other data sets); and the training error on CL+AE increased
(instead of decreasing).

Variance in the error: Overall, throughout the training process (i.e. epochs), the
error variance of the curves remained quite stable for all data sets. However, towards
the end of training, the error variance of CL decreased somewhat. Additionally, it
appeared that the variance of AE was in correlation with the complexity of the un-
derlying data set. Specifically, it exhibited the least variation on CIFAR10 (the most
complex/challenging data set) and the greatest variance on MNIST (the easiest).

9.5. Manifold Clustering & Embedding 227

FIGURE 9.8: Accuracy and normalized Taylor approximation error
during training on three different architectures.

Take-Away

Experimentation on the TA error revealed empirical differences in (1)
train/test error scores, (2) loss error rate of change, and (3) error variance.

228 Chapter 9. Analysis & Results

Keywords

Taylor Approximation Error • Loss Error • Rate of Change • Error Variance

9.5.2 Taylor Approximated Clustering

First, we show that clustering using the TA error over manifolds (i.e. model land-
scapes) with affinity propagation (AP) can yield more interesting clusters compared
to conventional Euclidean-based clustering using HDBSCAN, by visualizing the
cluster assignment of an evenly spaced grid field over a given (synthetic) loss land-
scape, i.e. manifold (Figure 9.9):

FIGURE 9.9: Comparison between HDBSCAN clustering on the Eu-
clidean distance vs. AP using the TA error.

It is worth noting that the specific and final clustering results - in particular,
the size of (merged) clusters - are heavily dependent on the clustering algorithm’s
hyper-parameter selection; yet there are still clear evident differences between the
detected patterns of both methods; even using standard default parameters.

9.5. Manifold Clustering & Embedding 229

9.5.3 Non-Smoothness of DNN Landscapes and Taylor Approximation

The (loss-) landscape of severely over-parameterized DNNs, however, is typically
not smooth at all and has multiple local and global minima; as can also be visual-
ized using projections (Li et al., 2018a). Minimizing the non-smoothness of network
landscapes can lead to increased model effectiveness, especially for sharp loss land-
scapes (Foret et al., 2020). In our context, training a network to reduce the TA has
two intended goals: (1) mitigate landscape irregularity and sharpness by modifying
the landscape so that equivalently labeled points may be approximated accurately
(potentially improving model efficacy), (2) enable better subsequent manifold clus-
tering since the TA is then more reliable and exact.

We will now highlight and analyze an interesting occurring phenomenon:

Phenomenon 1 The TA error of DNNs on training data often worsens (but may also im-
prove) initially during the training process. However, with further iterations, it often tends
to gradually converge back to a level similar to the error of the initial TA loss of the untrained
DNN. Conversely, the error on test data does generally not improve; and instead worsens
until converging towards a maximum error over time.

Phenomenon 1 supports the following hypotheses and possible implications:

• The DNN’s latent landscape around identically labeled points is not smooth,
and it worsens as the DNN is trained. The initial untrained DNN’s landscape,
on the other hand, has a somewhat smoother (yet not good) TA, i.e. is less
unexpectedly abrupt.

• The better the latent representations and generability (i.e. the network loss),
the closer similar objects are encoded to other similar objects and the smoother
the TA becomes. As a result, until the network has found a first favorable
manifold landscape, the TA may first degrade; but then improve.

• Because increasing landscape smoothness is frequently linked with better gen-
eralization and model effectiveness, improving the TA could intuitively also
possibly result in improved generability and model performance (but only if
optimizing the TA smoothed out the landscape appropriately enough).

• It is advantageous to encode similar instances close to one another, such as on
a shared local manifold. If the TA on a given manifold is good and smooth, this
could indicate a smooth(er) DNN landscape. Ensuring smoothness in (trained)
DNNs is challenging due to their inherently non-smooth nature and complex
manifolds, often aggravated by overfitting. Rather than directly optimizing the
TA, it follows logically that enhancing the smoothness of the DNN’s landscape
(and so, that of its manifold) would also lead to improvements in the TA.

Take-Away

We examined different clustering methods applied to neural network land-
scapes and found that combining Taylor approximation error with Affinity
Propagation can expose richer patterns compared to traditional approaches.
We highlighted the influence of parameter selection on clustering results and
explored reducing the Taylor approximation error to improve model perfor-
mance and ensure consistent clustering; given the intricate nature of non-
smooth neural network landscapes.

230 Chapter 9. Analysis & Results

Keywords

Clustering • Neural Network Landscapes • Taylor Approximation Error

9.6 Supervised αMax-B3 Clustering Evaluation Metric

Notice: Our work and findings on αMax-B-CUBED (presented in this thesis) have
been publicly released on OpenReview-Venue (Guimerà Cuevas and Schmid, n.d.).

We have identified and motivated a potential flaw in the B3 clustering evaluation
metric and described how it can lead to misleading results when dealing with coarse
super-labels. This flaw stems from B3’s inherent assumption that the ground truth
for comparison is accurate and precise, which is not (necessarily) the case when
dealing with uncertain or coarse labels. In this section, we will examine different
scenarios and analyze different clustering scores, especially considering uncertainty
in labels. The term "label uncertainty" here does not refer to that the labels are com-
pletely incorrect or wrong; rather, it suggests that they may not accurately denote
the exact (sub-)class with complete certainty; i.e., label uncertainty here refers to the
uncertainty surrounding inexact annotations (Zhou, 2018).

To illustrate, consider the dog label "Chihuahua". While categorizing it as an
"animal" is a correct label, a more accurate classification would be a "dog", and an
even more precise label would be a "toy dog". Now suppose we have a large data set
of many dog images and we want to cluster them without any predefined labels or
categories. Since there is no ground truth, it becomes difficult to objectively evaluate
the algorithm’s performance in terms of labeling accuracy. In this case, one idea
may be to incorporate some domain knowledge. For example, we can use breed
information as a form of external validation to assess the quality of the dog clusters
produced by the algorithm. However, different experts or sources may have varying
opinions (labels) on specific dog breeds. For instance, one expert might consider a
given dog as a "Retriever," while another might classify it as a "Golden Retriever."
This can quickly result in uncertainty regarding (inexact) labels, i.e. coarse labels.
Ideally, we would like to have a model that generates distinct clusters for each type
of Retriever, rather than grouping all Retrievers into a single cluster. However, if we
solely rely on the coarse labels as the absolute (yet inexact) truth, the B3 will favor
the larger cluster over the individual clusters; thus misleading us in assessing which
clustering is actually better.

9.6.1 Comparison of αMax-B3 and Traditional B3 on Synthetic Data

The proposed αMax-B3 method was tested on a synthetic data set with five sepa-
rable classes and compared to the traditional B3 using KMeans for multiple values
of k clusters (Figure 9.10). Both methods performed best for k = 5 and equally for
k ≤ 5. However, for k > 5, the proposed method provided a more robust and fair
evaluation, assigning higher scores to sub-clusters and reasonable sub-groups than
the traditional B3.

9.6.2 Imbalanced Data Set

We repeated the above experiment (Section 9.6.1) with imbalanced class labels (ratio
1:2:4:8:16) to assess the metric evaluation quality of αMax-B3

δ in an imbalanced data
set scenario (Figure 9.11).

9.6. Supervised αMax-B3 Clustering Evaluation Metric 231

FIGURE 9.10: Multiple clustering assignments are evaluated using
clustering scores and depicted visually. The optimal clustering con-
sists of five classes. A finer and purer sub-clustering should have
better scores compared to a coarser and less pure clustering. The
proposed αMax-B3 metric, being a variation of the standard B3, gen-
erates more robust and fair scores. It prioritizes correct extraction
of sub-clusters over incorrect super-clusters, while still penalizing
non-homogeneous super-clusters when the number of sub-clusters

becomes excessive.

B3 and αMax-B3 have identical scores for k ≤ 5 as expected, but the δ-balanced
variant returned much lower scores, preferring sub-clusters in the most frequent
labels and keeping clusters with few points together.

This is consistent with that there is more uncertainty in splitting smaller clusters
with few points than larger clusters with many points, because the more points there
are, the more likely it is that further sub-groups exist. δ was chosen based on the
default recommendation (Cui et al., 2019); but other values could have also been
used to tweak the balancing.

9.6.3 Evaluation of Automatic Uncertainty Determination

We analyzed the automatic uncertainty determination for α in our method. Our
empirical results show that the automatically determined values of α relate to the
actual ground truth uncertainty. We compared our method to the standard B3 eval-
uation score and the benchmark scores of the real (unknown) uncertainty value α to
demonstrate this. We used artificial clustering problems with pure and noise groups
of cluster assignments, both with and without miss-assignments or outliers. Hence,
the actual number of sub-clusters, which is equivalent to the uncertainty, provided

232 Chapter 9. Analysis & Results

FIGURE 9.11: The B3, αMax-B3, and αMax-B3
δ scores on an imbal-

anced data set of five labels. The performance was evaluated based
on different cluster counts k. On coarse clusters (k ≤ 5), B3 and αMax-
B3 perform equally. However, αMax-B3 performs fairer on finer sub-
clusters (k ≥ 5) than B3 since it gives more weight to sub-clusters
under uncertainty. αMax-B3

δ accounts for class imbalance; which re-
sults in differences in k < 5.

a ground truth benchmark. We set k = 10 classes and evaluated the B3 score for
n ∈ {1, ..., 8} sub-clusters per class, requiring a data set of k × 8! instances and a
total of k × n clusters. The ground truth benchmark was thus the uncertainty of
α = 1− 1

n = n−1
n . The results are given in Table 9.2. As can be seen, the scores for the

automatically determined values of α match those of the ground truth uncertainty
perfectly (for no noise), and almost perfectly up to about four decimals (with noise).
In particular, scores were clearly different from those of the traditional B3.

We further performed experiments on data sets exhibiting mixed subgroup un-
certainty, defined as the union of two different data sets of equal cardinality, each
characterized by distinct subgroup uncertainty. The benchmark was established
as the arithmetic mean of the uncertainties of both subgroups; which we denote
∅n−1

n B3. The results are in Table 9.3. When merging data sets of equal size but with
varying numbers of sub-clusters, the scores of the automatic evaluation remained
similar, albeit with some notable differences. Increasing the number of samples and
the number of class clusters k only reduced the score difference slightly.

9.6.4 Uncertainty Estimation and Extrapolation

Notice: Our work and findings on αMax-B-CUBED (presented in this thesis) have
been publicly released on OpenReview-Venue (Guimerà Cuevas and Schmid, n.d.).

9.6. Supervised αMax-B3 Clustering Evaluation Metric 233

TABLE 9.2: A comparison of scores against ground truth uncertainty.
n denotes the number of real sub-clusters merged under the same
visible coarse label. Automatically determining α yielded here the

same scores as using the real uncertainty value (i.e. α = n−1
n).

NO NOISE / PURE CLUSTERS

n B3 α B3 n−1
n B3

1 1.0 1.0 1.0
2 0.66667 0.85714 0.85714
3 0.5 0.71429 0.71429
4 0.4 0.60870 0.60870
5 0.33333 0.52941 0.52941
6 0.28571 0.46809 0.46809
7 0.25 0.41935 0.41935
8 0.22222 0.37975 0.37975

25% RANDOM LABELS

n B3 α B3 n−1
n B3

1 0.60657 0.60657 0.60657
2 0.40330 0.51853 0.51853
3 0.30299 0.43284 0.43284
4 0.24243 0.36892 0.36892
5 0.20215 0.32106 0.32106
6 0.17329 0.28390 0.28390
7 0.15143 0.25403 0.25403
8 0.13491 0.23055 0.23055

50% RANDOM LABELS

n B3 α B3 n−1
n B3

1 0.32486 0.32486 0.32486
2 0.21695 0.27893 0.27892
3 0.16239 0.23198 0.23198
4 0.13023 0.19818 0.19818
5 0.10871 0.17266 0.17266
6 0.09242 0.15141 0.15141
7 0.08148 0.13669 0.13669
8 0.07219 0.12338 0.12338

TABLE 9.3: A comparison of scores from merged data sets of vary-
ing levels of uncertainty (sub-cluster tuples) under different degrees
of noise, number of instances, and cluster classes. (m,n) denotes m
coarse labels; each comprising n sub-clusters. ∅ n−1

n is the average
uncertainty of both merged data sets. c denotes the total number of

total number of real classes.

[C=10], NO NOISE

(m, n) B3 α B3 ∅ n−1
n B3

(1,5) 0.5585 0.6731 0.6714
(2,6) 0.3559 0.5118 0.5118
(3,7) 0.2692 0.4164 0.4104
(4,8) 0.2193 0.3532 0.3435

[C=10], 25% RANDOM LABELS

(m, n) B3 α B3 ∅ n−1
n B3

(1,5) 0.3404 0.4116 0.4099
(2,6) 0.2176 0.3126 0.3126
(3,7) 0.1648 0.2546 0.2517
(4,8) 0.1347 0.2167 0.2115

[C=10], 50% RANDOM LABELS

(m, n) B3 α B3 ∅ n−1
n B3

(1,5) 0.1855 0.2253 0.2241
(2,6) 0.1196 0.1723 0.1723
(3,7) 0.0912 0.1412 0.1405
(4,8) 0.0752 0.1211 0.1190

[c=50], NO NOISE

(m, n) B3 α B3 ∅ n−1
n B3

(1,5) 0.4666 0.6217 0.6198
(2,6) 0.2903 0.4403 0.4403
(3,7) 0.2172 0.3500 0.3434
(4,8) 0.1758 0.2940 0.2828

[c=150], NO NOISE

(m, n) B3 α B3 ∅ n−1
n B3

(1,5) 0.4498 0.6090 0.6073
(2,6) 0.2786 0.4267 0.4267
(3,7) 0.2081 0.3381 0.3313
(4,8) 0.1682 0.2833 0.2719

[c=250], NO NOISE

(m, n) B3 α B3 ∅ n−1
n B3

(1,5) 0.4463 0.6065 0.6047
(2,6) 0.2763 0.4240 0.4240
(3,7) 0.2063 0.3357 0.3289
(4,8) 0.1667 0.2811 0.2697

We extract the level of uncertainty by measuring the plateau interval and extrap-
olating the α values and compare the estimation with the ground truth uncertainty
of the data set. We do this, by calculating the expectation of all automatically de-
termined alpha values for all labels (i.e., over all function Plateaus intervals using
α := min(p1, p2); see Figure 7.33). The results are given in Table 9.4; for a single and
merged data sets respectively (as in Section 9.6.3):

Again, on a consistent data set, the uncertainty estimation was perfect. However,
on merged data sets with inconsistent (i.e. different) uncertainties, there were slight
differences, but the estimation was nevertheless close.

9.6.5 Results on Real-World Data

We evaluated model performance using the real-world data set CIFAR100 (using ≈
50k images) (Krizhevsky, Hinton, et al., 2009). CIFAR100 consists of 100 classes,

234 Chapter 9. Analysis & Results

TABLE 9.4: Estimating data uncertainty by extrapolating α and com-
paring it to the actual uncertainty. The extrapolation was perfect for
consistent data sets with a uniform cluster uncertainty. For inconsis-
tent data uncertainty, e.g. merging two different sets with different
uncertainties, the extracted α was not perfect but approximated the

uncertainty well.

CONSISTENT DATA SET

REAL α 1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

EXTR. α 1 1
2

1
3

1
4

1
5

1
6

1
7

1
8

MERGED DATA SETS

REAL α 0.6 0.333 0.238 0.188

EXTR. α 0.5 0.290 0.218 0.172

which can be further divided into 20 super-classes consisting of five sub-classes
each. We considered the sub-classification with an underlying label uncertainty of
α ≈ 1/5. Details on the CIFAR100’s super-classes can be found in the appendix of
Krizhevsky, Hinton, et al., 2009.

Our goal was to assess the evaluation quality of a pre-trained computer vision
model (VITb−32; Dosovitskiy et al., 2020), which was fine-tuned for the specific clas-
sification task. We analyzed the B3 scores obtained by comparing the predicted la-
bels against both the coarse (super-class) labels and the true ground-truth labels (Ta-
ble 9.5). We assessed the scores based on the original set of 100 labels as well as the
corresponding super-classes of 20 sub-groups. We found that the αMaxB3 score on
sub-labels was higher and, hence, moderately closer to the real scores; compared to
the B3 score.

TABLE 9.5: Comparison of model evaluation on real and coarse la-
bels for CIFAR100 sub-labels using B3 and αMaxB-CUBED; both, for
automatic estimation of α and using the real α. VITb−32 (Dosovitskiy
et al., 2020) was used as base model; at multiple different accuracy

levels.

Actual scores on Scores on coarse labels
real labels B3 α MaxB3 4

5 MaxB3

0.99788 0.33316 0.52913 0.52913
0.88420 0.31305 0.49704 0.49704
0.70064 0.27579 0.43693 0.43659
0.58246 0.24880 0.39388 0.39137

Take-Away

The B3 cluster quality metric is affected by imprecise and coarse labels, which
can lead to inaccurate evaluation results. To address this problem, a modifi-
cation can be made that is based on mathematical principles. This involves
adapting the B3 metric so that it can handle uncertain and inexact labels that
may be present in data sets; achieved by incorporating special super-set ag-
gregations with appropriate weighting. Such modifications help to make the
evaluation process more reliable and fair.

9.7. Cluster Explainability using Natural Language 235

Keywords

Coarse Labels • Inexact Label Uncertainty • B3 Cluster Metric • Evaluation

9.7 Cluster Explainability using Natural Language

In this section, we explore cluster explainability and interoperability using aggre-
gations on the latent embedding space, i.e. the network’s manifold. We aim to un-
derstand how the choice of aggregation method can affect the resulting aggregation
vector’s position and semantic meaning. We start by demonstrating that different
centrality pooling methods can lead to different vectors. Though this might seem
obvious, by explicitly acknowledging this fact, we can gain a clearer and more com-
prehensive understanding of manifold aggregations. This also helps to highlight
that different pooling methods have unique performance characteristics, each with
its own advantages and disadvantages, and therefore different implications.

9.7.1 Visual Illustration of Embedding Aggregations

For illustration reasons, pooling was here (for the following illustration only; Fig-
ure 9.12) applied over the projected coordinates rather than the complete hidden
states to more clearly highlight the geometric variances in the different pooling ap-
proaches, as UMAP is not guaranteed to perfectly preserve density (McInnes, Healy,
and Melville, 2018) and we wanted to keep the linear relationship throughout com-
parison (UMAP is non-linear). Our intention here is to emphasize the impact of
cluster data dispersion on the concept of central tendency (a point around which
data points tend to cluster or distribute).

Figure 9.12 shows a 2D UMAP projection for different groups of image clusters
(for synthetic data and COCO data), with the different pooled vectors marked for
comparison. Applying pooling to lower-dimensional representations simplifies vi-
sualizing the different geometric variations, helping in comparing different pooling
methods more easily. It also avoids UMAP’s alteration of data density during di-
mensionality reduction; i.e., data distortion. Keeping a linear context here ensures
a clearer understanding of how each pooling method varies. In the actual proposed
method, however, the pooling is computed over the full latent space. That is, in
practice (and in our proposed method), it is crucial to emphasize that the objective
is to aggregate embedding vectors within the actual full latent manifold space, not
within a space that has reduced dimensions. This is important.

9.7.2 Generative Captioning Results of Aggregated Embedding Vectors

Figures 9.13 and 9.14 show examples of cluster descriptions generated using the
different pooling methods and approaches. To generate these descriptions, we first
passed the pooled representation through the decoder. Then, we used a sampling
decoding strategy to create multiple candidate captions. Finally, we selected the
caption with the highest BERT score.

236 Chapter 9. Analysis & Results

FIGURE 9.12: A comparison of different pooling operations on
UMAP projected image cluster groups from synthetic data and the
COCO data set. Depicted are: mean-, median-, max-, GM-, and in-

stance GM pooling.

9.7.3 Exploring Manifold Aggregation Strategies for Generating Repre-
sentative Image Cluster Descriptions

We evaluated various pooling methods by analyzing their average text similarity
scores on different metrics, with higher scores indicating better performance. For
reference, we computed the computationally expensive intra-cluster similarity (the
mean similarity of each instance’s caption in the cluster compared to all individual

9.7. Cluster Explainability using Natural Language 237

FIGURE 9.13: [Extract 1] A sample of CCs generated from TextCaps
data (Sidorov et al., 2020) using diverse pooling techniques; with cor-
responding BERT-scores. Cluster captions were produced by passing
the pooled representation through a decoder, applying a sampling
decoding strategy, and choosing the caption with the highest BERT-
score. Four clusters are shown, each with a random subset of nine

cluster instances.

captions within the same cluster) using brute-force comparisons and retrieved the
average (mean intra-cluster) and maximum (max intra-cluster) instance similarity.
The results are summarized in Table 9.6, which we further ranked relative to their
average performance per decoding strategy (Table 9.7).

238 Chapter 9. Analysis & Results

FIGURE 9.14: [Extract 2] A sample of CCs generated from TextCaps
data (Sidorov et al., 2020) using diverse pooling techniques; with cor-
responding BERT-scores. Cluster captions were produced by passing
the pooled representation through a decoder, applying a sampling
decoding strategy, and choosing the caption with the highest BERT-
score. Four clusters are shown, each with a random subset of nine

cluster instances.

To draw a comparison to the Figures 9.13 & 9.14 of before, these figures showed
CCs of different pooling techniques obtained using D|ϱ with the n-TopK/P k-sampling
decoding strategy ϱ; which sampled multiple CC candidates and selected the one

9.7. Cluster Explainability using Natural Language 239

TABLE 9.6: Average text similarity scores for different pooling meth-
ods using various metrics with different scales. Higher scores in-
dicate better performance; the average and maximum cluster-wise

score using a brute-force search is included as a reference.

TEXTCAPS BRUTE-FORCE SEARCH

MEAN. INTRA-CLUSTER
MAX INTRA-CLUSTER

BLEURT BERT BART

0.3377 0.7910 -5.5917
0.4174 0.8352 -4.6920

TEXTCAPS

METHODS

RANDOM
MAX
MEAN
MEDIAN
GM
MEDOID
CLIPweighted
CLIPoptimized

GREEDY
BLEURT BERT BART

0.2817 0.7756 -5.7390
0.2468 0.7378 -6.2386
0.3707 0.8148 -5.1829
0.3728 0.8152 -5.1343
0.3762 0.8186 -5.0998
0.3681 0.8112 -5.2485
0.3714 0.8154 -5.1779
0.3836 0.8221 -5.0928

BEAM-SEARCH
BLEURT BERT BART

0.2580 0.7474 -5.8207
0.2679 0.7538 -6.0829
0.3491 0.7998 -5.2575
0.3634 0.8009 -5.1803
0.3579 0.7976 -5.2128
0.3488 0.7939 -5.4726
0.3491 0.7998 -5.2575
0.3621 0.8035 -5.1991

DIVERSE BEAM-SEARCH
BLEURT BERT BART

0.2675 0.7520 -5.9917
0.2573 0.7422 -6.3703
0.3715 0.8096 -5.2399
0.3684 0.8089 -5.2261
0.3753 0.8124 -5.1687
0.3589 0.8023 -5.4588
0.3701 0.8105 -5.2175
0.3750 0.8141 -5.1751

TEXTCAPS

METHODS

RANDOM
MAX
MEAN
MEDIAN
GM
MEDOID
CLIPweighted
CLIPoptimized

MULTINOMIAL SAMPLING
BLEURT BERT BART

0.2644 0.7554 -6.0537
0.2277 0.7299 -6.7867
0.3484 0.7979 -5.4875
0.3341 0.7898 -5.5030
0.3445 0.7937 -5.5289
0.3398 0.7966 -5.5276
0.3424 0.7927 -5.5930
0.3456 0.8002 -5.4931

BEAM-SAMPLING
BLEURT BERT BART

0.2731 0.7585 -5.6139
0.2582 0.7506 -6.1864
0.3596 0.8043 -5.1944
0.3684 0.8112 -5.0820
0.3704 0.8099 -5.0490
0.3630 0.8048 -5.3662
0.3647 0.8126 -5.0850
0.3676 0.8091 -5.0781

k-SEQUENCE SAMPLING
BLEURT BERT BART

0.3379 0.8024 -5.1016
0.3459 0.7982 -5.4607
0.4195 0.8361 -4.6697
0.4191 0.8349 -4.6834
0.4179 0.8364 -4.6710
0.4167 0.8358 -4.6885
0.4212 0.8369 -4.6541
0.4221 0.8371 -4.6618

COCO-2017 BRUTE-FORCE SEARCH

MEAN. INTRA-CLUSTER
MAX INTRA-CLUSTER

BLEURT BERT BART

0.3638 0.8092 -5.531
0.4424 0.8446 -4.755

COCO-2017

METHODS

RANDOM
MAX
MEAN
MEDIAN
GM
MEDOID
CLIPweighted
CLIPoptimized

GREEDY
BLEURT BERT BART

0.2875 0.7684 -5.9931
0.2077 0.7038 -7.0332
0.4099 0.8329 -5.0400
0.4056 0.8317 -5.0859
0.4077 0.8322 -5.0719
0.3925 0.8280 -5.1936
0.4098 0.8328 -5.0374
0.4028 0.8324 -5.0567

BEAM-SEARCH
BLEURT BERT BART

0.2677 0.7616 -6.1271
0.2187 0.7087 -6.8117
0.4051 0.8286 -5.0974
0.4028 0.8265 -5.1323
0.4032 0.8263 -5.1427
0.4070 0.8295 -5.1516
0.4044 0.8284 -5.1164
0.4034 0.8295 -5.0909

DIVERSE BEAM-SEARCH
BLEURT BERT BART

0.2667 0.7599 -6.2352
0.2134 0.7082 -6.9270
0.4051 0.8291 -5.1381
0.3992 0.8280 -5.1665
0.4018 0.8286 -5.1692
0.3963 0.8278 -5.1852
0.4061 0.8294 -5.1392
0.4007 0.8302 -5.1217

COCO-2017

METHODS

RANDOM
MAX
MEAN
MEDIAN
GM
MEDOID
CLIPweighted
CLIPoptimized

MULTINOMIAL SAMPLING
BLEURT BERT BART

0.2661 0.7535 -6.2851
0.1968 0.7260 -7.2926
0.3734 0.8073 -5.4669
0.3843 0.8194 -5.3714
0.3644 0.8131 -5.4871
0.3686 0.8102 -5.4709
0.3751 0.8150 -5.4234
0.3780 0.8177 -5.3548

BEAM-SAMPLING
BLEURT BERT BART

0.2858 0.7629 -5.9524
0.2130 0.7146 -6.9062
0.4098 0.8322 -5.0357
0.4179 0.8333 -5.0145
0.4086 0.8300 -5.1024
0.4038 0.8299 -5.1093
0.4121 0.8313 -5.0570
0.4111 0.8321 -5.0219

k-SEQUENCE SAMPLING
BLEURT BERT BART

0.3314 0.7886 -5.5360
0.3064 0.7846 -6.0822
0.4408 0.8440 -4.7514
0.4397 0.8431 -4.7562
0.4402 0.8436 -4.7652
0.4336 0.8417 -4.7897
0.4414 0.8445 -4.7388
0.4379 0.8436 -4.7509

with the highest score.
The intra-cluster brute-force search is computationally heavy as it requires com-

paring the similarity (e.g. the BERT-score) of each caption to all other captions, and
each cluster instance may come with multiple captions. In our generative model, we
mainly either produced a single sequence (e.g. when using greedy or beam-search),
or for the population-based approach of k-sequences, k was typically much smaller
than the number of instances in the clusters. If we had set k equal to the size of the

240 Chapter 9. Analysis & Results

TABLE 9.7: The average relative rank (smaller is better) of the scores
among all methods per decoding strategy.

DATA SET

TEXTCAPS
COCO-2017

OVERALL

∅ SCORE RANK PER METHOD
RANDOM MAX MEAN MEDIAN GM MEDOID CLIPweighted CLIPoptimized

7.167 7.833 3.833 3.611 2.778 5.500 3.556 1.722
7.000 8.000 2.667 3.500 4.500 5.333 2.389 2.611

7.084 7.917 3.250 3.556 3.639 5.417 2.973 2.166

cluster captions, both performance and evaluation would have been significantly
more computationally intensive; but CC quality would then had increased as well.

Take-Away

In a cluster, items are grouped together because they are somehow close in
proximity. By combining the representation of these instances, we can gener-
ate a textual description that is meant to represent the cluster as a whole. The
method of averaging used (e.g. a simple mean, median, or a more complex
approach) affects the quality of the generated outputs. To further enhance
the final textual descriptions, we can sample multiple candidate texts (based
on a single cluster representation) and rank them using a quality metric or
heuristic. Finally, we select the most matching one with the highest score.

Keywords

Clustering • Proximity • Representation Averaging • Quality Selection

9.8 Normalization of Heterogeneous Feature distributions with
Adaptive Tanh-Estimators

Please note: This contribution has been accepted for publication, after peer review
in Guimerà Cuevas and Schmid, 2024b. The Version of Record is available online.

9.8.1 Classification With Neural Networks

We evaluated the effectiveness of NNs in classifying synthetic data (Figure 9.15),
computer vision toy data (Figure 9.16), and real-world data (Figure 9.17); for differ-
ent spread values. The features of synthetic and real-world data were normalized
individually. Pixel-normalization for vision sets was on the gray-scale channel. The
goal was to examine the impact of FS on the training for different tasks. Specifically,
we show that inadequate spread initialization in TEs can harm training convergence;
which highlights the importance of choosing a proper normalization spread value.

Training converged much faster with feature-wise ideal spread values α̇ than
with a fixed global default spread value for all features of α = 0.01, as expected.
On synthetic tabular data (points drawn from linear Gaussian combinations), an
α = 1 exhibited a similar training convergence as α̇, but the value range was too
large. Notice, how α = 1 is equivalent to directly applying tanh to the standard-
ization. Conversely, using a global default spread of α = 0.01 achieved the worst
performance on the synthetic data set, and considerably constrained the effective

9.8. Normalization of Heterogeneous Feature distributions with Adaptive
Tanh-Estimators

241

FIGURE 9.15: Comparing normalized KDEs and model performance
on synthetic data. Training accuracy is depicted in the left figure; the
others show the KDEs of the normalized features. A default spread
of α = 0.01 showed the worst convergence. α̇ resulted in the best

probability mass distribution.

FIGURE 9.16: Training performance of ideal, trainable, and fixed
spread values on four different toy computer vision data sets after

tanh-normalizing the gray-scale pixel value distribution.

feature range. Overall, the probability mass of the KDE of the normalization for α̇
produced the best distribution, with all features having similar peak densities and
being Gaussian-like inside [−1, 1]. On the computer vision sets, α̇ demonstrated sub-
stantially less performance variance between independent runs. Here, although the
ideal spread values α̇ clearly improved training convergence speed, the final scores
towards the end of the training were about the same for all α values. This suggests
that a good choice of α strongly contributes to a better training start and reduces or
eliminates the need to adjust training weights to poorly chosen feature distribution.
Furthermore, recall that, while features are initially normalized independently, back-
propagation (optionally) allows us to alter each spread value in relation to the other
features. Yet, the performance of hα̇ and hγ for a trainable γ := τα̇ was nearly equal

242 Chapter 9. Analysis & Results

and did not show any noticeable performance gains. The motivation here was that,
since α̇ is calculated based on a particular target distribution, the optimal FS for a
given task might require a different target distribution, e.g. one that is not Gaussian.
By allowing the parameter τ to adjust (i.e. be learned), the spread value can further
be adapted towards the "optimal" spread for a given task. Lastly, we analyzed the
classification performance of different spread values on the larger real-world CDC
Diabetes Health Indicators data set (Figure 9.17). Again, the adaptive normalization
outperformed the use of a fixed global spread value in terms of convergence speed.
But as before, fine-tuning τα̇ did not substantially improve performance.

Overall, our primary finding was that slow convergence rates in tanh normaliz-
ers were primarily due to poorly dispersed density masses in the scaled feature dis-
tributions. Inadequate spread values resulted in bad density dispersion and forced
initial model weights to adjust to the input domain, thereby slowing down conver-
gence speed. Thus, a fixed global spread value is sub-optimal; but ideal spreads are
easily determined.

FIGURE 9.17: Classification scores on the CDC Diabetes Health Indi-
cators data set for different spread values.

9.8.2 Analytical Optimization

Although the probability mass of a Gaussian is distributed symmetrically following
a tanh transformation, a default spread of α = 1 is not suitable since the output
probability density places too much weight on the tails. The transformation might
be even worse for other standardized (but non-Gaussian) inputs. Instead of being
scattered at the extremes, the bulk of the output probability mass should be spread
around the center. That is, having the majority of the mass in the middle and just a
small amount (e.g. outliers) squeezed on the tails. The spread parameter of the tanh
mapping can be changed to tweak this trade-off. For example, if α is excessively
large, the absolute value of practically all features will be extremely close to one.
Similarly, if α is too low, the majority of values will be close to zero. Both situations
are undesirable because they contradict the purpose of FS. As a result, the target
distribution helps to disperse the probability mass appropriately. Figure 9.18 below

9.8. Normalization of Heterogeneous Feature distributions with Adaptive
Tanh-Estimators

243

shows the kernel density estimate 1 (KDE) of a truncated min-max normalized tar-
get Gaussian with q = 0.001 following the tanh-transformation, i.e. the KDE of hα,
for various spread values α. In particular, for data X, the kernel estimate analyzed
is KDE(hα(X)). Notice that KDE(X) ̸= hα(X). The spread value has a strong influ-
ence on the KDE of the tanh normalization, with very low spread values strongly
squishing the probability mass towards the center.

