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Summary

The rapid technological advancement that characterized the past few decades has brought about
an increasingly large amount and variety of data. This wealth of data naturally comes with
further complexity, thus requiring increasingly sophisticated and efficient methodologies to extract
valuable information from it. In this context, statistical models can serve as effective tools to obtain
interpretable insight from the data while adequately quantifying and accounting for the underlying
uncertainty. This thesis deals with the statistical modeling of two broad data categories that are
prominent in modern times: network data and public health data. After an introductory Part
I, the thesis comprises a total of eleven contributions, which can be divided into three further
parts.

Part II, composed of four contributions, deals with the statistical analysis of network data. Net-
works can broadly be defined as groups of interconnected people or things. This thesis focuses
mostly on social and economic networks, and on statistical models aimed at capturing and ex-
plaining the mechanisms leading to the formation of ties between actors within the network. We
specifically concern ourselves with two broad model families, namely latent variable models and
exponential random graph models. The first two contributions in this section introduce and com-
pare several models from these classes, and showcase them by applying them to real-world network
data. The following two contributions extend and apply these models to answer substantive ques-
tions in the social sciences. More specifically, the third contribution extends exponential random
graph models to deal with the modeling of a massive dynamic bipartite network of patents and
inventors to explore the drivers of innovation, while the fourth one uses latent distance models to
map the network of popular Twitter users discussing the COVID-19 pandemic, with the goal of
investigating polarization on the platform.

Part III, which also comprises four contributions, addresses statistical challenges related to the
real-time monitoring and modeling of public health data. More specifically, the chapter tackles
questions that emerged during the early stages of the COVID-19 pandemic, mainly by adapting
and extending the class of generalized additive mixed models (GAMMs). The fifth contribution
develops a statistical model using reported fatal infections data to predict how many of the
registered infections will turn out to be lethal in the near future, thereby enabling to effectively
monitor the current state of the pandemic. The sixth contribution instead focuses on all reported
infections, and proposes a model to nowcast locally detected (but not yet centrally reported) cases
by accounting for expected reporting delays, as well as to forecast infections at the regional level
in the near future. The seventh contribution proposes a statistical tool to study the dynamics of
the case-detection ratio over time, allowing for comparisons of infection figures between different
pandemic phases. The chapter is concluded by the eighth contribution, which further demonstrates
the effectiveness of GAMMs by applying them to three relevant pandemic-related issues, i.e. the
interdependence among infections in different age groups among school children, the nowcasting
of COVID-19 related hospitalizations, and the modeling of the weekly occupancy of intensive care
units.

Finally, Part IV, composed of three contributions, focuses on the principled estimation of excess
mortality, which can generally be defined as the number of deaths from all causes during a crisis
beyond what would have been expected had the crisis not occurred. More specifically, the ninth
contribution develops a point-estimation method by deploying a corrected version of classical life
tables to calculate age-adjusted excess mortality, and applies it to obtain estimates the first year of



the COVID-19 pandemic (i.e. 2020) in Germany. The tenth contribution applies the same method
to provide updated age-specific estimates for 2021. Finally, the eleventh contribution extends
the method to incorporate uncertainty quantification, and deploys it at a broader scale to obtain
estimates for 30 developed countries in the first two years of the COVID-19 crisis. The results are
further compared with existing estimates published in other major scientific outlets, highlighting
the importance of proper age adjustment to obtain unbiased figures.
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Zusammenfassung

Der rasche technologische Fortschritt, der die letzten Jahrzehnte geprägt hat, hat eine zunehmend
große Menge und Vielfalt an Daten mit sich gebracht. Diese Fülle an Daten geht natürlich mit einer
erhöhten Komplexität einher und erfordert daher immer ausgefeiltere und effizientere Methoden,
um wertvolle Informationen daraus zu extrahieren. In diesem Kontext können statistische Mod-
elle als effektive Werkzeuge dienen, um interpretierbare Einblicke aus den Daten zu gewinnen und
gleichzeitig die zugrunde liegende Unsicherheit angemessen zu quantifizieren und zu berücksichti-
gen. Diese Dissertation befasst sich mit der statistischen Modellierung von zwei wichtigen Arten
von Daten der modernen Zeit: Netzwerkdaten und Gesundheitsdaten. Nach einem einführenden
Teil I umfasst die Dissertation insgesamt elf Beiträge, die in drei weitere Teile unterteilt werden
können.

Teil II besteht aus vier Beiträgen und behandelt die statistische Analyse von Netzwerkdaten.
Netzwerke können allgemein als Gruppen von miteinander verbundenen Personen oder Objekten
definiert werden. Diese Dissertation konzentriert sich hauptsächlich auf soziale und wirtschaftliche
Netzwerke und auf statistische Modelle, die darauf abzielen, Mechanismen zu erfassen und zu
erklären, die zur Entstehung von Verbindungen zwischen Akteuren im Netzwerk führen. Wir be-
fassen uns insbesondere mit zwei großen Modellfamilien, nämlich latenten Variablenmodellen und
exponentiellen Random-Graph-Modellen. Die ersten beiden Beiträge in diesem Abschnitt stellen
mehrere Modelle aus diesen Klassen vor und vergleichen sie, indem sie auf reale Netzwerkdaten
angewendet werden. Die folgenden zwei Beiträge erweitern und wenden diese Modelle an, um sub-
stanzielle Fragen in den Sozialwissenschaften zu beantworten. Genauer gesagt, erweitert der dritte
Beitrag exponentielle Random-Graph-Modelle, um die Modellierung eines massiven dynamischen
bipartiten Netzwerks von Patenten und Erfindern zu ermöglichen und die Treiber der Innovation
zu erforschen, während der vierte Beitrag latente Distanzmodelle verwendet, um das Netzwerk
populärer Twitter-Nutzer zu kartieren, die über die COVID-19-Pandemie diskutieren, mit dem
Ziel, die Polarisierung auf der Plattform zu untersuchen.

Teil III, der ebenfalls aus vier Beiträgen besteht, befasst sich mit statistischen Herausforderun-
gen im Zusammenhang mit der Echtzeitüberwachung und Modellierung von Gesundheitsdaten.
Genauer gesagt, behandelt das Kapitel Fragen, die in den frühen Stadien der COVID-19-Pandemie
aufkamen, hauptsächlich durch Anpassung und Erweiterung der Klasse der generalisierten addi-
tiven gemischten Modelle (GAMMs). Der fünfte Beitrag entwickelt ein statistisches Modell unter
Verwendung von gemeldeten tödlichen Infektionsdaten, um vorherzusagen, wie viele der registri-
erten Infektionen in naher Zukunft tödlich verlaufen werden, wodurch eine effektive Überwachung
des aktuellen Pandemiestands ermöglicht wird. Der sechste Beitrag konzentriert sich auf alle
gemeldeten Infektionen und stellt ein Modell vor, um lokal erkannte (aber noch nicht zentral
gemeldete) Fälle unter Berücksichtigung erwarteter Meldeverzögerungen nowzucasten sowie Infek-
tionen auf regionaler Ebene in naher Zukunft vorherzusagen. Der siebte Beitrag schlägt ein statis-
tisches Werkzeug vor, um die Dynamik des “case-detection Ratios” im Laufe der Zeit zu unter-
suchen, was Vergleiche der Infektionszahlen zwischen verschiedenen Pandemiephasen ermöglicht.
Das Kapitel wird durch den achten Beitrag abgeschlossen, der die Effektivität von GAMMs weiter
demonstriert, indem sie auf drei relevante pandemiebezogene Themen angewendet werden, nämlich
die Interdependenz von Infektionen in verschiedenen Altersgruppen bei Schulkindern, das Now-
casting von COVID-19-bedingten Hospitalisierungen und die Modellierung der wöchentlichen Bele-
gung von Intensivstationen.



Teil IV, der aus drei Beiträgen besteht, konzentriert sich schließlich auf die grundlegenden
Schätzung der Übersterblichkeit. Diese wird im Allgemeinen definiert, als die Anzahl der
Todesfälle auf Grund von allen Ursachen während einer Krise, die über das hinausgeht, was
ohne die Krise erwartet worden wäre. Genauer gesagt, entwickelt der neunte Beitrag eine Punk-
teschätzungsmethode durch die Verwendung einer korrigierten Version klassischer Sterbetafeln,
um altersbereinigte Übersterblichkeit zu berechnen, und wendet diese Methode an, um Schätzun-
gen für das erste Jahr der COVID-19-Pandemie (d.h. 2020) in Deutschland zu erhalten. Der zehnte
Beitrag wendet dieselbe Methode an, um aktualisierte altersspezifische Schätzungen für 2021 zu
liefern. Abschließend erweitert der elfte Beitrag die Methode, um die Unsicherheitsquantifizierung
zu integrieren, und setzt sie in größerem Maßstab ein, um Schätzungen für 30 Industriestaaten
in den ersten beiden Jahren der COVID-19-Krise zu erhalten. Die Ergebnisse werden weiter mit
bestehenden Schätzungen verglichen, die in anderen bedeutenden wissenschaftlichen Publikatio-
nen veröffentlicht wurden, und heben die Bedeutung einer korrekten Altersanpassung hervor, um
unverzerrte Zahlen zu erhalten.
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Part I.

Introduction and background





1. Introduction

“It is easy to lie with statistics. It is hard to tell the truth without it.”

- A. Dunkels, Swedish mathematician (1939-1998)

It’s hard to overstate the centrality of data in society. Data, in the broad sense of the word, shaped
human behavior for millennia. Consider, for instance, a scenario in which a caveman repeatedly
consumes a poisonous berry, experiencing adverse effects each time. Through observation, the
caveman associates the ingestion of this berry with negative outcomes, prompting him to stop
eating it and likely signaling its peers to avoid it as well. This is a primitive example of data-
driven decision-making. With time, civilizations evolved and expanded, and thus got better at
collecting, storing and sharing information. This upward trajectory took a decisive acceleration
in the last decades, which, together with the advent of the computer, brought upon what has
been described as the information age, a time characterized by its wealth of available data (Kline,
2015). But the truth is that reality is complex, often much more so than it may look at a first
glance: as data becomes more and more ubiquitous, it also becomes increasingly clear that raw
information is nothing without proper tools to extract real insight from it. What good is a raw
figure without understanding the context surrounding it? In fact, improper use of data can even
be worse than having no data at all, as it can be misleading or worse, aid in coating lies with a
veil of “factual evidence”. In this environment, statistical models have emerged as principled tools
to obtain interpretable insight from different types of data, while at the same time adequately
quantifying and accounting for the underlying uncertainty. In fact, past decades have been defined
as “a golden age of statistical methodology” (Efron and Hastie, 2021) for the central role that
such tools have played in recent times. But, crucially, each data constellation is unique in its
own way, and thus requires tailored modeling approaches to reveal its secrets. In this context,
statistics, and particularly applied statistics, must rise up to the challenge to address the growing
need of society to answer substantive questions in diverse domains. More in particular, applied
data scientists are tasked with the triple role of designing, implementing, and applying sensible
statistical methods to solve different classes of problems in the empirical sciences by means of
data analysis. All three aspects are necessary: designing, as datasets need appropriate theories on
how the data-generating process functions; implementing, as the best theories can often remain in
the shadows if they are not accompanied by functioning tools to put them to work; and applying,
as there is no better way to facilitate the diffusion of a new technology than demonstrating its
effectiveness in the empirical realm. The present work is set in this context, and is concerned with
all three of these dimensions. More specifically, the thesis is motivated by data-driven challenges
posed by modern society, and deals with designing, extending, and leveraging modern statistical
tools to answer classes of questions posed within the economic, social, and public health sciences,
with particular focus on applications with tangible real-world impact. To be more precise, the
scope of this work can broadly be categorized in three parts, namely (a) social and economic
network modeling, (b) models for monitoring epidemics, and (c) methods for excess mortality
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1. Introduction

estimation. These three topics respectively make up Parts II, III, and IV of the thesis, where
each of these parts is composed by multiple contributions, for a total of eleven published journal
articles. The current section, i.e. Part I, instead serves as an introduction to the three topics just
outlined. More specifically, the goal of this introductory part is to frame each of the parts in its
broader statistical context, summarize the statistical tools upon which the contributions build,
and give a brief overview of the research questions tackled and the original contributions provided.
In essence, this introduction aims at equipping the reader with the necessary knowledge and tools
to navigate the remainder of the thesis, which as a whole can be viewed as a demonstration of
how statistics can be put to work to break down complexities present in modern society.
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2. Models for network data

Networks can broadly be defined as systems of interconnected people or things. Within the context
of this thesis, we can more specifically define networks as data structures that can be represented
through use of graphs, where nodes represent actors in the network, and edges represent ties
within them. Such structures are ubiquitous in diverse empirical settings, stemming from, e.g.,
social, political, economic, health, and natural sciences. As the data class is so general, networks
can extensively be studied from various different perspectives. This thesis will focus on analyzing
and modeling networks from a statistical view. Specifically, given a network, we here focus on
understanding the mechanisms contributing to its generation, thereby investigating the drivers
behind the formation of ties between actors. The special characteristic of network data, which
makes this feat particularly tricky, is that ties between actors are generally dependent on one
another. This means that standard regression techniques assuming conditional independence be-
tween observations are usually not applicable. Instead, modeling approaches tailored to networks
need to be employed. This chapter is dedicated to introducing the different families of network
models that are discussed, extended and applied in the contributions included in Part II of this
thesis.

Note that, of course, networks can be very different from one another, and different networks
can have very different generative mechanisms. For example, a friendship network will evolve
fundamentally differently from a network of neurons, a power grid, or an ecological web. As a
result, there is no single network model capable of capturing the generative mechanisms of all net-
works. However, some network models are flexible enough to be adapted to different dependence
structures. Moreover, networks pertaining to similar phenomena tend to follow similar patterns.
The contributions included in this thesis predominantly focus on networks driven by interactions
between humans or groups of humans, such as e.g. networks of friendship, collaborations, or other
types of active relationships linking together people or other human-driven entities, such as com-
panies or countries. The models that we will introduce here will therefore mainly be discussed
using this type of network structures as their target. Note that this section does not aim to
be an exhaustive treatment of statistical network analysis, but merely aims at introducing the
general framework and providing the reader with the necessary tools to more easily dive into the
related contributions. For an overview of the field, we instead refer to Goldenberg et al. (2010)
and Kolaczyk (2009).

The remainder of this chapter is structured as follows. Section 2.1 introduces the required notation
and presents the general framework of random graph models. Section 2.2 discusses the class of
exponential random graph models, while Section 2.3 focuses on latent variable models for network
data. Section 2.4 concludes the chapter by discussing the contributions contained in Part II, and
gives some remarks on promising future developments in the field.

5



2. Models for network data

2.1. Networks as random variables

2.1.1. Setting and notation

Before digging into network models, we briefly introduce the mathematical framework for net-
works, as well as the necessary notation. As anticipated in the previous section, in this thesis
we formalize networks as graphs. Formally, a graph G = (V, E) is composed by a set of N ver-
tices V = {1, ..., N} and a set of M edges E = {(i1, j1), ..., (iM , jM )} ⊆ P = {(i, j); i, j ∈ V}, with
|E| = M . In this notation, P is the set of all possible pairs of nodes, and the set of edges E includes
all pairs where the actors are actually connected in the graph. Vertices can also interchangeably
be referred to as actors or nodes, while edges are also known as links or ties. To make them easier
to handle, graph can also be expressed in matrix form through their so-called “adjacency matrix”.
Given a binary graph, its adjacency matrix y = (yij)i,j=1,...,n is an N ×N matrix where each entry
yij is given by:

yij =
{

1 , if (i, j) ∈ E
0 , otherwise.

In other words, yij = 1 indicates the presence of an edge from node i to node j, while yij = 0
translates to no edge between the two. Note that a graph can either be “directed” or “undirected”.
In a directed graph, the direction of an edge carries additional information, while if the network
is undirected yij = yji holds ∀ i, j ∈ V. Various examples of networks of both types will be
illustrated over the course of this thesis. Furthermore, since self-ties are not admitted for most
studied networks, the diagonal of y is usually left unspecified or set to zero.

In addition to the edges, we often observe additional information on the nodes composing the net-
work, as well as on the relationships between them. We denote covariate information at the nodal
level, such as e.g. the gender or political affiliation of a person, by xnode = (x1, ..., xN ). Similarly,
we indicate dyadic covariates, such as for example an indicator of whether or not two people live
in the same area, or the age differential between them, with xdyad = (x12, ..., xN N−1). In theory,
covariates at higher levels (such as e.g. triadic covariates) would also be admissible; however, these
are not present in the cases studied in this thesis. Also note that, in this introductory section,
we start by discussing the simplest type of networks, that is static (i.e. non time dependent),
unimodal (i.e. with only one node type), and binary (i.e. where each edge can only be present
or absent). However, the thesis also considers extensions and applications to dynamic, bipartite,
and weighted networks. Those more complex cases will be gradually introduced as they come up
in the contributions, building on the foundational framework given in this introduction.

2.1.2. Random Graphs

To study the generative mechanisms behind networks, we first need to make a key abstraction,
that is to consider networks not as constant, static entities, but rather as random variables. More
specifically, we consider random graphs as entities where the set of nodes is assumed to be fixed,
while the presence (or absence) of each edge is random. Our goal is then to specify a statistical
model for the random graph Y , that is the random variable corresponding to the observed network
y. A natural way to do this is to specify a probability distribution over the space of all possible

6



2.1 Networks as random variables

networks, which we define by the set Y. The simplest possible model for this task is the so-
called Bernoulli graph, also termed Erdös-Rényi-Gilbert model, where all edges are assumed to be
independent and to have the same probability of being observed (Erdös and Rényi, 1959; Gilbert,
1959). In stochastic terms, each observed tie is then a realization of a Bernoulli random variable
with success probability π, i.e.

Pπ(Yij = 1) = π (2.1)

for any pair of nodes i, j ∈ V. The above, given the assumed edge independence, leads to the
following probability distribution over the whole network:

Pπ(Y = y) =
n∏

i=1

∏
j ̸=i

πyij (1 − π)1−yij . (2.2)

Evidently, model (2.2), which implies equal probability for all possible ties, is too restrictive to
be applied to real world problems. It is unrealistic to assume edges to be completely random and
independent from any other factor, including nodal and pairwise characteristics. The natural next
step is, therefore, to let the edge probability π vary depending on the features of the nodes involved
in each tie, leading to edge-specific probabilities πij . To do so, we can follow the commonly used
logistic regression framework, and parameterize the log-odds of an edge by log

(
πij

1−πij

)
= θ⊤xij ,

where xij is a vector of covariates with the first entry set to 1 to incorporate an intercept. For
the probability of the whole network, we then get

Pθ(Y = y|x) =
n∏

i=1

∏
j ̸=i

(
exp{θ⊤xij}

1 + exp{θ⊤xij}

)yij
(

1
1 + exp{θ⊤xij}

)1−yij

. (2.3)

Note that the logistic structural assumption is just one of the possible different model formulations.
In fact, looking at (2.3), it is apparent that this model is just a special case of a generalized linear
model, which allows for flexible model choice within the exponential family (Nelder and Wedder-
burn, 1972). But while this formulation is already a lot more flexible than the Bernoulli graph we
started with, a key ingredient for properly modeling real-world networks is still missing. While we
are allowing the probability of an edge to depend on the nodal and pairwise characteristics of the
nodes involved in a pair, model (2.3) still assumes ties to be independent conditionally on such
covariates. This assumption is often unreasonable in practice: In the context of an international
relations network, it would, for example, imply that Germany imposing economic sanctions on
Russia is independent of Italy imposing sanctions on Russia, and, in the directed case, even of
Russia imposing them on Germany itself. In general, real world networks, and particularly net-
works driven by human interaction, are often heavily shaped by dependence between edges. In the
following, some of the most common endogenous network mechanisms present in human-driven
networks are described.

Reciprocity: In a directed network, reciprocity describes the tendency of directed ties to be
reciprocated. This tendency was first documented by Newcomb (1979). For example, given that
person i likes person j, it is often more likely for person j to also like person i.

7



2. Models for network data

(a) Reciprocity (b) Triadic closure

(c) Homophily (d) Preferential attachment

Figure 2.1.: Typical patterns observed in networks driven by human interaction

Transitivity: Also known as triadic closure, transitivity describes the importance of shared ties
in forming new ones (Davis, 1970). This mechanism can also be summarized with the common
saying “a friend of my friend is (likely to be) my friend”. For example, if country i has a good
relationship with country j, and j has a good relationship with country z, i is likely to also be on
good terms with z.

Homophily: This term describes the tendency of similar nodes to form connections with each
other (Rivera et al., 2010). Human-driven networks are often homophilic: for example, people of
similar age, or sharing similar political opinions, are often more likely to form social connections
with each other. Note, however, that these characteristics may either be observed or unobserved.
This distinction gives rise to two different types of homophily, which can be defined as “observed
homophily” and “latent homophily”, respectively. In the former case, the strength of the mecha-
nism can simply be estimated as a function of exogenous covariates. In contrast, the latter case
can be viewed as an endogenous network mechanism, as the latent similarity can only be tracked
down through the connectivity behavior of the nodes.

Preferential attachment: This phenomenon, also known as “rich get richer”, refers to the ten-
dency of nodes with many ties to attract even more. For example, accounts with lots of friends
or followers on social media are generally more likely than others to attract new connections.

These four mechanisms, for which a visual representation is given in Figure 2.1, are just examples
of the possible network-driven dependencies that can arise between ties. Such dependencies are the
reason why we need to go beyond standard regression models, and instead use special techniques to
model network data. We are not in a classical X → Y setting, but rather in an X, Y → Y one, i.e.
there is simultaneous dependency within the response variable (the edges of the network itself).
To account for this endogenous dependence, several extensions to regression models have been
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introduced over the years. In this thesis, we will specifically focus on two of the most prominent
model families that have been proposed for this task, namely exponential random graph models
(Robins et al., 2007a) and latent variable network models (Matias and Robin, 2014). Albeit
from very different angles, both of these model classes are suitable to simultaneously capture
the mechanisms leading to network formation, i.e. to measure how the probability of forming
a tie is influenced by (a) nodal characteristics, (b) pairwise covariates, and (c) the rest of the
network. The following two sections motivate and introduce the two model families, with the goal
of enabling the reader to quickly dive into the contributions relating to this chapter.

2.2. Exponential random graph models

The exponential random graph model (in short ERGM) is one of the most popular models for
analyzing network data. First introduced by Holland and Leinhardt (1981) as a model class
that builds on the platform of exponential families, it was later extended with respect to fitting
algorithms and more complex dependence structures (Lusher et al., 2012; Robins et al., 2007b).
The general idea of this model class is to generalize the simplistic Erdös-Rényi-Gilbert random
graph model and its version with covariates, given in (2.2) and (2.3), respectively, to account for
specific dependence structures between the network’s edges. To do so, the ERGM exploits the
properties of the exponential family of distributions, building on the framework of generalized
linear models while incorporating additional statistics into the model equation. More specifically,
while in a traditional regression model the set of sufficient statistics is only a function of covariates,
in the realm of ERGMs it can also include statistics related to the network itself, such as for
example the count of reciprocated ties, or the number of triangles in the network.

An exponential random graph model can thus be seen as an extension of a generalized regression
model for the joint distribution of the edges of the network Y. But this generalization did not come
all at once: a first extension in this direction was performed by Holland and Leinhardt (1981),
who extended model (2.2) to such settings with the so-called p1 model. To represent reciprocity,
the authors assume dyads, defined by (Yij , Yji), to be independent of one another, which again
yields an exponential family distribution similar to (2.3) with structural statistics counting the
number of mutual ties (sMut(y) = ∑

i<j yijyji), of edges (sEdges(y) = ∑n
i=1

∑
j ̸=i yij), and the in-

and out-degree statistics for all degrees observed in the networks. Note that the actors’ in- and
out-degrees are their number of incoming and outgoing edges, and relate to their relative position
in the network (Wasserman and Faust, 1994).

Next to reciprocity, another important endogenous network mechanism is transitivity, originating
in the structural balance theory of Heider (1946) and adapted to binary networks by Davis (1970).
Transitivity affects the clustering in the network, implying that a two-path between actors i and
j, i.e. yih = yhj = 1 for some other actor h, affects the edge probability of Yij . Put differently,
Yij and Ykh are assumed to be independent iff i, j ̸= k and i, j ̸= h. Frank and Strauss (1986)
proposed the Markov model to capture such dependencies. This model incorporates counts of
triangular structures as well as star-statistics, which are counts of sub-structures in the network
where one actor has edges to between 0 and n − 1 other actors.
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After allowing for specific type of edge dependence, the next step was to allow for more general
dependence structures, and specify a probabilistic model for Y directly through the sufficient
statistics. Wasserman and Pattison (1996) introduced this model as

Pθ(Y = y) = exp{θ⊤s(y)}
κ(θ) , (2.4)

where θ is a p-dimensional vector of parameters to be estimated, s(y) is a function calculating
the vector of p sufficient statistics for network y, and κ(θ) = ∑

ỹ∈Y exp{θ⊤s(ỹ)} is a normalizing
constant to ensure that (2.4) sums up to one over the set of all possible networks. To estimate θ,
Handcock (2003) adapted the Monte Carlo Maximum Likelihood technique of Geyer and Thomp-
son (1992), approximating the logarithmic likelihood ratio of θ and a fixed θ0 via Monte Carlo
quadrature (see Hunter et al., 2012, for an in-depth discussion).

Within the general framework of model (2.4), the possible range of network-based sufficient statis-
tics is virtually endless, allowing to test for the presence of endogenous mechanisms such as reci-
procity and transitivity, and to measure the tendency of patterns such as cycles and stars to form
(see Morris et al., 2008 for a survey on possible model configurations). However, it is important
to keep in mind that the estimation of ERGMs is prone to degeneracy (Handcock, 2003; Schwein-
berger, 2011). Degenerate models are characterized by probability distributions that put most
probability mass either on the empty or on the full network, i.e., where either all or no ties are
observed (Hunter et al., 2008). Such models are, of course, not at all appropriate to represent
real data. To avoid degeneracy, it is important to keep the model specification concise, and to
choose the sufficient statistics sensibly, while monitoring goodness of fit (see Hunter et al., 2012).
For more details on ERGM specification and estimation we refer to Lusher et al. (2012), who also
discuss the model class from a broader perspective.

We further note that, along with capturing endogenous network statistics, it is also possible to
extend the ERGM framework to include the temporal dimension, that is, to model longitudinal
network data. This can be done quite naturally through use of a Markov assumption on the
temporal dependence of subsequently observed networks, giving rise to the Temporal Exponential
Random Graph Model (TERGM). We refer to Hanneke et al. (2010) for an introduction to this
temporal variant (see also Krivitsky and Handcock, 2014 for further developments). In summary,
the ERGM allows to account for network dependencies via explicitly specifying them in s(y). A
large variety of potential network statistics can be included in s(y), enabling to test for their
influence in the formation of the observed network. However, this wide range of possibilities does
not come without caveats, including the previously mentioned issue of degeneracy, thus requiring
the user to at least have an implicit theory regarding what types of network dependence should
exist in the studied network before fitting the model.

2.3. Latent variable network models

Another prominent option for modeling network data is offered by latent variable network models.
Models within this broad class start from the key assumption that endogenous dependence between
edges can be explained by unobserved nodal characteristic. These models thus postulate the
existence of latent variables Zi in association with each node i, and that, crucially, all edges Yij

are independent conditionally on these latent variables. This implies that the probability of the
whole network Y can factorize as:
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Pθ(Y = y|z) =
N∏

i=1

∏
j ̸=i

Pθ(Yij |zi, zj). (2.5)

Moreover, the conditional distribution of each tie Yij is assumed to only depend on Z, that is

Pθ(Yij |zi, zj) = f(zi, zj). (2.6)

While these assumption may seem strict, this general definition is quite broad, as the latent
variables can take many different forms, leading to flexible model specifications. Clearly, the main
difficulty lies in estimating the latent structure, which will allow us to gain an understanding of
the underlying network mechanisms at play, or to at least account for them. One main distinction
within the class of latent variable models can be drawn between discrete latent variables (e.g.
indicating group memberships for each node) and continuous ones (Matias and Robin, 2014). In
this section, we will briefly go over the most prominent of these models, which will then be covered
more in depth, applied, and extended in the contributions relating to this chapter.

2.3.1. Stochastic blockmodels

One of the simplest, and yet perhaps still the most widely popular latent variable model for network
data, is the so-called stochastic blockmodel (SBM). The model assumes that each node belongs to
a latent, categorical class (also known as group, or block). Nodes within each class are assumed
to be stochastically equivalent in their connectivity behavior, meaning that the probability of
two nodes to connect depends solely on their group memberships. From a statistical perspective,
the SBM can be viewed as a mixture model in which each mixture component is given by group
membership. More formally, we assume the independent discrete group indicator coefficients
Zi ∈ {1, ..., K} for i = 1, ..., N , with

P(Zi = k) = πk for k = 1, ..., K,

and ∑K
k=1 πk = 1. For a binary, undirected network, each tie probability between nodes i and j

is then a simple Bernoulli random variable governed solely by the connection probability between
the two groups to which i and j belong, i.e.

P(Yij = yij |zi, zj) = (pzizj )yij (1 − pzizj )(1−yij), (2.7)

where P = (ph,l)h,l=1,...,K is a K × K block-probability matrix, in which each entry phl is given by
the connection probability between groups h and l. Note that the number of blocks K is generally
assumed to be known, and has to be appropriately chosen by the user (see Lee and Wilkinson,
2019 for a list of possible approaches to this task).

The initial versions of the SBM, as introduced by Holland et al. (1983), assumed group member-
ships for each node to be known, rendering the model fairly trivial. The first steps towards “a
posteriori” blockmodeling, that is modeling with initially unknown group structure, were taken

11



2. Models for network data

by Snijders and Nowicki (1997) and Nowicki and Snijders (2001), who proposed estimation rou-
tines for, respectively, two groups and any known number of groups. From there, the model class
gained traction, mostly as a principled way to classify nodes into groups based on their connec-
tivity behavior. In a sense, SBMs can be seen as a tool for performing community detection,
which can generally be understood as clustering nodes into densely connected communities, as
depicted in Figure 2.1c (see e.g. Clauset et al., 2004, Fortunato, 2010, Fortunato and Hric, 2016).
However, for community detection one typically assumes that phh > phl for all h ̸= l, which is not
a requirement for SBMs. In fact, the block-structure may describe clusters of nodes that behave
similarly from a connectivity standpoint without necessarily being more densely connected, thus
allowing for other types of structures, such as disassortative communities and core-periphery (see
Fortunato and Hric, 2016 for more details).

Following their initial formulation, stochastic blockmodels have been extended in various ways for
different purposes. A well known extension of the classical SBM is the degree-corrected stochastic
blockmodel, introduced by Karrer and Newman (2011). In their work, the authors show how the
standard SBM implicitly assumes the degree structure within communities to be relatively homo-
geneous. This, combined with the fact that many real-world networks exhibit extremely skewed
degree distributions (Simon, 1955), leads the model to often only be able to find core-periphery
type block structures, where node grouping is predominantly driven by degree similarity. To
bypass this issue, Karrer and Newman (2011) introduced the idea of degree correction, making
the probability of an edge depend not only on group membership, but also on node-specific het-
erogeneity parameters. This leads the model to find traditionally “dense” groups, more in line
with the conventional concept of community detection. Besides the degree-corrected SBM, other
notable extensions include the mixed membership model (Airoldi et al., 2008), in which nodes
can belong to multiple communities simultaneously, and the hierarchical stochastic blockmodel
(Peixoto, 2017), in which communities are comprised of meta-communities, leading to a hierar-
chical block structure. It is also possible to add covariates to the analysis, as initially proposed
by Tallberg (2005) and further elaborated by Choi et al. (2012), Sweet (2015), and Huang et al.
(2023). A further extension is the mixture of experts SBM (see Gormley and Murphy, 2010 and
White and Murphy, 2016), which allows covariates to enter the latent position cluster model in a
number of ways, yielding different model interpretations. Surveys on recent developments in this
field have been published by Abbe (2018) and Lee and Wilkinson (2019).

The stochastic blockmodel owes its success largely to its simplicity and flexibility in uncovering and
describing subgroups of nodes within networks. Being able to classify nodes in different categories
based on their connectivity behavior is indeed attractive for diverse applications. The simplicity
of the SBM, however, can also be viewed as its major shortcoming, as in several domains discrete
groupings fail to adequately represent the observed data. For settings where agents behave more
heterogeneously than can be described via simple groupings, it can thus be useful to replace the
discrete random variables with continuous ones, as showcased in the upcoming sections.

2.3.2. Latent distance models

A prominent approach in the realm of continuous latent variable models for network data is offered
by the latent distance model (LDM). Initially proposed by Hoff et al. (2002), the model postulates
that agents are positioned in a latent Euclidean “social space”, and that the closer they are within
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it, the more likely they are to form ties. More precisely, the classical latent distance model specifies
the probability of observing an edge between nodes i and j through

Pθ(Yij = 1|Z) = exp{θ⊤xij − ∥zi − zj∥}
1 + exp{θ⊤xij − ∥zi − zj∥}

, (2.8)

where Z = (z1, ..., zn) denotes the latent positions of the nodes in the d-dimensional latent space,
where d is assumed to be known, and θ is the coefficient vector for the covariates xij . The latent
positions Z are assumed to originate independently from a spherical Gaussian distribution, i.e.
Z ∼ Nd(0, τ2Id)), where Id indicates a d-dimensional identity matrix.

Latent distance models are useful tools to graphically represent network structures, since low-
dimensional Euclidean spaces lend themselves well to visualization. Unlike standard graph visual-
ization algorithms, which are based on heuristics (see e.g. Kamada et al., 1989 and Fruchterman
and Reingold, 1991), the resulting plot will have a probabilistic interpretation, enhancing its in-
terpretability. Indeed, visually inspecting the estimated latent space can provide very useful in
understanding the overall structure of the network, as well as the dynamics at play. Moreover,
it is possible to use LDMs for clustering purposes: Handcock et al. (2007) extended the class by
including model-based clustering to the original formulation of the latent distance model, allowing
for the actors’ positions in the latent space to come from a mixture of G normal distributions,
where each mixture component represents a cluster. More formally, for the latent positions Zi

holds

Zi
iid∼

G∑
g=1

λgMVNd(µg, τ2
g Id). (2.9)

Furthermore, it’s possible to add nodal random effects to the model to control for agent-specific
heterogeneity in the propensity to form edges (Krivitsky et al., 2009). The model then becomes

Pθ(Yij = 1|Z, a, b) = exp{θ⊤xij − ∥zi − zj∥ + ai + bj}
1 + exp{θ⊤xij − ∥zi − zj∥ + ai + bj}

, (2.10)

where a = (a1, ..., an) and b = (b1, ..., bn) are node-specific sender and receiver effects that account
for the individual agents’ propensity to form ties, with a ∼ Nn(0, τ2

a In) and b ∼ Nn(0, τ2
b In).

Several other extensions to the model class have been proposed: we refer to Kaur et al. (2023) for
an overview.

Latent distance models are particularly attractive for social networks in which both homophily (see
Figure 2.1c) and triadic closure (see Figure 2.1b) play a major role. This is because the euclidean
distance naturally lends itself to representing those mechanisms: if two points are both close to a
third point in the space, they will also automatically be close to each other. Similarly, if two nodes
are similar in terms of connectivity behavior, they will tend to be close to the same nodes, which
in turn will also lead them to be close to one another. However, despite its advantages and fairly
simple interpretation, a Euclidean latent space is unable to effectively approximate the behavior of
networks where nodes that are similar in terms of connectivity behavior are not necessarily more
likely to form ties (Hoff, 2008), such as, e.g., many networks of amorous relationships (Ghani et al.,
1997; Bearman et al., 2004). Indeed, if nodes who have similar connections tend not to connect
with one another, the latent space will not be able to properly place them. More generally, the
latent distance model tends to perform poorly for networks in which stochastic equivalence does
not imply homophily, i.e., when nodes which behave similarly in terms of connectivity patterns
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towards the rest of the network do not necessarily have a higher probability of being connected
among themselves. A better option for such cases is offered by multiplicative latent positions, as
discussed in the next section.

2.3.3. Additive and Multiplicative Effects Model

Many real world networks exhibit varying degrees and combinations of stochastic equivalence,
triadic closure and homophily. Moreover, it is often a priori unclear which of these mechanisms
are at play in a given network. In this context, node-specific multiplicative random effects (in
place of the Euclidean latent positions) allow for simultaneously representing all these patterns
(Hoff, 2005). Further developments of this innovation have led to the modern specification of
the additive and multiplicative effects network model (AME, Hoff, 2011), which, from a matrix
representation perspective, generalizes both the stochastic blockmodel and the latent distance
model (Hoff, 2021).

The AME approach can be motivated by considering that network data often exhibit first-, second-
and third-order dependencies. First-order effects capture agent-specific heterogeneity in sending
(or receiving) ties within a network. For example, in the case of companies and legal disputes, first-
order effects can be viewed as the propensity of each firm to initiate (or be hit by) legal disputes.
Second-order effects, i.e. reciprocity, describe the statistical dependence of the directed relationship
between two agents in the network, as illustrated in Figure 2.1a. In the previous example, this
effect can be described as the correlation between (a) company i initiating a legal dispute against
company j and (b) j doing the same towards i. Of course, second-order effects can only occur in
directed networks. Third-order effects can instead be described as the dependency within triads,
defined as the connections between three agents, and relate to the triangular statistics previously
depicted in Figure 2.1b. How likely is it that “a friend of a friend is also my friend”? Or, returning
to the previous example: given that i has legal disputes with j and k, how likely are disputes to
occur between j and k?

The AME network model is designed to simultaneously capture these three orders of dependencies.
More specifically, it extends the classical (generalized) linear modeling framework by incorporating
extra terms into the systematic component to account for them. In the case of binary network
data, we can make use of the Probit AME model. As is well known, the classical Probit regression
model can be motivated through a latent variable representation in which yij is the binary indicator
that some latent normal random variable, say Lij ∼ N (θ⊤xij , σ2), is greater than zero (Albert
and Chib, 1993). But an ordinary Probit regression model assumes that Lij , and thus the binary
indicators (edges) yij , are independent, which is generally inappropriate for network data. In
contrast, the AME Probit model specifies the probability of a tie yij from agent i to agent j,
conditional on a set of latent variables W , as

P(Yij = 1|W ) = Φ(θ⊤xij + eij), (2.11)

where Φ is the cumulative distribution function of the standard normal distribution, θ⊤xij ac-
commodates the inclusion of dyadic, sender, and receiver covariates, and eij can be viewed as a
structured residual, containing the latent terms in W to account for the network dependencies
described above. In the directed case, eij is composed as

eij = ai + bj + uivj + ϵij . (2.12)
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In this context, ai and bj are zero-mean additive effects for sender i and receiver j accounting for
first-order dependencies, jointly specified as

(a1, b1), ..., (an, bn) i.i.d.∼ N2(0, Σ1), with Σ1 =
(

σa σab

σab σb

)
. (2.13)

The parameters σa and σb measure the variance of the additive sender and receiver effects, re-
spectively, while σab relates to the covariance between sender and receiver effects for the same
node. Going back to (2.12), ϵij is a zero-mean residual term which accounts for second order
dependencies, i.e. reciprocity. More specifically, it holds that

{(ϵij , ϵji) : i < j} i.i.d.∼ N2(0, Σ2), with Σ2 = σ2
(

1 ρ
ρ 1

)
, (2.14)

where σ2 denotes the error variance and ρ determines the correlation between ϵij and ϵji, thus
quantifying the tendency towards reciprocity. Finally, ui and vj in (2.12) are d-dimensional
multiplicative sender and receiver effect vectors that account for third-order dependencies, and
for which (u1, v1), ..., (un, vn) ∼ N2d(0, Σ3) holds. Note that the dimensionality d is generally
assumed to be known. Also note that we here limited ourselves to the directed case: For undirected
networks, the model is defined in a slightly different way (see Hoff, 2021).

As noted above, AME is able to represent a wide variety of network structures, generalizing several
other latent variable model classes. Moreover, the model class is suitable for modeling networks
where edges represent “negative” ties, such as animosity or acts of violence (see e.g. Dorff et al.,
2020). This generality comes at the price of a high level of complexity for the estimated latent
structure. This can make the model class a sub-optimal choice if one wants to interpret the latent
structure with respect to, e.g., clustering. On the other hand, its flexibility makes it an ideal
fit when the underlying network dependencies are unknown, and the researchers’ interest mainly
lies in evaluating and interpreting the effect of dyadic and nodal covariates on tie formation while
controlling for network effects to avoid confounding and bias in the estimates (see Lee and Ogburn,
2021).

2.4. Contributions and discussion

The field of network analysis has experienced significant development in recent years, extending
its roots in various disciplines, from sociology to physics, to economics and computer science. This
chapter specifically focused on networks as seen from a statistical perspective. More in particular,
some of the most prominent techniques for understanding and modeling the process leading to
tie formation were covered. These models include the exponential random graph model as well
as several types of latent variable models, such as stochastic blockmodels, latent distance models,
and additive and multiplicative effects models. The focus on those is also motivated by the fact
that these techniques are discussed, extended, and applied in the contributions included in Part
II, which relates to this chapter. In the following, a short summary of these contributions is
provided.
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Chapter 5, De Nicola, Sischka, and Kauermann (2022): In this contribution, we consider stochas-
tic blockmodels and some of their variants and extensions by framing them in the general context
of mixture models. We also explore some of the main classes of estimation methods available,
and propose an alternative approach based on the reformulation of the blockmodel as a graphon.
In addition to the discussion of inferential properties and estimating procedures, we focus on the
application of the models to several real-world network datasets, showcasing the advantages and
pitfalls of different approaches.

Chapter 6, De Nicola, Fritz, Mehrl, and Kauermann (2023a): Networks are often the subject of
economic research on organizations, trade, and many other areas. Despite this, empirical research
in the field often relies on outdated statistical methods which implicitly assume conditional edge
independence. The goal of this chapter is to introduce modern statistical modeling tools for
empirical research on economic networks. More specifically, we focus on ERGMs and AME models,
contrasting their different uses. The ERGM allows one to explicitly specify and test the influence
of particular network structures, making it a natural choice if one is substantively interested in
estimating endogenous network effects. In contrast, AME captures these effects by introducing
actor-specific latent variables, making it a good choice if the interest mainly lies in capturing
the effect of exogenous covariates on tie formation while controlling for network effects. After
introducing the two model classes, we showcase them by applying them to substantively relevant
real-world networks of international arms trade and foreign exchange activity.

Chapter 7, Fritz, De Nicola, Kevork, Harhoff, and Kauermann (2023): This chapter proposes
an extension of the temporal ERGM for dynamic bipartite networks. The model is designed and
tailored to analyze the dynamic bipartite network of all inventors and patents registered within
the field of electrical engineering in Germany in the past two decades, with the goal of exploring
the drivers of innovation. To deal with the sheer size of the data, we decompose the network by
exploiting the fact that most inventors tend to only stay active for a relatively short period. We
thus allow the node set to vary over time, and introduce network statistics to capture covariate
effects specific to bipartite data. Our results corroborate that inventor characteristics and team
formation play a key role in the dynamics of invention.

Chapter 8, De Nicola, Tuekam Mambou, and Kauermann (2023b): Popular social media users
play a major role during crises, as they are able to influence public opinion through their massive
reach. In this contribution, we consider the network of influential Twitter users discussing the
COVID-19 pandemic, and model it through use of a latent distance model incorporating model-
based clustering. This effectively produces an interpretable map of the COVID-19 social media
universe. The results suggest the existence of two distinct communities, which respectively favor
and oppose vaccine mandates, thus corroborating the presence of echo chamber effects on the
platform. We further show that the two groups are not entirely homogeneous: instead, the
social map describes an entire spectrum of beliefs between the two extremes, demonstrating that
polarization is not the only relevant factor at play, and that moderate users are central to the
discussion.

While the field of statistical network analysis has seen major evolution in recent years, it is clear
that there is still much room for further development. All model classes considered in this chapter
suffer from diverse issues, from slow and unstable estimation routines, to limits in applicability and

16



2.4 Contributions and discussion

interpretability (see Crane, 2018). The current limitations, however, make future developments
even more exciting.

One area in particular in which I believe there to be great potential is the field of latent variable
models. Since its inception, this model family has been extensively developed to represent network
structure in different ways without the use of covariates, or by relegating them to a secondary
role. On the other hand, covariate information on nodes (such as geographic location or socio-
economic information) and edges (such as similarity measures or shared traits between actors)
can be extremely valuable in explaining and predicting the formation of ties. In this context,
there is great unexplored potential for latent variable approaches to be extended in the direction
of simultaneously modeling network and covariate effects, to help clearly distinguish between the
two, and to measure the influence each of them has on network formation. For example, I believe
there is potential to make use of latent variable approaches for developing a statistical test to detect
(endogenous) edge dependence in network data. Such a test would provide empirical researchers
with a clear answer to the question: “Why should I use a complicated network model instead
of a simpler regression approach?”. A tool of this type would provide a solid basis for selecting
an appropriate statistical model for the application at hand. Furthermore, a test for endogeneity
would likely increase the uptake of available state-of-the-art tools for network analysis, thus helping
bridge the gap between theory and applications.

The natural next step after establishing the presence (or absence) of dependence between edges
would be to measure how much this dependence matters in the network. It would thus also be
interesting to leverage latent variable approaches for quantifying how much of the overall variance
is attributable to network effects, how much of it is driven by exogenous covariates, and how
much of it is due to noise. The eventual goal of this endeavor would be to develop a standard
set of procedures that empirical researchers could use to analyze and model graphs at various
resolutions, and to answer empirical research questions related to tie formation in networks.
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Infectious diseases have posed a major challenge to humanity since the dawn of time. Epidemics,
defined as outbreaks of disease that spread quickly and affect many individuals at the same time,
are especially dangerous in the increasingly interconnected landscape of modern society. Seasonal
influenza alone is estimated to kill an average of around 700,000 people each year (Dattani and
Spooner, 2022). Pandemics, i.e. epidemics that escalated to the point of spreading widely across
multiple countries or continents, represent a particularly pernicious threat. As an example, the
so-called “Spanish Flu”, quite possibly the deadliest pandemic in human history, is estimated to
have killed between 50 and 100 million people globally between the years 1918 and 1920 (Barry,
2020). Much more recently, the COVID-19 pandemic also claimed the lives of millions of people
worldwide.

In this context, society has devoted increasingly more resources in efforts to prevent, control, and
extinguish epidemics over the years. The biggest positive change factor was played, of course,
by developments in the medical field, with the emergence of tools and techniques to better treat
and prevent disease (through e.g. antiseptics and vaccines). But another aspect of pandemic
management which gained more relevance in recent years is the collection of quality data. Indeed,
the increased capacity of society to gather and store information has led to big improvements
in this area. There is more available data on cases, deaths, mobility, and other factors related
to infectious disease today than ever before, giving rise to the field of public health data science
(Goldsmith et al., 2021). However, the available data is far from perfect, and more efforts in this
direction are certainly needed (Chiolero et al., 2023). The COVID-19 pandemic taught us several
lessons in this regard (Fritz et al., 2022a). Available data has proven to be insufficient, and, in
several cases, contradictory, enabling widespread misinterpretation and fueling misinformation.
In general, public health data is often incomplete and prone to several kinds of biases. These
widespread issues make the methods that are used to analyze the data even more important. In
general, trying to draw conclusions from raw data is not a good idea, however “big” the data
may be; this is especially true if the data at hand is structurally flawed. In some cases, however,
statistical methodology can help address some of the deficiencies in the data, and aid in extracting
reliable information from it. This part of the thesis is concerned with addressing this issue, that is,
with extracting information from incomplete or delayed public health records. More specifically,
the contributions contained in Part III are motivated by real-world questions that emerged from
the COVID-19 pandemic. Most of the addressed questions arose in the context of the very early
stages of the crisis, when governments around the world were scrambling to interpret available
information in order to better manage public health interventions. The focus is on data from
Germany, and the addressed questions relate to very central aspects of the pandemic, such as “how
many of the infected people are going to die?”, “how many are presently infected?”, or, further,
“which proportion of the total infections were authorities able to detect over time”? We address
most of these issues by utilizing and extending the broad model class known as generalized additive
mixed models (GAMMs). This framework combines the flexibility of generalized additive models
(GAMs, Hastie and Tibshirani, 1987) with the ability to account for random effects in mixed
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models. To this day, GAMMs are still one of the most used tools for empirical statistical modeling,
as their flexibility allows for their extension and tailoring for diverse applications. Because of that,
we were able to put them to work to address some of the most pressing data-related questions
relating to the pandemic in Germany. Moreover, note that, despite being motivated by substantive
research questions, most of the proposed models are suitable for use in different applications which
present similar data constellations, such as, e.g., data reported with delay.

As was the case for the previous one, this chapter serves as an introduction to the related con-
tributions, which are collected in Part III of the thesis. More specifically, Section 3.1 provides
a step-by-step introduction to the GLM framework, while Section 3.2 discusses its extension to-
wards GAMM. Section 3.3 concludes the chapter by summarizing and discussing the original
contributions provided.

3.1. From linear regression to GLMs

This section will introduce generalized linear models by progressively building upon the linear
regression framework. Note that the model class has been widely explored, and goes far beyond
what is discussed here. In the interest of conciseness, this section is limited to introducing the
basics of the framework as utilized in the related contributions. Instead, we refer to Wood (2017)
and Fahrmeir et al. (2013) for a more in-depth overview of the field.

3.1.1. The linear regression model

The simple linear model aims at quantifying how the mean of a variable of interest Y , often termed
“target”, “response” or “dependent” variable, depends on a single (independent) variable x. As
implied by the name, the relationship is assumed to be linear, and takes the following form:

Y = β0 + β1x + ϵ (3.1)

Here, β0 is the intercept, while β1 is the slope of the regression line. The term ϵ is called the error
term and consists of random deviations with mean 0. Because of that, the expected value of Y is
assumed to be a linear function of x, that is

E(Y |x) = β0 + β1x.

In other words, we assume (a) a linear relationship between x and Y , and (b) that the relationship
is only disturbed by the random perturbation ϵ. Note that the relationship does not necessarily
need to be causal in nature, but can also be a simple (linear) association. In addition, the error
term is often assumed to be normally distributed and independent of the covariate, that is

ϵi ∼ N(0, σ2), i = 1, ..., n

for each subject i, where σ2 is known as the error variance.

The parameters of the model, i.e. β0 and β1, can be estimated through maximum likelihood. The
estimates β̂0 and β̂1 are also known as “least squares estimates”, as they can equivalently be
obtained through the method of least squares (Charnes et al., 1976).
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The case of a single covariate x having an effect on response variable Y can be extended to multiple
covariates in straightforward fashion. This results in the multiple linear regression model:

Y = β0 + β1x1 + β2x2 + ... + βkxk + ϵ, (3.2)

where x1, x2, ..., xk are k different covariates assumed to influence the response variable Y ,
β1, β2, ..., βk are the coefficients associated with each covariate, and ϵ is the random error term.
As before, the individual errors ϵi are often assumed to follow a normal distribution with mean 0
and variance σ2.

