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Zusammenfassung

Zweidimensionale Übergangsmetall-Dichalcogenide (TMDs) sind geschichtete Halbleiter
mit einer hexagonalen Gitterstruktur, die sich im Grenzfall einer einzigen Monolage durch
stark gebundene Exzitonen auszeichnen. Deren hohe Oszillatorstärke in Verbindung mit
einem einzigartigen Valley-Freiheitsgrad macht diese Materialgruppe zu einem hervorragen-
den Kandidaten für die Untersuchung neuartiger Effekte der Licht-Materie-Wechselwirkung.
Die vertikale Kombination solcher hexagonaler Gitter mit variierender Gitterkonstante oder
kleiner relativer Verdrehung führt im Allgemeinen zu einem neuen, weitreichenden Moiré-
Übergitter, das ein periodisches Potenzial für Exzitonen und Ladungsträger bewirkt und
eine einzigartige Festkörperplattform für Studien der korrelierten Vielteilchenphysik bietet.

In dieser Arbeit wurden umfassende Untersuchungen von MoSe2/WS2 Van-der-Waals-
Heterostrukturen mittels optischer Spektroskopie sowie optischer Resonatoren mit hoher
Finesse bei kryogenen Temperaturen durchgeführt. Dabei dienten senkrechte elektrische
und magnetische Felder sowie Ladungsdotierung zur Erforschung der zu Grunde liegenden
Moiré-Exzitonen-Physik.

In konfokaler Reflektionsspektroskopie wurde die Vielzahl optischer Übergänge von
MoSe2/WS2 aufgedeckt. Diese wurden mithilfe eines effektiven Kontinuum-Modells anhand
der Exziton-Hybridisierung im elektrischen Feld als Intra- und Interlayer-Moiré-Exzitonen
identifiziert. Unter Elektronendotierung zeigten geladene Moiré-Exziton-Komplexe ein stark
nichtlineares Verhalten in senkrechten Magnetfeldern, was auf korrelierte magnetische Ord-
nung der Elektronenspins zurückzuführen ist. Durch die Analyse des Ladungsverhaltens
der Bilage mittels eines elektrostatischen Kondensatormodells konnte das Auftreten dieser
Coulomb-korrelierten Zustände mit der Elektronendichte innerhalb der einzelnen Monola-
gen in Verbindung gesetzt werden.

Gekoppelt an faserbasierte, durchstimmbare Fabry-Pérot Mikrokavitäten zeigten MoSe2/-
WS2 Moiré-Exzitonen Signaturen starker Licht-Materie-Wechselwirkung in Form von neu-
tralen und geladenen Moiré-Exziton-Polaritonen. Deren Verhalten wurde bei variieren-
der Elektronendichte in Abhängigkeit von der Resonanz-Verstimmung zwischen Photo-
nen und Exzitonen sowie als Funktion der optischen Anregungsleistung untersucht und
mittels eines gekoppelten Oszillatormodells analysiert. Hierbei zeigte sich eine verstärkte
leistungsabhängige Nichtlinearität im Vergleich zu Exziton-Polaritonen in isolierten TMD-
Monolagen. Ein weiteres Experiment nutzte einen offenen Mikrokavitätsaufbau mit Zugang
zu senkrechten Magnetfeldern um das Verhalten geladener Exziton-Polaritonen in korre-
lierter magnetischer Ordnung zu untersuchen. Deren Antwort auf korrelierten Magnetismus
unterschied sich aufgrund des erhöhten Maßes an Kontrolle durch die Mikrokavität von
dem charakteristischen Verhalten ungekoppelter geladener Moiré-Exzitonen.

Die Ergebnisse dieser Arbeit unterstreichen die Vielseitigkeit und Einzigartigkeit von
MoSe2/WS2 Heterobilagen für die Untersuchung von Moiré-induzierten Vielteilchenphäno-
menen, insbesondere im Bereich der starken Licht-Materie-Kopplung.

v





Abstract

Two-dimensional transition metal dichalcogenides (TMDs) are layered semiconductors with
a hexagonal lattice structure hosting tightly bound excitons. Their high oscillator strength,
combined with a unique valley degree of freedom, makes this group of materials an out-
standing candidate for studying novel effects of light-matter interaction. Vertically stacking
hexagonal TMD layers with small lattice mismatch or rotational misalignment generally
results in a new, long-range moiré superlattice that introduces a periodic potential for exci-
tons and charge carriers, providing a unique solid-state platform for studies of correlated
many-body physics.

This thesis presents a comprehensive optical investigation of MoSe2/WS2 van der Waals
heterostructures. We explored the moiré exciton physics of this material in dual-gate field-
effect devices – subject to perpendicular electric and magnetic fields as well as charge
doping – both in optical spectroscopy and cavity-enhanced measurements at cryogenic
temperatures.

In confocal reflection spectroscopy, the low-energy optical transitions of MoSe2/WS2

could be discerned as intra- and interlayer moiré excitons, elucidated within an effective
continuum model by examining exciton hybridization as a function of the electric field. In
the presence of electron doping, charged moiré exciton complexes displayed highly nonlin-
ear behavior with varying out-of-plane magnetic fields, attributed to correlated magnetic
order of the electron spins. Analyzing the charging response through a capacitor model
linked the formation of these Coulomb-correlated states to the density of electrons per
moiré unit cell inside the individual monolayers.

To probe moiré excitons in the regime of strong light-matter interaction, we utilized a
fiber-based open Fabry-Pérot microcavity in a closed-cycle cryostat. We investigated the
formation of neutral and charged moiré exciton-polaritons and their behavior as a function
of the electron doping, cavity-exciton detuning and optical excitation power. Our findings
from a coupled oscillator model analysis reveal an enhanced power dependent nonlinearity
of moiré exciton-polaritons as compared to exciton-polaritons in bare TMD monolayers.
In a complementary experiment we leveraged an open microcavity setup with access to
out-of-plane magnetic fields to study the response of charged moiré exciton-polaritons
in the presence of correlated magnetic order. These polaritons unveiled an intriguing en-
hancement effect of the correlation-induced optical response compared to uncoupled moiré
excitons as a result of the cavity control.

The findings of our study underscore the versatility and uniqueness of MoSe2/WS2 heter-
obilayers as a platform for studying moiré-induced many-body phenomena, particularly in
the regime of strong light-matter coupling.
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Introduction 1
Understanding the intricate interactions of atoms or other elementary particles lies at the

heart of physics. In the words of Richard Feynman, "atoms are very special: they like cer-

tain particular partners, certain particular directions, and so on. It is the job of physics to

analyze why each one wants what it wants. At any rate, two oxygen atoms form, saturated

and happy, a molecule" [1]. In the first of his famous lectures, Feynman encapsulated the

essence of curiosity-driven research by examining the problem of interacting oxygen atoms.

Linus Pauling first described this interaction in 1931 as covalent bonding [2], marking an

early milestone in our understanding of atomic behavior. Just two decades ago, the idea

that covalent bonds in graphite could enable stable, isolated single atomic layers was unex-

pected. However, Andre Geim and Konstantin Novoselov, driven by their curiosity to explore

the unknown, succeeded in achieving exactly this: a single layer of carbon atoms that can

be separated from the bulk of van der Waals layers – so-called graphene. In doing so, they

opened up the field of two-dimensional (2D) materials for fundamental research exploring

the physics of elementary particles confined to two dimensions [3]. In the following years,

groundbreaking discoveries were made on graphene-based structures, including the obser-

vation of massless Dirac fermions [4], the quantum Hall effect [5, 6], and exceptional elec-

tron mobility [7], paving the way for future technologies. Transition metal dichalcogenides

(TMDs) emerged as another member of the 2D materials family, exhibiting a hexagonal

lattice structure similar to graphene. They are semiconductors with a direct bandgap in

the monolayer limit and provide intriguing optical properties for studying new aspects of

light-matter interaction [8].

Recently, particular interest captured the phenomenon that arises when two single atomic

layers with hexagonal lattices are stacked on top of each other – the formation of a moiré

lattice. This effect, originally observed in art and photography, occurs when two overlap-

ping patterns with different periodicity or a finite rotational misalignment interfere with

each other and create a new, visually apparent pattern. In such van der Waals moiré struc-
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1. INTRODUCTION

tures, elementary charges experience the effect of a periodic moiré potential in the lateral

dimension in addition to the vertical confinement. Exploiting this confinement to study

and control the interactions of elementary charges and engineer the electrical and optical

material properties on a nanoscale has opened new frontiers in the study of 2D materi-

als [9, 10]. The arrangement of a graphene-based moiré lattice has been implicated in the

emergence of superconductivity at specific “magic” twist angles where the charge carrier

density diverges due to the modulation of the material bandstructure by the moiré potential

[11, 12]. Similarly, in TMD-based moiré structures, the exciton bandstructure is modulated

[13–15], leading to the formation of moiré excitons localized at distinct positions within the

underlying superlattice [16, 17].

Moiré excitons are unique candidates for studying and controlling fundamental interac-

tions in the hosting moiré materials in different ways. Their sensitivity to external fields

and charge doping enabled the observation of correlated many-body phenomena emergent

in TMD moiré structures [18, 19]. The formation of Wigner crystals [20, 21] or correlated

Mott-insulator states [20, 22–27] at finite doping levels allowed to study aspects of Hubbard

model physics and correlation-induced magnetism [28, 29]. Furthermore, the confinement

of moiré excitons leads to enhanced exciton-exciton interactions and a modified optical

response [30, 31]. This property makes them particularly suitable for studies in the regime of

strong light-matter coupling, where exciton-polaritons emerge as superpositions of cavity

photons and excitons [32]. These new quasiparticles inherit properties from both compo-

nents, such as the small effective mass of cavity photons or the optical non-linearity related

to exciton-exciton interactions [33, 34]. The implementation of effective photon-photon

interactions using such exciton-polariton systems promises applications in quantum infor-

mation processing [35].

In this thesis, we performed elaborate studies of moiré exciton physics in MoSe2/WS2

heterostructures. This material combination exhibits both key aspects mentioned above:

Coulomb correlated phases, which can be sensed by the optical response of moiré excitons

[36, 37], as well as moiré-induced nonlinearities, which were demonstrated in cavity-assisted

experiments [38]. With our work, we contributed to the understanding of the MoSe2/WS2

bandstructure by analyzing the electric field-induced conduction band hybridization [P2].

We revealed an intricate layer-by-layer charging behavior for electrons in anti-parallel

MoSe2/WS2 stacks with near-resonant conduction band alignment, which effectively im-

plements a bilayer Hubbard model [P3]. Furthermore, we demonstrated how coupling to

a photonic microcavity promotes the formation of charged moiré exciton-polaritons in

parallel MoSe2/WS2 stacks showing signatures of correlation-induced magnetism which go

beyond the response of the bare excitons [P4].
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1. INTRODUCTION

This thesis is structured as follows: After the introduction, Chapter 2 provides an overview

of the fundamental properties of TMD monolayers and the corresponding exciton physics,

followed by an introduction to the fundamentals of light-matter interaction in Fabry-Pérot

microcavities.

Chapter 3 presents the experimental techniques and setups that were developed and

employed in the course of this thesis. First, we describe how dual-gated van der Waals het-

erostacks were fabricated and treated. Subsequently, the setup and techniques for cryogenic

spectroscopy are introduced, and we present the design of the open microcavity setup that

was developed in collaboration with Khaled Karraï at attocube systems AG. We explain the

mechanisms and limitations of vibration induced cavity length fluctuations and introduce

the procedure of cavity transmission spectroscopy using this setup.

In Chapter 4, we present our understanding of moiré exciton physics developed for

MoSe2/WS2 heterostructures in the scope of this work. We initially introduce the theo-

retical models and subsequently demonstrate their validity on the basis of the experimental

data obtained from reflection spectroscopy on various MoSe2/WS2 devices. The first part of

the Chapter focuses on modeling the experimentally observed intra- and interlayer moiré

exciton dispersions using an effective continuum model. In the second part, we elucidate

the optical response of moiré excitons as a function of the applied electric fields and doping

potential, employing a discretized capacitor model. Additionally, we unveil the existence of

correlation-induced magnetism at specific electron filling factors per moiré unit cell.

Chapter 5 treats MoSe2/WS2 moiré excitons, coupled to confined photons in open micro-

cavities. We demonstrate the observation moiré exciton-polaritons, exhibiting properties

that can be controlled by electron doping. Specifically, charged excitons with significant os-

cillator strength allow the formation of moiré polaron-polaritons at integer electron doping

per moiré unit cell, which exhibit moiré induced non-linearity as a function of the polariton

density. Furthermore, we studied the magnetic response of moiré exciton- and polaron-

polaritons in collaboration with Christian Schneider at the University of Oldenburg. We

reveal an enhancement of the correlation-induced magneto-optical signatures compared to

uncoupled moiré excitons resulting from strong coupling with cavity photons.

The final Chapter summarizes the results and gives a short outlook on possible issues

related to our findings that could be addressed in future experiments. This thesis is the

outcome of collaborative efforts, as evidenced by the co-author lists and contributions in

the relevant publications and manuscripts [P2–P4, P8, P6]. The specific contributions of

each collaborator are detailed in the introductions of the corresponding Chapters.
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Fundamentals of monolayer semi-
conductors and optical resonators 2

This Chapter provides an overview of the physical background and concepts

underpinning the work conducted within the scope of this thesis. Firstly,

we introduce the basic properties of excitons in two-dimensional materi-

als, including their response to external electric and magnetic fields. In the

second part, we present the fundamentals of optical resonators, in particu-

lar focusing on plano-concave Fabry-Perot microcavities as a platform for

studying light-matter coupling.

2.1. Excitons in monolayer semiconductors

In the following we review the basics of TMD monolayers, focusing on the properties of

the momentum-bright excitons in MoSe2 and their response to external forces, such as

charge doping, electric and magnetic fields. The theoretical concepts are underpinned with

experimental data acquired on the MoSe2 ML area of device D1 (see Section 4.2 for details).

2.1.1. Crystal and band structure

TMDs represent a diverse family of materials consisting of transition metal atoms M (W, Mo),

sandwiched between two layers of chalcogen atoms X (S, Se, Te) - forming a honeycomb

lattice akin to graphene as shown in Figure 2.1a featuring an invariance under threefold ro-

tation. The individual atoms within a single layer are tightly bound to each other by covalent

forces, while relatively weak van der Waals forces act in between different layers, enabling to

separate single layers from the bulk material and stack van der Waals heterostructures from

different monolayers [39]. Unlike graphene, which lacks an intrinsic bandgap, TMDs exhibit

semiconducting behavior with a direct bandgap in the monolayer limit [40, 41], making

them promising candidates for various electronic and optoelectronic applications [42].
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2. FUNDAMENTALS OF MONOLAYER SEMICONDUCTORS AND OPTICAL RESONATORS

M

X

X

Δso

a

K K′a

b

σ+ σ-

CB

VB

Γ

MX

K K′

σ+ σ-

Γ

WX

Δso

Figure 2.1.: MoSe2 crystal and bandstructure. a, Crystal structure of a TMD monolayer
(MoSe2 ). Metal atoms (M = W, Mo, ...) are sandwiched between two chalcogen atom
layers (X = S, Se, ...) forming a hexagonal honeycomb lattice with lattice constant a. The
schematics are adapted from Ref. [43]. b, Schematic bandstructure for MX (left panel)
and WX (right panel) TMD monolayers at the K -points at the corners of the hexagonal
Brillouin zone. The polarization-contrasting optical selection rules give rise to valley
selective excitation with σ+/σ− polarized light as highlighted by red/blue arrows for the
energetically lowest spin-bright transitions. The spin orbit splitting ∆so is of the order
of 10 meV in case of the conduction band and of the order of 100 meV for the valence
band.

According to the hexagonal crystal structure of TMD monolayers, the Brillouin zone also

takes on a hexagonal shape, with high symmetry points positioned at the center (Γ) and the

corners (K ). The direct bandgap is situated at the K points of the Brillouin zone, leading to

several remarkable properties inherent to TMD monolayers.

Firstly, a substantial spin-orbit splitting of several hundred meVs occurs in the valence

band (VB) at the K points. This effect arises because the electronic states within the VB are

dominated by contributions from the in-plane d-orbitals (dx2−y2 and dx y ), as determined

from first-principle density functional theory (DFT) [44, 45]. Conversely, the primary elec-

tronic states at the conduction band (CB) edge, located at the K points, predominantly

comprise out-of-plane d-orbitals of the transition metals. As these orbitals lack angular

momentum, they do not contribute to the spin-orbit interaction. However, there is a minor

contribution to the total orbital weight stemming from the p orbitals of the chalcogen atoms.

Consequently, a finite but substantially weaker spin splitting of the CB at the K points is

observed compared to that in the VB.

Secondly, the broken inversion symmetry within the TMD monolayer enables valley-

contrasting optical selection rules at the K points [46–48]. The spin-orbit-split states within

the CB and VB possess opposite spin quantum numbers corresponding to spin up and

down. As the system must preserve time reversal symmetry, and given that the K points are

positioned at finite angular momentum, the assignment of spin up and down states must

6



2.1. EXCITONS IN MONOLAYER SEMICONDUCTORS

be reversed at opposite corners of the Brillouin zone. Consequently, these opposite corners

are denoted as K and K ’ valleys. Upon optical excitation with σ+/σ− polarized light, lowest

energy excitons are exclusively created in the K /K ’ valley.

The resulting band structure at the K valleys, with assigned spins and allowed optical

transitions, is depicted in Fig. 2.1b. Utilizing the material parameters derived from DFT

calculations, k ·p theory or tight-binding approaches allow to accurately model the band

structure for different TMDs at these high symmetry points [49–51]. These models reveal that

the spin order within the conduction band is reversed for molybdenum (MoX) and tungsten-

based (WX) TMD monolayers, as evidenced by the comparison between the left and right

panels of Fig. 2.1b. Consequently, in the case of MoX, the lowest energy transition at the K

points is spin-allowed and therefore optically bright, while WX exhibits a spin-forbidden

ground state transition that does not manifest in optical measurements employing in-plane

polarized excitation [52–54].

2.1.2. Tightly bound (charged) excitons

In semiconductors, optical irradiation below the free particle bandgap can induce the for-

mation of excitons – bound states of an electron in the conduction band and a hole in

the valence band. In conventional 3D semiconductors like GaAs or Si, the corresponding

binding energy Eb typically ranges in the order of a few meV preventing the observation of

excitons at room temperature [55]. However, in TMD monolayers, excitons with binding

energies of several hundred meV dominate the optical response even at elevated temper-

atures due to their two-dimensional confinement. As depicted in Figure 2.2a, the electric

field of the electron-hole pair extends far into the surrounding medium, which usually pos-

sesses a smaller electric susceptibility compared to the TMD monolayer itself. Consequently,

this leads to reduced dielectric screening of the Coulomb interaction in TMD monolayers,

reinforcing the exciton binding energy [56, 57].

The two VB subbands offer the possibility to create two different types of excitons, A

and B, by optically exciting electrons from the upper or lower VB level, respectively [8].

Figure 2.2b presents a differential reflection (DR) spectrum acquired on a MoSe2 monolayer

(see Section 3.2.1 for experimental details). In MoSe2 monolayers, the ground state A exciton,

also referred to as X exciton, manifests at an energy of ∼ 1.63 eV at cryogenic temperature (4

K). Its large binding energy allows for the observation of the hydrogenic Rydberg series of

Wannier-Mott excitons. The energy separation of different exciton states (1s, 2s, 3s, ...) can

be used to determine the exciton binding energy and free carrier band gap as illustrated on

the right side Figure 2.2b [57, 58].

Free charge carriers inside a TMD monolayer significantly influence excitons and their

optical response. Early investigations of basic TMD-based field-effect devices revealed that

TMD monolayers often exhibit intrinsic n-doping [59, 60]. In optical measurements such as

7



2. FUNDAMENTALS OF MONOLAYER SEMICONDUCTORS AND OPTICAL RESONATORS

1.6 1.7 1.8

D
R

Energy (eV)
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A2s
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B Free carrier

1s

2s

3s

4s
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+ -εTMD

ε0
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ε3D

3D

2D

a b

Figure 2.2.: Excitons in TMD MLs. a, Schematics of exciton formation in bulk TMD (up-
per panel) and in the limit of a single layer (lower panel). Reduced dielectric screening
leads to an increased binding energy EB for the latter case. The illustration is adapted
from Ref. [57]. b, A MoSe2 neutral differential reflection spectrum shows a series of
excitonic Rydberg states of the ground state A exciton as schematically shown in the
energy diagram on the right. The B exciton shows up ∼ 200 meV blue-shifted to the
ground state, due to the valence band spin-orbit splitting.

Photoluminescence (PL) and Differential Reflection (DR), the presence of these charge car-

riers results in the emergence of a new ground state, typically red-shifted by approximately

20-30 meV relative to the X exciton resonance, depending on the specific TMD material

[60–62]. The evolution of charged exciton complexes with varying charge density is exempli-

fied in electron-doped MoSe2 monolayers in Figure 2.3a. In the presence of free electrons

(Vµ > 0 V), the new ground state appears with a binding energy EB of approximately 30

meV relative to the neutral X exciton in both PL and DR. The contrasting behavior of the

two resonances with increasing electron density in DR compared to PL has sparked some

controversy in the field.

On one hand, the ground state can be interpreted as a trion resonance – a new quasi-

particle consisting of two electrons and one hole in the case of n-doping – as illustrated in

the left panel of Figure 2.3b. This interpretation has mainly been applied to PL measure-

ments in the regime of low charge carrier density [60, 61, 63, 64]. Alternatively, a different

approach describes the charged complexes within the framework of many-body physics as

exciton-polarons, originating from a collective interaction of the Fermi sea of electrons with

optically excited excitons [65–67]. In this framework, the new ground state in the presence

of charge carriers is represented by an attractive polaron resonance (AP), as illustrated in the

center panel of Figure 2.3b. The second resonance, shifting to higher energies relative to the

neutral X exciton, represents a metastable excitation described by a repulsive polaron (RP),

as schematically shown in the right panel of Figure 2.3b. This approach explicitly captures

the maintained oscillator strength of the ground state resonance at higher charge carrier

densities, as observed in DR, which is not expected from a molecular trion state [66]. At low
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Figure 2.3.: MoSe2 X excitons in the presence of charge doping. a, Illustration of ex-
citon interaction with a surrounding sea of electrons. As indicated by the arrows, the
interaction can be of an attractive nature, leading to the formation of attractive po-
larons (AP) or of a repulsive nature to form repulsive polarons (RP). The ground state
charged complex of an exciton interacting with a single charge carrier is called trion
(X−) and highlighted in yellow. b PL (upper panel and DR (lower panel) response of a
MoSe2 monolayer as a function of the charge density (applied gate voltage Vµ). At low
charge carrier density, attractive polaron and trion are equivalent with binding energy
EB ≈ 30 meV.

to intermediate charge densities where the Fermi energy is significantly smaller than the

binding energy of the trion/AP ground state, both approaches provide equivalent descrip-

tions of charged exciton complexes [68]. Since this condition is met for the measurements

presented in this study, we use the terms trions and polarons interchangeably in our dis-

cussions. Importantly, the presented model applies regardless of the sign of induced charge

carriers - electrons and holes.

2.1.3. Excitons exposed to external fields

Investigating the behavior of excitons in TMD monolayers, bilayers or multilayers under

external fields offers valuable insights into the underlying physical mechanisms. Applying

an out-of-plane magnetic field can induce a Zeeman effect, a phenomenon well established

in atomic physics, while finite out-of-plane electric fields can lead to the observation of the

linear Stark effect.

Valley Zeeman effect

As discussed in Section 2.1.1, TMD monolayers exhibit valley-contrasting optical selection

rules. Excitons in the K (K’) valley are coupled to σ+ (σ−) polarized light, and without an

applied magnetic field, the corresponding resonance energies are identical, rendering the
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Figure 2.4.: MoSe2 X excitons in the presence of a magnetic field. At finite out-of-plane
magnetic fields, the spin degeneracy at the K (K ′) points is lifted, revealing a valley
Zeeman splitting ∆X between the exciton response in σ+ and σ− polarization.

valley-contrasting transitions energetically degenerate. However, this degeneracy can be

lifted by applying an out-of-plane magnetic field, inducing a valley Zeeman effect. This

effect leads to an energy difference, termed Zeeman splitting ∆EZ , between the exciton

resonance energies corresponding to the K and K’ valleys, as illustrated in Figure 2.4a.

In TMD monolayers, this splitting is in the order of a few meVs (see Figure 2.4b) and scales

linearly with the magnetic field B [69–74]:

∆EZ = E+−E− = gµB B , (2.1)

where E+ (E−) denote the exciton resonance energies in σ+ (σ−) polarization and µB repre-

sents the Bohr magneton. The exciton g -factor g is dimensionless effective value dependent

on the spin and orbital angular momenta LC (k) and LV (k) of the contributing conduction

and valence bands (n =C ,V ), respectively [75, 76]:

gn =±g0 +2Ln(k), (2.2)

where + (−) corresponds to spin-up (spin-down) projections along the out-of-plane axis

and g0 is the free electron Landé factor, approximately 2. Therefore, the exciton g -factor is

calculated as:

g (kC ,kV ) = gC (kC )− gV (kV ). (2.3)

With knowledge of the conduction band (CB) and valence band (VB) orbital angular mo-

menta from first-principle calculations, the g -factor becomes a crucial tool for extracting

information about the contributing bands of specific excitonic resonances observed in opti-

cal experiments. For instance, momentum-direct excitons are expected to possess g ≈−4, a

value confirmed in numerous experimental studies [69–74].

Additionally, the g -factor can serve as an indicator of local magnetization M , which might

contribute to the exciton Zeeman splitting in Eq. (2.1), particularly in the presence of a

10
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polarized spin-charge lattice [28]:

∆EZ = E+−E− = gµB (B +λM) = geff(M)µB B ; , (2.4)

where λ denotes the coupling constant. This leads to renormalized effective g -factors geff as

we discuss in Section 4.4.3, particularly for n-doped MoSe2/WS2 heterostructures.

Stark effect for interlayer excitons

The two-dimensional nature of isolated TMD monolayers results in excitonic dipole mo-

ments confined purely within the plane, making them insensitive to out-of-plane electric

fields. However, in bilayer or multilayer configurations, where the electron and hole con-

stituents may reside in distinct layers, interlayer excitons emerge. These interlayer excitons

possess finite out-of-plane dipole moments, allowing the coupling to out-of-plane electric

fields. This coupling effect is quantified by the linear Stark shift of the corresponding exciton

resonances:

∆ES = eEzdz ; , (2.5)

where Ez represents the magnitude of the applied out-of-plane electric field. The interlayer

exciton dipole moment dz depends on its degree of layer delocalization. Analysis of the

dispersion of the Stark shift with respect to the applied electric field facilitates conclusions

regarding the contributing layers and bands [77–81].

While intralayer excitons, confined within a TMD monolayer, exhibit high oscillator

strength and short lifetimes [82, 83], interlayer excitons are characterized by long lifetimes

owing to increased electron-hole separation, but have vanishing oscillator strength [84, 85].

Out-of-plane electric fields can be employed in TMD multilayer systems to tune interlayer

excitons into resonance with intralayer excitons, thereby achieving hybridization between

the two exciton species to combine the best of both worlds - high oscillator strengths with a

dipolar character and long lifetimes, successfully realized TMD homobilayer systems [86,

87] and different TMD heterostructures such as MoTe2/MoSe2 [88], MoSe2/hBN/MoSe2

[22] and also MoSe2/WS2 [89], serving as example for our study on electric field-induced

hybridization in MoSe2/WS2 heterobilayers, presented in Section 4.3.

2.2. Light-matter interaction in Fabry-Pérot cavities

The Fabry-Pérot interferometer, named after its inventors Charles Fabry and Alfred Pérot

[90], is an optical resonator originally consisting of two planar mirrors facing each other. Its

concept has found wide applications, such as in narrow-band optical filtering and laser res-

onators [91]. In the field of cavity quantum electrodynamics (QED), Fabry-Pérot resonators

serve as important tools for controlling interactions between light and optical emitters
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[92–94]. The following section provides a brief introduction to the principle of Fabry-Pérot

resonators, following common textbook descriptions [91, 95–97]. Specifically, we focus on

the plano-concave Fabry-Pérot resonator geometry, which is utilized in the experiments

presented in this work (see Sections 3.3.1 and 5), aiming to establish strong light-matter

interactions between excitons and photons.

2.2.1. Basics of Fabry-Pérot resonators
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Figure 2.5.: Concept of a Fabry-Pérot cavity. a, Schematic of a Fabry-Pérot resonator
consisting of two mirrors with respective reflectivities R1 and R2, transmissivities T1 and
T2 and separation distance lc . The electric field incident to the resonator is Ein, the field
circulating back and forth in between the two mirrors E f/b

c and the field transmitted
through the resonator Et . Er consists the part of Ein that is directly reflected at the first
mirror and the field that launches back through the first mirror out of the cavity. b, Airy
distribution around the resonant mode q at frequency νq obtained from transmission
through a Fabry-Pérot resonator with symmetric mirror reflectivities R1 = R2 = R and
corresponding finesse F = 10 and F = 100 shown in orange and blue lines, respectively.
The distribution is shown in units of the free spectral range ∆νFSR. For high F , the
intensity profile is well described by the sum of Lorentzian lines (dashed lines in cor-
responding color) representing individual resonant cavity modes, each with linewidth
∆νc , which is inversely proportional to F and increases with the total losses Ltot of the
system.

Figure 2.5 shows a schematic of the working principle of a Fabry-Pérot resonator. Two

mirrors with reflectivities R1 and R2 form the optical resonator. An incident electric field

is partly reflected and transmitted at the first mirror. The presence of the second mirror

leads to the formation of a circulating field Ec between the two mirrors. The composition

of the field that is reflected at the first mirror before entering the cavity and the field that

launches back through the first mirror from the cavity is denoted by Er . The light that is

finally transmitted through the cavity is denoted by Et .
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We are interested in the intensity distribution as a function of the optical wavelength

transmitted trough the resonator. Using the approach of a circulating electric field between

the two mirrors R1 and R2 the transmitted intensity profile is described by the generic Airy

distribution:

At = It

Ii n
= |Et |2

|Ei n |2
= (1−R1)(1−R2)

(1−p
R1R2)2 +4

p
R1R2sin2(Φ)

, (2.6)

where the phase shift accumulated by the field Ec with wavelength λ propagating over the

distance lc between the two mirrors (half a round trip) is defined by φ= 2πlc /λ. In case of

identical reflectivities of the two mirrors, the expression for the Airy distribution simplifies

to

At = It

Ii n
= 1

1+ 4R

(1−R)2
sin2(Φ)

= 1

1+
(

2F
π

)2

sin2(Φ)

, (2.7)

where we introduced the finesse F = π
p

R/(1−R) of the resonator. The intensity profile

resulting from Equation (2.7) is shown in Figure 2.5b. The separation distance lc between the

two mirrors imposes a resonance condition to the light that is circulating inside the cavity

in form of a standing wave and we find the maxima of the periodic transmission intensity

profile at the corresponding resonance energies

νq = q
c

2lc
, (2.8)

where q defines the longitudinal mode order and c the speed of light, depending on the

dielectric permittivity of the medium inside the resonator. The resonant modes manifest

with a spectral separation ∆νF SR , which is denoted as the free spectral range and inversely

proportional to the cavity length:

∆νF SR = c

2lc
. (2.9)

For a Fabry-Pérot resonator with highly reflective mirrors, the Airy distribution is matched

by a sum of Lorentzian lines of the resonant cavity modes with corresponding Lorentzian

linewidths ∆νc . The finesse is approximately given by

F ≈ ∆νF SR

∆νc
= 2π

− ln(R1R2)
= 2π

− ln(1−T1)− ln(1−T2)
≈ 2π

T1 +T2
= 2π

Ltot
, (2.10)

where Ltot denotes the total losses of the cavity system resulting from transmission T1/2

through the cavity mirrors, neglecting additional losses through scattering and absorption.