FIGURE 9.18: A truncated standard Gaussian with q=0.001 (black) is
compared to the KDE of its tanh-normalization output for various α

spread values (blue). The result for α = 1 is shown in red.

Yet, often, inputs are not normally distributed. Standardization assures a mean
and standard deviation of zero and one, respectively, but does not change the under-
lying (histogram) distribution, i.e. the distribution is relocated and stretched/shrunk,
but not "distorted". By minimizing the loss, we merely reduce the mismatch be-
tween the output’s KDE and a desired target distribution. In other words, we find
the spread value α which results in the lowest possible WD loss after applying the
tanh normalization. It is worth noting that even if we apply additional linear trans-
formations afterward on the output, such as constraining the range to [0,1] instead of
[-1,1], the optimal spread value α̇ remains the same, but the WD loss may vary. Fig-
ure 9.19 below depicts the WD losses of different distributions for different spread
values. Empirically, it appears that, for a standard Gaussian as the target, mini-
mizing over the spread value α may be quasi-convex and feature a unique (global)
minimum. The loss itself is, however, not convex. The loss function is also not sym-
metric, despite point symmetry of tanh; remember, it is non-linear. Hence, adding
or subtracting a spread value ϵ± α̇ for a distance α̇ > ϵ > 0 has a different impact.
E.g., the WD may increase "left" from α̇ more strongly than "right" of it.

A standard (non-truncated) Gaussian has ≈ 68.27% of its probability density
within a range of [−1, 1],≈ 27.18% for [−2,−1)∪ (1, 2];≈ 4.28% for [−3,−2)∪ (2, 3];
and ≈ 0.27% elsewhere. For tanh-normalization, the percentages are subject to the
spread value. Given a standard normal distributed input, for α = 1 more than
two-thirds of the transformed features will have absolute values less than 0.762, and
more than a quarter will have absolute values in [0.762, 0.964]. Similarly, the default
spread value from the literature of 0.01 (Jain, Nandakumar, and Ross, 2005; Latha
and Thangasamy, 2011), on the other hand, would here squish more than 99.8%.
This raises the question of why such a convention has persisted as this can be con-
sidered a terrible scale for feature normalization and may explain why practition-
ers would resort to different alternative (manually adjusted) spread values. In fact,

1An estimation that uses a continuous probability density curve to describe the data distribution.

244 Chapter 9. Analysis & Results

FIGURE 9.19: Wasserstein loss against different spread values for var-
ious standardized distributions.

α = 0.01 was initially chosen for a transformation using Hampel, rather than for the
standardized features in MTN, but manual tweaking and correction were even for
Hampel still involved and often necessary (Jain, Nandakumar, and Ross, 2005).

Table 9.8 shows the probability density coverage for various spread values. En-
tries represent the supremum of the absolute output value for the tanh normalization
for a certain percentage of the probability density. The target distribution is a stan-
dard Gaussian distribution.

TABLE 9.8: Approximate probability density coverage.

α 68.2% 95.4% 99.8% 100%

0.01 0.0010 0.0020 0.0030 1
0.10 0.0997 0.1974 0.2913 1
0.25 0.2449 0.4621 0.6351 1
0.50 0.4621 0.7616 0.9051 1
0.75 0.6351 0.9051 0.9780 1
1.00 0.7616 0.9640 0.9951 1

It emphasizes the issue of selecting spreads that are too small, as the maximum
absolute values remain extremely low. Too large spread values, however, were not
as detrimental, but still far from ideal.

Close to zero, the tanh function is almost linear, with non-linearity more apparent
on larger (absolute) values. A very small spread value, yielding a very small effec-
tive range, introduces little non-linearity. Consequently, apart from excessively com-
pressing feature values, this minimal non-linearity fails to diminish the impact of
outliers or enhance robustness against noise. Weights will have to re-adapt through-
out training, but linearity within individual features is largely "preserved". Large
spread values, on the other hand, introduce more non-linearity and greater affect the
normalization’s distribution. If non-linearity is imposed too strongly, potentially as-
sumed linear relationships (e.g. on the weighted sum) may become distorted. Over-
all, already values ≤ 0.1 exhibit a considerable WD divergence, and so the tanh es-
timator’s default spread of 0.01 is a very unfortunate choice here. Table 9.9 contains
an overview of spread values and their numerical loss for different ground distri-
butions. The ideal spread value for a Gaussian target distribution was often similar
across most distributions; yet not identical.

9.9. Model Output Calibration & Novelty Detection 245

TABLE 9.9: Ideal spread values.

Distribution ≈ α̇ Lq=0.001
W

Normal 0.3328 0.011
Exponential 0.3336 0.087
Alpha 0.3885 0.071
Gamma 0.3326 0.043
Gumbel_L 0.3422 0.044
Cosine 0.3153 0.020
GenPareto 0.3873 0.174
Bimodal 0.2516 0.107

Take-Away

It is crucial to pre-process feature values when using ML models. Tanh-
Normalization is a robust method that can handle outliers well, but it uses
a uniform fixed global spread value for all the features during normalization,
which is not optimal. One way to improve this is by instead directly calcu-
lating the most "ideal" local spread factor for each feature. This helps with
training convergence and eliminates the need for manual parameter tuning.

Keywords

Pre-Procesing • Tanh-Normalization • Outliers • Training Convergence

9.9 Model Output Calibration & Novelty Detection

Please note: This contribution has been accepted for publication after peer review
in Guimerà Cuevas and Schmid, 2024a and has been presented in the conference
proceedings.

9.9.1 Score Adjustment

In an embedding space, the distances between a point and class centroids often rep-
resent the similarities between that point and each class; or its probability of belong-
ing to that class. A class may have "subspaces", e.g. contour lines, along which the
distance to the same class remains constant. However, the distances to other classes
change (dark knowledge). This is visualized in Figure 9.20.

In this context, it is crucial to consider the distances (i.e. mismatches) to other
classes for our OOD approach; but a high probability class (low distance to a specific
cluster center) can steal away scoring mass from other classes during calibration
scoring since the probabilities essentially sum up to one. Thus, it is important to
inversely weigh the distances (i.e. scores) if we want to ensure that the scoring mass
is distributed appropriately among all classes; recall, we are interested in the average
calibration discrepancy, i.e. misalignment, among all classes. For example, the main
class may exhibit no mismatch, but all other classes may. Thus, we assign correction
weights to these classes in an inverse manner to ensure all classes have a sufficient
influence on the final outlier alignment score.

246 Chapter 9. Analysis & Results

FIGURE 9.20: Illustration of class distances in an embedding space.
The graph shows the distance from a point to a class centroid, along
with contour lines, representing the main class. These contour lines
indicate areas where the distance to the main class remains constant.
Moving along these contour lines does not alter the distance to the

main class, but the distances to other classes change.

9.9.2 Results on Model Output Calibration & Novelty Detection

We compared the calibration discrepancy’s outlier detection on synthetic clusters
(Table 9.10) and real data (Table 9.11) using class-weighted percentile-based calibra-
tions ΞΦ

ŷ (pi
[j]). Real data used specific classes or entire data sets as training sets with

outliers regarded as classes not included in the training set or from a completely dif-
ferent data set; while synthetic data had artificial clusters. For real data, experiments
were based on large DNNs, while for synthetic data, smaller simple models such as
linear perceptrons and decision trees were compared.

TABLE 9.10: Average Out-of-Distribution Area Under the Receiver
Operating Characteristic Curve (ROC AUC) scores on trivial synthetic

clusters for multiple simple classifiers.

algorithm ROC AUC
ECOD 0.70 (± 0.01)
Sampling 0.97 (± 0.03)
QMCD 0.53 (± 0.07)
ABOD 1.00 (± 0.00)
OCSVM 1.00 (± 0.00)
MCD 0.89 (± 0.04)
COF 0.44 (± 0.01)
LOF 1.00 (± 0.00)
HBOS 1.00 (± 0.00)
LODA 0.91 (± 0.03)
IForest 1.00 (± 0.00)
INNE 0.99 (± 0.01)
hdbscan 1.00 (± 0.00)
ENSEMBLE 1.00 (± 0.00)

algorithm ROC AUC
||ϵ Perceptron||∝1 0.72 (± 0.22)
||ϵ Perceptron||∝2 0.81 (± 0.21)
||ϵ Perceptron||∝∞ 0.99 (± 0.01)
||ϵ SVC||∝1 0.82 (± 0.22)
||ϵ SVC||∝2 0.91 (± 0.15)
||ϵ SVC||∝∞ 1.00 (± 0.00)
||ϵ DecisionTreeClassi f ier||∝1 0.50 (± 0.08)
||ϵ DecisionTreeClassi f ier||∝2 0.50 (± 0.08)
||ϵ DecisionTreeClassi f ier||∝∞ 0.53 (± 0.07)
||ϵ KNeighborsClassi f ier||∝1 0.50 (± 0.03)
||ϵ KNeighborsClassi f ier||∝2 0.50 (± 0.03)
||ϵ KNeighborsClassi f ier||∝∞ 0.61 (± 0.03)
||ϵ GaussianProcessClassi f ier]||∝1 0.76 (± 0.31)
||ϵ GaussianProcessClassi f ier]||∝2 0.80 (± 0.29)
||ϵ GaussianProcessClassi f ier]||∝∞ 0.99 (± 0.01)

9.9. Model Output Calibration & Novelty Detection 247

TABLE 9.11: Average Out-of-Distribution Area Under the Receiver
Operating Characteristic Curve (ROC AUC) scores on real-world
data. The column "alg_log" represents the application of the outlier-
detection algorithm on the logits, while "alg_pred" its application on
the predictions. The columns "max[alg_log, ϵ]" and "max[alg_pred,
ϵ]" represent the ROC AUC scores computed based on the maximum
of the algorithm and ϵ, using either the logits or the predictions, re-

spectively.

ECOD
Sampling
QMCD
ABOD
OCSVM
MCD
COF
LOF
HBOS
LODA
IForest
INNE
hdbscan
Ensemble
||ϵ||∝1
||ϵ||∝2
||ϵ||∝in f

ECOD
Sampling
QMCD
ABOD
OCSVM
MCD
COF
LOF
HBOS
LODA
IForest
INNE
hdbscan
Ensemble
||ϵ||∝1
||ϵ||∝2
||ϵ||∝in f

ECOD
Sampling
QMCD
ABOD
OCSVM
MCD
COF
LOF
HBOS
LODA
IForest
INNE
hdbscan
Ensemble
||ϵ||∝1
||ϵ||∝2
||ϵ||∝in f

Trainset: CIFAR10 - Outlier: MNIST
alg_log alg_pred max[alg_log, ϵ] max[alg_pred,ϵ]
0.31 (± 0.03) 0.31 (± 0.02) 0.78 (± 0.06) 0.78 (± 0.06)
0.56 (± 0.11) 0.58 (± 0.08) 0.79 (± 0.03) 0.79 (± 0.05)
0.55 (± 0.04) 0.51 (± 0.09) 0.81 (± 0.06) 0.80 (± 0.07)
0.81 (± 0.04) 0.80 (± 0.04) 0.83 (± 0.04) 0.83 (± 0.04)
0.77 (± 0.06) 0.72 (± 0.07) 0.82 (± 0.03) 0.82 (± 0.03)
0.55 (± 0.09) 0.43 (± 0.08) 0.78 (± 0.06) 0.77 (± 0.06)
0.49 (± 0.01) 0.50 (± 0.01) 0.80 (± 0.05) 0.80 (± 0.05)
0.66 (± 0.08) 0.65 (± 0.07) 0.82 (± 0.03) 0.81 (± 0.03)
0.26 (± 0.07) 0.36 (± 0.08) 0.76 (± 0.06) 0.77 (± 0.06)
0.20 (± 0.07) 0.18 (± 0.05) 0.76 (± 0.07) 0.76 (± 0.07)
0.24 (± 0.06) 0.26 (± 0.06) 0.76 (± 0.06) 0.76 (± 0.06)
0.21 (± 0.06) 0.23 (± 0.07) 0.76 (± 0.06) 0.76 (± 0.06)
0.73 (± 0.03) 0.72 (± 0.03) 0.83 (± 0.04) 0.82 (± 0.04)
0.69 (± 0.08) 0.69 (± 0.08) 0.77 (± 0.03) 0.77 (± 0.03)

0.84 (± 0.04)
0.83 (± 0.05)
0.82 (± 0.06)

Trainset: FashionMNIST - Outlier: KMNIST
alg_log alg_pred max[alg_log, ϵ] max[alg_pred,ϵ]
0.23 (± 0.02) 0.28 (± 0.02) 0.93 (± 0.02) 0.93 (± 0.02)
0.69 (± 0.08) 0.67 (± 0.11) 0.94 (± 0.02) 0.93 (± 0.02)
0.56 (± 0.07) 0.41 (± 0.06) 0.96 (± 0.01) 0.94 (± 0.02)
0.94 (± 0.01) 0.94 (± 0.01) 0.96 (± 0.01) 0.96 (± 0.01)
0.92 (± 0.02) 0.92 (± 0.02) 0.95 (± 0.01) 0.95 (± 0.01)
0.55 (± 0.02) 0.49 (± 0.03) 0.93 (± 0.02) 0.93 (± 0.02)
0.49 (± 0.01) 0.49 (± 0.01) 0.94 (± 0.02) 0.94 (± 0.02)
0.81 (± 0.02) 0.85 (± 0.03) 0.95 (± 0.01) 0.95 (± 0.02)
0.40 (± 0.09) 0.50 (± 0.15) 0.93 (± 0.02) 0.93 (± 0.02)
0.05 (± 0.02) 0.15 (± 0.09) 0.92 (± 0.02) 0.92 (± 0.02)
0.19 (± 0.06) 0.36 (± 0.10) 0.93 (± 0.02) 0.92 (± 0.02)
0.12 (± 0.03) 0.35 (± 0.07) 0.93 (± 0.02) 0.93 (± 0.02)
0.85 (± 0.05) 0.86 (± 0.04) 0.95 (± 0.01) 0.95 (± 0.01)
0.85 (± 0.04) 0.85 (± 0.04) 0.92 (± 0.02) 0.92 (± 0.02)

0.96 (± 0.01)
0.95 (± 0.01)
0.95 (± 0.01)

Trainset: KMNIST Classes 1-5 - Outlier: KMNIST Classes 6-10
alg_log alg_pred max[alg_log, ϵ] max[alg_pred,ϵ]
0.28 (± 0.01) 0.31 (± 0.02) 0.74 (± 0.04) 0.75 (± 0.04)
0.73 (± 0.11) 0.82 (± 0.06) 0.82 (± 0.05) 0.85 (± 0.04)
0.51 (± 0.05) 0.38 (± 0.14) 0.80 (± 0.03) 0.78 (± 0.04)
0.91 (± 0.01) 0.91 (± 0.01) 0.84 (± 0.02) 0.84 (± 0.02)
0.89 (± 0.02) 0.90 (± 0.02) 0.89 (± 0.02) 0.90 (± 0.02)
0.59 (± 0.02) 0.54 (± 0.03) 0.77 (± 0.03) 0.75 (± 0.03)
0.51 (± 0.01) 0.50 (± 0.01) 0.80 (± 0.03) 0.80 (± 0.03)
0.73 (± 0.05) 0.75 (± 0.05) 0.82 (± 0.03) 0.82 (± 0.03)
0.72 (± 0.09) 0.74 (± 0.07) 0.79 (± 0.04) 0.82 (± 0.04)
0.17 (± 0.07) 0.59 (± 0.22) 0.74 (± 0.04) 0.81 (± 0.07)
0.68 (± 0.06) 0.70 (± 0.08) 0.77 (± 0.04) 0.78 (± 0.04)
0.78 (± 0.06) 0.81 (± 0.07) 0.83 (± 0.04) 0.85 (± 0.05)
0.87 (± 0.03) 0.85 (± 0.03) 0.90 (± 0.02) 0.89 (± 0.02)
0.85 (± 0.02) 0.85 (± 0.02) 0.87 (± 0.02) 0.87 (± 0.02)

0.83 (± 0.03)
0.85 (± 0.03)
0.91 (± 0.02)

Trainset: MNIST - Outlier: CIFAR10
alg_log alg_pred max[alg_log, ϵ] max[alg_pred,ϵ]
0.15 (± 0.02) 0.20 (± 0.02) 0.98 (± 0.01) 0.98 (± 0.01)
0.84 (± 0.07) 0.85 (± 0.09) 0.98 (± 0.02) 0.98 (± 0.02)
0.48 (± 0.09) 0.39 (± 0.10) 0.99 (± 0.01) 0.98 (± 0.02)

0.99 (± 0.01) 0.99 (± 0.01) 0.99 (± 0.01) 0.99 (± 0.01)
0.99 (± 0.00) 0.99 (± 0.01) 0.99 (± 0.00) 0.99 (± 0.00)
0.60 (± 0.01) 0.51 (± 0.01) 0.98 (± 0.02) 0.98 (± 0.02)
0.52 (± 0.01) 0.52 (± 0.01) 0.98 (± 0.01) 0.98 (± 0.01)
0.88 (± 0.06) 0.92 (± 0.05) 0.99 (± 0.01) 0.99 (± 0.01)
0.55 (± 0.19) 0.50 (± 0.19) 0.98 (± 0.01) 0.98 (± 0.01)
0.06 (± 0.05) 0.16 (± 0.12) 0.98 (± 0.02) 0.98 (± 0.02)
0.45 (± 0.19) 0.35 (± 0.17) 0.98 (± 0.01) 0.98 (± 0.01)
0.18 (± 0.08) 0.23 (± 0.10) 0.98 (± 0.01) 0.98 (± 0.01)
0.97 (± 0.02) 0.98 (± 0.02) 0.99 (± 0.01) 0.99 (± 0.01)
0.97 (± 0.01) 0.97 (± 0.01) 0.99 (± 0.01) 0.99 (± 0.01)

0.99 (± 0.01)
0.99 (± 0.01)
0.99 (± 0.01)

Trainset: CIFAR10 - Outlier: FashionMNIST
alg_log alg_pred max[alg_log, ϵ] max[alg_pred,ϵ]
0.33 (± 0.02) 0.33 (± 0.02) 0.79 (± 0.04) 0.78 (± 0.04)
0.56 (± 0.07) 0.57 (± 0.06) 0.80 (± 0.04) 0.80 (± 0.04)
0.53 (± 0.04) 0.48 (± 0.09) 0.83 (± 0.04) 0.81 (± 0.04)
0.77 (± 0.04) 0.77 (± 0.04) 0.83 (± 0.03) 0.83 (± 0.03)
0.74 (± 0.04) 0.69 (± 0.04) 0.81 (± 0.03) 0.81 (± 0.03)
0.46 (± 0.06) 0.44 (± 0.11) 0.78 (± 0.04) 0.78 (± 0.04)
0.53 (± 0.01) 0.52 (± 0.01) 0.81 (± 0.03) 0.81 (± 0.03)
0.64 (± 0.04) 0.65 (± 0.04) 0.81 (± 0.03) 0.81 (± 0.03)
0.25 (± 0.04) 0.35 (± 0.07) 0.76 (± 0.04) 0.78 (± 0.04)
0.18 (± 0.03) 0.20 (± 0.06) 0.76 (± 0.05) 0.76 (± 0.04)
0.22 (± 0.03) 0.23 (± 0.07) 0.76 (± 0.04) 0.76 (± 0.04)
0.21 (± 0.04) 0.24 (± 0.04) 0.76 (± 0.04) 0.76 (± 0.05)
0.70 (± 0.04) 0.69 (± 0.04) 0.82 (± 0.03) 0.82 (± 0.03)
0.67 (± 0.04) 0.67 (± 0.04) 0.77 (± 0.03) 0.77 (± 0.03)

0.84 (± 0.03)
0.83 (± 0.03)
0.82 (± 0.04)

Trainset: CIFAR Classes 1-5 - Outlier: CIFAR Classes 6-10
alg_log alg_pred max[alg_log, ϵ] max[alg_pred,ϵ]
0.43 (± 0.01) 0.44 (± 0.01) 0.61 (± 0.02) 0.67 (± 0.02)
0.55 (± 0.04) 0.54 (± 0.04) 0.64 (± 0.03) 0.63 (± 0.03)
0.55 (± 0.08) 0.47 (± 0.09) 0.68 (± 0.04) 0.63 (± 0.05)
0.59 (± 0.02) 0.59 (± 0.01) 0.66 (± 0.02) 0.66 (± 0.02)
0.57 (± 0.01) 0.57 (± 0.01) 0.64 (± 0.02) 0.64 (± 0.01)
0.51 (± 0.03) 0.47 (± 0.04) 0.62 (± 0.03) 0.60 (± 0.02)
0.49 (± 0.01) 0.49 (± 0.01) 0.63 (± 0.02) 0.63 (± 0.02)
0.53 (± 0.02) 0.53 (± 0.02) 0.63 (± 0.02) 0.63 (± 0.02)
0.45 (± 0.02) 0.50 (± 0.03) 0.59 (± 0.03) 0.61 (± 0.02)
0.33 (± 0.02) 0.34 (± 0.03) 0.57 (± 0.03) 0.57 (± 0.03)
0.43 (± 0.03) 0.42 (± 0.03) 0.59 (± 0.02) 0.59 (± 0.02)
0.44 (± 0.03) 0.45 (± 0.03) 0.59 (± 0.03) 0.59 (± 0.02)
0.58 (± 0.01) 0.57 (± 0.02) 0.65 (± 0.02) 0.65 (± 0.01)
0.56 (± 0.03) 0.56 (± 0.03) 0.61 (± 0.03) 0.61 (± 0.03)

0.67 (± 0.02)
0.67 (± 0.02)
0.65 (± 0.02)

248 Chapter 9. Analysis & Results

Table 9.10 demonstrates several interesting characteristics of the epsilon score
and its dependence on the respective classifier. The epsilon score is dependent on
the classifier because each classifier has a different accuracy and output distribution,
meaning that they assign confidence scores differently. This is important to consider
when performing outlier detection here, as the effectiveness of the calibration mis-
alignment method may vary depending on the quality of the classifier used. For
instance, it is not sensible to perform outlier detection if the model is not even able
to perform well on the training or test set.

On simple synthetic data with well-defined clusters and random noise outside
the clusters, most of the conventional methods tested performed (extremely) well
with about perfect outlier detection scores. However, the ||ϵ|| score struggled in this
setting. One possible explanation for this is that noise was defined as random points
in the embedding space outside the clusters. In DNNs, however, noise may instead
be mapped/embedded using a specific logic; and its intermediate representations
may not be simply random. I.e., even though the input noise to the model may be
random, after passing through multiple deep layers, the output is not as random
anymore. For example, if data is generated from a multivariate Gaussian distribu-
tion and passed through a DNN to retrieve the embeddings, the value distributions
of the embedding features will not really follow a Gaussian distribution any more
(NNs are heavily non-linear); i.e. the DNN model has the ability to transform the
input data in a manner that can produce embeddings with a distribution that differs
from the original input data. The exact (distributional) mapping of inputs to embed-
dings is non-trivial and highly dependent on the model, training objective, input
data, etc. The model itself defines this mapping.

However, the success of the ||ϵ|| score on complex real-world input data in a
DNN setting, where identifying outliers in the deep embedding space is challeng-
ing, can possibly be attributed to the "non-random" and "non-trivial" mapping of
DNNs. This is because the embedding now relies on the latent manifold of the
model, and outliers are represented by points that lie outside the corresponding
(local) manifolds. Notably, the ||ϵ|| score outperformed most traditional methods
in this context. In contrast, random outlier points in the input data are, on the other
hand, determined e.g. solely by large Euclidean distances or drawn from the tail
distributions of the feature values.

Moreover, we noticed that the infinity norm exhibited better performance for
DNNs on the synthetic data compared to its overall performance on the real-world
data sets (Table 9.11). The infinity norm represents the maximum absolute difference
between the features of two vectors. In this particular case, the maximum difference
proved to be more informative for outlier detection, possibly due to the outliers be-
ing generated by Euclidean distant points initially. This implies that different norms
can be more effective in specific scenarios.

Therefore, in summary, we experienced the best results for ||ϵ|| on real-world
data sets with DNNs, and less on synthetic data sets using simple classifiers. A
visual representation of the 2D projection displaying the embeddings of both inliers
and outliers within each individual data set is shown in Figure 9.21.

9.9. Model Output Calibration & Novelty Detection 249

FIGURE 9.21: An embedding projection showing inliers and outliers.

Take-Away

We evaluated our proposed Out-of-Distribution (OOD) detection method for
identifying outliers in DNNs by exploiting differences in output calibration
(i.e. misalignment). We found that our method performed better than many
traditional algorithms on real-world datasets for DNN-based classification
tasks. However, we observed that the method struggled with simpler models
like decision trees and had reduced effectiveness on synthetic data with trivial
outliers. We believe this difference is because random noise in simpler mod-
els does not follow the same complex (manifold) patterns observed in DNNs,
where outliers can be identified by their deviation from the (learned) latent
manifold space, whereas in simpler models, the input-to-output mapping is
inherently different. This has implications for the calibration alignment; on
which our OOD method is based. Moreover, the effectiveness of our outlier
detection method directly depends on the quality of the model itself for the
classification task (effective OOD detection assumes good downstream task
performance). This, in turn, is influenced by the quality of the (latent) embed-
ding representation (upon which the traditional OOD detection algorithms
directly depend). Overall, proper model quality is essential.

Keywords

Calibration Misalignment • Out-of-Distribution • Deep Neural Networks

250 Chapter 9. Analysis & Results

9.10 Clustering Strategy: Prediction-based Sub-Clustering

The iterative sub-clustering approach is demonstrated using two data sets: Sklearn’s
diabetes and California housing data. To start, the data is standardized to ensure
consistency. The standardized data is then visualized using UMAP. Next, HDB-
SCAN is utilized to identify clusters and outliers. Finally, the clusters that have been
identified are then again re-clustered. This yields new sub-clusters as well as new
outliers (which we categorize as non-core points; since these outliers are only con-
sidered outliers within the second iteration of clustering and not within the entire
data set). This is illustrated in the 2D plots shown in Figures 9.22 and 9.23 below:

FIGURE 9.22: Analyzing sub-cluster data hierarchies in Sklearn’s di-
abetes data set; identifying core points, clusters, and outliers.

FIGURE 9.23: Analyzing sub-cluster data hierarchies in Sklearn’s Cal-
ifornia housing data set; identifying core points, clusters, and outliers.

An initial clustering reveals primary clusters and outlier points. Outlier points
are simply those not associated with any identified cluster. For successive iterations,

9.10. Clustering Strategy: Prediction-based Sub-Clustering 251

clustering occurs within clusters (or prediction labels). This further helps in iden-
tifying densely grouped points that form sub-clusters. Notably, not all points of a
super-cluster are reassigned to a sub-cluster. Those that are reassigned can be seen
as core points, contributing to more defined sub-patterns (i.e. sub-clusters). Con-
versely, points that remain unassigned to any sub-cluster can be seen as adhering to
a more general (coarser) pattern.

In other words, within identified clusters, further sub-clustering is performed
using the cluster labels of the first iteration. This helps to uncover additional sub-
clusters and non-core points, which can be seen as outliers only within the respective
sub-clustering. Consequently, iterative sub-clustering extracts deeper and more ho-
mogeneous patterns within the data. Iterative sub-clustering can be done by e.g.
sub-clustering the identified clusters using an unsupervised approach, or alterna-
tively, by clustering and sub-clustering based on the class-label prediction of a clas-
sifier as a guided supervised approach. If employing prediction-based clustering
(i.e. clustering only within a mask of equally predicted labels from a classifier), we
can ensure that all clusters and sub-clusters always share the same (classification) la-
bels. This, in particular, prevents mixing different labels within the same cluster, and
so, guaranteeing label coherence (i.e. finding patterns only for data points sharing a
common label).

Overall, repeated sub-clustering easily facilitates subgroup identification within
clusters and improves the detection of core points (i.e. patterns) that exhibit a suf-
ficient number of neighboring points within a certain distance defined by the clus-
tering algorithm (during sub-clustering) and, thus, retain their status as clustering
points. Core points are of special interest since they represent dense and homoge-
neous groups within the data.

Take-Away

Prediction-based clustering ensures that labels within a cluster are consistent.
Through prediction-based clustering and recursive sub-clustering, we can un-
cover (deeper) nested finer patterns within larger and more general patterns.
This can be used to identify dense and homogeneous groups within the data,
which can be seen as "core points".

Keywords

Sub-Clustering • Prediction-based Grouping • Homogeneous Patterns

253

Chapter 10

Discussion

10.1 Neural Expressive Power & Bi-Nonlinear Complex-valued
Based Neural Networks

Notice: Our work and findings on complex-valued NNs (presented in this thesis)
have been published in Guimerà Cuevas, Phan, and Schmid, 2023. It was inspired
and builds upon our previous research (Guimerà Cuevas and Phan, 2021), but differs
significantly as it has been substantially improved and modified (both the complex
architecture and its mathematical framework); thus, constitutes novel contributions.
In particular, this novel contribution has been accepted for publication, after peer
review. The Version of Record is available online at: https://link.springer.com/
chapter/10.1007/978-3-031-33374-3_28. Use of this Version is subject to the pub-
lisher’s Manuscript terms of use. Therefore, please refer to Guimerà Cuevas, Phan,
and Schmid, 2023 for specific details.

In this thesis, we introduced a novel neural architecture with unique expressive
characteristics compared to traditional real-valued models. The "expressive power"
of a neural network, crucial for learning complex relationships and generalization, is
often enhanced by increasing model size and scaling up architectures. However, it is
equally important to explore new ways to define the underlying neural architecture,
as seen in innovations like liquid time-constant networks (Hasani et al., 2021), struc-
tured state spaces (S4) (Gu, Goel, and Ré, 2021), and the recent Mamba architecture
(Gu and Dao, 2023).

Our approach focuses on refining the forward and backward passes of a model
rather than merely scaling up. We proposed a bi-non-linear neural network based
on complex numbers, where neural connections are confined within the unit circle,
preventing them from being nullified or excessively amplified. This property allows
for the preservation of identity in embeddings and demonstrates effectiveness across
tasks, sometimes outperforming real-valued models; see Chapters 9.5 and 9.1.

Take-Away

Improving neural network expressiveness is crucial, but evaluating architec-
tures fairly is a challenge. Utilizing bi-nonlinear networks with complex num-
bers confined in unit circles showed interesting results; and constitutes (ex-
plores) a different approach to neural manifold learning.

Keywords

Neural Expressive Power • Complex Numbers • Model Architecture

https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28
https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28

254 Chapter 10. Discussion

10.2 Hierarchical Heterogeneous Graph Neural Networks for
Deep Learning on Recursive One-to-Many Databases

The HDB-model was successful in embedding DB (Rebrickable®, 2022) instances in
such a way that items with similar characteristics were located close to each other
(and dissimilar ones far apart). This resulted in clusters of objects with similar pieces
(i.e. sets) and comparable part counts. As a result, many of the instances within a
cluster were also visually similar, even though the embeddings were calculated ex-
plicitly without considering visual features; nearby instances on the manifold em-
bedding had many common and similar Rebrickable®pieces, e.g. from similar theme
sets. By mapping similar DB instances together, we can find patterns that are not ap-
parent at first. In particular, our model has the potential to explore relationships and
patterns between entities in different HDB settings, including fully unsupervised,
semi-supervised, self-supervised, and supervised scenarios. Overall, patterns are
identified based on both, the topological tree structure of the DB entity, as well as
the node attributes themselves; using the entire tree structure and all features.

In general, we found that residual connections were advantageous in down-
stream tasks and that the performance of a semi-supervised multi-objective clas-
sification with an identity preservation task was slightly improved by using the pro-
posed kernel embedding. However, in a simple classification-only task, the use of a
kernel embedding resulted in worse performance, especially for the synthetic data.
This is due to identity preservation having a potential counteracting effect on su-
pervised class classification (i.e. efficiency). Since identity preservation may not be
necessary in this context, it may add unnecessary complexities that affect the model’s
performance and learning convergence.

By including an identity preservation constraint, we aim to create embeddings
that not only have high quality but also maintain information about the entity. This
means that the embeddings will encode information about the identity of the en-
tities in the data and so be useful and effective for multiple combined (different)
downstream tasks, such as classification with (sub-)clustering. For example, the
goal might be to obtain an embedding that not only has a low reconstruction er-
ror after being processed by a decoder but also maps similar objects close in the
embedding space, distinguishes between different objects in a contrastive manner,
classifies these accurately, and is further capable of identifying semantic anomalies
(through embedding clustering).

We analyzed and compared our proposed method against a naive Transformer-
based encoding scheme that encodes HDB paths in a textual format from root to
leaf nodes, without positional encoding, random token ordering, and dropped to-
ken duplicates. The brute-force approach of the naive Transformer-based encoding
scheme has many important limitations. Transformers are most suitable for token-
based inputs such as categorical data and are not intended to work directly with
numeric features. In Transformers, numeric features are mapped to textual tokens,
which increases the feature dimension during conversion (for instance, the number
’123456’ might be tokenized into ’12’, ’34’, and ’56’, each with a full token embed-
ding dimension of e.g. 512). Our proposed method, on the other hand, processes
both numeric features and textual data directly/separately, without such need for a
numeric re-mapping (unless they occur in the text; but what we here actually refer
to are the numeric features of a given HDB). This avoids the (sub-optimal) trans-
formation steps otherwise required to convert the numeric data to textual tokens.
Moreover, Transformers have a pre-defined maximum input sequence length, which

10.2. Hierarchical Heterogeneous Graph Neural Networks for Deep Learning on
Recursive One-to-Many Databases

255

can be problematic in cases where the brute-force textual (Transformer-based) token
encoding of a given HDB is too large. This is quickly often the case, especially for
larger HDBs that contain multiple tables, features, and relations; the textual input
sequence must then be truncated (which is bad, as it results in information loss). To
simulate this, additionally, we also randomized the token ordering during sampling
and then applied a maximum sequence limit on it of around the 0.767 percentile of
the overall sequence-length distribution (of all HDBS) for Bert; and of around 0.287
for *Bert. We included this comparison in our evaluation against the proposed HDB-
models (in addition to the non-constrained Transformer-based brute-force baseline).