Note that the linear regression model does not make any assumption on the nature of the covariates
x1, ..., xk. In fact, the independent variables can be transformed in many ways, therefore increasing
the range of alternative dependence structures at our disposal far beyond simple linear associations.
Possibilities include discrete indicator variables, variable transformations, and polynomials. It is
also common to use products of variables, e.g. including variables x1, x2 and their product
x3 = x1 · x2 together in the model equation. In this case, x3 is named interaction term, as
it quantifies how x1 and x2 interact with each other relatively to their effect on Y . The fact
that non-linearity can be captured may seem conflicting with the model’s name: after all, the
method is called “linear regression”. This confusion can easily be solved by noting that the model
class is always linear with respect to the parameters, but not necessarily in the covariates, i.e.
the covariates can be transformed non-linearly. However, such linearity assumption can also be
relaxed, as demonstrated in the next subsection.

3.1.2. Generalized linear models

The linear regression model is suitable for response variables which approximately follow a normal
distribution conditionally on the covariates. In the real world, however, there are many cases of
non-Gaussian variables of interest. Some variables are not even continuous, but rather categorical,
i.e. taking a finite number of non-ordinal values. The classical linear model is clearly not suitable
for modeling such variables, but it can be extended to accommodate them. More specifically,
we can limit ourselves to modeling the conditional expectation E(Yi|xi1, xi2, ..., xik) instead of
predicting observations Yi, and by assuming the model:

E(Yi|xi1, xi2, ..., xik) = h(β0 + β1xi1 + β2xi2 + ... + βkxik), (3.3)

where h(·) is any function compatible with the distribution of the response variable Y . By mod-
eling the expectation we do not need to make any assumption on the errors; further, by using
a suitable function h to transform the output, we can ensure that the predicted expected values
will only take acceptable values. The argument of the h function is termed linear predictor, and
usually indicated with the letter η, i.e.

ηi = β0 + β1xi1 + β2xi2 + ... + βkxik. (3.4)

These models can accommodate a wide variety of different response variable types, following e.g.
Poisson, Exponential, Gamma, and many more distributions. This extension to the linear model
gives rise to the class of generalized linear models (GLMs), introduced by Nelder and Wedderburn
(1972). More precisely, GLMs possess the following properties:
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1. The (conditional) distribution of the response variable Y belongs to the broad class of
exponential family distributions. This class contains most commonly used distributions (see
Fahrmeir et al., 2013 for more details).

2. The expected value of the response value, E(Y |x), is connected to the linear predictor
η = β0 + β1x1 + β2x2 + ... + βkxk through a response function h(·). In other words, we have:

E(Y |x) = µ = h(η)

The GLM framework is apparently quite general and encompasses many different regression sce-
narios. A very important role is played by the response function h, which needs to be strictly
monotonic and invertible, and should be chosen to be compatible with the type of response vari-
able Y that is modeled. Examples include the logistic regression model, in which the response
function has the main job of transforming the linear predictor, which is generally unbounded, into
a probability, which only takes real values between 0 and 1. Another common type of GLM is
Poisson regression, which typically employs an exponential response function to map real values
into positive ones. A very special case is given by a normally distributed response variable: In
this scenario, given that normal distributions can take all values in the real numbers, there is no
need to transform the linear predictor η. In other words, the response function h is given by the
identity function, i.e. h(η) = η, reverting to the case of the classical linear model. Note that,
as in linear models, parameter estimation in GLMs can typically be carried out via maximum
likelihood. We refer to Wood (2017) for more detail.

3.2. Generalized additive mixed models

Generalized linear models are already remarkably flexible in comparison to their linear ances-
tor. The wide range of distributional families available, together with the choice of the response
function, provides the user with great flexibility. However, they can further be extended to ac-
commodate for more scenarios. More specifically, the models we work with in the contributions
included in Part III generalize the GLM framework in two main ways. Firstly, it is possible to
model data that includes repeated measurements over the same individuals over time (i.e. longi-
tudinal data) or data for units which belong to groups or spatial units (i.e. clustered data). For
brevity, from now on we will refer to such constellations simply as clustered data. Observations
within the same cluster are usually correlated with each other, rendering the standard “iid” as-
sumption of GLMs invalid. One possibility is to account for clusters by including a fixed effect for
each of them; However, this is often impractical, since the number of parameters to be estimated
becomes quite large relative to the sample size, especially if the number of clusters is high. A
better alternative is to instead account for within-cluster correlation by including so-called “ran-
dom effects” into the model equation. The simplest example of a model of this type is the linear
random intercept model, which is a linear model with the addition of a random intercept for each
cluster:

yij = β0 + β1xij + γi + ϵij , (3.5)

noting that the index i indicates the cluster, and j the unit within each cluster. This formulation
is equivalent to (3.1), but with the addition of the random term γi. This additional intercept
accounts for cluster-specific heterogeneity, and is therefore equal for each unit within the same
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cluster i. The key difference from a fixed effect is that this quantity is assumed to be a (typically
Gaussian) random variable, i.e. we have

γi
iid∼ N(0, τ2).

This randomness assumption imposes regularization properties on the parameter, and saves de-
grees of freedom in the estimation (see Fahrmeir et al., 2013 for more details). Adding random
effects to GLMs results in the class of generalized linear mixed models (GLMMs), where the word
“mixed” indicates that the model includes both fixed and random effects (Clayton, 1996).

The second major extension to GLMs, attributable to Hastie and Tibshirani (1987), is the inclusion
of non-parametric, unknown smooth functions inside the linear predictor η, giving rise to the class
of generalized additive models (GAMs). More specifically, GAMs can be defined by

E(Yi) = h(ηi) = h(β0 + β1xi1 + ... + βkxik + f1(wi1) + ... + fq(wiq)). (3.6)

This specification is equivalent to (3.3), with the addition of the functions f1(w1), ..., fq(wq), which
are nonlinear smooth effects of the covariates w1, ..., wq, and are modeled and estimated in a non-
parametric way (Wood, 2011). These smooth functions can replace traditional linear parameter
specifications within the predictor η, and allow for highly flexible and agnostic estimation of the
covariate effects.

It is further possible to combine GLMMs and GAMs, bringing us to the destination of our modeling
journey, that is generalized additive mixed models (GAMMs). GAMMs combine the flexibility of
GAMs with the ability to account for random effects available from mixed effect models. Building
on (3.6), GAMMs can be defined by

E(Yij) = h(ηij) = h(β0 + β1xij1 + ... + βkxijk + f1(wij1) + ... + fq(wijq) + γi0 + γi1ui1 + ... + γiluil),
(3.7)

where the newly added γi0 + γi1ui1 + ... + γiluil constitutes the random part of the model. More
specifically, ui1, ..., uil are the variables included in the random effects design, and γi0, ..., γil are the
corresponding random coefficients. Note that the random effects design is usually fairly simple,
with the simplest and most frequently used case being ui ≡ 1, resulting in a random intercept
model. Similarly to GAMs, GAMMs enable the representation of non-linear relationships between
the response variable and covariates by modeling them through smooth functions. However,
GAMMs additionally allow for the inclusion of random effects, which are needed to account for
cluster-specific variability.

Given the general formulation of the smooth functions in (3.7), many possible estimation methods
are available. In the context of this thesis, such functions are consistently fit through use of
polynomial splines, and more specifically P-splines. Such splines prevent overfitting by penalizing
overly flexible effects, thus ensuring a smooth fit. We refer to Wood (2011) and Wood (2017) for
more details on the estimation of smooth effects, and, more in general, of GAMMs.

3.3. Contributions and discussion

Generalized additive mixed models are powerful tools to measure associations between variables
under very general conditions. The wide range of distributional families available, the option of
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modeling effects semi-parametrically, and the possibility of including random effects provide the
user with remarkable flexibility. In the context of this thesis, GAMMs are put to work to answer
complex public health questions revolving around measuring and monitoring key quantities related
to the COVID-19 pandemic. Several characteristics make this type of models particularly useful for
public health data, such as the possibility of using smooth effects for modeling varying spatial and
time trends, random effects to account for region-specific heterogeneity, offsets for modeling rates
and account for reporting delays, and flexible autoregressive components in parallel to traditional
covariates. The specific contributions contained in Part III of this thesis can be summarized as
follows:

Chapter 9, Schneble, De Nicola, Kauermann, and Berger (2021a): This chapter analyzes the
temporal and regional structure in mortality rates related to COVID-19 infections, making use
of openly available data on registered cases in Germany published by the Robert Koch Institute
on a daily basis. Estimates for the number of present-day infections that will, at a later date,
prove to be fatal, are derived through a nowcasting model which relates the day of death of each
deceased patient to the corresponding day of registration of the infection. This allows to obtain
real-time estimates on the severity of the pandemic without waiting for fatalities to happen.
Further, our district-level modeling approach for fatal infections disentangles spatial variation
into a global pattern for Germany, district-specific long-term effects, and short-term dynamics,
while also taking the age and gender structure of the regional population into account. This
enables to highlight areas with unexpectedly high disease activity. The analysis of death counts
contributes to a better understanding of the spread of the disease while being less dependent on
testing strategy and capacity in comparison to infection counts. The proposed approach and the
presented results thus provide reliable insight into the state and the dynamics of the pandemic
during the early phases of the infection wave in spring 2020 in Germany, when little was known
about the disease and limited data were available.

Chapter 10, De Nicola, Schneble, Kauermann, and Berger (2022b): COVID-19 cases in Germany
enter the central register days after they are first detected, with this delay deferring an up-to-date
view of the state of the pandemic. This contribution provides a stable tool for monitoring current
infection levels as well as predicting infection numbers in the immediate future at the regional
level. We accomplish this by nowcasting cases that have not yet been reported, as well as through
short term predictions of future infections. We apply our model to German data, for which our
focus lies in predicting and explain infectious behavior by district.

Chapter 11, Schneble, De Nicola, Kauermann, and Berger (2021b): The case detection ra-
tio of COVID-19 infections varies over time due to changing testing capacities, differing testing
strategies, and the evolving underlying number of infections itself. This chapter shows a way
of quantifying these dynamics by jointly modeling the reported number of detected COVID-19
infections with nonfatal and fatal outcomes. The proposed methodology also allows to explore the
temporal development of the actual number of infections, both detected and undetected, thereby
shedding light on the infection dynamics. We exemplify our approach by analyzing German data
from 2020, making only use of data available since the beginning of the pandemic. Our modeling
approach can be used to quantify the effect of different testing strategies, visualize the dynamics
of the case detection ratio over time, and obtain information about the underlying true infection
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numbers, thus enabling us to get a clearer picture of the course of the COVID-19 pandemic in
2020.

Chapter 12, Fritz, De Nicola, Rave, Weigert, Khazaei, Berger, Küchenhoff, and Kauermann
(2022b): This article showcases the potential of GAMMs for public health applications, demon-
strating their flexibility by focusing on three relevant pandemic-related issues. First, we examine
the interdepency among infections in different age groups, concentrating on school children. In this
context, we derive the setting under which parameter estimates are independent of the (unknown)
case-detection ratio, which plays an important role in COVID-19 surveillance data. Second, we
model the incidence of hospitalizations, for which data is only available with a temporal delay. We
illustrate how correcting for this reporting delay through a nowcasting procedure can be naturally
incorporated into the GAMM framework as an offset term. Third, we propose a multinomial
model for the weekly occupancy of intensive care units (ICU), where we distinguish between the
number of COVID-19 patients, other patients and vacant beds. With these three examples, we
aim to showcase the practical and “off-the-shelf” applicability of GAMMs to gain new insights
from real-world data.

As a final consideration, I note that, while these contributions were motivated by specific problems
relating to the recent pandemic, several of the methods are applicable to situations presenting sim-
ilar data constellations. In particular, the use of GAMMs for nowcasting public health data has
vast potential, as data from official sources tends to inevitably enter central databases some time
after it is first recorded at the local level. In such contexts, nowcasting techniques can aid in ob-
taining up-to-date estimates for key quantities to monitor. One particularly promising application
is in the area of all-cause mortality, where fatalities also typically enters central databases with
significant delay. Incorporating nowcasting ideas in this context would enable real-time assessment
of excess mortality during crises, which would be particularly useful for managing emergencies.
More of this will be discussed in the next chapter.
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Excess mortality can generally be defined as the number of deaths from all causes during a crisis
beyond what would have been expected under normal conditions. In this context, the word “crisis”
can encompass any situation causing significant disruption or upheaval, such as natural disasters,
epidemics, wars, or other emergencies. All-cause excess mortality is generally considered to be a
more reliable way of assessing death tolls extracted by a crisis in comparison to directly considering
fatalities officially related to the crisis itself. This is due to the fact that all-cause mortality data
is typically more robust and less subject to problems such as, e.g., under-counting and regional
variations in reliability (Leon et al., 2020; Beaney et al., 2020). Accurately quantifying excess
mortality is thus crucial for understanding the factors driving a crisis, to be able to evaluate the
effectiveness of government responses, and to accordingly inform decision makers in modulating
policy responses to ongoing and future emergencies.

The concept of excess mortality is well established, and has long been utilized for analyzing the
impact of wars, natural disasters, and pandemics (Johnson and Mueller, 2002; Simonsen et al.,
2013), with its application dating as far back as the Great Plague of London in 1665 (see Boka
and Wainer, 2020). Today, the concept is routinely employed by governments around the world.
Despite this long tradition, however, estimating excess mortality remains a challenge, and no
single, unified method for doing so has yet been established (Nepomuceno et al., 2022; Acosta,
2023). The main difficulty lies in estimating the “counterfactual” expected mortality, i.e. the
number of deaths that would have been expected had the crisis not occurred. This is challenging
as mortality rates, trends, and data availability vary greatly across different regions and periods
of time. Estimating expected mortality requires (i) choosing a reference period, and (ii) using
some model to project mortality rates from the reference period to the period of interest. When
choosing a model, it is particularly important to consider factors exogenous to the crisis which
may influence mortality, such as varying life expectancy, due to e.g. changes in living conditions,
and shifts in the age structure of the population over time. Basic approaches, such as simply using
the mean number of deaths during the reference period as the expected mortality for the crisis
period, implicitly assumes the total (expected) number of deaths to be constant over both the
reference and the crisis period, thereby disregarding factors that may influence mortality, such as
shifts in the age structure of the population over time. Ignoring the role of age can be particularly
damning, as the age structure within a population can change considerably over short periods
of time. Moreover, countries can show large variation in how their populations evolve over time,
even when their income levels are comparable. It is thus crucial to take age into account to avoid
systematic bias in the estimates.

Several high profile studies tackling the estimation of excess mortality during the COVID-19
pandemic in multiple countries try to capture trends in mortality by fitting various regression
models to the data in the reference period, and then extrapolating the trend to the period of
the crisis to obtain expected mortality figures for that period (Karlinsky and Kobak, 2021; The
Economist, 2023; Wang et al., 2022; Knutson et al., 2023). While incorporating a trend can
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account for some of the variation in expected mortality rates over the years, the approach is still
not free of problems, as not explicitly accounting for age in the model implicitly assumes the age
pyramid to be smooth. This is often not the case, e.g., for many modern-day European countries,
where demographic traces of World War II are still visible. For this reason, a trend alone is often
not capable of capturing the effect of age. Furthermore, incorporating country-specific trends in
the estimation has the effect of projecting any evolution in the overall death rate observed during
the reference period on the period of interest, including those due to factors other than age. While,
on the one hand, capturing true long-term trends in mortality would be desirable, mortality rates
have been shown to exhibit large variance across short periods even in the same region (Bergeron-
Boucher and Kjærgaard, 2022). This large variation can lead to predicting large decreases or
increases in expected mortality based on variance alone, especially if the trend estimate is based
on a period of only 3-5 years, ultimately resulting in overly sensitive and less stable estimates (see
Levitt et al., 2023 and Ioannidis et al., 2023 for more detail).

Given the major role that age plays in mortality, many have argued explicit age adjustment
to be a sensible way forward (Levitt et al., 2022; Nepomuceno et al., 2022; Stang et al., 2020;
Gianicolo et al., 2021). Several prominent multi-nation studies also do take age into account
in their analysis (see e.g. Islam et al., 2021; Konstantinoudis et al., 2022; Levitt et al., 2022).
However, these methods simply divide the population into a small number of broad age strata.
Doing so reduces the magnitude of the age-induced bias, and is thus certainly better than not
accounting for age at all; on the other hand, simply partitioning the population into age groups
is equivalent to assuming age structure to be homogeneous within those age groups. To eradicate
bias from the estimates, it is thus necessary to perform age adjustment at a finer level, when
appropriate data is available. One way to do this is by making use of population standardization
approaches. Such approaches have a long tradition in demography when comparing mortality
across different regions with different age structure (Keiding and Clayton, 2014; Kitagawa, 1964).
The contributions included in Part IV of this thesis introduce novel methods for excess mortality
estimation using age standardization, and apply them to calculate excess mortality in high income
countries during the COVID-19 pandemic. The papers also introduce an empirical approach for
quantifying uncertainty in the estimation, an open issue in the field of excess mortality modeling.
The present chapter is meant to introduce the general problem and put those contributions into
context. More specifically, Section 4.1 introduces our point-estimation method for calculating
yearly excess mortality figures with fine-grained age adjustment. Section 4.2 discusses the issue of
uncertainty quantification, and introduces our approach to tackle it. Finally, Section 4.3 provides
a brief summary of the related contributions, and discusses potential future avenues for research
in this field.

4.1. Age-adjusted estimation

The main challenge in estimating excess mortality during any crisis lies in estimating the “coun-
terfactual” expected mortality, i.e. the number of deaths that would have been expected had the
crisis not occurred. One way to do this is to consider mortality rates observed shortly before the
crisis and project them onto the period of interest. To do so, however, one needs to decide for a
specific method of projection, as well as on what “shortly before” exactly means. In other words,
we need to chose a model and a reference period, as mentioned in the previous section. Let’s start
with the first point, i.e. model choice. A natural approach is to consider age-specific mortality
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data contained in official life tables, which give the probability qx of a person who has completed
x years of age to die before completing their next life-year, i.e. before their x + 1th birthday. Note
that the calculation of a life table, as simple as it sounds, is not straightforward, and is an age-old
actuarial problem. First references date far back, to Price (1771) and Dale (1772). A historical
digest of the topic is provided by Keiding (1987). Despite this, calculation methods for life tables
provided by most countries are fairly consistent with one another. Furthermore, there are entities
which provide life tables for many different countries using the same method for all of them, which
greatly facilitates comparisons. For example, HMD (2023) provides life tables for tens of different
countries, all calculated with the same method (Wilmoth et al., 2021). As demonstrated in De
Nicola et al. (2022a), however, further adjustments to the tables are recommendable to relate
the expected number of deaths to recently observed ones. In particular, population data and life
tables need to be appropriately matched, since life tables count the number of deaths of x-year-old
people over the course of a year, while population data typically gives the number of x-year-old
people at a fixed time point (typically the beginning of the year). This requires correction (4.1),
which accounts for the fact that a person that dies at x years of age in a given year t was either x
years old or x−1 years old at the beginning of the year, i.e. the time point used for the population
data. We therefore apply this additional correction, which consists of calculating the adjusted
age-specific death probabilities q̃x at age x as

q̃x = 1
2qx + 1

2qx+1, (4.1)

where qx are the death probabilities for age x contained in the life tables before the adjustment.
We can then compute the overall expected number of deaths in year t as

Et =
xmax∑
x=1

q̃xPx,t, (4.2)

where Px,t is the population aged x at the beginning of year t, and xmax is the maximum possible
age assumed in the life tables (usually set between 100 and 120 years). We can then obtain the
excess mortality estimate ∆t for a given year t by simply subtracting the expected mortality
estimate Et from the observed death toll Ot in the same year:

∆t = Ot − Et.

Let us now focus on the second key modeling decision, that is the choice of a reference period,
i.e. the period that will be used to define “normal” mortality levels. In general, it is desirable
to have a reference period that is (a) long enough to provide robust data evidence and not fall
prey of variance, and (b) short enough to be as similar to the period of interest as possible.
Using too long of a reference period, such as, e.g., a ten years window, is problematic due to
the fact that baseline mortality levels can change heavily over such a wide time window. Using
data from ten years ago to calculate expected mortality today would, e.g., downweigh potential
changes in life gains in life expectancy due to changes in living condition and advances in medical
technology over time. On the other hand, using a very short reference period, such as e.g. a single
year, would also be problematic, as yearly death rates exhibit considerable variation, well beyond
what can be explained by underlying changes in life expectancy over time. Mortality in a given
year can be heavily skewed by a single factor, such as for example a strong or weak seasonal
influenza. As such, we recommend and use reference periods in the order of 3 to 5 years, to strike
a balance between bias and variance. Note the choice of reference period, while crucial, will see
its influence mitigated when shifting focus from point estimates to range estimates, as described
in the upcoming section.
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4.2. Uncertainty quantification

In the previous section, we introduced our method to obtain point estimates for excess mortality
in a given period. However, it would be very useful to have interval estimates available, especially
given the many sources of variance associated with the mortality process. Uncertainty quantifica-
tion is generally an open issue when it comes to expected and excess mortality estimation. While
many existing approaches propose standard confidence intervals based on distributional assump-
tions, classical probability models do not seem very realistic here, as variation in mortality is in
large part driven by external factors, such as, e.g., the strength of an influenza wave and other
exogenous shocks. For this reason, our method explicitly refrains from pursuing such model-based
approaches, and instead proposes a data-driven empirical assessment of variability. Specifically,
we make use of age-specific single-year mortality rates to provide what we can call a “plausible
range” for expected mortality. To do so, we can consider the single-year life tables for each year of
the reference period, and use them to calculate expected mortality for the years of interest in the
same way as above, i.e. using (4.1) and (4.2). Assuming the reference period to contain a total
of K years, we will obtain K different excess mortality estimates. We can then take the lowest
and highest resulting estimates as the upper and lower bound of our plausible expected mortality
range. In other words, we use mortality rates from the “worst” and “best” years of the reference
period to obtain a plausible range for expected mortality in the years of interest. To be more
precise, the upper mortality bound for year t can be written as:

Eupper
t = max(Ẽt,1, Ẽt,2, ..., Ẽt,K), (4.3)

where Ẽt,k represents expected mortality for year t calculated using the (corrected) single-year life
tables from year k. Analogously, the lower bound can be defined as

Elower
t = min(Ẽt,1, Ẽt,2, ..., Ẽt,K). (4.4)

These expected mortality bounds can then be used to obtain excess mortality intervals in a
straightforward manner. Note that these bounds do not give a probabilistic measure of uncertainty,
as no distributional model is used. Instead, they provide us with plausible high-mortality and low-
mortality scenarios for expected mortality in the years of interest based on levels observed during
reference years. In a sense, this is akin to the multiverse approach proposed by Levitt et al. (2023),
whereas instead of presenting all possible universes we only present the average one, the best one
and the worst one.

4.3. Contributions and discussion

The recent COVID-19 pandemic has lead to a spike in interest in the area of excess mortality
modeling. The topic has sparked broad debate, which led to the development of new techniques
for estimating excess deaths over different time horizons and at different resolutions. This thesis
contributes to the field by focusing on a specific task, that is estimating yearly excess mortality
in countries where high-resolution population and all-cause deaths data is available. The specific
contributions offered can be summarized as follows:
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Chapter 13, De Nicola, Kauermann, and Höhle (2022a): This chapter introduces the method
for computing excess mortality presented in Section 4.1. The paper puts particular focus on
the role of age, and demonstrates the importance of correctly accounting for it by comparing
the performance of different methods on past data. After validating our model, we apply it to
age-stratified mortality data from Germany to compute age group-specific yearly excess mortality
during the COVID-19 pandemic in 2020. To zoom in on the different pandemic phases, we also
provide estimates on the weekly level.

Chapter 14, De Nicola and Kauermann (2022): In this short note, we apply the yearly method
introduced in Chapter 13 to newly observed data from 2021 to provide estimates of all-cause
excess mortality in Germany for that year. The analysis reveals a preliminary excess mortality
of approximately 2.3%, mainly driven by significantly higher excess mortality in the 60-79 age
group.

Chapter 15, De Nicola and Kauermann (2024): This chapter extends the method proposed in
Chapter 13 by introducing the uncertainty quantification method presented in Section 4.2. We
then apply our method to 30 countries with publicly available data, and obtain estimates and
uncertainty bounds for each of them. The results uncover considerable variation in pandemic
outcomes across different countries. We finally compare our findings with existing estimates
published in other major scientific outlets, highlighting how much the method matters, and how
important it is to properly account for age to obtain unbiased figures.

The proposed methods for excess mortality estimation have the potential to be further improved
and extended to cover a broader set of empirical settings. More specifically, while the existing
method is effective in what it sets out to do, i.e. estimating yearly excess mortality for geographical
units in which complete and high-resolution data is available, several challenges to make the
methodology suitable for broader settings and under more general conditions remain. Specifically,
it would be of interest to extend the method in the following directions:

a) Incorporating changes in life expectancy over time: The current version of our method
does not adjust for changes in the life expectancy of individuals over time, thereby implicitly as-
suming constant age-specific hazards over the considered years. This is reasonable for applications
in which both the period of interest and the reference period are relatively short. However, if the
aim is to monitor excess mortality over longer time frames, accounting for (expected) changes in
life expectancy becomes necessary. Examples of such applications would be evaluating the long-
term consequences of a pandemic, or the exposure to polluting agents over multi-year periods. An
extension in this direction could be pursued by adapting existing projection techniques, such as,
e.g., the Lee-Carter model (Lee, 2000).

b) Extensions to varying time and space windows: Existing estimation methods typically
make use of country-level data computed on yearly or multi-year windows. To effectively monitor
mortality on different spatial units and over shorter time windows (i.e. days, weeks or months),
obtaining flexible, time- and region-specific hazard rates is required. This is simple to achieve if
data at the desired temporal and spatial resolution is present, but challenging when only spatially
and temporally aggregated death counts are available, as is common. In such cases, flexible
estimation techniques accounting for historical seasonality and spatial heterogeneity are needed.
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These extensions are essential for applications to shorter and region-specific crises, such as floods,
wildfires, or the initial stages of a war.

c) Extensions for incomplete or deficient data: Chapter 15 estimates excess mortality in
regions for which high-resolution age-specific data is available. This includes many high-income
countries, but largely excludes the majority of the low-income and developing world. It would
therefore be of great interest to extend the method for cases in which official data is lacking
or unavailable. While certainly not straightforward, this feat can be attempted through use of
multiple imputation and regression techniques.

d) Real-time mortality monitoring: Retrospective excess mortality estimation using historical
data is effective to understand the impact of past crises, and to learn policy lessons in preparation
for future ones. An even bigger challenge is posed by the estimation of excess mortality levels in
real time. Such real-time monitoring would be vital to inform policy making, particularly with
respect to handling an ongoing crisis to minimize its impact. This could be attempted through
use of nowcasting techniques similar to those introduced in Chapters 9 and 10, adapting such
approaches for all-cause mortality data.

Each of these four extensions could be pursued on its own, to unlock relevant substantive appli-
cations to different empirical settings. Taken together, however, they could be functional to the
broader goal of building a comprehensive tool capable of providing real-time monitoring of excess
mortality levels over flexible spatial and temporal dimensions. Such a tool would enable govern-
ments and institutions around the world to make more informed policy decisions in situations
of uncertainty during crises induced by, e.g., climate change-related adverse events, pollution,
epidemics, conflicts, and economic downturns.
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can be attributed to Göran Kauermann. The literature review for this survey article was mainly
done by Giacomo De Nicola, who also took care of categorizing the papers and putting them
into context. Moreover, the writing was done for the most part by Giacomo De Nicola, where
the methodological formulation of the reviewed estimation techniques (Section 4) was strongly
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Abstract: Mixture models are probabilistic models aimed at uncovering and representing latent
subgroups within a population. In the realm of network data analysis, the latent subgroups of nodes
are typically identified by their connectivity behaviour, with nodes behaving similarly belonging to the
same community. In this context, mixture modelling is pursued through stochastic blockmodelling. We
consider stochastic blockmodels and some of their variants and extensions from a mixture modelling
perspective. We also explore some of the main classes of estimation methods available and propose
an alternative approach based on the reformulation of the blockmodel as a graphon. In addition to
the discussion of inferential properties and estimating procedures, we focus on the application of the
models to several real-world network datasets, showcasing the advantages and pitfalls of different
approaches.

Key words: community detection, mixture models, statistical network analysis, stochastic blockmodels

1 Introduction

The underlying idea of a mixture model is rather simple. Instead of assuming that
the target variable follows a plain distribution, one considers a mixture of multiple
distributions. Specifically, for a random variable Y, one assumes

Y ∼
K∑

k=1

πkfk(y), (1.1)

where πk is a weighting coefficient, with
∑K

k=1 πk = 1, and fk(·) is the kth mixture
distribution. Commonly, the mixture components come from the same distributional
family but differ in their parameters, that is, fk(·) = f (·|θk), where θk parametrizes
the kth mixture component. An early (maybe the first) reference in this direction
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dates back to Pearson (1894) and focuses on the estimation of a mixture of two
normal distributions. An early mathematical treatment of the topic, more in the style
of convolution, is provided in Robbins (1948). In a series of papers, Teicher (1960)
discusses identifiability issues, where the cited work puts the focus on finite mixtures
in the style of (1.1). A first survey on mixture models is provided by Gupta and
Huang (1981), presenting the different estimation routines that had been developed
and used by that time. A central algorithm in this respect, which is not included in
the above survey article (certainly because of simultaneous time of publication), is
the work of Aitkin and Wilson (1980; see also Aitkin, 1980) who propose the use of
the at the time recently developed Expectation–Maximization (EM) algorithm (see
Dempster et al., 1977) to estimate the finite mixture distribution. Though the focus
of their paper lies in the modelling of outliers, the authors make use of the idea that
a finite mixture model can be comprehended as a missing data problem. Under this
modelling framework, one assumes that the discrete valued random variable Z takes
values {1, ...,K} with

P(Z = k) = πk, (1.2)

where again
∑K

k=1 πk = 1. Conditional on Z = k, one then observes Y from the kth
mixture component, that is,

Y|(Z = k) ∼ fk(y) for k = 1, ...,K.

Treating Z as unobserved (or unobservable) enables the framing of estimation in a
missing data situation, where the considered likelihood (1.1) can be maximized with
the EM algorithm. The results are generalized and extended towards hypothesis tests
in Aitkin and Rubin (1985). A comprehensive overview on finite mixture models is
given in the early book of Everitt and Hand (1980), followed by the monographs
of Titterington et al. (1985), Lindsay (1995), Böhning (1999), McLachlan and Peel
(2000) and Frühwirth-Schnatter (2006). We also refer to the recent Handbook of
Mixture Analysis (Frühwirth-Schnatter et al., 2019). For software implementations
of mixture models, Leisch (2004) is a central reference (see also Benaglia et al.,
2009). Allowing the mixture components and/or the mixing proportions πk to depend
on additional covariates extends mixture models towards regression models. The
resulting model class is also known as mixture of experts, tracing back to Jacobs
et al. (1991). A survey from the perspective of machine learning can be found in
Masoudnia and Ebrahimpour (2014, see also Gormley and Frühwirth-Schnatter,
2019).

While most of the literature cited above deals with a univariate response variable
Y, in this article we aim to look at multivariate data with Y expressing a network.
Network data have a simple binary structure resulting from a network as follows.
Assume a set of N actors, where we define with V = {v1, ..., vN} the set of nodes
in a network. We call E ⊂ V × V the edge set, and the resulting network can be
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represented with an adjacency matrix Y such that Y ∈ {0,1}N×N and

Yij =

{
1 , if (vi, vj) ∈ E

0 , otherwise.

If the network is undirected, Yij = Yji holds. Furthermore, the diagonal of Y often
remains undefined, meaning that self-loops are not contemplated. The statistical
analysis of network data has achieved increasing interest in the last two decades: We
refer to Kolaczyk (2009) and Kolaczyk and Csárdi (2014) for a general introduction
to the topic (see also Goldenberg et al., 2009; Hunter et al., 2008; Fienberg, 2012;
Lusher et al., 2013; Salter-Townshend et al., 2012; Biagini et al., 2019).

If we consider Y as set of random variables {Yij; 1 ≤ i, j ≤ N, i 6= j}, we can
transfer the mixture model setting (1.1) towards network data. This leads to what
is commonly referred to as (a posteriori) stochastic blockmodelling. A survey on
the latest theoretical developments in this field has recently been published by Abbe
(2018; see also Lee and Wilkinson, 2019 for a comprehensive review). Stochastic
blockmodels can be seen as a tool for performing community detection (see, e.g.,
Clauset et al., 2004; Fortunato, 2010; Fortunato and Hric, 2016). While community
detection and stochastic blockmodels have a lot in common, the latter specifically
focuses on the modelling aspect and will therefore be considered here. A stochastic
blockmodel (SBM) is in fact a mixture model where each mixture component is
specified by the group or community membership. The latent subgroups of nodes
are typically identified by their connectivity behaviour, with nodes behaving similarly
belonging to the same community. The class of stochastic blockmodels evolved from
its deterministic counterpart, which dates back to White et al. (1976). The stochastic
version of the blockmodel was introduced by Holland et al. (1983) in the statistical
literature. Similar modelling proposals, developed independently, trace back to the
computer science literature (see, for example, Bui et al., 1987). Wang and Wong
(1987) were the first to apply the stochastic blockmodel to directed graphs, even
though they still assumed the block structure to be known. The first steps towards a
posteriori blockmodelling, that is modelling with initially unknown group structure,
were taken by Snijders and Nowicki (1997) and Nowicki and Snijders (2001), who
proposed estimation routines for, respectively, two groups and any known number
of groups. From there, the model class gained traction. Recent literature on the
classical version of stochastic blockmodels includes Daudin et al. (2008), Gormley
and Murphy (2010) and Aitkin et al. (2014), using Bayesian approaches (see also
Vu and Aitkin, 2015). Following their initial formulation, stochastic blockmodels
have been extended in various ways. Some of such variants and extensions will be
reviewed and treated in Section 3, and some of those will be put to practice later on.
The aim of this article is to illuminate on the connection between mixture models and
stochastic blockmodels, exploring some of the different approaches within the model
class and demonstrating their applicability by making use of real data. The article
also introduces a different formulation of the stochastic blockmodel through the
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graphon framework, using this reformulation to propose an alternative estimation
routine.

The rest of the article is organized as follows: Section 2 presents some real-world
network datasets together with the potential questions that we face in analysing
them. Those datasets will be later used to demonstrate the capabilities of stochastic
blockmodels. Section 3 describes the blockmodelling framework in more detail,
and introduces some of its most prominent variants and extensions. Section 4
compares the different estimation routines that are available, and introduces a Monte
Carlo-based EM estimation routine under graphon representation. The empirical
analysis of the previously introduced datasets is then carried out in Section 5, making
use of the previously described models to tackle the questions posed in Section 2.
Finally, Section 6 ends the article with some comments and conclusive remarks.

2 Data description

In order to demonstrate the capabilities of stochastic blockmodels, we have chosen
network datasets pertaining to three different domains, namely political science,
biology and sociology. Despite the different domains, the networks share the presence
of some form of underlying community structure, or at least the appearance thereof.
They all therefore lend themselves to be modelled through the use of mixture
components. General descriptive measures of the data examples, which consist of
undirected graphs, are given in Table 1, which shows that all three networks are of
medium size and range from very dense to relatively sparse.

2.1 International alliances network

The first network that we introduce is constructed using data from the Alliance
Treaty Obligations and Provisions project (Leeds et al., 2002). The dataset provides
information on military alliance agreements pertaining to all countries of the world.
For the analysis we consider alliances that were in force in the year 2016. The
countries are taken as nodes, and an edge between two countries is present if the
two countries take part in a ‘strong’ military alliance treaty. More specifically, the
alliances that we consider strong are defensive and offensive ones. This means,
respectively, ‘alliances in which the members promise to provide active military
support in the event of attack on the sovereignty or territorial integrity of one or
more alliance partners’ and ‘alliances in which the members promise to provide
active military support under any conditions not precipitated by attack on the

Table 1 Descriptive statistics for the studied networks

Alliances Butterflies E-mails

Nodes 141 832 548
Edges 1703 86528 5433
Density 0.173 0.250 0.036
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sovereignty or territorial integrity of an alliance partner, regardless of whether the
goals of the action are to maintain the status quo’ (see Leeds et al., 2002). Note
that, in general, an alliance can involve more than two nodes: Representing the
network using dyadic edges only thus leads to the loss of some information. For
example, pairwise edges between countries i, j and k could mean three pairwise
treaties, or a treaty that involves all three of them. While using pairwise edges as
we do here is standard in network modelling, hypergraph representations (Berge,
1984) offer a viable alternative, and models representing this kind of data in a
more natural way have been explored (see, e.g., Chodrow, 2020). Looking at the
network from a blockmodelling perspective, there are several questions that we can
pose. First of all, do alliances between countries induce a partition of the network
that is meaningful from a geopolitical perspective? Moreover, will the blocks found
be in line with geographic proximity and political affinity, or will there be some
other characteristics driving the grouping? And finally, what can the resulting block
structure tell us about the global system of alliances?

2.2 Butterfly similarity network

The second real-world instance is a butterfly similarity weighted network, constructed
using the data presented by Wang et al. (2009) and available from Zitnik et al.
(2018). Each node represents a butterfly, and valued edges depict visual similarities
between them. More specifically, pairs of butterflies with some positive degree of
similarity between them are connected by a weighted edge, while no edge is present
if the similarity score between the two is zero. The absence of an edge is thus
equivalent to the presence of an edge with weight zero. The similarity scores lie in the
interval [0,1.55], with a higher value implying a higher degree of similarity. Scores are
computed using butterfly images, as described in Wang et al. (2009). Information on
the species to which each butterfly belongs is also available, with each unit belonging
to a single species. A total of ten species are present, implying a ‘natural’ partition
of the network in ten blocks. In this case, there is one clear question that emerges:
Are the communities found using visual similarity scores in agreement with how
biologists categorized butterfly species? In other words, are we able to recover the
‘ground truth’ communities of the network via stochastic blockmodelling?

2.3 Email exchange network

The last network considered consists of anonymized email data from a large
European research institution, collected between October 2003 and May 2005
(Leskovec and Krevl, 2014). Each node in the network represents a person,
and an edge between nodes i and j is present if person i sent person j at least
one email in the examined period. The nodes featured in this network are all
members of the institution, meaning that only emails within the institution itself
are considered. Moreover, only nodes belonging to the largest ten departments are
included. Note that, similarly as for the previously described alliances data, this
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binary representation disregards the multi-dimensional nature of the edges (as an
email can have multiple recipients). Since department memberships are known and
individuals from the same department are expected to behave similarly, we can
consider the departments as ‘ground truth’ communities for the network. Given
that, the questions that we pose are straightforward: Are we able to find some form
of meaningful community structure in the network considering emails alone? And
if so, will the structure recovered be similar to the partition induced by department
memberships? And finally, what can email exchanges tell us about the structure of
the institution and the relationships between departments? To analyse this and the
other previously introduced networks and to investigate the correspondingly raised
questions, we will introduce the appropriate model variants and related estimation
procedures in the following sections.

3 Stochastic blockmodels: formulations and variants

3.1 The standard stochastic blockmodel

As anticipated in the introduction, if we consider the network Y as set of random
variables {Yij; 1 ≤ i, j ≤ N, i 6= j}, we can transfer the mixture model setting (1.1)
towards network data. This leads to the stochastic blockmodel, that is a mixture
model for which each mixture component is specified by the group or community
membership. More specifically, we assume the independent discrete group indicator
coefficients Zi ∈ {1, ...,K} for i = 1, ...,N with

P(Zi = k) = πk for k = 1, ...,K

and, as above,
∑K

k=1 πk = 1. An edge between node i and j then exists with probability

Yij|(Z = z) ∼ Bernoulli(pzizj), (3.1)

where P = [pkl]k,l=1,...,K is the K× K dimensional block-probability matrix. For
community detection one typically assumes that pkk > pkl for all l 6= k, but this is
not a requirement for stochastic blockmodels in general. In fact, the block structure
may describe clusters of nodes that behave similarly from a connectivity standpoint
without necessarily being more densely connected, thus allowing for other types of
structures, such as disassortative communities and core-periphery.

For estimation, a numerically simpler setting can result by approximating the
binomial distribution through a Poisson distribution. This approximation is justified
since the network density is usually low, implying that pkl is typically small. In this
case, (3.1) is replaced by

Yij|(Z = z) ∼ Poisson(λij), (3.2)

where λij = exp{ωzizj}, with � = [ωkl]k,l=1,...,K as block-connectivity parameter matrix.
One of the main allures of the Poisson model variant lies in the fact that there is a
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closed form for integrating out parameters, as seen in, for example, McDaid et al.
(2013; see also Lee and Wilkinson, 2019 for an illustration of this).

3.2 Degree correction

A well-known extension of the classical SBM is the degree-corrected stochastic
blockmodel, introduced by Karrer and Newman (2011). In their work, the authors
show how the standard stochastic blockmodel implicitly assumes the degree structure
within communities to be relatively homogeneous. This, combined with the fact that
many real-world networks exhibit extremely skewed degree distributions (Simon,
1955; Barabási and Albert, 1999), leads the model to often only be able to find
core-periphery type block structures, where node grouping is predominantly driven
by degree similarity. To bypass this issue, Karrer and Newman (2011) introduced
the idea of degree correction, making the probability of an edge depend not only
on group membership, but also on node-specific heterogeneity parameters. More
precisely, the original version of the degree-corrected SBM can be written in the same
way as (3.2), but in this case

λij = exp{γi + γj + ωzizj}. (3.3)

In this notation exp{γi} quantifies the heterogeneity specific of node i, and exp{ωzizj}

can be viewed as a measure of the propensity to form ties between the groups to
which nodes i and j belong. Note that the degree-corrected SBM is not, in general,
strictly better than the standard one, as the two models imply different underlying
structures of the network (see, e.g., Yan et al., 2014; Yan, 2016; Wang and Bickel,
2017). The choice of one over the other simply depends on what is the kind of
structure one wishes to find. It is also possible to combine the two approaches, as
done in Aicher et al. (2015) and Lu and Szymanski (2019). All three versions of the
model, namely (3.1), (3.2) and (3.3), will be applied to the previously introduced
data examples.

3.3 Graphon representation

The stochastic blockmodel can also be formulated through the graphon model class,
which recently received a lot of attention concerning the modelling of complex
networks. Although the scope of the structures representable as a graphon is quite
large, its formulation is rather simple. Let us therefore introduce Ui, for i = 1, . . . ,N,
as node-specific continuous random variables which can be described as

Ui
i.i.d.
∼ Uniform[0,1]. (3.4)

The network entries are then assumed, conditionally and independently from one
another, to follow

Yij|(U = u) ∼ Bernoulli(p(ui,uj)),
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where p : [0,1]× [0,1]→ [0,1] is a function (sometimes called graphon). This
function p(· , ·) is commonly assumed to be at least piecewise continuous, meaning to
fulfill some Lipschitz or Hölder condition in segments. A representation of the SBM
can then be generated by restricting the graphon function to be locally constant in a
rectangular pattern. More precisely we define, for a SBM with K groups,

p(ui,uj) =
K∑

k=1

K∑
l=1

1{τk−1≤ui<τk}1{τl−1≤uj<τl}pkl (3.5)

with 1{·} as indicator function, 0 = τ0 < τ1 < . . . < τK = 1 as boundaries, and pkl
representing the edge probability between and within groups, as defined above. The
group memberships Zi are here substituted by the node-specific quantities Ui, which
are also latent. This additionally implies that the community proportions are now
represented by the boundaries τk, k = 1, . . . ,K− 1. Note that from the uniform
distribution of Ui specified in (3.4) follows that τk =

∑k
l=1 πl. An instance of such

relationship can be given through the following illustration:

π = (0.5,0.2,0.3)

P =

0.6 0.1 0.3
0.1 0.5 0.2
0.3 0.2 0.4


 ⇐⇒

It is thus not difficult to see how this formulation of graphon models is equivalent to
SBMs.

In this context, it should be noted that the graphon model suffers from major
identifiability issues, which, with regard to the SBM representation, also include the
label switching problem (we refer to the Appendix for more details and illustrations).
This non-identifiability arises from the fact that any permutation of p(· , ·) represents
the same network-generating model as p(· , ·) itself. Even more generally, two graphon
functions p(· , ·) and p̃(· , ·) represent the same network-generating model if and
only if there exist two measure preserving functions ϕ, ϕ̃ : [0,1]→ [0,1] such that
p(ϕ(u), ϕ(v)) = p̃(ϕ̃(u), ϕ̃(v)) for almost every (u, v) ∈ [0,1]2 (Diaconis and Janson,
2008). A common approach to resolve this issue is the postulation of a monotonically
non-decreasing marginal function g(u) =

∫ 1
0 p(u, v) dv (see, e.g., Bickel and Chen,

2009 or Chan and Airoldi, 2014). With regard to SBMs, that means ordering
the communities, k = 1, . . . ,K, by

∑K
l=1 pkl1τl with 1τl = τl − τl−1, inducing the

additional constraint of
∑K

l=1 pkl1τl 6=
∑K

l=1 pjl1τl for all k 6= j. This assumption,
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however, might yield only an imperfect identification, especially when the marginal
functions

∑K
l=1 pkl1τl are similar (see Nowicki and Snijders, 2001). Moreover, this is a

strong restriction to the generality of graphon models. We therefore aim to circumvent
this issue by formulating an adequate estimation procedure (see Section 4.3).

3.4 Further variants and extensions

Many other variants and extensions of SBMs exist. These include the mixed
membership model (Airoldi et al., 2008), in which nodes can belong to multiple
communities simultaneously, and the hierarchical stochastic blockmodel (Peixoto,
2017), in which communities are comprised of meta-communities, leading to a
hierarchical block structure. A matter of simplifying the model representation is
what motivates the microcanonical variant of the SBM (see, e.g., Peixoto, 2012),
where the structural pattern is strictly fixed in absolute values. This, in turn, allows
for fitting more elaborate generative models, which usually require Markov Chain
Monte Carlo (MCMC) techniques for evaluation, to larger networks and to an
increased number of groups, as demonstrated by Peixoto (2017). The same author
also proposed a nested hierarchical variant of the SBM (Peixoto, 2014a) in which
the generative model inferred at an upper level serves as prior information to the one
at a lower level, thus also providing an increased resolution when performing model
selection. Despite its more elaborate formulation, this hierarchical model remains
tractable, and it is feasible to apply it to very large networks. It is also possible to
add covariates to the analysis, as initially proposed by Tallberg (2005) and further
elaborated by Choi et al. (2012), Sweet (2015) and Huang and Feng (2018). A further
extension is the mixture of experts SBM (see Gormley and Murphy, 2010; White and
Murphy, 2016), which allows covariates to enter the latent position cluster model
in a number of ways, yielding different model interpretations. Extensions for more
specific purposes have also been developed: Bouveyron et al. (2018) introduced the
stochastic topic blockmodel, a probabilistic model for networks with textual edges.
Their model addresses the problem of discovering meaningful clusters of vertices that
are coherent with regards to both the network interactions and the text contents.
Finally, another relevant approach that can be seen as a generalization of the SBM
is the latent position cluster model proposed by Handcock et al. (2007) (originating
from Hoff et al., 2002, see also Krivitsky et al., 2009). It is worth noting that most
of the mentioned specifications can be applied to binary data as well as to valued
and count data (see, e.g., Nowicki and Snijders, 2001). In this article, we do not
concentrate on these extensions, but focus on the more ‘classical’ SBMs.

4 Estimation techniques

4.1 Variational methods

The EM algorithm proved to be a powerful and numerically efficient way
for estimating parameters in mixture models (see Aitkin, 1980 or Friedl and
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Kauermann, 2000). Unfortunately, this does not extend to the estimation of stochastic
blockmodels. The complete data log-likelihood resulting from (3.2) in the case of an
undirected network equals

lC(�,π) =
N∑
i=1

N∑
j=i

K∑
k,l=1

1{zi=k}1{zj=l}(yijωkl − exp{ωkl}) +
N∑
i=1

K∑
k=1

1{zi=k} log (πk) (4.1)

with the side constraint
∑K

k=1 πk = 1. Applying the EM algorithm would in this case
mean calculating the posterior distribution

P(Zi = k,Zj = l |Y = y)

with y being the observed adjacency matrix. This posterior, due to the resulting
dependence structure of Zi and Zj, is numerically intractable (Mariadassou et al.,
2010). To circumvent such numerical hurdles, Jordan et al. (1999) proposed
variational methods, which are based on an approximation of the likelihood. Let
P(y;�,π) be the probability of the data, resulting through

P(y;�,π) =
K∑

k1=1

. . .

K∑
kN=1

πk1 ...πkN

N∏
i=1

N∏
j>i

λ
yij

kikj
exp{−λkikj},

which is apparently too complex from a numerical perspective. We define the lower
bound function

J(P̃(z; ξ);�,π) = log P(y;�,π)− KL(P̃(z; ξ),P(z | y;�,π)),

where KL(· , ·) defines the Kullback–Leibler divergence. If we choose P̃(z; ξ) to be the
posterior distribution of Z given ξ, we obtain J( ; ) to be equal to the log-likelihood of
the observed data. Since this is numerically problematic, we compute the posterior
distribution of Z given ξ through independence:

P̃(z; ξ) =
N∏
i=1

K∏
k=1

ξk
1{zi=k},

where ξk = (ξk1, ..., ξkN) is a vector containing the probabilities for each of the N
nodes to be in group k, with

∑K
k=1 ξki = 1 needing to hold for every i ∈ 1, ...,N.

ξ = (ξ1, . . . , ξK) is known as variational parameter, and needs to be chosen such
that J(P̃(z; ξ);�,π) is maximized with respect to all parameters. It can be shown
that J( ; ) can, up to an intractable constant, be written in a simple numerical form
which allows for fast and numerically feasible estimation. The remaining unknown
component expresses the approximation error which is typically difficult to quantify
(see Lee et al., 2020).
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4.2 Vertex switching algorithms

Another possibility for the estimation of stochastic blockmodels is to maximize the
likelihood through vertex switching routines. The basic idea of this type of algorithms
is the following: starting from an initial, possibly random group assignment, a starting
value of the likelihood is computed. From there, one or more vertices are moved from
one group into another, and the likelihood is computed again. The new allocation
is then accepted or rejected based on a function of the previous and the subsequent
likelihood, and such procedure runs iteratively until convergence is reached, that
is until a maximum is found. Algorithms of this type include single-vertex Monte
Carlo (see, e.g., Peixoto, 2013, 2014b) and a local heuristic routine inspired by the
Kernighan–Lin algorithm used in minimum-cut graph partitioning (Kernighan and
Lin, 1970; Karrer and Newman, 2011). In principle, computing the likelihood that
many times may seem quite expensive. On the other hand, it is not always necessary to
calculate the complete likelihood at each step. Depending on the model specification,
it is often possible to write the change in the likelihood in a computationally efficient
way, so that the algorithm becomes quite competitive in terms of speed. The chief issue
with this type of algorithm is that, given the heuristic maximization routine, it is not
possible to obtain a measure of uncertainty for group assignments. The procedure
will only produce the graph partitioning that (locally) maximizes the likelihood,
without any additional information. This is fine if the problem at hand is one of
pure community detection, but can become problematic if the goal is proper mixture
modelling, as the stochastic component of the mixture is lost. Another potential issue
is the possibility to get stuck at local maxima, which usually is tackled by running
the procedure several times with different (random) starting points.

