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Zusammenfassung

Diese Arbeit präsentiert die Suche nach Leptonenzahl-verletzenden Zerfällen B0 → τℓ
mit ℓ = e, µ am Belle Experiment. Im Standardmodell ist der Zerfall B0 → τℓ stark
unterdrückt und kann ausschließlich über Neutrinooszillationen auftreten. Sein winziges
erwartetes Verzweigungverhältnis in der Größenordnung von O(10−50) liegt weit unterhalb
der Sensitivität heutiger und zukünftiger Experimente. Das macht ihn zu einem idealen
Kandidaten für die Suche nach Neuer Physikmodelle, wie zum Beispiel Leptoquarkmodelle.
Diese sagen Verzweigungsverhältnisse in der Größenordnung von O(10−9) voraus.

Der Vorteil der Suche am Belle Experiment liegt in seiner sauberen Umgebung der Υ (4S)-
Zerfälle. Die Elektronen und Positronen kollidieren mit Schwerpunktsenergie von 10,58
GeV auf der Υ (4S)-Resonanz, einem gebundenen bb̄ Zustand. In nahezu allen Fällen zerfällt
das Υ (4S) ausschließlich in zwei B Mesonen. Eines der beiden B-Mesonen (signal B) wird
aus einem leichten Lepton und einem τ kombiniert, das in einem von sechs exklusiven
Zerfallskanälen rekonstruiert wird. Der monoenergetische Impuls des leichten Leptons im
Ruhesystem des signal Bs liefert ein klares Signal für Signalereignisse. Jedoch, verhindern
die Neutrinos im Endzustand des τ -Zerfalls, die direkte Bestimmung des signal B Impluses
aus seinen Zerfallsprodukten.

Da ausschließlich zwei B-Mesonen im Ereignis vorhanden sind, wird die Gesamtenergie der
Elektron-Positron-Kollision gleichmäßig auf diese beiden verteilt, und sie sind im Schw-
erpunktsystem rückwärts zueinander orientiert. Mit dem vollständigen Wissen über die
Kinematik des anderen B-Mesons im Ereignis kann der Impuls des signal B berechnet
werden. Die ”Full Event Interpretation”, basiert auf multivariaten Algorithmen, wird ver-
wendet, um das andere B-Meson in neutrino-freien Zerfallskanälen zu rekonstruieren.

Am Ende wurde die Anzahl der Signalereignisse in den Belle Daten, die einer Luminosität
von 711 fb−1 entsprechen, in einem Fit des Leptonen-Impulsverteilung im Ruheframe des
signal Bs bestimmt. Es wurden keine Signalzerfälle beobachtet, daher wurde obere Gren-
zwerte für die Verzweigungsverhältnisse von B0 → τe und B0 → τµ bestimmt. Für das
B0 → τe wurde ein neuer bester oberer Grenzwert für das Verzweigungsverhältnis mit
B(B0 → τe) < 1.2 · 10−5 auf dem 90%-Konfidenzniveau ermittelt.





Abstract

This thesis presents the search for lepton-number violating decays B0 → τℓ with ℓ = e, µ
at the Belle experiment. In the Standard Model, the B0 → τℓ decay is strongly suppressed
and can solely occur via neutrino oscillations. Its tiny expected branching ratio at the
order O(10−50) is far below the sensitivity of today’s and future experiments. The absence
of Standard Model contributions makes it an ideal candidate for new physics searches.
New physics models, for example models with leptoquarks, predict branching ratios of the
order O(10−9).

The advantage of the search at Belle is its clean environment of the Υ (4S) decays. The
electrons and positrons collide at a center-of-mass energy of 10.58 GeV at the Υ (4S) reso-
nance, which is a bb̄ bound state. In nearly all of the cases, the Υ (4S) decays exclusively
into two B mesons and nothing else. One of the two B mesons (signal B) in the event
is reconstructed from a light lepton and τ , which is reconstructed in one of six exclusive
decay channels. The mono-energetic momentum of the light lepton in the signal B rest
frame provides a clear signature for signal events. However, the neutrinos in τ decay final
state, prevent the direct determination of the signal B momentum from its decay products.

Since only two B mesons are present in the event, the total energy of the electron-positron
collision is equally distributed between these two and they are back-to-back in the center-
of-mass frame. With the full knowledge of the kinematics of the other B meson in the
event, the momentum of the signal B can be calculated. The Full Event Interpretation,
which is based on multivariate algorithms, is employed to reconstruct the other B meson
in neutrino-free decay channels.

In the end, the number of signal events in the Belle data corresponding to a luminosity of
711 fb−1 was extracted in a fit of the lepton momentum distribution in the signal B rest
frame. No signal decays were observed, therefore upper limits on the branching ratios of
B0 → τe and B0 → τµ were determined. For the B0 → τe channel a new best upper limit
B(B0 → τe) < 1.2 · 10−5 at 90% was found.

Unless otherwise declared, ℓ denotes either electrons or muons; natural units are used
throughout this thesis, and charge conjugation is implied if not otherwise stated.





Contents

1 Theory 1
1.1 Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Strong Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Electroweak Interaction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Spontaneous Symmetry Breaking . . . . . . . . . . . . . . . . . . . 4
1.1.4 Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.5 Fermion Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.6 CKM Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.7 Lepton Number Conservation and Lepton Universality . . . . . . . 9
1.1.8 Physics of B mesons . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Physics beyond the Standard Model . . . . . . . . . . . . . . . . . . . . . . 12
1.2.1 Lepton Flavor Violation in the Neutrino Sector . . . . . . . . . . . 12
1.2.2 Lepton Flavor Violation in the Charged Lepton Sector . . . . . . . 15
1.2.3 Leptoquarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Previous Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Experimental Methods 19
2.1 Fitting Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Maximum Likelihood Technique . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Extended Maximum Likelihood . . . . . . . . . . . . . . . . . . . . 21
2.1.3 Binned Maximum Likelihood Fit . . . . . . . . . . . . . . . . . . . 21
2.1.4 Hypothesis Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.5 Upper Limit Searches . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Multivariate Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Stochastic Gradient-boosted Decision Trees . . . . . . . . . . . . . . 28
2.2.3 Full Event Interpretation . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Belle Experiment 33
3.1 Belle Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 Beam Pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



x CONTENTS

3.1.2 Silicon Vertex Detector . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.3 Central Drift Chamber . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.4 Particle Identification System . . . . . . . . . . . . . . . . . . . . . 38
3.1.5 Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . . . 40
3.1.6 KL and µ Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Event Types at Belle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Data Sets 43
4.1 Monte Carlo Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Signal Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Background Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4 Monte Carlo Data Set Overview . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Monte Carlo Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5.1 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5.2 Uncertainties of Correlated Parameters . . . . . . . . . . . . . . . . 52
4.5.3 Form Factor B → D(∗)ℓν . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.4 Branching Ratio B → D(∗∗)ℓν . . . . . . . . . . . . . . . . . . . . . 54
4.5.5 Hybrid Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5.6 Efficiency Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Reconstruction of B0→τℓ Events 59
5.1 Analysis Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Reconstruction of B0 → τℓ Events . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 Reconstruction of the Tag Side . . . . . . . . . . . . . . . . . . . . 62
5.2.3 Reconstruction of the Signal Side . . . . . . . . . . . . . . . . . . . 64

5.3 Study of Background Contributions . . . . . . . . . . . . . . . . . . . . . . 70
5.3.1 Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.2 Continuum Suppression . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.3 Best Candidate Selection . . . . . . . . . . . . . . . . . . . . . . . . 75
5.3.4 Study of Background Contributions in the Signal Region . . . . . . 80
5.3.5 Background Suppression . . . . . . . . . . . . . . . . . . . . . . . . 85
5.3.6 Determination of Best B Meson Background Suppression Selection . 93

6 Calibration of the Full Event Interpretation 104
6.1 Reconstruction of Υ (4S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.1.2 Btag Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.1.3 Signal Side Reconstruction . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Continuum Suppression and Best Candidate Selection . . . . . . . . . . . . 109
6.3 Fit Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110



CONTENTS xi

6.4 Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4.1 Fit Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4.2 Fit Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.4.3 Closure Test: Branching Ratio . . . . . . . . . . . . . . . . . . . . . 117
6.4.4 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Validation of FEI Calibration for the B0 → τℓ Channel . . . . . . . . . . . 124

7 Fit of the Lepton Momentum Distribution 129
7.1 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.2 Global Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.3 Local Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.4 Fit Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.5 Fit on Asimov Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.5.1 Expected Upper Limit on the Signal Branching Ratio . . . . . . . . 145

8 Results 149
8.1 Partial Unblinding of Experiment 55 . . . . . . . . . . . . . . . . . . . . . 149
8.2 Fit of the Belle Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
8.3 Discussion of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Bibliography 159

Appendix A BGL Correlation matrix 167

Appendix B FEI Calibration: Toy Study 168

Appendix C Continuum Suppression Selection 169
C.1 classifier output > 0.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
C.2 classifier output > 0.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171





Chapter 1

Theory

This chapter introduces the Standard Model of Particle Physics with its three fundamental
interactions with a special focus on the electroweak sector. Additionally, a short overview
of the physics of B mesons is provided. Afterward, the physics phenomena beyond the
Standard model are discussed with a special emphasis on lepton number violating processes.
In the end, the previous analyses with the most stringent upper limits on the branching
ratio of B0 → τℓ decays are described.

1.1 Standard Model of Particle Physics

Most of the information provided in this chapter is based on the books ”An Introduction
To Quantum Field Theory” by M. Peskin and D. V. Schroeder, ”Concepts of Elementary
Particle Physics” [1] by M. Peskin and the book ”The BABAR Physics Book” [2].

The Standard Model of Particle Physics in its current form was mainly developed in the
1970s and explains the three fundamental forces and the elementary matter particles in
our universe to our current understanding.

Elementary matter particles carry a spin of 1/2 and are characterized by their mass, elec-
tric charge, and additional quantum numbers, which define the types of interactions they
participate in. Each fermionic matter particle has an anti-matter particle with the oppo-
site quantum numbers. There are two different groups of elementary particles: leptons and
quarks. The leptons consist of three charged leptons and their respective neutral partners,
the lepton neutrinos. Quarks have either an electric charge of 2/3 for up-type quarks or
-1/3 for down-type quarks.

Both the leptons and quarks are divided into three generations. The particles of the first
generation are the lightest and make up the matter we observe in our universe. The particles
of the second and third generations are heavier and consequently decay into lighter first-
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generation particles. The first quark generation consists of the up and down quark, the
second of the charm and strange quark, and the third of the top and bottom quark. The
six different types of quarks are called flavors. The electron and electron-neutrino comprise
the first generation of leptons, the muon and muon-neutrino the second generation, and
tau and tau-neutrino the third generation.

Originally, all matter particles were assumed to be massless, which contradicted the exper-
imental measurements. With the discovery of the Higgs boson in 2012, the theory of the
Higgs mechanism [3; 4; 5] by was verified, which also allows elementary matter particles
to gain mass by coupling to the Higgs doublet. The origin of the neutrino masses remains
unclear, and they are assumed to be massless in the Standard Model.

The Standard Model is a quantum field theory of the gauge group SU(3) ⊗ SU(2) ⊗
U(1), describing the strong, weak, and electromagnetic interactions. These interactions
are mediated by their respective spin-1 gauge bosons: the gluons (strong interaction), the
W± and Z0 (weak interaction), and the photon (electromagnetic force).
Fig. 1.1 provides an overview of the Standard Model particles.

Figure 1.1: Particles of the Standard Model taken from [6]

The fundamental concept of gauge theory is the invariance of the Lagrangian, which de-
scribes the dynamics of a system under the gauge transformations. The transformations
introduce additional terms in the Lagrangian, that define the interactions of the fermion
fields with the mediator fields (covariant derivative Dµ). A particle is considered a singlet
of a gauge transformation if its field remains unchanged under the gauge transformation,
meaning it does not couple to the corresponding mediator fields.
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1.1.1 Strong Interaction

The strong interaction is represented by the non-abelian SU(3)C symmetry group, where
C denotes the associated conserved quantum number ”color”. The three associated colors
are red, blue, and green, and their respective anti-colors. Eight massless gluons, carrying
color and anti-color, mediate the strong interactions by coupling to gluons and quarks
(color-triplets) with the strong coupling constant gs. Leptons do not participate in strong
interactions and are color singlets. The strong interaction conserves the flavor of quarks.

In experiments, however, no free quarks and gluons are observed. Instead, the strong force
binds quarks into color singlets known as hadrons. Hadrons can be divided into mesons
consisting of a valence quark-antiquark pair with an integer spin, and baryons composed
of three valence quarks or anti-quarks with odd half-integer spins (e.g., 1/2 or 3/2).

At high energies, the otherwise bound quarks and gluons behave as nearly free particles,
which is known as the asymptotic freedom of the strong coupling constant. At low energies,
the quarks and gluons are confined into hadrons. The behavior of the strong coupling
constant complicates predictions in the low-energy regime since perturbation theory is no
longer applicable.

1.1.2 Electroweak Interaction

The electroweak theory [7; 8; 9] unifies the electromagnetic and weak interactions under
the non-abelian gauge symmetry group SU(2)L⊗U(1)Y . This symmetry group introduces
the quantum numbers weak isospin T3 and the hypercharge Y , which are related to the
electric charge Q by Q = 1

2
Y + T3.

Three massless W bosons associated with SU(2)L and a massless B boson associated with
U(1)Y mediate the electroweak interaction. The field strength tensors of the B field denoted
by Bµ and the W field with its components a = 1,..,3 are represented by W a

µ are given by:

Bµν = ∂µBν − ∂νBµ

W a
µν = ∂µW

a
ν − ∂νW

a
µ − gϵabcW b

µW
c
ν

(1.1)

The associated covariant derivative is defined as:

Dµ = ∂µ − igWµ − ig′ 1
2
Y Bµ

Wµ = 1
2
W a

µσa
(1.2)

where g represents the coupling constant of SU(2)L, g
′ denotes the coupling constant of

U(1)Y and σa denotes the three Pauli matrices.
The charged weak interaction only couples to left-handed fermions or right-handed anti-
fermions. Right-handed fermions and left-handed anti-fermions are singlets of the charged



4 1. Theory

weak interaction. Tab. 1.1 provides an overview of the weak isospin and hypercharge for
the left-handed and right-handed fermions.

Left-handed fermions
Q (T, T3) Y

νeL, νµL, ντL 0 (1/2,+1/2) -1
eL, µL, τL -1 (1/2,−1/2) -1
uL, cL, tL +2/3 (1/2,+1/2) +1/3
dL, sL, bL −1/3 (1/2,−1/2) +1/3

Right-handed fermions
Q (T, T3) Y

νeR, νµR, ντR Not part of the SM
eR, µR, τR -1 (0, 0) -2
uR, cR, tR +2/3 (0, 0) +4/3
dR, sR, bR −1/3 (0, 0) −2/3

Table 1.1: Quantum numbers of left-handed and right-handed fermions.

In experiments, the weak interaction was observed to be short-ranged, which could be
caused by a small coupling constant. However, unifying the weak interactions with the
infinitely ranged electromagnetic interactions posed a challenge under the assumption of
an extremely small coupling constant for the weak interaction. The observation of the
massive weak bosons explained that the origin of the short-range interactions is caused
by the heavy mass of the bosons and not necessarily by a small coupling constant. The
observed masses introduced a new challenge since a non-abelian gauge theory requires
massless vector bosons to ensure renormalizability.

The solution was found in the work of Nambu [10] and Goldstone [11], who described the
concept of spontaneous symmetry breaking (SSB) and the emergence of Goldstone bosons.

The original symmetry of the electroweak interaction is broken SU(2)L⊗U(1)Y
SSB−−→ U(1)Q

and the three bosons of the weak interaction acquire a mass, while the fourth boson, photon,
remains massless.

1.1.3 Spontaneous Symmetry Breaking

If the choice of a vacuum state does not conserve the symmetry of a symmetry group, it
is called spontaneous symmetry breaking. In the simple case of a global U(1) symmetry
group, the Lagrangian of a scalar complex field ϕ = 1√

2
(ϕ1 + iϕ2) is described by:

L = ∂µϕ
†∂µϕ− V (ϕ)

with V (ϕ) = µ2ϕ†ϕ+ λ
(
ϕ†ϕ
)2 (1.3)

The potential V (ϕ) is invariant under U(1) transformations:

ϕ(x) → ϕ′(x) ≡ eiθϕ(x) (1.4)

Fig. 1.2 depicts the potential of the scalar field with µ2 > 0 on the left, which corresponds
to a massive particle with mass µ. The potential with µ2 < 0 shown on the right contains
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Figure 1.2: Shape of the scalar potential V (ϕ) for µ2 > 0 (left) and µ2 < 0 (right). The
potential on the right contains a continuous set of degenerate vacuum states connected
through a massless field excitation φ2. The figures are taken from [12, p. 15]

an infinite number of non-zero vacuum states with the same energy. Choosing one specific
vacuum state hides the original symmetry of the potential. The vacuum expectation value
v of the scalar field is the minimum of the potential ⟨ϕ1⟩min =

√
−µ2/λ ≡ v.

The scalar field ϕ can be expressed with respect to the vacuum ground state:

ϕ = ⟨ϕ⟩min + φ
ϕ1 = v + φ1

ϕ2 = φ2.
(1.5)

The Lagrangian L, see Eq. 1.3, transforms under U(1) to L′ and is described as:

L ⇒ L′ =
1

2
∂µφ1∂

µφ1 −
1

2
µ2φ2

1 −
1

2
∂µφ2∂

µφ2 + self-interaction. (1.6)

The field φ1 is a scalar field with mass m2
φ1

= −2µ2, while the field φ2 corresponds to a
massless excitation since the Lagrangian contains no mass term associated with φ2. The
massless excitations represent a spin-0 Goldstone boson, which appears due to the broken
symmetry in the vacuum state.

1.1.4 Higgs Mechanism

The Higgs mechanism explains the symmetry breaking of SU(2)L⊗U(1)Y → U(1)Q. Since
three weak bosons must acquire a mass, three Goldstone bosons are required. Therefore,
the scalar complex field ϕ is replaced by a SU(2)L doublet of complex scalar fields with
the hypercharge Y = 1 and four degrees of freedom.
The SU(2) doublet is represented by :

ϕ =

(
ϕ+

ϕ0

)
=

(
1√
2
(π1 + iπ2)

1√
2
(v + h+ iπ3)

)
vaccuum state−−−−−−−−→ ϕ0 =

(
0
v√
2

)
(1.7)
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and the three Goldstone boson fields π1, π2 and π3 as well as the physical Higgs boson
field h. The vacuum state must be zero in the ϕ+ component to prevent couplings to the
photon field and ensures the photon remains massless.

The Lagrangian of the electroweak gauge bosons and the Higgs field is defined as:

Lgauge = (Dµϕ)
†Dµϕ− V

(
ϕ†ϕ
)
− 1

4
W a

µνW
µν
a − 1

4
BµνB

µν

with V
(
ϕ†ϕ
)
= µ2ϕ†ϕ+ λ

(
ϕ†ϕ
)2 (1.8)

The invariance of local gauge transformation results in a coupling between the massless
Goldstone bosons to the weak bosons W a

µ fields. The Goldstone bosons are then absorbed
by the W bosons giving them a mass. In the end, only the physical field h out of the four
initial fields of the SU(2) doublet ϕ remains.

The Lagrangian describing the mass terms of gauge bosons and the Higgs is given by:

Lgauge, mass = −1
2
m2h2 + 1

8
v2g2

(
W 1

µW
1,µ +W 2

µW
2,µ
)

+1
8
v2
(
g2W 3

µW
3,µ + g′2BµB

µ − 2gg′W 3
µB

µ
)
.

(1.9)

The experimentally observed charged W bosons W± = 1√
2
(W 1 ∓ iW 2) are a linear combi-

nations of the charged W fieldsW 1 andW 2 with a acquired massMW = 1
2
vg. The Z boson

and photon are mixtures of theW 3
µ and Bµ fields, which are related via the Weinberg angle

θw:
Zµ = cos(θw)W

3
µ − sin(θw)Bµ

Aµ = sin(θw)W
3
µ + cos(θw)Bµ

(1.10)

This results in a massless photon and a massive Z boson with MZ = 1
2
v
√
g2 + g′2, which

is in agreement with the experimental observations.

The physical field h represents the Higgs boson with the massM2
h = 2v2λ with an electrical

chargeQ= 0 and T3 = −1/2. In 2013, the Nobel Prize in Physics was awarded to F. Englert
and P. Higgs for the theoretical explanation of the Higgs mechanism [13], following the
experimental confirmation of the Higgs boson’s existence by the ATLAS [14] and CMS [15]
experiment.
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1.1.5 Fermion Masses

The coupling, known as Yukawa coupling, between the fermion fields and the Higgs doublet
ϕ generates the fermion masses. If the neutrinos are assumed to be massless, the Lagrangian
for the Yukawa couplings in the (weak) interaction basis I is described by:

LI
Yuk = Y e

ijL̄LiϕERj + Y d
ijQ̄LiϕDRj + Y u

ij Q̄Liϕ
cURj + h.c. ∀i, j ∈ [1, 2, 3]. (1.11)

LLi and QLi denote the SU(2) doublets of the leptons and quarks in generation i, respec-
tively.

LLi =

(
νℓ
Ei

)
, QLi =

(
Ui

Di

)
(1.12)

ERj, URj, and DRj represent the SU(2) singlets for the right-handed charged lepton, up-
type and down-type quark of generation j.

The Yukawa couplings denoted as Y e
ij for the charged leptons and Y u

ij/Y
d
ij for the up-

type/down-type quarks, connect the vacuum expectation value v of the Higgs doublet to
the mass matrix:

Mij =
v√
2
· Yij. (1.13)

The masses for the up-type quarks are generated through their coupling to the charge
conjugate of the Higgs doublet:

ϕc = iσ2ϕ
† =

(
ϕ̄0

−ϕ̄+

)
→ 1√

2

(
v + h(x)

0

)
(1.14)

To express the Lagrangian in the mass basis (denoted by small letters) instead of SU(2)-
interaction basis (denoted by capital letters), the fields are transformed by unitary matrices:

leptons quarks
ℓLi = (UℓL)ij LLj qLi = (VqL)ij QLj

eRi = (UeR)ij ERj uRi = (VuR)ij URj

dRi = (VdR)ij DRj.

(1.15)

A mass matrix can be diagonalized via:

Mdiag
f = V †

fLMfVfR. (1.16)

The charged lepton mass matrix is diagonalized by appropriately choosing the two matrices
UℓL and UeR. The analogous procedure is applied to the up-quark mass matrix.

Mdiag
u = V †

uL
MuVuR

(1.17)
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Since the mass matrices of the up- and down-type quarks differ, a simultaneous diagonal-
ization of these two mass matrices is not possible:

Mdiag
d = V †

dL
MdVdR

V †
dL

̸= V †
uL

(1.18)

This leads to flavor mixing in the charged weak interaction described by the CKM matrix.

1.1.6 CKM Matrix

The Lagrangian describing flavor-changing interaction of the charged W bosons and the
quarks is given by:

Lq
W± =

g√
2
ūiLγ

µ
(
V †
uL
VdL
)ij
djLW

+
µ + h.c. (1.19)

in the mass basis. The matrix denoted by V = V †
uL
VdL is the CKM matrix, named after its

main contributors Cabibbo, Kobayashi, and Maskawa [16; 17]. Since the CKM matrix is
not the identity matrix, the W boson can couple between the different quark generations.
This is the only known flavor-changing interaction at tree level in the Standard Model.

V =

 Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13



The CKM matrix contains the sine (s) and cosine (c) values of the three real parameters:
the angles θ12(12), θ13(13) and θ23(23), which represent the mixing between the generation
i and j. It also includes one imaginary parameter δ, which is the source of CP (joint charge
and parity symmetry) violation in the Standard Model.

The relations:
d,s,b∑
k

V ∗
ikVjk = δij ∀ i, j in [u, c, t] (1.20)

ensure the unitarity of the CKM matrix. Precisely measuring the elements of the CKM
matrix is an important test of the Standard Model, and observed deviations can potentially
indicate new physics phenomena.
The current values according to the PDG [18] are:

|VCKM | =

 0.97435± 0.00016 0.22500± 0.00067 0.00369± 0.00011
0.22486± 0.00067 0.97349± 0.00016 0.04182+0.00085

−0.00074

0.00857+0.00020
−0.00018 0.04110+0.00083

−0.00072 0.999118+0.000031
−0.000036
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The small values of the off-diagonal matrix elements represent the lower probability of
flavor-changing interactions between different quark generations compared to interactions
within the same generation.

1.1.7 Lepton Number Conservation and Lepton Universality

Two fundamental principles of the Standard Model are lepton number conservation and
lepton universality. Lepton number conservation implies that each process conserves the
individual electron, muon, and tau lepton number. Lepton universality means that the
interaction strengths of the different lepton flavors are identical, apart from differences
caused by their masses. Observations deviating from those principles, e.g. the anomalies
in semi-leptonic B meson decays, hint at possible new physics contributions.



10 1. Theory

1.1.8 Physics of B mesons

The b quark is the heaviest quark that is bound within color-neutral hadrons since the heav-
ier top quark decays before the formation of hadrons occurs. The B mesons, which contain
an anti-b quark and either an u for (B+) or d quark (B0) and their charge-conjugated part-
ners, are the central focus of study at Belle. They can only decay via the flavor-changing
charged weak interaction, which is suppressed by the small off-diagonal elements in the
CKM matrix, resulting in a relatively long B meson lifetime.

The physics of B mesons is governed by interactions occurring at different energy scales.
The weak decay can be simplified to the b quark decaying into a lighter quark, while the
accompanying light quark in the B meson is just a spectator, which does not interact with
the b quark or its decay products. The weak process is in the perturbative energy regime
of the Standard Model. In addition to the weak interaction, the strong interaction plays an
important role for the dynamics inside of the B meson. The confinement in QCD prevents
the color-charged b quark from being seen as an isolated, freely propagating quark and
instead binds it via soft gluons into a color-neutral hadron.

To precisely predict the decay rate of B mesons processes, all contributing virtual states
need to be calculated, which proves to be difficult. Particularly because the low energetic,
strong interactions in hadrons are in the non-perturbative scheme of QCD. The simple
weak decay of the B meson is dominated by the complexity of the strong interactions
inside of the hadron. Fig. 1.3 illustrates the different interactions in a B meson decay.

Figure 1.3: Interactions taking place in a B meson decay taken from [19, p. 3].

Effective field theory provides a useful approach for separating the physics of different
interactions into single-energy-scale problems. It fully describes the physics occurring
below a chosen energy threshold µ and reduces the number of degrees of freedom of the
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physics above the threshold by integrating out the quantum fluctuations of particles with
massesM > µ. The effective Lagrangian is only valid to a cutoff energy, which corresponds
to the mass of the removed particle and can exhibit approximate symmetries, which are
not necessarily symmetries of the Lagrangian of the complete underlying theory.

Heavy Quark Effective Theory

One example of an effective field theory is the Heavy Quark Effective Theory (HQET),
which is discussed in more detail in [19], [18, chapter 16] and [2, chapter 2]. It describes
the interactions of a single heavy quark with the other light constituents in the hadrons.
The energy threshold µ is defined such that ΛQCD ≪ µ ≪ mQ, which is illustrated in
Fig. 1.4.

Figure 1.4: Energy scales of interactions in HQET taken from [19, p. 18].

The short-distance (high-energy) interactions, charged weak interactions and QCD inter-
actions above the mass of heavy c or b quarks (mQ) can be calculated using perturbation
theory and renormalization group techniques, while the long-distance (low-energy) inter-
actions rely on nonperturbative techniques.

In the energy regime of the HQET, the heavy b or c quark carries the same momentum
of the order few ΛQCD as the so-called light constituents: gluons and light quarks. Thus,
the momentum transfers between them and the heavy quark are too low to resolve the
flavor or spin of the heavy quark 1/mQ ≫ 1/ΛQCD. Instead, they only observe the electric
and chromoelectric fields of the heavy quark. In the limit mQ → ∞, the properties of
the hadrons containing a b or a c quark are related by the flavor and spin symmetry of
the effective Lagrangian for hadrons with the same velocity at the leading order. The
uncertainties of the symmetry-breaking effects can be studied in a systematic way.
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1.2 Physics beyond the Standard Model

Despite the remarkable success of the Standard Model in explaining the three interactions,
it leaves several unanswered questions. A selection of these unresolved questions is listed
here:

1. Does a grand unified theory of all three interactions exist, similar to the unification
of the electromagnetic and weak interaction? The symmetry of the unified theory
would be broken down to our known Standard Model symmetry at short distances.

