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I. INTRODUCTION 

Listeriosis is a potentially fatal food-borne disease that is caused by Listeria 

monocytogenes (L. monocytogenes), a zoonotic pathogen capable of infecting 

both humans and animals. It was first isolated from a patient with meningitis in 

France in 1921 (DUMONT und COTONI, 1921) and then characterized and 

named by Murray in 1926 (MURRAY et al., 1926). The understanding that 

consuming certain foods could cause human cases of listeriosis became clear in 

the 1980s.  

In the following years, there were repeated major outbreaks (LINNAN et al., 

1988; BILLE, 1989; MCLAUCHLIN et al., 1991; GOULET et al., 1993) 

worldwide (SCHLECH III et al., 1983). As a result, considerable efforts have 

been made to mitigate the risk of listeriosis. For instance, the Hazard Analysis and 

Critical Control Point System (HACCP), originally developed by NASA in the 

1960s to ensure food safety for astronauts, has proven to be highly effective. 

When applied to the food industry, it has helped to identify and control critical 

points in food production, storage, and distribution, thereby significantly reducing 

the risk of listeriosis outbreaks.  

As a result, since the 1990s, occurrences of large listeriosis outbreaks affecting 

over 50 individuals have become increasingly uncommon (BAYERISCHES 

LANDESAMT FÜR GESUNDHEIT UND LEBENSMITTELSICHERHEIT, 

09.08.2022). However, it remains a persistent issue that continues to be relevant. 

According to the latest zoonoses report by the European Food Safety Agency 

(EFSA), listeriosis was the fifth most common food-borne illness in the European 

Union in 2022 (EU). With a case number of 2,738, cases of listeriosis in 2022 

were far rarer than Campylobacter diseases at the top of the list, which were 

reported with 137,107 cases. However, when comparing the hospitalization rate 

(96% for listeriosis, 23.5% for Campylobacter) and a mortality rate (18.1% vs. 

0.04%), listeriosis poses by far the highest risk of severe consequences among the 

food borne diseases that are common in the EU (THE EUROPEAN UNION ONE 

HEALTH 2022 ZOONOSES REPORT, 2023). 

In particular, foods from fish, fishery products, and deli meats are frequently 

involved in outbreaks (THE EUROPEAN UNION ONE HEALTH 2022 
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ZOONOSES REPORT, 2023). Although some of these products undergo a 

heating step that should ensure their safety, there is a risk of re-contamination 

after the heat step in the production process, particularly during steps like slicing 

and packaging (SHEEN und HWANG, 2008). The ability of L. monocytogenes to 

form biofilms and its ubiquitous occurrence contribute in the environment to its 

potential to colonize food production facilities and contaminate food products 

(PIYUSH KUMAR et al., 2022). 

The phenotypic characteristics of L. monocytogenes vary on different food 

matrices (SPANU et al., 2014) and L. monocytogenes exhibits specific regulatory 

responses to environmental stress factors relevant to the food production 

environment such as pH, temperature, osmotic, oxidative, or abiotic stresses, 

resulting in altered gene expression profiles. These impressive ability to adapt to 

different environmental stresses allow L. monocytogenes to survive and proliferate 

in food or food processing facilities, making it a challenging food-borne pathogen 

to control in the food industry (BUCUR et al., 2018; GUERREIRO et al., 2020). 

To understand the mechanisms behind these adaptations, numerous studies have 

been conducted using various research techniques, including genomic and 

transcriptomic analyses to investigate the gene expression profiles, proteomic and 

metabolomic analyses to understand metabolic processes, molecular biology 

techniques to examine the function of specific genes. As a result, the findings 

from these studies provided valuable insights into the mechanisms that mediate 

L. monocytogenes resilience under stress. However, it is important to note that 

many of these findings were obtained using laboratory culture media, which may 

not accurately represent the complex environments encountered in real world food 

settings. Studies that were performed in food matrices show that the expression 

levels of stress response (FALEIRO et al., 2003; MELO et al., 2015), virulence 

(RANTSIOU et al., 2012; WIŚNIEWSKI et al., 2022) and adhesion genes 

(VAZQUEZ-ARMENTA et al., 2020; SCHIAVANO et al., 2021) can vary 

between various food matrices and also between laboratory media and food 

matrices (RANTSIOU et al., 2012). Most of the available data on the resilience of 

L. monocytogenes under different stress conditions have been established using 

laboratory reference strains like 10403S, EGD or EGDe. While these are well 

characterized, they do not represent the clinically important clonal complexes 

CC1, CC4, and CC6 (BÉCAVIN et al., 2014; MAURY et al., 2019). In addition, 
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these reference strains may have lost crucial characteristics through laboratory 

passaging, and the obtained data should be evaluated by taking the genetic 

background of strain into consideration (BÉCAVIN et al., 2014; HSU et al., 

2020). Therefore, to expand and refine the existing data, there is a need for 

research using clinically relevant strains interacting with relevant food matrices. 

The main objective of this study was to screen a classic transposon mutagenesis 

library in an outbreak strain of L. monocytogenes on a ready-to-eat (RTE) meat 

product as a relevant food matrix, to analyze the molecular mechanisms 

underlying L. monocytogenes resilience under these conditions. By confirming 

candidate genes, we aimed to create a ‘metabolic map’ that elucidates the 

interactions between individual pathogen-matrix pairs. 
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II.  AIM AND SCOPE OF THE THESIS 

The aim of this thesis was to gain a better understanding of the fitness 

contribution of individual genes within the genome of a L. monocytogenes 

outbreak strain through screening a transposon mutagenesis library and to 

investigate growth dynamics of individual mutants on a RTE food matrix. 

As stated in the introduction chapter, our current understanding of how 

L. monocytogenes behaves under different environmental conditions primarily 

relies on well-characterized laboratory reference strains, leading to a potential 

knowledge gap in our understanding of the interactions between outbreak strains 

and various environmental conditions. 

RTE foods are one of the primary sources of human listeriosis, with deli meats 

figuring prominently: According to a meta-analysis study that reviewed 100 

studies from all over the world, L. monocytogenes has a prevalence of 2.9 % in 

sliced, RTE deli meats (CHURCHILL et al., 2019). We therefore chose a German 

deli meat (Lyoner-type sausage) as a model food matrix to study the fitness effect 

of individual genes by using a transposon mutagenesis library in an outbreak 

strain of L. monocytogenes, LL195. Data on the molecular mechanisms 

underlying the interaction of Listeria with Lyoner could help to implement 

specific and data-based control measures to improve food safety related to 

L. monocytogenes. 
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III. LITERATURE REVIEW 

1. Food-borne diseases and pathogens 

Food-borne diseases are a significant public health concern, affecting millions of 

people worldwide each year, with an estimated 600 million cases and 420,000 

deaths occurring annually due to the consumption of unsafe food (WORLD 

HEALTH ORGANIZATION, 2015; LEE und YOON, 2021). These numbers 

reveal that approximately 7.69 % of the global population is affected by food-

borne diseases each year. Furthermore, about 7.5 % of all annual deaths can be 

attributed to food-borne diseases (LEE und YOON, 2021). These diseases can be 

caused by microbial pathogens such as bacteria, viruses, and parasites, as well as 

chemical contaminants, natural toxins, allergens, physical hazards (TAUXE, 

2002; WORLD HEALTH ORGANIZATION, 2024). Among them, microbial 

pathogens are one of the most common causes of food-borne illnesses, 

highlighting the importance of effective food safety measures to prevent the 

contamination of foods with bacteria as well as their growth and spread. Food-

borne pathogens can contaminate food at any stage of the food supply chain, from 

farm to fork, including primary production, manufacturing, processing, and 

consumption. Symptoms of food-borne diseases can range from mild 

gastrointestinal distress to severe, life-threatening conditions, and may include 

nausea, vomiting, diarrhea, abdominal cramps, and fever. People with a weakened 

immune system, such as elderly people, pregnant women, newborns, and 

immunocompromised individuals are at increased risk for severe food-borne 

illnesses. This vulnerable group is often referred to as YOPI (Young, Old, 

Pregnant, Immunocompromised) and they are more likely to experience severe 

symptoms (JACKSON und MEAH, 2018). The symptoms and the incubation 

periods of the most important food-borne pathogens have been well studied and 

are summarized in Table 1, adapted from (GRUMEZESCU und HOLBAN, 

2018). 
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Table 1: Symptoms, onset of symptoms, and responsible microorganisms or toxins for the major food-borne illnesses (GRUMEZESCU und 

HOLBAN, 2018) 

Approximate 

time to 

symptoms 

Signs and Symptoms Organism Illness Food source 

2-6 h Severe nausea and vomiting, abdominal cramps, 

diarrhea and fever, prostration, dehydration, headache, 

muscle cramping, and transient changes in blood 

pressure and pulse rate 

Staphylococcus aureus  Staphylococcus aureus 

intoxication 

Unrefrigerated or improperly 

refrigerated meats and meat 

products, poultry and egg 

products; salads; milk and dairy 

products 

4-90 h Watery or bloody diarrhea, abdominal cramps, nausea, 

vomiting, fever 

Vibrio 

parahaemolyticus 

Vibrio 

parahaemolyticus 

gastroenteritis 

Undercooked or raw seafood or 

fish, oysters and fishery 

products 

6-48 h Diarrhea, fever, abdominal cramps, vomiting, nausea, 

headache 

Salmonella spp. Salmonellosis Raw eggs, poultry, meat, 

unpasteurized milk or juice, 

cheese, chocolate, 

contaminated raw fruits and 

vegetables, spices, salads 
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Table 1: Continued 

8-24 h Abdominal cramps, watery diarrhea, rarely vomiting 

and fever 

Clostridium 

perfringens 

Clostridium 

perfringens enteritis 

Meats, poultry, vegetables 

(spice and herbs), raw and 

processed foods 

10-16 h Abdominal cramps, watery diarrhea, nausea, vomiting, 

pain 

Bacillus cereus B. cereus 

gastroenteritis 

Meats, stews, gravies, boiled or 

fried rice, spices, dried foods, 

milk, dairy products, vegetable 

dishes, fish, pasta, salads 

12-24 h Acute gastroenteritis may include vomiting, nausea, 

fever, chills, abdominal pain, watery diarrhea 

Miscellaneous 

Enterobacteriaceae 

Miscellaneous 

Enterobacteriaceae 

enteric 

Dairy products, raw shellfish, 

raw vegetables 

12-36 h Vomiting, abdominal pain, diarrhea, fatigue, blurred 

vision, double vision, muscle weakness, slurred speech, 

difficulty in swallowing, dry mouth, headache, 

dizziness, constipation 

Clostridium botulinum Botulism Home-canned vegetables, fish 

and fish products, condiments, 

meat and meat products, soups, 

mushrooms 

12h – 21 days Vomiting, diarrhea, abdominal pain, fever, bleeding 

within the skin, nausea, chills, pain in the extremities 

Vibrio vulnificus Vibrio vulnificus 

infection 

Undercooked or raw seafood 

Table 1: Continued 
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20-50 h Fever, chills, abdominal pain, nausea, diarrhea, 

vomiting 

Plesiomonas 

shigelloides 

Plesiomonas 

shigelloides enteric 

infection 

Contaminated water, raw 

shellfish, improperly cooked or 

raw foods and seafoods 

24-48 h Dysentery-like symptoms, blood and mucus in the stool, 

abdominal cramps, mild fever, vomiting 

Aeromonas hydrophila Aeromonas enteritis Seafood, snails, drinking water, 

vegetables 

24-36 h Abdominal pain, diarrhea, mild fever, vomiting Yersinia enterocolitica Yersiniosis Raw milk and milk products, 

meats, fish, seafood 

1-3 days Pain on swallowing, high fever, headache, nausea, 

vomiting, malaise, rhinorrhea 

Streptococcus spp. Streptococcus spp. 

intoxication 

Pasteurized and raw milk, eggs, 

cooked seafood, salads 

1-3 days Profuse watery diarrhea, severe dehydration, abdominal 

pain and vomiting, with rice-water stools 

Vibrio cholera Cholera Seafood, vegetables 

1-6 days Watery diarrhea, abdominal cramps, vomiting, high 

fever, nausea, malaise 

E. coli E. coli infection Water or food contaminated 

with feces, raw milk from 

infected animals, vegetables 

1-7 days Abdominal cramps, fever, diarrhea, vomiting, pus or 

mucus in stools, tenesmus 

Shigella spp. Shigellosis Raw or uncooked foods, 
contaminated drinking water, 
salads and vegetables, raw milk 
and dairy products 

Table 1: Continued 
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2-5 days Bloody diarrhea, abdominal cramps, fever, vomiting, 

nausea, headache, muscle pain 

Campylobacter spp. Campylobacteriosis Raw and undercooked poultry, 

meat, unpasteurized milk, 

contaminated drinking water, 

vegetables, seafood 

3-6 days Varying from mild diarrhea to severe bowel damage, 

chills, fever, headache 

Francisella tularensis Tularemia Milk and undercooked meats 

from infected animals (often 

rabbits and hares) 

Days to several 

weeks 

Influenza-like symptoms such as fever, headache, 

muscle aches, stiff neck, confusion, loss of balance, 

convulsions, nausea, vomiting, diarrhea, abortions 

Listeria 

monocytogenes  

Listeriosis Unpasteurized and raw milk 

and milk products, meat, deli 

meats, raw and smoked fish 

and seafood, raw vegetables 

10-20 days Nausea, high fever, abdominal pain, headache, rashes, 

loss of appetite 

Salmonella typhi and 

Salmonella paratyphi 

Typhoid fever, 

paratyphoid fever 

Dairy products, meat products, 

eggs, seafood, fruits, vegetables 

2 weeks Very high fever, severe headache, muscle aches, chills, 

profuse sweating, nausea, vomiting, diarrhea, dry 

cough, abdominal cramps, chest pain 

Coxiella burnetii Q fever Contaminated unpasteurized 

milk or dairy products 

Table 1: Continued 

3 weeks Intermittent fever, lassitude, sweat, headache, chills, Brucella spp. Brucellosis Unpasteurized goat´s or 
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constipation, arthralgias, generalized aching, weight 

loss, anorexia, malaise, joint and muscle pain, 

arrhythmia, edema, chest pain, meningoencephalitis, 

stiff neck, confusion or seizures, spondylitis 

shepp´s milk and products 

made from the milk of infected 

animals 

Variable Poor feeding response, irritability, jaundice, grunting 

respirations, instability of body temperature, seizures, 

brain abscess, hydrocephalus, developmental delay 

Enterobacter sakazakii Cronobacter infection Contaminated powdered infant 

formula, milk powders, cheese 

products, other dried foods 

Months to years Fever, night sweats, fatigue, loss of appetite, weight 

loss, chronic cough, bloodstained sputum, chest pain, 

diarrhea, abdominal pain 

Mycobacterium bovis 

and mycobacterium 

caprae 

Tuberculosis Raw and unpasteurized milk 

and milk products, raw or 

undercooked meats of infected 

animals 
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While there are many known pathogens that can cause food-borne illnesses, some 

of the most significant ones include Campylobacter, Salmonella, 

L. monocytogenes, Shiga Toxin producing Escherichia coli, and Yersinia. In the 

27 EU Member States and the United Kingdom, 5763 food-borne outbreaks were 

registered in 2022, with 48605 people confirmed to be infected and 64 fatalities. 