In this sense, the finesse can be understood as a measure of the number of cavity round-trips

of a photon before it leaks out of the resonator. Besides transmission through the imperfect

mirrors, scattering and absorption in the medium between the two mirrors can contribute

to Ltot, leading to a reduced finesse F in (2.10) and a drop in the transmitted intensity At in

(2.7) at the resonance energies as shown in Figure 2.5b [98].
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2.2.2. Plano-concave optical resonator

In real experiments the original geometry of the Fabry-Pérot resonator with two planar

mirrors is unpractical due to its high sensitivity to misaligned mirrors leading to high losses.

The use of spherical mirrors provides a practical way to confine the light in a more efficient

way and form stable low-loss transverse modes.

Stability criterion

Optical rays inside a resonator of such geometry propagate close to the optical axis, which is

why the conditions of confinement can be derived by the matrix-optics method (or ABCD-

matrix method) in the paraxial approximation [95].

ym

ym+1

Ɵm

Ɵm+1

z

Rc
1

lc

Rc =∞2

y0

-Ɵ0

Figure 2.6.: Ray confinement in plano-concave Fabry-Pérot resonators. The trajectory
of an optical ray between the two mirrors with respective radius of curvature R1

c and R2
c

after m/m +1 round trips is described by the position ym/m+1 and the angle θm/m+1 of
the beam with respect to the optical axis z. The separation distance between the two
mirrors is denoted as lc

The scenario is depicted in Figure 2.6 for a plano-concave resonator geometry, consisting

of a concave spherical mirror with radius of curvature R1
c on one side and a planar mirror

(R2
c =∞) on the other side: An optical ray after m round trips inside the cavity is defined

by its position ym and the inclination θm of its trajectory to the optical axis z. The relation

between the (ym ,θm) and (ym+1,θm+1) after the next round trip is linear for paraxial rays

and can be written in matrix-optics notation:(
ym+1

θm+1

)
=

(
A B

C D

)(
ym

θm

)
, (2.11)

where the ABCD-matrix for a single round trip is(
A B

C D

)
=

 1 0
2

R1
c

1

(
1 lc

0 1

) 1 0
2

R2
c

1

(
1 lc

0 1

)
R2

c →∞=
 1 2lc

2

R1
c

4lc

R1
c
+1

 , (2.12)
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Starting from (y0,θ0), we arrive at (ym ,θm/ym+1,θm+1) by repeated propagation of the dis-

tance lc between the two mirrors, reflection at the planar mirror, propagation back to and

finally reflection from the curved mirror with radius of curvature R1
c . The harmonic solution

of Equation (2.11) is generally given by [95]

ym = ymaxF msin(mϕ+ϕ0)

ϕ= cos−1
(

b

F

)
,

(2.13)

where ymax and ϕ0 are constants determined from the initial positions y0 and y1, and

b = A+D

2
F 2 = AD −BC .

(2.14)

Here, we find F = 1 for the ray transfer matrix in Equation (2.12). A bounded solution requires

ϕ being real leading to the stability criterion for a confined ray inside the plano-concave

cavity:

0 ≤ |b| = |A+D|
2

= 1+ 2lc

R1
c
≤ 1. (2.15)

The latter condition of Eq. (2.15) implies that a stable cavity is formed as soon as the cavity

length becomes smaller than the radius of curvature lc ≤ Rc .

Gaussian eigenmodes

The eigenmodes of a plano-concave Fabry-Pérot cavity are given by Gaussian beams, pro-

vided that the radius of curvature of its wavefronts R(z) at the positions z1 and z2 in Figure 2.7

matches the radius of curvature of the mirrors R(z1) = R1
c and R(z2) = R2

c =∞. It is given by:

R(z) = z + z0

z
, (2.16)

where z0 denotes the Rayleigh range at which the wavefronts of the Gaussian beam have

their maximum curvature. Since R2
c =∞, the position of the planar mirror is at z2 = 0, where

the curvature of the Gaussian beam diverges. Here, the waist radius of the Gaussian beam:

w(z) = wm

√
1+

(
z

z0

)2

, (2.17)

has its minimum value wm , which is a function of the radius of curvature R1
c , the cavity

length, and the resonant optical wavelength λ:

wm =
√
λ

π

(
lc R1

c

)1/4
. (2.18)
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Figure 2.7.: Gaussian eigenmodes of the plano-concave optical resonator. The cur-
vature of the Gaussian wavefronts at position z1 and z2 have to match the radius of
curvature of the mirrors R1

c and R2
c which are placed at respective positions. wm is the

minimum 1/e mode waist of the Gaussian beam, where the curvature of the wavefronts
diverges. The mode waist w(z) at any position z follows from Equation (2.17).

The mode waist defines the spatial resolution of a scanning plano-concave Fabry-Pérot

microscope [98, 99] and can be used to estimate the cavity mode volume:

Vm = π

4
w 2

mlc . (2.19)

The fundamental transverse Gaussian modes, also referred to as TEM00 modes, are sup-

plemented by a set of higher-order modes, which fulfill the stability condition of the plano-

concave optical resonator geometry. Mathematically complete sets of eigenmodes can be

described by the Laguerre-Gaussian or Hermite-Gaussian beams. The former presents the

solution of the paraxial Helmholtz equation in cylindrical coordinates, while the latter em-

ploys Cartesian coordinates [95]. In experiments, a non-symmetric shape of the concave

spherical mirror, due to imperfections in the fabrication process, would break the cylindrical

symmetry of the system and preferably give rise to the observation of Hermite-Gaussian

higher-order modes spectrally blueshifted to the TEM00 mode [98, 100, 101].

2.2.3. Quantum theory of strong light-matter coupling

Optical emitters inside a resonant cavity with a high Q-factor and small mode volume show

enhanced emission rates, quantified by the so-called Purcell factor [102]. It describes an

effect of coherent light-matter interaction between the two oscillators representing the

cavity photons and the optical dipole of the emitter in the weak coupling regime. Purcell

enhancement and other signatures of weak light-matter coupling have successfully been

demonstrated for TMD-based heterostructures integrated in various types of optical res-

onators [103–107, P5, P1]. The high oscillator strength of TMD monolayer excitons makes
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them candidates not only to study effects of weak but also strong light-matter coupling,

where the coherent coupling rate exceeds the individual decay rates of the photonic and

excitonic resonators. In such systems, excitons and photons are not treated as independent

anymore, but as hybrid light-matter states, called exciton-polaritons [108]. The study of such

polariton states in TMD heterobilayer structures represents the focus of this work and the

following section gives a short introduction to their theoretical description in the framework

of two coupled quantum mechanical oscillators, which can be found in detail in Ref. [109]

and [110].

ۧ|e

ۧ|g

0

n - 1

n

n + 1 

ωeg

ωk

Figure 2.8.: Quantization of coupled oscillators. Schematic energy diagrams of a two-
level system describing the energetically lowest transition of a strongly bound exciton
(left side) and of a quantised harmonic oscillator describing the light field inside a
strongly confined optical cavity (right side).

The problem can be treated analogously to the interaction of a single mode of an elec-

tromagnetic field with an atom which is described by the Jaynes-Cummings model [111].

In the latter, both components are treated as quantum harmonic oscillators, giving rise to

discrete energy levels for a photon of a cavity mode and the atom as sketched on the right

side in Figure 2.8. Neglecting higher order excitations, a strongly bound exciton in a TMD

monolayer can be approximated by an atom-like two-level system with a ground state |g 〉
and an excitated state |e〉 and we define the creation x† and annihilation x operators of the

quantized system:

x̂† =|e〉〈g |
x̂ =|g 〉〈e| . (2.20)

The Hamiltonian of the two-level exciton system writes

ĤX = EX x̂†x̂, (2.21)

with the exciton energy EX = ħωeg . The quantization of the electromagnetic field is intro-

duced by defining the corresponding ladder operators âk
† and âk which act on a state |nk〉

(|nk +1〉) of the quantum harmonic oscillator that describes a cavity mode k with a number
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of nk (nk +1) photons:

â†
k |nk〉 =pnk |nk +1〉

â|nk +1〉 =
√

nk +1|nk〉 .
(2.22)

The Hamiltonian of the quantized electric field of a cavity mode with energy ħωk and

assuming a large number of photons n ≫ 1 is given by

Ĥc =
∑
k
ħωk â†âk , (2.23)

where the energy of a cavity mode is given by EC =ħωk . The quantized electromagnetic field

can be expressed by the ladder operators as sum over all cavity modes k:

Ê =∑
k
Ek

√
ħωk

2ϵ0Vm

(
âk e i k·r + â†

k e−i k·r
)

, (2.24)

where the amplitude of the electromagnetic field depends on the mode volume of the cavity

Vm . To express the interaction between an electric field and the dipole moment of the exciton

transition we introduce the dipole operator

d̂ =∑
i , j

|i 〉〈i |er̂ | j 〉〈 j | = edeg (|e〉〈g |+ |g 〉〈e|) = edeg (x̂† + x̂) (2.25)

and the interaction Hamiltonian for a cavity mode k (ωk = ωc and Ec = ħωc ) interacting

with a two-level exciton system can be written using the expressions (2.24) with r = 0 for

simplicity and (2.25)

Ĥi nt =−d̂ Ê =ħg (â + â†)(x̂ + x̂†)

=ħg (âx̂† + â†x̂)
(2.26)

with the coupling constant

g =
√

ωc

2ϵħV
Edeg . (2.27)

In the last expression of Equation (2.26), we neglected the energy non-conserving terms.

This is because in the case of a two-level exciton system, there are only two possible states

in the eigenspace of the coupled system, and the possible ways of interaction are limited to:

Ĥi nt |n +1, g 〉 = |n,e〉
Ĥi nt |n,e〉 = |n +1, g 〉. (2.28)

The first expression describes the absorption of a photon and creation of an exciton in

the state |n,e〉, while the second expression describes the process of photon emission by
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an exciton to transition to the state |n +1, g 〉. The complete Hamiltonian of the coupled

exction-photon system writes as

Ĥ = ĤX + Ĥc + Ĥi nt =ħωX x̂†x̂ +ħωc â†â +ħg (âx̂† + â†x̂) (2.29)

For better visualization and practical treatment we can write this Hamiltonian in matrix

notation in the basis of the eigenstates |n,e〉 =
(

1

0

)
and |n +1, g 〉 =

(
0

1

)
as

H =
(

EX ħg

ħg Ec

)
. (2.30)

Diagonalization of H gives the new eigenenergies of the coupled exciton-photon system:

EU /L = EX +Ec

2
± 1

2

√
(Ec −EX )2 +4ħ2g 2 , (2.31)

which are denoted as the upper (EU ) and lower polariton branch (EL). In the terminology

of cavity QED in atomic physics the corresponding eigenstates are referred to as dressed

states. Their spectral separation at a specific energetic detuning between the cavity mode

and the exciton resonance is referred to as Rabi splittingΩ= 2g and scales with the oscillator

strength f of the underlying exciton resonance as [112, 113]

Ω=α
√

f , (2.32)

where α is a proportionality coefficient. Exciton-polaritons are bosonic quasi-particles of

partly excitonic and partly photonic nature. The fraction of either component depends on

the cavity-exciton energy detuning and is quantified by the so-called Hopfield coefficients

[32]:

|X |2 = EUEX −ELEC

(EC +EX)
√

(EC −EX)2 +Ω2

|C|2 = EUEC −ELEX

(EC +EX)
√

(EC −EX)2 +Ω2
,

(2.33)

which satisfy |X |2 +|C|2 = 1. In Eq. (2.33), |X |2 (|C|2) defines the excitonic (photonic) part

of the upper polariton branch, while the coefficients swap roles in the case of the lower

polariton branch.
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Experimental methods 3
This Chapter summarizes the experimental techniques applied in this work,

starting from the fabrication procedure of van der Waals heterostructures

and followed by an overview of the optical measurements that were carried

out in cryogenic environment. The latter devides into two sections, optical

experiments in a standard confocal configuration and measurements in an

optical microcavity.

THIS CHAPTER IS PARTLY BASED ON THE PUBLICATION [P8]

S. Vadia, J. Scherzer, H. Thierschmann, et al., “Open-Cavity in Closed-Cycle

Cryostat as a Quantum Optics Platform,” PRX Quantum 2021, 2, 040318

3.1. Sample fabrication

In the following we discuss the fabrication process of the MoSe2/WS2 dual-gated field-effect

devices starting from the exfoliation and characterization of the individual flakes, followed

by the stacking procedure, postprocessing and contacting of the gates.

3.1.1. Components of the van der Waals heterostructure

The van der Waals heterostacks studied in this work consisted of three different building

blocks of the family of 2D materials as schematically shown in Figure 3.1. The TMD layers

were encapsulated by two flakes of hexagonal boron nitride (hBN) to ensure a homogenious

dielectric environment free of defects. In addition, the hBN flakes served as dielectric spacers

between the TMDs and the few layer graphene (FLG) electrostatic gates, completing the

heterostack at the top and bottom end.
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3. EXPERIMENTAL METHODS

top hBN

TMDs (MoSe2/WS2)

bottom hBN

Bottom FLG

top FLG

VB

VT

contact FLG

Figure 3.1.: Schematics of a TMD based field-effect device. A TMD heterobilayer is
encapsulated by dielectric hBN layers from top and bottom side. One FLG layer, in
direct contact with the TMD layers, is linked to a ground reservoir. Two FLG flakes cap
the heterostack from the top and bottom, allowing to apply gate voltages VT and VB to
control the doping level and out-of-plane electric field.

TMD monolayers

We obtained TMD monolayers either from mechanical exfoliation from Bulk crystals (HQ

Graphene) using adhesive tape or in-house chemical vapor deposition (CVD) synthesis [114,

115]. Both methods yield flakes of comparable high optical quality, however, CVD growth

brings several advantages as can be seen in Figure 3.2a comparing standard optical mi-

croscope images of CVD grown (left panel) and exfoliated (right panel) MoSe2 flakes on

Si/SiO2 subtrates with oxide thickness of 285 nm. A large number of monolayer flakes can

be obtained on a single Si/SiO2 chip during CVD synthesis and their triangular shapes facili-

tate relative orientation during the heterobilayer (HBL) stacking. While CVD only produces

single or fewlayer TMD flakes, additional bulk material on exfoliated substrates compli-

cates the search for monolayers and their subsequent pickup. Furthermore, such regions

of bulk material in close proximity to the monolayer of interest can cause uncontrolled

stray fields when integrated into the dual-gate field-effect device. CVD sythesis, on the con-

trary, provides per construction isolated flakes of a very controlled geometry, such that the

overall heterostructure is more controllable in electrostatic terms. Finally, the maximum

lateral expansion of CVD grown monolayers can be hundreds of micrometers, one order of

magnitude larger than typically observed for exfoliated monolayers.

The number of layers of a TMD flake was determined in an optical microscope by its

optical contrast compared to the background substrate. Since TMDs exibit a transition from

an indirect to a direct semiconductor in the limit of a single layer, another way to distinguish

a monolayer from a fewlayer flake is to image its photoluminescence (PL) response under

optical excitation above the material bandgap. Monolayer regions feature pronounced PL

signal, while the emission of bi- or fewlayer flakes is quenched as can be seen in Figure 3.2b.

Additionally, PL imaging helped to identify flakes of lower quality not identifiable in standard

optical microscopy. The MoSe2 monolayer on the left of the investigated area in Figure 3.2b
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Figure 3.2.: TMD monolayers from CVD growth and exfoliation. a, Optical microscope
images of CVD grown MoSe2 monolayers (left) and MoSe2 exfoliated (right) on Si wafer
with 285 nm SiO2 cover. White areas in the right image are bulk crystal flakes, the black
circle marks a characteristic MoSe2 monolayer. b, CVD grown WS2 mono- and bilayer,
distinguishable by the difference in the optical contrast of a bright field microscope
image (left) and via PL imaging (right).

looks clean and homogenious in the optical microscope image, but PL imaging reveals dark

stripes in the center of the same flake which can be attributed to cracks or surface con-

tamination. We observed an increase of surface contaminations on CVD grown flakes that

were stored over a longer period of time (> 1-2 weeks), especially in ambient environment.

Such surface contaminations complicate the pick-up of the respective TMD flakes and di-

minish the optical and electrical properties of the material. Possible sources of degradation

are photoinduced oxidation of the monolayers [116] or the formation of atomically thin

polymeric contamination layers in the presence of polydimethylsiloxane (PDMS) during

storage [117]. To quantitatively analyse the surface composition of TMD layers a scanning

electron microscope (SEM) can be employed for secondary electron imaging [118] or energy

dispersive X-ray spectroscopy (EDX) [119]. We tried work around the problem of surface

contamination by processing CVD grown TMD layers immediately after the synthesis. Once

encapsulated by hBN, the monolayers did not show any sign of degradation over time.

hBN for dielectric encapsulation

Photoluminescence spectra of TMD monolayers directly exfoliated on SiO2 substrates show

strong inhomogenious linewidth broadening due to strain and charged impurities at the
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Figure 3.3.: hBN characterization. a, Opital microscope images of an exfoliated hBN
flake on a Si/SiO2 substrate with 50x (left) and 10x (right) magnification, respectively.
Increasing the optical contrast by applying gamma correction in the right image reveals
areas of the wafer which are contaminated by glue residues. The white dashed shape
marks an area free of glue residues including the hBN flake of interest. b, AFM charac-
terization of the hBN flake shown in a. Upper panel: Height (h) profile measured around
the hBN edge to extract the thickness of the flake. Lower panel: Amplitude error (A) of
the AFM measurement in the same area (Arms

on /Arms
off = 0.48). c, Opital microscope im-

ages of another exfoliated hBN flake on a Si /SiO2 substrate with 50x (left) and 10x (right)
magnification. The gamma corrected image on the right reveals glue residues across
the whole area around the hBN flake of interest. d, Height profile (upper panel) and
amplitude error (lower panel) at the edge of the respective hBN flake (Arms

on /Arms
off = 2.0).

SiO2 - TMD interface. Encapsulating monolayer TMDs with atomically flat hBN has proven

to be an efficient method to avoid this problem [120]. Furthermore, hBN has a large bandgap

in the UV-range, establishing it as an ideal insulator for TMD based field effect devices. In

this work, multilayer hBN flakes for TMD encapsulation were exfoliated from synthetically

grown high-quality bulk crystals with low defect density, provided by the National Institute

for Materials Science (NIMS) in Japan. We selected the flakes for encapsulation according to

their thickness, homogeneity and cleanness.

The first can be estimated via the color of the flake under an optical microscope, which

varies for different layer numbers due to interference effects, and precisely determined with
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atomic force microscopy (AFM) as shown in the upper panel of Figure 3.3b and d. Important

prerequisite to the hBN thickness is the intended symmetry of the field-effect device, i.e.

top and bottom hBN are supposed to have nearly identical thickness. Furthermore, thin-

film interference effects at the different interfaces of a heterostack can be of destructive

nature in certain ranges of the optical spectrum, depending on the total hBN layer thickness.

To prevent strongly reduced signal in broadband reflection measurements in the relevant

spectral range for our optical studies, we performed a transfer matrix (TM) simulation of

the reflection response of the heterostack [121, 122]. Figure 3.4a shows the experimentally

observed and TM simulated reflection response from a 410 nm thick hBN layer on top

of a Si wafer with 285 nm SiO2 cover. The dip in the spectrum around 590 nm can be

attributed to the above explained destructive thin-film interferences. The simulation reveals

a multiplicity of interference dips at different wavelengths of the optical spectrum depending

on the total thickness of the heterostack as shown in Fig Figure 3.4b. We neglected the

contribution of TMD and FLG layers with vanishingly small thickness as compared to the

50-90 nm thick hBN layers used for the encapsulation of the devices built during this work.

For a corresponding total hBN thickness of 100-180 nm the TM simulation predicted the

appearance of an interference dip between 450-700 nm. Excitonic transitions in MoSe2/WS2

HBLs (700-800 nm) could be studied without any consequences.
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Figure 3.4.: TM Simulation of the optical reflection response. a, Normalized reflection
spectrum of a broadband halogen signal from a Si/SiO2 substrate with a 410 nm thick
hBN flake (black solid line) on top and corresponding TM simulated reflection response
(red dashed line). The black arrow marks the optical wavelength of maximum destruc-
tive interference in the spectral range shown. b, Spectral position of the destructive
interference dip in TM simulated reflection spectra from a Si/SiO2 substrate with an
hBN layer on top as a function of the hBN thickness (dhB N ).

It is advisable to only use hBN flakes with a homogenious surface for encapsulation.

Cracks or areas with an inhomogenious hight profile are sources of error during the stacking

procedure, since they reduce the fracture strength of a flake.

Finally, the cleanness of the encapsulating hBN layer is crucial for the optical quality of

the sample. Surface contaminations due to glue residues of the adhesive tape can cause
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inhomogenious linewidth broadening of the optical transitions due to strain and charged

impurities at the hBN-TMD interface undermining the effect of encapsulation. To avoid

this problem, we identified hBN flakes within clean areas of the SiO2 wafer by increasing

the optical contrast of a microscope image via gamma correction. In this case, the hBN

flake was exfoliated from a larger bulk area that covered the flake during the exfoliation

process preventing surface contamination with adhesive tape glue. Figures 3.3a and c com-

pare two exfoliated hBN flakes, within a residue free SiO2 area and within a film of glue

residues, respectively. We extract the cleanness of an hBN flake from an AFM measurement

as shown in Figure 3.3b/d by comparing the rms amplitude error (Arms
on/off) of the AFM tip,

which quantifies the surface roughness, on and off the flake. In case of a contaminated

surface, the Arms
on ≧ Arms

off is dominated by the source of contamination. In case of a clean

area, the surface roughness on the hBN layer should be reduced due to its atomical flatness,

in contrast to the SiO2 substrate, Arms
on < Arms

off .

FLG for electrostatic gating

FLG flakes exfoliated from bulk graphite (HQ Graphene) served as electrostatic gates for

our heterostructures. The exfoliation process and characterization of the layers worked

analogously to the procedure explained for hBN. After exfoliation, flakes of interest were

identified by their optical contrast against the substrate in a standard optical microscope.

The exact thickness was again determined by an AFM measurement and chosen to be as

small as possible, especially in case of the top FLG, in order to minimize absorption of the

optical signal from the TMD layers. However, FLG flakes with a small number of atomic layers

are difficult to pick-up and tend to break under the effect of strain. For the samples in this

work we were using FLG flakes with 3-8 atomic layers as the best trade-off between efficient

transmission behaviour and high fracture resistance. Via optical and AFM characterization,

analogously to the procedure for hBN, we selected graphite flakes free of glue residues to

ensure clean heterostrucutre interfaces.

3.1.2. Heterostructure design and assembly

Having all the components introduced above at hand, we designed the assembly of the

heterostructure according to the geometry of the individual flakes. Figure 3.5b illustrates

the stacking plan for a set of TMD, hBN and FLG flakes. The dual-gate functionality of the

field-effect device is confined to the active area of the plate capacitor, which is defined by

the overlap of the top and bottom FLG layers highlighted in yellow. Therefore, it is crucial

to position the TMD heterostructure, including the contacting FLG layer, within this active

area. It is important to note that the regions of the TMD layers directly in contact with the
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Figure 3.5.: Assembly of the heterostructure. a, Individual components of a dual-gated
field effect device with a TMD HBL. b, Plan of the heterostructure assembly for the rep-
resentative set of flakes. The active area of the dual-gate device, defined by the overlap
of top and bottom FLG, is highlighted in yellow. Exposed ends of the FLG flakes for
contacting via optical lithography are highlighted in grey. c, Completed heterostructure
on the final substrate including gold contacts.

FLG layer do not exhibit any charging response to applied gate voltages. This is because of

the neutralization of the TMD layer through non-radiative transfer of charged excitons to

the graphene layer on a picosecond timescale [123]. A short study of this effect – mixing

charged and neutral exciton species in a MoSe2 monolayer partly covered by a FLG layer

with photons in an optical microcavity – is presented in Appendix B.

In summary, the active area should encompass regions of both separate TMD monolayers,

an overlapping region of TMD monolayers and an area where both monolayers are covered

with the contacting FLG flake. All graphite layers should have exposed surfaces for contacting

with gold via optical lithography. It is essential to ensure that there is no direct contact

between different FLG gates to prevent electrical short circuits.

The assembly of a heterostack was accomplished using the layer-by-layer dry pick-up

and transfer technique introduced by [124, 125]. A detailed, step-by-step explanation of the

fabrication procedure employed for this work is given in Ref. [126]. We used polycarbonate

(PC) coated PDMS stamps with a curved surface to facilitate position control during the

pick-up and release of individual flakes. To obtain the curved PDMS shape we placed a glass

slide with a droplet (ø ≈ 1 cm) of liquid silicone elastomer in a solution with a curing agent

upside down on a heating plate at 140°C for 20 minutes and kept it in this position for 12

hours until the PDMS was completely cured, forming a dome of 2-3 mm in height. Thin

PC films were formed by putting droplets of PC in a chloroform (CHCl3) solution (6 % PC)

between two clean glass slides under light manual pressure. Pulling the two slides apart
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and letting the CHCl3 evaporate leaves behind an elastic PC film. This film was then placed

over the PDMS droplet and fixed on the glass slide around the PDMS using adhesive tape.

Controlling the concentration of the PC in the CHCl3 solution is crucial to obtain a PC film

with the desired adhesive properties for a functional stacking process. To control the pick-up

and transfer of 2D layers, a wafer with a flake of interest and a prepared stamp were fixed

on top of a set of piezo nanopositioners under an optical microscope. A heater in direct

contact with the wafer allowed us to control the temperature during the stamping process

up to 200°C. The entire setup was placed inside a glovebox with an argon atmosphere. Us-

ing piezo nanopositioners, the sample and stamp were brought into contact close to the

flake of interest at a fixed temperature of 70°C. Subsequently, increasing the temperature

up to 90-100°C led to an expansion of the PDMS until the PC film fully covers the flake. At

this temperature, we let the system thermalize for 10 minutes before pulling up the stamp

again by simultaneously stepwise moving the nanopositioners and reducing the temper-

ature. Ideally, the flake of interest is lifted from the substrate in a continuous and smooth

motion together with the PC film. The ideal pick-up temperature can vary depending on the

PC concentration in the CHCl3 solution when fabricating the film. If the PC film strongly

sticks to the surface of the wafer and flips up abruptly when moving the stamp upwards,

the temperature or the PC concentration in the CHCl3 solution might be too high. If low

adhesion impedes a pick-up of the flake, the temperature can be further increased up to

110-120°C. After successfully lifting the flake from the substrate, the procedure was repeated

to stack the desired heterostructure. Once the assembly was completed, the PC film was

brought into contact with the final substrate, and the temperature increased up to 190°C,

far above the glass transition temperature of PC (147°C). The area of PC in contact with the

substrate exceeded the area of the heterostack on the film by a few hundred micrometers.

When the stamp was moved away from the substrate the melted PC film detached from

the PDMS stamp in this area and stayed on the substrate, covering the heterostack. Finally,

we dissolved the PC residues from the substrate surface in CHCl3, followed by rinsing with

acetone and isopropanol.

We began the assembly by picking up the top hBN flake, followed by the two TMD layers.

The TMD layers, grown through chemical vapor deposition (CVD), exhibited strong adhesive

behavior to the surface of the original glass substrate. To avoid tearing these layers, we did

not pick them up directly. Instead, we released the top hBN flake onto the first TMD layer,

followed by several hours of annealing at 300°C in a vacuum chamber (p = 1×10−8 mbar).

This annealing process helped to remove interface contaminants and reduced the hBN-TMD

interlayer spacing, facilitating a smoother TMD pick-up. The same procedure was repeated

for the second TMD layer, followed by the direct pick-up of the contact FLG, bottom hBN,

and bottom FLG, following the sample design. This heterostack was then released onto a

substrate prepared with gold markers and contact pads. Finally, the top FLG layer was picked
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up separately and released on top of the heterostructure. The completed dual-gate device

is depicted in Figure 3.5c after contacting the exposed ends of the FLG flakes via optical

lithography.

3.1.3. Sample treatment and contacting

With the heterostructure assembled and positioned on the designated substrate, the next

steps involved preparing a mount for conducting optical measurements inside a cryostat

and contacting the gates of the sample. The mount was custom-made from titanium and

designed for the use in a confocal setup as well as in the open microcavity setup, introduced

in Section 3.2 and Section 3.3.1, respectively. Two-component UHU Endfest glue has proven

to be most resistant under cryogenic conditions for fixing the sample substrate and contact

pads next to the substrate, forming the foundation for subsequent wiring. Next, we soldered

shielded copper wires to the contact pads, thin single wires bridged the gap from the pads

on the sample mount on one side to the gold contact on the sample surface using silver

conductive epoxy adhesive. The contacting wires should stand out from the sample surface

as low as possible to avoid contact to the microscope objective or the cavity fiber in optical

measurements. An examplary mounted sample substrate with contact pads and wires in

place is shown in Figure 3.6. Given the electrostatic sensitivity of the dual-gate device,

careful handling is most important. We always wore a wrist strap band with a grounding

connection while handling the sample to avoid potential sample destruction resulting from

electrostatic discharge. Furthermore, heat application, such as soldering, should be avoided

when connections to the gold contact pads on the sample are already established since they

are directly linked to the graphite gates of the sample. Instead, we established connections to

the gold pads as the final step in the process. This approach ensured the structural integrity

of the sample for dual-gate operation in cryogenic optical measurement.

3.2. Confocal spectroscopy in cryogenic environment

We employed confocal spectroscopy to examine the optical properties of the excitonic

ground states of the the TMD heterostructures introduced in Section 2.1 in a cryogenic

environment. To understand their physical origin, we investigated the optical transition

responses under the application and variation of various external forces, such as doping

and electric or magnetic fields. The following section provides an overview of the cryogenic

systems and experimental techniques utilized during the optical measurements in this work.
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shielded copper wires

contact pad

thin wire

contacting the

samplesample substrate

gold contact pad

Δh

titanium mount

Figure 3.6.: Mounting of the sample substrate. A 5x5 mm glass substrate with a dis-
tributed Bragg reflector (DBR) coating, hosting a completed dual-gate heterostructure
including gold contacts, was fixed on a titanium mount for optical experiments. Contact
pads on the titanium mount serves as connecting platform between shielded copper
wires and thin wires, which, in turn, are guided to the gold pads on the sample. The
height difference (∆h) between the sample surface and connecting wires is minimized
for optimal performance.

3.2.1. Spectroscopy techniques

To study exciton physics without being hindered by temperature-induced decoherence

effects, the dual-gate samples were loaded either in helium bath cryostats at 4.2 K or in

a closed-cycle-cryostat (attocube systems, attoDRY1000) with a base temperature of 3.2

K and equipped with a superconducting magnet providing magnetic fields of up to ± 9 T.