During the evaluation, we observed that the HDB-model performed generally
much better in training scores and convergence speed compared to the brute-force
Bert-based Transformer model. However, the HDB-model tended to overfit the data
more quickly, indicating the need for stronger regularization, and which could some-
times lower the performance on the test set (scores compared to Bert). One (small)
difference between the two models (HDB vs. Bert) was that for the HDB-model we
only used standard attention instead of a multi-head attention mechanism (as in
Bert); although one could easily incorporate it if desired. However, this was not
of relevant or crucial consequence, since both architectures were already inherently
completely different (recursive HDB vs. Transformer-based Bert). We also used stan-
dard real-valued NNs instead of our proposed complex-valued networks (specif-
ically, utilizing a real-valued conventional matrix feed-forward pass with residual
connections) for better and more direct architecture comparison. If we view the feed-
forward architecture as a self-contained module in the overall HDB-model struc-
ture (black-box), it is evident that the performance of the HDB-model can always
be enhanced through targeted hyper- and architecture optimization of these black-
box modules. We can think of the recursive HDB model structure as a hierarchical
composition of such modules, resembling a series of interconnected self-contained
black-boxes.

We noticed that the Bert models were more sensitive to the learning rate choice,
leading often even to total training failures with high learning rates; while the HDB-
models were very robust, especially HDB-v2. Limiting the maximal token input
sequence size for the Bert models, as expected, greatly negatively impacted the clas-
sification effectiveness and convergence, resulting in a significant performance de-
crease. This limitation becomes especially concerning for real-world applications,
since large databases will not fit within the specified maximum sequence length, re-
quiring truncation of tokens and subsequent decrease in performance (again, due to
information loss). In contrast, the HDB-models handle the entire DB tree with all fea-
tures in a hierarchical manner, avoiding this issue; i.e. they do not lose information
due to truncation.

In summary, we introduced a method for applying ML and DL to complex large
HDBs that have recursive one-to-many relations. Our method, particularly, allows
us to compute strong embedded representations for all entities in the HDB and en-
ables, so, many downstream tasks like classification, clustering, anomaly detection,
etc. It has clear advantages compared to a brute-force Transformer-based textual en-
coding approach. Our approach consists of representing HDB relationships as edges
and the tables as nodes (as a hierarchical tree-like structure). The encoding and
model scheme is not only limited to HDBs, but can be applied to any data structure
that can be transformed into a hierarchical tree with loop-free connections. The only
requirement is that node features under a common parent must be equivalent (other-
wise a virtual node must be introduced); but they can differ completely across other
nodes at different hierarchy levels. In particular, our solution directly supports node

256 Chapter 10. Discussion

entities (DB tables) that have different features; which is not typically supported in
standard GNNs. Compared to naive Transformer-based encoding approaches that
encode the HDB as text, our proposed HDB-model architecture offers two key dif-
ferences (advantages): it can directly process numeric features, and avoids the trun-
cation of long encoded token sequences. Experiments with real-world and synthetic
data demonstrated the effectiveness of our method. We found that adding residual
connections improved performance in purely supervised classification tasks, while
the use of a Kernel embedding improved performance in semi-supervised tasks that
require identity and information preservation.

Take-Away

We introduced a learning approach, the HDB-model, specifically designed for
hierarchical databases. Our method represents relationships within HDBs as
nodes and edges, enabling the direct application of ML techniques to these
complex data structures. Our HDB-model effectively performs downstream
tasks such as clustering, anomaly detection, classification, etc. The HDB-
model offers several advantages: robustness in different learning rates, ac-
commodates input sequences of any size, recursively processes the entire
database, etc. However, it also tends to experience overfitting more easily
and thus requires adequate regularization or training techniques.

Keywords

Hierarchical Databases • Machine- & Deep Learning • Model Architecture

10.3 Leveraging Knowledge Distillation and Domain Adap-
tation in Training for Transfer Learning

Knowledge transfer typically involves transferring knowledge from a larger model
to a smaller one. It is a very common and standard practice; known as knowledge
distillation. In this thesis, we focused not only on transferring knowledge from one
model to another but also on transferring knowledge from a less powerful (inter-
pretable model) to a stronger (non-interpretable) intermediate model, to then extract
again a final smaller interpretable model (from the intermediate one). This was mo-
tivated by the need to shift to a new input domain, such as a completely different
data set. Consequently, we had to transfer knowledge not only across models, but
also, across input domains.

For that, we proposed an approach to such knowledge transfer across different
domains; i.e. for models trained on different data sets. The goal was to transfer
knowledge from a model trained on a (labeled) straightforward data set with intu-
itive features to an intermediate model trained on a more complex yet highly precise
database. Ultimately, a final new interpretable model from this intermediate model
was extracted, using only the intricate and complex data from the new database; i.e.
solely drawing its rules from the complex data set. However, extracting a simpler
model from an intermediate model leads to information loss (e.g. of specific details).
The quality of the final model relies heavily on that of the intermediate model, and
challenges in extracting rules must be carefully addressed to ensure success. For in-
stance, even if the intermediate model is "perfect", a poorly designed rule extraction
algorithm will result in poor final outputs (i.e. rules). Likewise, if the knowledge

10.4. Robust Non-linear Normalization of Heterogeneous Feature Distributions
with Adaptive Tanh-Estimators

257

distillation process from the first model is weak, it will affect the quality of the inter-
mediate model and, consequently, the final model. Also, potential biases present in
the original data set or intermediate model may persist or even be magnified in the
final simplified model, e.g. also leading to biased or inaccurate outcomes.

Our approach, in particular, can also be used to (just) change the domain of the
training data (no intermediate or final interpretable model); e.g. we have a data set
with predicted labels for a certain subset of features, but now we want to use this
knowledge to predict labels for a different subset of features. In real-world scenarios,
it is crucial to adapt models to technological advancements and new data. This is
especially important when dealing with evolving data sets and rapidly improving
or changing technology; e.g. we may repeatedly need to update existing models to
make use of (new) information obtained by using new/different (e.g. more precise,
robust, etc.) hardware, and sensors; especially, if access to previous data sources
(e.g. hardware) is not possible anymore and the data input domains differ.

For instance, suppose we initially collected data using specific tools or sensors,
which allowed us to predict and categorize certain features. However, over time,
more advanced sensors have become available that enable us to gather a new set
of data measurements. These new sensors can measure properties that were previ-
ously impossible or now with even greater accuracy. To smoothly transition between
the different data domains and make use of our previous knowledge, we use cross-
domain adaptation: incorporating insights and knowledge from our previous model
that was based on old data. Then, when training a new model on the new dataset, we
do not need to re-learn or re-extract the labels and dark knowledge (Hinton, Vinyals,
and Dean, 2015) anew. This is very valuable since it saves time and resources (and
potential errors).

Take-Away

Transferring knowledge across different domains and models is often re-
quired. By performing knowledge distillation, models can be adjusted to in-
corporate new or updated data; while still pertaining to (i.e. maintaining) old
knowledge. The goal is to leverage/utilize valuable previous (dark) knowl-
edge; without having to re-learn everything anew.

Keywords

Cross-Domain Knowledge Transfer & Distillation • Domain Adaptation

10.4 Robust Non-linear Normalization of Heterogeneous Fea-
ture Distributions with Adaptive Tanh-Estimators

Please note: This contribution has been accepted for publication, after peer review
in Guimerà Cuevas and Schmid, 2024b. The Version of Record is available online.

For ML models to be effective, feature pre-processing (FP) is often fundamen-
tal. The actual FP technique used is crucial, and an inadequate FP method can have
a severe negative impact on the training convergence and final performance; espe-
cially for ML models. Although tanh-normalization gives robust outlier resilience,
it does so by using a fixed spread value for all features during normalization. This
is not ideal but can be improved by instead automatically selecting a spread factor
so that the FP output follows a desirable (ideal) output distribution. Good spread

258 Chapter 10. Discussion

values improve training convergence, or likewise, poor spread values decrease per-
formance substantially. Our proposed adaptive Wasserstein-tanh normalization not
only finds the ideal spread values but also eliminates the need for manual parame-
ter tuning by automatically determining and selecting these optimal spread values.
This saves time and removes an additional manual hyper-parameter tuning step.

Overall, pre-processing of feature values is important to ensure optimal model
performance. For numeric feature vector representations, it is crucial to ensure that
the ranges of feature values are comparable so that no single feature dominates the
others; which e.g. could cause bias. FS is often used here to remap the individual
features into comparable (unit) ranges. It can, however, be sensitive to outliers in the
data and even outliers in the individual feature dimensions. Tanh-estimators offer
robust feature normalization here, but as explained, utilize a fixed scaling factor
for all features; which raises the question of whether this is suitable given the vast
variation of possible feature distributions.

Via a series of tests, we empirically confirmed that poorly spread density masses
of normalized feature value distributions were to blame for slow training conver-
gence. When a fixed global spread value is used to normalize all features, this is
expected to happen, particularly e.g. if feature distributions vary greatly. This thesis
proposed an adaptive form of the tanh-normalization that calculates the ideal spread
based on minimizing the Wasserstein distance of feature distributions against a tar-
get distribution to control the probability density of the normalization. The method
particularly enhances the literature’s current method, boosting training convergence
speed by avoiding unnecessary model weight adaption due to poor FS. We repeat-
edly highlighted the importance of determining ideal feature-wise spread values and
provided theoretical motivation. Our solution determines the ideal spreads auto-
matically and effectively, avoiding time-consuming manual adjustments. Just as the
traditional tanh-normalization, it is robust to outliers, efficient, and very simple to
incorporate, but further ensures a normalizing transformation that gives an effective
probability mass distribution.

Therefore, the importance and role of FP must not be underestimated. Inad-
equate FP methods can strongly negatively affect model performance; as demon-
strated and highlighted. Improper normalization or scaling of features can cause
many problems, such as model bias, slow training convergence, lower effective per-
formance, etc.

Take-Away

Feature pre-processing (FP) is crucial for optimal model performance. Tanh-
normalization is a popular FP technique, which is robust to outliers but can be
greatly improved by automatically selecting the most ideal spread that best
results in an optimal/desirable output distribution; instead of using a fixed
global spread for all feature distributions. This improves training convergence
substantially and eliminates the need for manual parameter tuning.

Keywords

Pre-processing • Tanh-Normalization • Outliers • Feature Distribution

10.5. Supervised αMax-B3 Clustering Evaluation Metric 259

10.5 Supervised αMax-B3 Clustering Evaluation Metric

Notice: Our work and findings on αMax-B-CUBED (presented in this thesis) have
been publicly released on OpenReview-Venue (Guimerà Cuevas and Schmid, n.d.).

Coarse ground-truth labels make it harder to accurately evaluate clustering re-
sults. A poor or wrong evaluation measure/metric can certainly confuse the analyst
and lead to incorrect interpretations and conclusions (e.g. the choice of the right
model, hyper-parameters, etc). Being aware of the issue enables us to counteract
or avert this situation. The fundamental challenge is how to adequately evaluate
clustering results using a supervised metric if the labels are coarse and not totally
representative of ground truths. We approached this problem by leveraging the
observation that we can determine or choose a degree of uncertainty to either en-
courage or discourage sub-group identification. Even though the labels are inexact,
using a supervised measure is still advantageous in this scenario. Recall, that an
unsupervised loss function is often based on the assumption that data points within
a cluster are similar to each other but dissimilar to those in other clusters. This may
not be appropriate here since sub-groups can be extremely similar (yet still differ-
ent); and importantly, it does not guarantee that clusters are homogeneous: we do
not want to mix instances with different labels in the same cluster. If the labels were
exactly the ground truth, or if we were not concerned with discovering sub-groups,
setting the uncertainty α to zero (in our αMax-B3) will yield the same results as B3.

The α parameter in αMax-B3 is cluster-specific because it is dependent on the
precision and recall of a particular cluster. α and ηα are related, although they have
distinct roles: the final cluster uncertainty score is based on precision and recall and
reflected by ηα; on the other hand, α reflects the uncertainty between the original
clusters and the merged super-clusters, and ηα then uses α for its score evaluation.
The values for α can also be set manually if desired, e.g. if the degree of uncertainty
is known a priori; otherwise, however, manual adjustment implies hyper-parameter
tweaking, which generally is time-consuming and non-trivial. Thus, we recommend
using our proposed default automatic uncertainty determination; our experiments
have shown that this uncertainty determination gives a good estimation.

That is, the automatic determination of α, selected over the function’s maxima
Plateau (see Figure 7.33), approximates the real (unknown) uncertainty in the data
well, and about perfectly over a consistent set of uncertainty across all clusters.
However, the more noisy and uneven the cluster uncertainty is across the clusters
(i.e. for different levels of uncertainties across clusters), the less accurate this approx-
imation becomes. Still, it provides a good automatic way of selecting an appropriate
uncertainty value. In other words, we can extract the level of uncertainty by mea-
suring the plateau interval and extrapolating the corresponding α values to obtain
an approximation or estimate of the data set uncertainty.

Overall, we have highlighted an inherent issue concerning the "completeness"
criterion used in the conventional B3 cluster quality metric when coarse labels are
involved, which can be problematic, unfair, and misleading to evaluative (human)
judgment. To counteract this issue, a novel solution, αMax-B3, has been proposed,
which addresses this potential problem of unfair and inexact evaluation inherent in
the standard B3 metric. A comprehensive analysis of its properties and a formal
description have been provided, and a new clustering metric formula has been de-
vised that allows for a more fair comparison. The formula is capable of adapting
to sub-group uncertainty in ground-truth labels and can be generalized to accom-
modate imbalanced data sets. Our method first merges clusters based on their most

260 Chapter 10. Discussion

frequent label into larger groups called super-sets. These super-sets are then eval-
uated in conjunction with the original clusters using a modified B3 metric, which
applies a weighting factor to control the contribution of the super-sets against the
original clusters. Unlike the standard B3 metric, which typically favors coarse clus-
ters above potentially valid sub-clusters, αMax-B3 produces more robust and fair re-
sults; accounting for super-class (label) uncertainty. Our αMax-B3 metric is simple to
implement, has a solid theoretical foundation, and has many practical applications;
making it an interesting evaluation metric in the clustering domain; and introducing
a new supervised approach for assessing cluster quality with a particular emphasis
on sub-groups in the context of coarse label-uncertainty.

Take-Away

We introduced αMax-B3, a new cluster evaluation metric that addresses issues
with the conventional B3 cluster quality metric when dealing with coarse la-
bels. It merges clusters into super-sets and applies a modified B3 metric to
provide a fairer evaluation; accounting for coarse label uncertainty. The de-
gree of uncertainty α can be estimated automatically, or set manually. αMax-
B3 is mathematically motivated; setting α = 0 yields the same results as B3.

Keywords

Clustering Results • Coarse Ground-Truth Labels • Supervised Evaluation

10.5.1 Determining Representative Textual Labels for Clustering Accu-
rate Sensor Data with Inexact Annotations

Finding the most fitting/representative textual annotation for a cluster group is es-
pecially challenging when there is a strong disparity in quality between sensor data
and textual descriptions. While sensors are very reliable, textual data may be incon-
sistent, subjective, incorrect, or noisy. As a result, the quality of cluster representa-
tions in annotations may not correspond to that of the sensor data. This means that
obtaining the most accurate annotation that aligns best with a cluster group is a key
challenge. Particularly, even though sensor data is objective, different textual anno-
tations can be used to express the same underlying sensor data. These annotations
may encompass different information, leading to inconsistencies and varying levels
of detail. There is, thus, uncertainty in the semantic alignment.

Uncertainty in the quality of textual annotations requires a cautious approach.
While clustering sensor data offers objectivity and reliability, clustering textual data
will likely not capture well the underlying real patterns of the sensor data (due to the
[potential] misalignment). Combining both, i.e. concatenating the sensor embedding
vector with the textual embedding vector, and clustering on the joint concatenated
representation is not a good idea, since it increases the clustering dimension, intro-
duces complexities, and we would be integrating low-quality text with high-quality
sensor data; which can worsen the accuracy and reliability of clustering results. As
a most extreme scenario, imagine a completely irrelevant or contextually unrelated
textual comment. If we regard the vector embedding of this text as being random,
we would essentially be adding random "noise" to a (perfectly) precise sensor em-
bedding vector. Moreover, if the textual comment is even misrepresentative, wrong,

10.5. Supervised αMax-B3 Clustering Evaluation Metric 261

or the opposite, this will worsen the accuracy of embedding representation even fur-
ther; even if the sensor embedding vector was perfectly descriptive (i.e. we would
destroy or distort the good embedding representation vector).

The idea is to use clusters obtained from sensor data to achieve the following ob-
jectives: (1) evaluate the quality of textual annotations associated with these clusters,
(2) determine a degree and ranking of "representativeness" for comments in regard
to their sensor data or clusters, (3) determine the most representative textual anno-
tation that best encapsulates the majority of instances within a cluster, (4) identify
a suitable textual representation for a given cluster, and (5) identify if a comment is
representative for its sensor data.

We used different representation scores (heuristics) and applied the harmonic
mean. Scores can have high variability and we wanted to penalize extremely low
score values (outliers). The harmonic mean is a valuable metric in such situations
because it reduces the impact of individual high-value scores while amplifying the
effect of low scores (i.e. outliers); making it suitable for scenarios where a balanced
and robust average is required. In other words, outliers have a greater impact when
they have smaller values (low scores), while their impact is minimized (i.e. less)
when they have larger values (high scores) (Komić, 2011). Low scores are, thus,
more severe and ranked worse.

This aligns with the challenges posed by the variability and diverse nature of
the textual annotations in this context. The concept of a "representative" cluster an-
notation can be thought of: "Which of the comments best encapsulates the overall
essence of a given cluster?". Hence, in particular, we want to filter out poor repre-
sentatives clearly. A possible alternative to the harmonic mean would be using the
geometric mean. The arithmetic mean, however, would not be a good choice here,
since it does not penalize (too) low individual scores strong enough.

It is important to note that our focus here lies in identifying and retrieving the
best overall representation. Specifically, we prioritize achieving an effective ranking
between top instances to better ensure we really retrieve the best possible represen-
tation; rather than emphasizing having ranking precision in the lower rankings. In
other words, our priority is to accurately rank the top instances, with little to no con-
cern for maintaining an accurate ranking of bad instances; or informally, we do not
care about the ranking precision of bad comments, we only care about identifying
good comments. Therefore, it is unnecessary to achieve a perfect ranking across the
complete data set; only across "top" comments (which we do via harmonic averaging).

Take-Away

Aligning accurate sensor data with uncertain textual descriptions is impor-
tant for effective clustering, learning joint embeddings, and many other re-
lated tasks. By identifying between representative and non-representative
comments, we can do this without compromising the downstream quality;
e.g. by filtering out the respective textual comments that do not accurately
represent or align with the data.

Keywords

Accurate Sensor Data • Inexact Text Data • Clustering • Ranking

262 Chapter 10. Discussion

10.6 Automated Textual Description Generation of Clusters

No pooling method was found to work best for all clusters, data sets, and decoding
strategies. This is intuitive: the optimal pooling technique for a cluster depends on
cluster-specific characteristics and the data distribution. However, still, basic pool-
ing techniques already performed "surprisingly" well, especially when combined
with a stochastic word sampling and sequence selection strategy. This is quite inter-
esting since it suggests that, in large language models, the mean embedding repre-
sentation of individual embeddings (from a cluster) is meaningful and quite repre-
sentative of the overall cluster. However, we need to keep in mind that the cluster
instances were already quite close in the embedding space in the first place; other-
wise, they would not have been grouped together as a cluster.

Often, the mean is used as a cluster representation due to its simplicity and ge-
ometric interpretation, but it is sensitive to outliers and may not be suitable for all
data distributions (such as non-convex sets). The geometric median (GM) may be
a better central tendency measure for non-linear distributions, as it minimizes the
sum of distances from data points and is less sensitive to outliers. Iterative methods
like Weiszfeld’s algorithm (Weiszfeld, 1936) can be used here to approximate the
GM efficiently; the sum of distances to sample points is a convex function (Plastria,
2011; Minsker, 2015). Yet, the curse of dimensionality in high-dimensional spaces
may make the GM an inaccurate cluster representation method due to the loss of
meaning in low-density areas in geometric intra-cluster distances as data becomes
increasingly scattered and sparse. Recall here the well-known phenomenon of "dis-
tance concentration" for high dimensions: the smallest distance between any two
points becomes similar to the greatest distance between any two points.

Random pooling forwarded a random vector as the cluster representation through
a decoder model and was used as a (lower) benchmark. Max-pooling was very often
worse than random pooling; commonly producing repetitive token sequences or
non-grammatical sentences (thus, performed poorly). This is also intuitive: since
it always returns the maximum value of all cluster instances, it can be seen as the
worst possible outlying point (lying even outside a cluster’s convex hull). Therefore,
it can easily produce an outlier vector outside the trained manifold space; leading
so to skewed probabilities in the language model head. Moreover, max-pooling also
easily results in semantic information loss as it only considers the maximum feature
value; which is especially problematic if the maximum value is an outlier.

A generative model can produce an output, such as text, when given any in-
put vector. By using random linear combinations of the hidden states of a cluster
instance, we can thus generate multiple synthetic target captions within a particu-
lar cluster neighborhood. This allows us to explore and navigate the local mani-
fold space within a given cluster region. When combined with CLIP weighting or a
CLIP-based gradient-guided search, these synthetic texts can then also be used to ad-
ditionally weigh those images proportionally stronger (during pooling) that exhibit
the greatest similarity to the majority of the synthetic texts (i.e. local neighborhood).

During sequence generation, a decoder model predicts the next most probable
token based on its contextual information, specifically, the preceding tokens. As a
result, the model chooses tokens with the highest probabilities according to the ‘lan-
guage model’, not the ‘evaluation metric’. This is evident in Table 9.6 where the
simple greedy decoding strategy outperformed the greedy beam-search. In other
words, a model might generate an output sequence that it considers highly probable
with a strong level of confidence, but this sequence could score low on a different
evaluation metric. Hence, a population-based fitness function can be employed to

10.7. Misaligned Output Calibration for Out-of-Distribution Detection 263

counteract this issue. First, multiple candidate sequences are generated that are all
highly likely according to the model, and then the one with the highest score ac-
cording to the metric is selected. In our experiments, this performed (as expected)
the best. Selecting words (i.e. tokens) by sampling proportional to their token proba-
bilities allows for a great variety in word selection; hence, a great variety in different
candidate sequences.

On average, the contrastive approach achieved better performance overall (Ta-
bles 9.6 and 9.7). Interestingly, as previously mentioned, simple methods such as
mean and median pooling already obtained very good and comparable scores, with
only minor differences compared to the contrastive approach. In fact, almost all
pooling and decoding strategies surpassed the mean intra-cluster performance. When
combined with a population-based approach and a ranking function (k-sequence
sampling), they even approached or exceeded the maximum-intra-cluster perfor-
mance. In other words, we achieved scores that were comparable or even superior
to the instance caption that is most similar to the entire cluster (i.e. to all candidate
instance captions). However, instead of using a computationally intensive brute-
force search, we generated such sequences using a generative model; via (cheap)
aggregated manifold representations.

While simple averaging techniques can be effective, they may not result in a
"most optimal" cluster representation. The ideal representation depends on vari-
ous factors, such as a cluster’s data distribution and semantic meaning in the latent
manifold space. For example, static pooling methods (like the mean or median)
solely calculate the statistical average based on raw numerical vector features; ig-
noring the semantic model manifold. Moreover, if non-convex clusters are formed
through density-based techniques, the concept of the mean (or cluster centroid) can
even fail to provide an accurate or correct cluster representation. Therefore, using
simple static pooling methods may not adequately capture different data variations;
i.e. given the many different possible data distributions within and between clusters.
On the other hand, an adaptive approach such as maximizing contrastive Language-
Image scores does consider the hidden manifold space, which can result in better and
more fitting representations; hence, better CCs (we achieved slightly higher scores).

Take-Away

We noticed that combining latent representations of neighboring cluster in-
stances on a manifold yields a meaningful hidden cluster state; which can
be used to generate representative descriptions for individual clusters. Our
experiments further indicate that a dynamic pooling strategy can produce
slightly better descriptions than a fixed static pooling approach. However,
simple pooling methods were already quite effective (and faster to compute).

Keywords

Embedding Aggregation • Latent Representation • Manifold • Cluster State

10.7 Misaligned Output Calibration for Out-of-Distribution
Detection

Please note: This contribution has been accepted for publication after peer review
in Guimerà Cuevas and Schmid, 2024a and has been presented in the conference

264 Chapter 10. Discussion

proceedings.
Naively, one approach to outlier detection is to train one-versus-rest classifiers

for all classes and use the difference between 1 and the sum of probabilities as an
outlier measure; similar to Membership Loss (Perera and Patel, 2019). This assumes
that if an example is an outlier, it will not fit into any class. However, such approach
of using one-versus-rest classifiers and comparing probabilities may not really be
sufficient or accurate for detecting outliers: e.g., assuming outliers do not fit into
any class may be oversimplified; imbalanced data can bias detection towards ma-
jority classes; complex decision boundaries may hide outliers near class boundaries;
and the reliability of probability scores as an outlier measure varies across classifiers
and datasets, and they can be miscalibrated and fail to reflect the true certainty of
a model’s predictions. Also, it is not a post-hoc method (but ad-hoc) and requires
"modifying" the training process, which can be computationally expensive for large
data sets or models.

In our method, we identify outliers by looking at examples where the one-versus-
rest probabilities deviate significantly from the expected values (i.e. calibration). In
other words, outliers are instances where a model’s prediction is not aligned with the
calibration. If a prediction is over- or underconfident and consistently misaligned
with the calibration across all/most classes, it can be considered anomalous and
outside the distribution of the training set (out-of-distribution [OOD]). The more an
instance deviates from the in-distribution calibration, the more likely it is an OOD
sample. By using the L2 norm on the miscalibration vector, examples are more likely
to be classified as outliers the less uniformly the one-versus-rest probabilities are dis-
tributed. This is helpful in detecting not only OOD samples but, additionally, also
instances where the model is especially uncertain or confidently wrong; e.g., a uni-
form distribution of probabilities suggests that the model recognizes the example
does not belong to any class. Therefore, the L2 norm introduces a weighting that
penalizes instances where the model is overconfident in predicting a specific class.
Generally speaking, it is much worse to have outliers incorrectly classified as in-
liers, compared to having outliers that the model correctly "sees" as outliers. Thus,
one may argue that outliers that result in overconfident predictions are worse; and
should, hence, be penalized more.

As previously mentioned, there is no perfect solution or universal approach to
detecting outliers, just like there is no one-size-fits-all method for clustering. Each
algorithm focuses on different characteristics and defines outliers in different ways.
Outlier scores (from different algorithms) may come in different distributions, sen-
sitivities, and scales. To compare or combine the results from different algorithms,
we need to ensure unified scores (Kriegel et al., 2011). Depending on the specific task
at hand, we may also need to prioritize OOD precision, recall, or find a balance be-
tween the two (when comparing/combining multiple outlier scores).

Overall, in the context of DNNs, we can use calibration misalignments to im-
prove the detection and recognition of OOD samples. Our approach works on the
DNN’s prediction outputs, without requiring the integration of OOD calibration into
the model training process. This is advantageous because, otherwise, complete (or
partial) retraining can be costly and may lead to loss, noise, or damage to previous
knowledge; especially if having to start (i.e. retrain) completely from scratch.

10.8. Representative Sampling in Data Streams 265

Take-Away

Different outlier detection algorithms have different characteristics, and there
is no one-size-fits-all solution. Calibration misalignments can be leveraged to
detect out-of-distribution samples; without requiring model retraining.

Keywords

Outlier Detection • One-vs-Rest Classifiers • Calibration Misalignments

10.8 Representative Sampling in Data Streams

We have already underscored the importance of obtaining "representative" data sam-
ples from a potentially infinite data stream; and presented a technique for main-
taining samples within a fixed range of quantiles. For trajectory sampling, where
making predictions based on both past instances and current ones is of interest, we
have suggested combining random (but representative) quantile samples with the
most recent samples to make predictions. Including the top newest samples ensures
that we are always guaranteed to take the newest samples into consideration while
including the quantile sample provides a past (i.e. earlier) context. We have demon-
strated several mathematical properties of our quantile sampling method, which
define the characteristics of what can be deemed as "representative samples". These
properties e.g. include having an equal probability of being included, being removed
from the reservoir when they expire, etc.

Quantile sampling poses a challenge in removing expired elements (and replac-
ing them) at the right time due to the continuously increasing quantile window size,
especially in the initial phase of data streaming when it is more unstable than to-
wards the end. As new data points arrive, the size of the data stream grows, re-
sulting in a larger quantile window. Consequently, older data points eventually fall
outside of the window and are considered expired. If these expired elements are
removed too soon, valuable information from more recent data points may be lost,
which can negatively impact the representativeness of the sample. Conversely, if
expired elements are removed too late, the sample may become outdated and fail to
accurately represent the current/latest state of the data stream. Notice here how, as
a consequence of limited memory (and the [possibly] infinite data stream), we are
unable to store every element in the stream: we have to selectively sample items in
real-time and determine which to remove (permanently), and which to retain.

In the early stages of the data stream, the size of the quantile window increases
and changes more rapidly; hence, is more unstable. Its size is ⌈Nϕ⌉, where N is the
total number of data points and ϕ represents the desired quantile window size. E.g.,
consider ϕ = 10% and three scenarios: N = 100, N = 100, 000, and N = 1, 000, 000.
In the first case, the window size increases after every 10 new data points. In the
second case, it increases after every 10,000 points. And in the third case, it increases
after every 100,000 points. Obviously, the sampling process is more unstable and
challenging in the beginning because the quantile window size changes rapidly.
However, as the data stream progresses, the window size increases at a slower pace,
leading to a more stable sampling process. Thus, if the data stream or trajectory
is small, there may be issues with using the quantile sampling method; and a dif-
ferent sampling technique might be more appropriate. In fact, if the data stream is
very small, there may be no necessity for quantile sampling at all and we could e.g.

266 Chapter 10. Discussion

choose to store or handle the full sequence directly. Ultimately, quantile sampling is
a Big Data algorithm; and not meant (i.e. designed) for small sequences.

Take-Away

Representative sampling is relevant in infinite data streams, where predic-
tions can be made using a combination of random quantile samples and re-
cent data. "Representativeness" can be ensured by mathematical properties.
Removing and replacing expired elements is important. The quantile window
size grows, particularly in the early stages of the data stream.

Keywords

Representative Data Samples • Infinite Data Streams • Trajectory Sampling

10.9 Clustering on Latent Manifold Structures

We have explored clustering directly on the manifold space, rather than on the geo-
metric or Euclidean space. Such an approach relies on the assumption that similar
or related objects are effectively encoded on the same manifold. Due to the complex
geometries of latent manifolds, identifying neighboring instances on the manifold is
not as straightforward as it is using the Euclidean distance. To cluster correctly on
the manifold, it is essential to define a metric for manifold closeness. However, DNN
manifolds are typically not smooth and noisy, sharp, and complex; making manifold
clustering considerably more challenging.

Unlike Euclidean-based clustering, manifold clustering requires access to the
model since without the underlying manifold, it cannot be performed. Accessing
the model itself can already be a significant obstacle (or impossible) in certain use
cases. This is a key limitation for such manifold clustering methods which require
white-box access to the model’s latent manifold function (as in our proposed Tay-
lor Approximation error). In other words, in situations where only limited knowl-
edge about the model is available (black-box access), these methods cannot (really)
be applied. Additionally, manifold clustering is more computationally demanding
than merely computing Euclidean distances. Nevertheless, we consider this a char-
acteristic of manifold methods rather than a limitation. After all, manifold-based
algorithms (per definition) rely on and require a manifold; which, in turn, provides
much more meaningful and contextual information than the Euclidean space does.
In fact, the Euclidean embedding space is merely a projection of the manifold space.

In particular, manifold clustering can help uncover hidden (latent) patterns, clus-
ters, or subgroups within the data that may not be easily identifiable using tradi-
tional clustering methods. It allows us to leverage the knowledge encoded in the
model and directly exploit manifold properties.

Overall, we believe manifold clustering provides an interesting perspective for
exploring and clustering data by directly considering the underlying manifold; which,
again, can be considered of high value since it encodes the learned semantics and
logic of a particular trained DNN for determining embeddings and internal repre-
sentations (mapping input data to latent hidden states); as opposed to Euclidean-
based clustering.

10.9. Clustering on Latent Manifold Structures 267

Take-Away

Manifold clustering groups data based on the underlying manifold space. It
can uncover hidden latent patterns (i.e. clusters) that traditional methods may
miss; but it requires access to the model and is computationally intensive.

Keywords

Manifold Clustering • Latent Hidden Patterns • White-Box Model Access

269

Chapter 11

Summary & Conclusions

In this thesis, we incorporated "Take-Away" boxes at the end of each (main) section
to emphasize and highlight important key insights.

