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Zusammenfassung
Gittereichtheorien spielen eine wichtige Rolle zum Verständnis von stark korrelierten Sys-
temen, besonders bei confinement (Einschluss) von Teilchen. Mit neuesten Quantumsimu-
latoren kann man Bausteine von solchen Systemen bereits untersuchen. Ein besseres theo-
retisches Verständnis von Gittereichtheorien und die Entwicklung von Methoden zur Un-
tersuchung von solchen Systemen mit Quantumsimulatoren ist also notwendig.

In dieser Arbeit untersuchen wir die paradigmatische eindimensionale Z2 Gittereichthe-
orie, in welcher dynamische Materie an ein Eichfeld gekoppelt ist. Die Besonderheit dieser
Z2 Gittereichtheorien ist der confinement von Teilchen (Partonen) in Dimere (Mesonen),
welcher durch eine nicht lokale Eichwechselwirkung vermittelt wird. Wir benutzen nu-
merische Berechnungen und komplementieren diese mit analytischen Argumenten.

Wir entwickeln eine vollständige Erklärung von confinement, und untersuchen mithilfe
verschiedener numerischer Methoden den confinement von Teilchen. Bei endlichen Tempe-
raturen beobachten wir einen glatten crossover zwischen confinement und freien Teilchen.
Die Mesonen formen sich schon bei höheren Temperaturen, allerdings ist Kohärenz durch
thermische Fluktuationen zerstört und die Teilchen erscheinen als frei. Diese Z2 Gittere-
ichtheorie könnte man im Quantumsimulator mit ultrakalten Atomen simulieren. Wir
untersuchen deswegen verschiedene geometrische Observablen die in solchen Systemen
einfach zugänglich sind.

Motiviert durch die Entwicklung von Quantumsimulatoren, untersuchen wir zudem
auch verschiedene Phasendiagramme von Z2 Gittereichtheorien und entdecken dabei in-
teressante Physik, die durch das Zusammenspiel von Eichfeld und lokalen Wechselwirkun-
gen entsteht. Wir entdecken eine Mott-Isolator-Phase von Partonen bei halber Füllung, und
eine Mott-Isolator-Phase von Mesonen bei zwei drittel Füllung, wenn die Materie eine glob-
ale U(1) Symmetrie hat. Wenn wir zusätzlich supraleitende Terme berücksichtigen, welche
die globale U(1) Symmetrie zerstören, erhalten wir ein System, was der Kitaev-Kette äh-
nelt. In diesem Regime, enthält die fast volle oder fast leere Kette ähnliche confinement-
Eigenschaften, weil die Teilchenfluktuationen, welche die Physik dominieren, von Parton-
paaren ausgeht. Wir zeigen daher, dass man den topologischen Übergang in Kitaev Ketten
als confinement-deconfinement Übergang in diesen Z2 Gittereichtheorien verstehen kann.

Wir entwickeln zusätzlich eine mean-field Theorie für die Z2 Gittereichtheorien, in
welchen wir einen Produktansatz wählen und damit die Materieteilchen von dem Eich-
feld entkoppeln. Das Gauss Gesetz wird durch Lagrange-Multiplikatoren eingesetzt. Die
mean-field Theorie kann wichtige Eigenschaften von exakten Z2 Gittereichtheorie erfassen,
einschließlich von confinement.

Schließlich erforschen wir auch das mixed-dimensional XXZ Model, welches zu einer Z2

Gittereichtheorie transformiert werden kann. Wir zeigen nun, dass sich in diesem System
auch Mesonen bei niedrigen Temperaturen formen, die einen Übergang zu freien Partonen
bei höheren Temperatur haben. Ein solches System kann man mit kalten Atomen mit
magnetischem Dipol simulieren.

Unsere theoretischen Ergebnisse ebnen den Weg für ein besseres Verständnis über die
Z2 Gittereichtheorien, insbesondere confinement. Damit sind unsere Ergebnisse auch rel-
evant für zukünftige Quantensimulationen, weil wir auch neue Methoden entwickeln um
die Z2 Gittereichtheorien in Experimenten zu untersuchen.
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Abstract

Lattice gauge theories have an important role in understanding strongly correlated sys-
tems in particular the problem of confinement. The recent progress in quantum simulation
already allows us to study simple building blocks of such systems. A better theoretical un-
derstanding of lattice gauge theories and how they could be studied in quantum simulation
platforms is thus needed.

In this thesis we study a paradigmatic one-dimensional Z2 lattice gauge theory (LGT),
where dynamical matter is coupled to a gauge field. The hallmark of this Z2 LGT is
confinement of particles (partons) into bound dimers (mesons), which is mediated through
a non-local gauge interaction. We employ numerical calculations using matrix-product
states, complemented by analytical arguments in certain limits.

We provide a general explanation of confinement, and study different probes of confine-
ment numerically. At finite temperature we uncover a smooth crossover from a confined
to a thermally deconfined regime. There we discover that mesons are in fact already pre-
formed at high temperature, where thermal fluctuations make them incoherent. The Z2

LGT could be implemented in state-of-the-art quantum simulators with cold atoms. For
that reason, we likewise study simple geometric probes of confinement, which are readily
accessible in quantum simulation experiments.

Motivated by the prospect of quantum simulation, we also study different phase dia-
grams of the Z2 LGT and uncover rich physics driven by the interplay of non-local gauge
mediated interaction and local repulsion between partons. We show that when matter has
a global U(1) symmetry, a parton Mott state can be stabilized at half filling and a meson
Mott state can be realized at two-thirds filling. By including superconducting terms, which
explicitly break the global U(1) symmetry of the matter, we obtain a system resembling a
gauged Kitaev chain. There, a nearly empty or fully filled lattices show similar confined
features, since matter fluctuations that dominate the physics in that regime are constituted
by parton pairs. We thus demonstrate that the topological transition in Kitaev chains can
be understood as a confinement transition.

In addition, we develop a mean-field theory for the Z2 LGT by employing a product
ansatz where we decouple matter and gauge fields, but the Gauss law is enforced on the
mean-field level via Lagrange multipliers. The mean-field theory qualitatively captures the
main features of the exact Z2 LGT, including confinement.

Finally, we study a mixed-dimensional XXZ model, which can be mapped to a Z2

LGT. We show that such systems can exhibit confined mesons at finite temperature, which
transition to a deconfined parton gas. Such systems can be simulated with cold atoms with
magnetic dipoles.

Our theoretical results pave the way towards a better understanding of Z2 LGTs, in par-
ticular confinement. All of this is relevant for future quantum simulations, as we develop
new probes suitable for experimental platforms.
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Introduction

Understanding matter has been one of the primary goals of modern physics. As with
any physical concept, there are different levels of understanding of how matter is formed
and why it exhibits certain properties [8]. The standard model is believed to explain the
smallest fundamental particles and forces between them, which bind them into known
matter [9]. Understanding these elementary building blocks of matter is generally in the
domain of particle or high energy physics. On a different level, condensed matter physics
deals with the interplay of many atoms that are made of such subatomic particles. There,
quantum mechanics gives rise to completely new phenomena compared to those seen in
elementary particle physics, and one does not care about quarks and gluons that bind the
atoms together [8, 9]. This interplay gives rise to exciting phenomena like high-temperature
superconductivity [10]. The observation that seemingly simple, or well known fundamental
laws of nature can give rise to different and new phenomena was nicely summarized in the
well known paper by P. W. Anderson [8].

An important concept to understand matter and its properties is confinement, which
appears in many different branches of physics. It is well known that quarks confine into
baryons and mesons [10, 11]. However, understanding how exactly and why does this even
happen is still not completely clear, despite tremendous progress over the past decades [9].
In condensed matter physics, pairing of particles arises in superconductivity, where in con-
ventional superconductors Cooper pairs [12] are bound states that form the conventional
BCS theory [13, 14]. The exact mechanism of high-temperature superconductors, where
the BCS theory fails, is still unknown [15]. However, there are indications that pairing of
electrons is an important ingredient [15]. Although in such context, one usually does not
talk about confinement, but merely about bound states, phenomena related to cuprates
can be discussed in terms of lattice gauge theories [16, 17]. In particular, topological tran-
sitions in condensed matter physics are often discussed in the context of confinement-
deconfinement transitions [17, 18]. Although Anderson would perhaps argue that these
phenomena emerge on different scales and while they certainly explain different physics, it
is remarkable that seemingly similar models emerge for different underlying mechanisms.

A better fundamental understanding of "simple" lattice gauge theories, which can be
derived from big open questions is thus desirable, and perhaps one of the steps towards
solving some of them. Here, quantum simulations, where ultracold atoms are trapped in
an optical lattice, could help us in the future by simulating these theoretical models [19,
20]. A natural way towards simulating the most complicated models is thus to start with



2 Introduction

simpler ones. Remarkably, building blocks of a Z2 LGT have already been experimentally
implemented in a cold atom setup [21, 22], which could be extended to larger systems [23].
One important aspect in the context of quantum simulations, is thus to study the physics
of such models, map out their phase diagrams, and develop physical probes to investigate
interesting phenomena like confinement. This is the goal of this thesis: To explore Z2

LGTs by investigating their phase diagrams, the mechanism of confinement, and develop
physical probes suitable for quantum simulation platforms where these phenomena could
be studied.

More precisely, in this thesis we study a Z2 lattice gauge theory (LGT) in one spatial
dimension, where dynamical matter is coupled to a Z2 gauge field. The hallmark of this
theory is that it exhibits confinement of individual particles into bound states that remain
dynamical. In analogy to confinement of two quarks in particle physics, we dub these
confined states mesons. The confinement of individual particles, which we accordingly dub
as partons, is mediated by the Z2 gauge field. More precisely, the confinement emerges
from a set of local constraints, the so called Gauss law constraint, as a linear confining
potential in Z2 electric strings that connect parton pairs.

LGTs were developed to study confinement in particle physics and are in particular
useful as lattice formulations enable numerical simulations [9, 24, 25]. For example in
the standard model the non-Abelian SU(3) LGT describes the strong interaction [9, 26].
However, numerical simulations of LGTs are generally complicated as the Monte Carlo
simulations [9] are hindered by the sign problem at finite doping when matter is coupled
to gauge fields [26–28]. By considering a one-dimensional system in this thesis, we employ
the density-matrix renormalization group method, which is free of the sign problem. This
allows us to study the Z2 LGT for arbitrary doping and for arbitrary parameter values. We
complement our large scale numerical calculations with analytical calculations in certain
limits.

In a way, the Abelian Z2 LGT can be regarded as a simplification of LGTs encountered
in the standard model, and one could thus view it as a simple toy model of confinement.
Generalizations to more complicated gauge structures, or the continuum limit are in fact
rather complicated, although some connections can be made [26]. This is different in con-
densed matter physics, where Z2 LGTs emerge as effective low energy theories in strongly
correlated systems [17, 29, 30]. In particular, they appear in the study of the fractionaliza-
tion of charges, which may be related to high-temperature superconductivity [16, 29] and
in the study of topological phases [17]. Hence, the Z2 LGTs are a powerful tool in strongly
correlated systems.

All of this motivated us to study the one-dimensional (1 + 1D) Z2 LGT coupled to dy-
namical matter in this thesis. One of our main goals was to understand the mechanism of
confinement in such Z2 LGT and how it could be probed in quantum simulation exper-
iments. For that we study various probes of confinement ranging from the behaviour of
the gauge invariant Green’s function, to geometric probes like the electric string lengths.
Matrix-product states calculations allow us to study these probes in the ground state as
well as at finite temperature. With numerical calculations at finite temperature we show
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that confinement persists also at low temperature with a smooth crossover to a deconfined
regime at high temperature. In addition, we demonstrate how it can be detected from
snapshots that can be obtained from quantum simulation experiments.

In addition to confinement, we map out phase diagrams at different fillings, where
the interplay of confinement and other interactions, which can be implemented with cold
atoms, results in rich and interesting physics. These phase diagrams are thus directly
relevant for quantum simulations. Furthermore, we study new phenomena arising from
the interplay of confinement and local matter interactions. For example, we uncover a
regime where the interplay of confinement and local repulsion among partons results in
quantum frustration, which gives rise to plasma-like fluctuations. There, partons appear
deconfined on short length scales.

We also study generalized Z2 LGTs where matter is not conserved, due to particle
number fluctuations. There the system exhibits confinement already in the absence of
the dynamic gauge field in addition to the regime where the confinement is mediated
via the Z2 gauge field. We relate the phase diagram found for the extended Z2 LGT to
the phase diagram of the two-dimensional Z2 LGT. To gain even better insights into the
Z2 LGTs we also develop a mean-field theory description, which successfully captures all
relevant phases, including confinement. This furthermore helps with the interpretation of
our previous results.

Finally, we uncover confinement-deconfinement transition in a mixed-dimensional XXZ
model, by using the Z2 LGT interpretation, developed earlier in this thesis. Such systems
can be directly implemented in cold atom experiments with Erbium [6, 31]. There, the
stripe-order that we predict theoretically has been recently realized, which can be inter-
preted in terms of partons being bound to stripes [6].

We thus believe that our work provides new and interesting results on Z2 LGT coupled
to matter. We give a thorough physical description of one-dimensional Z2 LGTs. In par-
ticular we provide a detailed explanation of confinement in the ground state as well as its
crossover to deconfinement at finite temperature, and map out the relevant phase diagrams
at different fillings. Moreover, we develop probes that could be used in cold atom experi-
ments to study these phenomena and thus pave the way for future quantum simulations.
Finally, the simulation of the paradigmatic Z2 LGT could be used as a benchmark for future
quantum simulation of more complicated systems.

Outline

This general introduction is followed by a slightly more technical introduction in Chapter 1,
where we set the stage in a more concrete way. We shortly introduce quantum simulation
with cold atoms, and how they could be used to simulate LGTs. We then introduce the
Z2 LGT by coupling gauge field to matter. We start by discussing the infinite U(1) gauge
group, which we truncate to a finite, cyclic ZN , and finally to the Z2 group. The derivation
is not mathematically rigorous. However, along the way we introduce many important con-
cepts, like the Gauss law. In the last section of Chapter 1, we also introduce the numerical
methods used throughout this thesis and explain how we obtain the numerical results for
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the Z2 LGT.
In Chapter 2, we focus on confinement in the Z2 LGT with matter. Due to extensive

introductions in the previous chapter we immediately start discussing some simple ar-
guments for the confinement mechanism. We consider different probes of confinement,
and demonstrate how confinement can be studied in our numerical calculations. We also
discuss confinement probes suited for quantum simulation experiments, and demonstrate
their efficiency. Finally, we provide a formal explanation of the confinement problem in
Z2 LGTs by mapping the system to a non-local string length basis. Chapter 2 is based on
Ref. [1], with numerical results also from Refs. [4, 5].

In Chapter 3 we explore different phase diagrams when the matter coupled to Z2 LGT
has a global U(1) symmetry. We discuss the parton and meson Luttinger liquid found
for generic fillings and parameter regimes. We focus on the filling of two-thirds and half
filling, where confinement and nearest-neighbor repulsion among matter results in rich
phase diagrams. The discussion of the phase diagram at two-thirds filling is based on
Ref. [1], and the discussion of the phase diagram at half filling is based on Ref. [3].

In the following Chapter 4 we again study confinement, however this time at finite
temperature. We uncover a smooth confinement-deconfinement crossover as a function of
temperature. In addition, we find evidence that mesons are already pre-formed at high
temperature relative to the crossover temperature. This in a way breaks the conventional
wisdom where we could expect deconfinement at finite temperature, due to the well known
deconfined limit when T → ∞. Chapter 4 is based on Ref. [4].

In Chapter 5 we study confinement in a generalized Z2 LGT, by including terms that
break the global U(1) symmetry of the matter. We establish a phase diagram in terms of
confinement as a function of lattice filling. We uncover that in the almost completely empty
or filled lattice, superconducting terms induce fluctuations of confined partons, even with-
out the presence of any dynamics of the Z2 gauge fields. We draw some important connec-
tions to the Z2 LGT in two dimensions, in particular to the phase diagram established by
Fradkin and Shenker [32]. Chapter 5 is based on the first part of Ref. [5].

In the subsequent Chapter 6, we develop a mean-field theory of the generalized Z2 LGT
coupled to matter. By using a product ansatz we decouple matter from the gauge field, and
enforce the Gauss law on the mean-field level. We directly compare the mean-field theory
to the exact Z2 LGT and find good qualitative agreement. In particular, the mean-field
theory for the gauge field qualitatively captures the main features of the exact Z2 LGT,
including confinement. The biggest shortcoming is that it does not capture the regime
where matter has a global U(1) symmetry, which the mean-field theory for the gauge field
always explicitly breaks. Chapter 6 is based on the remaining part of Ref. [5].

In Chapter 7 we study a mixed-dimensional XXZ model on a cylinder, where interac-
tions in the shorter direction are simplified to simple ferromagnetic Ising coupling. The
main motivation is the realization of such system in cold atoms with magnetic dipoles. We
find a connection of such system to a Z2 LGT with matter, and uncover a confinement-
deconfinement transition. Chapter 7 is based on the upcoming Ref. [6].

In the last chapter we conclude and give an outlook for future research directions.



Chapter 1

Theoretical background and
introduction

In this chapter, we start with a broader theoretical introduction into the topic of this thesis.
This chapter sets the Z2 lattice gauge theory (LGT) and other related theoretical concepts
in a broader physical perspective. We introduce and define the main properties of the Z2

LGT and thus provide a formal footing of the concepts used throughout this thesis.

We start by briefly introducing quantum simulation with ultracold atoms and shed light
on how platforms based on ultracold atoms can be used as a new toolbox to study compli-
cated strongly correlated systems. We concisely discuss how quantum simulation platforms
are used to simulate basic building blocks of LGTs, and how large scale simulations could
be possible in the future. This is in fact one of the main motivations why we study the
one-dimensional Z2 LGT in such detail in this thesis.

We then proceed to define the Z2 lattice gauge theory, by demonstrating the origin
of minimal coupling of matter to gauge fields, and the concept of Gauss law. We briefly
discuss the U(1) LGT, related quantum link models, define ZN LGT, and finally arrive at
the paradigmatic Z2 LGT coupled to dynamical matter. We also briefly discuss one of our
ultimate goals of this thesis: understanding of confinement in this class of LGTs.

Our motivation to study confinement in Z2 LGT has its origins in condensed-matter
physics and connections to strongly correlated systems like spin liquids and high-temper-
ature superconductivity [17, 29, 33]. We thus approach the topic from a condensed matter
and quantum simulation perspective. However, we also briefly discuss how LGTs are used
to study the long standing problem of confinement in high energy physics, for which they
were originally developed [24, 25].

In the final section, we briefly discuss the numerical methods used throughout this
thesis. Focusing mainly on one-dimensional systems, we employ the formalism of matrix-
product states and the density-matrix renormalization group (DMRG) method [34, 35].

This chapter thus serves as a motivational section for the chapters that follow. At the
same time, the second and the last part of this chapter become more and more technical as
we define some important concepts and methods.
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1.1 Quantum simulation

Quantum simulation with ultracold atoms is a new tool to study strongly correlated many
body systems [19, 20, 36, 37]. In such systems, atoms are cooled down to energy scales
where thermal fluctuations give way to quantum effects [19, 38, 39]. The atoms are then
trapped in an optical potential generated by standing waves of interfering lasers [19, 40–42].

Such construction of optical lattices means that dimension and geometry of the lattice
can be tuned [19, 40, 41]. For example, one can realize a two-dimensional square lattice [43,
44], a lattice with triangular geometry [45], or a hexagonal lattice [46]. In addition, by using
lasers with different frequencies, double well structures can be implemented as well [21]. In
these cases neutral atoms can be trapped due to alternating electric potential coming from
the laser light, which makes them polarized [19, 40]. The laser light is detuned away from
the resonance of the internal structure of the atom in order to avoid heating [40]. When
the frequency of the laser is lower than the resonance ∆ f ≡ ω − ω0 < 0, the beam is said
to be red-detuned and atoms will be generally trapped in the potential intensity maximum
[40] In the blue-detuned case, ∆ f > 0, the atoms are generally trapped in the potential
minima [40]. The strength of the dipole trapping is proportional to the laser intensity, and
is inversely proportional to the detuning Vtrap ∝ I/∆ f [40]. The scattering rate (heating),
however, scales as I/∆2

f [40]. Experimentalists thus typically prefer high detuning and high
laser intensity, when implementing the lattice potentials.

Atoms trapped in the optical lattice can tunnel to the neighbouring sites, provided the
trapping potential is not too high, and can interact with other atoms [19]. The interac-
tions are typically highly tunable and can range from simple on-site repulsion to various
long-range interactions [19]. An important concept to control some of these interactions
are Feshbach resonances [47]. One can also tune interactions, which span over longer
distances. For example, long-range interactions can be obtained by considering magnetic
atoms, which interact via dipole-dipole interactions [31]. Polar ultracold molecules, which
consist of different atomic species, also interact via dipole-dipole interactions that can be
even stronger [48]. Another example are atoms in highly exited Rydberg states, which pos-
sess very strong interactions [38]. Due to such strong interaction, weak coupling to the
excited regime, the so called Rydberg dressing, is already enough to implement strong and
highly tunable interactions [49].

On-site interactions of a system of ultracold bosons trapped in an optical potential can
be used to emulate a Bose-Hubbard Hamiltonian [50, 51]

ĤBH = −t ∑
⟨i,j⟩

(
â†

i âj + H.c.
)
+ ∑

i
ϵjn̂j +

1
2

U ∑
j

n̂j
(
n̂j − 1

)
. (1.1)

Here we defined the hopping amplitude t between nearest-neighbor (NN) sites, the boson
creation (annihilation) operator as â†(â), and the on-site density operator n̂j. The on-site
repulsion strength equals to U, and ϵj determines the local chemical potential. A real-
ization of a transition between the superfluid to a Mott insulator phase with ultracold
atoms, governed by the Bose-Hubbard model, demonstrated by Greiner et al. [51], was a
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break-through, which demonstrated quantum simulation with cold atoms. Many more ex-
perimental realizations and extended systems with ultracold bosons followed [52–54], to
list just a few.

In addition to bosons, quantum simulation with ultracold fermions is also possible,
where one can realize a two component spin system to study the Fermi-Hubbard model
[19, 55], which can be expressed as [55]

ĤFH = −t ∑
⟨i,j⟩,σ

(
ĉ†

i,σ ĉj,σ + H.c.
)
+ ∑

i
ϵjn̂j + U ∑

j
n̂j,↑n̂j,↓. (1.2)

Here ĉ†
j,σ (ĉj,σ) are fermion creation (annihilation) operators, which carry spin σ =↑, ↓. The

Fermi-Hubbard model has been studied extensively already before the advent of quantum
simulation, as it is believed to be the minimal model that could explain high-temperature
superconductivity [19, 33, 56–58]. Recent numerical calculations show evidence that the
simple Hamiltonian Eq. (1.2), might not be enough to reach the superconducting phase
and additional terms like the next-neighbor hopping might be important [59, 60]. Despite
how simple the Fermi-Hubbard model appears in Eq. (1.2) it has proved to be very hard
to study numerically or analytically [61]. Hence, cold atom implementation of a Fermi-
Hubbard model has been a major achievement as it might some day help us to understand
this seemingly simple model better. Early successful experiments with fermions, e.g. in
Ref. [62], were quickly followed by realizing the Fermi-Hubbard model at half-filling and
achieving a Mott state [63, 64].

The last important component that we want to mention in the context of quantum simu-
lation in this introductory section is the detection of trapped atoms and the measurement of
their correlations. This became possible with the development of quantum gas microscopy,
which enables site resolved imaging [65, 66].

In other words, by having a powerful microscope one can take a snapshot of the quan-
tum system and detect exactly where the particles reside in the optical lattice, which opens
the possibility to measure complicated correlations [19]. In addition, new development of
more elaborate experimental schemes, in particular reducing the entropy by coupling the
system to a dilute reservoir on the edge of the sample allowed for simulations to be per-
formed at lower temperatures [19, 44]. This was achieved by using digital micro-mirror
device (DMD) [67], which was used to divide the system into two subsystems, where the
entropy from the center was transferred to the outer system [44, 68].

Combination of these developments lead to a remarkable realization of a long-range
antiferromagnet by Mazurneko et al. in Ref. [44], by simulating the Hubbard model with
cold atoms. Another remarkable achievement by Hilker et al. in Ref. [69] was the successful
extraction of multi-point correlations from experimental data, which enabled the detection
of hidden anti-ferromagnetic order in a one-dimensional doped Hubbard system.

We also briefly mention Rydberg tweezer arrays, where atoms are trapped in extremely
focused laser beams, which can be rearranged to form various geometries, and ultimately
make the atoms interact by exciting them to Rydberg states [19, 70–75]. This platform can
be used to realize various spin systems [71, 72, 74, 75]. It is also a promising platform to be
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used for digital quantum computation [73, 76]. Recently, successful implementation of 280
physical qubits has been demonstrated in Ref. [77].

With this we conclude the general introduction on the ultracold atom experiments.
Above we presented some of the key results of quantum simulation with cold atoms. For
recent reviews on this topic we refer the interested reader to Refs. [19, 55], which were also
the main source for the above discussion. For more technical descriptions it is also useful
to consider Refs. [41, 78, 79].

1.1.1 Quantum simulation of LGTs

Quantum simulations with cold atoms are also a promising platform to simulate lattice
gauge theories [26, 80, 81]. The building block of the Z2 LGT, where matter is coupled to
a gauge field, has been already successfully implemented by Schweizer et al. in Ref. [21],
where a double well potential scheme with a mixture of two bosonic species was imple-
mented to encode the matter and gauge degrees of freedom [21, 23]. Such building blocks
can be scaled up to implement a one or two-dimensional Z2 LGT [23]. In this scheme
matter and gauge degrees of freedom are encoded with two different species [21, 23]. To
induce the matter–gauge coupling the density-dependent hopping scheme was used [21,
82–85]. A similar approach to implement a Z2 LGT building block was used by Görg et al.
in Ref. [22], where the density-dependent Peirls phase was obtained via Floquet driving. In
addition, there has been an experimental realization of a four-body ring-exchange interac-
tion with ultracold atoms [86], that constitutes to the Kitaev’s toric code [87]. Kitaev’s toric
code can be then considered as the (2 + 1)D Z2 LGT without matter [81, 88–90].

There have been also a lot of new proposals for the experimental realization of Z2 LGTs
coupled to matter [90, 91]. For example, a proposal by Homeier et al. in Ref. [91] is based
on the Rydberg tweezers platform, where both link and matter sites are encoded by the
atomic ground state and the excited Rydberg state.

Immense progress has also been made in simulating the U(1) lattice gauge theory, for-
mulated as quantum link models, where the infinite-dimensional Hilbert space of the U(1)
symmetry is discretized and represented by spin-S operators [81, 92–94]. As we will see in
the next Section 1.2, quantum link models reproduce the lattice quantum electrodynamics
(QED) only in the limit when S → ∞ [81]. In cold atoms one typically has to truncate the
link representation all the way down to S = 1/2 [81]. The first experimental realization
was achieved by Mil et al. in Ref. [95], where a building block of a U(1) LGT was realized.
More experiments followed, where the implementations went above simple building blocks
[81]. One of the most remarkable was the realization of a PXP model with Rydberg tweezer
arrays by Bernien et al. in Ref. [96], which can be mapped to a U(1) LGT, formulated as a
spin-1/2 quantum link model (QLM) [81, 97]. Another experimental realization of a U(1)
QLM with full tunability has been demonstrated by Yang et al. in Ref. [98].

As argued by Halimeh et al. in Ref. [81], every quantum simulation experiment where
both the matter and gauge degrees of freedom have to be implemented will encounter
some level of gauge symmetry violation. This is simply due to the sheer complexity of
implementing all of the local constraints, or as there will be some weak effective terms
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which break it. No such errors arise when one integrates out the matter or gauge degrees
of freedom by taking into account the Gauss law in the physical sector [81, 97, 99]. However,
for systems where both degrees of freedom are present, gauge violations can be mitigated
by imposing energetic constraints to other gauge sectors, by adding terms proportional to
the Gauss law, ∝ VG ∑j

(
Ĝj − gtar)2

[81, 100, 101]. Here Ĝj is the local gauge symmetry
generator with eigenvalues gj, which we will formally introduce and explain its role in
LGTs in the next Section 1.2. Such gauge protection terms contain multiple-body interaction
terms, which are hard to implement experimentally [81]. This problem was mitigate by
developing linear protection terms for U(1) LGTs [102] and local-pseudogenerators for Z2

LGTs [91, 103], which reduce the complexity of the protection term.
As we have seen, quantum simulation of lattice gauge theories is an extremely active

field of research, with a lot of new proposals and experimental realizations in the last few
years. This is also one of the main motivations to explore the topics presented in this thesis.
In addition to mostly Abelian theories discussed above, there have been many proposals
for non-Abelian gauge theories as well [104–106]. We also note that in this section we
have focused on analog quantum platforms. However, there are a lot of proposals and
implementations using digital quantum platforms [107–114].

Furthermore, we did not go into any technical details of quantum simulations of LGTs,
as we do not focus on development of new experimental schemes in this thesis. In contrast,
we are mainly interested in exploring the physics of Z2 LGTs, which can already be realized
in existing quantum simulation experiments, or what will at least be possible in the near
future. For more details on quantum simulation of lattice gauge theories we refer the
reader to recent reviews found in Refs. [80, 81], which were also the main source for the
above section.

1.2 Introduction to lattice gauge theory

Before we start our analysis of the Z2 LGTs, we give a brief introduction and motivation on
how lattice gauge theories are defined, and put the simplest Z2 LGT in a broader context
of general LGTs. This will be in no way a rigorous derivation of the lattice gauge theories.
For a more broad and general introduction we refer the interested reader to Refs. [24, 25,
115, 116]. Our introduction of LGTs follows a brief review in Ref. [26], which is based on
the Kogut-Susskind Hamiltonian formulation of the LGTs found in Ref. [117]. This differs
from the usual approach in high-energy physics (HEP), where one starts by writing an
appropriate action of a given problem. We prefer the Hamiltonian formulation, since our
interests in LGTs come from the condensed matter perspective, where one generally deals
with Hamiltonians. In addition, the language of quantum simulation and the effective
models that can be simulated are always given in the Hamiltonian formulation [19, 26, 81].

We note that we could have also taken a different, more historical approach, and start
with the Z2 LGT as formulated by Wegner in Ref. [88], to study Ising transitions by using
duality transformations [118]. Or we could start with the LGT developed by Wilson in
Ref. [25], to understand the confinement of quarks in high energy physics. This was in fact
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the starting point of Kogut and Susskind when developing the Hamiltonian formulation
[117]. Finally, we note that a similar derivation has been performed also in Ref. [79], which
we in part also used as a reference in the following sections.

1.2.1 Minimal coupling of the gauge field to matter

We start by considering a Hamiltonian which describes hopping of free fermions [26]

Ĥ = −t ∑
n,a

(
ψ†

n+aψn + H.c.
)
+ ∑

n
µnψ†

nψn, (1.3)

where ψ†
n can be generally considered to be a spinor. With n we define a lattice site in

a D-dimensional hypercube lattice. Furthermore, we define a as the unit vector pointing
along one of the D directions.

We will start with a simple Abelian case, where the global symmetry is U(1), i.e. the
gauge group G is the unitary group U(1). We choose such a case since we believe it is the
most instructive and will allow us to quickly make a connection to the Z2 lattice gauge
theory. In the end of this introduction, we will briefly comment on the more complicated
SU(2) case.

If we consider the U(1) case, the spinor ψ†
n (ψn) in Eq. (1.3) can simply be a spinless

fermion creation (annihilation) operator on site n [26, 79]. The first term in Eq. (1.3) can
be thus understood as the hopping term with some amplitude t, and the second term can
be understood as a chemical potential term, µn, which for now has a site-dependence and
could also be considered to be the site-dependent mass term [26].

Since the Hamiltonian in Eq. (1.3) contains only a hopping term and a chemical potential
terms, it is clear that the Hamiltonian has a global U(1) symmetry, where the particle
number, N = ∑n ψ†

nψn, is conserved. We can thus write a global gauge transformation of
the operators as [26]

ψn → Vψn, ψ†
n → ψ†

nV†, (1.4)

which does not change the Hamiltonian in Eq. (1.3) since V has to be an element of the
gauge group G = U(1) and is thus unitary, VV† = V†V = I.

The essence of the lattice gauge theories is that global symmetries are promoted to local
symmetries [119, 120], which we can formally write as making the gauge transformation in
Eq. (1.4) local [26]

ψn → Vnψn, ψ†
n → ψ†

nV†
n . (1.5)

Due to the local nature of the above transformation, the hopping term does not remain
invariant and as a result transforms to [26]

ψ†
n+aψn → ψ†

n+aV†
n+aVnψn. (1.6)

In order to reinstate the symmetry, we can modify the hopping term of the Hamiltonian in
a way that will make it invariant under the local transformation in Eq. (1.5). This is done
by adding the so called "connection" Un,n+a on the link between site n and its neighboring
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site n + a, which transforms as [26]

Un,n+a → VnUn,n+aV†
n+a. (1.7)

Here we use the notation where the link variable U is directed from n towards n + a. The
modified, gauge invariant Hamiltonian, thus becomes

Ĥ = −t ∑
n,a

(
ψ†

n+aUn,n+aψn + H.c.
)
+ ∑

n
µnψ†

nψn, (1.8)

where we note that no modification was needed for the chemical potential term since the
operators act on the same site. With the operations performed above we obtained a Hamil-
tonian where the gauge degrees of freedom, represented by Un,n+a, are minimally coupled
to matter, ψ [79].

We note that all operators V, Vn and Un,n+a are elements of the gauge group G [26]. In
the U(1) case one can parameterize the connection as [26]

Un,n+a = eiθn,n+a , (1.9)

where θn,n+a are the so called group parameters residing on the lattice links [26, 79].

1.2.2 Gauss law in lattice gauge theory

Next we introduce the Gauss law, which is one of the fundamental aspects in LGTs and,
as we will see in the following sections, imposes certain local constraints on the system.
This generally complicates the calculations, but in some instances it can can also be used
to simplify the numerical effort, by using the constraints to integrate out matter or gauge
degrees of freedom.

In the following, we will illustrate how a set of generators, Ĝn, of the local gauge trans-
formation [26] correspond to a Gauss law in the LGT. These operators Ĝn commute with
the Hamiltonian by definition [1, 3–5, 26, 121],

[Ĥ, Ĝn] = 0, (1.10)

and since we are considering an Abelian group also with each other [121],

[Ĝm, Ĝn] = 0. (1.11)

This means that the Hamiltonian can be block diagonalized for different Hilbert space
sectors, which are denoted by the set of eigenvalues {gn}, and are defined as

Ĝn |ψ⟩ = gn |ψ⟩ , (1.12)

for every lattice site n.
In the next step we would like to find the generators of the U(1) gauge symmetry. For
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that we consider the connection in Eq. (1.9), where we defined the group parameters θ̂n,a.
From its structure, the group elements can be literally understood as the angular variables
[26], for which one can defined the canonical momentum [26, 79]

L̂n,n+a = −i
∂

∂θ̂n,n+a
. (1.13)

Such construction results in the correct commutator of the two quantities [26]

[θ̂n,n+a, L̂n,n+a] = i. (1.14)

Taking the analogy further, this is nothing else but the angular momentum and thus the
generator of rotations [122]. This becomes apparent as the following commutation holds
[26]

[L̂n,n+a, Ûn,n+a] = Ûn,n+a, (1.15)

which means that the operator Ûn,n+a acts as a raising operator for eigenstate |ψ⟩ of the
operator L̂n,n+a [26, 79, 123]. This can be easily shown since

L̂Û |ψ⟩ − ÛL̂ |ψ⟩ = L̂ |ψ̃⟩ − l |ψ̃⟩ = |ψ̃⟩ ⇒ L̂ |ψ̃⟩ = (l + 1) |ψ̃⟩ , (1.16)

where we omit the lattice indices and define |ψ̃⟩ = U |ψ⟩. We have thus shown that U raises
the eigenvalue of the angular momentum by one, l → l + 1. This makes the eigenbasis of
L̂, a convenient basis to work in [26]. We will use it in the next section in order to obtain a
better understanding in a more concrete setting.

We note that the analogy to the angular momentum is used to write a kinetic energy of
the fields θ̂n,n+a by writing the Hamiltonian of the rotator [117, 124]

Ĥr = ∑
n,a

L̂2
n,n+a

2JI
, (1.17)

where JI is the moment of inertia. Furthermore, Kogut and Susskind in Ref. [117] con-
nected the angular momentum with the electric field, L = E, and the angular variables
with the magnetic vector potential, A = θ [79]. Thus the Eq. (1.17) can be considered as the
electric field energy [26, 79]. We will use this analogy to justify why the set of generators
resemble the Gauss law.

Finally, we express the generators on a lattice site as a difference of angular momenta
between links connected to these lattice sites, which reads as [24, 26, 117]

Ĝn = ∑
a

(
L̂n,a − L̂n−a,a

)
. (1.18)

Since we are interested in the lattice gauge theories coupled to matter one also has to take
into account the so called dynamical charges, Qn, and the full Gauss law of the U(1) lattice
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gauge theory becomes [24, 26]

Ĝn = ∑
a

(
L̂n,n+a − L̂n−a,n

)
− Q̂n. (1.19)

By relabeling the angular momentum operators to the electric field operators on the links

L̂n,n+a → Ên,n+a, (1.20)

it becomes clear why this is called the Gauss law

Ĝn = ∑
a

(
Ên,n+a − Ên−a,n

)
− Qn, (1.21)

as the sum of all the links related to site n is a lattice counterpart of the divergence of the
electric field, ∇ · E⃗ [79, 117]. Up to constants we thus obtain the full analogy to the "usual"
Gauss law [125]

∇ · E⃗ = 4πρ, (1.22)

where with the total charge ρ, we mean the combined contribution of the background
(static) charges, Qs

n, and the dynamical gauge charges, ρ = Qs
n + Qn.

We note that for a non-Abelian SU(2) case, the situation is more complicated. One has
to define two sets of link operators: the so called left, Ln,n+a, and right set, Rn,n+a [26]. As a
consequence we also obtain two sets of generators of the group and the Gauss law becomes
[26]

Ĝu
n = ∑

a

(
L̂u

n,n+a − R̂u
n−a,n

)
− Qu

n, (1.23)

where u are the group indices.

1.2.3 A U(1) lattice gauge theory with matter

At this point we can, as an example, construct a U(1) LGT Hamiltonian. For simplicity, we
will consider a case with a two-dimensional square lattice. The matter fields are minimally
coupled to fermionic matter [26],

ĤQED = −t ∑
n,a

(
ĉ†

nÛn,n+aĉn+a + H.c.
)
+ µ ∑

n
(−1)n ĉ†

nĉn, (1.24)

where n = (x, y) is a two-dimensional vector on a 2D square lattice and we define n = x + y
[26]. In addition, a represents one of the two primitive vectors, pointing to the neighbouring
lattice site a ∈ {a1, a2}. Here a1 = (1, 0), a1 = (0, 1), and we set the lattice constant to a = 1.
The Hamiltonian in Eq. (1.24) is just Eq. (1.8), where we relabeled the spinless fermion
operators as ψ → ĉ, and we adopted the staggered fermion formulation, which is one of
the favored formulations to avoid the fermion doubling problem [26, 126].

In addition to the matter Hamiltonian coupled to the gauge field, we should also include
a pure gauge Hamiltonian in order to induce dynamics in the gauge fields. By following
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the angular momentum/electric field analogy, we can add a kinetic energy of the fields,
Eq. (1.17), which is proportional to ∝ L̂2

n,n+a [26, 79].

Similarly, one could add a term proportional to the energy of the magnetic field ∝ B̂2
n

[24, 79]. However, so far we have not clearly defined what constitutes the magnetic field
in our LGT. We can thus consider this question a bit broader and ask ourself how can
one obtain additional terms in the Hamiltonian, by combining different operators, which
are gauge invariant [26]. Kogut and Susskind in Ref. [117] realized that gauge invariant
operators can be constructed by using a product of Û’s. In other words this means that
additional terms can be constructed by applying a set of Û operators on a closed loop Γ,
which correspond to the continuity of the electric flux lines [117]. In addition, by including
matter fields one can also consider a product of Û operators, which form paths that end
with matter operators [26, 117]. Adding terms that contain Û terms, which couple different
links, is also necessary in order to make the LGT non-trivial as they induce dynamics in
gauge fields [117].

Kugut and Susskind thus added the "simplest" of such terms by considering the mag-
netic term in Wilson’s action [25]. In the Hamiltonian representation this are the plaquette
terms, which can be written as a trace of a product of operators over the smallest possible
loop [24, 26, 79, 117],

ĤA = −J ∑
□

(
tr
(
Ûn,n+a1Ûn+a1,n+a1+a2Ûn+a1+a2,n+a2Ûn+a2,n

)
+ H.c.

)
= −J ∑

□

cos
(
θ̂n,n+a1 + θ̂n+a1,n+a1+a2 + θ̂n+a1+a2,n+a2 + θ̂n+a2,n

)
,

(1.25)

where the former is a general expression and the latter equality holds for the Abelian U(1)
LGTs [26]. The sum is to be understood to run over all plaquettes □. In addition, the last
equality in Eq. (1.25) can be understood as a discrete curl of the magnetic vector potential,
∇× θ̂n,n+a = θ̂n+a1,n+a1+a2 − θ̂n,n+a2 − θ̂n+a2,n+a1+a2 + θ̂n,n+a1 [117]. Thus, if we again take
the analogy with electromagnetism where we identified θ as the magnetic vector potential,
we see that ∇× θ = ∇× A = B. Thus the term in Eq. (1.25) can be expanded in the low
energy limit as [24]

ĤA ≈ −J ∑
n∈□

(
1 −

(
B̂n
)2

2
+ ...

)
, (1.26)

and we indeed obtain terms proportional to ∝ B2. This is therefore the so called magnetic
term, which can be also understood as the gauge field self-interaction [26].

Finally, by putting all of these terms together we can write a U(1) lattice gauge theory
Hamiltonian with fermionic matter [26, 79]

ĤU(1) = −t ∑
n,a

(
ĉ†

neiθ̂n,n+a ĉn+a + H.c.
)
+ m ∑

n
(−1)n ĉ†

nĉn

+
g2

2 ∑
n,a

L̂2
n,n+a +

1
2g2 ∑

□

cos

(
∑

⟨q,u⟩∈□
θ̂q,u

)
.

(1.27)
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Here t is the hopping amplitude of the fermions on the lattice sites, m is the mass of the
fermions, and g is the coupling constant [26]. The Gauss law in Eq. (1.19) becomes [26]

Ĝn = ∑
a

(
L̂n,n+a − L̂n−a,n

)
−
[

ĉ†
nĉn − 1

2
(1 − (−1)n)

]
, (1.28)

where the dynamical charge part is expressed as [26]

Qn = ĉ†
nĉn − 1

2
(1 − (1)n) . (1.29)

This means that we have matter particles (electrons) in our system when even lattice sites
are occupied, i.e., when the term (−1)n > 0, and we consider to have anti-matter (positrons)
when odd lattice sites ((−1)n < 0) are empty. All other case are considered to be simply
empty states. The physical Hilbert sector is the one without background (static) charges,
i.e., when Ĝn |ψ⟩ = 0 [26].

This U(1) LGT represents the compact QED, which is the lattice gauge theory describing
electrodynamics [26]. It has been substantially studied as the Abelian version of a broader
class of lattice gauge theories. Initial studies relied on analytical considerations in particular
to the perturbation theory in strong coupling limits [24, 127–129]. Such U(1) LGTs are
always confining for 1 + 1D and 2 + 1D [24, 127, 128, 130]. The 1 + 1D case is special
in a way that it was solved exactly by Schwinger [131]. However, in 3 + 1D there are
two regimes: confined and deconfined [24]. In the confined phase, the energy between test
charges grows linearly as function of their distance in the limit when g ≫ 1 [24]. Contrarily,
in the weak coupling limit g ≪ 1, the energy is constant as a function of distance, which
corresponds to the deconfined phase [24]. We furthermore note that most of the discussion
in the early work on lattice gauge theories considered pure gauge theories without coupling
to dynamical matter field.

With the advancement in numerical simulations, LGTs can be treated with quantum
Monte Carlo calculations [26, 27, 132–134]. However, the fermionic sign problem can cause
serious problems for arbitrary fillings (finite chemical potential) [26–28]. In 1+ 1 dimension
one can also employ a matrix-product states (MPS) approach and use DMRG, which does
not have the sign problem and can be used to study the ground state properties as well as
dynamics [34, 35, 135].

The usual way to tackle the U(1) LGT numerically is to make the Hilbert space of
the gauge (electric) field finite [81]. Such approach is also in particular useful for quantum
simulation of LGTs with cold atoms [81, 95, 97, 98, 136–139]. Truncation of the Hilbert space
is performed by representing the gauge and electric link variables with spin operators [81,
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136, 140],

Ûn,n+a =
1√

S(S + 1)
Ŝ+

n,n+a,

Û†
n,n+a =

1√
S(S + 1)

Ŝ−
n,n+a,

L̂n,n+a = Ŝz
n,n+a,

(1.30)

where S is the total spin quantum number, which sets the total Hilbert space dimension,
Ŝ+/Ŝ− are the spin raising/lowering operators and Ŝz is the operator of the spin in the
z-direction. With the above definition the Hamiltonian in Eq. (1.27) becomes [26, 140, 141]

ĤQLM = − t√
S(S + 1)

∑
n,a

(
ĉ†

nŜ+
n,n+aĉn+a + H.c.

)
+ m ∑

n
ĉ†

nĉn +
g2

2 ∑
n,a

(
Ŝz

n,n+a
)2

+
1

2g2S2(S + 1)2 ∑
□

(
Ŝ+

n,n+a1
Ŝ+

n+a1,n+a1+a2
Ŝ−

n+a2,n+a1+a2
Ŝ−

n,n+a2
+ H.c.

)
.

(1.31)

This is the so called "spin-gauge Hamiltonian", also known as the quantum link model
(QLM) [26, 136–140]. Here we effectively approximate the continuous U(1) group elements
with finite number of elements, more precisely with 2S + 1 possible values of L̂ = Ŝz. In
the limit when S → ∞ we thus retrieve the original U(1) LGT [140]. That is because the
commutator [81] [

Ûn,n+a, Û†
m,m+a

]
, (1.32)

has to be zero in the U(1) LGT. However, in the QLM formulation it takes the form [81]

[
Ûn,n+a, Û†

m,m+a

]
= δn,m

2Ŝz
n,n+a

S(S + 1)
, (1.33)

and vanishes only when S → ∞ [81]. Nevertheless, the gauge symmetry is retained also for
finite values of S [26].

The Gauss law can also be also rewritten in terms of spin operators [138, 141]:

Ĝn = ∑
a

(
Ŝz

n,n+a − Ŝz
n−a,n

)
−
[

ĉ†
nĉn − 1

2
(1 − (1)n)

]
. (1.34)

The physical sector is the sector without background (static) charges and its eigenvalues
thus equal to Ĝn |ψ⟩ = 0 [26, 138, 140].

Such model can be studied by performing numerical calculations using exact diago-
nalization (ED), limited to low system sizes, or MPS based algorithms [139, 140]. MPS
calculations can be even extended to 2 + 1D systems, where the system size in one of the
directions is restricted only to few lattice sites. For example, if we define the dimension
of the system in x and y-direction as Lx and Ly, respectively, then one typically considers
Ly ≪ Lx [138].

Remarkably, it has been shown using MPS and ED results that in 1 + 1D the spin S
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needed to approach the continuum limit, S → ∞, can be very low [26, 81, 136, 140]. Gen-
erally spins of only S ≈ 5 are enough to reproduce the exact QED results, and in some
instances already S ≲ 3 suffices [140]. Furthermore, it has been shown that in the pure
gauge case S ≲ 3 is sufficient for generic value of g, whereas for strong coupling g ≫ 0
already S ≈ 1 is enough [136].

These results show that a relative small local Hilbert space is sufficient to simulate the
U(1) LGT, which means that quantum simulations with cold atoms is a promising platform
to simulate this class of LGTs [26].

1.2.4 ZN lattice gauge theory

We now turn to the ZN lattice gauge theory, which we will be able to directly connect to the
Z2 case. We first note that in contrast to the U(1) LGT, ZN is a discrete symmetry, which
means that some relations will be slightly different [79]. However, a general ZN , where N
is an integer N ∈ Z, is a sub-group of the U(1) group. The U(1) LGT can be recovered for
the case when the appropriate limit of a discrete ZN LGT is taken, to be more precise, by
considering N → ∞ [26].

Let us now depart from the angular momentum language and embrace the whole anal-
ogy to the electrodynamics introduced by Kogut [24], already mentioned in the previous
section. For that we redefine the variables used in the previous section as

Ê⟨i,j⟩ = L̂n,k, Â⟨i,j⟩ = θ̂n,k (1.35)

where Ê⟨i,j⟩ can be understood as the ZN lattice gauge analog of the electric field, and
Â⟨i,j⟩ is the ZN lattice gauge analog of the magnetic vector potential. We note that we also
switched to the link notation where ⟨i, j⟩ denotes the link between neighboring lattice sites
i and j [1, 3–6, 79]. We will use this notation throughout this thesis when describing link
variables. Generally the direction of the link, i.e., whether we consider a link with direction
from site i to j, which we denote as ⟨i, j⟩, or the opposite direction from j to i, ⟨j, i⟩, is
important in case the field can take complex values, as is generally the case [26, 121]. As
we will see in the Z2 case, the direction is not important as the field takes only real values
[121].