We performed the optical measurements using a home-built fiber-based confocal micro-

scope in back-scattering geometry as shown in Figure 3.7a. Two broadband collimators

(attocube systems, RT-APO/NIR-IR/0.13) and a apochromatic objective (attocube systems,

LT-APO/VISIR/0.82) above the sample inside the cryostat formed the basic confocal config-

uration, superimposing the diffraction limited projection of the detection and excitation

fiber core in the focal plane of the objective in linear polarization basis. For optimal per-

formance, the numerical aperture (NA)) of the two collimators matched the one of the

single-mode fibers (NA = 0.13), the high NA = 0.82 of the objective maximized the resolution

of the focal spot. The choice of the excitation light source, detection device and the set of

optical waveplates and filters (marked by dashed lines in Figure 3.7) depended on the type

of measurement.
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Figure 3.7.: Setup schematics for cryogenic spectroscopy. a, Laser light from an excita-
tion fiber is collimated and guided through a linear polarizer (LP) and optional optical
filters to a beam sampler (BS, Laseroptik), which partially reflects it towards the sam-
ple mounted in a cryostat (the transmitted part of the light can be used for excitation
power monitoring with a photodiode). A waveplate (WP) can be used to control the
polarization of the excitation beam. An apochromatic objective focuses the light onto
the sample mounted on a set of piezo-stepping and scanning units (attocube systems,
ANPxyz and ANSxy100) for positioning with respect to the focal spot of the objective.
Light reflected or emitted from the sample is collected by the objective and guided to
the top of the setup passing another BS (a fraction of the light can be used for imaging
using a camera), a set of waveplates and filters and a linear polarizer for polarization
and wavelength selection and finally coupled into a detection fiber. The latter is used
to guide the light to a detection device for analysis. b, Waveplate configuration for po-
larization selective PL or DR measurements. c, Waveplate configuration for measuring
the degree of circular polarization in PL.Θ is the angle between the given direction of
linear polarization, defined by LP, and the slow axis of respective waveplate.

31



3. EXPERIMENTAL METHODS

Differential reflection measurements

Differential reflection (DR) spectroscopy was applied to study the absorption characteristics

of a heterostructure in a specific spectral range. We used a supercontinuum laser (NKT,

Super K Varia and Super K Extreme) or a tungsten halogen lamp (Ocean optics, HL-2000-HP)

as broadband light sources and guided the reflected light from the detection fiber through

a monochromator (Roper Scientific, Acton SP2500 a 300/1200 grooves/mm grating) for

spectral dispersion to a liquid nitrogen cooled charge-coupled device (CCD, Roper Scientific,

Spec-10:100BR). The DR spectra were obtained by normalizing the reflected spectra from

the region of interest on the TMD heterostructure (R) to that from the sample region without

MoSe2 and WS2 layers (R0) as DR = (R −R0)/R0.
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Figure 3.8.: DR phase correction.Top panel: Raw DR signal corresponding to the data
shown in Fig. 1b of the main text. Center panel: Phase corrected DR with the phase
α = 13◦ which was used in the main text. Bottom panel: Phase corrected DR with
α=−45◦.

For comparison between measurements and theory the DR signal can be translated into

the imaginary part of the dielectric susceptibility χ= χ′+ iχ′′ by following Refs. [127, 128].

Without hBN encapsulation the DR signal would simply be proportional to χ′′, however,

top and bottom hBN add additional interfaces that influence the lineshape of the reflected

signal by interference effects. As shown in [127], these effects can be taken into account by

introducing a phenomenological phase factor for the effective susceptibility χ̃=χe iα, where

α is an a priori wavelength-dependent phase factor and the DR signal is now proportional to

the imaginary part of χ̃, DR ∼ Im(χ̃). Here, for simplicity, we assumeα to be a constant in the

relevant spectral range. Then, using the Kramers-Kronig relations for the complex-valued

function χ̃(ω), we can compute χ′′ from DR as
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χ′′(ω) = Im
(
e−iαχ̃(ω)

)
= cos(α)DR(ω)− sin(α)

∫
R

DR(ω′)
ω−ω′ dω′ . (3.1)

Figure 3.8 shows a representative raw DR signal (α= 0◦) alongside the corresponding phase-

corrected data (α= 13◦) and a third example with an arbitrary phase for illustration of the

principle (α = −45◦). The phase which was used in the main text is chosen such that the

individual moiré exciton peaks exhibit approximately Lorentzian lineshapes, as expected

for the absorption of individual exciton resonances.

Photoluminescence measurements

Photoluminescence (PL) measurements were employed to study the ground state optical

transition characteristics of a heterostructure. A complementary set of short- and longpass

filters is additionaly introduced in the excitation and detection path of the confocal setup,

respectively; the first hindering Raman-generated photons from entering the detection

device, the latter blocking the excitation laser. For standard PL measurements we used a

continuous wave (CW) laser source at 635 nm (Helium Neon Laser) or 532 nm for optical

excitation above the excitonic bandgap. Light was guided to a spectrometer and detected by

a CCD in analogous fashion to DR measurements.

Polarization resolved measurements

The unique valley degree of freedom of monolayer TMDs features polarization-contrasting

dipolar selection rules [48, 129–132] which become non-degenerate once time reversal

symmetry is broken by an out-of-plane magnetic field. As a result, a Zeeman splitting or

degree of polarization of the polarization contrasting exciton transitions can be studied in

optical experiments [70–72, 74]. In this work, we studied the polarization resolved optical

response of our TMD heterostructures in DR with an applied out-of-plane magnetic field by

introducing a λ/4-waveplate in the detection path before the linear polarizer (LP) as shown

in Figure 3.7b. The combination of waveplate and linear polarizer selects light from either

of the two directions of circular polarization depending on the angle of the slow axis of the

waveplate with respect to the direction of linear polarization defined by the polarizers.

The degree of spin-polarization ρ was then determined as

ρ = f+− f−
f0

= ∆ f

f0
, (3.2)

the difference of the exciton oscillator strength f± in σ+ and σ− polarization normalized by

the polarization independent exciton oscillator strength f0 at B = 0 T. A measure for f is the

amplitude of a Lorentzian profile which is fitted to the spectral lineshape of the polarization

resolved DR peaks [88].
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The Zeeman splitting is the difference of the respective peak energies:

∆EX = E+−E− (3.3)

Finally, we define the polarization contrasting optical response, referred to as magnetic

circular dichroism, as

MC D(λ) = DR+(λ)−DR−(λ) (3.4)

where DR+/−(λ) is the DR spectrum measured in σ+/− polarization as function of the wave-

length λ. Both finite degree of polarization ρ and Zeeman splitting ∆EX lead to a non zero

MC D response as a function of λ, i.e. excitons in a specific spectral range are polarized and

preferably occupy either of the two K -valleys.

3.2.2. Dual-gate operation

At room temperature no voltage should be applied between the electrostatic gates to pre-

vent thermally activated discharge through defect states in the hBN layers. After loading

the device into a cryostat all gates were grounded during the cool-down procedure, since,

given its electrostatic sensitivity, charging effects induced by temperature gradients could

potentially disrupt the sample. Before starting to explore the exciton physics in different

charge configurations, we conducted tests to assess the functionality and limits of the device

gates. Using a voltage source (Keithley, 2400 SourceMeter) capable of measuring resistive

circuit currents with pA precision simultaneously, we carefully tested the applicable volt-

age range between the gates. The limit of applicable voltage is reached once the resistive

current starts following the behaviour of an ohmic contact indicating electrical shorting

between the FLG electrodes through the hBN spacer layer as a result of increased defect

density [133]. Keeping the applied gate voltage below this critical value allowed to reliably

operate the dual-gate device over an extended period of time and several cryogenic cycles.

Monitoring the optical response in the active area of the heterostructure in reflection or PL

during the testing of the gates provides direct feedback on the functionality of the gates via

the observation of expected charged exciton features at finite gate voltages.

The dual-gate layout of the field-effect device with symmetric hBN layer thickness around

the TMD HBL allows to precisely control and manipulate the charge carrier distribution

inside the HBL through a perpendicular electric field F or to vary the doping level Vµ. The

former regime can be reached by an imbalanced tuning of the top and bottom gate voltages

VT and VB as∆VTB = (VB−VT) = F dhBN with respect to the grounded reservoir in contact with

both TMD monolayers (dhBN denotes the total hBN thickness of the heterostack between the

two graphite electrodes) and probes the static out-of-plane exciton dipole moment via the

Stark effect. The latter is achieved by balancing both gates and tuning them simultaneously

against the ground as Vµ = (VT +VB)/2.
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3.2.3. AC modulation measurements

In our experiments we studied the optical response of the TMD heterostructure at differ-

ent dual-gate configurations in PL and DR spectroscopy. However, certain features of the

moiré modulated bandstructure and spatial arrangement of specific exciton and charge

complexes cannot be observed by standard spectroscopy techniques if their physical origin

is decoupled from bright optical transitions or weak optical signals are buried in noise due

to slow drifts in the experimental setup.

VB

VT

~

Function
Generator

Lock-in
Amplifier

AC modulation

VAC

AC 

reference
PreamplifierPhotodiode

RDC

Cryogenic setup with confocal microscope

RAC

Reflection signal

Figure 3.9.: Setup schematics for AC modulation spectroscopy. A narrow-band tunable
laser is used for excitation in the standard configuration of the confocal setup, the cor-
responding reflection signal from the sample coupled to the detection fiber and guided
to a photodiode. The resulting photocurrent signal is amplified (RDC ) and subsequently
demodulated by a lock-in amplifier at the same frequency at which the top gate voltage
VT is modulated (VAC ).

AC modulation measurements using a lock-in amplifier can help to extract such hidden

information from a system. In this technique, an experimental variable is modulated with

an alternating current or voltage signal. The impact of this modulation on a physical observ-

able is then detected and analyzed with a lock-in amplifier, which operates at the specific

modulation frequency.

For example, interlayer excitons in TMD heterostructures typically exhibit a vanishingly

small oscillator strength under in-plane polarized optical excitation due to their out-of-

plane transition dipole moment. However, the application of an out-of-plane electric field

induces a notable shift in the resonance energy due to the Stark effect (see Section 2.1.3).

Bringing interlayer and intralayer excitons into resonance through electric field tuning can

result in field-induced hybridization [14, 15, 134] depending on the coupling strength of the

two resonances. To render this effect observable, we employed a modulation-spectroscopy
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Figure 3.10.: Setup schematics for photocurrent measurements. The excitation laser
power is modulated at a specific frequency before it is coupled into the confocal micro-
scope in standard configuration. A preamplifier measures the current between ground
reservoir and the TMD bilayer, while DC voltages are applied to top (VT ) and bottom
gate (VB ). The signal from the preamplifier is demodulated with a lock-in amplifier at
the same frequency as for the laser power modulation to extract the resulting photocur-
rent.

technique utilizing a narrow-band wavelength-tunable laser to measure the differential

absorbance or reflectance at a specified laser energy [P2, 135–137]. The results of this mea-

surement on a MoSe2/WS2 heterostructure are presented in Section 4.3. The schematic

of the setup is depicted in Figure 3.9: We excited the sample with a Ti:sapphire laser (M

squared) featuring a 50 µeV linewidth, while modulating one of the device gates with a small

AC-voltage (VAC ). Subsequently, the reflected optical signal was detected by a silicon photo-

diode, with the output preamplified using an Ithaco 1211 preamplifier. The amplified DC

part of the photosignal (RDC ) was measured, and the AC part was further demodulated and

amplified by a lock-in amplifier (EG & G 7260), synchronized with the reference frequency of

the modulation voltage to yield RAC . Finally, the narrow-band differential reflectance (∆R ′)
was computed as the ratio of the demodulated AC part to the DC photosignal, i.e., RAC /RDC .

Each data point acquisition involved an integration time constant of 1 s. In certain straight-

forward modulation conditions, the signal may be directly proportional to the derivative of

∆R [135], while in more complex cases, a microscopic analysis, including optical pumping

of charge carrier reservoirs, is necessary.

Another AC modulation technique applied in this work is photocurrent spectroscopy,

measuring the photo-excited current in a semiconductor device under laser irradiation

at a specific wavelegnth [138]. The schematics of the measurement setup are shown in
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Figure 3.10. Here, we used a diode laser for excitation, the output power of which can be

modulated by an AC input signal VAC . Another possibility is the use of an optical chopper

in the beam path of the excitation laser before coupling it into the excitation fiber. In this

experiment, the physical observable of interest was the current of charge carriers from

the ground reservoir into the TMD heterostructure via the FLG contact gate. The current

was measured and converted to a voltage signal by an Ithaco preamplifier (model 1211)

and subsequently demodulated and further amplified by a lock-in amplifier (EG & G 7260).

The frequency of the laser power modulation was given as a reference input to the lock-in

amplifier to obtain the part of the photoinduced current between ground reservoir and TMD

heterobilayer. Monitoring the photocurrent while tuning the Fermi level inside the TMD

heterostructure by applying DC voltages at top and bottom gate could provide information

about incompressible charge configurations at specific densities of electron or hole filling

(see Section A).

3.3. Open microcavity in a closed-cycle cryostat

The introduction of an optical resonator can enable efficient and precise interaction be-

tween a photon and a solid-state emitter. It presents a powerful platform to study strong

light-matter interaction and polaritonic physics. A pivotal aspect in the progress of light-

matter interaction with solid-state systems is the challenge of combining the requirements

of cryogenic temperature and high mechanical stability against vibrations while maintain-

ing sufficient degrees of freedom for in situ tunability. In the scope of this thesis, we im-

plemented a fiber-based open Fabry-Pérot cavity in a closed-cycle cryostat, developed by

Samarth Vadia [139], Holger Thierschmann, Clemens Schäfermeier and Claudio Dal Savio

at attocube systems. Lukas Husel contributed to the setup of the measurement protocols.

The system exhibits ultrahigh mechanical stability while providing wide-range tunability in

all three spatial directions. The following section presents the functionality and characteri-

zation of the open cavity platform, followed by an overview of the cavity-based spectroscopy

techniques applied for the study of moiré excitons in MoSe2/WS2 heterostructures in the

strong light-matter coupling regime, which are presented in Section 5.2. The Sections 3.3.1

and 3.3.2 were partly published verbatim in [P8] and are subject to the copyright of the

American Physical Society.

3.3.1. Cavity design and setup

The design of our open Fabry-Pérot cavity is based on the plano-concave geometry as

introduced in Section 2.2. A micromirror is formed by a fiber end facet with a dimple that

has been produced using the CO2 laser ablation technique and can be approximated by a
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sphere [99]. Its macroscopic counterpart is a planar mirror and supports a solid-state system

of interest, as illustrated in Figure 3.11a. For the experiments, both mirrors were coated with

either a thin film of silver or a distributed Bragg reflector (DBR) coating.

The fiber and the macroscopic mirror were mounted in a configuration as shown in

Figure 3.11b. To ensure large tunability of the cavity not only along its optical axis (z), but

also along lateral dimensions (x, y), we placed the two cavity mirrors on two separate mounts.

The macroscopic mirror was fixed on top of a commercial xyz-nanopositioner (attocube,

two ANPx311 and ANPz102) for precise and independent position control in the x and y

direction over a range of 6 mm each and cavity length control along z over a range of 4.8 mm.

The fiber mirror is mounted on another stack, consisting of rigid titanium blocks and a piezo,

which only provides a tunability in the z direction through the piezo element for cavity fine

tuning and active feedback control. The fiber position in the xy-plane is fixed. This ensures

alignment of the optical axis of the cavity with an aspheric lens (Thorlabs, AL1210, NA =

0.55) mounted on a nanopositioner (attocube, ANPx311HL) with z displacement providing

a free-space optical access to the cavity.

a b

z

x

y

Fiber

Fiber Mirror

Stack

Planar Mirror

Stack

Thermal Link

Planar Mirror
Piezo

Aspheric Lens

zM

yM

xM

zLensPogo Pin

Figure 3.11.: Concept and setup of a fiber-based open-cavity. a, An illustration of the
cavity composed of a concave-profiled fiber mirror and a macroscopic mirror with
a TMD monolayer. b Sketch of the tunable cavity assembly that mounts on top of a
vibration isolation stage. The stack on the right holds the planar mirror and consists
of xyz-nanopositioner with a thermal link connecting the mirror to the cold plate to
thermalize it to cryogenic temperature. The other stack on the left holds the fiber mirror
and consists of a piezo element, thermal link and metal blocks to reach the same height
as the right stack. A spring-loaded pogo pin introduces a connection between the
two stacks to reduce differential motion. The aspheric lens is mounted via another
metal piece at the back with an additional nanopositioner to adjust the focal spot in z
direction.
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3.3. OPEN MICROCAVITY IN A CLOSED-CYCLE CRYOSTAT

3.3.2. Damping of vibrational noise for high finesse operation

The key challenge when using the above setup in a closed-cycle cryostat lies in the mechan-

ical vibrations induced by the cooling cycle of the cryostat and other external sources of

motion in the low-frequency range. With the cryostat in operation, the mechanical vibration

amplitude at the cold plate is in the range of 10 – 20µm, mostly due to the impact of high

pressure helium flow during the cooling cycle [140]. The displacement amplitude is brought

down to the level of a few nanometers at the cold plate of the cryostat (attocube systems,

attoDRY800) that is aligned with the surface of the optical table [141].

Identification of vibrational noise

We verified the low level of vibrations with a fiber-based optical interferometer (attocube

systems, FPS3010) that measures the displacement of the cold plate with respect to the opti-

cal table. The resulting time trace at the measurement bandwidth of 100 kHz is presented in

the left panel of Figure 3.15. The data reveal a 1 Hz periodic pattern of mechanical pulses

characteristic of closed-cycle coolers. These pulses excite a set of high frequency vibrations

resulting in a peak-to-peak (p-p) amplitude below 10 nm at the given full bandwidth. This

amplitude quickly rings down leading to a rather inhomogeneous distribution of vibrations

in time with rms displacement fluctuations of 2.2 nm. Although this is not entirely surpris-

ing, it is worthwhile to point out that the displacement fluctuations (often referred to as

vibrational noise) arise from a set of mechanical oscillators being excited by an impulse

force during the cryo-cooler cycle and do not follow a well-defined statistical distribution,

such as the Brownian noise.
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Figure 3.12.: Mechanical vibration characteristics at room-temperature. Displace-
ment of the cold plate of the cryostat (left panel) and of a xyz-nanopositioner stack on
the cold plate (right panel), acquired with an integration bandwidth of 100 kHz.
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The mechanical vibrations become naturally exacerbated when mechanical degrees of

freedom are added to the system. In our case, the addition of nanopositioners was necessary

to provide in-situ control. As a demonstration, we measured the displacement amplitude

along the z-axis of a xyz-nanopositioner set (attocube systems, two ANPx101 and ANPz102)

directly mounted on the cold plate. The time trace in the right panel of Figure 3.12 shows

that the p-p displacement increases significantly by more than a factor of three, reaching up

to a maximum of around 35 nm at each pulse of the cryo-cooler. We note that in contrast

to the p-p amplitude at the mechanical pulses, the displacement amplitude between two

pulses remains fairly similar, with an increase in rms fluctuations by less than factor of two

to a value of 3.4 nm.

These results make clear that additional measures were needed for the cavity setup shown

in Figure 3.11b to be operational in the cryostat. Without any modifications, the rigid fiber

mirror stack would closely follow the motion of the cold plate and thus feature fluctuations

as in the left panel of Figure 3.12, whereas the planar mirror stack would vibrate similar to the

nanopositioner stack with characteristics in the right panel of Figure 3.12. The differential

motion between the two cavity mirrors is expected to be of the order of tens of nm, rendering

experiments even with a low finesse cavity impossible.

Passive vibration isolation

To improve the mechanical stability, we implemented a set of vibration isolation springs

to decouple the cavity setup from vibrations of the cold plate. A detailed description of the

development of the vibration isolation system can be found in Ref. [139]. A sketch including

the cavity setup and the spring stage is depicted in Figure 3.13a. The cavity setup, which is

shown in Figure 3.13b, is represented here by two springs, corresponding to the fiber mirror

stack and the planar mirror stack with their respective spring constants kF and kM (where

rigid fiber mirror stack implies kF ≫ kM ). This full cavity setup is mounted on a titanium

plate, labeled as a spring table in Figure 3.13a. The spring table rests on a set of four springs

(represented by a single spring in the sketch), each of which has a nominal spring constant

of kS = 1.52 N/mm (Smalley, CM08-L7) at ambient conditions. With total mass m = 0.686 kg

compressing the springs, the nominal resonance frequency fR of the vibration isolation

stage calculates as

fR = 1

2π

√
kS

m/4
= 15Hz. (3.5)

We chose the payload and spring constant such that the resulting resonance frequency lay

sufficiently far above the resonance frequency of the optical table (5 Hz) to suppress their

coupling.

Additionally, a link of high stiffness between the two mirror stacks helps to minimize

their differential motion. Of course, introducing direct contact between the two mirrors
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Figure 3.13.: Mechanism for damping vibrational noise. a, Schematic of the cavity
assembly and vibration isolation stage built on top of the cold plate of the closed-cycle
cryostat. Vibration isolation stage consists of the spring table placed on top of four
springs (kS) along with magnetic damping (damping constant γ), which are all placed
on the cold plate. The thermal link enables cavity operation at cryogenic temperature.
The cavity setup is represented as two springs on the spring table - planar mirror stack
(with spring constant kM ) and fiber mirror stack (with spring constant kF ) - which are
connected by a rigid spring (with spring constant kP ) representing the pogo pin for
damping of differential motion between the two. b, Optical image of planar mirror and
fiber stack including the pogo pin. Thin copper lamella are used for thermalization of
the cavity stacks with the cold plate of the cryostat.

completely eliminates any vibrational limitations of the cavity measurement. However,

we aimed to maintain the tunability of the open-cavity configuration. To achieve this, we

introduced a spring-loaded pin (N&H, SVPC-F-N005M2), commonly referred to as a pogo

pin, similar to those used in the electronic testing industry. This approach provided a rigid

connection between the two mirrors while still allowing us to tune the mirror position with

the piezo stack [139].

An important challenge was to ensure reliable thermalization of the cavity with the cryo-

stat cold plate without reducing the vibration isolation by the spring stage. This is crucial

because an efficient thermal link inevitably constitutes an additional mechanical connection

that can potentially allow vibrations to bypass the vibration isolation stage. We addressed

this challenge by attaching to the spring table a bundle of thin copper lamella with high

thermal conductivity that are sufficiently soft and flexible to suppress transfer of mechanical

vibrations.

To suppress high oscillation amplitudes at the spring stage resonance, we included a soft

magnetic eddy current damper, denoted with damping constant γ. The spring system as

a whole acts as a mechanical low pass filter, that suppresses vibrations by a factor 100 per

decade above resonance frequency with a transition to suppression by a factor 10 per decade
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towards higher frequencies due to the eddy current damping. This means that contributions

to the mechanical vibrations become suppressed from tens of nm down to the order of

0.1 nm for the frequencies above 180 Hz.

Vibration characterization

To characterize the performance of the complete assembly, we measured the relative dis-

placement between the fiber and macroscopic mirrors using the cavity itself as an inter-

ferometer. A schematic overview of the experiment on the optical table is presented in

Figure 3.14a. The optical excitation is provided through the fiber side of the cavity. The

transmitted light through the planar mirror of the cavity is guided to a photodiode (Siemens,

BPW34 with DL Instruments, 1211 Current Preamplifier). A part of the transmission signal

can optionally be guided to another photodiode via a beamsplitter which can then be used

to perform active feedback stabilization of the cavity length using the piezo actuator below

the fiber mirror.
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Figure 3.14.: Cavity length fluctuation measurement. a, Sketch of the experimental
setup used for the stability characterization and strong-coupling operation. Assignment
of abbreviations: λ/2-waveplate (HWP), beamsplitter (BS), fiber beamsplitter (FBS),
photodiode (PD), aspheric lens (AL), piezo element (PZ), mirror (MI), data processing
unit (DPU); lock electronics: high voltage amplifier (HV), proportional-integral (PI)
control electronics, notch pass (NP), (SM) spectrometer. b, Left panel: Transmission
signal as a function of cavity length. The solid black line is the data around a cavity
resonance obtained by applying a voltage to the piezo actuator. The orange dashed
line shows the corresponding fit to the Fabry-Pérot transmission function of Eq. (2.7)
with F = 110. Right panel: Transmission signal measured with active stabilization at
the maximum slope of the cavity resonance shown on the left at a temperature of 6.5 K.
The measurement bandwidth was 100 kHz.

For the stability characterization measurements, we used a fiber with a dielectric coating

(LaserOptik, T = 0.0032), while the macroscopic mirror had a silver coating (T ≃ 0.008)

which leads to higher photon leakage towards the free-space side. The laser light at 780 nm
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(MSquared, SolsTiS) is coupled to the cavity through the fiber. To determine the cavity

displacement induced by mechanical vibrations, the transmission signal through the planar

mirror was recorded at the slope of a cavity resonance where the sensitivity to changes in

transmission as a function of the cavity length is highest. Changes in transmission were

subsequently converted to changes in the cavity length.

To this end, the transmission signal across a cavity resonance was recorded while sweeping

the voltage applied to the piezo below the fiber that acts as an actuator (see Figure 3.14b,

right panel). The finesse of the cavity resonance can be determined from the transmission

signal as a function of the cavity length using Eq. (2.7). Close to a cavity resonance, any

change in the transmission as a function of time is converts to a change in the cavity length.

We used the derivative of the transmission function in Eq. (2.7):

d At

dlc
=−4G2π

λ

sin(φ)cos(φ)[
1+ (

G sinφ
)2

]2 , (3.6)

with G = 2F/π and φ = 2πlc /λ to derive small fluctuations around the half-maximum

position of a cavity mode from transmission intensity fluctuation in a linear approximation

as indicated by the grey circle in the left panel of Figure 3.14b.

In our experiments, the transmission signal was measured with a time resolution of 10µs.

The rms displacement fluctuations were calculated from the cavity length fluctuations as a

function of time as:

dr ms =
√

1

n

n∑
i=1

d 2
i , (3.7)

where n is the total number of data points acquired over 10 s and di is the cavity displace-

ment at each point.

The effect of the passive vibration isolation system on the cavity stability at room tem-

perture can be seen in Figure 3.15a. The cavity length fluctuations as a function of time are

drastically reduced as compared to the displacement of a single set of positioners, shown

in the right panel of Figure 3.12 on the same scale. The inset in Figure 3.15a shows the

time trace with a 20-fold magnification. Here, it becomes visible that the vibration kicks at

intervals of 1 s are strongly suppressed down to a p-p amplitude of 0.3 nm. The rms cavity

length fluctuations are 31.6±0.5 pm at an integration bandwidth of 100 kHz. This large

measurement bandwidth encompasses all significant mechanical resonances of the system.

We identify the source of additional vibrations by analyzing the Fourier transform (FT) in

Figure 3.15b for the cavity length fluctuations shown in Figure 3.15a. The peaks around

20 Hz can be assigned to resonances of the vibration isolation stage. The stage excites both

mirror stacks and a small but visible relative displacement of the two mirrors is observed.

Starting from 250 Hz, more peaks are visible in the FT, eluding a detailed analysis. Some can

presumably be attributed to the various components in the setup, but also the thermal links
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Figure 3.15.: Cavity length fluctuations at room-temperature. a, Cavity length fluctua-
tions of the open-cavity on the vibration isolation stage inside of the cryostat, acquired
with an integration bandwidth of 100 kHz. b, Fourier transform of cavity length fluctua-
tions (red) and noise floor (grey) with a frequency resolution of 1 Hz.

possibly provide a path for vibrations to be transmitted from the cold plate to the cavity that

may not get fully filtered by the vibration isolation stage. Finally, there are also several sharp

resonance peaks which are ascribed to the higher harmonics of 50 Hz. All preceding room

temperature vibration measurements were done by turning on the cryo-cooler for several

minutes to evaluate the vibrations without performing a full cool-down to the base temper-

ature. This is a useful tool for a quick characterization, especially during the development

stage.

At cryogenic conditions the mechanical properties of various components can differ with

change in temperature and pressure, and result in different mechanical fluctuation charac-

teristics. The cryogenic vibration characteristics of the cavity at 6.5 K in vacuum (the nominal

base temperature of about 4 K was not reached in this specific experiment due to a tempo-

rary modification of the radiation shield for a wire feed-through) are shown in Figure 3.16

for an integration bandwidth of 100 kHz. Figure 3.16a shows the cavity length fluctuations of

the passively stabilized system with p-p amplitude and rms fluctuation values of 0.7 nm and

117±7 pm, respectively. It is important to note that the cavity length fluctuations should

be measured with an appropriate dynamic range defined by the finesse of the cavity. For

example, the measurements shown in this work were performed with F = 110 leading to

the spatial-equivalent cavity linewidth of ∆L ≃ 3.5 nm. Thus, the maximum displacement

of the cavity length for a vibration kick of 0.7 nm is still well within the interferometric

measurement range of the cavity as illustrated in the right panel of Figure 3.14b.

Subsequently, we evaluated the effect of additional active feedback stabilization of the

cavity length as schematically shown in Figure 3.14a. Here, a part of the transmission signal
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Figure 3.16.: Cavity length fluctuations at cryogenic temperature. a, Vibration dis-
placement of the tunable cavity at 6.5 K without lock and b with lock at a bandwidth
of 100 kHz. c, Displacement rms of cavity fluctuations as a function of integration
bandwidth without lock (square) and with lock (circle). d, Fourier transform of cavity
fluctuations with lock (blue) and noise floor (grey) with a frequency resolution of 1 Hz.

from the cavity was directed to a photodiode and into a servo, built at attocube systems

(atto servo rev. 1). The output of the servo, which is fed with an error signal, is connected

to the piezo actuator to adjust for cavity length fluctuations against a defined resonance

condition. The resulting change in transmission is again detected by the photodiode and

fed back to the servo. The result of the cavity locking through active feedback can be seen

in Figure 3.16b. While the p-p amplitude remained at 0.7 nm, the rms fluctuations reduced

to 89±5 pm, or by 25% compared to the solely passively damped cavity. The comparison

of the rms fluctuations as a function of bandwidth is shown in Figure 3.16c. The active

feedback stabilization works efficiently up to ∼50 Hz, indicating an upper limit for the

bandwidth of the feedback at that frequency. However, the analysis of rms fluctuations as a
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function of bandwidth shows that the mechanical stability of around 1 pm can be reached

with small measurement integration bandwidth. The FT of the cavity fluctuations with an

active feedback is shown in Figure 3.16d. Here, we observe similar features as in the room-

temperature data of Figure 3.15b, namely a relatively strong increase in rms fluctuations at

low frequencies (10-100 Hz), where the resonance of the vibration isolation stage at around

15-20 Hz and a sharp peak around 50 Hz dominate. For frequencies above 200 Hz, two sets

of resonances dominate the vibrations, one of which lies in the range ∼200-500 Hz and

the other between ∼1-2 kHz. In Figure 3.16c, a step-wise increase in the displacement rms

can be clearly observed at these frequency ranges. As discussed above, those contributions

presumably arise from the mechanical resonance of individual components of the cavity

setup and, potentially, from vibrations of the cryostat that get transferred via the thermal

links. At 10 kHz, the sharp peak originates from the carrier frequency of the pulse width

modulator built in the inverter driving the 1 Hz rotating valve of the three phase motor of

the cryostat.