This chapter offers comprehensive summaries and conclusions regarding the
main topics and central ideas discussed throughout the thesis. Specifically, in this
thesis, we focused on our three key domains: (1) neural architecture and data repre-
sentation, (2) feature pre-processing and representation learning, and (3) knowledge
transfer, outlier detection, and sampling. For specific details, we refer to the corre-
sponding sections in the thesis. Overall, the thesis covered the following areas:

1. NEURAL ARCHITECTURE AND DATA REPRESENTATION

• Complex-Valued Networks: Architecture based on complex numbers.

• Hierarchical Database Encoding: Efficient processing via one-to-many
relationship database encoding.

• Synthetic Data Augmentation: Synthetic samples for hierarchical databases.

• Contrastive Representation Learning: Framework for representative em-
beddings in tree structures.

• Concatenated Representation Learning: Unifying multiple data views.

2. FEATURE PRE-PROCESSING AND REPRESENTATION LEARNING

• Advanced Feature Normalization: Adaptive feature processing technique
for improving training stability and outlier robustness.

• Representation Learning and Manifold Clustering: Dimensionality re-
duction of complex high-dimensional data and clustering on manifolds.

• Clustering Evaluation Metric: Supervised cluster quality evaluation con-
sidering coarse label-uncertainties.

• Textual Description Generation: Generating textual cluster descriptions.

• Representative Textual Labels: Determining alignment between sensor
and textual data.

3. KNOWLEDGE TRANSFER, OUTLIER DETECTION, AND SAMPLING

• Transfer Learning via Knowledge Distillation: Leveraging pre-trained
model insights.

• Out-of-Distribution Detection: Outlier detection via model calibration
mismatches.

• Representative Sampling: Stream sampling within quantile windows.

270 Chapter 11. Summary & Conclusions

11.1 Neural Architecture and Data Representation

11.1.1 Complex-valued based Neural Networks

Notice: Our work and findings on complex-valued NNs (presented in this thesis)
have been published in Guimerà Cuevas, Phan, and Schmid, 2023. It was inspired
and builds upon our previous research (Guimerà Cuevas and Phan, 2021), but differs
significantly as it has been substantially improved and modified (both the complex
architecture and its mathematical framework); thus, constitutes novel contributions.
In particular, this novel contribution has been accepted for publication, after peer
review. The Version of Record is available online at: https://link.springer.com/
chapter/10.1007/978-3-031-33374-3_28. Use of this Version is subject to the pub-
lisher’s Manuscript terms of use. Therefore, please refer to Guimerà Cuevas, Phan,
and Schmid, 2023 for specific details.

An adaptive bi-nonlinear layer architecture is introduced, where model weights
are constrained to lie on the unit circle. This constraint prevents the elimination
of neural connections by setting weights to zero and ensures that no single weight
becomes disproportionately dominant. In this model, weights induce phase rota-
tions, while the input governs amplitude scaling. The architecture retains the fa-
miliar topology of traditional neural networks, with a similar number of trainable
parameters; potentially more when considering bias and angular weights. Training
is accomplished using gradient descent and backpropagation, with the model show-
ing robustness at high learning rates. It effectively completed various tasks across
different architectures, able to demonstrate greater expressiveness than real-valued
networks. However, the forward pass requires double the number of matrix multi-
plications - one for the real component and one for the imaginary component (7.1).

11.1.2 Hierarchical Heterogeneous Graph Neural Networks

A method was presented for applying DL on HDBs with recursive one-to-many re-
lations which computes embedded representations for its entities and allows down-
stream tasks (e.g. classification or clustering) to be performed. It encodes DB re-
lations as edges and DB tables as nodes; but the proposed encoding and model
scheme is not restricted to HDBs because it can be applied to any data that can be
turned into a hierarchical tree-like structure with loop-free connections; the sole con-
straint is that node features under a common parent be equivalent (or a virtual par-
ent node has to be included), but otherwise, they may well be different across other
nodes (e.g. at different hierarchy levels). Node entities (i.e. DB tables) containing
different features are - in contrast to standard graph neural networks - directly sup-
ported. The proposed HDB-model architecture has also key advantages over naive
transformer-based encoding approaches which (forcefully) encode the HDB in tex-
tual form; particularly in terms of the ability to process numeric features directly
and avoid truncating long encoded token sequences. Experiments on both real-
world and synthetic data demonstrated the effectiveness of the proposed method.
We found that performance in purely supervised classification tasks was improved
by adding residual connections, while in semi-supervised tasks where identity and
information-preservation are important, the use of a Kernel embedding improved
performance (7.2).

https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28
https://link.springer.com/chapter/10.1007/978-3-031-33374-3_28

11.1. Neural Architecture and Data Representation 271

11.1.3 Synthetic Data Augmentation for Tree Structures

We explored tree-data augmentation, a method to expand datasets by generating
synthetic instances from hierarchical graphs. We employed a "merge & sample"
strategy: combining graphs to form unified trees and extracting random sub-graphs.
However, we observed that this can lead to biased augmentation in imbalanced
datasets; for uniform distribution-based sampling. To address this issue, we pro-
posed a solution that involves conditional sampling based on graph rarity, measured
by Jaccard-Coefficient (JC) similarity scores; but computing the JC matrix for large
datasets can pose computational challenges. To mitigate the sample bias, we used an
inversely proportional probability distribution over the summation of the similarity
scores to increase the likelihood of sampling uncommon tree structures (7.4).

11.1.4 Contrastive Representation Learning & Loss-Weighting

A contrastive loss is crucial for guiding models to distinguish between similar and
dissimilar samples, helping in managing intra-class variations, refining similarity
measurements, and enhancing resilience against data noise or outliers; to ultimately
lead to better generalization.

Our main goal in this thesis was to generate meaningful representations of (hi-
erarchical) tree structures. To accomplish this, we incorporated various loss func-
tions; particularly, similarity-contrastive losses for model training (alongside others
like the classification loss). These loss functions were specifically designed to en-
courage the clustering of similar trees closer together while pushing apart dissimilar
trees within the embedding space. The similarity loss ensured that comparable trees
yielded similar embeddings, while the contrastive losses emphasized differences be-
tween similar and dissimilar embeddings. The other losses served different pur-
poses, e.g. the classification loss shaped graph embeddings to reduce label-induced
representation errors.

To create a single, unified objective function, we combined the losses via care-
ful weighting. However, the CoV-Weighting method, although dynamically assign-
ing weights during optimization, treats all losses initially as equally important. To
address this, our proposed modification was to integrate priority weights into the
CoV-Weighting to better prioritize specific losses during training (7.5).

11.1.5 Concatenated Representation Learning & Separate Data Training

The concatenated representation learning approach handles multiple different data
views within a unified framework; merging representative embedding vectors into
a single concatenated vector. This enables capturing patterns across the different
views, allowing for flexible and scalable training without the need to retrain entire
models when individual data views change or new ones are introduced. Hence,
instead of training a large single model, we adopted the approach of training each
data view separately and, afterward, jointly in combination (over the respective in-
dividual embedding representations). This offers the advantage of enabling parallel
training and effectively avoids potential performance bottlenecks arising from vari-
ations in the sizes and complexities of different data views. Moreover, it enables
the implementation of memory-efficient strategies for handling duplicate instances,
facilitating similarity search, and enhancing graph batching; optimizations were ap-
plied separately to each data view, resulting in more efficient training (7.6).

272 Chapter 11. Summary & Conclusions

11.2 Feature Pre-Processing & Representation Learning

11.2.1 Robust Non-linear Normalization of Heterogeneous Feature Dis-
tributions with Adaptive Tanh-Estimators

Please note: This contribution has been accepted for publication, after peer review
in Guimerà Cuevas and Schmid, 2024b. The Version of Record is available online.

Correctly pre-processing features is of great importance for achieving successful
and effective ML models. We focused on the Tanh-Normalization method and high-
lighted a key limitation (and its consequences): the fixed static global spread value
parameter can cause slow training convergence and poor model performance, and
may require time-consuming parameter tuning if optimized manually. Clearly, this
is not optimal or efficient. To address this issue, we proposed an adaptive version of
the Tanh-Normalization method that automatically determines the optimal spread
value (for each feature) by minimizing the Wasserstein distance to a desired target
distribution (the ideal output distribution the normalization should follow). This
not only improves training convergence but also eliminates the need for manual pa-
rameter tuning. Our proposed method maintains outlier resilience, efficiency, and
simplicity while ensuring an effective distribution of probability mass. In particu-
lar, this is achieved on a per-feature basis (i.e., locally), as opposed to using a fixed
global spread value. We repeatedly emphasized the importance of proper feature
pre-processing and its impact on ML models (7.3).

11.2.2 Completeness and Uncertainty in Cluster Evaluation

Notice: Our work and findings on αMax-B-CUBED (presented in this thesis) have
been publicly released on OpenReview-Venue (Guimerà Cuevas and Schmid, n.d.).

We have identified a concern regarding the widely used B3 cluster quality met-
ric when coarse labels are involved, which can lead to unfair and misleading eval-
uations. To address this issue, a new metric called αMax-B3 has been proposed.
This solution modifies the evaluation of the standard B3 method by adapting to sub-
group uncertainty in ground-truth labels and can be generalized to accommodate
imbalanced data sets. The proposed evaluation method merges clusters into larger
groups called super-sets and evaluates them using a modified B3 based metric that
applies a weighting factor to control the contribution of the super-sets. Unlike the
standard B3 technique, αMax-B3 can produce more robust and fair results and adapt
to label uncertainty. This uncertainty is controlled by an α parameter and setting it
to zero yields the same results as the standard B3 metric. Our solution is easy to
implement, has a solid theoretical foundation, and has many practical applications;
making it an attractive evaluation metric in the field of clustering (7.9).

11.2.3 Representation Learning and Manifold Clustering

We proposed a new manifold clustering approach that considers the underlying
manifold space directly via Taylor approximation errors; instead of using traditional
clustering metrics like the Euclidean distance. The main assumption and idea be-
hind this method is that similar items share a common manifold; or reside within
smooth manifold transitions. Or in other words, this means that similar items have
latent encoding representations that are drawn from the same manifold distribution.
The key implication then is that, if similar items have similar manifold encodings,
then by traversing the local manifold shape, we should, hence, find similar items.
This we can use and exploit for clustering. However, there are some challenges in

11.2. Feature Pre-Processing & Representation Learning 273

defining manifold metrics, such as dealing with bumpiness or imperfections within
manifold spaces, and the need for model access. Despite these limitations, mani-
fold clustering offers a unique and different perspective in identifying data patterns
and clusters than other conventional non-manifold-based methods or metrics; the
key idea of manifold clustering is to leverage the encoded knowledge within mod-
els (i.e. in the manifold space, instead of e.g. in the Euclidean space). Overall, the
two fundamental challenges are: (1) determining a representative, meaningful, and
correct manifold space, and (2) identifying this manifold space and establishing a
reliable metric to cluster and detect neighboring manifold instances (7.7).

11.2.4 Manifold Aggregations of Latent Spaces for Generating Textual
Descriptions of Clusters

We found that we can effectively generate descriptions of clusters by combining the
representations of nearby instances on the manifold of large generative (language)
models. This can be achieved by dynamic pooling methods on the latent states of
the neighboring cluster instances, but also even using simple statistical or geomet-
rical manifold aggregation strategies. We can further improve the quality of the
generated descriptions by combining it with a population-based decoding sampling
strategy; ranked by a score function. We introduced two dynamic pooling meth-
ods that use contrastive Language-Image scoring models. One method employs a
gradient-based search towards a unified manifold, while the other uses contrastive
scores for weighted mean pooling. On average, both of these methods outperform
the naive static pooling methods slightly.

Two key insights of this are: (1) aggregating latent representations of neighbor-
ing instances on a manifold forms an effective hidden cluster state for encoding or
extrapolating cluster knowledge, and (2) although surprisingly effective, the opti-
mal hidden cluster state representation is not achieved through a simple static (e.g.
mean) pooling; it relies on various factors like the underlying manifold structure
and the distribution of instances within the cluster in the manifold space. Here,
our results showed that a dynamic pooling method, e.g. maximizing the contrastive
Language-Image score of the unified representation across all instance descriptions
in a cluster, can yield better cluster states (7.10).

11.2.5 Determining Representative Textual Labels for Clustering Accu-
rate Sensor Data with Inexact Annotations

Identifying representative textual annotations for cluster groups that are derived
from sensor data is a challenge because of differences in data quality. While sensor
data is usually precise, textual descriptions can vary greatly in terms of consistency,
subjectivity, and accuracy. This makes it difficult to align textual annotations with
sensor readings because different textual descriptions may relate to the same sensor
data in different ways. However, integrating low-quality text with high-quality sen-
sor data for clustering can reduce accuracy and reliability. Our objective was to as-
sess the quality of textual annotations, identify representative comments for clusters
of sensor data, and find appropriate textual representations that do not compromise
the quality of sensor data when combined. Therefore, we introduced an intuitive
heuristic to rank textual annotations by their (cluster) representation quality (7.12).

274 Chapter 11. Summary & Conclusions

11.3 Knowledge Transfer, Outlier Detection, and Sampling

11.3.1 Transfer Learning via Knowledge Distillation

We have outlined a systematic approach for transferring knowledge across differ-
ent models and input domains. To begin with, we distilled insights from an inter-
pretable model into a stronger intermediate model, and then reversed the process
back again to create a (new) final interpretable model. However, the rules of this
new model were now based entirely on a different dataset (than the initial model).
We highlighted the challenges involved in extracting such new interpretable rules
(drawn from the new dataset), such as preventing information loss and biases, and
emphasized the importance of the intermediate model’s quality for achieving good
final rules. Overall, our approach adapts/transfers knowledge from an old dataset
to a new dataset; and is so, suitable for changing input domains (7.13).

11.3.2 Misaligned Calibration for Out-of-Distribution Detection

Please note: This contribution has been accepted for publication after peer review
in Guimerà Cuevas and Schmid, 2024a and has been presented in the conference
proceedings.

Detecting OOD examples is a difficult task, and different algorithms have vary-
ing levels of success depending on the data distribution and outlier types. We pro-
posed a post-hoc method for detecting OOD examples in DNNs by measuring multi-
class output calibration misalignment. Our approach is based on the assumption
that OOD examples are more likely to exhibit anomalous behavior, which results in
a discrepancy in calibration alignment (against in-distribution examples). Empirical
results demonstrate that our method is effective for DNNs and can outperform or
match the performance of many common outlier detection algorithms (7.14).

11.3.3 Representative Sampling in Data Streams

Data streams, time series, and trajectories are important concepts in data analysis
that present unique challenges for ML algorithms. These challenges arise due to the
typically infinite and continuously changing nature of input streams, the inconsis-
tency in data arrival rates and quantities, and due to variations in data quality when
collected from different sources. To address computational and data storage (i.e.
memory) limitations, representative data stream sampling is crucial. Yet, achieving
a "representative" sample can be difficult; also due to challenges like concept drift,
imbalanced data, potential biases, real-time processing, etc. Ensuring a representative
sample, however, is important for accurate analysis, processing, and avoiding incor-
rect conclusions. Other limitations such as noise and temporal (or e.g. geographical)
data relevance can further complicate the analysis of data streams; particularly in
time series and trajectories. In this thesis, we have proposed and analyzed an online
sampling method based on Reservoir Sampling. This method allows us to maintain
a representative temporal sample within a dynamic quantile window, without prior
knowledge of the stream’s length. Thus, it can handle infinite streams. By preserv-
ing samples for different quantiles of the data distribution, we can determine the
focal point of the sample for different quantile windows. This can also be combined
to additionally include the most recent samples. The term "representative" is defined
based on the specific mathematical properties of the sampling algorithm (7.16).

11.4. Concluding Words 275

11.4 Concluding Words

This thesis covered various ML topics and challenges: providing analysis, literature
overview, insights, and new solutions. The main focus of the thesis was on Repre-
sentation Learning for recursive hierarchical databases; the primary challenge was
to create a model architecture to allow for effective ML on these complex data struc-
tures (we proposed a recursive DL design pattern architecture). We emphasized the
importance of obtaining meaningful and valuable data representations to enable dif-
ferent downstream tasks; e.g. classification, similarity search, outlier detection, etc.
Respectively, we proposed specific objective losses for learning such effective em-
bedding representations. Overall, we introduced several novel ML methodologies
and improvements that particularly focused on different key areas: "neural architec-
ture and data representation", "feature pre-processing and representation learning",
and "knowledge transfer, outlier detection, and sampling". The proposed solutions
were designed to improve the effectiveness and robustness of automated strategies,
addressing prevalent AI challenges and applications, with a particular focus on in-
dustrial use cases.

277

Appendix A

Out-of-Distribution Detection

Please note: This contribution has been accepted for publication after peer review
in Guimerà Cuevas and Schmid, 2024a and has been presented in the conference
proceedings.

A.1 Proofs

Consider a probability vector p⃗ of dimension k, where the elements sum up to one,
expressed as 1T p⃗ = 1; where 1 represents a vector or sequence of ones. We show
that 1T(1− p⃗) = k− 1. This is evident by:

1T(1− p⃗) =
k

∑
i=1

(1− pi) =
k

∑
i=1

1−
k

∑
i=1

pi =
k

∑
i=1

1−
k

∑
i=1

pi = k− 1 (A.1)

Now consider pairs-wise tuples p[ij]n=2 := pi + pj. Since we are dealing with pairs
of two, we have (k

2) pairs; forming a new vector p⃗n=2 of respective dimension. Then:

1T(1− p⃗n=2) = ∑
i<j

(1− p[ij]n=2) = ∑
i<j

1−∑
i<j

p[ij]n=2 =

(
k
2

)
−∑

i<j
p[ij]n=2 (A.2)

To further analyze the expression (k
2)− ∑i<j p[ij]n=2, we can note that ∑i<j p[ij]n=2 is

equivalent to summing the probabilities of all possible pairs of elements, and since:

∑
i<j

p[ij]n=2 = ∑
i<j

(pi + pj) =
k

∑
i=1

k

∑
j=1+i

(pi + pj) =
k

∑
i=1

(k− 1)pi = (k− 1)
k

∑
i=1

pi = (k− 1) · 1

(A.3)
we know a specific item occurs k − 1 times when considering all combinations

(i.e. it is paired exactly once with every other item). Thus, we have:

1T(1− p⃗n=2) =

(
k
2

)
− (k− 1) (A.4)

Now, consider tuples of size n ∈ N∗ < k, i.e. p[i1,i2,...,in]
n := pi1 + pi2 + ... + pin .

Hence, we have (k
n) many tuples; forming a new vector p⃗n of respective dimension:

278 Appendix A. Out-of-Distribution Detection

1T(1− p⃗n) = ∑
i1<i2<...<in

(1− p[i1,i2,...,in]
n) = ∑

i1<i2<...<in

1− ∑
i1<i2<...<in

p[i1,i2,...,in]
n

=

(
k
n

)
− ∑

i1<i2<...<in

p[i1,i2,...,in]
n

(A.5)

Again, ∑i1<i2<...<in
p[i1,i2,...,in]

n is equivalent to summing the probabilities of all pos-
sible tuples of n elements. Analogously to before, we know that:

∑
i1<i2<...<in

p[i1,i2,...,in]
n = ∑

i1<i2<...<in

(pi1 + pi2 + ... + pin)

=
k

∑
i=1

(
k− 1
n− 1

)
pi =

(
k− 1
n− 1

) k

∑
i=1

pi =

(
k− 1
n− 1

)
· 1

(A.6)

since a specific item occurs (k−1
n−1) times when considering all combinations. Thus:

1T(1− p⃗n) =

(
k
n

)
−
(

k− 1
n− 1

)
(A.7)

In other words, the expression (k
n)− (k−1

n−1) is the sum of combinations of proba-
bility tuples 1T(1− p⃗n). This generalizes the original proof established for pairs of
tuples with a size of two; i.e. it completes the proof for tuples of any size n. For
example, when n = 2, we have (k

2)− (k−1
1) = (k

2)− (k− 1) = 1T(1− p⃗n=2), consis-
tent with Equation A.4. Moreover, this demonstrates that, given fixed n, k, the sum
remains a constant factor regardless of the distribution of the probability vector p⃗;
and so, only depends on n and k (not p⃗).

279

Appendix B

Clustering

B.1 Unsupervised Clustering of Hierarchical Databases

In Figure B.1, the unsupervised deep representations of the projected embeddings
are displayed. Additionally, the figure shows instances that are located in close prox-
imity to each other in the embedding space. The results are complementary (but
independent) to the ones shown in Chapter 9.4.1.

FIGURE B.1: The embedding projection and the closest points of ran-
dom instances within some clusters are visualized. The images of the
instances are from the data set (Rebrickable®, 2022). The results are
independent of the ones shown in Figure 9.4.1; it depicts a completely

different training run (on the same data set).

280 Appendix B. Clustering

B.2 Proofs

Notice: Our work and findings on αMax-B-CUBED (presented in this thesis) have
been publicly released on OpenReview-Venue (Guimerà Cuevas and Schmid, n.d.).

B.2.1 Theorem 1

Let Ci, Cj be disjoint clusters of distinct elements. Theorem 1 is to be proven:

E[P[y](Ci) ∧ P[y](Cj)] ≥ P[y](Ci ∪ Cj)

where P[y](Cj) denotes the precision scores of label y on elements in a cluster Cj.
Let |Ci|, |Cj| ∈ N denote the total number of elements in Ci, Cj and |Ci|y, |Cj|y ∈ N

respectively the number of elements in Ci, Cj with label y.
We know 0 ≤ |Cj|y ≤ |Cj| ∧ 0 ≤ |Ci|y ≤ |Ci|. Therefore:

E[P[y](Ci) ∧ P[y](Cj)] ≥ P[y](Ci ∪ Cj)

⇐⇒
|Ci|yPy(Ci) + |Cj|yPy(Cj)

|Ci|y + |Cj|y
≥ Py(Ci ∪ Cj)

⇐⇒
|Ci|y

|Ci |y
|Ci | + |Cj|y

|Cj|y
|Cj|

|Ci|y + |Cj|y
≥
|Ci|y + |Cj|y
|Ci|+ |Cj|

⇐⇒
|Ci |2y
|Ci | +

|Cj|2y
|Cj|

|Ci|y + |Cj|y
−
|Ci|y + |Cj|y
|Ci|+ |Cj|

≥ 0

⇐⇒
|Cj||Ci|2y + |Ci||Cj|2y
|Ci||Cj|(|Ci|y + |Cj|y)

−
|Ci|y + |Cj|y
|Ci|+ |Cj|

≥ 0

⇐⇒
(|Ci||Cj|y − |Cj||Ci|y)2

|Ci||Cj|(|Ci|y + |Cj|y)(|Ci|+ |Cj|)
≥ 0

⇐⇒ (|Ci||Cj|y − |Cj||Ci|y)2 ≥ 0 ⇐⇒ ⊤

(B.1)

B.2.2 Proposition 1

We prove Proposition 1, which states that:

E[P[y](Ci) ∧ P[y](Cj)] = P[y](Ci ∪ Cj) ⇐⇒ P[y](Ci) = P[y](Cj)

where P[y](Cj) are the precision scores of label y on elements in a cluster Cj. Let
0 ≤ |Cj|y ≤ |Cj| ∧ 0 ≤ |Ci|y ≤ |Ci| be as in Proof B.2.1; we know the inequality:

E[P[y](Ci) ∧ P[y](Cj)] ≥ P[y(Ci ∪ Cj) ⇐⇒ (|Ci|y|Cj| − |Cj|y|Ci|)2 ≥ 0 (B.2)

and so:

B.2. Proofs 281

E[P[y](Ci) ∧ P[y](Cj)] = P[y(Ci ∪ Cj)

⇐⇒ (|Ci|y|Cj| − |Cj|y|Ci|)2 = 0

⇐⇒ |Ci|y|Cj| − |Cj|y|Ci| = 0

⇐⇒
|Ci|y
|Ci|

=
|Ci|y
|Ci|

⇐⇒ P[y](Ci) = P[y](Cj)

(B.3)

B.2.3 Corollary 1

We prove Corollary 1, which states that:

E[P[y](Ci) ∧ P[y](Cj)] > P[y](Ci ∪ Cj) ⇐⇒ P[y](Ci) ̸= P[y](Cj)

According to Theorem 1, E[P[y](Ci) ∧ P[y](Cj)] ≥ P[y](Ci ∪ Cj) always holds. There-
fore, if P[y](Ci) ̸= P[y](Cj), we apply Proposition 1 to conclude E[P[y](Ci)∧ P[y](Cj)] ̸=
P[y](Ci ∪ Cj). Consequently, it must follow that E[P[y](Ci) ∧ P[y](Cj)] > P[y](Ci ∪ Cj).

B.2.4 Theorem 2

Let Ci, Cj be disjoint clusters of distinct elements. Theorem 2 is to be proven:

E[R[y](Ci) ∧ R[y](Cj)] ≤ R[y](Ci ∪ Cj)

where R[y](Cj) denotes the B3 recall scores of label y on elements in a cluster Cj. Let
|y| ∈ N denote the total number of elements with label y in all clusters, i.e. in the
entire data set, and |Ci|y, |Cj|y ∈ N respectively the number of elements in clusters
Ci, Cj with label y. Then:

E[R[y](Ci) ∧ R[y](Cj)] ≤ R[y](Ci ∪ Cj)

⇐⇒
|Ci|yR[y](Ci) + |Cj|yR[y](Cj)

|Ci|y + |Cj|y
≤ R[y](Ci ∪ Cj)

⇐⇒
(|Ci|y

|Ci |y
|y|) + (|Cj|y

|Cj|y
|y|)

|Ci|y + |Cj|y
≤
|Ci|y + |Cj|y
|y|

⇐⇒ 0 ≤
|Ci|y + |Cj|y
|y| −

|Ci|2y + |Cj|2y
|y|(|Ci|y + |Cj|y)

⇐⇒ 0 ≤
(|Ci|y + |Cj|y)2 − |Ci|2y − |Cj|2y

|y|(|Ci|y + |Cj|y)

⇐⇒ 0 ≤
2|Ci|y|Cj|y

|y|(|Ci|y + |Cj|y)
⇐⇒ 0 ≤ |Ci|y|Cj|y ⇐⇒ ⊤

(B.4)

B.2.5 Proposition 2

Proposition 2 is to be proven:

E[R[y](Ci) ∧ R[y](Cj)] = R[y](Ci ∪ Cj) ⇐⇒ R[y](Ci) = 0∨ R[y](Cj) = 0

282 Appendix B. Clustering

where R[y](Cj) are the B3 recall scores of label y on elements in a cluster Cj. Let
|y|, Ci, Cj, |Ci|y, |Cj|y be defined as in Proof B.2.1, from which it holds:

E[R[y](Ci) ∧ R[y](Cj)] ≤ R[y](Ci ∪ Cj) ⇐⇒ |Ci|y|Cj|y ≥ 0 (B.5)

and so, we can directly conclude that:

E[R[y](Ci) ∧ R[y](Cj)] = R[y](Ci ∪ Cj)

⇐⇒ |Ci|y|Cj|y = 0

⇐⇒ |Ci|y = 0∨ |Cj|y = 0

⇐⇒ R[y](Ci) = 0∨ R[y](Cj) = 0

(B.6)

B.2.6 Corollary 2

We prove Corollary 2 that:

E[R[y](Ci) ∧ R[y](Cj)] < R[y](Ci ∪ Cj) ⇐⇒ R[y](Ci) ̸= 0∧ R[y](Cj) ̸= 0

Analogous to B.2.3, we know from Proposition 2 that if R[y](Ci) ̸= 0 ∧ R[y](Cj) ̸= 0,
then E[R[y](Ci) ∧ R[y](Cj)] ̸= R[y](Ci ∪ Cj). Since Theorem 2 must hold, but equality
is not given, then it must be that E[R[y](Ci) ∧ R[y](Cj)] < R[y](Ci ∪ Cj).

B.2.7 Generalization to Multiple Clusters

Let P[y](Cj), R[y](Cj) denote respectively the B3 precision and recall scores of label y
on elements in a cluster Cj. It was shown earlier that Theorems 1 & 2 hold for any
two pairwise clusters. Assume now (instead) having a fixed but arbitrary number
of clusters C1, C2, ..., Ck, with k > 2. The following grouping can now be iteratively
applied for j > 1:

C∗
1 := C1

C∗
j := Cj ∪C∗

j−1
(B.7)

Notice that C∗
j ≜

⋃
i<j Ci. The above definition allows us to realize that, in fact,

for any tuple pair (Cj,C∗
j−1) Theorems 1 & 2 must also hold. Thus, in particular, it

holds for the pair (Ck,C∗
k−1), and so:

E[P[y](
⋃
j≤k

Cj)] ≤ E[P[y](C
∗
k−1) ∧ P[y](Ck)]

≤ E
[
E[P[y](C

∗
k−2) ∧ P[y](Ck−1)] ∧ P[y](Ck)

]
≤ E[E[...E[P[y](C

∗
1) ∧ P[y](C2)]...] ∧ P[y](Ck−1) ∧ P[y](Ck)]

≤ E[P[y](C1) ∧ ...∧ P[y](Ck−1) ∧ P[y](Ck)]

≤ E
[∧

j≤k

P[y](Cj)
]

(B.8)

and likewise, it holds that:

B.2. Proofs 283

E[R[y](
⋃
j≤k

Cj)] ≥ E[R[y](C
∗
k−1) ∧ R[y](Ck)] ≥ E

[∧
j≤k

R[y](Cj)
]

(B.9)

B.2.8 Proof of Coherence for αMax-B3
δ

Let Ci, Cj be disjoint clusters of distinct elements. Theorem 1 is to be proven for
the weighted version: E[Pδ

[y](Ci) ∧ Pδ
[y](Cj)] ≥ E[Pδ

[y](Ci ∪ Cj)], where Pδ
[y](C) is the

effective-number-of-samples (ENS) weighted B3 precision scores of label y on ele-
ments in Cj for a δy ∈ [0, 1]; with weight wy := (1− δ|y|)/(1− δ). |y| be the frequency
of the class y in the entire data set. Let |Ci|, |Cj| ∈ N denote the total number of el-
ements in Ci, Cj and |Ci|y, |Cj|y ∈ N respectively the number of elements in clusters
Ci, Cj with label y. Then, it holds:

E[Pδ
[y](Ci) ∧ Pδ

[y](Cj)] ≥ Pδ
[y](Ci ∪ Cj)

⇐⇒ E
[
w−1

y P[y](Ci) ∧ w−1
y P[y](Cj)

]
≥ w−1

y P[y](Ci ∪ Cj)

⇐⇒ w−1
y
|Ci|yR[y](Ci) + |Cj|yR[y](Cj)

|Ci|y + |Cj|y
≥ w−1

y P[y](Ci ∪ Cj)

⇐⇒ w−1
y E[P[y](Ci) ∧ P[y](Cj)] ≥ w−1

y P[y](Ci ∪ Cj)

⇐⇒ E[P[y](Ci) ∧ P[y](Cj)] ≥ P[y](Ci ∪ Cj)

Proo f B.2.1⇐⇒ ⊤

(B.10)

Since the inverse weight term w−1
y cancels out, the proof for Proposition 1 is

also obtained immediately. Similarly, it can easily be shown that Theorem 2 for the
weighted version E[Rδ

[y](Ci) ∧ Rδ
[y](Cj)] ≤ E[Rδ

[y](Ci ∪ Cj)] holds as well:

E[Rδ
[y](Ci) ∧ Rδ

[y](Cj)] ≤ Rδ
[y](Ci ∪ Cj)

⇐⇒ E
[
w−1

y R[y](Ci) + w−1
y R[y](Cj)

]
≤ w−1

y R[y](Ci ∪ Cj)

⇐⇒ w−1
y
|Ci|yR[y](Ci) + |Cj|yR[y](Cj)

|Ci|y + |Cj|y
≤ w−1

y R[y](Ci ∪ Cj)

⇐⇒ E[R[y](Ci) ∧ R[y](Cj)] ≤ R[y](Ci ∪ Cj)

Proo f B.2.4⇐⇒ ⊤

(B.11)

Again, as w−1
y cancels out, the respective proof for Proposition 2 follows directly.

B.2.9 Proof of Non-Monotonicity

Following Equations 7.108, 7.110, let E[η
[j]
α] be a continuous function over the closed

interval α ∈ [0, 1] such that limα→0 E[η
[j]
α] = 0+ and limα→1 E[η

[j]
α] = E[η[j]]+. We

show that E[η
[j]
α] cannot be monotonic while approaching its limit from above at

both endpoints. Suppose, for the sake of contradiction, that E[η
[j]
α] is a monotonic

function. Since limα→1 E[η
[j]
α] = E[η[j]]+, there exists an α′ ∈ [0, 1] such that 0+ ≤

E[η
[j]
α′] ≤ E[η[j]]+. By the Intermediate Value Theorem, there must exist an α′′ ∈ [0, 1]

284 Appendix B. Clustering

such that E[η
[j]
α′′] = E[η[j]]. However, this contradicts the assumption that E[η

[j]
α]

approaches its limit from (only) above at both endpoints. Therefore, it cannot be
monotonic.

B.2.10 Theorems’ Inequality Implications

Let Si be a set of clusters Cj ⊂ Si, where Si is the union of all the elements in the
clusters; such that Si :=

⋃
Cj∈Si

Cj. Hence, Si is a set of clusters; whereas Si is a

set of elements. We show that Theorems 1, 2 imply that ECj∈Si

[
P[y](Cj)

P[y](Si)

]
≥ 1; and

R[y](Cj)

R[y](Si)
≤ 1. Let |Si|, |Si|, |Cj| ∈N denote the number of elements and |Si|y, |Cj|y ∈N

respectively the number of elements with label y. |Si| ≥ |Cj| and |Si|y ≥ |Cj|y is
guaranteed since Cj ⊂ Si. |y| ∈N is the total number of elements with label y in the
entire data set.