The canonical commutation relation in Eq. (1.14) is thus also fulfilled as the commuta-
tion relation between the magnetic vector potential and the electric field takes the exactly
same form [142]:

[Â⟨i,j⟩, Ê⟨k,l⟩] = δ⟨i,j⟩,⟨k,l⟩i (1.36)

As already mentioned before, the link operator Û⟨i,j⟩ = eiÂ⟨i,j⟩ is thus a raising operator for
the electric field. Hence, if we consider the electric field basis where [26]

Ê⟨i,j⟩ |e⟩ = e⟨i,j⟩ |e⟩ , (1.37)
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the raising operator Û⟨i,j⟩ then results in

eiÂ⟨i,j⟩ |e⟩ = |e + 1⟩ , (1.38)

as shown in Eq. (1.16). We note that the values of e⟨i,j⟩ for the U(1) LGT can have any
positive or negative integer value, e ∈ Z [26, 123].

The most straight forward way of turning the U(1) LGT to a ZN LGT and then finally to
a Z2 LGT, is to discretize the continuous gauge parameters Â⟨i,j⟩ = θ̂n,k and its conjugated
momenta Ê⟨i,j⟩ restricting them to N discrete elements [119]. In other words we make the
gauge group finite. To do that we can define the operator [26]

P̂⟨i,j⟩ = eiδÊ⟨i,j⟩ . (1.39)

In order to make the group finite we require that [26](
P̂⟨i,j⟩

)N
= I, (1.40)

which also has to hold for the link element,(
Û⟨i,j⟩

)N
= I, (1.41)

where I is the "identity" element. In addition, the elements have to remain unitary [26]:

Û⟨i,j⟩Û
−1
⟨i,j⟩ = P̂⟨i,j⟩P̂

−1
⟨i,j⟩ = I. (1.42)

Furthermore, since U⟨i,j⟩ is the raising operator it also holds that [26, 142, 143]

P̂⟨i,j⟩Û⟨i,j⟩ = eiδÛ⟨i,j⟩P̂⟨i,j⟩. (1.43)

Rearranging the above expression as Û⟨i,j⟩ = eiδP̂†
⟨i,j⟩Û⟨i,j⟩P̂⟨i,j⟩ and applying the expressions

on both sides N times, we find(
Û⟨i,j⟩

)N
=
(

eiδP̂†
⟨i,j⟩Û⟨i,j⟩P̂⟨i,j⟩

)N

I = eiδN P̂†
⟨i,j⟩Û⟨i,j⟩P̂⟨i,j⟩P̂

†
⟨i,j⟩Û⟨i,j⟩ ... P̂⟨i,j⟩

I = eiδN I,

(1.44)

and thus δ = 2π
N . Relations in Eqs. (1.40)-(1.43) together with δ = 2π

N therfore form the ZN

algebra [143].

We already defined the representation of the P̂⟨i,j⟩ in Eq. (1.40) so in the electric field
basis the eigenvalues of the P̂⟨i,j⟩ have the following structure [142]

P̂⟨i,j⟩ |e⟩ = eiδÊ⟨i,j⟩ |e⟩ = eiδe(i,j) |e⟩ , (1.45)
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where we can rewrite δe(i, j) = 2π e
N . From Eq. (1.16) we already know that the Û⟨i,j⟩ raises

the eigenvalue of Ê⟨i,j⟩ by an integer. Hence we have some freedom how we define e. The
most straight forward way is to simply consider it to be an integer, which can take the
values 0 ≤ e(i, j) ≤ N − 1 [143]. However, one can also redefine it in a way that the electric
field eigenvalues are "centered" around zero [142]. For example one can define it as [26,
142]

e = k − N − 1
2

, 0 < k < N − 1. (1.46)

We note the most important property of this group: This group is periodic, i.e., cyclic in
a way that by applying the raising operator U multiple times on the link we will eventually
obtain same eigenstates with a period of N operations [26, 143]. This can be demonstrated
by considering the following operations

Û⟨i,j⟩ |0⟩ = |1⟩
Û⟨i,j⟩ |e⟩ = |e + 1⟩
ÛN

⟨i,j⟩ |e⟩ = I |e⟩ .

(1.47)

The cyclic nature of the ZN group implies the property [143]

Û⟨i,j⟩ |N − 1⟩ = |0⟩ , (1.48)

where we considered the initial definition where 0 ≤ e ≤ N − 1. This property explicitly
breaks the commutation relation between E and A in Eq. (1.36), which can be however
recovered when N → ∞ [143].

Finally, the Gauss law for the ZN case becomes [26, 143]

Ĝj = eiδQ̂j ∏
⟨i,j⟩∈+

P̂⟨i,j⟩. (1.49)

This is slightly different from the U(1) case as now the ZN charge qj is defined as [26]

Ĝj |ψ⟩ = e−iδ ∑⟨i,j⟩∈+ Ê⟨i,j⟩+iδQ̂j |ψ⟩ = qj |ψ⟩ , (1.50)

where the sum in the exponent can be understood as the divergence of the electric field on
site j, e.g. in 2 + 1D this is explicitly written as [143]

∇ · E = ∑
⟨i,j⟩∈+

Ê⟨i,j⟩ = Êj,j+a1 + Êj,j+a2 + Êj,j−a1 + Êj,j−a2 . (1.51)

This means that the Gauss law known from electrodynamics in the ZN case is actually in
the exponent of the operators. With this we conclude the general discussion on the ZN

lattice gauge theories.
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1.2.5 Z2 lattice gauge theory

Here, we define the Z2 lattice gauge theory and connect it to the the general discussion in
the previous sections. We first note that the Z2 group has only two elements [79] and we
can explicitly express the operators P̂ and Û as

P̂ = eiπÊ⟨i,j⟩ , Û = eiÂ⟨i,j⟩ , (1.52)

since δ = π in Eq. (1.44). Accordingly, the electric-field basis has only two possible eigen-
values e = 0, 1 and thus

P̂⟨i,j⟩ |e⟩ = ± |e⟩ . (1.53)

Furthermore, the raising operator Û⟨i,j⟩ has a simple action

P̂⟨i,j⟩ |e⟩ = ± |e⟩ ⇒ P̂⟨i,j⟩Û⟨i,j⟩ |e⟩ = ∓ |e⟩ , (1.54)

which is the consequence of the cyclic ZN algebra discussed in the previous section, more
precisely the relation in Eq. (1.48).

The relation explained above thus motivates us to represent the link operators P̂ and Û
in terms of Pauli matrices, i.e. with spin-1/2 operators [17, 18, 79, 87, 144]

P̂⟨i,j⟩ = τ̂x
⟨i,j⟩, Û⟨i,j⟩ = τ̂z

⟨i,j⟩. (1.55)

The two Pauli matrices represent the the spin-1/2 operators as Ŝx = 1
2 τ̂x and Ŝz = 1

2 τ̂z,
where the x and z superscript denotes the spin component. In such representation, the
electric field basis is therefore the spin-1/2 eigenvalue in the x basis. In the Pauli matrix
representation it also becomes apparent that the application of a τ̂z operator simply flips
the spin orientation in the x-basis.

With the above definition we can write a Z2 lattice gauge theory coupled to matter in a
similar way as we did for the U(1) case in Eq. (1.27). Most of the terms can be obtained by
simply replacing the operators representing the U(1) LGT with the Z2 representations, i.e.,
Û⟨i,j⟩ → τ̂z

⟨i,j⟩. However, more care has to be taken with the electric field term ∝ Ê2
⟨i,j⟩. That

is because in our general ZN formulation we expressed only the exponent of such operator,
P̂⟨i,j⟩ = eiδÊ⟨i,j⟩ . This term can be approximated by writing a combination of the P̂ operators
as [143, 144]

1
2

(
P̂⟨i,j⟩ + P̂†

⟨i,j⟩
)
=

1
2

(
eiδÊ⟨i,j⟩ + e−iδÊ⟨i,j⟩

)
= cos

(
δÊ⟨i,j⟩

)
≈ 1 −

Ê2
⟨i,j⟩
2

+ ..., (1.56)

which holds for low values of the electric field. We can express the Ê2
⟨i,j⟩ term for the Z2

case, where P̂⟨i,j⟩ = P̂†
⟨i,j⟩ = τ̂x

⟨i,j⟩ since Pauli matrices are Hermitian, as

Ê2
⟨i,j⟩ ≈ 2τ̂x

⟨i,j⟩. (1.57)
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With the above considerations we can thus write the Z2 lattice gauge theory as [79, 145]

ĤZ2 = −t ∑
⟨i,j⟩

(
ĉ†

i τ̂z
⟨i,j⟩ ĉj + H.c.

)
+ m ∑

j
(1)n ĉ†

j ĉj − g2 ∑
⟨i,j⟩

τ̂x
⟨i,j⟩ +

1
2g2 ∑

□
∏

⟨i,j⟩∈□
τ̂z
⟨i,j⟩, (1.58)

where the magnetic term follows from Eq. (1.25) and Eq. (1.26). In addition, the Gauss law
becomes [17, 26, 79, 121]

Ĝj = eiπQ̂j ∏
⟨i,j⟩∈+

τ̂x
⟨i,j⟩, (1.59)

where Q̂j = ĉ†
j ĉj − 1

2 [1 − (−1)n] is the matter charge [114] similar as in the U(1) case, which
we defined in Eq. (1.29).

We note that this is greatly simplified in the case when we replace the staggered
fermions with simple fermions and the mass term becomes a chemical potential term

m ∑
j
(−1)n ĉ†

j ĉj → µ ∑
j

ĉ†
j ĉj. (1.60)

There we simply write Q̂j = n̂j = ĉ†
j ĉj [17]. Since this is a Z2 LGT, there are only two

possible eigenvalues of the Gauss law, Ĝn |ψ⟩ = gj |ψ⟩, gj = ±1. We can again consider
Eq. (1.50), and express the Gauss law as

Ĝj |ψ⟩ = ei(πn̂−∇·Ê) |ψ⟩ = gj |ψ⟩ . (1.61)

The physical sector without background charges is the sector where gj = 1, ∀j. In the case
when fermions are not staggered this can be easily seen as the condition πn̂ −∇ · Ê = 0
that results in Ĝn |ψ⟩ = + |ψ⟩. This can be interpreted as matter particles being the sources
or sinks of the Z2 electric field [79]. Contrarily, if gj = −1, this means that there are static
charges Qs

j present on lattice sites, i.e., πn̂ −∇ · Ê = Q̂s
j .

With Eq. (1.58) we have thus obtained a Hamiltonian where matter ĉj, defined on the
lattice sites, is coupled to the gauge field defined on the links, which is represented by spin-
1/2 operators τ̂x,z

⟨i,j⟩. We note that the Z2 LGT Hamiltonian in Eq. (1.58) has some similarities
with the quantum link models (truncated U(1) LGT), which we defined in Eq. (1.31). In
both cases particles (matter fields) on lattice sites are coupled to spins on the links between
the sites. However, a major difference between both LGTs is that the QLM formulation does
not have the ZN cyclic property, which we defined in Eq. (1.48), and thus the commutation
relations in Eq. (1.36) remain valid. This is only approximately true for a general ZN , and
is recovered once N → ∞ [143].

In 1+ 1D Z2 LGT the magnetic plaquette term cannot be realized. The Z2 LGT without
fermionic staggering in one dimension thus becomes

ĤZ2 = −t ∑
⟨i,j⟩

(
ĉ†

i τ̂z
⟨i,j⟩ ĉj + H.c.

)
− h ∑

⟨i,j⟩
τ̂x
⟨i,j⟩ + µ ∑

j
ĉ†

j ĉj, (1.62)

where we defined the chemical potential term with prefactor µ, which can be used to
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controll the filling of the chain. The 1 + 1D version of the Gauss law in Eq. (1.59) for the
above Hamiltonian simplifies to [121]

Ĝj = eiπn̂j τ̂x
⟨j−1,j⟩τ̂

x
⟨j,j+1⟩, (1.63)

where we defined the on-site particle number n̂j = ĉ†
j ĉj. The Z2 LGT defined in Eq. (1.62)

together with the corresponding Gauss law in Eq. (1.63) will be the main topic of this thesis.

Coming from the quantum electrodynamics (QED) or quantum chromodynamics (QCD)
standpoint, one could argue that the Z2 LGT is a great simplification of the original LGTs.
Thus the connection to more complicated LGTs, which are closer to describing QED or QCD
might be rather weak. However, it was shown that in some instances ZN LGTs correctly
describe phenomena seen in QCD, especially confinement [26, 146]. The motivation to
study a simple Z2 LGT thus has some concrete connection to the study of confinement
of quarks, besides the connection to high-temperature superconductivity and topological
phase transitions [17, 18, 29]. Of course the main motivation to study the Z2 LGT in
this thesis comes from the perspective of quantum simulation and connections to strongly
correlated system, in particular high-temperature superconductivity [29]. However, we
would like to stress that there are concrete connections also to HEP problems.

We also note that the Z2 LGT defined above couples to matter, which has a global
U(1) symmetry. A common HEP approach is to gauge the global symmetry, and thus
from that perspective one could argue that here we gauged a sub-symmetry. This can
lead to some inconsistencies if one wants to take the continuum limits [119]. However,
we argue that the LGT formulated above has the correct gauge structure, Gauss law, and
commutation relations. It therefore warrants the name lattice gauge theory. Furthermore,
our main motivation of studying this system comes from condensed matter systems and
quantum simulations with ultracold atoms, where such formulation can in fact be even
more natural.

We conclude this section by briefly discussing the role of Z2 LGTs in condensed matter
systems. As already mentioned before, Z2 gauge theories can arise as effective theories at
low-energies in strongly correlated systems [29, 30]. The Z2 gauge theory formalism can
be used to describe fractionalized phases of matter in models describing superconductivity
[16, 17, 29, 30, 58, 147–149]. There, fractional phases can be related to the deconfined phase
of the Z2 LGT [149]. For example, a Z2 gauge theory can be used to described many inter-
esting phases in a model describing p-wave superconductivity [30]. Furthermore, a gauge
theory was developed, which interpolates between AFM order and d-wave superconductiv-
ity [29]. In addition, confinement-deconfinement transitions [24] of emergent gauge fields
can be related to topological order [17, 150]. Gauge theories also generated a lot of interest
in the study of Fermi surface reconstruction [16, 17, 151]. Finally, we mention algebraic
charge liquids, proposed to explain the development of Fermi arcs in the region between
the AFM and the superconducting regime [152].
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1.3 Numerical simulation of the Z2 lattice gauge theory

Here we present details on numerical calculations of the 1 + 1D Z2 LGT where matter
is coupled to the Z2 gauge field. In order to obtain the ground state results we employ
the DMRG method [34, 35]. Throughout this thesis we use a MPS toolkit SyTen [153,
154]. This toolkit contains, among many other features, DMRG implementations of spin
system, which we use in order to find the ground state of the Z2 LGTs after integrating
out the matter degrees of freedom. When employing DMRG calculations we therefore do
not simulate the whole system that consists of matter fields (partons) and a Z2 gauge field
(link variables). Instead, we take into account the Gauss law and its set of local constraints.
This is because we are always interested in the physical gauge sector, which allows us to
describe the system fully in terms of charge or link degrees of freedom. We use the later
description by using the Gauss law constraint to the physically sector and integrate out the
matter degrees of freedom. With that we express the Z2 LGT in the physical sector purely
with the Z2 link variables, which becomes a spin-1/2 Hamiltonian. This mapping is exact,
and we describe it in detail below.

1.3.1 Numerical calculations using DMRG

Density-matrix renormalization group (DMRG) can be understood as a variational method
to find the ground state of a physical system [35, 155]. It was originally developed by White
[34, 156], and can be used to study ground state properties of quantum systems, as well as
to compute finite temperature states [35, 155]. It works best for one-dimensional systems,
which can be understood in terms of the area laws [35, 155, 157]. These tell us that for
gapped systems, for Hamiltonians, which contain local interactions, entanglement entropy
scales as S ∝ LD−1, where LD the system size and D is the spatial dimension [35, 155].
This is good news in one dimension where it scales as a constant. However, already in two
dimensions entanglement scales linearly [155]. Up to some extent, the entanglement can
be connected to the eigenvalue spectra, which is important as in the DMRG we truncate
the system by taking only a certain number of the most important weights in the system
[35, 155]. This is done via the singular value decomposition (SVD) where we truncate the
number of singular values retained [35].

DMRG as a numerical method is well established. In this thesis we have not developed
new methods or new variations of it. We merely used the already developed implementa-
tion in a powerful toolkit SyTen [153, 154], where it is implemented within matrix-product
states formalism. In this short section on DMRG we will thus not review the method in
detail, as our focus in this thesis was to study the physical properties of the lattice gauge
theories and strongly correlated systems. For an extensive review we refer the reader to
Ref. [35]. A slightly shorter review, which contains all of the important details is available
in Ref. [155]. Both of these references were followed in this short section, where we outline
the very basic idea.

In the finite system DMRG we search for the ground state |ψ⟩ for a given Hamiltonian
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Ĥ [35, 155]. The problem thus reduces to finding the minimal value of [35, 155]

E [|ψ⟩] = ⟨ψ| Ĥ |ψ⟩
⟨ψ|ψ⟩ , (1.64)

which can be formulated in terms of a Lagrange multiplier, λL, where we have to minimize
[35, 155]

⟨ψ| Ĥ |ψ⟩ − λL ⟨ψ|ψ⟩ . (1.65)

By using the matrix-product state formulation we can efficiently calculate the extremum of
the above equation, which boils down to solving an eigenvalue problem [35, 155].

Matrix-product states

Matrix-product states (MPS) are obtained by reshaping a generic pure quantum state [35,
155],

|ψ⟩ = ∑
σ

cσ |σ⟩ , (1.66)

where {σ} is the local state space, with local dimension d, and |σ⟩ = |σ1, σ2, ..., σL−1, σL⟩
[155]. Any such state can be reshaped into a matrix-product state expressed as [35, 155]

|ψ⟩ = ∑
σ

Mσ1 Mσ2 ... MσL−1 MσL |σ⟩ , (1.67)

by using a SVD decomposition [35, 155, 158]. Here, Mσi are matrices the dimension of
which can grow the further away the lattice site that they represent resides from the start of
the lattice [35]. The maximal dimension can be dL/2 × dL/2−1 [35, 155]. Such representation
is in fact exact, and would thus grow with system size. However, we can truncate the above
state as it can be reshaped by using the Schmidt decomposition [35, 155]

|ψ⟩ =
r

∑
aℓ=1

saℓ |aℓ⟩A |aℓ⟩B . (1.68)

Here |aℓ⟩A,B are different blocks to which the MPS can be reshaped, and r is the number
of non-zero singular values s [155]. The truncation then takes place by retaining only the
largest χ singular values s, while discarding all others. For more details we refer the reader
to Ref. [35]

Finding the ground state

The ground state value is found by minimizing Eq. (1.65), which in the MPS language is
expressed as [35, 155]

∑
σ′
ℓ

∑
a′ℓ−1a′ℓ

H(σℓaℓ−1aℓ),(σ′
ℓa′ℓ−1a′ℓ)

− λLMσℓ
aℓ−1,aℓ = 0, (1.69)
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where the Hamiltonian Ĥ is expressed in terms of a matrix-product operator (MPO), H. The
above equation is thus reduced to solving an eigenvalue problem Hv − λLv, for matrices
up to the dimension of dχ2 × dχ2, where χ is the bond dimension [35]. These matrices can
be still very big, however, we only need to calculate the lowest eigenvalue which can be
obtained by an iterative eigensolver [35, 155]. For example one can use the Lanczos method
[35, 155, 158, 159]. The standard procedure is then to sweep through the chain and solve
the eigenvalue problem on each site, reshape the matrices, and move on to the next site [35,
155]. After reaching the end of the chain we sweep in the opposition direction. We perform
multiple sweeps until the energy stops to decrease.

In DMRG calculations performed to obtain numerical data in this thesis, we typically
start with a random initial state. A slightly better method would be to already guess a state,
which is close to the ground state and with that optimize the calculations. We mitigate the
fact that we start with a random state by staging multiple rounds of our sweeps with
different bond dimension χ. We thus have one or two rounds of sweeps at low bond
dimension χ ∼ 128, which gives us a good guess for more costly sweeps at higher bond
dimensions. We typically stop the calculations once the ground state energy after two
consecutive sweeps does not decrease more than ∆E ∼ 10−12, which is typically in units
of hopping [t] in the Z2 LGT. This is, practically speaking, already a good measure of
convergence, which can be more formally checked by calculating the variance of the energy
⟨Ĥ2⟩ −

(
⟨Ĥ⟩

)2
, that should be sufficiently low, e.g., ∼ 10−9 [35]. This of course only tells

us whether or not the obtained state really is an eigenstate of Ĥ and we still risk that our
calculations got stuck in some local minima. For that we need to do more concrete checks
of physical observable and determine whether or not the results make sense. A good
method, when in doubt, is to check how a physical observable changes with increasing
bond dimension χ [35].

1.3.2 Mapping to the spin model

In this section we apply the Gauss law constraint to the physical sector and derive the spin
representation of the Z2 LGT, where Z2 gauge field is coupled to U(1) hard-core bosons,
[1, 3–5]

Ĥ = −t ∑
j

(
â†

j τ̂z
⟨j,j+1⟩ âj+1 + H.c.

)
− h ∑

j
τ̂x

j,j+1. (1.70)

Here we defined the hard-core boson creation and annihilation operator as â† and â, respec-
tively. We note that due to the Jordan-Wigner transformation the above formulation can be
mapped to coupling gauge field to spinless fermions [1, 5]. This following derivation is
based on Ref. [5].

The Gauss law in the Z2 LGT theory with dynamical matter is defined through a set of
local operators [1, 3, 5, 121, 160]

Ĝj = τ̂x
⟨j−1,j⟩(−1)n̂j τ̂x

⟨j,j+1⟩. (1.71)

We remind the reader that τ̂x is a x-component Pauli matrix, and n̂j = â†
j âj is an on-site
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hard-core boson (parton) number operator. As discussed in Section 1.2, Ĝj commutes with
the Hamiltonian, and its eigenvalues can have two possible values: Ĝj |ψ⟩ = gj |ψ⟩, where
gj = ±1. The physical sector is the sector where all eigenvalues are positive gj = +1, ∀j.
Thus the Gauss law for the physical sector has the following action on any state in the
physical gauge sector [5]

Ĝj = τ̂x
⟨j−1,j⟩(−1)n̂j τ̂x

⟨j,j+1⟩ = I. (1.72)

Rearranging the above expression allows us to express the on-site parton number operator
exclusively in terms of the Z2 electric field variables connected to that lattice site as [5]

n̂j =
1
2

(
1 − τ̂x

⟨j−1,j⟩τ̂
x
⟨j,j+1⟩

)
. (1.73)

This expression simply tells us that the Z2 electric link variables are anti-aligned across an
occupied lattice site and are aligned across a vacant matter site. We will use this connection
also in the next Chapter 2 to define the Z2 electric strings. By using the above expression,
Eq. (1.73), we can fully determine the orientation of the link variables, provided we have
the knowledge of the position of each individual particle on the lattice. The opposite is of
course also true.

We can therefore see that combined simulation of the matter sites and link sites in
DMRG is redundant in the Z2 LGT when one wants to study the physical sector exactly.
Integrating out the matter degrees of freedom thus provides an exact mapping to a purely
spin system, and reduces the numerical complexity. As will become apparent soon, this
comes with a cost of a reduced number of symmetries that can be used in the spin lattice,
which is slightly offset by the fact that spin systems, even without symmetries, are well
suited for DMRG calculations.

With the above definition of the on-site parton occupation operator, Eq (1.73), we can
define the hard-core boson creation and annihilation operators, expressed fully in terms of
the Z2 link variables as [5](

∏
l<j

τ̂z
l,l+1

)
â†

j :=

(
∏
l<j

τ̂z
l,l+1

)
1
2

(
1 + τ̂x

j−1,jτ̂
x
j,j+1

)
,(

∏
l<j

τ̂z
l,l+1

)
âj :=

(
∏
l<j

τ̂z
l,l+1

)
1
2

(
1 − τ̂x

j−1,jτ̂
x
j,j+1

)
.

(1.74)

In order for the Gauss law to be conserved, each parton creation and annihilation operator
has to be accompanied with the appropriate change of the electric field orientation. Hence,
we add the string of τ̂z operators to â† and â. The operators on the left side thus act on
the combined Hilbert space of matter sites and links, whereas the right hand side acts in
the Hilbert space, which consists solely of the link variables. With this we eliminate the
redundant matter lattice sites.

When defining the above operators in the link notation space only, we first have to
project to the states, which are not annihilated after application of the creation or annihi-
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lation operator. For example in order for the parton creation operator to add a parton at
site j, site j has to be empty to begin with. In our case this is assured by first applying the
operator 1 − n̂j =

1
2

(
1 + τ̂x

⟨j−1,j⟩τ̂
x
⟨j,j+1⟩

)
, which vanishes for the case when there already is

a parton on site j, as is the case for the "matter" creation operator. In order to add a parton
we then have to ensure that the electric variables are anti-aligned across site j. For that we
flip all of the Z2 electric links from the beginning of the chain up to site j, which is done
with a string of Pauli z matrices ∏l<j τ̂z

l,l+1. This is because applying a Pauli z matrix to an
eigenstate in the x basis flips its orientation as discussed in Section 1.2.5. By applying the
whole string starting from the beginning of the lattice we ensure that we do not introduce
any other partons anywhere else in the chain. We could also start this sort of string at the
end of the lattice.

The above mapping is similar to the string attachment defined by Borla et al. in
Ref. [160] and somewhat resembles the Jordan-Wigner mapping used by Kitaev and Lau-
mann when mapping the Kitaev chain to a spin system in Ref. [161]. However, we note that
we did not use any Majorana operators in this mapping in contrast to the case in Ref. [160],
which means that the mapping proposed here is not as complicated.

By using the mapping defined above in Eq. (1.73) and Eq. (1.74) we can express the full
1 + 1D Z2 LGT, Eq. (1.70), where gauge fields are coupled to dynamical hard-core bosons
fully in terms of Z2 fields [1, 3–5, 160]

Ĥs
LGT = t

L

∑
j=2

(
4Ŝx

j−1Ŝx
j+1Ŝz

j − Ŝz
j

)
− h

L+1

∑
j=1

2Ŝx
j . (1.75)

Above we already implied that we consider open boundary conditions (OBC), and that our
system starts and ends with a link variable. This means that the total number of spins
equals to L + 1, where L is the number of matter lattice sites. In addition, we translated
the link indices to the spin sites as ⟨j − 1, j⟩ → j. The Hamiltonian above does not contain
the chemical potential, which we add in the next steps below. Furthermore, we replaced
the Pauli matrices with their corresponding spin-1/2 operators: τ̂x,z

⟨i,i+1⟩ = 2Ŝx,z
j [6]. The

above spin formulation was first used by Borla et al. in Ref. [160] where the mapping
contained Majorana operators. However, the spin formulation could also be derived by
simply relating the allowed matrix elements in terms of the Z2 variable configurations as
was done for example in Ref. [2]. Finally we note that this spin model is also known as the
kinetically constrained spin model [7, 162].

The Hamiltonian in Eq. (1.75) does not have any simple symmetries such as the global
U(1) symmetry, which would fix the total magnetization of the chain. As already stated
before, this means that no symmetries for the spin lattices can be used in the MPS calcu-
lations. However, the spin model Eq. (1.75) does have a total conservation of the number
of domain walls, which is simply the U(1) symmetry for the hard-core bosons, since the
Hamiltonian, Eq. (1.70), conserves the total particle number N.
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Figure 1.1: Filling of the chain, n, as a function of the chemical potential µ in the 1 + 1D
Z2 LGT after integrating out the charges, Eq. (1.77). The blue circles correspond to the case
where h = 0, and the red hexagons correspond to h/t = 1. This figure was obtained from
Fig. S1 in the Supplemental material of Ref. [4].

In order to control the filling of the chain, we thus add a chemical potential term [5]

Ĥs
µ = −µ

L

∑
j=1

(
n̂j −

1
2

)
= µ

L

∑
j=1

2Ŝx
j Ŝx

j+1. (1.76)

The whole spin-1/2 model, which we simulate with the DMRG is thus equal to

Ĥs = t
L

∑
j=2

(
4Ŝx

j−1Ŝx
j+1Ŝz

j − Ŝz
j

)
− h

L+1

∑
j=1

2Ŝx
j + µ

L

∑
j=1

2Ŝx
j Ŝx

j+1. (1.77)

With such implementation we can simulate quite long chains: in this thesis we go up to
lengths L = 120 [3]. We note that for the results in Chapter 4, the factor in the chemical
potential was 4 and not 2 [4].

Controlling the filling with the chemical potential

Finding the right filling, which we define as n = N/L, by tuning the chemical potential
term µ, can in some cases be an inconvenient task. In the free parton regime h = 0, we
can simply use free fermion calculations in order to find the correct filling n, even in the
case when we consider OBC [163]. However, at finite electric field term h ̸= 0, this is not
possible anymore. For this reason we generally perform calculations at smaller system
sizes for different values of h, and sweep through a range of chemical potential values µ. In
Fig. 1.1 we present a typical sweep through different values of µ for L = 36 lattice sites. We
observe small plateaus of constant filling for short intervals of µ. These plateaus are related
to the finite system size, i.e., the finite system size charge gap [4]. In the case presented



1.3 Numerical simulation of the Z2 lattice gauge theory 29

above, the system consists of free partons for h = 0, and of confined mesons for h/t = 1,
the regimes which we study in the next Chapter 2. In both cases the system forms a gapless
Luttinger liquid consisting of partons in the former, and mesons in the later case [1, 160].
Thus in the thermodynamic limit, L → ∞, the plateaus will disappear [4] as the system
is in fact gapless in the thermodynamic limit. We note that with such implementation the
condition that the chain always starts and ends with an anti-string, and thus that we obtain
even number of particles, is fulfilled only for h > 0; see Section 2.1 for the definition of
strings and anti-strings. When h = 0, we also often obtain odd particle number, but since
there is no dynamics in the gauge field this does not play a major role, and we often include
such results in our analysis.

We note that the filling in the spin-1/2 model after integrating out the charges is simply
calculated via the Gauss law constraint, Eq. (1.73), as [5]

n =
1
L

L

∑
j=1

⟨n̂j⟩ =
1
L

L

∑
j=1

1
2

(
1 − 4⟨Ŝx

⟨j−1,j⟩Ŝ
x
⟨j,j+1⟩⟩

)
, (1.78)

where we again use the link notation for the spins in order to highlight the fact that partons
reside on the matter sites.

Important operators in the spin formulation

In addition to the on-site density operator n̂j, we also have to express other important
operators in terms of spins. Below we present some other important operators expressed
in the spin formulation, which we will encounter in the next chapters.

We start with the density-density operator where we simply multiply Eq. (1.73) on
different lattice sites:

n̂jn̂i =
1
2

(
1 − 4Ŝx

j−1,jŜ
x
j,j+1

) 1
2
(
1 − 4Ŝx

i−1,iŜ
x
i,i+1

)
. (1.79)

The above expression can be simplified when |i − j| = 1, as
(

τ̂x
j

)2
= I. Such terms

are added to Eq. (1.77), when simulating the Z2 LGT with nearest-neighbor repulsion
∝ V ∑j n̂jn̂j+1.

Next we present the Z2 gauge invariant Green’s function, which we study to probe
confinement [1, 160]:

G(i − j) =

〈
â†

i

(
∏

i≤ℓ<j
τ̂z
ℓ,ℓ+1

)
âj

〉
. (1.80)

We will describe how this function can be used to probe confinement and all of its properties
in confined/deconfined regimes in the next Chapter 2. Here, we express it in terms of link
variables by simply using the definition in Eq. (1.74), and write it in terms of the link
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variables only [1, 3–5]:

G(x) =
〈1

4

(
∏

x0≤ℓ<x
2Ŝz

⟨ℓ,ℓ+1⟩
) (

1 − 4Ŝx
⟨x−1,x⟩Ŝ

x
⟨x,x+1⟩

) (
1 + 4Ŝx

⟨x0−1,x0⟩Ŝ
x
⟨x0,x0+1⟩

) 〉
. (1.81)

Some care has to be taken here with the order of the Z2 fields applied to the state. It is thus
always good to consider matrix elements to which the operator, expressed purely in terms
of links, maps to when applied to different physical states [1–5].

Superconducting terms

In Chapter 5 we will consider additional Z2 gauge invariant superconducting (SC) terms,
which can be easily expressed in terms of link variables as [5]

Ĥs
λ = λ ∑

⟨i,j⟩

(
â†

i τ̂z
⟨i,j⟩ â

†
j + H.c.

)
= λ

L−1

∑
j=2

(
4Ŝx

j−1Ŝx
j+1Ŝz

j + Ŝz
j

)
. (1.82)

Hence, in Chapter 5 we simulate the spin Hamiltonian, which contains the above terms in
addition to all of the terms in Eq. (1.77). The Hamiltonian can then be expressed as [5]

Ĥs
SC = t

L

∑
j=2

(
4Ŝx

j−1Ŝx
j+1Ŝz

j − Ŝz
j

)
− h

L+1

∑
j=1

2Ŝx
j + λ

L−1

∑
j=2

(
4Ŝx

j−1Ŝx
j+1Ŝz

j + Ŝz
j

)
+ µ

L

∑
j=1

2Ŝx
j Ŝx

j+1.

(1.83)
We note that for λ ̸= 0, this Hamiltonian does not conserve the number of spin domain
walls. This is because the SC terms explicitly break the U(1) symmetry in the partons.

In the regime when λ = −t, the extended 1 + 1D Z2 LGT expressed in terms of link
variables reduces to an Ising model with transverse and longitudinal fields and can be
expressed as [5]

Ĥs = −t
L−1

∑
j=2

2Ŝz
j − h

L

∑
j=1

2Ŝx
j + µ

L−1

∑
j=1

2Ŝx
j Ŝx

j+1. (1.84)

In the opposite case, when λ = t, the Hamiltonian merely reduces to [5]

Ĥs = t
L−1

∑
j=2

8Ŝx
j−1Ŝx

j+1Ŝz
j − h

L

∑
j=1

2Ŝx
j + µ

L−1

∑
j=1

2Ŝx
j Ŝx

j+1. (1.85)

Throughout this thesis we will usually refer to Hamiltonians and correlation functions
written in terms of matter and gauge field operators. However, we note that all of the nu-
merical calculations come from MPS calculations where the matter fields were integrated
out as described above. That is because we will always be interested in the exact physical
Gauss sector without background charges. Hence, all of the DMRG calculations and ob-
servable were calculated via Hamiltonians and correlation functions expressed in terms of
link variables, i.e., spins. We state once again that the mapping to the spin (link) formu-
lation is exact, as we explicitly take into account the Gauss law constraint to the physical
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Figure 1.2: A sketch of the physical and auxiliary (ancilla) lattice sites, implemented with
an extended MPS lattice. Every physical site residing on an even MPS lattice site labeled as
j = 2k, k ∈ Z, is maximally entangled to its corresponding auxiliary lattice site j = 2k + 1,
in the initial, infinite temperature state |ψ(β = 0)⟩. This figure was obtained from Fig. S2
in the Supplemental material of Ref. [4].

Gauss sector.
If one is interested in the effects of Gauss law violations, which become important in

schemes to implement LGTs in quantum simulation platforms, the full Z2 LGT Hamiltonian
has to be used [81, 91, 103]

1.3.3 Finite temperature calculations

Next, we explain how we perform finite temperature calculations for the 1 + 1D Z2 LGT
using MPS. We employ the quantum purification scheme where we add an auxiliary lattice
site to every physical lattice site, which acts as a thermal bath [164–168]. We use a trick
where we encode the thermal mixed states by taking a trace over enlarged pure state [35].

Our finite temperature calculations are based on the spin formulation of the Z2 LGT
after integrating out the matter degrees of freedom, introduced in the previous Section 1.3.2.
In the finite temperature calculations, the total system size doubles. The MPS chain length
thus increases as L + 1 → 2(L + 1), where L is the number of matter lattice sites, and
L + 1 is the number of the links. The physical lattice sites in the MPS chain reside on
even sites j = 2k, where k ∈ Z, and auxiliary (ancilla) lattice sites correspond to the odd
lattice site, 2k + 1, as proposed in [164]. We sketch the MPS chain that corresponds to such
configuration in Fig. 1.2. Note that there we started counting from 0 instead of 1, as was
mentioned above.

In the quantum purification scheme a generic thermal state is represented with a pure
state of the extended system, which is defined as [4, 164, 167]

|ψ(β)⟩ = e−βĤ/2 |ψ(β = 0)⟩ . (1.86)

Here |β = 0⟩, represents the state where auxiliary lattice sites and physical lattice sites are
maximally entangled, and β = 1/T is the inverse temperature, T [4]. Furthermore, Ĥ is
the Hamiltonian for which we want to calculate the thermal states and acts only on the
physical lattice sites [164]. Thermodynamic averages of any physical operator Ô, acting on
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the physical sites, can be calculated by computing [164, 167]

〈
Ô
〉
=

⟨ψ(β)| Ô |ψ(β)⟩
⟨ψ(β)|ψ(β)⟩ . (1.87)

The starting point of the finite temperature calculations is to obtain the maximally en-
tangled state |ψ(β = 0)⟩. More precisely this is the state where every physical lattice site
j = 2k is maximally entangled to their corresponding ancilla site j = 2k + 1. In a generic
spin-1/2 chain this would be the state where physical and their corresponding ancilla sites
are in singlet states [35, 167]. In order to implement such state |ψ(β = 0)⟩, we compute the
ground state of the entangler Hamiltonian [4, 167]

Ĥe = −
L

∑
j=0

(
Ŝ+

2jŜ
−
2j+1 + H.c.

)
. (1.88)

This Hamiltonian is chosen because its ground state is exactly |ψ(β = 0)⟩ and we can simply
use DMRG to find its ground state [4].

In the next step, we perform imaginary time evolution on the maximally entangled state
[4, 164, 167]

|ψ(β)⟩ = e−βĤ/2 |ψ(β = 0)⟩ . (1.89)

The time evolution is performed by employing Krylov algorithm [135] for the first few
states in order to sufficiently grow the bond dimension of the MPS [4, 169]. The initial state
has very low bond dimension of only χ = 2, hence Krylov algorithm is employed for the
first 10 steps, where we typically use a time step ∆βKt/2 = 0.01 [4]. For the rest of the time
evolution we employ time-dependent variational principle [135]. There we typically use a
slightly longer time step of ∆βTt/2 = 0.05 [4].

Since the Hamiltonian in Eq. (1.89) acts only on physical lattice sites, it is rewritten as
[4]

ĤT
s = t

L−1

∑
j=1

(
4Ŝx

2j−2Ŝx
2j+2 − 1

)
Ŝz

2j − 2h
L

∑
j=0

Ŝx
2j + 2µ

L−1

∑
j=0

Ŝx
2jŜ

x
2j+2. (1.90)

The energies of the system converge to the ground state energy as a function of β. Since
the chemical potential µ is constant throughout the imaginary time evolution, chain fillings
also slowly converge to the ground state results. We note that for technical reasons, we
normalize the state already in every time-evolution step, and not after we reach very long
β, as stated in Eq. (1.87).

A similar procedure as outlined here can be also employed for other spin systems [167].
In fact, the same procedure as stated above was used for the mixed-dimensional XXZ model
in Chapter 7.4.

Time evolution methods for MPS

Before concluding this section we provide some basic ideas of the time evolution methods
used to perform finite temperature calculations. To perform imaginary time evolution, we
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use the MPS toolkit SyTen [153, 154] throughout this thesis. We use the Krylov method
and TDVP, which are already implemented in the toolkit. For a thorough review of these
methods we refer the reader to Ref. [135], on which we base the following discussion, where
we sumarize the main points.

The Krylov method relies on the Krylov sub-space expansion in order to estimate the
action of the time evolution operator on the physical state [135]

Û(δt) |ψ(t)⟩ = e−iδtĤ |ψ(t)⟩ = |ψ(t + δt)⟩ . (1.91)

It relies on the Krylov sub-space KN , where the state |ψ⟩ and Hamiltonian Ĥ, define the
sub-space containing the vectors {|ψ⟩ , Ĥ |ψ⟩ , Ĥ2 |ψ⟩ , ..., ĤN−1 |ψ⟩} [135]. More precisely,
KN is spanned by vectors |v0⟩ , |v1⟩ , ..., |vN−1⟩, which are all orthogonalized to each other
and where any vector |vi⟩ is generated by applying Ĥ to the previous vector |vi−1⟩ as
suggested in the definition above [135]. The new time-evolved state is then calculated by
solving the equation [135]

Û(δt) |ψ(t)⟩ ≈ arg|v⟩∈KN
min|| |v⟩ − Û(δt) |ψ(t)⟩ || ≡ |ψN(t + δt)⟩ . (1.92)

There are two main source of errors, the first one comes from the size of the Krylov
sub-space expansion, which scales as O(δN) [135]. The second one comes from the MPS
truncation error, which can be seen in the so called discarded weight [135]. Both errors
can be reduced, however the numerical effort increases [135]. Therefore, for longer time
evolution we switch to TDVP.

The time-dependent variational principle (TDVP), is a local method to perform time
evolution, where the numerical calculations are constrained to a certain MPS manifold [135,
170, 171]. There we can thus specify the exact bond dimension, and the method is restricted
to calculating the time-dependent Schrödinger equation only in that specific manifold [135].
The TDVP method is somewhat complex and we will not go into further details. We just
mention that the main advantage of using TDVP is that it is numerically cheaper than the
global Krylov method. In the global Krylov method, the entanglement can grow artificially
fast as the states pick up more entanglement than the exact state would actually acquire
under time-evolution [135]. For this reason, a TDVP method or a local Krylov method were
developed in order to circumvent this [135].

There are four sources of error in the TDVP method [135]. The projection error is
encountered when the bond dimension is too small, the time step error occurs when the
times step δt is too big and scales as O((δt)3) per time step, and the third error arises when
the local number of Krylov vectors is too small [135]. The fourth error arises in a two-site
TDVP (2TDVP), where additional truncation takes place [135]. The bond dimension thus
has to be sufficiently large before starting the TDVP, which is why it is useful to first use
a global Krylov method for first few time steps, and then switch to TDVP, in the case the
initial state has very low bond dimension [135, 169]. This is, for example, the case in our
finite temperature calculations. One also needs to find a good time interval for each time
step as the truncation error and the projection error increase with more time steps [135].
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In contrast, the time step error and the error related the number of local Krylov vectors,
decreases with shorter time steps [135].

With this we conclude the theoretical introduction. In the next chapter we start our
discussion on Z2 LGT coupled to dynamical matter. In the chapters that follow we will
often relate to the concepts and methods discussed in this chapter.



Chapter 2

Confinement in Z2 lattice gauge
theories with matter

In this chapter we discuss the confinement problem in the one-dimensional (1 + 1D) Z2

LGT coupled to matter in the ground state. The confinement of partons into mesons is
mediated via the Z2 gauge field. We first introduce the Hamiltonian of the paradigmatic
1 + 1D Z2 LGT, and the string-length picture, by considering the Gauss law constraint to
the physical Hilbert space sector without background charges. We discuss confinement in a
simple limit where matter dynamics is frozen. We continue by discussing different probes
of confinement at generic fillings and Hamiltonian parameter values. We first discuss the
Green’s function behaviour, which decays exponentially in the confined phase, and as a
power-law in the deconfined regime [1, 160]. We also discuss the abrupt change of the
Friedel oscillations, the frequency of which halves in the confined phase, relative to the
frequency observed in the deconfined phase at the same chain fillings [160]. To obtain the
numerical result we employ DMRG calculations, where we eliminate the matter degrees
of freedom by using the Gauss law constraint. We also develop an experimentally feasible
probe of confinement by considering the string and anti-string length distributions, where
a bimodal distribution is a robust signature of confinement. Such distributions are sampled
from snapshots, obtained from our numerical calculations.

Finally, we provide an explanation of the confinement problem by mapping the system
to a nonlocal string-length basis. We first show how a naive bosonization argument, where
one integrates out the gauge degrees of freedom, does not capture confinement, and argue
why a different approach is needed. By mapping the Z2 LGT to the string-length basis, we
show that the confined phase relates to breaking of the translational symmetry in the new
basis [1]. This explains why the matter in a 1+ 1D Z2 LGT confines into mesons as soon as
the gauge field becomes dynamical.

This chapter is mainly based on Ref. [1], from which the content, including figures, has
been adapted and extended. In addition, we also refer to some of the results from Refs. [3–
5], from which we adapt some of the figures and results.
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2.1 One-dimensional Z2 lattice gauge theory with matter

We start by introducing the 1 + 1D Z2 lattice gauge theory coupled to U(1) matter, which
we define as [1, 121, 160]

Ĥ = −t ∑
j

(
â†

j τ̂z
⟨j,j+1⟩ âj+1 + H.c.

)
− h ∑

j
τ̂x
⟨j,j+1⟩. (2.1)

Here â†
j (âj) are the hard-core boson creation (annihilation) operators. The term U(1) matter,

used above comes from the fact that the Hamiltonian conserves the total number of hard-
core bosons. The Z2 fields are represented by Pauli matrices on the links, ⟨j, j + 1⟩, between
lattice sites. The Pauli matrix τ̂x

⟨j,j+1⟩ represents the Z2 electric field and τ̂z
⟨j,j+1⟩ represents

the Z2 gauge field. The motivation for such names can be found in the general introduction
to lattice gauge theories in Chapter 1.2. Without loss of generality we consider t, h ≥ 0,
throughout this thesis. In addition, we note that in one-dimension we can map hard-core
bosons to spinless fermions via Jordan-Wigner transformations [172, 173]. The physics thus
remains the same if we replace the hard-core bosons with spinless fermions [1].

The first term in the Hamiltonian Eq. (2.1) is the nearest-neighbor (NN) hopping term
for the hard-core bosons (partons) proportional to hopping amplitude t. Partons are mini-
mally coupled to the Z2 gauge fields and the hopping term thus includes the τ̂z

j,j+1 operator,
which resides on the link between the two lattice sites where the parton hops; see Fig. 2.1.
The second term in the Hamiltonian Eq. (2.1) is the Z2 electric field term, the strength of
which is parameterized by h, and induces dynamics in the Z2 gauge field.

In addition to the Hamiltonian Eq. (2.1), one also has to consider a set of local operators
[1, 121, 160],

Ĝj = τ̂x
⟨j−1,j⟩e

iπn̂j τ̂x
⟨j,j+1⟩, (2.2)

which generate the gauge symmetry. Here we defined the hard-core boson on-site number
operator n̂j = â†

j âj. As already mentioned above, operators Ĝj correspond to the generators
of the Z2 symmetry group, and constitute the LGT counterpart of the Gauss law [1, 3–5,
121, 160], as discussed in Section 1.2.5. The operators in Eq. (2.2) thus commute with the
Hamiltonian, [Ĥ, Ĝj] = 0, ∀j, and since the gauge group is Abelian, also with each other
[Ĝj, Ĝi] = 0. This means that the Z2 LGT Hamiltonian in Eq. (2.2), can be diagonalized in
the basis of the Ĝj operators. The eigenvalues of Eq. (2.2),

Ĝj |ψ⟩ = gj |ψ⟩ , (2.3)

can take two different values, gj = ±1. This means that the eigenvalues of Ĝj on every
matter lattice site can be considered to divide the Hilbert space H into different sectors:
H = ⊕mH (Gm), where Gm = {gm

1 , ..., gm
j , ...} [26]. The set of eigenvalues for every site

thus labels the corresponding Hilbert space sector. We consider the physical sector where
the eigenvalues are always positive on every lattice site, i.e., gj = +1, ∀j. This corresponds
to the Hilbert space sector without any background charges [1, 121, 160].

The direct consequence of considering only the physical Hilbert sector is obtaining a
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Figure 2.1: A sketch of a one-dimensional Z2 LGT, where a Z2 gauge field is coupled to
U(1) matter. The Gauss law constraint determines the orientation of the Z2 electric field
in respect to the position of the matter on the lattice. Figure was modified from Fig. 1 in
Ref. [1].

one-to-one relation between the electric field configuration τ̂x
⟨i,j⟩ and position of matter

(hard-core bosons) in the lattice. From Gauss law, Eq. (2.2), we see that in order for the oper-
ator to always have a positive eigenvalue gj = +1, the electric field configuration across an
occupied lattice site, ⟨n̂j⟩ = 1, has to be anti-aligned ⟨τ̂x

⟨j−1,j⟩τ̂
x
⟨j,j+1⟩⟩ = −1. Contrarily, for

vacant lattice site ⟨n̂j⟩ = 0, the electric fields have to be aligned, ⟨τ̂x
⟨j−1,j⟩τ̂

x
⟨j,j+1⟩⟩ = +1.

In other words, in the physical gauge sector the Gauss law operator is equivalent to
Ĝj = τ̂x

⟨j−1,j⟩e
iπn̂j τ̂x

⟨j,j+1⟩ = I, where I is the identity element. We can thus write the di-
rect connecting between the τ̂x orientations and the on-site particle occupation n̂j as [1]

n̂j =
1
2

(
1 − τ̂x

⟨j−1,j⟩τ̂
x
⟨j,j+1⟩

)
. (2.4)

This has another important consequence, namely, we can define strings and anti-strings,
which denote the orientation of the electric field τ̂x

⟨i,j⟩. Strings are defined as connected
neighboring links where the orientation of the Z2 electric field is negative, ⟨τ̂x

⟨i,j⟩⟩ = −1, and
anti-strings are defined as connected links where ⟨τ̂x

⟨i,j⟩⟩ = +1; see Fig. 2.1. Such definition
together with the Gauss law constraint in Eq. (2.4), results in strings either starting or ending
with partons (hard-core bosons). By following the analogy with the Gauss law, this makes
partons sources and drains of the Z2 electric field. In other words, partons are connected
in pairs by strings, i.e., electric fields of the same configuration; see Fig. 2.1. Every pair,
two partons connected by a string, is thus preceded and followed by an anti-string (a set of
⟨τ̂x

⟨i,j⟩⟩ = +1).
We generally consider finite chains with L matter lattice sites. We also consider that

lattice starts and ends with a link variable, which results in L+ 1 links. In addition, without
loss of generality we typically assume that the chain starts and ends with an anti-string,
i.e., positive electric field orientation, ⟨τ̂x

⟨0,1⟩⟩ = ⟨τ̂x
⟨L,L+1⟩⟩ = +1. Hence, a first string in the

lattice starts with the first particle. If we furthermore consider that we have an even number
of partons in the system, this results in no partons being connected to the lattice edge by a
string.