2. What explains the observed asymmetry between matter and antimatter in our uni-
verse? According to the inflationary universe theory, matter and antimatter were in
equilibrium at the beginning of the universe. The CP violation phase in the Stan-
dard Model is orders of magnitude too small to explain the observed asymmetry of
approximately 10−10 [20].

3. Neutrinos are assumed to be massless in the Standard Model, which was contradicted
by the observation of neutrino oscillations [21]. Consequently, it proves that the
lepton flavor is not a conserved quantity of nature. Studying neutrinos improves our
insight into the CP violation in the lepton sector, which might help us understand
the observed matter-antimatter asymmetry.

Many new physics models exist, offering possible solutions to the phenomena that the
Standard Model can not explain.

1.2.1 Lepton Flavor Violation in the Neutrino Sector

Neutrinos in the Standard Model are assumed to be massless Dirac particles, which implies
the conservation of the three lepton numbers Le, Lµ, Lτ . The idea of neutrino oscillation
was first proposed by Pontecorvo [22] even before the discovery of the νµ and ντ . Similar
to the oscillation of the K0 [23], he discussed the notion of ν ↔ ν oscillations leading to a
∆L = 2 violation of the lepton number. In 1962, following the direct discovery of the νµ
neutrino, Maki, Nakagawa, and Sakata [24] proposed the concept of oscillating neutrinos
due to their masses in analogy to the quark sector. Neutrino oscillations occur if the weak
flavor eigenstate (νe, νµ, ντ ) differ from the mass eigenstates (ν1, ν2, ν3) and if their masses
are distinct.

The low interaction rate of neutrinos complicated the first conclusive observation of neu-
trino oscillations. Finally, in 1998, significant evidence of neutrino oscillations was observed
at the Super-Kamiokande experiment [21] in a deficit of measured atmospheric muon neu-
trinos. This discovery was awarded with the Nobel Prize in 2015 [25].
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The Superkamiokande experiment measured the muon and electron neutrino flux gener-
ated from interactions in the atmosphere. Cosmic rays interact with atomic nuclei in the
atmosphere and create, for example, pions. These pions preferentially decay into muons
and muon neutrinos:

π± → µ± + νµ (ν̄µ)

The created muons, with typically energies E < 1 GeV, decay further before reaching the
earth’s surface.

µ± → e± + νe (ν̄e) + ν̄µ (νµ)

These interactions result in an expected muon neutrino flux, approximately twice the size
of the electron neutrino flux. The flavor of the neutrino was determined in a 50,000t
water Cherenkov detector by detecting either an electron or a muon created in charged
weak interactions of the incoming neutrino with nuclei. In addition to the flavor of the
neutrinos, their original direction was reconstructed as the zenith angle Θ. Fig. 1.5 shows
the measured neutrino flux for the electron and muon neutrino events.

Figure 1.5: The zenith angular distributions for sub- and multi-GeV e-like and µ-like
atmospheric neutrino events observed in Super-Kamiokande [21]. Values of cos(Θ) < 0
represent the events where the neutrino traversed the earth before being detected, and
cos(Θ) > 0 events where the neutrino reached the detector directly from the atmosphere.
The Monte Carlo expectation assumes no neutrino oscillation and is represented by the
hatched region, while the black points denote the measured data. The black line is the
best-fit result for νµ ↔ ντ oscillation. The partially contained events denote the events
where part of the Cherenkov light was detected in the outer detector instead of being fully
contained in the inner detector.
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In the case of no neutrino oscillations, the number of neutrinos is expected to be approxi-
mately independent of the origin direction because the neutrinos interact only very weakly
with the matter in the earth. The result showed a significant deviation from the expected
flux of muon neutrinos traversing the earth before reaching the detector. Since the elec-
tron neutrino flux agrees with the expected distribution, it indicates that these µ-neutrinos
most likely oscillated into τ -neutrinos instead which was proven later in 2013 [26].

Neutrino oscillations occur if their interaction eigenstates (I) differ from their mass eigen-
states (M) and their mass difference mi − mj ̸= 0. In honor of its main contributors
Pontecorvo, Maki, Nakagawa, and Sakata, the neutrino mass mixing matrix is known as
the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. νe

νµ
ντ


I

=

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 ν1
ν2
ν3


M

(1.21)

The PMNS matrix has the same structure as the CKM matrix, with possible additional
phases α1 and α2, if neutrinos are their own anti-particles, so-called Majorana particles.

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 eiα1/2 0 0
0 eiα2/2 0
0 0 1


(1.22)

The probability of detecting a neutrino of a specific flavor changes as it propagates through
space. Since the mass differences between the neutrinos are small, neutrino oscillations can
only be observed over large distances. The probability, that a neutrino of flavor α oscillated
into a neutrino of flavor β over the distance L is given by:

Pνα→νβ = δαβ − 4
∑
j>i

Re
(
U∗
αiUβiUαjU

∗
βj

)
sin2

(
∆m2

ijL

4E

)

+ 2
∑
j>i

Im
(
U∗
αiUβiUαjU

∗
βj

)
sin

(
∆m2

ijL

2E

)
.

(1.23)

It depends on the energy E of the neutrino and the squared mass difference ∆m2
ij = m2

i−m2
j

of the neutrino mass eigenstates. By measuring the difference between the probability of
neutrino and antineutrino oscillation, the CP asymmetry can be calculated.

The angles of the PMNS matrix are studied using solar, atmospheric, and reactor neutrinos.
There are two possible ordering for the neutrino masses: the normal m1 < m2 < m3 and
the inverted orderingm3 < m1 < m2. The squared mass difference and the values of PMNS
matrix elements are obtained from a global fit of neutrino oscillation parameters [27].
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These are the results of the fit assuming normal ordering:

m2
2 −m2

1 = 7.50+0.22
−0.20 × 10−5eV2 |m2

3 −m2
1| = 2.55+0.02

−0.03 × 10−3eV2

θ12 = 34.3◦ ± 1.0◦ θ23 = 49.26◦ ± 0.79◦

θ13 = 8.53◦+0.13◦

−0.12◦ δ = 194◦+24◦

−22◦

(1.24)

Since neutrino mixing between flavors is less suppressed than for quarks, the PMNS matrix
exhibits larger off-diagonal elements than the CKM matrix.
The question about the nature of the mechanism giving the neutrinos their masses and
their absolute values remains. Answers may be found in the neutrinoless double-β decays
studied at KATRIN [28], which would indicate that neutrinos are Majorana particles, and
in cosmology observations, which provide an upper limit on the sum of all three neutrino
masses.

1.2.2 Lepton Flavor Violation in the Charged Lepton Sector

The observed lepton flavor violation in the neutrino sector proved that lepton flavor con-
servation is not a symmetry of nature and can also be extended to the charged leptons.
If the neutrinos gain their mass by the same Yukawa coupling to the Higgs as the other
fermions, short-range charged lepton flavor violating decays remain strongly suppressed
due to the unitarity constraints of the PMNS matrix. The expected branching ratios for
charged lepton flavor-violating decays are at the order of 10−50 [29], which is far below the
sensitivity of today’s experiments.

Flavor-changing neutral currents at tree level are not permitted in the Standard Model
because both the Z bosons and the photon conserve flavor. Therefore, the lowest-order
process for flavor-changing neutral currents is only possible via the exchange of two W
bosons. Fig. 1.6 shows the lowest order box diagram of the Standard Model, including
neutrino masses.

Figure 1.6: Sketch of the lowest order box diagram of the B0 → τe decay in the Standard
Model with the extension of massive neutrinos. The q quark in the loop represents all
up-type quarks, where the contribution from the top quark dominates due to its heavy
mass. The X denotes the oscillation between an electron-neutrino and a τ -neutrino.



16 1. Theory

Discovering charged lepton flavor-violating decays is a clear sign of new physics contribu-
tions, and even null results can help constrain their parameter space. Possible contributions
can arise from decays involving leptoquarks with expected branching ratios at the order of
10−9 [30] for a vector leptoquark with a lower mass of 86 TeV.

Fig. 1.7 shows the tree-level diagram of the B0 → τℓ decay via the exchange of a leptoquark.

LQ

Figure 1.7: Sketch of the tree-level diagram of the B0 → τe decay via the exchange of a
leptoquark (LQ).

In recent years, leptoquark models have gained significant interest. They provide possible
explanations for the observed deviation from the Standard Model prediction for the lepton
universality in B meson decays and the anomalous magnetic moment of the muon.

1.2.3 Leptoquarks

Leptoquarks are mediator bosons that unify the lepton and color charges, allowing them
to couple to individual quarks and leptons. They are often associated with grand unified
theories and thus serve as tentative indicators of the unification of the three forces. The
concept of leptoquark was first proposed by Pati and Salam in 1974 [31]. Because no
leptoquarks have been observed so far, the generation of their masses is still unclear; one
possible mechanism is spontaneous symmetry breaking to the Standard Model symmetry
group analogous to the Higgs mechanism in the Standard Model.

The coupling of the leptoquarks to Standard Model particles strongly depends on the
assumed leptoquark masses of each model, which tends to be quickly outdated with new
experimental measurements. Therefore, only an overview of their general properties is
discussed instead of specific leptoquark models. A more detailed description can be found
in [32]. The leptoquark masses are expected to be in the order of TeV due to the lack
of observation in the dedicated leptoquark searches at CERN. Leptoquarks can be either
vector or scalar bosons and potentially mediate proton decay. Determining the upper limits
on the proton lifetime severely constrains the parameter space of leptoquark models.
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Tab. 1.2 lists the general properties of various scalar and vector leptoquark types with
respect to the Standard model symmetry group. F denotes the fermion number, defined
as F = 3B + L, where B represents the baryon and L represents the lepton number.

(SU(3)C , SU(2)L, U(1)Y/2) Spin Coupling to fermions Symbol Fermion number F
(3,3, 1/3) 0 LL S3 -2
(3,2, 7/6) 0 RL,LR R2 0

(3,2, 1/6) 0 RL,LR R̃2 0

(3,1, 4/3) 0 RR S̃1 -2
(3,1, 1/3) 0 LL,RR,RR S1 -2
(3,1,−2/3) 0 RR S̄1 -2
(3,3, 2/3) 1 LL U3 0
(3,2, 5/6) 1 RL,LR V2 -2

(3,2,−1/6) 1 RL,LR Ṽ2 -2

(3,1, 5/3) 1 RR Ũ1 0
(3,1, 2/3) 1 LL,RR,RR U1 0
(3,1,−1/3) 1 RR Ū1 0

Table 1.2: List of leptoquark multiples and their Standard Model representation modified
from [32, p. 4]. L denotes the left-handed SU(2)L doublets, and R the right-handed
SU(2)L singlet with the respective charge conjugates L and R. The definition for the
Q = T3 + Y/2.

Quarks are triplets of the SU(3)C gauge symmetry, while leptons are singlets. To ensure
the conservation of the gauge symmetry, leptoquarks that couple to a quark and lepton
must be triplets of SU(3)C , which also allows leptoquark couplings to diquark-pairs, but
not to a lepton pair. Depending on their coupling to the left- or right-handed fermions, they
can be singlets, doublets, or triplets under SU(2)L transformations. The last value denotes
the 1/2 leptoquark hypercharge, where the electric charge Q = T3 +

Y
2
. Leptoquarks can

carry electric charges of ±5
3
, ±4

3
, ±2

3
, and ±1

3
.
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1.3 Previous Analyses

The lepton flavor violating decay B0 → τℓ has been investigated in several studies without
the observation of any signal events. Therefore, upper limits on the signal branching ratio
of B0 → τe and B0 → τµ were determined, and the most stringent upper limits are given
in Tab. 1.3.

UL B at 90% CL Experiment
B0 → τe < 1.6× 10−5 Belle(2021) [33]
B0 → τµ < 1.2× 10−5 LHCb(2019) [34]

Table 1.3: Best upper limits on the branching ratio of B0 → τℓ decays at 90% confidence
level(CL).

The Belle analysis benefits from a clean experimental environment because it operates just
above the threshold of the Υ (4S) resonance, which almost always decays exclusively into
two B mesons. The energy of the initial collision is well known, which simplifies the study
of decays with neutrinos in the final state. One of the two B mesons is reconstructed in
exclusive decay modes without neutrinos in the final state, employing neural nets. The full
knowledge of the B meson kinematics helps to constraint the kinematics of the signal B
meson. The invariant mass of the inclusively reconstructed τ is calculated by utilizing the
two-body decay of the signal B. In the end, the upper limit of signal events is extracted in
a fit of the invariant τ mass, and the corresponding upper limit on the branching ratio is
determined. The study was performed on the full 711 fb−1 Belle data set.

The best upper limit for the branching ratio of B0 → τµ decays was determined on 3 fb−1

of LHCb data collected at CMS energy of 7 and 8 TeV in proton-proton collisions. Final
states with neutrinos present a challenge, because the colliding partons (gluons and quarks)
carry only an arbitrary fraction of the total proton momentum and thus the initial energy
of the collision is unknown. Additionally, the spectator partons of the protons produce
large QCD background rates in the detector. Taking advantage of the long lifetime and
high momentum of the B meson, its displaced decay vertex with respect to the initial
collision point serves as a good discriminator against these background contributions. The
τ candidates are reconstructed in the τ− → π−π−π+ν channel, which primarily proceeds
through the resonances a1 and ρ. This helps in the reconstruction of the B meson mass,
even with the undetected neutrino in the final state. The upper limit was determined from
a fit of the reconstructed B meson mass.



Chapter 2

Experimental Methods

This chapter provides an overview of the relevant experimental methods in this analysis. It
introduces the fundamental concepts necessary for extracting the number of signal events
from measured data and for determining the upper limit of branching ratios. The sec-
ond part presents multivariate algorithms, which are used to classify data into signal and
background categories.

2.1 Fitting Tools

The signal extraction usually relies on prior knowledge of the expected distributions in
data, which is typically blinded in the signal region to prevent biasing the selection and fit
procedure. Therefore, Monte Carlo events are studied to determine the expected composi-
tion of various processes in the measured data and to identify a variable distribution with
distinct characteristics for signal events.

The signal and background shapes of a distribution are described by probability density
functions (PDFs), which depend on the parameters θ⃗. The PDFs of all contributing pro-
cesses are combined into a model PDF, which is then fitted to the distribution of the
measured data. During the fitting process, statistical methods such as maximum likeli-
hood are used to adjust the model parameter values θ⃗ for optimal agreement between the
model and data x⃗. For the upper limit determination of the B0 → τℓ branching ratio,
hypothesis tests are performed.

Further information on the statistical methods can be found in the book ”Statistical Data
Analysis” [35] and the lecture series ”Practical Statistics for Particle Physicists” [36].
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2.1.1 Maximum Likelihood Technique

The maximum likelihood technique is a common tool for determining the best values of
model parameters θ⃗, where θ⃗ = (θ1, ..., θM)T , based on a measured set of N independent
values x⃗ = (x1, ..., xN)

T of the fit variable, also known as the measured data. The likelihood

function L(θ⃗) expresses the probability of observing the data x⃗ for specific values of the

parameters θ⃗.

L(θ⃗) =
N∏
i=1

f(xi; θ⃗) (2.1)

Here, f(xi; θ⃗) denotes the probability density function for a measured data point xi given

the parameter values θ⃗. The values of θ⃗, that maximize the likelihood function are called

maximum likelihood estimators
ˆ⃗
θ and are calculated by solving:

∂L
∂θi

= 0, ∀i ∈ [1, ..,M ]. (2.2)

Instead of maximizing the likelihood function, the log-likelihood function logL(θ⃗) can be
calculated. This approach can reduce the computational cost and is numerically more
stable.

logL(θ⃗) =
N∑
i=1

log(f(xi; θ⃗)) (2.3)

Since the data has a finite size and can randomly fluctuate, the maximum likelihood es-

timators
ˆ⃗
θ do not necessarily coincide with the true values of the parameters. Therefore,

uncertainties on the maximum likelihood estimators are determined to obtain intervals
that contain the true values of the parameters with a chosen probability, typically 68%.
The uncertainty σ on the estimators depends on the covariance matrix V:

σ2
θ̂i
= Vii(θ̂). (2.4)

For a large number of data points and unbiased likelihood estimators, the variance of the
estimator is defined as:

Vij(θ̂)
−1 = − ∂2 logL

∂θi∂θj

∣∣∣∣
θ⃗=

ˆ⃗
θ

. (2.5)
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2.1.2 Extended Maximum Likelihood

In case the number of measured data points itself is Poissonian distributed around the
true value ν, the probability of observing N data points can be included in the maximum
likelihood function. This results in the extended maximum likelihood function:

L(ν, θ⃗) = νN

N !
e−ν

N∏
i=1

f(xi; θ⃗). (2.6)

If ν depends on the parameters θ⃗, the log-likelihood function additionally constrains the
likelihood estimators with the number of measurements N . The log-likelihood function,
neglecting the constant terms, is defined as:

logL(ν, θ⃗) = N · log(ν(θ⃗))− ν(θ⃗) +
N∑
i=1

log(f(xi; θ⃗)) (2.7)

If ν is independent of the parameters θ⃗, the log-likelihood function simplifies to Eq. 2.3.

2.1.3 Binned Maximum Likelihood Fit

For large data sets, calculating the log-likelihood function becomes too computationally
expensive. Therefore, the data is binned into a histogram with B bins, where each bin i
contains ni entries that are distributed around the true value νi. The expectation value νi
is defined as:

νi(θ⃗) = N

∫ xi,max

xi,min

f(x; θ⃗)dx
N→ν(θ⃗)−−−−→ νi(ν, θ) = ν

∫ xi,max

xi,min

f(x; θ)dx. (2.8)

Here, xi,min and xi,max denote the lower and upper bin boundary of bin i, respectively.
The corresponding likelihood functions is defined as:

L(θ⃗) = N !
B∏
i=1

1

ni!
·

(
νi(θ⃗)

N

)ni

N→ν(θ⃗)−−−−→ L(ν, θ⃗) = νNe−ν

N !
N !

B∏
i=1

1

ni!
·

(
νi(ν, θ⃗)

ν

)ni

(2.9)

=
B∏
i=1

eνi

ni!
· νi(ν, θ⃗)ni .

⇒ logL(ν, θ⃗)) = −ν +
B∑
i=1

ni log(νi(ν, θ⃗)) (2.10)
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2.1.4 Hypothesis Test

A hypothesis test quantifies the agreement between the measured data x⃗ and the prediction
of a hypothesis. The hypothesis assumed to describe the data well is called the null
hypothesis H0, and its agreement with the data is tested against an alternative hypothesis
H1. Therefore, a test statistic t(x⃗) is constructed, which contains all relevant information of
the measured data to distinguish between the two hypotheses. A PDF assigns a probability
for observing a specific value of the test statistic under the respective hypothesis. Fig. 2.1
illustrates the PDFs for the two hypotheses of a test statistic t.
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Figure 2.1: Probability density functions f of the null hypothesis H0 and the alternative
hypothesis H1 for the test statistic t. The black line denotes the threshold, which deter-
mines whether the H0 is rejected or accepted in favor of H1. The blue area represents the
significance α, and the orange area represents β. Figure modified from [35, p. 47].

If the observed test statistic value tobs is below the threshold, tthreshold, the null hypothesis
is accepted; for values larger than tthreshold, the null hypothesis is rejected in favor of the al-
ternative hypothesis H1. The probability α defines the significance of the test, representing
the probability of rejecting the null hypothesis H0 even though H0 is true:

α =

∫ ∞

tthreshold

f(t|H0)dt. (2.11)
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Likewise, the probability β represents the likelihood of not rejecting H0 in favor of H1 even
though H1 is true:

β =

∫ tthreshold

−∞
f(t|H1)dt. (2.12)

1 – β determines the probability of correctly rejecting H0 when H1 is true and thus gives
the power of a test to discriminate against H1. The significance and power of the test are
chosen before the test is performed.

The p-value expresses the probability of observing data equally or more incompatible with
the null hypothesis, assuming the null hypothesis H0 is true.

p =

∫ ∞

tobs

f(t|H0)dt (2.13)

Fig. 2.2 shows the p-value for the observed test statistic value tobs under the assumption
of hypothesis H0.
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Figure 2.2: Probability density function of the null hypothesis H0 and the corresponding
p-value(grey area) for the observed value tobs of the test statistic.

If the p ≤ α, the null hypothesis is rejected in favor of H1; otherwise, there is no sufficient
evidence against H0 and H0 is accepted.
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2.1.5 Upper Limit Searches

In upper-limit searches on branching ratios, hypothesis tests are employed, where the null
hypothesis H0 = b + si assumes that the data contains signal (si) and background (b)
events, and the alternative hypothesis assumes that the data only contains background
events H1 = b. Multiple null hypotheses with varied numbers of signal events si are tested
against the background-only hypothesis.

The null hypothesis with the highest number of signal events si that is not rejected in favor
of the background-only hypothesis determines the upper limit on the signal events in data
and, consequently, the upper limit on the branching ratio of the signal decay.

Typically, 90% or 95% (1 – α) confidence levels (CL) are chosen for upper limits. They
quantify how often the true value of the branching ratio would fall within the upper limit
result if the same measurement were repeated multiple times. A commonly used test
statistic in upper-limit searches relies on the ratio of profile likelihoods.

Profile Likelihood

The profile likelihood separates the parameters θ⃗ of the PDF into a parameter of interest
µ, which is the number of signal events in upper limit searches, and all other parameters,
the so-called nuisance parameters λ⃗. The (unconditional) likelihood function L is defined
as:

L(θ⃗) =
N∑
i=1

f
(
xi; θ⃗

)
. (2.14)

Instead of maximizing the likelihood simultaneously for all parameters, the conditional
likelihood functions Lµ(λ⃗) is optimized for a fixed value of µ with respect to the nuisance

parameters λ⃗:

Lµ(λ⃗) =
N∑
i=1

f(xi;µ, λ⃗). (2.15)

The estimators of the nuisance parameters for a specific µ value are defined as:

ˆ⃗
λµ = argmax

λ⃗
Lµ(λ⃗) (2.16)

This procedure is repeated n times for different parameter of interest values, resulting in
n log-likelihood functions to find the value of µ, which agrees the most with the observed

data. The estimator µ̂ is determined by finding the value of µ with the maximal Lµ(
ˆ⃗
λ).

µ̂ = argmax
µ

Lµ

(
ˆ⃗
λµ

)
= argmax

µ
L
(
µ,

ˆ⃗
λ
)

(2.17)
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The profile likelihood ratio used to determine the test statistic for upper limits is defined
as:

λ(µ) =
L(µ, ˆ⃗λµ)

L(µ̂, ˆ⃗λ)
. (2.18)

The likelihood ratio ranges between 0 and 1, where 1 represents a good agreement between
the observed data with the hypothesized value of µ.

CLs Method

The CLs method is a modified version of the standard frequentist hypothesis test that
prevents the discovery or exclusion of signals in low-sensitivity measurements. Rather than
using the p-value of the null hypothesis ps+b ≤ α as a criterion to accept the H0(= s+ b)
hypothesis in favor of the background-only hypothesis H1(= b), a CLs value is used.

CLs =
ps+b

1− pb
(2.19)

with the p-values:

ps+b = P (t ≥ tobs | s+ b) =
∫∞
tobs

f(t | s+ b)dt

1− pb = P (t ≥ tobs | b) = 1−
∫ tobs
−∞ f(t | b)dt.

(2.20)

The denominator in the CLs formula varies between zero and one and thus leads to more
conservative values than the ps+b approach. The upper limit is determined by requiring
CLs ≤ α.

Figure 2.3: Comparison of the probability density functions for the signal + background
(s + b) hypothesis and the background (b) only hypothesis for the test statistic
t = − 2lnλ. The graphic is taken from [36, p. 248].
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Fig. 2.3 shows the probability density functions for the two hypotheses. The overlapping
distributions of the probability density functions in the right plot imply a low sensitivity
of the measurement. In that case, the CLs method won’t satisfy the condition CLs ≤ α
and therefore won’t reject the H0 hypothesis for a specific µ.

Test Statistic for Upper Limits

Numerous possible test statistics exist to calculate the upper limit for the parameter of
interest µ, which corresponds to the number of signal events. The test statistic q̃ im-
plemented in this analysis protects against negative signal events (µ < 0) and is defined
as:

q̃(µ) =


−2 lnλ(µ) µ̂ ≤ µ
0 µ̂ > µ

=


−2 ln L(x⃗|µ,ˆ⃗λµ(µ))

L(x⃗|0,ˆ⃗λµ(0))
µ̂ < 0,

−2 ln L(x⃗|µ,ˆ⃗λµ(µ))

L(x⃗|(µ̂,ˆ⃗λ)
0 ≤ µ̂ ≤ µ,

0 µ̂ > µ.

(2.21)

The PDFs of the two hypotheses for the test statistic can be either generated using toy
experiments with a high computational cost or determined using Wilk’s theorem [37] and
Wald’s approximations [38].

The q̃(µ) with the asymptotic approximation is defined as:

q̃(µ) =


µ2

σ2 − 2µµ̂
σ2 µ̂ < 0,

(µ−µ̂)2

σ2 0 ≤ µ̂ ≤ µ,
0 µ̂ > µ,

(2.22)

where the estimator µ̂ is Gaussian distributed with a mean µ′ and a standard deviation
σ. Instead of generating multiple toy data sets to determine the expected upper limit and
its uncertainty bands, Asimov data can be used. It serves as the perfect representative by
replacing all parameters with their expected values. This approach saves computational
resources while still providing a reliable estimation of the expected upper limit and its
uncertainty due to statistical fluctuations in data.

2.2 Multivariate Algorithms

Multivariate classification models are implemented in the analysis to classify data into
signal and background categories based on their properties, the so-called features. They
are trained on data points with known classes, the training data set, and then applied to
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data points that need to be classified. In the Belle II software, a speed-optimized multi-
variate classification algorithm called fastBDT [39] is integrated, which relies on stochastic
gradient-boosted decision trees.

2.2.1 Decision Tree

A decision tree classifies data via multiple consecutive selection criteria starting at the root
node, where the total data set is split into subsets. At each internal node, the subset is
further divided based on a feature’s value. The best selection value of a feature is calculated
via the cumulative probability of the signal and background class, and the threshold with
the highest separation power is chosen for each node. In the end, the various leaf nodes
predict the class of data subset based on its features. Fig. 2.4 illustrates the structure of
a decision tree.

Leaf
node

Leaf
node

Leaf
node

Internal
node

Leaf
node

Leaf
node

Internal
node

Internal
node

Root
node

Figure 2.4: Structure of a decision tree.

The order of the consecutive nodes is determined based on the highest class separation. A
decision tree is defined by its depth, which is the path with the highest number of nodes.
Trees with many nodes can be highly dependent on statistical fluctuations in the training
data set, which leads to overfitting. Therefore, pruning is applied, which removes nodes
that do not provide important separation power for the final prediction.
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2.2.2 Stochastic Gradient-boosted Decision Trees

Stochastic gradient-boosted decision trees are a sequential combination of pruned decision
trees. Each decision tree provides a low separation power between the classes to prevent
overfitting. However, by combining multiple decision trees, a high separation power can
be reached.

Because the trees are sequentially connected, each tree can try to correct the mistakes in
the previous tree’s prediction during its training. This is accomplished with a gradient
descent of a loss function that reweights the original data set and assigns a higher weight
to the previously wrongly classified data points. Fig. 2.5 shows the working principle of
the gradient-boosted decision trees.

Figure 2.5: Working principle of boosted decision trees, taken from [40, p. 4]. The initial
data, shown in green, is reweighted based on the correctness of the prediction by decision
tree 1. This reweighting and fitting is repeated for all trees until a final prediction is made
from all individual predictions.

The learning rate defines the influence of each tree on the final prediction. In the case
of a small learning rate, more trees might be necessary to reach a certainty accuracy, but
the advantage is that the final prediction is less prone to overfitting. Instead of using the
full training data for each tree, a randomly drawn subset is used, which also helps against
overfitting. The fraction of the subset compared to the total training data set is called the
sub-sampling rate.
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The importance of a feature is determined by the decrease in the overall performance if
it is left out of the calculation of the final prediction. Compared to a single decision tree,
stochastic gradient-boosted decision trees increase the robustness of the model against
overfitting.