Starting with recall, where:

R[y](Cj)

R[y](Si)
=
|Cj|y
|y| /

|Si|y
|y| =

|Cj|y
|Si|y

≤ 1. (B.12)

holds trivially per definition since |Si|y ≥ |Cj|y.
For precision, we know:

ECj∈Si

[
P[y](Cj)

P[y](Si)

]
≜

1
|Si| ∑

Cj∈Si

P[y](Cj)

P[y](Si)
(B.13)

and therefore,

ECj∈Si

[
P[y](Cj)

P[y](Si)

]
≥ 1

⇐⇒ 1
|Si| ∑

Cj∈Si

P[y](Cj)

P[y](Si)
≥ 1

⇐⇒ 1
|Si| ∑

Cj∈Si

P[y](Cj) ≥ P[y](Si)

⇐⇒ 1
|Si| ∑

Cj∈Si

|Cj|y
|Cj|

≥
|Si|y
|Si|

(B.14)

We can re-write the expression |Si |y
|Si | as:

|Si|y
|Si|

=
∑Cj∈Si

|Cj|y
∑Cj∈Si

|Cj|
= ∑

Cj∈Si

|Cj|y
∑Ck∈Si

|Ck|
(B.15)

and since ∑Ck∈Si
|Ck| ≥ ECj∈Si [|Cj|] = 1

|Si | ∑Ck∈Si
|Ck|, we obtain the inequality:

∑
Cj∈Si

|Cj|y
∑Ck∈Si

|Ck|
≤ ∑

Cj∈Si

|Cj|y
1
|Si | ∑Ck∈Si

|Ck|
(B.16)

B.2. Proofs 285

and so, with 1
|Si | ∑Ck∈Si

|Ck| ≥ 1
|Si | |Cj| for all j, we have:

1
|Si| ∑

Cj∈Si

|Cj|y
|Cj|

≥ ∑
Cj∈Si

|Cj|y
1
|Si | ∑Ck∈Si

|Ck|
≥
|Si|y
|Si| (B.17)

which proofs ECj∈Si

[
P[y](Cj)

P[y](Si)

]
≥ 1.

B.2.11 Proof of α-Plateau

We prove the existence of a function plateau in Equation 7.110 by proving that:

f (α) :=
min[p, αq]min[p2, αq2]

max[p, αq]max[p2, αq2]
(B.18)

has a plateau f (α1) = f (α2) in min[a, a2] ≤ α1 ≤ α2 ≤ max[a, a2] for α1, α2 ∈
[0, 1]; given ν1 = p1

q1
, ν2 = p2

q2
, and fixed p1, q1, p2, q2. First, we consider the fact that:

gp,q(α) :=
min[p, αq]
max[p, αq]

=

{
αq
p if α ≤ p

q
p

αq = (αq
p)
−1 otherwise

(B.19)

which holds since min[p, αq] = αq ⇐⇒ αq ≤ p ⇐⇒ α ≤ p
q , and also since

max[p, αq] = −min[−p,−αq]. W.l.o.g, assume ν1 ≤ ν2, and let α ∈ [ν1, ν2]. Since
α1 ≥ ν1, it holds gp1,q1(α) = (αq1

p1
)−1. Similarly, α ≤ ν2 =⇒ gp2,q2(α) = αq2

p2
.

Therefore, ν, ν2 are the two inversion points, and so:

f (α) = gp1,q1(α) · gp2,q2(α) =
p1

αq1

αq2

p2
=

p1q2

q1 p2
= ν1ν2 (B.20)

is independent of α within that interval and, thus, constant (i.e. a plateau).

287

Appendix C

From Missteps to Milestones:
Understanding Failed Attempts

In this appendix section, we have included some initial prototypes and algorithm
concepts that were proposed in the early stages of development. We will discuss
some failed attempts and prototypes that were ultimately unsuccessful, but we still
acknowledge their importance as they served as crucial first-step approaches and
lessons learned. Despite failing to achieve the desired outcome/effectiveness, these
prototypes played a crucial role in exploring boundaries, providing interesting in-
sights, and shaping the way of our subsequent ideas and solutions.

C.1 Failed Prototype Attempt: Automated Textual Descrip-
tion Generation

The following prototype idea was outperformed by the method presented in Chap-
ter 7.10 and came with some issues. In the following, we explain the prototype and
the reason for its failure and weaknesses.

C.1.1 Methods

The initial algorithm was similar to the architecture of 7.10 but with some differ-
ences in the second phase and training objective. In the second phase, i.e. the cluster
captioning, the vision encoder and text decoder modules of ViED were here frozen,
while the language modeling head (LMHead) was trained. The image clusters were
identified using similarity or distance metrics on input images or clustering algo-
rithms on the hidden states of the vision encoder’s output. Some naive clustering
approaches here were k-means, hierarchical methods, and density-based clustering.

The CLIP score similarity matrix was calculated for the hidden vision states and
the hidden states of the CLIP text encoder. The average CLIP score similarity to all
captions was determined for each instance’s hidden state. The scores produced a
weighted averaged projected pooling representation; then received by the decoder
and passed to the ViED’s LMHead. The LMHead predicted the next word in a se-
quence of words based on the decoder’s outputs and was fine-tuned by optimizing
the prediction of all instance captions (of the cluster; via a single cluster representa-
tion). By fine-tuning the LMHead we intended to align the pooled embedding to be
manifold-compatible and optimize the training loss (i.e. the similarity).

The CLIP weighting method was used to produce a description that considered
the most representative embeddings more strongly. This means that the loss pre-
dictions of individual instance captions were weighted by the CLIP scores of the
respective hidden states of the text and vision encoders. Essentially, the goal was to

288 Appendix C. From Missteps to Milestones: Understanding Failed Attempts

train a model to generate textual descriptions that were most similar to those images
and captions that were most similar to all other instances in the cluster. This way,
so we assumed, the model would be able to provide more accurate and relevant
descriptions (yet, this was not effective enough; as turned out later).

Figure C.1 shows the architectural overview of this (failed) prototype approach.

FIGURE C.1: An overview of an initial prototype training architecture
pipeline (i.e. first attempt) for generating cluster descriptions.

The CLIP score weighting matrix S, for a given cluster Cm (with n elements)
and latent vision states Zm and text states Ztext

m , was S := CLIP-SCORE(Ztext
m , Zm);

with shape n × n. The image-to-texts and text-to-images CLIP scores were respec-
tively s0 := ∑n

i=1 S[i,:] and s1 := ∑n
i=1 S[:,i]. The corresponding normalized probability

scores were ŝ0, ŝ1. The vector pooling was the weighted feature average of Zm by s0,
given by: ∑n

i=1 ŝ[i]0 Z[:,i]
m .

This CLIP-score-weighted vector pooling operation is denoted by •[.], so that
•[Zm] =: ν•m. Since encoders E, Etext were frozen during training, ν•m was constant
and could be cached. Similarly, for a given text ti, the LMHead prediction loss l[i]|ϱ was

weighted by ŝ[i]1 , where i = 1, ..., n and ϱ is the LMHead text decoding strategy. So,
given Cm, instances within the cluster were first processed by encoder E, resulting
in a set of latent vectors Zm. These vectors were then averaged using a CLIP score
weighted pooling operation to obtain a new latent cluster representation ν•m, which
was then forwarded through a decoder D|ϱ with decoding strategy ϱ to:

ŷm = D|ϱ(ν
•
m) ≜ D|ϱ

(
• [E(Cm)]

)
(C.1)

where only the LMHead (of decoder D) is trainable.

Training objective

Let ϱ▽, ϱ△ respectively denote the text decoding strategy during training (▽) and in-
ference (△). The objective was to approximate the prediction of all instance captions

C.1. Failed Prototype Attempt: Automated Textual Description Generation 289

within a given cluster Cm, weighted by their importance. Ideally, for all instances
within Cm, we want: ∀xi∈Cm : ti ≡ D|ϱ▽(ν

•
m).

The decoding strategy ϱ behaves differently during training and inference. Us-
ing only the latent cluster representation ν•m on decoder D|ϱ△ to predict all instance
captions within cluster Cm is expected to be less accurate than using decoding strat-
egy ϱ▽. This is because ground-truth context is not available during inference and a
single fixed representation may not capture the diversity within a cluster. Instances
within a cluster are similar but not identical and can have very diverse captions.

So in summary, to obtain a good overall representation during inference (i.e. for
decoding strategy ϱ△) we optimized training using the decoding strategy ϱ▽. We
minimized the difference between the predicted cluster description and all instance
captions within a given cluster; creating a representation that aligns with the clus-
ter’s instance captions and is compatible with the decoder’s manifold.

Cluster-wise gradient accumulation

Small batch sizes often have noisier gradients due to stochastic data sampling, but
they can result in better parameter space exploration. Greater batch sizes can yield
more accurate gradient estimates, but they can cause overfitting and poor general-
ization. To maintain training stability in our specific scenario of creating cluster-wise
descriptions where generalization is not important (we want an optimal solution for
a specific cluster), we favored accuracy over generalization; and hence chose bigger
batch sizes, ideally the entire cluster. Yet, very large cluster sizes might cause per-
formance concerns and out-of-memory errors. Thus, we used cluster-wise gradient
accumulation, which involved randomly splitting a cluster into smaller subgroups
with a predetermined batch size, computing gradient accumulation for each sub-
group, and finally updating the model with the accumulated gradients.

Prototype discussion

The reason why the prototype failed to perform as desired can be attributed to two
main factors, namely, manifold destruction and label overfitting. The initial idea was
to freeze the encoder and decoder modules so that the learned manifolds were main-
tained and not altered. However, by fine-tuning the LMHead, the manifold could
degenerate again, resulting in decreased performance. This happened because the
pre-trained model with the LMHead was already well-aligned and fitted on a large
corpus of pre-training data, having highly encoded information, semantic mean-
ings, and language generation logic. Fine-tuning the model on a specific cluster of
instances, by overfitting, resulted in the destruction of that strong manifold. Conse-
quently, even though all the modules were frozen, the last linear mapping destroyed
the semantic manifold (i.e. failed to interpret it correctly); leading to poor results.

The second factor that contributed to the failure of the prototype was label over-
fitting (i.e. the training loss). Training a model to predict all the labels of all the
cluster instances was expected to learn a representation that would more or less
fit all of them on average. However, this was not the case due to the way train-
ing and inference work in LLMs: predictions are context-based, starting with the
most likely word, followed by the next most likely word given a previous word, se-
quence, context, etc. During training, this previous context is the previous context
in the ground-truth (label) sequence; however, during inference, it is the previous
context predicted by the model itself. Thus, the LMHead learned precisely this, to
predict captions given the right ground-truth context (as this was the loss function it

290 Appendix C. From Missteps to Milestones: Understanding Failed Attempts

was optimized for). This is a problem since the model was optimized (i.e. overfitted)
to produce a description that fits specific images given their ground-truth context,
which shaped the manifold accordingly; but this did not extrapolate to our intended
use-case. In other words, this means the model was not generating general captions
but was overfitted to reproduce specific captions whenever given the label context.
Therefore, the model had the wrong training objective loss.

C.2 Sensor-Driven Textual Observation Report Prediction

When we have complex sensor data and corresponding textual reports, we may
wonder if we can create a model that can establish a relationship between the two
domains. This would enable us to automatically gather sensor data and produce a
corresponding textual report (which is what we expected; but was overall not ef-
fective and reliant enough). To achieve this, we tried to train a (correlation-based)
decoder model. The training idea was to essentially predict the word sequences in
the textual report using only the sensor data as model input. Achieving this would
allow us to generate corresponding (i.e. matching) free-form textual reports directly
out of the sensor data. An illustration is given in Figure C.2.

FIGURE C.2: Learning from textual observations and training de-
coder models for automatic text generation out of sensor data.

C.2.1 Prototype Discussion

A main and common problem of LLMs is that they can (sometimes, often, etc.) gen-
erate text that is not accurate or factual, but appears to be plausible and correct. This
is known as "hallucination"; and dangerous. Hallucination occurs because conven-
tional LLMs have a limited/conditioned understanding and are unable to verify the
truth of their output. In general, it is difficult to regulate hallucination (precisely)
due to a model’s limited contextual understanding. Hallucination can be confusing,
harmful, and misleading, so LLMs should not be used in certain applications unless
the model quality is stable and reliable.

In our experiments, we were able to generate textual reports that domain experts
found indistinguishable from real ones at first glance. Yet, extensive fact-checking
and analysis were necessary to determine their correctness; since LLM hallucination
could (and did) also occur. However, due to the unreliability, this approach was

C.2. Sensor-Driven Textual Observation Report Prediction 291

deemed unsuitable and not of interest anymore (in such a current uncertain state of
potential hallucinations). The idea of producing keywords instead of free text also
does not fully solve or avoid this problem of uncertainty.

To reduce the severity of hallucinations in a naive manner, we suggest the follow-
ing steps: cleaning the data, fine-tuning it with control, improving contextual un-
derstanding, implementing basic verification methods, and ideally providing trans-
parent explanations. Some simple verification techniques could include: (1) Fact-
checking: Quickly searching the database to verify the accuracy of the generated out-
put, which can help to identify (obvious) errors and misleading information. (2)
Keyword matching: Checking if certain expected keywords or phrases are present in
the generated output, e.g. ensuring so relevance to the topic at hand. (3) Avoiding
or filtering out overly specific information: It is safer to provide more general informa-
tion rather than overly specific details. For example, stating that a water plant was
dehydrated is preferable to specifying the exact duration of dehydration. (4) Logical
consistency checks: Assessing the coherence and consistency of the generated output,
ensuring that it makes logical sense and does not contradict itself.

Still, it is crucial to acknowledge that these verification methods do not com-
pletely solve the issue of hallucination but rather provide some basic safety checks.
They still come with many limitations and will certainly not detect all inaccuracies.
It would be absolutely wrong and naive to assume otherwise. More advanced mech-
anisms are definitely necessary to ensure reliability and precision.

293

Appendix D

Deutsche Zusammenfassung

Note: According to the examination regulations, it is necessary for non-German
documents to include a German summary. Therefore, a translated summary of this
thesis is provided at this point.

Hinweis (1): Gemäß den Bestimmungen der Prüfungsordnung ist es notwendig,
dass Dokumente, die nicht auf Deutsch verfasst sind, eine Zusammenfassung in
deutscher Sprache enthalten. Daher wird an dieser Stelle eine übersetzte Zusammen-
fassung der Arbeit präsentiert.

Hinweis (2): Diese Arbeit wurde durch eine gemeinsame Zusammenarbeit der
BMW Group und der Ludwig-Maximilians-Universität München im Rahmen einer
industriellen Doktorarbeit ermöglicht. Alle (eventuell) möglichen datenschutzbe-
zogenen Informationen wurden entweder ausgelassen oder gemäß den geltenden
Richtlinien der BMW Group anonymisiert.

D.1 Zusammenfassung

Die steigende Nachfrage nach der Integration von Künstlicher Intelligenz (KI) erfor-
dert effiziente und zuverlässige Lösungen. Innerhalb des KI-Feldes ist das bekann-
te Maschinelle Lernen (ML) ein sehr dynamischer Teilbereich. ML basierte Metho-
den und Lösungsansätze entwickeln sich ständig und rasant weiter, um immer leis-
tungsfähigere und skalierbarere Algorithmen für zunehmend komplexe Probleme
und Anforderungen zu schaffen. Diese Arbeit konzentriert sich insbesondere auf
Herausforderungen des ML im Bereich automatisierte Entscheidungsfindung und
Mustererkennung. Dabei werden verschiedene Methoden für das effektive Erlernen
von Datenrepräsentationen vorgestellt und analysiert.

Die wissenschaftlichen Beiträge dieser Arbeit umfassen eine Vielzahl von Algo-
rithmen und Verbesserungen, sowie etwa Ausreißererkennungsalgorithmen, Clus-
terbildungsmethoden oder graphenbasierte ML-Modelle. Das übergeordnete Ziel
dieser Arbeit ist es, KI-Methoden, insbesondere für relevante industrielle Anwen-
dungen, anzupassen, verbessern, oder weiterzuentwickeln.

D.1.1 Forschungsmotivation

Diese Arbeit entstand aus einem früheren Datenanalyseprojekt, das das Potenzial
von KI-Methoden in Bezug auf Effizienz und Effektivität aufzeigte. Dies führte und
motivierte zur aktuellen Arbeit, die zunächst darauf abzielte, das vorherige Modell
und die Methodik zu verbessern oder vollständig neu zu gestalten, um noch robus-
tere und effizientere Ergebnisse zu erzielen. Starke und skalierbare KI-Lösungen

294 Appendix D. Deutsche Zusammenfassung

sind aufgrund ihrer breiten Anwendbarkeit und Anpassungsfähigkeit äußerst wün-
schenswert und in der Industrie sehr gefragt. Beispiele hierfür sind die Automati-
sierung von Vorhersagen, Klassifizierung, semantische Ähnlichkeitssuche, Ausrei-
ßererkennung und vieles mehr. In diesem Zusammenhang spielen Datenrepräsen-
tationen eine entscheidende Rolle. Diese stellen kontextualisierte numerische Dar-
stellungen von Entitäten, bzw. Objekten dar. Die Generierung guter numerischer
Datenrepräsentationen ist herausfordernd, ermöglicht aber Anwendungen in vielen
verschiedenen Domänen und ist daher sehr wertvoll.

D.1.2 Forschungsbereich

Der in dieser Arbeit behandelte Forschungsbereich umfasst mehrere Bereiche der KI:
sowie ML, Deep Learning (DL), Representation Learning, Manifold Learning, Aus-
reißererkennung, Clustering, etc. Der Schwerpunkt jedoch liegt klar auf dem "Erler-
nen von Datenrepräsentationen", was bedeutet, dass starke und effiziente Darstel-
lungen für komplexe, unkonventionelle Datenarten und -strukturen gefunden wer-
den sollen, um bestimmte Aufgaben (optimal) zu lösen. Aus dieser Hauptrichtung
haben sich dann verschiedene Nebenrichtungen entwickelt, die sich mit verschie-
denen Unterthemen und Nachfolgeaufgaben befassen, aber stets entweder direkt
oder indirekt mit Representation Learning oder Manifold Learning verbunden sind;
somit immer im Bereich KI (bzw. ML).

D.1.3 Forschungsherausforderungen

Evaluierung ist ein grundlegender Aspekt wissenschaftlicher Forschung. Nur so
ist es möglich, die Qualität und Effektivität von Methoden qualitativ zu bewerten
und sie mit anderen Methoden zu vergleichen. Die Evaluierung von KI Methoden
ist jedoch herausfordernd aufgrund unvermeidbarer Kompromisse; jede Methode
hat verschiedene Vor- und Nachteile. Unterschiedliche Methoden zeichnen sich ty-
pischerweise in verschiedenen Aufgaben und Bereichen aus, wobei einige effizien-
ter, aber weniger effektiv sind, und umgekehrt. Daher ist eine "gerechte" Evaluie-
rung nicht immer einfach und offensichtlich. Falsche Bewertungen können leicht zu
falschen Schlussfolgerungen führen. Bspw. zeigen in der Clusteranalyse verschiede-
ne Algorithmen unterschiedliche Lösungen auf, oftmals hängt hier die Effektivität
direkt an der Verteilung der Daten ab. Es gibt keinen universellen Algorithmus,
der alle anderen Methoden in allen möglichen Aspekten übertrifft. Um zuverlässige
und klare Schlussfolgerungen zu ziehen, sind in der Regel eine Vielzahl von Ex-
perimenten und Wiederholungen erforderlich. Darüber hinaus ist es entscheidend,
dass empirische Ergebnisse und Experimente (wenn möglich) durch mathematische
Theoreme oder Beweise gestützt werden. Insbesondere bei der Verwendung von
"Beweisen" sind empirische Ergebnisse möglicherweise nicht mehr erforderlich, da
sie bestimmte Eigenschaften garantieren. Im Allgemeinen gibt es somit zwei An-
sätze, um sicherzustellen, dass bestimmte Eigenschaften signifikant sind: Entweder
führt man ausreichend viele Experimente durch und sammelt empirische Ergebnis-
se um Schlussfolgerungen statistisch zu stützen, oder man verwendet direkte ma-
thematische Beweise und Ableitungen, um bestimmte Eigenschaften mathematisch
zu garantieren. In dieser Arbeit wurde daher ein angemessenes Gleichgewicht zwi-
schen mathematischen Beweisen und empirischen Ergebnissen berücksichtigt.

D.1. Zusammenfassung 295

D.1.4 Beitragsumfang der Arbeit

Die in dieser Arbeit vorgestellte Forschung stellt einen wesentlichen Teil eines indus-
triellen Doktorandenprogramms dar, das Theorie mit praktischen Anwendungen
kombiniert. Die Arbeit konzentriert sich speziell darauf, die theoretische und ana-
lytische Grundlage innerhalb dieses Projektumfelds zusammenzufassen und ent-
hält daher keinerlei datenschutzempfindliche Informationen. Sie präsentiert haupt-
sächlich theoretische Lösungen und Ansätze die entwickelt wurden, um das zu-
grunde liegende Forschungsproblem anzugehen. Alle Resultate, die in dieser Ar-
beit präsentiert werden, stammen ausschließlich aus öffentlich allen zugänglichen
(z.b. akademischen) Datensätzen. Der Fokus dieser Arbeit liegt somit ausschließlich
darauf, relevantes Forschungswissen bereitzustellen, weshalb insbesondere keine
Implementierungs- oder Anwendungsdetails des Projektes enthalten sind; in Über-
einstimmung mit der imponierten Vertraulichkeitsvereinbarung.

Die Hauptbeiträge dieser Arbeit werden in den Methoden- und Ergebniskapiteln
sowie in den jeweiligen Diskussionen dargestellt und erläutert. Die Kapitel Moti-
vation, Einleitung und verwandte Arbeiten dienen dazu, einen umfassenden Über-
blick über zuvor veröffentlichte Arbeiten, Forschungen, etc. aus der entsprechenden
wissenschaftlichen Literatur zu geben. Dies soll gemeinsames Hintergrundwissen
vermitteln, welches für die Einordnung dieser Arbeit in den Kontext als grundle-
gend erachtet wird. Für alle verwandten Arbeiten und einführenden Kapitel werden
umfangreiche Referenzen angegeben.

D.1.5 Zusammenfassung der Beiträge

Zusätzlich zum bereits erwähnten Beitrag eines umfangreichen Literaturüberblicks
sind im Folgenden insbesondere die originalen neuartigen Beiträge der einzelnen
Hauptmethoden dieser Arbeit explizit zusammengefasst. Diese gliedern die Arbeit
in verschiedene Hauptbereiche:

NEURONALE ARCHITEKTUR UND DATENREPRÄSENTATION

• Einführung einer neuen nichtlinearen neuronalen Architektur basierend auf
komplexen Zahlen (siehe 7.1): Herkömmliche neuronale Netze verwenden
reellwertige Parameter zur Verarbeitung und Analyse von Eingabedaten. An-
stelle dessen wird hier nun eine komplexwertige neuronale Architektur prä-
sentiert, bei der die neuronalen Parameter auf komplexen Zahlen basieren.
Die Architektur weist im Vergleich zu traditionellen neuronalen Netzwerken
mehrere einzigartige und interessante Eigenschaften auf; insbesondere die Fä-
higkeit, dass neuronale Eingaben niemals durch Gewichte überschrieben oder
eliminiert werden können.

• Entwicklung eines algorithmischen Strukturkonzepts zur Codierung hierar-
chischer 1:n Datenbanken in semantisch kontextualisierte numerische Da-
tenrepräsentationen (siehe 7.2): 1:n Datenbanken sind in vielen Bereichen
gängig, stellen jedoch oft eine Herausforderung dar wenn es darum geht sie
effektiv zu codieren und für ML vorzubereiten. Unser Ansatz verwendet eine
hierarchische Datenrepräsentation, die eins-zu-viele-Beziehungen (1:n Daten-
banken) in eine vereinheitlichte Baumstruktur überführt, die für ML kompa-
tibel ist und eine Anwendung von KI-Methoden darauf effizient ermöglicht.
Dies erlaubt uns somit insbesondere 1:n Datenbanken effizient semantisch und
kontextualisiert zu kodieren, verarbeiten, und zu analysieren.

296 Appendix D. Deutsche Zusammenfassung

• Vorstellung einer adaptiven und robusten Normalisierungs- und Vorverar-
beitungsmethode (siehe 7.3): Normalisierungs- und Vorverarbeitungstechni-
ken sind entscheidend für die Verbesserung der Leistung von ML-Algorithmen.
Der Fokus unserer neuen Methode liegt darauf, die Robustheit und Konver-
genzfähigkeit des Trainings zu verbessern, indem der Einfluss von Ausreißern
reduziert und die Feature-Skalierung verbessert wird.

• Vorstellung einer Methode zur synthetischen Datengenerieung auf hierar-
chischen Baumstrukturen (siehe 7.4): Datenanreicherung in der KI ist wich-
tiges Konzept zur Verbesserung der Leistung von maschinellen Lernalgorith-
men. Unsere Methode generiert synthetische Datenbeispiele für hierarchische
Baumstrukturen für 1:n Datenbanken. Dieser Ansatz ermöglicht es uns, die
Anzahl und Vielfalt der Trainingsdaten zu erhöhen, mit dem Ziel die Leistung
der auf diesen Daten trainierten Modelle zu verbessern.

DIMENSIONSREDUKTION UND DARSTELLUNGSSUCHE

• Vorstellung eines kontrastiven Frameworks zur Erlernung kontextueller Re-
präsentationen für hierarchische Baumstrukturen (siehe 7.5): Eine sinnvolle,
gute numerische Darstellung von Daten ist entscheidend für den Erfolg vie-
ler KI-Modelle. Unser kontrastiver Ansatz zielt speziell darauf ab, repräsen-
tativere Datenstrukturen zu erlernen; insbesondere für hierarchische Baum-
strukturen mit 1:n Beziehungen. Der Ansatz ist äußerst flexibel anpassbar
und kann sowohl unüberwacht, halbüberwacht, überwacht als auch selbst-
überwacht trainiert werden. Die Methode zeigt Potenzial, bedeutungsvolle
Datenrepräsentationen für komplexe hierarchische Datenbankentitäten zu ex-
trahieren. Dadurch kann die Qualität weiterer nachgelagerter Aufgaben ver-
bessert werden; wie Klassifikation, Ausreißererkennung, Clustering usw. Es
ermöglicht insbesondere, kontextualisierte und bedeutsame numerische Re-
präsentationen automatisch und effizient zu erlernen.

• Ausweitung und Verallgemeinerung des hierarchischen Datenbank Frame-
works zur Vereinheitlichung mehrerer Datenansichten durch das Erlernen
konkatenierter Darstellungen. (siehe 7.6): Das Konkatenieren von Reprä-
sentationen ist ein klassischer Lösungsansatz im Repräsentationslernen, um
Datenrepräsentationen aus verschiedenen Datenquellen zusammenzuführen,
wodurch eine einheitliche Gesamtrepräsentation erstellt wird. Von dieser Ge-
samtrepräsentation aus wird dann eine finale kompaktere Repräsentation er-
lernt oder abgeleitet. Anliegend daran besteht unsere Lösung darin, mehrere
Datenansichten aus verschiedenen hierarchischen Datenbanken zu einer ein-
zigen vereinheitlichten Datenbank zusammenzuführen. Dies geschieht zu-
nächst durch das individuelle Erlernen und Berechnen der einzelnen Daten-
bankrepräsentationen für jede gegebene hierarchische Datenansicht. Anschlie-
ßend wird aber eine gemeinsame Finalrepräsentation erlernt (die beispielswei-
se für nachgelagerte Aufgaben verwendet werden kann), wo aber dabei der
Gradient nicht über alle Baumknoten bei der Backpropagation berechnet und
verwendet wird, sondern stattdessen nur oberhalb eines Gradienten-Schnitts
am obersten Wurzelknoten durchgeführt wird. Durch diese Vorgehenswei-
se besteht Skalierbarkeit und Anpassungsfähigkeit des Frameworks auch für
größere und komplexere Datenbanken, da das Erlernen der finalen Gesamtre-
präsentation effizient ist.

D.1. Zusammenfassung 297

• Entwicklung von Methoden und diverser Zielfunktionen für das Erlernen
von Datenbankrepräsentationen und Clustering (siehe 7.7): Das Erlernen
von Datenrepräsentationen und das Clustering dieser Repräsentationen sind
von großer Bedeutung für hochdimensionale Daten mit komplexen Struktu-
ren. Unsere Methoden verwenden Manifold-Learning-Techniken um semanti-
sche Repräsentationen zu erlernen, die die Dimensionalität kompakt reduzie-
ren, aber gleichzeitig wichtige Informationen beibehalten und kodieren. Dar-
über hinaus wenden wir Clustering-Algorithmen auf den erlernten Daten-
bankrepräsentationen an, um große Datensätze in verschiedene zusammen-
hängende Gruppen zu unterteilen. Durch die Anwendung mehrerer Zielfunk-
tionen in einer speziell für 1:n Datenbanken konzipierten neuronalen Trai-
ningsarchitektur, erreichen wir effektive semantische, speziell optimierte, Da-
tenrepräsentationen.

• Entwicklung und Vorstellung von Ansätzen zur automatisierten Generie-
rung textueller Beschreibung von Clustergruppen (siehe 7.10): Clustergrup-
pen sind generell herausfordernd zu interpretieren, insbesondere wenn es sich
um hochdimensionale Daten handelt. Wir entwickeln und präsentieren da-
her Methoden zur automatisierten und generativen Erzeugung textueller Be-
schreibungen. Diese können wertvolle Einblicke in die Charakteristika ver-
schiedener Clustergruppen liefern und menschlichen Nutzern dabei helfen,
die gemeinsamen Eigenschaften der Cluster besser zu verstehen.

DATENINTEGRATION UND ANALYSE

• Formulierung und Einführung einer Evaluationsmetrik für Clustering un-
ter berücksichtigung von Label-Unsicherheit (siehe 7.9.2): Clustering unter
Label-Unsicherheit stellt ein weit verbreitetes und anspruchsvolles Problem
dar, das in zahlreichen realen Anwendungen und Datensätzen häufig auf-
taucht. Wir präsentieren daher eine modifizierte Version einer etablierten Eva-
luationsmetrik des überwachten Clusterings, und fokussieren speziell darauf,
Clusteringresultate unter Berücksichtigung von Labelunsicherheit zu bewer-
ten; insbesondere wenn die Labels vor allem größere Obergruppen andeuten
und daher nicht exakt sind.

• Vorstellung einer Metrikheuristik zur Bestimmung repräsentativer textuel-
ler Labels; für präzise Sensordaten mit ungenauen Labels (siehe 7.12): Prä-
zise Sensordaten mit ungenauen (textuellen) Labels stellen eine Herausforde-
rung dar, die auch hier wieder in vielen realen Anwendungen auftritt. Unsere
vorgeschlagene Metrikheuristik zielt darauf ab, aussagekräftige textuelle La-
bels (z.B. Kommentare) zu identifizieren, welche die Merkmale präziser und
genauer Sensordaten repräsentieren. Dies gilt insbesondere auch dann, wenn
der Datensatz ungenaue Labels aufweist und somit die Qualität der textuellen
Daten (bzw. Labels) stark variiert.

• Präsentation eines Transferlernansatzes zur Extraktion von Erkenntnissen
aus verschiedenen ML-Modellen, die auf unterschiedlichen Datensätzen trai-
niert wurden (siehe 7.13): Transferlernen ist eine bekannte und effektive Stra-
tegie, um das erlangte "Wissen" aus einem bestimmten Datensatz zu nutzen
und es auf andere Datensätze zu übertragen um die Leistung von ML-Modellen
zu steigern, die auf diesen anderen Datensätzen trainiert werden. Basierend

298 Appendix D. Deutsche Zusammenfassung

darauf stellen wir einen automatisierten Ansatz vor, um dies speziell für 1:n
Datenbanken durchzuführen und dabei (semi-)überwacht zu trainieren.

• Einführung einer neuen Methode zur Erkennung von Abweichungen und
Neuheiten außerhalb der Trainingsdatenverteilung, die Unterschiede in der
Modellkalibrierung ausnutzt (siehe 7.14): Eine Kalibrierung von ML-Modellen
ist typischerweise entscheidend und notwendig für präzise (vertrauenswürdi-
gere) Vorhersagen. Wir zeigen zusätzlich auf, dass Variationen und Unter-
schiede in der Modellkalibrierung zudem auch genutzt werden können, um
Anomalien und Neuheiten in den Daten zu erkennen; und somit Ausreißer
identifiziert werden können.

• Entwicklung eines Algorithmus für repräsentatives Sampling in Datenströ-
men mit variablen Quantilfenstern bei unbekannter (großer) oder unend-
licher Datenstromlänge (siehe 7.16): Repräsentatives Sampling in Datenströ-
men stellt insbesondere dann eine Herausforderung dar, wenn die endgültige
Länge (großer) Datenströme unbekannt oder unendlich ist und Entscheidun-
gen in Echtzeit getroffen werden müssen. In diesem Zusammenhang stellen
wir einen Ansatz für Quantilsampling vor, der spezifische mathematische Ei-
genschaften anstrebt und erfüllt.

299

Bibliography

Aalst, Wil MP Van der et al. (2010). “Process mining: a two-step approach to bal-
ance between underfitting and overfitting”. In: Software & Systems Modeling 9.1,
pp. 87–111.

Abati, Davide et al. (2019). “Latent space autoregression for novelty detection”. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 481–490.