3.3.3. Limitations of vibration suppression

The previously explained reduction of cavity length fluctuations to rms stability of 89 pm

enables cavity measurements with resolvable finesse in the order of 104, qualifying the plat-

form for state-of-the-art cavity QED experiments with Q-factors in the range of 105 −106

and in-situ tunability for a wide variety of solid-state emitters. However, reaching this bench-

mark demands a high control of various setup components and optimal environmental

conditions. The following gives a short overview over the limitating factors.

After completing the measurements detailed in the previous section, the cavity setup

was relocated to a different attoDRY800 cryostat, which featured a smaller optical table.

Following the disassembly and reassembly of the setup, the cavity stability was significantly

diminished compared to the results presented earlier, as depicted in Figure 3.17a. The rms

fluctuations at room temperature increased from approximately 20 pm on the old table

to nearly 100 pm on the new one for the passively damped cavity setup with the cryostat

compressor switched off. The corresponding Fourier transforms in Figure 3.17b offer insights

into the underlying causes of this reduced stability. The main contribution to the increase in

cavity displacement lies, on one hand, in the low-frequency range between 10−30 Hz and, on

the other hand, in a broader spectral range between 100−1000 Hz. The former corresponds

to the resonance frequency of the vibration isolation stage (∼ 15 Hz), suggesting a potential

heightened excitation of the cavity stage resulting from vibrations originating from the cold

plate of the cryostat, the optical table or environmental vibration noise. The latter suggests

an increased vibration level of the cavity setup possibly caused by loose or broken parts.

To address the first issue, we examined the vibration behavior of both optical tables

through accelerometry measurements in three orthogonal directions utilizing a vibration
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Figure 3.17.: Limited cavity stability. a, Vibration displacement of the tunable cavity at
room temperature at a bandwidth of 100 kHz with compressor turned off before (left
panel) and after (right panel) moving the setup to a different optical table. b, Fourier
transform of respective cavity fluctuation data with a frequency resolution of 1 Hz,
plotted in corresponding colors.

analyzer (Table Stable, VA-2C). Achieving optimal vibration damping performance for a

floating optical table necessitates operating the table’s vibration isolators (Newport, S-2000)

within the recommended pressure range tailored to the weight of the optical table and

its specific load. The left panel of Figure 3.18 illustrates the Fourier transform of vertical

accelerometry measurements conducted on both, the old and new optical table. Notably,

the resonance frequency of the new table is shifted to higher frequencies by approximately

2 Hz owing to its reduced weight. Moreover, the measured acceleration of the new table

exhibits an increase in the low-frequency range up to 100 Hz. In particular, the acceleration

around the resonance frequency of the cavity vibration isolation stage (∼ 15 Hz) is increased

by almost one order of magnitude compared to the old table from less than 10 10 µm/s2 to

over 100 µm/s2. This accounts for the diminished cavity stability, as the motion of the new

table introduces a resonant drive to the vibration isolation stage. One potential solution

could involve swapping the springs of the cavity stage to shift the stage resonance frequency

away from the vibration maximum, although this was not pursued within the scope of

this thesis. Furthermore, accelerometry measurements were directly performed on the

cold plate of the new attoDRY800 cryostat, to which the cavity setup was mounted. The

resulting Fourier transform, compared to measurements on the corresponding optical table,

is depicted in the right panel of Figure 3.18. At low frequencies, the spectral evolution

of cold plate acceleration follows the one of the optical table. However, an enhancement

can be observed at higher frequencies between 400-1000 Hz. These mechanical vibrations,

transmitted through the thermal links of the cavity setup, may cause the observed increased
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cavity length fluctuations within the same frequency range, as can be seen in Figure 3.17b.

In addition to the diminished vibration damping performance of the new optical table and

cryostat cold plate, the second phase of cavity measurements coincided with construction

works in the building, resulting in increased environmental vibrational noise, not possible

to eliminate. To rule out loose or damaged components within the cavity setup as sources of

vibrational noise, we disassembled the setup, reglued the springs of the vibration isolation

stage (UHU Plus Endfest) and the cavity fiber (UHU Plus Schnellfest), replaced the pogo pin

(Mouser Electronics, 575-0964015208514110) and inspected the piezo stack to which the

planar mirror was affixed for any broken parts.
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Figure 3.18.: Vibration characterization of optical table and cold plate. Comparison of
the fourier transform (FT) of vertical accelometry measurements on the old and new
optical table hosting the cavity setup (left panel) and the new optical table and the
corresponding attoDRY800 cryostat cold plate (right panel). Spectral bands of highest
relative amplitude increase between the shown data are highlighted in grey. The FT was
determined with a frequency resolution of 0.5 Hz.

Given the limitations of the cryostat setup, the resolvable finesse is reduced to a few

hundred. Nonetheless, TMD mono- and bilayers, which were investigated in the strong

light-matter coupling regime in this thesis, exhibit excitons with optical transitions in the

visible and near-infrared spectral range, featuring homogeneous linewidths exceeding 1 meV

at cryogenic temperatures due to their substantial exciton oscillator strength. Even with

increased vibrational noise, the vibration-limited resolution of the optical cavity remains

comparable or smaller than the exciton linewidth at low mode orders, still qualifying our

cavity platform for the intended measurements.
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3.3.4. Cavity transmission spectroscopy

The following section gives an overview of the procedure of transmission spectroscopy mea-

surements done with the above described cavity setup. The heterostructures were placed

on a DBR optimized to reflect the spectral range of exciton transitions of interest. The DBR

design features a field-node at the surface of the mirror, such that the encapsulating hBN

acts as a spacer layer to place the TMD layers in a field maximum. The transmissions of

both DBR coatings as a function of wavelength are shown in Figure 3.19a and theoretically

expected finesse follows directly using the formula (2.10).
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Figure 3.19.: Cavity characteristics. a, The expected transmission (T) of the fiber and
macroscopic planar DBR in the spectral range of interest shown in solid and dashed
lines, respectively. The expected finesse of the assembled cavity calculated from the
corresponding reflectivities (R) is plotted in red. We assume R = 1 - T neglecting further
losses in the given spectral range. b, Expected mode waist as function of the cavity length
for a given radius of curvature Rc = 14µm and wavelengthλ= 780 nm. Inset: Illustration
of the plano-concave fiber cavity geometry with laser-machined fiber tip. The full-width
of the Gaussian profile at 1/e2 is denoted as D , the depth of the indentation as zt .

After assembling the cavity setup, we employed broad band white light for opitcal ex-

citation from the fiber side (NKT, Super K Varia and Super K Extreme) and detected the

spectrally dispersed (Roper Scientific, Acton SP2500) transmission signal in the range of

the highly reflective bands of the DBRs with a liquid nitrogen cooled CCD (Roper Scientific,

Spec-10:100BR). The free spectral range (FSR) ∆λ between adjacent TEM00 modes in the

spectrum with respective resonance wavelength λ1 and λ2 allowed to monitor the cavity

length lc =λ1λ2/2|λ1 −λ2|. We gradually reduced the cavity length, as we wanted to operate

the cavity in the range where the plano-concave resonator geometry supports the formation

of stable Gaussian modes and minimum effective mode volume Vm , when coupled to an

exciton emitter (see Section 2.2 for details). Figure 3.19b shows the expected Gaussian mode

waist as a function of the cavity length lc , determined from Equation (2.18) at a wavelength
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Figure 3.20.: Cavity transmission characteristics at low mode order (n = 7). a, upper
panel: Transmission profile of a lateral cavity scan across a silver chessboard pattern
with 5 µm lattice constant. Gaussian fits (orange lines) to the derivative of the transmis-
sion profile at the edges of the silver structure in the lower panel allow to extract the
resolution of the cavity scan, i.e. the mode waist of the cavity. b, Transmission spectrum
using broadband white light for excitation through the cavity fiber. The cavity setup
is placed inside the cryostat and cooled to cryogenic temperatures. The fundamental
cavity mode at 1.621 eV (λ = 765 nm) can be fitted with a Voigt profile, yielding the
Lorentzian contribution with homogenious linewidth κ= 0.13 meV and the Gaussian
contribution with linewidth γ= 0.38 meV.

λ = 780 nm. The stability criterion for the plano-concave cavity geometry (see Equation

(2.13)) allows the formation of stable Gaussian modes for cavity length lc ≤ Rc , with the

radius of curvature of the fiber tip indentation Rc . It is worth noting, that the CO2 laser

ablation technique leads to a Gaussian profile of the fiber tip indentation as illustrated in the

inset of Figure 3.19b [99]. However, in a paraxial approximation, the center of the imprinted

dimple with depth zt and diameter D can be treated as a sphere with radius of curvature

Rc ≈ D2

8zt
. (3.8)

For our specific cavity geometry, the minimum possible mode order was n = 3 before intro-

ducing contact between the planar mirror and the fiber tip, corresponding to a cavity length

of 1.5 µm.

To estimate Vm at a specific cavity length in our measurements we determined the cavity

mode waist experimentally by laterally scanning the cavity mode across a defined nanos-

tructure, employing the open cavity geometry. Here, a 70 nm thick silver (Ag) chessboard

pattern, fabricated via optical lithography on a planar DBR substrate, was utilized. The upper

panel of Figure 3.20a shows the transmission intensity of the cavity at a fixed cavity length,

corresponding to mode order n = 7 at a wavelength of λ= 780 nm. The planar mirror with

50



3.3. OPEN MICROCAVITY IN A CLOSED-CYCLE CRYOSTAT

the Ag nanostructure was incrementally moved with respect to the cavity fiber, with Ag areas

identified by low transmission intensity, enabling the calibration of cavity steps in units of

micrometers (µm) based on the periodicity of the chessboard pattern. The derivative of the

transmission profile, dT /d x, in the lower panel of 3.20a provides a measure of the resolution

of the cavity mode at the edges of the Ag nanostructure. This resolution corresponds to the

averaged half-width at 1/e2 of a series of Gaussian functions fitted to dT /d x, yielding a

value of 1.86µm, which is close to the theoretically expected value for the cavity mode waist

(wm = 1.24µm). Small deviations may arise artificially due to a finite twist angle between

the axis of the chessboard pattern and the scanning direction or diffraction losses due to

transverse mode mixing [100].

To avoid such contribution of higher order modes or signal from the uncoupled emitters,

disturbing the spectral signatures, we intended to optimize the mode matching (> 30 %) of

the fundamental Hermite-Gaussian mode with the detection fiber, which guides the light

into the spectrometer. Figure 3.20b shows an exemplary transmission signal at mode order

n = 7 of the empty cavity inside the cooled cryostat with optimized mode matching, where

contributions of higher order modes are strongly suppressed compared to the TEM00 mode.

Its spectral lineshape is inhomogeneously broadened due to the cavity length fluctuation as

explained in the previous section 3.3.3 and is best fitted with a Voigt profile, the convolution

of a Lorentzian and a Gaussian function L(E) and G(E), respectively:

V (E) =
∫

G(E ′)L(E −E ′)dE ′, (3.9)

L(E) = A

π

γ/2

E 2 + (γ/2)2
, (3.10)

G(E) = 1p
2πσ

e−E 2/(2σ2). (3.11)

The Lorentzian full-width at half-maximum linewidth γ reflects the ideally stable cavity

with Finesse defined by the reflectivity of the two mirrors, A is a normalization coefficient.

In Figure 3.20b, we extract a Finesse F = 1250 at wavelength λ = 765 nm, slightly smaller

than the theoretically expected value shown in Figure 3.19a, which could be explained

by potential losses of the cavity due to surface contamination. The Gaussian broadening

parameter σ of the Voigt profile describes the inhomogenious broadening due imperfect

cavity stability as introduced in the previous section 3.3.3.

In the next step we, introduced the TMD heterostructure on the planar mirror into the

cavity. To find the position of interest on the sample, we laterally moved the planar mirror

at high mirror spacing (lc > 100µm) and used a camera to monitor the cavity transmission

signal of a 532 nm laser coupled into the cavity through the fiber side. The DBR coatings

exhibit high transmission in this spectral range, while structural changes on the mirror

surface at the edges of the heterostructure or gold contacts introduce losses due to scattering
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Figure 3.21.: Cavity transmission spectroscopy at high mode order. a, Transmission
spectra of the cavity including the MoSe2/WS2 heterostructure at various cavity lengths
around lc ≈ 25 µm. The transmission dips around 1.6 eV and 1.63 eV arise due to
absorption at moiré exciton resonances (vertical dashed lines) in agreement with a DR
spectrum measured without the cavity at the same position on the heterostructure,
shown in b.

processes, which could be identified during the position scan. The area illuminated by the

cavity fiber on the sample is large compared to the cavity mode waist at small cavity lengths

and covers large parts of the heterostructure facilitating a rough orientation.

With the TMD heterostructure inside the cavity, we switched back the detection device

from the camera to the spectrometer and found an absorption induced drop of cavity

transmission in the spectral range around the respective exciton resonance, as shown in

Figure 3.21a. Using the exciton resonance energy and the strength of absorption, determined

from confocal spectroscopy in Figure 3.21b, as a reference, we optimized the position of

the TMD heterostructure inside the cavity. In this manner, we studied the light-matter

interaction at specific positions of interest as a function of the cavity length, excitation laser

power and wavelength as well as the charge configuration inside the TMD field-effect device.

The results are presented in Section 5.2.
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Moiré exciton physics in MoSe2/WS2

heterostructures 4
Bilayer moiré materials provide a unique platform for studies of correlated

many-body effects, including Hubbard model physics or Mott insulating

states of generalized Wigner crystals. In this context, we studied the moiré

exciton physics of MoSe2/WS2 heterostructures experimentally and theoret-

ically in a highly collaborative project, the findings of which are presented

in this Chapter. Utilizing the dual-gate design of the heterostacks, we sub-

jected the moiré excitons to out-of-plane electric fields and charge doping.

This allowed us to investigate the underlying bandstructure and interactions

with single- and bilayer spin-charge lattices in the presence of out-of-plane

magnetic fields.
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4. MOIRÉ EXCITON PHYSICS IN MOSE2/WS2 HETEROSTRUCTURES

4.1. Introduction and theoretical concepts

In the scope of this work, we fabricated and studied various samples of MoSe2/WS2 hetero-

bilayers with both, parallel (R-type, ∼ 0° relative twist angle) and antiparallel (H-type, ∼ 180°

relative twist angle) layer orientation. An overview of the different samples and their basic

optical signatures at cryogenic temperatures (see Chapter 3.2) is provided in Section 4.2 of

this Chapter. The near-resonant conduction band alignment in MoSe2/WS2 heterobilayers

unveils an intricate interplay of both intra- and interlayer moiré excitons, which was studied

by applying out-of-plane electric fields in the dual-gate configuration of the heterostacks

as presented in Section 4.3. Finally, we investigated the magnetic response of the moiré

excitons in the presence of fractional electron doping, implementing a two dimensional

bilayer Hubbard model with triangular geometry, discussed in Section 4.4. The Sections

4.1.1 and 4.3 were partly published verbatim in [P2] and are subject to the copyright of the

American Physical Society.

The work presented in this Chapter was carried-out in close collaboration with Borislav

Polovnikov and Subhradeep Misra. Ismail Bilgin, Jonas Göser and Zhijie Li synthesized TMD

layers by CVD growth and Xin Huang, Christian Mohl and Julian Trapp helped fabricating

the heterostacks. Anvar Baimuratov developed the effective continuum model to describe

the complexity of intra- and interlayer excitons in Ref. [P2] and Henning Schlömer, Fabian

Grusdt and Annabelle Bohrdt contributed numerical calculations for theoretical insight in

the magnetic properties of correlated many-body systems in Ref. [P3].

4.1.1. Modelling of the moiré exciton bandstructure

Vertically stacking two atomically thin layers with hexagonal lattice geometry and small

lattice mismatch or rotational misalignment generally results in a new, long-range moiré

superlattice that introduces a periodic potential for charge-carriers and provides a scaffold

for ordered electronic states [10, 11, 142]. The periodicity amoiré of the moiré lattice can be

approximated as [143]

amoiré = (δ+1)a2√
δ2 + (δ+1)θ2

(4.1)

for small relative twist angles θ between the two layers and lattice mismatch δ= a1/a2 −1,

where a1 and a2 denote the lattice constants of the individual layers.

The upper panel of Fig. 4.1a shows amoiré as a function of the twist angle and lattice

mismatch, diverging around θ ≈ 0° and δ= 0. In real samples, small twist angles between

near-commensurate sublattices do not rigidly produce infinitely large amoiré but lead to

the formation of mesoscopically reconstructed domains [144]. In our study, however, we

investigated heterostructures comprising MoSe2 and WS2 monolayers with substantially

different lattice constants aM = 3.289 Å and aW = 3.154 Å [145], forming superlattices that
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Figure 4.1.: Moiré superlattice of a TMD heterostructure. a, Upper panel: amoiré in units
of the sublattice constant a2 as a function of θ and the ratio of two sublattice constants
(a1/a2). Lower panel: amoiré as a function of θ with fixed a1 = 3.288 Å and a2 = 3.154 Å
(a1/a2 = 1.042, cp. dashed horizontal line in the upper panel) for the specific case of
respective MoSe2 and WS2 layers. b, Schematic illustration of the moiré superlattice
with lattice constant amoiré resulting from the overlay of two hexagonal sublattices with
relative twist angle θ and respective lattice constants a1 and a2. Left and right panel
highlight the location of specific high symmetry points within the moiré unit cell for
R-type and H-type stacking, respectively.

give rise to distinct moiré excitons. The lattice constant of the moiré unit cell for this material

combination, shown in the lower panel of Fig. 4.1a as a function of the twist angle θ, reaches

a maximum value of amoiré = 7.7 nm at θ = 0°. This twist angle is commonly referred to

as parallel or AA-stacking and denoted as R-type configuration in the scope of this thesis.

The three-fold rotation symmetry (Ĉ3) of the hexagonal sublattices leads to the existence

of a tantamount configuration at θ = 180°, referred to as anti-parallel or AB-stacking and

denoted as H-type, here. Figure 4.1b illustrates the moiré unit cell for the H-type and R-type

configuration, highlighting the respective alignment of transition metal M (Mo, W) and

chalcogen atoms X (Se, S) in the two layers at the high-symmetry points of the moiré unit

cell. At these high-symmetry points, the bilayer moiré lattice has a Ĉ3 symmetry strongly

constraining the optical selection rules for exciton formation of holes in the valence band

electrons in the conduction band at the respective locations in the heterobilayer and re-

sulting in the formation of a periodically modulated in-plane moiré potential for electrons,

holes and excitons [13, 146, 147].

Figure 4.2a illustrates the ordering of the lowest conduction (CB) and highest valence

bands (VB) in a MoSe2/WS2 heterobilayer for R-type and H-type alignment. In reciprocal
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Figure 4.2.: Bandstructure schematics of the moiré heterostructure a, Parallel (R-
type) and antiparallel (H-type) stackings give rise to KMoSe2/K′

WS2
and KMoSe2/KWS2

alignment of MoSe2 and WS2 valleys. Note the reversed ordering for H- and R-stacks
of the spin-up (solid lines) and spin-down (dashed lines) polarized conduction sub-
bands of WS2 with spin-orbit splitting ∆W

so . Both stackings are in type-I band alignment
with conduction and valence band offsets ∆C B and ∆V B , respectively. b, Formation of
the mini-Brillouin zones (mBZs) resulting from the valley mismatch ∆K between the
two hexagonal sublattices, with moiré reciprocal vectors b j (red arrows) and interlayer
coupling (violet arrows) for the case of H-type alignment. The red and blue points
represent intra- and interlayer states considered in the model. c, Magnification of the
zero order mini-Brillouin zone from b with center γ (KMoSe2) and corner κ (K′

WS2
)

defined by ∆K. The dashed orange arrows highlight the k values for the CB dispersions
shown in Figure 4.3.

space, these two configurations respectively correspond to KMoSe2/KWS2 and KMoSe2/K′
WS2

alignments of the MoSe2 and WS2 valleys, leading to a reversed ordering of spin-polarized

conduction sub-bands of WS2 with spin-orbit splitting ∆W
so . The large VB offset between

MoSe2 and WS2 [148] simplifies the analysis of the lowest-energy spin-allowed transitions:

It is sufficient to consider only intralayer excitons (X) of MoSe2 and interlayer excitons (IX)

consisting of a hole in MoSe2 and an electron in WS2 as illustrated by the respective arrows

in Figure 4.2a. The long-range periodicity of the moiré lattice is reflected by the formation

of a mini Brillouin zone (mBZ) in reciprocal space [143] with the moiré reciprocal lattice

vectors g(n,m) = nb1 +mb2 as illustrated in Figure 4.2b for the H-type case. Here, n and m

are integers, b j = (C j−3
6 −C j+1

6 )∆K are the first-shell reciprocal lattice vectors, j = 1,2, ...,6,

Cµ
ν represents rotation by 2πµ/ν and ∆K = K′

WS2
−KMoSe2 the valley mismatch related to

the finite lattice mismatch and twist angle of the two layers. We define the angle-dependent

mBZ as shown in Figure 4.2b with the center γ matching the K -valley of MoSe2 (KMoSe2),

and the point κ at the K′-valley of WS2 (K′
WS2

).

In previous works, the experimental signatures of excitons in such moiré modulated

heterostructures have been theoretically studied from two different perspectives. The first
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Figure 4.3.: Moiré bandstructure modelling. a, Parabolic MoSe2 X exciton dispersion. In
MoSe2, the lowest X transition is spin-bright (bold line) and separated by the spin-orbit
splitting ∆M

SO from the first spin-dark transition (thin line). b and c, MoSe2 X exciton
dispersion taking into account all first order moiré bands without and with presence
of a moiré potential V , respectively. d, Included first order IX bands (blue lines) in the
presence of a near-resonant WS2 conduction band. Here, an H-type heterostructure
alignment gives rise to a spin-bright lowest energy IX transition at κ with energy offset
∆C B compared to the X band minimum at γ. In this work, we assume a vanishing IX
moiré potential W = 0. e, Finite interlayer hopping t leads to the formation of bandgaps
at crossing points of X and IX bands. The hybrid X-IX nature at these points is visualized
in green color. The vertical dashed lines mark the γ point where momentum direct
transitions can be observed in optical absorption measurements.

treats the wavefunction modulation of non-resonant intra- and interlayer excitons due to the

presence of respective moiré potentials V and W in the framework of a continuum model [13,

146, 147]. The second deals with the effect of interlayer hybridization in case of energetically

aligned conduction or valence bands by introducing a hopping parameter t [14, 15, 17]. To

model our experimental results presented in Section 4.3 and compute the band dispersion

within the full mBZ we developed an effective continuum model as a combination of both

approaches in [P2]. In the following, we introduce, step by step, the constituents of this

phenomenological model based on the example of an H-type MoSe2/WS2 heterostructure.

Starting with the bare MoSe2 X exciton state, we restrict ourselves to the low-energy

physics of the system and assume a parabolic exciton dispersion, E(k) = E0 +ħ2|k|2/(2MX),

inside the zero order mBZ. Here, k denotes the center-of-mass wave vector of the X excitons

measured from γ, MX their effective mass, and E0 the exciton bandgap without any other

constraints. The resulting energy dispersion of the conduction band in the zero order mBZ is

plotted in Figure 4.3a along the k-space trajectory indicated by dashed arrows in Figure 4.2c

(κ−κ′−γ−κ′). Next, we additionally consider the six first order X exciton bands, which are

represented by the red dots in Figure 4.2b and the corresponding folded mBZ is shown in

Figure 4.3b. To define the general moiré Hamiltonian, we introduce the moiré potential [13,
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146, 147] for X excitons:

V (r) =
6∑

j=1
V j exp(i b j r) (4.2)

These are the lowest-order harmonic expansions of the moiré potential which, due to the

120° rotational symmetry, present the usual symmetry relations V1 = V3 = V5 ≡ V and

V2 =V4 =V6 ≡V ∗. The parabolic dispersion, E(k) = EX +ħ2|k|2/(2MX), has a renormalized

bandgap EX obtained by averaging over the moiré supercell. The first order moiré modulated

X exciton bands follow from

〈k+g′|HX|k+g〉X = δg,g′E(k+g)+
6∑

j=1
V jδg−g′,b j

, (4.3)

as plotted in Figure 4.3c. Until now, we have neglegted the presence of WS2 conduction

bands and the corresponding IX exciton transitions. In analogy to Eq. (4.2) we introduce the

moiré potential [13, 146, 147] for IX excitons:

W (r) =
6∑

j=1
W j exp(i b j r) (4.4)

The corresponding parabolic dispersion E(k′) = EIX+ħ2|k′|2/(2MIX), with the center-of-mass

wave vector k′ of IX excitons measured from κ, their effective masses MIX and the bandgap

EIX averaged over the moiré supercell, results in:

〈k′+g′|HIX|k′+g〉IX = δg,g′E(k′+g)+
6∑

j=1
W jδg−g′,b j

. (4.5)

Here, we take into account the first 6 IX exciton transitions specified by the blue dots in

Figure 4.2b. We obtain satisfactory fits for the observed data by assuming a vanishing non-

resonant part of the interlayer potential, W1...6 = 0 resulting in the mBZ in Figure 4.3d includ-

ing the first 7 X exciton bands (red lines) and 6 IX exciton bands (blue lines). The minima of

X and IX bands are separated by the effective conduction band offset ∆C B .

Notably, V and W do not include resonant interaction terms between X and IX excitons

yet, which we introduce explicitly [15] by defining the Hamiltonian as:

H =
(

HX T

T ∗ HIX

)
(4.6)

where the tunneling is described by interlayer hopping elements

〈IX,k′+g′|T |X,k+g〉 =
2∑

η=0
tδk+g−k′−g′,Cη

3∆K (4.7)
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with the hopping parameter t . We follow the approximation introduced in Refs. [14, 15]

and assume the same term t in all mBZs, mediating the hybridization of MoSe2 excitons

X with the closest three IX states in the reciprocal space denoted by the violet arrows in

Figure 4.2b. Again restricting the number of bands to the first seven X-bands and six IX-

bands we describe the system with the 13-band Hamiltonian:

H(k) =



E0 V V ∗ V V ∗ V V ∗ t t t 0 0 0

V ∗ E1 V 0 0 0 V 0 0 t 0 t 0

V V ∗ E2 V ∗ 0 0 0 t 0 0 0 t 0

V ∗ 0 V E3 V 0 0 t 0 0 0 0 t

V 0 0 V ∗ E4 V ∗ 0 0 t 0 0 0 t

V ∗ 0 0 0 V E5 V 0 t 0 t 0 0

V V ∗ 0 0 0 V ∗ E6 0 0 t t 0 0

t∗ 0 t∗ t∗ 0 0 0 E0 0 0 0 0 0

t∗ 0 0 0 t∗ t∗ 0 0 E1 0 0 0 0

t∗ t∗ 0 0 0 0 t∗ 0 0 E2 0 0 0

0 0 0 0 0 t∗ t∗ 0 0 0 E3 0 0

0 t∗ t∗ 0 0 0 0 0 0 0 0 E4 0

0 0 0 t∗ t∗ 0 0 0 0 0 0 0 E5



. (4.8)

The first seven diagonal terms correspond to the X bands marked by the red dots in

Figure 4.2b, with

E0(k) = E(k), E j (k) = E(k−b j ) (4.9)

for j = 1,2, ...,6; the last six diagonal terms relate to IXs marked by the blue dots in Fig-

ure 4.2b:

Eη(k) = E(k−Cη
3∆K), Eζ(k) = E(k+2C ζ−3

3 ∆K), (4.10)

where η= 0,1,2 and ζ= 3,4,5. The finite interlayer hopping t results in avoided crossing of

X- and IX-bands in Figure 4.3e, where the hybrid X-IX nature of the moiré excitons is shown

in green color.

After diagonalizing the Hamiltonian in Eq. (4.8), we obtain χ′′ by projecting the eigenstates

onto the fundamental A-exciton state at the γ point as:

χ′′(ω) ≈χ′′0
13∑

m=1
|〈m|A〉|2 γ2

0

ħ2(ω−ωm)2 +γ2
0

, (4.11)

where |A〉 is the MoSe2 intralayer exciton state corresponding to the first row and column in

Eq. (4.8), χ′′0 is its dielectric susceptibility [13], |m〉 and ħωm are the eigenstates and eigen-

values of the m-th exciton band obtained from the diagonalized Hamiltonian in Eq. (4.8),

and γ0 is a peak broadening parameter. Notably, this implies that the oscillator strength of

the |A〉 exciton is redistributed among the set of the moiré excitons |m〉.
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In Section 4.3 we demonstrate the validity of this phenomenological model by reproduc-

ing the multiplicity and relative oscillator strengths of the experimentally observed moiré

excitons for fixed material parameters aMoSe2 = 0.3288 nm, aWS2 = 0.3154 nm, MX = 1.44m0,

and MIX = 0.86m0 [145, 149] with electron mass m0, and using the following free fitting

parameters: EX and EIX capture the band offset of the heterostructure. The twist angle θ, the

X exciton moiré potential with |V | and arg(V ) and the hopping parameter t fit the layer char-

acter of moiré excitons as well as their energy separations and oscillator strengths. Finally

γ0 determines the moiré exciton linewidth.

4.1.2. Capacitor model

An important quantity closely tied to the moiré lattice constant amoiré is the superlattice

density n0, which is defined as n0 = 1/Amoiré, where Amoiré =
p

3a2
moiré/4 represents the area

of the moiré unit cell. The existence of a long-range moiré potential significantly influences

the optical behavior of moiré excitons at specific electron and hole filling fractions per

moiré unit cell. To determine the quantity of elementary charges per moiré site within

our heterostructures under specific gate voltage conditions, we conducted electrostatic

simulations of the dual-gate devices. For this purpose, we employed a capacitor model as

introduced in the subsequent discussion, following the methodology outlined in Refs. [150–

153]. Section 4.4 presents the applicability of the model to our experimental findings in

dual-gate MoSe2/WS2 heterostructures [P3].

ε01
z

Energy

µ0

d01

C01 C12

d12

Φ0

ε12

µ1

Φ1
µ2

Φ2

σ1

σ2

σ0E0

E1

E2

F01 F12

µ3

Φ3

σ3E3

C23

d23

ε23

F23

Figure 4.4.: Capacitor model schematics and notation. Energy diagram of a gener-
alized heterostructure consisting of four layers with respective electrochemical and
electrostatic potentials µi andΦi , the chemical potential Ei =µi −Φi (i = 0,1,2,3) and
corresponding electric fields Fi j =−(Φ j −Φi )/edi j . Charge densities of the layers are
denoted as σi . Dielectrics with ϵi i+1 separate the capacitor layers with distance di i+1

leading to the geometric capacitances Ci i+1.

Figure 4.4 introduces the relevant physical parameters for the capacitor model simulation
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of an arbitrary four-layer heterostructure. We examine the electrochemical potentials µi and

electrostatic potentialsΦi present in the capacitance circuit that describes the heterostack.