2.2.3 Full Event Interpretation

The Full Event Interpretation [41; 42], called FEI, is a multivariate classification algorithm
that reconstructs B meson decays in approximately 10,000 exclusive decay modes. It is
based on the idea of the previous reconstruction mechanism at Belle, the Full Reconstruc-
tion, which relies on neural nets. Starting from detector information like clusters, tracks,
and displaced vertices and intermediate particles f.e. D mesons, and finally the B mesons
are reconstructed. Each reconstructed B meson is assigned a signal probability, which
predicts how likely the B meson decay was correctly reconstructed.

Typical cases for the application of the FEI are searches of B meson decays with neutrinos
in the final state. Most of the time, the Υ (4S) resonance decays into two B mesons without
any additional particles. When studying a specific B meson decay Bsig, the FEI algorithm
can be used to reconstruct the other B meson (Btag) in the event. The gained knowledge
of the kinematics of the Btag constrains the kinematics of the Bsig, even if the final state of
the Bsig contains neutrinos, because the initial energy of the e+e− collision is well-known.

The performance of the FEI training can be expressed with the following variables:

• Tag-side efficiency

ϵ =
events with a correctly reconstructed Btag

all events
(2.23)

• Purity

P =
events with a correctly reconstructed Btag

events with a reconstructed Btag

(2.24)

A correctly reconstructed Btag is either identified via Monte Carlo matching, which checks
if the reconstructed decay chain matches the generated decay chain, or from a fit of the
beam constraint mass Mbc, which peaks at the nominal mass of the B meson for correctly
reconstructed B mesons. The beam constraint mass Mbc is defined as:

Mbc =
√

E2
beam − p⃗ 2

B , (2.25)

where p⃗B represents the three-momentum of the Btag in the center-of-mass frame (CMS),
and the beam energy in the CMS frame replaces the reconstructed Btag energy.
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The FEI is trained to reconstruct two categories of decays:

• Hadronic FEI only includes B meson decays without neutrinos in the final state.
This results in well-known kinematics of the Btag with a high purity but comes with
the cost of a tiny tag-side efficiency because the typical branching fractions are at
the order of magnitude O(10−3).

• Semileptonic FEI has the advantage of a higher branching fraction, which leads
to higher efficiency. The resulting data set has a lower purity, and the kinematics of
the Btag are not as well known due to undetected neutrinos.

Mechanism of the FEI

The FEI operates with a hierarchical approach consisting of six steps, which are shown
in Fig. 2.6. In each step, classifiers predict the correctness of the reconstruction of each
particle and only select the most likely candidates for the next step.

Figure 2.6: Schematic overview of FEI taken from [41, p. 3]. The grey boxes represent the
detector information, and the blue boxes represent the reconstructed particles. The lines
connect the detector information or the decay products to their corresponding particle.
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In the first step, the algorithm trains classifiers to assign the correct particle type to
detector information, i.e. tracks and clusters. Neutral particles are created from neutral
clusters, oppositely charged tracks, and displaced vertices. Charged final state particles
are matched to tracks assuming different particle hypotheses. To reduce the complexity
due to the vast possible combinations, the charged final state particles must originate from
the point of the e+e− collision.

In the next steps, the final state particles are combined to form intermediate particle f.e
J/ψ , and a vertex fit is performed. The prediction of each step is the so-called signal
probability, which combines information from all classifiers in a single value. In all further
steps, the signal probability, kinematics, and displaced vertices are input values for finding
the correct mother particle. In each reconstruction step, only ten to twenty candidates
with the highest signal probabilities are selected. Intermediate particles are discarded if
the vertex fit fails. A usual step includes reconstructing a particle, applying selections,
fitting the vertex, determining the multivariate classifiers, and then applying selections
again.

In the end, multiple B candidates with different signal probabilities are reconstructed. For
example, a B0 can be formed from D− and π+ or with an additional π0. Depending on the
kinematics of the daughter particles and the vertex fit, these two B mesons have a different
signal probability. The signal probability does not only contain information from the last
reconstruction step but takes the complete decay chain into account.





Chapter 3

Belle Experiment

This chapter outlines the main research topics of the Belle experiment and the setup of
the Belle detector. A more thorough description of the Belle experiment and detector is
given in the technical design report [43], the book ”The Physics of the B Factories” [44]
and the report ”Physics achievements from the Belle experiment” [45].

The primary goals of the Belle experiment are precisely measuring the Standard Model
parameters and studying τ leptons, hadrons containing c quarks, and B mesons with
special emphasis on the CP violation in the neutral B meson system [46]. Therefore, the
electron-positron ring collider KEKB, located in Tsukuba, Japan, operated mainly with
a center-of-mass energy of 10.58 GeV, which is just above the threshold of the Υ (4S)
resonance, a bb bound state. The Υ (4S) resonance decays exclusively in two B mesons
with a probability of 96% at 95% confidence level [18], providing a clean environment.

When two neutral B mesons are created in a Υ (4S) decay, they are in an entangled quantum
state necessary for the time-dependent CP measurement. The CP violation is determined
by measuring the distance between the decay vertices of the B mesons along the positron
beam direction. Because most of the available energy is consumed in creating the two B
mesons, they are nearly at rest in the center-of-mass (CMS) system. By using asymmetric
beam energies of 8.0 GeV (electrons) and 3.5 GeV (positrons), a Lorentz boost βγ =
0.425 is reached, allowing the measurement of the vertices distance with a resolution of
approximately 100 µm.
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3.1 Belle Detector

The Belle Detector measures the signatures of the stable decay particles originating from
the initial electron-positron collision. Starting with these stable particles, the complete
decay chain can be reconstructed. Therefore, it needs to satisfy multiple conditions.

The first requirement is a good 4π coverage of the solid angle around the collision point
of the electron and the positron, the so-called interaction point (IP), to detect as many
stable particles as possible. This is realized by a cylindrical detector with a 90% solid angle
coverage.

Additionally, a high detection efficiency of these particles, even for low-momentum parti-
cles, is required, with excellent momentum and energy resolutions over a wide momentum
range. For photons, a precise energy and position measurement is necessary to reconstruct
neutral pions. Furthermore, a highly efficient particle identification for charged particles
is crucial, with a special focus on separating pions and kaons at various momenta.

One of the main challenges is the presence of various beam-induced background processes.
The most dominant one is Touscheck scattering, where two particles in the same bunch in-
teract via Coulomb scattering. Other typical beam-induced background processes include
beam-gas scattering, where beam particles interact with residual gas molecules in the beam
pipe; synchrotron radiation, which is the emission of photons due to the acceleration of
particles in the ring; as well as radiative Bhabha and two-photon processes. The back-
ground rates are reduced by colliding the electron and positron beam with a crossing angle
of 22 mrad. Overall, the detector must be highly radiation-hard and capable of operating
with high background levels.

The high data volume relies on an efficient and fast trigger system and data acquisition to
identify the events of interest. The trigger system consists of multiple hardware triggers and
a software trigger. The hardware triggers provide information from individual subdetectors
and are often redundant to maintain high efficiency even under varying beam conditions.
They are processed in parallel to ensure a fast information flow to the global decision logic,
which determines whether to keep or discard an event.

3.1.1 Beam Pipe

The detector surrounds the beryllium beam pipe, and most of its components are encom-
passed in a homogeneous magnetic field of 1.5 T to determine the charge and momentum
of charged particles. The beam pipe is constructed as a double-walled cylinder with cooling
between the inner and outer radius, as shown in Fig. 3.1. The advantage of beryllium is its
atomic number of 4 because it minimizes the multiple scattering of the particles and thus
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improves the vertex resolution of composite particles, such as the B, D, and τ , decaying
near the IP. The initially 20 mm inner radius was reduced to 15 mm [47] when the adjacent
vertex detector was replaced.

Figure 3.1: Double-walled beryllium beam pipe before the vertex detector was replaced
with a newer one. IP denotes the interaction point, HER the high-energy electron ring and
LER the low-energy positron ring. The figure is taken from [43, p. 126].

Fig. 3.2 illustrates the Belle Detector with its components described in the following sec-
tions, starting from the innermost subdetector.

Figure 3.2: Side view of the Belle Detector, modified from [43, p. 124].
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The setup of the Belle detector is chosen in a manner that:

• z-direction is opposite to the direction of the positron beam

• y-direction is in the horizontal plane, pointing toward the middle of the accelerator

• x-direction is oriented upwards for the right-handed coordinate system

• ϕ (azimuthal) direction lies in the x-y plane

• θ direction is the polar angle between the z-direction and ϕ plane

• radius r is defined as r =
√
x2 + y2

• homogeneous magnetic field points in the z-direction

• barrel (BR) region covers 30◦ < θ < 130◦

• forward (FWD) region covers 17◦ < θ < 30◦

• backward (BWD) region covers 130◦ < θ < 150◦

3.1.2 Silicon Vertex Detector

The innermost component of the detector, a Silicon Vertex Detector (SVD), is positioned
around the beam pipe. It detects hits from charged particles and serves as the only source
of information for low-momenta particles that do not reach the main tracking component.
Its primary goal is to provide precise information for the vertex reconstruction of the B,
D mesons and τ leptons, whose decay vertices inside the beam pipe are determined by
extrapolating tracks from the tracking detectors.

The first SVD, known as the SVD1, consisted of three layers of double-sided silicon strip
detectors. After four years of operation, it was replaced by a newer, better-performing
version, the SVD2. The SVD2 contained four layers of double-sided silicon strip detectors
[48] with an increased coverage from 23◦ < θ < 140◦ to 17◦ < θ < 150◦ and exhibited a
higher radiation hardness.

A sensor of the SVD has long p-side strips, oriented parallel to the z-direction, which
are embedded into an n-doped bulk with n-side strips rotated in r-ϕ direction. Multiple
sensors, depending on the layer, are combined into a ladder. The ladders are arranged
cylindrically around the IP in layers with 8, 10, and 14 ladders for SVD1 and 6, 12, 18,
and 18 ladders for SVD2. The neighboring ladders overlap in the ϕ plane to ensure total
coverage and easier calibration of the alignment.
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Fig. 3.3 presents the SVD1 setup in the transverse plane and the working principle of a
silicon strip module. When a charged particle traverses the depleted n-bulk of an SVD
sensor, it creates electron-hole pairs. The electrons drift toward the n-side, while the holes
drift to the p-side due to a voltage difference of 75 V between the readout nodes.

Figure 3.3: Setup of SVD1 shown in the transverse plane on the left, taken from [43, p.
134]. The working principle of a silicon strip detector is illustrated on the right and taken
from [49, p. 144].

3.1.3 Central Drift Chamber

The main purposes of the Central Drift Chamber (CDC) are to reconstruct charged tracks;
identify charged particles based on their energy loss in a gas volume (Bethe-Bloch)—
especially for low-momentum particles that do not reach the other particle identification
detectors; and provide a trigger signal. The central challenge is mitigating the multiple
scattering processes to ensure a good momentum resolution while still obtaining a high
energy loss resolution.

The CDC is a He-C2H6 gaseous ionization detector containing 8400 drift cells. If a charged
particle traverses the volume, it ionizes the gas in the drift cell, creating electron-ion pairs.
The electrons drift towards the anode (sense wires) in an electric field applied by the
field wires. In the amplification region close to the sense wires, the electrons are further
accelerated, resulting in additional ionization of the gas and an amplified current. The
strength of the current depends on the number of primary generated electrons, which are
related to the energy and momentum of the traversing charged particle.

Three-dimensional tracking is achieved with axial wires aligned along the z-direction and
stereo wires skewed by a small angle with respect to the axial wires. To resolve the left-right
ambiguities, the stereo wires are oriented with positive and negative angles with respect
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to the axial wire. Due to the higher occupancy in the drift cells closer to the beam pipe,
they are smaller than the average size of 15.5 - 17.0 mm. Fig. 3.4 shows the drift cells and
the general setup of the CDC before the installation of the SVD2.

Figure 3.4: Central drift chamber setup for the Belle Detector with the installed SVD1.
The figures are taken from [43, p. 144 - 145].

Before the installation of the SVD2, the CDC contained cathode strips as the innermost
part measuring the z-direction of traversing charged particles. These cathode strips were
replaced by smaller drift cells to provide enough space for the new SVD2. Due to the
Lorentz boost and the resulting higher number of particles in the forward direction, the
CDC, like the SVD, is asymmetric in the z-direction.

3.1.4 Particle Identification System

Two subdetectors are solely used to provide particle identification of charged particles via
the detection of Cherenkov photons in a dielectric medium. Their primary focus is a good
pion and kaon separation for momenta between 0.5 GeV and 3.5 GeV.

The inner particle identification detector is an Aerogel Cherenkov Counter (ACC, denoted
as PID Fig. 3.2) and is used to distinguish pions and kaons with momenta between 1.2 and
3.5 GeV. The refraction index of the dielectric medium is chosen so that a pion traversing
the volume emits Cherenkov photons, while a kaon has a velocity below the speed of light
in the medium and does not emit Cherenkov photons. It only returns a yes or no answer
for the detection of Cherenkov photons and covers the region of 17◦ < θ < 127◦. Fig. 3.5
shows an ACC module installed in the barrel and forward region.
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Figure 3.5: Aerogel Cherenkov Counter installed in the barrel (left) and the forward endcap
region (right). These figures are taken from [43, p. 157]

The second system is the Time of Flight (TOF) detector with plastic scintillators as the
dielectric medium. At a radial distance of 1.2 m from the IP and with a time resolution
of 100 ps, it identifies particles with momenta up to 1.2 GeV and thus complements the
ACC pion kaon separation. Its acceptance region covers the polar angles 33◦ < θ < 121◦.

A TOF module consists of two trapezoidal-shaped counters and one thin trigger scintilla-
tion counter and is read out by photo multiplier tubes (PMT) on both ends of the module.
Combined with the beam collision time, the time of flight of charged particles is deter-
mined, and with information on the other subdetectors, the mass can be calculated. In
addition to the particle identification, the TOF provides an important input for the trigger
decision. The working principle of the TOF system is illustrated in Fig. 3.6.

Figure 3.6: Cherenkov radiation for kaons and pions in a dielectric medium, taken from [49,
p. 122].

A charged particle passing through the dielectric medium with a velocity greater than the
speed of light in this medium emits Cherenkov radiation. The emission angle, Cherenkov
angle, depends on the velocity v of the charged particle and the refraction index n of the
medium: cos(θc) = 1/(n · v). The photons propagate under total reflection to the readout
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system while preserving the information regarding the Cherenkov angle. If a kaon and a
pion have the same momentum, the velocity of the pion is higher due to its lower mass.
This results in a larger Cherenkov angle. Therefore, the photons of the pion travel a
shorter distance and arrive faster at the photon detector than the photons of the kaon if
they traverse the dielectric medium at the distance to the readout system.

3.1.5 Electromagnetic Calorimeter

The electromagnetic calorimeter (ECL, denoted as CsI Fig. 3.2) is primarily designed to
measure the energy of electromagnetic showers created by electrons and photons and to
provide crucial information for the electron identification. Because a large portion of the
created particles are neutral pions that subsequently decay into two photons, the ECL
must efficiently measure electromagnetic showers of photons with energies between a few
tens MeV to 4 GeV as well as their angular distribution. Therefore, it is installed as a
highly segmented system consisting of scintillating thallium-doped cesium iodide (CsI(Tl))
crystals that have a high light output and a short radiation length. The ECL also provides
trigger information and is used to determine the luminosity.

The barrel section spans 3 m in z-direction with an inner radius of 1250 mm. Including the
circular endcaps, an angular coverage between 17◦ to 150◦ is reached with 8736 crystals.
These crystals have an average length of 300 mm (equivalent to 16.2 radiation lengths) to
minimize energy leakage. Additionally, they are slightly tilted with respect to the IP to
prevent particles from hitting the gap between crystals and to provide angular resolution.
Fig. 3.7 shows the layout of the ECL.

Figure 3.7: Configuration of the electromagnetic calorimeter taken from [43, p. 175].
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Photons and electrons with sufficient energy passing through the crystal interact with
the detector material and produce electromagnetic showers. High-energetic photons can
convert into electron-positron pairs, which subsequently can emit Bremsstrahlung photons
or excite the scintillation detector material. These processes continue repeatedly until all
the energy is absorbed. The scintillating material de-excites by emitting low-energetic
photons, which photodiodes detect at the end of each crystal. The number of detected
photons is proportional to the energy of the initial photon or electron.

To determine whether a shower belongs to an initial photon or electron, the presence of a
track leading to the shower is checked. If a track is detected, the shower is classified as an
electron shower; otherwise, it is a photon shower. Hadrons can also shower in the ECL.
However, the additional strong interaction with the nuclei results in distinct shower shapes
compared to purely electromagnetic showers.

The extreme forward calorimeter (EFC) operates on the same principle as the ECL, using
bismuth germanate oxide crystals as scintillators. It is positioned in the forward (6.4◦ to
11.5◦) and the backward (163.3◦ to 171.2◦) regions of the detector. The EFC serves two
purposes: it acts as a shield for the CDC against the beam-induced background and pro-
vides information on the luminosity during data taking (online luminosity). The luminosity
is determined using Bhabha events due to their high cross-section and clear signature.

3.1.6 KL and µ Detector

The outermost subdetector is the KL and µ detector (KLM). As the name suggests, its
primary aim is identifying KL and muons with high efficiency. In addition, it serves as
magnetic reflux of the magnetic field and provides information to the trigger system. Its
working principle relies on double gap resistive plate counters (RPCs) as active material
that alternate with 4.7 cm thick iron plates.

A RPC consists of two parallel glass plates surrounding a thin gas volume. A high-voltage
field is applied between the two glass plates. When a charged particle passes through, it
ionizes the gas. The ions are accelerated toward the cathode, and the electrons toward
the anode. Due to the high electric field, the electrons further ionize the gas, creating an
avalanche of electrons. That leads to a temporarily reduced electric field in the nearest
electrode, measured by the external pick-up strips on the plate. The pick-up strips on the
ground plate are arranged orthogonally around a pair of RPCs. The layout of the RPC
system is illustrated in Fig. 3.8.

KL usually deposit their entire energy in hadronic showers, mainly in the iron plates due
to its high atomic number. Although the KLM does not provide energy information, the
shower position can be used to determine the original direction of the KL by extrapolating
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Figure 3.8: Schematic sketch of the RPC system taken from [43, p. 195].

to the IP. Because muons are minimal ionizing particles, they pass through the detector
with small deflections. The barrel region of the KLM consists of fifteen active material
layers and fourteen iron plate layers (adding up to a total of 3.9 interaction lengths) and the
endcaps of fourteen active layers and fourteen iron plate layers with total polar coverage
from 20◦ to 155◦.

3.2 Event Types at Belle

The most dominant interactions at Belle are QED processes, whose cross sections over-
shadow the approximately 1/50 factor smaller cross section of BB events. To mitigate
most of the QED contributions while retaining 99.1% of all BB events, a selection based
on the track multiplicity, energy in the ECL, and the total visible energy in the events
is applied. For a detailed description of the individual criteria, refer to the internal Belle
Note ”HadronB”[50].



Chapter 4

Data Sets

This chapter presents the Belle data and Monte Carlo data sets studied in this analysis and
the implemented Monte Carlo corrections to improve the data - Monte Carlo agreement.

The Belle experiment collected data between 1999 and 2010 at various center-of-mass
(CMS) energies [45]. Most data were recorded at the Υ (4S) resonance, slightly above
the production threshold of two B mesons. An overview of the data sets at the various
resonances is given in Tab. 4.1. Two silicon vertex detectors were used for the data set
taken on the Υ (4S) resonance, where the SVD1 was replaced by the SVD2. For each on-
resonance data set, a small off-resonance data set was collected to study the continuum
events.

Resonance On-resonance luminosity [fb−1] Off-resonance luminosity [fb−1]
Υ (1S) 5.7 1.8
Υ (2S) 24.9 1.7
Υ (3S) 2.9 0.25

Υ (4S) SVD1 140.0 15.6
Υ (4S) SVD2 571.0 73.8

Υ (5S) 121.4 1.7
Scan – 27.6

Table 4.1: Summary of the luminosity integrated by Belle, broken down by CM energy.
The Tab. is taken from [45, p. 7].

This analysis studies the Belle data, referred to as real data, recorded at the center of
mass energy of the Υ (4S) resonance at 10.58 GeV with a luminosity of 711 fb−1. Due to
varying the beam parameters and background conditions over the data-taking periods, the
real data is divided into experiments with experiment-specific conditions. To ensure an
unbiased final result, the analysis is conducted and optimized using Monte Carlo events,
which require that they precisely represent the real data.
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4.1 Monte Carlo Data

The Monte Carlo events contain information on the underlying generated events, which
allows the identification of signal and background events after the detector simulation. The
generation is composed of two stages.

In the first stage of the Monte Carlo generation, the complete decay chain of Monte Carlo
particles created in a e+e− collision is generated according to properties defined in a decay
file. Since no single generator accurately models the complete decay chain, various genera-
tors are employed. EVTGEN [51] is used for B meson decays; PYTHIA [52] simulates the
fragmentation and hadronization of quarks; and PHOTOS [53] is used to include the QED
final state radiations. In the second stage, the interactions of the Monte Carlo particles
with the detector and its responses are implemented with GEANT3 [54; 55].

Monte Carlo matching connects a detected particle to its generated Monte Carlo particle.
In the case of final-state particles, the detected particle is a ”true” particle if the matched
Monte Carlo particle is of the same type. A decaying particle is correctly reconstructed
if all its decay products match their respective Monte Carlo particles. The Monte Carlo
data sets are generated for each experiment of the real data under the experiment-specific
condition and the corresponding luminosity.

4.2 Signal Monte Carlo

Because the signal decay is lepton number violating, it is not part of the officially produced
Belle Monte Carlo data, which only contains Standard Model decays. Therefore, 10 million
signal events are generated, where one B0 meson decays in the signal channel B0 → τ+ℓ−

with ℓ = e, µ, with the phase-space model PHSP of EVTGEN. The subsequent τ decays are
modeled based on the conditions defined in the official Belle decay file and rely on either the
τ -specific models of EVTGEN or the general phase space models of PHSP and PYTHIA.
The second B meson in the events is generated in an electroweak b→ c transition, following
the official Belle decay file. Mixing between the two neutral B mesons and QED radiative
corrections are included.

Tab. 4.2 lists the reconstructed τ decays of interest and their corresponding branching
ratios used in the generation according to the official Belle decay file and the updated
values from Particle Data Group (PDG) [18].
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Belle PDG
τ Decay mode old B (×10−2) new B (×10−2)

e− ν̄e ντ 17.79 17.82 ± 0.04
µ− ν̄µ ντ 17.32 17.39 ± 0.04
π− ντ 11.00 10.82 ± 0.05

π− π0 ντ 25.30 25.49 ± 0.09
π− π0 π0 ντ 8.70 9.31 ± 0.05
π− π− π+ ντ 7.53 9.26 ± 0.10

total 87.64 90.09 ± 0.16

Table 4.2: Branching ratios of the reconstructed τ decays according to the Belle decay file
and the PDG [18].

To correct the branching ratios in signal events, each event is assigned a weight with respect
to the generated τ decay branching ratio and the updated branching ratio. For the specific
reconstructed τ decay, an event weight wrec is applied:

wrec =
Bτ,PDG

Bτ,Belle

. (4.1)

For all other types of generated τ decays (nrec), a correction weight wnrec is determined
relative to the sum of all signal τ decays i.

wnrec =
1−

∑
i Bτi,PDG

1−
∑

i Bτi,Belle

(4.2)

4.3 Background Monte Carlo

A good description of the background events is essential to determine the expected back-
ground rate and composition in the real data. Therefore, various Monte Carlo data sets are
investigated. The most important ones are events with Standard Model B meson decays
and continuum events, where the initial e+e− → qq̄ with q = u, d, s, c. Since Belle was
foremost intended for studying B physics, the applied initial selection of the Hadron B
skim, see section 3.2, rejects most of the low-multiplicity events. Their contribution after
the reconstruction of the signal channel was found to be negligible.
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Generic Belle Monte Carlo

Events of the most probable e+e− interactions were generated in the official Belle Monte
Carlo campaign. These data sets were produced with multiple times the luminosity of the
real data set, where one stream corresponds to the online luminosity of the full real data
set. The large number of Monte Carlo events decreases the statistical uncertainty of the
final result. One of the available streams (stream 6), which was only generated for B meson
events, was used in the training of the FEI and was therefore not included in the analysis
to avoid biasing the final result.

Continuum

Continuum events are light-quark events, where the e+e− directly decays into a light-
quark pair e+e− → qq̄ with q = u, d, s, c. Their contribution to the total cross-section is
approximately three times larger than Υ (4S) events. Six streams of continuum events were
generated, which are separated into uds (ee→ uū/dd̄/ss̄) and charm (ee→ cc̄) data sets.

B Meson with b→ c Transition

If a Υ (4S) particle is created, it decays with a probability of over 96% into two B mesons.
These B mesons most likely decay through electroweak b → c transitions because b → u
transitions are CKM suppressed, and b → d, s transitions do not occur at tree level and
are also CKM suppressed.

In the official Belle Monte Carlo campaign, the Υ (4S) decays were generated under the
assumption of isospin symmetry, and both of the B mesons decay via b → c transitions.
These events are referred to as B(b→ c) events in the further analysis. The total data set
of B(b→ c) events consists of ten streams. Tab. 4.3 shows the generated branching ratios
for the B meson Belle data set and the PDG result assuming B(Υ (4S) → BB) = 100%.

Belle PDG
Decay mode B (×10−2) B (×10−2)

Υ (4S) → B+ B− 49.948 51.4 ± 0.6
Υ (4S) →B0 B0 49.947 48.6 ± 0.6
Υ (4S) → other 0.105 –

Table 4.3: Branching ratios of Υ (4S) relative to the total Υ (4S) branching ratio as defined
in the official Belle decay file and the updated values from the PDG, assuming a 100%
decay into B mesons.
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Additional Belle Monte Carlo

The generic Belle Monte Carlo data set excludes B meson decays via the b → d, s and
b → uℓν transition. Because they are crucial background processes in searches of rare or
forbidden Standard Model B meson decays, they were generated in a separate Monte Carlo
campaign, known as the SpecialMC2010 campaign. In these events, one B meson decays
via the b → d, s or b → uℓν transition, while the other B meson decays through the more
probable b→ c transition.

B Meson with b→ d, s Transition

This data set contains events where one of the two B mesons decays via b→ d, s transition.
Due to their tiny branching ratios, see Tab. 4.4, data sets with fifty times the expected
luminosity of the real data were generated. Events of this type are referred to as B → rare
events in the further analysis.

B(B+ → rare) B(B0 → rare)
3.27945 ·10−3 4.05703 ·10−3

Table 4.4: Branching ratios of rare B meson decays used in the SpecialMC2010 campaign.

B Meson with b→ uℓν Transition

The SpecialMC2010 data set also contains events where one B meson decays via a b→ uℓν
transition. While the data accurately models the kinematic distribution of the lepton mo-
mentum over a wide range, it exhibits deviations at the endpoint of the leptonic momentum
region. Since this region is significant for distinguishing signal and background events, a
new data set with updated branching ratios and theory predictions is used instead.
The branching ratios for the inclusive (resonant and non-resonant) decays of B mesons are
defined as:

B
(
B+ → X0

uℓν
)
= τ+0

1 + f+0

1 + τ+0f+0

B (B → Xuℓν)Υ (4S) = (2.2± 0.3) · 10−3, (4.3)

B
(
B0 → X+

u ℓν
)
=

1 + f+0

1 + τ+0f+0

B (B → Xuℓν)Υ (4S) = (2.0± 0.3) · 10−3, (4.4)

where B (B → Xuℓν)Υ (4S) denotes the combined branching ratio of neutral and charged B
mesons.