Abdullah, Malak, Alia Madain, and Yaser Jararweh (2022). “ChatGPT: Fundamen-
tals, applications and social impacts”. In: 2022 Ninth International Conference on
Social Networks Analysis, Management and Security (SNAMS). IEEE, pp. 1–8.

Adya, Monica and Fred Collopy (1998). “How effective are neural networks at fore-
casting and prediction? A review and evaluation”. In: Journal of forecasting 17.5-6,
pp. 481–495.

Aggarwal, Charu C (2006). “On biased reservoir sampling in the presence of stream
evolution”. In: Proceedings of the 32nd international conference on Very large data
bases, pp. 607–618.

Aggarwal, Charu C, Alexander Hinneburg, and Daniel A Keim (2001). “On the sur-
prising behavior of distance metrics in high dimensional space”. In: International
conference on database theory. Springer, pp. 420–434.

Agostinelli, Forest et al. (2014). “Learning activation functions to improve deep neu-
ral networks”. In: arXiv preprint arXiv:1412.6830.

agreement, Non disclosure (n.d.). *by BMW Group. The author, affiliated with BMW
Group, and the thesis content are bound by a non-disclosure agreement.

Ahlfors, Lars V (1953). “Complex analysis: an introduction to the theory of analytic
functions of one complex variable”. In: New York, London 177.

Ahmed, Mohiuddin, Raihan Seraj, and Syed Mohammed Shamsul Islam (2020). “The
k-means algorithm: A comprehensive survey and performance evaluation”. In:
Electronics 9.8, p. 1295.

Aizenberg, Igor (2011a). Complex-valued neural networks with multi-valued neurons.
Vol. 353. Springer.

— (2011b). “The Multi-Valued Neuron”. In: Complex-Valued Neural Networks with
Multi-Valued Neurons. Springer, pp. 55–94.

Aizenberg, Igor and Claudio Moraga (2007). “Multilayer feedforward neural net-
work based on multi-valued neurons (MLMVN) and a backpropagation learning
algorithm”. In: Soft Computing 11.2, pp. 169–183.

Aizenberg, Igor, Claudio Moraga, and Dmitriy Paliy (2005). “A feedforward neural
network based on multi-valued neurons”. In: Computational intelligence, theory
and applications. Springer, pp. 599–612.

Aizenberg, Igor, Dmitriy Paliy, and Jaakko T Astola (2006). “Multilayer neural net-
work based on multi-valued neurons and the blur identification problem”. In:
The 2006 IEEE International Joint Conference on Neural Network Proceedings. IEEE,
pp. 473–480.

Aizenberg, Igor et al. (2016). “Multilayer neural network with multi-valued neurons
in time series forecasting of oil production”. In: Neurocomputing 175, pp. 980–989.

300 Bibliography

Aizenberg, Naum N and Igor N Aizenberg (1992). “CNN based on multi-valued
neuron as a model of associative memory for grey scale images”. In: CNNA’92
Proceedings Second International Workshop on Cellular Neural Networks and Their Ap-
plications. IEEE, pp. 36–41.

Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi (2017). “Understanding of
a convolutional neural network”. In: 2017 International Conference on Engineering
and Technology (ICET). Ieee, pp. 1–6.

Almeida, Ana et al. (2023). “Time series big data: a survey on data stream frame-
works, analysis and algorithms”. In: Journal of Big Data 10.1, p. 83.

Almeida, Felipe and Geraldo Xexéo (2019). “Word embeddings: A survey”. In: arXiv
preprint arXiv:1901.09069.

Alyafeai, Zaid, Maged Saeed AlShaibani, and Irfan Ahmad (2020). “A survey on
transfer learning in natural language processing”. In: arXiv preprint arXiv:2007.04239.

Amigó, Enrique et al. (2009). “A comparison of extrinsic clustering evaluation met-
rics based on formal constraints”. In: Information retrieval 12.4, pp. 461–486.

Amin, Md Faijul and Kazuyuki Murase (2009). “Single-layered complex-valued neu-
ral network for real-valued classification problems”. In: Neurocomputing 72.4-6,
pp. 945–955.

Anderson, Joseph et al. (2014). “The more, the merrier: the blessing of dimensionality
for learning large Gaussian mixtures”. In: Conference on Learning Theory. PMLR,
pp. 1135–1164.

Andreu-Perez, Javier et al. (2015). “Big data for health”. In: IEEE journal of biomedical
and health informatics 19.4, pp. 1193–1208.

Andrychowicz, Marcin et al. (2016). “Learning to learn by gradient descent by gradi-
ent descent”. In: Advances in neural information processing systems, pp. 3981–3989.

Andy Coenen, Adam Pearce (2019). “Understanding UMAP”. In: Google PAIR. URL:
https://pair-code.github.io/understanding-umap/.

Angelov, Plamen and Eduardo Soares (2020). “Towards explainable deep neural net-
works (xDNN)”. In: Neural Networks 130, pp. 185–194.

Arora, Siddhant and Srikanta Bedathur (2020). “On embeddings in relational databases”.
In: arXiv preprint arXiv:2005.06437.

Atrey, Pradeep K et al. (2010). “Multimodal fusion for multimedia analysis: a sur-
vey”. In: Multimedia systems 16.6, pp. 345–379.

Babcock, Brian, Mayur Datar, and Rajeev Motwani (2002). “Sampling from a moving
window over streaming data”. In: Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms, pp. 633–634.

Bäck, Thomas and Hans-Paul Schwefel (1993). “An overview of evolutionary algo-
rithms for parameter optimization”. In: Evolutionary computation 1.1, pp. 1–23.

Bagga, Amit and Breck Baldwin (1998). “Entity-based cross-document coreferencing
using the vector space model”. In: 36th Annual Meeting of the Association for Com-
putational Linguistics and 17th International Conference on Computational Linguistics,
Volume 1, pp. 79–85.

Bakarov, Amir (2018). “A survey of word embeddings evaluation methods”. In:
arXiv preprint arXiv:1801.09536.

Bansal, Rashi, Nishant Gaur, and Shailendra Narayan Singh (2016). “Outlier de-
tection: applications and techniques in data mining”. In: 2016 6th International
conference-cloud system and big data engineering (Confluence). IEEE, pp. 373–377.

Barbedo, Jayme Garcia Arnal (2018). “Impact of dataset size and variety on the effec-
tiveness of deep learning and transfer learning for plant disease classification”.
In: Computers and electronics in agriculture 153, pp. 46–53.

https://pair-code.github.io/understanding-umap/

Bibliography 301

Barlow, Horace B (1989). “Unsupervised learning”. In: Neural computation 1.3, pp. 295–
311.

Bassey, Joshua, Lijun Qian, and Xianfang Li (2021). “A survey of complex-valued
neural networks”. In: arXiv preprint arXiv:2101.12249.

Beaton, Albert E and John W Tukey (1974). “The fitting of power series, mean-
ing polynomials, illustrated on band-spectroscopic data”. In: Technometrics 16.2,
pp. 147–185.

Belhaouari, Samir Brahim et al. (2021). “Unsupervised outlier detection in multidi-
mensional data”. In: Journal of Big Data 8.1, pp. 1–27.

Bella, Antonio et al. (2010). “Calibration of machine learning models”. In: Handbook
of Research on Machine Learning Applications and Trends: Algorithms, Methods, and
Techniques. IGI Global, pp. 128–146.

Bellman, Richard E. (1961). Adaptive Control Processes: A Guided Tour. Princeton Uni-
versity Press.

Beltagy, Iz, Matthew E Peters, and Arman Cohan (2020). “Longformer: The long-
document transformer”. In: arXiv preprint arXiv:2004.05150.

Ben-David, Shai and Margareta Ackerman (2008). “Measures of clustering quality: A
working set of axioms for clustering”. In: Advances in neural information processing
systems 21.

Ben-Tal, Aharon and Arkadi Nemirovski (1998). “Robust convex optimization”. In:
Mathematics of operations research 23.4, pp. 769–805.

Bendale, Abhijit and Terrance E Boult (2016). “Towards open set deep networks”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1563–1572.

Bengio, Yoshua, Aaron Courville, and Pascal Vincent (2013). “Representation learn-
ing: A review and new perspectives”. In: IEEE transactions on pattern analysis and
machine intelligence 35.8, pp. 1798–1828.

Benvenuto, Nevio and Francesco Piazza (1992). “On the complex backpropagation
algorithm”. In: IEEE Transactions on Signal Processing 40.4, pp. 967–969.

Berkhin, Pavel (2006). “A survey of clustering data mining techniques”. In: Grouping
multidimensional data. Springer, pp. 25–71.

Beyer, Kevin et al. (1999). “When is “nearest neighbor” meaningful?” In: International
conference on database theory. Springer, pp. 217–235.

Bhanja, Samit and Abhishek Das (2018). “Impact of data normalization on deep neu-
ral network for time series forecasting”. In: arXiv preprint arXiv:1812.05519.

Bhatt, Umang et al. (2020). “Explainable machine learning in deployment”. In: Pro-
ceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 648–
657.

Biggio, Battista and Fabio Roli (2018). “Wild patterns: Ten years after the rise of ad-
versarial machine learning”. In: Pattern Recognition 84, pp. 317–331.

Bo, Deyu et al. (2020). “Structural deep clustering network”. In: Proceedings of the web
conference 2020, pp. 1400–1410.

Bonnin, Rodolfo (2017). Machine Learning for Developers: Uplift your regular applica-
tions with the power of statistics, analytics, and machine learning. Packt Publishing
Ltd.

Bordawekar, Rajesh and Oded Shmueli (2017). “Using word embedding to enable
semantic queries in relational databases”. In: Proceedings of the 1st Workshop on
Data Management for End-to-End Machine Learning, pp. 1–4.

Bordes, Antoine et al. (2011). “Learning structured embeddings of knowledge bases”.
In: Twenty-Fifth AAAI Conference on Artificial Intelligence.

302 Bibliography

Bordes, Antoine et al. (2013). “Translating embeddings for modeling multi-relational
data”. In: Advances in neural information processing systems 26.

Bottou, Léon (2010). “Large-scale machine learning with stochastic gradient descent”.
In: Proceedings of COMPSTAT’2010. Springer, pp. 177–186.

— (2012). “Stochastic gradient descent tricks”. In: Neural networks: Tricks of the trade.
Springer, pp. 421–436.

Bouchachia, Abdelhamid and Witold Pedrycz (2006). “Data clustering with partial
supervision”. In: Data Mining and Knowledge Discovery 12, pp. 47–78.

Boukerche, Azzedine, Lining Zheng, and Omar Alfandi (2020). “Outlier detection:
Methods, models, and classification”. In: ACM Computing Surveys (CSUR) 53.3,
pp. 1–37.

Boyd, Stephen, Stephen P Boyd, and Lieven Vandenberghe (2004). Convex optimiza-
tion. Cambridge university press.

Bramer, Max (2007). Clustering. Springer.
Braverman, Vladimir, Rafail Ostrovsky, and Carlo Zaniolo (2009). “Optimal sam-

pling from sliding windows”. In: Proceedings of the twenty-eighth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pp. 147–156.

Brent, Richard P. (1971). “An algorithm with guaranteed convergence for finding a
zero of a function”. In: The Computer Journal 14.4, pp. 422–425.

Brent, Richard P (2013). Algorithms for minimization without derivatives. Courier Cor-
poration.

Bressan, Stephane and Xuesong Lu (2009). “Sampling Data Streams: From Reservoir
Sampling to Sliding Window Sampling”. In: The 2009 International Conference on
Advanced Computer Science and Information Systems (ICACSIS).

Breunig, Markus M et al. (2000). “LOF: identifying density-based local outliers”. In:
Proceedings of the 2000 ACM SIGMOD international conference on Management of
data, pp. 93–104.

Brodie, Michael L and John Mylopoulos (1986). “Knowledge bases vs databases”. In:
On Knowledge Base Management Systems. Springer, pp. 83–86.

Browne, Michael W (2000). “Cross-validation methods”. In: Journal of mathematical
psychology 44.1, pp. 108–132.

Buchanan, Bruce G (2005). “A (very) brief history of artificial intelligence”. In: Ai
Magazine 26.4, pp. 53–53.

Buragohain, Chiranjeeb and Subhash Suri (Jan. 2009). “Quantiles on Streams”. In:
DOI: 10.1007/978-0-387-39940-9_290.

Burkart, Nadia and Marco F Huber (2021). “A survey on the explainability of super-
vised machine learning”. In: Journal of Artificial Intelligence Research 70, pp. 245–
317.

Bzdok, Danilo, Martin Krzywinski, and Naomi Altman (2018). “Machine learning:
supervised methods”. In: Nature methods 15.1, p. 5.

Cai, Hongyun, Vincent W Zheng, and Kevin Chen-Chuan Chang (2018). “A compre-
hensive survey of graph embedding: Problems, techniques, and applications”.
In: IEEE Transactions on Knowledge and Data Engineering 30.9, pp. 1616–1637.

Campbell, Murray, A Joseph Hoane Jr, and Feng-hsiung Hsu (2002). “Deep blue”.
In: Artificial intelligence 134.1-2, pp. 57–83.

Campello, Ricardo JGB, Davoud Moulavi, and Jörg Sander (2013). “Density-based
clustering based on hierarchical density estimates”. In: Pacific-Asia conference on
knowledge discovery and data mining. Springer, pp. 160–172.

Campello, Ricardo JGB et al. (2015). “Hierarchical density estimates for data clus-
tering, visualization, and outlier detection”. In: ACM Transactions on Knowledge
Discovery from Data (TKDD) 10.1, pp. 1–51.

https://doi.org/10.1007/978-0-387-39940-9_290

Bibliography 303

Cappelli, Raffaele, Dario Maio, and Davide Maltoni (2000). “Combining fingerprint
classifiers”. In: International Workshop on Multiple Classifier Systems. Springer, pp. 351–
361.

Caron, Mathilde et al. (2018). “Deep clustering for unsupervised learning of visual
features”. In: Proceedings of the European conference on computer vision (ECCV),
pp. 132–149.

Caruana, Rich and Alexandru Niculescu-Mizil (2006). “An empirical comparison of
supervised learning algorithms”. In: Proceedings of the 23rd international conference
on Machine learning, pp. 161–168.

Cen, Yukuo et al. (2019). “Representation learning for attributed multiplex heteroge-
neous network”. In: Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pp. 1358–1368.

Chakraborty, Anirban et al. (2018). “Adversarial attacks and defences: A survey”. In:
arXiv preprint arXiv:1810.00069.

Chandola, Varun, Arindam Banerjee, and Vipin Kumar (2009). “Anomaly detection:
A survey”. In: ACM computing surveys (CSUR) 41.3, pp. 1–58.

Chandrasekaran, Venkat et al. (2012). “The convex geometry of linear inverse prob-
lems”. In: Foundations of Computational mathematics 12.6, pp. 805–849.

Chao, Min-Te (1982). “A general purpose unequal probability sampling plan”. In:
Biometrika 69.3, pp. 653–656.

Chapelle, Olivier, Bernhard Scholkopf, and Alexander Zien (2009). “Semi-supervised
learning (chapelle, o. et al., eds.; 2006)[book reviews]”. In: IEEE Transactions on
Neural Networks 20.3, pp. 542–542.

Chen, Dongdong, Jiancheng Lv, and Yi Zhang (2017). “Unsupervised multi-manifold
clustering by learning deep representation”. In: Workshops at the thirty-first AAAI
conference on artificial intelligence.

Chen, Jinghui et al. (2017). “Outlier detection with autoencoder ensembles”. In: Pro-
ceedings of the 2017 SIAM international conference on data mining. SIAM, pp. 90–
98.

Chen, Min, Shiwen Mao, and Yunhao Liu (2014). “Big data: A survey”. In: Mobile
networks and applications 19.2, pp. 171–209.

Chen, Zhao et al. (2018). “Gradnorm: Gradient normalization for adaptive loss bal-
ancing in deep multitask networks”. In: International Conference on Machine Learn-
ing. PMLR, pp. 794–803.

Chen, Zhiwei and Aoqian Zhang (2020). “A survey of approximate quantile compu-
tation on large-scale data”. In: IEEE Access 8, pp. 34585–34597.

Chiang, Leo H, Randy J Pell, and Mary Beth Seasholtz (2003). “Exploring process
data with the use of robust outlier detection algorithms”. In: Journal of Process
Control 13.5, pp. 437–449.

Chicco, Davide (2021). “Siamese neural networks: An overview”. In: Artificial Neural
Networks, pp. 73–94.

Choi, Hyunsun, Eric Jang, and Alexander A Alemi (2018). “Waic, but why? genera-
tive ensembles for robust anomaly detection”. In: arXiv preprint arXiv:1810.01392.

Chong, Edwin KP and Stanislaw H Zak (2004). An introduction to optimization. John
Wiley & Sons.

Choromanska, Anna et al. (2015). “The loss surfaces of multilayer networks”. In:
Artificial intelligence and statistics. PMLR, pp. 192–204.

Choromanski, Krzysztof et al. (2020). “Rethinking attention with performers”. In:
arXiv preprint arXiv:2009.14794.

Chowdhery, Aakanksha et al. (2022). “Palm: Scaling language modeling with path-
ways”. In: arXiv preprint arXiv:2204.02311.

304 Bibliography

Chu, Xiangxiang et al. (2021). “Conditional positional encodings for vision trans-
formers”. In: arXiv preprint arXiv:2102.10882.

Cios, Krzysztof J et al. (2007). “Unsupervised learning: association rules”. In: Data
Mining. Springer, pp. 289–306.

Clarke, Thomas L (1990). “Generalization of neural networks to the complex plane”.
In: 1990 IJCNN International Joint Conference on Neural Networks. IEEE, pp. 435–
440.

Coggan, Melanie (2004). “Exploration and exploitation in reinforcement learning”.
In: Research supervised by Prof. Doina Precup, CRA-W DMP Project at McGill Uni-
versity.

Cordonnier, Jean-Baptiste, Andreas Loukas, and Martin Jaggi (2020). “Multi-head
attention: Collaborate instead of concatenate”. In: arXiv preprint arXiv:2006.16362.

Cormode, Graham et al. (2009). “Forward decay: A practical time decay model for
streaming systems”. In: 2009 IEEE 25th international conference on data engineering.
IEEE, pp. 138–149.

Cui, Yin et al. (2019). “Class-balanced loss based on effective number of samples”.
In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 9268–9277.

DALL-E 3, Microsoft Corporation (2023). Bing DALL-E 3 Image Creator. December:
2023. URL: https://www.bing.com/images/create.

Dauphin, Yann et al. (2014). “Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization”. In: arXiv preprint arXiv:1406.2572.

Din, Salah Ud et al. (2021). “Data stream classification with novel class detection:
A review, comparison and challenges”. In: Knowledge and Information Systems 63,
pp. 2231–2276.

Ding, Xuemei et al. (2014). “An experimental evaluation of novelty detection meth-
ods”. In: Neurocomputing 135, pp. 313–327.

Donoho, David L et al. (2000). “High-dimensional data analysis: The curses and
blessings of dimensionality”. In: AMS math challenges lecture 1.2000, p. 32.

Dosovitskiy, Alexey et al. (2020). “An image is worth 16x16 words: Transformers for
image recognition at scale”. In: arXiv preprint arXiv:2010.11929.

Draxler, Felix et al. (2018). “Essentially no barriers in neural network energy land-
scape”. In: International conference on machine learning. PMLR, pp. 1309–1318.

Du, Mengnan, Ninghao Liu, and Xia Hu (2019). “Techniques for interpretable ma-
chine learning”. In: Communications of the ACM 63.1, pp. 68–77.

Du, Simon et al. (2019). “Gradient descent finds global minima of deep neural net-
works”. In: International Conference on Machine Learning. PMLR, pp. 1675–1685.

Dufter, Philipp, Martin Schmitt, and Hinrich Schütze (2022). “Position information
in transformers: An overview”. In: Computational Linguistics 48.3, pp. 733–763.

Duistermaat, JJ et al. (2010). “Taylor expansion in several variables”. In: Distributions:
Theory and Applications, pp. 59–63.

D’Andrea, Alessia, Fernando Ferri, and Patrizia Grifoni (2010). “An overview of
methods for virtual social networks analysis”. In: Computational social network
analysis, pp. 3–25.

Eduardo, Simao et al. (2020). “Robust variational autoencoders for outlier detection
and repair of mixed-type data”. In: International Conference on Artificial Intelligence
and Statistics. PMLR, pp. 4056–4066.

Edwards, Aleksandra et al. (2020). “Go simple and pre-train on domain-specific cor-
pora: On the role of training data for text classification”. In: Proceedings of the 28th
international conference on computational linguistics, pp. 5522–5529.

https://www.bing.com/images/create

Bibliography 305

El Sibai, Rayane et al. (2015). “A performance study of the chain sampling algo-
rithm”. In: 2015 IEEE Seventh International Conference on Intelligent Computing
and Information Systems (ICICIS), pp. 487–494. DOI: 10.1109/IntelCIS.2015.
7397265.

Elhamifar, Ehsan and René Vidal (2011). “Sparse manifold clustering and embed-
ding”. In: Advances in neural information processing systems 24.

Eskin, Eleazar et al. (2002). “A geometric framework for unsupervised anomaly de-
tection”. In: Applications of data mining in computer security. Springer, pp. 77–101.

Estivill-Castro, Vladimir (2002). “Why so many clustering algorithms: a position pa-
per”. In: ACM SIGKDD explorations newsletter 4.1, pp. 65–75.

Everett, B (2013). An introduction to latent variable models. Springer Science & Business
Media.

Fan, Angela, Mike Lewis, and Yann Dauphin (2018). “Hierarchical neural story gen-
eration”. In: arXiv preprint arXiv:1805.04833.

Fang, Ziquan et al. (2022). “Spatio-temporal trajectory similarity learning in road
networks”. In: Proceedings of the 28th ACM SIGKDD conference on knowledge dis-
covery and data mining, pp. 347–356.

Fei, Geli and Bing Liu (2016). “Breaking the closed world assumption in text classi-
fication”. In: Proceedings of the 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pp. 506–
514.

Feinberg, Eugene A and Adam Shwartz (2012). Handbook of Markov decision processes:
methods and applications. Vol. 40. Springer Science & Business Media.

Feldman, Ronen, James Sanger, et al. (2007). The text mining handbook: advanced ap-
proaches in analyzing unstructured data. Cambridge university press.

Finch, Tony (2009). “Incremental calculation of weighted mean and variance”. In:
URL: https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf.

Finn, Chelsea et al. (2016). “Generalizing skills with semi-supervised reinforcement
learning”. In: arXiv preprint arXiv:1612.00429.

Foorthuis, Ralph (2018). “A typology of data anomalies”. In: International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based Sys-
tems. Springer, pp. 26–38.

Foret, Pierre et al. (2020). “Sharpness-aware minimization for efficiently improving
generalization”. In: arXiv preprint arXiv:2010.01412.

Fowlkes, Edward B and Colin L Mallows (1983). “A method for comparing two
hierarchical clusterings”. In: Journal of the American statistical association 78.383,
pp. 553–569.

Frey, Brendan J and Delbert Dueck (2007). “Clustering by passing messages between
data points”. In: science 315.5814, pp. 972–976.

Fu, Xinyu et al. (2020). “Magnn: Metapath aggregated graph neural network for
heterogeneous graph embedding”. In: Proceedings of The Web Conference 2020,
pp. 2331–2341.

Fu, Yao et al. (2022). “Complexity-based prompting for multi-step reasoning”. In:
arXiv preprint arXiv:2210.00720.

Gaber, Mohamed Medhat, Arkady Zaslavsky, and Shonali Krishnaswamy (2007).
“A survey of classification methods in data streams”. In: Data Streams: models and
algorithms, pp. 39–59.

García, Salvador, Julián Luengo, and Francisco Herrera (2015). Data preprocessing in
data mining. Vol. 72. Springer.

García, Salvador et al. (2016). “Big data preprocessing: methods and prospects”. In:
Big Data Analytics 1.1, pp. 1–22.

https://doi.org/10.1109/IntelCIS.2015.7397265
https://doi.org/10.1109/IntelCIS.2015.7397265
https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf

306 Bibliography

Gawlikowski, Jakob et al. (2021). “A survey of uncertainty in deep neural networks”.
In: arXiv preprint arXiv:2107.03342.

Ge, Weifeng (2018). “Deep metric learning with hierarchical triplet loss”. In: Proceed-
ings of the European Conference on Computer Vision (ECCV), pp. 269–285.

Ge, ZongYuan et al. (2017). “Generative openmax for multi-class open set classifica-
tion”. In: arXiv preprint arXiv:1707.07418.

Gelman, Andrew et al. (1995). Bayesian data analysis. Chapman and Hall/CRC.
Ghahramani, Zoubin (2003). “Unsupervised learning”. In: Summer School on Machine

Learning. Springer, pp. 72–112.
Ghojogh, Benyamin and Ali Ghodsi (2020). “Attention mechanism, transformers,

BERT, and GPT: tutorial and survey”. In.
Golan, Izhak and Ran El-Yaniv (2018). “Deep anomaly detection using geometric

transformations”. In: Advances in neural information processing systems 31.
Goldberg, Yoav and Omer Levy (2014). “word2vec Explained: deriving Mikolov et

al.’s negative-sampling word-embedding method”. In: arXiv preprint arXiv:1402.3722.
Gontijo-Lopes, Raphael et al. (2020). “Affinity and diversity: Quantifying mecha-

nisms of data augmentation”. In: arXiv preprint arXiv:2002.08973.
Goodfellow, Ian et al. (2013). “Maxout networks”. In: International conference on ma-

chine learning. PMLR, pp. 1319–1327.
Goodfellow, Ian et al. (2016). Deep learning. Vol. 1. MIT press Cambridge.
Gorban, Alexander N and Ivan Yu Tyukin (2018). “Blessing of dimensionality: math-

ematical foundations of the statistical physics of data”. In: Philosophical Transac-
tions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376.2118,
p. 20170237.

Goyal, Palash and Emilio Ferrara (2018). “Graph embedding techniques, applica-
tions, and performance: A survey”. In: Knowledge-Based Systems 151, pp. 78–94.

Groenendijk, Rick et al. (2021). “Multi-loss weighting with coefficient of variations”.
In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vi-
sion, pp. 1469–1478.

Gruhl, Christian, Bernhard Sick, and Sven Tomforde (2021). “Novelty detection in
continuously changing environments”. In: Future Generation Computer Systems
114, pp. 138–154.

Gu, Albert and Tri Dao (2023). “Mamba: Linear-time sequence modeling with selec-
tive state spaces”. In: arXiv preprint arXiv:2312.00752.

Gu, Albert, Karan Goel, and Christopher Ré (2021). “Efficiently modeling long se-
quences with structured state spaces”. In: arXiv preprint arXiv:2111.00396.

Guimerà Cuevas, Felip and Thomy Phan (2021). Complex Value-based Deep Learning
and Applications to Reinforcement Learning. Projektarbeits-Abschlussvortrag. Su-
pervisors: Thomy Phan, Thomas Gabor. URL: https://www.mobile.ifi.lmu.
de/lehre/oberseminar/?date=2021-04-08.

Guimerà Cuevas, Felip, Thomy Phan, and Helmut Schmid (2023). “Adaptive Bi-
nonlinear Neural Networks Based on Complex Numbers with Weights Con-
strained Along the Unit Circle”. In: Pacific-Asia Conference on Knowledge Discovery
and Data Mining. Springer, pp. 355–366.

Guimerà Cuevas, Felip and Helmut Schmid (n.d.). “αMax-B-CUBED: A Supervised
Metric for Addressing Completeness and Uncertainty in Cluster Evaluation”. In:
().

— (2024a). “Calibration Misalignment as a Post-hoc Approach for Out-of-Distribution
Detection in Deep Neural Networks”. In: Proceedings of the International Conference
on Pattern Recognition and Artificial Intelligence (ICPR-AI). URL: https://brain.
korea.ac.kr/icprai2024/acceptedpapers.php.

https://www.mobile.ifi.lmu.de/lehre/oberseminar/?date=2021-04-08
https://www.mobile.ifi.lmu.de/lehre/oberseminar/?date=2021-04-08
https://brain.korea.ac.kr/icprai2024/acceptedpapers.php
https://brain.korea.ac.kr/icprai2024/acceptedpapers.php

Bibliography 307

— (2024b). “Robust Non-linear Normalization of Heterogeneous Feature Distribu-
tions with Adaptive Tanh-Estimators”. In: The 27th International Conference on Ar-
tificial Intelligence and Statistics (AISTATS). Accepted and scheduled for publica-
tion after the conference proceedings (https://aistats.org).

Gunning, David et al. (2019). “XAI—Explainable artificial intelligence”. In: Science
robotics 4.37, eaay7120.

Guo, Chuan et al. (2017). “On calibration of modern neural networks”. In: Interna-
tional conference on machine learning. PMLR, pp. 1321–1330.

Gurney, Kevin (2018). An introduction to neural networks. CRC press.
Haas, Peter J (2016). “Data-stream sampling: Basic techniques and results”. In: Data

Stream Management: Processing High-Speed Data Streams, pp. 13–44.
Hadi, Muhammad Usman et al. (2023). “A survey on large language models: Appli-

cations, challenges, limitations, and practical usage”. In: TechRxiv.
Hammersley, John (2013). Monte carlo methods. Springer Science & Business Media.
Hampel, Frank R (1973). “Robust estimation: A condensed partial survey”. In: Zeitschrift

für Wahrscheinlichkeitstheorie und verwandte Gebiete 27.2, pp. 87–104.
— (1974). “The influence curve and its role in robust estimation”. In: Journal of the

american statistical association 69.346, pp. 383–393.
Hampel, Frank R et al. (2011). Robust statistics: the approach based on influence functions.

Vol. 196. John Wiley & Sons.
Han, Songqiao et al. (2022). “Adbench: Anomaly detection benchmark”. In: Advances

in Neural Information Processing Systems 35, pp. 32142–32159.
Hand, David J (2007). “Principles of data mining”. In: Drug safety 30.7, pp. 621–622.
Hasani, Ramin et al. (2021). “Liquid time-constant networks”. In: Proceedings of the

AAAI Conference on Artificial Intelligence. Vol. 35. 9, pp. 7657–7666.
Haugeland, John (1997). Mind design II: philosophy, psychology, artificial intelligence.

MIT press.
Hawkins, Douglas M (2004). “The problem of overfitting”. In: Journal of chemical in-

formation and computer sciences 44.1, pp. 1–12.
He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–
778.

Head, Cari Beth et al. (2023). “Large language model applications for evaluation: Op-
portunities and ethical implications”. In: New Directions for Evaluation 2023.178-
179, pp. 33–46.

Healy, Kieran (2018). Data visualization: a practical introduction. Princeton University
Press.

Hessel, Jack et al. (2021). “Clipscore: A reference-free evaluation metric for image
captioning”. In: arXiv preprint arXiv:2104.08718.

Heusden, Ruben van, Jaap Kamps, and Maarten Marx (2022). “BCubed Revisited:
Elements Like Me”. In: Proceedings of the 2022 ACM SIGIR International Conference
on Theory of Information Retrieval, pp. 127–132.

Hinkley, David V (1973). Robust Estimates of Location: Survey and Advances.
Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean (2015). “Distilling the knowledge in a

neural network”. In: arXiv preprint arXiv:1503.02531.
Hinton, Geoffrey E and Ruslan R Salakhutdinov (2006). “Reducing the dimensional-

ity of data with neural networks”. In: science 313.5786, pp. 504–507.
Hirose, Akira (1992). “Dynamics of fully complex-valued neural networks”. In: Elec-

tronics letters 28.16, pp. 1492–1494.
— (2003). Complex-valued neural networks: theories and applications. Vol. 5. World Sci-

entific.

https://aistats.org

308 Bibliography

Hirose, Akira (2012). Complex-valued neural networks. Vol. 400. Springer Science &
Business Media.

Hjaltason, Gisli R. and Hanan Samet (2003). “Properties of embedding methods for
similarity searching in metric spaces”. In: IEEE Transactions on Pattern Analysis
and machine intelligence 25.5, pp. 530–549.

Holtzman, Ari et al. (2019). “The curious case of neural text degeneration”. In: arXiv
preprint arXiv:1904.09751.

Hong, Huiting et al. (2020). “An attention-based graph neural network for hetero-
geneous structural learning”. In: Proceedings of the AAAI conference on artificial
intelligence. Vol. 34. 04, pp. 4132–4139.

Hotho, Andreas, Andreas Nürnberger, and Gerhard Paaß (2005). “A brief survey of
text mining.” In: Ldv Forum. Vol. 20. 1. Citeseer, pp. 19–62.

Hsu, Yen-Chang et al. (2020). “Generalized odin: Detecting out-of-distribution image
without learning from out-of-distribution data”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10951–10960.

Hu, Renjun et al. (2016). “An embedding approach to anomaly detection”. In: 2016
IEEE 32nd International Conference on Data Engineering (ICDE). IEEE, pp. 385–396.

Hu, Ziniu et al. (2020). “Heterogeneous graph transformer”. In: Proceedings of the web
conference 2020, pp. 2704–2710.

Huang, Peihao et al. (2014). “Deep embedding network for clustering”. In: 2014 22nd
International conference on pattern recognition. IEEE, pp. 1532–1537.

Huang, Xiaowei et al. (2017). “Safety verification of deep neural networks”. In: In-
ternational conference on computer aided verification. Springer, pp. 3–29.

Hunt, Kenneth J et al. (1992). “Neural networks for control systems—a survey”. In:
Automatica 28.6, pp. 1083–1112.