4.3 Monte–Carlo-based EM estimation under graphon representation

A third and to some extent novel estimation routine is to estimate the block
structure using its graphon representation. Although it is not quite clear how
this approach competes with already existing methods, our ambition here is to
demonstrate a further possible form of representing and estimating mixture models
in networks. Such a model can be fitted appropriately by applying an EM-type
algorithm including Gibbs sampling in the E-step. As mentioned above, EM-based
algorithms are a common approach to estimate mixture models as well as other
models involving latent variables, although in the case of networks the task becomes
analytically intractable and numerically demanding. We therefore make use of
MCMC techniques to approximate the complex posterior distribution of the latent
quantities, which here reflect the group assignments. In this approach, we thus
slightly reformulate the stochastic blockmodelling procedure, relating it to graphon
estimation (see, e.g., Latouche and Robin, 2016 or, for the reverse link, Olhede
and Wolfe, 2014 and Airoldi et al., 2013). We here want to follow the estimation
approach of Sischka and Kauermann (2019), applying it to SBMs. The idea is to
make use of model (3.5) and estimate, in the M-step, the parameters of p(· , ·),
namely the interval boundaries τk and the blockwise heights pkl, k, l = 1, . . . ,K,
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directly yielding estimates for the SBM quantities π and P. The group assignments
Z1, . . . ,ZN can be determined by considering the positions U1, . . . ,UN in relation
to τ = (τ0, . . . , τK). To carry out the E-step, we assume the function p(· , ·) to be given
(or to be set to the current estimate). In this regard, as follows from (3.5), the full
conditional posterior can be formulated as

gj(uj|u1, . . . ,uj−1,uj+1, . . . ,uN, y) ∝
N∏
i=1
i 6=j

p(uj,ui)yji(1− p(uj,ui))1−yji .

This allows for applying Gibbs sampling in a straightforward manner. Details on
this sampling scheme, as well as remarks on the associated potential issues of label
switching and non-identifiability, are given in the Appendix. In this context, we
underline how the issue of label switching is prevented through the EM algorithm
on the primary level of the estimation procedure (apart from the exceptional case of
complete symmetry, as described in the Appendix). In comparison, label switching
is a common problem when making use of an overall Bayesian estimation procedure
(if the MCMC scheme is run for sufficiently long, see Stephens, 2000), where
one randomly draws quantities from the corresponding posterior distributions in
alternating fashion. This, in contrast, is circumvented in the EM framework, since in
the E- and M-steps the results of the respective other step are kept fixed and, based on
that, the ‘optimal’ solution is carried out to be used for the next iteration. Parameter
estimates are thus not achieved by averaging over several iterations but are given
for each iteration separately. Therefore, with regard to our estimation routine, no
post-hoc relabelling is required, and assignments can be adopted as deduced from
the subordinate Gibbs sampling scheme. Making use of the sampling sequence,
we specify the posterior mode in the mth iteration using û(m)

j = (τk′−1 + τk′)/2 for
j = 1, . . . ,N, where the index k′ is defined as arg maxk

∑n
t=1 1{τk−1≤u<t·r>

j <τk}
. In that

regard, u<t>
j is the value of the jth element in the Markov chain at time t, and n ∈ N

is the number of considered states of the MCMC sequence extracted by thinning
factor r ∈ N. To take into account that the Ui are uniformly distributed and therefore
expected to spread proportionally to interval size, we additionally apply a subsequent
adjustment. This concerns both the latent quantities Ui and the interval boundaries
τ1, . . . , τK−1. Assuming that τ̂(m)

k represents the current estimate of τk, we then set

τ̂
(m+1)
k = δ(m+1)

∑N
i=1 1{û(m)

i <τ̂
(m)
k }

N
+ (1− δ(m+1))

k
K

and accordingly adjust the estimates of Uj in the form of ˜̂u(m)
j = (τ̂(m+1)

k′−1 + τ̂(m+1)
k′ )/2, with

index k′ defined through the previous assignment in the form of û(m)
j ∈ [τ̂(m)

k′−1 + τ̂(m)
k′ ).

Regarding the specification of τ̂(m+1)
k , the weighting δ(m+1)

∈ [0,1] with δ(m+1)
≥ δ(m)

induces a step-size adaptation from a priori equidistant boundaries to observed
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boundaries implied by frequencies. Such step-size adaptation is recommendable to
prevent the community size to shrink too substantially before the structure of the
community has been evolved properly. In general, δ(m) is chosen to be one in the last
iteration.

The M-step is then carried out by maximizing the likelihood conditionally on
U = ˜̂u(m) and for τ1, . . . , τK−1, taking the estimates adjusted as above. This is easily
done by setting

p̂(m+1)(u, v) =

∑N
i=1

∑N
j=1 1{τk−1≤ui<τk}1{τl−1≤uj<τl}yij∑N

i=1

∑N
j=1 1{τk−1≤ui<τk}1{τl−1≤uj<τl}

for all u ∈ [τk−1, τk) and v ∈ [τl−1, τl). As it is done for the previously mentioned
vertex switching algorithms, we run this MCEM algorithm several times with varying
initialization of U, and then choose the outcome with the highest likelihood, which
should here also prevent us from getting stuck at a local maximum. To determine the
optimal number of blocks, typical model selection criteria can be applied. We here
make use of the AIC, for which both quantities required for the computation, namely
the likelihood and the number of parameters, can easily be determined. The major
advantage of the reformulation of model (3.1) to model (3.5) is that the graphon
function p(· , ·) could be also formulated in more complex fashion, that is, instead of
just being local constant one could allow for more complex structures within each
segment. This is not pursued in this article, but we refer to this new research strand
discussed, among others, in Vu et al. (2013).

In contrast to non-stochastic estimation routines, such as the vertex switching
algorithm discussed in Section 4.2, this modelling approach naturally yields
information about the inherent uncertainty of the proposed group allocation.
In order to achieve this, we run the E-step one more time after the algorithm
has converged. The resulting Gibbs sampling sequence of this last iteration then
reveals the distribution of the node allocation with respect to the model estimate
(p̂(· , ·), τ̂ = (0, τ̂1, . . . , τ̂K−1,1)). A normalized Gini coefficient calculated over the
assignment frequencies of a single vertex can then be used as a measure of uncertainty,
where a value near one (zero) implies a low (high) level of uncertainty.

4.4 Choosing the number of blocks

A general big challenge in mixture models (and hence also in stochastic blockmodels)
lies in the choice of the number of mixture components (blocks). In fact, most of the
variants presented so far require that number to be known a priori. This is typically
not true in real-world applications. In mixture models the question of choosing
the number of mixture components is tackled, for instance, in Aitkin (2011). In
the field of stochastic blockmodels, a comprehensive list of different approaches is
provided by Lee and Wilkinson (2019). Approaches based on penalized likelihood
criteria have emerged. In particular, Wang and Bickel (2017) consider an approach
based on the log-likelihood ratio statistic, enabling the use of a likelihood-based
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model selection criterion that is asymptotically consistent. Other techniques are
also available: Chen and Lei (2018) develop a network cross-validation approach
which is based on a block-wise node-pair splitting technique, combined with an
integrated step of community recovery using sub-blocks of the adjacency matrix.
Mariadassou et al. (2010) base the choice on an Integrated Classification Likelihood
criterion. The number of blocks can also be estimated using ‘collapsed’ approaches,
where the model parameters are integrated out in a Bayesian formulation of the
model. The model space and cluster allocations can then be estimated using a
greedy search routine (Côme and Latouche, 2015) or using MCMC (McDaid
et al., 2013). Another possible approach is that of Peixoto (2013), who uses the
Minimum Description Length principle, which seeks to minimize the total amount of
information required to describe the network and avoid overfitting. This also allows
to deduce general bounds on the detectability of any prescribed block structure,
given the number of nodes and edges in the sampled network. Finally, Riolo et al.
(2017) (see also Newman and Reinert, 2016) present a method for estimating the
number of communities in a network using a combination of Bayesian inference
and an efficient Monte Carlo sampling scheme. While other approaches have been
proposed, we will not go into further detail here. For modelling the previously
described networks, when possible we select K such that the resulting number of
blocks coincides with the ground truth. If such ground truth is not available, we
make use of the Akaike Information Criterion (AIC), which can be easily calculated
when using the graphon representation-driven algorithm.

5 Application to real world networks

5.1 International alliances network

To model the network we use the standard version of the stochastic blockmodel, as
in (3.1). Estimation was performed using the Monte Carlo-based EM routine under
graphon representation. Applying the AIC yields seven communities as the optimal
dimensionality of the blockmodel. The resulting fitted block decomposition is given
in Figure 1. Network visualization, as for the rest of the examples in this section,
is carried out through use of the open-source tool Gephi (Bastian et al., 2009). The
associated world map is shown in Figure 2, where countries are coloured by block.
States coloured in grey on the map are isolates in the network, meaning that they
were not involved in any strong military alliance in 2016. Moreover, China, Cuba
and North Korea are only connected to each other, and are thus isolated from the
rest of the network. Those countries have therefore been excluded from the model
fitting. The plots show how the blocks recovered by the stochastic blockmodel are
very much related and in accordance with the geopolitical structure of the modern
world, while also revealing some interesting patterns. The network representation
can be visually split into two large components. In the first component, on the left side
of the plot in Figure 1, the central block contains most European countries together
with Canada. This block is very densely linked, as most of the countries inside it
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Figure 1 Global network of political alliances in 2016. Two countries are connected if they have taken part
in a strong alliance treaty. Labels indicate country codes, while nodes are coloured by block memberships
found through the standard stochastic blockmodel

belong to NATO and other major alliances. The block on the very left pretty much
coincides with Central and South America, and it is also quite dense. The European
and the American block are linked by the USA, which, given its unique connectivity
behaviour, constitutes a block on its own. The bottom block includes mostly Asiatic
countries as well as some Pacific states, which share a very low edge density. The other
component of the network, on the right-hand side of Figure 1, is made out of three
blocks. The block on the bottom contains all countries from the Middle East together
with Northern African countries such as Libya, Tunisia, Egypt and Morocco. The
middle block includes countries from Central and Western Africa. Finally, the upper
block is composed of Southern African countries. The central block is well connected
with both the northern and the southern blocks, mostly through countries that share
borders, while the latter two blocks are instead only directly bridged by Sudan. As an
additional note, we can observe that the two major components of the network are
linked exclusively through France, that, while belonging to the European block, acts
as a bridge between Africa and Europe itself. Finally, it is evident how transferring the
group assignments to the world map in Figure 2 clearly reveals a general geographic
proximity of countries belonging to the same community.

In addition to the detected block structure, we also investigate the uncertainty of
the node allocation, using the Monte Carlo-based posterior samples. We therefore
consider the last Gibbs sampling sequence after the algorithm has converged. More
specifically, we take a look at the three countries with the lowest values of the
normalized Gini coefficient calculated over the allocation frequencies, which in turn
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Figure 2 World map with countries coloured by block membership. Colours are kept consistent with
Figure 1. Countries not included in Figure 1 are isolates, meaning that they were not part of any strong
military alliance as of 2016, with the exception of China, Cuba and North Korea, which are only connected
among themselves. Labels indicate the three countries with the highest uncertainty in block membership

imply the highest uncertainty. These countries are Libya (LBY), Algeria (DZA)
and Comoros (COM), which all belong to the Arabic block. The switching of
communities exhibited by Libya throughout the posterior sampling is illustrated
as an example in Figure 3. It shows how the sample for ULibya mostly appears within
[0.87,1] (the interval of the Arabic block) while also exhibiting some states where it is
within [0,0.13] (the interval of the Western African block). The posterior frequencies
for Libya as well as for Comoros and Algeria with respect to the different groups are
shown in Table 2, which also comprises the corresponding Gini coefficients. The table
shows how all three countries have a substantial tendency to move to the Western
African block. According to the fitted blockmodel, in 15% to 18% of the MCMC
sample states the three countries are assigned to this block. Turning our attention
to all other countries, we observe Gini coefficients which are close to one and thus
exhibit only very little uncertainty in block membership. Altogether, this reveals how
the estimated community structure appears to be quite strong.

5.2 Butterfly similarity network

The standard SBM as showcased in the previous section is suitable for modelling
binary networks. As described in Section 2, this dataset is, however, comprised of
similarity scores which lie in the interval [0,1.55]. While it would be possible to
binarize the data, for example defining a threshold within the domain as cut-off,
this would lead to considerable information loss. We therefore use the Poisson
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Figure 3 Posterior sample of the latent quantity U for Libya plotted against the MCMC states. Horizontal
lines represent community boundaries

Table 2 Posterior frequencies for the three countries with the highest uncertainty in their community
memberships. The corresponding normalized Gini coefficient is depicted in the rightmost column

Community

Country Western
African

European USA Southern
African

Asian/
Pacific

South
American

Arabic Gini
coefficient

Comoros 0.1748 0 0 0 0 0 0.8252 0.9417
Libya 0.1598 0 0 0 0 0 0.8402 0.9467
Algeria 0.1558 0 0 0 0 0 0.8442 0.9481

version of the stochastic blockmodel as defined in (3.2), taking advantage of the
fact that this variant is suitable to treat multi-edged networks as well as binary
ones. To fit this model, we discretized underlying similarity measures into count data
through binning. More specifically, each similarity measure was multiplied by 100
and rounded to the nearest integer, resulting in natural values between 0 and 155.
Estimation on the resulting multi-edged network was performed using the Variational
EM approach developed by Mariadassou et al. (2010; see also Daudin et al., 2008)
and implemented in the R software by Leger (2016). In this case, since we know that
the real number of species is ten, we can simply use the same number of communities
for the estimation. Figure 4 shows the results of the model fit compared with the
partition of butterflies into species. At a first glance, we can see that the communities
recovered mirror the real species relatively well. The most evident difference lies in
the fact that two of the species (located towards the centre of the plot) are apparently
really similar according to the utilized measure of visual similarity, and are therefore
split up by the blockmodel. It is also interesting to note how communities found by
the stochastic blockmodel seem to be visually clearer than ground truth ones. This
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(a) Species (b) Found Communities

Figure 4 Comparison between ‘ground truth’ communities (species) and groups found by the Poisson
stochastic blockmodel in a network of butterflies, with weighted edges representing the degree of visual
similarity between them

is attributable to the fact that network visualization techniques and the clustering
algorithm utilized are both based solely on the ties between the nodes, and thus
tend to be more in accordance. The ground truth, on the other hand, is always
given a priori, and can easily have outliers in terms of connectivity behaviour. In this
specific case, visualization and blockmodelling are both based on the aforementioned
measure of visual similarity between butterflies, while the ground truth communities
are given by the classification of butterflies into species by biologists. This at least
partially explains the discrepancy between the ground truth communities and the
positioning of the nodes in the visualized graph. Despite this discrepancy, in general,
the structure that was found does not appear to present major differences from the
biological classification of the species. To quantify the goodness of the recovered
block structure compared to the ‘ground truth’ communities, several measures are
available (we refer to Jebabli et al., 2018 for a comprehensive survey). Here we opted
for the Rand index, a measure of similarity between two data clusterings that can
simply be described as the number of agreements in classifying pairs divided by the
total number of pairs (Rand, 1971). The index takes values between 0 and 1, and in
this case it is equal to 0.91, indicating that, given two Butterflies chosen at random,
the blockmodel is able to correctly identify if they belong to the same species or not
91% of times.

Statistical Modelling 2022; 22(1-2): 67–94

61



Mixture models and networks: The stochastic blockmodel 85

Figure 5 Empirical degree distribution of the email exchange network

5.3 Email exchange network

This network of emails within a research institution exhibits a skewed degree
distribution, as shown in Figure 5. This type of degree distribution is typical of
real-world social networks, and leads the classical SBM to often only be able to
find core-periphery type block structures, with nodes grouped mostly on the basis of
degree similarity. As explained above, one way to circumvent this issue is to use degree
correction. For this application, we therefore made use of the original version of the
degree-corrected stochastic blockmodel as in (3.3) (Karrer and Newman, 2011). The
results of the model fitting, together with the partitioning of the network into real
departments, are visualized in Figure 6. Looking at the plots, it is evident how the
model with degree correction is able to recover the communities quite accurately.
Comparing the partition discovered by the degree-corrected SBM with the actual
departments, one small department (depicted towards the upper-centre of the figure)
merges into another one close to it, and an additional block is therefore found
at the bottom-centre of the plot, splitting the larger bottom department into two.
Other than that, the structure found is remarkably similar to the partition induced
by the departments, with some exceptions due to the existence of disconnected
components within departments. In this case the Rand index is equal to 0.95,
indicating a very high level of agreement among the partitions. For comparison
purposes, we also fit a standard SBM to the same data, and computed the Rand
index for the partition found with that as well. The resulting value of the index
only amounts to 0.86, underlining the importance of applying degree correction in
this case.
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(a) Real Departments (b) Found Communities

Figure 6 Comparison between ‘ground truth’ communities (departments) and groups found by the
degree-corrected stochastic blockmodel in a network of email exchanges within a large European research
institution

6 Conclusions

Mixture modelling can be extended to network data through stochastic blockmodels.
Networks are rather complex structures, leading to computationally demanding
estimation routines. Several algorithms specific for this class of problems have
emerged over time, some of which are discussed in this article. We also provided an
overview of different types of blockmodels by applying them to real-world network
datasets. Among others, one of the models that we showcased is the degree-corrected
stochastic blockmodel, which is particularly well suited for networks with a highly
skewed degree structure.

Considering stochastic blockmodels (and community detection problems) as
mixture models opens up a new avenue of extensions and novel models. Looking
at the many model proposals in the field of mixture, ranging from mixing different
distributions towards the mixture of experts, it is evident that these extensions can
be brought forward in network modelling with mixtures as well. In fact, block-wise
constant connectivity probabilities could be extended towards non-constant ones.
Moreover, covariates could also be included. These extensions lie well beyond the
scope of this article, but it is evident how the long history of mixture models, which
started with Pearson (1894), has not come to an end, and extends promisingly in the
realm of networks.
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Appendix

Details on MCMC sampling scheme

Assuming u<t> = (u<t>
1 , . . . ,u<t>

N ) to be the current state of the Markov chain, we
can update the jth component as follows. At first, we set u<t+1>

l = u<t>
l for all l 6= j,

while for component uj we draw a new potential state u∗j from a uniform proposal
with regard to the domain [0,1] \ [τk(j,<t>)−1, τk(j,<t>)) and with [τk(j,<t>)−1, τk(j,<t>))
being the subinterval that includes u<t>

j . This leads to the acceptance probability

min

1,
N∏
l=1
l 6=j

( p(u∗j ,u
<t>
l )

p(u<t>
j ,u<t>

l )

)yjl
(

1− p(u∗j ,u
<t>
l )

1− p(u<t>
j ,u<t>

l )

)1−yjl


·
1− (τk(j,<t>) − τk(j,<t>)−1)

1− (τk(j,∗) − τk(j,∗)−1)

 , (A.1)
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where [τk(j,∗)−1, τk(j,∗)) represents the subinterval which includes u∗j . If we accept the
alteration, we set u<t+1>

j to the value u∗j , while in the event of rejection, we remain with
the previous value u<t>

j . Running the Markov chain, we get a sampling sequence from
which we derive a simulation-based estimate of the group mode, which concludes the
E-step. It should be mentioned that, in the beginning, the number of Gibbs sampling
states taken into account for approximating the posterior mode can be rather small,
since the early model configurations are potentially far from the truth and thus
already imply a deviating reallocation.

Label switching and non-identifiability

As has been extensively discussed in other works, approaching the conceptual
formulation of mixture models by MCMC methods induces the label switching
problem (see, for example, Stephens, 2000). This issue describes the invariance of
the likelihood under relabelling of the mixture components. However, since in the
proposed MCEM algorithm the model parameters are not part of the MCMC scheme
but rather given as fixed based on the M-step, the label switching problem reduces to
the exceptional case of symmetric parametrization. The two different situations can
be exemplified by the configurations shown in Figure A.7. In both of the depicted
cases (a) and (b), the two respective models describe and capture the exact same
structure of the respective given network. That means none of them is preferable,
and it is thus unclear beforehand to which label ordering the algorithm will tend.
Nevertheless, regarding the non-symmetric configuration in (a), we point out that
our MCEM algorithm will remain in either one of the partitions once that has been
reached. At the stage of convergence, fixing the model parameters based on the
M-step will leave the partition unchanged in the MCMC-based E-step (if the Gibbs
sampling sequence is chosen to be sufficiently large). This is because the posterior
distribution of the allocations is not invariant to label switching when p(· , ·) is fixed.
Only in the symmetric case (b) a label switching might occur, which here exclusively
refers to the node assignments, since now not only the likelihood but also p(· , ·) is
invariant to label switching. In the worst case, this might lead to a fuzzy estimate in
the M-step representing an in-between state of the different partitions. However, we
argue that the case of two (or more) groups exhibiting a very similar connectivity
behaviour in regard to all other groups (and among themselves) is an extraordinary
one, that is unlikely to occur in real-world applications.

Another issue similar to the label switching problem which is inherent in graphon
models is that of non-identifiability. This issue consists in the fact that different
arrangements of the function p(· , ·) represent the same model. More precisely, as has
been shown by Diaconis and Janson (2008), two graphon functions p(· , ·) and p̃(· , ·)
represent the same network-generating model if and only if there exist two measure
preserving functions ϕ, ϕ̃ : [0,1]→ [0,1] such that p(ϕ(u), ϕ(v)) = p̃(ϕ̃(u), ϕ̃(v)) for
almost every (u, v) ∈ [0,1]2. Accordingly, this also includes the label switching
problem, although it only refers to the model specification (and not to the likewise
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Figure A.7 Simple examples to illustrate the label switching problem in SBMs expressed through
graphon representation. a) Two plausible blockmodels for the same seven-node network which are
specified by Ui ≶ 3/7 and Ui ≶ 4/7, respectively (illustrated by node colors), and a corresponding step
function p(· , ·) (depicted in the right column). Both models yield the same value for the likelihood and can
be transferred into one another through label switching. b) Two potential partitions of a six-node network,
each forming a blockmodel. The partitions can again be transferred into one another through label
switching, but in this case they both refer to the same function p(· , ·). Only b) poses a label switching
problem for the proposed MCEM algorithm
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Figure A.8 Simple example to illustrate the splitting of groups in SBMs expressed through graphon
representation. The node colouring exhibits node assignments, with the corresponding graphon functions
depicted on the right. Both of the models describe and capture the same block structure in the given
network. Nevertheless, the upper model is preferable to the lower model with respect to the following
three criteria: a monotonically non-decreasing marginal function, merging similarly behaving nodes, and
parsimony in terms of the number of communities

affected node assignments). Another potential instance of the identifiablity issue in
SBMs represented as graphon models lies in the splitting of groups. To illustrate
that, we consider the two blockmodels in Figure A.8, which both capture the
same structure in the given network. As has been mentioned in Section 3.3, the
identifiability issue can be resolved by assuming a monotonically non-decreasing
marginal function. This condition only applies to the upper model representation.
However, considering our MCEM algorithm, the E-step aims to merge nodes with
similar connectivity behaviour and therefore naturally prevents the splitting of
groups. In addition, the lower representation is that of a blockmodel with four groups,
a number which, compared to the upper representation, appears to be unnecessarily
inflated. We hence argue that the identifiability issue in regards to the splitting of
groups is a matter of the applied blockmodel dimensionality and can be also prevented
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through an appropriate choice of the number of mixture components. We therefore
avoid the additional constraint of a monotonically non-decreasing marginal function.
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Networks are ubiquitous in economic research on organizations, trade, and many other areas. 
However, while economic theory extensively considers networks, no general framework for their 
empirical modeling has yet emerged. We thus introduce two different statistical models for this 
purpose – the Exponential Random Graph Model (ERGM) and the Additive and Multiplicative 
Effects network model (AME). Both model classes can account for network interdependencies 
between observations, but differ in how they do so. The ERGM allows one to explicitly specify 
and test the influence of particular network structures, making it a natural choice if one is 
substantively interested in estimating endogenous network effects. In contrast, AME captures 
these effects by introducing actor-specific latent variables affecting their propensity to form 
ties. This makes the latter a good choice if the researcher is interested in capturing the effect 
of exogenous covariates on tie formation without having a specific theory on the endogenous 
dependence structures at play. After introducing the two model classes, we showcase them 
through real-world applications to networks stemming from international arms trade and foreign 
exchange activity. We further provide full replication materials to facilitate the adoption of these 
methods in empirical economic research.

1. Introduction

The study of networks has established itself as a central topic in economic research (Jackson, 2008). Within the broader con-
text of the study of complex and interdependent systems (see e.g. Flaschel et al., 1997, 2007, 2018), networks can be defined as 
interconnected structures which can naturally be represented through graphs. In the economic literature, networks have been ex-
tensively considered from a theoretical perspective, with the primary goal of understanding how economic behavior is shaped by 
interaction patterns (Jackson and Rogers, 2007). Indeed, the adequate modelling of such interactions has been described as one of 
the main empirical challenges in economic network analysis (Jackson et al., 2017). Research in this direction on, e.g., organizations 
as networks, diffusion in networks, network experiments, or network games, is surveyed in Bramoullé et al. (2016), Jackson (2014), 
and Jackson et al. (2017). These theoretical advances find application in many different fields in which network structures naturally 
arise, such as national and international trade, commercial agreements, firms’ organization, and collaboration activity. However, 
such advances have not yet been accompanied by a corresponding shift in the standard methods used to empirically validate them. 
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Some recent contributions (see e.g. Atalay et al., 2011; Chaney, 2014; Morales et al., 2019) develop estimators tailored specifically to 
their network-based theoretical models, but more generally applicable modeling frameworks for the analysis of real-world network 
data have not yet emerged. Statistical methods specifically designed to empirically test theories where interdependencies arise from 
network structures, such as the Exponential Random Graph Model (ERGM), exist but are not yet widely used by economists. Jackson 
(2014), for instance, discusses ERGMs but argues that they “suffer from proven computational problems” (2014, p.76). Jackson et 
al. (2017) further explain that “it is practically impossible to estimate the likelihood of a given network at even a moderately large 
scale”, concluding that with ERGMs, “there is an important computational hurdle that must be overcome in working with data” 
(2017, p.85).

Contrasting this assessment, we argue that recent work in the realm of empirical network analysis provides robust and scalable 
methods with readily available implementations in the 𝚁 statistical software (R Core Team, 2021). Computational issues thus do 
not represent an insurmountable barrier to employ robust inferential network methods anymore. In this paper, we demonstrate the 
effectiveness and usability of some of those methods by applying them to real economic data. We specifically focus on models which 
aim to capture the mechanisms leading to network formation, i.e. to measure how the probability of forming a tie is influenced by 
(a) nodal characteristics, (b) pairwise covariates, and (c) the rest of the network. In particular, our focus is on Exponential Random 
Graph Models (ERGM) (Robins et al., 2007a) and Additive and Multiplicative Effect (AME) network models (Hoff, 2021), respectively 
implemented in the 𝚁 packages 𝚜𝚝𝚊𝚝𝚗𝚎𝚝 (Handcock et al., 2008b) and 𝚊𝚖𝚎𝚗 (Hoff, 2015). We find these two model classes to be among 
the most promising ones for applications in the economic sciences, as they are well suited for answering two broad categories of 
research questions. The ERGM is an ideal fit if, based on economic theory, the researcher envisages a particular dependence structure 
for the existence of ties in the network at hand and wants to test whether their theory is corroborated by empirical data. On the other 
hand, AME, and more generally continuous latent variable models, are a good choice when the researcher is interested in capturing 
the effect of exogenous variables on tie formation without having prior knowledge on which endogenous network dependence 
mechanisms are at play. In this case, AME offers the possibility to estimate the effect of both nodal and pairwise covariates while 
simultaneously controlling for network effects, which may induce bias if ignored (see Lee and Ogburn, 2021). In addition, the 
estimated latent structure can provide insight on the underlying network mechanisms for which they are controlling.

The principal aim of this paper is to showcase ERGM and AME by focusing on their value for economic research. After introducing 
each model class, we demonstrate their empirical usage by respectively applying them to two relevant economic questions stemming 
from real-world networks. We first use the ERGM to model the international trade of major conventional weapons, where a directed 
tie exists if one country transfers arms to another. In line with Chaney (2014), network effects such as directed triadic closure (e.g. 
the positive impact of an increase in the volume of trade between countries A and B on the probability that country C, that already 
exports to A, starts exporting to B) are of explicit theoretical interest in this application, and the ERGM allows for their proper 
specification and testing. We then make use of the AME model to study a historical network of global foreign exchange activity, 
where a directed edge is present if one country’s national currency is actively traded within the other country. AME allows us to 
estimate how relevant country features, such as per-capita gdp and the gold standard, and pairwise covariates, such as the distance 
between two countries and their reciprocal trade volume, influence tie formation, while controlling for network effects to provide 
unbiased estimates. We further compare the two model classes, weighing pros and cons of each approach and providing guidance 
on which tool is appropriate for applications to different empirical settings and research questions. Finally, in addition to a step-by-
step analysis and interpretation of these application cases, we provide full replication code in our GitHub repository,1 allowing for 
seamless reproducibility. We, therefore, demonstrate the “off-the-shelf” applicability of these methods, and offer applied researchers 
a head-start in employing them to study substantive economic problems.

Our contribution is related to various strands of the growing literature on economic networks (e.g. Jackson and Rogers, 2007; 
Jackson, 2008; Bramoullé et al., 2016). Due to its focus on economic questions, our work differs from surveys in physics (Newman, 
2003), statistics (Goldenberg et al., 2010), or political science (Cranmer et al., 2017). Several articles provide overviews and surveys 
of existing economic network models from a theoretical perspective (Jackson, 2014; Graham, 2015; Jackson et al., 2017; De Paula, 
2020). None of these articles concentrates on discussing broadly applicable statistical modeling frameworks, such as ERGM and AME, 
from an empirical perspective. In this sense our paper is similar in spirit to van der Pol (2019) who, however, only focuses on ERGM, 
without comparing alternative approaches. Indeed, one of the goals of this paper is to shed light on the emerging AME model class 
(and, more generally, on latent variable network models) for future applications in the economic literature.

The remainder of the paper is structured as follows. Section 2 discusses existing literature and presents the mathematical and 
notational framework used to define and discuss networks throughout the paper. Section 3 introduces the ERGM and applies it to 
the international arms trade network. Section 4 is dedicated to AME and its application to the global foreign exchange network. 
Section 5 concludes the paper with a brief discussion on the two model classes, contrasting their different uses and highlighting pros 
and cons of each approach.

1 https://github .com /gdenicola /statistical -network -analysis -in -economics.
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2. Economic networks

2.1. Related literature

Even though network structures naturally arise in many aspects of economics and are subject of prominent research in the field, 
much of the previous literature has ignored the implied interdependencies, instead opting for regression models assuming ties to be 
independent conditional on the covariates (e.g. Anderson and Van Wincoop, 2003, Rose, 2004, Lewer and Van den Berg, 2008). This 
assumption is often unreasonable in practice. It would, for example, imply that Germany imposing economic sanctions on Russia is 
independent of Italy imposing sanctions on Russia, and, in the directed case, even of Russia imposing them on Germany itself. While 
no standard framework for the modeling of empirical network data has emerged in economics so far, a number of contributions in – 
or adjacent to – the field do make use of statistical network models. We shortly survey these works here to show that the models we 
present are indeed suitable for the analysis of economic data. Possibly the most obvious kind of economic network is the international 
trade network (see Chaney, 2014) and many of these studies accordingly seek to model the formation of trade ties. In this vein, two 
early studies (Ward and Hoff, 2007; Ward et al., 2013) apply latent position models to show that trade exhibits a latent network 
structure beyond what a standard gravity model can capture (see also Fagiolo, 2010; Dueñas and Fagiolo, 2013). More recently, 
numerous contributions have used the ERGM to explicitly theorize and understand network interdependence in the general trade 
(Herman, 2022; Liu et al., 2022; Smith and Sarabi, 2022) as well as the trade in arms (Thurner et al., 2019; Lebacher et al., 2021), 
patents (He et al., 2019), and services (Feng et al., 2021).

That being said, empirical research on economic networks is not limited to trade. Smith et al. (2019) use multilevel ERGMs to 
study a production network consisting of ownership ties between firms at the micro-level and trade ties between countries at the 
macro-level, while Mundt (2021) explores the European Union’s sector-level production network via ERGMs as well as an alternative 
methodology, the stochastic actor-oriented model (SAOM). The latter is another prominent tool in the realm of network analysis, 
which is suitable for modeling longitudinal network data. As we, in the interest of brevity, focus on models for static networks (i.e. 
networks that are observed only at one point in time), we do not treat the SAOM, and instead refer to Snijders (1996, 2017) for an 
introduction to the model class. Going back to empirical research on economic networks in the literature, Fritz et al. (2023) deploy 
ERGMs to investigate patent collaboration networks. Studies on foreign direct investments document network influences using latent 
position models (Cao and Ward, 2014), or seek to model them via extensions of the ERGM (Schoeneman et al., 2022). Finally, 
economists also study networks of interstate alliances and armed conflict (see e.g. Jackson and Nei, 2015; König et al., 2017), both 
of which have been modeled via ERGMs (Cranmer et al., 2012; Campbell et al., 2018) and AME (Dorff et al., 2020; Minhas et al., 
2022). This short survey indicates that both ERGM and AME can be used to answer questions which are of substantive interest to 
economists.

2.2. Setup

Before introducing models for networks in which dependencies between ties are expected, we briefly introduce the mathematical 
framework for networks, as well as the necessary notation. Let 𝒚 =

(
𝑦𝑖𝑗

)
𝑖,𝑗=1,...,𝑛 be the adjacency matrix representing the observed 

binary network, comprising 𝑛 fixed and known agents (nodes). In this context, 𝑦𝑖𝑗 = 1 indicates an edge from agent 𝑖 to agent 𝑗, while 
𝑦𝑖𝑗 = 0 translates to no edge between the two. Since self-loops are not admitted for most studied networks, the diagonal of 𝒚 is left 
unspecified or set to zero. Depending on the application, the direction of an edge can carry additional information. If it does, we call 
the network directed. In this article, we mainly focus on this type of networks. Also note that all matrix-valued objects are written 
in bold font for consistency. In addition to the network connections, we often observe covariate information on the agents, which 
can be at the level of single agents (e.g. the gdp of a country) or at the pairwise level (e.g. the distance between two countries). We 
denote covariates by 𝒙1, ..., 𝒙𝑝, and our goal is to specify a statistical model for 𝒀 , that is the random variable corresponding to 𝒚, 
conditional on 𝒙1, ..., 𝒙𝑝. A natural way to do this is to specify a probability distribution over the space of all possible networks, which 
we define by the set  . Two main characteristics differentiate our modeling endeavor from classical regression techniques, such as 
Probit or logistic regression models. First, for most applications, we only observe one realization 𝒚 from 𝒀 , rendering the estimation 
of the parameters to characterize this distribution particularly challenging. Second, the entries of 𝒀 are generally co-dependent; thus, 
most conditional dependence assumptions inherent to common regression models are violated. Generally, we term mechanisms that 
induce direct dependence between edges to be endogenous, while all effects external to the modeled network, such as covariates, are 
called exogenous.

3. The exponential random graph model

The ERGM is one of the most popular models for analyzing network data. First introduced by Holland and Leinhardt (1981) as 
a model class that builds on the platform of exponential families, it was later extended with respect to fitting algorithms and more 
complex dependence structures (Lusher et al., 2012; Robins et al., 2007b). We next introduce the model step-by-step to highlight its 
ability to progressively generalize by building on conditional dependence assumptions.
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Fig. 1. Illustration of directed edgewise-shared partner statistics for 𝑘 agents. Circles represent agents, and black lines represent edges between them. The names 
follow 𝚜𝚝𝚊𝚝𝚗𝚎𝚝 nomenclature: OTP = “Outgoing Two-Path”, ISP = “Incoming Shared Partner”, OSP = “Outgoing Shared Partner”, and ITP = “Incoming Two-Path”.

3.1. Accounting for dependence in networks

We begin with the simplest possible stochastic network model, the Erdös-Rényi-Gilbert model (Erdös and Rényi, 1959; Gilbert, 
1959), where all edges are assumed to be independent and to have the same probability of being observed. In stochastic terms, each 
observed tie is then a realization of a binomial random variable with success probability 𝜋, which yields

ℙ𝜋 (𝒀 = 𝒚) =
𝑛∏

𝑖=1

∏
𝑗≠𝑖

𝜋𝑦𝑖𝑗 (1 − 𝜋)1−𝑦𝑖𝑗 (1)

for the probability to observe 𝒚. Evidently, model (1), which implies equal probability for all possible ties, is too restrictive to be 
applied to real world problems. In the next step, we, therefore, additionally incorporate covariates 𝑥𝑖𝑗 by letting 𝜋 vary depending on 
those covariates, leading to edge-specific probabilities 𝜋𝑖𝑗 . Following the common practice in logistic regression, we parameterize the 

log-odds by log
(

𝜋𝑖𝑗
1−𝜋𝑖𝑗

)
= 𝜃⊤𝑥𝑖𝑗 , where 𝑥𝑖𝑗 is a vector of exogenous statistics with the first entry set to 1 to incorporate an intercept, 

and get

ℙ𝜃(𝒀 = 𝒚) =
𝑛∏

𝑖=1

∏
𝑗≠𝑖

(
exp{𝜃⊤𝑥𝑖𝑗}

1 + exp{𝜃⊤𝑥𝑖𝑗}

)𝑦𝑖𝑗 (
1

1 + exp{𝜃⊤𝑥𝑖𝑗}

)1−𝑦𝑖𝑗

. (2)

From (2), the analogy to standard logistic regression being a special case of generalized linear models (Nelder and Wedderburn, 
1972) becomes apparent. The joint distribution of 𝒀 can be formulated in exponential family form, yielding

ℙ𝜃(𝒀 = 𝒚|𝑥) = exp{𝜃⊤𝑠(𝒚)}
𝜅(𝜃)

, (3)

where 𝑠(𝒚) = (𝑠1(𝒚), ..., 𝑠𝑝(𝒚)), 𝑠𝑞(𝒚) =
∑𝑛

𝑖=1
∑

𝑗≠𝑖 𝑦𝑖𝑗𝑥𝑖𝑗,𝑞 ∀ 𝑞 = 1, ..., 𝑝, with 𝑥𝑖𝑗,𝑞 as 𝑞− 𝑡ℎ entry in 𝑥𝑖𝑗 and 𝜅(𝜃) =∏𝑛
𝑖=1

∏
𝑗≠𝑖(1 +exp{𝜃⊤𝑥𝑖𝑗}). 

In the jargon of exponential families, we term 𝑠(𝒚) sufficient statistics.
Newcomb (1979) observed that many observed networks exhibit complicated relational mechanisms, including reciprocity, which 

we can account for by extending the set of sufficient statistics. Under reciprocity, an edge 𝑌𝑗𝑖 influences the probability of its 
reciprocal edge 𝑌𝑖𝑗 to occur. Analyzing social networks, we would expect that the probability of agent 𝑖 nominating agent 𝑗 to be 
a friend is higher if agent 𝑗 has nominated agent 𝑖 as a friend. Holland and Leinhardt (1981) extended model (1) to such settings 
with the so-called 𝑝1 model. To represent reciprocity, we assume dyads, each of them defined by (𝑌𝑖𝑗 , 𝑌𝑗𝑖), to be independent of 
one another, which again yields an exponential family distribution similar to (3) with sufficient statistics that count the number of 
mutual ties (𝑠Mut(𝒚) =

∑
𝑖<𝑗 𝑦𝑖𝑗𝑦𝑗𝑖), of edges (𝑠Edges(𝒚) =

∑𝑛
𝑖=1

∑
𝑗≠𝑖 𝑦𝑖𝑗 ), and the in- and out-degree statistics for all degrees observed in 

the networks.2 Agents’ in- and out-degrees are their number of incoming and outgoing edges, and relate to their relative position in 
the network (Wasserman and Faust, 1994).

Next to reciprocity, another important endogenous network mechanism is transitivity, originating in the structural balance theory 
of Heider (1946) and adapted to binary networks by Davis (1970). Transitivity affects the clustering in the network, implying that 
a two-path between agents 𝑖 and 𝑗, i.e. 𝑦𝑖ℎ = 𝑦ℎ𝑗 = 1 for some other agent ℎ, affects the edge probability of 𝑌𝑖𝑗 . Put differently, 𝑌𝑖𝑗
and 𝑌𝑘ℎ are assumed to be independent iff 𝑖, 𝑗 ≠ 𝑘 and 𝑖, 𝑗 ≠ ℎ. Frank and Strauss (1986) proposed the Markov model to capture such 
dependencies. For this model, the sufficient statistics are star-statistics, which are counts of sub-structures in the network where one 
agent has (incoming and outgoing) edges to between 0 and 𝑛 − 1 other agents, and counts of triangular structures. If the network is 
directed it is possible to define different types of triangular structures, as depicted in Fig. 1.

3.2. Extension to general dependencies

Starting from the Erdös-Rényi-Gilbert model, which is a special case of a generalized linear model, we have consecutively allowed 
for more complicated dependencies between edges, resulting in the Markov graphs of Frank and Strauss (1986). Over this course, we 
showed that each model can be stated in exponential family form, characterized by a particular set of sufficient statistics. We now 

2 We provide more details on this derivation in the Supplementary Material.
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make this more explicit to allow for more general dependence structures, and specify a probabilistic model for 𝒀 directly through 
the sufficient statistics.3 Wasserman and Pattison (1996) introduced this model as

ℙ𝜃(𝒀 = 𝒚) =
exp{𝜃⊤𝒔(𝒚)}

𝜅(𝜃)
, (4)

where 𝜃 is a 𝑝-dimensional vector of parameters to be estimated, 𝒔(𝒚) is a function calculating the vector of 𝑝 sufficient statistics 
for network 𝒚, and 𝜅(𝜃) =∑

𝒚̃∈ exp{𝜃⊤𝑠(𝒚̃)} is a normalizing constant to ensure that (4) sums up to one over all 𝒚 ∈  . To estimate 
𝜃, Handcock (2003) adapted the Monte Carlo Maximum Likelihood technique of Geyer and Thompson (1992), approximating the 
logarithmic likelihood ratio of 𝜃 and a fixed 𝜃0 via Monte Carlo quadrature (see Hunter et al., 2012, for an in-depth discussion).

A problem often encountered when fitting model (4) to networks is degeneracy (Handcock, 2003; Schweinberger, 2011). Degen-
erate models are characterized by probability distributions that put most probability mass either on the empty or on the full network, 
i.e., where either all or no ties are observed. To detect this behavior, one can use a goodness-of-fit procedure where observed network 
statistics are compared to statistics of networks simulated under the estimated model (Hunter et al., 2008). To address it, Snijders 
et al. (2006) and Hunter and Handcock (2006) propose weighted statistics that, in many cases, have better empirical behavior. De-
generacy commonly affects model specifications encompassing statistics for triad counts and multiple degree statistics. For in-degree 
statistics, we would thus incorporate the geometrically-weighted in-degree,

𝐺𝑊 𝐼𝐷𝐸𝐺(𝒚, 𝛼) = exp{𝛼}
𝑛−1∑
𝑘=1

(
1 − (1 − exp{−𝛼})𝑘

)
𝐼𝐷𝐸𝐺𝑘(𝒚), (5)

where 𝐼𝐷𝐸𝐺𝑘(𝒚) is the number of agents in the studied network with in-degree 𝑘 and 𝛼 is a fixed decay parameter. One can substitute 
𝐼𝐷𝐸𝐺𝑘(𝒚) in (5) with the number of agents with a specific out-degree, 𝑂𝐷𝐸𝐺𝑘(𝒚), to capture the out-degree distribution. We term 
these statistics geometrically weighted since the weights in (5) are a geometric series.4 A positive estimate implies that an edge from 
a low-degree agent is more likely than an edge from a high-degree agent, resulting in a decentralized network. If, on the other hand, 
the corresponding coefficient is negative, one may interpret it as an indicator for a centralized network.

To capture clustering, we have to define the distribution of edgewise-shared partners (ESP). This distribution is defined as the 
relative frequency of edges in the network with a specific number of 𝑘 shared partners, that we denote by 𝐸𝑆𝑃 (𝒚) for 𝑘 ∈ {1, ..., 𝑛 −2}. 
As shown in Fig. 1, various versions of edgewise-shared partner statistics can be found in directed networks, depending on the 
direction of the edges between the three agents involved. Geometrically weighted statistics can be stated for them in a similar 
manner as for degree statistics. For example, for the outgoing two-path (OTP, see Fig. 1a), this is

𝐺𝑊 𝑂𝑇𝑃 (𝒚, 𝛼) = exp{𝛼}
𝑛−2∑
𝑘=1

(
1 − (1 − exp{−𝛼})𝑘

)
𝑂𝑇𝑃𝑘(𝒚). (6)

In this case, a positive coefficient indicates that sharing ties with third actors increases the probability of observing an event between 
two agents.

Along with capturing endogenous network statistics, it is also possible to extend the ERGM framework to include the temporal 
dimension, that is, to model longitudinal network data. This is done quite naturally through use of a Markov assumption on the 
temporal dependence of subsequently observed networks, giving rise to the Temporal Exponential Random Graph Model (TERGM). 
As we here focus on static networks, we do not cover this in depth, and refer to Hanneke et al. (2010) for an introduction to the 
TERGM, and to Fritz et al. (2020) for a more general discussion on temporal extensions to the model class.

In summary, the ERGM allows to account for network dependencies via explicitly specifying them in 𝒔(𝒚). A large variety of 
potential network statistics, such as those given in (5) and (6), can be included in 𝒔(𝒚), enabling to test for their influence in the 
formation of the observed network. By allowing for this explicit inclusion and testing of network statistics, the ERGM requires 
researchers to at least have an implicit theory regarding what types of network dependence should exist in the network they study. 
Without such theory to guide the selection of network statistics, the range of potential network dependencies, and corresponding 
statistics, is virtually endless.5 As a result, the ERGM is best suited for research questions that explicitly concern interdependencies 
within the network. If these interdependencies are, instead, only a potential source of bias the researcher wants to control for, the 
AME model (introduced in Section 4) may be a better fit.

3.3. Application to the international arms trade network

We next make use of the ERGM to analyze the international arms transfer network. Recent studies on trade in Major Conventional 
Weapons (MCW), such as fighter aircraft or tanks, not only emphasize its networked nature, but also argue that this very nature is 
of substantive theoretical interest (Thurner et al., 2019; Fritz et al., 2021). In line with Chaney (2014), triadic trade structures are 
held to reveal information regarding the participants’ economic and security interests. Explicitly modeling these structures allows us 

3 Alternatively, (4) can also be derived as the equilibrium distribution of a strategic game where players myopically reassess and update their links to optimize 
their utility in the network (see Mele, 2017; Boucher and Mourifié, 2017).

4 Geometrically weighted statistics require setting the decay parameter 𝛼. We set 𝛼 = log(2), though it can also be estimated as an additional parameter given 
sufficient data (Hunter and Handcock, 2006).

5 For a survey of possible endogenous terms, see Morris et al. (2008).

6. Dependence matters: Statistical models to identify the drivers of tie formation in economic
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Fig. 2. Illustration of the international arms trade network in 2018. Countries are labeled by their ISO 3166-1 codes, and a directed edge from node 𝑖 to node 𝑗
indicates major conventional weapons being delivered from country 𝑖 to country 𝑗.

to test hypotheses regarding their effects on further arms transfers. Accordingly, we seek to model the network of international arms 
transfers in the year 2018, where countries are nodes and a directed edge indicates MCW being delivered from country 𝑖 to country 
𝑗. Our interest here mainly lies in uncovering the network’s endogenous mechanisms. MCW trade data come from SIPRI (2021), and 
the resulting network is depicted in Fig. 2, obtained using the Yifan Hu force-directed graph drawing algorithm (Hu, 2005) with the 
software Gephi (Bastian et al., 2009).

For estimating the parameters characterizing the ERGM, we use the R package 𝚎𝚛𝚐𝚖 (Handcock et al., 2008a). Since evaluating 
𝜅(𝜽) from (4) necessitates calculating the sum of || = 2𝑛(𝑛−1) terms, we rely on MCMC approximations thereof to obtain the maximum 
likelihood estimates (see Handcock, 2003 and Hummel et al., 2012 for additional information on this topic). As discussed above, 
the ERGM allows us to use both exogenous (node-specific and pair-specific) attributes as well as endogenous structures to model the 
network of interest. Here, we select both types of covariates based on existing studies on the arms trade (Thurner et al., 2019; Fritz et 
al., 2021). In addition to an edges term, which corresponds to the intercept in standard regression models, we include importers’ and 
exporters’ logged GDP, whether they share a defense pact, their absolute difference in “polity” scores (a type of democracy index), 
and their geographical distance.6 We lag these covariates by three years, reflecting the median time between order and delivery for 
MCW delivered in 2018.7 More importantly, for the purpose of demonstrating how to model network data with the ERGM, we specify 
five endogenous network terms. In- and out-degree (IDEG and ODEG) measure, respectively, importers’ and exporters’ trade activity, 
and thus capture whether highly active importers and exporters are particularly attractive trading partners, or if they are instead 
less likely to form additional trade ties. Moreover, we specify a reciprocity term to capture whether countries tend to trade MCW 
uni- or bidirectionally. We further include two types of triadic structures, which represent transitivity and a shared supplier between 
countries 𝑖 and 𝑗. The transitivity term counts how often country 𝑖 exports arms to 𝑗 while 𝑖 exports to 𝑘, which in turn exports 
to 𝑗, thus capturing 𝑖’s tendency to directly trade with 𝑗 if they engage in indirect trade (OTP, see Fig. 1a). In contrast, the shared 
supplier term counts how often country 𝑖 sends arms to 𝑗 while both import weapons from a shared supplier 𝑘 (ISP, see Fig. 1b). 
Note that, given the issue of degeneracy discussed above, we use geometrically weighted versions of all endogenous statistics except 
reciprocity. Finally, we include a repetition term capturing whether arms transfer dyads observed in 2018 had already occurred in 

6 Data for these covariates come from the 𝚙𝚎𝚊𝚌𝚎𝚜𝚌𝚒𝚎𝚗𝚌𝚎𝚛 package (Miller, 2022).
7 We use the median as the distribution of times between order and delivery is quite skewed. As shown in the Supplementary Materials, our substantive results 

remain unchanged when using 4- and 5-year lags instead, which reflect the average time between order and delivery. In particular, the ERGM outperforms the logistic 
regression model regardless of lag choice.
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Table 1

Estimated coefficients and standard errors (in parentheses) of the 
ERGM and the logistic regression model for the international arms 
trade network in 2018.