This number of deaths was one of the highest in the EU in the last 10 years. 

Norovirus caused the highest number of infections, while Salmonella Enteritidis 

was responsible for the highest number of outbreaks. However, listeriosis stands 

out as one of the most severe food-borne diseases, with the highest case fatality 

(18.1%) and hospitalization (96 %) rates among reported cases with 28 deaths in 

2022. (THE EUROPEAN UNION ONE HEALTH 2022 ZOONOSES REPORT, 

2023). 

2. The Genus Listeria and Listeria monocytogenes 

2.1. Characterization 

As of February 2024, the genus Listeria consists of 21 recognized species and six 

subspecies, which can be divided into two distinct clades: sensu stricto and sensu 

lato (ORSI und WIEDMANN, 2016). The sensu stricto group comprises all 

Listeria spp. that likely interacts with mammals, whereas the sensu lato group 

consists of species classified as environmental bacteria. This classification is 

based on the observation that Listeria species from the sensu stricto group have 

been detected in the feces or gastrointestinal tract of asymptomatic animals and in 

foods of animal origin. In contrast, species from sensu lato group have only been 

isolated from  the environment or food contact surfaces, suggesting a less direct 

association with mammalian hosts (SCHARDT et al., 2017; ORSI et al., 2024). 

The Listeria sensu stricto group comprises to a group of 10 species: 

L. monocytogenes, L. seeligeri, L. welshimeri, L. innocua, L. ivanovii, L. marthii, 

L. farberi, L. immobilis, L. cossartiae, and L. swaminathanii. These species are all 

closely related to, L. monocytogenes, which was the first species identified in 

1924 (ORSI et al., 2024). Although the Listeria sensu lato originally referred to all 

species within the genus Listeria, recent publications have used the term “sensu 

lato” to refer specifically to those Listeria species that are less phylogenetically 

related to L. monocytogenes (i.e., those species not in the Listeria sensu stricto 

group). The Listeria sensu lato currently includes 18 species (L. grayi, L. 
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fleischmannii, L. floridensis, L. aquatica, L. valentina, L. thailandensis, L. 

goaensis, L. ilorinensis, L. costaricensis, L. rustica, L. portnoyi, L. cornellensis, L. 

newyorkensis, L. rocourtiae, L. weihenstephanensis, L. grandensis, L. booriae, 

and L. riparia) (ORSI et al., 2024). 

Table 2: The sensu stricto group of the genus Listeria 

species subspecies isolated from Reference 

L. monocytogenes  a variety of 

diseases in widely 

different host 

species including 

man 

(SEASTONE, 1935) 

L. innocua   (SEELIGER, 1981) 

L. seeligeri  Adult mice (ROCOURT und 

GRIMONT, 1983) 

L. welshimeri  Adult mice (ROCOURT und 

GRIMONT, 1983) 

L. ivanovii ivanovii  

 

londoniensis 

Listeriosis patient  

 

Listeriosis patient 

(SEELIGER et al., 

1984) 

(BOERLIN et al., 

1992) 

L. marthii  the natural 

environment, 

Finger Lakes 

National Forest 

(GRAVES et al., 

2010) 
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Table 3: the sensu lato group of the genus Listeria 

species subspecies isolated from Reference 

L. grayi grayi 

 

murrayi 

different living 

beings 

vegetation 

(ROCOURT et al., 

1992) 

(ROCOURT et al., 

1992) 

L. rocourtiae  pre-cut lettuce (LECLERCQ et 

al., 2010) 

L. fleischmannii fleischmannii 

 

coloradonensis 

from cheese 

 

on a cattle ranch 

(BERTSCH et al., 

2013) 

(DEN BAKKER 

et al., 2013) 

L. weihenstephanensis  water plant (LANG HALTER 

et al., 2013) 

L. aquatica  agricultural and 

natural 

environments 

(DEN BAKKER 

et al., 2014) 

L. cornellensis  agricultural and 

natural 

environments 

(DEN BAKKER 

et al., 2014) 

L. grandensis  agricultural and 

natural 

environments 

(DEN BAKKER 

et al., 2014) 

L. riparia  agricultural and 

natural 

environments 

(DEN BAKKER 

et al., 2014) 

L. newyorkensis  food processing 

environments 

(WELLER et al., 

2015) 

 

Table 3: Continued 
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L. booriae  food processing 

environments 

(WELLER et al., 

2015) 

L. costaricensis  food processing 

drainage system 

(NÚÑEZ-

MONTERO et al., 

2018) 

L. goaensis  mangrove 

swamps 

(DOIJAD et al., 

2018) 

L. thailandensis  fried chicken (LECLERCQ et 

al., 2019) 

L. valentina  water trough and 

faeces of healthy 

sheep 

 

(QUEREDA et al., 

2020) 

Recent research suggests that additional species may be identified in the future, as 

new Listeria isolates obtained from soil have not yet been classified (CARLIN et 

al., 2021). Among all Listeria species, only two are considered pathogenic: 

L. monocytogenes and L. ivanovii. While L. ivanovii is predominantly an animal 

pathogen affecting ruminants and sheep (VAZQUEZ-ARMENTA et al., 2020), 

L. monocytogenes is responsible for the vast majority of human cases (THE 

EUROPEAN UNION ONE HEALTH 2022 ZOONOSES REPORT, 2023). 

L. monocytogenes is widely distributed in nature and can be commonly found in 

soil, where it lives as a saprophyte on decomposing plant matter (VÁZQUEZ-

BOLAND et al., 2001; LINKE et al., 2014). While it primarily exists in this 

saprophytic state, it is capable of making the transition into a pathogen following 

its ingestion by a susceptible host, highlighting the importance of understanding 

its transmission routes (FREITAG et al., 2009). L. monocytogenes is a highly 

adaptable pathogen that can tolerate a wide range of environmental conditions. 

One of the key characteristics of L. monocytogenes is its ability to adapt to, resist, 

survive, and even grow under challenging conditions including food related stress 

factors. This adaptability allows the pathogen to persist in various food 

environments. One of its most notable features is its ability to grow at low 
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temperatures, with a minimum growth temperature of around 4 °C. This makes it 

a particular concern in refrigerated foods, as it can continue to multiply even 

under refrigeration. 

In addition to its psychotropic nature, L. monocytogenes is also capable of 

tolerating a wide range of pH levels, from acidic to alkaline conditions. It can 

survive in environments with a pH as low as 4.7 and as high as 9.2, making it 

highly versatile in terms of the types of food it can contaminate. 

Furthermore, L. monocytogenes is also able to withstand large differences in 

osmolarity, meaning it can survive in environments with varying salt 

concentrations. This makes it a potential concern in a variety of foods, from deli 

meats to fresh produce. 

Overall, the adaptability of L. monocytogenes to diverse environmental conditions 

makes it a challenging pathogen to control and a significant concern for food 

safety (PHAN-THANH und MONTAGNE, 1998; BUCUR et al., 2018). 

L. monocytogenes is a rod-shaped, gram positive, facultative anaerobic, bacterium 

with a size of 0.5×2–3 μm. As a facultative anaerobe, it is capable of growing in 

both aerobic and anaerobic conditions (VÁZQUEZ-BOLAND et al., 2001; 

PIZARRO-CERDÁ und COSSART, 2019). It is a catalase positive, non spore-

forming and non-capsule producing bacterium. As a low G+C bacterium, its 

genomic DNA contains a lower proportion of guanine and cytosine bases 

(VÁZQUEZ-BOLAND et al., 2001). It is an intracellular pathogen capable of 

growing and replicating within host cells, including macrophages and non-

phagocytic cells (COSSART, 2011). L. monocytogenes is motile at the 

temperatures between 10-25 °C, during which it forms 4-6 flagella per cell. These 

whip-like structures that help the bacterium to swim and move in its environment 

(PEEL et al., 1988). The motility of L. monocytogenes is important since it 

contributes to its ability to colonize various ecological niches and invade host 

tissues during infection (QUEREDA TORRES et al., 2021; SIBANDA und 

BUYS, 2022). 
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Understanding the genetic diversity and population structure of L. monocytogenes 

is crucial for epidemiological investigations, as it allows for the identification of 

strains associated with specific outbreaks and sources of contamination. 

L. monocytogenes exhibits a high degree of genetic diversity. The serotyping 

system, which is based on somatic (O) and flagellar (H) antigens, identifies 13 

serovars. These serovars represent diverse genetic groups of strains, highlighting 

the extensive genetic variability within the L. monocytogenes population. 

However, only four serotypes - 1/2a, 1/2b, 1/2c, and 4b - are responsible for the 

majority of human listeriosis cases. The population structure of L. monocytogenes 

can be further divided into three lineages. Lineage I includes serotypes 4b, 1/2b, 

3b, 4d, 4e, and 7, while Lineage II encompasses serotypes 1/2a, 1/2c, 3a, and 3c 

and lineage III contains serotypes 4a and 4c (COSSART, 2011). There are several 

methods to classify and divide listeria into subgroups, including PCR (DOUMITH 

et al., 2004), pulsed-field gel electrophoresis (PFGE) (NEVES et al., 2008), 

multilocus variable-number tandem-repeat analysis (MLVA) (MARTÍN et al., 

2018), multilocus sequence typing (MLST) (RAGON et al., 2008), and core 

genome MLST (cgMLST) (MOURA et al., 2016). MLST, which involves 

sequence analysis of specific housekeeping genes (DOUMITH et al., 2004), has 

been used to identify clonal complexes of L. monocytogenes that are distributed 

geographically or temporally (CHENAL-FRANCISQUE et al., 2011). 

L. monocytogenes clonal complexes are groups of closely related strains that share 

similar genetic characteristics. CC1, CC2, CC4, and CC6 are hypervirulent clones 

that are highly associated with human listeriosis. On the other hand, CC9 and 

CC121 are associated with food processing environments and various food such 

as dairy products, and meat products and have shown to be hypovirulent due to 

mutations in virulence genes (MAURY et al., 2019).   
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2.2. Listeriosis in humans 

L. monocytogenes is a facultative pathogen that can lead to serious health 

consequences. In healthy and immunocompetent individuals, oral intake of 

L. monocytogenes may result in no to mild symptoms, which typically manifest as 

self-limiting gastroenteritis or flu-like symptoms (RADOSHEVICH und 

COSSART, 2018). 

Nevertheless, L. monocytogenes can cause severe health problems, particularly in 

susceptible individuals. Clinical presentations include febrile gastroenteritis, 

septicemia, neonatal infection, meningoencephalitis and miscarriage (SIEGMAN-

IGRA et al., 2002; DREVETS und BRONZE, 2008). While pasteurization and 

cooking can kill L. monocytogenes, RTE foods are often the cause of illness 

because RTE products are often consumed immediately by the consumer without 

reheating. Recontamination often occurs prior to packaging, even if these foods 

undergo a heating step during production. After ingestion, L. monocytogenes can 

spread via the blood stream and establish itself in the central nervous system 

causing meningoencephalitis or the placenta, causing abortion (BUCHANAN et 

al., 2017). In Germany, listeriosis cases have been subject to mandatory reporting 

since 2001. As a result, around 500 cases are registered each year, with the 

majority affecting pregnant women (HOF et al., 2007). This underscores the 

importance of implementing effective prevention strategies and control measures 

to reduce the public health burden of L. monocytogenes infections, particularly 

among high-risk populations. 

Food safety strategies and measures vary between countries, reflecting differences 

in regulatory approaches. For instance, the United States maintain a strict zero-

tolerance policy for L. monocytogenes in food, while European regulations reflect 

a risk-based approach taking into account the relatively high minimal infectious 

dose of L. monocytogenes and allow the presence of minimal amounts under 

specific conditions.  

 

 

 

 



III LITERATURE REVIEW     18 

 

2.2.1. The intracellular infection cycle 

The intracellular infection cycle takes place in the following steps (DE LAS 

HERAS et al., 2011): 

 (1) L. monocytogenes utilizes two surface proteins, internalin A and internalin B, 

for cell entry. These proteins interact with the surface ligands E-cadherin and c-

Met of the host cell via their leucin-rich repeat domains. 

(2) This interaction initiates a process similar to phagocytosis, in which the 

bacterium is taken up into the host cell. 

(3) Once inside the cell, L. monocytogenes employs three membrane damaging 

factors: the pore-forming toxin listeriolysin O and the phospholipases PlcA and 

PlcB, which lyse the vacuole membrane. 