Indyk, Piotr and Rajeev Motwani (1998). “Approximate nearest neighbors: towards
removing the curse of dimensionality”. In: Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pp. 604–613.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep
network training by reducing internal covariate shift”. In: International conference
on machine learning. PMLR, pp. 448–456.

Izmailov, Pavel et al. (2018). “Averaging weights leads to wider optima and better
generalization”. In: arXiv preprint arXiv:1803.05407.

Jabbar, H and Rafiqul Zaman Khan (2015). “Methods to avoid over-fitting and under-
fitting in supervised machine learning (comparative study)”. In: Computer Sci-
ence, Communication and Instrumentation Devices, pp. 163–172.

Jain, Anil, Karthik Nandakumar, and Arun Ross (2005). “Score normalization in mul-
timodal biometric systems”. In: Pattern recognition 38.12, pp. 2270–2285.

Jaiswal, Ashish et al. (2021). “A survey on contrastive self-supervised learning”. In:
Technologies 9.1, p. 2.

Jang, Eric, Shixiang Gu, and Ben Poole (2016). “Categorical reparameterization with
gumbel-softmax”. In: arXiv preprint arXiv:1611.01144.

Jayalakshmi, T and A Santhakumaran (2011). “Statistical normalization and back
propagation for classification”. In: International Journal of Computer Theory and En-
gineering 3.1, pp. 1793–8201.

Jayaram, Rajesh, David P Woodruff, and Samson Zhou (2022). “Truly perfect sam-
plers for data streams and sliding windows”. In: Proceedings of the 41st ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 29–40.

Kaddour, Jean et al. (2023). “Challenges and applications of large language models”.
In: arXiv preprint arXiv:2307.10169.

Bibliography 309

Kaelbling, Leslie Pack, Michael L Littman, and Andrew W Moore (1996). “Reinforce-
ment learning: A survey”. In: Journal of artificial intelligence research 4, pp. 237–285.

Kainen, Paul C (1997). “Utilizing geometric anomalies of high dimension: When
complexity makes computation easier”. In: Computer Intensive Methods in Control
and Signal Processing. Springer, pp. 283–294.

Kalyan, Katikapalli Subramanyam, Ajit Rajasekharan, and Sivanesan Sangeetha (2021).
“Ammus: A survey of transformer-based pretrained models in natural language
processing”. In: arXiv preprint arXiv:2108.05542.

Kapil, Gayatri, Alka Agrawal, and RA Khan (2016). “A study of big data character-
istics”. In: 2016 International Conference on Communication and Electronics Systems
(ICCES). IEEE, pp. 1–4.

Ke, Guolin, Di He, and Tie-Yan Liu (2020). “Rethinking positional encoding in lan-
guage pre-training”. In: arXiv preprint arXiv:2006.15595.

Ke, Zhanghan et al. (2019). “Dual student: Breaking the limits of the teacher in semi-
supervised learning”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 6728–6736.

Kendall, Alex, Yarin Gal, and Roberto Cipolla (2018). “Multi-task learning using un-
certainty to weigh losses for scene geometry and semantics”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp. 7482–7491.

Khan, Arif Ali et al. (2021a). “Ethics of AI: A Systematic Literature Review of Princi-
ples and Challenges”. In: arXiv preprint arXiv:2109.07906.

Khan, Dost Muhammad et al. (2021b). “A New Efficient Redescending M-Estimator
for Robust Fitting of Linear Regression Models in the Presence of Outliers”. In:
Mathematical Problems in Engineering 2021.

Khan, Salman et al. (2021c). “Transformers in vision: A survey”. In: arXiv preprint
arXiv:2101.01169.

Khanum, Memoona et al. (2015). “A survey on unsupervised machine learning algo-
rithms for automation, classification and maintenance”. In: International Journal
of Computer Applications 119.13.

King, Gary and Langche Zeng (2001). “Logistic regression in rare events data”. In:
Political analysis 9.2, pp. 137–163.

Kingma, Diederik P and Jimmy Ba (2014). “Adam: A method for stochastic optimiza-
tion”. In: arXiv preprint arXiv:1412.6980.

Kingma, Durk P, Tim Salimans, and Max Welling (2015). “Variational dropout and
the local reparameterization trick”. In: Advances in neural information processing
systems 28.

Kitaev, Nikita, Łukasz Kaiser, and Anselm Levskaya (2020). “Reformer: The efficient
transformer”. In: arXiv preprint arXiv:2001.04451.

Klambauer, Günter et al. (2017). “Self-normalizing neural networks”. In: Advances in
neural information processing systems 30.

Kleinberg, Jon (2002). “An impossibility theorem for clustering”. In: Advances in neu-
ral information processing systems 15.

Kocmi, Tom and Ondřej Bojar (2017). “An exploration of word embedding initializa-
tion in deep-learning tasks”. In: arXiv preprint arXiv:1711.09160.

Koehrsen, Will (2018). “Overfitting vs. underfitting: A complete example”. In: To-
wards Data Science.

Kolajo, Taiwo, Olawande Daramola, and Ayodele Adebiyi (2019). “Big data stream
analysis: a systematic literature review”. In: Journal of Big Data 6.1, p. 47.

Komić, Jasmin (2011). “Harmonic Mean”. In: International Encyclopedia of Statistical
Science. Ed. by Miodrag Lovric. Berlin, Heidelberg: Springer Berlin Heidelberg,

310 Bibliography

pp. 622–624. ISBN: 978-3-642-04898-2. DOI: 10.1007/978-3-642-04898-2_645.
URL: https://doi.org/10.1007/978-3-642-04898-2_645.

Köppen, Mario (2000). “The curse of dimensionality”. In: 5th Online World Conference
on Soft Computing in Industrial Applications (WSC5). Vol. 1, pp. 4–8.

Kosub, Sven (2019). “A note on the triangle inequality for the Jaccard distance”. In:
Pattern Recognition Letters 120, pp. 36–38.

Krause, Jonathan et al. (2017). “A Hierarchical Approach for Generating Descriptive
Image Paragraphs”. In: Computer Vision and Patterm Recognition (CVPR).

Kriegel, Hans-Peter et al. (2011). “Interpreting and unifying outlier scores”. In: Pro-
ceedings of the 2011 SIAM International Conference on Data Mining. SIAM, pp. 13–
24.

Krizhevsky, Alex, Geoffrey Hinton, et al. (2009). “Learning multiple layers of fea-
tures from tiny images”. In.

Kuhn, Max, Kjell Johnson, et al. (2013). Applied predictive modeling. Vol. 26. Springer.
Kull, Meelis, Telmo Silva Filho, and Peter Flach (2017). “Beta calibration: a well-

founded and easily implemented improvement on logistic calibration for binary
classifiers”. In: Artificial Intelligence and Statistics. PMLR, pp. 623–631.

Kull, Meelis et al. (2019). “Beyond temperature scaling: Obtaining well-calibrated
multi-class probabilities with dirichlet calibration”. In: Advances in neural infor-
mation processing systems 32.

Kuroe, Yasuaki, Mitsuo Yoshid, and Takehiro Mori (2003). “On activation functions
for complex-valued neural networks—existence of energy functions—”. In: Ar-
tificial Neural Networks and Neural Information Processing—ICANN/ICONIP 2003.
Springer, pp. 985–992.

Laine, Samuli and Timo Aila (2016). “Temporal ensembling for semi-supervised
learning”. In: arXiv preprint arXiv:1610.02242.

Latha, L and S Thangasamy (2011). “Efficient approach to normalization of multi-
modal biometric scores”. In: International Journal of Computer Applications 32.10,
pp. 57–64.

Learning, Semi-Supervised (2006). “Semi-Supervised Learning”. In: CSZ2006. html.
LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep learning”. In: na-

ture 521.7553, pp. 436–444.
LeCun, Yann et al. (1989). “Backpropagation applied to handwritten zip code recog-

nition”. In: Neural computation 1.4, pp. 541–551.
LeCun, Yann A et al. (2012). “Efficient backprop”. In: Neural networks: Tricks of the

trade. Springer, pp. 9–48.
Lee, John A and Michel Verleysen (2007). Nonlinear dimensionality reduction. Springer

Science & Business Media.
Leofante, Francesco et al. (2018). “Automated verification of neural networks: Ad-

vances, challenges and perspectives”. In: arXiv preprint arXiv:1805.09938.
Leonowicz, Zbigniew, Juha Karvanen, and Sergei L Shishkin (2005). “Trimmed es-

timators for robust averaging of event-related potentials”. In: Journal of neuro-
science methods 142.1, pp. 17–26.

Lester, Brian, Rami Al-Rfou, and Noah Constant (2021). “The power of scale for
parameter-efficient prompt tuning”. In: arXiv preprint arXiv:2104.08691.

Leung, Henry and Simon Haykin (1991). “The complex backpropagation algorithm”.
In: IEEE Transactions on signal processing 39.9, pp. 2101–2104.

Leusin, Matheus E., Bjoern Jindra, and Daniel S. Hain (2021). “An evolutionary view
on the emergence of Artificial Intelligence”. In: arXiv preprint arXiv:2102.00233.

https://doi.org/10.1007/978-3-642-04898-2_645
https://doi.org/10.1007/978-3-642-04898-2_645

Bibliography 311

Li, Boyi et al. (2021a). “On feature normalization and data augmentation”. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 12383–12392.

Li, Chaoqun and Hongwei Li (2010). “A Survey of Distance Metrics for Nominal
Attributes.” In: J. Softw. 5.11, pp. 1262–1269.

Li, Fan, Nick Ruijs, and Yuan Lu (2023). “Ethics AI: A Systematic Review on Ethical
Concerns and Related Strategies for Designing with AI in Healthcare”. In: AI 4.1,
pp. 28–53. DOI: 10.3390/ai4010003.

Li, Hao et al. (2018a). “Visualizing the loss landscape of neural nets”. In: Advances in
neural information processing systems 31.

Li, Minghao et al. (2021b). “Trocr: Transformer-based optical character recognition
with pre-trained models”. In: arXiv preprint arXiv:2109.10282.

Li, Xiang Lisa and Percy Liang (2021). “Prefix-tuning: Optimizing continuous prompts
for generation”. In: arXiv preprint arXiv:2101.00190.

Li, Xiucheng et al. (2018b). “Deep representation learning for trajectory similarity
computation”. In: 2018 IEEE 34th international conference on data engineering (ICDE).
IEEE, pp. 617–628.

Li, Yujia et al. (2015). “Gated graph sequence neural networks”. In: arXiv preprint
arXiv:1511.05493.

Li, Yuxi (2017). “Deep reinforcement learning: An overview”. In: arXiv preprint arXiv:1701.07274.
Li, Zengyi et al. (2022). “Neural manifold clustering and embedding”. In: arXiv

preprint arXiv:2201.10000.
Liang, Chunquan, Mei Li, and Bin Liu (2019). “Online computing quantile sum-

maries over uncertain data streams”. In: IEEE Access 7, pp. 10916–10926.
Liang, Shiyu, Yixuan Li, and Rayadurgam Srikant (2017). “Enhancing the reliabil-

ity of out-of-distribution image detection in neural networks”. In: arXiv preprint
arXiv:1706.02690.

Lillicrap, Timothy P and Adam Santoro (2019). “Backpropagation through time and
the brain”. In: Current opinion in neurobiology 55, pp. 82–89.

Lillicrap, Timothy P et al. (2020). “Backpropagation and the brain”. In: Nature Re-
views Neuroscience 21.6, pp. 335–346.

Lin, Tianyang et al. (2022). “A survey of transformers”. In: AI Open.
Lin, Tsung-Yi et al. (2014). “Microsoft coco: Common objects in context”. In: European

conference on computer vision. Springer, pp. 740–755.
Lin, Tsung-Yi et al. (2017). “Focal loss for dense object detection”. In: Proceedings of

the IEEE international conference on computer vision, pp. 2980–2988.
Lin, X. et al. (2004). “Continuously maintaining quantile summaries of the most re-

cent N elements over a data stream”. In: Proceedings. 20th International Conference
on Data Engineering, pp. 362–373. DOI: 10.1109/ICDE.2004.1320011.

Little, Gordon R, Steven C Gustafson, and Robert A Senn (1990). “Generalization
of the backpropagation neural network learning algorithm to permit complex
weights”. In: Applied Optics 29.11, pp. 1591–1592.

Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou (2008). “Isolation forest”. In: 2008
eighth ieee international conference on data mining. IEEE, pp. 413–422.

Liu, Weibo et al. (2017). “A survey of deep neural network architectures and their
applications”. In: Neurocomputing 234, pp. 11–26.

Liu, Wen et al. (2018). “Future frame prediction for anomaly detection–a new base-
line”. In: Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 6536–6545.

Liu, Xiao et al. (2023). “GPT understands, too”. In: AI Open.

https://doi.org/10.3390/ai4010003
https://doi.org/10.1109/ICDE.2004.1320011

312 Bibliography

Liu, Ze et al. (2021). “Swin transformer: Hierarchical vision transformer using shifted
windows”. In: Proceedings of the IEEE/CVF international conference on computer vi-
sion, pp. 10012–10022.

Liu, Ze et al. (2022). “Swin transformer v2: Scaling up capacity and resolution”. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 12009–12019.

Loshchilov, Ilya and Frank Hutter (2017). “Decoupled weight decay regularization”.
In: arXiv preprint arXiv:1711.05101.

Lu, Yao et al. (2021). “Fantastically ordered prompts and where to find them: Over-
coming few-shot prompt order sensitivity”. In: arXiv preprint arXiv:2104.08786.

Lukasik, Michal et al. (2020). “Does label smoothing mitigate label noise?” In: Inter-
national Conference on Machine Learning. PMLR, pp. 6448–6458.

Lundberg, Scott M and Su-In Lee (2017). “A unified approach to interpreting model
predictions”. In: Advances in neural information processing systems 30.

Lupea, Valentin Mircea (2012). “Multi-Valued Neuron with a periodic activation
function—New learning strategy”. In: 2012 IEEE 8th International Conference on
Intelligent Computer Communication and Processing. IEEE, pp. 79–82.

L’heureux, Alexandra et al. (2017). “Machine learning with big data: Challenges and
approaches”. In: Ieee Access 5, pp. 7776–7797.

Ma, Xutai et al. (2019). “Monotonic multihead attention”. In: arXiv preprint arXiv:1909.12406.
Madhulatha, T Soni (2012). “An overview on clustering methods”. In: arXiv preprint

arXiv:1205.1117.
Magdy, Nehal et al. (2015). “Review on trajectory similarity measures”. In: 2015 IEEE

seventh international conference on Intelligent Computing and Information Systems
(ICICIS). IEEE, pp. 613–619.

Markou, Markos and Sameer Singh (2003). “Novelty detection: a review—part 1:
statistical approaches”. In: Signal processing 83.12, pp. 2481–2497.

Marx, Vivien (2013). “The big challenges of big data”. In: Nature 498.7453, pp. 255–
260.

Mayer, Ruben and Hans-Arno Jacobsen (2020). “Scalable deep learning on distributed
infrastructures: Challenges, techniques, and tools”. In: ACM Computing Surveys
(CSUR) 53.1, pp. 1–37.

McAfee, Andrew et al. (2012). “Big data: the management revolution”. In: Harvard
business review 90.10, pp. 60–68.

McCarthy, John (1998). “What is artificial intelligence?” In.
McConville, Ryan et al. (2021). “N2d:(not too) deep clustering via clustering the local

manifold of an autoencoded embedding”. In: 2020 25th International Conference on
Pattern Recognition (ICPR). IEEE, pp. 5145–5152.

McInnes, Leland, John Healy, and Steve Astels (2017a). “hdbscan: Hierarchical den-
sity based clustering.” In: J. Open Source Softw. 2.11, p. 205.

— (2017b). “hdbscan: Hierarchical density based clustering”. In: The Journal of Open
Source Software 2.11. DOI: 10.21105/joss.00205. URL: https://doi.org/10.
21105%2Fjoss.00205.

McInnes, Leland, John Healy, and James Melville (2018). “Umap: Uniform mani-
fold approximation and projection for dimension reduction”. In: arXiv preprint
arXiv:1802.03426.

McKay, Michael D, Richard J Beckman, and William J Conover (2000). “A compar-
ison of three methods for selecting values of input variables in the analysis of
output from a computer code”. In: Technometrics 42.1, pp. 55–61.

Miller, James N (1993). “Tutorial review—Outliers in experimental data and their
treatment”. In: Analyst 118.5, pp. 455–461.

https://doi.org/10.21105/joss.00205
https://doi.org/10.21105%2Fjoss.00205
https://doi.org/10.21105%2Fjoss.00205

Bibliography 313

Minsker, Stanislav (2015). “Geometric median and robust estimation in Banach spaces”.
In: Bernoulli 21.4, pp. 2308–2335.

Minsky, Marvin (1961). “Steps toward artificial intelligence”. In: Proceedings of the
IRE 49.1, pp. 8–30.

Mises, RV and Hilda Pollaczek-Geiringer (1929). “Praktische Verfahren der Gleichungsauflö-
sung.” In: ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Ange-
wandte Mathematik und Mechanik 9.1, pp. 58–77.

Miyato, Takeru et al. (2018). “Spectral normalization for generative adversarial net-
works”. In: arXiv preprint arXiv:1802.05957.

Molnar, Christoph (2020). Interpretable machine learning. Lulu. com.
Moreno, Jose G and Gaël Dias (2015). “Adapted b-cubed metrics to unbalanced

datasets”. In: Proceedings of the 38th International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, pp. 911–914.

Morningstar, Warren et al. (2021). “Density of states estimation for out of distribu-
tion detection”. In: International Conference on Artificial Intelligence and Statistics.
PMLR, pp. 3232–3240.

Mu, Norman and Justin Gilmer (2019). “Mnist-c: A robustness benchmark for com-
puter vision”. In: arXiv preprint arXiv:1906.02337.

Muandet, Krikamol et al. (2016). “Kernel mean embedding of distributions: A review
and beyond”. In: arXiv preprint arXiv:1605.09522.

Muandet, Krikamol et al. (2017). “Kernel mean embedding of distributions: A review
and beyond”. In: Foundations and Trends® in Machine Learning 10.1-2, pp. 1–141.

Muhammad, Iqbal and Zhu Yan (2015). “SUPERVISED MACHINE LEARNING AP-
PROACHES: A SURVEY.” In: ICTACT Journal on Soft Computing 5.3.

Müller, Rafael, Simon Kornblith, and Geoffrey Hinton (2019). “When does label
smoothing help?” In: arXiv preprint arXiv:1906.02629.

Murtagh, Fionn and Pedro Contreras (2012). “Algorithms for hierarchical cluster-
ing: an overview”. In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery 2.1, pp. 86–97.

Nalisnick, Eric et al. (2018). “Do deep generative models know what they don’t
know?” In: arXiv preprint arXiv:1810.09136.

Nandakumar, Karthik et al. (2007). “Likelihood ratio-based biometric score fusion”.
In: IEEE transactions on pattern analysis and machine intelligence 30.2, pp. 342–347.

Neishi, Masato et al. (2017). “A bag of useful tricks for practical neural machine
translation: Embedding layer initialization and large batch size”. In: Proceedings
of the 4th Workshop on Asian Translation (WAT2017), pp. 99–109.

Newman, Mark EJ, Duncan J Watts, and Steven H Strogatz (2002). “Random graph
models of social networks”. In: Proceedings of the national academy of sciences 99.suppl
1, pp. 2566–2572.

Nickel, Maximilian, Lorenzo Rosasco, and Tomaso Poggio (2016). “Holographic em-
beddings of knowledge graphs”. In: Proceedings of the AAAI Conference on Artifi-
cial Intelligence. Vol. 30. 1.

Nickel, Maximilian et al. (2015). “A review of relational machine learning for knowl-
edge graphs”. In: Proceedings of the IEEE 104.1, pp. 11–33.

Nilsson, Nils J (2014). Principles of artificial intelligence. Morgan Kaufmann.
Nitta, Tohru (2004). “Orthogonality of decision boundaries in complex-valued neu-

ral networks”. In: Neural computation 16.1, pp. 73–97.
Niu, Zhaoyang, Guoqiang Zhong, and Hui Yu (2021). “A review on the attention

mechanism of deep learning”. In: Neurocomputing 452, pp. 48–62.
Oord, Aaron van den, Yazhe Li, and Oriol Vinyals (2018). “Representation learning

with contrastive predictive coding”. In: arXiv preprint arXiv:1807.03748.

314 Bibliography

OpenAI (2023). GPT-4 Technical Report. arXiv: 2303.08774 [cs.CL].
Ouali, Yassine, Céline Hudelot, and Myriam Tami (2020). “An overview of deep

semi-supervised learning”. In: arXiv preprint arXiv:2006.05278.
Paleyes, Andrei, Raoul-Gabriel Urma, and Neil D Lawrence (2022). “Challenges in

deploying machine learning: a survey of case studies”. In: ACM Computing Sur-
veys 55.6, pp. 1–29.

Panaretos, Victor M and Yoav Zemel (2019). “Statistical aspects of Wasserstein dis-
tances”. In: Annual review of statistics and its application 6, pp. 405–431.

Pang, Guansong et al. (2021). “Deep learning for anomaly detection: A review”. In:
ACM computing surveys (CSUR) 54.2, pp. 1–38.

Papadimitriou, Spiros et al. (2003). “Loci: Fast outlier detection using the local cor-
relation integral”. In: Proceedings 19th international conference on data engineering
(Cat. No. 03CH37405). IEEE, pp. 315–326.

Parmar, Jitendra et al. (2023). “Open-world machine learning: applications, chal-
lenges, and opportunities”. In: ACM Computing Surveys 55.10, pp. 1–37.

Parsons, Van L (2014). “Stratified sampling”. In: Wiley StatsRef: Statistics Reference
Online, pp. 1–11.

Paszke, Adam et al. (2017). “Automatic differentiation in pytorch”. In.
Penedo, Guilherme et al. (2023). “The RefinedWeb dataset for Falcon LLM: outper-

forming curated corpora with web data, and web data only”. In: arXiv preprint
arXiv:2306.01116.

Pennington, Jeffrey, Richard Socher, and Christopher D Manning (2014). “Glove:
Global vectors for word representation”. In: Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), pp. 1532–1543.

Perera, Pramuditha and Vishal M Patel (2019). “Deep transfer learning for multiple
class novelty detection”. In: Proceedings of the ieee/cvf conference on computer vision
and pattern recognition, pp. 11544–11552.

Perez, Luis and Jason Wang (2017). “The effectiveness of data augmentation in image
classification using deep learning”. In: arXiv preprint arXiv:1712.04621.

Pfahringer, Bernhard (2017). “Disjunctive Normal Form”. In: Encyclopedia of Machine
Learning and Data Mining. Ed. by Claude Sammut and Geoffrey I. Webb. Boston,
MA: Springer.

Philipp, George, Dawn Song, and Jaime G Carbonell (2017). “The exploding gra-
dient problem demystified-definition, prevalence, impact, origin, tradeoffs, and
solutions”. In: arXiv preprint arXiv:1712.05577.

Phillips, Jeff M and Suresh Venkatasubramanian (2011). “A gentle introduction to
the kernel distance”. In: arXiv preprint arXiv:1103.1625.

Pimentel, Marco AF et al. (2014). “A review of novelty detection”. In: Signal process-
ing 99, pp. 215–249.

Plastria, Frank (2011). “The Weiszfeld algorithm: proof, amendments, and exten-
sions”. In: Foundations of location analysis. Springer, pp. 357–389.

Platt, John et al. (1999). “Probabilistic outputs for support vector machines and com-
parisons to regularized likelihood methods”. In: Advances in large margin classi-
fiers 10.3, pp. 61–74.

Press, William H et al. (2007). Numerical recipes 3rd edition: The art of scientific comput-
ing. Cambridge university press.

Prince, S. (June 2022). Out-of-distribution detection I: anomaly detection. Borealis AI.
URL: https://www.borealisai.com/research- blogs/out- distribution-
detection-i-anomaly-detection/.

Pukelsheim, Friedrich (1994). “The three sigma rule”. In: The American Statistician
48.2, pp. 88–91.

https://arxiv.org/abs/2303.08774
https://www.borealisai.com/research-blogs/out-distribution-detection-i-anomaly-detection/
https://www.borealisai.com/research-blogs/out-distribution-detection-i-anomaly-detection/

Bibliography 315

Qian, Ning (1999). “On the momentum term in gradient descent learning algorithms”.
In: Neural networks 12.1, pp. 145–151.

Qian, Sheng et al. (2018). “Adaptive activation functions in convolutional neural net-
works”. In: Neurocomputing 272, pp. 204–212.

Radford, Alec et al. (2019). “Language models are unsupervised multitask learners”.
In: OpenAI blog 1.8, p. 9.

Radford, Alec et al. (2021). “Learning transferable visual models from natural lan-
guage supervision”. In: International conference on machine learning. PMLR, pp. 8748–
8763.

Rai, Pradeep and Shubha Singh (2010). “A survey of clustering techniques”. In: In-
ternational Journal of Computer Applications 7.12, pp. 1–5.

Ramdas, Aaditya, Nicolás García Trillos, and Marco Cuturi (2017). “On wasserstein
two-sample testing and related families of nonparametric tests”. In: Entropy 19.2,
p. 47.

Rand, William M (1971). “Objective criteria for the evaluation of clustering meth-
ods”. In: Journal of the American Statistical association 66.336, pp. 846–850.

Rao, Singiresu S (2019). Engineering optimization: theory and practice. John Wiley &
Sons.

Rebrickable® (2022). Rebrickable® Database. URL: https://rebrickable.com/downloads/
(visited on 09/21/2022).

Ren, Jie et al. (2019). “Likelihood ratios for out-of-distribution detection”. In: Ad-
vances in neural information processing systems 32.

Reuther, Albert et al. (2020). “Survey of machine learning accelerators”. In: 2020 IEEE
high performance extreme computing conference (HPEC). IEEE, pp. 1–12.

Reynolds, Douglas A et al. (2009). “Gaussian mixture models.” In: Encyclopedia of
biometrics 741.659-663.

Ribaric, Slobodan and Ivan Fratric (2005). “A matching-score normalization tech-
nique for multimodal biometric systems”. In: Proceedings of Third COST 275 Workshop-
Biometrics on the Internet. University of Hertfordshire, pp. 55–58.

Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin (2016). “" Why should i
trust you?" Explaining the predictions of any classifier”. In: Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data min-
ing, pp. 1135–1144.

Riedmiller, Martin and Heinrich Braun (1993). “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm”. In: IEEE international confer-
ence on neural networks. IEEE, pp. 586–591.

Rillig, Matthias C et al. (2023). “Risks and benefits of large language models for the
environment”. In: Environmental Science & Technology 57.9, pp. 3464–3466.

Roberts, Arthur Wayne (1993). “Convex functions”. In: Handbook of Convex Geometry.
Elsevier, pp. 1081–1104.

Rodriguez, Alex and Alessandro Laio (2014). “Clustering by fast search and find of
density peaks”. In: science 344.6191, pp. 1492–1496.

Rokach, Lior and Oded Maimon (2005). “Clustering methods”. In: Data mining and
knowledge discovery handbook. Springer, pp. 321–352.

Rosales-Méndez, Henry and Yunior Ramírez-Cruz (2013). “Cice-bcubed: A new eval-
uation measure for overlapping clustering algorithms”. In: Iberoamerican Congress
on Pattern Recognition. Springer, pp. 157–164.

Rosenblatt, Frank (1957). The perceptron, a perceiving and recognizing automaton Project
Para. Cornell Aeronautical Laboratory.

https://rebrickable.com/downloads/

316 Bibliography

Rousseeuw, Peter J and Mia Hubert (2011). “Robust statistics for outlier detection”.
In: Wiley interdisciplinary reviews: Data mining and knowledge discovery 1.1, pp. 73–
79.

Ruder, Sebastian (2016). “An overview of gradient descent optimization algorithms”.
In: arXiv preprint arXiv:1609.04747.

Ruff, Lukas et al. (2018). “Deep One-Class Classification”. In: Proceedings of the 35th
International Conference on Machine Learning. Ed. by Jennifer Dy and Andreas
Krause. Vol. 80. Proceedings of Machine Learning Research. PMLR, pp. 4393–
4402. URL: https://proceedings.mlr.press/v80/ruff18a.html.

Rumelhart, David E et al. (1995). “Backpropagation: The basic theory”. In: Backprop-
agation: Theory, architectures and applications, pp. 1–34.

Rüschendorf, Ludger (1985). “The Wasserstein distance and approximation theo-
rems”. In: Probability Theory and Related Fields 70.1, pp. 117–129.

Ruspini, Enrique H (1969). “A new approach to clustering”. In: Information and con-
trol 15.1, pp. 22–32.

Russell, Stuart and Peter Norvig (2002). “Artificial intelligence: a modern approach”.
In.

Saerens, Marco, Patrice Latinne, and Christine Decaestecker (2002). “Adjusting the
outputs of a classifier to new a priori probabilities: a simple procedure”. In: Neu-
ral computation 14.1, pp. 21–41.

Saisubramanian, Sandhya, Sainyam Galhotra, and Shlomo Zilberstein (2020). “Bal-
ancing the tradeoff between clustering value and interpretability”. In: Proceedings
of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 351–357.

Sajjadi, Mehdi, Mehran Javanmardi, and Tolga Tasdizen (2016). “Regularization with
stochastic transformations and perturbations for deep semi-supervised learn-
ing”. In: Advances in neural information processing systems 29, pp. 1163–1171.

Salehi, Mohammadreza et al. (2021). “A unified survey on anomaly, novelty, open-
set, and out-of-distribution detection: Solutions and future challenges”. In: arXiv
preprint arXiv:2110.14051.

Samek, Wojciech, Thomas Wiegand, and Klaus-Robert Müller (2017). “Explainable
artificial intelligence: Understanding, visualizing and interpreting deep learning
models”. In: arXiv preprint arXiv:1708.08296.

Sanh, Victor et al. (2019). “DistilBERT, a distilled version of BERT: smaller, faster,
cheaper and lighter”. In: arXiv preprint arXiv:1910.01108.

Saravia, Elvis (Dec. 2022). “Prompt Engineering Guide”. In: https://github.com/dair-
ai/Prompt-Engineering-Guide.

Särndal, Carl-Erik, Bengt Swensson, and Jan Wretman (2003). Model assisted survey
sampling. Springer Science & Business Media.

Schlegl, Thomas et al. (2017). “Unsupervised anomaly detection with generative ad-
versarial networks to guide marker discovery”. In: International conference on in-
formation processing in medical imaging. Springer, pp. 146–157.

Schlichtkrull, Michael et al. (2018). “Modeling relational data with graph convolu-
tional networks”. In: European semantic web conference. Springer, pp. 593–607.

Schmidhuber, Jürgen (2015). “Deep learning in neural networks: An overview”. In:
Neural networks 61, pp. 85–117.

Schölkopf, Bernhard et al. (2001). “Estimating the support of a high-dimensional
distribution”. In: Neural computation 13.7, pp. 1443–1471.

Schubert, Erich et al. (2017). “DBSCAN revisited, revisited: why and how you should
(still) use DBSCAN”. In: ACM Transactions on Database Systems (TODS) 42.3, pp. 1–
21.

https://proceedings.mlr.press/v80/ruff18a.html

Bibliography 317

Schuster, Peter (2000). “Taming combinatorial explosion”. In: Proceedings of the Na-
tional Academy of Sciences 97.14, pp. 7678–7680.

Seliya, Naeem, Azadeh Abdollah Zadeh, and Taghi M Khoshgoftaar (2021). “A liter-
ature review on one-class classification and its potential applications in big data”.
In: Journal of Big Data 8.1, pp. 1–31.

Sellam, Thibault, Dipanjan Das, and Ankur P Parikh (2020). “BLEURT: Learning ro-
bust metrics for text generation”. In: arXiv preprint arXiv:2004.04696.

Sener, Ozan and Vladlen Koltun (2018). “Multi-task learning as multi-objective op-
timization”. In: arXiv preprint arXiv:1810.04650.

Shah, Sohil Atul and Vladlen Koltun (2017). “Robust continuous clustering”. In: Pro-
ceedings of the National Academy of Sciences 114.37, pp. 9814–9819.

— (2018). “Deep continuous clustering”. In: arXiv preprint arXiv:1803.01449.
Shao, Zhou et al. (2021). “Evolutions and trends of artificial intelligence (AI): re-

search, output, influence and competition”. In: Library Hi Tech.
Sharma, Sagar and Simone Sharma (2017). “Activation functions in neural networks”.

In: Towards Data Science 6.12, pp. 310–316.
Shaw, Peter, Jakob Uszkoreit, and Ashish Vaswani (2018). “Self-attention with rela-

tive position representations”. In: arXiv preprint arXiv:1803.02155.
Shen, Li et al. (2023). “On Efficient Training of Large-Scale Deep Learning Models: A

Literature Review”. In: arXiv preprint arXiv:2304.03589.
Shevlyakov, Georgy, Stephan Morgenthaler, and Alexander Shurygin (2008). “Re-

descending M-estimators”. In: Journal of Statistical Planning and Inference 138.10,
pp. 2906–2917.

Shin, Taylor et al. (2020). “Autoprompt: Eliciting knowledge from language models
with automatically generated prompts”. In: arXiv preprint arXiv:2010.15980.

Sibai, Rayane El et al. (2016). “Sampling algorithms in data stream environments”.
In: 2016 International Conference on Digital Economy (ICDEc), pp. 29–36. DOI: 10.
1109/ICDEC.2016.7563142.

Sidorov, Oleksii et al. (2020). “Textcaps: a dataset for image captioning with read-
ing comprehension”. In: Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part II 16. Springer, pp. 742–758.