ERGM Logit

Intercept −15.356 (2.017)∗∗∗ −28.197 (1.731)∗∗∗
Repetition 3.254 (0.141)∗∗∗ 3.957 (0.141)∗∗∗
Distance −0.081 (0.087) −0.239 (0.088)∗∗
Abs. Diff. Polity −0.001 (0.010) −0.003 (0.012)
Alliance 0.350 (0.207) 0.209 (0.207)
log-GDP (Sender) 0.300 (0.050)∗∗∗ 0.588 (0.045)∗∗∗
log-GDP (Receiver) 0.166 (0.049)∗∗∗ 0.355 (0.039)∗∗∗
Mutual −0.311 (0.438)
GWIDEG −1.478 (0.296)∗∗∗
GWODEG −2.848 (0.296)∗∗∗
GWOTP −0.146 (0.104)
GWISP 0.210 (0.083)∗

AIC 1769.718 1891.984
BIC 1866.053 1948.179
Log Likelihood −872.859 −938.992

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.

any of the previous three years. Results of this ERGM, as well as, for comparison’s sake, a logistic regression that includes the same 
exogenous covariates but does not capture any of the endogenous network structures, are presented in Table 1. These results can be 
compared directly, as, just like in a logistic regression model, coefficients in the ERGM indicate the additive change in the log odds of 
a tie occurring in association with a unit change in the respective variable. In this sense, the logistic regression model can be viewed 
as a special case of the ERGM in which the network effects are omitted. From the table, we can see how the two models differ both in 
their in-sample fit, as captured by AIC and BIC,8 as well as in the substantive effects they identify for the exogenous covariates. The 
repetition coefficient is positive and statistically significant in both models, but differs substantially in its size. An arms transfer edge 
having occurred at least once in 2015–17 increases the log odds of it occurring also in 2018 by 3.96 in the Logit, but only by 3.26 
in the ERGM. Similarly, both models agree that the log odds of an arms transfer occurring increase with the economic size of the 
sender and receiver, as captured by their respective GDPs, but the coefficients retrieved by the Logit are approximately double the 
size of those in the ERGM, thus attributing more explanatory power to them. Also in this vein, the effect of the geographical distance 
between sender and receiver is three times as large in the logistic regression as in the ERGM and, while statistically significant in the 
former, indistinguishable from zero in the latter. Finally, both models report small and statistically insignificant effects for countries’ 
polity difference and alliance ties. Taken together, however, there are clear, substantively meaningful differences in the effect sizes 
and, in the case of geographical distance, even statistical significance of the coefficients that the ERGM and Logit recover for the 
exogenous covariates.

Furthermore, three of the endogenous statistics included in the ERGM exhibit statistically significant effects on the probability 
of arms being traded. The results for in- and out-degree replicate the finding by Thurner et al. (2019), showing that highly active 
importers and exporters are less likely to form additional trade ties. In the ERGM, coefficients can also be interpreted at the global 
level, in addition to the edge-level interpretation given above. The shared supplier term having a (statistically significant) positive 
coefficient indicates, at the edge level, that an exporter is more likely to transfer weapons to a potential receiver if both of them 
import arms from the same source. Globally, on the other hand, the same coefficient means that the observed network exhibits more 
shared supplier configurations – where country 𝑖 sends weapon to 𝑗 while both receive arms from 𝑘 – than would be expected in a 
random network of the same size. On the whole, the results presented in Table 1 offer an example for the striking differences that 
modeling network structures (instead of assuming them away) can make. The ERGM and Logit, while identical in their non-network 
covariates, report substantively different effects for these covariates, and, in the ERGM, network effects are also found to drive the 
formation of arms transfer edges.

4. The additive and multiplicative effect network model

4.1. Latent variable network models

Another way to account for network dependencies is by making use of latent variables. Models within this class assume that 
latent variables 𝑍𝑖 are associated with each node 𝑖. Depending on the type of model, these latent variables can either be discrete 
(e.g. indicating group memberships for each node) or continuous, and affect the connection probability in different ways (Matias 
and Robin, 2014). An early (but still popular) approach in this direction is the stochastic blockmodel, which assumes that each agent 

8 As shown in the Supplementary Material, the ERGM also outperforms the Logit model when assessing their respective areas under the receiver-operator and 
precision-recall curves. In line with Hunter and Handcock (2006), one could also calculate the likelihood ratio test statistic from the log likelihoods reported in 
Table 1 for the same purpose.

6. Dependence matters: Statistical models to identify the drivers of tie formation in economic
networks
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possesses a latent, categorical class (or group membership). Nodes within each class are assumed to be stochastically equivalent 
in their connectivity behavior, meaning that the probability of two nodes to connect depends solely on their group memberships 
(Holland et al., 1983; De Nicola et al., 2022). This family of models is attractive due to its simplicity in detecting and describing 
subgroups of nodes in networks. In many applications, however, discrete groupings fail to adequately represent the observed data, 
as agents behave more heterogeneously. Moving from discrete to continuous latent variable network models, another prominent 
approach is the latent distance model. The latter postulates that agents are positioned in a latent Euclidean “social space”, and that 
the closer they are within it, the more likely they are to form ties (Hoff et al., 2002). More precisely, the classical latent distance 
model specifies the probability of observing an edge between nodes 𝑖 and 𝑗, conditional on 𝑍, through

ℙ𝜃(𝑌𝑖𝑗 = 1|𝒁) =
exp{𝜃⊤𝑥𝑖𝑗 − ‖𝒛𝑖 − 𝒛𝑗‖}

1 + exp{𝜃⊤𝑥𝑖𝑗 − ‖𝒛𝑖 − 𝒛𝑗‖}
, (7)

where 𝒁 = (𝒛1, ..., 𝒛𝑛) denotes the latent positions of the nodes in the 𝑑-dimensional latent space, and 𝜃 is the coefficient vector 
for the covariates 𝑥𝑖𝑗 . The latent positions 𝒁 are assumed to originate independently from a spherical Gaussian distribution, i.e. 
𝑍 ∼𝑁𝑑 (0, 𝜏2𝑰𝑑 )), where 𝑰𝑑 indicates a 𝑑-dimensional identity matrix.

Latent distance models are particularly attractive for social networks in which triadic closure plays a major role, and where 
nodes with similar characteristics tend to form connections with each other (i.e. homophilic networks, see Rivera et al., 2010). It is 
also possible to add nodal random effects to the model, to control for agent-specific heterogeneity in the propensity to form edges 
(Krivitsky et al., 2009). The model then becomes

ℙ𝜃(𝑌𝑖𝑗 = 1|𝒁, 𝑎, 𝑏) =
exp{𝜃⊤𝑥𝑖𝑗 − ‖𝒛𝑖 − 𝒛𝑗‖+ 𝑎𝑖 + 𝑏𝑗}

1 + exp{𝜃⊤𝑥𝑖𝑗 − ‖𝒛𝑖 − 𝒛𝑗‖+ 𝑎𝑖 + 𝑏𝑗}
, (8)

where 𝑎 = (𝑎1, ..., 𝑎𝑛) and 𝑏 = (𝑏1, ..., 𝑏𝑛) are node-specific sender and receiver effects that account for the individual agents’ propensity 
to form ties, with 𝑎 ∼𝑁𝑛(0, 𝜏2𝑎𝑰𝑛) and 𝑏 ∼𝑁𝑛(0, 𝜏2𝑏 𝑰𝑛).

Despite its advantages and its fairly simple interpretation, a Euclidean latent space is unable to effectively approximate the 
behavior of networks where nodes that are similar in terms of connectivity behavior are not necessarily more likely to form ties (Hoff, 
2008), such as, e.g., many networks of amorous relationships (Ghani et al., 1997; Bearman et al., 2004). More generally, the latent 
distance model tends to perform poorly for networks in which stochastic equivalence does not imply homophily and triadic closure, 
i.e., when nodes which behave similarly in terms of connectivity patterns towards the rest of the network do not necessarily have a 
higher probability of being connected among themselves. This is often the case in economics, where real-world networks can exhibit 
varying degrees and combinations of stochastic equivalence, triadic closure and homophily. Moreover, it is often a priori unclear 
which of these mechanisms are at play in a given observed network. In this context, agent-specific multiplicative random effects 
instead of the additive latent positions allow for simultaneously representing all these patterns (Hoff, 2005). Further developments 
of this innovation have led to the modern specification of the Additive and Multiplicative Effects network model (AME, Hoff, 2011), 
which, from a matrix representation perspective, generalizes both the stochastic blockmodel and the latent distance model (Hoff, 
2021).

4.2. AME: motivation and framework

The AME approach can be motivated by considering that network data often exhibit first-, second-, and third-order dependencies. 
First-order effects capture agent-specific heterogeneity in sending (or receiving) ties within a network. For example, in the case 
of companies and legal disputes, first-order effects can be viewed as the propensity of each firm to initiate (or be hit by) legal 
disputes. Second-order effects, i.e., reciprocity, describe the statistical dependency of the directed relationship between two agents 
in the network. In the previous example, this effect can be described as the correlation between (a) company 𝑖 initiating a legal 
dispute against company 𝑗 and (b) 𝑗 doing the same towards 𝑖. Of course, second-order effects can only occur in directed networks. 
Third-order effects are described as the dependency within triads, defined as the connections between three agents, and relate to the 
triangular statistics previously illustrated in Fig. 1. How likely is it that “a friend of a friend is also my friend”? Or, returning to the 
previous example: given that 𝑖 has legal disputes with 𝑗 and 𝑘, how likely are disputes to occur between 𝑗 and 𝑘?

The AME network model is designed to simultaneously capture these three orders of dependencies. More specifically, it extends 
the classical (generalized) linear modeling framework by incorporating extra terms into the systematic component to account for 
them. In the case of binary network data, we can make use of the Probit AME model. As is well known, the classical Probit regression 
model can be motivated through a latent variable representation in which 𝑦𝑖𝑗 is the binary indicator that some latent normal random 
variable, say 𝐿𝑖𝑗 ∼ (𝜃⊤𝒙𝑖𝑗 , 𝜎2), is greater than zero (Albert and Chib, 1993). But an ordinary Probit regression model assumes that 
𝐿𝑖𝑗 , and thus the binary indicators (edges) 𝑦𝑖𝑗 , are independent, which is generally inappropriate for network data. In contrast, the 
AME Probit model specifies the probability of a tie 𝑦𝑖𝑗 from agent 𝑖 to agent 𝑗, conditional on a set of latent variables 𝑊 , as

ℙ(𝑌𝑖𝑗 = 1|𝑊 ) =𝚽(𝜃⊤𝒙𝑖𝑗 + 𝑒𝑖𝑗 ), (9)

where 𝚽 is the cumulative distribution function of the standard normal distribution, 𝜃⊤𝒙𝑖𝑗 accommodates the inclusion of dyadic, 
sender, and receiver covariates, and 𝑒𝑖𝑗 can be viewed as a structured residual, containing the latent terms in 𝑊 to account for the 
network dependencies described above. In the directed case, 𝑒𝑖𝑗 is composed as

𝑒𝑖𝑗 = 𝑎𝑖 + 𝑏𝑗 + 𝑢𝑖𝑣𝑗 + 𝜀𝑖𝑗 . (10)
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Fig. 3. Illustration of the global foreign exchange activity network in 1900. Countries are labeled by their ISO 3166-1 codes, and an edge from node 𝑖 to node 𝑗
indicates active trading of the currency from country 𝑗 within a financial center of country 𝑖.

In this context, 𝑎𝑖 and 𝑏𝑗 are zero-mean additive effects for sender 𝑖 and receiver 𝑗 accounting for first-order dependencies, jointly 
specified as

(𝑎1, 𝑏1), ..., (𝑎𝑛, 𝑏𝑛)
i.i.d.∼ 𝑁2(0,Σ1), with Σ1 =

(
𝜎𝑎 𝜎𝑎𝑏
𝜎𝑎𝑏 𝜎𝑏

)
. (11)

The parameters 𝜎𝑎 and 𝜎𝑏 measure the variance of the additive sender and receiver effects, respectively, while 𝜎𝑎𝑏 relates to the 
covariance between sender and receiver effects for the same node. Going back to (10), 𝜀𝑖𝑗 is a zero-mean residual term which 
accounts for second order dependencies, i.e. reciprocity. More specifically, it holds that

{(𝜀𝑖𝑗 , 𝜀𝑗𝑖) ∶ 𝑖 < 𝑗} i.i.d.∼ 𝑁2(0,Σ2), with Σ2 = 𝜎2
(
1 𝜌
𝜌 1

)
, (12)

where 𝜎2 denotes the error variance and 𝜌 determines the correlation between 𝜀𝑖𝑗 and 𝜀𝑗𝑖, thus quantifying the tendency towards 
reciprocity. Finally, 𝒖𝑖 and 𝒗𝑗 in (10) are 𝑑-dimensional multiplicative sender and receiver effect vectors that account for third-order 
dependencies, and for which (𝑢1, 𝑣1), ..., (𝑢𝑛, 𝑣𝑛) ∼2𝑑 (0, Σ3) holds.

As noted above, AME is able to represent a wide variety of network structures, generalizing several other latent variable model 
classes. This generality comes at the price of a high level of complexity for the estimated latent structure. This can make the model 
class a sub-optimal choice if one wants to interpret the latent structure with respect to, e.g., clustering. On the other hand, its 
flexibility makes it an ideal fit when the underlying network dependencies are unknown, and the researchers’ interest mainly lies 
in evaluating and interpreting the effect of dyadic and nodal covariates on tie formation while controlling for network effects. This 
strength has led to AME being used for several applications of this type (Koster, 2018; Minhas et al., 2019, 2022; Dorff et al., 2020). 
We next showcase the AME framework by applying it to the world foreign exchange activity network as of 1900, originally introduced 
and studied by Flandreau and Jobst (2005, 2009). This application highlights how using AME instead of classical regression can allow 
us to reconsider existing, influential answers to relevant questions via replication.

4.3. Application to the global foreign exchange activity network

In 1900, every financial center featured a foreign exchange market were bankers bought and sold foreign currency against the 
domestic one. Foreign exchange market activity was monitored in local bulletins, which allowed Flandreau and Jobst (2005) to 
collect a global dataset with all currencies used in the world at that time. In the resulting network structure, laid out in Fig. 3, 
countries are nodes, and a (directed) edge from country 𝑖 to country 𝑗 occurs if the currency of country 𝑗 was actively traded in at 
least one financial center within country 𝑖. From the graph representation, laid out using a variant of the Yifan Hu force-directed 
graph drawing algorithm (Hu, 2005), we observe that the most actively traded currencies at the time belonged to large European 
economies, such as Great Britain, France and Germany. To determine the drivers of currency adoption, Flandreau and Jobst (2009)
model this network as a function of several covariates by employing ordinary binary regression. As we show, it is possible to use 
AME to pursue the same goal while taking network dependencies into account.

6. Dependence matters: Statistical models to identify the drivers of tie formation in economic
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Table 2

Estimated coefficients and related standard errors (in parentheses) for the 
AME model and the corresponding Probit model for the global foreign ex-
change activity network in 1900.

AME Classical Probit

Intercept −4.845 (5.310) −3.211 (1.580)∗

Sender

⎧
⎪⎪⎨⎪⎪⎩

Gold standard −0.629 (0.397) −0.354 (0.155)∗

log-GDP per-capita −0.453 (0.419) −0.259 (0.152)
Democracy index −0.033 (0.064) −0.025 (0.026)
Currency coverage 1.418 (0.405)∗∗∗ 0.470 (0.137)∗∗∗

Receiver

⎧⎪⎪⎨⎪⎪⎩

Gold standard −0.599 (0.667) −0.468 (0.191)∗

log-GDP per-capita 0.426 (0.703) 0.240 (0.159)
Democracy index 0.121 (0.102) 0.066 (0.019)∗∗∗

Currency coverage 2.734 (0.691)∗∗∗ 1.363 (0.181)∗∗∗

Dyadic

{
Distance −1.019 (0.151)∗∗∗ −0.471 (0.064)∗∗∗

log-trade volume 0.488 (0.081)∗∗∗ 0.346 (0.036)∗∗∗

∗∗∗𝑝 < 0.001; ∗∗𝑝 < 0.01; ∗𝑝 < 0.05.

We specify the AME model as in (9), using directed edges 𝑦𝑖𝑗 as response variable. The nodal covariates we use, sourced from 
and described in detail in the replication materials of Flandreau and Jobst (2009), are (log)per-capita GDP, democracy index score, 
coverage of foreign currencies traded in the country, and an indicator of whether the country’s currency was on the gold standard. 
We also include, as dyadic covariates, the distance between two countries as well as their total trade volume. As specified in (10), 
the structured residual term 𝑒𝑖𝑗 comprises additive effects 𝑎𝑖 and 𝑏𝑗 for each node, which capture country-specific propensities to 
send and receive ties, respectively. Multiplicative effects 𝒖𝑖 and 𝒗𝑗 are included to account for third order dependencies. We here 
set the dimensionality of the multiplicative effects to two, which we assume to be sufficient given the relatively small size of the 
network.

To estimate the AME model, we make use of the R package amen (Hoff, 2015). As the likelihood involves intractable integrals 
arising from the combination of the transformation and dependencies induced by the model, closed form solutions are not available. 
The package thus uses reasonably standard Gibbs sampling algorithms to provide Bayesian inference on the model parameters. More 
details on the estimation routine can be found in Hoff (2021).

The results of the analysis, as well as, for comparison’s sake, a Probit regression including the same covariates but ignoring 
network dependencies, are displayed in Table 2. Note that the classical Probit regression model can be seen as a special case of 
AME Probit in which both additive and multiplicative node-specific effects are omitted. Additional model diagnostics and goodness 
of fit measures, together with the estimated variance and covariance parameters, are provided in the Supplementary Material. The 
estimated coefficients (for both models) can be interpreted as in standard Probit regression: For the nodal covariate per-capita GDP, 
for example, a unit increase in the log-per-capita GDP for country 𝑖 corresponds to a decrease of 0.453 in the linear predictor, 
therefore negatively influencing the expected probability of the country to send a tie. The same unit increase in the log-per-capita-
gdp for country 𝑖 corresponds to an increase of 0.426 in the linear predictor, and has therefore a positive impact on the expected 
probability of that country to receive a tie. In the case of a dyadic covariate, such as distance, a unit increase in distance between 
two countries leads to a decrease of 1.019 in the linear predictor, resulting in a decrease in the expected probability of the two 
countries to form a tie in either direction. Overall, we find that the principal drivers of the formation of a tie between 𝑖 and 𝑗 are the 
magnitude of the foreign exchange coverage of the two countries involved, the distance between them, and their reciprocal trade 
volume. These results correspond to the thesis of Kindleberger (1967) and to Flandreau and Jobst (2009), who suggest that the most 
important determinants of international adoption for a currency are size and convenience of use. At the same time, we note that, 
as for the ERGM in the arms trade example, the results of the Probit and AME model differ in several regards. In particular, several 
effects are statistically significant in the Probit but not significant in the AME model. Indeed, unacknowledged network dependence 
can cause downward bias in the estimation of standard errors, leading to spurious associations (Lee and Ogburn, 2021). This finding 
once again highlights how accounting for network dependencies can make a difference when it comes to the substantive results.

As a final note, we add that in this case we went with AME over ERGM as our interest lies in answering the research questions 
addressed by Flandreau and Jobst (2005, 2009), that is assessing the effect of the exogenous covariates in Table 2 on tie formation. 
AME allows us to do that without specifying the configuration of the endogenous network mechanisms at play, which are instead 
accounted for through the imposed latent structure. If, on the other hand, the researcher expects some specific network effects to 
play a role, and wishes to test for their presence and measure their influence on network formation, the ERGM may be a better 
tool. The latter model class can, for example, directly answer questions such as “Does the fact that both countries A and B trade the 
currency of country C influence the probability of A and B to be connected? And if so, to what extent?”. AME, on the other hand, is 
limited to accounting for those effects via the latent variables, without explicitly identifying them, to provide unbiased inference for 
the covariate effects. The choice between the two model classes is thus a matter of what assumptions can be made about the network 
and where the researcher’s interest lies.
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5. Conclusion

Complex dependencies are ubiquitous in the economic sciences (Chiarella et al., 2005; Flaschel et al., 2008), and many economic 
interactions can be naturally perceived as networks. This area of research has thus received considerable interest in recent years. 
However, this attention has not yet been accompanied by a corresponding general take-up of empirical research methods tailored 
towards networks. Instead, researchers either develop their own estimators to reproduce the features of their theoretical network 
models, or use standard regression methods that assume conditional independence of the edges in the network. Against this back-
ground, this paper seeks to provide a hands-on introduction to two statistical models which account for network dependencies, 
namely the Exponential Random Graph Model (ERGM) and the Additive and Multiplicative Effects network model (AME). These two 
classes serve different purposes: While the ERGM is most appropriate when explicitly interested in testing the effects of endogenous 
network structure, the AME model allows one to control for network dependencies while substantively focusing on estimating the 
effects of exogenous covariates of interest. We present the statistical foundations of both models, and demonstrate their applicability 
to economic networks through examples in the international arms trade and foreign currency exchange, showing that modeling 
network dependencies can alter the substantive results of the analysis. We, moreover, provide the full data and code necessary to 
replicate these exemplary applications. We explicitly encourage readers to use these replication materials to get started with ana-
lyzing economic networks via ERGM and AME, beginning with the examples covered here to then transfer the code and methods to 
their own research.

We especially want to encourage the use of such methods as not accounting for interdependence between observations when 
it exists can lead to biased estimates and spurious findings. Our two applications demonstrate that this bias can result in very 
different empirical results, and thus affect substantive conclusions. It is therefore vital to account for network structure when studying 
interactions between economic agents such as individuals, firms, or countries, regardless of whether one is substantively interested 
in this structure. As shown by Lee and Ogburn (2021), our applications are just two examples of how unaccounted dependence in 
the observed data may lead to spurious findings.

At the same time, this paper can only serve as an introduction to statistical network data analysis in economics. We covered 
two general frameworks in this realm, but, in the interest of brevity, focused only on their simplest versions that apply to networks 
observed at only one time point and with binary edges. However, both frameworks have been extended to cover more general 
settings. For the ERGM, there are extensions for longitudinal data (Hanneke et al., 2010), distinguishing between edge formation and 
continuation (Krivitsky and Handcock, 2014), as well as to settings where edges are not binary but instead count-valued or signed 
(Krivitsky, 2012; Fritz et al., 2022). As for AME, approaches for longitudinal networks are described by Minhas et al. (2016), while 
versions for undirected networks as well as for non-binary network data are presented by Hoff (2021). Both the ERGM and the AME 
frameworks are thus flexible enough to cover a wide array of potential economic interactions. We believe that increasingly adopting 
these methods will, in turn, aid our understanding of these interactions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

The full data and code used for the analysis is publicly available on our GitHub repository, appropriately referenced in the paper 
and in the Supplementary Material.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jebo .2023 .09 .021.

References

Albert, J.H., Chib, S., 1993. Bayesian analysis of binary and polychotomous response data. J. Am. Stat. Assoc. 88 (422), 669–679.
Anderson, J.E., Van Wincoop, E., 2003. Gravity with gravitas: a solution to the border puzzle. Am. Econ. Rev. 93 (1), 170–192.
Atalay, E., Hortacsu, A., Roberts, J., Syverson, C., 2011. Network structure of production. Proc. Natl. Acad. Sci. 108 (13), 5199–5202.
Bastian, M., Heymann, S., Jacomy, M., 2009. Gephi: an open source software for exploring and manipulating networks. In: Third International AAAI Conference on 

Weblogs and Social Media, pp. 361–362.
Bearman, P.S., Moody, J., Stovel, K., 2004. Chains of affection: the structure of adolescent romantic and sexual networks. Am. J. Sociol. 110 (1), 44–91.
Boucher, V., Mourifié, I., 2017. My friend far, far away: a random field approach to exponential random graph models. Econom. J. 20 (3), S14–S46.
Bramoullé, Y., Galeotti, A., Rogers, B.W., 2016. The Oxford Handbook of the Economics of Networks. Oxford University Press.
Campbell, B., Cranmer, S., Desmarais, B., 2018. Triangulating war: network structure and the democratic peace. arXiv :1809 .04141.
Cao, X., Ward, M.D., 2014. Do democracies attract portfolio investment? Transnational portfolio investments modeled as dynamic network. Int. Interact. 40 (2), 

216–245.
Chaney, T., 2014. The network structure of international trade. Am. Econ. Rev. 104 (11), 3600–3634.
Chiarella, C., Flaschel, P., Franke, R., 2005. Foundations for a Disequilibrium Theory of the Business Cycle: Qualitative Analysis and Quantitative Assessment. 

Cambridge University Press.
Cranmer, S.J., Desmarais, B.A., Kirkland, J.H., 2012. Toward a network theory of alliance formation. Int. Interact. 38 (3), 295–324.

6. Dependence matters: Statistical models to identify the drivers of tie formation in economic
networks

84



Journal of Economic Behavior and Organization 215 (2023) 351–363

362

G. De Nicola, C. Fritz, M. Mehrl et al.

Cranmer, S.J., Leifeld, P., McClurg, S.D., Rolfe, M., 2017. Navigating the range of statistical tools for inferential network analysis. Am. J. Polit. Sci. 61 (1), 237–251.
Davis, J.A., 1970. Clustering and hierarchy in interpersonal relations: testing two graph theoretical models on 742 sociomatrices. Am. Sociol. Rev. 35 (5), 843–851.
De Nicola, G., Sischka, B., Kauermann, G., 2022. Mixture models and networks: the stochastic blockmodel. Stat. Model. 22 (1–2), 67–94.
De Paula, Á., 2020. Econometric models of network formation. Annu. Rev. Econ. 12, 775–799.
Dorff, C., Gallop, M., Minhas, S., 2020. Networks of violence: predicting conflict in Nigeria. J. Polit. 82 (2), 476–493.
Dueñas, M., Fagiolo, G., 2013. Modeling the international-trade network: a gravity approach. J. Econ. Interact. Coord. 8 (1), 155–178.
Erdös, P., Rényi, A., 1959. On random graphs I. Publ. Math. (Debr.) 6, 290.
Fagiolo, G., 2010. The international-trade network: gravity equations and topological properties. J. Econ. Interact. Coord. 5 (1), 1–25.
Feng, L., Xu, H., Wu, G., Zhang, W., 2021. Service trade network structure and its determinants in the belt and road based on the temporal exponential random graph 

model. Pac. Econ. Rev. 26 (5), 617–650.
Flandreau, M., Jobst, C., 2005. The ties that divide: a network analysis of the international monetary system, 1890–1910. J. Econ. Hist. 65 (4), 977–1007.
Flandreau, M., Jobst, C., 2009. The empirics of international currencies: network externalities, history and persistence. Econ. J. 119 (537), 643–664.
Flaschel, P., Charpe, M., Galanis, G., Proaño, C.R., Veneziani, R., 2018. Macroeconomic and stock market interactions with endogenous aggregate sentiment dynamics. 

J. Econ. Dyn. Control 91, 237–256.
Flaschel, P., Franke, R., Semmler, W., 1997. Dynamic Macroeconomics: Instability, Fluctuation, and Growth in Monetary Economies. MIT Press.
Flaschel, P., Groh, G., Proaño, C., Semmler, W., 2008. Topics in Applied Macrodynamic Theory, vol. 10. Springer Science & Business Media.
Flaschel, P., Kauermann, G., Semmler, W., 2007. Testing wage and price Phillips curves for the United States. Metroeconomica 58 (4), 550–581.
Frank, O., Strauss, D., 1986. Markov graphs. J. Am. Stat. Assoc. 81 (395), 832–842.
Fritz, C., De Nicola, G., Kevork, S., Harhoff, D., Kauermann, G., 2023. Modelling the large and dynamically growing bipartite network of German patents and inventors. 

J. R. Stat. Soc., Ser. A, Stat. Soc. 186 (3), 557–576.
Fritz, C., Lebacher, M., Kauermann, G., 2020. Tempus volat, hora fugit: a survey of tie-oriented dynamic network models in discrete and continuous time. Stat. 

Neerl. 74 (3), 275–299.
Fritz, C., Mehrl, M., Thurner, P.W., Kauermann, G., 2022. Exponential random graph models for dynamic signed networks: an application to international relations. 

arXiv :2205 .13411.
Fritz, C., Thurner, P.W., Kauermann, G., 2021. Separable and semiparametric network-based counting processes applied to the international combat aircraft trades. 

Netw. Sci. 9 (3), 291–311.
Geyer, C.J., Thompson, E.A., 1992. Constrained Monte Carlo maximum likelihood for dependent data. J. R. Stat. Soc., Ser. B, Methodol. 54 (3), 657–683.
Ghani, A.C., Swinton, J., Garnett, G.P., 1997. The role of sexual partnership networks in the epidemiology of gonorrhea. Sex. Transm. Dis. 24 (1), 45–56.
Gilbert, E.N., 1959. Random graphs. Ann. Math. Stat. 30 (4), 1141–1144.
Goldenberg, A., Zheng, A.X., Fienberg, S.E., Airoldi, E.M., 2010. A survey of statistical network models. Found. Trends Mach. Learn. 2 (2), 129–233.
Graham, B.S., 2015. Methods of identification in social networks. Annu. Rev. Econ. 7 (1), 465–485.
Handcock, M., 2003. Assessing degeneracy in statistical models of social networks. Working Paper no. 39. University of Washington.
Handcock, M.S., Hunter, D.R., Butts, C.T., Goodreau, S.M., Krivitsky, P.N., Morris, M., Handcock, M.S., Butts, C.T., Goodreau, S.M., Morris, M., Hunter, D.R., Butts, 

C.T., Goodreau, S.M., Krivitsky, P.N., Morris, M., Handcock, M.S., Butts, C.T., Goodreau, S.M., Morris, M., Martina, 2008a. ergm: fit, simulate and diagnose 
exponential-family models for networks. J. Stat. Softw. 24 (3). nihpa54860.

Handcock, M.S., Hunter, D.R., Butts, C.T., Goodreau, S.M., Morris, M., 2008b. statnet: software tools for the representation, visualization, analysis and simulation of 
network data. J. Stat. Softw. 24 (1), 1548.

Hanneke, S., Fu, W., Xing, E.P., 2010. Discrete temporal models of social networks. Electron. J. Stat. 4, 585–605.
He, X., Dong, Y., Wu, Y., Jiang, G., Zheng, Y., 2019. Factors affecting evolution of the interprovincial technology patent trade networks in China based on exponential 

random graph models. Phys. A, Stat. Mech. Appl. 514, 443–457.
Heider, F., 1946. Attitudes and cognitive organization. J. Psychol. 21 (1), 107–112.
Herman, P.R., 2022. Modeling complex network patterns in international trade. Rev. World Econ. 158, 127–179.
Hoff, P., 2008. Modeling homophily and stochastic equivalence in symmetric relational data. Adv. Neural Inf. Process. Syst. 20, 657–664.
Hoff, P., 2021. Additive and multiplicative effects network models. Stat. Sci. 36 (1), 34–50.
Hoff, P.D., 2005. Bilinear mixed-effects models for dyadic data. J. Am. Stat. Assoc. 100 (469), 286–295.
Hoff, P.D., 2011. Hierarchical multilinear models for multiway data. Comput. Stat. Data Anal. 55 (1), 530–543.
Hoff, P.D., 2015. Dyadic data analysis with amen. preprint. arXiv :1506 .08237.
Hoff, P.D., Raftery, A.E., Handcock, M.S., 2002. Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97 (460), 1090–1098.
Holland, P.W., Laskey, K.B., Leinhardt, S., 1983. Stochastic blockmodels: first steps. Soc. Netw. 5 (2), 109–137.
Holland, P.W., Leinhardt, S., 1981. An exponential family of probability distributions for directed graphs. J. Am. Stat. Assoc. 76 (373), 33–50.
Hu, Y., 2005. Efficient, high-quality force-directed graph drawing. Math. J. 10 (1), 37–71.
Hummel, R.M., Hunter, D.R., Handcock, M.S., 2012. Improving simulation-based algorithms for fitting ERGMs. J. Comput. Graph. Stat. 21 (4), 920–939.
Hunter, D.R., Goodreau, S.M., Handcock, M.S., 2008. Goodness of fit of social network models. J. Am. Stat. Assoc. 103 (481), 248–258.
Hunter, D.R., Handcock, M.S., 2006. Inference in curved exponential family models for networks. J. Comput. Graph. Stat. 15 (3), 565–583.
Hunter, D.R., Krivitsky, P.N., Schweinberger, M., 2012. Computational statistical methods for social network models. J. Comput. Graph. Stat. 21 (4), 856–882.
Jackson, M.O., 2008. Social and Economic Networks. Princeton University Press.
Jackson, M.O., 2014. The past and future of network analysis in economics. In: The Oxford Handbook of the Economics of Networks. Oxford University Press.
Jackson, M.O., Nei, S., 2015. Networks of military alliances, wars, and international trade. Proc. Natl. Acad. Sci. 112 (50), 15277–15284.
Jackson, M.O., Rogers, B.W., 2007. Meeting strangers and friends of friends: how random are social networks? Am. Econ. Rev. 97 (3), 890–915.
Jackson, M.O., Rogers, B.W., Zenou, Y., 2017. The economic consequences of social-network structure. J. Econ. Lit. 55 (1), 49–95.
Kindleberger, C.P., 1967. The politics of international money and world language. International Finance Section, Department of Economics, Princeton University.
Koster, J., 2018. Family ties: the multilevel effects of households and kinship on the networks of individuals. R. Soc. Open Sci. 5 (4), 172159.
Krivitsky, P.N., 2012. Exponential-family random graph models for valued networks. Electron. J. Stat. 6, 1100–1128.
Krivitsky, P.N., Handcock, M.S., 2014. A separable model for dynamic networks. J. R. Stat. Soc., Ser. B, Stat. Methodol. 76 (1), 29–46.
Krivitsky, P.N., Handcock, M.S., Raftery, A.E., Hoff, P.D., 2009. Representing degree distributions, clustering, and homophily in social networks with latent cluster 

random effects models. Soc. Netw. 31 (3), 204–213.
König, M.D., Rohner, D., Thoenig, M., Zilibotti, F., 2017. Networks in conflict: theory and evidence from the great war of Africa. Econometrica 85 (4), 1093–1132.
Lebacher, M., Thurner, P.W., Kauermann, G., 2021. A dynamic separable network model with actor heterogeneity: an application to global weapons transfers. J. R. 

Stat. Soc., Ser. A, Stat. Soc. 184 (1), 201–226.
Lee, Y., Ogburn, E.L., 2021. Network dependence can lead to spurious associations and invalid inference. J. Am. Stat. Assoc. 116 (535), 1060–1074.
Lewer, J.J., Van den Berg, H., 2008. A gravity model of immigration. Econ. Lett. 99 (1), 164–167.
Liu, L., Shen, M., Sun, D., Yan, X., Hu, S., 2022. Preferential attachment, R&D expenditure and the evolution of international trade networks from the perspective of 

complex networks. Phys. A, Stat. Mech. Appl. 603, 127579.
Lusher, D., Koskinen, J., Robins, G., 2012. Exponential Random Graph Models for Social Networks. Cambridge University Press.

85



Journal of Economic Behavior and Organization 215 (2023) 351–363

363

G. De Nicola, C. Fritz, M. Mehrl et al.

Matias, C., Robin, S., 2014. Modeling heterogeneity in random graphs through latent space models: a selective review. ESAIM Proc. Surv. 47, 55–74.
Mele, A., 2017. A structural model of dense network formation. Econometrica 85 (3), 825–850.
Miller, S.V., 2022. {peacesciencer}: an R package for quantitative peace science research. Confl. Manage. Peace Sci. 39 (6), 755–779.
Minhas, S., Dorff, C., Gallop, M.B., Foster, M., Liu, H., Tellez, J., Ward, M.D., 2022. Taking dyads seriously. Political Sci. Res. Methods 10 (4), 703–721.
Minhas, S., Hoff, P.D., Ward, M.D., 2016. A new approach to analyzing coevolving longitudinal networks in international relations. J. Peace Res. 53 (3), 491–505.
Minhas, S., Hoff, P.D., Ward, M.D., 2019. Inferential approaches for network analysis: AMEN for latent factor models. Polit. Anal. 27 (2), 208–222.
Morales, E., Sheu, G., Zahler, A., 2019. Extended gravity. Rev. Econ. Stud. 86 (6), 2668–2712.
Morris, M., Handcock, M.S., Hunter, D.R., 2008. Specification of exponential-family random graph models: terms and computational aspects. J. Stat. Softw. 24 (4), 

1548.
Mundt, P., 2021. The formation of input–output architecture: evidence from the European Union. J. Econ. Behav. Organ. 183, 89–104.
Nelder, J.A., Wedderburn, R.W.M., 1972. Generalized linear models. J. R. Stat. Soc. A, General 135 (3), 370–384.
Newcomb, T.M., 1979. Reciprocity of interpersonal attraction: a nonconfirmation of a plausible hypothesis. Soc. Psychol. Q. 42 (4), 299–306.
Newman, M.E.J., 2003. The structure and function of complex networks. SIAM Rev. 45 (2), 167–256.
R Core Team, 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Rivera, M.T., Soderstrom, S.B., Uzzi, B., 2010. Dynamics of dyads in social networks: assortative, relational, and proximity mechanisms. Annu. Rev. Sociol. 36, 91–115.
Robins, G., Pattison, P., Kalish, Y., Lusher, D., 2007a. An introduction to exponential random graph (p*) models for social networks. Soc. Netw. 29 (2), 173–191.
Robins, G., Snijders, T., Wang, P., Handcock, M., Pattison, P., 2007b. Recent developments in exponential random graph (p*) models for social networks. Soc. Netw. 29 

(2), 192–215.
Rose, A.K., 2004. Do we really know that the WTO increases trade? Am. Econ. Rev. 94 (1), 98–114.
Schoeneman, J., Zhu, B., Desmarais, B.A., 2022. Complex dependence in foreign direct investment: network theory and empirical analysis. Political Sci. Res. Meth-

ods 10 (2), 243–259.
Schweinberger, M., 2011. Instability, sensitivity, and degeneracy of discrete exponential families. J. Am. Stat. Assoc. 106 (496), 1361–1370.
SIPRI, 2021. SIPRI arms transfers database. Stockholm international peace research institute, https://www .sipri .org /databases /armstransfers. (Accessed 20 October 

2022).
Smith, M., Gorgoni, S., Cronin, B., 2019. International production and trade in a high-tech industry: a multilevel network analysis. Soc. Netw. 59, 50–60.
Smith, M., Sarabi, Y., 2022. How does the behaviour of the core differ from the periphery? – An international trade network analysis. Soc. Netw. 70, 1–15.
Snijders, T.A., 1996. Stochastic actor-oriented models for network change. J. Math. Sociol. 21 (1–2), 149–172.
Snijders, T.A., 2017. Stochastic actor-oriented models for network dynamics. Annu. Rev. Stat. Appl. 4, 343–363.
Snijders, T.A.B., Pattison, P.E., Robins, G.L., Handcock, M.S., 2006. New specifications for exponential random graph models. Sociol. Method. 36 (1), 99–153.
Thurner, P.W., Schmid, C.S., Cranmer, S.J., Kauermann, G., 2019. Network interdependencies and the evolution of the international arms trade. J. Confl. Resolut. 63 

(7), 1736–1764.
van der Pol, J., 2019. Introduction to network modeling using exponential random graph models (ergm): theory and an application using R-project. Comput. Econ. 54 

(3), 845–875.
Ward, M.D., Ahlquist, J.S., Rozenas, A., 2013. Gravity’s rainbow: a dynamic latent space model for the world trade network. Netw. Sci. 1 (1), 95–118.
Ward, M.D., Hoff, P.D., 2007. Persistent patterns of international commerce. J. Peace Res. 44 (2), 157–175.
Wasserman, S., Faust, K., 1994. Social Network Analysis: Methods and Applications. Cambridge University Press.
Wasserman, S., Pattison, P., 1996. Logit models and logistic regressions for social networks: I. An introduction to Markov graphs and p*. Psychometrika 61 (3), 

401–425.

6. Dependence matters: Statistical models to identify the drivers of tie formation in economic
networks

86



7. Modelling the large and dynamically growing
bipartite network of German patents and
inventors

Contributing article

Fritz, C., De Nicola, G., Kevork, S., Harhoff, D., and Kauermann, G. (2023). Modelling the
large and dynamically growing bipartite network of German patents and inventors. Journal of
the Royal Statistical Society Series A: Statistics in Society, 186(3):557—576. https://doi.or
g/10.1093/jrsssa/qnad009.

Data and code

Available at https://github.com/corneliusfritz/Modelling-German-patents-and-inven
tors.

Copyright information

© (RSS) Royal Statistical Society 2023. The full article is included, as a license to reuse it in this
dissertation for non-commercial purposes has been obtained by the author.

Author contributions

The idea of modeling patent data as a bipartite network that grows over time can be attributed to
Göran Kauermann. Cornelius Fritz and Giacomo De Nicola subsequently specified the model,
and Cornelius Fritz implemented it. The manuscript was then mainly designed and drafted
by Cornelius Fritz and Giacomo De Nicola, with contributions from the other authors. More
specifically, the introduction was written jointly by Cornelius Fritz, Giacomo De Nicola, and
Göran Kauermann. Section 2, on the other hand, was composed by Giacomo De Nicola, Cornelius
Fritz, and Dietmar Harhoff. Section 3 was mainly written by Cornelius Fritz, while Giacomo De
Nicola wrote Section 4, with contributions from Cornelius Fritz and Dietmar Harhoff. All authors
contributed through fruitful comments and extensive proofreading of the manuscript.

87

https://doi.org/10.1093/jrsssa/qnad009
https://doi.org/10.1093/jrsssa/qnad009
https://github.com/corneliusfritz/Modelling-German-patents-and-inventors
https://github.com/corneliusfritz/Modelling-German-patents-and-inventors


Journal of the Royal Statistical Society Series A: 
Statistics in Society, 2023, 186, 557–576 
https://doi.org/10.1093/jrsssa/qnad009
Advance access publication 8 March 2023                                                                                       
Original Article

Modelling the large and dynamically growing 
bipartite network of German patents and 
inventors
Cornelius Fritz1 , Giacomo De Nicola1, Sevag Kevork1, Dietmar Harhoff2

and Göran Kauermann1

1Department of Statistics, Ludwig-Maximilians-Universität München, Ludwigstr. 33, Munich, 80539 Bavaria, 
Germany
2Max Planck Institute for Innovation and Competition, Marstallpl. 1, Munich, 80539 Bavaria, Germany
Address for correspondence: Cornelius Fritz, Department of Statistics, Ludwig-Maximilians-Universität München, 
Ludwigstr. 33, Munich, 80539 Bavaria, Germany. Email: cornelius.fritz@stat.uni-muenchen.de

Abstract
To explore the driving forces behind innovation, we analyse the dynamic bipartite network of all inventors and 
patents registered within the field of electrical engineering in Germany in the past two decades. To deal with 
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1 Introduction
In the social sciences, bipartite networks are often used to represent and study affiliation of the 
actors to some groups (such as directors on boards (Friel et al., 2016), or football players in teams 
(Onody & de Castro, 2004)) and participation of people to events (such as researchers citing pa
pers (Small, 1973), or actors in movies (Ahmed et al., 2007)). Research on bipartite structures ini
tially focused on unimodal projections of the networks (Breiger, 1974), where we consider two 
nodes of one type to be tied if they share at least one actor of the other kind. This practice forces 
the researcher to give priority to one type of node over another and thus comes with a loss of pos
sibly relevant information (Koskinen & Edling, 2012). Direct bipartite network analysis has first 
been considered in Borgatti and Everett (1997), where traditional network analysis techniques are 
systematically discussed for bipartite networks. Latapy et al. (2008) further adjusted known con
cepts from unipartite networks, such as clustering and redundancy, to the bipartite case, with a 
focus on large networks.

For this paper, we consider high-dimensional bipartite networks where actors are related to one 
another through instantaneous events, which by definition only occur once. In particular, we focus 
on the network formed by inventors residing in Germany and patents submitted between 1995 and 
2015, where a tie between an inventor and a patent is present if the individual is listed among the 
patent’s inventors. The resulting data structure is visualised in Figure 1a, where we can assign each 
patent (or event, in the jargon of bipartite network analysis) to a time point and a set of co- 
inventors. For instance, inventors A and B filed the joint patent with ID 1. We may represent 
the bipartite network structure as an adjacency matrix with entries Yij, where
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Yij = 1 if actor i is on patent ID j
0 otherwise

􏼚

(1) 

and i ∈ I and j ∈ K, where we denote the complete set of inventors and patents by I and K, re
spectively. In our example, this bipartite network is of massive dimensions, with |I| = 78.412 in
ventors on a total of |K|= 126.388 filed patents.

The data allow us to gain insight into the dynamics and drivers of innovation, collaboration, 
and knowledge flows in the private sector. Moreover, inventorship status on a patent is more le
gally binding than authorship of academic papers, suggesting a greater degree of validity of the 
results of network analysis in this context. The data, however, present some obstacles to their 
study. First, the complete network is too massive, making analysis with most traditional network 
techniques prohibitive. Second, the data carry structural zero entries since not all inventors are ac
tive during the entire time period between 1995 and 2015. This phenomenon is partially due to the 
retirement of inventors, who hence suffer from natural ‘actor mortality’. Moreover, inventors may 
change their career track, e.g., by moving into managerial positions and ending their patenting ac
tivities, thus reinforcing the aforementioned actor mortality in our data. Vice versa, new inventors 
continuously enter the picture by producing their first patent, resulting in what we can call ‘actor 
natality’ in the network. These aspects imply that the bipartite network matrix at hand contains 
structural zeros for inventors which are not active at particular time points. To incorporate this 
feature into a statistical network model, we consider the network dynamically and discretise the 
time dimension by looking at yearly data, such that time takes values t = 1, 2, …, T, as sketched 
in Figure 1a. In this context, T denotes the number of observed time points. We then allow the ac
tor set to change at each time point. For the adjacency matrix of Figure 1a, this leads to the matrix 
structure in Figure 1b, where e.g., inventor A retires after time point t = 1 and hence does not take 
part in the patent market at t = 2. To encode this information on the changing composition of ac
tors, we define activity sets I t to include all actors that are active at time point t. Further, let Kt 

denote the event set, containing all patents submitted in a particular time window. We assume 
that both sets are known for each time point t = 1, …, T. With this additional information, we de
compose the observed massive bipartite network matrix into smaller dimensional bipartite subma
trices denoted by

Yt = (Yt,ij : i ∈ I t, j ∈ Kt), (2) 

which are visualised for t = 1 and 2 by the grey-shaded areas in Figure 1b and where Yt,ik indicates 
whether inventor i is a co-owner of patent k at time point t. Instead of modelling the entire bipartite 
network, we break down our analysis to modelling Yt given the previous bipartite networks Y1, … 
Yt−1. Incorporating the varying actor set as such in the analysis allows us to structurally account 
for the observed actor mortality and natality while also making the estimation problem more man
ageable, thus solving both issues simultaneously.

This change in perspective induces a structure that deviates from conventionally analysed net
works. To accommodate for it in a probabilistic modelling framework, we extend the Temporal 
Exponential Random Graph Model (TERGM, Hanneke et al., 2010) towards dynamic bipartite 
networks with varying actor set. For TERGMs, we assume that a discrete Markov chain describes 
the generating process of the networks observed over time. The transition probabilities of jumping 
from one network to another one are determined by an Exponential Random Graph Model 
(ERGM, S. Wasserman & Pattison, 1996). ERGMs, on the other hand, were adapted to bipartite 
data by Faust and Skvoretz (1999), while adjustments to incorporate the model specifications of 
Snijders et al. (2006) were proposed in Wang, Robins, et al. (2013). These network models were 
already successfully applied to static (Metz et al., 2019) as well as dynamic networks (Broekel & 
Bednarz, 2018).

In addition to the dynamically varying actor set, the network at hand presents another particular 
feature for which we need to account in the modelling. Collaborations generally build up over 
time, rather than being confined to single time points. To adequately represent these mechanisms, 
we need to include covariate information from the past and on the pairwise level of one actor set in 
the model, which has not yet been implemented in the bipartite ERGM framework. We, therefore, 
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define and include sufficient network statistics in our model to account for this particular kind of 
dynamic interdependence.

Overall, the contributions of this paper are the following: We demonstrate how massive bipart
ite networks can be broken down in a way that allows their analysis, and propose sufficient sta
tistics for modelling bipartite temporal networks with varying actor set. Using the proposed 
methodology, we then contribute to the growing literature on innovation by analysing a compre
hensive patent and inventor population dataset. In particular, we study the network composed of 
all electrical engineering patents filed between 1995 and 2015 by inventors located in Germany. 
The unusually rich dataset allows us to study patterns of team formation in a more refined way 
than has been feasible to date. In particular, our modelling approach enables us to quantify 
how factors such as spatial proximity, teamwork, interlocking of collaborations, gender, and se
niority affect the output of inventors. By answering these questions, our study contributes empir
ical findings to current discussions on the role of gender and seniority in innovation and, more 
generally, in the workplace.

The remainder of the paper is organised as follows: Section 2 gives a literature overview of the 
research in patent data. In this section, we also describe the data in detail. Section 3 motivates the 
model and introduces its novelties in more detail from a theoretical perspective. We present 
the results of our empirical analysis in Section 4, while Section 5 wraps up the paper with some 
concluding remarks.

2 Patent data
2.1 Research on patents and inventor teams
The analysis of patents and their impact and evolution over time is an important area of current 
economic research. Hall and Harhoff (2012) provide a general overview of the field and its recent 
developments. The holder of a patent receives a temporary right (typically for 20 years) to exclude 
others from using the patented technology. The patent right can be extremely valuable, e.g., when 
it becomes the foundation of an economic monopoly. Hence, patents can create powerful incen
tives and induce invention and innovation efforts. In addition, patents require disclosure of the 
patented invention and thus may invite others to build on the patented technology. These benefits 
have to be held against the welfare losses due to reduced competition. The study of patents in much 
of classic economic literature revolves around the trade-offs between these effects. Patent data are 
also often used in innovation research to explore how new technologies develop and spread, which 
innovation areas are the most active, how innovation areas and sub-areas are connected with one 
another, and how productive firms or nations are with regards to their patenting output. Patents 

(a) (b)

Figure 1. On the left side (a), the tripartite network structure of the patent data is illustrated with an example 
encompassing four patents (tilted squares) submitted at two different time points (squares with rounded edges) by 
five inventors (circles). The corresponding adjacency matrix is depicted on the right side (b). The two sub-matrices 
defined in (2) are shaded in grey are Y1 in the top left and Y2 on the bottom right. (a) Network structure and (b) 
adjacency matrix structure.
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contain references to prior patents, so-called patent citations (Alstott et al., 2017). The study of 
patent citations and the network structures they form have become an important part of innov
ation economics, since citations can be interpreted as an indicator of knowledge flows. The study 
of citation networks has been an important area of research at least since the work of Garfield 
(1955) (see also de Solla Price, 1965; Egghe & Rousseau, 1990). Co-authorship networks have 
been extensively studied within the area of research publications (see, e.g., Leifeld, 2018; Melin 
& Persson, 1996; Newman, 2004). The techniques developed for general citation networks can 
naturally be applied to map patent citation networks as well (see, e.g., Li et al., 2007; 
Verspagen, 2012; von Wartburg et al., 2005). Moreover, since patent data always indicate the 
identity of the inventors contributing to the invention, they can be used to study the characteristics 
of inventor teams and inventor collaboration networks. The focus is then shifted from citations to 
co-inventorship of patents.