(4) Upon release into the host cell cytosol, L. monocytogenes can multiply using 

hexophosphates from the host cell, which are be taken up via the Hpt permease. 

(5) A major advantage of this intracellular infection strategy is that 

L. monocytogenes can spread directly from cell to cell, thereby evading the host's 

extracellular defense mechanisms. This cell-to-cell spread is facilitated by the 

surface protein ActA. 

(6) During the invasion of the neighboring cells, the bacteria protrude as 

structures called listeriopods. This process is assisted by internalin C, which 

reduces the tension between the cell walls. 

(7) After invasion, the double membrane vacuole in the newly infected cell is 

dissolved, allowing a new round of bacterial proliferation to begin 

One of the most important proteins for this cycle is the central regulatory factor A 

(PrfA). It can be described as a key regulatory protein that plays a significant role 

in coordinating the expression of essential virulence factors and it play a crucial in 

the infection cycle because it regulated all nine of the genes mentioned in the 

intracellular infection cycle above. PrfA ensures the timely and effective 

expression of virulence genes that enable bacteria to infect and replicate within 

host cells (SCORTTI et al., 2007). To ensure that the PrfA regulon is only active 

during the infection of a host cell and not while L. monocytogenes is residing in 

the environment, its activation is selectively regulated. This regulation is 

thermoregulated and responsive to the 37°C and low pH levels. The PrfA regulon 
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remains inactive at ambient temperatures, but when the bacterium encounters the 

elevated temperatures and acidic conditions within a hosts stomach, the regulon is 

activated, allowing for the coordinated expression of virulence factors necessary 

for infection (FREITAG et al., 2009; NEUHAUS et al., 2013). PrfA consists of 

two identical subunits as a homodimer and the symmetrical PrfA dimer activates 

transcription by binding through its Helix-turn-helix (HTH) pair to a palindromic 

‘PrfA box’ (SCORTTI et al., 2007; DESHAYES et al., 2012). PrfA is a part of the 

Listeria pathogenicity island-1 I (LIPI-1), which also includes the inlAB operon, 

the inlC and hpt monocistrons (WIKTORCZYK-KAPISCHKE et al., 2021). LIPI-

1 includes key virulence factors, such as LLO (hly gene), InlA, InlB, ActA, PlcA, 

PlcB, Mpl, InlC, Hpt and PrfA itself. In addition to these nine key virulence 

determinants that are tightly regulated by PrfA, Transcriptomic profiling and 

proteomic analyses have revealed that PrfA also has a regulatory role on the 

expression of as many as 145 other L. monocytogenes genes (MILOHANIC et al., 

2003). 

2.3. Stress response mechanisms of L. monocytogenes 

2.3.1. Alternative sigma factors 

L. monocytogenes employs several mechanisms to adapt to challenging 

environmental conditions; for instance, when the bacterium is ingested orally, it 

must rapidly adapt to the harsh conditions of the host's stomach. 

L. monocytogenes uses different sigma factors to regulate gene expression in 

response to changing environmental conditions. Sigma factors are multi-domain 

subunits of the RNA polymerase, play a critical role in transcription initiation by 

altering the promoter recognition specificity of the enzyme (PAGET, 2015). 

L. monocytogenes has one housekeeping sigma factor (σA) and four different 

alternative sigma factors (σB, σC, σH and σL) (GLASER et al., 2001). Among 

them, σB plays a crucial role in regulating the transcription of several virulence 

and stress-response genes (CHATURONGAKUL et al., 2008). For example, σB 

is very important for survival in food, food-processing environments or in the 

stomach of the host, as it regulates the expression of genes that mediate survival 

under acid stress, osmotic stress, oxidative stress, cold stress and nutrient 

deficiency or energy stress (KAZMIERCZAK et al., 2003; SUE et al., 2004). 
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In addition to σB, L. monocytogenes encodes other alternative sigma factors, such 

as σH and σL. σH participates in the transition from exponential growth phase to 

stationary phase, sporulation, nutrient transport and the regulation of several other 

transcription factors and cell wall proteins. Moreover, σH appears to be essential 

for survival in phagocytes and epithelial cells, as it facilitates the escape of 

L. monocytogenes from phagosomes (MEDRANO, 2018). On the other hand, σL 

contributes to osmotolerance and also provides some resistance against the 

antibacterial peptide mesentericin (ROBICHON et al., 1997). 

σB also acts synergistically with the positive regulatory factor A (PrfA), the 

master regulator of virulence gene expression in L. monocytogenes. These two 

proteins coregulate genes involved in bile resistance and internalization. Most 

importantly, σB modulates prfA transcription via through direct transcriptional 

activation and indirect post transcriptional repression under some environmental 

conditions (GABALLA et al., 2019). 

2.3.2. Temperature stress 

L. monocytogenes produces various proteins that help protect the bacterium from 

damage caused by environmental stressors. These proteins include heat-shock 

proteins, which help the bacterium cope with high temperatures by stabilizing the 

proteins and prevent them from improper folding and aggregation; cold-shock 

proteins, which aid in adaptation to low temperatures, by various strategies such 

as enabling replication, transcription, and translation at low temperatures 

(SCHÄRER et al., 2013; MUCHAAMBA et al., 2021) and oxidative stress 

response proteins, which counteract the harmful effects of reactive oxygen species 

(WIKTORCZYK-KAPISCHKE et al., 2021). 

OppA, Ctc, GroEL, and DnaK are considered particularly important for cold 

stress adaptation. The OppA protein is important for the accumulation of short 

peptide substrates, facilitating bacterial growth under cold stress (BOREZEE et 

al., 2000). CtC, is a general stress protein, which supports the adaptation to high 

osmolarity conditions (GARDAN et al., 2003). GroEL and DnaK, both molecular 

chaperones, assist in the degradation of damaged proteins or initiate refolding, 

which is also essential for coping with heat stress-induced protein damage 

(GAHAN et al., 2001). Under extreme heat stress, above 45 °C, L. monocytogenes 

synthesizes heat shock proteins to prevent unproductive protein aggregation. 
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Furthermore, ferritin-like protein has been found to be present at both temperature 

extremes, indicating its significance in adapting to various environmental stressors 

(AGOSTON et al., 2009). 

2.3.3. Agr System 

Biofilms can form on food processing equipment or packaging materials, 

increasing the risk of contamination. Biofilms provide a protective environment 

for bacteria, including L. monocytogenes, allowing them to survive and persist in 

harsh conditions, which may contribute to the challenges in eliminating this 

pathogen from food processing environments (COLAGIORGI et al., 2017). The 

accessory gene regulator (Agr) system in L. monocytogenes is associated with 

quorum-sensing, the sensing of environmental stresses and the coordination of 

appropriate responses within the bacterial population (GUARIGLIA-OROPEZA 

et al., 2014). These functions contribute to the establishment of biofilms and 

virulence regulation under severe conditions (AUTRET et al., 2003; RIEU et al., 

2007; RIEDEL et al., 2009; BANERJI et al., 2022). In L. monocytogenes, the agr 

system comprises four genes (agrA, agrB, agrC and agrD) organized as an 

operon. Specifically, agrA encodes a response regulator protein that modulates 

gene expression in response to environmental signals and cell density, agrB is 

responsible for processing of agrD into a mature auto-inducing peptide 

(ZETZMANN et al., 2016), agrC encodes a two-component histidine kinase 

protein that senses AIP (autoinducing peptides) concentration in the environment 

and initiates signal transduction pathways, and agrD serves as a precursor peptide, 

which is considered to positively regulates the expression of agr system. 
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3. L. monocytogenes in foods and food processing 

environments 

3.1. Environmental origins and transmission routes along the food chain 

L. monocytogenes is ubiquitous in the environment, and there are many potential 

sources through which this bacterium can enter the feed and food chain (HAASE 

et al., 2014). L. monocytogenes can establish itself in various niches in agricultural 

production operations or food processing plants, mainly via contamination with 

soil or fecal excretion from a wide range of hosts, including human or wild and 

domestic animals (BELIAS et al., 2022). This problem is exacerbated by the fact 

that some individuals in the host pool may be asymptomatic carriers, thus 

unknowingly spreading the pathogen (SCHODER und WAGNER, 2012).  

L. monocytogenes can persist in food processing plants or equipment for extended 

periods of time. Especially in humid environments, it can spread rapidly from the 

food processing environment to food products (JEMMI und STEPHAN, 2006; 

GANDHI und CHIKINDAS, 2007).  

Several studies have reported the presence of L. monocytogenes in different farm, 

pet and game animals. In Germany L. monocytogenes was detected in the feces of 

1-10% of healthy pigs, hens, sheep, horses, dogs, and cats and >30 % of cows 

(WEBER et al., 1995). A study in healthy red deer found L. monocytogenes in 

tonsils, rumen and stomach contents, liver, intestinal lymph nodes, cecum content 

and feces (42 % animals were positive) and wild boars (25 % animals were 

positive) (WEINDL et al., 2016). These findings suggest that a significant number 

of animals could be asymptomatic carriers of L. monocytogenes. Additionally, it is 

estimated that up to 10% of the German human population may harbor 

L. monocytogenes in their intestines (BAYERISCHES LANDESAMT FÜR 

GESUNDHEIT UND LEBENSMITTELSICHERHEIT, 09.08.2022). 

Potential transmission routes of L. monocytogenes along the food chain include 

the farm environment where L. monocytogenes can be introduced through animal 

feed, contaminated water, poor-quality silage or feces of animals. Once 

established, it can spread within a farm, contaminating various areas including 

soil, vegetation, and animal housing (RODRIGUEZ et al., 2021). 
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1. Primary production: During primary production, such as plant cultivation 

or animal rearing, L. monocytogenes can contaminate products through 

direct or indirect contact with contaminated soil, water, or surfaces in the 

production environment or infected animals (GONZALES-BARRON et 

al., 2023). 

2. Harvest and post-harvest handling: Contamination can occur during 

harvesting, handling, and transportation of products, either directly from 

the environment or through cross-contamination from other products or 

equipment (MARIK et al., 2020). 

3. Food processing: L. monocytogenes can be introduced to or spread within 

food processing facilities through contaminated raw materials or 

inadequate sanitation practices. The bacterium can form biofilms on 

surfaces such as equipment, floors and drains making it difficult to 

eliminate (CAMARGO et al., 2017). 

4. Distribution and retail: Improper storage conditions or cross-

contamination during transportation, distribution, or at retail outlets can 

lead to further spread of the bacterium (LIANOU und SOFOS, 2007). 

5. Food preparation and consumption: Inadequate cooking or handling 

practices in households, restaurants, or other food service establishments 

can result in contamination or growth of L. monocytogenes in foods. 

These potential transmission routes are crucial for identifying critical control 

points and implementing effective preventive measures to reduce the risk of 

L. monocytogenes contamination along the entire food chain. 

3.2. Outbreaks related to L. monocytogenes 

Although most cases of listeriosis are sporadic, outbreaks occur frequently and 

involve various food matrices. The table provided below summarizes notable 

outbreaks where more than 100 cases were involved and the first recognized 

outbreak related to L. monocytogenes in different food matrices (Table 5). 

Table 5: Some Major Listeriosis Outbreaks 
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Outbreak 

year 
Location Food vehicle Cases Reference 

1981 Canada Coleslaw 41 (SCHLECH III et al., 

1983) 

1983-1987 Switzerland Vacherin 

Mont dór 

cheese 

122 (BILLE, 1989) 

1985 California 

(USA) 

Mexican-

style cheese 

142 (LINNAN et al., 1988) 

1987-1989 England Paté 300 (MCLAUCHLIN et al., 

1991) 

1992 France Jellied pork 

tongue 

279 (GOULET et al., 1993) 

1997 Italy Corn 2930 (AURELI et al., 2000) 

2011 USA Fresh whole 

cantaloupe 

147 (MCCOLLUM et al., 

2013) 

2017/18 South Africa RTE 

processed 

meat 

products 

1060 (SMITH et al., 2019) 

 

3.3. L. monocytogenes in ready-to-eat (RTE) food, specifically RTE meat 

RTE food refers to any food product that is intended for direct consumption, 

without the need for further preparation, such as cooking, reheating, or processing 

in any other way (EUROPEAN FOOD SAFETY AUTHORITY, 21 December 

2023). These foods are typically prepared and packaged by the manufacturers, 

making them convenient and easily accessible for consumers. RTE foods include 

a variety of products, such as fresh or pre-cut fruits and vegetables, deli meats, 

salads, sandwiches or cheese (HILLIER‐BROWN et al., 2017).  

While raw products like fruit and vegetables inherently bear the risk of 

L. monocytogenes contamination, thermal processing like cooking or 
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pasteurization is generally effective in eliminating L. monocytogenes, provided 

that the appropriate temperatures are maintained. However, post-processing 

recontamination is possible due to inadequate hygiene in the food processing 

environment. Factors such as unclean machinery and/or insufficient personnel 

hygiene practices can contribute to the reintroduction of L. monocytogenes or 

other pathogens into the food products (BAYERISCHES LANDESAMT FÜR 

GESUNDHEIT UND LEBENSMITTELSICHERHEIT, 09.08.2022). For deli 

meats, the slicing and packaging stages of food production present a particularly 

high risk for contamination by L. monocytogenes from equipment surfaces, 

packaging materials, and handling by personnel. The increased potential for cross-

contamination at these stages makes it crucial to implement and adhere to strict 

food safety protocols, including proper sanitation, hygienic handling practices, 

and regular microbial testing. By addressing these high-risk points in the 

production process, the likelihood of contamination can be significantly reduced, 

thereby ensuring the safety and quality of ready-to-eat food products (SHEEN und 

HWANG, 2008). 