B (B → Xuℓν)Υ (4S) = (2.13± 0.31) · 10−3 (4.5)

τ+0 =
τB+

τB0
= 1.076 ± 0.004 is the lifetime ratio and f+0 = Γ(Υ (4S)→B+B−)

Γ(Υ (4S)→B0B0)
= 1.058 ± 0.007

the fraction of the Υ (4S) decay rates into charged and neutral B meson pairs.
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Theory models correctly predict the triple differential decay rate, which depends on the
invariant mass of the hadronic final states mX, the energy of the lepton in the B rest frame
EB
ℓ and the momentum transfer q2 from the B meson to the leptonic system:

dΓ

dmX dEℓ
B dq

2 . (4.6)

However, these theory models can only model non-resonant decays for hadronic final states
with mX ≥ 2 mπ hadronic final states. The only available generator in the Belle software
for such non-resonant decays is EvtVUB, which relies on the De Fazio and Neubert (DFN)
model [56]. The non-resonant Monte Carlo was generated with the inclusive branching
ratio and later reweighted when adding the resonant decays. The missing resonant decays
were generated with updated form factors and branching ratios provided by Heavy Flavor
Averaging Group (HFLAV) [57] and PDG 2019 [58].

Tab. 4.5 compares the branching ratios of the B(b→ uℓν) decays in the old (specialMC2010)
and the new Monte Carlo data. Additional resonances were included in the generation of
the old Monte Carlo data. The branching ratios of these higher resonances are combined
with the non-resonant Xu in the ”Xu + higher resonances: component. The listed branch-
ing ratios are identical for electrons or muons.

B meson Decay mode old B (×10−3) new B (×10−3) (new-old)/new

Neutral

π+ 0.136 0.150 90.7%
ρ+ 0.277 0.294 94.2%

X+
u + higher resonances 1.296 1.606 80.7%

total 1.709 2.050 83.4%

Charged

π0 0.073 0.078 93.6%
ρ0 0.149 0.158 94.3%
η 0.084 0.039 215.4%
η′ 0.033 0.023 143.5%
ω 0.115 0.119 96.6%

X0
u + higher resonances 1.381 1.789 77.2%

total 1.835 2.206 83.2%

Table 4.5: Branching ratios for the old (SpecialMC2010) and new Belle Monte Carlo data
sets. The new branching ratios are obtained from the 2018 results of HFLAV and the 2019
results of the PDG.
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Hybrid Model

In the Hybrid Model, events with non-resonant and resonant decays are combined according
to the triple differential decay rate. The resonant and non-resonant Monte Carlo events
are binned in the following variables:

• mX : [0.0, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5]

• Eℓ: [0.0, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5]

• q2: [0.0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 20.0, 25.0]

For each bin i of the triple differential decay rate, the number of inclusive Monte Carlo
events Ii is defined as the sum of the resonant Ri and non-resonant Ni contributions.

Ii = Ri +Ni (4.7)

Because the non-resonant contribution was generated according to the total inclusive decay
rate, it needs to be reweighted by a weight ωi:

Ni = ωi · Ii (4.8)

to conserve the total inclusive branching ratio when adding the resonant decays. The
Hybrid Model data set contains events ten times the expected luminosity. Events where
one B meson decays in a b→ uℓν transition are referred to as B(b→ uℓν) events.
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4.4 Monte Carlo Data Set Overview

An overview of the studied signal and background Monte Carlo data is given in Tab. 4.6.

Monte Carlo Type Number of events Number of streams
charm 900,306,306 6
uds 1,447,406,660 6

B0(b→ c) 377,426,369 9 (10)
B+(b→ c) 377,426,374 9 (10)
B0(b→ uℓν) 1,543,162 10
B+(b→ uℓν) 1,702,108 10
B0 → rare 3,130,327 50
B+ → rare 2,530,361 50

signal 10,000,000 –

Table 4.6: Number of generated events of the Monte Carlo background events expected in
data with luminosity of 711 fb−1 and the number of available streams. For B(b→ c) Monte
Carlo events, the number of streams in brackets represents the total number of available
streams, including the stream used for the FEI training. The signal events are listed with
the total number of generated signal events.

4.5 Monte Carlo Corrections

Multiple corrections are applied to the Monte Carlo events to improve the data - Monte
Carlo agreement and assign uncertainties introduced by these corrections. While the sim-
ulation of the detector attempts to mimic the detector responses as precisely as possible,
deviations are unavoidable. These deviations result in differences in particle identification,
particle finding efficiencies, and the performance of multivariate algorithms, which were
trained on Monte Carlo data.

Additionally, measurements of branching ratios and form factors have been updated since
the Monte Carlo generation. However, their uncertainties were neglected during the Monte
Carlo generation. They need to be included to ensure the accurate determination of the
uncertainty of the final result.

For each Monte Carlo event i, the so-called event weight wi is determined as the product
of the individual correction factors.
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4.5.1 Luminosity

The generic Monte Carlo data were generated based on the online luminosity, which is less
precise than the later determined offline luminosity. Additionally, some of the Monte Carlo
files were lost. For a good representation of the real data, the generic Monte Carlo data

are weighted according to the number of NBB in real data to match the expected rate of
the individual background processes. The scaling factors for the charged and neutral B
meson events are calculated as follows:

CB0 =
NBB,data

NBB,MC

· f00, (4.9)

CB+ =
NBB,data

NBB,MC

· f+−. (4.10)

The branching ratios of the Υ (4S) → BB relative to the total branching ratio of the Υ (4S)
into neutral B mesons are f00 = 0.486 and f+− = 0.514 for charged B meson pairs assuming
a 100% decay of the Υ (4S) resonance into B mesons. The total number of B meson pair
events in real data NBB,data is (771.581 ± 10.566) · 106 [59] and corresponds to the offline
luminosity L = 711 fb−1.

The scaling factor for continuum events is calculated based on the detector efficiency cor-
rected cross sections of the continuum and B meson events. These cross sections are σc =
1.30 nb and σuds = 2.09 nb [2] for the continuum events at Υ (4S) resonance and σB = 1.09
nb [60] for B meson events.
For light-quark pairs, when q = c

Cc =
σc
σB

· NBB,data

Nc,MC

. (4.11)

For light-quark pairs, when q = u, d, s:

Cuds =
σuds
σB

· NBB,data

Nuds,MC

. (4.12)

The additional background Monte Carlo data were generated according to the offline lu-
minosity and are thus not reweighted.
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4.5.2 Uncertainties of Correlated Parameters

Uncertainties on the corrections due to correlated parameters can be determined as uncor-
related variations by rotating the parameter space. For a set of correlated parameters x⃗ =
(x1,...,xn)

T , the covariance matrix C has non-zero off-diagonal elements.

C =

 σ2
1 ρ12σ1σ2 ... ρ1nσ1σn
...

...
. . .

...
ρn1σnσ1 ρn2σnσ2 ... σ2

n

 (4.13)

where ρij denotes the correlation between the parameters i and j and ranges between -1
to 1, and σi denotes the uncertainty of parameter xi.

By rotating the parameter space and thus diagonalizing the covariance matrix, the corre-
lated parameters x⃗ become the uncorrelated parameters y⃗ = (y1, ..., yn)

T .

y⃗ = x⃗ U−1, (4.14)

where U = (u⃗1,..,u⃗n) consists of the n normalized orthogonal eigenvectors u⃗i belonging to
the eigenvalues λi of C. The diagonalized covariance matrix V is defined by:

V = U−1CU. (4.15)

The variation of the parameters yi in the orthogonal space is then determined for the n
different eigenvalues λi by adding or subtracting the corresponding uncertainty of λi to the
nominal parameters.

y⃗±i = y⃗ ±
√
λi. (4.16)

In the last step, the varied parameters are transformed back into the original space via:

x⃗±i = y⃗±i U. (4.17)

4.5.3 Form Factor B → D(∗)ℓν

In the generation of Monte Carlo B → D(∗)ℓν decays, the form factor parameterization as
proposed by Caprini, Lellouch and Neubert [61] (CLN) was used. It relies on the heavy-
quark symmetry to reduce the number of free parameters. Recent experimental results yield
a better agreement between observation and theory for the form factor parameterization
of Boyd, Grinstein, and Lebed [62; 63] (BGL). Therefore, each B meson decaying in a
B → D(∗)ℓν channel is reweighted according to the differential decay rate from the CLN to
the BGL parametrization with the eFFORT package [64] assuming |Vcb| = 40.83 · 10−3. If
both B mesons decay in a D(∗)ℓν channel, the event is reweighted for both B mesons.
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The differential decay rate of B → D∗ℓν depends on the following variables, which are
shown in Fig. 4.1:

• θℓ: angle between the lepton and the direction opposite the B meson in W rest frame.

• θv: angle between the D meson and the direction opposite the B meson in the D∗

rest frame.

• χ: tilting angle between the two decay planes spanned by the W – ℓ and D∗– D
systems in the B meson rest frame.

• q2 = (pB − pD∗)2 four-momentum transfer squared.

For B → Dℓν decays, the differential decay rate only depends on q2.

Figure 4.1: Definition of the angles θℓ, θv , and χ for the B → D∗ ℓ νℓ decay, mediated by
a vector boson W; πs refers to the low momentum pion from the decay D∗ → D0 πs taken
from [65, p. 5].

The correction factor CBGL for each B meson is applied according to the following formula:

CBGL =
dΓBGL(θℓ, θv, χ, q

2)

dΓCLN(θℓ, θv, χ, q2)
· ΓCLN

ΓBGL

, (4.18)

where Γ denotes the total and dΓ(θℓ, θv, χ, q
2) the differential decay rate.

The BGL parametrization of the B → Dℓν depends on five correlated parameters [66] and
for the B → D∗ℓν decays on six correlated parameters [67]. The variations of the correlated
parameters are determined as described in the previous section 4.5.2. In appendix A, the
BGL parameters with their uncertainties and the correlation matrices are provided.
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4.5.4 Branching Ratio B → D(∗∗)ℓν

Additionally, the branching ratios of the generated B → D(∗∗)ℓν decays, where D∗∗ denotes
the four excited D states: D1, D

′
1, D

∗
0 and D∗

2, are updated. They are calculated as isospin
averages from the results of HFLAV [57] and PDG [68]; further details on the calculation
can be found in [69] and [70].

The following Tab. 4.7 presents the branching ratios in the Belle Monte Carlo generation
and the updated values.

B Type Decay mode old B (×10−2) new B (×10−2)

Neutral

B0 → Dℓν 2.31 2.24 ± 0.07
B0 → D∗ℓν 5.33 5.11 ± 0.11
B0 → D1ℓν 0.74 0.62 ± 0.10
B0 → D∗

0ℓν 0.84 0.39 ± 0.07
B0 → D′

1ℓν 0.74 0.39 ± 0.08
B0 → D∗

2ℓν 0.36 0.27 ± 0.03

Charged

B+ → Dℓν 2.31 2.41 ± 0.07
B+ → D∗ℓν 5.79 5.50 ± 0.11
B+ → D1ℓν 0.81 0.66 ± 0.11
B+ → D∗

0ℓν 0.91 0.42 ± 0.08
B+ → D′

1ℓν 0.81 0.42 ± 0.90
B+ → D∗

2ℓν 0.39 0.29 ± 0.03

Table 4.7: Isospin-averaged branching ratios of B → Xcℓν decays used in the Belle Monte
Carlo generation and the updated ones obtained from HLFAV(2018) and PDG(2020) re-
sults.

The correction factor CB,i for each B meson decaying in the decay mode i is defined by:

CBi
=

new Bi

old Bi

. (4.19)

4.5.5 Hybrid Model

The uncertainties of the hybrid model arise due to uncertainties on the inclusive branching
ratio, uncertainties of the (DFN) model parameters in the generation of the non-resonant
B → Xuℓν decays, and from choosing a particular model out of all possible models for the
generation of the non-resonant decays.
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Branching Ratio

The non-resonant B → Xuℓν decays are generated with the inclusive branching ratio and
are later reweighted when adding the resonant decays. When generating the hybrid weights,
the branching ratios of the inclusive decay modes are varied within one standard deviation
uncertainty.

DFN Parameters

The non-resonant Monte Carlo events were simulated with the EVTgenVUB generator
using the nominal values of the parameters m1S

b and a. They depend on the HQET
parameters Λ and λ1, which are obtained from fits of radiative B meson decays using
the Kagan-Neubert scheme [71]. The EVTgenVUB parameters are defined as:

m1S
b = mB − Λ and a =

3 · Λ2

−λ1
− 1, (4.20)

where mB denotes the nominal mass of the B meson and the HQET parameters are Λ =
0.621± 0.041 and λ1 = −0.497+0.072

−0.086 with the correlation ρ(Λ, λ1) = −0.17.

Since the HQET parameters are correlated, the parameters m1S
b and a are also correlated.

The values of m1S
b and a for the nominal values and the two uncorrelated variations within

the uncertainty of the HQET parameters are presented in Tab. 4.8.

nominal variation 1 up variation 1 down variation 2 up variation 2 down
m1S

b 4.659 4.699 4.619 4.650 4.668
a 1.328 1.021 1.660 1.042 1.734

Table 4.8: Parameters for Monte Carlo generation obtained with the DFN model and the
two variations within one σ uncertainty of the heavy quark parameters.

The two variations are determined by diagonalizing the covariance matrix. For the final
uncertainty on the parameters m1S

b and a, the mass of the B meson mB = 5.27966 ±
0.00012 GeV is neglected, and the larger uncertainty of λ1 is chosen when calculating the
covariance matrix to avoid underestimating the overall uncertainty.

Model Choice

Choosing the DFN model rather than any of the other models to generate the Monte Carlo
data set introduces uncertainties due to the model choice. It is calculated by comparing the
fit variable distribution for the default model (DFN) with the distribution of the reweighted
events according to the BLNP [72] model, which serves as the representative for all other
models.
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4.5.6 Efficiency Corrections

Because the detector simulation does not perfectly match the real detector, particle identi-
fication and the particle finding efficiencies differ between Monte Carlo and real data. This
also extends to discrepancies in the performance of multivariate algorithms, like the FEI,
which is trained on the simulated particles. For the final result of the branching ratio, a
precise knowledge of the signal efficiency and its uncertainty is essential. Since it is deter-
mined using signal Monte Carlo data, all efficiency corrections and their uncertainties must
be applied to calculate the correct efficiency for the signal events in real data. Moreover,
correcting the background of Monte Carlo also improves the overall agreement between
data and Monte Carlo.

Track Finding Efficiency

One correction that needs to be applied is the track finding corrections for charged particles.
A study, presented in the internal Belle Note [73], of D∗ → πD0 decay with subsequent
D0 → ππK0

s and K0
s → π−π+ decays, revealed that the statistical uncertainty on the track

finding correction for tracks with transverse momentum pt > 0.2 GeV in the laboratory
frame (lab frame), exceeds the correction itself. Instead of adjusting the efficiency of each
track, a systematic uncertainty of 0.0035 per track is applied.

Low Momentum Particle Finding Efficiency

An additional correction for finding neutral and charged particles with a transverse mo-
mentum pt < 0.2 GeV is applied. The efficiency of low momentum pions was investigated
in B0 → D∗π+ and a B+ → D∗0π+ decays, described in further detail in the internal Belle
Note 1176 [74]. Correction factors for six low-momentum bins are calculated by comparing
the number of signal and background events in Monte Carlo and real data obtained from
fits.

Due to the large branching ratio uncertainties of the B → D∗π decays, the correction
factors of the low momenta bins are normalized to the high momentum bin with pt >
0.2 GeV, resulting in a correlation of the correction factors between the individual the
momentum bins. The total correction factors uncertainty σCi

consists of an uncorrelated
and a 100% correlated uncertainty for each bin i.

σ2
Ci

= σ2
uncorr + σ2

corr ,∀i ∈ {1, . . . , 6} (4.21)
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Particle Identification

In the reconstruction of an event, the charged final state particles are assigned a certain
particle type, which depends on the information obtained from the subdetectors. Dis-
crepancies in the response of the simulated detector and the real detector can result in
particle identification differences. These are typically investigated in well-known and clean
channels.

Individual correction factors for the different particle types are determined in so-called
particle identification bins (pid bins) depending on the polar angle θ and the momentum
in the lab frame. Furthermore, the correction factors are separated into particles, which
are correctly identified, and particles imitating a different particle type, known as fakes.

Lepton Identification

The lepton identification gives a probability in the form of a likelihood ratio to distinguish-
ing either electrons or muons from pions and kaons. The lepton identification is defined
as

ℓID =
Lℓ

Lℓ + Lπ + LK

(4.22)

where Lℓ represents the likelihood for either electrons or muons, Lπ represents the likelihood
for pions, and LK the likelihood for kaons.

The correction factors for true electrons and muons were obtained in a study of two-photon
events e−e+ → e−e+ℓ−ℓ+ with ℓ = e, µ. This process benefits from the large data size,
resulting in low statistical uncertainties on the correction. Separate correction factors
are calculated depending on the particle type, experiment (data-taking period), θ angle,
momentum in the lab frame, and the lepton identification selection.

Each correction factor includes a statistical uncertainty, which is independent across all
pid bins, and a systematic uncertainty, which is assumed to be 100% correlated among
the bins. The systematic uncertainty also contains an additional uncertainty due to the
different efficiency ratios between real data and Monte Carlo in two-photon events and
B → XJ/ψ, where X includes all additional particles directly originating from the B
meson. More information is provided in the internal Belle Notes 777 [75] and 954 [76].
True pions and kaons mimicking electrons or muons, fake rate corrections are studied D∗

decays in the analysis of semi-inclusive semi-leptonic B → D0/D+/DsℓνX decays, described
in the internal Belle Note [77].
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Pion & Kaon Identification

The pion and kaon identification gives a probability in the form of a likelihood ratio to
distinguish pions from kaons and vice versa:

πID =
Lπ

Lπ + LK

and KID =
LK

Lπ + LK

(4.23)

Efficiency corrections for pion vs. kaon identification are obtained with an D∗ sample, in
which the D∗+ decays into a D0π+ and the D0 further decays into a K− and π+. This
analysis, documented in the internal Belle Note 779 [78], studies the discrepancies between
Monte Carlo and data in the particle identification for true kaons and true pions and Monte
Carlo kaons being misidentified as pion candidates and vice versa. The correction factors
depend on the momentum in the lab frame and the θ angle of the particles.

Neutral Pion

The efficiency ratio for finding neutral pion in real data compared to Monte Carlo data
was analyzed by measuring the branching ratios of τ− → π−π0ν decays in ee→ ττ events;
see the internal Belle Note 1224 [79]. One τ was identified by a lepton in its decay, and the
other τ was reconstructed in the τ− → π−π0ν channel. Additionally, the efficiency ratio
was determined for double τ− → π−π0ν events. The resulting correction factor is given
with a statistical (second term) and systematic uncertainty (third term):

Cπ0 = 0.957± 0.008± 0.023 (4.24)

Full Event Interpretation

The Full Event Interpretation (FEI) employs multivariate algorithms that are trained on
Monte Carlo events. To determine the correct efficiency of the FEI and its uncertainty for
signal events in real data, the FEI is calibrated by comparing its efficiency on real data
and Monte Carlo data in a well-known and nearly background-free channel. Assuming
independence between the tag-side and signal-side reconstruction, the overall efficiency is
given by ϵ = ϵBtag · ϵBsig

. In the calibration, the Btag is reconstructed analogously to the
tag side of the signal events in B0 → τℓ decays, and the signal side is reconstructed in
the B0 → D∗−(→ D0(→ K+π−)π−)ℓ+ν mode. A detailed description of the calibration
is given in chapter 6. The resulting calibration factors are separately determined for the
B0 → D∗−e+ν and B0 → D∗−µ+ν channels.

CFEI,e = 0.7796± 0.0415

CFEI,µ = 0.7871± 0.0421



Chapter 5

Reconstruction of B0→τℓ Events

This chapter presents the reconstruction of the Υ (4S) resonance for signal events, where
the Btag is reconstructed with the hadronic FEI and Bsig is reconstructed in six exclusive τ
decay modes. Afterward, the different background rates are studied and various selections
are applied to reduce their contributions.

5.1 Analysis Strategy

My analysis follows the strategy of the previous Babar study from 2008 [80]. A sketch of
an exemplary signal event is illustrated in Fig. 5.1.

Full Event Interpretation (FEI) Signal Side

Figure 5.1: Sketch of a signal event with a B (Bsig) decaying in a signal channel and a
hadronic decay of the other B (Btag) in the event.
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A signal event contains the two B mesons, which originate from a Υ (4S) decay. The signal
B meson, referred to as Bsig, decays into a light lepton and a τ . Due to the large mass of
the B meson, the light lepton carries a high momentum of 2.34 GeV in the Bsig rest frame.
It is mono-energetic due to the two-body decay of the Bsig and serves as a clear signature
for signal decays. However, the undetected neutrino(s) in the τ decays prevent the direct
determination of the Bsig momentum from its decay products.

Exploiting the clean environment of the Υ (4S) decay into mostly two B mesons and nothing
else allows constraining the kinematics of Bsig based on the knowledge of the other B
meson’s kinematics. Therefore, the Full Event Interpretation is employed to reconstruct
the other B meson in the event, referred to as Btag, in decay modes with neutrino-free
final states. The Bsig rest frame can be calculated via momentum conservation in the CMS
frame.

p⃗Bsig
= −p⃗Btag

(5.1)

By reconstructing both B mesons, no particle remains unassigned after the Υ (4S) recon-
struction for correctly reconstructed signal decays.

The complete analysis is implemented and optimized on Monte Carlo data while the real
data is blinded in the signal region of the lepton momentum. Taking advantage of the
new Belle II software [81; 82], the reconstruction is implemented with the conversion tool
b2bii [83], which allows the application of the FEI algorithm developed for the Belle II
Experiment on Belle data.

5.2 Reconstruction of B0 → τℓ Events

This section describes the reconstruction of the Υ (4S) candidate starting from the final
state particles.

5.2.1 Event Selection

Before the reconstruction of the Υ (4S) an initial event selection is applied to reduce the
number of background events.

1. An event must contain fewer than 18 tracks originating from the primary collision,
which is ensured by selections on the minimal radial distance (dr) and the minimal
distance in z-direction (dz) between the track and the IP: dr < 2 cm and |dz| < 4
cm.
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2. Furthermore, an event must contain fewer than 18 photons, each with an energy
requirement of E > 100/50/150 MeV in the forward (FWD)/barrel (BR)/backward
(BWD) region of the detector.

3. The most crucial criterion requires at least one particle per event with a momentum
pℓ,CMS > 0.5 GeV and a high lepton identification value for either an electron (eID
> 0.9) or a muon (muID > 0.9). This selection discards approximately 60% of B
meson events and even more so for continuum events while maintaining nearly 90%
of the signal events.

Fig. 5.2 compares the light lepton momentum distribution in the Bsig rest frame and the
CMS frame for signal events.
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Figure 5.2: Lepton momentum distribution in the Bsig rest frame (left) and the CMS frame
(right) for correctly reconstructed Bsig candidates.

Since the B meson only has an average momentum of 0.3 GeV in the CMS frame, the
momentum of the light lepton is smeared out by the B meson momentum and is mostly
still above 2.0 GeV.

An overview of the efficiency for the individual conditions and their combination are pro-
vided in Tab. 5.1, which are determined separately for signal and the main background
events.
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Ntracks < 18 Nγ < 18 pℓ,CMS > 0.5 GeV all criteria
ϵ signal 100.00% 99.85% 89.32% 89.19%
ϵ charm 100.00% 99.12% 20.87% 20.77%
ϵ uds 100.00% 99.59% 10.44% 10.41%

ϵ B0 (b→ c) 99.89% 96.91% 41.98% 41.48%
ϵ B+ (b→ c) 99.93% 96.22% 42.65% 42.03%

Table 5.1: Efficiency of the initial selection for signals and the main background events.

5.2.2 Reconstruction of the Tag Side

After the initial event selection, Btag candidates are reconstructed using the hadronic FEI.
Specific Btag variables are calculated, which removes events where neither of the two B
mesons decays into a neutrino-free final state. The following variables are defined in the
CMS frame:

∆E is defined as the energy difference between the reconstructed B and the beam energy:

∆E = EB − Ebeam. (5.2)

Since the Υ (4S) resonance almost always decays into two B mesons and nothing else, the
initial energy (E = 2 · Ebeam in the CMS frame) is distributed equally between them in
the CMS frame. For correctly reconstructed Btag decays |∆E| = 0 and the distribution
is only smeared out by the finite detector resolution. A selection of |∆E| < 0.2 GeV is
implemented.

The beam constraint mass Mbc is calculated via:

Mbc =
√
E2
beam − p⃗ 2

B . (5.3)

where, p⃗B represents the three-momentum of the Btag, and the beam energy replaces the
reconstructed Btag energy. For correctly reconstructed Btag decays, this yields the nominal
B meson mass and improves the resolution due to the more precisely measured beam
energy in comparison to the reconstructed Btag energy. Requiring the reconstructed Btag

to satisfy Mbc > 5.27 GeV mitigates continuum events and wrongly reconstructed B meson
candidates.

The signal probability PBtag is the classifier provided by the FEI, indicating the probability
that a Btag is correctly reconstructed. The FEI returns up to 20 possible B meson can-
didates per event, and the selection PBtag > 0.001 discards those that are likely wrongly
reconstructed. The distributions of the PBtag , Mbc, and ∆E of the Btag candidates in signal
events are shown in Fig. 5.3.
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Figure 5.3: Distributions of Btag variables in signal events with correctly reconstructed Btag

candidates shown in red and wrongly reconstructed Btag candidates shown in blue.
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5.2.3 Reconstruction of the Signal Side

For the signal side reconstructions, all particles not associated with the Btag are consid-
ered. Since the Bremsstrahlung emitted from electrons is not necessarily negligible, a
Bremsstrahlungs correction is implemented, which also slightly improves the overall reso-
lution of the lepton momentum distribution.

The initial electron momentum p⃗e,corr is calculated by adding the momenta of photons
p⃗γbrems

within a cone with an opening angle θ = 0.05 rad around the measured electron
momentum p⃗e. Each of these Bremsstrahlungs photons must fulfill an energy selection of
E > 100/50/150 MeV based on the FWD/BR/BWD region of the detector.

p⃗e,corr = p⃗e +
∑
i

p⃗γi
brems

(5.4)

Fig. 5.4 illustrates the procedure of the Bremsstrahlung correction. Only 6% of all electrons
are Bremsstrahlung-corrected.

Figure 5.4: Bremsstrahlungscorrection for electrons. The original electron momentum pe
is Bremsstrahlungs corrected by adding all the momenta of photons within a cone with
opening angle θ to obtain the Bremsstrahlungs corrected momentum of the electron.

p⃗e,corr = p⃗e +
∑
i

p⃗γi
brems

(5.5)

To increase the purity of the charged final state particle – electrons, muons, and pions–
a selection is applied. They are required to originate from the initial collision: dr < 2cm
and |dz| < 4 cm. Additionally, individual selections on the particle identification need to
be fulfilled. Tab. 5.2 lists the selection for the different final state particles.

Neutral pions are reconstructed from two photons, where each photon must satisfy an
energy selection of Eγ > 0.05 GeV and their combined invariant mass is required to be
distributed around the nominal neutral pion mass mπ0 = 0.135 GeV.
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Selection Criteria
electron eID > 0.9
muon muID > 0.9
pion muID ≤ 0.9 and eID ≤ 0.9

neutral pion Eγ > 0.05 GeV and 0.12 GeV < Mγγ < 0.15 GeV

Table 5.2: Selection criteria for charged and neutral final state particles.

The purity for a final state particle is defined as the fraction of true particles of the
hypothesized particle type relative to all particles identified as particles of the hypothesized
type. Fig. 5.5 shows the composition of Monte Carlo particles for the electron, muon, and
charged pions, where charged pions are referred to as π in the further analysis.
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Figure 5.5: Composition of the Monte Carlo particles for the different hypothesized final
state particles in signal events.
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The purity for electrons candidates is high, with less than 2% of the assumed electrons
being other particles mimicking the electron-like signature in the detector; these particles
are called fakes. They are matched to true pions, kaons, and muons, and in some cases can’t
be assigned to any Monte Carlo particles, which are contained in the ”other” component.
Most of the muons are true muons; the leading contribution of fakes are true pions because
of their similar mass. The charged pions show the lowest purity of all charged final state
particles with 78%. Their main contributions of fakes originate from true kaons with 11%
followed by 5% muons. Instead of further tightening the selection for charged pions, the
current selection is kept to prevent a loss in efficiency.