The above definition is in a way arbitrary and can be reversed in the case when h → −h,
which will become apparent in the next section. The above conditions, in particular of even
parton number becomes important only for h ̸= 0. In the numerical calculations in this
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thesis, the above definitions are also fully considered only when h > 0.

2.2 Confinement in simple limits

We will now consider different terms in the Hamiltonian defined in Eq. (2.1) separately,
and offer an intuitive explanation of confinement that arises in such a system.

The first term is the hopping term with amplitude t. Hard-core bosons, which we
also denote as partons, for reasons that will become apparent soon, are allowed to hop to
a neighboring lattice site; see also Fig. 2.1. The standard hopping term in Eq. (2.1) also
contains the gauge field operator, represented with the Pauli matrix τ̂z

⟨i,j⟩ on the link across
which the parton hops. This makes the partons minimally coupled to the Z2 gauge field.
The Gauss law, Eq. (2.4), is thus fulfilled also after the parton hops, since the action of a τ̂z

operator on the link variable flips the orientation of the spin in the x-basis. In the string
picture, introduced in the previous section, this means that the string remains attached to
the parton as it hops. Hence, although the matter is dynamical, the system always remains
in the physical Hilbert sector, gj = +1, ∀j.

The second term is the electric field term proportional to strength h, which induces
dynamics in the gauge field [1, 4]. This analogy was discussion in the previous Section 1.2,
where we saw that the electric field term can also be understood as the momentum operator.
Electric field terms can thus be understood as the kinetic energy terms of the gauge field
[26, 117, 121]. With the string-length picture described above, the electric field term in
Eq. (2.1) energetically penalizes links where the electric field term has a negative eigenvalue,
τ̂x
⟨i,j⟩ |ψ⟩ = − |ψ⟩. As a result, the finite electric field term, h > 0, favours anti-strings. In

a system with finite number of partons, this results in linear confining potential for the
strings. Hence, the strings tend to become as short as possible and individual partons
confine into dimers (mesons).

The limit of static matter

Confinement of partons into mesons is most easily seen by considering the case where
hopping is frozen, i.e., when we set t = 0. A single meson energy can be thus expressed as

E(ℓ) = hℓ, (2.5)

where ℓ is the length of the string, i.e., the number of links between two partons with
⟨τ̂x

⟨i,j⟩⟩ = −1. By construction, it holds that ℓ ≥ 1. Similarly, anti-string energy would be
equal to E(ℓa) = −hℓa, where ℓa is the length of the anti-string (it also holds that ℓa ≥ 1).
This means that strings tend to be as short as possible when h > 0 in order to minimize its
energy and as a result partons connected with the same string effectively bind in a dimer,
which we dub as meson in analogy to HEP. Contrarily, one can also claim that anti-string
lengths tend to be as long as possible. A tightly confined meson is thus a state where
two partons reside on neighbouring sites and thus the string length between them has the
minimal possible value: ℓ = 1.
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Let us now consider N particles in a chain of length L, the chain filling is thus defined
as n = N/L. As already discussed above, we consider even number of particles N, and we
consider the chain, which starts and ends with a link (anti-string, ⟨τ̂x

⟨i,j⟩⟩ = +1). This means
that we have N/2 strings and N/2 + 1 anti-strings. We now denote the lengths of strings
connecting meson m (counting, for example, from the left) as ℓm, where m ∈ {1, 2, ... N

2 }.
The total energy of the system is thus equal to

E = h
N/2

∑
m=1

ℓm − h

(
(L + 1)−

N/2

∑
m=1

ℓm

)
= 2h

N/2

∑
m=1

ℓm − h (L + 1) . (2.6)

We remind the reader that we consider L + 1 links.
The upper boundary for the string length can be found by considering one string, ℓmax,

to be of maximal possible length and all other remaining N/2 − 1 strings and N/2 + 1
anti-strings to be of minimal possible length ℓ, ℓa = 1, which yields:

ℓmax = (L + 1)− (N/2 + 1)− (N/2 − 1) = L + 1 − N. (2.7)

The string-lengths are thus bounded as:

1 ≤ ℓ ≤ L − N + 1. (2.8)

We now see that the expression in Eq. (2.6), will be minimized when ℓm = 1, ∀m and thus
the energy of the system where t = 0, will equal to

E0 = hN − h (L + 1) . (2.9)

We can rewrite this by normalizing the expression per lattice site, which results in

e0 = E0/L = h(n − 1) + h/L. (2.10)

In the thermodynamic limit, L → ∞, the energy per lattice site is thus equal to e0 = h(n− 1),
where n is the chain filling as before.

We have thus shown that in the limit when the parton dynamics is frozen, t = 0, the
energetically favored states in our system are tightly confined meson states, where the
distances of strings connecting partons is minimal.

The limit of a strong electric field term

When the partons become dynamical, that is when t > 0, the general picture becomes more
complicated. However, one can gain some intuition by considering hopping as a small
perturbation in the limit when h ≫ t, the calculation which was first performed by Borla et
al. in Ref. [160].

The starting point is to consider a single tightly confined meson where ℓ = 1, with
energy E0 = h. The partons in such a case are thus NN. If one of the partons hops away
from their partner, the energy gain associated with that is ∆E = 2h. This is because the
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Figure 2.2: Second order hopping of mesons in the limit when h ≫ t [160]. After the first
parton hops, the energy of the meson increases by ∆E = 2h. In order to decrease the energy,
the same parton can hop back to its original lattice site (lower state on the right). The other
option is that the left parton hops towards its meson partner on the lattice site previously
occupied by the parton that hopped first. This results in the overall hopping of the meson
by one lattice site to the right (upper state on the right).

link orientation across which the parton hops has to change ⟨τ̂x
⟨i,j⟩⟩ = 1 → ⟨τ̂x

⟨i,j⟩⟩ = −1;
see Fig. 2.2. Such a state is energetically highly unfavorable, which means that one of the
partons will hop towards the parton to which it is connected by a string in order to reduce
its length. There are two option: the same parton that hopped first can either hop back to
its meson partner, or the other parton will hop towards the parton, which was the first one
to hop; see Fig. 2.2.

The effective second order perturbation theory yields an effective Hamiltonian for the
mesons (dimers) [3, 160],

Ĥd = −td ∑
j∗

(
d̂†

j∗ d̂j∗+1 + H.c.
)
+ Vd ∑

j∗
n̂d

j∗ n̂d
j∗+1, (2.11)

where we define the tightly confined meson creation operator as d̂†
j∗ = â†

j â†
j+1, and the

meson on-site density operator as n̂d
j∗ = d̂†

j∗ d̂j∗ . In addition, the second order hopping
parameter can be expressed as td = t2/2h [3, 160]. Furthermore, the lattice sites have to be
redefined, as the meson which resides on two lattice sites, e.g., j and j+ 1, are squeezed into
a single hard-core boson on site j∗. In a chain with finite doping, the perturbative hopping
explained above is restricted if two mesons are nearest-neighbors, which results in the NN
repulsion Vd = 2td [3, 160]. More details on this effective model is given in Section 3.2.2.

Above we have also demonstrated that in the limit when h ≫ t, confined mesons are
mobile with the hopping amplitude given by td. Hence, confined mesons remain dynamic,
and are not pinned to specific lattice sites.

The confinement problem becomes hard to tackle once the hopping amplitude t and
electric field term h become of comparable strength, t ∼ h. The other limit where t ≫ h
is also hard to tackle perturbatively, as the Z2 electric field has highly non-local effects,
which we comment in the next sections. However, in the limit when h = 0 the gauge
field can be eliminated using Jordan-Wigner like string attachment and we obtain a free
parton Hamiltonian [1, 5, 119, 121, 160]. More about such mapping will be presented in
Section 2.4.1.

To answer the question whether the partons confine also in more complicated regimes
(t ∼ h and t ≫ h), one has to resort to numerical calculations and come up with physical
observables that probe confinement. We discuss this in the next section.
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Figure 2.3: Gauge invariant Z2 Green’s function Eq. (2.12) in a 1 + 1D Z2 LGT coupled to
matter, Eq. (2.1), after integrating out the matter. (a) The Green’s function decays with a
power law for h = 0, indicating the deconfined regime. (b) The Green’s function exhibits
an exponential decay when h/t = 1. The decay decreases with higher filling n, however the
decay remains exponential. Both axes are in a logarithmic scale. Figure was modified from
Fig. 2 in Ref. [5].

2.3 Probing confinement in a one-dimensional Z2 LGT coupled to
matter

2.3.1 Green’s function

The first probe of confinement that we consider is the behavior of the Z2 gauge invariant
Green’s function defined as [1, 3–5, 160]

G(i − j) =

〈
â†

i

(
∏

i≤ℓ<j
τ̂z
⟨ℓ,ℓ+1⟩

)
âj

〉
. (2.12)

Green’s function can be understood as a non-local correlation function, which probes how
"easy" it is to remove a particle at site j and add it to site i. We define the distance between
these two sites as x = |i − j|. It thus directly probes whether a parton is free to roam
the chain. For free partons the Green’s function, Eq. (2.12), decays with a power law as a
function of distance, G(x) ∝ x−γ [1, 160]. Contrarily, if a parton is part of a bound meson,
i.e. if it is bound to another parton via a confining string, then the decay is exponential,
G(x) ∝ e−x/ξ [1, 160].

The behaviour of the gauge invariant Green’s function for the Z2 LGT in Eq. (2.1) was
first considered by Borla et al. in [160], by performing DMRG calculations. It was reveled
that the Green’s function decays with a power law for h = 0 and exponentially for h > 0
[160]. Our calculations, where we integrate out the matter as discussed in Ref. 1.3.2, reveal
the power law decay for h = 0 is robust for any chain filling n, whereas the strength of the
exponential decay for h/t = 1, has a slight dependence on the filling; see Fig. 2.3 [5]. The
above Fig. 2.3 was obtained by performing DMRG for a finite system size L using the MPS
toolkit SyTen [153, 154]. Furthermore, we chose x0 = i = 30 which is at a finite value away
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from the boundary and x = j > 30 [5]. This is to avoid boundary effects in a system with
size L = 96, and open boundary conditions (OBC) [5]. As can be seen in Fig. 2.3(b), the
exponential decay decreases with increasing chain filling n, which we associate with the
overall reduced mobility of mesons in a more filled chain, which decreases the number of
available sites.

The gauge invariant Green’s function is thus an excellent probe of confinement as its
behaviour clearly differentiates between deconfined and confined regime. However, we
note that this is not a typical order parameter with a simple numerical value, for example,
a number ranging between zero for confined and some finite number in the deconfined
regime. Since one has to extract long-distance behaviour of the Green’s function, we require
fairly large system size, above what can typically be reached with exact diagonalization
calculations. This means that one has to consider more advanced numerical techniques in
order to obtain the long-distance behaviour of the Green’s function like the DMRG based
on MPS [4, 5, 160]. One could also consider Monte Carlo calculations where the Green’s
function Eq. (2.12), defined here for 1 + 1D, resembles a one-dimensional version of the
Fredenhagen-Marcu order parameter [5, 174].

Furthermore, extracting the Green’s function in a cold-atom experiment would be a
rather difficult tasks. Therefore, although the Green’s function is a good theoretical probe
of confinement, simpler and perhaps more robust probes are desired, which we discuss in
the following sections.

2.3.2 Friedel oscillations

The next probe of confinement that we consider are the Friedel oscillations, which emerge
as boundary effects in calculations with OBC. This is the case for most of our numerical
calculations in this thesis. More precisely, Friedel oscillations are density oscillations in a
one-dimensional system, due to the presence of a boundary or impurity [175, 176]. The
Friedel oscillations for non-interacting fermions can be calculated using the Bethe ansatz,
or in some cases by considering simple plain waves [176, 177]

δn(x) = A
cos(2πnx + φ)

x
, (2.13)

where one assumes that the boundary is at x = 0 and we included a phase shift φ [176–179].
In the interacting case, the decay of Friedel oscillations generally takes the form [176, 177]

δn(x) = A
cos(2πnx + φ)

xα
, (2.14)

where α parameterizes the interaction between the particles in a chain [176–178]. In a chain
with OBC we thus obtain a symmetric standing wave [176]

nF(x) = A1 + A2

(
cos(2πnx + φ)

xα
+

cos(2πn(L + 1 − x) + φ)

(L + 1 − x)α

)
. (2.15)
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Figure 2.4: Friedel oscillations in a 1+ 1D Z2 lattice gauge theory Eq. (2.1), after integrating
out the matter fields. (a) Density profile n(x) for filling n = 14/36 in the free parton regime
h = 0 (blue circles) and in the confined regime h/t = 1 (red squares). The light blue
and orange solid lines correspond to fits of the data points with simple function Eq. (2.15).
(b) Fourier transformation of the Friedel oscillations in the same parameter regimes. The
vertical dotted line corresponds to the deconfined momentum k = 2πn, and the vertical
dashed line to the confined momentum k = πn. The results presented in this figure are
modified from Ref. [4], More precisely, these are modified Fig. 2 and Fig. S5. in Ref. [4].

Here we added model dependent fit parameters A1 and A2 to obtain a stable fit to the data.

Borla et al. in Ref. [160] first consider the density profiles n(x) in the one-dimensional
Z2 LGT chains and studied the effect of confinement on the Friedel oscillations. Numerical
calculations showed that the frequency of the Friedel oscillations halve from 2πn, for the
deconfined case when h = 0, which is consistent with free partons, to πn in the confined
regime when h ̸= 0 [160]. Furthermore, it was shown that this abrupt change happens
for very small electric field term, h ≪ t, which indicates that mesons become confined for
any non-zero value h ̸= 0 [160]. This explanation follows from the fact that the density
seemingly drops from n to n/2, indicating that confined mesons are the relevant emergent
particles.

As an example we present the Friedel oscillations in Fig. 2.4 for a system of N = 14
partons in a chain of length L = 36, in the deconfined (h = 0) and the confined regime
(h/t = 1) [4]. The results were again obtained by using the MPS toolkit SyTen [153, 154], by
simulating the spin model, Eq. (1.77), after integrating out the matter. By simply counting
the number of peaks in the density profile n(x) in Fig. 2.4(a), one can observe that the
period of oscillation doubles in the confined regime. We fit the DMRG result also with
Eq. (2.15), where in the confined regime we replace the argument of cos, by 2πn → πn,
and for h = 0, we fix α = 1. The thick lines in Fig. 2.4(a) represent the fit results, and we
highlight that fit results in the deconfined case, (h = 0), yield ñ = 0.392, L̃ = 35.94, and in
the confined case, (h/t = 1), yield ñ = 0.399, L̃ = 36.02. In both cases the fits are within a
few percent error (the worst is for h/t = 1, where δn = n−ñ

n ≈ 2.6%). For completeness we
state that for h = 0: φ = −1.618 ± 0.014, A1 = 0.392 ± 0.0003 and A2 = 0.145 ± 0.002, and
for h/t = 1, α = 0.477± 0.006, φ = −1.21± 0.01, A1 = 0.400± 0.001 and A2 = 0.273± 0.004.

Even more convincing are the result obtained by performing the Fourier transformation
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Figure 2.5: String and anti-string length distributions in a 1 + 1D Z2 lattice gauge theory
Eq. (2.1) after integrating out matter. (a) In the deconfined regime h = 0 at filling ns = 0.25,
the string and anti-string length distributions are similar to each other as the partons are
deconfined. (b) In the confined regime h/t = 1 at filling n = 0.229, the string length
histogram peaks at length ℓ = 1, whereas the anti-string length histogram develops a peak
at a much larger length ℓ ≈ 7. The system size considered her is L = 96, and probabilities
Pℓ are normalized to unity. Number of snapshots taken was 400. This figure was modified
from Fig. 3 in Ref. [5].

of the Friedel oscillations [4]

nk =
1
L

L−1

∑
j=0

e−ikj 〈n̂j
〉

. (2.16)

Here we discretize the k-modes as ∆k = 2π
L [4]. In Fig. 2.4(b) we show that the peaks at 2πn

for h = 0, move to πn in the confined regime h/t = 1.
Friedel oscillations thus provide a good probe of confinement in systems with OBC.

Since this probe simply involves obtaining the density profiles in the chains, it is well
suited for cold atom experiments, providing one has access to density resolved snapshots.
Furthermore OBC conditions can also be imposed for example with DMD devices [67] as
mentioned in Section 1.1.

2.3.3 String-length distributions from snapshots

The last probe of confinement that we will discuss here are the string and anti-string length
histograms, which are obtained from numerical snapshots [4, 5]. Snapshots can be obtained
from our MPS results, by using the so-called perfect sampling algorithm [180, 181]. These
algorithms are already implemented in SyTen [153, 154], which we use to sample snapshots
from our MPS.

The procedure to obtain the snapshots is as follows. We first find the ground state at a
given parameter values, by using DMRG. The ground state is saved as MPS, from which we
sample snapshots in the electric field basis. Each snapshot thus gives an orientation of the
electric field ⟨τx

⟨i,j⟩⟩, e.g., an array [−1, 1, 1,−1,−1, ...]. By sweeping through each snapshot
we can thus determine the length of every string and anti-string, which we defined earlier
as ⟨τ̂x

⟨i,j⟩⟩ = −1 and ⟨τ̂x
⟨i,j⟩⟩ = +1, respectively. By considering the orientation of the strings

across each site we determine whether there is a parton or not. The string lengths are then
defined as lengths between odd-even partons, and anti-strings as the distances between
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even-odd partons. The partons are numbered starting from the beginning of the chain.
Such definition is more robust as in the case when h = 0, the Z2 electric fields have a global
Z2 symmetry. We gather these values, and by considering ∼ 400 snapshots, we construct
string and anti-string length histograms. In the confined regime strings are on average
much shorter than the anti-strings since partons are confined into meson. As a result we
obtain a bimodal distribution of strings and anti-strings [4, 5]. Contrarily, in the confined
regime, string and anti-string length distributions are identical, i.e., have almost the same
shape, width, and position of the peak. That is because partons are completely free, and
there is no difference between strings and anti-strings.

An example of the string and anti-string length histograms in the deconfined and con-
fined regime are presented in Fig. 2.5. We see that in the deconfined regime, where the
partons are free and gauge fields can in fact be eliminated [1, 5, 160], the string and anti-
string length distributions are identical. Both distributions peak between ℓ = 3 and ℓ = 4.
This peak can be easily estimated as we know that the number of string and anti-strings in
the whole chain of length L is N + 1, where N is the number of partons. The average string
and anti-string lengths are the same in the deconfined regime and thus equal

⟨ℓ⟩ = L + 1
N + 1

. (2.17)

In a thermodynamic limit this means ⟨ℓ⟩ ≈ 1
n . Thus the expected value for Fig. 2.5(a) where

n = 0.25 is ⟨ℓ⟩ = 3.88, and thus consistent with the numerical results.

In the confined regime h/t = 1, presented in Fig. 2.5(b), strings peak at ℓ = 1 and anti-
strings at around ℓa ≈ 6. This is a clear signature of confinement as mesons are on average
tightly bound, with no empty lattice sites between two partons which form a meson. If one
assumes that the string-lengths peak at ℓ = 1, then the anti-string length distribution peak
can again be estimated as

⟨ℓa⟩ =
L + 1 − N/2

N/2 + 1
. (2.18)

In thermodynamic limit this yields ⟨ℓa⟩ ≈ 1
2n − 1. For the example in Fig. 2.5(b) where

n = 0.229, the exact relation for finite L and N, gives us ⟨ℓa⟩ ≈ 7.2. This estimate is slightly
higher than the numerically obtained value in Fig. 2.5(b), which is closer to ⟨ℓa⟩ ≈ 6.
This is due to the naive assumption that all strings are of length ℓ = 1. As can be seen in
Fig. 2.5(b) there is a finite weight at string length ℓ = 2, which reduces the average length of
anti-strings. Finite number of these "extended" strings are in fact necessary as the mesons
are mobile and hop via a second-order process [160], where the intermediate state is an
extended string [4]; see the previous Section 2.2.

The string and anti-string length distributions are thus a robust measure of confinement,
which can be readily obtained in experimental snapshots from cold atom experiments. The
measurements can be performed either in the electric field basis or in the parton number
basis. This method is however limited with the parton number as the peaks shift towards
ℓ = 1 for larger fillings as we have demonstrated in the simple results in Eq. (2.17) and
Eq. (2.18). One could argue that the limiting filling can be set when the anti-string peak ℓ

p
a
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and the string peak ℓ
p
s differ by at least one site ℓ

p
a − ℓ

p
s = 1, which means that the anti-string

distribution peak has to be at least ℓp
a ≥ 2. We can thus consider the limiting case

L + 1 − Nmax/2
Nmax/2 + 1

!
= 2,

Nmax =
2
3

L + 2,
(2.19)

which in the thermodynamic limit yields nmax ≈ 2/3, and should hold for h ≫ t, when
⟨ℓs⟩ ≈ 1. As already mentioned previously, for generic value of the electric field term h, not
all strings have unity length ℓ = 1 due to fluctuations. Thus the filling nmax = 2/3 can be
considered as an upper bound.

2.4 Solution of the confinement problem

In the previous section we provided numerical evidence that the system is indeed confining
for generic value of the electric field term h. The most striking result obtained by Borla et
al. in Ref. [160], shows that partons confine for any non-zero value of the electric field
term h ̸= 0. In this section we provide a formal solution of the confinement problem by
mapping the one-dimensional Z2 LGT coupled to matter to a non-local string length basis.
This section is based on Ref. [1].

Before we discuss the mapping to the string length basis and confinement in the new
basis we first consider why a naive bosonization as proposed by Borla et al. in Ref. [160]
does not yield confinement of partons.

2.4.1 Naive bosonization

Due to the Gauss law constraint where the eigenvalues of Eq. (2.2) are restricted to positive
values at every lattice site, gj = +1, ∀j, the system can be fully described by considering
either gauge fields or matter particles alone. From the field-theory perspective it is therefore
desirable to integrate out one of the redundant degrees of freedom. Here we will briefly
show how one can eliminate the gauge fields when restricting oneself to the physical sector,
following the calculations in the Appendix of Ref. [5].

In analogy to the Jordan-Wigner transformation we define dressed partons, by attaching
a string of Z2 gauge operators

(
∏l<j τ̂z

⟨l,l+1⟩

)
to the usual parton operators [5, 119, 121, 160]

b̂†
j =

(
∏
l<j

τ̂z
⟨l,l+1⟩

)
â†

j , b̂j =

(
∏
l<j

τ̂z
⟨l,l+1⟩

)
âj. (2.20)

where, b̂†
j , (b̂j) are dressed hard-core boson creation (annihilation) operators. This construc-

tion follows directly from the Gauss law constraint, since a parton on site j changes the
orientation of the electric field across that lattice site. Thus, adding or removing a parton
at site j, results in changing the orientation of all electric field variables, either from the
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left or right of site j, i.e., τx
l,l+1 → −τx

l,l+1, l ∈ {0, ..., j − 1}, or τx
l,l+1 → −τx

l,l+1, l ∈ {j, ..., L},
respectively. Both definitions are equivalent and we choose the former one. The change
of electric field orientation is formally achieved by applying a string of τ̂z

⟨i,j⟩ operator as
defined above.

We can apply the same product of τ̂z
⟨i,j⟩ operators on both sides of Eq. (2.20) and express

the initial hard-core operators in terms of the dressed hard-core operators as [5]

â†
j =

(
∏
l<j

τ̂z
⟨l,l+1⟩

)
b̂†

j , âj =

(
∏
l<j

τ̂z
⟨l,l+1⟩

)
b̂j. (2.21)

The above expression can be used to eliminate the Z2 gauge field from the hopping term
of the Z2 LGT [5]

Ĥt = −t ∑
j

(
b̂†

j b̂j+1 + H.c.
)

, (2.22)

which becomes a simple tight binding term.

The next task is to express the Z2 electric field in terms of the hard-core operators.
We again use the Gauss law constraint. Since we are considering only the physical sector
without background charges Gauss law eigenvalues equal to gj = +1. Hence, Eq. (2.2) is
simply an identity operator I in the physical sector without background charges

Ĝj = τ̂x
⟨j−1,j⟩e

iπn̂j τ̂x
⟨j,j+1⟩ = I. (2.23)

By multiplying a set of Ĝj on both sides of the equation, we thus again obtain an identity
operator

∏
l<j

Ĝj = eiπ ∑l<j n̂j τ̂x
⟨j,j+1⟩ = I, (2.24)

where we assumed the usual condition that the lattice starts with an anti-string, ⟨τ̂x
⟨0,1⟩⟩ = 1,

and the well known property of Pauli matrices (τ̂x,y,z)2 = I [122]. By applying τ̂x
⟨j,j+1⟩ on

both sides of Eq. (2.24), we can express the Z2 electric field term as [5, 160]

τ̂x
⟨j,j+1⟩ = eiπ ∑l<j n̂l . (2.25)

This is a highly non-local operator. The non-local nature of the electric field term is explic-
itly expressed in a way that it depends on the number of partons in the chain to the left of
the link ⟨j, j + 1⟩. Since we consider hard-core bosons, a lattice site can be either occupied
or empty. Thus the τ̂x

⟨j,j+1⟩ operator remains real, and we can write τ̂x
⟨j,j+1⟩ = cos

(
π ∑l<j nl

)
[1], as the on-site number operator n̂j can only take two possible values nj = 0, 1.

The Z2 LGT Hamiltonian Eq. (2.1) can thus be written in terms of dressed matter fields
(hard-core boson operators) as [1, 5, 160]

Ĥb = −t ∑
j

(
b̂†

j b̂j+1 + H.c.
)
− h ∑

j
cos

(
π ∑

l<j
nl

)
. (2.26)
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We note that the form of the on-site number operator remains the same as it did not contain
any gauge fields

n̂j = â†
j âj =

(
∏
l<j

τ̂z
⟨l,l+1⟩

)
b̂†

j

(
∏
l<j

τ̂z
⟨l,l+1⟩

)
b̂j = b̂†

j b̂j = n̂b
j . (2.27)

The Hamiltonian in Eq. (2.26) is thus a result of integrating out the gauge fields, within the
physical Gauss sector. It can now be bosonized by expressing the on-site density with a
continuous function n̂j → n(x) = na − ∂xϕ(x)/π, where na is the average parton density
[1]. The Z2 electric field term becomes [1]

−h
∫

cos(πna − ϕ(x)), (2.28)

where we utilized the result ∑l<j n̂j =
∫ x

0 n(x) =
∫ x

0 dx (na − ∂xϕ(x)/π) = nax − ϕ/π.
The integral in Eq. (2.28) contains an oscillatory function with spatial dependence and
is thus RG irrelevant [1, 160, 182]. Hence, the integral and thus the electric field term
should vanish and the partons should remain free [1]. In other words, the non-local Green’s
function, which in the dressed picture is simply G(i − j) =

〈
b̂†

i b̂j

〉
, should decay as a power

law G(i − j) ∼ |i − j|−γ also for non-zero value of the electric field term, h ̸= 0 [1, 182].
However, as it was shown with numerical calculations, the system is confining for any
h ̸= 0 [160]. We have therefore shown that the naive bosonization explained above does not
explain confinement of partons into mesons, which calls for a better explanation. For that
we turn to the string-length basis discussed in the next section. The failure of such a naive
bosonization in this case, stems from the highly non-local nature of the electric field term,
which challenges the standard bosonization procedure [1].

2.4.2 The string-length basis

The main problem encountered in the previous section, when we applied the standard
bosonization procedure, was the highly nonlocal nature of the Hamiltonian, Eq. (2.26). This
motivates us to find a new non-local basis in which the transformed Hamiltonian is local,
and standard bosonization approach can be safely applied [1]. We thus consider the string-
length basis where the length of strings and anti-strings become new bosonic occupation
numbers. We define a new lattice with L̃ = N + 1 lattice sites (equal to the combined
number of strings and anti-strings), where N = ∑j nj is the total number of partons. We
define the new bosonic occupation numbers as ℓ̃1...ℓ̃N+1 ≥ 1 [1], which are simply derived
from string and anti-string lengths. More formally, we define the above bosonic occupation
numbers by considering the position of partons at x1, ..., xl , ..., xN , where the position of the
l-th parton from the left is denoted by xl . It thus holds that xl ∈ {1, L} [1]. The new bosonic
occupation numbers are defined as [1]

ℓ̃1 = x1 − 1, ℓ̃l = xl − xl−1 − 1, ℓ̃N+1 = L − xN , (2.29)
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Figure 2.6: Mapping between the original and the string-length basis of the one-dimensional
Z2 LGT. With x we denote the position of partons (blue) in the original Z2 LGT basis (left
side of the figure). The on-site boson occupation in the string-length basis ℓ̃ is illustrated
with the appropriate number of bosons on that lattice site (red spheres). This figure was
modified from Fig. 1 in Ref. [1].

which are similar to the string and anti-string lengths introduced in Section 2.2. However,
in this definition lengths are reduced by one site, in order for the shortest possible string or
anti-string to correspond to a vacuum bosonic state in the new basis; see Fig. 2.6. To be more
precise, in Section 2.2 we defined string and anti-string lengths as ℓl = xl−1 − xl , where even
l corresponds to strings and an odd l corresponds to anti-strings. In the definition of the
bosonic occupation numbers in Eq. (2.29), we redefine string and anti-string lengths as ℓ̃ =

ℓ− 1. Thus any "extended string" (ℓ > 1) can be consider as an excitation where the length
of string or anti-string extended above the minimal possible length ℓ0 = 1, correspond to an
excitation with n = ℓ− 1 bosons; see also Fig. 2.6. In Fig. 2.6 we also denote the position of
the partons with x in the original Z2 LGT basis, and the corresponding boson occupation
number in the string-length representation with ℓ̃.

With this we have found a one-to-one mapping from the original Z2 LGT basis, to
the string-length basis. The original Fock configuration |n1, ..., nL⟩ can thus be directly
connected to a new bosonic Fock configuration |n1, ..., nN+1⟩ as [1]

|n1, ..., nL⟩ = |n1, ..., nN+1⟩ ≡
N+1

∏
l=1

(
Ψ̂†

l

)ℓ̃l√
ℓ̃l !

|0⟩ , (2.30)

where we defined a new bosonic creation operator Ψ̂†
l , which acts on the string-length

vacuum state |0⟩. The total number of bosons in the new basis, or string-length excitations
equals to Ñ = ∑l ℓ̃l = L − N [1].

The Z2 LGT Hamiltonian Eq. (2.1) in the new basis can be written as [1]

Ĥ = −t ∑
⟨m,l⟩

(
ρ̂−1/2

m Ψ̂†
mΨ̂l ρ̂

−1/2
l + H.c.

)
− h ∑

l
(−1)l ρ̂l , (2.31)

where we defined the bosonic string-length density operator as ρ̂l = Ψ̂†
l Ψ̂l . We can also
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define the average bosom density [1]

ρΨ =
Ñ
L̃

=
L − N
N + 1

=
1
na − 1 +O(1/N). (2.32)

Since the mapping to the new basis is exact, there exists a unitary transformation between
the two bases [1] This means that the spectrum of the Hamiltonian expressed in the original
basis Eq. (2.1) and the spectrum of the Hamiltonian expressed in the new basis, Eq. (2.31),
are identical [1]. By considering the construction of strings and anti-strings one can quickly
map the original Hamiltonian into the new basis. In the following we consider the mapping
of individual terms between the original and the new string-length basis.

Let us first consider the hopping term. The parton at position xl can be connected
to a string either from the left or from the right site, and the position of the anti-string
follows accordingly; see Fig. 2.1. As the parton hops, the string length attached to that
parton can either increase or decrease, which depends on the direction of hopping and from
which side the parton connects to a string. The anti-string corresponding to that particular
parton changes accordingly: it decreases in case the string length on the other side of the
parton increases, or the anti-string length increases in cases the string length decreases. In
the string length basis this means that when a parton l residing on xl hops to the right,
xl → xl + 1, the two bosonic string occupations change as ℓ̃l → ℓ̃l + 1 and ℓ̃l+1 → ℓ̃l − 1 as
the neighboring partons remain on their same respective sites that is: xl−1 and xl+1. Similar
thing happens when the parton hops in a different direction. The hopping term in the new
basis is simply a change of neighbouring bosonic number occupations by one, and as a
result there are no Bose-enhancement terms as only one single Boson is allowed to hop [1].
The hopping term thus reads as

(
ρ̂−1/2

m Ψ̂†
mΨ̂l ρ̂

−1/2
l + H.c.

)
[1].

The Z2 electric field term has to introduce the energy associated with the strings and
anti-strings, which represent the orientation of the electric fields. From our construction we
see that ℓ̃l , where the index is odd, l ∈ 2k + 1, k ∈ Z, represents anti-strings and ℓ̃l , where
the index is even, l ∈ 2k, k ∈ Z, represents strings. Thus, the Z2 electric field term is simply
a term proportional to the staggered on-site number value ∝ h(−1)l ρ̂l .

The mapping to the string-length basis is non-local, however the Z2 LGT Hamiltonian
in the new basis, Eq. (2.31), is completely local [1].

2.4.3 Confinement in the string-length basis

Finally, we can consider confinement in the new non-local basis. For that we return to the
Z2 gauge invariant Green’s function, Eq. (2.12). For practical reasons we again write the
gauge invariant Green’s function operator explicitly as [1, 160]

Ĝ(i − j) = â†
i

(
∏

i≤ℓ<j
τ̂z
ℓ,ℓ+1

)
âj. (2.33)

In the string language such operator becomes highly non local [1]. Since a parton is re-
moved at site j and added at site i this means, due to the Gauss law, that the identity of
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all strings has to be changed to anti-strings between sites i and j, and vice-versa, the anti-
strings need to be changed to strings. This is the action of the operator Eq. (2.33) in the
usual basis.

By taking a closer look at what happens with the strings and anti-strings, we can first
note that the added parton at site i will either break a string or anti-string running through
site i as the aligned electric fields across i have to become anti-aligned due to the Gauss
law constraint Eq. (2.4), i.e.

〈
τ̂x

i−1,iτ̂
x
i,i+1

〉
= 1 →

〈
τ̂x

i−1,iτ̂
x
i,i+1

〉
= −1. Let us define the

site where the closest parton to the left of j resides on with xl−1. The closest site with a
parton to the right of the site j (before applying the Green’s function operator) is thus xl .
The single bosonic string-length number ℓ̃l = xl − xl−1 − 1 is divided into two new string
length sites after the application of the Green’s function operator, Eq. (2.33), with the new
states being ℓ̃L = i − xl−1 − 1 and ℓ̃R = xl − i − 1. Opposite thing happens at site j where
the particle gets removed: we can defined xu−1 as the lattice site with a closest parton to
the left of site j, and xu+1 with the site with a closest parton on the right side of j. Since
in the usual notation j = xu the two bosonic string-length numbers ℓ̃u = j − xu−1 − 1 and
ℓ̃u+1 = xu+1 − xu − 1 "merge" into one single site ℓ̃ũ = xu+1 − xu−1 − 1, after the application
of the Green’s function operator, Eq. (2.33).

We thus see that by adding a particle we divide the bosonic site ℓ̃l into ℓ̃L and ℓ̃R,
whereas ℓ̃u and ℓ̃u+1 merges into ℓ̃ũ. To be more precise, by keeping the correct labeling of
partons as defined in Eq. (2.29) from the left to the right, we have to change the label of some
partons accordingly. We have to relabel xl = i, as the added parton at i in fact becomes
the closest parton following the one at xl−1. In addition, every following label becomes
xm → xm+1 until we reach u where the last relabeling happens only for xu−1 → xu, whereas
the label of the next (u + 1)-th parton remains the same xu+1 = xu+1. To summarize, the
following relabeling takes place after applying operator in Eq. (2.33)

xl−1 = xl−1,

i → xl ,

xm → xm+1, l ≤ m < u

xu+1 = xu+1.

(2.34)

As a consequence of this relabeling we also have to relabel the new string-length bosonic
numbers according to the definition in Eq. (2.29). On the one hand, we first note that we
have to relabel ℓ̃l = ℓ̃L, ℓ̃l+1 = ℓ̃R, and ℓ̃u+1 = ℓ̃ũ, which are also the string-length occupation
numbers that actually changed. On the other hand, all other bosonic string-length numbers
m between l + 1 and u are simply relabeled as ℓ̃m → ℓ̃m+1. This can be again summarized
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as [1]

ℓ̃l−1 = ℓ̃l−1,

ℓ̃L → ℓ̃l ,

ℓ̃R → ℓ̃l+1,

ℓ̃m → ℓ̃m+1 l + 1 ≤ m < u

ℓ̃ũ → ℓ̃u+1

ℓ̃u+2 = ℓ̃u+2.

(2.35)

The most significant effect of the Green’s function is that it shifts the bosonic string-
length occupation numbers by one, ℓ̃m → ℓ̃m+1, where we can also parameterize the range
of m as x̃1 < m < x̃2, if we define x̃2 − x̃1 = x̃ [1]. Furthermore, for long wavelengths the
distance in the usual lattice x, is related to the distance in the string-length basis as x̃ = nax
[1]. We can thus write the Green’s function in the string-length basis as [1]〈

Ĝ(x)
〉
≃
〈

T̂ (0, x̃)
〉

(2.36)

where T̂ is the partial translation operator, which cyclically shifts all strings occupation by
one unit between x̃1 and x̃2 [1]

T̂(x̃1, x̃2)
∣∣∣...ℓ̂x̃1−1ℓ̂x̃1 ...ℓ̂x̃2−1ℓ̂x̃2 ℓ̂x̃2+1...

〉
=
∣∣∣...ℓ̂x̃1−1ℓ̂x̃2 ℓ̂x̃1 ...ℓ̂x̃2−1ℓ̂x̃2+1...

〉
. (2.37)

By ignoring the change of local strings around x̃1 and x̃2, which we already discussed
in detail above, we can directly relate the Green’s function Eq. (2.33) to the operation of
translations. In other words: by considering the Green’s function in the original basis we
in fact probe the translational invariance in the string-length basis [1]. If the translation
symmetry x̃ → x̃ + 1 is broken, explicitly or spontaneously, the operator T̂ will decay
exponentially and the partons will confine in the original Z2 LGT basis [1]〈

Ĝ(x)
〉
≃
〈

T̂ (0, x̃)
〉
≃ eκ̃x̃ ≃ eκ̃nax. (2.38)

Here we parameterize the exponential decay with an inverse correlation length κ̃ [1].

The above argument shows why the Z2 LGT Eq. (2.33) is confining for any non-zero
value of the electric field term, h ̸= 0. That is because in the string-length basis, the Z2

electric field term explicitly breaks the translational symmetry as it introduces a staggered
on-site potential energy −h ∑l(−1)l ρ̂l [1]. The connection of confinement in the Z2 LGT
to the translational-symmetry breaking in the non-local string-length basis has far wider
consequences, since any term that explicitly breaks the translational symmetry will result
in confinement as already stated above. As an example we can mention that a random h⟨i,j⟩
would also induce confinement. Moreover, spontaneously symmetry breaking in the case
when h = 0, which arises due to some other interactions in the Hamiltonian that can be
added, can results in a Mott insulating state [1].
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2.4.4 Field-theory analysis of the string-length basis

To clarify the nature of the explicitly broken translational symmetry in the string-length
basis, we consider a simple field-theory analysis of the Z2 LGT Hamiltonian. As discussed
in Section 2.4.1, due to the non-local nature of the original Hamiltonian after integrating out
the gauge fields, Eq. (2.26), naive bosonization does not yield confinement as the electric
field term turns out to be RG irrelevant [1]. Since the Hamiltonian in the string-length basis
is completely local, we can apply standard field-theory arguments [1]. We can thus consider
the density-density correlations and apply the Luttinger-liquid theory, which yields [1]

⟨δρ̂(x̃)δρ̂(0)⟩ ≃ K̃
2π2

1
x̃2 +

(ρΨ)2

2

(
α̃

x̃

)2K̃

cos
(

2πρΨ x̃
)
+ ..., (2.39)

where K̃ is the Luttinger liquid parameter in the string-length basis. Here we consider
"local density fluctuations", which we defined as δρ̂(x̃) = ρ̂(x̃)− ρΨ. Furthermore, we can
relate the string-length basis and the original basis.

In the original basis we can define δn̂(x) = n̂(x)− na. For short wavelengths, we can
approximate n̂(x) ≈ ∆N̂a/∆x, where we ∆N̂a is the number of particles per coarse-grained
distance ∆x [1]. In the string-length basis coarse grained density can be written in terms
of ρ̂(x̃) ≈ ∆ℓ̂/δx̃, where ∆ℓ̂ is the total number of bosonic string-length numbers on coarse
grained distance ∆x̃. By taking into account the definition Eq. (2.29), this can be expressed
as [1]

∆ℓ̂ = ∑
l∈∆x̃

ℓ̃l = xl0 − xl0−1 − 1 + ... + xl+1 − xl − 1... + xl0+x̃ − xl0+x̃−1 − 1 = ∆x̂ − ∆x̃, (2.40)

and we can therefore express the density in the string-length basis as ρ̂(x̃) ≈ (∆x̂ − ∆x̃)∆x̃
[1]. The relation between the coarse grained densities in both basis is thus [1]

n̂(x) ≈ {1 + ρ̂ [x̃(x)]} . (2.41)

With the above connection we can directly use the result Eq. (2.39) and make prediction for
the density-density correlations in the original basis [1].

By considering the Luttinger-liquid theory and comparing expressions for compressibil-
ities, we can also derive a connection between the Luttinger liquid parameter in both basis
[1]

K = (na)2 K̃, (2.42)

where K is the Luttinger liquid parameter in the original basis. That is because the original
Hamiltonian Eq. (2.1) remains gapless for any value of h [160]. By considering the strong
limit where h ≫ t, the second order perturbation calculations show that the Luttinger liquid
parameter approaches K = 8/9 [1]. This yield K̃ = 2 > 1 [1]. Since the density-density
correlations in the string-length basis take the form Eq. (2.39) for generic h, this means that
in the confined regime the string-length basis exhibits hidden off-diagonal quasi-long range
order (HODQLRO) [1]; see Fig. 2.6.
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2.5 Summary of the confinement problem

In this chapter we studied the confinement problem in the 1 + 1D Z2 LGT. We introduced
confinement as a phenomena where individual partons bind into pairs, forming dimer
states, which we denote as mesons. Mesons in turn remain dynamical. The partons forming
these mesons are connected with a string of electric fields with the same orientation. To offer
an intuitive understanding of confinement, we first considered a simple limit where matter
dynamics is frozen t = 0 and confinement arises due to a linear confinement potential,
proportion to the Z2 electric field term h.

Next, we discussed various probes of confinement. The gauge invariant Green’s func-
tion exhibits exponential decay in the confined regime, in contrast to a simple algebraic
decay in the deconfined regime. In addition, the period of Friedel oscillations doubles in
the confined regime at the same lattice filling in comparison to the deconfined regime. By
numerical calculations, this was shown for any non-zero electric-field term h ̸= 0 [160]. We
also studied string and anti-string length distributions, which can be obtained from mul-
tiple snapshots of the systems. In our case we acquire snapshots by sampling from MPS,
obtained from ground state calculations using DMRG. However, similar snapshots could
be easily measured in quantum simulation experiments with cold atoms. With our calcu-
lations we showed that a bimodal distribution of string and anti-string lengths is a robust
measure of confinement, readily accessible in cold atom experiments.

We proceeded with a section dedicated to solving the confinement problem. We first
discussed why the naive bosonization does not explain the confinement in the original
basis after integrating out the gauge degrees of freedom by using the Gauss law. We then
introduce the string-length basis where, via a non-local basis transformation, we obtain a
purely local Hamiltonian. There the string lengths become the new bosonic Fock states. By
relating the Green’s function to the translation operator in the new basis, we demonstrate
that symmetry breaking in the new string-length basis results in confinement in the original
Z2 LGT. The Z2 electric field term breaks this symmetry explicitly. We thus provided a
general solution of the confinement problem in a class of 1 + 1D Z2 lattice gauge theories
with dynamical matter [1].



Chapter 3

Phase diagrams of 1+1D Z2 lattice
gauge theories with dynamical U(1)
matter

In this chapter we study phase diagrams of the 1 + 1D Z2 lattice gauge theory with dy-
namical U(1) matter in the ground state at different chain fillings. The motivation to study
the phase diagrams comes from the potential realization of the 1+ 1D Z2 LGT in cold atom
experiments. We are thus interested in what kind of rich physics can the paradigmatic
Z2 LGT exhibit when the gauge fields are coupled to U(1) conserving matter. Moreover,
we study how this physics could be realistically probed in quantum simulation setups, by
considering probes that could be used in experiments.

We first discuss the Luttinger liquids, which are formed in the confined and deconfined
regime when the global parton number is conserved. Next, we include a nearest-neighbor
(NN) repulsion between individual partons in addition to the hopping term, where matter
is minimally coupled to the gauge field, and the Z2 electric field term. With this additional
term, we obtain rich phase diagrams at two thirds filling n = 2/3 and at half-filling n = 1/2,
which we discuss in two separate sections.

The section on the two-thirds filling is based on Ref. [1], and the section on the phase
diagram at half-filling is based on Ref. [3]. In both cases the content, including figures,
has been adapted and extended. We note that some of the numerical results related to
Ref. [1] have already been obtained in the author’s master thesis Ref. [2], which we label
appropriately.

3.1 Introduction

In the previous chapter we studied confinement, which arises in the one-dimensional Z2

LGT coupled to dynamical matter. We saw how individual partons become confined into
mesons, which remain dynamical. Since we consider a one-dimensional system, where
the global particle number is conserved, a standard way of describing it is to consider the
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Luttinger liquid (LL) theory [182].
In the regime where the Z2 electric field term is absent, the system is non-interacting

and partons are essentially free. When partons become confined, that is when the Z2

electric field term is non zero, mesons become the relevant constituents of the system as
seen from the Friedel oscillations, and a LL description becomes more complicated [1, 160].
However, in the regime when the confining Z2 electric field term is very strong, mesons
can be considered as new hard-core bosons, which form their own meson Luttinger liquid.

By including a simple NN repulsion among partons, the aforementioned Luttinger liq-
uids at half-filling and at two-thirds filling can undergoes a transition to symmetry broken
Mott states. To study these regimes at different fillings we employ DMRG [35, 153–155].
We also study different limits of our system analytically and use the LL theory where ap-
plicable.

When partons are confined into mesons, a NN repulsion term can stabilize a meson
Mott state when the lattice filling equals to two-thirds. There, every single meson is fol-
lowed by one empty lattice site. To achieve such Mott state, both interactions have to work
together: the Z2 electric field has to confine the partons into mesons, and the NN repulsion
has to ensure that mesons keep one lattice site distance between each other. We reveal this
state by considering the meson charge gap.

At half-filling the case is different. A strong enough NN repulsion among partons
stabilizes a parton Mott state, where every parton is followed by one empty lattice site.
However, when the Z2 electric field term is included, this state is destroyed as partons
tend to confine into mesons. On the interface, when the two interactions are of similar
strength, the state becomes frustrated. This results in strong fluctuations of the meson size,
and partons appear as if they were deconfined on short length scales. On longer length
scales they remain confined. This behaviour is revealed in the Green’s function behaviour.
To study the Mott state we calculate the charge gap and consider a static structure factor,
which is an experimentally feasible probe of confinement.

By mapping out these phase diagrams we pave the way for future quantum simulation
experiments. There, the global particle number conservation is usually directly encoded in
the setup, and thus a Z2 LGT with U(1) matter could be studied.

3.2 Confined and deconfined Luttinger liquid

We first discuss the phases of matter for generic fillings formed by the 1 + 1D Z2 lattice
gauge theory with the U(1) conserving matter. Here we define the Z2 LGT again for
convenience as [1, 3, 5, 160]

Ĥ = −t ∑
j

(
â†

j τ̂z
⟨j,j+1⟩ âj+1 + H.c.

)
− h ∑

j
τ̂x
⟨j,j+1⟩. (3.1)

This Z2 LGT forms two distinct Luttinger liquids in the deconfined and confined regimes
due to the global parton (meson) number conservation [1, 160].

We will first show that in the deconfined regime where h = 0, the system reduces to
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free partons, which we denote as the deconfined parton Luttinger liquid (LL). In the second
limit, we will consider the strong electric field limit h ≫ t, and show that in the limit when
the partons are tightly confined, mesons form a confined Luttinger liquid [160].

3.2.1 Free partons

As we have already shown in Section 2.4.1, by using the dressed parton formulation
Eq. (2.20), we can eliminate the gauge field and obtain a simple free parton Hamiltonian
for the case when h = 0, which we once again write as

Ĥt = −t ∑
j

(
b̂†

j b̂j+1 + H.c.
)

. (3.2)

Free partons in a one-dimensional chain form a gapless Luttinger liquid where the long-
distance density-density correlations decay with a power law, and the Luttinger liquid
parameter is simply K = 1 [182]. For generic fillings the system remains a LL even by
including nearest-neighbor interactions of the form [182]

ĤNN = V ∑
j

n̂b
j n̂b

j+1, (3.3)

where n̂b
j = b̂†

j b̂j = â†
j âj = n̂j, since (τ̂z)2 = I; see Section 2.4.1 for details. However, with

the inclusion of NN interactions the Luttinger liquid parameter K is modified [182]. The
value of K decreases for repulsive interaction V > 0 and is thus K < 1. For attractive NN
interactions V < 0, however, the value of K increases K > 1.

The only exception to this Luttinger liquid behaviour is at half-filling nb = 0.5, where
for V > 2t the system forms a simple Mott insulating state, with non-zero charge gap [182].
In such a state, partons are arranged in a lattice in a way that every occupied lattice site is
followed by one vacant lattice site ( [...1, 0, 1, 0, ...]).

The free parton model with NN interactions can in fact be mapped to a XXZ spin-1/2
chain and solved via the Bethe ansatz [182], see also Appendix A. There, the Mott state at
n = 1/2 corresponds to the symmetry breaking AFM phase [182].