Foods of animal origin that are frequently contaminated with L. monocytogenes 

comprise cooked sausage (in particular if sliced to a RTE format), sausage and 

meat pâtés, short- or quick- matured raw sausage varieties (such as onion sausage 

and tea sausage), raw meat products (like tartare, minced meat), raw 

unpasteurized milk and dairy products made from it (e.g. raw milk cheese), soft 

cheeses (especially those with red smear formation  like Romadur and Roquefort), 

and seafood products like cold smoked salmon (BAYERISCHES LANDESAMT 

FÜR GESUNDHEIT UND LEBENSMITTELSICHERHEIT, 09.08.2022). 

Because their high water activity (aw-value) and nutrient content makes many 

RTE foods a good growth substrate for bacteria, their safety relies on refrigeration 

to prevent bacterial growth. However, L. monocytogenes is psychrotrophic, 

meaning it can still grow at refrigerator temperatures, albeit more slowly. This 

ability allows L. monocytogenes to multiply and potentially reach dangerous 

levels in these products over time, in particular where high initial contamination 

levels are combined with abusive refrigeration temperatures above 4 °C 

(ZIEGLER et al., 2018; ZIEGLER et al., 2019). Therefore, contaminated RTE 

foods are the primary transmission vehicles for human L. monocytogenes 

infections (SELF et al., 2019; HALBEDEL et al., 2020; THOMAS et al., 2020).  
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It is assumed that a value of 100 CFU/g or more poses a direct risk to human 

health. While in the USA a zero-tolerance approach with regard to 

L. monocytogenes in RTE foods is taken, the European laws take this relatively 

high infectious dose into account and aim to keep the contamination levels in RTE 

foods below 100 CFU/g throughout the shelf life. (European Commission 

Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria 

for foodstuffs). 
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Table 6: Food safety criteria (EUROPEAN UNION, 2005) 

Food category Sampling-

plan 

Limits Analytical 

reference method 

Stage where the criterion applies 

n C m M 

RTE foods intended for 

infants and RTE foods for 

special medical purposes 

10 0 Absence in 25 g EN/ISO 11290-1 Products placed on the market during their shelf-life 

RTE foods able to support the 

growth of L. monocytogenes, 

other than those intended for 

infants and for special medical 

purposes 

5 0 100 cfu/g EN/ISO 11290-2 Products placed on the market during their shelf-life 

5 0 Absence in 25 g EN/ISO 11290-1 Before the food has left the immediate control of the food business operator, who has 

produced it 

RTE foods unable to support 

the growth of 

L. monocytogenes, other than 

those intended for infants and 

for special medical purposes 

5 0 100 cfu/g EN/ISO 11290-2 Products placed on the market during their shelf-life 
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In the list above, n describes the number of random samples to be taken and c the 

permitted number of samples taken, which may be above m or between m and M. 

If the manufacturer can prove to the competent authorities that 100 CFU/g are not 

exceeded during the entire shelf life, these apply to him. If he is unable to do so, 

samples from the food company must not contain any L. monocytogenes in 25 g. 

4. Lyoner 

4.1. Classification according to the German Food Code 

According to the guidelines for meat and meat products of the German Food 

Code, the chicken Lyoner used in this study is classified in the sub-category 

“finely chopped emulsified sausage” (BUNDESMINISTERIUM FÜR 

ERNÄHRUNG UND LANDWIRTSCHAFT, 20.10.2022). 

4.2. Composition  

The name of the product (Hähnchen-Lyoner) already provides some information 

on the composition of the sausage. The first part of the name "Hähnchen" 

(chicken) indicates that all of the material of animal origin used for this product is 

derived from chicken, i.e. meat, connective and fat tissue. As an ingredient of 

meat products "meat" only refers to the skeletal muscles with attached or 

embedded fat and connective tissue as well as embedded lymph nodes, nerves and 

blood vessels. The second part of the name “Lyoner” is a type of emulsified 

sausage, which is specified in the German Food Code as a cured sausage, which 

means that nitrite curing salt is used, resulting in the characteristic color of 

Lyoner. The Food Code further states that "Lyoner" is filled in medium or large 

caliber casings during production. In addition, certain quality criteria must be met, 

such as a minimum amount of at least 8% of meat protein free of connective tissue 

protein. This so-called "BEFFE" is defined as total protein minus the sum of 

foreign protein, foreign non-protein nitrogen compounds and connective tissue 

protein (BUNDESMINISTERIUM FÜR ERNÄHRUNG UND 

LANDWIRTSCHAFT, 20.10.2022). The raw materials raw chicken meat, 

chicken fat, drinking water in the form of ice and nitrite curing salt a sausage meat 
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batter, which is then filled into appropriate casings and scalded using either steam 

or submersion in hot water at a temperature of at least 75 °C. 
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A B S T R A C T  

 

Listeria monocytogenes is an important food-borne pathogen with high 

hospitalization and case fatality rates. To cause disease, L. monocytogenes must 

gain access to a specific food matrix and in many cases be able to grow before the 

food is consumed. The fitness of this pathogen differs between individual foods 

and depends on its ability to adapt to various environmental stressors that are 

highly specific in each food matrix. Deli meats are an important cause of 

infections with L. monocytogenes. Here, we screened a transposon mutagenesis 

library in 

L. monocytogenes LL195 with 2640 individual mutants on a Lyoner-type deli 

meat to understand the fitness effect of individual genes. After the determination 

of 10 candidate mutants with confirmed phenotypes on Lyoner, in- frame deletion 

mutants of these genes were created by allelic replacement. The fitness effects of 

these in-frame mutants were then confirmed by growth experiments under cold 

stress and on Lyoner separately, and in a combined condition of both. Mutants 

with deletions in the cytosine-specific DNA modification methyltransferase 

sau3AIM and the penicillin-binding protein pbp-B were impaired in their growth 

at cold temperatures in rich medium as well as on Lyoner, suggesting a 

temperature-dependent phenotype. In contrast, the purB deletion mutant exhibited 

reduced fitness that was specific to growth on Lyoner. Our results indicate an 

important role for the sau3AIM and pbp-B genes in cold stress adaptation, while 

purB, which is a central component of purine biosynthesis, may play a more 

specialized role on the fitness of L. monocytogenes during growth on Lyoner. 
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1. Introduction 

 

Listeria monocytogenes is the causative agent of listeriosis, which re- mains one 

of the most severe food-borne illnesses in the European Union (The European 

Union One Health 2021 Zoonoses Report, 2022) and worldwide. The latest 

available report by the European Food Safety Agency (EFSA) documents 23 

foodborne outbreaks and 2183 cases with a case-fatality rate of 9% in the EU in 

2021 (The European Union One Health 2021 Zoonoses Report, 2022). Ready-to-

eat (RTE) foods like smoked fish, soft cheeses, and deli meats, are 

overrepresented among foods implicated in listeriosis cases and outbreaks (Lopez-

Valladares et al., 2018). The primary reason these products represent a high risk is 

that there is either no killing step during their production or, in case of deli meats, 

events of re-contamination during processes like slicing. Sliced  RTE  deli  meats  

have  frequently  been  implicated  in L. monocytogenes outbreaks and show a 

global prevalence of listeriosis of 

2.9 % (with considerable heterogeneity) as determined by a systematic review and 

meta-analysis (Churchill et al., 2019). Several quantitative microbial risk analysis 

models estimate that most cases in the EU and the USA originate from RTE deli 

meats (Sampedro et al., 2022). The heating step in the production of most deli 

meats makes intact cooked sausages safe for consumption. The high number of 

listeriosis cases associated with deli meats results from post-processing 

contamination of the finished product during slicing and packaging (Sheen & 

Hwang, 2008). Once L. monocytogenes is present on a given food, the intrinsic 

factors such as nutrient content, pH, water activity (aw), presence of antimicrobial 

compounds and extrinsic factors such as oxygen availability, storage and 

transportation conditions determine whether and at what rate the pathogen is able 

to grow. As a saprophyte, L. monocytogenes is ubiquitously present in the natural 

environment and has a unique ability to adapt and survive under challenging 

conditions, including food- related stress conditions (Bucur et al., 2018). They can 

grow in a wide pH range (4.7–9.2), at temperatures from —0.5 to 45 ◦C, in high 

salt concentrations, and in the presence of preserving additives like bacteriocins. 
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As facultative anaerobes, they may also grow under anaerobic conditions 

(Chaturongakul et al., 2008). 

Challenge tests on different food matrices show that phenotypic characteristics of 

L. monocytogenes vary on different food matrices (Spanu et al., 2014). Several 

studies have been conducted to establish genes and molecular mechanisms that 

underlie its adaptation to different niches to date: the alternative sigma factor σB 

acts as a global transcriptional regulator under many different stress conditions 

such as acidic, osmotic, or oxidative conditions, cold stress and nutrient 

limitations (Guerreiro et al., 2020). The response of L. monocytogenes to specific 

environmental stressors typically results in global changes in gene and protein 

expression profiles, and specific regulatory responses to pH, temperature, osmotic, 

oxidative, or abiotic stresses are well documented (reviewed in Bucur et al., 2018; 

Guerreiro et al., 2020). However, these studies were typically carried out in 

laboratory culture media. According to the limited studies done in food matrices, 

gene expression profiles of different L. monocytogenes strains varied significantly 

when they were grown in various foods (Olesen et al., 2010; Rantsiou et al., 

2012). There are also variations in the expression level of the stress response, 

virulence, and adhesion genes between laboratory media and food matrix 

(Rantsiou, Mataragas, et al., 2012). One draw- back of transcriptome studies is 

that a significant change in gene expression does not always significantly affect 

fitness (Feder & Walser, 2005). Therefore, screening random mutants for fitness 

effects of individual genes on the food matrix complements and expands these 

data. Most of the available data on the resilience of L. monocytogenes in the food 

environment has been established using well-characterized laboratory reference 

strains such as EGD-e and 10403S. However, these strains do not represent 

clinically important clonal complexes, nor do they cover the clinically relevant 

lineage II or serotype 4b, and passaging may have led to the loss of crucial 

pathophysiological characteristics (B´ecavin et al., 2014). Therefore, results 

should be interpreted not only considering the experimental conditions but also in 

the light of the genetic background of the bacterial strains used (Fux et al., 2005). 

In summary, there is a significant knowledge gap in our understanding of the 

interactions between clinically relevant strains of L. monocytogenes and the food 
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matrices they are most associated with. 

However, a better understanding of the molecular mechanisms behind the 

resilience of L. monocytogenes on different food matrices is crucial for the 

development of tailored and effective control methods. Therefore, the aim of this 

study was to elucidate the fitness contribution of individual genes of L. 

monocytogenes and to investigate their growth dynamics on a high-risk food 

matrix. We chose sliced Lyoner sausage as a model matrix because (i) Lyoner-

type sausages are very popular in Europe, (ii) as deli-meats they are often 

associated with listeriosis cases, and (iii) their similarities with South-African 

“polony” that was responsible for the world’s largest listeriosis outbreak in 2017–

2018 (Smith et al., 2019). In this study, to overcome the disadvantages of using 

reference strains, we chose to work with an outbreak, serotype 4b strain of L. 

monocytogenes (Weinmaier et al., 2013). 

 

2. Materials and methods 

 

2.1. Bacterial strains, and growth conditions 

 

The L. monocytogenes strain LL195 was used for the following experiments. This 

strain was isolated during an outbreak in Switzerland between 1983 and 1987, 

which was associated with Vacherin Mont-d’Or cheese (Weinmaier et al., 2013). 

L. monocytogenes LL195 was grown in Brain Heart Infusion (BHI, Merck KGaA, 

Germany) broth or on BHI agar (BHI + 1,5 % Agar Technical LP0012B, Oxoid 

Deutschland GmbH, Germany) unless otherwise stated. Escherichia coli Top10 

strain was used as a host for the cloning experiments and grown in Luria Bertani 

(LB, Carl Roth GmbH, Germany) Broth or on LB agar (LB, Carl Roth GmbH + 

1,5 % Agar Technical, Oxoid Deutschland GmbH, Germany) plates. 
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2.2. Cloning of the transposon library 

 

To clone the Tn-library in LL195, we used pJZ037 and the protocol described by 

Zemansky et al. (Zemansky et al., 2009). pJZ037 contains a 1423 bp transposon 

that integrates into “TA” recognition sites via a mariner C9 transposase. In short, 

the plasmid pJZ037 was prepared using the Qiagen QIAprep Spin Miniprep kit 

(Qiagen, Cat. 27,104). To obtain electrocompetent L. monocytogenes LL195, cells 

were grown in 50 ml BHI (Biorad, Hercules, USA) with 0.5 M sucrose (Fluka 

Honeywell, Charlotte, USA) at 37 ◦C with shaking at 200 rpm until they reached 

an OD600 of 0.2. After addition of 10 μg/ml penicillin (Sigma-Aldrich, St. Louis, 

USA) and further incubation for another 2 h at 37 ◦C with shaking, the culture was 

cooled on ice, centrifuged at 5000×g at 4 ◦C and washed twice with 1 M HEPES 

(Sigma-Aldrich, St. Louis, USA) with 0.5 M sucrose. The resulting pellet was 

resuspended in 0.4 ml 1 M HEPES with 0.5 M sucrose. Aliquots of 100 μl of 

these electrocompetent cells were used to electroporate 1 μg pJZ037 in 0.1 mm 

cuvettes and 1.8 kV for 5 ms, followed by the addition of 1 ml BHI and 

incubation for 1 h at 30 ◦C without shaking. Dilutions of the resulting cultures 

were plated on BHI plates containing 7.5 μg/ml chloramphenicol (Sigma-Aldrich, 

St. Louis, USA) and incubated at 30 ◦C (permissive for plasmid replication) for 72 

h. Colonies were then plated onto BHI agar plates containing 1 μg/ml 

erythromycin (Sigma-Aldrich, St. Louis, USA) and incubated at 43 ◦C (the non-

permissive temperature for plasmid replication) for 48 h to cure the plasmid. From 

these plates, colonies that were resistant to erythromycin but sensitive to 

chloramphenicol were determined by replica-plating, picked and subcultured into 

96-well plates. An addi- tional passage in BHI with 1 μg/ml erythromycin at 43 
◦C, 24 h and control to confirm no growth in BHI with 7.5 μg/ml chloramphenicol 

at 30 ◦C, 24 h were performed in this 96-well format. The L. monocytogenes 

LL195 genome size is 2,904,662 bp (Weinmaier et al., 2013), and we aimed to 

produce a transposon insertion at least every 1200 bp on average. Therefore, 

mutant collection was continued until a collection of at least 2420 mutans was 

achieved. The final transposon library contains a collection of 2640 individual 



IV Publication     37 

 

mutants, corresponding to a Tn insertion roughly every 1100 bp and was stored at 

—80 ◦C in 96-well plates in BHI containing 1 μg/ml erythromycin and 15 % 

glycerol (Sigma-Aldrich, St. Louis, USA). 