The chemical potential, which we refer to as Fermi energy in the following, within a layer

follows as

Ei =µi −Φi (4.12)

and describes the energy cost to introduce a charge carrier inside the respective layer. As-

suming we want to derive σ1, the charge density in layer 1, as a function of the Fermi energy

and the voltages Vi applied to the layers of the capacitor, we compare the electrochemi-

cal and electrostatic potentials of adjacent capacitor plates. The electrochemical potential

results from applying a gate Voltage between the two layers:

µ1 =−eV01, (4.13)

where we set reference potential µ0 = 0. A difference of the electrostatic potential is equiva-

lent to an electric field Fi j pointing from one layer to the other:

Φ1 −Φ0 =−ed01F01 =−e
ϵ0ϵ01

C01
F01 (4.14)

Here, we used the definition of the geometric capacitance Ci = ϵ0ϵi /di with vacuum per-

mittivity ϵ0 and permittivity of the respective dielectric spacer layer ϵi . Employing (4.14)

the electron density inside layer 1 in Figure 4.4 derives from the Gauss law of Maxwell’s

equations as

σ1 = ϵ0ϵ01F01 −ϵ0ϵ12F12 =
=C01

Φ0 −Φ1

e
−C12

Φ1 −Φ2

e
=

=C01
Φ0

e
− (C01 +C12)

Φ1

e
+C12

Φ2

e
=

= −C01

(
V0 + E0

e

)
+ (C01 +C12)

(
V1 + E1

e

)
−C12

(
V2 + E2

e

)
.

(4.15)

Here, the last step involves expressing the electrostatic potentialΦi in terms of the applied

voltage Vi and the Fermi energy Ei , utilizing equations (4.12) and (4.13). All charge densities

σi (i = 0,1,2,3) of the system can be derived analogously to σ1 and written in matrix form as
σ0

σ1

σ2

σ3

=


C01 −C01 0 0

−C01 C01 +C12 −C12 0

0 −C12 C12 +C23 −C22

0 0 −C23 C23




V0 +E0/e

V1 +E1/e

V2 +E2/e

V3 +E3/e

 . (4.16)

In our specific case, the top and bottom layers of the MoSe2/WS2 heterostructures consist of

graphite layers, which can be assumed to have metallic character. Therefore, the density of
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states (DOS) in these layers can be considered infinitely large, allowing us to set the Fermi

energies as E0 = E3 = 0. The hBN separation between the top and bottom gates of the TMD

bilayer defines the respective geometric capacitances, C01 and C23, which are represented

as C01 = CT = ϵ0ϵhB N /dT and C23 = CB = ϵ0ϵhB N /dB , respectively. Here, ϵ0 denotes the

vacuum permittivity, ϵhB N the dielectric constant of hBN, and dT (B) the top (bottom) hBN

thickness, determined individually via atomic force microscopy before the assembly of the

heterostacks. By adjusting the gate voltages V0 =VTG and V3 =VBG , we control the charge

density inside the top and bottom TMD layers, denoted as σ1 = σT and σ2 = σB , which

are functions of the respective Fermi energies ET and EB . As we are primarily interested in

the respective electron densities nT /B =−σT /B /e, we can express the relevant electrostatic

equations as

e

(
nT

nB

)
=

(
CT −CT −CS CS 0

0 CS −CB −CS CB

)
VTG

ET /e

EB /e

VBG

 , (4.17)

where CS =C12 denotes the geometric capacitance formed by the two TMD layers, which

are set to ground (V1 =V2 = 0). In this work, we used ϵhBN = 4, ϵTMD = 8 and interlayer distance

dS = 0.6 nm.

The electron density in a monolayer is given by ni (E) = ∫ E
0 DOSi (E ′)dE ′, where DOSi (E ′)

represents the density of states of layer i and E is the Fermi energy of that layer. We note, that

the electron density can take a non-linear form as long as it is monotonically non-decreasing.

For a given DOSi , we numerically solve Eqs. (4.17) to determine the Fermi energies (ET ,EB ),

and subsequently evaluate nT (B) at the computed energies. Figure 4.5 illustrates the results

of the electrostatic simulations for a heterostructure under two different sets of simulation

parameters. The geometric capacitances are identical for both cases, assuming symmetric

hBN thickness dT = dB = 55 nm (cp. geometry of device D2 in Figure 4.6).

In the first case (Figure 4.5a and b), we highlight the effect of a finite conduction band

offset, ∆C B =ΦT −ΦB = 30 meV, on the simulated charge distribution which is significant

because it influences the spatial distribution of electrons at the interface between the top

and bottom layer. We account for ∆C B by introducing a finite onset in the electron density

of states (DOS) of the bottom layer, represented as nB (∆C B ) = ∫ ∆C B
0 DOSB (E ′)dE ′ = 0. Apart

from this adjustment, we assume a constant DOS in both layers, as expected for a 2D electron

gas and depicted in Figure 4.5a, resulting in a linear evolution of electron densities with

respect to the Fermi energy. The left and right panels of Figure 4.5b illustrate the respective

electron densities nT and nB for simulated Fermi energies ET and EB , corresponding to a

given set of gate voltages (VTG ,VBG ), plotted in the characteristic basis (Vµ,F ). Here, Vµ =
(VTG +VBG )/2 represents the doping potential, and F = (VBG −VT G )/l the electric field,

with l = 110 nm being the total thickness of the hBN layers between the top and bottom
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Figure 4.5.: Capacitor model simulation for differing DOS. a, Schematics of constant
DOS in top and bottom layer of an exemplary bilayer heterostructure with conduction
band offset ∆C B and graphite top and bottom gates. b, Electron densities in top and
bottom layer by numerically solving Eqs. (4.17) for the DOS shown in a for a given set of
(VTG ,VBG ). c, Schematics of a constant DOS in the top layer and discretised DOS in the
bottom layer resulting in the simulated electron densities shown in d. The gaps U0 in
the bottom layer DOS lead to extended areas of constant nB in the right panel.

graphite layers. Note, that the electron densities are shown as ν= nT /B /n0 in units of n0 =
2.0x1012cm−2. Comparing both charging diagrams for small values of Vµ at F = 0, we observe

a linear increase in electron density nT in the top layer, while the bottom layer remains at

nT = 0. However, compensating for the difference in electrostatic potential between the two

layers by applying an electric field F > (∆C BϵT MD )/(edSϵhB N ) leads to the reversed situation,

where electrons enter the bottom layer first for small values of Vµ, while the top layer remains

charge free.

In the second case (Figure 4.5c and d), we demonstrate the effect of a non-constant density

of states (DOS) in one of the layers, as depicted in Figure 4.5c. The DOS in the top layer

remains the same as in Figure 4.5a, with a conduction band offset ∆C B = 30 meV. However,

in the bottom layer, carrier doping occurs in discrete steps of n0, each step corresponding to
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a peak in the DOS. The gaps U0 between these peaks represent the energetic cost to induce

another electron into the bottom layer, which is already filled with a multiple of n0 electrons.

In a TMD heterobilayer, these steps in electron density can be attributed to on-site Coulomb

repulsion arising from the strong confinement of electrons in moiré potential pockets. We

discuss this phenomenon further based on our experimental results in Section 4.4. Figure

4.5d presents the electron densities nT and nB for simulated Fermi energies ET and EB as

functions of Vµ and F . The discretized density of states (DOS) for the bottom layer results

in a stepwise evolution of the charging onset in the top layer, as illustrated in the left panel

of Figure 4.5d. This effect is particularly evident along the line ν = nT /n0 = 1, which is

highlighted in yellow. In the bottom layer, nB exhibits extended areas of constant charge in

the (Vµ,F ) diagram, as a result of the gap U0.

4.1.3. Coulomb-interaction of moiré excitons and ordered electrons

Using our phenomenological model, introduced in Section 4.1.1, it is possible to obtain

information about the spatial distribution of the different moiré exciton wavefunctions. As

we describe in Section 4.3, higher order moiré excitons in MoSe2/WS2 preferably localize at

different sites of the moiré unit cell as compared to electrons or holes under charge doping.

To calculate the interaction energy (binding energy) of moiré excitons with electrons ordered

on the moiré lattice, we assume that the exciton is confined in one moiré cell and interacts

with the surrounding ordered electrons as illustrated in Figure 4.15b. We further assume

that the main contribution to the binding energy stems from charge-induced modification

of the electron-hole relative motion ρ ≡ (ρ,θ) = re−rh, where re(h) are the coordinates of the

electron and hole forming the exciton. The corresponding Schrödinger equation takes the

form:

−ħ2

2µ
∆ϕ(ρ)+ [VRK(ρ)+V (ρ)]ϕ(ρ) = Eϕ(ρ),

where E is the exciton energy, µ= memh/(me+mh) is the reduced exciton mass, me and mh

are the electron and hole effective masses, and the Rytova–Keldysh potential [56, 154] of the

electron-hole attraction is given by:

VRK(ρ) =− πe2

2ερ0

[
H0

(
ρ

ρ0

)
−Y0

(
ρ

ρ0

)]
.

Here, e is the electron charge, ρ0 is the screening length, ε is the effective dielectric constant,

and H0(x) and Y0(x) are the Struve and Neumann functions.

The interaction of the exciton with the charge lattice is described by the Coulomb sum:

V (ρ) =±e2

ε

∑
n

[
1

|βeρ+n| −
1

|βhρ−n|
]

,
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where the plus and minus signs correspond to positive and negative elementary charges,

βe = me/(me+mh), βh = mh/(me+mh), and n are the coordinates of electrons/holes on the

lattice. The two terms in the brackets determine the interaction of the charge lattice with

the hole and the electron that constitute the exciton.

To determine the binding energy of the state, we calculate the free exciton energy EX to

obtain:

Eb = EX −E .

To calculate EX , we set V (ρ) = 0, and use in the calculations of both EX and E the set of 2D

hydrogen-like wave functions with the Bohr radius as variational parameter [57, 64, 155]

and the basis of six functions [156] with quantum numbers (n, l ) = (1,0), (2,0), (2,±1), (4,±3)

to take into account polarization effects on the exciton relative motion. Due to the lower

rotational symmetry of the potential V (ρ), we also include hydrogen-like wave functions

with angular momenta l =±1,±3. The explicit expression for the trial function is:

ϕ(ρ,θ) = e−αρ+ζρe−βρ+ηρe−γρ cosθ+ξρ3e−δρ cos3θ.

We solve the minimization problem numerically for seven parameters (α,β,γ,δ,ζ,η,ξ) using

MATLAB R2017B and experimental material parameters of MoSe2 monolayers [157]: me =
0.84m0, mh = 0.6m0, ε= 4.4, ρ0 = 0.89 nm. In Section 4.4.2, we apply this model to fit the

evolution of the moiré exciton binding energy as a function of electron doping. The only

fitting parameter for comparison between the experimental data and the theoretical model

is the moiré superlattice constant, which in Figure 4.15a is taken to be 7.7 nm.

4.2. Heterostructure devices and characteristics

In the scope of this work we fabricated and investigated several dual-gated MoSe2/WS2

heterostacks as introduced in Chapter 3.3. The observed optical signatures showed up to

be robust among the multiplicity of samples. Here, we focus on two selected heterostacks

fabricated from CVD grown TMD monolayers with R-type (D1) and H-type (D2) alignment,

respectively, to demonstrate and compare the relevant experimental signatures and present

our understanding of the underlying moiré induced physical phenomena.

Figure 4.6 shows optical microscope images of D1 and D2 and their respective stacking

order. The relevant elements of the heterostructures are framed with colored lines for better

orientation. The triangular shape of the monolayer flakes facilitates to determine the relative

twist angle θ from optical inspection with accuracy of ± 1°, yielding θ ≈ 2°(179°) for D1 (D2).

In both devices, the TMD layers were encapsulated in hBN with (near-)identical thickness as

shown in the middle panel of Figure 4.6 and sandwiched between top and bottom few-layer

graphene electrodes. The data discussed in this work were acquired in regions where the
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Figure 4.6.: Device microscope optical images of D1 (R-type) on the left and D2 (H-
type) on the right. The spatial dimensions of the individual layers are highlighted by
respectively colored lines. The middle panel illustrates the vertical stacking order, which
is equivalent for both devices.

TMD bilayer is overlapping with both bottom and top gate to ensure symmetric doping and

linear electric fields.

We first examine the cryogenic optical response of excitons in the charge-neutral regime of

the two devices, where no voltages are applied to the top and bottom gates (VTG = VBG = 0), at

a temperature of T = 4 K. The differential reflection spectra in the upper panels of Figure 4.7a

and b, acquired in the MoSe2 monolayer region of D1 and D2, respectively, feature the char-

acteristic X exciton resonance around 1.63 eV. A Lorentzian linewidth of approximately 2

meV confirms the high optical quality of the two devices. The center panels of Figure 4.7a

and b reflect the expected multiplicity of moiré excitons in twisted MoSe2/WS2 HBLs, which

acquire the distributed oscillator strength of the MoSe2 X exciton [17, 36, 89]. The lowest

energy resonance with highest oscillator strength, denoted as M1, appears around 1.6 eV for

both stacking configurations and is the renormalized X exciton ground state. In photolumi-

nescence measurements (lower panels of Figure 4.7a and b), this resonance appears as a

single bright peak with a Lorentzian linewidth of 5-10 meV, identifying the transition as the

energetic ground state of the system with pure MoSe2 intralayer character and efficient pop-

ulation relaxation from higher-energy moiré states. This observation suggests a type-I band

alignment for both stacking configurations which is confirmed by studying the dual-gate

response of D1 and D2 in following sections. The general band alignment in MoSe2/WS2

heterostacks has been a matter of continuing debate, with reported CB offset values between
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-60 meV (type-II) and +100 meV (type-I) [17, 36, 89, 158–161]. As demonstrated by another

H-type MoSe2/WS2 device in the appendix of this thesis (see Section A.1), inhomogeneity

can lead to shifts in the CB offset on the order of tens of meV even within a single device.

This phenomenon provides an explanation for the contradictory observations of type-I and

type-II CB alignment reported in the literature. The second DR peak in Figure 4.7a and

b, denoted as M2, represents the first Umklapp peak due to the moiré potential, and the

energy separation between M1 and M2 is determined by the relative twist angle between

the two monolayers. In a polarization-resolved measurement with an applied out-of-plane

magnetic field (see Section 3.2 for details), the exciton Zeeman shift of these two lowest

energy resonances yields exciton Landé factors around −4 in Figure 4.7c and d, matching

the well-known monolayer MoSe2 X exciton g -factor [73, 162]. This observation manifests

the MoSe2 intralayer origin of M1 and M2.

Upon close examination of the DR spectra in the center panels of Figure 4.7a and b, we

discern a higher-order moiré resonance M3, which appears approximately 70 meV (30 meV)

blue-shifted compared to M2 in the R-type (H-type) sample. For the first case in Figure 4.7a,

this peak exhibits nearly negligible oscillator strength, while its strength is significant in the

latter case in Figure 4.7b. As detailed in the following section (Section 4.3), the H-type M3

peak displays characteristics of interlayer hybridization attributed to the resonantly aligned

conduction band edge of WS2. Due to the reversed ordering of the spin-polarized MoSe2

and WS2 conduction bands, the energetically lowest spin-bright interlayer transition in the

R-type configuration blue shifts compared to the H-type configuration by the spin orbit

splitting∆W
SO in the conduction band of WS2. Furthermore, the conduction band offset for R-

type device D1 turns out to be significantly larger than that for H-type D2 (see Section 4.4.1),

elucidating the absence of interlayer hybridization in the corresponding M3 resonance.

4.3. Field-induced hybridization

In early studies on MoSe2/WS2 devices [15, 17, 161], the multiplicity of low energy moiré

peaks has been interpreted as a result of hybridization of intra- and interlayer excitons and

successfully modeled via interlayer tunneling [14, 15]. However, recent experiments on the

exciton dispersion in perpendicular electric fields observed vanishing out-of-plane dipoles

for these resonances, suggesting that they are of pure intralayer character [36, 89]. In the

following, we apply our phenomenological model, presented in Section 4.1.1, to unravel

the roles of intra- and interlayer excitons and their interactions in the observed reflection

spectra.

67



4. MOIRÉ EXCITON PHYSICS IN MOSE2/WS2 HETEROSTRUCTURES

1.60 1.65 1.70

0

200

400

600

 

Energy (eV)

P
L
 (

c
ts

/s
)

0.0

0.2

0.4

D
R

 

R - type  D1

M1

M2

M1

a

M3

-5

0

5

1.591 1.594

B
 (

T
)

1.627 1.630

c

1.60 1.65 1.70

0

50

100

150

 

 

Energy (eV)

P
L
 (

c
ts

/s
)

0.0

0.1

 

D
R

 

M1

M2
M3

M1

H - type  D2b

-5

0

5

1.6 1.603

B
 (

T
)

1.638 1.641

dM1, g = -4.3 ± 0.4

σ+

σ-

σ+

σ-

Energy (eV) Energy (eV)

M2, g = -4.2 ± 0.2 M1, g = -4.5 ± 0.4 M2, g = -4.1 ± 0.5

X

0.0

0.5

1.0
D

R

0.0

0.5

D
R

X

Figure 4.7.: Intralayer character of neutral moiré excitons. a and b, Upper and center
panels show DR spectra of the bare MoSe2 monolayer and MoSe2/WS2 heterobilayer,
the lower panels show PL spectra in the charge neutral regime acquired on D1 and
D2, respectively. X denotes the monolayer X exciton. M1, M2 and M3 denote the moiré
exciton peaks in energetically ascending order. c and d Zeeman-shifted moiré exciton
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for M1 (M2) in the left (right) panels. The corresponding exciton Landé factors g1 (g2)
are determined from simultaneous linear fits to the peak energy dispersion as function
of the magnetic field in both polarizations, represented by solid lines of corresponding
color.

4.3.1. Modeling of moiré excitons exposed to out-of-plane electric fields

Figure 4.8a and b show the evolution of the DR spectra while tuning the out-of-plane electric

field via ∆VTB = VBG −VTG for R- and H-type heterostacks, respectively. As expected from

their intralayer character (derived in the previous Section 4.2) M1 and M2 exhibit vanishingly

small linear slopes of the first-order Stark effect, for both R- and H-type devices. This implies

that these peaks can be captured in terms of the non-resonant moiré potential V , whereas

interlayer tunneling plays a negligible role. The same holds for the peak M3 and M4 in the

R-type device. For the H-type configuration, on the contrary, M3 exhibits two branches with

finite dispersion indicative of an anticrossing of X and IX states with weak coupling.

In the following, we use our model introduced in Section 4.1.1 to describe and understand
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Figure 4.8.: Moiré excitons exposed to out-of-plane electric fields in experiment and
theory. a and b, Evolution of HBL DR spectra with an applied electric field ∆VTB in the
charge neutral regime for R-type and H-type device, respectively. While there is no field
dispersion of the moiré excitons in the R-type case, M3 shows anti-crossing behavior
in the H-type case as a sign of hybridization between intra- and interlayer excitons. c
and d, Corresponding simulation of χ′′(ω) capturing the strong intralayer character of
the three lowest-energy moiré exciton peaks as well as their relative oscillator strengths.
Inhomogeneous broadening was included by smoothing χ′′(ω) over a 5 meV broad
Gaussian kernel in the fit parameter EIX for the H-type case. e and f, Comparison of
experimental data and theory at ∆VTB = 0

the nature and interaction of moiré intra- and interlayer excitons. Here, we use the amplitude

|V | and phase arg(V ) of the intralayer moiré potential, the hopping parameter t and the

intra-/interlayer exciton bandgap EX/EIX as fitting parameters, while assuming a vanishing

interlayer moiré potential |W | = 0.

In the case of D1 with R-type configuration, we describe the absence of interlayer exciton

response with a vanishingly small hopping parameter t = 0. For a twist angle of θ = 2°
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the energy separation of intralayer moiré excitons and their relative oscillator strength

is best reproduced with a moiré potential V = 16.2exp(i 7π/90) meV with |V | = 16.2 and

arg(V ) = 7π/90 and EX = 1622 meV as shown in Figure 4.8c. The anti-crossing of the M3

field dispersion in the H-type case with twist angle θ = 179° in Figure 4.8c necessitates a

non-vanishing hopping parameter t in the model. Also, on closer inspection, M1 and M2

show minor narrowing with a small red shift at high ∆VTB ≥ 18V. This behavior indicates

the crossing of IX resonances which appear dark due to vanishing spatial overlap with M1

and M2 but induce a crossover from type-I to type-II band alignment. We computed the

evolution ofχ′′(ω) as a function of∆VTB using Eq. (4.11) by shifting the IX resonance energies

in Eq. (4.10) as

E(∆VTB) = E − ed∆VTB

εl
, (4.18)

where e is the electron charge, d = 0.6 nm the distance between the two TMD layers, l =
110 nm the distance between the gates, and ε ≈ 4 [153]. The modeled susceptibility is

plotted in Figure 4.8d for t = 3 meV, V = 9.3exp(iπ/5) meV, EX = 1617 meV, EIX = 1614 meV

and γ0 = 4 meV. It captures the main features of the experimental data such as the relative

strengths of the peaks, the strong intralayer character of M1 and M2, the anticrossing of the

M3 doublet and the IX perturbation of M1 at high positive fields. At the same time, it predicts

a weak coupling of M2 with an IX state at ∆VTB ≈−10 V which can not be observed in white-

light DR. We emphasize that although EIX < EX, the fitting implies a type I heterostructure

due to the relation EIX > min[EX +V (r)] ≈ 1566 meV, with a CB offset in the order of 50 meV.

To optimize the comparison and fitting of the moiré exciton peaks with χ′′(ω) in Eq. (4.11)

we applied a phase correction to the corresponding DR spectra as introduced in Section 3.2.1.

Figure 4.8e and f show the phase-corrected experimental data and results of the theoretical

model using the respective fitting parameters from above at the zero-field line (∆VTB = 0)

for the R-type and H-type case, respectively.

4.3.2. AC modulation spectroscopy for hybridization studies

In the following, we studied in more detail the effect of interlayer hybridization focusing

on the H-type device. To improve the sensitivity to interlayer states we repeated the field-

dependent measurement with the modulation-spectroscopy technique using a narrow-

band tunable laser to measure differential reflectance DR′ as introduced in Chapter 3.2.3.

The measurement is performed by modulating one of the gates of the device by a small

AC-voltage (VAC) and using a lock-in amplifier to detect the reflected signal at the same

frequency, Rac, simultaneously with the DC part of the photosignal, RDC. In Fig. 4.9a we

show DR′ = Rac/RDC with signatures of both intra- and interlayer states: The interlayer

character of the M3 doublet becomes much more prominent compared to the white-light

DR data, the red shifts of M1 and M2 at high ∆VTB confirm the admixing of IX excitons, and
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the contrast change of M2 at∆VTB ≈−20 V suggests the coupling to a dark IX state visualized

with this technique. Section 4.3.3 explains the difference of dark and bright IX states by the

respective overlap of the different intra- and interlayer moiré exciton wave functions.
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Figure 4.9.: Field-induced hybridization of moiré excitons in H-type MoSe2/WS2. a,
Narrow-band modulation spectroscopy signal of MoSe2/WS2 as a function of the ap-
plied out-of-plane electric field. b, Dispersion of the eigenvalues of the Hamiltonian
in Eq. (4.8) as a function of the electric field and experimental exciton g -factors of the
respective resonances color-coded from −5.5 (yellow) to 0 (black) .

In Fig. 4.9b we show the dispersion of the peaks extracted from Fig. 4.9a alongside the

evolution of the eigenvalues of the Hamiltonian in (4.8) as a function of ∆VTB. In contrast to

Fig. 4.8d, where the oscillator strengths of the three bright excitons are visible, here the dotted

lines indicate the eigenvalues corresponding to all 13 moiré exciton bands irrespective of

their oscillator strength. The experimental dispersion of both M1 and M2 in Fig. 4.9a is well

reproduced, and the strong anticrossing of the M3 doublet is qualitatively captured within

our theoretical model. We note that although the magnitude of the X-IX coupling changes

between the M2 and M3 resonances, they are both controlled by the same parameter t , and

introducing different hopping parameters for different mBZs [89] would allow to improve on

the quantitative agreement with the data. Finally, we find that in the neutral regime the first

IX state – which is momentum-dark and can not be observed in Fig. 4.8b – lies 30 meV above

the ground state M1, indicating type I character for the studied MoSe2/WS2 heterostack.

In addition to the electric-field dependence we studied the Zeeman effect of moiré exci-

tons by repeating the modulation-spectroscopy measurements for out-of-plane magnetic

fields in the range of B =±6T . As described in Chapter 3.2.1 the measurements were per-

formed under linearly polarized excitation with detection in both σ+ and σ− polarization,

from which we determined the valley Zeeman energy splittings and the corresponding g -

factors. The colors of the data in Fig. 4.9b show the g -factors of the respective peaks for

different electric fields, ranging from g =−5.5 (yellow) through −2 (purple) to 0 (black). We

observe that for electric fields where M1 and M2 follow vertical lines of zero Stark effect due

to nearly-pure MoSe2 character, the corresponding g -factors are close to the fundamen-
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tal MoSe2 A-exciton with g A ≈ −4. Near the IX-X anticrossings, on the contrary, all three

states exhibit sizable changes in the g -factors reaching values up to 0. The effect is most

pronounced for the dispersive branch of M1 at high positive electric fields as well as the M3

doublet, which we attribute to field-induced hybridization with interlayer states. The values

of the exciton g -factors depend on both the degree of layer hybridization and the exciton

momentum [163, 164], making a full quantitative description of this behavior out of scope

for this work. The overall trend, however, is consistent with the intralayer character of the

peaks M1 and M2 at negative electric fields, and with interlayer admixing near anticrossings

captured by our theoretical model.

4.3.3. Real space distribution of moiré exciton states
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Figure 4.10.: Spatial distribution of the exciton wavefunction for the three lowest-
energy bright states M1, M2 and M3 in case of R-type (left) and H-type (right) stacking.
All scale-bars are 5 nm. All three states are located in different positions of the moiré
supercell delimited by the dashed lines with moiré lattice constant amoi r é ≈ 6 nm (7
nm) for the R-type (H-type) case with respective twist angle θ = 2° (179°).

In order to deepen the understanding of moiré excitons and their behavior, it is instructive
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to visualize their spatial distribution within the moiré unit cell. First, we denote the original

basis of the Hamiltonian (4.8) by | j 〉 with j = 0, ...,12, s.t. it holds e.g. 〈 j |H | j 〉 = E j for j =
0, ...,6 (cp. (4.9)) and 〈 j |H | j 〉 = E j−7 for j = 7, ...,12 (cp. (4.10)). Similarly, the Hamiltonian’s

eigenbasis corresponding to the moiré excitons is denoted by |m〉.
We define b0 = 0 such that the intralayer states | j 〉, j = 0, ...,6 correspond to the plane

waves exp(i b j r). Then, the intralayer distribution of the moiré excitons |m〉 is simply com-

puted by the plane-wave projections of these first seven states:

ψm(r) =
6∑

j=0
〈 j |m〉e i b j r (4.19)

Using this formula for the bright moiré excitons M1, M2 and M3 results in the plots in

Fig. 4.10. For both, R-type and H-type devices, all three states are located at different points

of the moiré supercell and exhibit different spatial distributions: The ground state exciton

M1 is tightly localized, whereas both M2 and M3 have non-negligible spatial extents.
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Figure 4.11.: X-IX wavefunction overlap in H-type D2. In Figure 4.9 the theoretical
model predicts an interlayer hybridization of M2 at ∆T B =−10 V and M3 at ∆T B = 0 V,
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In H-type D2 interlayer hybridization plays a significant role as derived in the previous

Sections 4.3.2 and 4.3.1. The distributions of the corresponding interlayer excitons are

obtained from projections onto the six interlayer states;

ψ̃m(r) =
12∑

j=7
〈 j |m〉e i b j r , (4.20)

where b j are the vectors pointing to the blue states defined in Figure 4.2b. Comparing

the intra- and interlayer exciton distributions provides intuition on the coupling strengths

between these excitons. In Figure 4.9, we observed clear anti-crossing behavior of the M3

peak around ∆T B = 0 V due to interlayer hybridization in the H-type D2. Furthermore, the

model in Figure 4.9b predicts an interlayer crossing with a smaller coupling strength of M2

around ∆T B = −10 V, which was not observed in the experiment. Visualizing the overlap

of the respective intra- and interlayer resonances extracted from the model reinforces this

observation. The lower panel of Figure 4.11 shows the overlap of the respective intra- and

interlayer exciton wave functions for each branch. It is evident that the overlap for the M3

doublet is much larger than for the M2 peak, resulting in pronounced anti-crossing behavior.

Interlayer resonances, which exhibit vanishing overlap with respective intralayer states at

their crossing point in the electric field dispersion, are referred to as dark IX excitons.

We note that a detailed modeling of such behavior requires explicit knowledge of both the

electron and hole potentials [165], whereas in our model, the spatial characteristics of moiré

excitons are captured entirely through the exciton potential V .

4.4. Charge doping in presence of a moiré potential

Having established the understanding of moiré excitons and the corresponding bandstruc-

ture in MoSe2/WS2 R-type and H-type devices, we focused our studies on the investigation

of the effects of charge-carrier doping in these systems. The Fermi level inside the HBL is

tuned by varying the doping potential Vµ = (VT G +VBG )/2 of top and bottom gate voltages.

With increasing gate voltages Vµ, the charging characteristics of the DR response in 4.12a

and b exhibit transitions from positive (p) through charge-neutral intrinsic (i) to negative

(n) doping regimes for both R-type and H-type stackings. The initial response of the moiré

excitons to p-doping is observed only at large negative voltages, indicating a substantial

Schottky barrier at the interface between the TMD monolayer and the contact graphite. Con-

sequently, the p-doping transition occurs abruptly, and the evolution of the respective DR

features is nonlinear with respect to the applied gate voltage rendering quantitative analysis

of the spectral features very challenging. Engineering ohmic contacts between metals and

2D semiconductors remains a challenge in the field of nano-fabrication, despite progress

that has been made [166–169]. As this topic was beyond the scope of this thesis, we mainly
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focused our studies on the analysis of the n-doping regime, which exhibits a linear response

as a function of the doping potential Vµ. Both electrons and holes experience the moiré

potential resulting in a periodic localization of these elementary charges just as for moiré

excitons. The latter change their optical response due to interactions with these periodic

charge lattices reminiscent of the formation of trions/polarons in bare TMD monolayers

(see Section 2.1.2). Specific charge configurations at fractional fillings per moiré unit cell

support the formation of generalized Wigner crystal or Mott insulator states that are im-

printed onto the optical response of moiré excitons [26, 28]. In the following, we use this

effect to connect the spectral evolution of charged moiré excitons as a function of Vµ with

the electron density per moiré unit cell.

4.4.1. Optical signatures in the electron doping regime

The lowest energy excitons, M1, at approximately 1.60 eV, display a series of step-like red

shifts (for both R-type/H-type) and blue-shifts (H-type only) on the p-doped side before

losing their oscillator strength and giving rise to a faint positive trion, M+
1 , with a 25 meV

red shift. Meanwhile, the higher-energy peaks M2 and M3 disappear as soon as charge

doping into the valence band sets in. This behavior is reversed on the n-doped side: In a first

charging step, M1 converts abruptly into a negative trion M−
1 with a binding energy of 35

and 33 meV in R- and H-stacks, respectively, whereas M2 evolves gradually into a slightly red

shifted peak M̃
−
2 before jumping abruptly to M−

2 in a second charging step. In case of H-type

stacking, this second transition coincides with the emergence of a resonance between M2

and M3 which we identify as the charged exciton M−
3 , and with a similarly abrupt quench of

the ground state trion M−
1 . In case of R-type stacking the M3 peak is blue shifted by ∼ 65 meV

compared to the H-type case which explains the absence of M−
3 in the investigated spectral

range. Finally, in a third charging step, both M−
2 and M−

3 red shift and lose their oscillator

strength.