3.2.2 Confined mesons

We can now consider the limit where h ≫ t, which results in tightly confined mesons. In
Borla et al. in Ref. [160] they first studied this regime by considering hopping as small
perturbation and developed an effective Hamiltonian for the mesons from second order
perturbation calculations. We also not that this regime was already mentioned in Sec-
tion 2.2. For convenience we repeat some of the main points and expand the discussion in
terms of a transition from a LL to a Mott state.

To understand this mapping, we can start again in the classical limit where t = 0, and
thus for h > 0, the ground state is formed of partons tightly confined into dimers of length
ℓ = 1. Since mesons are tightly confined when t = 0 and h > 0, we define hard-core bosonic
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operators as [3, 160]
d̂†

j = â†
j τ̂z

⟨j,j+1⟩ â
†
j , d̂j = âjτ̂

z
⟨j,j+1⟩ âj. (3.4)

By including the hopping term as a perturbation t ≪ h, we obtain a hard-core bosonic
model with NN interactions, where the new hard-core bosons are in fact mesons [3, 160]

Ĥd = −td ∑
⟨i,j⟩

(
d̂†

i d̂j + H.c.
)
+ Ṽ ∑

⟨i,j⟩
n̂d

i n̂d
j , (3.5)

where we defined n̂d
j = d̂†

j d̂j. The lattice sites are also redefined as one meson is defined on
a single site j, and therefore the number of total lattice sites is reduced by the number of
partons Nd = N/2 to Ld = L − N/2. The meson density is thus defined as nd = N/2

L−N/2 and
is connected to the parton density as [3, 160]

nd =
1

2
n − 1.

(3.6)

All of the terms in the effective mesonic model in Eq. (3.5) come from second order
perturbation theory [160]. We can first consider a tightly confined dimer where the partons
sit next to each other, e.g., on site j − 1 and j. They are connected by a single string on the
link ⟨j − 1, j⟩. By including t ≪ h, one of the partons can hop to a lattice site away from
their partner, as an example we can consider the parton on site j hopping to site j + 1. The
energy of such an "extended" dimer increases by ∆E = 2h, as the anti-string on link ⟨j, j+ 1⟩
becomes a string due to the Gauss law constraint, ⟨τ̂x

⟨j,j+1⟩⟩ = +1 → ⟨τ̂x
⟨j,j+1⟩⟩ = −1. Since

this process involves an energetically highly unfavorable state, the extended string has to
be reduced in the next step. This can be achieved in two ways; see also Fig. 2.2.

In the first case, the other parton on site j − 1 hops to site j. In this case, the string-
length is again reduced to ℓ = 1, however the two partons now reside on sites j and j + 1
and have thus moved together by one lattice site to the right. This process thus explains
the second-order mechanism, which results in the hopping of mesons in Eq. (3.5), and the
corresponding amplitude is td = t2/(2h) [160].

In the second case, the same parton that has hopped first from site j to j + 1, hops back
to site j, in which case the final state is exactly the same as in the beginning with the two
confined partons residing on sites j − 1 and j. Such processes are not possible when two
mesons are NN, which results in the NN repulsion in Eq. (3.5), where Vd = 2td = t2/h
[160]. The factor "2" in Vd = 2td comes from both NN mesons being unable to undergo
such fluctuation.

In the limit of tightly confined mesons h ≫ t, we thus obtain an effective hard-core
boson model with NN repulsion, where we consider mesons as the new hard-core bosons.
As already mentioned before, such models can be mapped to a XXZ chain and form a Lut-
tinger liquid for generic parameter values [1, 160, 182]. The only exception is at half-filling,
where a NN repulsion V > 2t results in a gapped Mott insulating state [182]. However, in
the effective model, Eq. (3.5), the parameter ratios are fixed at Vd = 2td when h ≫ t. The
perturbative calculations therefore suggest that the system is exactly at the transition point
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to the Mott state when nd = 0.5, i.e., when the parton filling is at two-thirds, n = 2/3.
We thus see that the confined mesons at h ̸= 0 form a special meson Luttinger liquid

in the 1 + 1D Z2 LGT Hamiltonian, Eq. (3.1), when the parton number is conserved, i.e.,
there is a global U(1) symmetry in the matter [1, 3, 160]. Furthermore, for high value of
the electric-field term h ≫ t, mesons can be described by a simple hard-core meson model
with a NN repulsion [160].

3.3 Phase diagram at two-thirds filling

We will now study the phase diagram of the 1 + 1D Z2 LGT coupled to U(1) matter, at
two-thirds filling n = 2/3 [1]. The section is based on Ref. [1]. As already discussed in
Section 3.2.2 in the limit when h ≫ t, the second order perturbation theory suggest that the
mesons form a Luttinger liquid, which is right at the transition point to the Mott insulating
state at n = 2/3 [160]. We thus consider a version of the paradigmatic 1 + 1D Z2 LGT with
additional NN repulsive interactions between partons [1, 3]

Ĥ = −t ∑
j

(
â†

j τ̂z
⟨j,j+1⟩ âj+1 + H.c.

)
− h ∑

j
τ̂x
⟨j,j+1⟩ + V ∑

j
n̂jn̂j+1, (3.7)

where V ≥ 0.

3.3.1 Analytical limits at two-thirds filling

Tightly confined meson limit

By considering the limit h ≫ t, V, discussed in Section 3.2.2, we can simply add the NN
repulsion to the hard-core meson model [1, 3]

Ĥd = −td ∑
⟨i,j⟩

(
d̂†

i d̂j + H.c.
)
+
(
Ṽ + V

)
∑
⟨i,j⟩

n̂d
i n̂d

j , (3.8)

where we implicitly ignore the repulsion V between the NN partons within the meson, as
we assume h ≫ V. Considering the Luttinger liquid arguments from the mapping to the
XXZ chain, which states that the transition to the Mott state occurs for Vd > 2td, we thus
see that any non-zero NN repulsion, V > 0, will result in a meson Mott state [1, 182].

Infinite NN repulsion limit

The other limit, which we consider is the case when V ≫ t, h. A detailed consideration of
this limit can be found in the Supplemental materials of Ref. [1], here we just sketch the
main considerations.

We can start by considering the particle-hole mapping of the original Hamiltonian
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Figure 3.1: Steps in obtaining the V → ∞ limit of the Z2 LGT coupled to matter at two-
thirds filling n = 2/3. (a) Demonstration of the particle-hole transformation of the original
Z2 LGT Hamiltonian. (b) Squeeze of a single hole and a consecutive lattice site that has
to always remain empty when V → ∞. (c) Second particle-hole mapping, which brings us
back to the matter picture. (d) A translational symmetry breaking gap emerging as h > 0.
This figure was modified from Fig. S8 in the Supplementary material of Ref. [1].

Eq. (3.1) that can be expressed as [1, 2]

Ĥh = −t ∑
j

(
ĥ†

j τ̂z
⟨j,j+1⟩ĥj+1 + H.c.

)
− h ∑

j
(−1)jτ̂x

⟨j,j+1⟩ + V ∑
j

n̂h
j n̂h

j+1, (3.9)

where ĥ†
j (ĥj) is a hole creation (annihilation) operator that arises from the particle-hole

mapping â† → ĥ, â → ĥ†, and n̂h
j = 1 − n̂j is the hole on-site number operator [1, 2, 121].

Furthermore, in order to obtain the correct form of the Gauss law, we have to perform a
mapping on the links as well: τ̂x

j,j+1 → (−1)jτ̂x
j,j+1 and τ̂

y
j,j+1 → (−1)jτ̂

y
j,j+1 [1, 2].

By considering the limit V → ∞ in the particle-hole transformed picture, we can effec-
tively assume that no parton can have an additional empty lattice site to their right side
[1]. We thus assume that every hole spans over two lattice sites, see Fig. 3.1. As a result,
the effective lattice filling is rewritten as n′ = Nh

L−Nh , and the chain length reduces by the
number of holes Nh [1]. Due to this construction, we also have to shift the electric field
staggering across lattice sites occupied by a hole [1]

−h
N

∑
j=1

(−1)jτ̂x
⟨j,j+1⟩ → −h

L−Nh

∑
j=1

(−1)j

(
∏
i≤j

(−1)n̂h
i

)
τ̂x
⟨j,j+1⟩. (3.10)

Furthermore, every meson still carries an electric field energy that we have to take into
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account. We thus have to add the following term [1]

−h
L−N

∑
j=1

(−1)j

(
∏
i<j

(−1)n̂i

)
τ̂x
⟨j,j+1⟩n̂j. (3.11)

The resulting Hamiltonian in the limit when V → ∞ can be expressed as [1]

Ĥ′
h = −t ∑

j

(
ĥ†

j τ̂z
⟨j,j+1⟩ĥj+1 + H.c.

)
− h ∑

j
(−1)j

(
∏
i≤j

(−1)n̂h
i

)
τ̂x
⟨i,i+1⟩

− h ∑
j
(−1)j

(
∏
i<j

(−1)n̂h
i

)
τ̂x
⟨i,i+1⟩n̂

h
j .

(3.12)

By performing a second particle-hole transformation back to the particle picture, we express
the Z2 LGT in the limit when V → ∞ after some simple algebra as [1]

Ĥ′ = −t ∑
j

(
â†

j τ̂z
⟨j,j+1⟩ âj+1 + H.c.

)
− h ∑

j
(−1)j

(
∏
i≤j

(−1)n̂i

)
τ̂x
⟨j,j+1⟩

+ h ∑
j
(−1)j

(
∏
i<j

(−1)n̂i

)
τ̂x
⟨j,j+1⟩

(
1 − n̂j

)
.

(3.13)

The field terms can be further simplified by taking into account the Gauss law constraint,
Eq. (2.25), which gives us [1]

Ĥ′ = −t ∑
j

(
â†

j τ̂z
⟨j,j+1⟩ âj + H.c.

)
− h ∑

j
(−1)jn̂j. (3.14)

Finally, we can simplify the expression by eliminating the gauge fields, and using the trick
in Eq. (2.21) to obtain the final expression [1]

Ĥ′ = −t ∑
j

(
b̂†

j b̂j + H.c.
)
− h ∑

j
(−1)jn̂b

j , (3.15)

where n̂b
j = b̂†

j b̂j.
The main result of this mapping is that we obtain a band insulator with a gap ∆ = 2h,

for h > 0, in the limit when V → ∞ at parton filling n = 2/3, which translates to meson
filling of n′ = 1/2 [1]. We have therefore shown that the limit V ≫ t, h also results in a
meson Mott state.

3.3.2 Charge gap at two-thirds filling

From the analytical limits, we see that the Mott state at two-thirds filling n = 2/3 appears
when both parameters h and V are non-zero and one of them is very large relative to the
hopping amplitude t. To study this Mott state for generic parameter values, we consider
numerical calculations using DMRG [34, 35]. We note that the numerical results presented
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Figure 3.2: The charge gap, Eq. (3.16), extrapolated in the thermodynamic limit for the
1 + 1D Z2 LGT with NN interactions, Eq. (3.7), after eliminating matter via the Gauss law.
(a) The values where the charge gap exceeds ∆c/t > 0.05 are labeled with violet and denote
a meson Mott insulator regime, sketched in the inset. Blue color denotes vanishing charge
gap ∆c/t ≤ 0.05, where dark blue denotes the gapless, confined, meson Luttinger liquid,
and the light blue denotes the deconfined, free parton Luttinger liquid. (b) The heat map of
the same results as in (a) where we draw an approximate boundary (yellow line) between
the Mott state and gapless regime by hand. The figure is modified from Fig. 2 in Ref. [1],
and the inset sketch is modified from Fig. 1 in Ref. [1]. These numerical results have already
been obtained and presented in Ref. [2]

here have already been obtained during the author’s Master thesis, Ref. [2]. In order to
connect them to the previous analytical results, and to provide a broad overview we present
them here as well.

In order to probe the phase diagram, in particular the Mott phase, we consider the
meson charge gap, which we define as [1–3]

∆c(L, N) =
1
2

[(
EL

N+2 − EL
N

)
−
(

EL
N − EL

N−2

)]
. (3.16)

Here, we denote the ground state energy EL
N , for a system with total number of particles

N, in a chain with length L. The charge gap in this case is specifically designed to probe
the gap of adding/removing a meson, i.e. a pair of partons, hence EL

N±2 in Eq. 3.16 [1–3].
This is to ensure that we consider the case with even parton numbers and thus no partons
become stuck to the boundaries of the lattice, when h ̸= 0 [3].

In order to calculate the charge gap defined in Eq. (3.16) with DMRG, we calculate the
ground state values EL

N and EL
N±2, where n = N/L = 2/3, for multiple chain lengths L.

We then extrapolate the value of the charge gap ∆c in the thermodynamic limit, L → ∞,
by fitting the data ∆c as a function of the inverse system length 1/L [1, 2]. We use a
quadratic function, which gives us excellent fit results, and extract the value of the fitting
function at x = 1/L = 0; see Fig. 3.3(a) [1, 2]. We note that since we integrate out matter
degrees of freedom via Gauss law and simulate the pure spin model, we have to tune the
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Figure 3.3: Details on the numerical calculations of the charge gap, ∆c. (a) Example of
extrapolations in the thermodynamic limit by plotting the charge gap ∆c(N, L) as a function
of the inverse chain length 1/L, and fitting the data with a quadratic function to extrapolate
the value at L → ∞. In every case the ratio was fixed to n = N/L = 2/3. (b) Charge gap in
the thermodynamic limit ∆c, as a function of the electric field h, for constant NN repulsion
V/t = 1. The green line represents the fit with Eq. (3.17), where the transition value was
determined manually and fixed to hc/t = 0.05. The figure is modified from Fig. S7 in the
supplementary material of Ref. [1]. These numerical results have already been obtained
and presented in Ref. [2]

correct chemical potential µ in order to control the filling n; see Section 1.3.2. The chemical
potential term contribution to the overall energy has to be subtracted when computing the
ground state energy; see also details in Ref. [1, 2].

The charge gap results, extrapolated to the thermodynamic limit ∆C, for generic pa-
rameter values h and V are presented in Fig. 3.2. We see that the value of the charge gap
increases with increasing h and V, meaning that indeed both parameters have to be non-
zero in order to achieve the Mott insulating state. We thus conclude that since h ̸= 0, the
confined mesons form a gapped Mott state, where every confined dimer is followed by a
single empty site, and we thus coin the term meson Mott state [3].

Moreover, we observe signatures of a Berezinskii-Kosterlitz-Thouless (BKT) transition
to the Mott state, by fitting the charge gap with an exponential function defined as [1, 2,
182, 183],

∆BKT
c ∝ eB/

√
h−hc . (3.17)

In this case we consider constant NN repulsion V and the gap opening is a function of the
electric field term h. The results for V/t = 1, together with the fit with Eq. (3.17) can be
seen in Fig. 3.3(b) [1].

We thus conclude that at two-thirds filling, n = 2/3, the system forms a meson Mott
state for finite values of h and V, with a substantial charge gap. In this case, the mesons
are confined since h ̸= 0, and due to the additional NN interactions V > 0, they form a
symmetry broken state. In this state, they arrange themselves in a pattern where every
meson (tightly confined dimer), is followed by exactly one empty lattice site; see the inset
in Fig. 3.2(a). Thus, the system is in a simple doubly degenerate ground state.

To understand this, we can consider a tightly confined dimer in the case when hopping
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is frozen, i.e., t = 0 and h, V ̸= 0. Since we are at two thirds filling the next tightly confined
dimer will be two lattice sites away, having a vacant site in between in order to avoid the
NN repulsion V. Since we consider the regime where h ̸= 0, this means that an extend
dimer will acquire an extra energy ∆E = 2h. Contrarily, since the dimer is not tightly
confined anymore, the extended string spans over one vacant site and the energy decreases
by ∆E = −V. However, since we are at two thirds filling there is already a neighboring
dimer next to the extended dimer so the parton immediately gains a new NN repulsion
energy ∆E = +V from the neighboring site. The total energy gain for any extended dimer
is therefore simply ∆E = +2h, and the meson Mott state is as we described above: confined
mesons arranged in a lattice, where every meson has a single vacant lattice site in between
[1, 3].



3.4 Phase diagram at half-filling 65

Figure 3.4: Sketch of a phase diagram of the 1+ 1D Z2 LGT, Eq. (3.7), coupled to dynamical
U(1) charges at half-filling n = 1/2. In the absence of the Z2 electric field term h = 0
(region denoted with A), the NN repulsion stabilizes a parton Mott state for V ≥ 2t. This
state remains stable upon introduction of a weak electric field term. In the other limit where
the Z2 electric field term is non-zero, but the NN repulsion is absent (region B), the partons
confine into mesons, which form a confined LL. On the line 2h = V, but for vanishing
hopping t → ∞ (region C), partons are confined into two different meson states, which are
energetically degenerate. Reintroducing hopping as perturbation gives rise to a pre-formed
parton-plasma like regime. This figure is modified from Fig. 1 in Ref. [3].

3.4 Phase diagram at half-filling

Next we consider the 1 + 1D Z2 LGT with NN repulsion, Eq. (3.7), at one-half filling,
n = 1/2, which is another special chain filling. In contrast to the two-thirds case, where
the Z2 electric field term h and the NN repulsive interaction V together stabilize a meson
Mott state, in the half-filling case the two interactions have opposite effects, which results in
quantum frustration [3]. Similarly to before, we consider analytical calculations in tractable
limits together with numerical DMRG calculations in order to construct the ground state
phase diagram at half-filling, which is summarized in Fig. 3.4.

3.4.1 Analytical limits at half-filling

There are three tractable limits, or regimes in the phase diagram that we can consider at
half-filling, n = 1/2, highlighted on the phase diagram and denoted with letters A, B, and
C. Theoretically perhaps the easiest regime is the case where the Z2 electric field term is
zero, h = 0, denoted with A, and the system is simply a hard-core parton model with
repulsive NN interactions. The next limit B corresponds to tightly confined partons in the
regime when h ≫ t, V which we already discussed in Section 3.2.2 and Section 3.3.1. The
regime C is the highly interacting regime h, V ≫ t, with interesting parton-plasma-like
features. We will study each of these limits separately in detail.
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Free partons and tightly confined dimers at half-filling

Before we dive into the first theoretical limit B for h ≫ V, t, we quickly comment on the
regime where V = 0, already well known from the previous discussion on parton and
meson LL in Section 3.2. In the phase diagram, Fig. 3.4, this is the vertical line at V = 0.

As already mentioned in Section 3.2, at h = 0, the partons are completely free and form
a simple LL, with K = 1 [1, 3, 160, 182]. When the Z2 electric field becomes non-zero,
mesons confine and form a confined LL, with more complicated interactions and K, with
HODQLRO in the string-length basis [1].

With increasing value of the Z2 electric field term, we enter the limit B, where mesons
are tightly confined, and we can apply the second order perturbation theory, where hopping
t, is considered to be a small perturbation, which yields an effective hard-core model with
NN repulsion for the mesons, Eq. (3.5) [1, 3, 160].

We can once again add the NN repulsion V between bare partons, if we stay in the
regime where dimers are tightly confined h ≫ t, V, and thus obtain Eq. (3.8), which we
write explicitly again here for convenience [1, 3]

Ĥd = −td ∑
⟨i,j⟩

(
d̂†

i d̂j + H.c.
)
+
(
Ṽ + V

)
∑
⟨i,j⟩

n̂d
i n̂d

j . (3.18)

We reminde the reader that Ṽ = 2td [160]. We note that the above expression does not
depended on filling. This time we are not at n = 2/3, which equals to half-filling in the
hard-core meson model, nd = 1/2, and any V > 0 results in the Mott state of mesons,
as discussed in Section 3.3.1. Contrarily, in the case at half-filling n = 1/2, which we
consider here, the system remains a meson Luttinger liquid even for V > 0, as this equals
to nd = 1/3 in the hard-core meson model. That is because (Vd + V) > 2td in the hard-
core meson model Eq. (3.18), only results in the Mott state when nd = 1/2 [1, 182]. The
consequence of this is that the meson LL remains stable at h ≫ t, even for weak NN
repulsion V. This limit of course holds as long as the meson are confined, i.e., h ≫ V.
Thus, the extended region around the limit denoted with B, where h ≫ V, t is a meson
Luttinger liquid as sketched in Fig 3.4.

Zero electric field term

Next we consider the regime where the Z2 electric field term is zero, h = 0, and there are no
fluctuations in the gauge field. We can once again consider the dressed parton formulation,
Eq. (2.20), and eliminate the gauge fields to obtain a hard-core boson system with NN
repulsion [1]

Ĥb = −t ∑
j

(
b̂†

j b̂j+1 + H.c.
)
+ V ∑

j
n̂b

j n̂b
j+1. (3.19)

As already mentioned before, such a model can be mapped to a XXZ spin-1/2 chain; see
Appendix A. The diagram of this model can be determined by using the Bethe ansatz [182,
184–186]. The system governed by Hamiltonian Eq. (3.19), forms a Luttinger liquid for
generic fillings n, and parameter values t, V [182], as already mentioned in Section 3.2. The
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Figure 3.5: Different configurations of dimers in the limit of t = 0 and h, V > 0. (a) In the
regime where 2h > V, tightly confined dimers ℓ = 1 are energetically the most favorable
configurations. (b) An extended dimer with ℓ = 2 has an energy difference of δ = 2h − V
in comparison to the tightly confined dimer. (c) In regime V > 2h extended dimers ℓ = 2
are energetically more favorable than the tightly confined dimers. This figure is modified
from Fig. 2 in Ref. [3].

only exception is half-filling where a Mott insulating (MI) state is stabilized for dominant
NN repulsion, V > 2t [182].

We can thus determine that the region A of the half-filling Z2 LGT phase diagram,
highlighted in Fig. 3.4, exhibits a transition to a parton Mott state when V > 2t and h = 0.
This is a simple Mott state of partons at half-filling, where the partons arrange themselves
as sketched in the inset of Fig. 3.4, denoted with 1/2 parton MI. In the Mott insulating state
at half-filling, every lattice site occupied by a parton is followed by a vacant lattice site.

3.4.2 Fluctuating dimers

The last regime that we consider analytically is the highly interacting limit where both NN
repulsion and the Z2 electric field term are of comparable strength, V ≈ 2h ≫ t [3]. This
regime is denoted with C in the phase diagram in Fig. 3.4.

Absence of hopping

We start by first considering the limit where the parton hopping is frozen, t = 0. Depending
on the relative strength of parameters h, V > 0, two kinds of dimers can be energetically
most favorable [3].

We can first note that when the string is extended by one lattice site to ℓ = 2, the
energy gain associated by this extension corresponds to ∆E+1 = 2h, as the anti-string had
to be changed to string according to the Gauss law constraint [3]. Thus, dimers will not
be extended over long strings as this is energetically costly, and we can expect that dimers
will be as short as possible, as discussed in Section 2.2. This means that mesons will favor
tightly confined dimer states, where partons are nearest neighbors and thus the string
length is minimal, ℓ = 1, as depicted in Fig. 3.5(a). However, since such meson states
involve two partons on neighboring sites, such tightly confined dimers also exhibit NN
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Figure 3.6: The pseudospin picture of squeezed mesons in the limit where 2h ≈ V ≫
t. (a) The original basis with only two allowed meson states. (b) The pseudospin basis,
where the mesons in (a) become squeezed into hard-core pseudospins, which we denote
with red spheres with arrows indicating the pseudospin orientation. (c) Definition of the
two pseudospins and their corresponding dimer configurations. (d) Allowed hoppings
of partons, which result in on-site pseudospin flip (e) or pseudospin flip and additional
hopping over one lattice site (f). The original basis picture is sketched on the left, and the
pseudospin basis is sketched on the right. This figure is modified from Fig. 3 in Ref. [3].

repulsion ∆ENN = +V. Therefore we can express the energy of an isolated dimer in the
regime where h, V > 0 as [3]

Eℓ = Vδ1,ℓ + 2hℓ, (3.20)

where we defined the string length ℓ ≥ 1, and δ1,ℓ is the Kronecker delta function. Next we
define the energy difference between the dimer of minimal possible length ℓ = 1, and the
energy of dimer with the string extended by one site ℓ = 2 [3]

δ = E2 − E1 = 2h − V. (3.21)

We see that there are two possible dimer configurations, which can minimize energy for
different finite values of h and V: the tightly confined dimer with minimum string length
ℓ = 1, is favored when 2h > V, conversely, the extended dimer ℓ = 2, will be favoured in
the regime where V > 2h [3]. The extended dimer is sketched in Fig. 3.5(b). Any longer
dimers will always be energetically unfavorable for h > 0 as the difference is always positive
E3 − E2 = 2h > 0, since there is no additional NN energy contribution.

We have thus demonstrated that for 2h = V, the two states have the same energy and
that this line represents the boundary between the two regimes of tightly confined dimers,
2h > V, and extended dimers 2h < V. In the former case, 2h > V, the tightly confined
mesons can be arranged in many possible ways in the lattice at half-filling, where at least
one vacant site is left between two neighboring mesons. This results in an extensive degen-
eracy of the ground state, and in a meson Luttinger liquid, once hopping t is reintroduced
[3]. Contrarily, there are only few options how to arrange extended dimers in the lattice for
the case when 2h < V; see Fig. 3.5(c). There, we obtain a simple Mott state of partons with
a two-fold overall degeneracy [3], which is similar to the Mott state obtained in the limit
when h = 0 and V > 2t. We thus see that 2h = V is indeed the boundary between a parton
Mott state and tightly confined mesons when t = 0; see Fig. 3.4.
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Hopping as small perturbation

We can now reintroduce hopping t as a small perturbation h, V ≫ t. We restrict our Hilbert
space in the perturbation to only two states: dimers of length ℓ = 1 and ℓ = 2, i.e., any
meson with ℓ > 2 is forbidden. With this constraint we can squeeze the two dimer states
into two types of mesons, which we can consider to be of pseudospin-up (extended meson)
or pseudospin-down (tightly confined meson), as sketched in Fig. 3.6. In this construction
we always squeeze 3 lattice sites into a single one, as defined in Fig. 3.6(c). The newly
defined pseudospin particles have a hard-core property as the original partons and mesons,
i.e., two pseudospin on the same lattice site (up and down), do not represent any physical
state [3].

By considering this construction we can write a new effective Hamiltonian for the
squeezed particles [3]

Ĥs = P̂

[
−t ∑

j

(
ĉ†
↑,j ĉ↓,j+1 + ĉ†

↑,j ĉ↓,j + H.c.
)
+

t2

2(δ + V) ∑
j

n̂↓,jn̂↑,j+1

+
t2

δ + V ∑
j

n̂↓,jn̂↓,j+1 + δ ∑
j

n↑,j

]
P̂.

(3.22)

Here we define the pseudospin-up creation operator as ĉ†
↑,j and the pseudospin-down cre-

ation operator as ĉ†
↓,j [3]. In addition, we also define the corresponding on-site number

operators n̂↓,j = ĉ†
↓,j ĉ↓,j, and n̂↑,j = ĉ†

↑,j ĉ↑,j [3]. Finally, we also define the operator P̂, which
projects into a subspace with no double occupancy of pseudospins, and without states that
are energetically penalized by the NN repulsion [3].

The first two terms in the Hamiltonian Eq. (3.22) are the remaining allowed hopping
terms of partons, see Figs. 3.6(d)–3.6(f). In an extended dimer, sketched in Fig. 3.6(d), the
partons can only hop towards each other, since any other hopping would extend the string
beyond the allowed length ℓ > 2, and would lead to configurations that we project out as
energetically unfavorable. When the right parton hops towards its left meson counterpart,
Fig. 3.6(d) to 3.6(e), the squeezed pseudospin remains on the same lattice site, however the
orientation of the pseudospin changes from up to down. The opposite process can of course
also occur where in the tightly confined state the right parton hops to the right, which is
formalized as ĉ†

↑,j ĉ↓,j, and is just the Hermitian conjugate of the described case leading to
Fig. 3.6(e) from initial state in Fig. 3.6(d). The second possible case is that the left meson
hops towards its right meson counterpart, Fig. 3.6(f), which in addition to the pseudospin
flip also results in moving the parton one site to the right. Once again, the opposite process
is also possible, which we can formalize as ĉ†

↑,j ĉ↓,j+1, which is just the Hermitian conjugate
of the described case leading to Fig. 3.6(d) from initial state in Fig. 3.6(f).

Next, we consider the NN repulsion term, where we simply consider the cases where
the NN configurations of pseudospins are allowed, since the actual partons containing these
pseudospins are not neighbors; see Fig. 3.7. We consider the second-order perturbation in
the same way as in the second-order perturbation of tightly confined dimers where NN
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Figure 3.7: Second-order perturbation NN repulsion terms between pseudospin configura-
tions. (a) Repulsion due to restricted hopping of the parton of the tightly confined dimer
towards the neighboring dimer on the right. (b) Repulsion due to restricted hopping of par-
tons in both tightly confined dimers. This figure is modified from Fig. 9 in the Appendix
of Ref. [3].

repulsion comes from restriction of parton fluctuations [160]. The only two contributing
configurations are when two pseudospin-down states are NN, and when a pseudospin-
down is a NN to the left of a pseudospin-up, which we sketch in Fig. 3.7. In both cases
the left dimer has to be tightly confined ℓ = 1. The right dimer can be extended or tightly
confined. In the former case, the repulsion equals to t2/4h and in the latter, where partons
of the both dimers are not allowed to fluctuate, the repulsion is t2/2h. The repulsion terms
together thus yield [3]

Ĥ2nd
s =

t2

2V ∑
j

n̂↓,jn̂↑,j+1 +
t2

V ∑
j

n̂↓,jn̂↓,j+1. (3.23)

Let us note that the NN configuration terms, which are highly energetically penalized
and thus projected out by the operators P̂, in addition to double occupancies, can be ex-
pressed as [3]

ĤV
s =

[
V ∑

j
n̂↑,jn̂j+1

]
, (3.24)

where n̂j+1 = n̂↑,j+1 + n̂↓,j+1. As already stated before, since we consider V ≫ t, configura-
tions contributing to the above terms involve NN partons that belong to different mesons.

The last term in the Hamiltonian Eq. (3.22) comes directly from the fact than when δ > 0,
tightly confined dimers will be favored and thus extended dimers, i.e., pseudospin-up states
will cost energy relative to the tightly confined dimers as we expressed in Eq. (3.21). Of
course the opposite holds for δ < 0.

In order to explicitly express the perturbative NN repulsion in terms of δ, we rewrote
the denominators in Eq. (3.22) of the perturbative NN repulsion explicitly as 2h = δ + V,
since we defined δ = 2h − V.

From the Hamiltonian, which we constructed in the limit, h, V ≫ t with an additional
requirement 2h ≈ V, we can conclude that close to δ ≈ 0, strong partons fluctuations are
allowed when hopping is reintroduced [3]. In highly doped regimes, which is the case
at half-filling n = 1/2, we thus expect that strong fluctuations between tightly confined
dimers ℓ = 1 and extended dimers ℓ = 2, will result in an apparent deconfined behaviour
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on short to intermediate length scales, comparable to the average parton spacing in such
a regime [3]. We coin this regime the parton-plasma regime in analogy to high-energy
physics, as the short-ranged parton fluctuations are plasma-like [3].

Furthermore, considering the cases where δ ̸= 0 and one of the parameters become
dominant, we can recover the behaviour, which leads to the Mott state on the one hand,
and the confined meson LL on the other hand. In the case where 2h > V, we regain the
meson LL liquid as δ > 0 favours tightly confined mesons [3]. In the opposite case where
δ < 0, we see that extended dimers are favoured and thus hopping is suppressed whereas
the second-order perturbative NN repulsion increases, which eventually leads to a Mott
state.

3.4.3 Phase diagram

From the analytical considerations, where we considered different limits, we can already
conjecture the phase diagram sketched in Fig. 3.4. In the regime labeled with A, when
h = 0, we obtained a simple 1/2-parton Mott state for V > 2t as discussed in Section 3.4.1.
On the other hand, when the NN repulsion is zero V = 0, we have established that partons
confine into mesons with non-zero electric field term, h ̸= 0, as discussed in Section 3.4.1.
Mesons become tightly confined for stronger values of the electric field term h, where we
can consider them to be new hard-core particles forming a meson LL, which remains stable
also for small NN repulsion, V ≪ h, since the filling n = 1/2 is far away from a possible
formation of a meson Mott state at n = 2/3, which we discussed in Section 3.3.

Finally, in the regime where 2h ≈ V, we showed that dimers can become frustrated,
which leads to parton-plasma like fluctuations as hopping is considered as a small per-
turbation t ≪ h, V. This regime can also be considered as a crossover regime where the
1/2-parton Mott state is destroyed as partons confine into mesons that become dynamical
and form a meson LL [3].

In order to complete the full phase diagram, which we already sketched from our an-
alytical considerations, we in addition turn to numerical calculations. We explicitly probe
the parton Mott insulating phase by considering the charge gap and the static structure
factor. For that we employ finite DMRG calculations implemented within the MPS toolkit
SyTen [153, 154]. We consider chains with length up to L = 120, unless stated otherwise.
In addition, we once again integrate out the matter via Gauss law and simulate the spin
Hamiltonian; see Section 1.3.2.

Charge gap at half-filling

A parton Mott state will exhibit non-zero value of the charge gap, which we define as [1, 3]

∆c(L, N) =
1
2

[(
EL

N+2 − EL
N

)
−
(

EL
N − EL

N−2

)]
. (3.25)

We defined it in exactly the same way as in the two-thirds filling case, discussed in Sec-
tion 3.3. Thus EL

N is once again the ground state energy for a chain with length L, with
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Figure 3.8: Details on the extrapolation of the charge gap in the thermodynamic limit for
half-filling n = 1/2. This figure is modified from Fig. 10(a) in the Appendix of Ref. [3].

N partons, which constitutes to filling n = N/L. We once again consider EL
N and EL

N±2,
since we will consider the gap for generic values of h and V. In addition, we again consider
only even numbers of partons, which have the potential to be paired with each other, thus
avoiding to be stuck to one of the edges of the chain [3].

Similar as before, we calculate the charge gap for different chain lengths L at a fixed
filling, n = 1/2, and extrapolate the values to the thermodynamic limit

∆c(L, N) = lim
L→∞

∆(N, L). (3.26)

The finite size scaling is performed in the same way as in the two-thirds filling case. We
extrapolate the charge gap results by plotting the values of Eq. (3.25), which we obtain from
DMRG calculations, as a function of 1/L, and fit the quadratic function to the data. The
value of the quadratic function at x = 1/L = 0 thus gives us the value of Eq. (3.25) in the
thermodynamic limit. Typical fits can be seen in Fig. 3.8, where we consider system lengths
of L = 40, 60, 80, 120. These lengths had to be adjusted for different parameter values in
order to ensure convergence of the DMRG calculations [3]. Since we simulate the spin
model where we tune the chemical potential in order to obtain the correct filling, we have
to subtract the energy contribution of the chemical potential term [3].

The results for the charge gap as a function of the electric field term h and NN repul-
sion V are presented in Fig. 3.9(a) [3]. The obtained phase diagram shows that there is a
significant charge gap in the regime where V > 2t and V > 2h, which is in agreement with
our analytical considerations. As an example we also show the details on the charge gap
opening at V = 5 as a function of h in Fig. 3.9(b), which shows that the onset of non-zero
gap value indeed appears around h ≈ V/2 = 2.5t. In addition, we also present the details
on the gap opening as a function of the NN repulsion V in the absence of the Z2 electric
field term h = 0 in Fig. 3.9(c). In this regime the LL theory predicts a Berezinskii-Kosterlitz-
Thouless (BKT) transition at V = 2t [3, 182]. In order to study this transition further we
again consider the BKT exponential function [1, 3, 182, 184]

∆BKT
c ∝ eB/

√
V−Vc , (3.27)
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Figure 3.9: The charge gap, Eq. (3.25), in the Z2 LGT after eliminating matter via Gauss
law, extrapolated in the thermodynamic limit for n = 1/2. (a) The charge gap in the
thermodynamic limit as a function of h and V. The Purple bars denote the gap values
where ∆ ≥ ∆0, and the blue bars denote the gap values where ∆ < ∆0. We define the cutoff
value as ∆0 = ∆(h/t = 0, V/t = 2). (b) Details on the charge opening as a function of the
electric field term h at a constant value of the NN repulsion V/t = 5. (c) Details on the
charge opening as a function of the NN repulsion V at zero value of the electric field term
h = 0. This figure is modified from Fig. 4(a) in Ref. [3]; and Fig. 10(b) and Fig. 10(c) in the
Appendix of Ref. [3].

which we again state here for convenience. The difference here is that the gap is a function
of V and not h as was the case considered at two-thirds filling. The fit with this function
can be seen in Fig. 3.9(c), where we fixed the transition value to Vc = 1.83t, which we found
as the value with the lowest covariance matrix elements, after scanning through different
values of Vc. This value is around 9% off from the expected value of VC = 2t. We attribute
this to the peculiar exponential BKT function that is hard to fit to the data, and to slight
errors in the extrapolation of the gap to the thermodynamic limit. Even though, the exact
transition is hard to establish, our results are very close to the expected value.

We conclude that there is a finite charge gap indicating the parton Mott state for param-
eter values V ≥ 2t and V ≳ 2h.

Static structure factor

Next we consider the static structure factor, which we define as [3, 187]

S(k) =
1
N ∑

j,l
e−i(j−l)k 〈n̂jn̂l

〉
., (3.28)

where as usual we define n̂j = â†
j âj, and we denote the normalization factor by N . Technical

details on the structure factor can be found in Appendix B. The static structure factor gen-
erally probes transitional symmetry broken phases and thus complements the charge gap
calculations [3]. However, the static structure factor is much easier to measure in a quan-
tum simulator, and could thus be used as an experimental probe of confinement. There,
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Figure 3.10: The structure factor Eq. (3.28) at half-filling. (a) The structure factor in the
absence of the Z2 electric field term h = 0, for different values of the NN repulsion V,
reveals a parton Mott peak at k = π. (b) Structure factor for different values of h and no
NN repulsion V = 0. We observe low peaks at k = π/2 and k = 3π/2, when h > 0. (c)
Structure factor as a function of h and V, where the peaks at 2h = V = 4t have the same
heights. This figure was modified from Fig. 5 in Ref. [3].

one would have the measure the spatial configuration of the matter, or the configuration of
the Z2 electric field.

We use DMRG to calculate the structure factor as a function of the electric field h and
NN repulsion V. We observe two different types of peaks in our calculations: at half-integer
and at integer multiples of π [3].

The peaks at k = π directly probe the parton Mott state, and grow with increasing NN
repulsion V as can be seen for h = 0 in Fig. 3.10(a). The peak at k = π remains low for
V ≤ 2t, and rises significantly only when V > 2t, which is in agreement with the transition
to the parton Mott insulating state where the partons arrange in a long-ranged staggered
configuration [3].

In the regime with no NN repulsion V = 0, but with increasing electric field term h,
we observe small peaks at half-integer multiples of π, that is at k = π/2, 3π/2, as can be
seen in Fig. 3.10(b). These peaks rise only slightly with increasing h. Peaks at k = π/2,
would generally mean that the system has a structure with period of four lattice sites [3].
However, since the charge gap is zero in this regime, we conclude that these peaks are
related to short-range correlations. Peaks at k = π/2 are thus only algebraically localized
instead of exponentially, which would suggest long-rang order [3].

Furthermore, we observe a low and broad peak at k = π for free partons, h = V = 0;
see Fig. 3.10(b). This peak disappears for h/t = 1, and is replaced with the half-integer
π peaks. Since we are at a finite system size, in the case of these results L = 120, we
can remember that the Friedel oscillation frequency halves in the confined regime where
h ̸= 0. We thus associate the small peak at k = π, in the free parton regime h, V = 0 to
the Friedel oscillations at half-filling n = 1/2, which correspond to k = 2πn = π [3, 160].
In the confined regime, the Friedel oscillations halve to k = πn, and for half-filling thus
correspond to modest peaks at half-integer multiples of π. We thus associate the small
peaks at k = π/2, 3π/2 to the confined meson Luttinger liquid, and to finite size effects
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Figure 3.11: Height of the structure factor peaks at k = π/2 and k = π in the Z2 LGT after
eliminating matter via Gauss law, at half-filling n = 1/2. (a) Peak at k = π/2, acquires a
small value for h ̸= 0, which is enhanced by V close to the frustrated regime, δ = 0, and
h, V ≫ t. (b) Peak height at k = π directly probes the parton Mott state and resembles the
charge gap results. This figure was modified from Fig. 4 in Ref. [3].

in our system with length L = 120. We expect these peaks to become less prominent in
the thermodynamic limit L → ∞, for h ≫ t, since tightly confined mesons form a gapless
meson LL [3]. More details on the size dependence of the structure factor can be found in
Appendix B.

Next we consider the frustrated regime, 2h = V, where analytical calculations showed
that the tightly confined and extended dimers become degenerate in the limit when t → 0
and we thus expect strong fluctuations between the two dimer states for small t. The
structure factor results, Eq. (3.28), at high NN repulsion V = 4t for different values of the
Z2 electric field term h are presented in Fig. 3.10(c). The strong peak at k = π at h = 0,
decreases significantly for h = 2t, which is the special degenerate point where δ = 0. It
furthermore drops for h = 4t. This means that the parton Mott state is indeed melted by
the non-local electric field term, which introduces the linear confinement in the strings.
The half-integer peaks at k = π/2, 3π/2 appear for h = 2t and further increase with
increasing value of the field term. This shows that the partons indeed bind into mesons.
However, due to the NN repulsion V, the meson LL has some short range correlations,
which are associated with dimer fluctuations and the second-order NN repulsion in the
effective model Eq. (3.22). The height of both peaks at 2h = V is approximately the same
and thus shows that this is indeed a very interesting regime.

We summarize the peak height values at k = π, and k = π/2 as a function the electric
field term h and NN repulsion V in Fig. 3.11 The behaviour of structure factor peaks at
k = π and at k = π/2, 3π/2 thus determines the behaviour of the system in a similar way
as the charge gap. This is in particular true for the peak at k = π, which directly probes
the order with period of two lattice sites. The partons arrange in a staggered fashion in
the 1/2-parton Mott state, where every occupied lattice site is followed by a vacant site,
this means that the structure factor peak at k = π is a direct, experimentally feasible probe
of the parton Mott state. Peaks at k = π/2, 3π/2, are a bit more subtle, since they are
associated with the Friedel oscillations of the confined mesons in a finite chain of length L,
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and not with long-range correlations. We thus expect them to vanish in the thermodynamic
limit L → ∞. However, they would appear in quantum simulation experiments with OBC.

3.4.4 Pre-formed parton plasma

In this section, we take a closer look at the regime where we can obtain two energetically
degenerate meson states in the absence of hopping. As already discussed in the previous
Section 3.4.2, this is the regime where 2h = V in the absence of hopping t = 0. There,
the two possible mesons with length ℓ = 1 and ℓ = 2, which we dubbed as the tightly
confined and extended dimer, respectively, dominate the physics when weak hopping is
reintroduced as small perturbation, t ≪ h, V [3]. As discussed in Section 3.4.2, the exact
relation between the electric field term h and the NN repulsion V is important close to
2h = V. That is because these are two competing interactions, which result in very different
behaviour once one of them becomes dominant. At the commensurate filling n = 1/2,
dominant NN repulsion V ≫ h, t, results in a simple parton Mott state of lattice sites
alternating between filled and vacant lattice sites [3]. This behaviour was confirmed by a
substantial charge gap as well as the peak in the static structure factor at k = π. In the other
limit, where the electric field term is dominant, h ≫ V, t, partons become tightly confined
into mesons with ℓ = 1, which form a meson LL, where NN repulsion V plays only a minor
role and can only modify the value of the LL parameter [3].

The two limits mentioned above and studied in Section 3.4.1 can be interpreted in terms
of a LL of confined partons and a Mott state of individual partons, respectively [3]. How-
ever, the exact nature of the transition between these two regimes and the behaviour at the
interface is not clear. That is because the interplay of the non-local Z2 electric field term
and the local NN parton repulsion results in highly frustrated states at 2h = V and high
doping [3]. Due to the energetic degeneracy of the two meson states in this regime, partons
are allowed to fluctuate and thus their behaviour is hard to capture only in terms of the
well known behaviour of the Mott state or the LL [3].

We can investigate this regime closer by starting in the parton Mott state. As discussed
in Section 3.4.2, the Mott transition occurs close to 2h = V and V ≥ 2t, which is also
supported by the charge gap and static structure factor results presented in Fig. 3.9 and
Fig. 3.11, obtained from DMRG calculations. Close to the transition line 2h = V, the
confined mesons are allowed to fluctuate between the tightly confined state ℓ = 1 and the
extended dimer state ℓ = 2, as the two states are degenerate with energy difference δ =

2h − V, in the limit t → 0 [3]. At this point we emphasise the fact, that the parton pairs are
overall confined, since the non-zero electric field term h ̸= 0 imposes further energy gain for
dimers, which are extended above the the string length ℓ > 2. However, at the high filling
n = 1/2, partons would not have a lot of space to propagate even in the deconfined phase.
Thus, due to high filling at n = 1/2 and due to strong fluctuations of mesons between the
tightly confined state ℓ = 1 and the extended state ℓ = 2, which are energetically almost
the same, the partons effectively behave as deconfined on short length scales [3]. We dub
the region around the 2h = V line as the pre-formed parton-plasma regime [3]. We formalize
the deconfined, short length-scale behaviour in the next subsection, where we consider the
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Figure 3.12: Green’s function, Eq. (3.29), in the Z2 LGT after eliminating the matter via
Gauss law, for different values of the electric field term h and a high value of the NN
repulsion V/t = 8. (a) Green’s function decay for different values of the electric field term
h on a log – linear plot. (b) Estimated length xa, on which the Green’s function behaviour
transitions from the initial power-law to an exponential decay. This figure was modified
from Fig. 6 in Ref. [3].

already familiar probe of confinement: the gauge invariant Green’s function.

Green’s function

As already described earlier, the behaviour of the Z2 gauge invariant Green’s function, can
be studied in order to probe confinement of partons. Here we define the Green’s function
again for convenience [1, 3, 160]

G(i − j) =

〈
â†

i

(
∏

i≤ℓ<j
τ̂z
⟨ℓ,ℓ+1⟩

)
âj

〉
. (3.29)

Furthermore, we reiterate that the Green’s function at long distances decays with a power-
law in the deconfined regime and exponentially in the confined regime [1, 3, 160]. For the
U(1) matter this means that it decays exponentially for any h ̸= 0 [1, 160].

Following the discussion on the pre-formed parton-plasma regime, the Green’s function
can exhibit different, more complicated behavior on short length scales, before the long-
distance behaviour is established [3]. In agreement with the apparent deconfined behaviour
of partons on short length scales in the strongly frustrated regime 2h ≈ h, we find power-
law scaling on short to intermediate length scales; see Fig. 3.12. The power-law scaling
on short to intermediate length scales resembles the parton plasma phase on length scales,
which are significantly above the inter-particle spacing at half-filling [3].

We analyse the behaviour in Fig. 3.12 in greater detail by fitting the Green’s function
results with a function containing power-law as well as exponential decay, which we define
as [3]

f f = A f x−α f e−β f x. (3.30)

Here we define the distance in the Green’s function as x = |i − j|, α f is the strength of the
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Figure 3.13: Green’s function fitted with Eq.(3.31) for parameter values 2h = V = 4t in the
Z2 LGT after eliminating matter via Gauss law. The length of the chain is L = 120. This
figure was modified from Fig. 15 in Ref. [3].

power law decay, and β f is a parameter quantifying the strength of the exponential decay
[3]. The power-law decay, parameterized by α f thus captures the (possible) deconfined
behaviour of the Green’s function, and the exponential decay arising from confinement on
long length scales is captured by the parameter β f [3]. The values of these two parameters
can thus be used to distinguish the nature of the Green’s function decay on different length
scales.

For technical reasons, we generally consider the logarithm of the Green’s function and
distance x in order to extract the tricky nature of the exponential decay. The fitting function
has to be modified accordingly [3]

f ′f = A′
f − α f x′ − β f ex′ , (3.31)

where x′ = log(x) and f ′f = log
(

f f
)
. More technical details on the fits can be found in

the Appendix of Ref. [3]. A typical fit of the Green’s function with Eq. (3.31) is shown in
Fig. 3.13. We consider different values of h and V across the whole phase diagram of the
1 + 1D Z2 LGT at half-filling n = 1/2. The results for the fitting parameters α f and β f are
presented in Fig. 3.14.

The value of the exponential decay parameter β f is close to zero for low values of h,
and starts increasing with increasing value of h, indicating an overall confined phase; see
Fig. 3.14(b). The increase of β f follows the line 2h = V, which agrees with our previous
analytical arguments and numerical data [3]. Contrarily, the value of the power-law decay
parameter α f is substantial for low values of the confining electric field h, and decreases
with the increasing value of h; see Fig. 3.14(a). The region where α f ≳ 0.5, has a similar
lobe shape as the charge gap values in Fig. 3.9, indicating that the mesons become tightly
confined outside the region bounded by V < 2t and h > V/2. Green’s function results thus
agree with our previous analytical arguments and numerical results. The finite value of
the parameters α f and β f , extracted at 2h ≈ V, show that we indeed observe two different
types of behaviours at the same time on different length scales [3].

Such a behaviour can already be clearly observed in Fig. 3.12, where we see that the
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Figure 3.14: Green’s function fit results at different parameter values h and V in the Z2 LGT
after eliminating matter via Gauss law. (a) The power-law decay parameter α f extracted by
fitting Eq. (3.31) to the numerical data. (b) The exponential decay parameter β f obtained by
fitting Eq. (3.31) to the DMRG data. (c) Estimated crossover distance xa from the power-law
to the exponential decay of the Green’s function, extracted by fitting the function Eq. (3.32)
to different number of data points. This figure was modified from Fig. 7 in Ref. [3].