 

2.3. Screening of the transposon library on a German deli meat 

 

For the pre-screening, the frozen library was inoculated into 96-well plates (U 

bottom, Greiner BioOne, Germany), each containing 200 μl of BHI broth, using a 

96 pin-replicator made of stainless steel. The plates were then incubated overnight 

at 37 ◦C with continuous shaking at 250 rpm in a microplate shaker (88-861-024 

Fisherbrand™, Thermo Fisher, USA). Each plate contained three replicate wells 

with the wild type (WT) strain as a control. These pre-cultures were subcultured 

1:100 into fresh BHI in 96 well plates and incubated until the WT strain reached 

early log phase corresponding to OD600 of 0,3–0,4 and 108 CFU/ml (Bio- 

photometer 6131, Eppendorf SE, Germany) at 37 ◦C with 250 rpm shaking. This 

culture was used to inoculate miniaturized matrix pieces in 96-well plates. For the 

matrix, we chose slices of boiled chicken sausage called Lyoner (REWE BIO 

Hähnchen, REWE Markt GmbH, Germany). Using a custom-made stainless-steel 

punch (square base with 96 bars with diameter of 0.5 cm), pieces weighing an 

average of 45.3 mg were extracted and placed into individual wells of a 96-well 

plate. To ensure uniform positioning at the bottom of the wells, the plates were 

centrifuged (Eppendorf SE, Germany, Centrifuge 5804 R) at 500×g for 1 min. A 

total of 105 cells were inoculated on these slices of Lyoner and incubated at 8 ◦C 

for 48 h. Growth at the t0 time point of the inoculum was compared with the 

growth on the food matrices after incubation at 8 ◦C for 48 h by using the running 

drop method on oxford agar (OX, Merck KGaA, Germany) (Küchbacher, Cossart, 

& Pizarro-Cerda, 2021). For this, 10 μl of the liquid cultures were carefully 

dispensed at the top of Oxford agar plates and tilted to allow the drops to run the 

length of the plate in parallel tracks. In this manner, six samples can be plated on 

one plate. The plates were then incubated at 37 ◦C. Following the incubation 

period, the colonies were counted to determine the colony-forming units (CFUs). 
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The propagation of the mutant library was compared with the propagation of the 

WT strain, L. monocytogenes LL195. This method was used to identify candidate 

mutants whose growth on Lyoner differed from the WT. The phenotype of these 

candidates was confirmed in a larger volume and compared with that of the WT. 

For this, candidate mutants were grown on BHI agar plates overnight at 37 ◦C. A 

few colonies were transferred into 5 ml BHI broth in tubes (Test Tube Soda glass, 

100 × 16,00 × 0,8 - 1 mm, round bottom, VWR International GmbH, Germany) 

and were incubated overnight (MaxQ 6000, Thermo Fisher, USA) at 37 ◦C with 

continuous shaking at 200 rpm. They were then subcultured 1:100 into 5 ml fresh 

BHI broth and incubated until the WT strain reached early exponential phase 

corresponding to OD600 of 0, 3–0,4 corresponding to roughly 108 CFU/ml at 37 ◦C 

with 250 rpm shaking. Two hundred microliters of the main culture were 

inoculated onto a slice of Lyoner (10 g, diameter of each slice was 9,3 cm), placed 

in sterile petri dishes (633,180, Greiner BioOne, Germany), and incubated at 8 ◦C 

for 48 h. Quantification was performed on oxford agar (Merck KGaA) plates that 

were incubated at 37 ◦C for 24 h. These larger volume screenings were repeated 

three times. 

 

2.4. Identification of transposon insertion sites in candidate mutants 

 

In candidate mutants with a confirmed phenotype on Lyoner, candidate genes 

were identified by determining the exact location of the Tn in the genome using a 

slightly modified, nested PCR protocol as described in (Zemansky et al., 2009). 

Primers used to identify the exact location of transposon are listed in 

Supplementary Table 1. A colony touchdown PCR was performed using the Tn1 

and Arb1 primers. The PCR mixture contained 0.5 U of Taq DNA Polymerase 

(GoTaq® DNA Polymerase, Promega Corporation, USA), 1X GoTaq DNA 

Polymerase Buffer, 200 μM of each dNTP (Meridian Bioscience Inc., USA) and 

0.2 μM of each primer in a final volume of 50 μl. The Touch-down PCR program 

was designed as follows: pre-denaturation at 95 ◦C for 5 min, followed by 16 

cycles of denaturation at 98 ◦C for 30 s, primer annealing starting at 48 ◦C with a 1 
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◦C decrease per cycle for 30 s, and elongation at 72 ◦C for 2 min. This was 

followed by an additional 16 cycles of denaturation at 98 ◦C for 10 s, primer 

annealing at 61 ◦C for 30 s, and elongation at 72 ◦C for 2 min, and a final 

extension at 72 ◦C for 5 min. The products were cleaned up with the QIAquick® 

PCR Purification Kit (cat. No. 28104, QIAGEN GmbH, Germany) following the 

manufacturer’s protocol. 1 μl of these PCR products was employed as templates 

for a second PCR which is performed to increase specificity. The second PCR 

mixture was prepared in the same manner as the first PCR but this time with the 

primers Tn3 and Arb2. The second Touch-down PCR program was designed as 

follows: pre-denaturation at 98 ◦C for 3 min, followed by 20 cycles of 

denaturation at 98 ◦C for 10 s, primer annealing starting at 60 ◦C with a 0,5 ◦C 

decrease per cycle for 30 s, and elongation at 72 ◦C for 2 min. This was followed 

by an additional 20 cycles of denaturation at 98 ◦C for 10 s, primer annealing at 50 
◦C for 30 s, and elongation at 72 ◦C for 2 min, and a final extension at 72 ◦C for 5 

min. 

Subsequently, all samples were sequenced (Eurofins Genomics Europe Shared 

Services GmbH, Germany). The resulting sequences were aligned to the LL195 

genome to determine the transposon insertion sites (Geneious Prime, Biomatters 

Inc., USA). Among those confirmed candidate genes, we selected candidates for 

the creation of in-frame, non-polar deletion mutants according to the following 

criteria: genes that were identified with several independent Tn insertions, genes 

that belong to a pathway that was identified as relevant several times, and, if 

applicable, genes in processes that might offer the potential for food safety 

interventions. 
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2.5. Creation of in-frame deletion mutants 

 

To exclude polar effects and multiple transposon insertions, in- frame, non-polar 

mutants of the candidate genes were generated in a LL195 background. To 

generate in-frame deletion mutants by allelic replacement, pKSV7 (Smith & 

Youngman, 1992) and pMAD (Arnaud et al., 2004) suicidal plasmids were used. 

The genomic DNA of L. monocytogenes LL195 was isolated by using the 

ISOLATE II Genomic DNA Kit (Bioline GmbH, Germany). The quantity and the 

quality of the genomic DNA was measured by nanophotometer (NP80-Mobile, 

SN M81074, IMPLEN GmbH, Germany). Mutants were created using splicing by 

overlap extension (SOE). Two separate PCRs were performed to amplify the 

upstream and downstream regions of each candidate gene using primers shown in 

Supplementary Table 2. The PCR mixture contained 1× of Q5 High-Fidelity 2× 

Master Mix (New Englands Biolabs GmbH, Germany), and 0.5 μM of each 

primer in a final volume of 50 μl. The PCR program was designed as follows: pre-

denaturation at 98 ◦C for 30 s, followed by 35 cycles of denaturation at 98 ◦C for 

10 s, primer annealing at 55 ◦C for 30 s, and elongation at 72 ◦C for 20 s with a 

final extension at 72 ◦C for 2 min.  

PCR products were purified with the QIAquick PCR Purification Kit according to 

manufacturer’s instructions. Subsequently, overlap extension PCR was performed 

using the purified fragments as templates, resulting in the fusion of these 

fragments. The PCR mixture contained 1× of Q5 High-Fidelity 2× Master Mix 

(New Englands Biolabs GmbH, Germany), and 0.5 μM of each primer (Primer A 

and Primer D) in a final volume of 50 μl. The PCR program was designed as 

follows: pre- denaturation at 98 ◦C for 30 s, followed by 35 cycles of denaturation 

at 98 ◦C for 10 s, primer annealing at 59 ◦C for 30 s, and elongation at 72 ◦C for 40 

s and a final extension at 72 ◦C for 2 min. 

The final PCR products were ligated into pMAD (candidates: hypothetical protein 

2, Sau3AIM), at the BamHI-HF and NcoI-HF restriction sites (New England 

Biolabs GmbH, Germany) or into pKSV7 (candidates: pbp-B, purB, DNA binding 

protein, hypothetical protein 1, Yham), at the SacI-HF and SalI-HF restriction 
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sites (New England Biolabs GmbH, Germany). The ligated products were 

introduced into E. coli Top10 electrocompetent cells by electroporation. 

Transformed cells were plated on LB with ampicillin (100 μg/ml) agar and 

positive colonies were screened by PCR for the presence of the insert and 

sequenced. Plasmids with the correct insert were isolated from E. coli using the 

Qiagen QIAprep® MiniPrep Kit. These plasmids were electroporated into L. 

monocytogenes LL195 and transformants were selected on BHI + 

chloramphenicol (10 μg/ml, Carl Roth GmbH, Germany) for pKSV7 and casein-

peptone soymeal-peptone broth (TSB, Merck KGaA, Germany) + erythromycin (5 

μg/ml, Merck KGaA, Germany) + X-gal (50 μg/L) for pMAD. 

For pKSV7: A few colonies from the transformant plates were selected and 

propagated in BHI + chloramphenicol (10 μg/ml) medium for 5–6 generations at 

42 ◦C with shaking at 70 rpm for plasmid integration. Colonies in which the 

plasmid had chromosomally integrated in 

L. monocytogenes were chosen from those that grew on BHI + chloramphenicol 

(10 μg/ml) agar plates. These selected colonies were further propagated in BHI 

without antibiotics at 30 ◦C with shaking at 70 rpm for at least 14 generations to 

eliminate the plasmid. Several colonies were screened to detect the loss of 

chloramphenicol resistance through replica plating on both BHI + 

chloramphenicol (10 μg/ml) and BHI plates. Among those displaying 

chloramphenicol sensitivity, identification of individuals harboring a mutant allele 

within the chromosome was achieved using PCR with A and D primers and 

subsequently confirmed by sequencing. 

For pMAD: A few colonies from the transformant plates were chosen, pooled, and 

cultured in TSB + erythromycin (5 μg/ml) at 37 ◦C with shaking at 120 rpm for 5 

h. Subsequently, the temperature was shifted to 42 ◦C, and incubation continued 

overnight to force the integration of the plasmid into the LL195 chromosome. 

Blue colonies, in which the plasmid had chromosomally integrated in L. 

monocytogenes, were chosen from those that grew on TSB + erythromycin (5 

μg/ml) and X-gal (50 μg/L) agar plates. These selected colonies were further 

propagated in TSB without antibiotics at 37 ◦C with shaking at 120 rpm for at 
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least 14 generations to eliminate the plasmid. Several white colonies were 

screened to detect the loss of erythromycin resistance through replica plating on 

both TSB + erythromycin (5 μg/ml) and TSB plates. Among those displaying 

erythromycin sensitivity, identification of individuals harboring a mutant allele 

within the chromosome was achieved using PCR with A and D primers and 

subsequently confirmed by sequencing. All in-frame deletion mutants were stored 

at —80 ◦C in 35% glycerol. 

 

2.6. Confirmation of the phenotype using in frame deletion mutants 

 

Seven out of ten in-frame deletion mutants were successfully created: DNA 

binding protein, hypothetical protein 1, Yham, hypothetical protein 2, Sau3AIM, 

pbp-B, and purB. These were then used to confirm the phenotype on 10 g slices of 

Lyoner, using the same protocol as described for large volume confirmation 

screening of the transposon mutants above. However, this time, the main cultures 

were prepared in culture tubes containing 5 ml of BHI medium. To determine the 

effect of temperature, these experiments were carried out at 37, 25 and 8 ◦C in 

BHI and on Lyoner, separately and repeated three times. 

 

2.7. Scanning electron microscopic (SEM) imaging 

 

The in-frame deletion mutants Sau3AIM, pbp-B, and purB strains exhibited 

significant differences compared to the WT, and we followed up on the hypothesis 

that the mutations may cause morphological changes with imaging. The strains 

were cultured in 5 ml BHI overnight at 37 ◦C with shaking. These pre-cultures 

were diluted 1:100 into fresh BHI and incubated at 37 ◦C with shaking until the 

OD600 reached 0,3–0,4 which is the exponential phase of the culture. These 

cultures were inoculated into fresh BHI and incubated at 12 ◦C for 48 h. One 

milliliter of each 37 ◦C and 12 ◦C cultures were pelleted and washed with PBS 
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twice and then fixed by resuspending the cells in equal amounts of 2% 

paraformaldehyde (Alfa Aesar GmbH & Co. KG, Germany) and incu- bating at 

room temperature for 2 h. The samples were stored at 4 ◦C until imaging. One 

drop of liquid samples was coated with a gold/palladium layer (approx. 2 nm) in a 

sputter coater and examined under high vacuum conditions in a field emission 

SEM (Philipps XL 30SFEG, Netherlands) at 5 KV using the in-lens secondary 

electron detector. These samples were also visualized by Gram staining under the 

light microscope. 