In both cases, i.e., patent citations and inventor teams, modern methods of network analysis can 
be applied to answer open research questions. In terms of the research questions tackled, our study 
differs substantially from patent citation studies, since we do not focus on knowledge flows, but 
rather on the logic of inventor team formation. We share this focus with studies of authorship 
teams in academia, but we note an important institutional difference: More than 93% of patents 
are filed by private enterprises (Giuri et al., 2007). Other than in scientific co-authoring, the com
position of co-inventor teams does not just reflect the preferences of the authors (inventors), but it 
involves, in almost all cases, a managerial decision that is guided by profit concerns. Thus, the pat
terns we uncover in our analysis are not just a reflection of individual preferences, but also of the 
employer’s productivity calculus. This feature of our setting will be particularly important when 
interpreting results and comparing them to results from other studies (e.g., for gender homophily).

For patent data, it is possible to construct the co-inventorship network in two main ways. One 
can directly analyse the bipartite network formed by the patents and their inventors (see, e.g., 
Balconi et al., 2004). Alternatively, one projects the bipartite structure on one of the two modes, 
which in the context of patent data is usually that of inventors. This entails a network composed 
only of inventors, in which two nodes (inventors) are connected if they have at least one patent in 
common (Bauer et al., 2022; Ejermo & Karlsson, 2006). Much of the literature in this area utilises 
such projections, since models for unimodal networks are developed to a greater extent. Several 
studies have used unipartite ERGMs to study knowledge diffusion networks in various domains 
(see e.g., Jiang et al., 2013; Keegan et al., 2012). As ERGMs allow for modelling networks with 
different types of ties (see Chen, 2021, for an overview), it is also possible to simultaneously model 
inventor-patent ties in a unipartite, multilayer network context, as done by Jiang et al. (2015). As 
explained in the introduction, however, projecting everything on one mode inevitably results in a 
loss of information on the mode that is excluded.

In the case of patents and inventors, the fact that two inventors collaborated on many patents 
together, together with the size of these patents, brings much information which is not available in 
the projection, where the inventors are simply linked together. This loss of information is made 
apparent by the fact that there are many bipartite graphs which lead to the same projection 
(Latapy et al., 2008). Preserving the original bipartite structure thus enables us to gain more de
tailed and accurate insight on the mechanisms at play by estimating effects which would not be 
visible by considering the projection, as will be shown in the application section.

2.2 Data description
We consider patent applications submitted to the European Patent Office or the German Patent 
and Trademark Office (Deutsches Patent- und Markenamt) between 1995 and 2015. More specif
ically, we look at patents filed within the main area of electrical engineering, for which at least one 
of the inventors listed on the patent has a residential address in Germany. For assigning each pa
tent to a single time point, we use the priority date, i.e., the first-time filing date of a patent (which 
precedes the publication and the grant date). We focus on electrical engineering as it is one of the 
largest main areas and as it has seen particularly high growth rates since 2010. Moreover, collab
orations between inventors are commonplace in this field. For our analyses, we focus on the data 
starting in 2000 and condition on the information from the first five years considered (i.e., from 
1995 to 1999) to derive covariates from them. The dataset can be represented as a massive 
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bipartite network, for which the observed adjacency matrix (1) is visualised in Figure 2. From the 
plot, we can get a clear sense of the previously described actor natality phenomenon, with new in
ventors becoming active at every time point. Moreover, the figure demonstrates the limits of de
scriptive analysis when dealing with such large networks, highlighting the need for adequate 
models to learn something from such data.

As described in Section 1, we instead consider this a dynamic bipartite network, discretising the 
time steps yearly such that time takes values t = 1, 2, …, T. In our notation, t = 1 translates to the 
year 2000. We also allow the actor set to change at each time point so that we end up with T bi
partite networks in which the nodes are given by the active inventors at each time point. Resulting 
from this, we include new inventors that are active for the first time and remove inactive ones from 
the network at each time point t. The latter point is motivated by the empirical data, which sug
gests that if previously active inventors do not produce any patents for a long time, it is likely that 
they will not be active anymore. This phenomenon can stem from a change in career paths (moved 
up to a management position where writing patents is not among the work tasks) or retirement. To 
this point, we show the Kaplan–Meier estimate of the time passing between two consecutive pat
ents by the same inventor in Figure 3. As indicated by the dashed grey lines, about 85% of patents 
by a specific inventor that already had at least one patent are submitted within two years from the 
previous one. Given this, we define an inventor as active at time t if they had at least one patent in 
the two years prior to t. Note that by doing so we do not disregard the remaining 15% of the data, 
but simply label these inventors as inactive for a specific period, i.e., until they appear on another 
patent.

As we are interested in investigating the drivers of patented innovation and inventor collabor
ation, we exclude patents developed by a single inventor from the modelled patent set. Moreover, 
we exclude inventors with no address in Germany from the actor set, as they make up less than 1% 

Figure 2. Graphical representation of the adjacency matrix of the patent–inventor network between 2000 and 2015. 
A dot in position (i, k) indicates that inventor i is a co-owner of patent k.
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of the population. In addition to the residence address of each inventor and the date of each patent, 
we also incorporate information on the gender of each inventor in our model. This set of exogen
ous covariates aligns with previous work on co-citation networks (Leifeld, 2018).

3 Modelling patent data as bipartite networks
3.1 Temporal exponential random graph models for bipartite networks
Having laid out the available data, we now formulate a generative network model for the bipartite 
networks at hand. This framework should allow us to differentiate between random and structural 
characteristics of the network to support or disregard our substantive expectations, such as, for 
example, whether or not two inventors that teamed up in the past are likely to produce another 
patent together in the future. To do so we first need to introduce some additional notation. As 
a general rule, we write Yt to denote the network when viewed as a random variable, and yt = 
(yt,ik : i ∈ I t, k ∈ Kt) if we relate to the observed counterpart. In this context, yt,ik = 1 translates 
to inventor i being a co-owner of patent k, while yt,ik = 0 indicates the contrary. As a result, the 
observed networks are binary and undirected, i.e., yt ∈ {0, 1}|I t |×|Kt|. We denote the space of all 
networks that could potentially be observed at time point t by Yt. For our application, as explained 
in the previous section, the latter is restricted to only allow for patents which have at least two 
inventors.

We specify the joint probability for the set of networks through

Pθ(Y1, . . . , YT) =􏽙
T

t=1

Pθ(Yt |Ht), (3) 

where Ht defines the history, composed of the bipartite networks and covariates observed before t. 
The covariates can encompass dyadic and nodal information, but to make the notation less cum
bersome we suppress the explicit inclusion of the covariates in the formulae. Following Hanneke 
et al. (2010), we simplify (3) by assuming that the temporal dependencies are constrained to a fixed 
time lag, i.e.,

Pθ(Yt |Ht) = Pθ(Yt |Yt−1 = yt−1, . . . , Yt−s = yt−s), (4) 

for s ∈ N. The Markov property then allows us to postulate an ERGM for the transition probabil
ity (4) in the following form:

Pθ(Yt |Yt−1 = yt−1, . . . , Yt−s = yt−s) = exp {θ⊤s(yt, . . . , yt−s)}
κ(θ, yt−1, . . . , yt−s)

, (5) 

where θ = (θ1, . . . , θq) ∈ Rq is a q-dimensional vector of parameters, s :Yt × · · · × Yt−s → Rq is 
the function calculating the vector of sufficient statistics and 
κ(θ, yt−1, . . . , yt−s) :=􏽐y∈Yt

exp {θ⊤s(y, yt−1, . . . , yt−s)} is a normalising factor (see also 

Figure 3. Kaplan–Meier estimate of the duration between consecutive patents submitted between 2000 and 2015.
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Cranmer et al., 2021, Chapter 6 and Leifeld et al., 2018). We obtain a canonical exponential fam
ily model with known characteristics (Barndorff-Nielsen, 1978), which come in handy when 
quantifying the uncertainty of the estimates of θ. Note that for the application to patent data, 
the coefficients governing the transition from one time point to another are not necessarily con
stant over time due to external shocks, such as, for example, the dot-com bubble and the 2008 fi
nancial crisis, which may affect the activity of inventors. For this reason, we let θ in (5) flexibly 
depend on time and estimate it separately for each time point t, but omit the subscript t from 
the formulae for notational simplicity. Thurner et al. (2018) and Cranmer et al. (2014) also opted 
for this parametrisation of dynamic coefficients, while smooth functions over time are employed in 
Lebacher et al. (2021).

Interpreting the coefficients θ can be done both at the global network level as well on the single 
tie level. We illustrate the interpretation for θp, defined as the coefficient corresponding to the pth 
sufficient statistic from (5). For the former, θp > 0 implies that networks with higher values of the 
corresponding sufficient statistic become increasingly more likely, while θp < 0 implies the con
verse. For the latter, we define so-called change statistics, which are the change in the sufficient 
statistics caused by switching the entry yt,ik from 0 to 1. Formally,

Δt,ik(yt, . . . , yt−s) = s(y+
t,ik, yt−1, . . . , yt−s) − s(y−

t,ik, yt−1, . . . , yt−s), (6) 

where y+
t,ik is the network yt with entry yt,ik fixed at 1, while the entry is set to 0 in y−

t,ik. For each 
possible inventor-patent connection, we can then state the corresponding probability conditional
ly on the remaining bipartite network denoted by yC

t,ik, i.e., the complete network yt excluding the 
single entry yt,ik. This leads to

Pθ(Yt,ik = 1 |YC
t,ik = yC

t,ik) = exp {θ⊤Δt,ik(yt, . . . , yt−s)}

1 + exp {θ⊤Δt,ik(yt, . . . , yt−s)}
. (7) 

Through this expression we can relate θ, the canonical parameter of (5), to the conditional prob
ability of inventor i to be co-owner of patent k. We can thereby derive an interpretation of the co
efficients reminiscent of common logistic regression: if adding the tie yt,ik to the network raises the 
pth entry of Δt,ik(yt, …, yt−s) by one unit, the conditional log-odds of Yt,ik are, ceteris paribus, al
tered by the additive factor θp (Goodreau et al., 2009).

3.2 Sufficient statistics for bipartite patent data
The main ingredient of model (5) is the set of sufficient statistics, which translates to a particular 
dependence structure assumed for the edges in the observed bipartite network (Wang, Pattison, 
et al., 2013). A statistic that is typically included is the number of edges at time point t, i.e., 
sedges(yt, . . . , yt−s) = |yt|, which can be comprehended as the equivalent of an intercept term in 
standard regression models (Goodreau et al., 2009). As we are in a dynamic setting in which add
itional information on past networks is available, we can define statistics that depend on the past 
networks, such as the number of patents in the previous s years for each actor active at time point t:

spastpatent(yt, . . . , yt−s) =􏽘
i∈I t

􏽘

k∈Kt

yt,ik

􏽘t−1

u=t−s

􏽘

l∈Ku

yu,il. (8) 

As the patent network presents some particular dependence structures, more advanced types of 
statistics are needed, which we describe in the following.

3.2.1 Pairwise statistics of inventors
One drawback of representing our patent data as a bipartite adjacency matrix instead of the 
one-mode-projected version is that incorporating information on the pairwise inventor- 
to-inventor level is not straightforward. We therefore introduce assortative two-star statistics ex
tending the work of Bomiriya (2014, Chapter 2) and Metz et al. (2019) on homophily, which is 
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defined as the mechanism driving ties between similar individuals (McPherson et al., 2001), for 
bipartite networks. In the context of relational event models for bipartite interactions, Malang 
et al. (2019) use tie-specific, as opposed to global, variants of these statistics based on exponential
ly decreasing temporal weights of past events. We take the patent-based two-star statistic as start
ing point, which for yt is defined by

stwostar.patent(yt) = 1
2

􏽘

k∈Kt

􏽘

i∈I t

yt,ik

􏽘

j≠i

yt,jk

􏼠 􏼡

. (9) 

The tendency to interact with one another is often based on the similarity of a factor variable 
ut = (ut,i; i ∈ I t). We therefore define the indicator matrix xt ∈ {0, 1}|I t|×|I t | with entries 
xt,ij = I(ut,i = ut,j). In line with Bomiriya (2014, Chapter 2), this allows to augment the two-star 
statistic (9) in the form

shomophily.x(yt) = 1
2

􏽘

k∈Kt

􏽘

i∈I t

yt,ik

􏽘

j≠i

yt,jkxt,ij

􏼠 􏼡

. (10) 

Next, we follow Metz et al. (2019) and generalise (10) by not restricting ourselves to any particular 
definition of xt, but letting the matrix be an arbitrary function of the networks from the past s years 
and other exogenous information. To further correct for different sizes of patents, i.e., the number 
of inventors co-owning the patent, we normalise the statistic by the degree of each patent, whereby 
the resulting statistic is defined through:

sassort.x(yt, . . . , yt−s) = 1
2

􏽘

k∈Kt

􏽘

i∈I t

yt,ik 100 ×
􏽐

j≠i yt,jkxt,ij
􏽐

j≠i yt,jk

􏼠 􏼡

. (11) 

To obtain a less cluttered notation, we keep the dependence of xt,ij on yt−1, …, yt−s implicit. The 
corresponding change statistic for an edge between inventor i and patent k is then

Δt,ik,assort.x(yt, . . . , yt−s) = 100 ×
􏽐

j≠i yt,jkxt,ij
􏽐

j≠i yt,jk
, (12) 

which can be interpreted as the percentage of inventors on patent k that match with inventor i in 
matrix x. We multiply the statistic by 100, which does not affect the model itself but eases inter
pretation (as a unit increase is now equivalent to a single percentage change). To give an example 
of a statistic of this type, we can combine (12) with matrix xP

t , for which entry xP
t,ij is 1 if inventor i 

and j already had a joint patent in the last s years and 0 otherwise. The resulting statistic measures 
how previous collaboration among inventors affects the propensity of future collaboration. 
Section 4 provides more examples of such statistics.

3.2.2 Node set statistics
As a result of the actor natality and mortality described in the Introduction, we can split the set of 
inventors I t at each time step t = 1, …, T into new inventors with their first patent in t, 
I+

t = {i ∈ I t;
􏽐t−1

u=t−s

􏽐
k∈Ku

yu,ik = 0}, and inventors that were already active prior to t, 

I−
t = {i ∈ I t;

􏽐t−1
u=t−s

􏽐
k∈Ku

yu,ik > 0}. We here use the term ‘new inventors’ for actors 
in I+

t and ‘experienced inventors’ for those in I−
t . Given these sets, we define 

y+
t = (yt,ik)i∈I+

t ,k∈Kt 
and y−

t = (yt,ik)i∈I−
t ,k∈Kt 

to be the sub-networks of yt made up of new and expe
rienced inventors, respectively.

It is apparent that statistics on past behaviour, such as (8), are not meaningful for inventors from 
I+

t , since no historical data is available for those inventors at time t. To account for this, we de
compose the statistics s(yt, …, yt−s) into three types of terms, namely s+(y+

t ), s−(y−
t , . . . , yt−s), 

and s±(yt), which are defined as statistics that only relate to either y+
t , y−

t and past networks or 

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/186/3/557/7071940 by Ludw

ig-M
axim

ilians-U
niversitaet M

uenchen (LM
U

) user on 20 Septem
ber 2023

95



J R Stat Soc Series A: Statistics in Society, 2023, Vol. 186, No. 3                                                          565

the full set of inventors yt, respectively. Defining the corresponding coefficients (θ+, θ−, θ±) and 
change statistics (Δ+

t,ik, Δ−
t,ik, Δ±

t,ik) accordingly yields

Pθ(Yt,ik = 1 |YC
t,ik = yC

t,ik) = π+
t,ik(yt), if i ∈ I+

t (new inventor)

π−
t,ik(yt, . . . , yt−s), if i ∈ I−

t (experienced inventor),

􏼨

(13) 

where π+
t,ik(yt) and π−

t,ik(yt, . . . , yt−s) are given by

π+
t,ik(yt) = exp {(θ+)⊤Δ+

t,ik(y+
t ) + (θ±)⊤Δ±

t,ik(yt)}

1 + exp {(θ+)⊤Δ+
t,ik(y+

t ) + (θ±)⊤Δ±
t,ik(yt)}

π−
t,ik(yt, . . . , yt−s) = exp {(θ−)⊤Δ−

t,ik(y−
t , . . . , yt−s) + (θ±)⊤Δ±

t,ik(yt)}

1 + exp {(θ−)⊤Δ−
t,ik(y−

t , . . . , yt−s) + (θ±)⊤Δ±
t,ik(yt)}

.

As an example, for the common edge statistic sedges(yt, . . . , yt−s), the aforementioned decompos
ition means we can define sNew(y+

t ) = |y+
t | and sExperienced(y−

t , . . . , yt−s) = |y−
t |, to allow for new and 

experienced inventors to generally have a different propensity to be part of a patent. Note that the 
splitting of the node set as in (13) does not assume any (in)dependence structure between Y+

t and 
Y−

t , but rather serves as an aid to specify additional terms and interpret the coefficients at a finer 
level, as just exemplified for the edge statistic.

3.2.3 Adjustment for varying network size
As argued in Krivitsky et al. (2011), the task of comparing estimated coefficients of two models 
with identical specifications but different network sizes is non-trivial. This behaviour is due to 
the fact that including the edge count statistic from the previous paragraph in a TERGM assumes 
density invariance as the network grows. This characteristic seldom holds for real-world networks 
as it implies a linearly growing mean degree of all involved actors. In the case of our longitudinal 
patent network, the number and composition of inventors and patents change from year to year, 
thus correcting for this is of practical importance to be able to compare coefficient estimates at dif
ferent time points. To solve the issue, we follow the suggestion of Krivitsky et al. (2011) and in
corporate the offset term 1/(|I t| + |Kt|) to achieve asymptotically constant mean-degree scaling 
as the composition of inventors and patents change over time.

3.3 Estimation and inference
We now seek to estimate the parameter θ by maximising the logarithmic likelihood constructed 
from (5) for the transition between time points t − 1 and t. Analysing each transition one at a 
time enables the use of software for static networks, such as ergm (Hunter et al., 2013). If some 
of the coefficients are constant over some periods, one could apply the block-diagonal approach 
of Leifeld et al. (2018). We follow the Markov Chain Monte Carlo Maximum-Likelihood 
Estimation procedure introduced by Geyer and Thompson (1992) and adapted to ERGMs by 
Hunter and Handcock (2006). In our application, we repeat this for each available time step 
t = 1, …, T.

First, note that subtracting any constant from the logarithmic likelihood constructed from (5) 
does not change its maximum. We can therefore subtract the logarithmic likelihood evaluated 
at an arbitrary value of the parameter θ, i.e., θ0, which yields the equivalent objective function

ℓ(θ) − ℓ(θ0) = (θ − θ0)⊤s(yt, . . . , yt−s) − log (Eθ0 (exp {(θ − θ0)⊤s(Yt, . . . , yt−s)})), (14) 

where Eθ(f (X)) is the expected value of random variable X characterised by parameter θ and trans
formed through the arbitrary function f (·). As described in Hunter and Handcock (2006), one can 
evaluate this objective function by approximating the expected value by generating random net
works Y(1), Y(2), …, Y(M ) from (5) under θ0. In particular, we approximate the expected value 
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in (14) through a Monte Carlo quadrature:

Eθ0 (exp {(θ − θ0)⊤s(Yt, . . . , yt−s)}) ≈ 1
M

􏽘M

m=1

exp {(θ − θ0)⊤s(y(m), yt−1, . . . , yt−s)}. (15) 

For sufficiently large M, the convergence of this expectation is guaranteed, and we can plug (15) 
into (14) and apply Newton–Raphson-type methods to maximise it with respect to θ. Sampling 
from a probability distribution with intractable normalisation constant, such as (5), is achieved 
by a Metropolis–Hastings algorithm. In particular, we first sample an edge, defined as the tuple 
(i, k), at random, and consecutively toggle the corresponding entry of Yt from 0 to 1 with prob
ability equal to (7) (for more details see Hunter et al., 2013). Due to the large size of the patent 
networks, we start with the observed network, propose 15.000 of such changes and then stop 
the Markov chain. This procedure is hence equivalent to contrastive divergence as introduced 
by Hinton (2002) and adapted to ERGMs by Krivitsky (2017).

Inference on the estimates is drawn based on the Fisher matrix I(θ), which equals the variance of 
the sufficient statistics for exponential family distributions (L. Wasserman, 2004). Thus, we can 
approximate the Fisher matrix through

􏽢I(θ) = Varθ(s(Yt, . . . , yt−s)) ≈ 1
M

􏽘M

m=1

(s(y(m), yt−1, . . . , yt−s) − s̅(y(1), . . . , y(M)))

× (s(y(m), yt−1, . . . , yt−s) − s̅(y(1), . . . , y(M)))⊤, 

where s̅(y(1), . . . , y(M)) = (1/M)
􏽐M

m=1 s(y(m), yt−1, . . . , yt−s) is the vector containing the averages 
of the sufficient statistics from the simulated networks y(1), …, y(M ), which are, in turn, drawn 
from the fitted model, with the parameter θ set to its maximum-likelihood estimate.

4 Application to inventor team formation
We now present the results of our application, in which we model inventor team formation using 
the patent data introduced in Section 2. For each statistic included in the model, we explain its 
meaning, interpret the corresponding estimated coefficient, and then discuss the relationship of 
our results to prior literature. Further details on the specification of each sufficient statistic can 
be found in Appendix A. We further provide MCMC diagnostics and goodness-of-fit assessments 
as proposed by Hunter et al. (2008) in the online Supplementary Material. Due to the slow inertia 
of patent submissions visible in Figure 3, we set s = 5, i.e., consider data from the last five years to 
be relevant for modelling the current network. This allows us to have enough information for cap
turing long-range dependence in the networks involving repeated patent submissions of single ac
tors as well as groups of actors.

4.1 Network effects

4.1.1 Propensity to invent
To account for the changing activity levels over time, we incorporate a statistic that counts how 
many edges are in the network. Following Section 3.2, we split this term into separate statistics 
for experienced and new inventors. Heuristically, one can interpret the corresponding coefficients 
as the general propensity to form ties, i.e., participate in a patent, for the two inventor sets, respect
ively. Note that it would not be possible to estimate this effect by modelling a unipartite projection 
on inventors: in that case, the intercept term would only measure the propensity for inventors to 
collaborate, regardless of the number of patents produced. The plot of the estimates for the pro
pensity to invent over time is shown in the upper left panel of Figure 4. It exhibits a different level 
of activity for new and experienced inventors. We expect this by design, as new inventors enter the 
network precisely because they are active at time t, while experienced ones might only have been 
active in the past. Overall, we observe a steady increase in activity in the network from 2008 on
ward for both sets of inventors.
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4.1.2 Two-star statistics
Two-star statistics relate to the concept of centrality (S. Wasserman & Faust, 1994). For bipartite 
networks, they can be defined with respect to each of the two modes (inventors and patents, re
spectively). For inventors the statistic is given in Appendix A and expresses whether inventor i 
is more or less likely to invent an additional patent in year t, given that he/she is (co-)owner of 
at least another patent in that year. For patents, the statistic relates to the number of inventors 
per patent and is given in (9). These effects could not be estimated for a unipartite projection 
on inventors: in that case, the two-star statistic would simply relate to the propensity for inventors 
to have additional collaborators, with information on the number of patents and their size being 
lost. The top right panel of Figure 5 depicts both estimates for the two-star statistics. For inventors, 
the estimates take small positive values for most time points, without much temporal variation. 
This indicates a slight tendency towards centralisation for inventors, i.e., inventors aiming to sub
mit multiple patents per year. For patents the corresponding two-star estimates are larger, i.e., pat
ents tend to be owned by multiple inventors. The two-star effect slowly decreases since 2011, 
meaning that the number of owners per patent is getting smaller. The variance for the estimated 
two-star patent effect is generally larger than the estimate of the corresponding two-star inventor 
effect, which stems from the fact that there are fewer patents than inventors in a single year.

4.1.3 Team persistence
Most patented inventions are the result of team work (Giuri et al., 2007), which leads to the build- 
up of valuable team-specific capital (Jaravel et al., 2018). We therefore expect past collaboration 

Figure 4. Estimated time-varying coefficients regarding the propensity to invent, two-star statistics, team 
persistence and collaboration interlocking.
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to positively affect the propensity for two inventors to collaborate again. To account for this effect, 
we include a team persistence statistic based on the pairwise statistics of inventors proposed in 3.2
in the model. The statistic, which could also be termed ‘repetition’ (or ‘reciprocity’, as defined in 
Leifeld & Brandenberger, 2019), is visually represented in Figure 5a, and rests on the definition of 
matrix xP

t , whose (i, j)th entry is 1 if inventors i and j have already co-invented a patent in the pre
vious five years, and 0 otherwise. The bottom left panel of Figure 4 depicts the corresponding co
efficient estimate, which is positive and significantly different from zero over time. This finding 
corroborates our anticipations that, controlling for the other factors, two inventors are more likely 
to jointly produce a patent if they already worked on an invention together in the past. Hence, 
teams of inventors play an important role in patent creation.

4.1.4 Collaboration interlocking
In addition to investigating the persistence of collaborations, it is of interest to understand how 
having had a common partner in the past influences the tendency to develop a joint patent in 
the present. We account for this by including the collaboration interlocking statistic in our model. 
By common partners we are referring to actors such as inventor h for inventors i and j in Figure 5b. 
We define the statistic again by pairwise statistics of inventors through the matrix xCI

t , where the 
binary information of whether or not inventors i and j have at least one common partner is en
coded in the (i, j)th entry. The related coefficient estimates are shown in the bottom right panel 
of Figure 4, where we notice that the estimate attains significantly positive values throughout 
the observational period. This result suggests that if two inventors i and j both had a patent 
with the same inventor h, they are generally more likely to co-invent in the future. Our finding 
holds controlling for all other features in our model (including the previously described team per
sistence statistic). This effect can be considered similar to triadic closure in unimodal networks, 
i.e., ‘a collaborator of my collaborator is more likely to become my collaborator’. The result 
thus supports the idea that the creation of inventor teams is often promoted via common col
leagues and that informal knowledge flows are key to the invention process (see Giuri & 
Mariani, 2013 and references cited therein).

4.2 Effects of inventor-specific covariates

4.2.1 Spatial proximity
Many patents are created in a workplace environment (Giuri et al., 2007). For this reason, we 
would expect inventors that live close to each other to be more likely to invent together. 
Moreover, there is empirical evidence that collaboration is more likely between inventors that 

(a) (b)

Figure 5. Illustration of the change statistics related to assortative network statistics for team persistence (a) and 
collaboration interlocking (b). Circles represent inventors, and squares are patents. The dashed line indicates a 
possible edge at time point t, while black lines represent edges given at time point t. Grey lines, on the other hand, 
display past connections, and grey squares stand for past patents. (a) Team persistence and (b) collaboration 
interlocking.
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live close to one another even if they do not share the same employer (e.g., Crescenzi et al., 2016). 
For these reasons, we include a spatial proximity statistic in our model, where we define spatial 
proximity as living within a range of 50 km. We encode this proximity information in a binary 
matrix xSP and incorporate it in the model as a pairwise statistic of inventors. The top left panel 
of Figure 6 depicts the estimated coefficients for the statistic. The positive values attained over 
time confirm that inventors living near each other have a higher chance to collaborate. We can 
also see that the effect goes down over time from 2010 onward; this makes sense in an increasingly 
interconnected society, where more and more connections are formed through the web in addition 
to physical ones.

4.2.2 Seniority
The top right panel in Figure 6 depicts the effect of the number of previously owned patents by 
each inventor in the past five years. The corresponding statistic can be viewed as a measure of in
ventor seniority, where inventors with more patents in the past are considered to be senior. As this 
statistic would trivially be a structural zero for new inventors, it is only computed for the set of 
inventors which were previously active in the network (experienced inventors). This is another ef
fect we would not be able to estimate if we only considered the unipartite projected network of 
inventors. The negative coefficient estimate here suggests that, conditional on all other statistics 
included in the model, senior inventors have a lower propensity to create new patents. Prior re
search has shown that career dynamics of inventors are complex as economic opportunities, prod
uctivity and personal preferences interact (see, e.g., Allen & Katz, 1992; Bell et al., 2019). But our 

Figure 6. Estimated time-varying coefficients regarding the spatial proximity, seniority, and gender of inventors.
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results are consistent with earlier results indicating that with greater seniority, inventors take over 
managerial responsibilities within the same firm, or that high visibility of their invention output 
also leads them to move to new employers and tasks, thus lowering (or halting) their invention 
output.

4.2.3 Gender and gender homophily
Another variable of interest in the realm of innovation research is gender. Many researchers have 
expressed concerns about the sparse representation of women among inventors (typically far less 
than 10%) and possible wage discrimination (see, e.g., Hoisl & Mariani, 2017; Jensen et al., 
2018). These studies established gender as an essential topic in innovation economics. We incorp
orate gender in our model in two ways, i.e., as a main effect and as a homophily effect (as intro
duced in (10)). The two plots at the bottom of Figure 6 show the effects of gender on the propensity 
to create patents (left) and on homophily, i.e., the tendency of inventing together with people of the 
same gender (right). Note that both effects need to be interpreted keeping in mind that the vast 
majority of the actors in the network are male (96%). From the plot on the bottom left, we can 
see how, while male inventors seem to be slightly more active, all in all male and female inventors 
did not show significant differences in their propensity to invent. Note that this holds given the 
inclusion of those inventors in the network, i.e., given that they were already inventors. The gender 
homophily plot shows different results; here we see that, while male inventors seem to have the 
same likelihood to form patents with both genders, female inventors tend to have more collabo
rations with other females than with males. While the effect is quite sizeable in absolute value, 
the uncertainty here is considerable given the small number of female actors in the network. 
Still, we can see this as weak evidence for a gender homophily effect for female inventors. These 
results are consistent with earlier findings by Whittington (2018), who studies the role of gender 
in life science inventor teams.

5 Discussion
This paper analyses a massive bipartite network, consisting of all inventors and collaborative pat
ents filed between 1995 and 2015 in electrical engineering. To account for the sheer size of the 
complete network and the structural zeros in the related bipartite adjacency matrix, we suggested 
a temporal decomposition of the data into multiple smaller networks. Guided by substantive ques
tions posed by innovation research, we then proposed a set of bipartite network statistics focused 
on gender issues, team persistence, collaboration interlocking, and spatial proximity.

Time-varying actor sets due to actor mortality and natality are often observed in networks be
yond the realm of patent data. For instance, scientific collaboration behaves similarly, as many 
PhD students do not pursue an academic career and hence have a short lifespan in the scientific 
collaboration network. At the same time, new PhD students continuously enter the scientific 
world. Therefore, the proposed temporal decomposition and the employed network terms exploit
ing pairwise information on either mode of actors can also be used in other settings.

In addition to the methodological contributions, our study offers several novel results concern
ing the substantive analysis. We utilise a population dataset spanning 20 years (1995–2015). The 
time span and the availability of population data are crucial to assess the team formation process 
reliably. Using a population dataset of this size is unique in the literature on inventor team forma
tion. Moreover, while much of the literature has focused on the relationship between team char
acteristics and performance, there are very few studies on the actual process of inventor team 
formation. While some of the variables we are using have been discussed and utilised in other do
mains, we are unaware of inventor team studies employing data with a similar breadth of team and 
inventor descriptors. This breadth adds to the novelty of our study. We also note that our variable 
set reflects a number of meaningful concerns such as inclusiveness, gender equality, and seniority. 
The results should therefore be of considerable interest to policymakers.

Still, we want to address some limitations in our analysis, which would benefit from further re
search. First, our definition of the actor sets is based on a simple heuristic we determined in a data- 
driven manner. However, this practice might bias our findings concerning degree-related statistics 
since the exact number of isolated inventors is not known but assumed. More complex methods to 
identify active inventors based on further exogenous data, such as job histories, might be a fruitful 
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future endeavour. Second, we assumed the parameters to be different each year. Extending the ap
proach of Cranmer et al. (2014), one could incorporate a change-point detection directly into the 
TERGM framework to identify periods over which the coefficients are constant from the observed 
data. Note that, to facilitate building on our research, we make our implementation available 
through the R software package patent.ergm. Moreover, to guarantee the replicability of our re
sults, we make the full data and code available online on a GitHub repository. This repository also 
includes the R package patent.ergm.

All in all, we show how spatial proximity, teamwork and interlocking of collaborations posi
tively impact the output of inventors. Further, we demonstrate how inventors’ characteristics, 
such as gender and seniority, play a significant role in the process, and identify gender homophily 
as a critical determinant of inventor team formation. Our application to inventor teams presents 
an alternative to classical forms of analysis of patenting and inventorship networks. While prior 
studies are almost exclusively focused on analysing the underlying mechanisms one at a time, 
we model them simultaneously in the framework of bipartite networks. Our study thus provides 
an effective alternative to classical forms of regression-based analysis of innovation and the mech
anisms driving it.
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Appendix A. Sufficient statistics
In the following, we detail the mathematical definitions of all sufficient statistics incorporated in 
our model.

Propensity to invent: As already stated in Section 3.1, the standard term to incorporate in any 
ERGM specification is an edge statistic that counts how many edges are realised in the network. In 
accordance with Section 3.2, we split this term into the statistics sNew(y+

t ) = |y+
t | =

􏽐
i∈I+

t

􏽐
k∈Kt

yt,ik 
and sExperienced(y−

t , . . . , yt−s) = |y−
t | =

􏽐
i∈I−

t

􏽐
k∈Kt

yt,ik. Figures A1a and A1b visualise the corre
sponding two network configurations.

Two-star statistics: Two-star statistics can be stated with regards to either set of actors in the 
case of bipartite networks. The definition of the two-star statistic for the patents is shown in 
Figure A1c and given by

stwostar.patent(yt) = 1
2

􏽘

k∈Kt

􏽘

i∈I t

yt,ik

􏽘

j≠i

yt,jk

􏼠 􏼡

, 

while the version for the inventors is visualised in Figure A1d and defined as:

stwostar.inventor(yt) = 1
2

􏽘

i∈I t

􏽘

k∈Kt

yt,ik

􏽘

l≠k

yt,il

􏼠 􏼡

.
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Pairwise statistics of inventors: We include three versions of pairwise statistics of inventors intro
duced in Section 3.2. The statistics are given by

sassort.x(yt, . . . , yt−s) = 1
2

􏽘

k∈Kt

􏽘

i∈I t

yt,ik 100 ×
􏽐

j≠i yt,jkxt,ij
􏽐

j≠i yt,jk

􏼠 􏼡

.

Note that, in general, the matrix x can be an arbitrary function of the past networks and nodal or 
dyadic exogenous information. Its definition differs between the three statistics of pairwise statis
tics of inventors: 

1. Team persistence: For i, j ∈ I t and i ≠ j the entries of xP
t are given by

xP
t,ij = 1, if

􏽐t−1
u=t−s

􏽐
k∈Ku

yu,ikyu,jk > 0
0, else

􏼚

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A1. Network configurations for the general edge and two-star terms. Circles are inventors and squares 
patents and black lines are observed edges in the network at time point t, while grey lines are edges in the past. (a) 
Experienced inventors, (b) new inventors, (c) patent two-stars, (d) inventor two-stars, (e) seniority, (f) male inventors, 
(g) team persistence, (h) collaborative interlocking and (i) homophily of females.
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and a graphical illustration of the statistic is provided in Figure A1g. Note that Leifeld and 
Brandenberger (2019) and Metz et al. (2019) describe a closely related mechanism as reci
procity and collaboration, respectively. One can comprehend this statistic as a particular 
type of the four-cycle statistic (Wang, Pattison, et al., 2013) where one half already occurred 
in the past, and the other half might occur in the present.

2. Collaboration interlocking: For i, j ∈ I t and i ≠ j, the entries of xCI
t are defined by

xCI
t,ij = 1, if

􏽐t−1
u=t−s

􏽐
h∈I t

􏽐
k,l∈Ku

yu,ikyu,hkyu,jlyu,hl > 0
0, else

􏼚

and a graphical illustration of the statistic is provided in Figure A1h. Coming back to the re
presentation as cycle-statistics, this term is a six-cycle statistic in which four of the six edges 
happened in the time frame from t − 5 to t − 1 and two in year t.

3. Spatial proximity: For i, j ∈ I t and i ≠ j the entries of xSP
t are defined as

xSP
t,ij = 1, if dist(xcoord,i, xcoord,j) > 50 km

0, else

􏼚

where xcoord,i and xcoord,j define the longitude and latitude of inventors i and j, respectively, 
and the function dist(xcoord,i, xcoord,j) computes the distance in kilometres between them via 
the haversine formula. A continuous form of this statistic based on the Euclidean distance it
self was employed in Metz et al. (2019).

Seniority: The respective binary indicator is based on the pastpatent statistic given in (8), but in 
this case we define it on the inventor level:

sseniority,i(yt, . . . , yt−s) = 􏽘t−1

u=t−s

􏽘

k∈Ku

yu,ik 

We binarise this inventor-specific covariate by first computing the median of 
sseniority,i(yt, . . . , yt−s) over all inventors and then using this value to split the inventors into 
two groups (i.e., seniors and juniors). The resulting categorical covariate relates to the number 
of patents in the past and is represented in Figure A1e.

Gender and gender homophily: The main effect of gender is depicted in Figure A1f and defined 
by:

sgender(yt) =􏽘
i∈I t

􏽘

k∈Kt

yt,ikI(xgender,i = ‘male’), 

where xgender,i ∈ {‘male’, ‘female’} indicates the gender of inventor i. The homophily effect, on the 
other hand, is for males defined by:

shomophily.male(yt) = 1
2

􏽘

k∈Kt

􏽘

i∈I t

yt,ik

􏽘

j≠i

yt,jkI(xgender,i = ‘male’)I(xgender,j = ‘male’)

􏼠 􏼡

.

and for females the formula reads:

shomophily.female(yt) = 1
2

􏽘

k∈Kt

􏽘

i∈I t

yt,ik

􏽘

j≠i

yt,jkI(xgender,i = ‘female’)I(xgender,j = ‘female’)

􏼠 􏼡

.

Figure A1i visualises the homophily statistic for females. The equivalent statistic for males can be 
defined in the same manner.
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Abstract
The COVID-19 pandemic brought upon a massive wave of disinformation, exacerbating polarization in the increasingly divided landscape 
of online discourse. In this context, popular social media users play a major role, as they have the ability to broadcast messages to large 
audiences and influence public opinion. In this article, we make use of openly available data to study the behavior of popular users 
discussing the pandemic on Twitter. We tackle the issue from a network perspective, considering users as nodes and following 
relationships as directed edges. The resulting network structure is modeled by embedding the actors in a latent social space, where 
users closer to one another have a higher probability of following each other. The results suggest the existence of two distinct 
communities, which can be interpreted as “generally pro” and “generally against” vaccine mandates, corroborating existing evidence 
on the pervasiveness of echo chambers on the platform. By focusing on a number of notable users, such as politicians, activists, and 
news outlets, we further show that the two groups are not entirely homogeneous, and that not just the two poles are represented. To 
the contrary, the latent space captures an entire spectrum of beliefs between the two extremes, demonstrating that polarization, 
while present, is not the only driver of the network, and that more moderate, “central” users are key players in the discussion.

Keywords: polarization, COVID-19, network analysis, Twitter, latent space models

Significance Statement

Popular social media users play a major role in the COVID-19 infodemic, as they can influence public opinion through their massive 
reach. Using state-of-the-art statistical network modeling techniques, we embed popular Twitter users discussing the pandemic in a 
latent social space, producing a map of the COVID-19 social media universe. The results suggest the existence of two distinct com
munities, which respectively favor and oppose vaccine mandates, thus corroborating the presence of echo chamber effects on the 
platform. We further show that the two groups are not entirely homogeneous: instead, the social map describes an entire spectrum 
of beliefs between the two extremes, demonstrating that polarization is not the only relevant factor, and that moderate users are cen
tral to the discussion.
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Introduction
COVID-19 dramatically affected the lives of billions of people 
around the globe. Given its massive impact, the pandemic natur
ally assumed a central role in both private and public discourse, 
dominating the discussion on- and offline. Social media, in par
ticular, has been extensively used to exchange pandemic-related 
information as well as disinformation, leading to what has been 
defined as an “infodemic” alongside the pandemic (1–3). This con
text saw the emergence of pandemic-related social media elites, 
accounts with a large number of followers that regularly discuss 
the pandemic and the issues surrounding it (4, 5). These actors 
play a central role in public communication, as they can shape 
popular sentiment and public discourse and thus potentially in
fluence political decision-making (6). This is especially true in a 
setting characterized by increasing polarization and historically 
low trust in mainstream news, which allows politically and finan
cially motivated actors to emerge (7–10). Because of this, 

understanding the role that popular social media users play and 

the ways in which they operate is crucial for tackling arising chal

lenges in public communication (11). In this article, we tackle this 

issue with the aim of drawing an explanatory map of the network 

of COVID-19 Twitter elites. We first identify users that are popular 

in the discussion related to the pandemic on Twittera, and go on to 

study their (directed) network, where an edge between two actors 

is present if one follows the other. To analyze the resulting net

work structure we make use of latent space models, which postu

late that nodes in the network are embedded in a latent social 

space, where the probability for two actors to connect is inversely 

related to their distance within the space (12). We, in particular, 

make use of the latent cluster random effects model, which incor

porates model-based clustering, allowing it to identify cohesive 

communities in the network, as well as additional nodal parame

ters to account for actor-specific heterogeneity in the propensity 

to form edges (13). The results suggest that the network can be 
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partitioned into two macro-communities. By focusing on a num
ber of notable users, such as politicians, activists, and news out
lets, we show how the two communities can be interpreted as 
“generally pro” and “generally against” pandemic containment 
measures and vaccine mandates. This finding supports the exten
sive body of literature that demonstrates the existence of signifi
cant polarization on social media (14–18). The central role of 
polarization has also been demonstrated for the specific case of 
pandemic-related online conversations, especially with respect 
to opinions on vaccination (19–23). However, our results also dem
onstrate how polarization, while prevalent, is far from being the 
only driver in the network. The continuous latent space enables 
us to see that substantial within-cluster heterogeneity is present: 
not all users in the two communities have the same opinions, and 
not just the two polar opposites are represented. On the contrary, 
a full spectrum of beliefs between the two poles is found. In par
ticular, more radical users are found to be positioned towards 
the extremes of the latent space, while more moderate and neu
tral actors, such as health ministers and news outlets, are closer 
to the center. These central users thus occupy a uniquely power
ful position, as they can act as a bridge between the two commu
nities and thereby mitigate polarization. In addition to these 
results, our analysis demonstrates how, by making use of latent 
space models, it is possible to accurately map the COVID-19 
Twitter landscape by only modeling information on who follows 
whom within the elite network. This finding highlights the 
strength and the pervasiveness of echo chamber effects on the 
platform, and showcases the power of latent space network mod
els for studying communication on social media.

Data and methods
Identifying the network of COVID-19 Twitter elites
Social media elites can be broadly understood as users with the 
ability to influence (24). The term typically refers to a group of 
highly influential and popular users with considerable reach 
who significantly impact conversations, trends, and narratives 
circulating on social media. These users often include celebrities, 
politicians, journalists, thought leaders and influencers, who have 
a large and engaged audience and are frequently retweeted, 
quoted, and mentioned by others. While informative, this charac
terization is quite broad and does not indicate a unique way of 
identifying elites in practice. Operational definitions for empirical 
applications are often based on engagement metrics, such as the 
number of followers of each user, and engagement metrics, such 
as likes, shares, quotes, and replies. As our focus lies on analyzing 
the behavior of actors who actively engage in the discussion of the 
pandemic and that exert significant influence on the conversa
tion, we here choose to identify elites as those who authored the 
most popular tweets, where the popularity of a tweet is given by 
the sum of its likes, replies, and retweets (including quotes). 

Based on this characterization, we will therefore first need to iden
tify popular tweets discussing COVID-19 and then relate those 
tweets to their authors. More motivation and details on this 
choice, as well as robustness checks, are included in the 
supplementary material. For our study, we make use of the 
COVID-19 Twitter dataset published by Banda et al. (25), which 
comprises IDs of tweets containing pandemic-related keywords 
from January 1st, 2020 onward. These keywords were handpicked 
and continuously tracked to provide a global and real-time over
view of the chatter related to the COVID-19 pandemic. The dataset 
was collected using Twitter’s streaming API, which allows free ac
cess to a random 1% sample of publicly available tweets in real 
time (26). At the time of the analysis, the entire dataset contains 
about 1.32 billion tweet IDs, representing both tweets and re
tweets in all languages, 340 million of which are unique (without 
retweets). Each tweet’s creation time and language are also pro
vided. Using the tweet IDs, we are then able to recover additional 
information on the tweets, such the text, the author, and metrics 
such as likes and retweets counts.

As a global platform, Twitter is host to speakers of many differ
ent languages, which induce the formation of largely separate 
communities. Since our goal is to map the latent space of 
COVID-19 elites, we choose to limit our analysis to a single lan
guage, as doing otherwise would return a fragmented map shaped 
mainly by language. In principle, it is possible to work with any 
single language, and we here opt for using tweets in German. 
The choice is motivated by the combination of two facts: Firstly, 
German is predominantly spoken by people from Germany, and 
to a smaller extent from Austria and parts of Switzerland, thereby 
guaranteeing a reasonable degree of geographical homogeneity. 
This prevents the estimated latent positions of the actors (and 
the resulting clusters) from being predominantly driven by their 
geographical locations. Secondly, German is used by a relevant 
proportion of the Twitter user base, allowing for a more than suf
ficient sample size. As the first COVID-19 vaccines started to be 
available to the public towards the very end of 2020, and given 
that one of the points we are most interested in investigating is at
titude towards vaccination, we limit our sample to 2021 only, 
spanning from January 1st to December 31st. Considering all 
tweets in German from 2021 results in a total of 1.51 million 
unique tweets from 184,406 accounts. The data, sketched in 
Table 1, allow us to pinpoint popular users by looking at the au
thors of tweets with the highest interaction metrics. More 

Table 1. Structure of the analyzed dataset. Only columns relevant 
to our study are displayed.

Tweet ID Author Likes Replies Retweets

138712… AnikaBlub 1,162 61 53
135224… goetageblatt 1 2 1
140697… galottom 1 0 0
146632… 1_FCM 171 26 35
135269… covid_watch 0 0 0
… … … … … Fig. 1. Number of tweets authored by the 10 most popular users in our 

sample.
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specifically, we classify a user as elite if they authored a tweet that 
achieved a popularity score of at least 2000, where we define 
popularity as the sum of likes, replies, and retweets (including 
quotes) gathered. This threshold results in 1024 popular tweets 
spanning all months of 2021, with each month represented by 
53–156 tweets. Those 1024 tweets were produced by 372 users, 
31.7% of which were granted verified status by Twitter, meaning 
that the platform deemed them both authentic and of public 
interest (27). In contrast, only 2.4% of the user base in the initial 
sample was verified. This confirms that more notable accounts 
and public figures are, on average, more central to the discussion, 
as we would expect. The bar plot in Fig. 1 depicts the number of 
tweets authored by the top 10 most popular users in our final sam
ple, displayed by their Twitter usernames. From it, it is apparent 
how certain actors play a very prominent role in the conversation, 
with some accounts having authored more than 100 popular 
tweets in our 1% sample, meaning that one can expect them to 
have as much as 100 times more than that overall. This tells us 
how truly influential elites can be on Twitter, and also indicates 
that, given the sheer amount of popular tweets by the most prom
inent accounts, it is quite likely that they will be captured in our 
1% sample.

After pinpointing these accounts as COVID-19 elites, we are 
able to define their following network in a natural way. 
Specifically, we consider the users as the nodes, and establish 
that a (directed) edge from actor i to actor j is present if, at the 
time of the analysis, i follows j. After removing the only nine users 
with no connections, the resulting network is composed of 363 no
des connected by a total of 12,182 edges, and is visualized in Fig. 2. 
From the plot, it is immediately apparent that the network is quite 
dense: In fact, 9.2% of all possible edges are observed. Given that 
the network is composed of users who produced popular tweets 
about the same topic, the fact that many of them follow each oth
er makes intuitive sense. Moreover, from the graph representa
tion, laid out using a variant of the Yifan Hu force-directed 
graph drawing algorithm (28), the network seems to be approxi
mately split into two main groups of different sizes. This already 
gives a first impression of the two main poles in the network, 
which will be investigated in more detail in the Results section.

Latent space models for social network data
To model the network data, we make use of the latent cluster ran
dom effects model for social networks (13). This model is part of 

the general family of latent space models, originating from the la
tent distance model proposed by Hoff et al. (12). Latent space net
work models postulate that each actor has an unobserved 
position in a d-dimensional Euclidean latent social space, and 
that the probability for two actors to form an edge is inversely re
lated to their distance in the space. This family of models is par
ticularly suitable for social networks, in which mechanisms 
such as homophily and triadic closure often play a major role 
(29). Handcock et al. (30) added the idea of model-based clustering 
to the original latent distance model, allowing for the actors’ posi
tions in the latent space to come from a mixture of normal distri
butions, where each mixture component represents a cluster. 
Krivitsky et al. (13) further extend this by adding nodal random ef
fects to control for actor-specific heterogeneity in the propensity 
to form edges. More precisely, without the inclusion of nodal or 
edgewise covariates, the model specifies the probability of an 
edge yij between nodes i and j through:

logit(P(yij = 1|β0, Z, δ, γ))

= β0 − ‖zi − z j‖ + δi + γj,
(1) 

where Z = (z1, . . . , zn) are the latent positions of the nodes in the 
d-dimensional latent space, β0 is an intercept, and δ = (δ1, . . . , δn) 
and γ = (γ1, . . . , γn) are node-specific sender and receiver effects 
that account for the individual users’ propensity of following or 
being followed, respectively. Here, the latent positions Z are as
sumed to originate from a finite spherical multivariate mixture 
of independent normal distributions, and the random effects δ 
and γ are assumed to be drawn independently from normal distri

butions with mean 0 and variances σ2
δ and σ2

γ , respectively. The 

model is estimated through the R package latentnet, which im
plements a Bayesian routine based on the use of a Markov chain 
Monte Carlo algorithm (31). It is interesting to note that this model 
can be viewed as a generalization of the (latent) fitness model for 
networks (32, 33), as the node-specific random effects δi and γi can 
be seen as measuring the intrinsic fitness of node i to send and re
ceive ties, while its latent position zi affects its probability of form
ing ties differently for each (potential) connection.