Green’s function decay at 2h = V has the slowest initial decay, in comparison to other
values of h. This decay appears to obey a power-law on short to intermediate length scales,
which eventually turns into the expected exponential decay at longer distances [3].

In order to estimate the crossover distance where the algebraic decay turns into the ex-
ponential decay more precisely, we fit the data with a power-law function [3]. For technical
reasons we again consider the logarithm of the Green’s function obtained from the DMRG
calculations, and thus the fitting function has to be adjusted appropriately as [3]

fc = Ac − αc log(x). (3.32)

We estimate the crossover length by fitting different number of data point, i.e., by consid-
ering the Green’s function up to different lengths 1 ≤ x ≤ xc, at different parameter values
h and V. We start the fits already at xc = 3 and consider the data points all the way up
to xc = 80 [3]. The fit result with data points up to xa = xc with the lowest sum of the
absolute value of the covariance matrix elements, is declared as the fit result where the
decay of the Green’s function is best described with a power-law function. The distance
xa is thus the estimated length where the nature of the Green’s function starts to become
exponential and the power-law function can not capture the decay correctly. The results at
high NN repulsion V = 8t are presented in Fig. 3.12(b) and the results for generic values
of h and V in Fig. 3.14(c). We see that for high values of the electric field term h ≫ t and
far away from the 2h = V line, where the partons are tightly confined into mesons, values
drop close to the minimal possible value xa ≈ 3, which means that there is no power-law
character, and partons are confined on all length scales [3]. The other regime at h = 0 where
the cutoff values exceed xa ≳ 30, signals a power-law behaviour and thus the deconfined
regime. Such a behaviour is indeed observed for h = 0 and V ≲ 2t[3].

After establishing that the cutoff values xa correctly capture the confined and deconfined
nature of partons, we turn our attention to the behaviour close to 2h = V line. There we
indeed observe that the obtained cutoff values lie in the range 15 ≲ xa ≲ 25. This means that



80 3. Phase diagrams of 1+1D Z2 lattice gauge theories with dynamical U(1) matter

Figure 3.15: Green’s function fits with a power-law and an exponential function in the
frustrated regime 2h = V = 4t in the Z2 LGT after eliminating matter via Gauss law. (a)
The power-law Eq. (3.33), matches the first few data points of the Green’s fuction. (b) at
longer length scales, the exponential function, Eq. (3.34), better captures the overall Green’s
function decay. (c) Extracted power-law exponent for different values of h and V from
fitting the data points with Eq. (3.33). (d) Exponential decay parameter βe from fitting the
data points with Eq. (3.34), shows similar features as the full fit in Fig. 3.14. The data is
shown on a log-lin scale. This figure was modified from Fig. 16 in Ref. [3].

the partons behave as if they were deconfined on short length scales x ≲ 10, but on longer
length scales x ≳ 30 the exponential behaviour prevails, meaning that partons are confined
on long length scales [3]. The obtained cutoff values between 15 ≲ xa ≲ 25, close to the line
2h = V thus signal the pre-formed parton-plasma like behaviour on short to intermediate
length scales, consistent with our analytical predictions, and numerical results [3].

We also fit the data with functions containing only the power-law decay, or only the
exponential decay. A typical fit with a power-law function [3]

fa = Aax−αa (3.33)

is presented in Fig. 3.15(a). The results for the power-law decay exponent αa for different
parameter values h and V can be seen in Fig. 3.15(c). These results are similar to the fit
results with the full fitting function in Fig. 3.14.

Similarly, we present a typical fit with a purely exponential function [3]

fe = Aee−βex (3.34)

in Fig. 3.15(b). The extracted parameter βe for different values of h and V, matches very well
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the values extracted from the full fit in Fig. 3.14. To perform the above fits with Eq. (3.33)
and Eq. (3.34), respectively, we again consider the logarithm of the Green’s function values
[3]. The fitting functions have to be modified accordingly [3]. In addition, we vary the fit
interval xmin < x < xmax in order to find the best fit. This is again chosen to be the fit
with the lowest sum of absolute values of the covariance matrix elements of the fit. Further
details on the Green’s function fits can be found in the Appendix of Ref. [3].

Pair-pair correlations

We briefly note that one can also consider the pair-pair correlations, which directly probe
the correlations between different mesons in the system defined as [3]

⟨b̂†
i b̂j⟩ = ⟨â†

i τ̂z
⟨i,i+1⟩ â

†
i+1 âjτ̂

z
⟨j,j+1⟩ âj+1⟩. (3.35)

When mesons are tightly confined, they form a gapless LL and the meson correlation func-
tion Eq. (3.35) should exhibit a power-law decay [3, 182]. This was indeed observed by
performing iDMRG calculations showing that the pair-pair correlations exhibit a power
law decay for 2h ≥ V. For 2h < V, the pair-pair correlations exhibit an exponential decay,
which signalises the Mott insulating state, in agreement with our analytical arguments and
numerical results [3].

3.5 Summary and conclusion

In this chapter we studied phase diagrams of the paradigmatic 1 + 1D Z2 lattice gauge
theory, coupled to dynamical U(1) charges. In addition to the hopping term, where the
dynamical charges are minimally coupled to the gauge fields, and the Z2 electric field
term, which induces dynamics in the gauge fields, we also consider the NN repulsion,
V ≥ 0, among bare partons as this can be realized in cold-atom simulation experiments of
such systems. We considered hard-core bosons in our one-dimensional chains. However,
due to the Jordan-Wigner mapping in one-dimension [1, 3, 172, 188], hard-core bosons can
be mapped to spinless fermions, and thus the results generally hold also for fermions [1,
3].

In the first part of this chapter we studied the two possible Luttinger liquid realizations
[1, 160]. The parton LL is formed in the absence of the confining Z2 electric field term.
Upon introducing the NN repulsion V, the LL parameter changes for different fillings
accordingly, which can be studied by mapping the system to a spin-1/2 XXZ chain, where
one can utilize the Bethe ansatz [182]. In this regime, where h = 0, but t, V > 0 the system
generally remains a LL for different chain fillings n. The only exception is the half-filling
case where the partons can form a Mott insulating state, stabilized by V ≥ 2t. There, the
partons arrange themselves in a staggered way, where every other lattice site is filled with
a parton [3]. When the electric field term is non-zero h ̸= 0, partons confine into mesons
as discussed previously in Chapter 2. There, mesons form a Luttinger liquid with rather
complicated LL parameters. In the limit of strong electric field term h ≫ t and V = 0, the
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mesons can be considered to be tightly confined, forming well defined hard-core particles,
which can be described with a simple hard-core boson Hamiltonian with NN repulsion,
derived from second order perturbation theory [160]. This mapping shows that confined
mesons for h ≫ t at two-thirds filling, n = 2/3, are right at the edge of undergoing a
transition to a meson Mott state.

This simple analysis of different LLs, which can be formed in the LGT, shows that half
and two-thirds fillings can host interesting and very different phase diagrams with rich
physics. This motivated us to study the phase diagrams of both regimes in detail in two
separate sections of this chapter.

In Section 3.3 we focused on the two-thirds filling. By using analytical and numerical
calculations we demonstrated that the combination of the non-local Z2 electric field term
and local NN repulsion can stabilize a meson Mott state [1]. There, confined mesons ar-
range periodically in the lattice where every tightly confined meson (two partons on neigh-
boring sites) is followed by a single empty lattice site. This gapped Mott state was directly
probed by calculating the charge gap using the DMRG, where we uncovered a substantial
charge gap for large values of h and V.

In the following Section 3.4 we studied the half-filling regime. We considered 3 tractable
limits: absence of the electric field term h = 0, absence of the NN repulsion V = 0 and sub-
stantial confining field h ≫ t, and the parton plasma regime 2h ≈ V ≫ t. The analytical
calculations were complemented with state-of-the-art numerical calculations, where we uti-
lized the DMRG. More precisely, we used the MPS toolkit SyTen [153, 154]. We uncovered
a meson LL for non-zero value of h, which remains stable also for small values of the NN
repulsion V. In the absence of the electric field term h = 0, the NN repulsion stabilizes a
simple parton Mott state for V ≥ 2t, as expected from the parton LL considerations [182].
This Mott state is destabilized by the electric field term once it approaches the line 2h = V.
There we uncovered that mesons, which are overall confined on long length scales due to
the non-zero electric field term h ̸= 0, are allowed to fluctuate between a tightly confined
meson with string length ℓ = 1 and extended meson with string length ℓ = 2. In fact the
two meson states are energetically equivalent in the limit t → 0. This results in a highly
frustrated regime, with strong parton fluctuations between the two meson states when hop-
ping is reintroduced t ≪ h, V, close to the line 2h ≈ V [3]. In addition to the fact that at
n = 1/2 we are at reasonably high doping, partons appear to be deconfined on short to in-
termediate length scales [3]. We dubbed this region as the pre-formed parton-plasma state.
Signatures of such a behaviour are also revealed in numerical calculations of the Green’s
function that exhibits an initial power-law decay with a delayed exponential decay setting
in on longer length scales. The destabilization of the Mott state is also revealed in the static
structure factor calculations, which are more suitable for quantum simulation setups.

In conclusion, we revealed that at two-thirds filling both interactions work together to
stabilize the meson Mott state, whereas at half-filling the two interactions compete with
each other, which results in a highly frustrated regime. In both cases, the phase diagrams
exhibit extremely rich physics, ready to be studied in quantum simulation setups with cold
atoms.



Chapter 4

Confinement in a lattice gauge theory
at finite temperature

So far, our study of the paradigmatic 1 + 1D Z2 LGT in this thesis has been focused on
its ground state properties. In this chapter, we study confinement in the 1 + 1D Z2 LGT
with matter at finite temperature. We consider the Green’s function behavior and uncover
a smooth confinement-deconfinement crossover as a function of temperature. In addition,
we study Friedel oscillations, and sample string and anti-string length histograms obtained
from snapshots, which offer a deeper understanding of confinement. Both of these ob-
servables are also motivated by quantum simulation experiments with cold atoms, where
quantum many-body snapshots are naturally obtained. We show that these probes exhibit
signatures of confinement already above the crossover temperature defined by the Green’s
function results. These results go beyond the conventional wisdom where a deconfined
phase would be expected already for any finite temperature, since it is well known that
the system has to be deconfined in the infinite temperature limit. We show that Friedel
oscillations and string length histograms are a robust measure of confinement, which we
propose as simple and reliable probes suitable for cold-atom experiments.

This chapter is based on Ref. [4], from which the content, including figures, has been
adapted and extended.

4.1 Introduction

Studying LGTs at finite temperature is generally complicated and there are still many open
problems: for example, understanding quark confinement in hadrons at finite temperature
and their transition to a quark gluon plasma at very high temperatures [4, 25, 189]. The
1 + 1D Z2 LGT coupled to U(1) matter that we study here is a much simpler version of
LGTs studied in HEP, and from such perspective can be understood as a simple toy model.
However, it has direct connections to condensed matter physics, including spin liquids and
high-temperature superconductivity [1, 16, 29, 30, 58, 147–149]. For these reasons, the study
of finite-temperature properties of such Z2 LGT and the related nature of confinement is
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extremely compelling.

Perhaps an even bigger motivation to study confinement at finite temperature in the
1 + 1D Z2 LGT comes from significant advancements in quantum simulations involving
cold atoms, where LGTs generated significant interest in recent years [21–23, 26, 80, 81, 95].
In fact, significant progress in simulating LGTs with cold atoms has been made [80, 81],
most notably is perhaps simulating the building blocks of the Z2 LGTs [21, 22] by utilizing
the Floquet scheme [23]. Hence, quantum simulations with cold atoms could be used in the
future to study confinement in LGTs for different geometries and gauge groups. Answering
the question if the partons confine in a paradigmatic Z2 LGT also at finite temperature is
thus an important question, which needs to be answered. Furthermore, developing realistic
experimental probes capable of detecting confinement at finite temperature is also crucial
for the experimental study of confinement.

In this chapter, we study the 1 + 1D Z2 LGT where dynamical U(1) matter is coupled
to gauge fields at finite temperature. We define the paradigmatic 1 + 1D Z2 LGT once gain
here for convenience [1, 3, 4, 160]

Ĥ = −t ∑
j

(
â†

j τ̂z
⟨j,j+1⟩ âj+1 + H.c.

)
− h ∑

j
τ̂x
⟨j,j+1⟩. (4.1)

As before â†
j (âj) are the hard-core boson creation (annihilation) operators. Furthermore,

τ̂z
⟨j,j+1⟩ and τ̂x

⟨j,j+1⟩ are the Pauli matrices representing the Z2 gauge and electric field, re-
spectively. In addition, for clarity we once again state the Gauss law, defined with a set of
operators [1, 3–5, 121, 160]

Ĝj = τ̂x
j−1,jτ̂

x
j,j+1(−1)n̂j , (4.2)

which commute with the Hamiltonian
[
Ĥ, Ĝj

]
= 0, and with each other on different lattice

sites
[
Ĝi, Ĝj

]
= 0. It effectively divides the Hilbert space into different sectors, where

eigenvalues Ĝj |ψ⟩ = gj |ψ⟩ can take two possible values gj = ±1. As usual we only
consider the sector without any background charges, which is defined as the sector where
gj = +1, ∀j. Hence, when performing numerical simulations, we again eliminate the matter
field via the Gauss law, and simulate the spin model; see Section 1.3 for details.

The Gauss law gives us the already well defined string anti-string picture, where the
partons are connected in pairs with Z2 electric fields with equal signs. This allows us
to define strings as electric field values with negative orientation (in the x-basis), and the
anti-strings as electric field with positive orientation, sketched in Fig. 4.1(a) [4]. For a
more in depth discussion on the string and anti-string length picture we refer the reader to
Chapter 2.1.

We note that here we do not include the NN repulsion V as was the case in Chapter 3,
where we studied phase diagrams in the ground state. That is because we focus solely
on the study of confinement at finite temperature T. At this point we reiterate that in the
ground state, the Z2 electric field term can be understood as the term, which induces a
linear confining potential, by imposing an energy cost for every string. Hence, long strings
become energetically unfavourable, which results in partons confining into mesons, where
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Figure 4.1: The 1 + 1D Z2 LGT coupled to dynamical matter. (a) A sketch of the system,
where pairs of hard-core bosons (blue spheres) are connected by the Z2 electric strings,
which denote the negative orientation of the Z2 electric field. (b) Green’s function Eq. (4.5)
results for different temperatures T, and constant chemical potential µ, which yields the
filling nt = 14/36 in the ground state. The dashed lines are the fit results with Eq. (4.6).
(c) Heat map diagram of the difference between the correlation lengths for h = 0 and
h/t = 1 presented as a function of the temperature T and the target filling nt. The difference
is normalized by the correlation length for h = 0 at the corresponding temperature T.
The white dots represent the data points, from which the software triangulated the heat
diagram. The white color in the heat diagram indicates the crossover regime. This figure
was obtained from Fig. 1 in Ref. [4].

the string length ℓ is short. While a meson state in the limit h → ∞ tends to be a state with
two neighboring partons and thus ℓ = 1, see Fig. 4.1(a), the partons bound in a meson are
generally allowed to fluctuate for finite values of h and t, and thus average string lengths
can be longer than ℓ = 1. However, it is important to keep in mind that the average string
length approaches the minimum possible length ℓ = 1, already for relatively low values of
h/t [160].

In order to study confinement we again consider the Green’s function. In the ground
state it decays exponentially in the confined phase, h ̸= 0, and with a power-law decay in the
deconfined regime, h = 0 [1, 3, 4, 160]. In addition, we also consider Friedel oscillations,
the period of which doubles in the confined regime, and we directly consider the string
and anti-string length histograms, which we obtain by sampling snapshots. To obtain our
results we employ state-of-the art MPS calculations [34, 35, 135], which we explain in the
next section.

More precisely, we make use of the concept of quantum purification [164, 165, 167, 168],
which we also outline in Section 1.3.3. The trick is to attach an additional or "ancillary"
lattice site to every physical lattice site. The ancillary lattice sites are entangled to the
physical lattice sites and act as a thermal bath in the system [4, 164]. The starting point
of our calculations is to first implement the state |ψ(β = 0)⟩ where the physical sites are
maximally entangled with the ancillary lattice sites. At this point we define the inverse
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temperature β = 1/T. To obtain the maximally entangled state we calculate the ground
state of the so called entangler Hamiltonian [167]; see the Section 1.3.3 for more details. This
state is obtained by using DMRG implemented with MPS [35]. After that we perform imag-
inary time evolution [135] of the maximally entangled state with the Z2 LGT Hamiltonian
Eq (4.1), which gives us its state at finite temperature T [164, 165, 167]. This can be formally
expressed as [135, 164, 165, 167]

|ψ(β)⟩ = e−βĤ/2 |ψ(β = 0)⟩ , (4.3)

where |ψ(β)⟩ is the pure state of the extended system representing the finite temperature
state. We note that the Hamiltonian in the imaginary time evolution acts only on the
physical lattice sites [135, 164]. Any thermodynamic average of a physical observable can
be then calculated as [164, 167]

〈
Ô
〉
=

⟨ψ(β)| Ô |ψ(β)⟩
⟨ψ(β)|ψ(β)⟩ . (4.4)

The thermodynamic average of the energy of the system, ⟨Ĥ⟩, and other physical ob-
servables like the chain filling, thus slowly converge to the ground state values with in-
creasing β. This can be understood as the thermal state being cooled down to the ground
state T = 0, when β → ∞. A few examples of this are shown in Fig. 4.2. We note that
all time evolutions are carried out at finite chemical potential µ. When presenting data we
usually label the so called target filling nt, which is the filling to which it converges in the
ground state at β → ∞. Hence, presented data at finite temperature T always deviate from
the target filling as shown in Fig. 4.2. For relevant inverse temperature βt > 1, it typically
does not deviate more than ∆N = ±2, however for higher temperature T/t > 1, such de-
viations are more significant, which one has to keep in mind when analyzing the results.
Nevertheless, we label the data below in terms of target fillings nt, as it is more convenient,
and we anyway study in detail only the regime where βT > 1, where the deviations become
small as described above. In this chapter we typically consider L = 36 lattice sites, which
results in 2L + 2 = 74 spin sites in the finite temperature calculations [4].

More technical details on the quantum purification method, explicitly defined spin
Hamiltonian to which we map the original Z2 LGT model, as well as for the details on
how we define the ancillary lattice sites in the MPS chain are presented in Section 1.3.3 and
in the Supplementary material of Ref. [4].

4.2 Green’s function at finite temperature

In order to study confinement at finite temperature we consider the Z2 gauge invariant
Green’s function, defined as [1, 3, 4, 160]

G(i − j) =

〈
â†

i

(
∏

i≤ℓ<j
τ̂z
ℓ,ℓ+1

)
âj

〉
. (4.5)
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Figure 4.2: Finite temperature expectation values of observable in the 1 + 1D Z2 Hamilto-
nian, Eq. (1.85), after eliminating matter via Gauss law as a function of inverse temperature
β = 1/T at fixed chemical potential µ. The first row shows the expectation value of the
Hamiltonian ⟨Ĥ⟩, and the second row shows the parton number N. The parameter values
for (a) and (d) are h = 0, µ/t = 0.33275, which yields the filling nt = 14/36 in the ground
state, which we also refer to as the target filling. For (b) and (e) the parameter values are
h/t = 1, µ/t = 0.242, which yields nt = 14/36 in the ground state. For (c) and (f) the
parameters are h/t = 1, µ/t = 0.7875, which yields nt = 26/36. In all cases the finite
temperature value of ⟨Ĥ⟩ and n converges to the ground state results marked with hori-
zontal lines labeled EGS and NGS, respectively. This figure was obtained from Fig. S3 in the
Supplementary material of Ref. [4].

As already stated before, in the ground state T = 0, the Green’s function decays exponen-
tially in the confined regime, and with a power-law in the deconfined regime [1, 4, 160] .
The Green’s function, Eq. (4.5), is a non-local, gauge invariant, correlation function. As such
it will decay exponentially in both regimes for any finite temperature, T > 0 [4]. However,
the decay rates will be different as in the confined regime, as the exponential decay will
have an additional contribution coming from confined mesons. Such complex nature of
the Green’s function complicates the clear distinction between the confined and deconfined
regime at finite temperature T > 0 [4]. We overcome this complication by directly compar-
ing the decay rates of the Green’s function in both regimes, and thus establish a crossover
region where the thermal fluctuations begin to dominate the behaviour of the system [4].

To be more precise, we fit the Green’s function results with a function that contains
algebraic as well as exponential decay profiles [4]

fG ∝ x−αe−x/ξ . (4.6)

The main goal of fitting the Green’s function with the above function is to extract the cor-
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Figure 4.3: Green’s function, Eq. (4.5), results shown on a log-log scale at a target filling of
nt = 0.3889, for different temperatures T in the regime with and without the Z2 electric
field term. (a) Green’s function at different temperatures T in the absence of the Z2 electric
field term. The decay of the Green’s function changes from a power-law in the ground state
to exponential decay, which becomes stronger at higher temperature. (b) Green’s function
decays exponentially at any temperature when the electric field term is finite h/t = 1.
The rate of the exponential decay increases with increasing temperature. This figure was
modified from Fig. S4 in the Supplementary material of Ref. [4].

relation length, defined as ξ, which is used to parameterize the strength of the exponential
decay [3]. In addition, we also define the power-law decay exponent α. For technical rea-
sons, we in fact fit the logarithm of the data points in order to better capture the exponential
nature of the Green’s function behaviour. The fit function is thus modified to [4]

fG = A − α log(x)− x
ξ

. (4.7)

An example of the Green’s function results for different temperatures T and for h/t = 1,
together with the fit results using Eq. (4.6) can be seen in Fig. 4.1(b).

The difference between the regimes where the electric field term h is zero and non zero
can be directly observed, by comparing finite temperature results of the Green’s function
at similar fillings n. As an example, we present the Green’s function results on a log-log
scale at target filling of nt = 14/36 in Fig. 4.3. As can be seen in Fig. 4.3(a), the Green’s
function in the regime where the electric field is zero h = 0 decays with a power law in the
ground state, T = 0, and exponentially at finite temperature T > 0. The curves at finite
temperature converge towards the ground state power law decay results with decreasing
temperature. The Green’s function in the regime where the Z2 electric field term is non-
zero h/t = 1, shown in Fig. 4.3(b), exhibits exponential decay already in the ground state
T = 0, consistent with the previous results. At finite temperatures the exponential decay
is stronger, with the Green’s function curves again approaching the ground state results
with decreasing value of temperature T. Comparing the curves at around T/t = 0.25
in both cases already shows that the exponential decay is much faster in the case when
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h/t = 1. This difference is increased for temperatures below this temperature, T/t < 0.25,
with h = 0, eventually converging to the power-law curve when T → 0, as discussed
above. Contrarily, the curves for h = 0 and h/t = 1, at T/t = 1, appear to have similarly
strong exponential decay. This already shows that the Green’s function behaviour is clearly
different in both regimes (h = 0 and h/t = 1) and we thus see that mesons are confined at
low temperature.

To study the Green’s function behaviour more precisely, we directly compare the cor-
relation length in the two parameter regimes: h = 0, for which we know that the partons
in the ground state of Hamiltonian Eq (4.1) are deconfined, and h/t ̸= 0, where we know
the partons in the ground state confine into mesons. To be more precise, we consider the
difference of the correlation lengths in both regimes [4]

∆ξ(T) = (ξh=0(T)− ξh=t(T)) , (4.8)

at the same temperature T, and comparable target fillings nt. We plot the results of the
difference Eq. (4.8) normalized by the correlation length for free partons ξh=0(T) at the
same temperature T in Fig. 4.1(c). We see that close to the ground state where T = 0,
the correlation lengths between the regimes where h = 0 and h/t = 1 differ significantly,
which indicates that partons are confined and as a result contribute significantly to the
exponential decay of the Green’s function. In contrast, for high temperatures T ≈ t, the
correlation lengths become comparable, meaning that exponential decay in both cases stems
from thermal fluctuations. We define the crossover boundary as the region where [4]

ξh=0(T)− ξh=t(T) =
1
2

ξh=0(T). (4.9)

Our results summarized in Fig. 4.1(c) show that the crossover region is at approximately
T/t ≈ 0.25, and has a weak lattice filling dependency [4]. The filling dependency could be
related to the weaker exponential decay of the Green’s function at higher filling observed
in the ground state due to reduced mobility of the mesons, see Section 2.3. We note that
the results in Fig. 4.1(c) are plotted as a function of target filling nt. This is the filling
obtained in the ground state, T = 0, for a specific chemical potential µ. We once again
note that imaginary time evolutions were preformed for constant chemical potentials and
not constant fillings n [4]. As a results, actual fillings n(T), slightly deviate from the target
fillings nt for every run at h = 0 and h/t = 1, respectively [4]; see Fig. 4.2. However, we
estimated that the deviations do not exceed |nh=t(T)− nh=0(t)|/n(T) < 20% for T/t < 1
[4]. We thus plot the data points in Fig. 4.1(c) as a function of nt. Further details on the
density dependence as a function of temperature, n(T), for a constant chemical potential µ,
can be found in the Supplement of Ref. [4].

In conclusion, the finite temperature value of the crossover temperature T/t ≈ 0.25,
obtained from the Green’s function results thus show that partons remain confined for low
but finite temperatures, before the thermal fluctuation begin to dominate [4].
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Figure 4.4: Density profile ⟨n̂j⟩ in the 1 + 1D Z2 LGT at different temperatures and electric
field values. (a) Firedel oscillations in the density profile in the deconfined regime, h = 0,
for target filling nt = 14/36 ≈ 0.3889. (b) The density profile in the confined regime
h/t = 1, for the same target filling as in (a), nt = 14/36 ≈ 0.3889. (c) Friedel oscillations
at higher filling nt = 26/36 ≈ 0.7222 in the confined regime, h/t = 1. The chain length in
all cases is L = 36. This figure was obtained from Fig. S5 in the Supplementary material of
Ref. [4].

4.3 Friedel oscillations at finite temperature

Next we consider the behaviour of Friedel oscillations at finite temperature. As already
discussed in Section 2.3.2, the Friedel oscillations frequency halves in the confined regime
in comparison to the deconfined regime [160]. In the confined regime the frequency of
the oscillations equals to kF = πn, and in the deconfined regime to 2kF = 2πn [4, 160].
Such abrupt change of oscillation frequency is thus an indication of confinement where
mesons, which remain mobile, are the well-defined constituents of the system. In the con-
fined regime, mesons form the aforementioned LL, and scatter of the chain boundaries
collectively instead of individual partons, as is the case in the deconfined case.

Density profiles at finite temperature

Similar confinement features in the Friedel oscillations should thus be visible also at finite
but low temperature, as the Green’s function results show that partons remain confined in
this regime. For that reason we calculate the density profiles in the chain, in the regime
with and without the Z2 electric field term, at different temperatures T and fillings n. The
main goal is to investigate whether similar features can be seen at finite temperature as in
the ground state. We present some of the typical density profiles ⟨n̂j⟩ for different values
of filling and the electric field term h in Fig. 4.4.

We can directly compare the oscillations in Fig. 4.4(a) and Fig. 4.4(b), where we present
the density profiles at different temperatures T for zero and finite electric field term h,
at the same average target filling, nt = 14/36. The frequency in the ground state in the
deconfined state h = 0 is indeed double the frequency in the confined regime h/t = 1. This
can be observed by simply counting the number of peaks in the density profiles in the both
regimes, since the target filling is the same. For low temperatures, T/t ≤ 0.25, the density
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Figure 4.5: Fourier transformation Eq. (4.10), of the density profiles in 1 + 1D Z2 LGT.
(a) Friedel oscillations of the deconfined partons for h = 0, exhibit well defined peaks at
k = 2πn (vertical dotted line), for temperatures below T/t ≤ 0.25. At higher temperature
such peaks are not observed as the amplitude of the oscillations decreases. (b) Friedel
oscillations in the regime where h/t = 1, exhibit well defined peaks at k = πn (vertical
dashed line), for temperatures below T/t ≤ 0.25, indicating a confined meson gas. (c) At
higher filling n = 26/36 we observe a small peak at k = 2πn as well as high peaks at
k = πn, for low temperature T/t ≤ 0.25. Both of these peaks rise together with decreasing
temperature T. This figure was obtained from Fig. 2 in Ref. [4].

profiles are similar to the ground state profiles, however the amplitude of the oscillations
decreases with increasing temperature, until the density profiles become almost completely
flat. This is also in part due to the fact that our results were performed at finite chemical
potential and not finite filling. Thus for very high temperatures T/t > 1, densities in fact
start to deviate significantly from the target value and approach half filling, n = 1/2 [4];
see previous Section 4.1 for the details on the filling as a function of temperature, n(T) at
finite chemical potential µ.

At higher fillings for h/t = 1, the density profiles become less clear due to increased
frequency; see Fig. 4.4(c). However, the number of peaks still corresponds to the number of
mesons in the system, which means that the doubling of the Friedel frequency can still be
observed.

Fourier transformation of density profiles at finite temperature

In order to study the frequency of the Friedel oscillations in greater detail, we perform a
Fourier transformations of the density profile ⟨n̂j⟩, which we define as [4]

nk =
1
L

L−1

∑
j=0

e−ikj 〈n̂j
〉

. (4.10)

Here, we discretize the momentum modes as ∆k = 2π/L, where L is the system size per
usual definition [4]. Typical results of the Fourier transformation of the density profiles are
presented in Fig. 4.5. These are in fact the Fourier transformations of the density profiles
presented in Fig. 4.4.
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We immediately see a big deference between the h = 0 and h/t = 1 results at the
same target filling nt = 14/36 in Fig. 4.4(a) and 4.4(b). In the deconfined regime in the
ground state, we observe a well pronounced peak at k = 2πn, consistent with previous
results. At finite temperature these peaks becomes broader, and are hard to resolve above
T/t > 0.25. On the other hand with decreasing temperature, the shapes and height of the
peak converges towards the peak in the grounds state.

In the regime where h/t = 1, we observe a well defined peak at k = πn, in the ground
state T = 0 [4], which is consistent with the behaviour of the Friedel oscillations in the
confined regime [160]. The peak at k = πn becomes visible at around T/t ≈ 0.25, and
converges to the ground state peak shape with decreasing temperature T. In the regime
h/t = 1, and at filling nt = 0.3889 we do not observe any peaks at k = 2πn at any
temperature T [4]. This means that there is no transition from a meson to a parton gas at
high temperature, which would be reflected in a shift of peaks from k = πn to k = 2πn,
with increasing temperature T [4]. This suggests that mesons are already pre-formed well
above the crossover temperature, defined via the Green’s function correlation lengths [4].
Calculations of Friedel oscillations therefore suggest that partons are in fact confined up
to high temperatures, where the thermal fluctuations completely dominate the system and
thus destroy any coherence in pre-formed mesons [4].

However, at higher fillings n > 0.5, we do observe additional, small peaks at k = 2πn,
even in the regime where the electric field term is finite, h/t = 1. As an example we
present the case at n = 0.7222 in Fig. 4.5(c). Further analysis shows that both peaks appear
simultaneously at low temperature T/t ≲ 0.25, and there is no shift between the two peaks
with lowering the temperature [4]. We thus associate the peaks at k = 2πn, at higher fillings
with fluctuation of holes. In fact holes at such fillings are significantly more mobile, i.e.,
can move more easily than mesons, which explains why they can contribute to the weak
peaks at k = 2πn.

The analysis of the Friedel oscillations at finite temperature shows that partons are con-
fined into mesons for low temperatures T/t ≲ 0.25, as we showed that frequencies of the
Friedel oscillations are half the expected frequency for the free partons. In addition, we
show that there is no transition from the meson Friedel oscillation frequency k = πn to
the higher, free parton Friedel oscillation frequency k = 2πn with increasing temperature
in the regime with non-zero electric field term. The peaks found after the Fourier trans-
formation at k = πn in the confined regime at low temperature, merely decrease with
increasing temperature until they can no longer be resolved. This means that mesons are
pre-formed already at temperatures well above the crossover temperature defined by the
Green’s function [4]

4.4 String length distributions at finite temperature

In addition to the Green’s function behaviour and the frequency of the Friedel oscillations,
we also consider the string-length distributions in our system at finite temperature. As
already discussed in Section 2.3.3, string and anti-string length distributions can be used
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Figure 4.6: Chain filling n in the Z2 LGT after integrating out the matter degrees of free-
dom via Gauss law, as a function of the chemical potential µ, at different temperatures T,
obtained via snapshots and directly from MPS. Filled markers without a margin represent
the chain filling obtained from averaging the snapshot fillings, and open black markers
represent the densities obtained directly from the MPS. Data derived from the snapshots
also contains error bars. (a) In the deconfined regime, h/t = 0, the curves are symmetric
around µ = 0. (b) For non-zero electric field h/t = 1, the curves become asymmetric and
are shifted to higher values of µ. Markers of the same shape represent the same tempera-
ture T. Notice also how the densities tend to n = 1/2, for higher temperature, as observed
in Fig. 4.2. This figure was obtained from Fig. S6 in the Supplementary material of Ref. [4].

as a robust measure of confinement. Here we study the distribution of string lengths
(distances between partons connected by the same string), and the distribution of the anti-
string lengths (distances between consecutive mesons), which gives us a direct microscopic
probe of confinement. That is because electric strings should be on average much shorter
than the anti-strings when partons confine into mesons. Thus, differences in the string and
anti-string length distributions are a robust measure of confinement.

The main motivation to study the string-length distributions, however, comes from the
fact that this is an experimentally easily accessible quantity [4]. It can be obtained by con-
sidering on-site density-resolved snapshots in ultra-cold atomic setups. In such a snapshot
one has to extract the lengths between odd-even and even-odd particles, respectively in
order to obtain the string and anti-string lengths.

We study whether the string and anti-string length distributions are also an effective
probe of confinement at finite temperature and thus be used in experiments. We sample
snapshots from MPS states [180], where we use the so called perfect sampling [181], which
is implemented in SyTen [153, 154]. We sample in the electric field basis, i.e., the eigenbasis
of the τ̂x operators. In order to determine the length of the strings we simply consider the
Gauss law, where anti-aligned electric field on the neighbouring links indicates a parton
residing on the lattice site connected by the two links. After the position of partons in the
lattice is established, we record the lengths of strings residing between odd–even partons,
and the lengths of anti-string, which connect the even–odd partons (as labeled from the
start of the chain). We typically sample 2000 snapshots for every data set [4]. Such high
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Figure 4.7: String and anti-string length distributions obtained from snapshots of the 1+ 1D
Z2 LGT after eliminating the matter. (a) The string-length and anti-string length distribu-
tions are qualitatively similar in the deconfined regime h = 0, across different temperature
values T. (b) In the regime where the Z2 electric field is finite h/t = 1, we observe different
(bimodal) distributions for strings and anti-strings in the ground state and at low temper-
atures T/t ≲ 0.25. At high temperatures the distributions become similar to each other
with both having a peak at ℓ = 1, however these peaks are higher for string than anti-string
lengths, indicating pre-formed mesons. This figure was obtained from Fig. 3 in Ref. [4].

number gives us expectation values for the average chain fillings very close to the results
obtained directly from the MPS state; see Fig. 4.6. The error bars, which are typically
smaller than the data points, are defined as σ/

√
Ns, where σ is the standard deviation and

Ns is the total snapshot number [4]. In addition, such benchmark serves as a consistency
check that snapshots in the Z2 electric basis correctly capture the correct physics. More
details on snapshots can be found in the Supplement of Ref. [4].

The results at an approximate filling of n = 14/36, for different electric field values and
temperatures are presented in Fig. 4.7. In the ground state, T = 0, we see a clear difference
in the distributions in the confined and deconfined states. In the deconfined regime h = 0,
string and anti-string distributions have the same shape and are almost exactly the same,
see Fig. 4.7(a). This indicates that there is no difference between strings and anti-strings
since there are no fluctuations in the gauge fields and partons are completely free. In the
confined state, however, we see that string lengths are peaked at ℓ = 1; see Fig. 4.7(a). This
indicates that partons are confined into mesons, with most of them being tightly confined.
There is also a finite weight at ℓ = 2, which indicates that mesons are indeed mobile, as
their hopping is governed by the second order hopping process of partons, where, the inter-
mediate state is the extended meson ℓ = 2 [160]. We discussed this process in Section 3.2.2.

For the ground state we thus show that the confined phase exhibits a clear bimodal
distribution of string and anti-strings. We observe similar features as in the ground state
at low temperatures up to the approximate crossover temperature defined by the Green’s
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function calculations, T/t ≲ 0.25 [4]. For increasing temperatures T ≥ t, we observe that
the distributions at approximately same filling and different values of the electric field h,
become similar to each other. In both regimes the distributions peak at ℓ = 1, and exhibit
long tails. Such change of behaviour across T/t ≈ 0.25 is consistent with the smooth
crossover between the confined and deconfined regime at T → ∞, observed in the Green’s
function behaviour and the Friedel oscillations [4]. Furthermore, in Fig. 4.7 we see that at
fairly large temperature T = t, which is above the crossover region T/t ≈ 0.25, the height
of the string peaks at ℓ is higher than the anti-string length peak. This is consistent with
the Friedel oscillation results, and thus supports our claim that mesons are pre-formed at
high temperatures relative to the crossover temperature [4].

Our results thus show that string-length distributions could be a good probe of confine-
ment in quantum simulation experiments, which naturally operate at finite temperature.
The observed crossover temperature T/t ≈ 0.25, lies within the reach of current cold atom
capabilities in terms of temperature [19, 55].

4.5 Summary and conclusion

In this chapter we studied confinement of partons into mesons in the paradigmatic 1 + 1D
Z2 LGT with dynamical matter at finite temperature. We employed state-of-the-art MPS
calculations in order to obtain results in the ground state and at finite temperature. As a first
probe of confinement, we considered the gauge invariant Green’s function, which directly
probes confinement of partons into mesons. In the ground state the Green’s function decays
exponentially in the confined state and with a power-law in the deconfined state. At finite
temperature, thermal fluctuations result in exponential decay in both regimes. In order
to extract the confinement contribution to the overall exponential decay, we compared the
correlation lengths in the regime with and without the confining electric field term. We
uncover a smooth confinement-deconfinement crossover at around T/t ≈ 0.25. In addition
to the Green’s function, we also considered Friedel oscillations whose frequency halves in
the confined regime. The behaviour of these frequencies corresponding to the confined
phase suggests that mesons are pre-formed at high temperatures well above the crossover
region [4]. Furthermore, we consider string and anti-string length distributions, which we
obtain from snapshots that we numerically sample from our MPS. We show that string-
length distributions are a reliable and robust probe of confinement at finite temperature,
which could be readily obtained in cold atom experiments.

In conclusion, our results demonstrate that partons confine into mesons also at low but
finite temperature and thus pave the way towards understanding the confinement crossover
in the paradigmatic 1+ 1D Z2 LGT coupled to dynamical matter [4]. On the one hand, con-
finement in the ground state limit T = 0 is clear from previous studies, where it was shown
that partons confine for any non-zero value of the electric field term h ̸= 0 [1, 160]. On the
other hand, conventional reasoning tells us that in the infinite temperature limit T → ∞,
partons will always be deconfined [4]. From these limits one could speculate that any
finite temperature could lead to deconfinement. By uncovering the smooth confinement-
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deconfinement crossover, we thus showed that finite temperature behaviour is more intri-
cate than expected. Furthermore, the confinement signatures at high temperatures, i.e., the
signatures of pre-formed mesons at temperatures above the crossover temperature shows
us that confinement is in fact far more resilient to temperature fluctuations then what one
could naively expect. We thus showed that the study of confinement in a simple Z2 LGT is
already within reach of the existing quantum simulators, both digital and analog [4]. Fur-
thermore, we expect that our results could be extended to Z2 LGTs with more complicated
interactions, and also to mixed dimensional settings, where multiple Z2 LGT chains could
be coupled. All of these systems could be also implemented in quantum simulation plat-
forms. Finally, our results could also help to understand confinement at finite temperature
in LGTs with more complicated gauge groups [4].



Chapter 5

Phase diagram of the Z2 LGT with
superconducting terms

In this chapter we discuss a phase diagram of the 1 + 1D Z2 LGT with dynamical charges,
where we include pair creation and annihilation terms. As a result, the global parton
number is not conserved since the Z2 LGT Hamiltonian breaks the global U(1) symmetry
[5]. Moreover, superconducting (SC) terms somewhat complicate the physical picture as
the parton number fluctuations can give rise to new effects. A Z2 gauge field coupled to
U(1) matter, which we studied so far, can be thus considered as a special case of the Z2

LGT, and adding SC terms can be understood as a generalization of the problem studied so
far. However, we note that in terms of quantum simulation experiments, U(1) symmetry
corresponding to the parton number conservation can be implemented more naturally.

The Hamiltonian studied in this chapter is also known as the gauged Kitaev chain,
which was initially studied by Borla et al. in Ref [119]. In the first part of this chapter
we reproduce the phase diagram from Ref [119], by considering entanglement entropy
calculations.

We then proceed in a different direction, by focusing on the microscopic picture of con-
finement in this system, and reach slightly different conclusions about confinement of the
partons in the limit of a static Z2 gauge field [5]. We employ DMRG calculations, which we
combine with analytical calculations to further validate our numerical calculations and to
distinguish different phases of the system. We consider the gauge invariant Green’s func-
tion, and string length histograms obtained from snapshots, sampled from MPS. Besides
the confinement at finite Z2 electric field term, we also find signatures of confinement in
the limit of static gauge field, where the electric field term is zero h = 0. This regime can
be related to the transition between the symmetry protected topological (SPT) state and the
trivial state in the context of Kitaev chain [87, 161, 190–192], to which the system can be
mapped in the limit when h = 0 [5, 119]. In addition, the results presented in this chap-
ter show that due to the SC terms no Mott transitions or frustrated regimes are possible,
on account of parton pair fluctuations. The SC terms thus significantly change the phase
diagram of the Z2 LGT coupled to matter.

We note that in the next Chapter 6, we develop a mean field theory description for
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the extended Z2 LGT studied here. The results from this chapter will be used to directly
benchmark the mean-field theory for the Z2 LGT.

This chapter is based on Ref. [5], from which the content, including figures, has been
adapted and extended.

5.1 Introduction

As already mentioned, in this chapter we study the 1 + 1D Z2 LGT where dynamical
charges are coupled to gauge fields. The Hamiltonian contains pair creation and anni-
hilation terms, i.e., the superconducting terms, which explicitly break the U(1) symmetry
in the charges and thus the global parton number is not conserved. In a way, such Z2 LGT
formulation is closer to the formulations found in HEP as there is no global U(1) symmetry
related to the parton number conservation.

In certain limits, the Z2 LGT with SC terms can be mapped to known systems. In the
absence of the Z2 electric field term, the system maps to the Kitaev chain [160, 190], which
can be furthermore mapped to a spin-1/2 system [161, 191, 192]. To be more precise: it
maps directly to the transverse field Ising model [160, 161, 191, 192]. The Kitaev chain was
studied extensively as it exhibits a transition between topological and trivial states [190].
By considering the Green’s function and string-length distributions, we uncover that the
trivial state, which in terms of the transverse field Ising chain can also be considered as
the spontaneously symmetry broken (SSB) phase [119], exhibits confining features [5]. This
goes against the conventional understanding of confinement in the Z2 LGT with matter,
since the gauge fields are static as the electric field term is zero h = 0. Hence, there is no
linear confining potential related to the Z2 electric strings. Nevertheless, partons appear
confined as they emerge directly from the SC terms that induce parton pair fluctuations.
This means that the transition from the symmetry-protected topological (SPT) phase to the
trivial state in the Kitaev chain can be understood as the confinement transition in the Z2

LGT picture [5]. As such it can be related to the topological confinement transition found
in the 2 + 1D toric code [5, 32, 87, 193].

By including the Z2 electric field term, the system becomes more complicated and the
direct mapping to the Kitaev chain is not possible. However, in a certain limit we show that
the Z2 LGT can be mapped to a transverse field Ising model with additional longitudinal
field. In the regime when the Z2 electric field term is finite, partons are always confined
into mesons. The system corresponds to the confined Higgs phase, similar to the one found
in the 2 + 1D Z2 LGT [5, 32, 119]. At high fillings the system again transitions to a SSB
phase, where partons remain confined.

5.2 Hamiltonian of the Z2 LGT coupled to matter with supercon-
ducting terms

We again consider a one-dimensional system, where hard-core bosons are coupled to a Z2

gauge field. We define a generalized version of the 1 + 1D Z2 LGT by including the pair
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Figure 5.1: A sketch of a 1 + 1D Z2 LGT with SC terms, Eq. (5.1), where dynamical charges
are coupled to a Z2 gauge field. (a) Sketch of the Gauss law constraint in the physical
sector, which enforces anti-aligned Z2 electric field values across an occupied lattice site.
The constraint allows us to define strings where the electric field value is negative τx = −1
(orange line), and anti-string where τx = +1 (no line). (b) Sketches of different regimes
in the 1 + 1D Z2 LGT Eq. (5.1). The upper row representing the deconfined, free parton
state, the second row (from top) represent the confined regime, where partons confine into
mesons, the third row (from top) represents the regime with non-zero SC terms λ ̸= 0,
which explicitly breaks the parton number conservation, and the last row is a sketch of a
confined regime with non-zero SC term. This figure was modified from Fig. 1 in Ref. [5].

creation and annihilation terms, which explicitly break the global U(1) symmetry of the
charges as [5, 119]

Ĥ = −t ∑
⟨i,j⟩

(
â†

i τ̂z
⟨i,j⟩ âj + H.c.

)
− h ∑

⟨i,j⟩
τ̂x
⟨i,j⟩ + λ ∑

⟨i,j⟩

(
â†

i τ̂z
⟨i,j⟩ â

†
j + H.c.

)
+ µ ∑

j
n̂j. (5.1)

Here â†
i τ̂z

⟨i,j⟩ â
†
j is a gauge invariant term that creates a pair of partons on neighbouring sites,

and µ is the chemical potential term that is used to control the parton filling in the chain
[5]. All other terms remain the same as in the previous chapters in this thesis: the hard-
core bosons are defined on the lattice sites with creation (annihilation) operators defined as
â†

j (âj), and τ̂z
⟨i,j⟩ represents the Z2 gauge field defined on the links; see for example Eq. (2.1)

in Chapter 2. We also note that in our numerical calculations we always consider t > 0.
In addition to the Hamiltonian, we also consider the Gauss law, which we once again state
here for convenience [1, 3–5, 121, 160]

Ĝj = τ̂x
j−1,jτ̂

x
j,j+1(−1)n̂j . (5.2)

We again choose the physical sector where the eigenvalues of Eq. (5.2) on every lattice
site equal to gj = +1. This results in Z2 electric field values being anti-aligned across an
occupied lattice site, allowing us to define strings that connect parton pairs; see Fig. 5.1(a).
The added superconducting term in the Hamiltonian proportional to ∝ λ, explicitly breaks
the U(1) symmetry of the charges. It adds or removes a pair of partons that explicitly breaks
the total parton conservation in the system [5]. Although the average parton number in the
system is thus not conserved, we define the average parton number density in the usual
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way as [5]

n =
1
L

L

∑
j=1

⟨n̂j⟩. (5.3)

5.2.1 Mapping to the one-dimensional superconducting model

As already mentioned before, the Hamiltonian Eq. (5.1) is also known as the gauged Kitaev
chain studied by Borla et al. in Ref. [119]. In order to better understand the newly defined
Z2 LGT Hamiltonian Eq. (5.1), we provide the explicit connection to the Kitaev chain. We
consider the case where the Z2 electric term is zero h = 0 [5]. In this regime there is
no induced dynamics in the gauge fields and we can eliminate the charges by using the
definition of dressed partons b̂j, Eq. (2.20); see Section 2.4.1 for details. After eliminating
the gauge field τ̂z, the Hamiltonian Eq. (5.1) can be expressed as [5]

Ĥ = −t ∑
j

(
b̂†

j b̂j+1 + H.c.
)
+ λ ∑

j

(
b̂†

j+1b̂†
j + H.c.

)
+ µ ∑

j

(
b̂†

j b̂j − 1/2
)

, (5.4)

where we added a constant offset in the chemical potential term. This energy offset does not
change the physics, but brings our Hamiltonian in a well known form. Namely, the Hamil-
tonian in Eq. (5.4) resembles the spin-polarized superconductor model [161, 190]. However,
the particles in Eq. (5.4) are hard-core bosons and not fermions, as is the case in the one-
dimensional superconductor model [190]. In one-dimension we can map spinless fermions
to hard-core bosons and vice-versa by employing the Jordan-Wigner transformation [172,
188]. This is done by attaching the so called Jordan-Wigner strings to the operators in order
to obtain the correct commutation or anti-commutation relations [172, 173, 188]. The hard-
core boson creation and annihilation operators can thus be expressed in terms of spinless
fermions as [172, 173, 188]

b̂†
j =

(
∏
l<j

eiπn̂l

)
ĉ†

j , b̂j =

(
∏
l<j

e−iπn̂l

)
ĉj, (5.5)

where ĉ†
j , (ĉj) is the spinless fermion creation (annihilation) operator [5]. Inserting the rela-

tion in Eq. (5.5) into Hamiltonian Eq. (5.4), we obtain the one-dimensional superconducting
model studied by Kitaev [5, 161, 190]

ĤK = −t ∑
j

(
ĉ†

j ĉj+1 + H.c.
)
− λ ∑

j

(
ĉ†

j+1ĉ†
j + H.c.

)
+ µ ∑

j

(
ĉ†

j ĉj − 1/2
)

. (5.6)

Due to the Jordan-Wigner transformation the sign of the SC interaction changed, λ → −λ.
We note that in literature the term is usually written with a positive sign in front of the
SC term in Eq. (5.6) [5, 119, 161, 190]. Furthermore, the model Eq. (5.6) in the parameter
regime when λ = −t (in our notation) is often called the Kitaev chain [119, 191].