 

2.8. Data analysis 

 

All analyses were performed in RStudio version 2023.09.1 + 494 (RStudio Team, 

2015) using the packages lme4 version 1.1–34 (Bates et al., 2015), sjPlot version 

2.8.15 (Lüdecke, 2023), dplyr version 1.1.2 (Wickham, 2011) and ggplot2 version 

3.4.2 (Wickham, 2016). To assess the effect of individual in-frame deletion 

mutants on the fitness of the strain a linear mixed effect model was calculated 

with lme4. It models log10 fold changes (defined as the log10 CFU/g or ml 

difference before and after the relevant stress condition) as a function of the 

mutant strain, temperature (8 ◦C vs 25 ◦C) and medium (Lyoner vs. BHI). An 

artificial variable created from the combination of the biological replicate, mutant 

and temperature was used as a random effect in the model to control for 

differences between experimental replicates. To verify that all in-frame deletion 

mutants had the same growth rate in BHI, an ANOVA was performed on the time 

it took the individual strains to reach an OD600 of 0.4. 
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3. Results 

 

3.1. Phenotype of the L. monocytogenes LL195 transposon insertion library on 

Lyoner 

 

In this study, we screened almost 2640 transposon insertion mutants on a 

miniature Lyoner model. This initial small volume screening revealed that while 

the WT strain was able to grow on Lyoner at 8 ◦C (1,88 log10 CFU/g ±0,23), the 

growth of 106 mutants was reduced by at least 0,5 log10 CFU/g or they showed 

no growth on Lyoner compared to the WT strain, suggesting that the genes 

affected by the transposon insertion might be important for growth on Lyoner. 

Additionally, 16 mutants exhibited better growth on Lyoner compared to the WT 

strain, suggesting that the genes affected in these mutants might hinder growth on 

Lyoner. To efficiently handle the large number of mutants in the library, we 

initially conducted a small volume screening. This small volume screening 

allowed us to quickly obtain an initial overview of the mutants’ growth patterns 

and identify potential candidates that exhibited notable differences in growth on 

Lyoner compared to the WT strain. This pre-screening process was essential in 

prioritizing the most promising mutants for subsequent analysis in a larger 

volume. As a next step, we performed a second, larger volume screening on 

Lyoner with a total of 122 candidate mutants in triplicate. 

In the subsequent larger volume screening, no significant difference in growth 

was found among the 16 mutants that had initially demonstrated enhanced growth 

compared to the WT strain on Lyoner during the small volume screening. 

However, out of 106 candidate mutant strains that initially exhibited reduced, or 

no growth compared to the WT strain, 13 mutants were confirmed to have a 

negative effect on the growth of the respective strains on Lyoner (Table 1). The 

fact that genes, sau3AIM and pbp-B, and the promoter region of the DNA binding 

protein were hit by several transposon insertions confirmed the feasibility of the 

method. 



IV Publication     45 

 

 

3.2. Identification of the candidate genes 

 

Transposon insertion sites of the candidate genes were identified using a slightly 

modified nested PCR protocol as described by (Zemansky et al., 2009). The 

localization of the transposon insertion sites, and their genetic context is shown in 

Fig. 1. 

 

3.3. Growth profiles of the in-frame deletion mutants 

 

To confirm the observed phenotypic changes in the mutants, we created in-frame 

deletion mutants by SOE PCR and screened them on Lyoner. Among the initial 

thirteen confirmed candidates, there were several that were located within the 

same genes, resulting in ten candidate genes (Fig. 1). Out of these, a total of 7 in-

frame deletion mutants (DNA binding protein, hypothetical protein 1, Yham, 

hypothetical protein 2, Sau3AIM, pbp-B, and purB), were successfully created. 

Despite several attempts to create in-frame deletion mutants for manY, manZ and 

prsa2 using pKSV-7 and pMAD, these efforts remained unsuccessful. 

All seven in-frame mutants had the same growth rate as the WT in BHI at 37 ◦C 

and took an average of 3.32 h (sd = 0.2 h) to grow to an OD600 of 0.4 (p-value for 

the comparison of growth time to OD600 of 0.4 by mutant: 0.20). 

While none of the seven in-frame mutants showed a growth defect at 37 ◦C in 

BHI, the sau3AIM (p < 0.01), pbp-B (p < 0.01) and purB (p = 0.04) mutants were 

impaired when grown under the tested stress conditions (Fig. 2). 

The growth defect of the sau3AIM and pbp-B mutants was temperature dependent, 

since the sau3AIM and pbp-B mutants showed reduced fitness in BHI at 8 ◦C 

compared to the WT. This growth defect was also matrix dependent, since these 

mutants showed reduced fitness on the   
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Table 1 

Genes that affected L. monocytogenes LL195 fitness on Lyoner. 

Mutant 

Name 

 Locus Tag Interval Disrupted 

Gene 

Protein Name  Growth 

Difference 

Compared to WT 

(log reduction) 

Function 

P28C2 

P28C3 

P28C1

0 

P21G1

1 

 BN389_03290 

 

 

BN389_04850 

346,524 … 

347,923 

 

493,081 … 

sau3AIM 

 

 

pbp-B 

Cytosine Specific 

DNA Modification 

Methlytransferase 

 

Penicillin Binding 

Protein 

 No Survival 

 

 

No Survival 

Methylates C on GATC sequence 

and protect the host DNA from 

cleavage 

 

Has a role in the cell wall assembly, 

cell 

P30C4 

P29H8 

  

BN389_01150 

495,132 

115,272 … 

 

manY-manZ 

 

Phosphoenol-

  

0,82 ± 0,2 

division and cell wall reshaping 

A major carbohydrate active 
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pyruvate- transport system, 

 

 

 

P1B3 

 BN389_01160 

 

 

BN389_7980 

116,078, 

116,100 … 

117,011 

796,753 … 

 

 

 

Hypothetica

l 

dependent sugar 

phosphotransferase 

system 

 

– 

  

 

 

0,76 ± 0,07 

involves in mannose transport 

 

 

Similar to transcriptional regulators 

of the 

 

P24A5 

  

BN389_01040 

797,505 

99,035 … 

Protein 1 

Hypothetica

l 

 

– 

  

0,72 ± 0,16 

GnTr family in L. monocytogenes 

Similar to HisZ, a regulatory 

subunit of the 

 

P18F2 

  

BN389_27,880 

104,914 

2,850,688 

… 

Protein 2 

DNA 

Binding 

 

– 

  

1,29 ± 0,40 

ATP phosphoribosyltransferase 

Similar to XRE family 

transcriptional 

P16F1

0 

  

BN389_22,520 

2,851,515 

2,301,560 

protein 

prsA2 

– 

Post translocation 

  

2,18 ± 0,61 

regulator 

Promotes the activity and stability 
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P16E1 … chaperone of 2 

 

P27B9 

  

BN389_18,000 

2,302,441 

1,826,027 

… 

 

purB 

 

Adenylosuccinate 

lyase 

  

1,11 ± 0,19 

virulence factors in L. 

monocytogenes 

Takes part in the purine 

biosynthesis pathway, 

 

 

P16E1 

  

 

BN389_22,530 

1,824,717 

 

2,303,471 

… 

 

 

yham 

 

 

– 

  

 

2,18 ± 0,61 

affect the colonization ability of 

L. monocytogenes in 

gastrointestinal tract 

3′ to 5′ exonuclease activity 

   2,302,482      
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Lyoner matrix at both temperatures compared to the WT. (Fig. 3). 

On the other hand, the purB mutant had a fitness effect that was only apparent 

while growing on Lyoner matrix as shown by its significantly lower mean log fold 

change on Lyoner compared to the WT at both 8 ◦C and 25 ◦C. This mutation did 

not affect fitness in a temperature-dependent way, since its growth was the same 

as the WT in BHI at 37 ◦C and 8 ◦C. 

 

3.4. Morphology of the mutant strains compared to the wild type 

 

Given the growth differences of the pbp-B, sau3AIM and purB mutant under some 

or all tested stress conditions, we wondered whether these mutations might cause 

morphological changes in the cells. This hypothesis was based on the fact that 

PBP-B is involved in cell wall synthesis, and PurB is part of the purine synthesis 

pathway that has a broad involvement in cellular processes including the 

expression of cell wall components. 

A Gram-stain revealed that while pbp-B mutant and WT cells grown at 12 ◦C and 

37 ◦C looked normal, purB mutants had increased frequency of elongated cells 

when they were grown at 37 ◦C, and in sau3AIM mutants elongated cells were 

observed at both temperatures. 

We therefore proceeded to analyze the cells grown at 37 ◦C by SEM (Fig. 4). 

These images show a high frequency of elongated cells of purB mutants that seem 

to have formed rudimentary division septa without fully separating the two 

daughter cells. While some incomplete divisions were also visible in the sau3AIM 

mutant cells, there was a high frequency of very long cells absent of any visible 

signs of attempts to divide. In contrast, the pbp-B mutant did not show any 

morphological differences compared to the WT. 
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4. Discussion 

 

4.1. To ensure reliable results, independent confirmation of small volume 

screening of a transposon library is necessary 

 

Out of 122 candidate mutants from the initial screen in the miniature “Lyoner 

model”, 13 mutants were confirmed to have a phenotype when repeated on a 

larger scale (corresponding to a confirmation rate of 0.15). In comparable studies 

using high-throughput screening of individual transposon mutant libraries in L. 

monocytogenes followed by confirmation in larger volumes, comparable 

confirmation rates of 0.12 (range: 0.03–0.19) (Alonso et al., 2014; Hingston et al., 

2015; Mains et al., 2021; Narayanan et al., 2022) were observed. Potential reasons 

for the relatively low confirmation rates possibly lay in the infeasibility of 

replicates in large screens and small volumes causing more variation, or a 

combination of the two. This highlights the need for confirmation of results from 

transposon insertion libraries in larger volumes and with in-frame deletion 

mutants. Potential reasons for the fact that we were unable to create three (manY, 

ManZ and prsa2) out of the 10 target mutants (Fig. 1) include the possibility that 

the transposon inserted in a way that left some residual function intact, whereas a 

in-frame deletion mutant would abolish all activity. It is also possible that the 

transposon insertion left some cis- or trans-acting regulatory sequences intact that 

we may have attempted to delete in the in-frame mutant. Strain-specific effects 

may be possible, since a prsa2 mutant has been successfully created by others in 

L. monocytogenes 10403S (Alonzo & Freitag, 2010). In other organisms, a 

manXYZ mutant was viable in Klebsiella pneumoniae (Bieler et al., 2006). 
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4.2. The sau3AIM and pbp-B in-frame mutant showed a temperature- dependent 

phenotype 

 

While the sau3AIM and pbp-B deletion mutants grew at the same rate to OD600 as 

the WT at 37 ◦C, the mutations affected fitness under all tested stress conditions 

compared to the WT. Taking these results into 

consideration, we concluded that these mutations cause a general growth defect 

under stress conditions. L. monocytogenes encodes five high-molecular-weight 

penicillin binding proteins (HMW PBPs): PBP- A1, PBP-A2, PBP-B1, PBP-B2, 

PBP-B3, that are all present in the LL195 genome (where they are annotated as 

pbpF, pbpB, ponA, pbpC and pbpC) (Weinmaier et al., 2013). The one identified 

here was annotated as penicillin-binding-protein-B (pbp-B) in LL195 and 

corresponds to pbc-3/lmo0441 in EGDe and LMRG00133 in 10403S. In 

agreement with other authors (Rismondo et al., 2015), the in-frame deletion 

mutant for pbp-B did not have a discernible phenotype when grown in BHI at 37 
◦C. A deletion of the Bacillus subtilis homologue of pbp-B, pbpC, did not produce 

a phenotype either (Murray et al., 1996). However, to our knowledge none of 

these authors tested their mutants under cold stress. In this study, the pbp-B 

mutant showed at least a 2.5 log10 CFU/g reduction when incubated under any 

condition we tested under cold temperatures. This effect seems to be only present 

at cold temperatures, since Rismondo et al. (Rismondo et al., 2015) did not 

observe reduced 
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Fig. 1. Localization of transposon insertion sites. Upper green arrows represent 

sites of transposon insertions, and numbers above these arrows correspond to 

mapped transposon locations. 
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growth of a pbp-3 mutant in EGD-e at 42 ◦C compared to 37 ◦C, and in accordance 

with this study the pbp-B mutant grown at 37 ◦C also showed normal morphology 

in SEM images (Fig. 4). A possible reason for this is that PBP-B might play a role 

in the reorganization of the cell wall during cold stress, and it might be interesting 

to see whether the observed cold phenotype aggravates in a cold-shock protein 

mutant background. Consistent with this theory suggesting a role in cell wall 

organization but not in cell division, PPB-3 localized to the cell wall, but not to 

the di- vision septum (Guinane et al., 2006; Rismondo et al., 2015). Since PPB-3 

has no transglycosylase domain (Rismondo et al., 2015), its role is solely 

 

 

Fig. 2. Linear mixed effect model estimates for log10 fold changes of the in- frame 

mutants after growth for 48 h on Lyoner at 8 ◦C and 25 ◦C, as well as in BHI at 8 
◦C. Data points for mutants denoted by an asterisk were significantly different 

from the WT grown under the same condition. Data points for medium and 

temperature denoted with an asterisk were significantly different from the 

respective other condition, e.g. growth on Lyoner or growth at 8 ◦C. 
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Fig. 3. Log fold change of the in-frame mutants after growth for 48 h on Lyoner at 

8 ◦C and 25 ◦C, as well as in BHI at 8 ◦C. Data points denoted by an asterisk were 

significantly different from the WT grown under the same condition. 