Homophily and triadic closure are generally prevalent in social 
media, particularly on Twitter and between popular accounts (34, 
35). Those mechanisms often lead to the formation of subgroups 
of actors based on shared beliefs or other characteristics. 
Identifying such clusters can be helpful in understanding the driv
ers of polarization and, more in general, grouping behavior. The 
general task of identifying assortative, tightly knit groups in net
works is a large area of research, known under the umbrella 
term of “community detection” (36). Notable examples of such 
methods include modularity maximization algorithms (37) and 
stochastic blockmodels (38). Classical community detection tech
niques are well suited for finding group structures, but they have 
the drawback of only returning a discrete partition of the network 
into clusters, where the connectivity behavior of each actor is fully 
described by its group label. In other words, two nodes in the same 
group are considered identical in all aspects. This is generally 
quite simplistic for social networks, in which cohesive groups 
often do exist, but where members of each group can also be 
very different from one another. Within a single group, for ex
ample, some nodes might be more “extreme” and isolated from 
all other communities. In contrast, others might be more central 
to the network and have many connections to other groups. We 
expect this to be the case in our network of COVID-19 Twitter 
elites: While we can assume polarization and grouping behavior 
to be present, we also expect the social positioning and political 

Fig. 2. Graphical representation of the network of COVID-19 elites on 
German-speaking Twitter.
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beliefs of the actors to be more accurately described through a 
continuous, multidimensional spectrum rather than with discrete 
labels. Because of that, we are not only interested in the clear-cut 
grouping of nodes but also in uncovering the (continuous) social 
positioning of the users relative to one another. The chosen latent 
cluster random effects model is, therefore, particularly well suited 
for our application, as it combines clustering and latent position 
modeling, thereby enabling us to simultaneously capture polar
ization and grouping behavior as well as the positioning of the ac
tors relative to each other in the socio-political spectrum.

Results
We fit the latent cluster random effects model to our data, setting 
both the number of clusters k and the number of dimensions d to 
2. The choice of two clusters is backed by the approximated 
Bayesian Information Criterion for data-driven model selection 
proposed by Handcock et al. (30). Moreover, since much of the lit
erature concerns itself with investigating polarization in the on
line discussion revolving around the COVID-19 pandemic, and 
given that polarization suggests the existence of two subgroups 
(39), setting k = 2 appears to be the natural choice from a substan
tive perspective. With regards to the choice of d, while dimension
ality for latent space network models is generally an open 
question, setting d = 2 is considered to be the standard for applica
tions in which interpretability of the positions is central, as it sim
plifies the visualization and description of social relationships 
(40). We also experimented with different values of d and observed 
that using higher dimensionality did not greatly impact the clus
ter assignments.

The results of the model fitting are visualized in Fig. 3. The axes 
correspond to the two latent dimensions Z1 and Z2, respectively, 
and the nodes’ colors indicate the estimated community member
ships. More specifically, the node-specific pie charts represent the 
posterior probabilities for each user to belong to the one or the 
other cluster. Node sizes are scaled by each actor’s total degree 
within the network. Note that, as defined by the model, two nodes 
that are closer to one another have a higher probability of forming 
an edge, i.e. of following each other. Also note that estimates of 
the node-specific random effects γ and δ, incorporating informa
tion on how active specific nodes are with respect to following or 
being followed, are made available in the supplementary 
materials. At first glance, we see that the two communities are 
distributed along the horizontal axis Z1, with the more numerous 
blue community occupying the left and center parts of the figure, 
and the orange one being located towards the right-hand side. 
Moreover, from the posterior membership probabilities we can 
see that group memberships are fairly clear for most nodes. 
Nonetheless, significant uncertainty can be observed for a non- 
negligible proportion of the actors, which lie in between the two 
clear communities in the space.

As our task is of unsupervised nature, we do not have a 
set-in-stone “ground truth” with which to compare the model- 
based labeling and the estimated positions of the actors. To 
interpret the results, we therefore need to dig into the data and 
consider the emerging patterns. As the network is limited in 
size, and thanks to the naturally high propensity of elite users to 
voice their opinions, it is relatively straightforward to identify 
some of the more prominent actors and gauge their views on 
pandemic-related governmental interventions based on public 
information. Through this process, we can appreciate how the 
latent position of each actor in the network is strongly associated 
with their public stances on government mandates. More 

specifically, despite substantial within-cluster heterogeneity in 
stances (and their intensity) on several issues, users in the blue 
community tend to hold views that can be summarized as “gener
ally for” interventions and vaccine mandates. The opposite is true 
for actors in the orange community, which can be described as 
“generally against” such measures. Moreover, the positioning of 
nodes within communities is also informative on the actors’ be
liefs, capturing the within-cluster heterogeneity mentioned. 
Specifically, more central (external) positions in the overall latent 
space are associated with more moderate (extreme) stances. To 
showcase these patterns, we highlighted and labeled some not
able users in Fig. 3, where each user is indicated with their 
Twitter username. The very center of the space is occupied by 
the most popular actors, most of whom, despite having connec
tions to both groups thanks to their “elite among elites” status, 
reside firmly in the blue camp: A prime example is 
Karl_Lauterbach, an exponent of the Social Democratic Party 
who, at the time of writing, has been serving as the health minister 
of Germany since December 8th, 2021. He is known to be a strong 
proponent of vaccination and mandatory vaccination for all (41). 
Two other notable members of this group are Christian Drosten 
(c_drosten), a prominent virologist who has been described by 
major media outlets as “the country’s real face of the coronavirus 
crisis” and “the nation’s corona-explainer-in-chief” (42), and 
Melanie Brinkmann (BrinkmannLab), another well-known virolo
gist who was among the proponents of the No-COVID strategy 
(43). Moving a bit further left in the space, another very popular 
user in the network is Flying__Doc, a medical doctor who has 
been outspoken in his support for policy proposals such as a vac
cine mandate for all adults, and allowing access to events only to 
people who are both fully vaccinated and tested (“1G+” in the 
German political jargon). Looking even more toward the left on 
the Z1 dimension, we encounter positions that are increasingly 
more in the direction of decisive government interventions. 
Examples of this are dr_heartbreaker, a medical professional 
who has expressed his support for hard lockdowns and the afore
mentioned No-COVID strategy, and NavomDienst and 
Doktor_Freakout, two anonymous medical doctors who also 
vehemently voiced their dissent for what they deemed to be bland 
policy making, and vouched their support for stronger restric
tions. To conclude our outlook on the blue community, we also la
beled two more peripheric, less Twitter-popular nodes. On the 
bottom-left of the plot we find DanZickler, an intensive care 
doctor who also expressed his support for more decisive 
action by the government, while on the top left we find 
MuttivsFaschos, who tweeted at the hashtags #ZeroCovid 
and #harterLockdownJetzt (“harder lockdown now”). All in all, 
our analysis highlights how users categorized in the blue group 
generally tend to openly support governmental efforts to contain 
the pandemic, and that the estimated dimension Z1 is associated 
with the intensity of the actors’ voiced stances on policy.

We now shift our focus to the orange community, composed of 
actors who have, on average, significantly fewer followers within 
this elite network, and tend to more or less strongly oppose 
pandemic-related government mandates. We start our overview 
with DrPuerner, the user with the highest number of popular 
tweets in our dataset. A medical doctor, Puerner rose to promin
ence during the pandemic for his stark criticism of COVID meas
ures and opposition to government mandates. While not 
downplaying the dangers posed by COVID-19, he attracted follow
ing and praise from conspiracy theorists and the populist 
right-wing party “Alternative for Germany” (“AfD”), notorious for 
its antisystem beliefs (44). Closer to DrPuerner in the latent space 
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we can also find wolff_ernst, a self-described journalist and 
writer, who has openly associated himself with COVID-related 
and general conspiracy theories (45). We also labeled two more 
peripheral nodes in this cluster, namely users zukunft37 and 
Whereismymodel3, anonymous accounts who openly voice their 
vaccine skepticism and opposition to government mandates. 
Two elected members of the aforementioned AfD, namely 
Alice_Weidel, who has been the leader of the party in the 
Bundestag (German Federal Parliament) since October 2017, and 
JoanaCotar, another member of the Bundestag who was part of 
AfD for the whole studied period and until late 2022, are also 
part of the orange community. Unsurprisingly, the two are close 
in the latent space, reflecting their similar policy stances. 
Perhaps more surprisingly, their estimated latent positions are 
not far from that of Sahra Wagenkecht (SWagenknecht), member 
of the Bundestag for “The Left” (“Die Linke”) since 2009, and former 
parliamentary leader of that same party. Despite being on the oth
er end of the political spectrum, she also opposes general vaccin
ation mandates (46). She is located more towards the middle of the 
plot and has substantial uncertainty in her community member
ship, with a posterior probability of approx. 75% to belong to the 
orange community. Another actor whose community member
ship is uncertain is Christian Democratic Union politician Jens 
Spahn, who served as health minister for most of the analyzed pe
riod, i.e. until December 8th, 2021 (jensspahn). He is not far in the 
space from his successor Karl Lauterbach but lies a bit more on 
the right: He is classified in the blue community but has a poster
ior probability of approximately 25% to belong to the orange one. 
This is in line with the fact that, while he is a proponent of wide
spread vaccination, he is opposed to the idea of compulsory 

vaccination for all (47). To conclude our overview of the space, 
we highlight some other notable accounts located in between 
the two clusters, namely those belonging to prominent news out
lets. Given that we expect them to have a diverse following due to 
their authority status, their central positioning makes intuitive 
sense. But even between media outlets, the model is able to 
draw a distinction: zeitonline and tagesschau, generally rep
utable news sources, are closer to the center of the space, and, al
though with substantial uncertainty, labeled as blue. On the other 
hand, BILD, the most prominent German boulevard newspaper, 
is located more towards the right, and has a higher probability 
of belonging to the orange group.

Discussion
In this article, we identified and modeled the network of users 
leading the conversation revolving around the COVID-19 pandem
ic on Twitter. More specifically, we made use of the latent cluster 
random effects model to map these elite users into a 2D Euclidean 
social space, in which users that are closer to each other have a 
higher likelihood to connect, i.e. to follow each other. The results 
suggest the emergence of a natural partition of the network into 
two dense macro-communities, which are only loosely connected 
with their opposing counterparts. By focusing on a number of not
able users, such as politicians, activists, and news outlets, we 
show how those two communities can be interpreted as “generally 
pro” and “generally against” public interventions and vaccine 
mandates. This finding corroborates recent research demonstrat
ing the polarized nature of pandemic-related online discourse, es
pecially concerning vaccination (19–23). But a deeper inspection of 

Fig. 3. Graphical representation of the latent positions of the actors in the network of COVID-19 Twitter elites estimated via the latent cluster random 
effects model, where the node size for each actor is scaled by its degree. A number of notable users are highlighted. The axes correspond to the two latent 
dimensions Z1 and Z2, while the estimated posterior probabilities for each user to belong to the “pro vaccine mandates” (blue) or “anti compulsory 
vaccination” (orange) cluster are depicted through the node-specific pie charts. Major German media outlets are found between the two communities.
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the latent space further reveals that users within communities 
are only partially homogeneous in their stances. To the contrary, 
the model is able to uncover a nuanced, continuous spectrum of 
pandemic-related beliefs and policy positions, ranging from de
manding radical containment measures all the way to vaccine 
skepticism and COVID-denying conspiracy theories, covering 
everything in between those two extremes. In this context, neutral 
actors, such as mainstream news outlets, are positioned between 
the two clusters, which makes intuitive sense given their author
ity status. From the latent positions of users whose political inclin
ation is known, we can also appreciate how attitudes toward 
governmental interventions tend to follow political inclination, 
with left- and right-wing respectively corresponding to more fa
vorable or unfavorable positions towards restrictions and vaccine 
mandates. This finding echoes recent research showing how 
ideology can shape trust in scientists and attitudes towards vac
cines (48, 49). The importance of vaccination as a subtheme within 
the pandemic-related discussion is corroborated by the fact that 
“vaccine” is one of the words appearing more often in the data 
(while not being used as a filtering mechanism), as shown in the 
supplementary material (Fig. S3).

A particular feature of the employed methodology is the ability 
to combine “classical” community detection, which alone would 
be insufficient to gain a proper understanding of the network at 
hand, with more refined, continuous latent space modeling. 
This allows to map the underlying latent social space with the 
necessary nuance while simultaneously returning a partition of 
the network into subgroups, which can be useful for understand
ing the network at a coarser resolution, or for classification pur
poses. The modeling results thus allow us to obtain a clearer 
picture of the network as a whole and can be used for garnering 
insight on single (politically unaffiliated) users.

We note that the studied network is fairly small as a result of 
the relatively restrictive popularity threshold we chose for defin
ing a popular tweet: It would thus be possible to decrease the 
threshold to obtain a larger network. We also note, however, 
that using a lower value somehow “loosens” the definition of an 
elite, as users that are less popular on average would make it 
into the network. Experimenting with the threshold, we also ob
served that using different values almost only impacts the size 
of the network’s periphery and does not change the overall pic
ture. Results of alternative analyses with different threshold val
ues and inclusion criteria are provided in the supplementary 
material (Figs. S1 and S2) and corroborate the robustness of our 
findings. Moreover, a stricter definition of elites incidentally 
makes the network size more manageable, which is relevant given 
that model estimation, as it is currently implemented in the R 
package latentnet, only scales well up to a few thousand nodes. 
Nonetheless, while latent space models do pose serious computa
tional challenges, different approaches to estimate them for lar
ger networks have been proposed (50, 51). We also note that, as 
we here only model the behavior of elites, we cannot a priori as
sume our results to be valid for the overall discussion. While, giv
en the well-documented strong influence of popular users in the 
conversation, it is reasonable to believe that many of the results 
could extend to the general Twitter population, further research 
would be needed to confirm this. Furthermore, there may be dif
ferent patterns in how elite and nonelite actors follow other users. 
For example, whereas nonelites are likely to use their follows pri
marily instrumentally, i.e. to see tweets they are interested in on 
their timeline, elites could also use theirs for signaling, i.e. to pub
licly show support or endorsement towards other users, and may 
thus curate their follows more carefully. Similarly, highly active 

elites could be more likely than nonelites to enter conflicts with 
each other and block opposing elites. On the one hand, these stra
tegic follows (or nonfollows) are indeed relevant to our analysis, 
as they give information on the potential factions at play in the net
work, and aid us in identifying them. On the other hand, as a result 
of these mechanisms, polarization in the elite network may be high
er than in the complete one. The latter consideration strengthens 
the notion that polarization, although undoubtedly present to 
some extent, is not the only determining factor in network forma
tion, and that the different groups exist on a continuous spectrum 
rather than being completely isolated from one another.

We further emphasize that our approach is purely unsupervised 
and completely based on network structure, without including any 
element of natural language processing. In other words, this means 
that the two groups emerge only from using information on who fol
lows whom. In this sense, we could have simply labeled the two 
clusters as “blue” and “orange”, or “left” and “right”. The description 
of the communities with respect to their attitudes towards vaccin
ation, and, more in general, pandemic management, was done after 
the modeling, to shed some additional light on the data-driven clus
ter selection, and alternative characterizations would also be viable. 
While it would certainly be possible to make use of the tweets’ text 
content to obtain further insight into the users, we here explicitly 
chose to focus solely on the network component, thus demonstrat
ing how tightly the users’ personal networks are intertwined with 
their beliefs. Indeed, given that the latent positions of the actors 
are estimated by the model solely using their follows and followers 
within the network, it is quite remarkable how consistently actors 
neighboring each other in the estimated latent space are also near 
in their stances on COVID-19 and its management, and how closely 
the space is able to track the belief spectrum. The echo chamber ef
fect is well documented in the literature: Users tend to follow those 
who share similar ideas, and are thus rarely exposed to contrasting 
views. This, in turn, leads the users’ beliefs to become self- 
reinforcing (52, 53). However, our analysis demonstrates how this 
behavior is not only prevalent at the extremes of the socio-political 
spectrum but also towards the center of the belief space. On the one 
hand, the phenomenon implies that users with radical ideas will 
tend to follow people with similarly extreme beliefs, leading to fur
ther polarization; On the other hand, it also means that users follow
ing more moderate voices will also tend to gravitate towards more 
nuanced views. Central actors, which have the ability to act as a 
bridge between the two communities, are thus uniquely positioned 
to mitigate the polarization loop.

The fact that following behavior is so closely related to beliefs 
and attitudes paves the way for latent space models as powerful 
tools for drawing maps of social media landscapes, which can, 
in turn, be used to increase our understanding of the underlying 
social and behavioral structures. Indeed, while we here applied 
the methodology to map the discussion revolving around 
COVID-19, it is possible to perform similar types of analysis on 
other topics of public relevance. Given its explanatory and pre
dictive power, we believe latent space modeling of elite social me
dia networks to have the potential for improving our general 
understanding of the online landscape, ultimately aiding policy
makers in making more informed decisions in their quests against 
polarization and misinformation worldwide.

Note
a At the time of publication, the Twitter social media platform is in 

the process of rebranding to “X”.
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Abstract
We analyse the temporal and regional structure in mortality rates related to
COVID-19 infections, making use of the openly available data on registered cases
in Germany published by the Robert Koch Institute on a daily basis. Estimates
for the number of present-day infections that will, at a later date, prove to be
fatal are derived through a nowcasting model, which relates the day of death
of each deceased patient to the corresponding day of registration of the infec-
tion. Our district-level modelling approach for fatal infections disentangles spa-
tial variation into a global pattern for Germany, district-specific long-term effects
and short-term dynamics, while also taking the age and gender structure of the
regional population into account. This enables to highlight areas with unexpect-
edly high disease activity. The analysis of death counts contributes to a better
understanding of the spread of the disease while being, to some extent, less
dependent on testing strategy and capacity in comparison to infection counts.
The proposed approach and the presented results thus provide reliable insight
into the state and the dynamics of the pandemic during the early phases of the
infection wave in spring 2020 in Germany, when little was known about the dis-
ease and limited data were available.

KEYWORDS
COVID-19, disease mapping, generalized regression model, nowcasting

1 INTRODUCTION

In March 2020, COVID-19 became a global pandemic. From Wuhan, China, the virus spread across the whole world,
and with its diffusion more and more data became available to scientists for analytical purposes. In daily reports, the
WHO provides the number of registered infections as well as the daily death toll globally (https://www.who.int/). It is
inevitable for the number of registered infections to depend on the testing strategy in each country (see, e.g., Cohen &
Kupferschmidt, 2020). This has a direct influence on the number of undetected infections (see, e.g., Li et al., 2020), and
first empirical analyses aim to quantify how detected and undetected infections are related (see, e.g., Niehus, De Salazar,
Taylor, & Lipsitch, 2020). Though similar issues with respect to data quality hold for the reported number of fatalities

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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(see, e.g., Baud et al., 2020), the number of deaths can overall be considered a more reliable source of information than
the number of registered infections. The results of the ‘Heinsberg study’ in Germany point in the same direction (Streeck
et al., 2020). A thorough analysis of death counts can in turn generate insights on changes in infections as proposed in
Flaxman et al. (2020) (see also Ferguson et al., 2020). In this paper, we pursue the idea of directly modelling registered
death counts related toCOVID-19 instead of registered infections. In otherwords,we restrict our analysis to fatal COVID-19
cases only, omitting recovered or symptom-free infections. We analyse data from Germany and break down the analyses
to a regional level. Such regional view is apparently immensely important, considering the local nature of some of the
outbreaks, for example in Italy (see, e.g. Grasselli, Pesenti, & Cecconi, 2020; Grasselli, Zangrillo, & Zanella, 2020), France
(see, e.g., Massonnaud, Roux, & Crépey, 2020) or Spain and can assist local health authorities in monitoring the disease
and planning infection control measures.
The analysis of fatalities has, however, an inevitable time delay and requires to take the course of the disease of COVID-

19 patients into account. In particular, in this paper we consider the timespan between the registration of the infection
through local health authorities and the report of its deadly outcome by the Robert Koch Institute (RKI). A first approach
onmodelling and analysing the time from illness and onset of symptoms to reporting and further to death is given in Jung
et al. (2020) (see also Linton et al., 2020). Understanding the delay between onset and registration of an infection and, for
severe cases, the time between registered infection and death, can be of vital importance. Knowledge on those timespans
allows us to obtain estimates for the number of infections that are expected to be fatal based on the number of infections
registered on the present day. The statistical technique to obtain such estimates is called nowcasting (see, e.g., Höhle &
an der Heiden, 2014) and traces back to Zeger, See, and Diggle (1989) or Lawless (1994). Nowcasting in COVID-19 data
analyses is not novel and is, for instance, used in Günther, Bender, Küchenhoff, Katz, and Höhle (2020) for nowcasting
daily infection counts in Germany, that is to adjust daily reported new infections to include infections which occurred
the same day but were not yet reported. Altmeijd, Rocklöv, and Wallin (2020) apply nowcasting techniques to Swedish
data and Bird and Nielsen (2020) provide nowcasting fatalities in English hospitals. We extend this approach to model the
duration between the registration date of an infection and its fatal outcome, accounting for additional covariates. To do
so, we combine a nowcasting model with a spatio-temporal regression model.
We analyse the number of fatal cases of COVID-19 infections in Germany using district-level data. The data are provided

by the RKI (www.rki.de), the German federal government agency and scientific institute responsible for health reporting,
disease control and prevention in humans. They report the cumulative number of deaths in different gender and age
groups for each of the 412 administrative districts in Germany, together with the date of registration of the infection. The
data are available in dynamic form through daily downloads of the updated cumulated numbers of deaths. Comparing two
consecutive daily downloads allows to construct a new dataset which contains both the date at which a COVID-19 disease
is registered and the date at which a fatality is reported to the RKI, with the latter usually being reported at a later time
point.We employ flexible statistical models with smooth components (see, e.g.,Wood, 2017), assuming the district-specific
number of fatalities to be negatively binomial distributed, which permits to also account for possible overdispersion in
the data. The spatial structure in the death rate is incorporated in two ways: First, we assume a spatial correlation of
the number of deaths by including a long-range smooth spatial death intensity. This allows to map a general pattern of
the spread of the disease over Germany, which shows that regions of Germany are affected to different extents. On top
of this long-range effect, we include two types of unstructured region-specific effects. An overall region-specific effect
reflects the situation of a district as a whole, while a short-term effect mirrors region-specific variations of fatalities over
time and captures local outbreaks as happened in, for example Heinsberg (North-Rhine-Westphalia) or Tirschenreuth
(Bavaria). This effect can be seen as an unstructured time-space interaction. In addition to the spatial components, we
include an overall temporal effect to capture dynamic changes in the number of fatal infections for Germany. The latter
effect mirrors the overall flattening of the infectious situation in the considered time period, that is spring 2020. Besides
the spatio-temporal character, our modelling approach further adjusts for the district-specific age and gender structure.
Modelling infectious diseases is a well-developed field in statistics, and we refer to Held, Meyer, and Bracher (2017) for a

general overview of the different models. We also refer to the powerful R package surveillance (Meyer, Held, & Höhle,
2017). Since our focus is on analysing district-specific dynamics, both structured and unstructured, as well as dynamic
behaviour of fatal infections, we prefer to make use of generalized additive regressions implemented in the mgcv package
in R, which also allows to decompose the spatial component in more depth.
The paper is organized as follows. In Section 2 we describe the data. Section 3 introduces our model, while Section 4

discusses the necessity of incorporating a nowcasting model. Section 5 shows the results of our analysis which are then
refined to subgroups of the data in Section 6. Section 7 concludes the paper by also discussing the limitations of our
modelling exercise.
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TABLE 1 Illustration of the data structure, showing downloads of the data from April 25 and April 26, 2020 as an example. To facilitate
reproducibility, the original column names used in the RKI datasets are given in brackets below our English notation

2 DATA

We make use of the COVID-19 dataset (Esri Deutschland GmbH, 2020) provided by the RKI on a daily basis for the 412
districts in Germany (which also include the 12 districts of Berlin separately). The data are collected by the RKI, but
originate from the district-based health authorities (Gesundheitsämter). Due to different population sizes in the districts,
and certainly also because of different local situations, some health authorities transmit the daily numbers to the RKI
with a delay. This happens in particular over the weekend, a fact that we need to take into account in our model. We have
daily downloads of the data sinceMarch 27, 2020.We here choose to focus on a phase of the COVID-19 pandemic in which
the death toll in Germany was high. The subsequent analysis was thus conducted with data up to May 14, 2020, and was
performed considering only deadly infections with registration dates from March 26, 2020 until May 13, 2020 (the day
before that of the analysis).
Table 1 illustrates an exemplary extract of the data that are available. For each of the 412 districts, the data contain

the cumulated number of laboratory-confirmed COVID-19 infections as well as the cumulated number of deaths related
to COVID-19 for each district of Germany, stratified by age group (15–34, 35–59, 60–79 or 80+), gender, and the date of
registration of the infection by the local public health authorities. The time stamp for a fatal outcome always refers to
the registration date of the infection and not to the individual’s date of death. Therefore, the numbers in the column
‘Fatal infections’ cannot exceed the numbers shown in the column ‘Infections’. Even though the time point of infection
obviously precedes that of death, registration of an infection can also occur after death, for example when a post-mortem
test is conducted, or when test results arrive after the patient has passed away. In the former case, the registration date
are set to the day of death by the local health authority. Also note that it is not indicated in the dataset whether a fatal
infection resulted from a post-mortem test, and that no information on whether the patient has died with or because of a
COVID-19 infection is included.
The cumulative numbers are reported on a daily basis by the RKI, which is mirrored in the column ‘Reporting date’ in

Table 1. The reporting date always corresponds to the query date and the download date of the data. In Table 1, we see that
the number of reported infections with registration date April 22, 2020, which relate to females in the age group 60–79
living in the city of Munich, increases by three from April 25, 2020 to the following day. In the same period, the number of
fatal infections increased by one. Thus, we can deduce that three registered infections in this sub-populationwere reported
with a delay of 4 days. The single newly reported fatal infection belongs to an individual of this sub-population for which
the time between registration by the local health authorities and reported death amounts to 4 days. In this paper, we are
especially interested in the latter quantity, which we model as a duration time. It is of importance to note that we can
derive such information only due to daily downloads of the dataset, which are not being provided retrospectively.
We refrain from providing general descriptive statistics on the spatio-temporal distribution of confirmed COVID-19

infections here, since these numbers are already visualized on the RKI dashboard (Robert Koch-Institut, 2020; see also
StaBLab, LMUMunich, 2020).However, the number of fatal infections is less often taken into account. Thus, in Figure 1we
show the empirical duration between the day of registration as COVID-19 infected by the local health authorities and the
day on which the death has been reported by the RKI (based on the data until May 14, 2020). Due to the aforementioned
reporting delay, the minimum duration is 1 day. Note that these plots show stapled bar charts, highlighting the counts
by gender. We see that considerably more fatal infections originate from the age group 80+. Regarding the age group
80− (aggregated age groups 15–39, 40–59 and 60–79), we see that males are much more affected than females, whereas
in the age group 80+ the counts are more balanced. Finally, in both age groups there are a small number of deaths,
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F IGURE 1 Stapled bar chart of the counts of fatal infections depending on days between registered infection and reported death. Only
data reported until May 14, 2020 is considered here (left panel: age group 80− (less than 80 years), right panel: age group 80+ (80 years or older)
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F IGURE 2 Kaplan–Meier estimators of the data shown in Figure 1 with 95% confidence intervals

which were reported 40 or more days after the registration of the COVID-19 infection. Kaplan–Meier estimators of the
duration between registered infection and reported death are shown in Figure 2 for age groups 80− and 80+ by gender.
Here we especially see that the median duration time of elderly patients is slightly shorter when compared to the younger
age groups.

3 MORTALITYMODEL

Let 𝑌𝑡,𝑟,𝑐 denote the number of deaths due to COVID-19 with time point of registration 𝑡 = 0, … , 𝑇 in district/region 𝑟 and
cohort 𝑐, where the cohort 𝑐 is characterized by age group and gender of the deceased. Time index 𝑡 = 𝑇 corresponds to the
day of analysis, which is May 14, 2020, and 𝑡 = 0 corresponds to March 26, 2020. Not all fatalities with registered infection
at time point 𝑡 have been observed at time 𝑇, as some deaths will occur later. We therefore need a model for nowcasting,
which is discussed in the next section.
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For now,we assume all𝑌𝑡,𝑟,𝑐 to be known.A family of discrete distributionswhich is supported on the set of nonnegative
integers and also allows to account for possible overdispersion in the data is the negative binomial distribution. Therefore,
we model those numbers as according to 𝑌𝑡,𝑟,𝑐 ∼ NB(𝜆𝑡,𝑟,𝑐, 𝜙), (1)

where 𝔼(𝑌𝑡,𝑟,𝑐) = 𝜆𝑡,𝑟,𝑐 and the constant dispersion parameter 𝜙 relates to the variance by Var(𝑌𝑡,𝑟,𝑐) = 𝜆𝑡,𝑟,𝑐 + 𝜙𝜆2𝑡,𝑟,𝑐. We
model the mean 𝜆𝑡,𝑟,𝑐 of the response 𝑌𝑡,𝑟,𝑐 through a regression model and specify𝜆𝑡,𝑟,𝑐 = exp{𝛽0 + age𝑐𝛽age + gender𝑐𝛽gender+ age𝑐gender𝑐𝛽age, gender +weekday𝑡𝛽weekday+ 𝑚1(𝑡) + 𝑚2(𝑠𝑟) + 𝑢𝑟0 + 𝟙{𝑡≥𝑇−14}𝑢𝑟1 + log(pop𝑟,𝑐)}, (2)

where the linear predictor is composed as follows:∙ 𝛽0 is the intercept.∙ 𝛽age and 𝛽gender are the age- and gender-related regression coefficients, and 𝛽age, gender is the coefficient that models the
interaction between age and gender.∙ 𝛽weekday are regression coefficients, which relate to the weekday of the registration date as COVID-19 infected.∙ 𝑚1(𝑡) is an overall smooth time trend, with no prior structure imposed on it.∙ 𝑚2(𝑠𝑟) is a smooth spatial effect, where 𝑠𝑟 is the geographical centroid of district/region 𝑟.∙ 𝑢𝑟0 and 𝑢𝑟1 are district-/region-specific random effects, which are independently and identically distributed (i.i.d.) and
follow a normal prior probability model. While 𝑢𝑟0 specifies an overall level of the death rate for district 𝑟 over the entire
observation time, 𝑢𝑟1 is a spatio-temporal effect that reveals region-specific dynamics by allowing the regional effects
to differ for the last 14 days.∙ pop𝑟,𝑐 is the gender and age group-specific population size in district/region 𝑟 and serves as an offset in our model.

We here emphasize thatwe fit spatial effects of different types:Wemodel a smooth spatial effect, that is𝑚2(𝑠𝑟), which takes
the correlation between the fatal infections of neighbouring districts/regions into account and gives a global overview of
the spatial distribution of fatal infections. In addition to that we also have unstructured district-/region-specific effects𝒖𝑟 = (𝑢𝑟0, 𝑢𝑟1)⊤, which capture local behaviour related to single districts only. While 𝑢𝑟0 captures the corresponding long-
term effect, 𝑢𝑟1 captures the short-term effect of the last 14 days; see (2). This means that we alsomodel a dichotomous and
unstructured interaction of spacewith time. The district-specific effects𝒖𝑟 are considered as random,with prior structure𝒖𝑟 ∼  (𝟎, 𝚺𝑢) i.i.d (3)

for 𝑟 = 1,… , 412. The prior variancematrix 𝚺𝑢 is estimated from the data. The predicted values 𝒖̂𝑟 (i.e. the posteriormode)
exhibit districts that show unexpectedly high or low death tolls when adjusted for the global spatial structure and for age-
and gender-specific population sizes.
While model (2) is complex and highly structured, note that no autoregressive components are included in the lin-

ear predictor in (2). We will demonstrate in Section 6.4 below that auto-correlation is of negligible size, and that time
dependence is fully captured by𝑚1(𝑡) as well as the unstructured effects 𝑢𝑟1.
The mortality model defined through (1) and (2) belongs to the model class of generalized additive mixed model (see,

e.g., Wood, 2017). The smooth functions are estimated by penalized splines without restrictions on the number of degrees
of freedom, with a quadratic penalty that can be comprehended as a normal prior (see, e.g., Wand, 2003). The same type
of prior structure holds for the region-specific random effects 𝒖𝑟. In other words, smooth estimation and random effect
estimation can be accommodated in one fitting routine, which is implemented in the R package mgcv. This package has
been used to fit the model, so that no extra software implementation was necessary. This demonstrates the practicability
of the proposed method. Our analysis is completely reproducible, with code and data openly available and downloadable
from our GitHub repository.1

1 https://github.com/MarcSchneble/Nowcasting-Fatal-COVID-19-Infections
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4 NOWCASTINGMODEL

4.1 Model description

The above model cannot be fitted directly to the available data, since we need to take the course of the disease on the
individual level into account. This means that the final number of fatal outcomes for infections registered on date 𝑡 < 𝑇
is not known at the time point of analysis 𝑡 = 𝑇, since not all patients with a fatal outcome of the disease have died yet.
This requires the implementation of nowcasting. Due to the sparsity of the data, we perform the nowcast on a national
level, that is we cumulate the numbers over district/region 𝑟. For reasons of notation, we temporarily drop the gender and
age-related subscript 𝑔, and we simply notate the cumulated number of deaths with registered infections at day 𝑡 with 𝑌𝑡.
Let 𝑁𝑡,𝑑 denote the number of deaths reported on day 𝑡 + 𝑑 for infections registered on day 𝑡. Assuming that the true

date of death is at 𝑡 + 𝑑, or at least close to it, we ignore any time delays between time of death and its notification to the
health authorities. We call 𝑑 the duration in days between the registration date as a COVID-19 patient and the reported
day of death, where 𝑑 = 1,… , 𝑑max . Here, 𝑑max is a fixed reasonable maximum duration, which we set to 40 days (see, e.g.,
Wilson, Kvalsvig, Barnard, & Baker, 2020). This is also motivated by the means of Figure 1. The minimum duration is one
day, since the RKI daily reports the new numbers, which they have received from the public health departments the day
before. In nowcasting, we are interested in the cumulated number of deaths for infections registered on day 𝑡, which we
define as

𝑌𝑡 = 𝑑max∑
𝑑=1 𝑁𝑡,𝑑.

Therefore, the total number of deaths with a registered infection at 𝑡 becomes available only after 𝑑max days. In other
words, only after 𝑑max days we know exactly how many deaths occurred due to an infection which was registered on day𝑡. We define the partial cumulated sum of deaths as

𝐶𝑡,𝑑 = 𝑑∑
𝑙=1 𝑁𝑡,𝑙

so that by definition 𝐶𝑡,𝑑max = 𝑌𝑡.
On day 𝑡 = 𝑇, when the nowcasting is performed, we are faced with the following data constellation, where NA stands

for not (yet) available:

d
t 1 2 ⋯ 𝒅𝐦𝐚𝐱 Reported deaths
0 𝑁0,1 𝑁0,2 ⋯ 𝑁0,𝑑max 𝑌0
1 𝑁1,1 𝑁1,2 ⋯ 𝑁1,𝑑max 𝑌1⋮ ⋮ ⋮ ⋮ ⋮ ⋮𝑇 − 𝑑max 𝑁𝑇−𝑑max ,1 𝑁𝑇−𝑑max ,2 ⋯ 𝑁𝑇−𝑑max ,𝑑max 𝑌𝑇−𝑑max𝑇 − 𝑑max + 1 𝑁𝑇−𝑑max+1,1 𝑁𝑇−𝑑max+1,2 ⋯ NA 𝐶𝑇−𝑑max−1,𝑑max−1⋮ ⋮ ⋮ ⋮ ⋮ ⋮𝑇 − 2 𝑁𝑇−2,1 𝑁𝑇−2,2 NA NA 𝐶𝑇−2,2𝑇 − 1 𝑁𝑇−1,1 NA NA NA 𝐶𝑇−1,1

We may consider the timespan between registered infection and (reported) death as a discrete duration time taking
values 𝑑 = 1,… , 𝑑max . Let 𝐷 be the random duration time, which by construction is a multinomial random variable. In
principle, for each death we can consider the pairs (𝐷𝑖, 𝑡𝑖) as i.i.d. and we aim to find a suitable regression model for 𝐷𝑖
given 𝑡𝑖 , including potential additional covariates 𝑥𝑡,𝑑. We make use of the sequential multinomial model (see Agresti,
2010) and define 𝜋(𝑑; 𝑡, 𝑥𝑡,𝑑) = 𝑃(𝐷 = 𝑑|𝐷 ≤ 𝑑; 𝑡, 𝑥𝑡,𝑑).
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Let 𝐹𝑡(𝑑) denote the corresponding cumulated distribution function of 𝐷 which relates to probabilities 𝜋() through𝐹𝑡(𝑑) = P𝑡(𝐷 ≤ 𝑑) = P(𝐷 ≤ 𝑑|𝐷 ≤ 𝑑 + 1) ⋅ 𝑃(𝐷 ≤ 𝑑 + 1)= (1 − 𝜋(𝑑 + 1; ⋅)) ⋅ (1 − 𝜋(𝑑 + 2; ⋅)) ⋅ … ⋅ (1 − 𝜋(𝑑max; ⋅))
= 𝑑max∏

𝑘=𝑑+1(1 − 𝜋(𝑘; ⋅)) (4)

for 𝑑 = 1,… , 𝑑max − 1 and 𝐹𝑡(𝑑max) = 1.
We generalize notation again by including the subscript 𝑔, which in the nowcasting model only distinguishes between

the two age groups 80− and 80+. The available data on cumulated death counts now allow us to estimate the condi-
tional probabilities 𝜋(𝑑; ) for 𝑑 = 2,… , 𝑑max . In fact, the sequential multinomial model allows to look at binary data such
that 𝑁𝑡,𝑑,𝑐 ∼ (quasi-)Binomial(𝐶𝑡,𝑑,𝑐, 𝜋(𝑑; 𝑡, 𝑐, 𝑥𝑡,𝑑)) (5)

with

logit(𝜋(𝑑; 𝑡, 𝑐, 𝑥𝑡,𝑑)) = 𝑠1(𝑡) + 𝑠2(𝑑) + 𝑠3(𝑑) ⋅ 𝟙age{80+} + 𝑥𝑡,𝑑𝛾, (6)

where∙ 𝑠1(𝑡) is an overall smooth time trend over calendar days.∙ 𝑠2(𝑑) is a smooth duration effect, capturing the course of the disease.∙ 𝑠3(𝑑) is a varying smooth duration effect, capturing interaction between the dynamics of the disease and age, particularly
for the age group 80+. Note that with effect 𝑠3(𝑑) we take into account that for infections with a fatal outcome, the
individual course of the disease for elderly patients might differ compared to younger patients.∙ 𝑥𝑡,𝑑 are covariates which may be time and duration specific.

By utilizing a quasi-likelihood model (Fahrmeir, Kneib, Lang, & Marx, 2007) as in (5), we account for possible overdis-
persion in the data, which results in adjusted standard errors of the parameter estimates, while, however, the estimates
themselves are the same when compared to the fit of a binomial model.
Assuming that𝐷, the duration between a registered fatal infection and its reported death, is independent of the number

of fatal COVID-19 infections, we obtain the relationship𝔼(𝐶𝑡,𝑑,𝑐) = 𝐹𝑡,𝑐(𝑑) ⋅ 𝔼(𝑌𝑡,𝑐). (7)

Note further that if we model 𝑌𝑡,𝑐 with a negative binomial model as presented in the previous section, we have no final
observation𝑌𝑡,𝑐 for time points 𝑡 > 𝑇 − 𝑑max . Instead, we have observed𝐶𝑡,𝑇−𝑡,𝑐, which relates to themean of𝑌𝑡,𝑐 through
(7) by 𝐶𝑡,𝑇−𝑡,𝑐 = 𝐹𝑡,𝑐(𝑇 − 𝑡) ⋅ 𝔼(𝑌𝑡,𝑐). Including therefore log 𝐹𝑡,𝑐(𝑇 − 𝑡) as additional offset in model (2) allows to fit the
model as before, but with the nowcasted number of fatal infections included. That means, instead of 𝜆𝑡,𝑟,𝑐 as in (2), the
expected number of fatal infections are now parameterized by 𝜆⋆𝑡,𝑟,𝑐 = 𝜆𝑡,𝑟,𝑐 exp(log 𝐹𝑡,𝑐(𝑇 − 𝑡)), where the latter multi-
plicative term is included as additional offset in the model.

4.2 Results for nowcasting

We fit the nowcasting model (5) with parameterization (6). We include a weekday effect for the registration date of the
infectionwith reference category ‘Monday’. The estimates of the fixed linear effects are shown in Table 2. The fitted smooth
effects are shown in Figure 3. The top panel shows the effect over calendar time, which is very weak and confirms that
the individual course of the disease hardly varies over time. This is supported by the fact that the German healthcare
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TABLE 2 Estimated fixed linear effects (standard errors in brackets) in the nowcasting model (6). Parameters and their standard errors
are given on the log scale. The relative risk is given together with 95% confidence intervals. The reference for the weekdays is Monday

exp(Effect) 95% Confidence interval
Effect (SE) Relative risk of relative risk

Intercept −3.12 (0.045) 0.04 [0.04, 0.05]
Tuesday 0.06 (0.060) 1.06 [0.94, 1.19]
Wednesday 0.11 (0.059) 1.12 [0.99, 1.25]
Thursday 0.20 (0.058) 1.23 [1.09, 1.38]
Friday 0.26 (0.059) 1.30 [1.16, 1.45]
Saturday 0.27 (0.063) 1.31 [1.16, 1.48]
Sunday 0.20 (0.068) 1.22 [1.07, 1.40]

system remained stable over the considered period, and hence survival did not depend on the date on which the infection
was notified.
The bottom panel of Figure 3 shows the course of the disease as a smooth effect over the time between registration of

the infection and death. We see that the probabilities 𝜋(𝑑; ⋅) decrease in 𝑑, where this effect is the strongest in the first
days after registration. Thus, most of the COVID-19 patients with fatal infections are expected to die not long after their
registration date. We also see no overall significant difference in the duration effect between the age groups 80− and 80+,
since the fitted curves 𝑠2(𝑑) and 𝑠2(𝑑) + 𝑠3(𝑑) hardly differ. To some extent, this was already visible from Figure 1. This
shows that, given that a registered case endswith a fatal outcome, the individual’s course of the disease does not depend on
the age group. The effect of 𝑑 becomes easier to interpret by visualizing the resulting distribution function 𝐹𝑡,𝑐(𝑑), where
here 𝑔 refers to the age group 80+. This is shown in Figure 4 for two different values of 𝑡, that is April 13 and May 13. The
plot also shows how the course of the disease hardly varies over calendar time: In fact, the small differences between the
two distribution functions is dominated by the weekday effect, since the red curve is related to a Monday while the blue
one is from a Wednesday.

4.3 Nowcasted number of fatal infections

On the day of analysis, we do not observe the total counts of deaths for recently registered infections. This means that
there are an unknown number of currently infected people which will die at a future point in time. We therefore nowcast
those numbers, that is we predict the prospective deaths which can be attributed to all registration dates up to today. This
is done on a national level, and the resulting nowcast of fatal infections for Germany is shown in Figure 5. For example, on
May 14, 2020 there are 25 deaths reported where the infection was registered on May 5 (red bullets on May 5). We expect
this number to increase to about 50 when all deaths due to COVID-19 for this registration date will have been reported
(green triangles on May 5). Naturally, the closer a date is to the present, the larger the uncertainty in the nowcast will be.
This is shown by the shaded bands. Details on how the statistical uncertainty has been quantified are provided below. In
Section 5, we incorporate the nowcasting results into the mortality model as discussed before, but the nowcast results are
interesting in their own right. The curve confirms that the number of fatal infections is decreasing since the beginning of
April. Note that the curve also mirrors the ‘weekend effect’ in registration, as less infections are reported on Sundays.
Since we are now more than 𝑑max = 40 days after the day of analysis (May 14, 2020), we can assess the predictive

accuracy of our nowcast. Therefore, we also show in Figure 5 the counts of fatal infections, which we observe 40 days
after the respective registration date. We see that our nowcast performs in general very well. However, there are a handful
of registration dates for which the nowcasted values were clearly outside of the prediction intervals. Most remarkably,
the cumulative number of fatal infections for registered infections on April 8, 2020 has dropped after May 14, 2020. This
happens in the rare case in which the database has been modified retrospectively by the local health authorities.

4.4 Uncertainty quantification in nowcasting

In Figure 5, we have shown the nowcasting results alongwith uncertainty intervals shaded in grey. Thesewere constructed
using a bootstrap approach as follows. Given the fitted model, we simulate 𝑛 = 10, 000 times from the asymptotic joint
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F IGURE 3 Estimates of smooth effects in the nowcasting model

normal distribution of the estimated model parameters which results through (4). This leads to a set of bootstrapped
distribution functions  = {𝐹(𝑖)𝑡 (𝑇 − 𝑡), 𝑖 = 1, … , 𝑛; 𝑡 = 𝑇 − 𝑑max + 1,… , 𝑇 − 1}. This set is used to compute the simulated
nowcasts𝑌(𝑖)𝑡 = 𝐶𝑡,𝑇−𝑡∕𝐹(𝑖)𝑡 (𝑇 − 𝑡) applying (7), where𝐶𝑡,𝑇−𝑡 is the observed partial cumulated sum of deaths at time point𝑇 − 𝑡 with registration date 𝑡. The point-wise lower and upper bounds of the 95% prediction intervals for the nowcast for𝑌𝑡 are then given by the 2.5 and the 97.5 quantiles of the set {𝑌(𝑖)𝑡 , 𝑖 = 1, … , 𝑛}, respectively.
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F IGURE 5 Observed (red line) and nowcasted (blue line) of daily death counts due to a COVID-19 infection on May 14, 2020 including
95% prediction intervals (shaded areas). Sundays are marked by a dashed vertical line. Finally realized death counts (𝑑max after the respective
registration date) are shown as blue squares

5 RESULTS OF THEMORTALITYMODEL

We first discuss the estimates of the fixed linear effects included in model (2), which are shown in Table 3. We see that
both age and gender play a major role when estimating the numbers of fatal infections. Elderly people exhibit a much
higher death rate from COVID-19, which is, for males (females) in the age group 80+, around 80 times (148 ≈ exp(4.39 +0.61) times) higher than in the reference age group 35–59. This already hints at a remarkable difference between genders,
where the expected death rate for females in the reference age group is around 60% (≈ 1 − exp(−0.94)) lower than the
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TABLE 3 Estimated fixed linear effects (standard errors in brackets) in the mortality model (2). Parameters and their standard errors are
given on the log scale. The relative risk is given together with 95% confidence intervals. The reference category for age is the age group 35–59.
The reference for the weekdays is Monday

exp(Effect)
Relative risk

95% Confidence interval
of  relative riskEffect (S.E.)

corresponding death rate for males. When considering the total gender-related numbers of fatal infections in the age
group 80+ (see Figure 1), the difference between the genders is seemingly very small. However, by respecting the district-
, gender- and age-specific population sizes in our model we see that the death rate of females in the age group 80+ is
still around 28% (≈ 1 − exp(−0.94 + 0.61)) lower when compared to the male population in this age group. Furthermore,
we see that significantly less deaths are attributed to infections registered on Sundays compared to weekdays, due to the
existing reporting delay during weekends.
Ourmodel includes a global smooth time trend representing changes in the death rate sinceMarch 26. This is visualized

in Figure 6. The plotted death rate is scaled to give the expected number of deaths per 100,000 people in an average district
for the reference group, that is males in the age group 35–59. Overall, we see a peak in the death rate on April 3 and a
downwards slope until the end of April. However, our nowcast reveals that the rate remains constant since beginning of
May. Note that such developments cannot be seen by simply displaying the raw death counts of these days. The nowcasting
step inevitably carries statistical uncertainty, which is taken into account in Figure 6 by including best and worst case
scenarios. The latter are based on bootstrapped confidence intervals, where details are provided in Section 6.3 later in
the paper.
Our aim is to investigate spatial variation and regional dynamics. To do so, we combine a global geographic trend for

Germany with unstructured region-specific effects, where the latter uncovers local behaviour. In Figure 7, we combine
these different components and map the fitted nowcasted death counts related to COVID-19 for the different districts
of Germany, cumulated over the last 14 days before the day of analysis, that is May 14, 2020. While in most districts of
Germany, the death rate is relatively low, some hotspots can be identified. Among those, Traunstein and Rosenheim (in
the south-east part of Bavaria) are the most evident, but Greiz and Sonneberg (east and south part of Thuringia) stand
out as well, to mention a few. A deeper investigation of the spatial structure is provided in Section 6, where we show the
global geographic trend and provide maps that allow to detect new hotspot areas, after correcting for the overall spatial
distribution of the infection.

6 MORE RESULTS ANDMODEL EVALUATION

6.1 Spatial effects

It is of general interest to disentangle the two spatial components that we introduced in Section 3. We visualize the fitted
global geographic trend 𝑚2(⋅) for Germany in Figure 8. The plot confirms that, up to mid May 2020, the northern parts
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and 59 in an average district) by registration date including 95% confidence bands as shaded area. Uncertainty resulting from the nowcastmodel
is shown as dashed coloured lines

of the country are less affected by the disease in comparison to the southern states. The two plots in Figure 9 map the
region-specific effects, that is the predicted long-term level of a district 𝑢𝑟0 (left-hand side) and the predicted short-term
dynamics 𝑢𝑟1 (right-hand side). Both plots uncover quite some region-specific variability. In particular, the short-term
dynamics 𝑢𝑟1 (right plot) pinpoint districts with unexpectedly high nowcasted death rates in the last two weeks, after
correcting for the global geographic trend and the long-term effect of the district. Some of the noticeable districts have
already been highlighted in Section 3 above, but we can here detect further districts which are less evident in Figure 6: For
instance, Steinfurt (in the north-west of North Rhine-Westphalia), Olpe (southern North Rhine-Westphalia) and Gotha
(center of Thuringia) all show a relatively high rate of fatal infections.

6.2 Age group-specific analyses

A large portion of the registered fatal infections related to COVID-19 stems from people in the age group 80+. Locally, high
numbers are often caused by an outbreak in a retirement home. Such outbreaks apparently have a different effect on the
spread of the disease, and the risk of an epidemic infection caused by outbreaks in this age group is limited. Thus, the death
rate among elderly people could vary differently across districts when compared to regional peaks in the death rate of the
rest of the population. In order to respect this, we decompose the district-specific effects𝒖𝑟 in (2) into𝒖80−𝑟 = (𝑢80−𝑟0 , 𝑢80−𝑟1 )⊤
for the age group 80− and 𝒖80+𝑟 = (𝑢80+𝑟0 , 𝑢80+𝑟1 )⊤ for the age group 80+, where the age group 80− consists of the aggregated
age groups 15–34, 35–59 and 60–79. We put the same prior assumption on the random effects as we did in (3), but now the
variance matrix that needs to be estimated from the data has dimension 4 × 4.
The fitted age group-specific random effects are shown in Figure 10, where the 𝒖80−𝑟 are shown in the top panel and

the 𝒖80+𝑟 in the bottom panel. Most evidently, the variation of the random effects is much higher in the age group 80+
when compared to the younger age groups, as more districts occur which are coloured dark blue or dark red, respectively.
When comparing the district-specific short-term dynamics of the last 14 days (𝑢𝑟1) in Figure 10 to those in Figure 9, we
recognize that in most of the districts which recently experienced very high death intensities (with respect to the whole
period of analysis), these stem from the age group 80+. As mentioned before, this can often be explained by outbreaks in
retirement homes.
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F IGURE 7 Nowcasted fatal COVID-19
infections per 100,000 inhabitants in each
district in the timespan from Thursday, April
30 until Wednesday, May 13, 2020

6.3 Additional uncertainty in the mortality through the nowcast

When fitting the mortality model (1), we included the fitted nowcast model as offset parameter. This apparently neglects
the estimation variability in the nowcasting model, which we explored via bootstrap as explained in Section 4.4 and visu-
alized in Figure 5. In order to also incorporate this uncertainty in the fit of the mortality model, we refitted the model
using (a) the upper end and (b) the lower end of the prediction intervals shown in Figure 5. It appears that there is little
(and hardly any visible) effect on the spatial components, which is therefore not shown here. But the time trend shown
in Figure 6 does change, which is visualized by including the two fitted functions corresponding to the 2.5% and 97.5%
quantile of the offset function. We can see that the estimated uncertainty of the nowcast model mostly affects the last 10
days, with a strong potential increase in the death rate mirroring a possible worst case scenario.