With the use of the dressed parton notation and the use of the Jordan-Wigner transfor-
mation we showed that the Z2 LGT where hard-core boson are coupled to gauge fields,
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Figure 5.2: Qualitative sketch of the phase diagram of a 1 + 1D Z2 LGT with SC terms
Eq. (5.1). (a) In the limit of static gauge fields, when h = 0, the system forms a parton
LL on the line λ = 0. For non-zero SC term λ ̸= 0, the system can be mapped to a
Kitaev chain, and exhibits a symmetry protected topological (SPT) state for t < 2|µ|, with a
transition to a ferromagnetic (FM) symmetry broken state at low filling and a transition to
an antiferromagnetic (AFM) symmetry broken state at high filling. (b) For non-zero electric
field term, the system forms a confined meson LL on the special λ = 0 line. For non-zero
value of the SC term λ ̸= 0, the system forms a Higgs phase up to high chain filling, where
the system transitions to an AFM symmetry broken phase. This figure was modified from
Fig. 1 in Ref. [5].

maps to the Kitaev chain in the limit when the Z2 electric field is zero [5]. We will use
this mapping throughout this chapter in order to help with the interpretation of numerical
results. A similar mapping was already performed by Borla et al. in Ref. [119]. In that
work, authors focused on the so called gentle gauging of the Kitaev chain, and mapped out
the phase diagram as a function of the chemical potential µ [119]. We will focus more on
the microscopic picture of confinement, and its dependence on the chain filling n, which
we control with µ [5].

The Kitaev chain has been studied extensively in context of topology and Majorana edge
modes [87, 161, 190–192]. It has been shown that the Kitaev chain exhibit a transition to a
topological state for t/|µ| < 2 [190]. We also note that the sign of the SC term in the Z2

LGT Eq. (5.1) can be changed via a unitary transformation [5]

â†
j → iâ†

j , âj → −iâj. (5.7)

This means that the sign of λ is arbitrary, as in both cases |λ| > 0 opens a SC gap, and the
system can form a non-trivial state [5, 119]. However, Borla et al. [119] argued that since the
above mapping does not preserve the time reversal symmetry, phases at λ > 0 and λ < 0
are distinct.

Finally, we note that the Kitaev chain, Eq. (5.6), for λ = −t, maps to a transverse field
Ising model [5, 161]

ĤI = −J ∑
j

σ̂x
j σ̂x

j+1 − hz ∑
j

σ̂z
j . (5.8)

Here we expressed the spin operators in the x and z component in terms of Pauli operators
σ̂x and σ̂y, respectively. The mapping of the Kitaev chain to the spin model is done by
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considering different z-component spin states as empty or occupied lattice sites, and by
using the Jordan-Wigner transformation [161]. The mapping is exact and the parameters
map as: J = t and hz = − µ

2 [5, 161].
Equipped with the mapping of the Z2 LGT at h = 0 to the Kitaev chain, we turn

to numerical calculations of the full 1 + 1D Z2 LGT, Eq. (5.1), using the DMRG in order
to determine the phase diagram. The numerical results obtained in the next section are
summarized in Fig. 5.2 for h = 0 and h ̸= 0, respectively.

5.3 Phase diagram in the absence of particle conservation

Numerical calculations are performed by using DMRG [34, 35]. We again make use of the
MPS toolkit SyTen [153, 154]. As all of the numerical simulations of the Z2 LGT in this
thesis before, we use the mapping to the spin-1/2 model, by making use of the Gauss law,
where we constrain our system to the physical sector [5]. We refer the interested reader to
Section 1.3.2 for more details on this mapping. The mapping is exact, as due to the Gauss
law constraint, the system can be fully determined by the gauge fields, represented by the
Pauli matrices [1, 3–5, 7]. We again consider that the system starts and ends with a link
(gauge field) and consider OBC. The system size in the calculations is L = 96, which results
in L + 1 = 97 links, and we consider the bond dimension up to χ = 1024 [5].

5.3.1 Entanglement entropy

In order to establish the phase diagram of the Z2 LGT Eq. (5.1) we consider the entangle-
ment entropy S(x), extracted from ground state MPS [5]. The entanglement entropy S(x),
is calculated by effectively dividing the system into two subsystems A and B, with the cut
on lattice site x. We can thus consider that the length of the subsystem A equals to x, and
the length of the subsystem B is therefore L + 1 − x [5]. Since we simulate the gauge fields,
the cuts are thus exactly on the lattice site x, i.e. between links τx−1,x and τx,x+1 [5]. In the
MPS implementation bipartite entanglement entropy can be easily extracted by cutting the
bond between two sites that reside on the boundary of system A and B [35].

Entanglement entropy values

We perform the calculations at different values of the electric field term h, for different
value of the SC paring λ, and chemical potential µ, which in turn controls the filling n. The
results for the entanglement entropy where we divided the system in half, S(x = L/2), are
presented in Fig. 5.3 as a function of average filling n, and SC term λ.

When the Z2 electric field term is zero, h = 0, the system is symmetric around half
filling n = 0.5; see Fig. 5.3(a). We see a clear change of the entanglement entropy value
at low and high fillings, which can be connected to the the topological transition in the
Kitaev chain at µ = ±2t [5, 190]. This is made explicit in Fig. 5.4, where we plot the
entanglement entropy S(L/2) as a function of chemical potential µ, and we observe sharp
drops at µ = ±2t of the entanglement entropy for h = 0.
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Figure 5.3: Entanglement entropy in the middle of the chain S(x = L/2) for the 1 + 1D
Z2 LGT, Eq. (5.1), after integrating out the charges by taking into account the Gauss law
constraint, as a function of filling n and SC term λ. (a) Entanglement entropy results in
the absence of the Z2 electric field term h = 0, where we observe trapezoid shapes for
|λ| > 0, symmetric around half filling n = 0.5, with abrupt change of values for low fillings
n ≲ 0.15 and high fillings n ≳ 0.85. (b) For non-zero electric field, h/t = 1, the entanglement
entropy gradually increases with filling n. At high fillings n ≳ 0.85 the value again rapidly
decreases. This figure was modified from Fig. 2 in Ref. [5].

For non-zero electric field term, h/t = 1, the symmetry around half filling, n = 1/2,
is not present any more; see Fig. 5.3(a). This is a result of broken particle hole symmetry
that is apparent in Eq. (3.9) [1, 2]. Instead, we observe gradual increase of the entanglement
entropy with filling, until it rapidly drops for n ≈ 0.85.

We also observe interesting behaviour for different sign of the SC term λ. We generally
obtain substantially higher values of the entanglement entropy for λ > 0 in comparison
to λ < 0, for zero and non-zero value of the electric field term h. At zero electric field
term, h = 0, and positive value of the SC term, λ > 0, we observe a plateau of substantial
entanglement entropy, which narrows with increasing value of λ [5]. An outline of a similar
shape can be also seen for λ < 0, with a difference that in the area close to n ≈ 0.5, the value
of the entanglement entropy is low; see Fig. 5.3(a). However, the value of entanglement
entropy does increase at the same low and high fillings n, where the abrupt change happens
for λ > 0. For non-zero electric field term h/t = 1, the abrupt drop of the entanglement
entropy at high fillings also occurs sooner, that is for lower fillings n, with increasing value
of |λ|.

This symmetric behavior around λ = 0 lines, although with different absolute values
of the entanglement entropy, indicates that a similar transition might be taking place [5].
As we mentioned before, a gauge transformation âj → ei π

2 âj, shows that the system is
equivalent for ±λ [5]. However, it has non-trivial effects on the entanglement entropy
calculations since the spin Hamiltonian, to which we exactly map our system by taking
into account the Gauss law constraint, has a slightly different form [5]; see also Chapter 1.3
for details.

The entanglement entropy value on line λ = 0 is always substantial for zero and non-
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Figure 5.4: Entanglement entropy in the middle of the chain S(x = L/2) for the 1 + 1D Z2
LGT, Eq. (5.1) after eliminating matter via Gauss law, as a function of the chemical potential
µ and SC term λ. (a) For h/t = 0, we observe sharp change of the entanglement entropy
at µ = ±2t. (b) For finite electric field term, h/t = 1, there is a more graduate onset of the
entanglement entropy with increasing µ, until it drops again dramatically at µ > 2t. (c) The
same affect is even more apparent with increasing electric field term, h/t = 2. This figure
was modified from Fig. 14 in Ref. [5].

zero value of the electric field h [5]. From previous discussion, we already known that the
λ = 0 line corresponds to the parton or meson LL, for h = 0 and h/t = 1, respectively, as
the parton number is conserved and charges posses a global U(1) symmetry. In the next
section, where we extract the central charge, we show that these special λ = 0 lines are
indeed critical and correspond to gapless LL [5]. In addition, we investigate the apparent
transitions at n ≲ 0.15 and n ≳ 0.85.

Central charge from entanglement entropy

In infinite, gapped systems entanglement entropy generally saturates to a constant value
with the increase of the subsystem size x [194]. Differently, close to phase transitions and
in quantum critical regimes the entanglement entropy diverges [194]. In fact, close to the
transition point, the behaviour of the low lying excitations can be described by conformal
field theory (CFT) [194–196]. By using CFT, the dependence of the entanglement entropy
on the position of the cut x, in a system with OBC, was calculated analytically and can be
expressed as [5, 194–196]

S(x) = S0 +
c
6

log
[(

2L′

π

)
sin
(πx

L′

)]
. (5.9)

Here, we defined the spin chain length after integrating our the matter as L′ = L + 1,
S0 is a non-universal constant, and c is the central charge [5]. Due to open boundary
conditions, our calculations contain Friedel oscillations, which we mitigate by normalizing
the entanglement entropy profiles by the local on-site parton density, n(x), as [5, 197, 198]

S̃(x) =
S(x)
n(x)

n, (5.10)

where n is the total average parton filling [5].
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Figure 5.5: Fit of the normalized entanglement entropy S̃(x) with Eq. (5.10), in the Z2 LGT
after eliminating the matter via Gauss law. (a) Normalized entanglement entropy curves
S̃(x) for different fillings n almost coincide for h = λ = 0, and exhibit a nice curvature.
(b) For h/t = 0 and λ = 0, similar curvature can be observed, however prominent Friedel
oscillations are still observed despite normalization in Eq. (5.10). (c) In the regime when
h = 0, and λ/t = −1, the profile of S̃(x) is flat for most of the fillings n that are away
from criticality. Curvature is observed only close to n ≈ 0.2 and n ≈ 0.8, which signalises
a phase transition, consistent with results in in Fig. 5.3. (d) When both terms are non zero,
h/t = 1 and λ/t = −1, the normalized entanglement entropy profiles are once again flat
for most of the fillings, except fillings approaching n ≈ 0.8. This suggest a transition only
at such high fillings, n ≈ 0.8. The green lines denote the fits. This figure was obtained from
Fig. 15 in Ref. [5].

In order to extract the central charge c, we fit Eq. (5.9) to our numerical results for the
entanglement entropy normalized by the local density, S̃(x), as described by Eq. (5.10). We
fix the value of the length to L′, so the other fit parameter that remains, besides c, is S0

[5]. As already mentioned before we do not analyze it as it is non-universal [5]. Some of
the typical fits are presented in Fig. 5.5. Normalized data points, S̃(x), for λ = 0, exhibit
similar curvature across all fillings. For h = 0 and λ = 0, better results were obtained
by taking into account the particle-hole symmetry for the free partons and normalize the
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entanglement entropy profile for n > 0.5 as [5]

S̃(x) =
S(x)

1 − n(x)
(1 − n). (5.11)

For fillings n < 0.5, we simply used Eq. (5.10). As a results, the curves for h = λ = 0 almost
coincide; see Fig. 5.5(a). The extracted value of the central charge is close to the analytical
value of c = 1 for free partons [1, 5, 119, 160]. For finite electric field term h/t = 1 but
zero SC term λ = 0, Friedel correlations are still prominent despite the normalization in
Eq. (5.10). However, the extracted central charge is also there close to c = 1, which signalises
gapless meson LL [1, 5, 119, 160].

For finite SC term λ/t = −1, the entanglement profiles appear to be flat for most
of the fillings n. Flat profile of S̃(x) suggest that the system is gapped and away from
criticality. However, for h = 0 and λ/t = −1, the profiles S̃(x) acquire curvature for low
n ≈ 0.2, and high fillings n ≈ 0.8 that suggests a phase transition. The extracted values are
c = 0.64 ± 0.01 for n = 0.21 and c = 0.72 ± 0.01 for n = 0.79 [3]. For h/t = 1 and λ/t = −1,
similar observation can be made, however in this case only at high filling n ≈ 0.8.

In all cases we only fit the interval 15 < x < L− 15, in order to capture correctly also the
flat entanglement entropy profiles [5]. However, we note that Eq. (5.9) generally holds only
close to quantum criticality and extracted value c = 0 simply shows that we are not close to
that regime [5, 194]. In addition, we discard the fits with errors bigger than ∆c = ±

√
0.01,

for h = 0, and λ ̸= 0. Furthermore, for h/t = 1, we discard fits with errors bigger than
∆c = ±

√
0.05 [5]. We estimate the errors from the square root of the covariance matrix

element of the fit [5]. In some cases our numerical calculations gave results where some of
the data points were missing. We discard that data as well [5].

Extracted values for c for different values of the electric field term h, as a function of
filling n and SC term λ are presented in Fig. 5.6. The parameter regime is the same as
in Fig. 5.3. For any value of the Z2 electric field term, we observe that the central charge
results are symmetric in the λ = 0 axis. Furthermore, we no note that away from quantum
criticality or transition, entanglement entropy profiles become flat and there is no associated
curvature to S(x). Away from criticality the system is gapped and we thus expect that the
extracted central charge values from our fits are zero c = 0 [5]. In other words: the region
with non-zero central charge value corresponds to a quantum criticality, where the system
is gapless [5, 194].

We first analyze the results when the electric field term is zero h = 0, which we present
in a heat map in Fig. 5.6(a). We observe that the central charge c is non-zero on the line
λ = 0, and on the lines at low and high filling, for non-zero value of the SC term |λ| > 0
[5]. To be more precise, the lines away from λ = 0 form the trapezoid shape, which
corresponds to the sharp drop/change of the entanglement entropy value in the center of
the chain S(x = L/2), already observed in Fig. 5.3(a). The approximate line at low fillings
is at around n ≈ 0.15, and the approximate line at high filling is at n ≈ 0.85, with slight
dependence on λ, making the region inside the lines narrower with increasing value of |λ|.
The central charge value on the line where λ = 0 is close to c = 1, which corresponds to
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Figure 5.6: Central charge results extracted by fitting Eq. (5.10) to the numerical entan-
glement entropy results in the Z2 LGT Eq. (5.1) after integrating out the matter fields. (a)
In the absence of the Z2 electric field term h = 0, we extract central charge values close to
c = 1, on the λ = 0 line, which corresponds to parton LL. For λ ̸= 0 we obtain lines with
non-zero value of c > 0. These lines correspond to the boundary of the topological regime,
which transitions to trivial regimes at low and high fillings. (b) For non-zero value of the
electric field term h/t = 1, we again obtain central charges close to c = 1 on the λ = 0 line.
These, in contrast to the h = 0, correspond to the meson LL. For non-zero SC term λ ̸= 0,
we obtain non-zero value of c only at high fillings. This is where the confined Higgs phase
transitions to a symmetry broken AFM states for n ≳ 0.85. This figure was modified from
Fig. 3 in Ref. [5].

the gapless LL of free partons [1, 5, 119, 160].

The central charge values on the lines away from λ = 0 are slightly lower. In fact, by
relating the Z2 LGT back to the Kitaev chain, to which the system maps in the limit when
h = 0, we can link these lines with the transition to the topological phase at |µ| = 2|t|
observed in the Kitaev chain [5, 190, 191]. The topological non-trivial region is the regime
where the values correspond to |µ| < 2|t| [5, 190, 191]. In the diagram in Fig. 5.6(a) the
chemical potential, which corresponds to |µ| < 2|t|, results in finite range of fillings [5]

0 < nc1 < n < nc2 < 1, for |λ| > 0. (5.12)

This means that the non-zero central charge lines at nc1 ≈ 0.15 and nc2 ≈ 0.85 correspond
to the boundary of the topological phase [5]. The trivial state lies outside the area bounded
by these line, i.e., for lower n < nc1 and higher n > nc2 fillings. At the transition between
the topological and trivial states in the Kitaev chain the value of the central charge equals
to c = 1

2 [5, 199]. Our fit results overshoot this value and thus the value for c is slightly
overestimated. However, generally we do get results lower than c < 1 [5]. We note that
this deviation comes from the fact that the transition point is hard to determine exactly and
convergence of the DMRG is more involved the closer we approach it. Since entanglement
entropy depends on the bond dimension of the system, the DMRG thus demands larger
bond dimensions close to the transition.

Now we turn to the central charge results for non-zero electric field term h/t = 1,
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presented in Fig. 5.6(b). Similar as for the h = 0 case, we also observe non-zero value of
the central charge on the line λ = 0, for h/t = 1 at any lattice filling [5]. The value is
once again close to c = 1, which means that confined partons form a gapless meson LL
[1, 5, 160]. Most notably, however, is the absence of a line with non zero central charge at
low filling, nc1 ≈ 0.15, away from λ = 0. We attribute this to the loss of the particle-hole
symmetry [5]. The line at high filling remains, with central charge slightly lower, c < 1,
than on the λ = 0 line and is thus similar to the case for h = 0, where it should approach
c = 0.5 [5]. Similar feature was observed already in the entanglement entropy value in the
center, S(L/2), in Fig. 5.3(b). Due to the presence of only single transition line away from
λ = 0 line for h ̸= 0, we conclude that we only obtain a trivial state for |λ| > 0 in the regime
when the Z2 electric field is non-zero, in agreement with results by Borla et al. [119]. We
identify the region for non-zero electric field up to high filling as the confined Higgs state,
which transitions to a symmetry broken anti-ferromagnetic (AFM) state at approximately
nc2 ≈ 0.85 [5, 119].

We also briefly comment on the nature of the topological trivial states for low nc1 ≲ 0.15
and high nc2 ≳ 0.85 fillings. These correspond to ferromagnetic (FM) and AFM states of
the Z2 electric fields, and are thus SSB state [5]. We once again note, that for non-zero
value of the Z2 electric field term only transition at high fillings nc2 ≳ 0.85 remains. The
SSB states can be understood by considering the Gauss law constraint to the physical sector
[5]. Namely, for such low/high fillings the chain is close to being completely empty/full.
In the case the chain is nearly empty, the Z2 electric fields across almost every lattice sites
are aligned, and thus we expect a nearly perfect FM state. In the opposite case at high
filling, the chain is almost completely full and across every lattice site the Z2 electric fields
are anti-aligned. This statement can be made even more explicit by considering the spin-
1/2 Hamiltonian after integrating out the charges [5]. For λ = −t, the spin Hamiltonian
reduces to a simple Ising model with transverse and longitudinal fields [5]; see Eq. (1.84)
in Chapter 1.3. Hopping and pairing terms take up the role of the transverse field, electric
field term corresponds to the longitudinal field, and chemical potential term corresponds
to the Ising interaction [5]. The AFM state of the Z2 electric field thus corresponds to large
positive chemical potential µ > 0, which remains stable for low values of both transverse
and longitudinal fields [5, 200]. On the contrarily, the FM state of the Z2 electric field is
stabilized for large negative values of the chemical potential µ < 0 [200, 201]. For non-zero
value of the longitudinal field h ̸= 0, the chemical potential yielding finite filling n, shifts
to larger vales of µ [5], away from µ = −2|t| [200–202]. This explains why there is no
transition at low fillings nc1 ≲ 0.15, when h/t = 1. More details on the transverse field-
model is given in Chapter 6, where we reveal that the Mean-field theory of the 1 + 1D Z2

LGT coupled to matter is an Ising model with transverse and longitudinal field [5].

The results of the entanglement entropy calculations are in part summarized in a sketch
of the phase diagram in Fig. 5.2. However, so far we have not yet discussed the confinement
in the regime when λ ̸= 0, which we do in the next section where we consider the gauge
invariant Green’s function and string-length histograms.
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5.3.2 Confinement

In the next section we study the confinement of dynamical charges in the generalized 1+ 1D
Z2 LGT where gauge fields are coupled to matter Eq. (5.1). We consider the Green’s func-
tion behaviour [1, 3–5, 160], which can be understood as the generalization of the Wilson
loop, and the string length distributions extracted from snapshots, which are experimen-
tally easily accessible [4, 5]; see also Chapter. 2.1.

Green’s function

To probe confinement of individual partons into mesons we consider the Z2 gauge invariant
Green’s function, which we already defined in this work multiple times. For convenience
we once again define it here [1, 3–5, 160]

G(|x − x0|) =
〈

â†
x0

(
∏

x0≤ℓ<x
τ̂z
ℓ,ℓ+1

)
âx

〉
. (5.13)

We note that the Green’s function decays with a power law in the deconfined regime, and
exponentially in the confined regime, as was shown for the case when λ = 0, for h = 0 and
h ̸= 0, respectively [1, 160].

Here, we are thus mainly interested in the Green’s function behavior for different values
of the SC term λ in the regimes with and without the Z2 electric field term h. For com-
pleteness, we start with the Green’s function behavior in the well known regime λ = h = 0,
where partons are deconfined. As can be seen in Fig. 5.7(a), we indeed observe a power law
decay for that parameter regime, which is a clear indication that partons are deconfined. In
addition, we consider the other well known regime, where the Z2 electric field term is finite
h/t = 1, but the SC term is kept zero λ = 0, presented in Fig. 5.7(c). Here partons confine
into mesons and the Green’s function decays exponentially, which we already discussed in
Chapter 2. Note that Fig. 2.3 is in fact Fig. 5.7, without sub-figures (b) and (d).

Next, we consider the Green’s function for non-zero value of the SC term λ ̸= 0. In
Fig. 5.7(b) we show the behaviour in the regime where the Z2 electric field term is zero
h = 0, but the SC term is finite λ/t = −1, which is much different from the behavior when
λ = 0 [5]. On the one hand, for intermediate chain fillings 0.2 ≲ n ≲ 0.8, Green’s function
has a nearly constant value as a function of distance x. On the other hand, at low n ≲ 0.2
and high fillings n ≳ 0.8, Green’s function decays exponentially. From the entanglement
entropy calculations in the previous section, we know that the system has a transition to
SSB states at these low and high fillings. Furthermore, we know that the Z2 LGT for
λ = −t can be mapped to the transverse field Ising model. At such low or high fillings,
the Z2 electric field is spontaneously ordered, ⟨τ̂x

⟨i,j⟩⟩ ̸= 0 [5]. As discussed, at low filling,
n ≲ 0.2, the the Z2 electric field ordering is ferromagnetic, and at high fillings n ≳ 0.8 the
ordering is anti-ferromagnetic [5]. This is discussed in greater detail in the next Chapter 6,
where we compare the polarization of the electric field in the original and the mean-field
theory model. For low filling, the polarization of the electric field becomes substantial, as
it is the order parameter of the ferromagnetic state [5]. From such perspective we thus
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Figure 5.7: Green’s function Eq. (5.13) for the generalized 1 + 1D Z2 LGT with SC terms
Eq. (5.1), after eliminating matter via Gauss law, for different parameter values h, λ and
filling n. (a) Green’s function decays with a power-law in the free parton regime h = λ = 0.
(b) For non-zero value of the SC term λ/t = −1, and h = 0, Green’s function remains
nearly constant for fillings 0.2 ≲ n ≲ 0.8. For lower n ≲ 0.2 and higher fillings n ≳ 0.8, it
decays exponentially, signaling a confined state. (c) For-non zero electric field term h/t = 1,
and zero SC term λ = 0, we obtain an exponential decay, the rate of which decreases with
increasing filling as the mesons become less mobile due to higher filling. (d) When both
the Z2 electric field term and the SC term are non zero, h/t = 1, λ/t = −1, the Green’s
function decays exponentially across all fillings n. The decay becomes weaker with higher
filling up until n ≈ 0.8, when it starts to become stronger again, indicating transition to the
AFM state for the electric field. To avoid boundary effects the initial lattice site as defined
in Eq. (5.13) was set to x0 = 30 in a chain of length L = 96. Below the results we added
the phase diagrams with the highlighted parameter regime for each sub-figure. This figure
was modified from Fig. 4 in Ref. [5].
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see that spin fluctuations in a nearly FM or AFM state directly correspond to parton pair
fluctuations, which makes them effectively confined. We again note that convergence close
to the transition was more demanding and it was thus hard to determine at what precise
filling the transition occurs [5]. One of the simple checks of convergence was already to
verify that the Green’s function results are the same for n ↔ 1 − n due to the particle-hole
symmetry for h = 0, which can be indeed seen in Fig. 5.7(a) and 5.7(b).

Finally, when we also include non-zero Z2 electric field term h/t = 1, for finite SC term
λ/t = −1, the Green’s function decays exponentially for any lattice filling n, as can be seen
in Fig. 5.7(d). There is an interesting effect on how strong is the exponential decay as a
function of filling n. The rate of the Green’s function exponential decay is decreasing with
increasing chain filling n, up to approximately n ≲ 0.8 [5]. For higher fillings, n ≳ 0.8, the
rate of the decay starts to increase. This is different than the behaviour in the regime when
h ̸= 0, λ = 0, where the rate of the exponential decay decreases with increasing filling up
to the fully filled chain [5]. The behaviour for h, λ ̸= 0 can be explained by the transition to
the AFM state at high fillings, which occurs at approximately nc2 ≈ 0.8 [5].

Green’s function thus shows that partons are confined for any non-zero electric field
term h ̸= 0, also in the presence of the SC term λ. Furthermore, the Green’s function
indicates that symmetry broken states both for h = 0, and h ̸= 0, in the presence of non-
zero SC terms can be understood as confined phases. That is due to the SC term inducing
pair fluctuations, meaning that partons always appear in pairs, making them confined [5].

String-length distributions

In addition to the Green’s function, we also investigate the behavior of the string and anti-
string length distributions, which we sample from our ground state MPS [4, 5, 153, 154,
180]. The motivation to look into string lengths is again to study the microscopic structure
of mesons in greater detail. Furthermore, we study whether string length distributions
could be used in quantum simulation setups. The definition of strings and anti-strings as
well as the procedure to obtain the snapshots is similar to the one described in Section 2.3.3
and Section 4.4. We once note that we define strings as distances between odd-even partons,
and anti-string as distances between even-odd sites. The reason for this is again due to the
fact that for h = 0, there exist a global Z2 symmetry in the electric fields and the definition
of the strings and anti-strings in terms of the sign is arbitrary. We use the MPS toolkit SyTen

to obtain snapshots [153, 154]. The only difference is that here we sample 400 snapshots
for each data set, which is a slightly smaller number than in the finite temperature case in
Chapter 4. In the confined regime strings are on average much shorter than anti-strings as
partons confine into mesons [4, 5]]. We also note that the string length distributions provide
a geometrical picture of confinement, which can be generalized to higher dimensions by
considering percolation of the electric strings [5, 174].

We present the results for different parameter regimes in Fig. 5.8. The regimes where the
SC term is zero λ = 0, was already discussed in Chapter 2.3.3 and we show it here again for
convenience. In the regime when both SC and electric field terms are zero λ = h = 0, both
distributions are nearly identically indicating that there is no distinction between strings
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Figure 5.8: String and anti-string length distributions for the 1+ 1D Z2 LGT with SC terms
Eq. (5.1), after eliminating the matter via Gauss law. The results are obtained from MPS
calculations after integrating out the charges. (a) String and anti-string length distribution
are identical in the free parton regime h = λ = 0. The distributions peak at a finite string
length ℓ ≈ 3 for filling n = 0.25. (b) For non-zero SC term λ/t = −1 at filling n ≈ 0.234
the string and anti-string length distributions are again the same when h = 0. However,
peaks shift to ℓ = 1, and distributions exhibit long tails. (c) For lower filling n ≈ 0.128 but
the same parameter regime as in (b), the string-length peak at ℓ = 1 is much higher than
the anti-string length peak, which signals confinement of partons. The anti-string length
distribution is also much broader. (d) In the regime when h/t = 1 but λ = 0, we observe a
clear bimodal distribution with string length peaking at ℓ = 1, and anti string length peak-
ing at ℓ ≈ 5, which indicates confinement. (e) In the regime when h/t = 1 and λ/t = −1,
for filling n ≈ 0.338, both distributions peak at ℓ = 1, with string peak significantly higher
than the anti-string length distribution, which is significantly broader. This change of dis-
tributions again signals confinement. (f) The qualitative features of distributions remains
similar as in (e) for lower filling of n ≈ 0.172, but same parameter values. In the inset
of every distribution, we indicate the parameter regime in the conjectured phase diagram
with a yellow "X". We also indicate the chain filling, which we obtained from the sampled
snapshots with ns that might slightly deviate from the filling obtained directly from the
MPS due to statistical effects. This figure was obtained from Fig. 5 in Ref. [5].
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and anti-strings, which means partons are deconfined; see Fig. 5.8(a). However, when
the electric field is non-zero h/t = 1 without SC terms λ = 0, string-lengths are much
shorter than anti-strings; see Fig. 5.8(d). Such bimodal distribution is a clear indication of
confinement [4, 5].

With the presence of the non-zero SC term λ ̸= 0, the shape of distributions are gen-
erally quiet different. There, in all of the cases regardless of the electric field term value,
distributions for string and anti-string lengths peak at ℓ = 1. When the Z2 electric field is
absent h = 0, and the SC term is finite λ/t = −1, the string and anti-string length distribu-
tions are nearly the same for fillings n ≳ 0.2, which indicates that partons are deconfined
[5]. Furthermore as shown in Fig. 5.8(b), both string and anti-string length distributions
have a peak at ℓ = 1, and have a rather long tail when h/t = 0 and λ/t = −1. How-
ever, for lower fillings n ≲ 0.2 and the same parameter regime, the distributions differ [5].
There, string-length distribution has a much higher peak than the anti-string length distri-
bution, which is also much broader; see Fig. 5.8(c) [5]. This results are in agreement with
the Green’s function behaviour, which exhibits exponential decay for n ≲ 0.2 and n ≳ 0.8,
that brought us to the conclusion that there exists a confined phase for such low and high
fillings [5]. Furthermore, these results confirm the microscopical picture where all of the
parton fluctuations originate from the SC term and thus always appear in pairs, i.e. in a
form of tightly confined meson [5]. When the chains are nearly empty most of the partons
come from parton pair fluctuations. These fluctuations can be understood as a parton pair
– meson – being created somewhere in the chain, and then soon annihilated, on average
much sooner than one of the partons in the meson could hop. As a result, most of the
partons detected in the system are confined [5]. At very high fillings the case is similar in
a way that parton are barely allowed to move and all of the hole fluctuations again come
in pairs. Due to the restrictions on resolving bimodal distributions at high fillings, we only
considered low fillings; see the discussion in Section 2.3.3.

We can also consider the behaviour from the perspective of the spin model, which we
actually simulate with DMRG, after integrating out the charges by using the Gauss law
constraint [5]. As already stated before for λ/t = −1, this spin model is an Ising model
with transverse and longitudinal fields [5]; see Section 1.3.2. In the regime when λ/t = −1
and h = 0, we are left only with an Ising model with a transverse field [5]

Hs = −t ∑
⟨i,j⟩

τ̂z
⟨i,j⟩ + 2µ ∑

j
τ̂x
⟨i,j⟩τ̂

x
⟨j,k⟩. (5.14)

For chemical potential µ < −2t, which corresponds to fillings n ≲ 0.2, the Z2 electric fields
form a FM state [5, 200, 201]. In such a state, all spins are aligned and mesons appear as
short lived excitation in a form of a flipped spin [5]

When both the SC term and the Z2 electric field term are non-zero, string-length dis-
tribution peaks at ℓ = 1 are always much higher than the anti-string length distributions,
which are in turn much broader and exhibit long tails; see Fig. 5.8(e) and 5.8(f). Such
behaviour is a clear indication of confinement and thus in agreement with the previous
numerical results [5].
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With these result we have shown that string and anti-string length distributions are
a reliable probe of confinement also when λ ̸= 0, and can be readily used in cold atom
experiments. Furthermore, these results also give us a better insight into the microscopical
picture of confinement. The drawback of the string length distributions is that they are
limited to fillings lower than n ≤ 2/3. In addition, there might be some further analysis
needed for obtaining snapshots in the regime when λ ̸= 0 and h = 0. As stated in the
beginning of this section, we defined strings as distances between odd-even partons. We
believe that this is still a good definition to probe mesons, which arise from SC fluctuations.
However at higher filling, an already existing parton in the beginning of the chain might
complicate such picture and change the orientation of string and anti-string. We believe
this complication was not a major problem in the analysis presented so far.

5.4 Summary and conclusion

In this chapter we studied the generalized version of the 1 + 1D Z2 LGT, Eq. (5.4), with
additional superconducting terms, which break the U(1) symmetry of the charges. This
Hamiltonian could also be considered as the gauged Kitaev chain [119], to which there
exist a direct mapping in the limit of static charges when the electric field term is zero
h = 0 [5, 119]. We considered numerical calculations in order to obtain entanglement
entropy results, from which we extract the central charge and thus determine the regions
with possible quantum criticality or quantum transition. To probe confinement we also
considered the Green’s function and the string and anti-string length distributions.

Our results are summarized in the sketch of the phase diagram in Fig. 5.2. As already
mentioned, in the regime when the Z2 electric field is zero h = 0, the gauge fields are static
and can be eliminated [5]. There we obtain a deconfined, free parton LL in the absence
of the SC term λ = 0. On the other hand when the SC term is non zero λ ̸= 0, the
system can be directly mapped to the superconducting model [119, 190]. The system thus
exhibits transition from a SPT to trivial SSB states [119]. This transition occurs for a chemical
potential 2|µ| = |t| [190, 191]. In terms of lattice filling this translates to an approximate
fillings value of n ≈ 0.2 and n ≈ 0.8 [5]. For intermediate fillings, 0.2 ≲ n ≲ 0.8, the
system is thus in a deconfined, SPT phase. For low n ≲ 0.2 and high filling n ≳ 0.8,
where the system is in the SSB phase, we show that the system exhibits confined features
by considering the Green’s function and the string and anti-string length distributions [5].
Confinement in this regime can be related to strong pair fluctuations, which come from the
SC terms. Thus, mesons appear directly from the SC term as short lived fluctuations. By
including the Z2 electric field term, the particle-hole symmetry is broken. On the special
line where λ = 0 the system forms a meson LL, since partons are confined into mesons. For
non-zero value of the SC term λ ̸= 0, the system is in a confined Higgs phase for fillings
up until n ≲ 0.8, where it transitions to an AFM SSB [5, 119], both of which are confined as
shown by the Green’s function and the string length distributions [5].

To conclude this chapter we discuss our results in a slightly different setting and re-
formulate our results in a phase diagram as a function of the Z2 electric field term h and
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Figure 5.9: Sketches of phase diagrams of the 1 + 1D Z2 LGT coupled to dynamical matter
as a function of the SC term λ and the electric field term h at different fillings n. (a) Phase
diagram at low fillings n ≲ 0.1 exhibits a SPT state for h = 0 and low SC term λ, which
transitions to a confined symmetry broken ferromagnetic state (of the Z2 electric fields)
for higher values of λ. For non-zero values of the h, λ ̸= 0, the system is in a confined
Higgs state. For λ = 0, the system has an addition U(1) symmetry in the charges, and the
partons from a deconfined parton LL when h = 0. When h ̸= 0, λ = 0, the partons confine
into mesons, which form a meson LL. (b) The phase diagrams for intermediate fillings
0.1 ≲ n ≲ 0.9 is similar to (a), with a difference that there are no SSB states for larger values
of λ, and the system remains an SPT for any value of λ when h = 0. (c) For higher fillings
n ≳ 0.9, the phase diagram is similar to (a) with a difference that the symmetry broken
state is an anti-ferromagnetic ordering of the electric fields, which in turn remains stable
also at finite values of the electric field term h ̸= 0. (d) A sketch of the phase diagram of a
2+ 1D Z2 LGT proposed by Fradkin and Shenker [32] to contrast our results for the 1+ 1D
Z2 LGT. This figure was modified from Fig. 6 in Ref. [5].

SC term λ; see Fig. 5.9. We compare the phase diagram derived from our one-dimensional
results to the well known phase diagram of Fradkin and Shenker [32], i.e., the perturbed
toric code, which we sketch in Fig. 5.9(d). The phase diagram of the Fradkin-Shenker model
exhibits deconfined topological phase, which is surrounded by the confined Higgs phase
[17, 32, 193].

For low filling n ≲ 0.1 and h = 0, our phase diagram exhibits a deconfined symmetry
protected topological state at low SC term λ, which transitions to a confined, symmetry
broken FM state for larger λ; see Fig. 5.9(a). This is similar to the 2D Fradkin-Shenker
phase diagram, however in our one-dimensional case the system is deconfined only for
h = 0, whereas in the 2D case this phase is stable also for low values of h. In our case the
system enters a confined case for any non-zero value of the Z2 electric field term h ̸= 0
[5]. As already mentioned, the confined phase in our system for h = 0 at low filling, has
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a spontaneously broken symmetry, where the Z2 electric field, τ̂x, has a Ferromagnetic
ordering. This state undergoes a transition to a paramagnetic state for h ̸= 0 and remains
confined [5]. In addition to all of the above, the 1 + 1D model also forms a Luttinger liquid
in the limit when λ = 0 as already discussed in the previous chapters. For h ̸= 0, the
partons are confined into mesons, which form a meson LL, and in the special point when
λ = h = 0, the partons are deconfined and form a simple free parton LL [1, 5].

For high fillings, n ≳ 0.9, the phase diagram is similar to the one at the low filling;
see Fig. 5.9(c). The only difference is that the SSB state for high fillings is related to the
anti-ferromagnetic ordering of the Z2 electric fields, ⟨τ̂x

⟨j,j+1,⟩⟩ = (−1)j [5]. This in contrast
to the FM state remains robust for finite values of h ̸= 0, and thus extends above the λ = 0
line [5].

At intermediate fillings, 0.1 ≲ n ≲ 0.9, there are no symmetry broken states at any
value of λ; see Fig. 5.9(b). The line h = 0 thus remains a SPT state for any λ ̸= 0, which
transitions to a confined Higgs state for h, λ ̸= 0.

With this conclusion we finish the discussion on the phase diagram of the extended
1+ 1D Z2 LGT coupled to dynamical matter. This phase diagram will be directly compared
to the mean-field theory for the Z2 LGT, which we discuss in the next chapter. With these
results we also paves the way for future cold atom experiments, where such rich phase
diagrams could be explored.



Chapter 6

Mean-field theory of the Z2 lattice
gauge theory

In this chapter we develop a mean-field (MF) theory for a generalized 1 + 1D Z2 LGT
where dynamical particles are coupled to gauge fields, studied in Chapter 5. In the in-
troductory Chapter 2.1, we discussed how LGT formulation of physical problems results
in additional degrees of freedom. On the one hand, LGT formulation allows for numerical
treatment, which could sometimes not be effectively formulated otherwise or makes analyt-
ical approach easier. On the other hand, the additional gauge structure effectively enlarges
the Hilbert space, making numerical calculations complicated. In addition, there is a vast
amount of local constraints related to the gauge structure, e.g., the Gauss law. Although we
can tackle the 1 + 1D Z2 LGTs numerically quiet well, which we demonstrate in this thesis,
numerical calculations in higher dimension become way more complicated. This holds in
particular for the LGTs with dynamical matter, where the quantum Monte Carlo methods
encounter the infamous sign problem at finite doping [133, 203, 204].

This motivated us to come up with a simpler mean-field theory that captures the main
features of the exact Z2 LGT. For that we employ the slave-particle approach, which is a
powerful method in strongly correlated systems. It can be used to reformulate difficult
problems and thus offer significant new insights, often in a more intuitive way [33, 205–
207]. As an example we can note that it has been applied to problems related to frustrated
quantum magnets [207] and the Kondo problem [173]. The basic idea of the slave-particle
mean-field theories is to expand the Hilbert space to reformulate the problem and make
it easier to solve [5]. Such Hilbert space expansion means that one has to impose some
constraints in order to obtain the correct physics. These constraint are, enforced only on the
mean-field level, i.e., on average [5]. This approach is perfectly suited for the Z2 LGT, where
we can decouple matter from the gauge field and enforce the Gauss law (set of constraints)
on the mean-field level only [5]. In order to study the mean-field theory and how well it
captures the exact Z2 LGT, we frequently relate to the results on the exact 1 + 1D Z2 LGT
from Chapter 5.

This Chapter is based on Ref. [5], from which the content, including figures, has been
adapted and extended. We also note that a much more simple version of the Z2 LGT
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mean-field theory without the SC terms was already studied in the author’s master thesis
in Ref. [2]. However, the discussion here is a significant expansion on the initial problem
tackled in [2].

6.1 Introduction

As already stated above the main idea of the Z2 LGT mean field theory is to decouple
matter from the gauge field while still enforcing the gauge constraints, i.e., the Gauss law,
on the mean field level [5]. In our derivation we obtain two separate mean-field theories,
one for the charges (partons) and the other for the gauge fields. The former resembles
the one-dimensional superconducting model [190] encountered in Chapter 5, and perfectly
captures the regime when the Z2 electric field term is zero. However, it fails to capture the
confined phase when the Z2 electric field term is non-zero. This is in part due to the fact
that the exact Z2 LGT reduces to the one-dimensional superconducting model in the limit
of static gauge fields.

The mean-field theory for the gauge fields is an Ising model with transverse and lon-
gitudinal fields. We solve it by performing DMRG calculations, where we have to find the
correct chemical potential, which gives us the right filling [5]. This has to be done self
consistently. It captures the main qualitative features of the exact Z2 LGT, in particular the
phenomena related to confinement and spontaneous symmetry breaking for any value of
the Z2 electric field. The only drawback is that it always breaks the U(1) symmetry in the
charges and thus it does not capture the parton and meson LL [5].

In order to compare the mean-field model to the exact Z2 LGT, we calculate the en-
tanglement entropy and again consider the central charge. To study confinement in the
mean-field theory we consider the Green’s function and the string-length distributions ob-
tained from snapshots. In addition, we directly compare the ground state energies and the
Z2 electric field polarization obtained for the mean-field theory for the gauge fields to the
ground state energies of the exact Z2 LGT [5].

6.2 Derivation of the mean-field theory

We start the derivation of the mean-field theory for the extended 1 + 1D Z2 LGT theory
with dynamical matter, Eq (5.1), defined in Chapter 5, by making the product ansatz [5]

|ψ⟩ = |ψτ⟩ ⊗ |ψa⟩ . (6.1)

With such ansatz we effectively decouple charge (â) and gauge (τ̂) degrees of freedom.
The Gauss law will be enforced on the mean field level, and thus comes in a form of extra
terms (Lagrange multipliers) [5]. As a result, we obtain two different models: one which
corresponds to the mean-field theory for the gauge fields, and the other that correspond to
the mean-field theory for the partons (matter field).

We first derive the mean-field Hamiltonian for the matter by considering the gauge and
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electric fields (link variables) on the mean field level. The mean-field theory for the charges
can thus be expressed as [5]

Ĥa
MF = −t

〈
τ̂z
⟨i,j⟩
〉

∑
j

(
â†

j+1 âj + â†
j âj+1

)
+ λ

〈
τ̂z
⟨i,j⟩
〉

∑
j

(
â†

j+1 â†
j + âj âj+1

)
− h

〈
τ̂x
⟨i,j⟩
〉
(L + 1) + µa ∑

j

(
â†

j âj − n
)

. (6.2)

Here we define the average value of the Z2 gauge and electric field as [5]

⟨τ̂z
⟨i,j⟩⟩ = ⟨ψτ|τ̂z

⟨i,j⟩|ψτ⟩, ⟨τ̂x
⟨i,j⟩⟩ = ⟨ψτ|τ̂x

⟨i,j⟩|ψτ⟩, (6.3)

respectively. In order to enforce the correct chain filling we also add the Lagrange multiplier
µa, which takes the role of the chemical potential. In addition, we reiterate that the chain
length (number of matter lattice sites) is defined by L, and the chain filling is defined as
n = N/L = 1

L ∑L
j=1⟨n̂j⟩, where N is the total number of partons in the chain, and n̂j = â†

j âj

is the on-site parton number.

The model in Eq. (6.2) is the one-dimensional superconducting quantum wire model
[190], which we already encountered in Chapter 5. We note that the hopping term t and
the SC term λ are simply normalized by ⟨τ̂z

⟨i,j⟩⟩, and that the Z2 electric field term becomes
a constant energy offset, which can thus be discarded [5]. Such model can be solved by
performing the Jordan-Wigner and Bogoliubov transformation [192]. In the limit when
λ = 0 the system is simply a free parton model and in the limit when λ = −t, the model
is the well known Kitaev model [5, 161, 190]. In Chapter 5 we demonstrated that the
extended 1 + 1D Z2 LGT with SC terms, without the electric field term h = 0, reduces to
the one-dimensional quantum wire model. Thus we showed that for static gauge field in
the limit when h = 0, the mean-field theory for the charges coincides with the exact Z2

LGT. However, when the Z2 electric field term is finite h ̸= 0, the mean-field theory for the
charges will remain a simple one-dimensional SC model, as the electric field term is just a
constant energy offset. Hence, no confined Higgs state or meson LL can be realized.

Next, we derive the mean-field theory for the gauge field. We perform similar calcula-
tions as before, however this time we consider the charge operators on the mean-field level
instead of the Z2 fields, which can be expressed as [5]

Ĥτ
MF = −t ∑

j

(〈
â†

j+1 âj

〉
+
〈

â†
j âj+1

〉)
τ̂z
⟨j,j+1⟩ + λ ∑

j

(〈
â†

j+1 â†
j

〉
+
〈

âj âj+1
〉)

τ̂z
⟨j,j+1⟩

− h ∑
⟨i,j⟩

τ̂x
⟨i,j⟩ + µτ ∑

⟨i,j,k⟩

(
τ̂x
⟨i,j⟩τ̂

x
⟨j,k⟩ − 1 − 2n

)
. (6.4)

Here we defined the average value of the charge operators as
〈

â†
j+1 âj

〉
= ⟨ψa| â†

j+1 âj |ψa⟩.
We also added the Lagrange multiplier µτ, which ensures the correct filling. This term is
derived directly by considering the Gauss law constraint Eq. (5.2) for the physical sector,
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without background charges, on the mean-field level [5]. It can be expressed as [5]〈
∑
⟨i,j,k⟩

τ̂x
⟨i,j⟩τ̂

x
⟨j,k⟩

〉
= L (1 − 2n) , (6.5)

where ⟨i, j, k⟩ denotes the sum over two neighboring links [5].

The obtained Hamiltonian Eq. (6.4) is an Ising model with transverse and longitudinal
fields. The chemical potential term µτ is the Ising interaction, electric field term h is a
longitudinal field and the hopping term t and SC term λ, normalized by the average or
mean-field values of the charge operators, correspond to the transverse field [5].

The full mean-field theory is thus given by the two equations Eq. (6.2) and Eq. (6.4).
We have already commented on the mean-field theory for the charges, Eq. (6.2), which
corresponds to the exact Z2 LGT in the limit of static charges, for any value of h. It thus
does not capture the effects related to the electric field term, in particular confinement at
any filling n, when h ̸= 0. The mean-field theory, Eq. (6.4), is therefore different in a sense
that all terms of the exact Z2 LGT remain, albeit some slightly modified, i.e., normalized
by the average values of the parton operators. We will thus focus mainly on the mean-field
theory for the gauge fields, Eq. (6.4), which we write for convenience as [5]

ĤMF = −g ∑
⟨i,j⟩

τ̂z
⟨i,j⟩ − h ∑

⟨i,j⟩
τ̂x
⟨i,j⟩ + µτ ∑

j
τ̂x
⟨i,j⟩τ̂

x
⟨j,k⟩. (6.6)

Above we omitted constant terms and defined the prefactor in front of the transverse field
as [5]

g = t
(〈

â†
j+1 âj

〉
+
〈

â†
j âj+1

〉)
− λ

(〈
â†

j+1 â†
j

〉
+
〈

âj âj+1
〉)

. (6.7)

We note that the Ising model with transverse and longitudinal fields cannot be simply
solved. Hence, we resort again to numerical simulations, more precisely we again employ
DMRG calculations [5]. In order to run the calculations, we first have to determine the
value of g, which depends on the average values of the charge operators Eq. (6.7) coming
from the mean-field theory for the charges Eq. (6.2) [5]. This can be done by calculating
the average ground state energy of the superconducting model per lattice site, for given
parameter values t, λ and filling n [5]. We make use of the Jordan-Wigner transformation
and the Bogoliubov transformation to diagonalize the Hamiltonian Eq. (6.2), and express
the parameter g as [5]

g =
1

2π

∫ π

0
dk
√
(µ̃a − 2t cos(k))2 + (2λ sin(k))2 + µ̃a

(
n − 1

2

)
. (6.8)

More details on the above derivation can be found in Appendix C. We note that in order to
obtain the above expression, Hamiltonian in Eq. (6.7) was normalized by ⟨τ̂z

⟨i,j⟩⟩ [5]. Hence,
the chemical potential becomes µ̃a = µa/⟨τ̂z

⟨i,j⟩⟩. This makes the solution of Eq. (6.8) simpler
as at a given filling n, we simply need to find the correct µ̃a for given hopping term t and
SC term λ [5]. This means that the solution at a given filling n is independent of the
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average values of the gauge fields [5]. The solution to Eq. (6.8) can be found by minimizing
the ground state energy of the mean-field model for the charges Eq. (6.2), which yields a
self-consistency equation [5]

n =
1
2

1 − 1
π

∫ π

0
dk

µ̃a − 2t cos(k)√
(µ̃a − 2t cos(k))2 + λ2(k)

 . (6.9)

By solving the above equation for µ̃a at a given filling n, we can perform the integral in
Eq. (6.8) numerically [5]. We note that when λ = 0, the calculations can be simplified as we
can use free fermion results, and perform the calculations analytically [2, 5].

After we calculate the value of g for given filling n, hopping term t, and SC term λ,
we can perform DMRG calculations. We have to search for the correct value of the Ising
interaction, i.e, the chemical potential term µτ, which yields the correct filling as defined by
Eq. (6.5). Details on this procedure can be found in Section 6.3.2.