The purity for neutral pions is only 28% in signal events. This is mainly caused by the
difficulty of matching detected energy clusters to Monte Carlo photons. If an energy cluster
can not be matched to its associated Monte Carlo photon, the neutral pion is not correctly
reconstructed.

τ Reconstruction

Using the final state particles, τ candidates are reconstructed in six exclusive decay modes,
which are given in Tab. 5.3. Overall, nearly 90% of all τ decay modes are included in the
reconstruction.

τ decay mode B (%)
τ− → e−ντ ν̄e 17.82
τ− → µ−ντ ν̄µ 17.39
τ− → π−ντ 10.82
τ− → π−π0ντ 25.49

τ− → π−π−π+ντ 9.02
τ− → π−π0π0ντ 9.29

Table 5.3: Reconstructed τ decay modes and their respective branching ratio in the signal
events.

If the final state contains multiple pions, it is dominated by resonant decays. The τ →
ππ0ντ decays mostly proceed via the ρ resonance and the τ → πππντ decays via the a1
resonance. In the case of resonant decays, the invariant mass spectrum of the final state
pions exhibits peaks at the ρ and a1 mass. With an invariant mass selection on the hadronic
daughters for these decay modes, the number of combinatorial background candidates can
be reduced.
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Furthermore, a selection on the cosine of the angle (θ) between the hadronic τ daughter(s)
and the τ in the Bsig rest frame is used to discriminate against the combinatorial background
candidates. Decays with multiple pions in the final state mainly occur via spin-1 ρ or a1
resonances. This results in a peaking cos(θ) distribution at 1, where θ denotes the angle
between the three-momenta of the resonance and the τ in the Bsig rest frame. For the pion
final state, cos(θ) is distributed between -1 and 1, neglecting the finite detector resolution.
The cos(θ) is determined as:

cos(θτ,had) =
2 · Eτ · Eτ,had −m2

τ −m2
τ,had

2 · |p⃗τ | · |p⃗τ,had|
. (5.6)

All energies and momenta are calculated in the Bsig rest frame, where the τ kinematics are
determined by the four-momentum conservation of the two body Bsig decay. The masses
are mτ = 1.777 GeV, mπ = 0.140 GeV, mρ = 0.775 GeV and ma1 = 1.245 GeV [18].
Tab. 5.4 lists the additional selections for the hadronic τ decays.

τ decay mode Selection Criteria
τ → πν – −1.00 < cos(θτ,π) < 1.30
τ → ππ0ν 0.6 GeV < Minv < 1.3 GeV 0.50 < cos(θτ,ρ) < 1.30

τ → πππν/ππ0π0ν 0.9 GeV < Minv < 1.8 GeV 0.45 < cos(θτ,a1) < 1.30

Table 5.4: Selection criteria for hadronic τ decays.

Fig. 5.6 shows the angular distribution between the hadronic τ daughters and the τ in
Bsig rest frame in signal events. The fraction of wrongly reconstructed Bsig is especially
high in the τ → πν decay mode because the other three hadronic decay modes are also
reconstructed in this decay mode and seen as down-feed. For τ decay modes with π0 in
the final state, the purity is low because of the low efficiency in correctly identifying π0. In
addition, pions from the Btag decay can also contribute to the combinatorial background.
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Figure 5.6: Angular distribution of the hadronic τ daughters and the τ in the Bsig rest
frame for the four hadronic τ decay modes in signal events. The blue component represents
the Bsig candidates, which are wrongly reconstructed, and the red component denotes the
Bsig candidates, which are correctly reconstructed.
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Reconstruction of Bsig and Υ (4S)

A Bsig is reconstructed from a τ and light lepton. Afterward, it is combined with a Btag

to complete the reconstruction of the Υ (4S) resonance. A minimum requirement on the
lepton momentum in the Bsig rest frame of pℓ ≥ 1.0 GeV decreases the number of wrongly
reconstructed Υ (4S) candidates. Because of the neutrinos on the signal side, the total
momentum of the Bsig cannot be determined. Instead, the two-body decay of the Υ (4S)
and the full knowledge of the Btag kinematics due to the reconstruction with the hadronic
FEI are utilized.

In the CMS frame, the four-momentum of the Bsig is defined as:

pBsig
≡
(
EBsig

, p⃗Bsig

)
=
(
EBtag ,−p⃗Btag

)
=

(
Ebeam,−

p⃗Btag

|p⃗Btag|
√
E2
beam −m2

B

)
. (5.7)

The beam energy is replaced with the energy of the Btag because of its higher measurement
precision. Additionally, only the direction of the Btag three-momentum is used, and its
magnitude is determined from the beam energy and the nominal B meson massmB. Fig. 5.7
shows the lepton momentum distribution in the Bsig rest frame for signal and background
Monte Carlo events. The momentum distribution for signal events is not mono-energetic.
Instead, it is smeared out by the finite detector resolution, with a small tail towards lower
energies due to the unrecovered Bremsstrahlung-photons of the electrons.
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Figure 5.7: Lepton momentum distribution in the Bsig rest frame for signal (dashed black
line) and background events on a subset of the total Monte Carlo data set corresponding
to the luminosity of 72 fb−1.
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5.3 Study of Background Contributions

This section presents the individual steps implemented to reduce the background contri-
butions. A continuum suppression is applied to minimize light quark background events.
The large number of wrongly reconstructed signal events caused by self-cross feed is re-
duced with the best candidate selection, which chooses only one Υ (4S) candidate per event.
Afterward, the various background Monte Carlo events are examined, and a J/ψ veto for
events with leptonic τ decays is introduced. Moreover, fastBDTs are trained to mitigate
the dominant B meson background events in the signal region of the lepton momentum.

5.3.1 Multiplicity

The multiplicity expresses the number of reconstructed particle candidates per event.
Tab. 5.5 lists the average multiplicities of the Bsig, Btag, Υ (4S) candidates. A particle
is only used once in the reconstruction of the Υ (4S), but it can be assigned at different
positions in the decay chain. For example, in a final state with two electrons, e1 and
e2, electron e1 can be assigned as the light lepton origination from the Bsig and electron
e2 is identified as lepton from a τ decay or vice versa, resulting in two Bsig candidates.
Hadronic τ decays with multiple pions in the final state are the primary source for the
high Bsig multiplicity. They contribute as down-feed in the τ → πν decay mode and, for
the τ → ππ0π0ν decays, additionally in the τ → ππ0ν decay mode.

The Btag multiplicity is lower because the FEI already applies selections to reduce the
number of particles. The multiplicity of Υ (4S) candidates averages between five and eight,
which is lower than the Bsig multiplicity due to the additional selection on the light lepton
in the Bsig rest frame. Overall, the highest average multiplicity is observed in continuum
events due to their abundance of pions. Before the multiplicity is reduced a large fraction
of continuum events are discarded with a continuum suppression.

MC Event Type Bsig Btag Υ (4S)
signal 26.11 2.24 4.35
charm 76.26 1.59 8.12
uds 67.93 1.50 7.99

B0(b→ c) 52.80 2.44 7.62
B+(b→ c) 62.68 1.70 6.45
B0 → rare 34.69 1.62 5.42
B+ → rare 42.56 1.52 5.59
B0(b→ uℓν) 41.44 2.38 6.38
B+(b→ uℓν) 47.97 1.70 5.35

Table 5.5: Average multiplicity for Bsig, Btag, and Υ (4S) candidates in Monte Carlo events.
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5.3.2 Continuum Suppression

By exploiting the different event topologies of continuum and B meson events, the con-
tinuum contributions can be reduced while retaining most of the signal events. Fig. 5.8
illustrates the typical event shape of continuum and B meson events in the CMS Frame.
The decay products of the continuum events are distributed back-to-back, since most of
the initial energy is available for the hadron momentum. In contrast to the continuum
events, the creation of the two B mesons consumes almost all of the initial energy, leading
to two B mesons nearly at rest in the CMS frame, resulting in isotropically distributed
decay products.

Figure 5.8: Event topology of continuum events (left) and B meson events (right) taken
from [84, p. 91].

The continuum suppression (cs) was trained with fastBDTs by Felix Metzner as part of his
analysis [85]. Initially, the FEI calibration especially performed for his study, was supposed
to be implemented in this study as well. Therefore, the same continuum suppression with
the same selection on the continuum suppression classifier output was applied to reduce the
possible sources of differences for the Btag candidates. In the final result of the calibration
study, a correlation between the signal side and the tag side was observed. The composition
of Btag candidates in the semi-inclusive calibration events differed from the composition of
Btag candidates in Felix’s study. Therefore, FEI calibration is also not used in this analysis.

Nevertheless, the continuum suppression is kept due to time constraints and because only a
small decrease in signal efficiency was observed. It employs Btag variables and variables of
all the other particles in the event to distinguish continuum from B meson events. Particles
not associated with the Btag must fulfill the following selections: Photons must satisfy the
E > 100/50/150 MeV selection in the FWD/BR/BKW detector region. And charged
particles are assumed to be pions and must originate from an IP with impact parameters:
dr < 2 cm, |dz| < 4 cm.
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The magnetic field in the detector can bend low-momentum charged particles onto a curling
path, resulting in multiple tracks in the tracking volume that belong to the same particle.
Two tracks are assigned to the same particle if both have a pt < 275 MeV, their transverse
momenta difference |∆pt| < 20 MeV, and the cosine of the angle between their three-
momenta | cos(p⃗1, p⃗2)| < cos(5◦). Of the two tracks, the one with no SVD hits is identified
as a curling track called curler. If both tracks have either no SVD hits or SVD hits, the
one with the higher impact parameters is marked as the curler.(

d0
σd0

)2

+

(
z0
σz0

)2

(5.8)

where d0 is the minimal distance of the track to the origin in r − ϕ and z0 in the z-
direction, and σ denotes the respective uncertainties. The basf2 software does not provide
the variable for the uncertainties on the distance (dr, dz) to IP. The difference is negligible
since the distances of the curlers to the origin are typically much larger than the distance
between the IP and the origin.

The variables of the continuum suppression are present in the following section and a more
detailed description is provided in [44].

Thrust Variables and B Meson Direction Variables

The thrust axis T⃗ of the Btag is the axis for which the projection of the Btag decay particles
momenta is maximized.

T =

∑N
i=1 |T⃗ · p⃗i|∑N

i=1 |p⃗i|
(5.9)

Due to their jet-like topology, continuum events have thrust values close to 1, while B
meson events exhibit a distribution around 0.5, which is explained by their isotropically
distributed decay products.

The variable |cosθTB ,TO| describes the cosine of the angle between the thrust axis of the Btag

and the thrust axis of all other particles denoted by ”O”. B mesons events demonstrate
a uniform distribution because the two axes of the B mesons are randomly distributed.
Continuum events are jet-like, and therefore; the angle between the two thrust axes is
distributed around 180◦.

Additionally, the cosine of the angle between the thrust of the B and the beam axis (=
z-axis) (| cos θTB ,z|) discriminates continuum and B meson events. Since the ee → BB̄
proceeds through the spin-1 resonance of the Υ (4S), the distribution is described by a
sin2(θTB ,z) function. For the ee → ff processes, f being a spin 1

2
fermion, follows a 1 +

cos2(θTB ,z) distribution.



5.3 Study of Background Contributions 73

Cleo Cones

Cleo Cones [86], describe the scalar sum of all momenta contained in concentric cones
around the Btag thrust axis in 10◦ intervals, f.e. Cleo Cone 2 covers the region between a
cone with opening angle 10◦ and 20◦. In total, nine Cleo Cones are calculated, and a 360◦

coverage is reached by combining the forward and backward cones. Fig. 5.9 presents the
configuration of Cleo Cones around the thrust axis.

Figure 5.9: Illustration of Cleo Cones modified from [44, p. 111].

Fox-Wolfram Moments

Fox-Wolfram moments [87] quantify the momentum distribution of an event. For N par-
ticles, with each a momentum pi, the Fox-Wolfram moment of order k is defined as:

Hk =
N∑
i,j

|p⃗i||p⃗j|Pk(cosθij) (5.10)

where θij denotes the angle between the momentum of particle i and j, and Pk is the k-th
order Legendre polynomial. Instead of the Fox Wolfram moments, a modified version, the
so-called Kakuno Super Fox-Wolfram moments, are used in the continuum suppression.
They include additional information on the event topology, f.e. the number of charged
particles. A detailed description can be found in [44].

The ratio of the second to zeroth order Fox-Wolfram Moment is defined as:

R2 =
H2

H0

. (5.11)
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Continuum Suppression Classifier Output

The distribution of the continuum suppression classifier output in Fig. 5.10 demonstrates
the separation of continuum and B meson events in Monte Carlo data. Continuum events
are distributed close to zero, while most B meson events tend toward higher values close
to one.
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Figure 5.10: Continuum suppression (cs) classifier output for signal and background events
corresponding to a luminosity of 72 fb−1. The stacked components represent the different
background contributions, and the dashed black line denotes the distribution for signal
events. The grey line marks the implemented selection of the classifier output.

A selection of the continuum suppression classifier output > 0.5 is applied to suppress a
large fraction of the continuum contributions. Tab. 5.6 compares the efficiencies of the cs
classifier output > 0.5 selection for signal and background events.
The efficiencies are calculated once for the loss of events (ϵevents) and the efficiencies for
the loss of Υ (4S) candidates (ϵcand). These two efficiencies differ due to multiple Υ (4S)
candidates per event. Approximately 90% of the continuum events are discarded while
keeping 85% of signal events.
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MC Event Type ϵcand.(cs) ϵevents(cs)
signal 81.24% 85.47%

signal true Υ (4S) 90.49% 90.61%
charm 9.93% 11.12%
uds 9.19% 9.85%

B0(b→ c) 67.89% 72.31%
B+ (b→ c) 57.63% 62.89%
B0 → rare 60.18% 66.28%
B+ → rare 52.89% 58.25%
B0(b→ uℓν) 76.65% 82.53%
B+ (b→ uℓν) 70.46% 73.92%

Table 5.6: Efficiencies of the continuum suppression (cs) selection on signal and background
Monte Carlo events. The component ”signal true Υ (4S)” denotes signal events with at least
one correctly reconstructed Υ (4S) candidate. The efficiencies for the continuum events are
marked in blue.

5.3.3 Best Candidate Selection

After the continuum suppression, a best candidate selection chooses the Υ (4S) candidate
that is most likely correctly reconstructed based on Btag and signal-side variables. The
following order of the individual steps showed the best efficiency for signal events:

I: Select Btag candidate with the highest signal probability.

II: Choose lepton from Bsig with highest lepton momentum in Bsig rest frame.

IIIa: For leptonic τ decays, choose the lepton with the second highest momentum in the
Bsig rest frame.

IIIb: For hadronic τ decays choose the candidate with the smallest energy difference ∆Eτ

in τ rest frame. ∆Eτ is defined as:

∆Eτ = EH + |p⃗ν | −mτ . (5.12)

with |p⃗ν | = |p⃗H |, since the they are back-to-back in the τ rest frame as shown in
Fig. 5.11.
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Hadronic
part

Figure 5.11: Hadronic τ decay in the τ rest frame.

For correctly reconstructed hadronic τ decays ∆Eτ peaks at zero. The |∆Eτ | distri-
bution for correctly reconstructed leptonic and hadronic τ decays in signal events is
shown in Fig. 5.12.
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Figure 5.12: ∆E distribution for correctly reconstructed Bsig candidates with leptonic τ
daughters in blue and hadronic τ daughters in red.

III: If both a leptonic and a hadronic τ candidate are selected in the same event, the
hadronic τ candidate is chosen if its |∆Eτ | < 0.1 GeV, otherwise the leptonic τ
candidate is selected.

As the last step of the best candidate selection, only the events where the light lepton from
the Bsig passes the selection pℓ > 1.5 GeV in the Bsig rest frame are kept.

Reconstructed vs. Generated τ Decay Modes in Signal Events

The impact of the best candidate selection on the purity of the individual τ decays is
investigated on a subset of signal events. Fig. 5.13 compares the generated τ decay modes
with the reconstructed ones before and after the best candidate selection.
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Figure 5.13: Cross-feed matrix between generated and reconstructed τ decays for signal
events before (upper plots) and after the best candidate selection (bottom plots). The
matrix on the left displays the absolute number of Υ (4S) candidates for each reconstructed
τ decay mode per generated τ decay mode. The matrix on the right presents the percentage
of Υ (4S) candidates for each reconstructed τ decay mode relative to the total number of
Υ (4S) candidates per generated τ decay mode. Since not all generated τ decay modes are
reconstructed, they are combined into the ”τ → other” component.
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Overall, the best candidate selection improves the agreement between the generated and
reconstructed decay modes. However, a slight decrease is observed for the generated τ →
ππ0π0ν decays. Due to its small contribution compared to all other decay modes and the
difficulty of detecting two π0, the best candidate selection is left unchanged.

A considerable cross-feed of the τ → µνν into the τ → πν mode is visible. Although
the true muons are assigned as the τ daughters, they mostly have a muID below 0.2 and
are therefore not identified as muons. Since the only requirement for charged pions is a
leptonID < 0.9, all those true muons are identified as pions instead. Even a looser selection
of the muID value would not reduce this cross-feed.

For hadronic τ decays with multiple pions in the final state, a down-feed into the τ → πν
is observed. The best candidate selection reduces this cross-feed, but undetected particles
or neutral pions that do not fulfill the neutral pion criteria still appear as down-feed.

Efficiency of Continuum Suppression and Best Candidate Selection

The signal efficiency of correctly reconstructed Υ (4S) candidates for the continuum sup-
pression and the best candidate selection are shown in Tab. 5.7. As the previous study
shows, the efficiency decreases with an increasing number of τ daughters.

τ decay mode ϵ(cs) ϵ(bcs) ϵ(cs + bcs)
τ → eνν 90.33% 89.11% 80.50%
τ → µνν 90.97% 90.45% 82.28%
τ → πν 96.95% 92.43% 89.61%
τ → ππ0ν 82.91% 79.53% 65.93%
τ → πππν 92.34% 90.88% 83.92%
τ → ππ0π0ν 64.74% 77.84% 50.39%

Table 5.7: Efficiencies of the continuum suppression (cs) and best candidate selection (bcs)
for the different generated τ decays in signal events.

The efficiencies for signal and background events are presented in Tab. 5.8. If a Bsig is
correctly reconstructed, it is in 94% of all cases chosen by the best candidate selection.
The lepton momentum requirement in the best candidate selection removes less than 9% of
signal events while discarding between 27% and 80% of the individual background compo-
nents. The smallest decrease in background events is observed for the B0(b→ uℓν) events
because their leptons also have a high momentum.
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MC Event Type ϵ(bcs) ϵ(cs + bcs)
signal 91.74% 78.41%

signal true Υ (4S) 88.92% 80.57%
signal true Btag 86.51% 75.23%
signal true Bsig 94.00% 85.62%

charm 19.94% 2.22%
uds 22.77% 2.24%

B0(b→ c) 42.09% 30.43%
B+(b→ c) 39.53% 24.86%
B0 → rare 41.36% 27.41%
B+ → rare 39.82% 23.19%
B0(b→ uℓν) 63.01% 52.00%
B+(b→ uℓν) 54.95% 40.62%

Table 5.8: Efficiencies of best candidate selection (bcs) and continuum suppression + best
candidate selection (cs + bcs) for Monte Carlo signal and background events.
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5.3.4 Study of Background Contributions in the Signal Region

Although a large fraction of background events was already discarded in the previous
analysis steps, the background contributions in the signal region of the lepton momentum
in the Bsig rest frame distribution (2.20 GeV - 2.42 GeV) remain. Fig. 5.14 presents the
lepton momentum distribution of Monte Carlo events after the best candidate selection.
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Figure 5.14: Lepton momentum distribution in the Bsig rest frame for signal (dashed black
line) and background (colored) Monte Carlo events after the best candidate selection. The
signal region is denoted by the area between the dashed grey lines.

The B(b → c) background events in the signal region are studied with the TopoAna
tool [88] to identify dominant background decays. It relies on Monte Carlo information
of each particle to determine the complete generated Υ (4S) decay chain and individual
sub-decays. Typical decay modes of signal events, where one B meson decays through
a b → c transition, are compared with the main decay modes of B(b → c) background
events. Because the Btag is reconstructed with the full hadronic FEI and is assumed to
have a negligible correlation to the signal side, the difference in the identified generated
decay modes is attributed to the Bsig reconstruction.

Fig. 5.15 confirms this assumption for the B0(b → c) component, where the normalized
distributions of the Btag decay modes for the signal and the B0(b→ c) events in the signal
region show a good agreement.
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Figure 5.15: Reconstructed decay modes of the Btag with the full hadronic FEI for signal
events in dark blue, B0(b→ c) events in red, and B+(b→ c) events in light blue. Only the
events in the signal region are included and the distributions are normalized.

Because different background processes can contribute to different reconstructed τ decay
modes, they are analyzed separately. Tab. 5.9 and 5.10 summarize the most significant
insights on the generated decay modes. The percentage is given by the number of events
with at least one B meson decaying in a specific channel, and for the Υ (4S) final states,
relative to the total number of events.

rec. τ mode: τ → eνν rec. τ mode: τ → µνν
MC information B0(b→ c) B+(b→ c) signal B0(b→ c) B+(b→ c) signal

B → D(∗)ℓν 31% 60% 1% 29% 22% 0%
B → cc̄ res. + X 63% 67% 2% 59% 40% 2%
ℓ, ν in FS 0% 0% 0% 63% 67% 2%
no ν in FS 58% 30% 0% 62% 66% 0%

Table 5.9: Typical decay modes of the neutral and charged B(b → c) background and
signal events in the leptonic reconstructed τ decay modes τ → eνν and τ → µνν. The last
components, ’no ℓ, ν in FS’ and ’no ν in FS’, denote the events without any light leptons
and neutrinos in the final state (FS) or only without any neutrinos in the final state.

Only 2% of signal events contain a B meson decaying through a cc̄ resonance, which can be
explained with the B0 → J/ψ(→ ℓℓ) + X channels reconstructed in the full hadronic FEI,
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where X denotes all other particles. For background events, the percentages vary between
40% and 67%. Assuming most of the leptons from the B → J/ψ(→ ℓℓ) + X decays are
part of the signal side reconstruction, a peak in the invariant mass of the lepton of the Bsig

and the oppositely charged lepton of the τ decay should be present.

rec. τ mode: τ → πν rec. τ mode: τ → ππ0ν
MC information B0(b→ c) B+(b→ c) Signal B0(b→ c) B+(b→ c) Signal

B → D(∗)ℓν 80% 89% 1% 67% 85% 1%
B → cc̄ res. + X 5% 3% 2% 3% 5% 2%
No ℓ, ν in FS 12% 8% 0% 16% 10% 0%
No ν in FS 17% 11% 0% 19% 15% 0%

rec. τ mode: τ → πππν rec. τ mode: τ → ππ0π0ν
MC information B0(b→ c) B+(b→ c) Signal B0(b→ c) B+(b→ c) Signal

B → D(∗)ℓν 75% 88% 1% 76% 80% 0%
B → cc̄ res. + X 10% 4% 1% 12% 10% 2%
No ℓ, ν in FS 4% 0% 0% 6% 10% 0%
No ν in FS 22% 0% 0% 12% 20% 0%

Table 5.10: Typical decay modes of the neutral and charged B(b → c) background and
signal events in the hadronic reconstructed τ decay modes τ → πν, τ → ππ0ν, τ → πππν,
and τ → ππ0π0ν. The last components, ’no ℓ, ν in FS’ and ’no ν in FS’, denote the
events without any light leptons and neutrinos in the final state (FS) or only without any
neutrinos in the final state.

The main background contributions for hadronic τ decay modes are events with at least
one B → D(∗)ℓν decay. Since the full hadronic FEI does not reconstruct semi-leptonic B
decays, the lepton of those decays is mainly identified as the lepton from the Bsig candi-
date. Between 12% and 66% of the Υ (4S) resonances decay into neutrino-free final states
in background events. Variables based on the total energy in the event or the missing
momentum of the event can be used to suppress those background contributions. The
missing three-momentum of the event is defined as:

p⃗miss = p⃗Btag − p⃗Bsig,vis
(5.13)

where p⃗Btag represents the three-momentum of the Btag and p⃗Bsig,vis
the detected three-

momentum of the Bsig. For correctly reconstructed Bsig candidates, the p⃗Bsig,vis
is the sum

of all signal-side final state particles momenta apart from the undetected neutrino(s).

Comparing the small fraction of decays into the cc̄ resonance in hadronic reconstructed
τ decays, with the large fraction in the leptonic reconstructed τ decays strengthens the
argument of the lepton pair being reconstructed in the signal side.
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J/ψ Veto

Based on the findings of the study with TopoAna, the invariant mass of the electron and
muon pair of the two signal-side leptons is investigated; see Fig. 5.16.
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Figure 5.16: Invariant mass of electron pair (left) in the B0 → τ(→ eνν)e channel and
muon pair (right) in the B0 → τ(→ µνν)µ channel for signal events (dashed black line)
and the different background contributions.

An enhancement in the B meson background around the nominal J/ψ mass at 3.1 GeV
is visible for the same lepton-type pairs while the signal distribution remains flat. The
resonance in the invariant mass spectrum is broader for the electron pair with a tail towards
smaller masses, which arises from unrecovered Bremsstrahlung photons.

A J/ψ veto discards events, where the invariant mass of the same type of light lepton pairs
falls within the region of invariant J/ψ mass. The selection is given in Tab. 5.11.

J/ψ
muon pair 3.07 GeV< Mµµ < 3.13 GeV

electron pair 3.00 GeV< Mee < 3.12 GeV

Table 5.11: Selections on invariant mass of lepton pairs for the electron- and muon-pair.
Lepton-pairs not satisfying the invariant mass selection are discarded.
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Since a non-negligible fraction of true muons is identified as pions, the invariant mass
spectrum of a muon originating from the Bsig and a pion from the τ with a hypothesized
muon mass is analyzed. As expected from the previous TopoAna result, only a small peak
around the nominal J/ψ mass, shown in Fig. 5.17, is visible. Consequently, no J/ψ veto is
applied for the hadronic τ decays to prevent the loss of signal efficiency.
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Figure 5.17: Invariant mass of muon and pion assuming the muon mass hypothesis for the
pion candidate in the B0 → τ(→ πν)µ channel for signal events (dashed black line) and
the different background contributions.
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5.3.5 Background Suppression

Variables of the signal side and the rest of the event of the Υ (4S) are investigated to further
mitigate these background contributions. The rest of the event of the Υ (4S) contains all
charged and neutral particles that are not associated with the tag- or signal-side recon-
struction. Two selections, referred to as masks, are applied to the neutral and charged
particles of the rest of the event; see Tab. 5.12.

charged particle neutral particle

roe mask
dr < 10 cm

not curler
E > 100/50/150 MeV

|dz| < 20 cm in FWD/BR/BKW
mask 1 ✓ ✗ ✓
mask 2 ✓ ✓ ✓

Table 5.12: Requirement for each charged and neutral particle in the rest of the event for
the two different rest of events masks.

Charged particles are assumed to be pions and must fulfill a loose selection on the distance
to the interaction point to ensure they originate from the primary collisions. Neutral
particles are assumed to be photons and must satisfy an energy selection depending on the
detector region.

For correctly reconstructed signal events, the rest of the event is empty because all particles
were used in the Btag and Bsig reconstruction. However, mistakes in the reconstruction, f.
e. if a multi-pion τ decay is reconstructed as a down-feed in the τ → πν channel, can lead
to a non-empty rest of the event.

A loose selection is applied on the number tracks < 4, the number of neutral ECL clusters <
4, and the number of neutral pions < 2 in the rest of the event, reducing 51% of background
events while still retaining 82% of signal events. Fig. 5.18 shows the distributions of
these three rest of the event variables before the selection. The number of neutral pions
is independent of the rest of the event mask, and counts the number of neutral pions,
satisfying the 0.08 GeV < Mγγ < 0.18 GeV requirement.
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Figure 5.18: Rest-of-the-event (roe) variables for signal and background Monte Carlo
events: the number of neutral pions (upper left), the number of tracks (upper right) for
mask 1, and the number of neutral ECL clusters (bottom) for mask 1.
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Afterward, multiple B meson background suppressions based on fastBDT [39] are trained
using signal-side and the rest-of-the-event variables to distinguish signal from background
events. The training variables are listed in Tab. 5.13.

core variables optional variables
signal visible τ momentum in Bsig rest frame |pmiss| of the event

variables ∆Eτ in τ rest frame reconstructed τ decay modes
number of tracks number neutral pions

roe transverse momentum momentum
total energy number of all clusters in ECL

neutral energy in ECL number of neutral clusters in ECL
variables invariant mass

charge

Table 5.13: Variables of the B meson background suppressions divided into the core vari-
ables, which are included in all trainings, and the optional variables, which are only in-
cluded in some of the trainings. Apart from the decay mode identifier of the reconstructed
τ decays (blue), either all or none of the optional variables are included in the training
variable set.