6.4 Auto-correlation of residuals in the mortality model

In the mortality model (2), we did not include an epidemic component accounting for possible temporal auto-correlation,
as it is often done in endemic-epidemicmodels (see, e.g., Meyer et al., 2017). To check for possibly omitted auto-correlation
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F IGURE 8 Smooth spatial effect of the
death rate in Germany

in ourmodel, we explore the temporal correlation of the Pearson residuals in themortalitymodel (2). To do so, we compute
the auto-correlation function (ACF) for all lags 𝑘 = 0,… , 𝑇 − 1. The corresponding ACF plot is shown in Figure 11. Appar-
ently, the results do not show any pattern of auto-correlation and support the suitability of our model. We emphasize,
however, that infection dynamics are included in the model through the time trend 𝑚1(𝑡). Moreover, even if we ignore
possibly existing auto-correlation, this time trend𝑚1(𝑡) is still estimated unbiasedwith penalized spline smoothing, which
is robust against misspecification of the auto-correlation structure (Krivobokova & Kauermann, 2007).
We also think that the epidemic component is generally less impactful when modelling fatal infections in comparison

to modelling the number of registered infections. The time between person-to-person transmission of the virus and a fatal
outcome of a COVID-19 infection is much larger than the time until the registration of the infection, as shown in Figure 1,
and hence any auto-correlation is rather indistinct for fatal cases.

7 DISCUSSION

The paper presents a general approach for monitoring the dynamic behaviour of COVID-19 infections on a small-area
level purely based on the analysis of the number of observed death counts. This in turn means that the results are less
dependent on testing strategies, which may vary by region and over time.
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F IGURE 9 Region-specific long-term level (left-hand side) and short-term dynamics of the 14 days prior to May 14, 2020 (right-hand side)
of fatal COVID-19 infections

In addition, patients with fatal infections typically require intensive medical care and are therefore relevant in the
planning of clinical capacities of the local health system.An analysis of fatal infections is especially interesting in situations
in which reliable information on hospitalization is not available, as in the considered timespan of the COVID-19 pandemic
in Germany.
The described nowcasting approach enables us to estimate the number of deaths following a registered infection even

if the fatal outcome has not occurred yet, providing an up-to-date picture of the situation. The results of the nowcasting
model confirm that the individual course of the disease for fatal infections did not change over calendar time nor did it
differ by gender. More in particular, it uncovers that in Germany, during the considered timespan, elderly patients had, in
the case of fatal infections, about the same course of the disease as younger patients.
Our analysis of the nowcasted number of fatal infections on a regional level allows to draw conclusions on the current

dynamics of the disease on the spatial dimension. By separately estimating, for each district, a long-range effect whichmir-
rors the overall situation as well as a short-term dynamic effect, we can timely identify districts with unexpectedly high
nowcasted death rates. An additional interaction for elderly people allows us to distinguish between outbreaks which
might be attributed to activity in retirement homes and those due to unexpected activities in the general population.
Mapping the general pattern of the spread of the disease in Germany confirms that different regions are affected to differ-
ent extents, with southern and western regions being generally more affected than northern states. In addition, a global
smooth time trend captures the changes in death rate, showing the peak at the beginning of April and a constant decrease
since then. Thanks to the implemented nowcasting, the time trend can be estimated up to the date of analysis. This spa-
tially differentiated picture would not be achievable through a simple monitoring of district-specific observed deaths.
Anatural next stepwould nowbe to consider the nowcasted fatal infections in relation to the number of newly registered

infections, which is, in contrast, highly dependent on both testing strategy and capacity.We consider this as possible future
research, but the proposedmodel allows to explore data in this direction. Thismight ultimately help us in shedding light on
the relationship between registered and undetected infections as well as on the effectiveness of different testing strategies.
There are several limitations to this study, whichwewant to address as well. First and utmost, even though death counts

are, with respect to cases counts, less dependent on testing strategies, they are not completely independent from them. This
applies in particular to the handling of post-mortem tests. We therefore do not claim that our analysis of death counts is
completely unaffected by testing strategies. Second, a fundamental assumption in themodel is the independence between
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F IGURE 10 Region-specific long-term level (left-hand column) and short-term dynamics of the 14 days prior to May 14, 2020 (right-hand
column) of fatal COVID-19 infections for the age groups under 80 (80−, upper row) and above 80 (80+, bottom row)

the course of the disease (on the population level) and the number of infections. Overall, if the local health systems have
sufficient capacity and triage can be avoided, this assumption seems plausible, but it is difficult or even impossible to
prove the assumption formally. However, the results of the nowcasting model empirically show a rather stable course
of the disease, supporting our assumption. Furthermore, the registration of a COVID-19 case is related to the district of
residence, while the infection does not necessarily occur in the district where the infected person resides. However, due
to a lack of data we cannot explore this point further. Also, in the considered timespan, the mobility in the population has
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F IGURE 11 ACF plot of the Pearson residuals in the mortality model

been rather low due to governmental restrictions. Even though the model focuses on regional aspects of the pandemic,
the nowcasting itself is carried out on a national level, due to sparse data. Given that our results show that the course of
the disease from registration to death in Germany did not notably depend on age or gender, we do not expect it to depend
on place of residence either.
A general limitation results through the availability of information. Our analyses are based on available data of all

registered COVID-19 infections in Germany together with the information on fatalities, which is published daily by the
RKI. While these data allow for an analysis of the occurrence of the disease in Germany, it lacks further detailed patient-
specific information, for example on clinical aspects or on the differentiation between death with or because of COVID-19.
This issue is shared with many other public disease registers. Note also that the methods we are proposing in this paper
are not necessarily restricted to the use case of German COVID-19 data. For the purpose of applying our methodology to
other countries, the data need to be in the same format as illustrated in Table 1, that is death counts need to be available
in an aggregated form stratified by age (group), gender and district. For an appropriate interpretation of the results, it is
critical that the reference date of every infection with a fatal outcome (here: registration date) corresponds to a time point
at the early stages of the course of the disease. This could also be the date of infection with COVID-19, if known. The
second date, which is needed for our nowcasting approach, is the reporting day of each fatal infection. While in Germany,
this information can be deduced by considering the COVID-19 database daily over a longer period, the health authorities
in other countries might supply historical reporting dates in a consecutively updated database.
Finally, the proposed approach demonstrates that valuable insight into the state and the dynamic of the disease can

be obtained by disentangling spatial variation into a global pattern, district-specific long-term effects and current short-
term dynamics in a spatio-temporal model. A particular virtue of the presented modelling approach over other proposals
is that it also adjusts for the age and gender structure of the local population. This can provide relevant support for the
monitoring of this new disease and can assist local health authorities in the planning of infection control measures as well
as healthcare system capacities, in a further step towards the understanding and control of the COVID-19 pandemic.
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Abstract
Governments around the world continue to act to contain and mitigate the spread 
of COVID-19. The rapidly evolving situation compels officials and executives to 
continuously adapt policies and social distancing measures depending on the cur-
rent state of the spread of the disease. In this context, it is crucial for policymakers 
to have a firm grasp on what the current state of the pandemic is, and to envision 
how the number of infections is going to evolve over the next days. However, as in 
many other situations involving compulsory registration of sensitive data, cases are 
reported with delay to a central register, with this delay deferring an up-to-date view 
of the state of things. We provide a stable tool for monitoring current infection levels 
as well as predicting infection numbers in the immediate future at the regional level. 
We accomplish this through nowcasting of cases that have not yet been reported 
as well as through predictions of future infections. We apply our model to Ger-
man data, for which our focus lies in predicting and explain infectious behavior by 
district.

Keywords  Nowcasting · Forecasting · COVID-19 · Generalized regression models · 
Delayed reporting · Disease mapping

1  Introduction

The infectious disease known as COVID-19 hit the planet in tsunami-like fashion. 
The first cases were identified in December 2019 in the city of Wuhan, China, and 
by March 2020 infections had already spread over the entire world. Nearly all of 
the affected countries progressively implemented measures to slow down the spread 
of the virus, ranging from recommended social distancing to almost complete 
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lockdowns of social and economic activity. These measures eventually proved to be 
effective, as the number of infections could be slowed down (see e.g., Flaxman et al. 
2020 and Roux et al. 2020). This allowed numerous states to relax restrictions, in 
an attempt to gradually return to normality. At the same time, with the threat posed 
by the virus still looming, decision makers are forced to strike a balance between 
epidemiological risk and allowance of socioeconomic activity. In this context, sur-
veillance of the number of new infections became increasingly important, and par-
ticularly so on a regional level. Given the local nature of the phenomenon (see e.g., 
Gatto et  al. 2020 and Li et  al. 2020), such regional view appears to be of crucial 
importance. One of the difficulties lies in the fact that exact numbers of infections 
detected on a particular day are only available with a reporting delay of, in some 
cases, several days, which occurs along the reporting line from local health authori-
ties to the central registers. The following paper provides a stable tool for monitor-
ing current infection levels, correcting for incompleteness of the data due to report-
ing delays. This approach is also extended toward predicting new infections for the 
immediate future at the regional level.

More specifically, the scope of our model is threefold: Firstly, we aim to under-
stand the current epidemiological situation as well as to comprehend the association 
between detected infections, demographic characteristics and geographical location. 
Secondly, our goal is to nowcast infections that have already been observed but have 
not yet been included in the official numbers. New infections are detected through 
tests and registered by the local health authorities, which in turn will report the num-
bers to national authorities with an inevitable delay. Since we observe reports of 
infections for each day, we are able to model this delay, which indeed allows to now-
cast infection numbers correcting for infections which have not yet been reported. 
Note that we are not modeling the incubation period (Qin et al. 2020; McAloon et al. 
2020), nor the time passing from the onset of symptoms to detection and registration 
by the local health authority (Lima et al. 2020), as those are beyond the scope of this 
paper. We instead focus solely on the delay which occurs along the reporting chain 
from local to national authorities. Lastly, our aim is also to forecast the epidemio-
logical situation for the immediate future. We here want to stress that our model is 
not aiming to exactly predict future infection numbers, as that would not be realistic. 
The goal is rather to give a general idea of what is going to happen in the next days 
in the different districts, and, perhaps most importantly, help in identifying which 
districts are going to be the most problematic. This could also help policymakers in 
making decisions regarding the implementation of safety measures at the regional 
level. We apply our modeling approach to explain and predict numbers of registered 
COVID-19 infections for Germany by district, age group and gender. While the 
regional component is of evident and paramount importance, the age group and gen-
der distinctions are also very relevant, given the powerful interaction of demography 
and current age-specific mortality for COVID-19 (Dowd et al. 2020).

Our nowcasting approach can also be used to obtain up-to-date measures of the 
7-days incidence, both at the local as well as at the national level. This quantity is 
often used by authorities to assess how hard a specific area is currently hit by the 
pandemic, and sometimes, as is the case for Germany, it is also employed as a cri-
terion to decide which containment measures are appropriate (Bundesministerium 
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der Justiz 2021). It is especially important to have up-to-date infection numbers 
when computing such a measure, as it is inherently evolving on a daily basis. At 
the time of writing, the index is calculated by German officials with reference to the 
date of report of each infection by the local health authorities. Given that, as already 
stated, there are significant delays in the reporting of cases from local authorities to 
national ones, the resulting figures are consistently underestimating the actual inci-
dence, with the error being potentially quite large and problematic. Our nowcasts 
offer a simple and stable solution to this issue, providing infection numbers that are 
already corrected for expected delays.

The statistical modeling of infectious diseases is a well developed scientific field. 
We refer to Held et al. (2017) for a general overview of the different models. Mod-
eling and forecasting COVID-19 infections has been tackled by numerous research 
groups using different models. Panovska-Griffiths (2020) discusses whether one or 
multiple models may be useful for COVID-19 data analytics. Stübinger and Schnei-
der (2020) make use of time warping to forecast COVID-19 infections for different 
countries (see also Cintra et al. 2020), while Dehesh et al. (2020) utilize ARIMA 
time series models. Ray et al. (2020) combine forecasts from several different mod-
els to obtain robust short-term forecasts for deaths related to COVID-19. Fritz et al. 
(2021) present a multimodal learning approach combining statistical regression and 
machine learning models for predicting COVID-19 cases in Germany at the local 
level. Early references dating back to the first stages of the pandemic are Anastasso-
poulou et al. (2020) and Petropoulos and Makridakis (2020). In this paper we make 
use of negative binomial regression models implemented in the mgcv package in 
R (Wood 2017). This allows us to decompose the spatial component in depth, and 
obtain district-level nowcasts and forecasts for Germany. Our results confirm the 
dynamic and highly local nature of outbreaks, highlighting the need for continuous 
regional surveillance on a small area level.

The rest of the paper is structured as follows: Sect. 2 describes the data, while 
Sect. 3 frames the problem, presents our model and compares the performance of 
different model specifications over time, motivating our modeling choices. Section 4 
exemplifies surveillance and describes how predictions are performed in practice, 
showing the results for exemplary dates. Finally, Sect. 5 concludes the paper, high-
lighting the limitations of this study and adding some concluding remarks.

2 � Data

As previously anticipated, we focus our analyses on German data. To do so, we 
make use of the COVID-19 dataset published by the Robert-Koch-Institute (RKI) on 
a daily basis. The RKI is a German federal government agency and scientific insti-
tute responsible for health reporting and for disease control and prevention. It main-
tains the national register for COVID-19, where all identified cases of the disease 
are reported from the local health authorities to the RKI. In our analysis we make 
use of daily downloads of the data, which we have at our disposal starting from 
April 12, 2020 until December 29, 2020.

10. Regional now- and forecasting for data reported with delay: toward surveillance of COVID-19
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Table 1 shows an exert of the data we are confronted with. Every morning, the 
database containing all registered COVID-19 infections is updated and released to 
the public, downloadable from the Robert-Koch-Institute’s repository1. The dataset 
contains, for each of the 412 districts, the cumulated number of confirmed cases of 
COVID-19 infections stratified by age group (00-04, 05-14, 15-34, 35-59, 60-79 or 
80+) and gender, updated to that day. The dataset is also stratified by the date of 
registration of each case by the local public health authorities (Gesundheitsämter). 
Through the merging of daily downloads of this RKI report, we can construct the 
full dataset as sketched in Table 1, where the release date is defined in the column 
“Reporting Date”. This full data format is necessary to trace the reporting delay for 
each observation. It can sometimes indeed take several days for the data to get from 
the local health authorities to the nation-wide central one, and we thus define the 
reporting delay as the number of days between registration date and reporting date. 
In Fig.  1 we show the empirical cumulative distribution function of the reporting 
delay observed during the three weeks prior to two exemplary dates close to the 
extremes of our examined time period. From the plot we can appreciate how the 
delays were slightly lower in December than in May, possibly due to improvements 
along the reporting chain. Nonetheless, the delay remains significant across all of 
our sample. Note that since the RKI reports data every morning, all reported cases 
will have a delay of at least one day. The delay is especially high during weekends, 
a fact for which we account in our model. Due to the delayed nature of reporting, 
the number of registered COVID-19 cases which refer to a specific registration date 
might change with the reporting date, as exemplified in Table 1. On September 25, 
2020, the RKI has reported three registered infections of females in the age group 
from 60-79 living in the city of Munich, which were registered on September 22, 
2020. Due to delayed reporting, this number increased to six in the report of Sep-
tember 26, 2020. The three newly reported cases have therefore been reported with a 
delay of four days. Note once again that the RKI dataset available for download only 
contains the information up to the current date, thus making daily downloads of the 
datasets necessary to determine reporting delay.

For the sake of brevity, we here do not provide general descriptive statistics of the 
data, since these numbers can be easily obtained from many other sources. Among 
others, we refer to the RKI webpage2, which also includes a dashboard to visualize 
the data (see also CoronaMaps3).

3 � Surveillance model

3.1 � Framing

We start motivating the model by first reformulating the data structure in a way that 
is suitable for the analysis. Let Nt,d denote the newly registered infections at day t 

1  https://​www.​arcgis.​com/​home/​item.​html?​id=​f1077​4f1c6​3e401​68479​a1feb​6c7ca​74
2  https://​www.​rki.​de/​covid-​19-​en
3  https://​corona.​stat.​uni-​muenc​hen.​de/​maps

145



411

1 3

Regional now‑ and forecasting for data reported with delay:…

which are reported with delay d and hence included in the database from day t + d . 
The minimum possible delay is one day, and we assume the maximum delay to be 
equal to dmax days. In our analysis we set dmax = 7 , which corresponds to a week. In 
other words, we assume delayed reporting to happen within a week. If we define T 
as the time point of the analysis, the data available at that moment will take the form 
shown in Table 2.

The bottom right triangle of the data is missing, so that the structure of the 
available data is akin to that of a guillotine blade. This comparison can be help-
ful to understand prediction of future values, since predicting by reporting date 
corresponds to making the blade fall down by one or more days. In other words, 
one of our goals will be to predict the diagonal edge of the blade, which corre-
sponds to the prediction for cases to be reported on day T + 1 . To better explain 
our prediction strategy, we give a sketch of this idea in Fig. 2. In the sketch, the 
green dots represent data that are already observed at time T (the day of analysis), 
while the crosses represent entries that are not yet observed and that we aim to 
predict with our model. This is done in three steps, which are described below. 
To be specific, we pursue nowcasting, forecasting and the combination of both, 

Table 1   Illustration of the raw data structure, showing downloads of the data from September 25 and 
September 26, 2020 as an example. To facilitate reproducibility, the original column names used in the 
RKI datasets are given in brackets below our English notation

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7
Delay

F t
(d

)

Date of analysis
2020−05−15
2020−12−15

Fig. 1   Empirical cumulative distribution function Ft(d) of reporting delays observed during the three 
weeks preceding May 15 and December 15, 2020
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which we name forenowcasting. Note that forecasting and forenowcasting can be 
defined, in short, respectively, as "forecasting of reported cases" and "forecasting 
of registered cases".

Table 2   Reformulated data 
structure for a single district, 
age group and gender, explicitly 
including delay. Available data 
are akin to a guillotine blade

t d

1 2 ⋯ d
max

1 N1,1 N1,2
⋯ N1,d

max

2 N2,1 N2,2
⋯ N2,d

max

⋮ ⋮ ⋮ ⋮ ⋮

T − d
max

N
T−d

max
,1 N

T−d
max

,2
⋯ N

T−d
max

,d
max

T − d
max

+ 1 N
T−d

max
+1,1 N

T−d
max

+1,2
⋯ NA

⋮ ⋮ ⋮ ⋮ ⋮

T − 1 N
T−1,1 NA NA NA

T NA NA NA NA

Fig. 2   Sketch of the reformulated data structure showing how nowcasting, forecasting and forenowcast-
ing are performed
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Nowcasting: Each row of the matrix contains cases registered on a single date 
and reported with different delays. To obtain the amount of cases registered on that 
day regardless of the delay with which they were reported we therefore need to take 
the row sum. If the goal is to obtain predictions by registration date for several days, 
we then just sum the cases over the corresponding rows. In Fig. 2 we highlight this 
type of prediction with a green square, which represents a weekly nowcast, that is 
the number of cases with registration dates over the past week. This comprises num-
bers that have already been observed as well as the predictions for cases from past 
days that have not yet been reported.

Forecasting If we shift the focus from predicting by registration date to report-
ing date, that is, if the aim is to predict reported numbers regardless of when the 
reported infections were actually first discovered, we cannot sum the entries of the 
matrix row-wise, but we need to do so diagonally. This is because the reported num-
ber on day T is comprised of the sum of cases registered on day T − 1 reported with 
delay 1, cases registered on day T − 2 reported with delay 2, and so on and so forth, 
up until cases registered on day T − dmax reported with delay dmax . The red parallelo-
gram in Fig. 2 thus represents the cumulated weekly forecast, that is, the predicted 
number of infections to be reported over the next seven days. Here all entries are 
unobserved and will need to be predicted through our model, which will be uncov-
ered in the following section.

Forenowcasting We can also combine the two aspects and predict the number of 
infections that will be registered in the next week, regardless of their reporting date. 
We call this process “forenowcasting”. While the previously described forecasting 
(i.e., predicting by reporting date) is useful to get a picture of the numbers that will 
be reported each day, what really gives a picture of the ongoing situation are infec-
tion numbers based on registration date. This weekly prediction corresponds to the 
blue square in Fig. 2 and in fact is a combination of forecasting and nowcasting. We 
will demonstrate that the three types of predictions can be carried out with a single 
model.

3.2 � Statistical model

As already stated in Sect. 2, the cumulative numbers of registered COVID-19 infec-
tions are, other than by registration date, also stratified by district, age group and 
gender. To accommodate  for this additional information, we extend the notation 
from above and define with Nt,d,r,g the number of newly registered infections on day 
t in region/district r and gender and age group g, reported by the RKI on day t + d 
(thus with delay d). Row-wise cumulated numbers are defined through

which represents the group- and district-specific cumulated number of cases with 
registration date t and delay up to d. We define with zr the geo-coordinates of dis-
trict/region r and generally denote covariates with x , where varying subscripts 

(1)Ct,d,r,g =

d∑
j=1

Nt,j,r,g
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indicate dependence on either gender- and age group g, region r, time point t or 
delay d.

We assume the counts Nt,d,r,g to follow a negative binomial distribution with 
mean �t,d,r,g and variance �t,d,r,g + ��2

t,d,r,g
 , where 𝜃 > 0 and the limit � → 0 leads 

to a Poisson distribution. More specifically, we set

Here s1(t) is a global smooth time trend, and s2(zr) is a smooth spatial effect over 
the districts of Germany. The parameters �d = (�1,… , �dmax ) capture the delay effect 
for each delay d, while the parameters contained in � capture effects related to time 
and delay, which in our case will be weekday effects. Gender and age effects are 
included in � , and ur are unstructured regional effects which will be subsequently 
specified in more detail. Coefficient � captures the time-related autoregressive (AR) 
component of the process, indicating the effect of cases from the same district and 
gender- and age group which were registered on the previous day. Coefficient � 
expresses the effect of infections registered on the same day which were reported 
with delay up to d − 1 , or in other words a delay-related autoregressive component. 
Finally, the offset is set to the logarithm of the regional population size in the differ-
ent gender and age groups, enabling us to model the infection rate. Using a popula-
tion offset is quite standard in disease mapping and in count time series analyses of 
rare infectious diseases (see e.g., Bauer and Wakefield 2018). The offset defined this 
way also allows to incorporate the size of the susceptible population in each region, 
showing that this type of modeling is practicable at different stages of the pandemic. 
In this case, the population size would need to be replaced by the number of sus-
ceptible in region r, incorporating the SIR (susceptible-infected-removed) model or 
other similar ones (see e.g., Allen 1994). This is not particularly relevant at the time 
point chosen for the analysis, as the number of susceptible corresponds more or less 
to the population size due to the small (and unknown) size of the immune popula-
tions in each district (note that vaccines were not yet available during the analyzed 
time period).

The previously mentioned spatial effect is comprised of two components: An 
overall smooth effect s2(zr) mirroring the fact that different parts of Germany are 
differently affected, and a region-specific component accounting for infection rates 
that are particularly high or low in single districts with respect to the neighbouring 
situation. To be more specific, s2(⋅) is a smooth spatial function of the geo-coordi-
nates zr for region r, while the ur are unstructured region-specific effects, interacting 
with the time dependent covariates xt . We put a normal prior on ur , i.e., we model 
ur = (ur0, ur1)

⊤ as random effects, where ur0 is a general random intercept captur-
ing the long-term level (from t = 1,… , T  ) of the epidemiological situation in the 
different districts, while ur1 is a second random intercept estimated exclusively over 
the last k days, expressing the short-term dynamics (within k days prior to t = T  ) of 
infections. In our analysis we set k = 7 . For ur we assume the structure

(2)
�t,d,r,g = exp{s1(t) + s2(zr) + �d + xt,d� + xg� + xtur

+ � log(1 + Ct−1,d,r,g) + � log(1 + Ct,d−1,r,g) + offsetr,g}.
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for r = 1,… , 412 , with the posterior variance matrix �u being estimated from the 
data. The predicted values ûr (i.e., the posterior mode) measure how much and in 
which direction the infection rate of each district deviates from the global spatial 
structure, controlling for covariates and age- and gender-specific population sizes.

3.3 � Model selection and performance

Model (3.2) includes several components. In this section we aim at assessing 
whether the inclusion of some of those components is beneficial in terms of pre-
dictive performance, and to generally evaluate the overall performance of the final 
model. Note that we fit the model including only infections with registration dates 
within 21 days of the day of analysis in the training set. This is because, while on 
the one hand we would like to use as much data as possible for the fitting, the data-
generating process (i.e the spread of the disease) is subject to exogenous changes 
over time. In other words, we must strike a balance between having a large enough 
training set and keeping the model as loyal to the current data-generating process as 
possible. We therefore fit our model using data from a rolling window of 21 days. 
This choice is motivated more precisely in the supplementary material, where plots 
comparing the predictive accuracy of the model using different fitting windows are 
included. The choice of a shorter fitting window also allows to keep other com-
ponents of the model, such as the smooth spatial effect, constant over time: Such 
effects are not, in general, time constant, and if we used the whole dataset for the 
model, we would need to have them interact with the temporal dimension. The roll-
ing window thus also enables the use of a simpler model.

In this section, we are specifically interested in seeing how the unstructured 
random effects xtur and the autoregressive components � log(1 + Ct−1,d,r,g) and 
� log(1 + Ct,d−1,r,g) impact predictive accuracy. To do so, we consider the real-
ized absolute prediction error with regards to nowcasts, forecasts and forenow-
casts, cumulated for each district over a period of seven days using different model 
specifications, to compare performance over time through a weekly rolling window 
approach. The specifics of how predictions are performed will be described in detail 
in Sect. 4.

Starting with nowcasting, let therefore Y (n)

T ,r
 denote the cumulated number of reg-

istered infections in district r over k = 7 days prior to the day of analysis at time T, 
that is

This corresponds to the sum of all numbers in the green square in Fig. 2. Accord-
ingly, we define with Ŷ (n)

T ,r
 the corresponding prediction based on the fitted model as 

described above. For forecasting, we modify the definition and look at the cumu-
lated number of cases

(3)ur

iid
∼ N(0,�u)

Y
(n)

T ,r
=

k∑

t=1

∑

g

CT−t,dmax ,r,g.
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which corresponds to the red parallelogram in Fig. 2. Again, the corresponding pre-
dicted value is notated as Ŷ (f )

T ,r . Finally, for forenowcasting we concentrate on the 
cumulated numbers in the blue square, and set

with matching prediction Ŷ (fn)

T ,t  based on the fitted model. With the notation just 
given, we can define the relative district-specific prediction error (standardized per 
100,000 inhabitants) simply as

where popr is the population size in district r, and the dot refers to nowcasting, fore-
casting or forenowcasting, respectively. It should be clear that, setting k = dmax = 7 , 
the numbers defined above are only observable on day T + 7 for nowcasting and 
forecasting, and on day T + 14 for forenowcasting.

To obtain a measure of the overall predictive performance of the model for a cer-
tain fitting date T, we take the mean of RPE(⋅)

T ,r
 in absolute value over all districts, 

which we call Mean Absolute Relative Prediction Error (MARPE):

To get a sense of the average bias of predictions over time, we also plot the Mean 
Relative Prediction Error (MRPE), which takes the mean of relative errors without 
considering them in absolute value:

This last measure will be positive if the model tends to underpredict on average over 
the districts, and negative otherwise.

To evaluate the predictive accuracy of different model specifications, we compute 
MARPE

(⋅)

T
 and MRPE

(⋅)

T
 over time by fitting the model weekly for each of the con-

sidered specifications, in a rolling window approach. In particular, we consider te 
following model variations:

•	 Full model as in (3.2);
•	 Model without the time-related autoregressive component, Ct−1,d,r,g.
•	 Model without the delay-related autoregressive component, Ct,d−1,r,g;
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•	 Model without the autoregressive components, Ct−1,d,r,g and Ct,d−1,r,g;
•	 Model without the short-term district-specific random intercept, ur1;
•	 Model without the unstructured district-specific random effects ur;
•	 Model without the short-term district-specific random intercept, ur1 and the 

autoregressive components, Ct−1,d,r,g and Ct,d−1,r,g;
•	 Model without the unstructured district-specific random effects ur and the autore-

gressive components, Ct−1,d,r,g and Ct,d−1,r,g;

Figure  3 plots the MARPE and the MRPE by model fitting date for nowcasts, 
forecasts and forenowcasts, respectively. The plots already reveal several aspects of 
the goodness of fit of our model. Looking at the MARPE (top panel), it immediately 
stands out how the errors for nowcasts are, as expected, much smaller than for fore-
casts and forenowcasts. Secondly, we can see how prediction errors are remarkably 
small for the first five months of model fitting. Those months coincide with the late 
spring and summer months, during which infection numbers were relatively under 
control in Germany. Our model was thus able to capture most of the variability in 
the process, resulting in precise predictions not only for nowcasts, but also for fore-
casts and forenowcasts. Finally, we notice how there is a large increase in MARPE 
for all fitted models starting from October, which coincides with the beginning of 
the second wave of COVID-19 in Germany. This is due to the fact that in that period 
the infection dynamics changed and the numbers got much larger, thus also leading 
to an increase in prediction errors. The model variant that performed the best during 
this later period is the full model with the exclusion of the time-related autoregres-
sive component Ct−1,d,r,g , highlighted with a thicker line. The plots for the MRPE 
(bottom panel) confirm this fact and help explaining the reasons behind it. For both 

Fig. 3   Mean absolute relative prediction error ( MARPE
(⋅)

T ,r
 , top panel) and Mean Relative Prediction 

Error ( MRPE
(⋅)

T ,r
 , bottom panel) for all districts in Germany, calculated over time for different model 

specifications, respectively, for nowcasts (green), forecasts (red) and forenowcasts (blue). Different color 
shadings refer to model alternatives. The thicker line indicates the selected model, which corresponds to 
the full model with the exclusion of the time-related AR component, Ct−1,d,r,g

10. Regional now- and forecasting for data reported with delay: toward surveillance of COVID-19
infections
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forecasts and forenowcasts, it is apparent how at the beginning of the second wave 
all models tend to underpredict, while they overpredict from November onward. The 
chosen model without the AR component is actually the one which tends to under-
predict the most (even though it is not performing worse than the others in terms of 
MARPE), while it then becomes by far the least overpredicting one in later months. 
This is beacuse infection numbers grew very fast in October, and models includ-
ing the autoregressive component were better able to capture the quick increase. In 
contrast though, after new infections somewhat stabilized, the models including the 
autoregressive component were still projecting the increase of past months on new 
ones, causing large overestimation. The chosen model is instead more conservative 
in its predictions, resulting in better overall predictive performance.

4 � Applied surveillance

Given that what we propose is a monitoring tool, the results change over time. 
We here give an exemplary snapshot of the estimates and how predictions can be 
obtained using Tuesday, September 15, 2020, as date of the analysis. This date was 
chosen as it lies just before the beginning of second wave of COVID-19 infections in 
Germany. As an additional remark, note that our analysis is completely reproducible 
for different dates as well, with code and data openly available and downloadable 
from our GitHub repository4.

Fig. 4   Estimated smooth effects s1(t) and s2(zr) , respectively the fitted smooth effect of time and the fit-
ted smooth spatial effect for the prevalence of COVID-19 infections in Germany (measured on the log 
scale). Both effects are estimated over the 21 days prior to September 15, 2020

4  https://​github.​com/​gdeni​cola/​Now-​and-​Forec​asting-​COVID-​19-​Infec​tions
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4.1 � Model‑based monitoring

In addition to giving proper predictions (nowcasts, forecasts and forenowcasts), 
which will be shown in the next section, our model also estimates linear coeffi-
cients, which are given in table form in the supplementary material, and fits smooth 
components over time and space, which are visualized in Fig. 4. The left hand side 
shows the estimated infection rate over time for the three weeks prior to the day of 
analysis. We notice how the rate of registered infections has been dropping until the 
end of August, while in the following weeks numbers started rising again, leading to 
a reversal and a steady increase in the smooth spline. The map on the right hand side 
depicts the smooth spatial effect estimated as a function of longitude and latitude, 
on the log scale. From the plot we can see how the regions of Bavaria and Baden-
Württemberg in the south of Germany were generally the most affected during the 
observed period. We also observe that the west was also, on average, more affected 
than the east.

The two maps in Fig. 5 show further spatial components of the model, namely 
the district-specific random intercepts. Those reflect the situation in single districts 
controlling for the previously shown smooth spatial effect, that is, in comparison 
to the average of the neighboring areas. More specifically, the map on the left dis-
plays the overall district-specific long-term random intercept, depicting the relative 
infection situation in the 21 days prior to the day of analysis, while the map on the 
right hand side shows the additional short-term random intercept which enters the 
linear predictor only over the last 7 days, giving an idea of the more recent infection 
dynamics. We can thus see that, for example, the district of Weimarer Land in the 
region of Thuringia has had the most rapidly evolving number of cases in the 7 days 

Fig. 5   Region specific level (left) and dynamics (right) of COVID-19 infections, controlling for the 
smooth spatial effect on the right hand side of Fig. 4

10. Regional now- and forecasting for data reported with delay: toward surveillance of COVID-19
infections
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prior to the day of analysis controlling for the situation in its surroundings, reflecting 
the outbreak that happened in the region during the analyzed period. This second 
map can already be regarded as a first way of monitoring infection dynamics at a 
local level, even before looking at the predicted numbers: If a district has a very high 
short term random effect, it probably means that the affected area deserves further 
consideration. 

4.2 � Predictions

As previously explained, our model can be used to directly nowcast (correct reports 
from previous days for delay), forecast (predict the number of cases reported in the 
next days) and forenowcast (predict the number of infections that will be registered 
for the next days). The obtained predictions can be used to get a picture of how the 
pandemic is going to unfold in the short term. In the following, we explain how we 
obtain those predictions from our model.

Nowcasting In our case, nowcasting is equivalent to filling all NA (missing) 
entries of the matrix in Table 2, turning the trapezoid shape of the data into a full 
rectangle. This is also equivalent to completing the green square in Fig. 2. Given 
that we model delay d as a stand-alone variable in our generalized additive model, 
we are able to simply predict the missing cells directly by setting the delay d to the 
necessary value in the data vector used for predictions alongside all other covari-
ates. We can thus nowcast infections for each delay, day, district, gender and age 
group. If the autoregressive terms Ct−1,d,r,g and Ct,d−1,r,g are included in the model, 
the predictions are dependent on them. Those terms are in general not yet known at 
the day of analysis (except when predicting the first diagonal of the red parallelo-
gram in Fig. 2). We therefore perform the prediction of the black crosses in Fig. 2 
iteratively, by utilizing the predictions of the previous diagonal as the autoregres-
sive components. Based on the model, we can also take uncertainty into account by 
simulating data from a negative binomial distribution with the corresponding mean 
and variance structure. More precisely, we apply the same strategy as above, but 
instead of using the mean value we now plug counts simulated from the model into 
the autoregressive components, and repeat this procedure n = 1000 times. This para-
metric bootstrap approach easily allows us to compute lower and upper bounds of 
the prediction intervals.

Forecasting The model also allows to directly predict cases for future dates. With 
T denoting the time point of data analysis, we can obtain predictions for the num-
ber of reported cases on days T , T + 1,…T + k − 1 . Let us start with the predic-
tions for cases with reporting date T. Referring once again to the guillotine blade 
structure in Table 2, we proceed as follows: For d = 1 , i.e., at the leftmost point of 
the blade, we take the fitted mean values as prediction, while keeping the smooth 
function of time constant, that is, setting s(t + 1) ≡ s(t) for the sake of stability. For 
the remaining dmax − 1 elements of the blade edge we take the mean value by set-
ting d = d + 1 . To get predictions for the numbers of infections reported on days 
T + 1,…T + k − 1 we can then proceed in an analogous way, using the values just 
predicted to update the autoregressive components ( Ct−1,d,r,g and Ct,d−1,r,g ). Figure 2 
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visualizes the strategy, with cumulated predictions for the number of cases reported 
on days T , T + 1,…T + 6 being represented by the red parallelogram. Similarly as 
we did for the nowcasting, we can take uncertainty into account through simula-
tions, sampling from a negative-binomial model with the estimated group-specific 
mean and variance structure.

Forenowcasting Predicting by registration date, i.e., forenowcasting, is equivalent 
to filling the blue square on the bottom of Fig. 2. This is done by computing fore-
casts as described in the previous subsection, and then performing nowcasting on 
the forecasted numbers. We also obtain uncertainty estimates in an analogous way 
as for forecasts and nowcasts.

4.3 � Retrospective surveillance

It is also possible to utilize the proposed model as a surveillance tool retrospectively. 
After a certain period of time has passed from the day of analysis, we are able to 
compare predictions with infections observed in the corresponding time span. If the 
predictions are aggregated on a weekly basis and we keep the maximum delay set 
as dmax = 7 , the waiting time to observe realized infection numbers will be equal to 
seven days for nowcasts and forecasts and fourteen days for forenowcasts. Figure 6 
shows predictions of all three kinds and corresponding infections observed a poste-
riori for two exemplary days of analysis, namely September 15 (left hand panel) and 
November 11, 2020 (right hand panel).

From the plots we can observe how nowcasts tend to be, in general, quite precise, 
as already seen from Fig. 3. We can also immediately notice how performance is 
very different for the two dates, especially for forecasts and forenowcasts: We see 
that the predictions for September 15 are relatively precise and unbiased, while for 
November 11 we observe quite a strong tendency toward overprediction.

Focusing first on the forecast and forenowcasts from September (during a “sta-
ble” phase of the pandemic), we see that the biggest prediction errors appear for the 
districts of Kaufbeuren, Bavaria (overprediction) and Cloppenburg, Lower Saxony 
(underprediction). In the first case, there was an outbreak in a nursing home in the 
week preceding the forecasted one. This outbreak initially leads to an increase in the 
infection numbers, but was subsequently contained very quickly, therefore leading 
the model to overpredict. The underprediction in Cloppenburg, in contrast, was the 
product of a sudden increase in cases during the forecasted week. More specifically, 
the higher numbers resulted from cases in schools and the contagion of an almost 
complete football team in the small city of Löningen. All in all, we can see that in 
general the prediction errors are not massive, and in line with what we would expect 
simply due to the inherent randomness of the process.

The situation is different when looking at the predictions for November 11. This 
is because, while the September date belongs to a period in which the pandemic was 
relatively stable in Germany, the second one lies at the heart of the second wave. 
Moreover, the latter date was immediately successive to the sudden increase in new 
infections in October and to the consequent implementation of social distancing 

10. Regional now- and forecasting for data reported with delay: toward surveillance of COVID-19
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Fig. 6   Nowcasts (top), forecasts (middle) and forenowcasts (bottom) of cumulated infections over a 
week, cumulated by district, plotted against values observed a posteriori. The model is fitted with data 
available on the dates September 15, 2020 (left) and November 11, 2020 (right). Vertical lines represent 
prediction intervals computed at the 90% level

157



423

1 3

Regional now‑ and forecasting for data reported with delay:…

measures (the so-called “lockdown light”) from the beginning of November. How-
ever, our model does not include anything regarding exogenous governmental inter-
ventions and general changes in population behavior. This means that the predictions 
are to be interpreted assuming that everything else stays the same as in the three 
weeks used to fit the model, leading to overprediction for areas in which measures 
are indeed imposed, and possibly underpredictions after those measures are softened 
or lifted. As a result, forecasted numbers for November 11 suffer from severe over-
prediction in many districts. The most extreme example is the district of Erzgebirg-
skreis, Saxony, which saw a rapid increase in cases between the end of October and 
the beginning of November, which lead to the district being the one with the highest 
incidence in the whole country for a short period of time. The infection numbers 
then stabilized in the following week, leading the model to overpredict. As a side 
remark, note that the prediction errors for both dates are not majorly spatially cor-
related. This is in line with our expectations, as both a smooth spatial effect as well 
as two district specific random effects are included in the model. Maps of the pre-
diction errors by district for both dates analyzed are included in the supplementary 
material.

While the inability to capture governmental intervention and sudden changes in 
the population behavior is certainly a limitation of our approach, it can on the other 
hand also be seen as a feature of the model, which in a sense provides potential 
future "counterfactual" scenarios in which no action was taken by decision mak-
ers. This can thus be used to try to quantify the effect of social distancing policies 
and interventions, in specific districts as well as at a broader level. This also applies 
in the case of sudden outbreaks: If a rapid spike in cases in a specific district is 
observed, and that outbreak was not yet known to health authorities at the time of 
the analysis, the model will naturally underpredict infection numbers in that dis-
trict. Severe underpredictions observed a posteriori can also be used as an indicator 
for “true” outbreaks, revealing if they were explainable by past data or not. This 
“counterfactual” use of our model can thus be seen as an additional feature, which 
becomes available in retrospect, to measure the effect of NPIs (Non-Pharmaceutical 
Interventions) and to assess the nature of outbreaks.

5 � Discussion

We proposed a modeling tool to nowcast and forecast COVID-19 cases reported 
with delay. This allows to perform surveillance by gender and age group at the 
regional level, providing an up-to-date and detailed picture of the pandemic, as well 
as giving insight into the dynamics of the near future. Our model can be used for 
computing inherently dynamic index measures, such as the 7-days incidence, both at 
the regional and national level, and it can also aid governments in the implementa-
tion of more targeted area- and population-specific containment strategies. However, 
as previously mentioned, this approach does not come without limitations, which we 
also want to address.

The number of detected cases greatly depends on local testing strategies and 
capacities. This implies that comparisons between different states or regions are not 

10. Regional now- and forecasting for data reported with delay: toward surveillance of COVID-19
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straightforward. As our model makes use of reported infections, direct comparisons 
between outputs should be limited to areas for which it is reasonable to assume that 
testing has been carried out in a similar manner.

Another important thing to note is that our model only addresses the delay in 
reporting from local to national health authorities, and not the time that occurs 
between each test and its (positive) result. This would be useful for our application 
as it would give an even more up-to date picture of the current situation, but it is not 
pursued due to a lack of data.

An eminent limitation of our approach is the inability to capture new outbreaks 
related to specific phenomena that are not yet known to the health authorities. An 
example of this would be the outbreaks in slaughterhouses which happened during 
the summer of 2020 in Coesfeld and Gütersloh, North-Rhine-Westphalia. On the 
other hand, as previously discussed, severe underpredictions observed a posteriori 
can also be used in retrospect as an indicator for outbreaks that are localized and not 
explainable by past data, while overpredictions can signal and quantify the effective-
ness of social distancing measures.

Taking into account the previously mentioned limitations, the model is able to 
capture a good chunk of the variability that is present. The methodology that we 
employed is quite general, and, if suitable data are available, can easily be adapted 
to other countries as well. Moreover, we only employed standard tools for software 
implementation, and this makes adapting and enriching the model, e.g., with more 
covariates, relatively straightforward. Our analysis focuses more on now- and fore-
casting rather than on increasing our understanding of the spread of the disease, and 
in this context the random effects enable us to capture unobserved heterogeneity 
fairly well, so the addition of more (time-constant) covariates is not paramount to 
our goals. Nonetheless it could be fruitful to include more covariates available for 
specific cases in the model. For the analyzed case of Germany we pursue this in the 
supplementary material, by adding to the model the German Indexes of Multiple 
Deprivation, which measure material and social differences at the regional level in 
Germany (Maier 2017). The results do not differ greatly from what was obtained 
without this inclusion.

We complete our discussion by emphasizing that the proposed methodology 
is flexible and applicable to any data constellation in which reporting delay plays 
a role. In other words, one can easily adopt the proposed model to any guillotine 
blade-like data structures, i.e., data where ti denotes the time point of an event and 
di the delay with which the event is reported. Moreover, our approach can not only 
be applied to correct for the delay between registration of an event and its reporting, 
but also, for example, to bridge the delay between disease onset and registration of 
its positive test result. Data in guillotine blade-like form also occur in areas beyond 
epidemiology, e.g., when cases of unemployment are reported from regional offices 
to a central state register. The generality of the data structure supports the proposed 
modeling approach, where corrections for the missing data structure are directly 
incorporated in the model. In particular, however, the modeling exercise exhibits 
promising performance for COVID-19 infections, and may therefore be incorpo-
rated into a general surveillance tool to assist health authorities and policymakers in 
their efforts to contain the spread.
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Abstract
The case detection ratio of coronavirus disease 2019 (COVID-19) infections varies
over time due to changing testing capacities, different testing strategies, and
the evolving underlying number of infections itself. This note shows a way of
quantifying these dynamics by jointly modeling the reported number of detected
COVID-19 infections with nonfatal and fatal outcomes. The proposed method-
ology also allows to explore the temporal development of the actual number of
infections, both detected and undetected, thereby shedding light on the infec-
tion dynamics.We exemplify our approach by analyzingGerman data from 2020,
making only use of data available since the beginning of the pandemic. Ourmod-
eling approach can be used to quantify the effect of different testing strategies,
visualize the dynamics in the case detection ratio over time, and obtain infor-
mation about the underlying true infection numbers, thus enabling us to get a
clearer picture of the course of the COVID-19 pandemic in 2020.

KEYWORDS
case detection ratio, COVID-19, dark figure of infections, generalized additive models, penal-
ized splines

1 INTRODUCTION

Originating fromWuhan, China, coronavirus disease 2019 (COVID-19) developed to become aworldwide pandemic in the
spring of 2020 (Velavan & Meyer, 2020). Starting from the very beginning of this unprecedented health crisis, the issue of
case detection, while always being at the center of scientific and public discourse, has been all but transparent. Knowing
how many infections are really present in the population would be of paramount importance, and researchers have tried
to tackle the problem in several different ways. Early in the epidemic wave, the ratio of undetected COVID-19 cases was
likely to be high, that is, 5–20 times higher than the number of confirmed cases (e.g., Li et al., 2020 or Wu et al., 2020).
The problem of discovering the case detection ratio (CDR) is tightly intertwined with the issue of uncovering the true
fatality ratio of the disease, as knowledge on one of those two unknown quantities would provide information about the
other. A natural experiment that allowed to obtain initial estimates of both the fatality ratio and the CDR occurred with
the outbreak on the cruise ship “Diamond Princess” (Mizumoto et al., 2020). During the early stages of the pandemic, the
actual percentage of the population infected for 11 European countries was deduced from early estimates of the mortality

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2020 The Authors. Biometrical Journal published by Wiley-VCH GmbH.
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rates (Flaxman et al., 2020). Moreover, Aspelund et al. (2020) used Bayes arguments applied to testing data from Ireland
to estimate the CDR in the order of 7–11% at the beginning of the pandemic, and in the order of 10–20% after that. The
argument is based on relating the number of tests and the share of positive tests. A similar approach has been pursued
making use of Canadian data (Benatia et al., 2020). The problem of estimating the true numbers of COVID-19 infections
has also been discussed from a purely statistical point of view, where the CDR was related to the fatality ratio (Manski &
Molinari, 2020). A capture–recapture approach to estimate the total number of COVID-19 cases was proposed by Böhning
et al. (2020) and Rocchetti et al. (2020), where the latter derive an upper bound for the cumulative number in mid-April
for 10 European countries. The ratio of the upper bound and the observed number of cases ranges from around 4 (Greece)
to around 8 (France). The capture–recapture method makes only use of publicly available data on COVID-19 cases and
deaths, which also holds for the method that we present in this note. Here, we assume that the number of infected can be
split into detected and undetected infections. In SIDARTHEmodels (Giordano et al., 2020), there is additional distinction
into either asymptomatic or symptomatic cases, which we ignore here since the database that we use does not reliably
contain these numbers. However, it should be noted that pre- and asymptomatic individuals have a significant impact
on the spread of a pandemic disease, especially in the younger population (Stella et al., 2020). Thereby, presymptomatic
individuals play a more significant role than asymptomatic ones (Buitrago-Garcia et al., 2020). Nonetheless, the number
of asymptomatic cases can reduce the reproduction value of a disease because a background immunity is established, as
shown for influenza transmission (Mathews et al., 2007).
Overall, underreporting appears to be an overarching problem, which plays a central role when estimating the CDR

for COVID-19 (Russell et al., 2020). The importance of assessing the detection ratio and its effect on predictions of future
infections has been demonstrated in mathematical simulation studies (Fuhrmann & Barbarossa, 2020). In this context,
different national underreporting ratios have been compared (e.g., Rahmandad et al., 2020 or Jagodnik et al., 2020) and a
general discussion and survey on assessing the infection fatality ratio (IFR) was conducted (Levin et al., 2020). In general,
it is clear that the CDR changes greatly over time depending on testing strategy and capacities, which vary over time
and across different regions. In Germany, the number of tests has increased considerably since the pandemic outbreak in
March 2020. The testing strategy has also been adjusted several times: In the beginning,mainly individuals with symptoms
were being been tested, whereas in later phases, a very high number of tests have been performed on travelers returning
from foreign countries and contact persons of COVID-19-positive individuals.
In this note, we explore the dynamics in the CDR using publicly available registry data on COVID-19 infections in

Germany from March to December 2020 provided by the Robert-Koch-Institute (RKI). It is important to mention that
in Germany’s first months of the pandemic, no mass or systematic testing of the population had taken place. Our model
therefore only makes use of a limited amount of information. We propose to jointly model fatal and nonfatal infections
using a dynamic generalized linear mixed model with smooth random effects (see, e.g., Durbán et al., 2005; Durban &
Aguilera-Morillo, 2017; Wood, 2017). The major advantage of our approach is that it only relies on the assumption that
age-specific COVID-19 fatality ratios, while unknown, have not substantially changed over time.Whether this assumption
is valid is currently discussed (Harris, 2020; Kip et al., 2020) and the possibility of differing fatality ratios in the second
wave has been considered as well (Aspelund et al., 2020; Kenyon, 2020). To assess the impact of this assumption on our
results, we provide sensitivity analyses and a simulation study in the Supporting Information, which demonstrate that
our approach is sufficiently robust if there is no abrupt change in the infection fatality ratio.
Overall, our approach allows investigating the following. First, we explore how the case detection rate has changed over

time, how it varies among different age groups, and if and how it changes in different regions of Germany, depending on
infection dynamics and different testing strategies. Second, the model also provides an estimate of the dynamics in the
true number of infections, regardless of whether they have been detected or not. All in all, this provides insight into the
course of the COVID-19 pandemic, built exclusively on registry data.
The remainder of the paper is structured as follows. We describe the data constellation in depth in Section 2, and we

propose our model in Section 3. In Section 4, we show the results of our analyses and provide extensive interpretations,
whereas Section 5 concludes the paper with some implications and limitations of our study.