With this we conclude the derivation of the mean-field theory for the 1 + 1D Z2 LGT.
In the next section we establish the phase diagram of the mean-field theory for the gauge
fields, by discussing the Ising model with the transverse and longitudinal fields, and by
performing DMRG calculations and calculating the entanglement entropy.

6.3 Phase diagram of the mean-field theory

6.3.1 Ising model with transverse and longitudinal fields

We first consider the phase diagram of a generic Ising model with transverse and longitu-
dinal fields, which is well known as it has been extensively studied in the past [200, 201,
208, 209]. It has been even studied experimentally in a cold atom setup [210].

The Ising model without any fields will exhibit ordered, symmetry broken phases [200,
208, 209]. The sign of the Ising interaction, µτ in the case of our formulation in Eq. (6.6),
determines whether the ordered state will be ferromagnetic (FM) or anti-ferromagnetic
(AFM) [208]. For negative values µτ < 0, the ordering will be FM with all spins aligned,
and for positive values µτ > 0, the ordering will be AFM. In the absence of the longitudinal
field, h = 0, both states are equivalent as the sign in front of the Ising interaction can be
changed if one performs the transformation on two of the three components of the spin:
Ŝx

j → (−1)jŜx
j , Ŝy

j → (−1)jŜy
j , while Ŝz

j → Ŝz
j [182, 201, 208]. This transformation is in

fact a particle-hole mapping in the gauge sector of our Z2 LGT system as demonstrated in
Chapter 3, where the Z2 fields are represented by the Pauli matrices [1, 5]. The particle-
hole mapping can also be explicitly seen in the mapping between the XXZ chain and the
hard-core boson model [182], which we present in Appendix A. For non-zero values of the
electric field term, h ̸= 0, the sign of µτ is important, as the simple constant field ∝ h will
become a staggered field ∝ (−1)jh.

Next we consider the behaviour of the Ising model upon introducing finite transverse
field |g| > 0, while h = 0. There the system exhibits the aforementioned ordered states
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only for low field value g/|µτ| < 1 (FM for µτ < 0 and AFM for µτ > 0) [200–202, 208]. For
higher values of the transverse field g/|µτ| > 1 the system is disordered [200].

For µτ < 0 and non-zero value of the longitudinal field h ̸= 0, the spin orientation
remains ferromagnetic for g < |µτ|, as the system chooses one of the FM states according
to the sign of the h [202]. The h = 0 line can be understood as the first order phase transition
line [202].

The behaviour is more interesting on the AFM side µτ > 0. There the AFM state
transitions to disordered/paramagnetic states at finite value of the longitudinal field h ̸=
0 [200, 208]. There is in fact an AFM lobe, where the AFM state remains stable with
boundaries at h/µτ < 2 and g/µτ < 1 [200, 208].

As we have seen from this short review of the Ising model with transverse and longi-
tudinal fields, the transitions between ordered, symmetry broken states (AFM or FM) to
disordered states occur as a function of the chemical potential µτ. This in turn controls the
effective filling in the Z2 LGT picture, where spin domain walls represent partons [5]. We
saw similar transitions in the previous Chapter 5, where we discussed the exact Z2 LGT.
In the next section we solve the mean-field model for the gauge fields self-consistently us-
ing DMRG and show that these transitions in the mean-field theory indeed describe the
transitions in the exact Z2 LGT.

6.3.2 Numerical simulation of the mean-field theory

We employ DMRG calculations [34, 35] to find the ground state solution of the spin system,
representing the mean-field theory for the gauge fields Eq. (6.6). We again use the MPS
toolkit SyTen [153, 154]. As already mentioned in the section on the derivation of the
mean-field theory, we first have to find the value of g, for given parameter values t, λ, and
filling n. For that we have to self-consistently solve the equations Eq. (6.8) and Eq. (6.9),
which is done by means of numerical integration [5].

After the value of the transverse field g is established for chosen parameter values
t, λ, and filling n, we start using DMRG calculations. We set the desired transverse field
(electric field term) h, and search for the correct chemical potential µτ, that gives us the
correct filling n. This filling already had to be choose when we were calculating the value
for g. The procedure to find the correct chemical potential is as follows [5]:

1. We define a minimal and maximal chemical potentials µmin and µmax. In addition,
we define the starting chemical potential µp=1, µmin < µp=1 < µmax, for which we
calculate the ground state and the corresponding filling n(p = 1). Typically this is
µp=1 = 0.1t. The filling is calculated via the Gauss law, Eq. (6.5).

2. Depending on the filling n(p), which we obtain from the grounds state calculations
where the chemical potential was µp, in step p, we redefine either the minimal or
maximal value of the chemical potential. If the calculated filling n(p) is greater than
the "correct" filling n, then µmax = µp. Contrarily, if the calculated filling n(p) is
smaller than the "correct" filling n, then µmin = µp.
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3. Next we redefine the chemical potential for the next step l = p + 1, as

µl =
1
2
(µmin + µmax) . (6.10)

We then run the DMRG again with the new chemical potential µl , and calculate the
corresponding filling n(l).

4. In order to get high accuracy for µτ, and thus the filling that is close to the target
filling n, we repeat procedures 2. and 3. for 15 times [5]. The chemical potential in
the final step, µτ = µp=pmax , is then declared as the correct chemical potential, which
solves the mean field equations. The ground state from the final DMRG calculation is
the solution to our problem and is used in further calculations. We typically exclude
results where the filling in the last step differs from the target filling by more than

one percent n−n(p f )

n > 0.01 [5].

The above algorithm works very well for generic parameter values. The only problems
where it could get slightly stuck is close to the transitions, which are known to exist in the
Ising model with transverse and longitudinal field, discussed in the previous Section 6.3.1.
However, since we fix some finite filling n we are usually never completely at this transition
point and thus we do not encounter this problem that often [5]. We again simulate L = 96
lattice sites, which result in L + 1 = 97 spins (links).

The obtained ground state MPS is then used to calculate all the desired physical observ-
able. To make the direct comparison with the exact Z2 LGT, which we studied in Chapter 5,
we consider the entanglement entropy to study the general phase diagram. In order to
study confinement we consider the Green’s function and the string-length histograms [5].

6.3.3 Entanglement entropy calculations in the mean-field theory

For a direct comparison to the exact Z2 LGT we first study the entanglement entropy
in the mean-field theory for the gauge field Eq. (6.6). We calculate it in the same way
as in Chapter 5, where we cut the system at link site x, and thus obtain entanglement
entropy profiles S(x) [5]. In addition, we reiterate that away from quantum criticality the
entanglement entropy will saturate to finite value at long distance, and close to quantum
criticality it will diverge [5, 194].

Entanglement entropy value

We calculate the central entanglement entropy S(L/2), i.e., entanglement entropy when the
system is cut in half, x = L/2. The results for different parameter values λ, h and filling n,
are shown in Fig. 6.1. When the Z2 electric field is zero h = 0, we can observe two vertical
lines with substantial entanglement entropy as a function of the SC term λ at low n ≈ 0.2
and high n ≈ 0.8 chain fillings [5]. For finite Z2 electric field, only the vertical line at high
filling n ≈ 0.8 remains.
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Figure 6.1: Entanglement entropy S(L/2) for the mean-field theory of the gauge sector
Eq. (6.6) as a function of filling n and the SC term λ. (a) For h = 0, we obtain two vertical
lines with substantial entanglement entropy as a function of λ at fillings n ≈ 0.2 and
n ≈ 0.8. (b) For non-zero electric field term h/t = 1, only one such line remains at high
filling n ≈ 0.8. No features can be seen on the line λ = 0 in both cases. This figure was
adapted from Fig. 7 in Ref. [5].

These lines are similar to what we observed for the exact Z2 LGT model in Fig 5.3. To
be more precise, at λ/t = −1 we observe similar feature at similar fillings, both for zero
and non-zero electric field term. This could be expected from the fact that the full 1 + 1D
Z2 LGT, Eq. (5.1), for λ/t = −1 reduces to an Ising model with transverse and longitudinal
fields after integrating out the charges [5]. For more details on this limit we refer the reader
to Section 1.3.2. We can thus already assume that the mean-field theory for the Z2 fields
correctly captures the transitions to the symmetry broken phases. For non-zero value of the
electric field term h ̸= 0 this is the transition between the confined Higgs and the confined
symmetry broken phase [5]. However, we note that there is no observed dependence on
the filling and that these lines appear to be almost vertical.

In contrast to the exact Z2 LGT, we do not observe any features on the λ = 0 lines
for the entanglement entropy results of the mean-field theory for the gauge fields. That is
because these lines, in the exact Z2 LGT, are related to the U(1) symmetry of the charges,
where the system forms a parton LL or a meson LL in the deconfined and confined regimes,
respectively. The partons are directly related to the domain wall number in the Z2 electric
fields as dictated by the Gauss law. In the mean-field theory for the gauge field, parton
number is thus directly related to the number of domain walls of the spins in the x-basis.
Looking at the mean-field theory model for the spins Eq. (6.6), we see that the transverse
field ∝ τ̂z, explicitly breaks the domain wall number conservation. In other words: the
mean-field theory does not posses the U(1) symmetry for the charges when λ = 0, and the
filling is imposed only on average, i.e., on the mean-field level via the Lagrange multiplier
µτ [5]. The quantum criticality on λ = 0 line can thus not be obtained with the mean-field
theory for the fields, at least not without projecting to states with correct parton number.
However, we note that the mean-field theory for the charges, Eq (6.2), does posses the U(1)
symmetry for the charges on the λ = 0 line as it simply reduces to a free parton model [5].
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Figure 6.2: Central charge c in the mean-field theory for the gauge field Eq. (6.6) for
different electric field values as a function of filling n and the SC term λ. (a) In the absence
of the Z2 electric field term h = 0, we obtain two vertical lines with non-zero central charge
values as a function of the SC term λ = 0. These two lines lines at approximately n ≈ 0.2
and n ≈ 0.8, coincide with similar lines observed in the S(L/2) diagram in Fig. 6.1(a). (b)
For finite electric field term h/t = 1, only a single vertical line at high filling remains, again
in agreement with the results for S(L/2) in Fig. 6.1(b). No finite value of c is extracted on
the λ = 0 lines, as the U(1) symmetry in the charges is always broken in the mean-field
theory for the gauge field. This figure was adapted from Fig. 8 in Ref. [5].

The combined mean-field ansatz thus correctly captures the deconfined free parton regime
for h = 0, however it still fails to capture the meson LL liquid at h ̸= 0, λ = 0, as the electric
field term is irrelevant in the mean-field theory of the charges [5].

Central charge in the mean-field theory

We analyze the entanglement entropy in greater detail by also extracting the central charge
c from the entanglement entropy profiles S(x). The procedure to obtain c, is the same
as in Chapter 5. We first normalize the entanglement entropy by local densities to obtain
S̃(x) = nS(x)/n(x) [5, 7, 197], and then fit S̃(x), with the CFT formula Eq. (5.9) [5, 194–
196]. The fit results for the mean-field theory for the gauge field qualitatively resemble (to
the naked eye) the curves obtained for the exact Z2 LGT when λ ̸= 0 [5]. We typically
exclude fits where the fit error for the central charge exceeds ∆c = ±

√
0.02, which we again

estimate from the square root of the covariance matrix element of the fit [5].
The extracted central charge c, for the mean-field theory of the gauge fields for different

electric field value h, as a function of filling n and SC term λ, are presented in Fig. 6.2. We
extract non-zero value of c on the lines as function of λ at fillings n ≈ 0.2, and n ≈ 0.8,
which correspond to the lines with substantial entanglement entropy in Fig. 6.1. For zero
electric field h = 0, we again obtain two lines: one at low filling n ≈ 0.2, and one at high
filling n ≈ 0.8. For non-zero electric field term h/t = 1, however, we only observe such line
at high filling n ≈ 0.8.

The results for the central charge thus agree with the results in Fig. 6.1, and support
the claim that we observe a transition to symmetry broken states [5]. Furthermore, the
extracted central charge value is close to c = 1

2 , which is the expected value in the transition
line between disordered and symmetry broken phase in a transverse-field Ising model [199].
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We once again note that the transverse-field Ising model can be mapped to the Kitaev chain
[161]. This shows that the transition observed in the mean-field model for the gauge fields
are the same as in the exact Z2 LGT model, Eq. (5.1), at finite values of the SC term λ ̸= 0.
However, we do not extract finite central charge results at λ = 0 lines for any value fo h.
This is in agreement with the entanglement entropy results in Fig. 6.1, as the mean-field
theory for the gauge field does not conserve the global parton number.

For h = 0 and for intermediate fillings 0.2 ≲ n ≲ 0.8, we thus obtain disordered system
in terms of the Z2 electric fields. For lower n ≲ 0.2 and higher fillings n ≳ 0.8 we obtain
ordered systems, where in the former case the Z2 electric fields align in a ferromagnetic
order, and in the latter case, n ≳ 0.8, electric field aligns in an AFM fashion [5]. For finite
electric field term h ̸= 0, only the transition from disordered to ordered AFM system is
present. This can also be understood in terms of the Ising model with transverse and
longitudinal fields: when h ̸= 0, the solutions for µτ at finite values of n shift to higher
values away from |g|/µτ = −1 [5]. Thus only the transition at the positive |g|/µτ = 1
remains, which is indeed the transition from disordered to AFM state in terms of the spins
in the x-direction, which correspond to the Z2 electric field in the Z2 LGT language [5].

6.4 Confinement in the mean-field theory

Next we study the confinement in the mean-field theory for the gauge fields. We again
consider the Green’s function and the string-length distributions obtained from snapshots
[5]. In the previous section we have seen that the mean-field theory ansatz qualitatively
correctly captures all relevant transitions and phases, with the only exception being the
meson LL, on the special λ = 0 line for h ̸= 0 [5]. Here we study whether confinement
properties are also captured correctly.

6.4.1 Green’s function in the mean-field theory

In order to study confinement we consider the same gauge invariant Green’s function,
which we discuss thought this thesis, and is defined as [1, 3–5, 160]

G(|x − x0|) =
〈

â†
x0

(
∏

x0≤ℓ<x
τ̂z
⟨ℓ,ℓ+1⟩

)
âx

〉
. (6.11)

We are considering the mean-field theory for the gauge fields, Eq. (6.6). Here we thus state
the Green’s function with Z2 fields, i.e., in spin language, which is expressed as [5]

G(x) =
〈1

4

(
∏

x0≤ℓ<x
τ̂z
⟨ℓ,ℓ+1⟩

) (
1 − τ̂x

⟨x−1,x⟩τ̂
x
⟨x,x+1⟩

) (
1 + τ̂x

⟨x0−1,x0⟩τ̂
x
⟨x0,x0+1⟩

) 〉
. (6.12)

We note that this is in fact how the Green’s function is calculated for all Green’s function
results presented in this thesis, since we always integrate out the matter by considering the
Gauss law restricted to the physical sector. More details can be found in Chapter 1.3.
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Figure 6.3: Green’s function results Eq. (6.12) for the mean-field theory of the gauge
field Eq, (6.6) for different electric field h, SC term λ and filling n. (a) For h = λ = 0
the Green’s function has nearly constant values for intermediate fillings 0.2 ≲ n ≲ 0.8,
indicating deconfined regime. For low n ≲ 0.2 and high fillings n ≳ 0.8, the Green’s
function decays exponentially indicating deconfined regime as the system transitions into
a symmetry broken FM regime for n ≲ 0.2, and AFM regime for n ≳ 0.8. (b) The same
qualitative behaviour as in (a) can be seen when the SC term is non-zero λ/t = −1. (c) For
non-zero Z2 electric field term and λ = 0, the Green’s function decays exponentially for
any chain filling n. (d) The same qualitative behaviour of the Green’s function can be seen
as in (c) when the SC term is non-zero λ/t = −1. Below the plots we sketch the parameter
regime in a sketch of the phase diagram of the MF theory for the gauge field, where we
consider the Green’s function. In order to reduce the finite size effects we again consider
x0 = 30, and x > x0 in a chain with length L = 96. This figure was modified from Fig. 9 in
Ref. [5].
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The Green’s function results are presented in Fig. 6.3 for different values of the electric
field term h, SC term λ, and for different values of the filling n. The parameters were chosen
in a way that a direct comparison with the Green’s function results in the exact Z2 LGT can
be made in Fig. 5.7.

In the absence of the Z2 electric field term h = 0, the Green’s function is almost con-
stant for intermediate fillings 0.2 ≲ n ≲ 0.8, see Fig. 6.3(a) and 6.3(b), and thus signals a
deconfined partons in that parameter regime. This can also be understood in terms of the
mean-field theory Hamiltonian for the gauge field Eq. (6.6). In such parameter regime, the
transverse field ∝ gτ̂z dominates the system and we can imagine that all spins governed
by Eq. (6.6) align with the field in the z-direction [5]. In other words, spins align as a
paramagnet with the transverse field [5]. Contrarily, for lower n ≲ 0.2 and higher fillings
n ≳ 0.8, the Green’s function decays exponentially, which indicates confinement. These
result coincide with the transition to FM and AFM symmetry broken states discussed in
the previous Section 6.3 and agree with the results for the exact Z2 LGT when λ ̸= 0 in
Chapter 5 [5]. However, same qualitative behaviour for h = 0 can be seen for any value of
the SC term λ; see Fig. 6.3(a) and 6.3(b). This agrees with the entanglement entropy results
from the previous section, where no dependence of the transition on λ could be observed.
This is a result of the broken U(1) symmetry for any value of λ in the mean-field theory
for the gauge field. Hence, confined signatures at low and high fillings could also be seen
for λ = 0, which is not the case for the exact Z2 LGT.

For non-zero value of the Z2 electric field term h ̸= 0, the Green’s function decays
exponentially for any filling n [5]; see Fig. 6.3(c) and 6.3(d). The confined phase for non-
zero electric field term, h ̸= 0, is thus correctly captured by the mean-field theory for the
gauge field [5]. Also here, the same qualitative behavior of the Green’s function can be
seen for any value of the SC term λ, which is again in agreement with the entanglement
entropy calculations for the mean-field theory in the previous Section 6.3. Furthermore,
we observe decrease of the decay rate of the Green’s function with increasing filling up to
n ≈ 0.8, when the rate of decay again increases with increasing filling. This feature can be
also observed in the exact model when λ/t = −1. However, we observe this for any λ in
the mean-field theory, which is again the consequence of the U(1) symmetry breaking for
any λ in the mean-field theory. Namely, for λ = 0 in the exact Z2 LGT the rate of decay
decreases monotonically with increasing filling n, as the mesons form a LL [1, 5].

We have thus shown that the mean-field theory for the gauge field correctly captures
the behaviour of the Green’s function for λ ̸= 0 for any value of the Z2 electric field term
h [5]. For the non-zero electric field term h ̸= 0, the Green’s function decays exponentially
for any value of λ and filling n. In the absence of the Z2 electric field term it also correctly
captures the transition between deconfined and confined symmetry broken states at low,
n ≲ 0.2, and high, n ≳ 0.8, fillings. The only drawback is that the mean-field theory for
the gauge field Eq. (6.6) breaks the U(1) symmetry also for λ = 0 while the exact Z2 LGT
does not. Accordingly, the mean-field theory for the gauge field exhibits a transition to the
confined regime for λ = 0, which is not the case for the exact Z2 LGT.

In conclusion, the behaviour is fully captured for λ ̸= 0, whereas for λ = 0, it is captured
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qualitatively only for h ̸= 0. However, even there we see features around n ≈ 0.8, which
are not seen in the exact Z2 LGT [5].

6.4.2 String-length histograms in the mean field theory

In addition to the Green’s function, we also study the string and anti-string length distri-
butions, which we again obtain from snapshots, sampled from our ground state MPS [5].
For details we thus refer the reader again to Section 2.3.3 and Section 5.3.2. The procedure
is again exactly the same as in the exact Z2 LGT, where we also sample in the x-basis of the
link variables, i.e., in the Z2 electric field basis [4, 5].

In order to directly compare the mean-field results with the exact Z2 LGT results in
Fig. 5.8, we sample snapshots and compute the string and anti-string length distributions
for different values of the Z2 electric field term h, SC term λ and average filling n. The
results are presented in Fig. 6.4.

For any parameter value and filling, the string and anti-string length distributions have
a peak at ℓ = 1. For non-zero electric field term h/t = 1, peaks at ℓ = 1 in the string length
distributions are much higher than peaks in the anti-string length distributions, which
signals confinement of partons [5]. Furthermore, the anti-string length distributions are
significantly wider, with longer tails than the string length distributions; see Figs. 6.4(d)-
6.4(f).

When the Z2 electric field term is zero h = 0, the string and anti-string length distri-
butions almost completely coincide for intermediate fillings 0.2 ≲ n ≲ 0.8; see Fig. 6.4(a)
and 6.4(b). This is a clear signature of the deconfined phase and is in agreement with the
Green’s function results. Additionally, for low fillings n ≲ 0.2, the peak of the string-length
distribution at ℓ = 1 is significantly higher than the peak of the anti-string length distri-
bution, which is also much broader [5]; see Fig. 6.4(c). This indicates that also the string
and anti-string length distributions capture the transition to the confined regime when the
system orders in a symmetry broken FM state [5].

String and anti-string length distributions are in full agreement with the Green’s func-
tion results and are thus once again a reliable and robust measure of confinement also for
the mean-field theory for the gauge field [5].

6.4.3 Summary of the Mean-field theory phase diagram

We summarize our results in a sketch of the phase diagram of the mean-field theory in
Fig. 6.5. The mean-field theory for the gauge sector, in the absence of the Z2 electric field
term exhibits a deconfined SPT phase for intermediate fillings 0.15 ≲ n ≲ 0.85, which is
confirmed by the Green’s function results and the string and anti-string length histograms
[5]. For lower, n ≲ 0.15, and higher, n ≳ 0.85, fillings, the system transitions to a symmetry
broken FM and AFM states, respectively. These two states exhibit confined features, with
exponential decay of the Green’s function and differences in the distributions of string and
anti-string lengths [5]. When the Z2 electric field term is non-zero, n ̸= 0, the system is in
a confined regime up to approximate filling n ≲ 0.85, which corresponds to the confined
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Figure 6.4: String and anti-string length histograms in the mean-field theory for the gauge
field, Eq. (6.6), for different parameter values h, λ and filling n. (a) When λ = h = 0, the
string and anti-string length distributions are nearly identical for the filling ns ≈ 0.249.
(b) For non-zero SC term λ/t = −1 and zero electric field term h = 0, the string and
anti-string length distributions are again nearly identical at similar filling ns ≈ 0.248 as in
(a). (c) For lower filling ns ≈ 0.125, but the same parameter values as in (b), string-length
distribution peak at ℓ = 1 is much higher than the anti-string length distribution peak at
ℓ = 1. In addition, the anti-string length distribution is also much broader. Both features
signal confinement. (d) For finite Z2 electric field value h/t = 1, but zero SC term λ = 0,
for filling ns ≈ 0.245, string length distribution has a higher peak at ℓ = 1 than the anti-
string length distribution, which is also broader. Both of these features are a clear signature
of confinement. (e) When both terms are finite, h/t = 1 and λ/t = −1, same confining
features can be seen as in (e) for similar filling n ≈ 0.251. (f) The qualitative features remain
the same for lower filling ns ≈ 0.128, but same parameter values as in (e), showing that
the system is confined for any non-zero electric field h ̸= 0. With yellow "x" we show the
parameter values in the inset with a sketch of the mean-field phase diagram. This figure
was obtained from Fig. 10 in Ref. [5].
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Figure 6.5: Qualitative sketch of the phase diagram of the mean-field theory for the
paradigmatic 1 + 1D Z2 LGT with matter, which summarizes our results. (a) Gauge sector
mean-field theory, Eq. (6.6), in the regime when h = 0, exhibits a deconfined SPT state
for intermediate fillings 0.15 ≲ n ≲ 0.85. This is a simple disordered state in the spin
language of the mean-field Hamiltonian Eq. (6.6). For lower and higher fillings, the spin
system forms a FM and an AFM state that corresponds to confined states in the Z2 LGT
picture. (b) The gauge sector mean-field theory for finite Z2 electric field h ̸= 0, exhibits
a disordered state up to high fillings n ≲ 0.85, which corresponds to the confined Higgs
state in the Z2 language. For higher filling the spins align in the AFM order state, and the
partons remain confined. (c) Mean-field theory in the charge sector, Eq. (6.2), directly maps
to the exact 1 + 1D Z2 LGT in the limit of static charges at h = 0. It thus shares the same
phase diagram as the exact Z2 LGT for h = 0 in Fig. 5.2(a). (d) The non-zero electric field
term h ̸= 0, does not change the phase diagram of the mean-field theory model for the
charges as it is simply a constant energy offset. The phase diagram thus remains the same
as the phase diagram of the exact Z2 LGT for h = 0. This figure was obtained from Fig. 11
in Ref. [5].

Higgs phase in the Z2 LGT picture. For higher filling n ≳ 0.85 the system transitions to a
confined symmetry broken AFM regime [5].

Hence, the mean-field theory in the gauge sector exhibits a phase diagram that qualita-
tively captures almost all of the features of the exact Z2 LGT. There are only two exceptions
where the mean-field theory in the gauge sector fails. As it does not conserve the number
of spin domain walls, which translates to the U(1) symmetry in the partons in the Z2 LGT
picture via the Gauss law Eq. (6.5), it fails to capture any of the two possible LL on λ = 0
lines [5]. It thus does not exhibit the free parton LL for h = λ = 0, or the meson LL when
h ̸= 1, λ = 0. The second qualitative difference is that there is no dependence on the
SC term λ when the system transitions from the SPT or the Higgs phase to the symmetry
broken states [5].

The phase diagram of the mean-field theory in the charge sector is identical to the phase
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diagram of the exact Z2 LGT when the electric field term is zero h = 0 [5]. This is because
the mean-field theory in the charge sector reduces to the one-dimensional superconducting
wire model [5, 190]. The exact Z2 LGT reduces to the same model in the limit when h = 0
[5, 160]. Hence, the phase diagrams coincide. It thus captures the parton LL on the λ = 0
line. However, nothing changes to the mean-field theory in the charge sector, Eq. (6.2),
when the Z2 electric field term becomes finite h ̸= 0, as the electric field term becomes a
simple energy offset in that case [5]. Hence, the charge sector mean-field theory does not
exhibit confinement across all fillings n in the regime when h ̸= 0, as it does not capture
the confined Higgs phase observed in the exact Z2 LGT up to high filling n ≲ 0.85 [5]. It
also does not capture the meson LL [5].

6.5 Comparison between the mean-field theory and the exact LGT

From our calculations so far we have shown that the mean-field ansatz captures the main
features of the exact Z2 LGT. In order to compare the mean-field theory in the gauge sector
even more closely to the exact Z2 LGT, we directly compare the ground state energies and
the polarization of the Z2 electric field.

6.5.1 Ground state energy comparison

We calculate the ground state energy in the exact Z2 LGT, Eq. (5.1), and the mean-field
Hamiltonian in the gauge sector, Eq. (6.6), for different parameter values h, λ and filling n,
and plot them together in Fig. 6.6. We again use DMRG in order to obtain the ground state
energy, which we normalize by the system length L. In addition, we subtract the chemical
potential contribution to the ground state energy.

In the absence of the Z2 electric field term, the ground state energy of the exact Z2 LGT
has a parabolic-like dependency as a function of filling n, symmetric in half filling n = 0.5,
for any value of the SC term λ [5]. This is expected as for h = λ = 0, the system is formed
by free partons. More precisely, the shape of the curve for h = λ = 0 is proportional to
∝ −t sin(πn), a result obtained by considering a simple tight binding model. The mean-
field ground state energy in the gauge sector, has a similar dependency as a function of
filling. Furthermore the exact values match very well close to half filling n = 0.5. The
mean-field theory in the gauge sector thus qualitatively matches the ground state energy of
the exact Z2 LGT.

For finite Z2 electric field term h/t = 1, the ground state energy in the exact Z2 LGT,
rises monotonically as a function of n for λ = 0. For finite values of λ ̸= 0, the curve again
obtains a minimum, and with higher values of λ the shape slowly starts transforming to
deformed concave curve observed for h = 0 [5]. The shape of the curves thus depend
on the interplay of h and λ. The mean-field theory for the gauge sector for finite electric
field term, h ̸= 0, also qualitatively captures the exact Z2 LGT ground state results. The
concrete values become closer to the exact values for higher fillings. In conclusion, we have
demonstrated that the mean-field theory Hamiltonian for the gauge sector qualitatively
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Figure 6.6: Ground state energy comparison between the exact 1 + 1D Z2 LGT, Eq. (5.1),
after eliminating matter (smaller circles) and the mean-field theory in the gauge sector,
Eq. (6.6), (squares) as a function of filling n, for different electric field term value h, and
SC term λ. (a) In the absence of the Z2 electric field term, h = 0, the ground state energy
is symmetric in n = 0.5 in both models for any SC term value λ, where it also has a
minimum. The mean-field theory qualitatively captures the overall ground state energy
behaviour of the exact Z2 LGT, with the same filling dependency and values, which are not
far off from the exact values. (b) For finite value of the Z2 electric field, h/t = 1, the exact
Z2 LGT ground state rises monotonically with filling n, when λ = 0. By including non-
zero value of the SC term λ ̸= 0, the curve obtains a minimum and its shape resembles as
skewed/deformed parabola, more similar to the h = 0 results. The mean-field energy again
qualitatively resembles the ground state results. The energy is captured more precisely at
higher filling n and for |λ > 0|. We note that the ground state results are identical for
λ → −λ, and thus we only present λ > 0 results. This figure was obtained from Fig. 12 in
Ref. [5].

captures the main features of the ground state energy behaviour in the exact Z2 LGT [5].

6.5.2 Electric field polarization comparison

Finally, we also directly compare the Z2 electric field polarization. It plays an important
role in understanding the transitions to ordered FM state as it is its order parameter [5].
To be more precise, all of the symmetry broken FM and AFM states are ordered in the x-
direction or component of the spin. Hence, the total Z2 electric field polarization can give
us a better insight into the transition to the FM state [5]. Contrarily, staggered polarization
would indicate a transitions to the AFM state. In addition to the FM and AFM states,
finite Z2 electric field polarization also indicates confinement of partons, because strings
connecting mesons are on average much shorter than anti-strings [5]. Hence, for any finite
filling, confinement should be reflected in finite polarization, which becomes higher for
lower filling.



134 6. Mean-field theory of the Z2 lattice gauge theory

Figure 6.7: Polarization of the Z2 electric field, Eq. (6.13), in the exact 1 + 1D Z2 LGT,
Eq. (5.1), after eliminating the matter, and its mean-field theory in the gauge sector, Eq. (6.6),
for different parameter values h and λ as a function of filling n. (a) The polarization in the
absence of the electric field term, h = 0, is finite for low filling and finite SC term, λ ̸= 0, for
the exact Z2 LGT. (b) For finite electric field term h/t = 1, the polarization is finite for any
finite filling n, in the exact Z2 LGT, with an almost linear decay as a function of filling n.
(c) The polarization in the regime with zero electric field term, h = 0, is finite for any value
of the SC term λ, at low filling in the mean-field theory in the gauge sector. These results
qualitatively match the exact Z2 LGT for λ ̸= 0. (d) Excellent agreement in polarization
in the mean-field theory with the exact Z2 LGT can be seen for finite electric field value
h/t = 1. This figure was obtained from Fig. 13 in Ref. [5].

We define the Z2 electric field polarization as [5]

P =
1

L + 1 ∑
j

〈
τ̂x
⟨j,j+1⟩

〉
. (6.13)

The results for different parameter values h, λ and filling n are presented in Fig. 6.7, for
both the exact Z2 LGT and the mean-field theory for the gauge sector.

For the exact Z2 LGT in the absence of the Z2 electric field term h = 0, and finite SC term
λ ̸= 0, we observe finite polarization for low filling n ≲ 0.2. The onset of finite polarization
as a function of filling depends on the value of the SC term λ, see Fig. 6.7(a). It shifts to
higher value of n, with increasing value of |λ|. This is in agreement with the previous
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numerical results where we observed dependence on the SC term λ for the transition to
the FM state. When h = λ = 0, the polarization remains close to zero for any finite filling
n > 0, which indicates no transition to the FM state. This is also in agreement with the
previous results, as at λ = 0 free partons form a LL [5].

Comparing these results to the mean-field theory for the gauge sector in Fig. 6.7(c),
reveals excellent agreement when SC term is finite λ ̸= 0. However, we do not see any
dependence on λ, and the transition always occurs at approximately same filling n ≈ 0.2.
In addition, we also observe finite polarization for low filling when λ = 0. These results are
thus in agreement with previous numerical results for the mean-field theory in the gauge
sector, which captures the main features of the exact Z2 LGT, except on the λ = 0 line [5].

For finite Z2 electric field term h/t = 1, the polarization in the exact Z2 LGT is finite
for any finite filling n; see Fig. 6.7(b). It has an almost linear dependence on filling as it
decreases with increasing filling n. There is no significant change in this behaviour for
different values of λ. Mean-field theory for h/t = 1, shows excellent agreement with the
polarization in the exact model; see Fig. 6.7(d). The results match very well, and almost
coincide [5].

In conclusion, we see that the mean-field theory in the gauge sector exhibits excellent
agreement in the Z2 electric field polarization, and thus the agreement in confining features
and transitions come as no surprise [5]

6.6 Summary and conclusion of the mean-field theory for the LGT

In this chapter we have developed a mean-field theory for the extended 1 + 1D Z2 LGT
with SC term, where matter is coupled to a gauge field. We first derived the mean-field
theory by considering a product ansatz and thus effectively factorized matter and gauge
degrees of freedom. We enforced the Gauss law on the mean field level by imposing La-
grange multipliers, which act as constraints that enforce correct filling. The mean-field
model in the gauge sector, Eq. (6.2), reduces to a simple one-dimensional superconducting
wire model [190]. Such class of models can be solved via Jordan-Wigner and Bogoliubov
transformations [192]. The gauge field simply renormalizes the interaction parameters, and
the confining Z2 electric field becomes a constant energy offset [5]. On the one hand, the
mean-field theory for the charge sector exactly captures the regime when the Z2 electric
field term is zero, h = 0, as the exact model also maps to the same SC model in the limit
of static charges, i.e., when h = 0 [5, 119]. On the other hand, it completely misses the
confined Higgs phase or the confined meson LL, when h ̸= 0, as the electric field term
is simply a constant energy offset and thus does not modify the physics and the phase
diagram.

In the gauge sector the mean-field theory, Eq. (6.6), is identified as an Ising model
with transverse and longitudinal fields [5]. The Ising interaction comes from the Lagrange
multiplier and controls the domain-wall number, i.e., enforces the Gauss law and controls
the parton number in the chain [5]. The transverse field term comes from the combined
contribution of the hopping t, and SC term λ, and is renormalized by the matter field
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[5]. Finally, the longitudinal field is simply the Z2 electric field term h. We solved the
mean-field theory self-consistently for given parameter values and filling [5]. We started by
first determining the value of the longitudinal field g, by solving the mean-field theory in
the matter sector via the Bogoliubov transformation. We then used DMRG calculations to
search for the correct chemical potential µτ, which yields the desired filling.

Next, we determined the phase diagram of the mean-field theory for the gauge sector
by studying the entanglement entropy, from which we extracted the central charge. In
order to study confinement we also calculate the gauge invariant Green’s function and the
string-length histograms. We found excellent agreement of the mean-field theory with the
exact Z2 LGT. It correctly captures the transition between the deconfined SPT phase to the
confined symmetry broken FM and AFM when h = 0. For finite electric field term, h ̸= 0,
it also correctly captures the transition from confined Higgs to the confined AFM state at
high filling. A minor limitation of the mean-field theory is that transitions at finite fillings
do not exhibit any dependence on the SC term λ, whereas a weak dependence is seen in
the exact Z2 LGT [5]. A slightly bigger limitation is the fact that the mean-field theory
breaks the U(1) symmetry related to the parton number conservation. Consequently, on
the special line λ = 0 no parton LL is obtained when h = 0, and no meson LL is seen for
h ̸= 0 [5]. Nevertheless, the deconfined regime for h = λ = 0 at intermediate fillings, and
confinement at h ̸= 0, λ = 0, for any filling, is still captured qualitatively [5].

We have demonstrated that a simple mean-field theory can be derived for a paradig-
matic 1+ 1D Z2 LGT with dynamical matter, which captures the main features of the exact
LGT. The most important among these are confined and deconfined phases, which are
fully captured by the mean-field theory for the gauge fields [5]. In addition, we gained
new physical insights into the Z2 LGT. The mean-field developed for the one-dimensional
Z2 LGT can be also extended to higher or mixed dimensional Z2 LGTs, where a simplified
theory is even more desirable as the treatment of the exact LGT is even more complicated.



Chapter 7

Beyond one-dimension: mixed
dimensional XXZ model

In this chapter, we study a mixed-dimensional spin system where we consider a two-
dimensional square lattice with full XXZ interactions in one of the dimensions, and a simple
Ising interaction in the other dimension. The motivation to study such system is twofold.
On the one hand, this model can be simulated in state-of-the-art quantum simulation setups
with atoms that possess dipolar interactions, or with ultracold molecules [31, 211]. On the
other hand, such mixed dimensional models can be mapped to an effective 1+ 1D Z2 LGT,
which we extensively studied in this thesis. Hence, this model can exhibit a confinement-
deconfinement transition, where spin domain walls are formulated in terms of partons that
bind into mesons.

We first study the ground state phase diagram by performing DMRG calculations,
where we wind the MPS chain on a cylinder with limited circumference in order to imple-
ment a two-dimensional system. We uncover an interesting phase diagram, which contains
a stripe order of spins for sufficient Ising coupling, and a disordered state otherwise. In
addition to the ground state results, we also simulate the system at finite temperature and
study the meson gas state at low magnetization and temperature. In such state partons bind
into mesons in a similar fashion as in the pure Z2 LGT system. The mapping to the Z2 LGT
system thus offers a nice reformulation of the problem and explanation of the underlying
physical mechanism.

This chapter is based on a manuscript, which at the time of writing this thesis was in
preparation and had a preliminary title Mixed- dimensional XXZ model, [6]. We note that the
author list and its order were also preliminary at that stage.

7.1 Introduction

The main motivation to study such system is its potential to be experimentally realized
in quantum simulation setups where the constituents possess dipolar interactions. Possible
candidates are thus atoms with dipolar interactions, or polar molecules. One of the possible
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platforms are cold atom optical lattices with Erbium [31]. There, an extended Bose-Hubbard
model has already been experimentally realized, which can be expressed as [31]

ĤBH = −t ∑
⟨i,j⟩

(
â†

i âj + H.c.
)
− ∑

j
µjn̂j + ∑

i<j
Vi,jn̂in̂j. (7.1)

Such system has long distance interactions Vi,j, arising from dipole-dipole forces between
Erbium atoms, which can be expressed as [31]

Vi,j = V0
1 − 3((x/r) sin θ cos ϕ + (y/r) sin θ sin ϕ)2

r3 (7.2)

The interactions thus decay as ∝ 1/r3, where r = |i − j| is the distance between the atoms
[31]. In addition, we define the x and y component distance between the atoms, and (θ, ϕ)

are the dipole polar and azimuthal angles, respectively [31].
We will consider the hard-core boson limit, and truncate the long distance interactions

only to nearest-neighbour (NN). Such model then maps to a two-dimensional XXZ chain
with interactions that are tunable in the x and y direction.

The model that we study in this chapter contains another restriction, namely, we only
allow for atom hopping in the x-direction of the optical lattice, which is also experimen-
tally feasible [31]. As we will soon see in the next section where we formally define the
model, this results in spin raising and lowering operators acting only in one of the spa-
tial directions. In such sense, our model is an analog to mixed-dimensional t − J models,
where hopping is also restricted only to a single dimension, whereas the interactions are
two-dimensional [132, 169]. The above restriction to one-dimensional hopping brings our
model closer to the mixed-dimensional t − Jz model, which in turn can directly be mapped
to a 1 + 1D Z2 LGT [132]. We will show that already in the absence of holes, i.e., when the
system reduces purely to spins, similar mapping can be performed, where the Z2 electric
field value emerges on the mean-field level [6].

Detail studies of such models is thus interesting from the perspective of the study of
confinement in the context of Z2 LGTs and their experimental realization with cold atoms.
The seemingly simple spin system thus has a far reaching influence in different fields of
physics.

7.2 Model

We consider a two-dimensional spin-1/2 lattice, with spin raising/lowering operators act-
ing only in one spatial direction, whereas the Ising interactions act in both, which we
express as [6]

Ĥ = ∑
⟨i,j⟩x

[
J⊥x
2

(
Ŝ+

i Ŝ−
j + Ŝ+

j Ŝ−
i

)
+ Jz

xŜz
i Ŝz

j

]
− Jy ∑

⟨i,j⟩y

Ŝz
i Ŝz

j . (7.3)

Here, the sum ⟨i, j⟩x is to be understood over NN in the x-direction, and ⟨i, j⟩y as a NN
sum in the y-direction; see Fig. 7.1(a). The spin raising/lowering operators are defined



7.2 Model 139

Figure 7.1: Mixed-dimensional XXZ model, Eq. (7.3). (a) A sketch of the two-dimensional
spin-1/2 lattice, where in the x-direction, the system has full XXZ interactions (highlighted
in grey), and a simple FM Ising coupling in the y-direction. (b) Mapping between the XXZ
chain basis and the Z2 LGT picture. The orange line denotes the Z2 string, which denotes
negative orientation of the Z2 electric field τx

j,j+1 = ⟨τ̂x
j,j+1⟩ = −1. No string denotes positive

orientation. (c) Ground state phase diagram of the mixed-dimensional XXZ model, Eq. (7.3),
for zero total magnetization m = 0, which exhibits an AFM stripe order (sketch of a possible
spin configuration in the bracket), stabilized by the inter-chain coupling Jy. (d) Ground state
phase diagram for finite filling, m ̸= 0, which exhibits a super stripe order in the y-direction
(sketch of the spin configuration in the inset) stabilized by the FM inter-chain coupling Jy.
(e) A phase diagram of the mixed-dimensional XXZ model as a function of magnetization
m and temperature T, with a sketch of the meson gas residing at low magnetization and
temperature. This figure will be presented in Ref. [6].

as Ŝ±, and the z-component spin operator as Ŝz. If not stated otherwise, we will always
consider AFM interactions in the x-direction Jz

x > 0, and FM interactions, Jy > 0, in the y-
direction. In addition, the size of our system in the x-direction is Lx, and in the y-direction
Ly, with a total number of spin sites equal to As = LxLy. We typically consider open
boundary conditions (OBC) in the longer x-direction and periodic boundary conditions
(PBC) in the shorter y-direction. We can thus consider our system also as consisting of Ly

one-dimensional XXZ chains, which are coupled in the y-direction by a simple NN Ising
interaction, as sketched in Fig. 7.1(a). Related to the above, we define the magnetization of
the y-th chain as [5]

my
c =

1
Ly

∑
⟨i,j⟩y

〈
Ŝz

j

〉
. (7.4)

When the Ising interaction in the y-direction is zero, Jy = 0, the XXZ chains are decou-
pled, meaning that the system reduces to Ly isolated, identical XXZ chains [6]. The physics
of such system is well known, and can be solved using the Bethe ansatz [182, 184–186]. The
one-dimensional XXZ chains form a Luttinger liquid for generic magnetization mc, and
parameter value J⊥x /Jz

x [6, 182]. Such regime can be parameterized by the Luttinger liquid
parameter K, which determines the strength of the interactions in the system [182]. The
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Luttinger liquid parameter can be extracted from the long distance behaviour of the spin-
spin correlations, which typically decay with a power law [182]. For zero magnetization,
my

c = 0, the spins form an ordered anti-ferromagnetic (AFM) phase for dominant Ising
interaction J⊥x /Jz

x < 1. This is a BKT transition, where the system becomes gapped [182].
When the coupling between chains is finite Jy > 0, such order can be stabilized also for

higher values of the J⊥x term [6]. It also induces coherence between chains, and we can thus
obtain various stripe ordering in the y-direction. When the coupling Jy is weak, we can still
consider the system to be one-dimensional, and the coupling Jy can be considered as an
interaction, which renormalizes the interactions in the one-dimensional chain [6, 182].

We treat the mixed-dimensional XXZ model, Eq. (7.3), by employing DMRG calcula-
tions, where the MPS are winded on a cylinder with circumference Ly.

7.2.1 Mapping to the Z2 lattice gauge theory

The mixed-dimensional XXZ model, Eq. (7.3), can be effectively mapped to a paradigmatic
one-dimensional Z2 LGT with dynamical matter. As was discussed in great detail in this
work, such LGT exhibits confinement of individual particles (partons) into dimers (mesons),
at finite Z2 electric field value [1, 3–5, 160]. Such formulation will also help us interpret the
numerical results in the next section.

The starting point of this mapping is to consider the spin domain walls in an AFM spin
background as hard-core bosons, which we define as [6]

n̂⟨j,j+1⟩ = â†
⟨j,j+1⟩ â⟨j,j+1⟩ =

1
2

(
1 + 4Ŝz

j Ŝz
j+1

)
, (7.5)

where â†(â) are again hard-core boson creation (annihilation) operators. The idea behind
such definition comes directly from the Gauss law, and will become apparent below. We
note that contrary to the usual Z2 electric field representation with the τ̂x, this time we are
in the z-component spin basis. The hard-core parton definition is sketched in Fig. 7.1(b),
where we also sketch the Z2 strings. These again indicate the orientation of the Z2 electric
field, which we define as [1, 2, 6]

τ̂x
j = 2(−1)jŜz

j . (7.6)

Such definition fulfills the Gauss law, which is defined in the usual way as [1, 6, 121]

Ĝj = τ̂x
⟨j−1,j⟩τ̂

x
⟨j,j+1⟩(−1)n̂j . (7.7)

More precisely, it satisfies the Gauss law constraint in the physical sector where the states
take positive eigenvalues, Ĝj |ψ⟩ = + |ψ⟩ , ∀j [1, 3–5, 121, 160].

By using the definitions in Eq. (7.5) and Eq. (7.6), we can map each term in the mixed-
dimensional XXZ model into the Z2 LGT basis. We can first consider the spin rais-
ing/lowering term proportional to J⊥x , which in the LGT basis has two effects, as sketched
in Fig. 7.2. In the first case, Fig. 7.2(a), it can move an existing domain wall over two lattice
sites, which in the Z2 LGT basis results in hopping of the parton over two lattice sites. In
the second case, Fig. 7.2(b), it can add a pair of domain walls in an AFM configuration,
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Figure 7.2: Mapping between the mixed-dimensional XXZ spin basis and the Z2 LGT basis.
(a) Hopping term across two lattice sites in the Z2 LGT basis originates from the spin
raising/lowering operator acting on a spin configuration, which already contains a spin
domain wall. (b) Pair-creation in the Z2 LGT basis originates from the same process as
in (a) applied to an AFM spin configuration. (c) A sketch of the XXZ model and its Z2
LGT picture indicating the inter-chain spin coupling. This interaction induces stripe and
super-stripe phases in the XXZ chain, and is the origin of the Z2 confining electric field on
the mean-field level in the Z2 LGT basis. This figure will be presented in Ref. [6].

which results in pair creation at links ⟨j − 1, j⟩ and ⟨j + 1, j + 2⟩ in the Z2 LGT picture. Both
cases and their reverse processes are thus mapped to the Z2 picture as [6](

Ŝ+
j+1Ŝ−

j + Ŝ+
j Ŝ−

j+1

)
→(

â†
⟨j−1,j⟩τ̂

z
j τ̂z

j+1 â⟨j+1,j+2⟩ + â†
⟨j−1,j⟩τ̂

z
j τ̂z

j+1 â†
⟨j+1,j+2⟩ + H.c.

) (
1 − â†

⟨j,j+1⟩ â⟨j,j+1⟩
)

. (7.8)

Here we also take into account the necessary condition that only configurations with anti-
aligned spins will result in states that do not vanish after applying such terms. This results
in the condition where, if we consider that partons hop from site j − 1 to site j + 1, the
central lattice site j has to be vacant [6]. The same condition also applies when a pair is
created on sites j − 1 and j + 1.

Next we consider the AFM Ising interaction term in the x-direction, which directly maps
to the chemical potential term via Eq. (7.5), and can be expressed as [6]

Ŝz
x,yŜz

x+1,y → 1
4

(
1 − 2n̂⟨x,x+1⟩,y

)
. (7.9)

We note that we switched to a more explicit coordinate labeling, (x, y), of the position of
the spin operators on the two-dimensional lattice.

The FM Ising interaction in the y-direction has a slightly more complicated mapping.
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By considering Eq. (7.6), it can be expressed as [6]

Ŝz
x,yŜz

x,y+1 → 1
2
(−1)xτ̂x

x,y
1
2
(−1)xτ̂x

x,y+1 =
1
4

τ̂x
x,yτ̂x

x,y+1. (7.10)

By combining all of the terms we can express the mixed-dimensional model in the Z2

LGT picture [6]

ĤLGT = t ∑
x,y

[ (
â†

x−1,yτ̂z
⟨x−1,x⟩,yτ̂z

⟨x,x+1⟩,y âx+1,y + H.c.
) (

1 − n̂x,y
)

+
(

â†
x−1,yτ̂z

⟨x−1,x⟩,yτ̂z
⟨x,x+1⟩,y â†

x+1,y + H.c.
) (

1 − n̂x,y
) ]

+
Jy

8 ∑
x,y

τ̂x
⟨x,x+1⟩,y+1τ̂x

⟨x,x+1⟩,y − µ ∑
x,y

n̂x,y, (7.11)

where we defined t = J⊥x /2 and µ = Jz
x/2. In addition, τ̂z again represents the Z2 gauge

field, and represents the minimal coupling of the gauge field to matter [6]. We also relabeled
spin links to matter sites and vice versa, ⟨j − 1, j⟩ → j, in order to arrive at the standard
formulation of the LGTs used throughout this thesis [6].