Consistent with previous studies [16, P2, 165], the contrasting responses of M1 and M2

to positive and negative charge doping can be attributed to distinct spatial positions of

the two excitons within the moiré unit cell due to the moiré potential V as we derived in

Section 4.3. Figure 4.12c shows the moiré potential for R- and H-type alignment in the left

and right panel, respectively. M1 excitons have the highest probability of residence on MM

(XX) sites of the R-type (H-type) moiré unit cell and the charged trion M−
1 indicates that

doping-induced electrons are co-localized with M1, irrespective of parallel or anti parallel

stacking, as illustrated in Figure 4.12d [37, P2, 170]. In this sense, M−
1 can be interpreted

as attractive polaron in analogy to the doping behavior of MoSe2 ML excitons [66, 67, 171].

The second exciton M2, on the contrary, is located at the MX (MM) sites in case of R-type

(H-type) stacking, which in the limiting case of perfect rotational alignment corresponds

to a lateral displacement of ∼ 4 nm. Therefore, prior to the second doping transition, the

75



4. MOIRÉ EXCITON PHYSICS IN MOSE2/WS2 HETEROSTRUCTURES

20

0

-20

1.55 1.60 1.65 1.70

Energy (eV)

V
m

 (
V

)

0.00

0.30

DR

1.55 1.60 1.65 1.70

10

0

-10

V
m

 (
V

)

Energy (eV)

0.00

0.10

DR

M1 M2

R - type  D1  H - type  D2a b

M1 M2 M3

M1

_

M2

 _

M2

_

M1

 +

M1

_

M2

 _

M2

_

M3

_

M1

 +

p

i

n

p

i

n

ν = 1
ν = 1

-50

0

50

100

V
m

o
ir
é
 (

m
e
V

)

XX MMMX

−50

0

50

100

V
m

o
ir
é
 (

m
e
V

)

M1

M2

M1

M2

MXXM MM/XX
𝜈 = 0 𝜈 = 1

R - type  D1  H - type  D2
c d

MoSe2 electron M1

y

x

M2

Figure 4.12.: DR charging characteristics of R-type and H-type stacking. a and b,
Evolution of the DR spectra as a function of symmetrically applied gate voltages for
both hole (p) and electron (n) doping. Neutral moiré excitons M1, M2, and M3 show
different responses to doping. This is a result of their different spatial localization in the
moiré cell due to the moiré potential shown in c for both stackings (V was determined
in Section 4.3). d Localization schematics of M1 and M2 moiré excitons with respect to
the electron lattice which forms in the MoSe2 layer up to the filling of ν= 1 electron per
moiré cell. Black dashed lines highlight the area of the moiré unit cell as introduced in
Figure 4.1.

exciton M̃
−
2 acts as a remote sensor [26], with binding energy and oscillator strength acting

as probes of the surrounding electron lattice.

4.4.2. Electrostatic simulations

All sites of the moiré unit cell are occupied by exactly one electron (ν = 1) when M1 has

completely transferred its oscillator strength to the moiré polarons M−
1 and M̃

−
2 , as marked

for the respective gate voltages of Vµ = 7.9 V and Vµ = 2.8 V in Figure 4.12a and b. Interestingly,

while the second charging step occurs immediately for further increasing gate voltages

(Vµ > 7.9 V) in the case of R-type alignment in Figure 4.12a, M−
1 and M̃

−
2 maintain their

oscillator strength up to Vµ = 6.5 V in Figure 4.12b in the case of H-type alignment. To

understand this contrasting response for parallel and antiparallel stackings at electron
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filling ν > 1 per moiré unit cell, we employed hyper-spectral imaging of the DR response

as a function of the doping potential and the electric field F = (VBG −VTG )/l , with l being

the respective total thickness of hBN layers of the two heterostacks. In both devices, D1 and

D2, the MoSe2 and the WS2 layer represent the top and the bottom layer of the heterostacks,

respectively, as shown in Figure 4.6.
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∂E DR(E) in the interval between 1.600 and 1.650 eV to highlight the different charging
states which have their maximum oscillator strength at integer fillings (black dashed
lines). b, Line-cut of the data in a along the arrow A1. A2 visualizes the (Vµ,F ) trajectory
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MoSe2 layer as a function of Vµ and F , reproducing the most pronounced features of
electron doping. The inset shows the CB alignment changing from type I to type II
between large negative and positive fields. d, Schematics of the constant DOS in both
layers obtained from the simulation with CB offset of 55 meV.

First, we look at the dual-gate DR response of the R-type D1 in Figure 4.13a, where we

show for each point (Vµ,F )T the negative maximum of the derivative d(DR)/dE between
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1.600 and 1.65 eV. The left side of the map represents the p-doped regime, the central vertical

stripe the intrinsic, and the right side the n-doped regime. Following the linecut A1 of the

hyper-spectral map at F = 0 V/nm with increasing Vµ (see Figure 4.13b), we find, in a linear

evolution, the three charging steps discussed above (denoted as I, II, III). The emergence

of the charged excitons M−
1 /M̃

−
2 and M−

2 appears as extended straight lines in the hyper-

spectral map. This evolution remains unchanged for finite electric fields, except for large

positive fields F > 0.18 V/nm. In this regime, the conduction band edge of WS2 has been

tuned below that of MoSe2 through a crossover from type I to type II band alignment, forcing

electrons into the WS2 layer first. Here, at finite Vµ the excitons M1 and M2 in the MoSe2

layer [36, P2, 89] are unable to form intralayer charge-bound states until electrons start

filling the MoSe2 sublattice at higher Vµ, and the emergence of M−
1 and M̃

−
2 is shifted to

higher voltages accordingly. The field F = 0.18 V/nm corresponds to a conduction band

offset ∆C B = 55 meV. At smaller electric fields, electrons continue occupying the MoSe2 layer

even for electron fillings ν> 1, as the charged moiré excitons M−
1 and M̃

−
2 immediately start

losing their oscillator strength in transition to M−
2 . We interpret the latter as the counterpart

of M−
1 , resulting from electrons co-localizing with the respective excitons inside the moiré

unit cell. Following this interpretation, we assume the second electron per moiré unit cell to

occupy the MX sites inside the MoSe2 layer in the R-type alignment.

These suppositions are confirmed by a capacitor model simulation, utilizing respective

top and bottom hBN thicknesses of dT = 93 nm and dT = 87 nm to determine the geometric

capacitances of the device and the twist angle θ = 2° to fix the moiré density n0 ≈ 2.7×
1012 cm−2. By numerically solving Equation (4.17) for a constant DOS in both monolayers

as illustrated in Figure 4.13d, we obtained the electron density νMo in the MoSe2 layer as a

function of Vµ and F , shown in Figure 4.13c, perfectly aligning with the experimental data

in 4.13a.

The simulation is in accordance with our assumption from above: Line I in Figure 4.13a

represents a regime with one electron per moiré cell in MoSe2 and line II, with the presence

of the peak M−
2 , corresponds to two electrons inside MoSe2. The CB offset between the first

DOS peaks in MoSe2 and WS2 was fixed to 55 meV by the field F0 in the simulation, with an

uncertainty of about 10% stemming from uncertainties in the thickness and the dielectric

susceptibility of the HBL.

H-type capacitor model simulation

Next, we look at the dual-gate DR response of the H-type D2 in Figure 4.14a. Here, in contrast

to the R-type response, we find extended regions of constant color, indicating constant

optical response in the n-doped regime. Straight lines and kinks between these regions

represent transitions mediated by charging. In particular, the three consecutive electron-

doping steps in the MoSe2 layer, denoted by I, II and III, appear as extended regions. The
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Figure 4.14.: Capacitor model simulation of H-type D2. a, Hyper-spectral map of the
DR signal, where the color of each pixel represents the negative maximum of the deriva-
tive ∂E DR(E ) in the interval between 1.603 and 1.800 eV to highlight the different charg-
ing states. Boundaries of the three distinct regions (I, II and III) signify subsequent
charging steps in the MoSe2 layer. b, Line-cuts of the data in a for three representative
electric fields. c, Simulation of the electron density in the MoSe2 layer as a function of
Vµ and F . The inset shows the CB alignment changing from type I to type II between
large negative and positive fields. d, Schematics of the DOS in both layers obtained from
the simulation. Doping of the layers proceeds in steps of n0, and the step-like extent
of the region I implies Coulomb repulsion of 60 meV between the first and the second
electron charging event in the MoSe2 layer. Together with the CB offset of 30 meV this
leads to peculiar charging behavior shown in e, with charging of the MoSe2 layer up to
one electron per moiré cell and subsequent charge stability upon consecutive filling of
the WS2 layer up to the same filling factor.

extent of these three charge-stability regions varies strongly with the applied electric field.

In Figure 4.14b, we show the evolution of M1 and M2 with Vµ for three distinct electric fields

indicated by the three lines in Figure 4.14a. For F = 0.24 V/nm (right panel), the region I

is shifted to higher voltages, with neutral excitons vanishing at ∼ 4 V which is half-way

through the first charging step at zero-field (central panel). The onset of this shift at a field
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of F0 = 0.1 V/nm again marks the crossover from type I to type II band alignment, which is

equivalent to a CB offset of 30 meV between MoSe2 and WS2. The red shift of M1, observed

at ∼ 1.0 V in the right panel of Figure 4.14b, confirms the presence of electrons, and hence a

change of the dielectric environment in the WS2 layer.

For the negative field F =−0.24 V/nm (left panel), on the contrary, the onset of electron

doping coincides with the zero-field case, but the width of the charging region I with stability

of both M−
1 and M̃

−
2 is reduced by half, similar to the R-type behavior (cp. Figure 4.13a). This

behavior is more intriguing, since it indicates that for electric fields pointing from the MoSe2

to the WS2 layer, the second charging transition occurs earlier than at zero electric field.

From a different perspective, it implies that the number of electrons added to the MoSe2

layer along the zero-field line is reduced, resulting in an extended charge stability range

of region I. As observed in Figure 4.13a, the first charging step into the MoSe2 layer does

not change between negative and small positive electric fields in the R-type D1, signifying

that all electrons charge the MoSe2 layer. We attribute this difference between H-type and

R-type alignment to a deeper moiré potential in the R-type device which can accommodate

more electrons within one layer. For this reason we were able to assume a constant DOS

for the MoSe2 layer up to a electron filling ν= 3 for the capacitor model simulation of the

R-type device above. From Figure 4.12c we estimate the peak-to-peak potential amplitude

of 100 meV in the H-type and 170 meV in the R-type heterostack.

To explain the intricate charging behavior in the H-type D2, we performed electrostatic

simulations with a discretized DOS inside the two layers [150, 151] as introduced in Sec-

tion 4.1.2. The geometric capacitance is fixed by the symmetric top and bottom hBN thick-

ness of dT /B = 55 nm and the moiré density n0 ≈ 2.0×1012 cm−2 by the twist angle θ = 179°.

We assumed that carrier doping happens in steps of n0 for both layers, with each step cor-

responding to a peak in the DOS as shown in Figure 4.14d. The gaps between these peaks

represent energetic cost associated with on-site Coulomb repulsion U due to strong confine-

ment in moiré potential pockets. To model the charging behavior of the HBL, we adjusted U

between the different charging steps to recover the same extents for the regions I, II and III

as in Figure 4.14a. Figure 4.14c shows the simulation result for the electron filling inside the

MoSe2 layer with very good agreement with the experimental data.

The simulation implies that region I represents a regime with just one electron per moiré

cell in MoSe2, with excess electrons populating the WS2 layer instead. Region II, with the

presence of the peaks M−
2 and M−

3 , corresponds to two electrons inside MoSe2, and the

region III is characterized by reduced oscillator strength of the slightly red shifted M−
2 and M−

3

with three and more electrons per moiré cell inside the MoSe2 layer. Importantly, to explain

the non-uniform width of region I, the Coulomb gap U between the first and second electron

charging events in MoSe2 must be larger than the CB offset. This is at the origin of the

difference between R-type and H-type stacking. For the first, we determined ∆C B = 55 meV

which has to be larger than U since electrons keep occupying the MoSe2 layer for ν > 1,
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according to our experimental observations. For the latter, our calculation predicts U ≈
60 meV which leads to the charging behavior for ν> 1 illustrated on the right of Figure 4.15b.

At zero field, after all electrons have filled the moiré potential minima inside MoSe2 up

to a filling factor of ν = 1 (Figure 4.12d), in a second step, successive electrons occupy

the WS2 layer while the charge density on the MoSe2 sublattice remains constant. The

charge carrier doping into the primary MoSe2 lattice continues only after both layers have

accommodated one electron per moiré site. For F ≪ 0 V/nm, on the contrary, the effective

CB offset becomes larger than U , such that the second electron populates the MoSe2 layer,

leading to the continuous transition from region I to region II in the left panel of Figure 4.14b

in analogy to the R-type charging behavior in Figure 4.13b.
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Figure 4.15.: M̃−
2 exciton binding energy as sensor for electron order in H-type

MoSe2/WS2. a, M̃
−
2 exciton binding energy as function of the electron filling factor

ν. Data points corresponding to the filling of the MoSe2 (WS2) layer are shown in red
(blue). We use the model in Section 4.1.3, assuming a moiré lattice constant of 7.7 nm,
to fit the exciton binding energy (purple line) for various electron lattice configurations
at selected filling factors, illustrated in b.

We emphasize that as the electrons fill the WS2 lattice, the optical response of both M−
1

and M̃
−
2 is only marginally affected. This indicates that the moiré potential minima in WS2

are located away from both the XX and the MM sites, and implies that the two excitons act as

remote sensors of the emerging secondary lattice. To confirm this scenario, we consider M̃
−
2

pinned on the MM site of the moiré unit cell as depicted in Figure 4.12c and d and subjected

to Coulomb interactions with electron lattices of varying geometry for different fractional

fillings. Following the approach described in Section 4.1.3, we calculated the change in the

exciton binding energy in the presence of the two laterally and vertically displaced charge

lattices in MoSe2 and WS2 in the process of filling. The quantitative agreement between

experiment and theory in Figure 4.15a is compelling: As the filling factor is increased from

zero to two electrons per moiré cell, the binding energy varies from zero up to a maximum

of 2 meV, providing an estimate for the energy scale of interactions between excitons and
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electrons ordered on the surrounding vertically offset and laterally staggered moiré lattices

at different filling factors as illustrated in Figure 4.15b.

4.4.3. Sensing of correlated electron-spin lattices

Previously, isolated bands in TMD moiré structures have been theoretically predicted [147]

and experimentally observed [28, 29] to mimic the triangular-lattice Hubbard model. When

these isolated bands are exactly half filled a Mott insulator ground state can be formed, i.e.

strong on-site Coulomb repulsion prevents electrons from doubly occupying single moiré

sites in the limit of ν = 1+ ϵ. In this regime, and assuming next-neighbor coupling only,

the Hubbard model maps onto the spin Heisenberg model with antiferromagnetic order.

Experimentally, such states of spin-order have been realized in TMD moiré heterostructures

and investigated by spin-spin interactions with moiré excitons. These interactions manifest

in a diverging magnetic susceptibility which, depending on the optical selection rules, can

be probed either by the degree of exciton spin-polarization [37] or renormalized exciton

g -factors [28, 29]. In the following, we present our investigations of the emerging electron

spin-lattice in our MoSe2/WS2 heterostructures, with moiré excitons M1 and M2 as local

probes of magnetization. The procedure of the polarization resolved DR measurements,

employed to obtain the data that are presented in the following, is explained in Section 3.2.1.

Figure 4.16a and d show the MCD spectra of R-type and H-type heterostacks as a function

of the doping potential (F = 0 V/nm) with an applied out-of-plane magnetic field of B =−8

T, respectively. At ν = 0, the MCD response of M1 and M2 takes an asymmetric lineshape

with a sign change at the exciton resonance at zero magnetic field, resulting from polariza-

tion resolved exciton resonances with identical oscillator strength but different resonance

energies. This means, the MCD response is dominated by the exciton Zeeman splittings

∆EX ≈ 2 meV (see Figure 4.7) under the absence of spin-polarization.

Based on the electrostatic simulations in Section 4.4.2, we conclude the existence of bright

moiré excitons in the presence of stabilized electron order in MoSe2 at νMo = 1. Focusing on

this doping regime, we find a symmetric MCD response at the M−
1 resonances in Figure 4.16a

and d at B =−8 T, reflecting an almost completely valley polarized exciton resonance. M̃
−
2 ,

on the other hand, exhibits an asymmetric MCD response, i.e. the exciton maintains a

finite oscillator strength in both Zeeman branches but experiences a large Zeeman splitting

∆EX ≈ 10 meV. Both observations are explained by the presence of correlated magnetic

order/correlated magnetism of electron-spins at ν= 1 which is sensed by the moiré excitons.

The different location of M1 and M2 moiré excitons with respect to the electron lattice at this

specific doping level (see Section 4.4.1) leads to their different MCD response, as explained

in the following:

M1 excitons are co-localized with the electrons up to an electron filling of ν = 1, and

therefore inherit the optical selection rules of monolayer MoSe2 [66, 67]. This makes the M−
1
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Figure 4.16.: Correlated magnetism in presence of an electron-spin lattice. a and
d, MCD evolution at B = −8 T as function of the doping potential in R-type and H-
type stacking, respectively. M−

1 polarizes completely while M̃
−
2 exhibits large Zeeman

splitting. b, Nonlinear evolution of the degree of spin polarization ρA of M−
1 in R-type D1

as a function of the magnetic field. b and e, Nonlinear evolution of the Zeeman energy
splitting ∆EX of M̃

−
2 in R-type D1 and H-type D2 as a function of the magnetic field,

respectively. f, Evolution of the effective g -factor of M̃
−
2 as a function of the electron

filling in H-type D2. Linear fits are carried out at small magnetic fields (B ≤ 1 T).

peak a candidate for probing the influence of the electron-spin lattice through the evolution

of the exciton degree of spin-polarization ρ = ( f+− f−)/ f0 with the magnetic field [37], which

is shown in Figure 4.16b for the R-type device (see Section 3.2.1 experimental details). For

small positive (negative) magnetic fields the oscillator strength of the σ+ (σ−) polarized

moiré excitons is quickly transferred to the opposite polarization leading to a negative

(positive) increase of the degree of spin-polarization. The evolution of ∆ f / f0 saturates at

larger magnetic fields (B > 2 T), where one polarization of the M−
1 exciton DR response is

almost completely quenched. This non-linear evolution of the degree of spin-polarization

results from the change in magnetic susceptibility due to the polarization of the electron-

spin lattice that is co-localized to and thus sensed by the M1 excitons [37].

Even though M̃
−
2 excitons exhibit a finite degree of spin-polarization with the magnetic

field, which is thematized in Section 5.3, both polarizations maintain finite oscillator strength

up to large magnetic fields because of the delocalization of M2 excitons with respect to the
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electron-spin lattice (see Section 4.4.1). In this case, the effect of correlated magnetism of

the electron spins on the moiré excitons is most pronounced in the evolution of the exci-

ton Zeeman splitting ∆EX as shown in Figure 4.16c and e for R-type and H-type stacking,

respectively. ∆EX of the M̃
−
2 exciton exhibits a highly nonlinear evolution as function of the

magnetic field analogous to hole-mediated magnetism in WS2/WSe2 [28] or MoSe2/WSe2

[29]. In the limit of small negative (positive) magnetic fields (B ≤ 1 T)∆EX rapidely increases

to positive (negative) values. Here, the slopes of ∆EX can be approximated as linear func-

tions of B and we obtain respective renormalized moiré exciton g -factors g =−31±1.5 and

g =−26±1 for R-type and H-type stacking. These values are strongly enhanced compared

to g ≈ −4 of the neutral M2 resonance (cp. Figure 4.7) as a result of the paramagnetic re-

sponse of the excitons to the polarization of the electron-spin lattice in close proximity. At

higher magnetic fields, when the electron-spin lattice is fully polarized, the reduced g -factor

reflects the conventional paramagnetic exciton response [73, 162].

In contrast to the R-type D1 and other heterostructures [28, 29], g remains at high values

in the H-type stacking as long as the peak M̃
−
2 is present between 1 < ν < 2, as shown in

Figure 4.16f. This is consistent with the understanding developed above: The MoSe2 electron

sublattice is locked in a Mott-insulating state during successive charging of the WS2 layer.

Throughout the plateau, the g -factor values exhibit variations on the order of 10−15% due

to the emergent filling of the secondary lattice. References [P3] and [172] provide a detailed

analysis of this electrostatically tunable bilayer spin-charge lattice in H-type MoSe2/WS2,

which was beyond the main-scope of this thesis: Measuring the renormalized exciton g -

factor as a function of temperature in a dilution refrigerator down to 0.1 K enabled to confirm

the paramagnetic response of the underlying spin lattice. An extracted negative Curie-Weiss

temperature suggests antiferromagnetic interactions of the electron spins, as expected for

the ground state of a triangular spin lattice with only nearest neighbor interactions [147].

Furthermore, the above mentioned variations of the g -factor in the plateau at electron

filling 1 < ν< 2 are explained in the framework of Ruderman-Kittel-Kasuya-Yosida (RKKY)

magnetism [173, 174], confirming the implementation of a bilayer Hubbard model.
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Moiré exciton-polaritons in
MoSe2/WS2 heterostructures 5

Embedding materials with excitons of significant oscillator strength in op-

tical micro-cavities allows to study light-matter hybridization on a funda-

mental quantum level. This Chapter presents the results of studying moiré

heterostructures dressed with photons in open micro-cavity setups at cryo-

genic temperatures. The characterization of moiré exciton- and polaron-

polaritons was performed using the home-built open fiber cavity setup, as

detailed in Chapter 3.3.1. Expanding upon this research, we investigated the

impact of correlated magnetism on these polariton species in collaboration

with the Quantum Materials Group at the University of Oldenburg.

THIS CHAPTER IS PARTLY BASED ON THE PUBLICATION [P4]

J. Scherzer*, L. Lackner*, B. Han, et al., “Correlated magnetism of moiré

exciton-polaritons on a triangular electron-spin lattice,” arXiv 2024,

2405.12698

* equal contribution

5.1. Introduction

Exciton-polaritons are bosonic quasi-particles arising in the regime of strong coupling be-

tween photons and excitons. They become particularly distinct in optical micro-cavities cou-

pled to materials with excitons of significant oscillator strength [112, 113]. Being composite

bosons, they possess a variety of unique properties resulting from light-matter hybridization

on a fundamental quantum level, including giant optical nonlinearities that give rise to

effective photon-photon interactions [175, 176], the formation of quantum condensates at

elevated densities from cryogenic to room temperatures [33, 177, 178], as well as friction-
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less on-chip propagation [179]. Featuring excitons with high oscillator strength, TMDs and

their heterostructures provide novel opportunities for engineering quantum phases in the

regime of strong light-matter coupling [108]. Reduced screening enhances nonlinear po-

lariton interactions [180], while controlled electron doping enables the formation of Fermi

polaron-polaritons by dressing exciton-polaritons with excitations in the Fermi sea [66, 171].

The paramagnetic behavior of the underlying exciton polarons is inherited to such charged

light-matter quasiparticles, rendering polaron-polaritons sensitive to external magnetic

fields [181].

As we present in detail in Chapter 4 of this work for MoSe2/WS2 structures, the emergent

moiré potential in TMD heterobilayer systems leads to the formation of electron or hole

lattices at specific fractional fillings of elementary charges in units of the moiré density,

imprinting effects of correlated magnetism on the optical response of moiré excitons. Dress-

ing such charged moiré excitons with cavity photons allowed us to explore and control the

nonlinear manifestations of correlated magnetism on polaron-polaritons as an extension to

nonlinear optical phenomena observed for charge-neutral moiré exciton-polaritons [38].

The MoSe2/WS2 heterostructure D1 with near-parallel alignment introduced in Section 4.2

was fabricated on a distributed Bragg reflector (DBR) substrate to embed the sample in a high

finesse optical micro-cavity. This allows to study the properties of emergent moiré exciton-

polaritons and their response to correlated charge order under electron or hole doping. For

a first characterization of the charge tunable moiré exciton-polaritons, presented in the first

part of this Chapter, we implemented the dual-gate device in the tunable optical micro-

cavity in a closed-cycle cryostat (attocube systems, attpDRY800), introduced in Section 3.3.1.

To explore how correlated magnetism of electrons maps onto the magnetic response of

charged moiré exciton-polaritons we performed a second set of measurements in a tunable

optical micro-cavity in a closed-cycle cryostat equipped with a superconducting magnet.

These experiments were realized in a collaboration with the Quantum Materials group

of Christian Schneider at the University of Oldenburg, and in particular with the help of

Lukas Lackner, who guided the measurements at the Institute of physics in Oldenburg. The

corresponding results are presented in the second part of this Chapter.

5.2. Characterization of moiré exciton-polaritons

Having assembled the R-type heterostack D1 (see Figure 4.2 for details of the device) in our

fiber-based micro-cavity inside the closed-cycle cryostat (see Section 3.3.1), we started the

measurements by introducing the MoSe2 monolayer area inside the mode of the microcavity.

Scanning the cavity length with the piezo actuator attached to the cavity fiber, we reduced

the cavity length to the small mode orders, where the plano-concave cavity geometry allows

the formation of stable Hermite-Gaussian modes (see Section 2.2).
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Figure 5.1.: MoSe2 exciton-polaritons in a fiber-based open microcavity. a, Charac-
teristic avoided crossing behavior of a strongly coupled exciton-photon system of the
MoSe2 monolayer inside the fiber cavity, observed in transmission (T) behind the fiber
microcavity as a function of the cavity length. A Rabi splittingΩ= 14.8 meV is observed
for the fundamental mode order q = 3. Solid black lines show the result of a two-coupled
oscillator model fit to the data, dashed lines the corresponding exciton energy EX and
cavity energy dispersion Ec . b, Corresponding transmission spectrum at zero detuning
δ= Ec −EX = 0. c, Evolution of the Rabi splittingΩ as a function of q is inversely pro-
portional to the square root of the cavity mode volume Vm .

Figure 5.1a displays the spectrally dispersed transmission response of a broadband white

light source through the cavity. Here, the lowest accessible TEM00 mode q = 3, before intro-

ducing contact between the two mirrors, is tuned through the MoSe2 exciton resonance. We

observe a pronounced anti-crossing, a hallmark of the strong coupling regime, leading to the

formation of hybridized exciton-polariton states. The two polariton branches are accurately

described by the eigenstates of the coupled oscillator model in Eq. (2.31), represented as

black solid lines in Figure 5.1a. The Rabi splittingΩ denotes the spectral separation of the

upper and lower polariton branches at zero detuning, δ= Ec −EX = 0, where Ec is the energy

of the cavity mode and EX is the exciton resonance energy, as shown in Figure 5.1b. At q = 3,

we observe a Rabi splittingΩ3 of 14.8 meV, comparable with previous studies [66, 182]. The

open geometry of our cavity system enables the study of exciton-photon coupling across a

wide range of fundamental mode orders in Figure 5.1c. The evolution ofΩ as a function of q

follows the expected decrease with increasing mode volume,Ω∼ 1/
p

Vm (see Eq. (2.27)).

The hybridization of TMD monolayer excitons with photons in the strong coupling regime

has been extensively investigated in various configurations, including monolithic [183,

184] and open micro-cavities [P8, 182, 185], as well as plasmonic [186–189] and other pho-

tonic nano-cavities [190]. In the following, we present the results of our investigation into

moiré exciton-polaritons in device D1. In the charge-neutral regime, MoSe2/WS2 exciton-

polaritons exhibited polariton density-dependent nonlinearities, possibly attributed to the

spatial confinement of moiré excitons [38]. Here, we compare our experimental findings
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with those in the literature and employ the gate control in our field-effect device to explore

optical nonlinearities as a function of the electron density.

5.2.1. Charge tunability

Figure 5.2b shows the confocal DR response of D1 with increasing electron doping potential

Vµ, following the arrow A1 in Figure 4.13 in logarithmic scale to visualize the transfer of

oscillator strength from the neutral moiré excitons M1 and M2 to their charged polaron

counterparts M−
1 and M̃

−
2 . The latter emerge in the regime of 0 < ν< 1 electron filling per

moiré cell and reach maximum oscillator strength at doping density of one electron per

moiré unit cell (ν= 1). The decrease in the oscillator strength at electron densities of ν= 1±ϵ
indicates the formation of an isolated Hubbard band at the incompressible state for ν= 1

[37] (see Section 4.4 for details).
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Figure 5.2.: Charge tunable moiré exciton-polaritons. a, Characteristic anticrossing of
M1 exciton-polariton (upper panel) and M̃2

−
polaron-polariton (lower panel) branches

as a function of cavity-resonance detuning at fundamental mode order q = 7 (the model
fits are shown by solid lines, and the bare exciton and cavity dispersions by dashed lines).
b, Electron charging in reflection contrast spectroscopy of moiré excitons M1 and M2

and the respective moiré polarons M−
1 and M̃2

−
as a function of the doping potential

Vµ (cp. arrow A1 in Figure 4.13a). c, Rabi splittingΩ of M1 and M̃2
−

polaritons obtained
from the coupled oscillator model as a function of Vµ. Horizontal dashed lines delimit
the strong coupling conditionΩ> (γ+κ)/2.
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The transfer of the oscillator strength from the charge-neutral moiré exciton M1 to the

M̃
−
2 exciton-polaron state is most obvious in the regime of coherent light-matter coupling

inside the fiber-based microcavity. As for the bare MoSe2 monolayer, we observe clear

anticrossings by sweeping the TEM00 mode (here, q = 7) through the resonances of M1

and M̃
−
2 (see Figure 5.2a upper and lower panel). The respective polariton branches are

captured by the coupled oscillator formalism, with Rabi splittings ofΩ= 10.1 meV for M1

at Vµ = 0 V and Ω = 7.3 meV for M̃
−
2 at Vµ = 7.5 V. The evolution of the Rabi splittings

as a function of the electron doping is shown in Figure 5.2c for gate voltages where the

strong coupling condition Ω > (γ+κ)/2 is satisfied for both M1 and M̃
−
2 , with respective

linewidths of γ= 7.6 and 9.5 meV. The homogeneous linewidth κ= 0.13 meV of the cavity

mode was determined from the Lorentzian part of a Voigt profile fit of the cavity lineshape

in Section 3.3.4. Inhomogeneous contributions due to cavity vibrations are negligible on the

time scale of coherent light-matter coupling (see Section 3.3.2). With increasing electron

density, the Rabi splitting of M1 decreases linearly and collapses around ν > 0.5, while at

the same time the anticrossing of the M̃
−
2 polariton reaches its maximum value at electron

filling ν= 1 before decreasing again at higher gate voltages.

5.2.2. Moiré-induced nonlinearity

In the following, we focus on MoSe2 ML X and HBL M1 exciton-polaritons at electron filling

ν= 0 and M̃
−
2 polaron-polaritons at ν= 1, studying their optical response as a function of the

excitation power, which determines the polariton density. We present the excitation power-

dependent polariton properties and compare the experimental findings with other studies

in the literature to categorize the observed data and provide an overview of possible physical

explanations. A quantitative analysis of these results, which would require an accurate

deduction of the polariton density as a function of the excitation power, was beyond the

scope of this work, but the intriguing findings could motivate further studies on this subject.