 

in the transpeptidation of peptidoglycan. Possibly, under standard lab- oratory 

conditions there might be functional redundancies between the different HMW 

PBPs, as suggested and demonstrated by other authors (Guinane et al., 2006; 

Rismondo et al., 2015) and supported by the normal morphology of the cells in 

SEM images. In this context, only PBP B2 has been demonstrated to be essential 

(Guinane et al., 2006; Rismondo et al., 2015). This redundancy may not be 

effective enough to balance the effect of a pbp-B mutation under the stress 

conditions tested here. Future studies on the expression of the different pbp’s 

under cold conditions may clarify this question. 

The sau3AIM gene encodes the methylase of a restriction- modification system 

that was first described in Staphylococcus carnosus (Seeber et al., 1990). 

Sau3AIM methylates the cysteine in the recognition site GATC which in turn 

prevents cleavage by the enzyme Sau3AI. In particular, L. monocytogenes strains 

with serotype 4b showed a high prevalence of the sau3AIM restriction-

modification system in their genome (Yildirim et al., 2004), fitting with its 

presence in LL195 that is also a serotype 4b strain (Weinmaier et al., 2013). 
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One possible explanation for the reduced fitness of the sau3AIM mutant at low 

temperatures may be that the activity of the cognate restriction enzyme Sau3AI is 

temperature dependent. We might speculate that the L. monocytogenes Sau3AI is 

not active at higher temperatures and therefore cells might be able to tolerate the 

missing methylation by Sau3AIM due to the lack of restriction activity. This is, 

however, contradicted by the fact that commercially available Sau3AI restriction 

enzymes have a temperature optimum at 37 ◦C. Whether the L. monocytogenes 

Sau3AIM enzyme is an exception would have to be investigated. 

Temperature-dependent R-M systems have been described in L. monocytogenes 

(Jae-Won & Sophia, 2009) as well as in other organ- isms, e.g., Lactococcus lactis 

(O’Driscoll et al., 2004) and Streptococcus lactis (Sanders & Klaenhammer, 

1984). In L. monocytogenes, a temperature-dependent phage resistance that is 

mediated by a temperature-dependent R-M system (LmoH7) with the recognition 

site GTATCC (Kim et al., 2012) has been shown in ECII strains (Jae-Won & 

Sophia, 2009). In these strains, the optimal expression of the R-M system was at 

19 ◦C and decreased with increasing temperatures. 

Whether there is a link between the temperature-dependent phenotype of the 

sau3AIM and pbp-B mutant with established temperature- dependent regulatory 

systems in L. monocytogenes remains to be investigated. For instance, virulence 

gene expression in L. monocytogenes is regulated via a temperature-sensitive 

riboswitch in the transcriptional regulator PrfA that mediates virulence gene 

translation at host body 

temperatures of 37 ◦C, while this is suppressed at temperatures below 30 ◦C (Loh 

et al., 2009). It would be interesting to see whether the temperature-dependent 

effect of the sau3AIM and pbp-B mutants is affected in a PrfA* background where 

PrfA is constitutively active (Vega et al., 2004) or in a prfA null mutant. However, 

in the latest screen of the PrfA regulon at 37 ◦C, neither sau3AIM nor pbp-B were 

identified as PrfA dependent (Henderson et al., 2020). 
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4.3. PurB is important for growth on Lyoner 

 

In contrast, the negative fitness effect of a purB deletion was only evident when 

the strains were grown on Lyoner, but not in BHI at either 8 or 37 ◦C. We 

therefore concluded that the product of purB is positively affecting growth on 

Lyoner, while it is not needed for efficient growth in BHI at optimal as well as 

cold temperatures. In L. monocytogenes, purB expression is transcriptionally co-

regulated by the alternative sigma factors SigB and SigL at 3 ◦C in BHI but not at 

37 ◦C (Mattila et al., 2020). 

PurB is part of the purine biosynthesis pathway in L. monocytogenes (Ogata et al., 

1999). Purines are essential for DNA replication, RNA transcription, and protein 

translation. Either of these mechanisms might be responsible for the elongated 

phenotype of purB mutant cells (Fig. 4) that we observed when they were grown 

at 37 ◦C. Bacteria can either synthesize purines de novo by a metabolically costly 

pathway, or through salvaging pre-formed nucleobases from the environment. 

PurB catalyzes two reactions within the de novo purine synthesis pathway (KEGG 

RN: R01083, RN:R04559 (Kanehisa & Sato, 2020), both of which yield fumarate 

as a side product. The de novo purine synthesis pathway is relevant for bacterial 

fitness in environments that do not offer abundant nucleobases, such as the 

intracellular environment during infection. Accordingly, attenuated virulence of 

purine biosynthesis mutants has been demonstrated in L. monocytogenes (Faith et 

al., 2012) as well as in Salmonella Typhimurium (McFarland & Stocker, 1987), 

Brucella abortus (Alcantara et al., 2004), Brucella melitensis (Crawford et al., 

1996), E. coli (Shaffer et al., 2017) and Staphylococcus aureus (Connolly et al., 

2017). 

L. monocytogenes auxotrophs for purine biosynthesis have also shown severe 

fitness effects when grown in minimal medium supplemented with single carbon 

sources (Narayanan et al., 2022) and in porcine bile (Dowd et al., 2011). Since 

both Lyoner and BHI as growth substrates are based on meat that should offer an 
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abundance of exogenous nucleobases, it is unlikely that L. monocytogenes would 

meet a shortage of nucleobases that results in the need for de novo purine 

biosynthesis under the observed growth conditions. Also, a polar effect of the 

purB mutation on other genes within the same transcriptional unit can be excluded 

since the phenotype was confirmed in a in-frame, non-polar purB mutant. It is 

possible 

 

 

 

Fig. 4. SEM images of the pbp-B, purB, sau3AIM mutants and the WT, grown at 

37◦ 

 

that the observed fitness effect of the purB mutant during growth on Lyoner is due 

to an inability to efficiently use the exogenous purines present in meat, the lack of 

fumarate that is produced by the reactions catalyzed by PurB or due to other, yet 

unknown pleiotropic effects of PurB. We therefore hypothesize that some 

difference between the growth condition in Lyoner and BHI triggers a fitness 

effect due to the absence of purB in the mutant. 

There are obvious differences in the composition and nutrient supply provided by 

a complex food matrix like Lyoner sausage and BHI as a laboratory medium. 
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Lyoner sausage is specified as a cured (1.6–1.9 % nitrite curing salts) cooked 

sausage containing tendon-free meat, a fat content of around 20%, and a pH of 6–

6.2, according to the German specifications for meat products (Landwirtschaft, 

2022). Carbon sources are limited in meat, which is addressed by supplementing 

BHI medium with glucose as a carbon source. 

Therefore, Lyoner in comparison to BHI has a lower pH (pH Lyoner: around 6, 

BHI: 7.4), higher fat and salt content (Lyoner: NaCl approximately 0.3 M NaCl, 

BHI: 0.08 M) and offers a lower abundance of carbon sources. In addition, 

various spices added to Lyoner sausage may exert stress on the microbial 

populations in Lyoner sausage (Liu et al., 2017). It is possible that either of these 

differences may cause the observed growth defect of the purB mutant. 

These differences may also affect the pathways responsible for purine import into 

the cell. In the absence of de novo purine synthesis in a purB mutant, L. 

monocytogenes would have to rely solely on the import of nucleobases via the 

purine salvage pathway. Several genes have previ- ously been shown to 

participate in this pathway: lmo 1845 (Krawc- zyk-Balska et al., 2021), lmo 1884 

(Krajewski et al., 2017), lmo 1885 (Knudsen et al., 2016), lmo0573 (Ellinger et 

al., 2023), pyrR (Knudsen et al., 2016), lmo2254 (Ledala et al., 2010), lmo0456 

(Fischer et al., 2022) and lmo1839/pyrP (Fischer et al., 2022). One might 

speculate that some of the specific conditions during growth in Lyoner may render 

this pathway ineffective and therefore be responsible for the observed phenotype. 

Some limited information is available on the regulatory mechanisms of the above 

genes. lmo 1845 (Wurtzel et al., 2012), lmo1885 and lmo0573 (Ellinger et al., 

2023) depend on riboswitches for their expression. Lmo1885 was differentially 

expressed after exposure to sublethal concentrations of tetracycline and co-

trimoxazole (Knudsen et al., 2016). Lmo0573 was downregulated under anaerobic 

conditions (Ferrari et al., 2017) and upregulated in BHI compared to during host 

infection (Eimerman, 2011). Lmo2254 was downregulated in biofilms (Assisi et 

al., 2021), in response to iron limitation (Ledala et al., 2010), and during acid 

exposure (Li, 2020). This last regulatory mechanism might hint towards the purine 

import pathway being less effective at pH 6.4 than pH 7.4. 
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In summary, our study shows a role of the methylase Sau3AIM and the penicillin 

binding protein Pbp-3 for the growth of L. monocytogenes under food-associated 

stress conditions and of the adenylsuccinate lyase purB specifically for efficient 

growth of L. monocytogenes LL195 in Lyoner, a food matrix that is highly 

relevant as a vehicle for human infections with L. monocytogenes. This effect may 

in the future be exploited for highly targeted interventions to increase food safety. 

For instance, small molecule libraries of substances that are generally recognized 

as safe (GRAS) by the FDA may be screened for their effect on purB expression 

and provide an inhibitor that could serve as a food additive to reduce the fitness of 

L. monocytogenes in Lyoner and similar products like Polony. Currently, the use 

of designer temperate phage is being discussed as a potential strategy to mitigate 

the antibiotic resistance crisis in human therapy (Jaroszewicz et al., 2022). Once 

integrated into the host genome, these designer prophages are engineered to be 

unable to excise from the host genome to repress phage-mediated spread of 

antibiotic resistance, while they express repressors of virulence gene expression 

and therefore decrease virulence of the host bacteria. These same mechanisms 

may also be put to future use to reduce the fitness of pathogens in food and to 

complement the use of strictly lytic phage, thus broadening the available tools. 

However, these novel strategies are currently only applicable in experimental 

setups due to a lack of data on the long-term interaction of designer prophages 

with their hosts as well as regulatory hurdles. 
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V. DISCUSSION 

Given the severe health implications of listeriosis and the widespread presence of 

L. monocytogenes in the environment, it is crucial to understand the factors that 

influence bacterial growth and survival under various environmental conditions, 

enabling the development of effective strategies to prevent and control 

L. monocytogenes contamination in food production and processing environments. 

In the context of this thesis, the genetic factors contributing to the growth of 

L. monocytogenes on a German deli meat, called Lyoner, were investigated using 

a transposon mutagenesis library in an outbreak strain of L. monocytogenes. By 

employing an outbreak strain and a relevant food matrix, we aimed to overcome 

the limitations associated with laboratory reference strains and laboratory-based 

food models, to obtain results more representative of real-world situations.  

Our high-throughput screening approach of this transposon mutagenesis library of 

the outbreak strain LL195, consisting of 2640 individual mutants, identified 122 

candidate mutants with confirmed phenotypes on Lyoner. To optimize the 

efficiency and cost-effectiveness of this process, initially a small-volume 

screening was performed. This approach enabled the rapid and cost-effective 

identification of potential candidates with observable phenotypes. While the 

small-volume screening was instrumental in simplifying the process, it is possible 

that some potential candidates may have been overlooked due to the limitations of 

this approach.  

This limitation could in the future be mitigated by the use of TnSeq (transposon 

sequencing). TnSeq is a high-throughput method that combines transposon 

mutagenesis with next-generation sequencing to systematically investigate the 

genotype-phenotype relationships (VAN OPIJNEN et al., 2009). It is a powerful 

technique that offers several advantages over traditional transposon (Tn) 

mutagenesis libraries for studying gene function and bacterial fitness. Tn-seq also 

enables high-throughput analysis, allowing researchers to simultaneously examine 

thousands of mutants within a single experiment (CAIN et al., 2020). This is a 

significant improvement over classic Tn mutagenesis libraries, where individual 

mutants typically need to be screened one at a time. At the beginning of this 

study, a Tn-seq library was not available for L. monocytogenes and we chose to 
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use the traditional transposon (Tn) mutagenesis library approach that yielded 

valuable results from screening this library on an RTE meat product in terms of 

food-pathogen interactions. A Tn-seq library in L. monocytogenes EGDe has since 

been established through collaboration with the Robert Koch Institute (FISCHER 

et al., 2022) under a DFG project. Future research involving screening the Tn-Seq 

library on Lyoner may reveal novel genes and mechanisms associated with 

L. monocytogenes stress response and growth, in addition to confirming the result 

of this thesis study. 

As discussed in the paper, among the 106 candidate mutant strains initially 

displaying reduced or no growth compared to the wild-type (WT) strain, 13 

mutants (listed in the publication as Table 1) were confirmed to have a negative 

impact on the growth on Lyoner, corresponding to a confirmation rate of 0.15 

after larger volume screening. This aligns with findings from similar studies 

(ALONSO et al., 2014; HINGSTON et al., 2015; MAINS et al., 2021; 

NARAYANAN et al., 2022). Analysis of transposon insertion sites in these 

confirmed candidates revealed that several candidates had mutations within the 

same genes, e.g., sau3AIM and pbp-B, along with the promoter region of a DNA 

binding protein. This confirmed the feasibility of the method and lead to the 

identification of a total of 10 candidate genes.  

Because these mutants were created using transposons, genes were rendered 

inactive by insertion of the whole transposon into the genome. While this reliably 

disrupts gene function, the method has downsides: it can not be excluded that 

these large insertion act in trans, e.g. via polar effects. And while statistically, 

only one insertion per cell should be present, mutants with multiple insertions 

cannot be excluded. To confirm that the observed phenotype was due to the 

mutation that we identified, clean deletion mutants of the candidate genes were 

cloned. We attempted  in-frame deletion mutants of the 10 candidate genes using 

either pMAD (ARNAUD et al., 2004), and in parallel if this failed pKSV-7 

(SMITH und YOUNGMAN, 1992) shuttle vectors. However, it was only possible 

to successfully create in-frame deletion mutants for 7 of the 10 genes. There may 

be several potential reasons why three of the 10 target mutants (manY, ManZ and 

prsa2) could not be created, as was detailed in the discussion section of the paper. 