The Z2 LGT we derived above is slightly different in comparison to what we studied in
the previous chapters in this thesis. The most obvious difference is that hopping of partons
takes place over two lattice sites, e.g. j − 1 to j + 1. Similarly, the SC term, which breaks
the overall U(1) symmetry of the partons, also creates or annihilates a parton pair over
two lattice site, e.g., at sites j − 1 and j + 1. This comes with the condition that the central
site j in both cases has to be empty. Despite of these differences we expect that the overall
physical behaviour should not change, and thus similar properties are assumed for this
model to the ones encountered for the 1 + 1D Z2 LGT with SC terms in Chapter 5.

However, a bigger difference in terms of physical properties comes from the inter-chain
coupling Jy. By considering this term on the mean-field level we can rewrite it in a linear
form as [6]

Jy

4 ∑
x,y

τ̂x
⟨x,x+1⟩,yτ̂x

⟨x,x+1⟩,y+1 → h ∑
x,y

τ̂x
⟨x,x+1⟩,y. (7.12)

Here we defined the Z2 electric field term h as [6]

h =
Jy

8

(〈
τ̂x
⟨x,x+1⟩,y+1

〉
+
〈
τ̂x
⟨x,x+1⟩,y−1

〉)
, (7.13)

where we furthermore defined the average value of the Z2 electric field in chains neigh-
bouring the chain y, on the mean-field level as [6]

⟨τ̂x
⟨x,x+1⟩,y±1⟩ = 2my±1

s =
2
Lx

∑
x
(−1)j⟨ψ|Ŝz

x,y±1|ψ⟩. (7.14)

As can be seen from the expression above, this is simply the staggered magnetization of
the neighbouring chains. As a result we can see that on the mean-field level the system
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Figure 7.3: A sketch of the MPS chain meandering on a two-dimensional lattice, and
thus implementing a two-dimensional system, where one of the dimensions is significantly
shorter from the other one. This example shows Ly = 3, which results in NN interactions in
the x-direction effectively being third neighbour interactions in the MPS chain. This figure
will be presented in Ref. [6].

will be confining for non-zero value of the inter-chain coupling Jy and when the chains have
a non-zero staggered magnetization. The system thus has to posses an underlying AFM
order to exhibit confinement in a sense studied so far in this thesis [6].

By tuning the parameter values of the mixed-dimensional XXZ model we can change the
level of AFM ordering in the system and thus change the value of the effective h, which can
result in a confinement-deconfinement transition [6]. Uncoupled chains Jy = 0 are always
deconfined. However, coupled chains Jy > 0, will become confining only when there is
an underlying AFM order, and should deconfine once the spins are completely disordered,
i.e., when J⊥x ≫ Jz

x, Jy.

7.3 Ground state phase diagram

7.3.1 Numerical simulation of the mixed-dimensional XXZ model with MPS

To study the mixed-dimensional XXZ model we turn to DMRG simulations of the system.
For that we again use SyTen [153, 154]. Since we are in fact simulating a system on a two-
dimensional lattice, we have to wind the MPS chain as sketched in Fig. 7.3. As a result,
the NN interactions in the x-direction become Ly-th neighbour interactions in the MPS
implementation. This makes the calculations more challenging as DMRG thrives when the
interactions are local, and begins to struggle when the interactions span over more lattice
sites [35]. This greatly limits the Ly of the system, and great care needs to be taken in order
to converge the results. In order to reduce the boundary effects in the y-direction we thus
employ PBC in that dimension while keeping the OBC in the x-direction [6]. Due to the
limitations listed above, this is thus a two-dimensional system with a significant limitation
since Lx ≫ Ly.

We typically consider bond dimension up to χ = 2048, and where possible use the U(1)
symmetry where we limit the system to a sector with a set total magnetization m. The
system size considered for the ground state calculations are Lx = 40 and Ly = 3.



144 7. Beyond one-dimension: mixed dimensional XXZ model

We also perform finite temperature calculations in a similar manner as described in
Section 1.3.3. Since we consider a mixed-dimensional system the doubling of the MPS
chain results in 2Ly-th neighbour interactions. As a result, we have to use a global U(1)
symmetry for the whole system (physical sites and ancilla sites), when performing the
calculations. We have to choose the sector where the combined magnetization is zero,
mphysical + mancilla = 0, as the maximally entangled state is formed by singlets between
physical and the corresponding ancilla sites [167]. In order to induce finite magnetization in
the physical chain we add a finite field ∝ hz ∑x,y Ŝz

x,y. The full Hamiltonian in the numerical
calculations is thus equal to [6]

Ĥ = ∑
⟨i,j⟩x

[
J⊥x
2

(
Ŝ+

i Ŝ−
j + Ŝ+

j Ŝ−
i

)
+ Jz

xŜz
i Ŝz

j

]
− Jy ∑

⟨i,j⟩y

Ŝz
i Ŝz

j + hz ∑
j

Ŝz
j . (7.15)

This is allowed since in this method the magnetization is not conserved in the physical and
ancilla sites separately, however it is conserved for the combined system [167]. The typical
system size for finite temperature calculations are Lx = 20 and Ly = 3. We again note that
in the quantum purification method, the Hamiltonian Ĥ in the imaginary time evolution
[6, 164, 167]

|ψ(β)⟩ = e−βĤ/2 |ψ(β = 0)⟩ , (7.16)

acts only on the physical states. These are in our case again even sites, and ancilla sites thus
correspond to odd sites, of the doubled MPS chains. The sums in Eq. (7.15) are thus to be
understood accordingly.

7.3.2 Spin-spin correlations

In order to study the ground state phase diagram of the mixed-dimensional XXZ model we
first consider spin-spin correlations in the longer x-direction. In the limit when there is no
Ising coupling in the y-direction, Jy = 0, our system reduces to Ly identical XXZ chains [6].
As already discussed, a simple one-dimensional XXZ chain forms a Luttinger liquid where
the spin-spin correlations decay with a power law [182]〈

Ŝz
j Ŝz

j+x

〉
= m2

c −
K

2π2
1
x2 + C1 cos(π[1 + 2mc]x)

1
x2K , (7.17)

where mc is the magnetization of the chain, and K is the LL parameter [6, 182]. Furthermore,
C1 is a model dependent constant [182].

Although the above expression, Eq. (7.17), strictly holds only in one-dimension, i.e.,
when Jy = 0, we can still use it in the full mixed-dimensional setting in order to determine
the strength of the spin-spin correlations, and thus study whether the system is ordering.
For example, in order to probe the AFM stripe regime, where all of the spins have coherent
AFM correlations, see Fig. 7.1(c), we can also consider the behaviour of [6]

Cz
AFMx

(x) = (−1)x
〈

Ŝz
x0,y0

Ŝz
x0+x,y0

〉
. (7.18)
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Figure 7.4: LL-like parameter K̃ extracted from the spin-spin correlations, Eq. (7.17), in the
longer, x-dimension. (a) For zero magnetization m = 0, we obtain low value K̃ < 1/2 when
J⊥x < Jz

x and Jy = 0, which signals ordered AFM regime. These value are also obtained for
Jy > 0, for higher values J⊥x < Jz

x, which shows that inter-chain coupling stabilizes the AFM
stripe order. (b) For finite magnetization m = 0.1, the LL-like parameter K̃, decreases below
K̃ < 1/2, when J⊥x ≪ Jz

x and Jy > 0, indicating increased spin coherence in that regime.
The black lines in both cases signals the regime where the extrapolated values of the LL
parameter equal to K̃ = 1/2. This figure will be presented in Ref. [6].

In the regime where the system exhibits long-range AFM correlations the above correlator
saturates to a finite value limx→∞(−1)x⟨Ŝz

x0,y0
Ŝz

x0+x,y0
⟩ ̸= 0. The super-stripe regime as

sketched in Fig. 7.1(d), is slightly more complicated as the AFM stripe regime, however
similar reasoning can be used.

As a first probe of the spin-spin correlations we fit the LL expression, Eq. (7.17), to the
data obtained from one of the chains in our mixed-dimensional XXZ model, for different
parameter values J⊥x /Jz

x, and Jy/Jz
x. In Fig. 7.4 we present the obtained value of the power

law exponent in Eq. (7.17), which we denote with K̃ and name the Luttinger liquid-like
parameter. That it is to stress the fact that this is a conventional LL parameter only in the
regime when Jy = 0 [6]. However, as already stated before, we expect that the expression
holds also for weak coupling Jy and can be used to determine the strength of the spin-
spin correlation for general Jy. Generally, low values of the LL parameter K, signal strong
interactions in the chain, which results in weak decays of the correlation functions [182].

For zero magnetization m = 0, we uncover excellent agreement on the line Jy = 0 with
the expected values for the XXZ chains, as the value of K̃ approaches the value of K̃ = 1/2
close to J⊥x /Jz

x = 1 [182]. This is the transition point to the gapped AFM state at zero
magnetization, m = 0, in a pure one-dimensional XXZ chain. We define the region close to
K̃ ≈ 1/2 as the boundary where the system orders in an AFM state, which for finite chain
coupling Jy > 0, results in the AFM stripe ordered state. As can be seen in Fig. 7.4(a) the
inter-chain coupling extends the area where K̃ < 1/2 also for J⊥x > Jz

x when Jy > Jz
x. We

relate this area to the stripe AFM ordered regime, sketched in the inset of Fig. 7.1(c).
For finite magnetization, m ̸= 0, the one-dimensional XXZ chain can not exhibit an AFM

ordered state, and the system remains a Luttinger liquid, with the Luttinger liquid param-
eter approaching the value K → 1/4, as m → 0, for J⊥x < Jz

x [6, 182]. At finite inter-chain
coupling Jy > 0, we thus don’t expect AFM ordering in the x-direction, however we can



146 7. Beyond one-dimension: mixed dimensional XXZ model

0.5 1.0 1.5 2.0

Jxyx /Jzx

0.0

0.2

0.4

0.6

0.8

1.0

J
y
/
J
z x

Lx = 40, Ly = 3;m = 0.1

0.000

0.039

A

Figure 7.5: Heat diagram of the parameter A, extracted by fitting Eq. (7.19) to the absolute
value of the spin-spin correlations. This figure will be presented in Ref. [6].

expect that finite Jy increases the coherence between the chains in the y-direction, which
can thus form a stripe like pattern sketched in the inset of Fig. 7.1(d). The results obtained
for K̃ from the fits, show that at finite magnetization m = 0.1, the LL-like parameter de-
creases significantly for high inter-chain coupling Jy > 0 and low spin raising/lowering
term J⊥x ≪ Jz

x; see Fig. 7.4(b). This shows that the inter-chain coupling enhances the spin
correlations, which already hints at super-stripe formation [6]. We probe whether the super
stripes are really formed more directly in the next section.

7.3.3 Super-stripe order at finite magnetization

Stripe spin-spin correlation patterns

First we consider the spin-spin correlations at finite magnetization only in the x-direction.
The AFM strip order is relatively clear already in terms of the correlation function dis-
cussed in the previous section. The super-stripe regime on the other hand is not that clear,
as there is no ordered regime in the one-dimensional XXZ chain, to which we could relate
the super-stripe order. For that we consider to probe the stripe order a bit more directly, by
considering the absolute value of the spin-spin correlations and probe whether the correla-
tions saturate to a finite value. We fit the absolute value of the spin-spin correlations with
the following function, where the spin modulation is explicit [6]

f (x) = cos(πφx + θ)

(
A +

B
x2K

)
+ C. (7.19)

In the stripe regime, we would expect the parameter A to saturate to a finite value as the
stripes become coherent at longer distance x [6]. Other parameters are simply fit parame-
ters, which we do not consider in our analysis. The results for A are presented in Fig. 7.5
and show that there is a finite value of A extracted in the region consistent with low LL-like
parameter K̃ in Fig. 7.4(b). This shows that there indeed exists a periodic spin modulation,
which suggests a super stripe structure [6].
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Figure 7.6: Fourier transformation, Eq. (7.21), of the spin-spin correlations for different
values of J⊥x , at fixed value of Jy = 0.4Jz

x. We observe pronounced peaks at kx = π(1 ± 2m)

and ky = 0 for low values of the spin raising/lowering term, J⊥x . With increasing value of
J⊥x the peaks become less pronounced, and finite signal can be observed for ky > 0, which
indicates lower coherence of the stripe order. This figure will be presented in Ref. [6].

Static structure factor for the super stripes

Next we study the spin-spin correlations in both spatial dimensions. We calculate the
correlations between a reference spin in the middle of the chain at x0 = 20, y0 = 2, with
other spins in the lattice [6]

Cz(x, y) =
〈

Ŝz
x0,y0

Ŝz
x,y

〉
. (7.20)

After we compute the above correlations we perform a Fourier transformation, which is
defined as [6]

S(kx, ky) =
1

LxLy

Lx−1

∑
x=0

Ly−1

∑
y=0

e−i(x−x0)kx e−i(y−y0)ky Cz(x, y), (7.21)

where the Fourier modes were discretized as ∆kx = 2π
Lx

and ∆ky = 2π
Ly

, respectively. The
expression in Eq. (7.21) can be thus understood as a version of a static structure factor,
which probes translational symmetry breaking [3, 6, 187]. The super-stripe structure will
thus exhibit well defined peaks related to the periodicity of the stripes [6]. Furthermore,
since the stripes are coherent in the y-direction, the peaks have to be limited to a single
ky = 0 mode [6].

The results presented in Fig. 7.6 show well defined peaks at kx = π(1 ± 2m), limited to
ky = 0, for inter-chain coupling Jy = 0.4Jz

x and low spin raising/lowering term J⊥x ≫ Jz
x, as

expected in the super-stripe regime [6]. These peaks become less pronounced as J⊥x becomes
stronger, signaling melting of the stripe order. In addition, weak signal in ky > 0 can be
seen, which means that the spin coherence in the y-direction decreases. The formation of
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stripes could also be understand in terms of confinement, as the spin domain walls become
locked into stripes.

7.3.4 Summary of the ground state results

The ground state results are summarized in Fig. 7.1(c) and 7.1(d), for different magnetiza-
tion regimes, respectively. We obtain AFM stripe order with spins aligned in the y-direction
and AFM ordering of the spins in the x-direction for zero magnetization regime m = 0. This
is stabilized by non-zero inter-chain coupling Jy > 0, and destabilized by high J⊥x ≫ Jy, Jz

x
terms.

For finite magnetization, m ̸= 0, spin-spin correlations reveal super-stripe formation for
strong inter-chain coupling Jy and weak spin raising/lowering term, J⊥x ≪ Jy, Jz

x. There,
spins align in the y-direction, and form a standing wave pattern in the x-direction; see the
inset in Fig. 7.1(d). This becomes apparent by considering the Fourier transformation of the
spin-spin correlations.

7.4 Meson gas at finite temperature

Now we turn our focus to finite temperature properties of the mixed-dimensional XXZ
model. In order to obtain the finite temperature results we again employ the quantum
purification scheme where we enlarge our system by adding an ancilla lattice site to every
physical lattice site [164, 165, 167, 168]. The procedure is thus similar to the one described
in Chapter 1.3.3, and Chapter 4; see also Section 7.3.1. We note that we again use the MPS
toolkit SyTen [153, 154]. As a result of the doubling of the MPS lattice site, the physical
lattice that we consider in our finite temperature calculations are lower and we consider a
system with the physical dimension of Lx = 20, and Ly = 3; see also Section 7.3.1.

Our results for the ground state showed that the system forms a stripe order in the
strong coupling regime Jy, Jz

x ≫ J⊥x . The exact nature of the stripe pattern depends on
the magnetization m. By developing the Z2 LGT picture, where we mapped our mixed-
dimensional XXZ model to a one-dimensional Z2 LGT, we saw that the domain walls in
the LGT picture become partons, which can bind and form a confined phase. In order for
that to happen, the inter-chain coupling has to be finite in addition to the finite staggered
magnetization in the chains; see Section 7.2.1.

The formation of stripes in the ground state can be understood as domain walls being
bound or locked to the stripes [6]. The partons can be therefore seen as being spatially
bound to stripes and not necessarily confined to each other, i.e., the partons can be con-
sidered to be confined to the stripes that they form. Here, we are therefore interested
how finite temperature can melt the super-stripe order and if confinement, where partons
confine into mesons, can be observed for low enough temperature.
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Figure 7.7: Fourier transformation of the spin-spin correlations, Eq. (7.21) for different tem-
perature T and finite magnetization |m| ≈ 0.15. The chosen parameters are J⊥x /Jz

x = 0.4,
Jy/Jz

x = 0.8, where we added a field in the z-direction in order to induce finite magnetiza-
tion at approximate |m| ≈ 0.15. In the ground state two peaks are seen at kx = π(1 ± 2m),
ky = 0, indicating a super stripe order. At low temperature, T ≲ 0.3Jz

x, we observe a single
peak at kx = π, which indicates the meson gas regime as the magnetization is finite. For
higher temperature, T ≳ 0.5Jz

x, the peak at kx = π broadens and becomes less pronounced,
which signals that the AFM correlations become weaker, and the system forms a free char-
gon gas. This figure will be presented in Ref. [6].

7.4.1 Melting the stripe order

In order for the partons to be confined in the Z2 LGT picture, the spins in the mixed-
dimensional XXZ model have to posses a finite staggered magnetization, (−1)j

〈
Ŝz

j

〉
̸= 0,

and the coupling between the chains has to be finite Jy > 0. At finite temperature T > 0,
we expect to destroy the super-stripe order. We study whether spinons (partons) confine
in the presence of underlying AFM order and form a gas of mesons [6]. We are thus
interested whether the local AFM order is present at low temperatures that can mediate the
confinement on the mean-field level as explained in Section 7.2.1. For higher temperatures
such order is ultimately destroyed and the spinons form a free parton (chargon) gas [6,
132].

To study such behaviour we consider the Fourier transformation of the spin-spin corre-
lations, Eq. (7.21), which directly probes any ordered, symmetry broken state. To uncover
the meson gas, where partons are confined, we thus need to observe a well defined peak at
kx = π, localized to ky = 0, which would indicate AFM correlations that are the necessary
ingredient for confinement [6]. To see a clear change from the stripe order to the meson
gas regime, we consider a system with finite magnetization m ̸= 0. There, the super-stripe
order, indicated by peaks at kx = π(1 ± m), for T = 0 is melted into a meson gas regime at
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low but finite temperature T > 0, provided the Fourier transformation, Eq. (7.21), exhibits
a well defined peak at kx = π [6]. Such change of behaviour would be a clear indication
that the super-stripe order is destroyed, but local AFM correlations arise that mediate con-
finement of partons, resulting in the meson gas. The benefit of weak magnetization, m ̸= 0,
is also that the system always contains a finite number of partons, which are therefore not
just present because of the spin fluctuations [6].

In order to probe the meson gas we consider the Fourier transformation of the spin-spin
correlations at different temperatures T and finite magnetization m = 0.15. Furthermore,
we choose the parameter regime where the ground state calculations indicate well defined
super-stripes: J⊥x /Jz

x = 0.4, and Jy/Jz
x = 0.8 [6]; see Fig. 7.4 for the ground state results

with similar magnetization. The results presented in Fig. 7.7, show well defined peaks at
kx = π(1 ± 2m), ky = 0, in the ground state T = 0, which indicate the super-stripe order.
For low temperature, T ≲ 0.5Jz

x, we observe a single, well defined peak at kx = π, ky = 0.
This is the key signature of the confined meson gas as the system has finite magnetization,
|m| ≈ 0.15. The partons confine into mesons in the spin AFM ordered background, as
described in the Z2 LGT picture [6]. For higher temperature, T ≳ 0.5Jz

x, the height of the
peak at kx = π lowers and significantly broadens. This indicates that the AFM correlations
become weaker and the partons form a free chargon gas, i.e., the spinon excitations become
deconfined [6].

Similar features are also observed for higher magnetization. However, there the peaks
at kx = π are much broader already for lower temperatures, and we thus assume that the
super-stripes melt directly into the spinon gas. With these data we conjecture the phase
diagram in Fig 7.1(e), where we assume that the meson gas forms only for low magne-
tization m. This reasoning comes from the fact that at higher magnetization, more spins
will have to be orientated in the same direction. This results in more spinons or partons
in the Z2 LGT language, which also results in the AFM correlations becoming weaker. For
the meson gas to form, the system needs to have enough energy to melt the stripes at low
temperature Tstripes, but still retain some level of AFM correlations, which completely dis-
appear at TAFM. Thus we see that at low magnetization the following condition has to be
met: 0 < Tstripes < TAFM, in order to stabilize a meson gas regime [6].

7.4.2 Confinement in the context of LGT

Finally, we also consider the string and anti-string length distributions for the mixed-
dimensional XXZ model, as defined in the Z2 LGT mapping in Section 7.2.1. This allows
us to understand the microscopic picture of the meson gas better, and provides an experi-
mental probe of confinement.

The procedure to obtain snapshots is again similar as already discussed in the previous
chapters of this thesis. We note that this time we sample in the z-component spin basis,
as per definition in Eq. (7.7). We again record the lengths between odd-even and even-
odd partons, which are defined via Eq. (7.5). However, since the confining Z2 electric
field emerges on the mean-field level, it is not straight forward which orientation of the
Z2 electric field in the snapshots represents the string and which the anti-string. As a
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Figure 7.8: String and anti-string length distributions as defined from the effective mapping
of the mixed-dimensional XXZ model, Eq. (7.3), to the Z2 LGT Eq. (7.11) for different
temperature T. In both cases the parameter values are J⊥x /Jz

x = 0.4, Jy/Jz
x = 0.8 and the

physical system size is Lx = 20 and Ly = 3. (a) For higher temperature, T = 0.5Jz
x, the string

and anti-string distributions are similar. Both have peaks at ℓ = 1, with approximate same
heights and both distributions are relatively broad. (b) For lower temperature T = 0.25Jz

x,
the string length distribution has a much higher peak at ℓ = 1, than the anti-string length
distribution, which is also much broader. This indicates confinement of partons and thus
a meson gas. In both cases we used finite field values in the z-component of the field. For
case (a) the value was hz = 0.3Jz

x and for (b) hz = 0.8Jz
x. The number of snapshots is 400.

This figure will be presented in Ref. [6].

result, we compute the staggered magnetization of the chains my
s . In the confined regime,

partons consisting of the same meson are on average much closer to each other than to
other partons, which belong to the neighboring mesons. This is another way of stating that
the Z2 electric strings are on average much shorter than anti-strings in the confined regime.
In this setting we can thus use the prefactor of the staggered magnetization in order to
determine whether our system started with a string or an anti-string [6]. In the case when
the staggered magnetization in a particular snapshot was positive, we exchange the identity
of strings and anti-string for that snapshot [6]. We note that the same technique could have
been applied already in Chapter 6 for the regime when h = 0 in the extended Z2 LGT
with SC terms. However in that case, most partons came in pairs from the SC term and
we assumed that there is no significant amount of partons in the beginning of the chain
that do not have their origin in the SC term. That case is thus slightly different from the
mixed-dimensional XXZ model. The above method could have artificially discriminated
some snapshots in the pure Z2 LGT with SC terms, and as a result we did not use it there.

To analyze the string and anti-string length distributions we again chose the parameter
regime, J⊥x /Jz

x = 0.4, Jy/Jz
x = 0.8, which results in super-stripes in the ground state. We

choose the results with low magnetization |m| and parton (spinon) density, n. We note that
magnetization is tuned by the field hz in the z-direction, and the parton density depends
on parameter values, magnetization, and temperature. Hence, tuning the exact value is
complicated [6]. Generally, the parton number is rather low at low magnetization and it is
important to have at least two partons in the system in order to see any confining signatures
[6]. In our case this means n ≥ 2/20 = 0.1.

For temperature T/Jz
x = 0.5, which is where the peak at kx = π in Fig. 7.7 starts to be-
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come broader, we see that the string and anti-string distributions are similar; see Fig. 7.8(a).
They both peak at ℓ = 1 with approximate same peak heights and both distributions are
relatively broad. This behaviour thus corresponds to the deconfined regime, in agreement
with the Fourier transformation of the spin-spin correlations at higher magnetization in
Fig. 7.7. For lower temperature, T/Jz

x = 0.2, approximately similar magnetization m, and
parton density n, the string and anti-string length distributions differ significantly; see
Fig. 7.8(b). Strings have a much higher peak at ℓ = 1 than the anti-string length peak, and
the anti-string length distribution is much broader. We attribute this bimodal distribution
to confinement and the meson gas phase [6]. We have thus showed that string and anti-
string length histograms are once again a good measure of confinement, which could be
obtained in cold atom experiments.

We note that in both cases the shape of distributions are similar to what we obtained for
the extended 1 + 1 Z2 LGT with the SC term in Chapter 5.3.2 [5, 6]. This is in agreement
with the mapping of the mixed-dimensional XXZ model to the Z2 LGT model Eq. (7.11)
that contains the SC term, which breaks the U(1) symmetry of the partons. Hence such
similarity comes as no surprise.

7.5 Conclusion and outlook

In this chapter we studied a mixed-dimensional XXZ model, where we consider full XXZ
interactions in the longer x-dimension of the system that have an AFM nature, and a sim-
ple FM Ising interaction in the shorter y-dimension. The main motivation to study such
system is advancement of quantum simulation experiments, where such system can be ex-
perimentally simulated in platforms utilizing cold atoms with tunable dipole interaction,
e.g., atoms with magnetic dipoles like Erbium [31]. We employ MPS calculations in order
to obtain numerical results for the ground state as well as at finite temperature. We con-
sider PBC in the shorter dimension and OBC in the longer one. Our system can be thus
considered as a cylinder with circumference Ly.

In the ground state the system forms ordered stripe phases. At zero magnetization,
the spins order in an AFM fashion in the longer direction, and align in a FM order in
the y-direction. For finite magnetization, the spins form super-stripes, where the spins are
again aligned ferromagnetically in the y-direction. In the x-direction they form coherent
spin waves with periods proportional to magnetization m. These regimes are probed by
considering the Fourier transformation of the spin-spin correlations, where in the stripe
regime we obtain peaks at kx = π(1 ± 2m), which reflect the periodicity of the stripes. In
addition, the peaks are restricted to ky = 0, which signals coherence in the y-direction, i.e.,
FM alignment of spins in that dimension.

We map the mixed-dimensional model to the Z2 LGT basis, where the Z2 electric field
term, responsible for confinement of partons into mesons, emerges on the mean-field level,
at finite FM coupling in the y-direction, and for finite staggered magnetization in the x-
direction.

This mapping motivated us to consider the finite temperature properties of the sys-
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tem, where the stripe order is destroyed by finite temperature, however the AFM interac-
tions in the x-directions still induce local AFM ordering, which results in finite staggered
magnetization. In such regime spinons (partons in the Z2 LGT picture), bind into pairs
(mesons), and form a meson gas. We uncover this regime by calculating the spin-spin cor-
relations at finite temperature T, and magnetization. We show that the super stripes peaks
at kx = π(1 ± 2m) and T = 0, are replaced by a single peak at kx = π at low but finite
temperature. This is the key signature of the meson gas, as the underlying AFM correla-
tions at finite magnetization signal that partons confine into mesons in an AFM background
[6]. For high temperatures, the peaks at kx = π become less pronounced, and gradually
disappear with higher temperature, which indicates that the AFM correlations vanish and
partons (spinons) become free. This picture is valid for low magnetization. At higher mag-
netization it becomes more difficult for the AFM interactions to induce local AFM order.
As a result we expect a transition from stripes directly to a free spinon (chargon) gas at
high enough temperature. We summarize our results for the ground state and for finite
temperature in Fig. 7.1(c)–(e). We note that stripes can be considered as a confined phase,
where spinons (partons) are locked into the stripes.

Finally, we also calculate string and anti-string length distribution according to the map-
ping to the Z2 LGT basis, and are thus completely analogous to the distributions studied
in the previous chapters for the pure Z2 LGTs. Here we show that string and anti-string
length distributions are an excellent probe of confinement and thus the meson gas regime,
which can be readily obtained from the cold atom experiments involving dipolar atoms like
Erbium [6, 31].
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Conclusion and Outlook

In this thesis we studied a one-dimensional Z2 lattice gauge theory, where dynamical mat-
ter is coupled to a Z2 gauge field. The main motivation to study such class of models comes
from the recent advancement of quantum simulations with cold atoms where such models
could be simulated [21–23, 80]. In addition, Z2 LGTs often emerge as low lying effective
theories in condensed matter systems [17, 29, 30]. Furthermore, this Z2 LGT is interest-
ing as it is one of the simplest platforms to study confinement of individual particles into
bound pairs, which we name as mesons.

Confinement itself is a difficult problem, which still has many open questions as the
study of it becomes complicated when the matter density is finite [9]. It also spans across
different branches of physics, as it is an important concept to better understand binding
in high-energy superconductors in condensed matter setting [16], on the one hand, and
the binding of quarks into baryons in high-energy physics (HEP), on the other hand [9].
Although the model studied here is a vast simplification of non-Abelian models studied
in HEP, it can serve as a simple toy model. Better understanding in such simple Z2 LGT
might guide us to tackle more complicated problems in the future. More importantly it can
also be used as first benchmarks of quantum simulations of lattice gauge theories with cold
atoms, which are becoming more powerful, and might help us to gain better insights into
more complicated systems.

In Chapter 1, we provide a brief theoretical introduction into the topics of this thesis.
We briefly outline quantum simulation experiments, and the recent progress on simulating
LGTs. We then introduce Z2 LGT by starting from a more general U(1) LGT. Finally, in the
last section we describe how the Z2 LGT can be numerically simulated using MPS.

The major part of this thesis is devoted to understanding confinement. In Chapter 2,
we provide a solution to the confinement problem of the Z2 LGT with U(1) matter in the
ground state. We start by first defining the problem and by introducing simple limits, e.g.,
a limit where the parton dynamics is frozen. There, confinement emerges from the Z2 elec-
tric field term, which induces linear confining potential in the so called strings that connect
parton pairs. The string picture comes directly from a set of local constraints, which re-
semble the Gauss law on a lattice [1, 3–5, 121]. As a result of the linear confining potential,
parton pairs bind into tight dimers, which we dub as mesons. Next, we explain how con-
finement becomes more complicated when matter and gauge field become dynamical. We
resort to numerical simulations using DMRG, where we consider the Z2 gauge invariant
Green’s function at long distances. It decays exponentially in the confined regime, and with
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a power law in the deconfined regime [1, 160]. We provide a formal solution of the confine-
ment problem by mapping the original Hamiltonian to a string-length basis where Green’s
function can be related to the operator of translations in the new basis [1]. In addition,
we introduce the Friedel oscillations, the period of which doubles in the confined regime,
as a measure of confinement in systems with open boundary conditions [1, 3, 160]. In or-
der to detect confinement in quantum simulation experiments using cold atoms, we also
consider string and anti-string lengths in the system obtained from numerical snapshots.
Similar snapshots can be obtained in cold atom experiments, with site resolved microscopic
resolution. We show that string and anti-string length histograms feature a distinctive bi-
modal distribution in the confined regime, making it a good and simple geometric probe
of confinement.

Motivated by the exciting opportunity of simulating the Z2 LGT with cold atoms we set
to explore the phase diagram of the Z2 LGT with U(1) matter in the next Chapter 3. For
generic fillings, the Z2 LGT with matter that is globally conserved exhibits a simple parton
Luttinger liquid (LL) in the deconfined regime and a slightly more complicated meson LL
in the confined regime. By including the nearest-neighbor (NN) repulsion between partons,
which can be implemented in cold atom experiments, we uncover rich phase diagrams at
two-thirds and at half-filling. We use a combination of MPS calculations, and analytical
considerations in tractable limits. At two-thirds filling, both interactions work together to
stabilize a Mott state of mesons, where every tightly confined meson is followed by a single
vacant lattice site [1]. At half-filling, the case is opposite as the NN repulsion stabilizes a
simple parton Mott state, where lattice sites alternate between being occupied and vacant,
but the Z2 electric field term tries to confine the partons into tight mesons [3]. This results
in interesting behavior on the interface between the Mott state and the meson LL regime,
where due to quantum frustration, partons effectively behave deconfined on short length
scales, although they are in fact confined on longer length scales. This is once again verified
by considering the Green’s function, which has a delayed onset of the exponential decay in
that regime. Mott states are uncovered by considering the meson charge gap and the static
structure factor, which is also experimentally easily obtainable.

In Chapter 4 we study confinement in the Z2 LGT with matter at finite temperature. We
study how confinement is affected at finite temperature, in particular if partons remain con-
fined at low temperature. This is again partially motivated by cold atom experiments, which
naturally operate at finite temperature. We uncover a smooth confinement-deconfinement
crossover at finite temperature, by studying the correlation length of the Green’s function
[4]. We employ quantum purification scheme via MPS to obtain the thermal states of the
Z2 LGT. In addition to the Green’s function, we also analyze Friedel oscillations and string
length distributions, which show that mesons are in fact pre-formed already above the
crossover temperature, where thermal fluctuations destroy the coherence.

In the next Chapter 5, we study phase diagrams of the extended Z2 LGT with matter,
where we include pair creation and annihilation terms that break the U(1) symmetry of
the matter. We map out full phase diagrams at zero and non-zero electric field term, and
uncover that the system exhibits symmetry broken phases at low and high filling, where the
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superconducting (SC) terms induce meson fluctuations, which makes the partons appear
confined. For finite Z2 electric field term, only such transition at high filling remains,
whereas the rest of the system for finite SC terms is in a confined Higgs state.

In order to understand the physics of the Z2 LGT with matter better, we develop a mean-
field theory description in Chapter 6. We do this by decoupling matter and gauge degrees
of freedom while enforcing the Gauss law constraint on the mean-field level via Lagrange
multipliers. We thus obtain two decoupled mean-field theories for the two degrees of
freedom [5]. We uncover excellent qualitative agreement between the exact Z2 LGT and
the gauge field theory for the gauge fields. While the mean-field theory for the gauge field
fails to capture the LL regimes when the SC term is absent, it does capture all of the main
confining features for generic parameter values. In addition, the mean-field theory for the
charges captures the limit where the gauge field is static. However, it fails to capture the
regime where the Z2 electric field term is finite. The mean-field theory for the gauge field
is thus the better choice for a general description of the Z2 LGT. We believe our approach
could be extended to higher dimensions, and offers better insights into understanding the
Z2 LGT.

Finally, in Chapter 7 we study a mixed dimensional XXZ model, which can be mapped
to a version of a Z2 LGT. We show how Z2 LGT formalism can be used to explain the
behaviour of the system at finite temperature, and uncover the so called meson gas at low
spin magnetization and temperatures [6]. This state constitutes to confined state of spinons
in an antiferromagnetic background, which we interpret in terms of partons in the Z2 LGT
formulation. The study of such system was motivated by the quantum simulation of ultra-
cold atoms with magnetic dipoles, which can realize such systems. We thus demonstrate
that we can study the confinement-deconfinement transition in such system, which makes
this platform extremely interesting.

In conclusion, we have extensively studied the confinement in a one-dimensional Z2

LGT coupled with matter both in the ground state and at finite temperature, and showed
that confinement of mesons can be detected at low temperatures. In addition, we studied
rich phase diagrams when the matter has a global U(1) symmetry, and in a general case
when this symmetry is lost. We have developed simple probes of confinement and various
phases in this system, which could be probed in cold atom experiments. Finally, we found
interesting physics in a mixed-dimensional XXZ model, which can be explained with the
Z2 LGT formalism. We provided a deep understanding of a paradigmatic Z2 LGT with
matter in one dimension. We hope this could be used when studying more complicated
gauge structure or higher dimensional systems, and that it provides a road map for what
could already be simulated in quantum simulators with cold atoms.

There are many more aspects that could be explored in the future. A natural extension
of our work would be to consider confinement and phase diagrams of more complicated
gauge structure like the Z3 or Z4. For example a possible future direction could also be
to couple gauge field to spinful matter, which would exhibit similar confinement features,
but the phase diagrams could become even richer. This could once again be tackled by
employing DMRG. Another possible direction would be to consider a two-dimensional



158 Conclusion and Outlook

Z2 LGT coupled to matter. In particular the case, where the total number of hard-core
bosons is conserved has not been studied extensively so far, but is an important aspect to
be explored especially from the perspective of cold atom experiments. There the problem
of confinement is in fact not so well defined as different probes of confinement used in
pure Z2 LGTs can not be used when including matter [174]. Such systems could be also
explored with MPS on cylinders with low circumference or by using, for example projected
entangled pair states (PEPS) [212, 213].

One could also probe dynamical properties of the Z2 LGT, which can be implemented
with MPS and are also extremely relevant from quantum simulation point of view. For
example, it was already shown that Z2 LGTs exhibit quantum scar behaviour [214, 215].
Another exciting direction is also to consider dynamics in such systems, where a recent
proposal by Su et al. [216] developed a scheme to study particle collisions in cold atom se-
tups, analogous to particle colliders. In addition, one could also study transport properties
in Z2 LGTs. We in fact already started exploring the effect of confinement on the transport
properties in a one-dimensional chain, however the results were rather preliminary and we
thus did not include it in this work.

There are thus many possible directions on this topics, and we believe quantum simula-
tions in combination with new numerical techniques will result in interesting developments
in the near future.



Appendix A

Mapping between the hard core
bosons and the XXZ model

The mapping between the hard-core bosons with nearest-neighbor (NN) interactions to a
spin-1/2 XXZ chain is achieved by considering the occupied and empty lattice site as a spin
up and down states, respectively [182]

b̂†
j b̂j −

1
2
→ Ŝz

j . (A.1)

In addition, the hard-core boson creation and annihilation operators are replaced with spin
raising and lowering operators accordingly [182]

b̂†
j → Ŝ+

j ,

b̂j → Ŝ−
j .

(A.2)

We can now define the Hamiltonian with hard-core bosons hopping in a one-dimensional
lattice, with some hopping amplitude t, which experience NN interaction with strength V
as [182]

Ĥb = −t ∑
j

(
b̂†

j b̂j+1 + H.c.
)
+ V ∑

j

(
n̂b

j −
1
2

)(
n̂b

j+1 −
1
2

)
. (A.3)

Above we defined the onsite number operator n̂b
j = b̂†

j b̂j. With the mapping defined in
Eq. (A.1) and Eq. (A.2) the bosonic Hamiltonian can be mapped to a XXZ model [3, 182]

ĤXXZ = ∑
j

[
Jxy

(
Ŝx

j+1Ŝx
j + Ŝy

j+1Ŝy
j

)
+ JzŜz

j+1Ŝz
j

]
, (A.4)

where we took into account the standard spin relations Ŝ± = Ŝx ± iŜy [122, 173]. Since the
mapping is one-to-one the parameters are directly related as Jxy = 2t and Jz = V [3, 182].
Furthermore, we note that magnetization is related to the filling of the bosonic chain via
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Eq. (A.1), which we can thus define as [182]

m =
1
L

L

∑
j=1

〈
Ŝz

j

〉
=

1
L

L

∑
j=1

(〈
b̂†

j b̂j

〉
− 1

2

)
= nb − 1

2
, (A.5)

where nb = Nb/L is the average filling of the bosonic chain, containing Nb hard-core bosons
and L is the chain length.

We can also add a chemical potential term to the hard-core boson model in order to
control the filling [182]

Ĥb
µ = −µ ∑

j

(
n̂b

j −
1
2

)
. (A.6)

In the spin language this is simply a field term [182]

Ĥhz = −µ ∑
j

Ŝz
j . (A.7)

For generic filling nb and parameter ratio V/t, the system forms a Luttinger liquid,
which can be parameterized by the Luttinger liquid parameter, K [182]. The only exception
is at half-filling nb = 0.5, where the system undergoes a BKT transition to a Mott state [182].
The Mott state is a doubly degenerate, gapped, state where every occupied lattice site is
followed by an empty lattice site. In the spin-1/2 picture this corresponds to a gapped AFM
phase where the ground state resembles a Néel state [182].
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Details on the structure factor
calculations

In this section we provide further details on the calculations of the static structure factor at
half-filling discussed in Section 3.4. This discussion is based on the Appendix of Ref. [3].
As already stated in the main text the ground state calculations for half-filling, n = 1/2,
were performed using the MPS toolkit SyTen [153, 154]. The chain lengths of the results
presented in Section 3.4 were equal to L = 120, which thus results in L + 1 = 121 link
variables as we always begin and end the system with a link; see Section 1.3.2 for the
mapping of the Z2 LGT to the spin model via Gauss law.

Here we once gain define the static structure factor for convenience [3, 187]

S(k) =
1
N ∑

j,l
e−i(j−l)k 〈n̂jn̂l

〉
. (B.1)

Despite the long chain lengths, there are sizable finite size effects, which we avoid by
considering only the central 30 < j, l < 90 sites. As a result the momentum k, is discretized
as k = s

L̃ π, where s ∈ Z and L̃ is the number of considered data points. Since the system
size is equal to L = 120, and we consider the sites 30 < j, l < 90, this means that L̃ = 61
[3]. As a result of considering only the central 61 sites the normalization factor is defined
as N = L̃2 [3].

B.1 Peaks at the origin

The results in the main text also contain peaks at the origin with period 2π, which are
hard to see since they are substantially higher than the peaks of interest at half-integer and
integer multiples of π, see Fig. B.1(a). The peaks at the origin with period 2π arise from
considering the non-connected density-density correlations and are thus simply related to
the chain filling squared n2 = 0.25 [3].
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Figure B.1: Numerical details on the structure factor in the Z2 LGT after eliminating matter
via Gauss law. (a) Structure factor Eq. (B.1) over a larger domain k showing also the peaks
at k = 0,±2π associated with the total chain filling n = 1/2. (a) Structure factor peaks for
different value of the electric field term h at k = π/2 and k = π at constant NN repulsion
V = 4t. (c) Structure factor peaks as a function of V in the absence of the electric field term
h = 0. This figure was modified from Fig. 11 and Fig. 13 in the Appendix of Ref. [3].

B.2 Details on peak heights

In Fig. B.1(b) we show the behaviour of the peak heights for V = 4t as a function of h
[3]. The peak, k = π, associated with the parton Mott phase drops with increasing value
of h. Contrarily, the peak at k = π/2 associated with the confined meson LL, increases
with increasing value of h, the amplitude of which is however much lower than the peak
at k = π, suggesting that this peak is indeed associated with only local correlations and no
long-range order. This becomes more clear when considering the system size dependence
of the width of these peaks in the next section.

In Fig. B.1(c), we reveal the peak height in the absence of the Z2 electric field term
h = 0, where the system undergoes a transition to a parton Mott state at V ≥ 2t [3]. This is
reflected in the rising peak k = π height for V ≥ 2t. The peak at k = π/2 remains low for
any value of the NN repulsion V.

B.3 Finite size effects in the static structure factor

We also considered the static structure for smaller system sizes, more precisely at L = 60
and L = 80, in addition to the longest chain length L = 120 [3]. The goal was to study
the system size dependence of our numerical results. The results for static structure factor
Eq. (B.1) for different system size L and parameter values are presented in Fig. B.2.

We note that peaks generally decrease with increasing system size. However, the peaks
are also highly sensitive to the discretization of the momenta k [3]. Thus, at different system
sizes we approach closer to the exact values of k = π/2, π, and thus the peak height varies
according to how close the discretized value approaches the exact integer and half-integer
values of π [3]. As can be seen in Fig. B.2(b) and B.2(c), it appears that this effect might be
even more important than the system size as the peaks for the system size L = 120 appear
higher than the peaks for L = 80.
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Figure B.2: The static structure factor, Eq. (B.1), for different parameter values and systems
sizes L = 60, 80, 120. (a) The structure factor for V = 4t and h = t in the parton Mott state.
(b) The structure factor for V = 4t and h = 2t in the parton plasma regime showing peaks
at half-integer and integer momentum values. (c) The structure factor for V = 4t and h = 3t
in the meson LL regime. This figure was modified from Fig. 14 in the Appendix of Ref. [3].

In addition to the change of the height of the peaks with system size, we also observe
that the width of the peak changes with the system size. The effect of discretization has a
smaller effect on the width of the peaks [3]. The width of peaks at integer π momentum
generally decreases with increasing system size, which means that these peaks really signal
a true long-range order - the parton Mott state [3]. The width of peaks at half-integer π

momentum do not appear to have strong system size dependence, which hints that these
peaks really indicate only locally correlated states, and no real long-range order.
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Appendix C

Solution of the mean-field theory for
the matter sector

The superconducting model, Eq. (6.2) can be diagonalized by using the Bogoliubov trans-
formation [161, 190–192]. The ground state energy of this model is important for the solu-
tion of the mean-field theory for the gauge sector, as it directly relates to the value of the
parameter g. This short appendix section is based on the Appendix C of Ref. [5].

We start by first rewriting the Eq. (6.2) in terms of spinless fermions by using the Jordan-
Wigner transformation [5, 172, 173, 188]

Ĥc = −tc

L−1

∑
j=1

(
ĉ†

j+1ĉj + H.c.
)
+ λc

L−1

∑
j=1

(
ĉ†

j+1ĉ†
j + H.c.

)
+ µc

L

∑
j=1

(
n̂c

j − n
)

. (C.1)

Similar mapping was performed in Section 5.2.1, where we have shown that the original Z2

LGT in the limit when h = 0, maps to the one-dimensional superconducting model [161].
Above, we also defined tc = t⟨τ̂z

⟨j,j+1⟩ and λc = λ⟨τ̂z
⟨j,j+1⟩ [5]. Next, we perform a Fourier

transformation ĉ†
j =

1√
L ∑k e−ikj ĉ†

k , which allows us to express the above equation as [5]

Ĥc = ∑
k>0

(µc − 2tc cos(k))
(

ĉ†
k ĉk + ĉ†

−k ĉ−k

)
+ ∑

k>0
2iλc sin(k)

(
−ĉ†

k ĉ†
−k + ĉ−k ĉk

)
− µcnL. (C.2)

Note that we expressed the equation only in terms of positive k modes [5]. We can rewrite
the above expression in a slightly different form as [5, 192]

Ĥc = ∑
k>0

(
ĉ†

k ĉ−k

)( ϵ(k) −2iλc sin(k)
2iλc sin(k) −ϵ(k)

)(
ĉk

ĉ†
−k

)
+ ∑

k>0
ϵ(k)− µcnL, (C.3)

where we defined ϵ(k) = µc − 2tc cos(k) for convenience [5]. By using the Bogoliubov
transformation we can diagonalize this expression as [5, 192]

Ĥc − ∑
k>0

ϵ(k) + µcnL = ∑
k>0

(
ĉ†

k ĉ−k

)
H(k)

(
ĉk

ĉ†
−k

)
= ∑

k>0

(
b̂†

k b̂−k

)
Λ(k)

(
b̂k

b̂†
−k

)
. (C.4)
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Here we defined the Bogoliubov modes as b̂(†), which is simply a linear combination of
operators ĉ† and ĉ [5, 192]. Furthermore, we defined a diagonal matrix Λ with the following
two entries [5]

Λ±(k) = ±
√
(µc − 2tc cos(k))2 + (2λc sin(k))2. (C.5)

The equation Eq. (C.1) in the diagonal form can be thus expressed as [5]

Ĥc = ∑
k

Λ+b̂†
k b̂k − ∑

k>0
Λ+ + ∑

k>0
ϵ(k)− µcnL. (C.6)

From this expression the ground estate energy equals to [5]

E0 =
〈
Ĥc
〉

/L = − 1
L ∑

k>0
Λ+ +

1
L ∑

k>0
ϵ(k)− µcn, (C.7)

where we normalized the energy per lattice site. To compute this value we consider the
thermodynamic limit, where the above sums can be expressed with integrals [5]

E0 = − 1
2π

∫ π

0
dk
√
(µc − 2tc cos(k))2 + (2λc sin(k))2 +

1
2π

∫ π

0
dk (µc − 2tc cos(k))− µcn.

(C.8)
The above integral can be performed numerically for the set of parameter values tc and λc,
for a chemical potential µc. However, we are interested in the solution for a given filling n.
Hence, we first have to find the chemical potential µc that yields the correct filling n, which
can be done by solving the self-consistency equation [5]

0 !
=

dE0

dµc
= − 1

2π

∫ π

0
dk

ϵ(k)√
ϵ2(k) + (2λc sin(k))2

+
1
2
− n, (C.9)

which gives us an expression for the average filling in terms of µc as [5]

n =
1
2

1 − 1
π

∫ π

0
dk

ϵ(k)√
ϵ2(k) + (2λc sin(k))2

 . (C.10)

To find the solution for E0, we thus need to solve Eq. (C.8) and Eq. (C.10) self-consistently.
This can be done by employing simple numerical integration.

However, we are interested in the value of E0 for a given set of t, λ and filling n, as this
directly gives us the parameter g, since [5]

E0 = −tc

(
⟨ĉ†

j+1ĉj⟩+ ⟨ĉ†
j ĉj+1⟩

)
+ λc

(
⟨ĉ†

j+1ĉ†
j ⟩+ ⟨ĉj ĉj+1⟩

)
= −⟨τ̂z

⟨j,j+1⟩g. (C.11)

The parameter g can thus be expressed as g = −E0/⟨τ̂z
⟨j,j+1⟩ and we can normalize Eq. (C.8),

by the average value ⟨τ̂z
⟨j,j+1⟩. This simplifies our calculations as ⟨τ̂z

⟨j,j+1⟩ is generally not
known, and by normalizing all of the equations by this quantity we simply need to find the
solution of our equations in terms of µ̃c = µc/⟨τ̂z

⟨j,j+1⟩, for known parameter values t and
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λ, for a given filling n [5]. The two relevant equations thus simplify to [5]

g =
1

2π

∫ π

0
dk
√
(µ̃c − 2t cos(k))2 + (2λ sin(k))2 + µ̃c

(
n − 1

2

)
, (C.12)

and the expression for filling becomes [5]

n =
1
2

1 − 1
π

∫ π

0
dk

µ̃c − 2t cos(k)√
(µ̃c − 2t cos(k))2 + λ2(k)

 . (C.13)

These are also the relevant equations presented in the main text.
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