To this end, we repeated the broad band transmission measurement as shown in Figure 5.2

for M1 and M̃
−
2 polaritons at various excitation power. We utilized an NKT supercontinuum

laser, operating in pulsed mode with a repetition rate of 2.7 MHz and a 100 nm bandwidth

centered around the wavelength of 765 nm. Prior to fiber coupling, a combination of neutral-

density filters ensured a consistent and uniform intensity distribution of the laser profile. We

then analyzed the transmission response of the different polariton species in the framework

of the coupled oscillator model to obtain the relevant parameters – the underlying exciton

energy, Rabi splitting, energies of the polariton branches and their Lorentzian linewidth at

zero detuning δ= Ec −EX = 0 – as a function of the excitation power. The results are shown

in Figure 5.3.

In Figure 5.3a, we first examine the shift of the exciton energy ∆E extracted from MoSe2

X (black data points) and M1 (blue) exciton-polaritons as well as M̃
−
2 polaron-polaritons
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Figure 5.3.: Moiré exciton-polaritons as function of the excitation power. a, Change of
MoSe2 ML X exciton and the M1 and M̃2

−
moiré exciton energy ∆E = E −E0 as function

of the excitation power. E denotes the power dependent exciton energy and E0 the
exciton energy at minimum excitation power (P = 100nW ), obtained from coupled
oscillator model fits. b, Power dependent evolution of the Rabi splittingΩ of the mose
ML X exciton and the M1 and M̃2

−
moiré excitons compared to the Rabi splittingΩ0 at

100 nW excitation power. c, Evolution of the corresponding lower (LP, left panel) and
upper (UP, right panel) polariton energies as function of the excitation power. d, LP (left
panel) and UP (right panel) Lorentzian linewidths γ at δ = Ec −EX = 0 as function of
the excitation power.

(orange) as function of the excitation power. The X and M1 resonances exhibit minor blue

shifts (∆E < 1 meV) with increasing excitation power over a range spanning more than

three orders of magnitude. Such blue shifts have been observed in TMD monolayers and

heterobilayers, commonly attributed to heightened exciton dipole-dipole interaction and

phase space filling at elevated exciton/polariton densities [191, 192]. Various studies have

reported increased dipole-dipole interactions for excitons confined in 0D systems, like the

pockets of a moiré lattice, compared to bare TMD monolayers with a 2D density of states [30,

31, 38, 193, 194]. However, we do not observe this effect here, as moiré-localized M1 excitons

exhibit energy renormalization comparable to MoSe2 monolayer X excitons in Figure 5.3a. In

contrast, the M̃
−
2 exciton energy demonstrates a highly nonlinear red shift as function of the

excitation power. Within one order of magnitude of increasing excitation power, the exciton

energy shifts by more than 3 meV towards lower energies. Various types of exciton-exciton

interactions compete, contributing to the renormalization of the exciton energy at specific
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exciton densities [192]. While dipole-dipole interactions, phase space filling, or bosonic

exchange interactions result in increased exciton energies, fermionic exchange interactions

and screened bosonic exchange interactions would lead to decreased exciton energies. From

this, we can conclude that the presence of the triangular electron lattice at ν= 1, combined

with the different location of M̃
−
2 excitons within the moiré unit cell, favors one of the latter

two effects, leading to the pronounced red shift of the M̃
−
2 exciton energy.

We proceed by investigating the Rabi splittingΩ of the three polariton species as a func-

tion of excitation power, as shown in Figure 5.3b. Here, Ω at a specific excitation power is

normalized by the Rabi splitting Ω0 obtained at the lowest excitation power of the mea-

surement series (100 nW). The Rabi splitting of the X exciton-polariton remains remarkably

robust, maintaining values ofΩ/Ω0 > 0.95 even at the highest excitation powers. Conversely,

M1 exciton-polaritons demonstrate a pronounced nonlinear decrease with increasing excita-

tion power. This observation aligns with the documented exciton-blockade phenomenon in

neutral moiré polaritons within MoSe2/WS2 heterobilayers, where exciton-photon coupling

saturates once the exciton density exceeds one exciton per moiré unit cell [38]. Interestingly,

this effect appears to be significantly amplified in the case of M̃
−
2 polaron-polaritons. While

the onset of saturation power is comparable to that of M1 exciton-polaritons, it diminishes

toΩ/Ω0 ≈ 0.4 at 70 µW, contrasting with theΩ/Ω0 ≈ 0.85 exhibited by M1 exciton-polaritons.

A highly nonlinear reduction in the Rabi splitting of trion-polaritons, comparable to that ob-

served in single quantum dots embedded in microcavities, has been documented in MoSe2

monolayers [191]. The interplay between electron interaction and moiré confinement in

the case of M̃
−
2 polaron-polaritons offers a plausible explanation for the pronounced nonlin-

ear quenching of the Rabi splitting with increasing exciton/polariton density. Nevertheless,

the precise mechanism driving this intriguing response remains speculative, necessitat-

ing further analysis to attain a comprehensive understanding. An alternative approach to

probing and confirming interaction-induced nonlinearities could involve measuring the

second-order correlation function in resonant transmission experiments to unveil photon

correlations as potential signatures of polariton blockade effects [176].

Figure 5.3c presents the energy shift of the lower (left panel) and upper (right panel)

polariton branch at zero detuning δ = 0 as function of the excitation power. The reduced

Rabi splitting for high excitation power as well as the marginal shift of the corresponding

exciton energy lead to a blue shift (red shift) in the lower (upper) polariton branch in case of

M1 with increasing excitation power. Conversely, the collapse of Rabi splitting, accompanied

by the pronounced red shift of the corresponding exciton resonance, leads to red shifts in

either of the two polariton branches in the case of M̃
−
2 as the excitation power increases.

Finally, we monitor the evolution of the lower (left panel) and upper (right panel) polariton

linewidths at zero detuning in Figure 5.3d as the excitation power increases. For the MoSe2

X exciton-polariton, both branches exhibit approximately the same Lorentzian linewidth of

γ≈ 2 meV, which only increases at high excitation power due to increased dephasing rates
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induced by increased exciton-exciton interactions [195]. In comparison, the moiré exciton

linewidth of M1 and M̃
−
2 expands to γx ≈ 7.5 meV and γx ≈ 10 meV, respectively (see Figure

4.7), resulting in a proportional increase in the corresponding polariton linewidths. De-

spite the anticipated higher linewidths of moiré exciton- and polaron-polaritons, they also

manifest an asymmetry between the upper and lower branches. This asymmetry suggests

an increased in-plane disorder in the heterobilayer region, primarily affecting the upper

polariton branch, while the lower polariton branch exhibits signs of motional narrowing

[196–198].

5.3. Correlated magnetism of moiré exciton-polaritons

As an extension to nonlinear optical phenomena as function of the polariton density, we

explored the nonlinear manifestations of correlated magnetism (see Section 4.4) on polaron-

polaritons by dressing M̃
−
2 moiré exciton polarons with cavity photons in the presence of an

out-of-plane magnetic field.
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Figure 5.4.: Mesa-based microcavity design with magnetic field access. a, Schematic of
the micro-cavity geometry: The TMD heterostructure is placed on a planar mirror with
DBR coating. The mesa counterpart with spherical indentation is DBR coated as well.
The setup is placed inside a closed-cycle cryostat with an out-of-plane magnetic field B.
b, Transmission characteristics of the two DBR coatings and corresponding expected
finesse as function of the excitation wavelength. c, Reflection spectrum of the empty
cavity at fundamental mode order q = 4, fitted with a Voigt profile (orange line) with
Lorentzian linewidth κ= 1.2 meV and Gaussian 1/e2 broadening σ= 1.7 meV.

For this study, we implemented D1 in a different open cavity system, mounted inside a

low vibration closed-cycle cryostat (attocube systems, attoDRY1000) with a solenoid pro-

viding access to out-of-plane magnetic fields [199]. The open cavity design is illustrated in

Figure 5.4a. Here, the top part of the cavity was built from a glass mesa containing concave
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spherical cap indentations with 300 nm depth and a diameter of 6 µm formed by gallium

focused ion beam milling and coated with 5 pairs of TiO2/SiO2 layers with SiO2 terminating

layer. The photonic trapping potential resulting from the spherical indentation supports

stable Laguerre-Gaussian modes at small cavity lengths. The macroscopic geometry of the

mesa necessitated the removal of the solder joint, which contacted the top FLG gate of the

heterostructure, to ensure reaching the lowest mode orders without making contact with the

sample. Consequently, the doping-dependent data presented in the following sections were

acquired by applying voltage at the bottom gate only. The transmission characteristics of

the mesa DBR are shown in Figure 5.4b, together with the ones of the bottom DBR substrate,

which was introduced above in Section 5.2 and Section 3.3.4. The corresponding expected

finesse calculated from the mirror reflectivities using Equation (2.10) is shown as red line.

For the measurements presented in the following, a broadband quartz tungsten-halogen

lamp was focused through the top mirror into the cavity by a lens (Thorlabs, 354105-B) to

form a Gaussian spot size with a full-width at half-maximum diameter of < 5.0 µm. The

physical distance between the microcavity mirrors was controlled via nano-positioners with

nm accuracy. All cavity measurements were performed using the fundamental longitudinal

cavity mode of order q = 4, the lowest possible mode order without introducing physical

contact between top and bottom DBR mirrors, and employing a spectrometer (Andor Sham-

rock 500i) equipped with a CCD (Andor iKon-M 934). The normalized reflection spectrum

of the bare cavity (far detuned from the exciton resonances) at q = 4 is shown in Figure 5.4c.

Fitting the lineshape of the cavity mode with a Voigt profile yields a homogeneous cavity

linewidth κ= 1.2 meV equivalent to a finesse F ≈ 450. The deviation of the experimentally

observed finesse and the expected value in Figure 5.4b can be explained by additional losses

due to scattering at sample or mirror imperfections.

In an initial step we repeated the characterization of the doping dependent evolution

of exciton- and polaron-polaritons around the M1 and M2 moiré exciton resonances (see

Section 5.2). The upper and lower panel of Figure 5.5a show the avoided crossing behavior

observed for sweeping the cavity resonance across the M1 and M̃
−
2 resonance at applied

bottom gate voltage VG = 0 V and VG = 11.5 V, respectively. The strong coupling condition

Ω > (γ+κ)/2 is satisfied for both M1 and M̃
−
2 , with respective linewidths of γ = 7.6 and

9.5 meV. The evolution of Rabi splitting Ω in Figure 5.5c as a function of VG follows the

evolution of oscillator strength known from DR measurements with absence of the top DBR

mirror which is shown in Figure 5.5b (cp. arrow A2 in the dual-gate map in Figure 4.13a).

With increasing electron density, the Rabi splitting of M1 decreases linearly and collapses

around ν ≈ 0.5, while at the same time the anticrossing of the M̃
−
2 polariton reaches its

maximum value at electron filling ν= 1 before decreasing again at higher gate voltages.
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Figure 5.5.: Charge tunable moiré exciton-polaritons inside the magneto cavity setup.
a, Characteristic anticrossing of M1 exciton-polariton (upper panel) and M̃

−
2 polaron-

polariton (lower panel) branches as a function of cavity-resonance detuning (the model
fits are shown by solid lines, and the bare exciton and cavity dispersions by dashed
lines). b, Electron charging in reflection contrast spectroscopy of moiré excitons M1

and M2 and the respective moiré polarons M−
1 and M̃

−
2 as a function of the bottom gate

voltage VG (cp. arrow A2 in Figure 4.13a). c, Rabi splitting Ω of M1 and M̃
−
2 polaritons

obtained from the coupled oscillator model as a function of VG . Horizontal dashed lines
delimit the strong coupling conditionΩ> (γ+κ)/2.

5.3.1. Polarization-contrasting response in high magnetic fields

The most remarkable behavior of the strongly coupled exciton-polariton system in the pres-

ence of electron doping is induced by an external magnetic field. In polarization-contrasting

reflection R(σ+/−) of M1 and M̃
−
2 polaritons at 8 T, shown in Figure 5.6a and b, we observe

polarized polariton branches as a function of the cavity length which is represented in units

of zero-field resonance detuning δ0 = Ec −EX between the cavity and exciton energies Ec

and EX at B = 0 T. Upon cavity detuning, the σ+ and σ− circularly polarized branches of the

M̃
−
2 polaron-polariton in the left and right panels of Figure 5.6b exhibit avoided crossings

with respective polarization-specific on-resonance Rabi splittings of 5.2 and 7.5 meV and

an exciton Zeeman splitting (i. e. the energy difference between the red and blue dashed

horizontal lines in Figure 5.6b) of ∼ 7 meV. The latter contrasts the modest exciton Zeeman

splitting extracted from the M1 polariton in Figure 5.6a with a value of 2 meV, comparable to

the neutral exciton Zeeman splitting in MoSe2 monolayers [73, 162].
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Figure 5.6.: Magneto-optics of neutral and charged moiré polaritons at large magnetic
field. a and b (upper panel), Polarization-resolved reflection of M1 exciton-polaritons
and M̃

−
2 polaron-polaritons at VG = 0 and 11 V, respectively, in a magnetic field of B = 8 T

as a function of the cavity length δ0. Black solid lines show the fits of the coupled os-
cillator model for σ+ and σ− circular polarization. The energies of the corresponding
bare excitons are shown by red and blue dashed lines, while the field-independent
cavity dispersion is shown by black dashed lines. The lower panel of b shows the corre-
sponding exciton and photon Hopfield coefficients of the M̃

−
2 upper polariton branch

with σ+ and σ− polarization. The dashed vertical lines mark the cavity length for zero
resonance detuning in σ− polarization, where the exciton Hopfield coefficients differ
significantly for the two circular polarizations (|X+|2 = 0.15 for σ+ and |X−|2 = 0.50 for
σ− polarization).

For the following analysis, we introduce the effective Zeeman splitting between the peak

energies of the upper/lower polariton branch with σ+ and σ− polarization as ∆EUP/LP =
E+

UP/LP−E−
UP/LP. To extract the respective polariton peak energies from the reflection spectra
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Figure 5.7.: Deconvolution of polariton reflection spectra. a, Left panel: Raw reflection
spectrum of the Zeeman-split M−

2 polariton for a fixed cavity detuning and magnetic
field. Right panel: Corresponding phase-corrected spectrum. b, Polynomial background
correction and normalization of the phase-corrected spectrum allow to fit the lineshape
with two Voigt profiles (orange solid line) of the corresponding upper (UP) and lower
(LP) polariton resonances shown by blue dashed lines.

of the exciton-polaritons we applied a phase (Eq. (3.1) with α = −26◦) and subsequent

background correction to the raw spectra, as shown in Figure 5.7a. The polariton peak

energies were determined by fitting the corrected lineshape using the Voigt function in Eq.

(3.9) for each polariton branch:

V (E) = [G(L1 +L2)](E) =
∫

G(E ′)L1(E −E ′)+G(E ′)L2(E −E ′)dE ′, (5.1)

as shown in Figure 5.7b. Here, the contributions of two Lorentzians L1 and L2 account for

the upper and lower polariton resonance, the Gaussian function G for vibration-induced

broadening as well as for spatial inhomogeneity of the underlying exciton resonance within

the waist of the cavity mode.

With the cavity length set to δ0 = 1.4 (3.9) meV around the on-resonance condition for

the σ− branch of the M1 (M̃
−
2 ) polariton at B = 8 T, we determine the effective Zeeman

splitting between the two circularly polarized upper polariton branches, shown explicitly in

Figure 5.8a for the upper polariton branch of M̃
−
2 at VG = 11 V. Remarkably, in this large-field

limit, the evolution of∆EUP with the gate voltage in Figure 5.8b shows very distinct behaviors

for M1 and M̃
−
2 polaritons. As the voltage-induced electron filling per moiré cell is increased

from 0 to 1, the upper polariton splitting ∆EUP remains constant at −1 meV in the voltage

range of M1 between 0 and 4 V, then undergoes a jump to −1.5 meV with the onset of M̃
−
2 at

8 V, and evolves gradually to its lowest value close to −3 meV at 11 V.

To understand this behavior, we first note that by setting the cavity resonance to zero

spectral detuning for the bare exciton Zeeman branch with σ− polarization (crossing points

of blue and black dashed lines in the right panels of Figure 5.6a and b), the cavity mode

96



5.3. CORRELATED MAGNETISM OF MOIRÉ EXCITON-POLARITONS

1.61 1.62 1.63

-1.0

-0.5

0.0

 s+

 s-

R
e
fl
e

c
ti
o

n
 (

n
o
rm

.)

Energy (eV)
0 2 4 6 8 10 12

-3

-2

-1

0

D
E

U
P

 (
m

e
V

)

VG (V)

ΔEUP

ba

B = 8T

ν = 1ν = 0

M1 ,δ0 = 1.4 meV

M2
-

M2 ,δ0 = 3.9 meV
-

B = 8T

δ0 = 3.9 meV

~

~

Figure 5.8.: Magneto-optics of neutral and charged moiré polaritons at large mag-
netic field. a, Polarization-resolved spectra of M̃

−
2 polaron-polariton with the Zeeman

splitting of the upper polariton branch ∆EUP, shown for a cavity length corresponding
to the on-resonance condition for σ− polarization as indicated by dotted vertical lines
in Figure 5.6b. b∆EUP of M1 and M̃

−
2 as a function of VG in gate voltage regimes of strong

coupling.

is blue detuned by the exciton Zeeman splitting with respect to the σ+ polarized exciton

Zeeman branch. Since the presence of the M̃
−
2 exciton resonance is accompanied by an in-

crease in the oscillator strength and thus in the Rabi splittingΩ up to electron filling of ν= 1

(Figure 5.5c), the respective on-resonanceσ− polariton branch is affected by the gate voltage,

whereas theσ+ branch remains almost unchanged due to its primarily photonic nature. The

corresponding photon and exciton Hopfield coefficients of polarization-resolved M̃
−
2 upper

polaritons at 8 T are shown in the lower panels of Figure 5.6b. Thus, the energy splitting

∆EUP between the two circularly polarized upper polariton branches is the combined result

of the exciton Zeeman splitting and the polarization-dependent Rabi splitting for a given

cavity-exciton resonance detuning. Consequently, the constant and monotonously evolv-

ing Zeeman splittings ∆EUP of the M1 and M̃
−
2 upper polaritons in Figure 5.8b reflect the

respective absence and presence of doping-induced magnetism, which peaks at an electron

doping of ν= 1 (VG = 11 V) and thus yields the maximum Zeeman splitting for the M̃
−
2 upper

polariton with a value roughly three times that of M1.

We point out that both σ+ and σ− branches are clearly pronounced for both M1 and M̃
−
2

polaritons even in the large-field limit (Figure 5.6a and b). Consequently, the enhancement

in the polariton Zeeman splitting is distinct from the apparently giant paramagnetic re-

sponse of MoSe2 monolayer polaron [67] and its polaron-polariton counterpart [181]. There,

at high magnetic fields, the respective σ+ polarized lower-energy Zeeman exciton and po-

lariton branches exhibit nearly complete quenching of the oscillator strength due to Pauli

blocking, which leads to an effectively enhanced splitting [67, 181]. Here, field-dependent

Rabi splitting is completely absent for charge-neutral M1 exciton-polaritons, just like for the
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neutral exciton in monolayer MoSe2 [157, 200]. Electron doping conditions a change in the

oscillator strength for the polarized branches of the M̃
−
2 polaron-polariton with magnetic

field, yielding different Rabi splittings for polariton branches with σ+ and σ− polarization

at 8 T (Figure 5.6b). This moderate reduction of the oscillator strength as opposed to the

complete quenching of one polarization in the case of the attractive polaron in MoSe2 mono-

layers is the result of the spatial separation between the M̃
−
2 exciton wavefunction and the

moiré lattice sites of ordered and spin-polarized electrons (see Section 4.4).

5.3.2. Nonlinear polariton response to varying magnetic fields

In the following, we focus on electron-dressed moiré polaritons at low magnetic fields

(|B | ≤ 1 T), where correlated magnetism of charge-spin lattices is most pronounced as

shown in Section 4.4.3. For a fixed cavity detuning δ0 = 5.2 meV, the M̃
−
2 polaron-polariton

branches develop pronounced Zeeman shifts already at small magnetic fields, as obvious

from Figure 5.9a. Moreover, the Zeeman splittings of the upper and lower polariton branches

∆EUP and ∆ELP, shown in Figure 5.9b for different cavity detunings δ0, follow a highly non-

linear evolution with enhanced effective Landé factors in the low-field limit. This behavior

is analogous to the nonlinear evolution of the M̃
−
2 moiré polaron g -factors presented in

Section 4.4.3. The Zeeman splitting of the neutral M1 exciton-polariton, in contrast, is lin-

ear throughout the whole range of magnetic fields in Figure 5.9c, and the corresponding

effective polariton g -factor stems from the conventional paramagnetic response of the M1

exciton.

Consistently, the effective Landé factors of the M1 upper and lower polariton branches

are determined by the light and matter constituent according to the Hopfield coefficients,

which in turn are controlled by the cavity resonance detuning. In the absence of doping,

the effective polariton Landé factors derive from the linear Zeeman shift of the neutral

moiré exciton as shown in Figure 5.9e. The symmetric evolution of gUP/LP around δ0 = 0

is asymptotically bounded at large cavity detunings by the photon and exciton g -factor of

0 and −4, respectively. Remarkably, this symmetry is absent for M̃
−
2 polaron-polaritons in

Figure 5.9d: While gUP exhibits a large negative value at a positive detuning δ0 = 7.9 meV

(gUP = −8.0 in the right panel of Figure 5.9b), its gLP counterpart is much smaller at the

corresponding negative detuning δ0 =−6.6 meV (gLP = 1.4 in the left panel of Figure 5.9b)

and, strikingly, even turns positive.

This feature is inexplicable on the basis of the underlying bare exciton g -factor alone.

In fact, it is a prime consequence of correlated magnetism on the electron-spin lattice,

which conditions polarization-sensitive Rabi splitting of the M̃
−
2 polaron-polariton at finite

magnetic fields as we explain in the following.
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Figure 5.9.: Magneto-optics of neutral and charged moiré polaritons at small mag-
netic fields. a Polarization-contrasting reflection spectra of M̃

−
2 polaron-polariton with

increasing magnetic field for a fixed resonance detuning δ0 = 5.2 meV at B = 0 T. The
dotted red and blue lines are guides to the eye. b, Nonlinear effective Zeeman splitting
∆ELP/UP of M̃

−
2 lower (upper) polariton branch in the left (right) panel as a function of

the magnetic field for selected detunings δ0. Solid lines show linear fits to the data at
small fields (|B | ≤ 1 T highlighted in grey), yielding the effective upper/lower polariton
g -factors gUP/LP. c, Zeeman splittings ∆ELP/UP of M1 lower (upper) polariton branch in
the left (right) panel exhibit linear dispersion over the whole range of magnetic fields
for δ0 =±2.5 meV. d, Effective Landé factors gUP/LP for M̃

−
2 lower (orange) and upper

(turquoise) polariton branch calculated from the coupled oscillator model for small
magnetic fields |B | ≤ 1 T; the data (circles in corresponding colors) are shown for vari-
ous detunings δ0 with error bars from linear fits as in b. e, Calculated gUP/LP of the M1

upper (black) and lower (grey) polariton branch with a symmetric dependence on δ0

and effective polariton g -factors (circles) obtained from linear fits as in c. The lower
horizontal dashed lines in d and e indicate the g -factors of bare M̃

−
2 and M1 states,

respectively.
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5.3.3. Role of the polarization-contrasting Rabi splitting

In a first step, we examine the evolutions of the energy and oscillator strength of the respec-

tive bare M1 moiré exciton and M̃
−
2 moiré polaron states with magnetic field in the absence

of the top DBR mirror. With Section 4.4 in mind, we recall that due to different localization

sites of moiré excitons M1 and M2, electron doping at integer filling (ν = 1) gives rise to

moiré polarons M−
1 with co-localized electrons and wavefunctions of the moiré exciton M1,

whereas the bulk part of the M2 moiré exciton wavefunction resides on a moiré site that is

distant from the electron localization site, conditioning a distinct charge-doping behavior

of the M̃
−
2 polaron (see Section 4.4.1) [P2].
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Figure 5.10.: Polarization-contrasting valley Zeeman splittings and oscillator
strengths of moiré excitons and polarons. a, Polarization-contrasting DR spectra of
neutral moiré excitons M1 and M2 (upper panel) and electron-dressed moiré polarons
M−

1 and M̃
−
2 (ν= 1, lower panel) at 8 T in confocal spectroscopy without top DBR mirror

(cp. Figure 4.16a). In the neutral regime, M1 and M2 moiré peaks exhibit equal oscilla-
tor strength for both polarizations. In contrast, at electron filling ν= 1, the attractive
polaron M−

1 around 1.56 eV is nearly completely polarized, whereas the M̃
−
2 polaron

around 1.62 eV is only partially polarized. The Zeeman-split resonances around 1.59 eV
belong to the repulsive polaron of M1. b, Zeeman splitting of M1 moiré excitons (upper
panel) and M̃

−
2 moiré polarons (lower panel) as a function of the magnetic field, with

respective g -factors determined from linear slopes in red solid lines (cp. Figure 4.7d
and Figure 4.16c). c, Evolution of the degree of polarization of M1 moiré excitons (upper
panel) and M̃

−
2 moiré polarons with magnetic field, shown as the field-induced change

of the oscillator strength ∆ f normalized by the oscillator strength at zero field f0.
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Consistently, the response of the M−
1 and M̃

−
2 moiré polarons to magnetic field is distinct

from the neutral moiré exciton states M1 and M2, and from each other. As shown in the

DR spectra of Figure 5.10a, recorded in a magnetic field of 8 T without the top DBR mirror,

the bare M1 and M2 moiré exciton states exhibit the characteristic valley Zeeman splitting

with equal oscillator strengths of σ+ and σ− polarized branches (top panel of Figure 5.10a).

For the moiré exciton M1, the corresponding g -factor is determined by the linear slope

of the Zeeman splitting between the peak energies of the two polarized branches as gX =
−4.2±0.1 (top panel of Figure 5.10b), and the change in the oscillator strength between the

two Zeeman-split branches ∆ f (normalized by the zero-field value f0) is zero (top panel of

Figure 5.10c). The bare M−
1 and M̃

−
2 polarons, on the other hand, exhibit drastically different

characteristics in the presence of magnetic field. First, we note that the σ− polarized M−
1

branch is nearly completely quenched at 8 T, whereas both M̃
−
2 peaks retain finite oscillator

strength in bothσ− andσ+ polarization (bottom panel of Figure 5.10a). This stark difference

is consistent with the strong Pauli blocking of the σ− polarized Zeeman branch of the

attractive polaron M−
1 forming by co-localization of the M1 moiré exciton wavefunction with

lattice electrons at ν = 1 [37]. The M̃
−
2 polaron with marginal electron co-localization, in

contrast, shows much reduced quenching. For this reason, the evolution of both Zeeman

branches of the M̃
−
2 polaron can be traced up to highest positive and negative magnetic

fields of ±8 T, as shown for the Zeeman splitting and the change in the oscillator strength in

the bottom panels of Figure 5.10b and c, respectively: The respective g -factor exhibits the

nonlinear behavior characteristic of correlation-induced magnetism with gX =−31.2±1.5

at low magnetic fields, and the difference in the oscillator strength of σ+ and σ− polarized

Zeeman branches changes by moderate 40% between zero and 3 T.

In the framework of M1 and M̃
−
2 polaritons, any change in the oscillator strength with

magnetic field should result in polarization-contrasting Rabi splittings

∆Ω(B) =Ω+(B)−Ω−(B) . (5.2)

From the analysis in Figure 5.10c, we expect a field-independent Rabi splitting between the

two polarized M1 polariton branches, whereas the field-induced change in the oscillator

strength of the bare M̃
−
2 polaron will result in a field-dependent Rabi splitting for the σ+

and σ− polarized upper and lower M̃
−
2 polaron-polariton branches. At sufficiently small

magnetic fields, the polarization of the electron-spin lattice can be approximated by a linear

function [55], and the resulting linearized polarization-contrasting Rabi splitting ∆Ω(B) is

approximately described by the dimensionless parameter gΩ introduced in analogy to the

exciton g -factor:

gΩ = ∆Ω

µB B
= Ω

+(B)−Ω−(B)

µB B
, (5.3)

andΩη is given by
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Ωη(B) =Ω0 +ηgΩµB B

2
, (5.4)

with the zero-field Rabi splittingΩ0.
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Figure 5.11.: Polarization-contrasting valley Zeeman and Rabi splittings of neutral
and charged moiré polaritons. a, Zeeman splitting of M1 moiré exciton-polariton
(upper panel) and M̃

−
2 moiré polaron-polariton (lower panel) as a function of the mag-

netic field. b, Change in the Rabi splitting with magnetic field for σ+ and σ− polarized
branches of the M1 exciton-polariton (upper panel) and M̃

−
2 polaron-polariton. The

exciton energies and Rabi splittings in a and b were obtained from fitting Eq. (5.13) to
the respective data.

The consequences of the field-independent and field-dependent oscillator strengths of the

M1 moiré exciton and the M̃
−
2 polaron for the respective polariton Rabi splittings are shown

in 5.11b. From the analysis of the polarization-resolved reflection contrast of M1 exciton-

polaritons and M̃
−
2 polaron-polaritons at different magnetic fields and cavity-exciton de-

tunings, we obtained the respective exciton Zeeman and Rabi splittings shown in the top

and bottom panels of 5.11a and b, respectively. The evolution of the M1 polariton Zeeman

splitting is linear in the magnetic field and the extracted exciton g -factor gX =−4.2±0.1 (top

panel of 5.11a) matches the one observed for the bare moiré exciton (top panel of 5.10b).

Its Rabi splitting is consistently independent of the magnetic field (top panel of 5.11b) and

makes no additional contribution to the effective g -factor with gΩ =−0.02±0.03. For the

M̃
−
2 polariton, in contrast, both the exciton Zeeman and the Rabi splitting are nonlinear in

magnetic field (bottom panels of 5.11a and b), with gX = −31.0±1.8 and gΩ = −7.3±0.8

in the small-field limit of |B | ≤ 1 T. These two effective g -factors gX and gΩ quantify the
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contribution the behavior of the M̃
−
2 polaron-polariton branches at small magnetic fields as

we show in the following Section 5.3.4.

For consistency we check the connection between the polarization-contrasting Rabi

splitting with gΩ = −7.3 at small magnetic fields (bottom panel of Figure 5.11b) and the

polarization-contrasting oscillators strength observed for M̃
−
2 which we denote with g f =

−0.13 T −1 (lower panel of Figure 5.10c). Analogously to Eq. (5.4), we can introduce the

B-field dependence for the relative oscillator strength of the σ+ and σ− polarized exciton

(η=+/−):

f η(B) = 1+ηg f B

2
. (5.5)

Using the relation between the Rabi splitting and oscillator strength from Eq. (2.32) we

find:

Ωη(B) =α
√

f0 f η(B), (5.6)

where α is the proportionality coefficient and f0 is the oscillator strength for B = 0 T.