Singh, Dalwinder and Birmohan Singh (2020). “Investigating the impact of data nor-
malization on classification performance”. In: Applied Soft Computing 97, p. 105524.

Singh, Karanjit and Shuchita Upadhyaya (2012). “Outlier detection: applications and
techniques”. In: International Journal of Computer Science Issues (IJCSI) 9.1, p. 307.

Singh, Yogendra Narain and Phalguni Gupta (2007). “Quantitative evaluation of
normalization techniques of matching scores in multimodal biometric systems”.
In: International Conference on Biometrics. Springer, pp. 574–583.

Sloman, Aaron (1971). “Interactions between philosophy and artificial intelligence:
The role of intuition and non-logical reasoning in intelligence”. In: Artificial intel-
ligence 2.3-4, pp. 209–225.

Smith, Helen (2021). “Clinical AI: opacity, accountability, responsibility and liabil-
ity”. In: AI SOCIETY 36, pp. 535–545. DOI: 10.1007/s00146-020-01019-6.

Smiti, Abir (2020). “A critical overview of outlier detection methods”. In: Computer
Science Review 38, p. 100306.

Smola, Alex et al. (2007). “A Hilbert space embedding for distributions”. In: Interna-
tional Conference on Algorithmic Learning Theory. Springer, pp. 13–31.

Sobol, Ilya M (2001). “Global sensitivity indices for nonlinear mathematical mod-
els and their Monte Carlo estimates”. In: Mathematics and computers in simulation
55.1-3, pp. 271–280.

https://doi.org/10.1109/ICDEC.2016.7563142
https://doi.org/10.1109/ICDEC.2016.7563142
https://doi.org/10.1007/s00146-020-01019-6

318 Bibliography

Sobolevsky, Stanislav (2021). “Hierarchical graph neural networks”. In: arXiv preprint
arXiv:2105.03388.

Song, Le et al. (2009). “Hilbert space embeddings of conditional distributions with
applications to dynamical systems”. In: Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 961–968.

Souvenir, Richard and Robert Pless (2005). “Manifold clustering”. In: Tenth IEEE In-
ternational Conference on Computer Vision (ICCV’05) Volume 1. Vol. 1. IEEE, pp. 648–
653.

Sra, Suvrit, Sebastian Nowozin, and Stephen J Wright (2012). Optimization for machine
learning. Mit Press.

Srivastava, Nitish et al. (2014). “Dropout: a simple way to prevent neural networks
from overfitting”. In: The journal of machine learning research 15.1, pp. 1929–1958.

Su, Han et al. (2020). “A survey of trajectory distance measures and performance
evaluation”. In: The VLDB Journal 29, pp. 3–32.

Subasi, Abdulhamit (2020). “Chapter 2 - Data preprocessing”. In: Practical Machine
Learning for Data Analysis Using Python. Ed. by Abdulhamit Subasi. Academic
Press, pp. 27–89. ISBN: 978-0-12-821379-7. DOI: https://doi.org/10.1016/B978-
0-12-821379-7.00002-3. URL: https://www.sciencedirect.com/science/
article/pii/B9780128213797000023.

Sun, Shiliang et al. (2019). “A survey of optimization methods from a machine learn-
ing perspective”. In: IEEE transactions on cybernetics 50.8, pp. 3668–3681.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An introduction.
MIT press.

Suzuki, Kenji (2013). Artificial neural networks: Architectures and applications. BoD–
Books on Demand.

Swirszcz, Grzegorz, Wojciech Marian Czarnecki, and Razvan Pascanu (2016). “Local
minima in training of neural networks”. In: arXiv preprint arXiv:1611.06310.

Sze, Vivienne et al. (2017). “Hardware for machine learning: Challenges and oppor-
tunities”. In: 2017 IEEE Custom Integrated Circuits Conference (CICC). IEEE, pp. 1–
8.

Szegedy, Christian et al. (2015). “Going deeper with convolutions”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 1–9.

Szegedy, Christian et al. (2016). “Rethinking the inception architecture for computer
vision”. In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pp. 2818–2826.

Szegedy, Christian et al. (2017). “Inception-v4, inception-resnet and the impact of
residual connections on learning”. In: Thirty-first AAAI conference on artificial in-
telligence.

Tan, Xiaoyang and Bill Triggs (2010). “Enhanced local texture feature sets for face
recognition under difficult lighting conditions”. In: IEEE transactions on image
processing 19.6, pp. 1635–1650.

Tao, Yaguang et al. (2021). “A comparative analysis of trajectory similarity mea-
sures”. In: GIScience & Remote Sensing 58.5, pp. 643–669.

Tarvainen, Antti and Harri Valpola (2017). “Mean teachers are better role models:
Weight-averaged consistency targets improve semi-supervised deep learning re-
sults”. In: arXiv preprint arXiv:1703.01780.

Tay, Yi et al. (2020). “Efficient transformers: A survey”. In: arXiv preprint arXiv:2009.06732.
Teboul, A. (2023). Diabetes Health Indicators Dataset. https : / / www . kaggle . com /

datasets/alexteboul/diabetes-health-indicators-dataset.

https://doi.org/https://doi.org/10.1016/B978-0-12-821379-7.00002-3
https://doi.org/https://doi.org/10.1016/B978-0-12-821379-7.00002-3
https://www.sciencedirect.com/science/article/pii/B9780128213797000023
https://www.sciencedirect.com/science/article/pii/B9780128213797000023
https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset
https://www.kaggle.com/datasets/alexteboul/diabetes-health-indicators-dataset

Bibliography 319

Tenenbaum, Joshua B, Vin De Silva, and John C Langford (2000). “A global geo-
metric framework for nonlinear dimensionality reduction”. In: science 290.5500,
pp. 2319–2323.

Thomas, Georg B (1992). “Calculus and analytic geometry”. In: Massachusetts Insti-
tute of Technology, Massachusetts, USA, Addison-Wesley Publishing Company, ISBN:
0-201-60700-X.

Thompson, Neil C et al. (2020). “The computational limits of deep learning”. In:
arXiv preprint arXiv:2007.05558.

Thrun, Sebastian B (1992). “Efficient exploration in reinforcement learning”. In.
Tian, Jun (2003). “Reversible data embedding using a difference expansion”. In: IEEE

transactions on circuits and systems for video technology 13.8, pp. 890–896.
Tieleman, Tijmen, Geoffrey Hinton, et al. (2012). “Lecture 6.5-rmsprop: Divide the

gradient by a running average of its recent magnitude”. In: COURSERA: Neural
networks for machine learning 4.2, pp. 26–31.

Tiwari, Ashish (2022). “Chapter 2 - Supervised learning: From theory to applica-
tions”. In: Artificial Intelligence and Machine Learning for EDGE Computing. Ed.
by Rajiv Pandey et al. Academic Press, pp. 23–32. ISBN: 978-0-12-824054-0. DOI:
https://doi.org/10.1016/B978- 0- 12- 824054- 0.00026- 5. URL: https:
//www.sciencedirect.com/science/article/pii/B9780128240540000265.

Tomašev, Nenad and Miloš Radovanović (2016). “Clustering evaluation in high-
dimensional data”. In: Unsupervised learning algorithms. Springer, pp. 71–107.

Toohey, Kevin and Matt Duckham (2015). “Trajectory similarity measures”. In: Sigspa-
tial Special 7.1, pp. 43–50.

Touvron, Hugo et al. (2023). “Llama 2: Open foundation and fine-tuned chat mod-
els”. In: arXiv preprint arXiv:2307.09288.

Trabelsi, Chiheb et al. (2017). “Deep complex networks”. In: arXiv preprint arXiv:1705.09792.
Tricomi, Francesco Giacomo, Arthur Erdélyi, et al. (1951). “The asymptotic expan-

sion of a ratio of gamma functions”. In: Pacific J. Math 1.1, pp. 133–142.
Turc, Iulia et al. (2019). “Well-read students learn better: On the importance of pre-

training compact models”. In: arXiv preprint arXiv:1908.08962.
Vaicenavicius, Juozas et al. (2019). “Evaluating model calibration in classification”.

In: The 22nd International Conference on Artificial Intelligence and Statistics. PMLR,
pp. 3459–3467.

Valpola, Harri (2015). “From neural PCA to deep unsupervised learning”. In: Ad-
vances in independent component analysis and learning machines. Elsevier, pp. 143–
171.

Van Der Maaten, Laurens, Eric Postma, Jaap Van den Herik, et al. (2009). “Dimen-
sionality reduction: a comparative”. In: J Mach Learn Res 10.66-71, p. 13.

Van Dyk, David A and Xiao-Li Meng (2001). “The art of data augmentation”. In:
Journal of Computational and Graphical Statistics 10.1, pp. 1–50.

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural in-
formation processing systems, pp. 5998–6008.

Veličković, Petar et al. (2017). “Graph attention networks”. In: arXiv preprint arXiv:1710.10903.
Vellido, Alfredo, Paulo JG Lisboa, and J Vaughan (1999). “Neural networks in busi-

ness: a survey of applications (1992–1998)”. In: Expert Systems with applications
17.1, pp. 51–70.

Villalobos, Pablo et al. (2022). “Machine learning model sizes and the parameter
gap”. In: arXiv preprint arXiv:2207.02852.

Vincent, Pascal et al. (2010). “Stacked denoising autoencoders: Learning useful rep-
resentations in a deep network with a local denoising criterion.” In: Journal of
machine learning research 11.12.

https://doi.org/https://doi.org/10.1016/B978-0-12-824054-0.00026-5
https://www.sciencedirect.com/science/article/pii/B9780128240540000265
https://www.sciencedirect.com/science/article/pii/B9780128240540000265

320 Bibliography

Vitter, Jeffrey S (1985). “Random sampling with a reservoir”. In: ACM Transactions on
Mathematical Software (TOMS) 11.1, pp. 37–57.

Von Luxburg, Ulrike (2007). “A tutorial on spectral clustering”. In: Statistics and com-
puting 17, pp. 395–416.

Wan, Li et al. (2013). “Regularization of neural networks using dropconnect”. In:
International conference on machine learning. PMLR, pp. 1058–1066.

Wang, Biao et al. (2023). “Selective Feature Bagging of one-class classifiers for nov-
elty detection in high-dimensional data”. In: Engineering Applications of Artificial
Intelligence 120, p. 105825.

Wang, Fei-Yue et al. (2016a). “Where does AlphaGo go: From church-turing thesis
to AlphaGo thesis and beyond”. In: IEEE/CAA Journal of Automatica Sinica 3.2,
pp. 113–120.

Wang, Haozhou et al. (2013). “An effectiveness study on trajectory similarity mea-
sures”. In: Proceedings of the Twenty-Fourth Australasian Database Conference-Volume
137, pp. 13–22.

Wang, Hongzhi, Mohamed Jaward Bah, and Mohamed Hammad (2019). “Progress
in outlier detection techniques: A survey”. In: Ieee Access 7, pp. 107964–108000.

Wang, Sinong et al. (2020a). “Linformer: Self-attention with linear complexity”. In:
arXiv preprint arXiv:2006.04768.

Wang, Wei et al. (2016b). “Database meets deep learning: Challenges and opportu-
nities”. In: ACM SIGMOD Record 45.2, pp. 17–22.

Wang, Xiao et al. (2022a). “A survey on heterogeneous graph embedding: methods,
techniques, applications and sources”. In: IEEE Transactions on Big Data.

Wang, Xuezhi et al. (2022b). “Self-consistency improves chain of thought reasoning
in language models”. In: arXiv preprint arXiv:2203.11171.

Wang, Yi et al. (2020b). “Novelty detection and online learning for chunk data streams”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 43.7, pp. 2400–
2412.

Wang, Ziyu et al. (2016c). “Dueling network architectures for deep reinforcement
learning”. In: International conference on machine learning. PMLR, pp. 1995–2003.

Wegmann, Marc et al. (2021). “A review of systematic selection of clustering algo-
rithms and their evaluation”. In: arXiv preprint arXiv:2106.12792.

Wei, Jason et al. (2022). “Chain-of-thought prompting elicits reasoning in large lan-
guage models”. In: Advances in Neural Information Processing Systems 35, pp. 24824–
24837.

Weidinger, Laura et al. (2021). “Ethical and social risks of harm from language mod-
els”. In: arXiv preprint arXiv:2112.04359.

Weisstein, Eric W. (n.d.). “Sample Variance Computation.” In: MathWorld–A Wolfram
Web Resource (). URL: https://mathworld.wolfram.com/SampleVarianceComputation.
html.

Weiszfeld, Endre (1936). “Sur un problème de minimum dans l’espace”. In: Tohoku
Mathematical Journal, First Series 42, pp. 274–280.

Welford, BP (1962). “Note on a method for calculating corrected sums of squares and
products”. In: Technometrics 4.3, pp. 419–420.

Weng, Lilian (2017). “An Overview of Deep Learning for Curious People”. In: lilianweng.github.io/lil-
log. URL: https://lilianweng.github.io/lil-log/2017/06/21/an-overview-
of-deep-learning.html.

— (2019). “Self-Supervised Representation Learning”. In: lilianweng.github.io/lil-log.
URL: https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-
learning.html.

https://mathworld.wolfram.com/SampleVarianceComputation.html
https://mathworld.wolfram.com/SampleVarianceComputation.html
https://lilianweng.github.io/lil-log/2017/06/21/an-overview-of-deep-learning.html
https://lilianweng.github.io/lil-log/2017/06/21/an-overview-of-deep-learning.html
https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html
https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html

Bibliography 321

— (2021). “Learning with not Enough Data Part 1: Semi-Supervised Learning”. In:
lilianweng.github.io. URL: https://lilianweng.github.io/posts/2021-12-05-
semi-supervised/.

— (2023). “Prompt Engineering”. In: lilianweng.github.io. URL: https://lilianweng.
github.io/posts/2023-03-15-prompt-engineering/.

Wenzek, Guillaume et al. (2019). “CCNet: Extracting high quality monolingual datasets
from web crawl data”. In: arXiv preprint arXiv:1911.00359.

Winston., Patrick (2010). “MIT OpenCourseWare 6.034 Artificial Intelligence”. In.
Wolf, Thomas et al. (2020a). “Transformers: State-of-the-art natural language pro-

cessing”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pp. 38–45.

Wolf, Thomas et al. (Oct. 2020b). “Transformers: State-of-the-Art Natural Language
Processing”. In: Proceedings of the 2020 Conference on Empirical Methods in Natu-
ral Language Processing: System Demonstrations. Online: Association for Computa-
tional Linguistics, pp. 38–45. URL: https://www.aclweb.org/anthology/2020.
emnlp-demos.6.

Wong, Sebastien C et al. (2016). “Understanding data augmentation for classifica-
tion: when to warp?” In: 2016 international conference on digital image computing:
techniques and applications (DICTA). IEEE, pp. 1–6.

Wu, Xindong et al. (2013). “Data mining with big data”. In: IEEE transactions on
knowledge and data engineering 26.1, pp. 97–107.

Wu, Zonghan et al. (2020). “A comprehensive survey on graph neural networks”. In:
IEEE transactions on neural networks and learning systems 32.1, pp. 4–24.

Xiao, Guangxuan et al. (2023). “Smoothquant: Accurate and efficient post-training
quantization for large language models”. In: International Conference on Machine
Learning. PMLR, pp. 38087–38099.

Xiao, Qinfeng et al. (2021). “Unsupervised anomaly detection with distillated teacher-
student network ensemble”. In: Entropy 23.2, p. 201.

Xu, Dongkuan and Yingjie Tian (2015). “A comprehensive survey of clustering algo-
rithms”. In: Annals of Data Science 2.2, pp. 165–193.

Xu, Feiyu et al. (2019). “Explainable AI: A brief survey on history, research areas,
approaches and challenges”. In: Natural Language Processing and Chinese Comput-
ing: 8th CCF International Conference, NLPCC 2019, Dunhuang, China, October 9–14,
2019, Proceedings, Part II 8. Springer, pp. 563–574.

Xu, Keyulu et al. (2018). “How powerful are graph neural networks?” In: arXiv
preprint arXiv:1810.00826.

Xu, Rui and Don Wunsch (2008). Clustering. Vol. 10. John Wiley & Sons.
Xu, Rui and Donald Wunsch (2005). “Survey of clustering algorithms”. In: IEEE

Transactions on neural networks 16.3, pp. 645–678.
Yang, Jingkang et al. (2022). “OpenOOD: Benchmarking generalized out-of-distribution

detection”. In: arXiv preprint arXiv:2210.07242.
Yang, Peilun et al. (2021). “T3s: Effective representation learning for trajectory simi-

larity computation”. In: 2021 IEEE 37th International Conference on Data Engineer-
ing (ICDE). IEEE, pp. 2183–2188.

Yazan, Ersan and M Fatih Talu (2017). “Comparison of the stochastic gradient de-
scent based optimization techniques”. In: 2017 International Artificial Intelligence
and Data Processing Symposium (IDAP). IEEE, pp. 1–5.

Ye, Seonghyeon et al. (2023). “In-context instruction learning”. In: arXiv preprint
arXiv:2302.14691.

Ying, Xue (2019). “An overview of overfitting and its solutions”. In: Journal of physics:
Conference series. Vol. 1168. IOP Publishing, p. 022022.

https://lilianweng.github.io/posts/2021-12-05-semi-supervised/
https://lilianweng.github.io/posts/2021-12-05-semi-supervised/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

322 Bibliography

Yu, Yaodong et al. (2020). “Learning diverse and discriminative representations via
the principle of maximal coding rate reduction”. In: Advances in Neural Informa-
tion Processing Systems 33, pp. 9422–9434.

Yuan, Weizhe, Graham Neubig, and Pengfei Liu (2021). “Bartscore: Evaluating gen-
erated text as text generation”. In: Advances in Neural Information Processing Sys-
tems 34, pp. 27263–27277.

Yun, Seongjun et al. (2019). “Graph transformer networks”. In: Advances in neural
information processing systems 32.

Zadrozny, Bianca and Charles Elkan (2001). “Obtaining calibrated probability esti-
mates from decision trees and naive bayesian classifiers”. In: Icml. Vol. 1, pp. 609–
616.

— (2002). “Transforming classifier scores into accurate multiclass probability es-
timates”. In: Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pp. 694–699.

Zagoruyko, Sergey and Nikos Komodakis (2016). “Wide residual networks”. In:
arXiv preprint arXiv:1605.07146.

Zbontar, Jure et al. (2021). “Barlow twins: Self-supervised learning via redundancy
reduction”. In: arXiv preprint arXiv:2103.03230.

Zhang, Chuxu et al. (2019). “Heterogeneous graph neural network”. In: Proceedings
of the 25th ACM SIGKDD international conference on knowledge discovery & data min-
ing, pp. 793–803.

Zhang, Daokun et al. (2018). “Network representation learning: A survey”. In: IEEE
transactions on Big Data 6.1, pp. 3–28.

Zhang, Guoqiang Peter (2000). “Neural networks for classification: a survey”. In:
IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Re-
views) 30.4, pp. 451–462.

Zhang, Richard, Phillip Isola, and Alexei A Efros (2017). “Split-brain autoencoders:
Unsupervised learning by cross-channel prediction”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1058–1067.

Zhang*, Tianyi et al. (2020). “BERTScore: Evaluating Text Generation with BERT”. In:
International Conference on Learning Representations. URL: https://openreview.
net/forum?id=SkeHuCVFDr.

Zhang, Ziming and Venkatesh Saligrama (2015). “Zero-shot learning via semantic
similarity embedding”. In: Proceedings of the IEEE international conference on com-
puter vision, pp. 4166–4174.

Zhao, Yue, Zain Nasrullah, and Zheng Li (2019). “PyOD: A Python Toolbox for Scal-
able Outlier Detection”. In: Journal of Machine Learning Research 20.96, pp. 1–7.
URL: http://jmlr.org/papers/v20/19-011.html.

Zhao, Yue et al. (2021). “Suod: Accelerating large-scale unsupervised heterogeneous
outlier detection”. In: Proceedings of Machine Learning and Systems 3, pp. 463–478.

Zhong, Zhun et al. (2020). “Random erasing data augmentation”. In: Proceedings of
the AAAI Conference on Artificial Intelligence. Vol. 34. 07, pp. 13001–13008.

Zhou, Lina et al. (2017). “Machine learning on big data: Opportunities and chal-
lenges”. In: Neurocomputing 237, pp. 350–361.

Zhou, Sheng et al. (2022a). “A comprehensive survey on deep clustering: Taxonomy,
challenges, and future directions”. In: arXiv preprint arXiv:2206.07579.

Zhou, Yongchao et al. (2022b). “Large language models are human-level prompt
engineers”. In: arXiv preprint arXiv:2211.01910.

Zhou, Zhi-Hua (2018). “A brief introduction to weakly supervised learning”. In: Na-
tional science review 5.1, pp. 44–53.

https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr
http://jmlr.org/papers/v20/19-011.html

Bibliography 323

Zhu, Shichao et al. (2019). “Relation structure-aware heterogeneous graph neural
network”. In: 2019 IEEE international conference on data mining (ICDM). IEEE,
pp. 1534–1539.

Zhu, Xiaojin and Andrew B Goldberg (2009). “Introduction to semi-supervised learn-
ing”. In: Synthesis lectures on artificial intelligence and machine learning 3.1, pp. 1–
130.

Zhu, Xiaojin Jerry (2005). Semi-supervised learning literature survey. University of Wisconsin-
Madison Department of Computer Sciences.

Zhuang, Fuzhen et al. (2020). “A Comprehensive Survey on Transfer Learning”. In:
arXiv preprint arXiv:1911.02685.

	Declaration of Authorship
	Abstract
	Context & Overview (English)
	Kontext & Überblick (Deutsch)
	Context i Resum (Català)
	Acknowledgements
	Preface
	Contributions
	Research Motivation
	Research Scope
	Research Challenges
	Research Contribution Scope
	Research Contribution Summary

	Background
	Big Data
	Artificial Intelligence
	Definition & Philosophy
	Rule-based Systems
	Paradigms of Machine learning
	Unsupervised Learning
	Supervised Learning
	Self-Supervised Learning
	Reinforcement Learning
	Hybrid Learning Methods

	Weakly-Supervised Learning
	Challenges in Unsupervised Clustering Methods
	Rule-based vs. Machine Learning
	Model Generalization

	Data Encoding & Dimensionality
	The Curse & Blessing of Dimensionality
	The Curse of Dimensionality
	Distance Concentration
	Data Sparsity
	Combinatorics
	Other

	The Blessing of Dimensionality

	Data Augmentation
	Assessing Generated Data Quality

	Optimization
	Gradient Descent
	Back-Propagation

	Neural Networks
	Transformers
	Clustering & Kleinberg's Theorem
	Model Evaluation
	Generalization & Overfitting
	Clustering Evaluation
	Intrinsic Clustering Evaluation
	Extrinsic Clustering Evaluation & Uncertainty

	Motivation
	Neural Networks Based on Complex Numbers with Weights Constrained along the Unit Circle
	Deep Learning for Hierarchical Databases with Recursive One-to-Many Relations
	Addressing Uncertainty and Completeness in the B3 Cluster Evaluation Metric
	Automated Textual Description Generation of Clusters
	Normalization of Heterogeneous Feature Distributions
	Out-of-Distribution Detection
	Manifold Data Representation and Clustering
	Representative Data Stream Sampling for Trajectories

	Introduction
	Framing the Context: Use Cases, Challenges, & Data
	Framing the Context: Example Use Cases
	Plant Growth Tracking in Greenhouses: Multifaceted Observation Records
	Hierarchical Data Structures: Entities, Relationships, and Attributes

	Framing the Context: Formal Definition
	Composition of Multiple Hierarchical Data Sources
	Data Quality
	Data Processing
	Problem Statement

	Previous Methods Employed in Real-World Applications
	Concerns

	Machine Learning for Automated Error-Pattern Detection
	Challenges in Machine Learning
	Expensive Development
	Data & Need for Custom Tailoring
	Reasoning, Uncertainty, and Reliability

	Neural Networks Based on Complex Numbers with Weights Constrained along the Unit Circle
	Deep Learning for Hierarchical Databases with Recursive One-to-Many Relations
	Determining Representative Textual Labels for Clustering Accurate Sensor Data with Inexact Annotations
	Explainable and Interpretable AI
	Supervised Cluster Evaluation Metric

	Automated Textual Description Generation of Clusters
	Non-linear Normalization of Heterogeneous Feature Distributions with Adaptive Tanh-Estimators
	Transferring Knowledge Across Input Domains: Distilling Insights from Machine Learning Models Trained on Different Datasets
	Model Calibration for Out-of-Distribution Detection
	Manifold Data Representation and Clustering
	Representative Sampling in Data Streams

	Preceding Project Endeavors
	Overview
	Data Encoding
	Categorical Univalent Features
	Tabular Data
	Text Data

	Dimensionality Reduction
	Error-Pattern Inference

	Related Work
	Neural Networks Based on Complex Numbers
	Heterogeneous Graph Learning
	Robust Feature Normalization
	Model Output Calibration
	Supervised Clustering Evaluation
	Manifold Clustering
	Evaluating Generated Content against References
	BERT-score
	BART-score
	BLEURT-score

	Text Generation Strategies
	Large Language Models: Prompt Engineering
	Representative Sampling in Data Streams
	Background on Reservoir-Sampling
	Reservoir-Sampling
	Biased Reservoir-Sampling
	Decaying Reservoir Sampling
	Sliding Window Sampling
	Quantiles in Data Streams
	Spatio-Temporal Trajectories

	Related Work on Data Stream Sampling

	Methods
	Neural Networks Based on Complex Numbers with Weights Constrained along the Unit Circle
	Convolutional Layer
	Numerical Stability
	Weight Initialization
	Alternative Normalization Correction Factor
	Enhanced Complex Neurons with Linear Weight Scaling

	Data Representation & Encoding
	Hierarchical Data Interpretation
	Tree-Data Encoding
	Non-Hierarchical Entity Encoding for Feature Vectors
	Composite Graphs: Shared Data Structures for Reducing Memory Overhead & Ensuring Uniqueness
	Encoding Determinism

	Feature Pre-Processing
	Numeric Feature Normalization
	Ideal Spread Factor
	Trainable Spread Factor
	Spread Value

	Time-Stamps Encoding
	Ordinal Feature Encoding

	Tree-Data Augmentation
	Self-Supervised Contrastive Representation Learning on Tree Structures
	Loss Function
	Reconstruction- & Composition Loss: Auto-Encoders
	Similarity- & Contrast Loss: Embeddings
	Classification Loss
	Total Loss

	Neural Network Forward Call
	Embedding Layer
	Extraction Layer
	Batching
	Model Architecture
	Example
	Model Improvements
	Adaptive Look-up Embeddings
	Residual Attention Mechanism
	Inception Networks
	Siamese Networks
	Mean Teacher Networks
	Complex-Valued Neural Networks
	Label Smoothing
	Focal Smoothing
	Combining Focal- & Label smoothing
	Dropout
	Class Imbalance
	Feature Independence
	Lipschitz Continuity & Spectral Normalization
	Kernel Embeddings & Pooling Layer

	Efficient Contrastive Representation Learning
	Negative Sampling-Based Contrastiveness
	Class-Label Based Contrastive Representation Learning
	Mean-Teacher Average Class-Label Contrastiveness

	Residual Information Preservation
	Fully Connected Residual Blocks and Basis Learning

	Training & Inference
	Full Model Composition

	Concatenated Representation Learning
	Handling Duplicate Instances
	Memory Efficient Similarity Search
	Optimized Memory-Efficient Graph Batching

	Manifold Data Representation and Clustering
	Taylor Approximation Smoothing
	Manifold Clustering

	Clustering Strategy
	Supervised Clustering Quality Evaluation
	Background
	Max-B-Cubed: A Supervised Metric for Addressing Uncertainty in Cluster Evaluation.
	Extension to Imbalanced Data Sets

	Automated Textual Description Generation of Clusters
	Formal Specification
	Contrastive Language-Image-Based Pooling
	CLIP Gradient-Guided Pooling Search
	CLIP Weighted Pooling

	Synthetic Boosting of Target Captions
	Caption Selection
	Quality Evaluation

	Prompt Manipulation on Large Language Models for Customized Text Summarization and Structured Analysis
	Determining Representative Textual Labels for Clustering Accurate Sensor Data with Inexact Annotations
	Harmonic Mean of Intuitive Heuristics
	Cluster Centrality Measures for HDBSCAN

	Lowest Auto-Regressive Modelling Loss over Cluster Embedding
	Example of a Loss Metric Explanation

	Transferring Knowledge across Input Domains: Distilling Insights from Machine Learning Models Trained on Different Datasets
	Model Output Calibration & Novelty Detection
	Score Adjustment
	Calibration Discrepancy with Label Aggregations
	Hybrid ODD: Embedding- and Prediction-based

	Percentile Ranked Scores
	Representative Data Stream Sampling for Trajectories
	Decaying Quantile Chain-Sampling
	Full Quantile-Sampling

	Experimental Methods
	Hardware
	High Dimensional Data Visualization
	Adaptive Complex-Valued Bi-Nonlinear Neural Networks
	Adaptive Tanh-Normalization
	Determining Representative Textual Labels for Clustering Accurate Sensor Data with Inexact Annotations
	Quality Assessment of Textual Generations

	Model Output Calibration & Novelty Detection

	Analysis & Results
	Adaptive Complex-Valued Bi-Nonlinear Neural Networks
	XOR-Problem
	Minimal Networks & Expressive Power
	Classification

	Loss-Weighting
	Embeddings
	Clustering Representations
	Hierarchical Dependent Embedding Representations
	Large Errors at Root-Nodes (Upper Levels)
	Large Errors at Leaf-Nodes (Lower Levels)
	Implications

	Deep Learning for Hierarchical Databases with Recursive One-to-Many Relations
	Unsupervised Deep Clustering
	Supervised Classification
	Aggregation Function

	Manifold Clustering & Embedding
	Preservation of Identifying Structures
	Taylor Approximation Error During Training

	Taylor Approximated Clustering
	Non-Smoothness of DNN Landscapes and Taylor Approximation

	Supervised Max-B3 Clustering Evaluation Metric
	Comparison of Max-B3 and Traditional B3 on Synthetic Data
	Imbalanced Data Set
	Evaluation of Automatic Uncertainty Determination
	Uncertainty Estimation and Extrapolation
	Results on Real-World Data

	Cluster Explainability using Natural Language
	Visual Illustration of Embedding Aggregations
	Generative Captioning Results of Aggregated Embedding Vectors
	Exploring Manifold Aggregation Strategies for Generating Representative Image Cluster Descriptions

	Normalization of Heterogeneous Feature distributions with Adaptive Tanh-Estimators
	Classification With Neural Networks
	Analytical Optimization

	Model Output Calibration & Novelty Detection
	Score Adjustment
	Results on Model Output Calibration & Novelty Detection

	Clustering Strategy: Prediction-based Sub-Clustering

	Discussion
	Neural Expressive Power & Bi-Nonlinear Complex-valued Based Neural Networks
	Hierarchical Heterogeneous Graph Neural Networks for Deep Learning on Recursive One-to-Many Databases
	Leveraging Knowledge Distillation and Domain Adaptation in Training for Transfer Learning
	Robust Non-linear Normalization of Heterogeneous Feature Distributions with Adaptive Tanh-Estimators
	Supervised Max-B3 Clustering Evaluation Metric
	Determining Representative Textual Labels for Clustering Accurate Sensor Data with Inexact Annotations

	Automated Textual Description Generation of Clusters
	Misaligned Output Calibration for Out-of-Distribution Detection
	Representative Sampling in Data Streams
	Clustering on Latent Manifold Structures

	Summary & Conclusions
	Neural Architecture and Data Representation
	Complex-valued based Neural Networks
	Hierarchical Heterogeneous Graph Neural Networks
	Synthetic Data Augmentation for Tree Structures
	Contrastive Representation Learning & Loss-Weighting
	Concatenated Representation Learning & Separate Data Training

	Feature Pre-Processing & Representation Learning
	Robust Non-linear Normalization of Heterogeneous Feature Distributions with Adaptive Tanh-Estimators
	Completeness and Uncertainty in Cluster Evaluation
	Representation Learning and Manifold Clustering
	Manifold Aggregations of Latent Spaces for Generating Textual Descriptions of Clusters
	Determining Representative Textual Labels for Clustering Accurate Sensor Data with Inexact Annotations

	Knowledge Transfer, Outlier Detection, and Sampling
	Transfer Learning via Knowledge Distillation
	Misaligned Calibration for Out-of-Distribution Detection
	Representative Sampling in Data Streams

	Concluding Words

	Out-of-Distribution Detection
	Proofs

	Clustering
	Unsupervised Clustering of Hierarchical Databases
	Proofs
	Theorem 1
	Proposition 1
	Corollary 1
	Theorem 2
	Proposition 2
	Corollary 2
	Generalization to Multiple Clusters
	Proof of Coherence for Max-B3
	Proof of Non-Monotonicity
	Theorems' Inequality Implications
	Proof of -Plateau

	From Missteps to Milestones: Understanding Failed Attempts
	Failed Prototype Attempt: Automated Textual Description Generation
	Methods
	Training objective
	Cluster-wise gradient accumulation
	Prototype discussion

	Sensor-Driven Textual Observation Report Prediction
	Prototype Discussion

	Deutsche Zusammenfassung
	Zusammenfassung
	Forschungsmotivation
	Forschungsbereich
	Forschungsherausforderungen
	Beitragsumfang der Arbeit
	Zusammenfassung der Beiträge
	Neuronale Architektur und Datenrepräsentation
	Dimensionsreduktion und Darstellungssuche
	Datenintegration und Analyse

	Bibliography