Four different sets of variables are used in the B meson background suppressions, which
is shown in Fig. 5.19. The core variables are included in all trainings, and the optional
variables are only included in a subset of trainings.

core variables
+  decay mode

core variables
+ optional variablescore variables

core variables
+  decay mode

+ optional variables

Figure 5.19: The four different variable sets used in the training of the B meson background
suppressions.

The B meson background suppression relies on the good representation of the real data
events by Monte Carlo events. Discrepancies between Monte Carlo and real data in the
training variables can influence the shape of the final fit distribution and signal efficiency.
If more variables are included in the B meson background suppression training, the uncer-
tainty in the signal efficiency can increase. Meanwhile, more variables in the suppression
training can also improve the separation power between background and signal events.

If the correlation between training variables and lepton momentum is small, the distribution
of the training variables can be extrapolated to the signal region to estimate the impact of
their Monte Carlo - data discrepancies on the lepton momentum.
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The correlation coefficient [35, p. 18] quantifies the linear correlation between the lepton
moment in the region [1.7, 2.6] GeV and the training variables in their shown range. The
correlation is defined as:

ρ =
Vxy
σxσy

(5.14)

where Vxy denotes the covariance between the two variables x and y and σx and σy their
corresponding standard deviations. Fig. 5.20 - 5.21 show the distributions of the four
training variables with the largest correlation to the lepton momentum for one example
rest of the event mask 1. The requirement in mask 2 that a charged particle in the rest
of the event is not identified as a curler, only has a low impact on the training variable
distributions and they are similar to those of mask 1.

For correctly reconstructed signal events, no particles are in the rest of the event; therefore,
the roe variables peak at low values. The maximal correlation between lepton momentum
and training variables is |ρ| ≤ 0.13. As expected, the signal events have a slightly higher
correlation between the training variables and the lepton momentum than the background
events.
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Figure 5.20: Two-dimensional histograms of the lepton momentum in the Bsig rest frame
and the visible momentum of the τ daughters (top) in the Bsig rest frame and the number
tracks (bottom) used in the reconstruction of the rest of the event for background Monte
Carlo events on the left and signal events on the right.
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Figure 5.21: Two-dimensional histograms of the lepton momentum in the Bsig rest frame
and the reconstructed invariant mass (top) and the total energy (bottom) of the rest of
the event for background Monte Carlo events on the left and signal events on the right.
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B Meson Background Suppression Training and Testing Data Sets

The Monte Carlo data of signal and background events are split into training and testing
data for the training of the B meson background suppression. All events in the training
data are discarded afterward to avoid overfitting and biasing the final result. Tab. 5.18
lists the signal and background events in the training and testing data. In total, 32 B
meson background suppressions are trained, 16 for each rest of the event mask.

MC type
training data pℓ reg. testing data pℓ reg.

[1.7,3.0] GeV [2.0,2.5] GeV [1.7,3.0] GeV [2.0,2.5] GeV
signal 18361.7 17906.7 18288.0 17809.8

signal true Bsig 9139.7 9011.8 9143.1 8999.2
background 108921.2 25003.9 107917.3 24716.9

charm 1.49% 1.73% 1.27% 1.57%
uds 2.14% 3.47% 2.20% 3.48%

B0(b→ c) 76.19% 70.23% 76.17% 70.41%
B+(b→ c) 15.45% 13.38% 15.61% 13.32%
B0(b→ uℓν) 4.01% 9.59% 4.03% 9.62%
B+(b→ uℓν) 0.73% 1.60% 0.72% 1.59%

Table 5.14: Number of signal and background events with background events in the training
and test data for roe mask 1 with two different lepton momentum regions for the training.
The background events are weighted to their expectation for a luminosity of 711 fb−1.
Individual background contributions a given relative to the total number of background
events.

Two different signal data sets were used in the supppressions. One version included all
signal events, regardless of whether the reconstruction was correct or not, while the other
version only consisted of signal events with correctly reconstructed Bsig. This approach was
chosen because distributions of the rest of the event and signal variables vary for correctly
and wrongly reconstructed Bsig candidates.

As an example, the distribution of the energy of neutral ECL cluster in the rest of the event
for wrongly and correctly reconstructed Bsig candidates is shown in Fig. 5.22. Most of the
Bsig candidates are incorrectly reconstructed because of the τ and not the lepton from the
Bsig. Since the τ reconstruction does not necessarily impact the lepton momentum, the
lepton momentum in the Bsig rest frame is similar for correctly and wrongly reconstructed
Bsig candidates.
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Figure 5.22: The neutral ECL cluster energy of the rest-of-the-event candidate (left) and
the lepton momentum in the Bsig rest frame (right) for signal events with correctly recon-
structed Bsig candidates in blue and wrongly reconstructed Bsig candidates in red.

Rare B meson decays are excluded from the training data due to their negligible contribu-
tion. All background contributions are weighted to their expected number of events for a
luminosity of 711 fb−1 due to the varying number of streams available for the individual
background contributions. The contributions of the different background events are given
as fractions relative to the total number of background events.

Two training regions for the lepton momentum in the Bsig rest frame [1.7,3.0] GeV and
[2.0,2.5] GeV are chosen.

The hyperparameters of the B meson background suppression are given in Tab. 5.15.

Hyperparameter Value
Number of Trees 200

Depth 3
Learning rate 0.1

Random sub-sample per tree 0.5

Table 5.15: Hyperparameters of the B meson background suppression training.
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5.3.6 Determination of Best B Meson Background Suppression Selection

For each of the 32 B meson background suppressions, the best selection on the classifier
output is determined from the fit of the lepton momentum distribution in the Bsig rest
frame in the region [1.7,2.6] GeV, separately for the B0 → τe and B0 → τµ channel.
The fit is a simplified version with fewer nuisance parameters than the final fit, which is
described in chapter 7.

The expected upper limits on the signal branching ratio obtained on Asimov data with
zero signal events are determined for selections on the classifier output > cut value. The
cut values vary between 0.100 and 0.990 in steps of 0.005. For each selection, the fitting
process starts with generating two background PDFs and one signal PDF. To reduce the
time of the fit, only the three yield parameters are included in the model PDF, which still
gives a good estimate of the expected upper limit. Fig. 5.23 shows the best upper limits
depending on the classifier output selection for the B meson suppression chosen in the final
fit.
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Figure 5.23: Expected upper limits on the signal branching ratio for various selections on
the B meson background suppression classifier output. Only the suppressions chosen in
the final fit for the B0 → τe (left) and B0 → τµ (right) are shown.

The plateau in the upper limit on the branching ratio distribution for the B0 → τe channels
is maximal value of 0.3 for the signal strength in the upper limit scan. Afterward, the
systematic uncertainties due to the limited size of the Monte Carlo data used for the PDF
generation are included in the fit as nuisance parameters. Starting from the selection on
classifier output with the best upper limit on the branching ratio, the fit is repeated. If the
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fit converges with the additional systematic uncertainties, the selection is chosen; otherwise,
the same procedure is repeated with the next best selection until the fit converges.

Importance of the Training Variables in the B Meson Background Suppression

The importance of each variable for the B meson background suppression used in the final
fit is given in Tab. 5.16 and 5.17. The most important variable has an importance of 100
and the least important has an importance of 0.

Training Variable Importance
number of tracks roe 100
∆Eτ in τ rest frame 92

energy of roe 85
visible τ momentum in Bsig rest frame 43

τ decay modes 30
transverse momentum of roe 3

energy of neutrals in ECL of roe 2
number of π0 in roe 0

Table 5.16: Importance of the signal-side and rest-of-the-event (roe) training variables in
the B meson background suppression used in the final fit of the B0 → τe channel.

Training Variable Importance
energy of roe 100

∆Eτ in τ rest frame 50
visible τ momentum in Bsig rest frame 45

missing momentum of event 41
number of tracks roe 20
invariant mass roe 10

transverse momentum roe 5
energy in ECL of roe 5
momentum of roe 3

number of ECL clusters in roe 2
energy of neutrals in ECL of roe 1

charge roe 1
number of π0 in roe 0

number of ECL clusters in roe 0

Table 5.17: Importance of the signal-side and rest-of-the-event (roe) training variables in
the B meson background suppression used in the final fit of the B0 → τµ channel.
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Data - Monte Carlo Comparison of the Training Variables

Since this analysis is blinded, the agreement between real and Monte Carlo data is examined
in the sideband region of the lepton momentum (pℓ < 2.2 GeV).

Fig. 5.24 - 5.27 compare the distribution of the training variables between Monte Carlo
and the sideband region of the real data. Most of them are in good agreement, apart from
an overall scaling factor, which originates from the FEI calibration factors. These factors
are only correct for events with the same composition of Btag candidates as the signal
events in the calibration study. Because the background yields are a free parameter in the
final fit and applying the B meson background selection also alters the composition of the
background events, no rescaling of the background Monte Carlo events is applied.

Some variables, like the number of neutral ECL clusters and the invariant mass of the rest
of the event, exhibit visible discrepancies in addition to the overall scaling difference. In
the following section, their impact on the shape of the lepton momentum distribution and
on the signal efficiency is discussed.
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Figure 5.24: Rest-of-the-event (roe) training variables for mask 1 in the sideband region
of the lepton momentum shown for signal (dashed black line) and background (colored
stacked components) Monte Carlo, and real data (black points).
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Figure 5.25: Rest-of-the-event (roe) training variables for mask 1 in the sideband region
of the lepton momentum shown for signal (dashed black line) and background (colored
stacked components) Monte Carlo, and real data (black points).
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Figure 5.26: Rest-of-the-event (roe) training variables for mask 1 in the sideband region
of the lepton momentum shown for signal (dashed black line) and background (colored
stacked components) Monte Carlo, and real data (black points).
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Figure 5.27: Signal-side training variables for mask 1 in the sideband region of the lepton
momentum shown for signal (dashed black line) and background (colored stacked compo-
nents) Monte Carlo, and real data (black points).
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Data - Monte Carlo Reweighting

The observed discrepancies in the sideband region between real and background Monte
Carlo data in the B meson background suppression variables can result in shape differences
in the lepton momentum distribution. To determine the systematic uncertainty these dis-
crepancies might introduce, an additional BDT for each B meson background suppression
is trained with the same set of training variables (Fig. 5.19), classifying events as Monte
Carlo (0) or real data events (1).

In the case of perfect agreement between real and background Monte Carlo data, the
classifier output would peak at 0.5, indicating that no distinction is possible. Based on the
classifier output cbdt, the background Monte Carlo is reweighted to match the real data.
The weight is defined as:

w =
cbdt

1− cbdt
. (5.15)

In the final fit, a systematic uncertainty on the signal and background shapes is assigned
based on the difference in the lepton momentum between nominal and reweighted Monte
Carlo events. Events in the sideband region of the lepton momentum between 1.7 GeV - 2.2
GeV in the Bsig rest frame are used in the training of the reweighting BDTs. Assuming the
distribution of the training variables in the sideband region is identical to their distribution
in the signal region, the impact of the shape differences obtained in the sideband region
can be extrapolated to the signal region.

The full real data is split equally into training and test data, see Tab. 5.18.

Event Type training data test data
real data 55357 55736

background Monte Carlo 105771.0 104873.8
charm 1.41 % 1.18 %
uds 1.84 % 1.92 %

B0(b→ c) 77.31 % 77.28 %
B+(b→ c) 15.63 % 15.78 %
B0 → rare 0.24 % 0.24 %
B+ → rare 0.05 % 0.05 %
B0(b→ uℓν) 2.95 % 2.97 %
B+(b→ uℓν) 0.57 % 0.57 %

Table 5.18: Number of real data and weighted background Monte Carlo events scaled to
the luminosity of the real data for the masks 1 and 2 used in the training of the reweighting
BDTs.
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The training and test data of the background Monte Carlo events consists of the same
streams as the training and test data of the B meson background suppression. None of the
real data events are excluded from the further analysis because the training result is only
used to determine a systematic uncertainty for the fit.
Fig. 5.28 shows the distributions of the reweighting BDT classifier outputs of the respective
B meson background suppressions in the final fit.
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Figure 5.28: Classifier output of reweighting BDT before (left) and after (right) reweighting
of the Monte Carlo events in the B0 → τe channel (upper plots) and in the B0 → τµ channel
(lower plots).
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As expected, the classifier outputs are distributed around 0.5, which indicates an overall
good agreement between real and background Monte Carlo data with a slight shift of the
real data events toward higher classifier output values. The distributions on the left show
the classifier output determined for the reweighting BDT, and the distributions on the
right show the classifier output distribution after the test Monte Carlo data is reweighted.

The train and test data sets agree for Monte Carlo events but show some discrepancies in
the real data. Since the real data is distributed evenly between the training and test data
sets, reweighting the Monte Carlo data is the mean between the two distributions.
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Figure 5.29: Classifier output of reweighting BDT before (left) and after (right) reweighting
of the Monte Carlo events in the B0 → τe channel (left) and in the B0 → τµ channel (right).
The combined test and training Monte Carlo data are represented by the MC component,
and the data component contains real data events in the training and test data sets.
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Signal Efficiency Uncertainties due to the B Meson Background Suppression

The Monte Carlo signal efficiency for the selection on the B meson background suppression
classifier output is defined as:

ϵBDT =
Nsig, after selection

Nsig, before selection

. (5.16)

Data - Monte Carlo discrepancies for signal events in the training variables can result in a
different classifier output distribution, and thus, in a different signal efficiency in real data.
Ideally, the uncertainty of the signal efficiency would be determined in the control channel
with a similar topology. However, the various τ decays and the signal-side specific variables
in the B meson background suppressions prevent finding one suitable control channel.

Therefore, the uncertainty on the signal efficiency, caused by differences in the detector
simulation and the real detector, is determined with a reweighting technique relying on
background Monte Carlo and real data in the signal sideband region, pℓ ∈ [1.7,2.2] GeV.
First, every training variable is binned, including an under and overflow bin. In the next
step, a weight for each bin is calculated, so that the data - Monte Carlo difference is the
same for all bins while conserving the overall number of background Monte Carlo events.
These weights are then used to reweight the signal Monte Carlo events.

Fig. 5.30 presents the reweighting procedure for one training variable, the energy in the
rest of the event. The distribution on the left shows the nominal distribution, and the
distribution on the right, the background and the signal Monte Carlo events are reweighted.

In the left histogram of Fig. 5.31, the distribution of the rest-of-the-event energy is shown
for the nominal signal events in blue, and after the reweighting procedure in red. The
change in the B meson background suppression classifier output distribution is shown in
the histogram on the right.

The uncertainty on the signal efficiency is calculated by the differences of the efficiencies
for the nominal and reweighted signal Monte Carlo events for each variable i:

σϵi,BDT = |ϵBDT − ϵBDT, reweighted i|. (5.17)

Since some of the variables are correlated, a conservative approach for the total uncertainty
on the B meson background suppression selection is determined via:

σϵ,BDT =
∑
i

|ϵBDT − ϵBDT, reweighted i|. (5.18)
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Figure 5.30: The energy of the rest of the event (roe) before (left) and after (right) reweigh-
ing the Monte Carlo events to the real data.
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Figure 5.31: The left histogram shows the energy in the rest of the event for the nominal
(blue) and reweighted (red) signal events. The right histogram shows the change in the
classifier output distribution of the B meson background suppression for the nominal signal
and the reweighted signal events based on the data - Monte Carlo discrepancy in the rest-
of-the-event energy variable.



Chapter 6

Calibration of the Full Event
Interpretation

This chapter describes the calibration of the Full Event Interpretation (FEI). Because the
FEI is trained on Monte Carlo events, the difference in performance between Monte Carlo
and real data needs to be determined. Therefore, a well-known and clean channel for the
signal side is chosen, and the tag side is reconstructed using the hadronic FEI. Assuming
that the signal and tag side are independent, all differences after applying the Monte
Carlo correction to the signal side are due to the tag-side reconstruction. The total signal
efficiency can be expressed as the product of the signal and tag side for both Monte Carlo
and real data.

ϵ = ϵBsig
· ϵBtag (6.1)

The calibration is performed for events with a B0 → D∗−(→ D0(→ K+π−)π−)ℓ+ν decay,
where ℓ = e, µ. This signal channel has the advantage of being nearly background-free
with a branching ratio of 0.1367 ± 0.0032 %. Tab. 6.1 lists the individual branching ratios
of the sub-decays. Only the continuum and B meson events with two b→ c transitions are
studied because the contributions from B(b→ uℓν) and B → rare events are negligible.

B
B (B0 → D∗−ℓ+ν) 5.1137 ± 0.1082 %
B (D∗− → D0π−) 67.7 ± 0.5 %
B (D0 → K+π−) 3.947 ± 0.030 %

product B 0.1367 ± 0.0032 %

Table 6.1: Branching ratios of the calibration decay, with the isospin-averaged
B(B0 → D∗−ℓ+ν) and the branching ratios of the subsequent decays according to the
PDG [18].

Fig. 6.1 illustrates an example of an Υ (4S) resonance signal decay.
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Full Event Interpretation (FEI) Calibration Side

Figure 6.1: Sketch of an Υ (4S) decay used for the calibration of the FEI.

6.1 Reconstruction of Υ (4S)

To avoid introducing differences in the Btag composition between the calibration and signal
channel, the same selections are applied when possible.

6.1.1 Event Selection

The event selection on the number of tracks, number of photons, and high energetic leptons
in the event are the same as described in section 5.2 with a looser condition on the existence
of lepton with momentum pCMS > 0.3 GeV instead of pCMS > 0.5 GeV. Tab. 6.2 lists the
efficiencies for B0 → D∗−ℓ+ν events, where at least one of the two B mesons is generated
in a B0 → D∗−ℓ+ν decay and for background events. The ”other B0 (b → c)” component
contains events where none of the two neutral B mesons decays in the B0 → D∗−ℓ+ν
channel.

Ntracks < 18 Nγ < 18 pℓ,CMS > 0.3 GeV all criteria
ϵ B0 → D∗−ℓ+ν 99.99% 99.39% 78.18% 77.76%
ϵ other B0(b→ c) 99.89% 96.91% 46.58% 45.88%
ϵ B+(b→ c) 99.93% 96.22% 46.66% 45.86%
ϵ charm 100.00% 99.12% 24.80% 24.66%
ϵ uds 100.00% 99.59% 13.09% 13.04%

Table 6.2: Efficiency of the individual event selection on the number of tracks and photon,
at least one lepton with leptonID > 0.9 and a CMS momentum > 0.3 GeV and the
combination of all three selections for neutral B, charged B meson and continuum events.
The B0 → D∗−ℓ+ν contains all events, where at least one of the B meson decays in the
B0 → D∗−ℓ+ν channel.
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6.1.2 Btag Reconstruction

The Btag is reconstructed with the hadronic FEI and must fulfill the same requirements
described in section 5.2.2 of the B0 → τℓ decays.

6.1.3 Signal Side Reconstruction

Tracks and clusters not used in the reconstruction of the Btag are considered in the Bsig

reconstruction.

Final State Particles

Each charged final state particle must pass the following track criteria dr < 2 cm and |dz| <
4 cm, to ensure their origin from the IP. Additionally, all charged particles apart from the
charged pion from the D∗ must satisfy a particle identification selection to increase the
number of correctly identified particles and satisfy a selection on their momentum. These
additional requirements are listed in Tab. 6.3.

Selection Criteria
Electron eID > 0.9 & pCMS > 0.3 GeV
Muon muID > 0.9 & pCMS > 0.3 GeV

Charged pions from D∗ no additional selection
Charged pions from D0 pion vs. kaon ID > 0.1 and pt > 0.1 GeV

Kaon pion vs. kaon ID < 0.9 and pt > 0.1 GeV

Table 6.3: Selection criteria for the charged final state particles.

Because the charged pion originating from the D∗ decay has a low momentum and does not
necessarily reach all particle identification subdetectors, its particle identification is limited.
Therefore, no particle identification selection is applied to those pions. The resulting purity
for these pions is 12.4%.

Fig. 6.2 illustrates the composition of Monte Carlo particles for the different final state
particle types. The leptons have a high purity of over 90%. The main contributors a fake
muons are pions due to their similar mass. The pions and kaons show a fake rate between
30 - 40%, which decreases in the further reconstruction steps. Analogously to the electrons
in the B0 → τℓ analysis, the electrons are Bremsstrahlung-corrected.
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Figure 6.2: Composition of Monte Carlo particles in the different final state particles in
events with at least one B0 → D∗−ℓ+ν decay.

D0 Reconstruction

A D0 candidate is formed from a pion and kaon candidate. The difference between the
nominal and reconstructed D0 mass serves as a good discriminator between correctly and
wrongly reconstructed D0 candidates, therefore a |Mrec −Mnom| < 0.02 GeV selection for
the reconstructed D0 is applied.

Fig. 6.3 compares the mass difference between correctly and wrongly reconstructed Bsig

candidates in events with least one B0 → D∗−ℓ+ν decay. Wrongly reconstructed candidates
can either be from events where the subsequent decay of the D∗− in the B0 → D∗−ℓ+ν
decay is not generated in a complete signal decay chain or events where decay products
are not assigned to the correct position in the decay chain.
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Figure 6.3: Invariant mass of the D0 and its difference to the nominal mass in events with
at least one B0 → D∗−ℓ+ν decay, shown for a subset of Monte Carlo data corresponding
to the luminosity of 72 fb−1. The red component represents the Υ (4S), where the Bsig

was correctly reconstructed in the signal channel, and the blue component shows the Bsig

candidates that were wrongly reconstructed.

To suppress ee→ cc̄ background, all D candidates with a momentum larger than 2.5 GeV
in the CMS frame are discarded because the D meson originating from B meson has a
lower momentum than a D meson produced directly in the collision.

D∗ Reconstruction

A D∗ candidate is formed by combining a D0 with a π− candidate. The phase-space of
the D∗ decay is small because the D0 mass is very close to the sum of the D∗ and pion
masses and their invariant mass difference is used to suppress background contributions.
Fig. 6.4 presents the distributions of the invariant mass of the D∗ and the invariant mass
difference between the D∗ and D0. For correctly reconstructed D0 and D∗ candidates with
the nominal masses of 1.864 GeV and 2.010 GeV [18], the invariant mass difference should
be distributed around 0.146 GeV. Therefore, the mass difference is required to be between
0.142 and 0.148 GeV.
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Figure 6.4: Invariant mass of the D∗ and the difference between the invariant D∗ and D0

mass for correctly (red) and wrongly (blue) reconstructed Bsig candidates in events with
at least one B0 → D∗−ℓ+ν decay, shown for a subset of Monte Carlo data corresponding
to the luminosity of 72 fb−1.

Bsig and Υ (4S) Reconstruction

The Bsig is reconstructed from a D∗ and a light lepton and combined with the Btag candidate
to form an Υ (4S). The light lepton must have momentum p > 0.6 GeV in the lab frame.

6.2 Continuum Suppression and Best Candidate Selection

The same selection on the continuum suppression classifier output > 0.5 as for the events
in the analysis B0 → τℓ is applied. Afterward, the best candidate selection is implemented
to select the Υ (4S) candidate in each event, which is most likely correctly reconstructed.
The individual steps are:

I Select the Btag with the highest signal probability (same as in signal B0 → τℓ decay).

II Choose the D with the smallest invariant mass difference from its nominal value.

III Choose the D∗ with the smallest invariant mass difference between D∗ and D.

IV Select the Bsig lepton with the highest lepton identification.

V In case multiple Υ (4S) candidates remain, one is randomly selected.
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In 95.42% of all cases, the best candidate selection chooses the correctly reconstructed
Υ (4S) candidate. For most of the remaining cases, a wrongly reconstructed Btag with a
higher signal probability is selected over the correct Btag.

6.3 Fit Variable

The variable m2
miss shows a good separation of signal and background events:

m2
miss = p2miss

with pmiss = pBtag − pBsig,vis
in CMS Frame

pBtag ≡
(
EBtag , p⃗Btag

)
=

(
Ebeam,

p⃗Btag

|p⃗Btag |
√
E2
beam −m2

B

) (6.2)

Although the Btag is not required to be correctly reconstructed, the determination of pBtag

constrains its four-momentum with the beam energy and nominal B meson mass. Fig. 6.5
shows the comparison of the data - and Monte Carlo events in the m2

miss distributions.
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Figure 6.5: Distributions of the m2
miss for Monte Carlo and real data. The signal Monte

Carlo events are shown in red, and the signal is defined by a correctly reconstructed Bsig.
All other Monte Carlo events are represented by the other colored components. The left
plot shows the m2

miss distribution in the reconstructed B0 → D∗eν channel and on the right
for the reconstructed B0 → D∗µν channel.
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For correctly reconstructed signal events, the m2
miss peaks at zero because the only unde-

tected particle is the neutrino of the Bsig decay, and its invariant mass is zero. The finite
resolution of the detector smears out the m2

miss distribution.

The dominant Monte Carlo events are signal events, which contribute 88.65% of all Monte
Carlo events. Overall, the Monte Carlo events overestimate the real data. Since all dis-
crepancies between Monte Carlo and real data are corrected as described in section 4.5,
the difference is solely attributed to a lower performance of the FEI on the real data than
on Monte Carlo events.

6.4 Fit

To determine the calibration factor CFEI, which quantifies the performance difference be-
tween Monte Carlo and real data, the number of signal events in Monte Carlo and real data
are extracted with a binned maximum likelihood fit of the m2

miss distribution. Separate
calibration factors are determined for the B0 → D∗eν and B0 → D∗µν channels.

CFEI =
Nsig,data

Nsig,MC

(6.3)

The signal and background shapes are described by two template probability density func-
tions (PDFs) generated from the respective Monte Carlo expectation in the region of the
m2

miss between -1.0 GeV2 and 1.5 GeV2 in 25 equidistant bins.

Poisson uncertainties on the number of events in each bin of the PDF data are included
as nuisance parameters. These nuisance parameters are uncorrelated between the fit bins
and PDF components. In roofit [89], with which the fit was implemented, the method of
including the Poisson uncertainty due to the finite size of PDF data is called the Barlow
Beeston [90] method. In total, the model PDF contains two free yield parameters and 50
nuisance parameters.

Monte Carlo events corresponding to five times the Belle data luminosity (5 streams) are
used to generate the signal and background PDF. The large PDF data sizes minimize
uncertainty on the calibration factor caused by the finite size of PDF data. The Monte
Carlo fit data consist of all other available Monte Carlo events, which are weighted to their
expected rates for the luminosity of the Belle data. It contains one stream of continuum
events, which contributes only a tiny fraction of background events, and four streams of
B(b → c) events. Tab. 6.4 presents the number of streams in PDF data and Monte Carlo
fit data.
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MC streams in PDF data MC streams in fit data
continuum 0 - 4 5
B(b→ c) 0 - 4 5,7,8,9

Table 6.4: The number of streams of the Monte Carlo data used for the creation of the
template PDF and the fit data. Stream 6 was not included in the analysis since it was
used in the FEI training and could bias the final result.

Since the B meson events are the dominant contributions, balanced template and fit data
sets result in the smallest overall uncertainty on the calibration factors. Increasing the
number of events in the fit data would result in larger uncertainties due to the finite size
of the PDF data and vice versa.