Using above equations we can calculate the Rabi splitting

Ωη(B) =α
√

f0(1+ηg f B/2), (5.7)

and find a simplified expression after a Taylor expansion:

Ωη(B) ≈α
√

f0(1+ηg f B/4) =Ω0 +η
g fΩ0B

4
. (5.8)

Comparing Eq. (5.4) with Eq. (5.8) we obtain

gΩ = g fΩ0

2µB
. (5.9)

WithΩ0 = 6.2 meV (see lower panel of Figure 5.5) in Eq. (5.9), we find consistency in the

connection between g f =−0.13 T−1 and gΩ:

From fitting in Fig. 5.11 gΩ =−7.3±0.6 (5.10)

and using Eq. (5.9) gΩ =−0.13 ·6.2

2 ·0.058
=−6.9. (5.11)

5.3.4. Modelling of effective polariton g-factors

To model the evolution of the upper and lower polariton states with the magnetic field,

we used a coupled oscillator model (as derived in Section 2.2) with a 4× 4 Hamiltonian,

with columns and rows related to the exciton transition with energy E+
X (E−

X ) and σ+ (σ−)

polarization coupled to the cavity field with energy Ec and σ+ (σ−) polarization at Rabi
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splittingΩ+ (Ω−):

H =


E+

X Ω+/2 0 0

Ω+/2 EC 0 0

0 0 E−
X Ω−/2

0 0 Ω−/2 EC

 . (5.12)

The cavity dispersion EC is assumed to be a linear function of the cavity length and inde-

pendent of the external magnetic field. The eigenenergies of the Hamiltonian in Eq. (5.12)

corresponding to the upper and lower polariton branch UP and LP, respectively, withσ+ and

σ− polarization (η=+/−) are given by

Eη

UP/LP = EC +Eη

X

2
± 1

2

√
(EC −Eη

X)2 + (Ωη)2. (5.13)

The contribution of the bare exciton valley Zeeman splitting ∆EX(B) is given by:

∆EX(B) = E+
X (B)−E−

X (B), (5.14)

with the magneto-dispersion of the circularly-polarized exciton Zeeman branches deter-

mined by the exciton Landé factor gX as:

Eη

X(B) = E0 +ηgXµB B

2
, (5.15)

where E0 is the exciton energy at zero magnetic field and µB is the Bohr magneton.

With both contributions, namely the exciton Zeeman splitting and the polarization-

contrasting Rabi splitting, we calculate the effective g -factor of the upper and lower po-

lariton gUP/LP by inserting Eη

X(B) andΩη(B) from Eqs. (5.15) and (5.4) into Eq. (5.13). In the

general case this yields:

gUP/LP = ∆EUP/LP

µB B
= E+

UP/LP −E−
UP/LP

µB B
, (5.16)

and in the linearized low-field limit of Eqs. (5.3) and (5.4) we derive:

gUP/LP = gX

2
± gXδ0 + gΩΩ0

2
√
δ2

0 +Ω2
0

+O(B 2), (5.17)

with the zero-field cavity-exciton detuning δ0 = EC −E0.

For large detunings δ0, the effective polariton g -factors approach the limiting values of 0

and gX, when the polariton becomes predominantly photonic and excitonic, respectively.

At zero detuning δ0 = 0, the difference between the effective g -factors of the upper and

lower polariton branch is determined by gΩ as (gUP − gLP)|δ0=0 = gΩ. Consequently, field-

dependent polarization-contrasting Rabi splitting yields finite gΩ, and this conditions an
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asymmetric evolution of gUP/LP as function of the cavity detuning δ0, as observed for the M̃
−
2

polaron-polariton in Figure 5.9d, in contrast to the symmetric evolution of the M1 exciton-

polariton g -factor in the respective Figure 5.9e. Both cases are well captured by our model,

applying Eq. (5.17) with gΩ and gX within the error interval of the experimentally determined

values in Figure 5.11 (gΩ =−7.8 and gX =−30 in case of M̃
−
2 , gΩ = 0 and gX =−4.2 in case of

M1).
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Figure 5.12.: Effective polariton Landé factors as a function of the cavity detuning.
Upper and lower polariton g -factors gUP/LP, calculated using Eq. (5.17) for a negative
exciton g -factor gX and gΩ = gX/4 (left panel), 0 (central panel), and −gX/4 (right panel),
respectively. The vertical dashed lines indicate cavity resonance detunings where the
upper and lower polariton g -factors exhibit extrema for non-vanishing gΩ.

Finally, it is instructive to discuss the asymmetry in the evolution of the effective polari-

ton g -factor gUP/LP with the cavity detuning δ0 on the basis of the model results shown

in Fig. 5.12. Obviously, in magnetic fields within the linear-response condition, finite gΩ
renders the dependence of the polariton g -factors asymmetric for negative and positive

detunings, with asymmetry depending on whether the signs of gΩ and the exciton g -factor

gX are equal or opposite. In the former case of sgn(gΩ) = sgn(gX) =−1, the upper polariton

g -factor gUP is enhanced at intermediate detunings as compared to the bare exciton g -factor

gX, before approaching gX asymptotically at large detunings. Analogously, gLP changes its

sign at intermediate detunings before approaching 0 at large δ0. By solving the equation

∂gUP/LP/∂δ0 = 0, we obtain the detuning at which the effective polariton g -factors have their

extrema g̃UP/LP. For sgn(gΩ) = sgn(gX) =−1, and assuming gX ≫ gΩ, the respective extremal

values are approximately given by

g̃UP ≈ gX +
g 2
Ω

gX
, (5.18)

g̃LP ≈−g 2
Ω

gX
. (5.19)
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This result underscores the pivotal role of cavity control within our system. The MoSe2/WS2

heterostructure alone serves as a intriguing platform for investigating electron-spin corre-

lated many-body phenomena through the magneto-optical response of moiré excitons.

Incorporating the heterostructure into the optical microcavity not only endows the exci-

tonic properties to the emergent polariton states and their photonic constituents. In fact,

by mixing both contributions – the exciton Zeeman splitting and spin-polarization – the

cavity introduces a novel degree of control. This enables the tuning of the magneto-optical

response of moiré polariton states beyond the intrinsic exciton behavior which becomes

particularly clear from Eq. (5.18).
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This thesis was dedicated to the investigation of TMD heterobilayers and the light-matter

coupling of their excitons with photons in high finesse open microcavities. The TMD het-

erostructure of our choice was MoSe2/WS2, which at the time of the beginning of this work

had not been investigated in detail, as earlier studies mainly focused on MoSe2/WSe2 [16,

17] or WSe2/WS2 heterostructures [20, 26, 28], both with well established type-II conduction

band alignment. For MoSe2/WS2 on the other hand, theoretical studies predicted closely

aligned conduction bands [15], while different experimental studies reported a wide range

of conduction band offsets [36, 161].

Employing dual-gated van der Waals heterostacks, we developed the experimental and

theoretical tools to shed light on the MoSe2/WS2 low energy bandstructure. In confocal

spectroscopy, we identified intra- and interlayer moiré excitons in the charge neutral regime

for both R- and H-type stackings of the MoSe2/WS2 heterobilayer. In the latter configura-

tion, the conduction bands are closely aligned enabling resonance-tuning by out-of-plane

electric fields, leading to interlayer hybridization, experimentally visualized by AC modula-

tion spectroscopy. An effective continuum model captured the experimental signatures and

provided a quantitative understanding of the intra- and interlayer moiré exciton bandstruc-

ture [P2]. The model is generally applicable to other systems [88] paving the way for future

studies in related two-dimensional moiré structures.

We further investigated the electron doping characteristics of MoSe2/WS2 heterostruc-

tures. Both R- and H-type configurations featured the formation of charged moiré excitons

with significant oscillator strength, dependent on the spatial overlap of moiré-modulated

exciton and electron wavefunctions [165]. Pronounced Coulomb-correlated behavior of

these states at an electron filling of ν= 1 inside the MoSe2 layer results in a renormalized ex-

citon g -factor at small magnetic fields, consistent with observations in comparable systems

[28, 29]. The H-type stacking stands out with a distinctive layer-by-layer electron charg-

ing response, as determined from capacitor model simulations: With increasing electron
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density, the first and second electron per moiré unit cell occupy the MoSe2 and WS2 layer,

respectively, enabling the study of magnetic correlations of a vertically offset bilayer spin

lattice at electron filling 1 < ν < 2. This study, conducted beyond the main-scope of this

thesis, involved a low-temperature measurement series of the doping-dependent exciton

g -factor in a dilution refrigerator. Robust g -factor fluctuations between 1 < ν< 2 suggested

the presence of Ruderman-Kittel-Kasuya-Yosida (RKKY) magnetism [173, 174], arising from

coupling between mobile electrons in the WS2 layer and the localized spin lattice inside the

MoSe2 layer [P3, 172]. Interestingly, the extracted negative Curie temperature implied an

antiferromagnetic order of the MoSe2 spin-lattice at ν= 1. This contrasts with the recently

reported ferromagnetic order in R-type MoSe2/WS2 [37], prompting further debate and

investigations.

Alongside our investigation of MoSe2/WS2 heterostructures, we implemented and char-

acterized a fiber-based open microcavity setup developed in collaboration with Khaled

Karraï at attocube systems AG [P8, 139]. Operating the cavity setup within a closed-cycle

cryostat necessitates sophisticated damping mechanisms to minimize vibration-induced

cavity length fluctuations. Combining passive and active vibration isolation techniques, we

achieved high cavity stability, with cavity length fluctuations of less than 100 pm rms under

ideal environmental conditions [P8]. This performance qualifies the platform for cavity QED

experiments, with a resolvable finesse of up to 104 at cryogenic temperatures. In subsequent

experiments, despite challenging conditions and increased environmental vibrational noise,

the cavity was operated at a finesse of up to 103, corresponding to a resolution well above

the linewidth of TMD intralayer excitons.

A well-established understanding of the MoSe2/WS2 low-energy physics, along with the

operational high-finesse open microcavity platform at cryogenic temperatures, enabled us

to investigate the light-matter interaction between cavity photons and TMD moiré excitons.

Using a R-type MoSe2/WS2 heterostructure inside the microcavity, we observed the emer-

gence of moiré exciton-polariton branches at small mode orders as a hallmark of the strong

light-matter coupling regime. Confirming earlier findings [38], we identified nonlinearity

in the power dependent response of moiré exciton-polaritons as compared to bare mono-

layer MoSe2 exciton-polaritons. The efficient transfer of oscillator strength from neutral to

charged moiré excitons under gate controlled electron doping enabled the study of moiré

polaron-polaritons, exhibiting even higher power-dependent nonlinearities. Our demon-

stration of moiré exciton-polaritons at an electron filling of ν= 1 prompted an exploration

of correlated magnetism-induced polariton behavior. We utilized a different open micro-

cavity setup with access to out-of-plane magnetic fields, in a collaboration with Christian

Schneider’s group at the University of Oldenburg. Here, we discovered a highly nonlinear

magneto-optical response of moiré polaron-polaritons arising from the presence of a corre-

lated electron-spin lattice. The extracted effective polariton g -factors were controlled via the

cavity-exciton detuning and appeared to be enhanced as compared to the uncoupled moiré
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exciton counterpart at specific exciton Hopfield coefficients. This behavior is explained by

an intricate cavity-induced interplay of correlation-induced exciton Zeeman splitting and

correlation-induced polarization contrasting exciton oscillator strength [P4].

In summary, we studied the moiré exciton physics of MoSe2/WS2 heterostructures and

investigated the emergence of correlation-induced magnetism resulting from the interac-

tion between moiré excitons and ordered phases of elementary charges. Additionally, by

establishing a coupling condition with photons confined in optical microcavities, previ-

ously independent correlation-induced properties of uncoupled moiré excitons became

interwined, paving the way for new avenues of controlling the observed states.

Our phenomenological theoretical model provided a comprehensive understanding of the

observed optical features in MoSe2/WS2 heterostructures. However, our system, with its high

degree of complexity and control, offers opportunities for obtaining deeper insights into the

microscopic nature of moiré-induced many-body phenomena through further experimental

and theoretical techniques. Electrical transport measurements could be leveraged to identify

generalized Wigner crystal states as a function of the doping level [20]. Particularly in H-

type samples, identifying correlated electronic phases within the regime of 1 ≤ ν≤ 2 would

aid in explaining the observed magnetic behavior. Furthermore, advancing Ohmic contact

engineering in future devices will pave the way for complementary studies in the hole

doping regime, which exhibits related signatures of correlation-induced magnetism. Various

scanning transmission electron microscopy (STEM) techniques have served as advanced

tools for visualizing effects of atomic reconstruction [115, 201] and exciton localization [202,

203] in moiré systems at a sub-nanometer scale, potentially complementing our optical

studies on the nature of different moiré excitons. Advanced sample geometries incorporating

an additional TMD monolayer in close proximity to the MoSe2/WS2 heterobilayer could be

utilized to detect the emergence of electronic correlations via monolayer Rydberg exciton

states, akin to studies on the fractional quantum Hall effect in graphene [204]. From a

theoretical standpoint, conducting first-principle calculations would further solidify our

understanding of the microscopic nature of the moiré exciton potential landscape [165].

Our observations of moiré exciton-polaritons mark a significant advancement towards

leveraging moiré lattices and strong light-matter coupling to control condensed matter

quantum many-body systems. The incorporation of an H-type MoSe2/WS2 device in our mi-

crocavity setup would complement the R-type studies outlined in this thesis. In this context,

exploring interlayer hybridization within the realm of strong light-matter coupling holds par-

ticular promise. The achievement of long-lived dipolar polaritons has been a longstanding

goal in the field of polariton physics, given their potential to implement strong photon-

photon interactions, as evidenced in TMD homobilayer systems [205, 206]. Layer-hybrid

moiré exciton-polaritons offer not just one but two possible mechanisms for exciton-exciton

interaction-induced nonlinearities – moiré confinement and dipolar character – rendering
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this configuration a compelling prospect for fundamental investigations in the field of quan-

tum information processing [35].

In the spirit of Richard Feynman and his understanding of "the job of physics", our system

provided us with an experimental playground that aroused our curiosity and keeps driving

our research to gain deeper understanding of the intricate interactions of the involved

elementary particles and to "analyze why each one wants what it wants" [1].
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Extended data: Moiré exciton
physics in MoSe2/WS2 heterostruc-
tures A

We supplement the discussion on MoSe2/WS2 heterostructures in the Chap-

ters 4 and 5 by providing additional information and presenting extended

data. Section A.1 offers insights into the variation of conduction band align-

ments in MoSe2/WS2 heterostructures, while Section A.2 addresses the

MoSe2/WS2 p-doping transition.

A.1. Laterally varying conduction band alignment

Within the scope of this study, we fabricated an additional heterostructure, denoted as D3,

alongside D1 and D2 as detailed in Section 4.2. In Figure A.1a, an optical microscope image

of the H-type device D3 is depicted, accompanied by a schematic illustrating its dual-gate

layout. The optical response observed in DR mirrors the characteristics observed in D1 and

D2, featuring low-energy moiré excitons M1 and M2 with pronounced oscillator strength in

the charge-neutral regime. The optical quality of D3 is underscored by the narrow linewidths

of the DR response in Figure A.1c (γX ≈ 2 meV and γM1/2 ≈ 5−7 meV).

However, the sample exhibits spatial inhomogeneities, as evidenced by mapping the moiré

exciton energy in the heterobilayer region. Figure A.2a shows the variation of the M1 peak

energy across a DR map of a section of the HBL area, outlined by the black dashed frame in

Figure A.1b. Over a few micrometers, the exciton energy shifts by more than 10 meV, while

the spectral separation between M1 and M2 remains constant at 30 meV, as shown in Figure

A.2b for two selected points A and B. This transition between regions A and B, characterized

by significantly different exciton energies, occurs abruptly within a length scale below the

resolution of the diffraction-limited optical spot.

Interestingly, the DR signal in domains A and B exhibits different responses to electron

doping, as depicted in Figure A.2c and d. With an applied doping potential of Vµ = 7 V
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Figure A.1.: Additional H-type device D3. a, Optical microscope image of D3 with
constituents of the heterostack highlighted by colored frames, the inset schows the
stacking order of the device. b, Mapping the maximum of d(DR)/dE around the M1

exciton resonance, highlights the MoSe2/WS2 HBL region. c, Charge neutral DR spectra
of the bare MoSe2 monolayer with pronounced X exciton resonance and MoSe2/WS2

HBL with moiré excitons M1 and M2.

domain B displays signatures of electron doping, as discussed in Section 4.4.1, with the

emergence of charged excitons M−
1 and M̃

−
2 . Conversely, in domain A, neutral moiré excitons

M1 and M2 continue to dominate the optical response.

A clearer understanding of this scenario emerges upon examining the complete DR dual-

gate response of the HBL, shown in the upper panels of Figure A.3a and b for domains A and

B, respectively. In the n-doping regime, both domains exhibit constant optical signatures

over extended regions of (Vµ,F )T , indicating the formation of a stable incompressible corre-

lated electron state in the MoSe2 layer at electron filling νMo = 1, while electrons continue

to occupy the WS2 layer at the same time, as discussed for device D2 in Section 4.4.2.

We utilize the quantum capacitor model introduced in Section 4.1.2 to derive the elec-

tron filling in both layers as a function of (Vµ,F )T , illustrated in the lower panels of Figure

A.3. Intriguingly, the effective conduction band offset varies spatially between domain A
and B by more than 40 meV, explaining the contrasting responses observed in Figure A.2b.

Domain A features a conduction band offset ∆C B = 8 meV. When a doping potential Vµ is

applied without an electric field F , electrons populate the MoSe2 layer first leading to the

emergence of charged excitons M−
1 and M̃

−
2 . In contrast, domain B exhibits a deep type-II

band alignment with ∆C B =−40 meV, where electrons occupy the WS2 layer first at small Vµ.

We employed an onset Coulomb potential U = 40 meV for both layers in the two domains,

defining the layer-by-layer charging condition (see Section 4.4.2 for details).
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Figure A.2.: Domain formation on MoSe2/WS2 HBL. a, Spatial variation of DR M1

exciton energy. The extent of the DR scan is highlighted by the dashed black frame in
Figure A.1b. b, The visualization of the CB offset as a function of position, represented
by the ratio of M̃

−
2 exciton oscillator strength fM2 to M1 oscillator strength fM1 at a

doping potential Vµ = 7 V. c and d show DR spectra acquired at positions A and B in a
and b, respectively.

Notably, the only parameter of the capacitor model simulations for A and B that was

altered besides the conduction band offset was the dielectric constant of the hBN encap-

sulating layers (ϵ= 5 for A and ϵ= 4 for B). This fact can provide insight into the origin of

the spatially differing responses: Defect-induced local structural changes on the surface of

CVD-grown TMDs, reported in various studies [207–210], can lead to changes in the direct

dielectric environment due to oxidation at defects [211], explaining the change in refractive

index, and correlation to work function [212] explains the change in conduction band offset.

We emphasize that the physical properties of the moiré excitons with narrow linewidths

and exhibiting correlation-induced nonlinearities in the presence of charge doping remain

robust despite the apparent presence of defects in CVD-grown monolayers. The range of

observed conduction band offset of more than ∆C B =±40 meV reflects the multiplicity of

values reported in the literature [17, 36, 89, 158–161].

A.2. Signatures of the hole doping transition

All devices examined in this work exhibit a nearly ohmic contact response in the electron

doping regime, with the evolution of charged exciton complexes progressing linearly with the
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Figure A.3.: Capacitor model analysis of domain A and B. a and b, Upper panels: Max-
imum of the derivative d(DR)/dE between 1.600 and 1.65 eV for each point (Vµ,F )T

for domain A and B, respectively. The white dashed lines frame region I of unchanged
response of charged excitons M−

1 and M̃
−
2 . Lower panels: Electron filling per moiré unit

cell obtained from the corresponding capacitor model simulations (see Section 4.1.2 for
details). c and d, Simulated discretized density of states as function of the Fermi energy
and electron density in the MoSe2 layer νMo , the WS2 layer νW and the total electron
density ν as function of Vµ.

doping potential Vµ. However, the transition to the p-doping regime displays nonlinearity

concerning the applied gate voltages, as exemplified by device D1 in Figure A.4. In the

absence of an applied electric field (F = 0 V/nm), the neutral moiré excitons M1 and M2

persist up to Vµ = −18 V. Notably, this transition potential varies with different applied

electric fields (F ̸= 0 V/nm), as indicated by the red dashed line in Figure A.4a, suggesting an

asymmetric response of the device to applied top gate (VT ) or bottom gate voltages (VB ).
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This observation can be explained by considering a Schottky barrier at the interface

between the TMD layer and the contact graphite layer, in combination with the geometry

of the heterostack. Schottky barriers at TMD-graphite interfaces have been reported since

the early studies of TMD-based field-effect devices [60, 213], arising from a mismatch in

the semiconductor and metal work functions [214]. Considering the geometry of the D1

heterostack (left panel of Figure 4.6), we note that the top gate graphite layer overlaps with

the area where the contact gate covers the TMD layer, unlike the bottom gate graphite layer.

Consequently, the plate capacitor formed by the top gate and the contact gate exhibits

higher capacitance than that formed with the bottom gate. To overcome the Schottky barrier

at the p-doping transition using the top (bottom) gate individually, a relatively lower (higher)

VT (VB ) is necessary, explaining the observed asymmetry.
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Figure A.4.: Transition to the p-doped regime in R-type D1. a, Maximum of the deriva-
tive d(DR)/dE between 1.600 and 1.65 eV for each point (Vµ,F )T . The black arrows
indicate the basis of top (VT ) and bottom gate voltage (VB ) applied in the experiment,
the red dashed line highlights the p-doping transition. b, Photocurrent Ipc for each
point (Vµ,F )T . The transition to the p-doped regime is highlighted by the red dashed
line, the black arrow point at a stripe of the (Vµ,F )T exhibiting reduced Ipc . c, MCD
response at B = 8 T at the p-doping transition along the white arrow A1 in a.

The breakdown of the Schottky barrier leads to a highly nonlinear hole charging behavior

concerning the applied doping potential Vµ. This is evident from the stepwise transition

of the hole-charged moiré exciton M+
1 evolution (see Figure 4.12a), posing challenges in

quantifying the precise hole filling per moiré unit cell at a specific (Vµ,F )T . Nonetheless, we

tried to explore the hole doping regime for signs of correlated hole behaviour as result of the

moiré potential:

We carried out a photocurrent measurement utilizing a diode laser at 635 nm for excita-

tion, power modulated between 0−5 µW at a frequency of 377 Hz. The photocurrent was

measured with a lock-in amplifier at the contact gate as a function of the applied top and

bottom gate voltages, as described in Section 3.2.3. Figure A.4b illustrates the measured

photocurrent Ipc for each point of the (Vµ,F )T diagram. The signal peaks in the p-doping
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region, as evident from comparing the Ipc map with the DR map in Figure A.4a. Interestingly,

only hole-mediated charge transfer can be visualized in this type of measurement. However,

the origin of this phenomenon was not investigated within the scope of this work. Within

the p-doping regime, the photocurrent does not exhibit homogeneity; instead, it features a

notable dip across a line of the (Vµ,F )T diagram, marked by the black arrow in Figure A.4b.

This dip could be interpreted as the formation of an incompressible Mott insulating state at

an integer hole filling per moiré unit cell, which hinders charge flow due to on-site Coulomb

repulsion, as observed in transport measurements for other TMD heterobilayer systems in

the hole doping regime [20, 28, 215].

In addition, in DR measurements, M+
1 exhibits signs of correlated magnetism on the hole

doping side, akin to the behavior of M̃
−
2 on the electron doping side around ν= 1 electron

per moiré unit cell, as evident from the pronounced MCD signature in Figure A.4b. Notably,

the polarity of MCD is reversed for M+
1 above Vµ = −20 V compared to M1 which reflects

the negative MoSe2 g -factor gX =−4. This observation is characteristic of hole-mediated

magnetism in MoSe2/WSe2 [29] and WSe2/WS2 heterostructures [28].
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Polariton engineering at MoSe2-
graphite interfaces B

This Chapter is a brief excursion to the exploration of the possibilities of

polariton engineering in MoSe2 monolayers with a graphite interface.

As demonstrated in Section 5.2.2, moiré exciton-polaritons exhibit effects arising from

interaction-induced nonlinearities, a phenomenon attributable to the localization of un-

derlying excitons induced by the moiré potential. Beyond moiré confinement, trapping and

manipulation of polaritons has been realized in various systems implementing artifical po-

lariton potentials for controlling nonlinear interactions and investigating phenomena like

topological phase transitions [216–218]. One possible approach for creating artificial trap-

ping potentials for excitons and polaritons in TMDs involves locally tuning the monolayer

bandgap by altering the dielectric environment through different encapsulating materials

[219]. In our samples, the region where the contacting few-layer graphite (FLG) partially

covers the TMD monolayers presents an opportunity to explore such effects, as illustrated in

Fig. B.1a. In the following, we denote the area on device D3 (see Fig. A.1) of MoSe2 monolayer

solely encapsulated by hBN as region I and the area of MoSe2 monolayer covered with a

contact FLG flake as region II.

Fig. B.1a shows the spectral evolution of the fundamental X exciton resonance, when

moving the focal spot from region I to region II across the FLG edge. The alteration in

dielectric environment due to the FLG contact results in a red-shifted exciton resonance

compared to the bare monolayer [219]. Owing to the finite size of the excitation spot, Fig. B.1a

exhibits a region at the FLG edge where both exciton species - from region I and II - manifest

in the spectral response (indicated by the dashed vertical line in Fig. B.1a). The oscillator

strength of either of the two exciton species depends on the fraction of the excitation spot

area on the corresponding side of the graphite edge.

Device D3 was fabricated on a Distributed Bragg Reflector (DBR) substrate identical to the

one used for device D1 (see Section 4.2), enabling us to examine the response of the sample
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Figure B.1.: Polariton engineering via position control. a, Left panel: DR evolution
of a MoSe2 monolayer X exciton while scanning across an atomically sharp graphite
edge on device D3, which partly covers the monolayer. Right panel: The black arrow
represents the position of this 1D linecut, taken from a larger DR 2D scan (cp. Figure A.1).
The dashed black line highlights the position of the graphite edge. b, Evolution of the
Transmission signal along the same 1D line with the monolayer placed inside the fiber-
based microcavity at mode order q = 5. The formation of three polariton branches
is a hallmark of two excitons strongly coupling to the cavity photons. The spectral
separation of the branches changes with the position of the cavity mode relative to the
graphite edge. c, Simulation of the spectral evolution of the three polariton branches
using the model of three coupled oscillators in Eq. (B.1).

area depicted in Fig. B.1a within the fiber-based microcavity with high finesse (see Section

3.3.4 for details on the cavity setup and DBR coating). The evolution of cavity transmission

spectra for broadband white light excitation around the X exciton resonance while scanning

the cavity mode across the FLG edge is shown in Fig. B.1b. For this measurement, the cavity

length was fixed with fundamental mode order q = 5 resonating with the MoSe2 X exciton.

The transmission scan is presented in units of micrometers using the calibration of the cavity

nanopositioners derived from Fig. 3.20a. In the limits of the scan at x < 0 µm and x > 2.5 µm,

the transmission signal features the upper and lower polariton branches of the strongly

coupled MoSe2 exciton in region I and II, respectively. In between, where the cavity mode

partly covers both regions, we find a middle polariton branch, highlighting the presence of
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both polariton species inside the cavity. The system is well described by the Hamiltonian of

three coupled oscillators:

H =

 E I ħg I−I I ħg I

ħg I−I I E I I ħg I I

ħg I ħg I I Ec

 , (B.1)

where E I (E I I ) denote the X exciton energies in regions I (II), Ec represents the energy of

the cavity mode, and g I (g I I ) denote the respective exciton-photon coupling strengths. The

interaction between excitons in regions I and II is set to zero in this case (g I−I I = 0). We

assume that the coupling constants g I (x ≪ 0) = g I I (x ≫ 2.5) = g are equal in the limits

where the Gaussian cavity mode covers region I or II only. In between, the two coupling

constants depend on the fraction of cavity mode area covering regions I and II, respectively.

Using the Gaussian error function:

erf(x) = 2p
π

∫ x

0
exp(−t 2)d t , (B.2)

we describe them as:

g I = g

2

(
1−erf

(x −x0

2σ

))
(B.3)

g I I = g

2

(
1+erf

(x −x0

2σ

))
, (B.4)

where x0 is the position of the graphite edge and σ is the beam waist of the cavity mode.

By diagonalizing the Hamiltonian in Equation (B.1) using Equations (B.4), we obtain the

eigenvalues of the system as a function of x, depicted in Figure B.1c for E I = 1.635 and E I =
1.630, with Rabi SplittingsΩI =ΩI I = 2g = 15 meV, and a cavity mode waist of σ= 1.3 µm

(cp. Figure 3.19b). The model effectively captures the experimentally observed dispersion

illustrated in Figure B.1b. By altering the position of the graphite edge relative to the center

of the cavity mode, it becomes possible to manipulate the polariton system in a controlled

manner by locally varying the coupling strength corresponding to different exciton species,

as previously demonstrated in a different system [220].

The complexity of the system can be further enhanced by applying a finite doping poten-

tial Vµ. When Vµ = 0 V, the dispersion of the transmission signal at the graphite edge x0 ≈ 1.5

µm as a function of the cavity length is depicted in the left panel of Figure B.2. Here, the

three polariton branches emerge around the exciton resonances E I and E I I , indicated by

the horizontal dashed lines. As Vµ increases, we anticipate the formation of attractive A−

and repulsive R− polaron resonances due to the interaction of the electron Fermi sea with

the excitons [66], which can couple to the cavity to form polaron-polaritons. At Vµ = 2 V

(middle panel of Figure B.2), we observe E I to be blue-shifted with a reduced Rabi splitting

Ω1, consistent with the formation of the repulsive polaron-polariton. Simultaneously, the
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Figure B.2.: Polariton engineering via charge control. MoSe2 polariton dispersion as
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Vµ = 4 V (right panel). The cavity mode (q = 5) is centered at the graphite edge where
both polariton species, in region I and II, exhibit identical Rabi splitting.

corresponding attractive polaron appears with a red-shift of ∼ 30 meV, evidenced by the ap-

pearance of two new polariton branches at around 1.61 eV. Interestingly, E I I andΩI I remain

unchanged compared to Vµ = 0 V. Charged excitons in region II are efficiently transferred

to the graphene layer on a picosecond timescale, leading to an effective neutralization of

this area [123]. This trend persists with further increases in Vµ, as depicted in the right panel

of Figure B.2, where the upper polariton branch further blue-shifts andΩI quenches, while

the attractive polaron-polariton becomes more pronounced and E I I /ΩI I remain constant.

Our system provides a platform to mix and manipulate polaritons corresponding to differ-

ent exciton species inside a 0D cavity via position and charge control. This concept could be

employed in more sophisticated sample geometries, confining excitons in region I or II by

introducing artificial potential landscapes, for example, via graphene patterning [221, 222],

to engineer polariton interactions.
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2D Two-dimensional

AFM Atomic force microscopy

CCD Charge-coupled device

CHCl3 Chloroform

CVD Chemical vapor deposition

CW Continous wave

DBR Distributed Bragg reflector

DFT Density functional theory

DOS Density of states

DR Differential reflectance

EDX Energy dispersive X-ray spectroscopy

FLG Few layer graphene

FSR Free spectral range

FT Fourier transform

HBL Heterobilayer

hBN Hexagonal boron nitride

MoSe2 Molybdenum diselenide

NA Numerical aperture

PC Polycarbonate

PDMS Polydimethylsiloxane

PL Photoluminescence
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SEM Scanning electron microscope
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TM Transfer matrix
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