Beyond this, larger gene sizes can represent technical challenges and reduce 

deletion efficiency. However, we excluded gene size as a limiting factor, as the 
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genes were of similar size as successfully created mutants. Both pMAD and 

pKSV-7 plasmids were used in the cloning: where one failed the other was 

attempted. For the successful mutants, we suspect that the success of one plasmid 

over the other was largely due to chance – they are  both derived from a common 

origin and share structural similarities (SMITH und YOUNGMAN, 1992; 

ARNAUD et al., 2004). Therefore, the failures are probably not attributable to 

differences between the plasmids themselves.  

A fitness effect was confirmed in clean mutants for pbp-B, sau3AIM and purB. 

Since all experiments were performed at refrigeration temperature to simulate the 

food environment, we aimed to exclude that these mutations caused a general 

growth defect at low temperatures. Thererfore, growth experiments were repeated 

on Lyoner and in rich medium at different temperatures. 

Penicillin-binding proteins (PBPs) are membrane-associated proteins that play a 

critical role in the biosynthesis of peptidoglycan (PG), the primary component of 

bacterial cell walls. The discovery and naming of these proteins are rooted in their 

unique ability to bind the β-lactam antibiotic penicillin, highlighting their essential 

function in maintaining bacterial cell integrity and the potential for exploiting 

their role in developing antimicrobial strategies (SHARIFZADEH et al., 2020). 

Although the pbp-B deletion mutant showed growth rates similar to those of the 

WT strain at 37 °C, the fitness of the mutant was noticeably impaired under all 

tested stress conditions compared to the WT. Considering the observed growth 

impairment of the pbp-B in-frame deletion mutant under various stress conditions, 

it was concluded that a general growth defect is caused by this mutation when the 

bacteria are exposed to various stress conditions.  

While previous experiments did not reveal significant phenotypic changes in pbp-

B mutants under normal growth conditions (MURRAY et al., 1996; RISMONDO 

et al., 2015), our study found a substantial reduction in colony-forming units 

(CFU) at cold temperatures. As indicated before, this cold stress-specific effect 

suggests a potential role for PBP-B in cell wall reorganization during cold stress, 

supported by its localization to the cell wall. The study highlights the need for 

further investigations into the expression patterns of different high-molecular-

weight penicillin binding proteins (HMW PBPs) under varying stress conditions 

to better understand functional redundancies and specific stress responses in 

L. monocytogenes. Further studies on the expression of the various PBPs under 
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cold conditions could provide more insights into this matter. 

Restriction-modification (R-M) systems are bacterial defense mechanisms that 

protect the cell from foreign DNA invasion, such as bacteriophages or plasmids. 

These systems consist of two essential components: a restriction enzyme and a 

methylase. Upon entry of foreign DNA into the cell, the restriction enzyme 

cleaves the unmethylated foreign DNA at specific recognition sites, rendering it 

non-functional and protecting the host cell from invasion. The host cell’s own 

DNA is protected by the methylase that methylates the recognition sites to protect 

them from cleavage by the restriction enzyme. R-M systems thus plays a crucial 

role in maintaining the integrity of the bacterial genome and provide precise 

cellular protection against genetic intruders (RODIC et al., 2017; SHAW et al., 

2023).  

The sau3AIM gene encodes a methylase involved in a restriction-modification 

system, methylating the cysteine in the GATC recognition site to inhibit cleavage 

by Sau3AI. This system is not present in all L. monocytogenes strains with a high 

association to  L. monocytogenes serotype 4b strains (YILDIRIM et al., 2004), 

including LL195. This underscores its association with specific serotypes and 

potential roles in genetic regulation within these strains.  

The sau3AIM deletion mutant grew at 37 °C at the same rate as the WT, reaching 

a similar OD of 600 for comparison. However, under cold stress conditions, the 

mutant exhibited a significant reduction in fitness, with no viable colonies 

detected. One potential explanation for the reduced fitness of the sau3AIM mutant 

at lower temperatures is the temperature-dependent activity of the Sau3AI 

restriction enzyme. Although commercially available Sau3AI enzymes typically 

function optimally at 37 °C, the possibility of L. monocytogenes Sau3AI having 

different temperature requirements warrants further investigation. This idea is 

supported by documented temperature-dependent restriction-modification systems 

in L. monocytogenes and other organisms, highlighting the need for detailed 

studies to understand the temperature-dependent behaviors of these systems, 

including potential exceptions to standard enzyme activity profiles. 

The potential correlation between the temperature-dependent phenotype of the 

sau3AIM and pbp-B mutants and established temperature-dependent regulatory 

systems in L. monocytogenes requires further investigation. For instance, 
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virulence gene expression in L. monocytogenes is controlled by a temperature-

sensitive riboswitch in the transcriptional regulator PrfA, which mediates 

virulence gene translation at host body temperatures of 37°C but is suppressed at 

temperatures below 30 °C (LOH et al., 2009). It would be worthwhile to 

investigate whether the temperature-dependent effect of the sau3AIM and pbp-B 

mutants is altered in a PrfA* background where PrfA is constitutively active 

(VEGA et al., 2004) or in a prfA null mutant. However, neither sau3AIM nor pbp-

B were identified as PrfA-dependent in a recent screen of the PrfA regulon at 37 

°C (HENDERSON et al., 2020). Cold-shock proteins (Csps) aid in adaptation to 

low temperatures through mechanisms that aid replication, transcription, and 

translation at low temperatures (SCHÄRER et al., 2013; MUCHAAMBA et al., 

2021). In addition to their well-established function in cold stress adaptation, Csps 

have been implicated in various other stress responses, highlighting their 

versatility and importance in bacterial survival. Csps can also regulate genes 

indirectly, e.g., by effects on transcriptional regulators. The Csp-dependent 

regulation of PrfA expression supports this idea, as the LIPI-1 genes in 

L. monocytogenes, which are controlled by PrfA, showed differential expression 

in the absence of Csps (SCHÄRER et al., 2013; MUCHAAMBA et al., 2021). In 

terms of the temperature dependent fitness effect of the tested genes, it may be 

interesting to consider the potential interactions between Csp and other regulatory 

proteins in L. monocytogenes. 

Purines are essential components of nucleic acids and play a vital role in various 

cellular processes, including DNA replication, RNA transcription, and protein 

translation (KUMARI, 2018). The proper functioning of the purine biosynthesis 

pathway, which includes purB, is crucial for maintaining the growth and 

metabolic activities of L. monocytogenes under different growth conditions 

(OGATA et al., 1999). The negative fitness effect of a purB deletion was 

noticeable only when the strains were cultivated on Lyoner, but not in BHI at 

either 8 or 37 °C. As a result, it was concluded that growth on Lyoner is positively 

influenced by the product of purB, while it is dispensable for efficient growth in 

BHI at optimal as well as cold temperatures. In L. monocytogenes, purB 

expression is transcriptionally co-regulated by the alternative sigma factors σB 

and σL at 3 °C in BHI but not at 37 °C (MATTILA et al., 2020). While σB 

regulates the expression of genes that mediate survival under acid stress, osmotic 
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stress, oxidative stress, cold stress and nutrient deficiency or energy stress 

(KAZMIERCZAK et al., 2003; SUE et al., 2004), σL contributes to 

osmotolerance and also provides some resistance against the antibacterial peptides 

(ROBICHON et al., 1997). One interesting avenue for future research would be to 

generate mutants in the purB gene within regulatory pathway null mutants, such 

as the sigB, sigL or prfA mutant. This approach would allow to investigate the 

intricate interplay between purB and the regulatory network in L. monocytogenes. 

By studying the impact of purB mutations in the absence of a functional regulator, 

we can gain deeper insights into how these two components collectively 

contribute to the bacterium's ability to adapt to various environmental conditions 

and regulate virulence factors. 

Future research may identify the exact mechanisms by which differences in 

growth conditions between Lyoner and BHI trigger a fitness effect in the purB-

mutant. Research into purB and other genes that are associated with this pathway, 

may delve deeper into elucidating the precise regulatory mechanisms governing 

these genes under various environmental conditions. Investigating the interplay 

between purB and other regulatory factors, such as alternative sigma factors or 

global regulators, could provide valuable insights into the broader regulatory 

network controlling purine biosynthesis. Since purB was found to be specifically 

crucial for the efficient growth of L. monocytogenes LL195 in Lyoner, one 

potential approach could involve screening small molecule libraries of substances 

that are generally recognized as safe (GRAS) by the FDA for their effect on purB 

expression. This could lead to the identification of inhibitors that could serve as 

food additives to reduce the fitness of L. monocytogenes in Lyoner and similar 

products like Polony. 
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VI. CONCLUSION AND OUTLOOK 

In conclusion, our study demonstrated the significant roles of the methylase 

sSau3AIM, the penicillin binding protein pbp-3, and the adenylsuccinate lyase 

purB in the growth of L. monocytogenes under food-associated stress conditions. 

Notably, purB was found to be specifically crucial for the efficient growth of 

L. monocytogenes LL195 in Lyoner, a food matrix that is highly relevant as a 

vehicle for human infections with L. monocytogenes. Future research should focus 

on the expression of the various PBPs under cold conditions and potential 

interactions between Csps and other regulatory proteins in L. monocytogenes in 

terms of the temperature dependent fitness effect of the tested genes. Generating 

mutants in the purB gene within regulatory pathway null mutants offers a 

promising approach to understanding how purB and regulatory networks 

collectively influence the bacterium's adaptation to diverse environments. The 

findings of this study along with the future research may pave the way for the 

development of targeted interventions to enhance food safety in the future.  
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VII. ZUSAMMENFASSUNG 

L. monocytogenes ist ein wichtiger lebensmittelassozierter Krankheitserreger, der 

weltweit zu Erkrankungen mit hohen Hospitalisierung- und Todesfallraten führt. 

Insbesondere die Fähigkeit zum Wachstum unter Kühltemperaturen und eine hohe 

Resilienz gegenüber typischen lebensmittelassoziierten Stressbedingungen 

machen dieses Pathogen zu einer Priorität für die Lebensmittelsicherheit. Der 

Erreger kann jahrelang in Betrieben persistieren und aus dem Betriebsumfeld in 

fertige Produkte gelangen. Vor allem ready- to- eat (RTE) Produkte bergen ein 

besonderes Risiko, da diese meist ohne weiteren Erhitzungsschritt roh verspeist 

werden. Von Challenge-tests ist bekannt, dass unterschiedliche RTE Lebensmittel 

sehr unterschiedliche Wachstumsbedingungen bieten und entsprechend vielfältige 

Anforderungen an die Fitness des Erregers stellen. Allerdings sind sehr viele der 

verfügbaren Daten zur Fitness unter Stress von L. monocytogenes anhand von 

Laborstämmen und in Labormedien ermittelt worden, die nur bedingt die reale 

Situation wiederspiegeln. Die vorliegende Arbeit untersucht die 

Wechselwirkungen eines klinisch relevanten Ausbruchsstamms (LL195) mit der 

Wurstsorte Lyoner. Unter Zuhilfenahme einer Transposon-Mutagenese-Bibliothek 

mit 2640 individuellen Mutanten wurde der Fitness-Effekt einzelner Gene 

untersucht. In einem ersten high-throughput screening gelang es 

vielversprechende Kandidatengene zu identifizieren, welche im Anschluss im 

Phänotyp bestätigt wurden. Von diesen wurden saubere Deletionsmutanten 

erzeugt und in weiteren Wachstumsexperimenten unter Kältestress und auf 

Lyoner separat, sowie unter einer Kombination beider Bedingungen bestätigt. 

Die Ergebnisse zeigen eine wichtige Rolle der Cytosin-spezifischen DNA-

Modifikationsmethyltransferase sau3AIM und dem Penicillin-bindenden Protein 

pbp-B-Gene bei der Anpassung auf Kältestress. Demgegenüber hat pur B, eine 

zentrale Komponente der Purinbiosynthese, einen spezifischen Fitnesseffekt auf 

das Wachstum von L. monocytogens auf Lyoner. 
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VIII. SUMMARY 

L. monocytogenes is an important food-borne pathogen that causes disease with 

high hospitalization and mortality rates worldwide. In particular, the ability to 

grow under refrigerated temperatures and high resilience to typical food-

associated stress conditions make this pathogen a priority for food safety. The 

pathogen can persist in companies for years and get into finished products from 

the operating environment. Ready-to-eat (RTE) products in particular pose a 

particular risk as they are usually eaten raw without any further heating step. It is 

known from challenge tests that different RTE foods offer very different growth 

conditions and accordingly place diverse demands on the fitness of the pathogen. 

However, much of the available data on the fitness of L. monocytogenes under 

stress has been determined using laboratory strains and in laboratory media, which 

only partially reflects the real situation. The present work investigates the 

interactions of a clinically relevant outbreak strain (LL195) with the Lyoner 

sausage variety. The fitness effect of individual genes was examined using a 

transposon mutagenesis library with 2640 individual mutants. In an initial high-

throughput screening, promising candidate genes were identified, which were 

subsequently confirmed in the phenotype. Of these, clean deletion mutants were 

generated and confirmed in further growth experiments under cold stress and on 

Lyoner separately, as well as under a combination of both conditions. The results 

show an important role of the cytosine-specific DNA modification 

methyltransferase sau3AIM and the penicillin-binding protein pbp-B-gene in 

adaptation to cold stress. In contrast, pur B, a central component of purine 

biosynthesis, has a specific fitness effect on the growth of L. monocytogenes on 

Lyoner. 
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