6.4.1 Fit Validation

A toy study is performed to verify the accurate determination of the statistical uncertainty
on the signal yield Nsig by the fit. In total, 10,000 fits are performed. For each fit,
new fit and PDF data are generated based on the original signal and background PDFs.
Subsequently, a new PDF is created from the PDF data, which is then fitted to the newly
generated fit data. The signal and background data sets are generated separately from
their respective PDFs. The process of the data set generation is presented in Fig. 6.6.
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Figure 6.6: Illustration of the generation of a new template (blue) and fit data (green)
from the original PDF data (black) for signal events in the B0 → D∗eν channel.
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The black distribution represents the original PDF data from which the signal PDF was
created. A new data set is generated, where the number of events in each bin varies
within their Poisson uncertainties according to the nominal distribution. The nominal
distribution refers to the expected distribution for a specific number of events without any
variations. For the new PDF data, shown in blue, the original PDF data serves as the
nominal distribution. Similarly, the fit data set, shown in green, is generated with the
total number of events being 1/5 of the original PDF data to match the size of the Belle
data. The same procedure is applied for the background data sets.

Tab. 6.5 lists the nominal number of events used in the generation of the PDF and fit data.

Nsig PDF Nsig fit Nbkg PDF Nbkg fit
B0 → D∗eν 8836 1767 1225 245
B0 → D∗µν 8386 1677 1476 295

Table 6.5: Nominal number of signal (sig) and background (bkg) events used to generate
the PDF and fit data in the toy study.

For each fit, a pull value is calculated:

pull =
Nsig,gen − Nsig,fit

σNsig,fit

(6.4)

where Nsig, gen denotes the number of generated signal events in the fit data, Nsig, fit and
σNsig, fit

are the signal yield and its uncertainty obtained in the fit, respectively. For an
unbiased fit setup with correct uncertainty estimation, the pull distribution is described
by a normal Gaussian distribution with a mean (µ) of zero and a standard deviation (σ)
of one.

Fig. 6.7 shows the results of the toy study for the B0 → D∗eν and B0 → D∗µν channel.
The pull distributions for both channels exhibit small negative biases, which are consistent
with zero within their respective two σ uncertainties. Since the value of σ is less than
one, indicating that the fit overestimates the uncertainty, the small bias is assumed to be
negligible for the final result. The distributions of the fitted number of signal yields and
the signal yield uncertainties are shown in Appendix B.
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Figure 6.7: Pull distribution for the signal yields obtained in a toy study for the B0 → D∗eν
channel on the left and the B0 → D∗µν channel on the right.

6.4.2 Fit Results

After the fit validation, the final fit is performed to extract the number of signal events
in Monte Carlo and Belle data. The post-fit distributions are shown in Figs. 6.8 and 6.9
for the B0 → D∗eν and B0 → D∗µν channel. The fitted model PDF is in good agreement
with the data. The yields only include the statistical uncertainty, and the systematic
uncertainty arising from the finite size of the PDF data.

The fitted signal yields and the corresponding calibration factors for the B0 → D∗eν and
B0 → D∗µν channels are listed in Tab. 6.6.

Nsig,PDF Nsig,MC Nsig,data CFEI

B0 → D∗eν 1767 1745.44 ± 30.84 1360.78 ± 44.64 0.7796 ± 0.0291
B0 → D∗µν 1677 1653.62 ± 28.70 1301.57 ± 41.31 0.7871 ± 0.0285

Table 6.6: Number of signal events in the PDF data scaled to the luminosity to the real
data, signal yields obtained from the fit of Monte Carlo and real data, and the correspond-
ing calibration factors, where the systematic uncertainty due to the finite size of the PDF
data is included.
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Figure 6.8: Post-fit distribution of the m2
miss for B0 → D∗eν channel in Monte Carlo

(left) and real data (right), where the blue points describe the fit data, the black PDF the
combined model PDF with the individual signal component in green and the background
component in grey.
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Figure 6.9: Post-fit distribution of the m2
miss for B

0 → D∗µν channel in Monte Carlo (left)
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combined model PDF with the individual signal component in green and the background
component in grey.
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The signal yield obtained from the fit of Monte Carlo data agrees with the expected number
of signal events in the PDF data scaled to the luminosity of the real data. No significant
deviation was expected since all Monte Carlo streams are identical apart from statistical
fluctuations. The majority of Monte Carlo events are B(b→ c) events, which are weighted
by a factor of 1/4. Because the fit takes the event weights into account, the uncertainty
of the Monte Carlo signal yield is lower than the signal yield uncertainty obtained in real
data.

Assuming the signal yields are uncorrelated, the uncertainty of the calibration factors is
determined via the Gaussian error propagation:

σCFEI
=

√(
∂CFEI

∂Ndata

σNdata

)2

+

(
∂CFEI

∂NMC

σNMC

)2

(6.5)

The Barlow Beeston fit introduces correlated uncertainties between Monte Carlo and real
data since the systematic uncertainty due to the finite data size of the PDF data is the
same for both fits. To test the impact of this systematic uncertainty, the fit is repeated
without it. The results are shown in Tab. 6.7.

Nsig,MC Nsig,data CFEI

B0 → D∗eν 1745.48 ± 22.59 1362.00 ± 41.39 0.7803 ± 0.0258
B0 → D∗µν 1653.62 ± 21.07 1300.56 ± 38.38 0.7865 ± 0.0253

Table 6.7: Signal yields and calibration factors obtained from the fit without the systematic
uncertainty due to the limited data set size in the template creation.

There is an obvious decrease in the uncertainty on the Monte Carlo signal yield. However,
the signal yield uncertainty from real data is the dominating source of the calibration factor
uncertainty, which decreases only slightly.
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6.4.3 Closure Test: Branching Ratio

To cross-check if the signal efficiency is correctly determined, the branching ratio of the
signal decay is calculated from the obtained value of CFEI, which only includes the statistical
uncertainty, and the systematic uncertainty due to the limited size of the PDF data. The
result is expected to be consistent with the signal branching ratio from the Monte Carlo
generation, if no mistakes occur during the calculation.

The corresponding branching ratio for the signal decay is defined as:

B(B0 → D∗−(→ D0(→ K+π−)π−)ℓ+ν) =
Nsig,MC

2 · NBB · ϵsig · f00
(6.6)

where Nsig, data denotes the number of fitted signal events in real data, NBB is the number
of B meson pairs in data, f00 is the fraction of Γ(Υ (4S) → B0B0)/Γ(Υ (4S) → BB)and ϵsig
is the signal efficiency.

The signal efficiency is calculated from Monte Carlo events. It depends on the number
of signal events after the final selection, Nsig, final, which are the signal events used for the
creation of the signal template, the total number of generated signal events, Nsig, gen, and
the calibration factor CFEI.

ϵsig =
Nsig,final · CFEI

Nsig, gen

(6.7)

Since Nsig, gen is scaled to its expectation in the real data, the number of generated signal
events is defined as:

Nsig, gen = 2 · Bcalibration · NBB · f00 (6.8)

with Bcalibration = 0.1367% (Tab. 6.1).

Tab. 6.8 lists the number of fitted signal events, the signal efficiencies and the corresponding
branching ratios.

Nsig,data Nsig,final ϵsig B
B0 → D∗eν 1360.78 ± 44.64 1767 ± 18 (0.134 ± 0.005)% (0.1349 ± 0.0037) %
B0 → D∗µν 1301.57 ± 41.31 1677 ± 18 (0.129 ± 0.005)% (0.1347 ± 0.0037)%

Table 6.8: Signal yields for the Barlow-Beeston fit on data, the signal events in Monte
Carlo, the signal efficiency, and the branching ratio for the electron and B0 → D∗µν
channel.

The calculated branching ratio for the B0 → D∗eν and B0 → D∗µν channel agrees with
the branching ratio in the Monte Carlo generation within its uncertainty.



118 6. Calibration of the Full Event Interpretation

6.4.4 Systematic Uncertainties

Additional uncertainties due to the uncertainties of the Monte Carlo corrections, see sec-
tion 4.5, are divided into global uncertainties, which only alter the yields, and local uncer-
tainties, which change the shape of the PDF.

Global Uncertainties

The uncertainty on the calibration factor due to a global uncertainty is calculated according
to Eq. 6.5. The global uncertainty only affects the Monte Carlo signal yield, (σNdata

= 0)
and its uncertainty on the Monte Carlo signal yield is defined as:

σNMC
= NMC · σunc (6.9)

where σunc is the relative uncertainty per event caused by a specific uncertainty source.

Track Finding Efficiency

For each of the four tracks on the signal side, an uncertainty on the track finding efficiency
σtrack = 0.0035 is assigned.

σ4 tracks = 1− (1− σtrack)
4 (6.10)

Branching Ratio of Signal Decay

The relative uncertainty due to the uncertainty of the signal decay branching ratio is
calculated from the standard deviation uncertainty via:

B = (0.1366± 0.0032)% → σB = 0.0237. (6.11)

Local Uncertainties

Since local systematic uncertainties can alter the shape of the PDF, a new PDF is created
from the reweighted Monte Carlo events, where the nominal weight of each event = wnom

i

is varied by δwsource
i for a specific uncertainty source. The event weight wi is defined as:

wi = wnom
i + δwsource

i . (6.12)

The new PDF is then fitted to the real data, whose distribution remains unchanged, and
to the fit Monte Carlo data, where the events are varied analogously to the reweighted
PDF data.
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Low Momentum Efficiency

The corrections for finding a particle with a low momentum are divided into the six momen-
tum bins, which are correlated. By diagonalizing the covariance matrix, six independent
variations are calculated, each with an up and a down variation. For each variation j,
the uncertainty on the calibration factor is determined by the larger uncertainty on the
calibration factor of the down or up variation:

σvar,j = max i = up, down|CFEI − CFEI,var j,i|. (6.13)

The overall uncertainty of the six uncorrelated variations is determined with:

σsource =

√∑
j

σ2
var,j. (6.14)

Form Factors of B → D(∗)ℓν Decays

The same approach as for the low momentum finding efficiency is applied for the form
factor uncertainties of B → Dℓν with five variations (five parameters of the BGL model)
and B → D∗ℓν with six variations (six parameters of the BGL model).

Particle Identification

In the case of the particle identification uncertainties, the weights of the events vary within
their uncorrelated statistical uncertainties, and 100% correlated systematic uncertainties
of their respective pid bin uncertainty.

The nominal weight of each event i (wnom
i ) is determined by varying statistical (δwstat

i )
and systematic uncertainty (δwsys

i ).

wi = wnom
i + δwstat

i + δwsys
i (6.15)

For the systematic uncertainty on the particle identification, the events are reweighted by:

δwsys
i = Grand

sys (0, 1)× σsys
i (6.16)

Because the systematic uncertainties across pid bins are correlated 100%, the weight for
each event is varied within the same random value of the normal Gaussian distribution
multiplied by the systematic uncertainty of the respective pid bin.

The statistical uncertainty is uncorrelated across pid bins. Since it is notably smaller than
the systematic uncertainty on the correction of the pid bins, an approximation is applied.
This approach simplifies the implementations of statistical pid bin uncertainty by treating
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the statistical uncertainty on each event weight as uncorrelated. For each event, the varied
event weight is determined by a random value of a Gaussian, with the mean being the
corresponding statistical uncertainty.

δwstat
i = Grand

stat

(
0, σstat

i

)
(6.17)

This procedure is repeated for 400 fits for each correctly identified particle type, and a
new calibration factor is determined from each fit. The distribution of the calibration
factors is fitted with a Gaussian distribution, where one standard deviation (σ) is assigned
as uncertainty on the calibration factor due to particle identification uncertainty. The
distribution of the calibration factors for correctly identified leptons, pions, and kaons are
shown in Fig. 6.10, 6.11, and in 6.12. The uncertainty on the calibration factor due to
the lepton pid correction is the dominating uncertainty among all particle identification
corrections.
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Figure 6.10: Distribution of calibration factors obtained from fits with varied lepton pid
weights in the B0 → D∗eν (left) and the B0 → D∗µν (right) channel.
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Figure 6.11: Distribution of calibration factors obtained from fits with varied pion pid
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Wrongly identified particles, the so-called fakes, also have a corresponding uncertainty on
the fake rate. Because the signal events are identified by a correctly reconstructed Bsig, all
its decay products are also correctly reconstructed. Therefore, the shape of the signal PDF
remains unchanged by varying the event weights according to the fake rate uncertainty. It
only impacts the shape of the background PDF. Tab. 6.9 lists the composition of Monte
Carlo particles for the individual final state particles with a pid selection in the background
Monte Carlo data.

MC particle B0 → D∗eν B0 → D∗µν

ℓ from Bsig

ℓ− 97.88% 73.34%
π− 1.91% 23.65%
K− 0.11% 2.11%

K from D0

K− 98.83% 98.76%
π− 0.76% 0.94%
µ− 0.21% 0.24%

other 0.20% 0.06%

π from D0

π− 98.81% 98.90%
µ− 0.89% 0.93%

other 0.30% 0.17%

Table 6.9: Monte Carlo information on the final state particles on the signal side with a
pid selection in background events.

Only for true kaons and pions identified as electrons and muons a fake rate is provided,
with only a statistical uncertainty on the correction. For true pions identified as kaons and
vice versa, the uncertainty on the fake rate has both statistical and systematic uncertainty.
Analogously to the correctly identified particles, the events are reweighted, 400 fits are
performed, and the uncertainty on the calibration factor is determined.

In principle, the uncertainties due to the number of B meson pairs NBB and f00 uncertainty
need to be included in the calibration factor uncertainties. However, as the uncertainties are
identical in the calibration and signal study, they are only included in the signal B0 → τℓ
fit to avoid double-counting.
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Overview of Uncertainties

The total uncertainty on the calibration factor is determined by combining all individual
uncorrelated uncertainties via the Gaussian error propagation. Tab. 6.10 lists the calibra-
tion factor uncertainties for the individual sources in the B0 → D∗eν and B0 → D∗µν
channels.

uncertainty source B0 → D∗eν [10−2] B0 → D∗µν [10−2]
fit uncertainty + finite size of PDF data 2.905 2.847

track finding efficiency 1.068 1.096
B(B0 → D∗−(→ D0(→ K+π−)π−)ℓ+ν) 1.845 1.863

low momentum efficiency 1.298 1.311
form factor B → D ℓ ν 0.002 0.001
form factor B → D∗ ℓ ν 0.230 0.209

pid true lepton 1.461 1.704
pid fake lepton 0.046 0.073
pid true pion 0.349 0.349
pid fake pion 0.007 0.000
pid true kaon 0.403 0.401
pid fake kaon 0.002 0.006

total 4.145 4.211

Table 6.10: Overview of the absolute uncertainties on the calibration factors for the B0 →
D∗eν and B0 → D∗µν channels.

The final result for the calibration factor is given in Tab. 6.11.

CFEI

B0 → D∗eν 0.7796 ± 0.0415
B0 → D∗µν 0.7871 ± 0.0421

Table 6.11: Result of CFEI for the B0 → D∗eν and B0 → D∗µν channels.
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6.5 Validation of FEI Calibration for the B0 → τℓ Channel

Since the signal efficiency of B0 → τℓ events on real data is unknown, its determination
relies solely on signal Monte Carlo events, which are corrected to match the real data
by implementing the Monte Carlo corrections. It is crucial to verify that the obtained
correction factors are also valid for the reconstructed Btag candidates in signal events. If
the composition of the Btag candidates agrees between the calibration and signal study, the
calibration factors can be applied to the signal events. Therefore, Btag variables between
the calibration and signal channel in their respective signal regions are compared in the
following section.
The signal region of the calibration and signal channel are defined as:

• calibration channel : -1.0 GeV2 < Mmiss < 1.5 GeV2

• signal channel: 2.2 GeV < pℓ < 2.42 GeV

+ B meson background suppression selection of the final result

In the calibration channel, events with a correctly reconstructed Bsig are considered signal,
while all events in the signal channel are identified as signal. Both calibration and signal
channel do not require the Btag to be correctly reconstructed.

The following Tab. 6.12 presents the fraction of events with a correctly reconstructed Btag

relative to all events for the electron and muon as the lepton on the signal side. Small
deviations between the purities for the individual reconstructed τ channels in signal events
are observed. Because the final fit in the signal channel combines all reconstructed τ decay
channels, this purity is most important and is in good agreement with the purity of the
calibration channel.

Purity Btag

true B0 → D∗eν 50.4%
B0 → τe 51.3%

true B0 → τe 53.8%
B0 → τ(→ eνν)e 53.1%
B0 → τ(→ µνν)e 52.3%
B0 → τ(→ πν)e 50.2%
B0 → τ(→ ππ0ν)e 50.4%
B0 → τ(→ πππν)e 52.3%
B0 → τ(→ ππ0π0ν)e 59.4%

Purity Btag

true B0 → D∗µν 51.3%
B0 → τµ 51.0%

true B0 → τµ 52.7%
B0 → τ(→ eνν)µ 52.5%
B0 → τ(→ µνν)µ 52.9%
B0 → τ(→ πν)µ 48.9%
B0 → τ(→ ππ0ν)µ 52.7%
B0 → τ(→ πππν)µ 51.9%
B0 → τ(→ ππ0π0ν)µ 54.9%

Table 6.12: Purity of Btag in the calibration and signal channels with an electron(left) and
a muon(right) as the lepton from the Bsig.
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Fig. 6.13 - 6.14 compare the normalized distributions of the Btag variables: Mbc, ∆E
and the reconstructed Btag decay modes, between the calibration (red) and signal channel
(blue).
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Figure 6.13: Mbc (left), ∆E (right) of Btag (bottom), and the reconstructed Btag decay
modes (bottom) for calibration (red) and signal (blue) channel with an electron as the
lepton on the signal side.
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Figure 6.14: Mbc (left), ∆E (right) of Btag (bottom), and the reconstructed Btag decay
modes (bottom) for calibration (red) and signal (blue) channel with a muon as the lepton
on the signal side.
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The distributions of Mbc and ∆E are in good agreement, while the reconstructed decay
channels differ for some Btag decay modes. To quantify this difference, the absolute dif-
ferences between the normalized signal and calibration events in each reconstructed decay
mode are added in a conservative approach via:

σconservative =
∑
i

|signali − calibrationi| , (6.18)

and assuming the Btag decay modes are uncorrelated via:

σuncorrelated =

√∑
i

(signali − calibrationi)
2, (6.19)

where i denotes the reconstructed Btag decay mode. The differences are listed in Tab. 6.13.

Channel σconservative (%) σuncorrelated (%)
B0 → τe 6.7 2.0
B0 → τµ 5.3 1.6

Table 6.13: Values of σconservative and σuncorrelated for the electron and muon channel.

In conclusion, the FEI calibration factors are applicable for determining the signal effi-
ciency, and no additional uncertainty due to discrepancies between the signal and calibra-
tion Btag composition is added.





Chapter 7

Fit of the Lepton Momentum
Distribution

This chapter presents the method for extracting signal events from real data, and deter-
mining the upper limits of the branching ratio using the statistical methods explained in
chapter 2.1.

The branching ratio B is estimated as:

B =
Nsig

2 · NBB · f00 · ϵsig
(7.1)

where Nsig denotes the number of signal events obtained in the fit, NBB is the number of B
meson pairs in the real data, f00 = Γ

(
Υ (4S) → B0B0

)
/Γ
(
Υ (4S) → BB

)
, and ϵsig represents

the signal efficiency. Since both B mesons in the event can decay into the signal mode, a
factor of 2 is included in the denominator.

Because of the good separation between background and signal events, the lepton momen-
tum in the Bsig rest frame is chosen as the fit variable. The fit region ranges from 1.7 GeV
to 2.6 GeV. Probability density functions (PDFs) for signal and background shapes are
created from the Monte Carlo expectation as template PDFs with 27 equidistant bins.

Since the B(b → uℓν) events exhibit a different shape than all other background compo-
nents, two separate background PDFs are generated. The PDF named ”ulnu bkg” describes
the distribution of B(b → uℓν) events, while the ”other bkg” PDF represents continuum,
B → rare and the B(b → c) events. The combined background PDF is required to have
no bin with zero entries to ensure fit stability. The expectation for signal events is rep-
resented by a single PDF, called the signal PDF. No distinction is made between events
with correctly or wrongly reconstructed Bsig candidates because their distribution in lepton
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momentum is similar, as shown in Fig. 7.1, and the same composition is expected in real
data after applying all the Monte Carlo corrections.

1.8 2.0 2.2 2.4 2.6
p  [GeV]

0

10

20

30

40

No
rm

al
ize

d 
/ (

0.
03

3 
Ge

V)

Private Work
B0 e

      Belle MC dt = 711 fb 1

signal (arb. units)
true Bsig

wrong Bsig

1.8 2.0 2.2 2.4 2.6
p  [GeV]

0

10

20

30

40

50

No
rm

al
ize

d 
/ (

0.
03

3 
Ge

V)

Private Work
B0

      Belle MC dt = 711 fb 1

signal (arb. units)
true Bsig

wrong Bsig

Figure 7.1: Normalized lepton momentum distribution in the Bsig rest frame for correctly
(blue) and wrongly (red) reconstructed Bsig candidates in signal events for the B0 → τe
(left) and B0 → τµ (right) channel.

The fit is implemented as an extended binned maximum likelihood fit, with the pyhf fitting
package [91; 92] and cabinetry [93]. In pyhf, all the systematic uncertainties on the PDFs
can be included as nuisance parameters, which is necessary for calculating the upper limit
of the signal branching ratio. Since no signal events are expected in the real data, the
signal extraction and expected upper limit are tested on Asimov data, with zero signal
events.

For each B meson background suppression, the expected upper limit is determined sepa-
rately for the B0 → τe and B0 → τµ channel. Additionally, to ensure that the fit also
converges on real data, the fit and upper limit determination are performed on the real
data without unblinding the signal region or the fit result. In the end, the B meson back-
ground suppression with the best upper limit on the Asimov data and a converging fit on
real data is chosen. This chapter only includes the results and distributions of the chosen
B meson background suppression, but the same procedure was implemented for all other
B meson suppressions.

Fig. 7.2 and 7.3 show the Monte Carlo events in the fit region and the pre-fit distributions
with the three PDFs components and Asimov data with zero signal events.
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Figure 7.2: Distribution of the lepton momentum in the Bsig rest frame for the individual
Monte Carlo contributions (left) and the pre-fit distribution with the three fit components
(right) for the B0 → τe channel.

1.8 2.0 2.2 2.4 2.6
p  [GeV]

0

10

20

30

40

50

60

70

Ca
nd

id
at

es
 / 

(0
.0

33
 G

eV
)

Private Work
B0

      Belle MC dt = 711 fb 1

B0(b u )
B0(b c)
B0  rare
B + (b c)
uds

B + (b u )
charm
B +  rare
signal (arb. units)

0

20

40

60

80

100

ev
en

ts

B0

pre-fit
ulnu bkg
signal
other bkg

Uncertainty
Data

1.8 2.0 2.2 2.4 2.6
p  [GeV]

0.5
0.75

1.0
1.25

da
ta

 / 
m

od
el

Figure 7.3: Distribution of the lepton momentum in the Bsig rest frame for the individual
Monte Carlo contributions (left) and the pre-fit distribution with the three fit components
(right) for the B0 → τµ channel.
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The background Monte Carlo events used in the PDF creation are weighted to match
their expectations in the real data, and signal events are scaled down by a factor of 50,
corresponding to a branching ratio of 6.67 · 10−5. The weighted number of events for the
three PDFs are provided in Tab. 7.1 for the B0 → τe and B0 → τµ channel.

Bsig → τe Bsig → τµ
signal 133.96 105.26

ulnu background 563.08 278.30
other background 3771.58 430.82

Table 7.1: Monte Carlo signal and background events used for the PDF creation in the
B0 → τe and the B0 → τµ channel.

7.1 Model Parameters

The model PDF f
(
xi; θ⃗

)
, combined from the three PDFs, contains the parameters θ⃗,

which can be divided into free parameters µ⃗ and constrained parameters χ⃗.

f
(
xi; θ⃗

)
= f (xi; µ⃗, χ⃗) (7.2)

The free parameters are the signal and two background strengths. The strength of a
component i is defined as:

µi =
Nfiti

NPDFi

where Nfiti represents number of fitted events for component i and NPDFi
denotes the num-

ber of events of component i used in the PDF creation. The constrained parameters include
additional uncertainties on the PDF shape and are discussed in the following section. They
rely on the Monte Carlo corrections described in section 4.5.

7.2 Global Uncertainties

Global uncertainties preserve the shape of the PDF and only modify the normalization.
They are Gaussian-constrained parameters centered around the mean of one and a width of
σ, which denotes the relative uncertainty on the normalization due to a specific uncertainty
source.
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Track and π0 Finding Efficiency

Each charged particle on the signal side is assigned an uncertainty σtrack = 0.0035, resulting
in a global uncertainty, which is defined as:

σall,track =
N2 · (1− σtrack)

2 − N2 +N4 · (1− σtrack)
4 − N4

N2 +N4

(7.3)

where N2 denotes the number of events with two charged particles, which includes all events
with reconstructed τ decays apart from τ → πππ decays with three charged pions. These
events with four charged tracks are denoted by N4.

The finding efficiency for π0 in Monte Carlo is corrected by the ratio R = 0.957 ± 0.008 ±
0.023 per π0 on the signal side, where the second term corresponds to the statistical and the
third term on the systematic uncertainty. The combined uncertainty on the ratio is 0.024
with a relative uncertainty on the ratio of σπ0 = 0.025. Based on the number of events
with one π0 (N1π0) or two π0 (N2π0) in the τ decays, an uncertainty on the normalization
is calculated:

σπ0,total =
N1π0 · (1− σπ0)− N1π0 +N2π0 · (1− σπ0)2 − N2π0

Ntotal

(7.4)

where Ntotal denotes all events.

NBB and f00

For the signal PDF, additional constraints are included, which depend on uncertainties on
the number of BB pair events in the real data:

NBB = 771, 581, 000± 10, 566, 000 → σ NBB
= 0.0137 (7.5)

and the uncertainty on f00

f00 = 0.486± 0.006 → σf00 = 0.0123 (7.6)

B Meson Background Suppression and FEI

Because the signal efficiency is calculated on signal Monte Carlo events, it depends on its
correct representation of the signal events in real data. The selection of a specific value
of the B meson background suppression classifier output introduces an additional global
uncertainty on the signal efficiency, which was determined with the approach explained
in chapter 5.3.6. Tab. 7.2 lists the relative uncertainties on the signal efficiency for the
B0 → τe and B0 → τµ channel. The uncertainty due to the FEI calibration is included for
all three PDF components and given in Tab. 7.3.
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σBDT eff.

B0 → τe 0.0206
B0 → τµ 0.0690

Table 7.2: Uncertainty on the signal efficiency introduced by the B meson background
suppression selection.

FEI correction σFEI
B0 → τe 0.7796±0.0415 0.0532
B0 → τµ 0.7871±0.0421 0.0535

Table 7.3: FEI calibration factor and relative uncertainty σFEI.

7.3 Local Uncertainties

In addition to global uncertainty, local uncertainties altering the shape of the PDFs are
implemented. Therefore, the difference in the lepton momentum distribution in the Monte
Carlo data used for the PDF generation with nominal and varied corrections is determined.
Each Monte Carlo event is assigned a nominal weight, which is the product of all individ-
ual correction factors. A variation of the weight is calculated based on the uncertainty
introduced by a specific source.

wi = wnom,i + δwi (7.7)

where wnom,i is the nominal weight for an event i and δwi is the uncertainty on the event
weight due to a specific uncertainty source.

The shape uncertainties are divided into correlated and uncorrelated shape uncertainties.
Correlated shape uncertainties add one extra parameter to the PDF because the varia-
tion of the shape is correlated across all lepton momentum bins. In contrast, uncorrelated
parameters introduce 27 new parameters because each lepton momentum bin is treated
independently. If the correction factor depends on multiple correlated parameters, uncor-
related variations are determined by diagonalizing the covariance matrix, as explained in
section 4.5.2.

Finite Size of the Monte Carlo Data

Because the PDFs are created from finite Monte Carlo data, a Poisson uncertainty is
assigned to the number of events in each bin. These uncertainties are uncorrelated shape
uncertainty, resulting in 27 Poisson-constrained parameters per fit component. If a bin has
zero entries for a fit component, the Poisson uncertainty is zero.
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Lepton Identification & Lepton Fake Rate

The corrections on the electron and muon identification for correctly identified leptons have
an associated statistical and systematic uncertainty for each particle identification (pid)
bin.

Since the systematic uncertainty on the lepton identification is assumed to be 100% corre-
lated across pid bins for each identified lepton type, the uncertainty on the entries across
the lepton momentum bins and the individual PDF components is 100% correlated. The
parameters for the electron and muon identification are Gaussian-constrained.

The statistical uncertainty of lepton identification correction is uncorrelated for different
pid bins. Therefore, a random value from a normal Gaussian distribution is drawn for
each pid bin i and multiplied by its statistical uncertainty σstat

pid bin i. The uncertainty on
the event weight is determined as follows:

δwstat
pid bin i = σstat

pid bin i ·Grand
stat (0, 1) (7.8)

Afterward, a new lepton momentum distribution is created with the varied weights. This
procedure is repeated 50 times. For each lepton momentum bin i, an uncertainty is as-
signed, calculated as the standard deviation of the number of entries in bin i for the 50
variations. Fig. 7.4 illustrates the variations in the lepton momentum distribution, where
the differences caused by the statistical uncertainty of the lepton identification are enhanced
by a factor of 50 to make them visible.

This approach assumes independence between lepton momentum bins, which is not entirely
correct because leptons from the same pid bin can contribute to different lepton momentum
bins. However, this approximation is chosen since the statistical uncertainty is smaller than
the systematic uncertainty, and the overall uncertainty is smaller than 1%. In the fit, the
statistical uncertainty on the electron and muon identification are combined using Gaussian
error propagation to reduce the total number of parameters.

The provided uncertainty on the lepton fake rate correction is solely statistical and included
analogously to the previously described statistical uncertainty on lepton identification. It
only includes fake rate corrections for true pions and kaons, which fall into the lepton
pid bins. All other particles are assigned a lepton fake rate correction of one with an
uncertainty of zero. This only occurs in background events, and the maximal fraction of
non-true pions or kaons being identified as leptons is less than 0.4%. Tab. 7.4 and Tab. 7.5
list the composition of Monte Carlo particles for the different light leptons types on the
signal side, separately for background and signal events.
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Figure 7.4: Illustration of the procedure to determine the uncertainty due to the statistical
uncertainty on the lepton identification, shown for the signal Monte Carlo data in the
B0 → τµ channel. The lepton momentum distribution is shown with nominal weights
(black) and the five varied weights (colors), where the variations are enhanced by a factor
of 50 to make them visible.

Lepton MC reconstructed reconstructed
origin particle B0 → τe B0 → τµ

B0 → τℓ

ℓ− 99.29% 88.09%
π− 0.67% 8.66%
K− 0.00% 3.20%
other 0.04% 0.05%

τ → eνν

e− 98.89% 99.47%
π− 0.85% 0.53%
K− 0.21% 0.00%
other 0.05% 0.00%

τ → µνν

µ− 88.15% 86.24%
π− 10.61% 12.31%
K− 0.97% 1.07%
other 0.27% 0.38%

Table 7.4: Monte Carlo information on signal-side light lepton candidates in background
events.
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Lepton MC reconstructed reconstructed
origin particle B0 → τe B0 → τµ

B0 → τℓ
ℓ− 99.98% 99.87%
π− 0.02% 0.13%

τ → eνν
e− 99.69% 99.93%
π− 0.31% 0.07%

τ → µνν
µ− 95.14% 96.86%
π− 4.44% 3.00%
K− 0.42% 0.14%

Table 7.5: Monte Carlo information on signal-side light lepton candidates in signal events.

Low Momentum Particle Finding Efficiency

For particles with a pt < 0.2 GeV, a low momentum finding efficiency correction in six
distinct low momentum bins is applied. Since the uncertainties on the correction factors
are partially correlated across the low momentum bins, six uncorrelated variations are
determined by diagonalizing the covariance matrix, resulting in six Gaussian-constrained
parameters in the model PDF, which are shared across all PDF components and lepton
momentum bins.

Form Factors

Furthermore, uncertainties arising from the uncertainties of the form factor parameters of
B → D(∗)ℓν decays are included. The uncorrelated variations of the form factor parameters
are calculated by diagonalizing the covariance matrix, resulting in five variations for B →
Dℓν and six variations for the B → D∗ℓν form factor parameters. In total, eleven Gaussian-
constrained parameters are added to the model PDF, where the parameter of the same
variation represents the correlation between the lepton momentum bins. The Gaussian-
constrained parameters are shared across PDF components.

Branching Ratio of τ Decays

Six Gaussian-constrained parameters are added to the signal PDF to account for the un-
certainties of τ branching ratios. These uncertainties are calculated by varying the weight
of signal events based on Monte Carlo information of the generated τ decays. For each
reconstructed τ decay mode i, the events generated in the decay mode i are reweighted
according to their branching ratio uncertainty σi:

Bi → Bi + σi (7.9)
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To conserve the total τ branching ratio, all events generated in not reconstructed (nr) τ
decay modes are reweighted with the opposite sign of σi:

Bnr → Bnr − σi (7.10)

The constrained parameters due to the uncertainties of the τ branching ratios are assumed
to be uncorrelated.

Branching Ratio of Resonant B → Xuℓν Decays

The same procedure as applied for the τ branching ratio is implemented for the uncertain-
ties on the exclusive branching ratios of B decays via the (b→ uℓν) transitions. Here, the
non-resonant decay modes replace the not-reconstructed τ decay modes. Tab. 7.6 lists the
branching ratio and the respective uncertainties for the resonant B → Xuℓν decays.

B meson Xu particle B (×10−3)

Neutral
π+ 0.150± 0.006
ρ+ 0.294± 0.021

Charged

π0 0.078± 0.003
ρ0 0.158± 0.011
η 0.039± 0.005
η′ 0.023± 0.008
ω 0.119± 0.009

Table 7.6: Branching ratios of the resonant B → Xuℓνfrom Tab. 4.5.

Since most of the resonant B(b → uℓν) events arise from neutral B meson events, which
decay in the resonant B → πℓν and B → ρℓν channels, only three constrained parameters
are included in the ”ulnu bkg” PDF. The third parameter contains the uncertainty on the
shape for all additional resonant decays of the charged B mesons B → Xu, other resℓν with
Xu, other res = η, ω, η′.

Fig. 7.5 - 7.6 show the composition of the different B → Xuℓν events in the B0 → τe and
B0 → τµ channel.
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Figure 7.5: Distribution of the lepton momentum for B0(b→ uℓν) events in the decays for
the reconstructed B0 → τe (left) and B0 → τµ (right) channel.
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Figure 7.6: Distribution of the lepton momentum for B+(b → uℓν) events in the decays
for the reconstructed B0 → τe (left) and B0 → τµ (right) channel.
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Branching Ratio of Inclusive B → Xuℓν Decays

The non-resonant B → Xuℓν decays are generated according to the inclusive branching ra-
tio. Because the branching ratio also has an associated uncertainty, new hybrid weights for
the non-resonant B → Xuℓν events are calculated by varying the inclusive branching ratio
by its uncertainty. The correlated shape difference in the lepton momentum distribution
is included as a Gaussian parameter in the ”ulnu bkg” PDF.

Model for Non-resonant B → Xuℓν Decays

The uncertainties on the DFN model parameters introduce two Gaussian-constrained pa-
rameters for the correlated shape uncertainties on the ”ulnu bkg” PDF for non-resonant
B (b → uℓν) events. Additionally, a third shape uncertainty is included, representing
how the choice of the theory model in the generation of the non-resonant b → uℓu decays
influences the lepton momentum distribution. Therefore, the non-resonant B(b → uℓν)
events are reweighted according to the BLNP model prediction, and the difference in the
lepton momentum distribution with respect to the DFN model prediction is included as a
correlated shape uncertainty.

Data - Monte Carlo Differences in the Background Suppression Variables

A correlated shape uncertainty is included, which takes into account the data - Monte
Carlo discrepancies in the training variables of the B meson background suppression. By
calculating the difference between the lepton momentum distributions with and without
reweighting the Monte Carlo events to match the data as described in section 5.3.6, a
Gaussian-constrained parameter is determined. The constrained parameters are shared
across the PDF components.
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7.4 Fit Validation

A toy study is implemented to validate that the fit correctly estimates the statistical
uncertainties of the signal yields. Since no signal events are expected in real data, this
validation is performed on Asimov data with zero signal events. A fit data set corresponding
to a luminosity of 711 fb−1 is generated from the same background Monte Carlo events
used in the background PDF creation.

For each bin i of the lepton momentum, the nominal number of entries Ni is varied by
the random value drawn from a Poisson distribution with µ = Ni. Fig. 7.7 illustrates the
nominal distribution from which the three variations of the fit data sets are generated. If
a bin has negative entries, it is replaced by zero entries.
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Figure 7.7: The nominal distribution of the lepton momentum for the muon channel is
shown in black, and the colored distributions represent three toy data sets containing zero
signal events.

The original model PDF is then fitted to the toy data, where the only parameters included
in the PDF are the three yield parameters. The complete procedure, starting from the fit
data generation, is repeated 30,000 times. The pull for each of these fits is determined as:

pull =
Nsig,fit − Nsig,gen

σNsig,fit

. (7.11)

The pull distributions of the signal events for the B0 → τe and the B0 → τµ channel are
shown in Fig. 7.8.
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Figure 7.8: Pull distribution of signal events, where the toy fit data consists only of back-
ground events, shown for the B0 → τe (left) and B0 → τµ (right) channel. The fitted
mean µ and standard deviation σ are shown in the upper right of each plot.

Fig. 7.9 shows the distribution of the signal strength uncertainties obtained in the toy
study.
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Figure 7.9: Distribution of the signal strength uncertainty obtained in the toy study. The
toy fit data consists only of background events, shown for the B0 → τe (left) and B0 → τµ
(right) channel. The fitted mean µ and standard deviation σ are shown in the upper right
of each plot.
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In the case of a correct uncertainty estimation, the pull distribution is described by a normal
Gaussian distribution. The unbinned maximum likelihood fit of the pull distributions shows
that the width is consistent with one, but the mean is slightly biased toward negative values.
Since including an overall global uncertainty on the signal strength σbias = |µpull| · σµ has
a negligible impact compared to the other uncertainties, no additional uncertainty due to
the observed bias is added to the signal PDF.

In another study, the stability of the fit is tested by generating Asimov data sets with zero
to twenty signal events, while the background events correspond to their expectation from
Monte Carlo events. A fit of the model PDF, including all parameters, is performed for
each Asimov data set. Fig. 7.10 compares the generated signal events to the fitted signal
yields. The fit is assumed to be stable since it returns the expected numbers of fitted signal
events, and all fits for the 20 different Asimov data sets converged.
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Figure 7.10: Stability test of fit performed on the Asimov fit data with 0 to 20 signal
events. The distribution on the left shows the result for the B0 → τe channel and on the
right for the B0 → τµ channel. The uncertainties on the signal yield include all systematic
uncertainties.
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7.5 Fit on Asimov Data

With Asimov data, the expected behavior of the fit can be examined. The results of the
fits on Asimov data with zero signal events are presented in Fig. 7.11. As expected the
model and data are in perfect agreement.
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Figure 7.11: Post-fit distribution on Asimov data with zero signal events for the B0 → τe
channel on the left and for the B0 → τµ channel on the right.

Tab. 7.7 lists the signal and background yields with their average expected uncertainties.
The background yields are equal to the background events used in the background PDF
generation and the signal events are zero.

B0 → τe B0 → τµ
signal 0.00 ± 18.47 0.00 ± 12.81

ulnu background 563.08 ± 48.48 278.30 ± 27.96
other background 3771.58± 69.29 430.82 ± 27.04

Table 7.7: Fitted yields for signal and background components on the Asimov data set for
the B0 → τe and B0 → τµ channel.
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7.5.1 Expected Upper Limit on the Signal Branching Ratio

The expected upper limit on the branching ratio is determined based on the CLs method
implemented in pyhf. The upper limit determination is tested on the Asimov data con-
taining zero signal events.

In 16 hypothesis tests with signal strengths varying in equidistant steps between 0.00 and
0.30, an upper limit on the branching ratio with a 90% confidence level is determined using
the q̃ test statistic. This test statistic only considers positive signal yields. The upper limit
scan is presented in Fig. 7.12, and the obtained upper limits are listed in Tab. 7.8.
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Figure 7.12: Upper limit scan on branching ratio for B0 → τe (left) and B0 → τµ (right)
for a fit on Asimov data with zero signal events. In the upper limit plot, the observed
CLs values are compared with the expected CLs values for various signal branching ratio
hypotheses. The observed CLs values are obtained from fits to the fit data, while the
expected CLs values are determined on pseudo experiments. Additionally, the expected
CLs values are determined with variations corresponding to ± one σ (green band) and ±
two σ (yellow band) to represent the uncertainty due to statistical fluctuations. The red
line denotes the significance α of the test. The branching ratio value, where the curve of
the observed CLs values and α intersect, denotes the upper limit on signal branching. The
true branching ratio value is expected to be below this upper limit with a probability of
90%.
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B0 → τe B0 → τµ
B limit 90% CL 1.57 · 10−5 1.42 · 10−5

Table 7.8: Upper limit on branching ratios at 90% CL for the electron B0 → τe and
B0 → τµ channel obtained on Asimov data with zero signal events.

The impact of the individual systematic uncertainties sources on the upper limit is shown
in Fig. 7.13. To estimate the impact, the fit is repeated on the Asimov data with zero signal
events, and additional systematic uncertainties are included one after the other, starting
with only the yields as parameters of the model PDFs.

For the B0 → τe and the B0 → τµ channel, the upper limit on the branching ratio is
limited by the data size of the fit data. Including all the systematic uncertainties only
alters the upper limit by 0.02 · 10−5 – 0.03 · 10−5.

The systematic uncertainties with the highest impact are the FEI calibration uncertainty
and the B meson background suppression uncertainties. In the B0 → τe channel, the
discrepancies for background Monte Carlo and real data in the training variables increase
the upper limit. Meanwhile, the uncertainty on the signal efficiency is the dominating
source for the increased upper limit on the B(B0 → τµ).
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Figure 7.13: Impact of the systematic uncertainties on the upper limit on the branching
ratio for B0 → τe (upper) and B0 → τµ (lower) for a fit on Asimov data with zero signal
events.





Chapter 8

Results

This chapter presents the unblinding process and the fit to the Belle data. First, a subset
of the data is unblinded to evaluate its agreement with Monte Carlo data. For the partial
unblinding, the data set of experiment 55 is chosen, which comprises approximately 10%
of the Belle data. Afterward, the Belle data is unblinded, and the upper limit on the
branching ratio of B0 → τe and B0 → τµ decays is determined.

8.1 Partial Unblinding of Experiment 55

In the process of partial unblinding, the training variables of the B meson background sup-
pression and the lepton momentum in the Bsig rest frame are studied, where no significant
deviations from the Monte Carlo expectation were observed.

Therefore, the lepton momentum distribution is fitted, and the upper limit on the branching
ratios is determined for the Monte Carlo and real data of experiment 55 to check the
reliability of the fit. Since the fit data sets only contain a low number of events, especially
for the B0 → τµ channel, and the fit did not converge if all nuisance parameters were
included, the model PDF only contained systematic uncertainty due to limited data size of
the Monte Carlo data used in the PDF generation. The obtained results still give a good
estimate for the upper limit because the size of the fit data set is the limiting factor.

Fit of B0 → τe

Tab. 8.1 lists the yields for the signal and background contributions obtained in the fit to
Monte Carlo and real data in the B0 → τe channel. The signal yields are consistent with
zero within their uncertainties.
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Monte Carlo data real data
nsig -3.71 ± 5.91 -2.95 ± 4.77
nuℓν 76.06 ± 16.10 46.35 ± 13.48
nother 378.43 ± 21.80 411.73 ± 22.10

Table 8.1: Yields obtained from fits to Monte Carlo and real data of experiment 55 in the
B0 → τe channel.

Fig. 8.1 presents the post-fit distributions of the lepton momentum distribution for the
Monte Carlo data and the real data set. The model and data are in good agreement.
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Figure 8.1: Post-fit distribution of the lepton momentum for Monte Carlo data (left) and
real data (right) for experiment 55 in the B0 → τe channel. Signal events are shown in
green for positive signal yields and in white-green for negative yields.

Additionally, the upper limits on the B(B0 → τe) in Monte Carlo and real data are
determined. The expected and observed upper limits with a confidence level of 90% for
the Monte Carlo and real data are listed in Tab. 8.2.

B Limit 90% CL Monte Carlo data real data
observed 4.36 · 10−5 3.62 · 10−5

expected 5.49 · 10−5 4.56 · 10−5

Table 8.2: Upper limits on the B(B0 → τe) obtained from fits to Monte Carlo and real
data of experiment 55.
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The upper limits obtained from Monte Carlo and real data show no unexpected differences.
The scans of the upper limits are presented in Fig. 8.2. Since the extracted signal yields
are negative, the observed upper limits are also below the expected upper limits, but they
lie in the one-σ band of the expectation.
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Figure 8.2: Upper limit scan on the branching ratio for Monte Carlo (left) and real data
(right) in experiment 55 for the B0 → τe channel.

Fit of B0 → τµ

Tab. 8.3 provides the fitted signal and background yields determined from fits to Monte
Carlo and real data in the B0 → τµ channel. For Monte Carlo data, the signal yield is
consistent with zero within its uncertainty. However, the signal yield for the real data is
above zero and only consistent with zero within its 1.2 σ uncertainty.

Monte Carlo data real data
nsig -1.83 ± 3.82 5.34 ± 4.52
nuℓν 32.33 ± 9.11 22.49 ± 8.04
nother 43.77 ± 8.51 41.20 ± 8.05

Table 8.3: Yields obtained from fits to Monte Carlo and real data of experiment 55 in the
B0 → τµ channel.
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The post-fit distributions of the lepton momentum for Monte Carlo and real data are shown
in Fig. 8.3. The Monte Carlo data is in good agreement with the model, while the fit of
the real data is affected by the low number of events and statistical fluctuations.
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Figure 8.3: Post-fit distribution of the lepton momentum for Monte Carlo data (left) and
real data (right) for experiment 55 in the B0 → τµ channel. Signal events are shown in
green for positive signal yields and in white-green for negative yields.

The expected and observed upper limits on the B(B0 → τµ) with a confidence level of 90%
for the Monte Carlo and real data are listed in Tab. 8.4.

B Limit 90% CL Monte Carlo data real data
observed 3.96 · 10−5 7.43 · 10−5

expected 4.83 · 10−5 4.67 · 10−5

Table 8.4: Upper limits on the B(B0 → τµ) obtained in experiment 55 for Monte Carlo
and real data.

Similar to the B0 → τe fit, the observed Monte Carlo upper limit is below the expected
upper limit but lies within its one-σ uncertainty band. The upper limit observed in real
data is above the expected upper limit because the fitted signal yield was above zero.
Fig. 8.4 depicts the upper limits scans for Monte Carlo and real data.
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Figure 8.4: Upper limit scan on the branching ratio for Monte Carlo (left) and real data
(right) in experiment 55 for the B0 → τµ channel.

8.2 Fit of the Belle Data

Because no unexpected behavior was observed during the partial unblinding, the Belle data
is unblinded. No significant deviations in the training variables are observed. Similar to the
partial unblinding, the distributions of the lepton momentum and the B meson background
suppression classifier output are compared for the full fit range of the lepton momentum
in the Bsig rest frame. The classifier output and the lepton momentum distributions are
shown in Fig. 8.5 and in Fig. 8.6.
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Figure 8.5: Distribution of the B meson background suppression classifiers after unblinding
for the B0 → τe (left) and B0 → τµ channel (right) on the Belle data. The dashed grey
line marks the selection on the classifier.
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Figure 8.6: Distribution of the lepton Momentum after unblinding B0 → τe (left) and
B0 → τµ channel (right) on the Belle data.
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Afterward, the fit is performed on the Belle data. The post-fit distributions are presented
in Fig. 8.7, which exhibit a good agreement between model and data.
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Figure 8.7: Post-fit distribution of the lepton momentum for the B0 → τe (left) and the
B0 → τµ channel for the unblinded Belle data. Signal events are shown in green for positive
signal yields and in white-green for negative yields.

Tab. 8.5 lists the obtained yields on the signal and background components and the p-
value for the goodness of fit test for the Belle data and, as a comparison, the expectation
obtained from a fit to Asimov data with zero signal events.

For the B0 → τe channel, the signal yield is negative but consistent with zero within
its uncertainty with a p-value of 0.61 for the goodness of fit test. In the fit of the B0

→ τµ channel, a positive signal yield is extracted, which is consistent with zero within its
uncertainty. The fit has a p-value of 0.53 for the goodness of fit test.

B0 → τe B0 → τµ
Belle data Asimov data Belle data Asimov data

nsig −15.06 ± 18.60 0.00 ± 18.47 6.71 ± 12.48 0.00 ± 12.81
nuℓν 597.98 ± 49.09 563.08 ± 48.48 239.07 ± 27.65 278.30 ± 27.96
nother 4121.06 ± 71.53 3771.58 ± 69.29 451.20 ± 27.91 430.82 ± 27.04

Table 8.5: Fitted yields for the fit of the unblinded Belle data and on Asimov data with
zero signal events in the B0 → τe and B0 → τµ channel.
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Fig. 8.8 illustrates the correlations between the three yield parameters. In particular, a high
correlation between the ”ulnu bkg” and the ”signal” yield parameters is present because
the ”ulnu bkg” is the dominating background contribution in the signal region.
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Figure 8.8: Correlation matrix of the yield parameters of the fit of the Belle data in the
B0 → τe (left) and B0 → τµ (right) channel.

In the upper limit scan of the B(B0 → τe) and B(B0 → τµ), the q̃ test statistic is used,
which allows only positive signal yields. Tab. 8.6 summarizes the final results of the upper
limit on the branching ratio of the B0 → τe and B0 → τµ decays.

B Limit 90% CL B0 → τe B0 → τµ
observed 1.20 · 10−5 1.67 · 10−5

expected 1.60 · 10−5 1.37 · 10−5

Table 8.6: Upper limits on the branching ratio for the B0 → τe and B0 → τµ decays
obtained from the fit to the Belle data.

Fig.8.9 presents the upper limits scan on the branching ratios of the B0 → τe and B0 → τµ
decays obtained from Belle data. The solid black line, defined by the observed CLs values
for the hypothesized values of the branching faction, lies within the one-σ band, indicating
no statistically significant departure of the data from the expectation.

As expected from the previous result of the signal yields, the upper limit determined in
the B0 → τe channel is below the expected limit and above the expected limit for the B0

→ τµ channel.
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Figure 8.9: Upper limit scan on the branching ratio for the B0 → τe (left) and B0 → τµ
channel (right) obtained from the Belle data.

Uncertainty due to Continuum Suppression Selection

Because the continuum suppression might perform differently on real data compared to
Monte Carlo events and thus alter the signal efficiency or the shapes of the PDFs, the
whole analysis is repeated with cs classifier output > 0.4 and cs classifier output > 0.6
selections. The determined upper limits on the branching ratios, see Tab. 8.7, lie within
the one-σ band of the nominal result. Therefore, no additional uncertainty is included in
the model PDF. The fit results are shown in the Appendix C.

B Limit 90% CL B0 → τe B0 → τµ
cs classifier observed 1.20× 10−5 1.52× 10−5

output > 0.4 expected 1.58× 10−5 1.37× 10−5

cs classifier observed 1.24× 10−5 1.62× 10−5

output > 0.6 expected 1.58× 10−5 1.35× 10−5

Table 8.7: Comparison of the upper limit on the branching ratio for the B0 → τe and
B0 → τµ channel obtained from a fit on the Belle data set with the two varied cs classifier
selections.
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8.3 Discussion of the Results

The obtained upper limit on the branching ratio of B0 → τe decays of 1.2 · 10−5 improves
the best upper limit of 1.6 · 10−5 (Belle). For the branching ratio of B0 → τµ, the upper
limit of 1.2 · 10−5 determined at LHCb remains the best upper limit.

The most limiting factor on the upper limit is the size of the fit data, followed by the
systematic uncertainty on the B meson background suppression and the FEI calibration.
To determine more stringent upper limits, the size of the fit data needs to increase.

An estimation of the sensitivity for this analysis approach is performed on a data set
corresponding to a luminosity of 5 ab−1, which corresponds to the expected Belle II data
in the next few years. The fit data only contains the predicted background events. They
are determined from the obtained background yields in the Belle data with a luminosity
and scaled to their expected rates in a data set for luminosity of 5 ab−1. All the systematic
uncertainties in the model PDF are unchanged and the upper limit scan is carried out.
The expected upper limits are reduced by a factor of two compared to the Belle data and
are given in Tab. 8.8.

B0 → τe B0 → τµ
nsig 0.00 ± 52.59 0.00 ± 33.31
nuℓν 4205.64 ± 159.53 1681.31 ± 76.51s
nother 28980.35 ± 210.80 3172.97 ± 78.39

B Limit 90% CL 6.28 · 10−6 5.02 · 10−6

Table 8.8: Expected signal and background yields and the expected upper limits obtained
from a fit of Asimov data with zero signal events and the expected background events for
a luminosity of 5 ab−1.

Additionally, new analysis strategies can be invented to increase the low efficiency of the
full hadronic FEI (O(10−3)), while still maintaining a good separation power between signal
and background events. Since the goal of Belle II is collecting a data set corresponding to
the luminosity of 50 ab−1, more stringent upper limits on the branching ratio are expected
in the future.
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A BGL Correlation matrix

The correlation matrices for the parameters were communicated privately with the authors
of the paper [94].

(Nom. ±σstat)× 103 Stat. Correlation Matrix
ãg0 1.00 ± 0.02 1.000 -0.937 -0.128 0.069 -0.081 0.161
ãg1 -2.35 ± 0.61 -0.937 1.000 0.127 -0.222 0.110 -0.192

ãf0 0.511 ± 0.004 -0.128 0.127 1.000 -0.800 -0.751 0.624

ãf1 0.67 ± 0.17 0.069 -0.222 -0.800 1.000 0.443 -0.354

ãF1
0 0.30 ± 0.06 -0.081 0.110 -0.751 0.443 1.000 -0.978

ãF1
1 -3.68 ± 1.26 0.161 -0.192 0.624 -0.354 -0.978 1.000

Table A.1: Statistical correlation matrix for the fit with BGL parametrization in the
configuration (1, 1, 2).

(Nom. ±σsyst)× 103 Syst. Correlation Matrix
ãg0 1.00 ± 0.02 1.000 -0.940 -0.132 0.085 -0.077 0.158
ãg1 -2.35 ± 0.66 -0.940 1.000 0.129 -0.228 0.107 -0.189

ãf0 0.511 ± 0.013 -0.132 0.129 1.000 -0.806 -0.755 0.629

ãf1 0.67 ± 0.30 0.085 -0.228 -0.806 1.000 0.452 -0.362

ãF1
0 0.30 ± 0.08 -0.077 0.107 -0.755 0.452 1.000 -0.977

ãF1
1 -3.68 ± 1.20 0.158 -0.189 0.629 -0.362 -0.977 1.000

Table A.2: Systematic correlation matrix for the fit with BGL parametrization in the
configuration (1, 1, 2).



B FEI Calibration: Toy Study

Additional information obtained in the toy study of the FEI calibration:

Figure B.1: Distributions of the signal events and the signal uncertainties obtained in the
toy study of the FEI calibration in the B0 → D∗eν channel.

Figure B.2: Distributions of the signal events and the signal uncertainties obtained in the
toy study of the FEI calibration in the B0 → D∗µν channel.
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Figure C.1: Post-fit distribution for the fit on full Belle data (upper) and the upper limit
scans on branching ratio (lower) for the B0 → τe (left) and B0 → τµ (right) channels with
the cs classifier output > 0.4 selection.
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B0 → τe B0 → τµ
nsig -15.34± 19.07 3.70± 12.97
nuℓν 633.57± 50.99 255.84± 28.82
nother 4328.60± 73.67 489.46± 29.08

Table C.1: Fit results on full Belle data for the cs classifier output > 0.4 selection.
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Figure C.2: Post-fit distribution for the fit on full Belle data (upper) and the upper limit
scans on branching ratio (lower) for the B0 → τe (left) and B0 → τµ (right) channels with
the cs classifier output > 0.6 selection.
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B0 → τe B0 → τµ
nsig -12.50± 18.00 6.15± 12.19
nuℓν 554.11± 46.91 237.29± 26.59
nother 3886.37± 69.07 424.58± 26.69

Table C.2: Fit results on full Belle data for the cs classifier output > 0.6 selection.
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