2 DATA

Wemakeuse of COVID-19 data openly provided by theRKI, theGerman federal government agency and scientific institute
responsible for health reporting, disease control, and prevention in humans (Esri Deutschland GmbH, 2020). The data,
exemplified in Table 1, contain cumulated counts of newly registered, laboratory-confirmed COVID-19 cases in Germany
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TABLE 1 Illustration of the data structure. To facilitate reproducibility, the original column names used in the RKI dataset are given in
brackets below our English notation
District Age group Gender Cases Deaths Registration date
(Landkreis) (Altersgruppe) (Geschlecht) (Anzahl Fall) (Anzahl Todesfall) (Meldedatum)⋮ ⋮ ⋮ ⋮ ⋮ ⋮
Munich City 60–79 F 26 0 September 8, 2020
Munich City 60–79 M 21 1 September 8, 2020⋮ ⋮ ⋮ ⋮ ⋮ ⋮
for each calendar day stratified by age group (0–4, 5–14, 15–34, 35–59, 60–79, or 80+ years), gender (male/female), and
district (412 in total). Furthermore, for all registration dates and strata, the number of deaths associated with COVID-19
transmitted to the RKI by the local health authorities of the respective district is recorded. Note that the date of death is
not provided, but for each death, we have the date when the infection was detected and confirmed by a (PCR) test. The
database of the RKI is updated every morning with the new numbers transmitted to it from the local health authorities.
In this study, we only consider data entries with registration dates ranging from calendar week (CW) 10 (mid-March)

to CW 53 (end of December) of the year 2020. For earlier weeks, the number of tests being positive was not large enough
to draw conclusive results. On the other hand, the German vaccination campaign started at the very end of 2020. As this
increasingly reduces the IFR, we only include infections that were registered in 2020. Consequently, the final outcome
of almost all of these infections is known today. Moreover, although the data are given on a daily resolution, we here
aggregate it into weekly data, which renders reporting delays occurring over the weekends and weekly reporting cycles
irrelevant to our analysis, leading to more stable results. Since for children aged 14 years and younger, barely, any fatalities
have been recorded, we excluded these age groups from our analysis.
To give a first insight into the data at hand, we plot in Figure 1 the raw numbers of cases reported by the official health

authorities over time together with the raw number of fatalities stratified by age group. This is shown in the top four plots
on a log-scale. Both the number of registered cases and that of fatal cases (indexed by registration date of the infection,
and not by day of death) peak in CW 13 for the two younger age groups and in CW 14 for the two oldest age groups,
respectively. Over the following weeks, these numbers decrease. The small peak in CW 25 was caused by an outbreak in
the district of Gütersloh, which is explored in more depth later on in the paper. From CW 28 onward, we resume seeing
an exponential increase of registered cases, whereas the numbers of registered fatal cases only start to rise 7 weeks later,
also exponentially. By the end of the year 2020, we see a slight decrease in registered infections.
The raw case fatality ratio, calculated as the ratio of fatal cases over total registered cases, stratified by age group, is

shown at the bottom of Figure 1. The raw case fatality ratio for the age group 80+ generally dropped from CW 10 onward
and fluctuated mostly between 10% and 15% from week 25 onward. However, since CW 40 the case fatality ratio in this
age group steadily climbed up to more than 20%. For the age group 60–79, the case fatality ratio has peaked in CW 16
and gradually decreased to 2.5%. Here, we also observe a steady increase toward the end of 2020, which results in more
than a doubling of the case fatality ratio within 10 weeks. All other age groups exhibit relatively low raw case fatality
ratios throughout.
Note that the raw data do not contain undetected cases, and therefore cannot provide a complete picture of the actual

infection numbers, nor do these plots provide any information about the CDR. In the following, we develop a statistical
model that enables us to estimate the relative changes in the CDR and the true infection numbers over time.

3 METHODS

When describing the dynamics of the COVID-19 pandemic, the number of interest is the true count of newly infected
persons in a cohort, which shall be denoted by 𝐼𝑡 for week 𝑡 = 1, … , 𝑇. Note that 𝐼𝑡 remains unobservable. However, the
number can be decomposed into the number of detected and reported cases𝐷𝑡 and the unknownnumber of newly infected
persons, who have not been tested and remain undetected, which we can call the “dark number,” 𝑈𝑡. Hence, we have𝐼𝑡 = 𝐷𝑡 + 𝑈𝑡, and 𝐷𝑡∕𝐼𝑡 defines the CDR, which, however, remains unknown due to 𝑈𝑡 being unknown.
Note that the index 𝑡 indicates the time point onwhich the infection took place,which is usually unknown. The infection

is eventually detected through a positive test at a later time point 𝑡 = 𝑡 + 𝑑. As 𝑑 is often unknown, in particular, if the
spread of the disease is diffuse, we will conceptually omit 𝑑 in the following, which means that we set 𝑡 equal to the
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F IGURE 1 Raw data: registered cases of COVID-19 infections and registered fatal cases on a weekly basis for Germany. Top figure:
Absolute numbers on a log-scale stratified by age group. Bottom figure: Case fatality ratios (= fatal cases / registered cases) stratified by age
group

registration date when an infection is confirmed through a test. This time point is the registration date described in the
previous section. Generally, this approach is justifiable for COVID-19 infections because the range of delay 𝑑 is small
compared to the time range 𝑇 of our data analysis (Mallett et al., 2020).
From today’s perspective, we have uncensored knowledge on the outcomes of all reported cases 𝐷𝑡. That is, we know if

they ended fatally or if they recovered. Consequently, the reported cases are composed of recovered (nonfatal) outcomes𝑅𝑡
and fatal outcomes 𝐹𝑡, that is, 𝐷𝑡 = 𝑅𝑡 + 𝐹𝑡. Given this, the total number of infected persons splits into 𝐼𝑡 = 𝑅𝑡 + 𝐹𝑡 + 𝑈𝑡.
The expected number of reported fatal cases 𝐹𝑡 as well as the expected number of recovered cases 𝑅𝑡 are fractions of the

total number of infections 𝐼𝑡. This leads to𝔼(𝐹𝑡 ∣ 𝐼𝑡) = 𝐼𝑡𝑎 and 𝔼(𝑅𝑡 ∣ 𝐼𝑡) = 𝐼𝑡𝑐𝑡, (1)
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where 0 < (𝑎 + 𝑐𝑡) < 1. Here, quantity 𝑎 defines the infection fatality ratio (IFR), whereas 𝑐𝑡 is the CDR of nonfatal (recov-
ered) infections. Note that these nonfatal infections also include mild and symptom-free cases. Thus, if testing capacities
are increased or the testing strategy is changed, 𝑐𝑡 will change as well, which is incorporated in the notation by time index𝑡. In contrast, the IFR 𝑎 will be assumed to remain constant over time. This can be justified by the fact that fatal cases,
due to their severeness, are likely to be detected independently of any testing policy. This also includes, to some extent,
postmortem tests.
With this notation, we obtain the time-dependent case detection ratio CDR𝑡 = 𝑎 + 𝑐𝑡. Note that for the dark number,

that is, the latent number of undetected infections 𝑈𝑡, it holds that 𝔼(𝑈𝑡 ∣ 𝐼𝑡) = (1 − CDR𝑡)𝐼𝑡. It would, of course, be
favorable to estimate the number of undetected infections𝑈𝑡 via estimation of 𝑎 and 𝑐𝑡. However, when only the reported
fatal and nonfatal cases 𝐹𝑡 and 𝑅𝑡 are known, these two ratios cannot be estimated due to nonidentifiability issues, which
we will demonstrate below. Nonetheless, with the data at hand, we are able to estimate the ratio 𝑐𝑡∕𝑎. To see this, we
rewrite the above model in an equivalent form by defining a binary covariate 𝑥 ∈ {0, 1} and by specifying the response
variable 𝑌𝑡 through

𝑌𝑡 ∣ 𝑥 = {𝐹𝑡 for 𝑥 = 0𝑅𝑡 for 𝑥 = 1.
This notational trick allows us to rewrite the above relations (1) as a regression model𝔼(𝑌𝑡 ∣ 𝐼𝑡, 𝑥 = 0) = 𝔼(𝐹𝑡 ∣ 𝐼𝑡) = exp{log(𝐼𝑡𝑎)} = exp{𝑉𝑡 + 𝛼}, (2)

𝔼(𝑌𝑡 ∣ 𝐼𝑡, 𝑥 = 1) = 𝔼(𝑅𝑡 ∣ 𝐼𝑡) = exp{𝑉𝑡 + 𝛾𝑡}, (3)

where𝑉𝑡 = log(𝐼𝑡), 𝛼 = log(𝑎), and 𝛾𝑡 = log(𝑐𝑡). Equations (2) and (3) can, in turn, be summarized into a single regression
model formula 𝔼(𝑌𝑡 ∣ 𝑉𝑡, 𝑥) = exp{𝑉𝑡 + 𝛼 + 𝑥(𝛾𝑡 − 𝛼)}. (4)

Note that 𝐼𝑡 and hence𝑉𝑡 = log(𝐼𝑡) remain unobserved. We employ a Bayesian view andmodel𝑉𝑡 as normally distributed
randomeffects𝑉𝑡 ∼ 𝑁(𝜇𝑡, 𝜎2). Still, the parameters inmodel (4) are not identifiable, because any shift in𝜇𝑡 and amatching
negative shift in 𝛼 and 𝛾𝑡, respectively, results in the same model. This demonstrates the identifiability problem, which
we have mentioned above. Hence, we are neither able to estimate the fatality ratio 𝑎 = exp(𝛼) nor the time-dependent
ratio 𝑐𝑡 = exp(𝛾𝑡)with the data at hand. However, we can shift 𝜇𝑡 such that the integral of 𝜇𝑡 = 𝜇𝑡 − 𝑘 is equal to zero and
define the global intercept 𝛽0 = 𝛼 + 𝑘, which allows to rewrite (4) in an identifiable form (see Wood, 2017) to obtain the
final regression model 𝔼(𝑌𝑡 ∣ 𝑉𝑡, 𝑥) = exp(𝑉𝑡 + 𝛽0 + 𝑥𝛽𝑡) and 𝑉𝑡 ∼ 𝑁(𝜇𝑡, 𝜎2) for 𝑡 = 1, … , 𝑇, (5)

where 𝛽𝑡 = 𝛾𝑡 − 𝛼 and exp(𝛽𝑡) = 𝑐𝑡∕𝑎. With this model, we can now explore the dynamics in the CDR. For two different
time points 𝑡1 and 𝑡2, we have using the small 𝑜() notation

CDR𝑡2
CDR𝑡1 = 𝑐𝑡2 + 𝑎𝑐𝑡1 + 𝑎 = 𝑐𝑡2𝑐𝑡1 {1 + 𝑜(𝑎)} = exp(𝛽𝑡2)exp(𝛽𝑡1) {1 + 𝑜(𝑎)} ≈ exp(𝛽𝑡2)exp(𝛽𝑡1) . (6)

The latter approximation in (6) holds as long as the fatality rate 𝑎 is small, which holds for COVID-19. Consequently,𝛽𝑡2 − 𝛽𝑡1 can serve as a proxy for log(CDR𝑡2 ) − log(CDR𝑡1 ), and exp(𝛽𝑡2 − 𝛽𝑡1) is a proxy for the relative change in the case
detection ratio CDR𝑡2∕CDR𝑡1 .
Based on these considerations, we see that it is necessary to model the dynamics in time 𝑡more appropriately to derive

stable estimates for the CDR. It is natural to assume that changes in the CDR over time do not occur suddenly but grad-
ually. For instance, test capacities are slowly increased and test strategies are gradually changed. To accommodate this in
our model (5), we fit 𝛽𝑡 by a smooth function in time leading to a time-varying coefficient model (Hastie & Tibshirani,
1993). We also induce smooth dynamics on the random component, leading to a time-varying random effect (Durban &
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F IGURE 2 Dynamics of the true infection numbers on the log-scale for different age groups: The smooth random effects 𝑉𝑡 . The shaded
areas represent 95% confidence bands

Aguilera-Morillo, 2017). These modifications lead to an identifiable and dynamic mixed regression model, for which we
use a negative-binomial distribution for 𝑌𝑡 with a constant dispersion factor. The entire model can be fitted with standard
software: All of our analyses were performed in R (R Core Team, 2013) and the dynamic mixed regression model is fitted
using the R-packagemgcv (Wood, 2017).
We apply this modeling approach using the reported data from CW 10 (beginning of March) up to CW 53 (final week

of 2020), stratified by different age groups, to visualize the dynamics in the real infection numbers and the CDR from the
beginning of the pandemic up to the beginning of the second wave. To assess the robustness of the approach concerning
the assumption of time-constant and age-specific fatality ratios, we also refit the model when subdividing the data into
different time frames. The results of this analysis are shown in the Supporting Information.

4 RESULTS

4.1 Model estimates

As the IFR 𝑎 depends on age, we fit separate models for each of the relevant age groups defined by the RKI, that is, 15–34,
35–59, 60–79, and 80+ years. The dynamics in the true infection numbers on the log-scale, represented by the fitted smooth
dynamic random effects 𝑉𝑡, are displayed in Figure 2. These curves mirror the relative change in the actual number of
infected (detected and undetected) over time. Note that the absolute numbers cannot be interpreted on their own due
to the mentioned identifiability issues. We therefore shift the curves such that 𝑉CW10 = 0. We can see that the relative
course of the pandemic was very similar across all age groups, where a peak is reached around CW 14. However, the peak
for the younger age groups is estimated to be around 1 week earlier than for the older age groups, that is, in CW 13. An
explanation for this finding is that the younger age groups have been more affected by the lockdown, which started in
Germany in CW 12. Looking at the difference between themaximummax𝑡 𝑉𝑡 and theminimum of𝑉𝑡 during the summer
months, that is,min20≤𝑡≤40 𝑉𝑡, we see that this difference increases with age, that is, the relative decline in true infections
numbers after the first wave and the relative increase toward the second wave, respectively, was less pronounced in the
younger age groups. Also eye-catching is the increase in infections around CW 25 for people below 60 years of age. This is
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F IGURE 3 Dynamics in the case-detection ratio for different age groups: The normalized time-varying coefficients 𝛽𝑡 . The function
values on the exp-scale (right y-axes) are the relative change in the case-detection ratio (CDR) with respect to calendar week 10

the aforementioned outbreak in the district of Gütersloh, which occurred in an industrial slaughterhouse and has mainly
affected people of the working age. From CW 35 (end of August), all curves start rising steadily, where the steepest rise is
seen for the oldest age group, whereas the rise is flatter for the younger age group. This shows that the second wave of the
pandemic had already begun around CW 35. Moreover, Figure 2 shows that in all age groups but the youngest one, the
peak of the second wave has surpassed the peak of the first wave.
Next, we look at the dynamics in the CDR. Figure 3 shows the fitted time-varying coefficients 𝛽𝑡 together with corre-

sponding 95% confidence bands. Again, the absolute level is not identifiable, so these curves are normalized such that𝛽CW10 = 0. Hence, the function values on the exp-scale (right y-axes) give the relative change in the CDR with respect to
CW 10. The CDR in the age group 80+ has risen monotonically since the beginning of the pandemic up to CW 33, where
our model estimates the CDR to be more than four times higher as in mid-March. Note that in later weeks, the CDR
among the elderly decreased again to the level of April/May. In contrast, for people aged 60–79, the CDR first dropped by
about 70%, reaching its bottom as the pandemic passed its peak in Germany in CW 16. We subsequently see a monotonic
increase, with the CDR becoming 1.5 times higher compared to the beginning of the pandemic. However, in this age group,
the CDR has been more than halved from CW 40 up to the end of 2020 again. The dynamics in the CDR in the population
aged 35–59 years are similar to those of the 60–79 years old: After a drop during March and April (CW 10–CW 16), the
CDR increases, in mid-September, to nearly three times what it was in CW 10. For the youngest age group (aged 15–34),
we also see a rise in the CDR over time, which seems substantial. However, the confidence bands in this age group are
relatively wide because this age group is not as prone to fatal outcomes as older age groups.

4.2 Interpretations

For the population aged 80 years and older, the CDR had increased until late summer, when it started to stagnate before
slightly decreasing again. As the CDR can be at most 100%, and given that the relative change in this age group was about
as high as a factor of 4 in CW 33 compared to March, we can conclude that at the beginning of the pandemic, the CDR
among the population of 80 years and older could not have beenmore than 25%.Moreover, considering the relative change
in the CDR, we can adjust the numbers from the peak in the first wave to be comparable, for example, to the numbers in
week 40. To exemplify this, note that in week 40, the CDR for the age group 80+ was 2.3 times higher as in CW 15, at the
peak of the first wave. This ratio results from the plot in Figure 3 (bottom right) by taking 𝛽CW15 = 0.4 and 𝛽CW40 = 1.25
and calculating the ratio exp(1.25 − 0.4) = 2.3. In week 40, we had about 11 new infections per week per 100,000 reported

 15214036, 2021, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/bim

j.202100125 by C
ochrane G

erm
any, W

iley O
nline L

ibrary on [20/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

11. A statistical model for the dynamics of COVID-19 infections and their case detection ratio in
2020

170



1630 SCHNEBLE et al.

in this age group. In CW 15, this number had become 80. However, in week 15, the CDRwas much lower as in CW 40, and
thus, we would have seen 2.3 ⋅ 80 = 184 cases per 100,000 in this age group 80+ if we had the same CDR in CW 15 as in
CW 40.
For the population aged 60–79 years, the CDR between the minimum in CW 16 and its maximum in calendar week 34

changed by a factor of around 5. From this, we can deduce that around the peak of the first wave in Germany, at most
20% of the infections were detected, whereas at least 80% remained unseen. To be able to compare numbers from the first
wave to those in autumn, we apply a similar calculation as above. This results in an estimated number of at least 5 ⋅ 17 =
85 cases per 100,000, where only 16 cases per 100,00 have been observed in CW 16.
In the age group 35–59, the relative change of CDR during the minimum in CW 16 and the maximum in CW 36 was

as high as a factor of 5 as well. Again, the same calculation shows that the 22 detected infections per 100,000 in week 16
would increase to 5 ⋅ 22 = 110 cases per 100,000 if we would have had the CDR in week 16 as it was in week 36.
A general question in the pandemic is whether extensive testing leads to a high CDR. Applying our model to regional

data allows us to investigate this question. The Supporting Information compares separate model fits for the two most
populous German states, North-Rhine-Westphalia and Bavaria. The two states implemented different testing strategies
over the summer months. Although in Bavaria, public test stations were opened in summer, particularly at the borders
on the motorways, such fine screening of holiday returnees was not pursued in North-Rhine-Westfalia. Our model allows
assessing and, in particular, quantifying how such different testing strategies lead to different CDRs in these two regions.
The results quantify by how much the dark figure was reduced in relationship with the Bavarian testing strategy.

5 DISCUSSION

Raw reported case numbers andmeasures derived from them, such as the case fatality ratio, are prone to changes in testing
strategies and test capacities, which also influence the CDR. Comparisons between raw case numbers over time therefore
need to be interpreted with care. The case-fatality ratio, calculated from the raw number of reported deaths related to
COVID-19 divided by reported cases, is also impaired because deaths occur with a time delay after registration, meaning
that deaths registered today correspond to infections that have been reported up to several weeks ago. Our method allows
us to uncover relative changes in the CDR over different pandemic phases. Moreover, by shedding light on the number
of undetected cases, we can describe the dynamics in the true number of COVID-19 infections for Germany from March
2020 until December 2020. The approach is based on publicly available data on registered cases and does not rely on
simulations or additional survey data. We make use of the fact that, for each fatal outcome, the registration date of the
infection is included in the data. This allows us to jointly model the number of registered nonfatal cases and that of fatal
infections in a dynamic mixed model, leading to an assessment of the dynamics taking place in real infection numbers.
Based on the available information on the relative change in the CDR over time, we are able to compare numbers from
the first wave of the pandemic in spring with numbers from the second wave in autumn, adjusting for the difference in
the proportion of undetected cases.
A general limitation of our approach is that it suffers from an identifiability issue and hence does not derive absolute

values of the CDR. One may, however, combine our results with findings from seroepidemiological studies, which aim
to assess the prevalence of COVID-19 in the general population by screening a representative sample. A list of current
seroepidemiological studies in Germany is provided by the RKI (Robert-Koch-Institute, 2020). Although these studies
provide crucial information on the current situation of the spread of the disease, they can only give a snapshot of the
instantaneous situation when the study was conducted. With the knowledge of the dynamics in new infections given by
our approach, the findings of such studies can be used to estimate the situation at other time points. For example, we look
at the Prospective Covid-19 Cohort Study Munich (KoCo19, Radon et al., 2020). They report a CDR of about 25%, where
the survey was run between May and June 2020 in the city of Munich. We can deduce that the CDR for October to be
about three times higher for the 35–59 age group. More precise calculations would require age-specific numbers in the
study as well as a regional refit of our model. A nationwide seroprevalence study was conducted between the beginning
of July and mid-August of 2020, which yielded a CDR of around 55% in the adult population (ifo Institut & forsa, 2020).
Nonetheless, the authors admit that the fading of COVID-19 antibodies could influence their findings sometime after the
infection. A seroprevalence study, which is also nationwide but on a larger scale, is currently being carried out, but the
results are not yet available.1 In principle, however, this demonstrates that the combination of seroepidemiological studies
and our approach allows obtaining estimates for absolute numbers of the CDR instead of relative comparisons only.

1 https://www.rki.de/DE/Content/Gesundheitsmonitoring/Studien/lid/lid_node.html;jsessionid=02C6FAB6F407B92315BDA5C1650F4D3A.
internet072
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A critical assumption of our model is that we assume the IFR 𝑎 to be constant over time for a given age group and
negligibly small compared to the detection ratio of nonfatal cases. The latter is certainly valid for the numbers we looked
at. Staerk et al. (2021) show that most of the dynamics in the effective IFR of the German population can be explained by
the varying age distribution of COVID-19 cases. As the age distribution within the RKI age categories varies as well, the
IFR 𝑎 within each age group might slightly change over time that, however, occurs not abruptly bot smoothly over time.
The sensitivity analysis, which can be found in the Supporting Infprmation, provides evidence that our assumption of 𝑎
being constant is, for the most part, fulfilled. With increasing vaccination levels in the population starting from January
2021, the assumption of a constant case fatality ratio becomes invalid. This eventually prevents the application of our
model to later stages of the pandemic.
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Statistical modelling of COVID-19 data: Putting
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Abstract: Over the course of the COVID-19 pandemic, Generalized AdditiveModels (GAMs) have been
successfully employed on numerous occasions to obtain vital data-driven insights. In this article we fur-
ther substantiate the success story of GAMs, demonstrating their flexibility by focusing on three relevant
pandemic-related issues. First, we examine the interdepencyamong infections in different age groups, con-
centrating on school children. In this context, we derive the setting under which parameter estimates are
independent of the (unknown) case-detection ratio, which plays an important role in COVID-19 surveil-
lance data. Second, we model the incidence of hospitalizations, for which data is only available with a
temporal delay. We illustrate how correcting for this reporting delay through a nowcasting procedure can
be naturally incorporated into the GAM framework as an offset term. Third, we propose a multinomial
model for the weekly occupancy of intensive care units (ICU), where we distinguish between the number
of COVID-19 patients, other patients and vacant beds. With these three examples, we aim to showcase
the practical and ‘off-the-shelf’ applicability of GAMs to gain new insights from real-world data.

Keywords: Case-detection ratio, COVID-19, generalized additive models,modelling icu occupancy, now-
casting
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1 Introduction

From the early stages of the COVID-19 crisis, it became clear that looking at the raw data would
only provide an incomplete picture of the situation, and that the application of principled statistical
knowledge would be necessary to understand the manifold facets of the disease and its implications
(Panovska-Griffiths, 2020; Pearce et al., 2020). Statistical modelling has played an important role in
providing decision-makers with robust, data-driven insights in this context. In this article, we specif-
ically highlight the versatility and practicality of Generalized Additive Models (GAMs). GAMs
constitute a well-known model class, dating back to Hastie and Tibshirani (1987), who extended
classical Generalized Linear Models (Nelder and Wedderburn, 1972) to include non-parametric
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smooth components. This framework allows the practitioner to model arbitrary target variables
that follow a distribution from the exponential family to depend on covariates in a flexible man-
ner. Due to the duality between spline smoothing and normal random effects, mixed models with
Gaussian random effects are also encompassed in this model class (Kimeldorf and Wahba, 1970).
One can justifiably claim that the model class is one of the main work-horses in statistical modelling
(see Wood, 2017 and Wood, 2020 for a comprehensive overview of the most recent advances) and
numerous authors have already used this model class for COVID-19-related data analyses. As re-
search on topics related to COVID-19 is still developing rapidly, a complete survey of applications
is impossible; hence, we here only highlight selected applications, sorted according to the topic they
investigate. Many applications analyse the possibly non-linear and delayed effect of meteorological
factors (including, e.g., temperature, humidity, and rainfall) on COVID-19 cases and deaths (see
Goswami et al., 2020; Prata et al., 2020; Ward et al., 2020; Xie and Zhu, 2020). While the results
for cold temperatures are consistent across publications in that the risk of dying of or being infected
with COVID-19 increases, the findings for high temperatures diverge between studies fromno effects
(Xie and Zhu, 2020) to U-shaped effects (Ma et al., 2020). Logistic regression with a smooth tempo-
ral effect, on the other hand, was used to identify adequate risk factors for severe COVID-19 cases
in a matched case-control study in Scotland (McKeigue et al., 2020). In the field of demographic
research, Basellini and Camarda (2021) investigate regional differences in mortality during the first
infection wave in Italy through a Poisson GAM with Gaussian random effects that account for re-
gional heterogeneities. With fine-grained district-level data, Fritz and Kauermann (2022) present an
analysis confirming that mobility and social connectivity affect the spread of COVID-19 in Ger-
many. Wood (2021) shows that UK data strongly suggest that the decline in infections began before
the first full lockdown, implying that the measures preceding the lockdown may have been suffi-
cient to bring the epidemic under control. This list of applications illustrates how GAMs have been
successfully employed to obtain data-driven insights into the societal and healthcare-related impli-
cations of the crisis.

We contribute to this success story by focusing on three applications to demonstrate the ‘off-
the-shelf ’ usability of GAMs. First, we investigate how infections of children influence the infection
dynamics in other age groups. In this context, we detail in which setting the unknown case-detection
ratio does not affect the (multiplicative) parameter estimates of interest. Second, we show how cor-
recting for a reporting delay through a nowcasting procedure akin to that proposed by Lawless
(1994) can be naturally incorporated in a GAM as an offset term. Here, the application case fo-
cuses on the reporting delay of hospitalizations. Third, we propose a prediction model for the occu-
pancy of Intensive Care Units (ICU) in hospitals with COVID-19 and non-COVID-19 patients. We
thereby provide authorities with interpretable, reliable and robust tools to better manage healthcare
resources.

The remainder of the article is organized as follows: Section 2 shortly describes the available data
on infections, hospitalizations and ICU capacities that we use in the subsequent analyses, which are
presented in Sections 3, 4 and 5, respectively. We conclude the article in Section 6.

2 Data

For our analyses, we use data from official sources, which we describe below. Note that our applica-
tions are limited toGermany although all of our analyses could be extended to other countries given
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data availability. We pursue all subsequent analyses on the spatial level of German federal districts,
which we henceforth refer to as ‘districts’. This spatial unit corresponds to NUTS 3, the third and
most fine-grained category of the NUTS European standard (Nomenclature of Territorial Units for
Statistics). We refer to Annex A for a graphical depiction of the spatial resolution of the data.

Infections and hospitalizations For investigating infection dynamics across different age groups,
we use data provided by the Bavarian Health and Food Safety Authority (Landesamt für Gesund-
heit und Lebensmittelsicherheit, LGL). This statewide register includes, the registration date for all
COVID-19 infections reported in Bavaria, as well as information on the patient’s age and gender.
Infection data for Germany is also published daily by the RKI (Robert Koch Institute, 2021), the
German federal government agency and scientific institute responsible for health reporting and dis-
ease control. Due to privacy protection, the RKI groups patients in broad age categories, which
inhibits the analysis of the group of school children. As this is necessary for our first application in
Section 3.3, we restrict the analysis to Bavarian data and use LGL data where not stated otherwise.

In addition, the LGL dataset includes information on the hospitalization status of each patient,
which is not included in the RKI data, that is, whether or not a case has been hospitalized and the
date of hospitalization, if this had occurred. We determine the date on which a hospitalized case is
reported to the health authorities by matching the cases across the downloads available on different
dates. This is necessary in order to derive the reporting delay for each hospitalization, which is of
interest in Section 4.

Intensive care unit occupancy Data on the daily occupancy of ICU beds in Germany, on the other
hand, is made publicly available by the German Interdisciplinary Association for ICU Medicine
and Emergency Medicine (Deutsche interdisziplinäre Vereinigung für Intensiv und Notfallmedizin,
DIVI, 2021). Using this dataset we obtain information on the number of high and low care ICU-
beds occupied by patients infected with COVID-19 and patients not infected with COVID-19. As
a third category, there are also the vacant beds. In contrast to the infection data, no information is
available on the age or gender composition of the occupied beds.

Population data In conjunction with the data sources described above, we use demographic data
on the German population at the administrative district level, provided by the German Federal Sta-
tistical Office (DESTATIS). Since the raw numbers on infections and hospitalizations are strongly
influenced by the number of people living in a particular district, we use this population data to
transform the absolute infection and hospitalizations to incidence rates. In general, we use the term
incidence rates to refer to infection incidence rates, and hospitalization incidence rates when writing
about hospitalizations. While we effectively model the incidence rate in Section 3 and the hospital-
ization incidence rate in Section 4, we incorporate the incidence rate per 100.000 inhabitants as a
regressor in Section 5.

3 Analysing associations between infections from different age groups

A central focus during the COVID-19 pandemic is to identify the main transmission patterns of the
infection dynamics and their driving factors. In this context, the role of children in schools for the
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general incidence poses an important question with many socio-economic and psychological impli-
cations to it (see Andrew et al., 2020; Luijten et al., 2021). Since findings from previous influenza
epidemics have tended to identify the younger population, children aged between 5 and 17, as the
key ‘drivers’ of the disease (Worby et al., 2015), the German government ordered school closures
throughout the course of the pandemic between spring 2020 and 2021 to contain the pandemic.
However, whether these measures were necessary or effective in the case of COVID-19 is still subject
to current research (e.g., Perra, 2021). In particular, several studies investigated the global effect of
infections among school children, but a general conclusion could not be drawn (see Flasche and
Edmunds, 2021; Hippich et al., 2021; Hoch et al., 2021; Im Kampe et al., 2020). In general, we
would like to remark that in many studies the main goal was to arrive at conclusions about the sus-
ceptibility, severity, and transmissibility of COVID-19 for children (Gaythorpe et al., 2021). On the
other hand, we are here primarily interested in quantifying how the incidences of children are asso-
ciated with the incidences in other age groups. Therefore, we want to assess whether children are key
‘drivers’ of the pandemic. Our analysis is based on aggregated data on the macro level, as opposed
to the data on the individual level, which is needed to answer hypotheses, for example, about the
susceptibility of a particular child.

3.1 Autoregressive model for incidences
To tackle this problem from a statistical point of view, we propose to analyse the infection data us-
ing a time-series approach (Fokianos and Kedem, 2004). Let therefore Yw,r,a denote the number of
infections in week w in district r and age group a. For simplicity, we assume independent develop-
ments among the districts and let Yw,r,a depend on the incidences in all age groups from the previous
weekw − 1. Put differently, we includeYw−1,r = (Yw−1,r,1, . . . ,Yw−1,r,A) as covariates, where 1, . . . , A
indexes all A considered age groups. Among the components of Yw,r we then postulate indepen-
dence conditional on Yw−1,r . For illustration, Figure 1 depicts the assumed dependence structure.
As for the distributional assumption, we make use of a negative binomial distribution with mean
structure

E(Yw,r,a|Yw−1,r ) = exp{ηw,r,a + or,a} (3.1)

where or,a serves as offset and η gives the linear predictor. To be specific, we set or,a = log(xpop,r,a),
where xpop,r,a is the time-constant population size in district r and age group a. Note that we implic-
itly model the incidences by incorporating this offset term, since the incidences Iw,r,a relate to the
counts through Yw,r,a = Iw,r,axpop,r,a . The linear predictor is now defined as

ηw,r,a = θw +
A∑

k=1

log(Yw−1,r,k + δ)θa,k, (3.2)

where θw serves as week-specific intercept, θa,k is the coefficient weighting the influence of lagged
infections of age group k on the infections in age group a and δ is a small constant, which is included
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Figure 1 Assumed temporal dependence structure visualized as a directed acyclic graph (DAG)

for numerical stability to cope with zero infections, . We set δ to 1 in the calculation but omit the
term subsequently for a less cluttered notation.

3.2 Robustness under time-varying case-detection ratio
Model (3.1) has the important methodological advantage of being able to cope with an unknown
case-detection ratio, which is inevitable if there are under-reported cases. This is a key problem in
COVID-19 surveillance as not all infections are reported (Li et al., 2020); hence the case-detection
ratio (CDR) is typically less than one. Various approaches havebeen pursued to quantify the number
of unreported cases, for example, by estimating the proportion of current infections which are not
detected by PCR tests (Schneble et al., 2021a).For demonstration, assume that Ỹw,r,a are the detected
infections in week w in district r for age group a, while Yw,r,a are the true infections. Apparently
Ỹw,r,a ≤ Yw,r,a holds if we assume under-reporting. We assume multiplicative under-reporting and
denote with 0 < Rw,r,a ≤ 1 the multiplicative CDR in district r in age group a and set with Rw,r =
(Rw,r,1, ..., Rw,r,A) the joint CDRs for all A available age groups. In this setting, we observe

Ỹw,r,a = Rw,r,aYw,r,a (3.3)

infections in the corresponding week w, district r , and age group a from the Yw,r,a true infections.
Apparently, integrity for Yw,r,a is not guaranteed with (3.3), which we could, however, impose by
rounding.We further assume that Rw,r,a andYw,r,a are independent of each other, conditional on the
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previous week’s data.We further assume that Rw,r,a are independent random draws for the different
districts, thus the case-detection ratio may vary between the districts. Assuming further an i.i.d.
setting such that E(Rw,r,a) = πw,a yields for model (3.1) under (3.3):

E
(
Ỹw,r,a|Ỹw−1,r

) = ERw,Rw−1

(
EYw

(
Rw,r,aYw,r,a|Ỹw−1,r , Rw,r,a, Rw−1,r

))
= ERw,Rw−1

(
Rw,r,a EYw

(Yw,r,a|Yw−1,r )
)

= πw,a ERw−1

(
exp{ηw,r,a}

)
exp{or,a} (3.4)

where for clarity we include the random variable as an index in the notation of the expectation. Note
that

ERw−1

(
exp{ηw−1,r,a}

)
= ERw−1

(
exp

{
A∑

k=1

log(R−1
w−1,r,kỸw−1,r,k)θa,k + θw

})

= exp
{
η̃w,r,a

}
ERw−1

(
exp

{
A∑

k=1

log(R−1
w−1,r,k)θa,k + θw

})

= exp
{
η̃w,r,a + θ̃w

}
, (3.5)

where

η̃w,r,a =
A∑

k=1

log(Ỹw−1,r,k)θa,k

and

θ̃w = θw + log

(
ERw−1

(
exp

{
A∑

k=1

log(R−1
w−1,r,k)θa,k

}))
.

Hence, combining (3.4) and (3.5) shows that if we fit the model (3.2) to the observed data, which are
affected by unreported cases, we obtain the same autoregressive coefficients θa,k for k = 1, ..., A as
for the model trained with the true (unknown) infection numbers. All effects related to undetected
cases accumulate in the intercept, which is of no particular interest in this context. In summary, if we
assume that the CDR does not depend on the number of infections but might be different between
age groups and different weeks, we obtain valid estimates for the autoregressive coefficients even if
(multiplicative) under-reporting is present. While the independence assumptions made are generally
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questionable, it is reasonable to assume these for a short time interval. Note that a similar argument
holds for an additive CDR under epidemiological models proposed by Meyer and Held (2017) and
Held et al. (2005).

3.3 Infection dynamics for school children
We can now investigate the infection dynamics between different age groups to answer the question
brought up at the beginning of Section 3.1. Since the age groups provided by the RKI are too coarse
for this purpose, we rely on the data provided by the LGL for Bavaria. For this dataset, we have
the age for each recorded case, which, in turn, enables us to define customized age groups. To be
specific, we define the age groups of the younger population in line with the proposal of the WHO
and UNICEF (2020): 0–4, 5–11, 12–20, 21–39, 40–65, +65. For this analysis, we estimate model
(3.1) with data on infections which were registered between 1 and 27 March 2021. The data was
downloaded in May 2021; hence reporting delays should have no relevant impact on the analysis.
We employ model (3.1) separately for all five analysed age groups to assess how all age groups affect
each other. The fitted autoregressive coefficients θa,k are visualized in Figure 2 including their 95%
confidence intervals. The partition of the x-axis refers to index a, while index k, the influence of the
other age groups, is indicated by the different colours and drawn from left (5–11) to right (65+).
For instance, the label ‘Model 5–11’ shows all interpretable effects where the target variable is the
incidence of people aged between 5 and 11. Note that the only interpretative results of our model
concern the effects between the age groups. Thus we omit the weekly intercept estimates from
(3.2) in Figure 2, which lose all interpretative power in the context of under-reporting as argued in
Section 3.2.

In general, we observe that the autoregressive effects for the own age group, that is, a = k (drawn
as triangles in Figure 2) are among the essential predictors in all age-group-specific models. Re-
garding the effects between age groups, the association of 5–11-year-olds (yellow, most left coeffi-
cient) with all other age groups is relatively small and, in most cases, not significant. In contrast,
the age groups of working people aged between 21–39 (blue, middle) and 40–65 years (green, sec-
ond right) have the highest relative effect on the incidences for all age groups (except for the au-
toregressive coefficients). For instance, we see that the effects of the children and adolescents (5–11
and 12–20 years) on the incidences of 21–39 and 40–65-year-olds, albeit sometimes being signif-
icantly different from 0, affect the prediction far less than the incidences of the working popula-
tion. In this respect, the results confirm previous analyses concluding that increasing incidences
in children and adolescents are weakly associated with the incidences of other age groups. Vice
versa, we find empirical evidence that people between 21 and 65 are the main drivers of infection
dynamics.

The results do not come without limitations. First of all, note that the data is observational, not
experimental. Hence, we can only draw associative and not causal conclusions from the datawithout
additional assumptions. Moreover, we rely on the given assumptions on the under-reporting. Still,
rerunning the analyses for otherweeks, shown in the SupplementaryMaterial, yielded similar results,
supporting the robustness of our approach and findings. Further, by the beginning of March 2021
around 2.2 million people predominantly from the 65+ age group were already fully vaccinated
against COVID-19, which may have an effect on the estimates.
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Figure 2 Association of previous week’s incidences in different age groups (colour-coded) with the
current-week incidences for calendar weeks 9–12 in 2021 stratified by age group (5 age groups correspond to 5
distinct Models)

4 Modelling hospitalizations accounting for reporting delay

A relevant number of COVID-19 infections lead to hospitalizations, and the incidence of patients
hospitalized in relation to COVID-19 is of paramount importance to policymakers for several
reasons. First, hospitalized cases are most likely to result in very severe illnesses and deaths, the
minimization of which is generally the primary aim of healthcare management efforts. In addition,
knowing the number of hospitalized patients is crucial to adequately assess the current state of the
healthcare system. Finally, while the number of detected infections depends considerably on testing
strategy and capacity, the number of hospitalizations provides a more precise picture of the current
situation. For these reasons, hospitalization incidence has been deemed increasingly more relevant
by scientists and decisionmakers over the course of the pandemic, and finally became the central in-
dicator for pandemic management in Germany from September 2021, complementing the incidence
of reported infections.

The central problem in calculating the hospitalization incidence with current data is that hos-
pitalizations are often reported with a delay. Such late registrations occur along reporting chains
(from local authorities to central registers), but also due to data validity checking at different levels.
Visual proof of the degree of this phenomenon is given in Figure 3, which depicts the empirical dis-
tribution function of the time (in days) between the date on which a patient is admitted into a Bavar-
ian hospital and the date on which the hospitalization is included in the central Bavarian register.
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Figure 3 Cumulative distribution function of the time delay (in days) between hospitalization and its
reporting, calculated with data from 1 January to 18 November of 2021, shown separately for the age groups
0–59 and 60+. The curves for both age groups are truncated at a delay of 40 days, when approximately 94.6%
of all hospitalizations have been reported

In 2021, only 12.3% of hospitalized cases in Bavaria are known the day after admission, and about
two thirds of them (67.2%)are reportedwithin seven days.Moreover, the duration tends to be slightly
shorter for patients younger than 60 than older patients.

Modelling and interpreting current data with only partially observed hospitalization incidences
can lead to biased estimates and misleading conclusions, especially if one is interested in the
temporal dynamics. To correct for such reporting delays, we utilize ‘nowcasting’ techniques, loosely
defined as ‘[t]he problem of predicting the present, the very near future, and the very recent past’ (p.
193, Bańbura et al., 2012). Related methods have been extensively treated in the statistical literature
(see, e.g., Höhle and AnDer Heiden, 2014; Lawless, 1994) and successfully applied to infections and
fatalities data during the current health crisis (De Nicola et al., 2022; Günther et al., 2020; Schneble
et al., 2021b). In contrast to these approaches, we here focus on modelling the hospitalization in-
cidences, correcting for delayed reporting through a nowcasting procedure based on the work of
Schneble et al. (2021b).

We denote by Rt,r,g the hospitalization incidence on day t for district r and age/gender group g,
while the absolute count of hospitalizations in the same cohort is defined by Ht,r,g. Naturally, those
two quantities related to one another through

Rt,r,g = Ht,r,g

xpop,r,g
. (4.1)

To account for the delayed registration of hospitalizations in Ht,r,g when modelling Rt,r,g , we pursue
a two-step approach, consisting of a nowcasting and amodelling step. In the former step, we nowcast
the hospitalizations that are expected but not yet reported, while in the latter step we model Rt,r,g
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Figure 4 Illustration of the data setting for dmax = 6. Nt,d indicates hospitalizations reported with a specific
delay d, while Ct,d denotes all those reported with delay up to d. Ht denotes the final number of hospitalized
cases regardless of the delay with which they were reported, that is with a delay up to the maximum possible,
dmax

as a function of several covariates, which will allow us to gain insights into the geographic and
sociodemographic drivers of the pandemic. We describe the two steps below.

4.1 Nowcasting model
In this first step, we estimate the final number of hospitalized patients on day t, denoted by Ht,
factoring in the expected reporting delay. Note that, while we do have data available at the district
level, at this stage we aggregate hospitalizations across Bavaria due to the sparsity of the data. If
we are performing the analysis on day T, we can compute the cumulative hospitalization counts
Ct,d = ∑d

l=1 Nt,l , where Nt,d is the number of hospitalizations on day t reported with delay d, for
every t ∈ {1, ...,T} and d ∈ {1, ...,T − t}. Assuming a maximal reporting delay of dmax days, we
denote the complete distribution of delayed registrations of cases with hospitalization on day t by
Nt = (Nt,1, ..., Nt,dmax ) ∈ Ndmax with

∑dmax
d=1 Nt,d = Ht. We graphically demonstrate how Nt,d ,Ct,d , and

Ht relate to one another in Figure 4. By design, Nt follows a multinomial distribution:

Nt ∼ Multinomial(Ht, πt), (4.2)

where πt = (P(Dt = 1; t), ...,P(Dt = dmax; t)) are the proportions of hospitalizations on day t with a
specific delay, and Dt is a random variable describing the reporting delay of a single hospitalization
which occurred at time t. For this application, we do not directly model those probabilities but
instead opt for a variant of the sequential multinomial model proposed by Tutz (1991). In particular,
we define the conditional probabilities through

pt(d|xt) := P(Dt = d|Dt ≤ d; xt), (4.3)

Statistical Modelling xxxx; xx(x): 1–24

185



Statistical modelling of COVID-19 data 11

conditional on covariates xt. It follows that the cumulative distribution function of D can be written
as:

Ft(d|xt) = P(Dt ≤ d; xt,a)

= P(Dt ≤ d|Dt ≤ d + 1; xt)P(Dt ≤ d + 1; xt)

=
dmax−1∏
k=d

P(Dt ≤ k|Dt ≤ k+ 1; xt)

=
dmax−1∏
k=d

(1 − P(Dt = k+ 1|Dt ≤ k+ 1; xt))

=
dmax∏

k=d+1

(1 − P(Dt = k|Dt ≤ k; xt))

=
dmax∏

k=d+1

(1 − pt(k|xt)). (4.4)

Combining (4.2) and (4.3) allows us to model the delay distribution with incomplete data. We
do this separately for two age groups, which we denote by an additional index a. This leads to the
model

Nt,a,d ∼ Binomial (Ct,d , pt,a(d|xt,a,d)) (4.5)

with the structural assumption

log
(

pt,a(d|xt,a,d)
1 − pt,a(d|xt,a,d)

)
= θ0 + s1(t) + s2(d) + s3(d) · I(60+) + x�

t,dθ,

where θ0 is the intercept, s1(t) = θ1t +∑L
l=1 αl · (t − 28l)+ is the piece-wise linear time effect, s2(d)

the smooth duration effect, s3(d) a varying smooth duration effect for the age group 60+, and xt,d
are additional covariates depending on t and the delay d, that is, a weekday effect for t and t + d.

From Figure 4, one can also derive that the proportion of Ht,a included in Ct,a,d can be compre-
hended as the probability that a hospitalization on day t in age group a has a reporting delay smaller
than or equal to d, that is, Ft,a(d|xt,a). Assuming independence of Ht,a from Dt,a then yields:

E(Ht,a)Ft,a(d|xt,a) = E(Ct,a,d ), (4.6)

meaning that the expected number of patients from age group a hospitalized on day t can finally be
obtained as

E(Ht,a) = E(Ct,a,d )
Ft,a(d|xt,a) . (4.7)
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This equation holds for any delay d ≤ T − t which is already observed at the date of analysis. Thus,
it is possible to express the expected numbers of hospitalized patients through the ratio between the
number of already reported patients up to delay d and the cumulative distribution function F .

In summary, we can fit the logistic regression model given by (4.5) with the available data on
hospitalizations. Based on this model, we exploit (4.7) to obtain an estimate for the expected number
of hospitalizations from age group a on day t. Uncertainty intervals for the estimated nowcasts
can then be obtained, for example, through a parametric bootstrapping approach relying on the
asymptotic multivariate normal distribution of the estimated model coefficients.

4.2 Hospitalization model
In the second step, we propose a model for the expected value of Rt,r,g , the hospitalization incidence
on day t in district r and age/gender group g, conditional on covariates xt,r,g. To be specific we set

E(Rt,r,g |xt,r,g) = exp{θ0 + θagexage,g + θgenderxgender,g + θgender:agexage,gxgender,g+
θweekdayxweekday,t + s1(t) + s2(xLon,r , xLat,r ) + ur }

= exp{ηt,r,g}, (4.8)

where the linear predictor ηt,r,g includes, in addition to the intercept θ0, effects for the age/gender
groups through the main and interaction effects θage, θgender and θgender:age. Additionally, we include
dummy effects θweekday for each day of the week to account for potentially different hospitalization
rates over the course of the week. Furthermore, the hospitalization incidences are allowed to vary
over time through the smooth term s1(t). Finally to account for spatial heterogeneity, we add a
smooth spatial effect of each district’s average longitude and latitude s2(r ) and a Gaussian random
effect to capture random deviations from this smooth effect, that is, ur ∼ N(0, τ 2) with τ 2 ∈ R+.

Note that, on any given day t > T − dmax, we do not yet observe the final hospitalization counts
Ht,r,g , but only the ones already reported at this time, that is Ct,r,g,T−t, indicating the cumulative
observations on day t in district r reported with a delay of up to d = T − t days for age/gender
group g. The age/gender group indexed by g extends the coarse (binary) age categorization a used
in Section 4.1, which only differentiates between cases younger and older than 60 years. Exploiting
(4.7) and the definition (4.1) of the incidence leads to the final model

E(Rt,r,g|xt,r,g) = E(Ct,r,g,T−t|xt,r,g)
xpop,r,g Ft,g(T − t|xt,g) , (4.9)

where we set Ct,r,g,T−t = Ht,r,g if T − t ≥ dmax. Rearranging (4.9) shows that modelling the count
variable Ct,r,g,T−d with the offset term log(xpop,r,g Ft,g(T − t|xt,g)) is equivalent to modelling Rt,r,g as
in (4.8), since

E(Ct,r,g,T−t|xt,r,g) = exp
{
ηt,r,g + log(xpop,r,g Ft,g(T − t|xt,g))

} = μt,r,g (4.10)

holds. In practice we thereby replace the unknownquantities in the offsetwith their estimates derived
in the previous section. In other words, the delayed reporting is accommodated through an offset in
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the model using only the reported dataCt,r,g,T−t. We can then complete the model by making use of
a negative binomial model to account for possible overdispersion:

Ct,r,g,T−t|xt,r,g ∼ NB(μt,r,g, σ
2),

with μt,r,g parametrized as in (4.10) and (4.8), and the dispersion parameter σ 2 is estimated from
the data.

As an additional note, we point out that accounting for late registrations works analogously
for any model within the endemic–epidemic framework originating in Held et al. (2005). The only
difference to the approach presented here is that the exact functional formof the expected valuemust
be adequately accounted for. For instance, if μt,r,g consists of the sum of non-negative endemic and
epidemic terms, one should incorporate the offset in both terms.

4.3 Application to the fourth COVID-19 wave in Bavaria
For the application, we focus on the first two months of the fourth wave of the pandemic in Bavaria,
which began towards the end of September 2021. In particular, we consider hospitalizations between
24 September and 18 November, using data reported as of 18 November 2021. We set dmax = 40
days to be the maximum possible duration between hospitalization and its reporting in the central
Bavarian register. We derive this choice from the empirical delay distribution in Figure 3, proving
that since the beginning of 2021, around 94% of the hospitalizations have been reported within 40
days of their occurrence. We have no information on the date of hospital admission for about 9.6%
of all hospitalizations related to COVID infections that were reported between 24 September and
19 November. For those cases, we replace the date of hospitalization with the respective COVID-19
infection date as reported by the local health authorities. For brevity, we only present a comparison
of the nowcasted and rawhospitalization counts for the nowcastingmodel and the age/gender group-
specific and spatial effects of the hospitalization model. We refer to the Supplementary Material for
additional results.

Figure 5 maps the raw and corrected rolling weekly sums of hospitalization counts accompanied
by the 95% confidence intervals for the whole population as well as separately for the two age groups
under consideration. While reported numbers indicate a relatively stable or even slightly decreasing
development over the last two weeks of observed data, the nowcast reveals a continuous upward
trend since the beginning of October. Comparing both age-stratified populations, the increase for
those over 60 years (the more vulnerable) is steeper. The figure also plots the realized hospitalization
counts observed after 40 days have passed since 19 November 2021. The comparison of our nowcast
with those realized figures observed a posteriori shows that our model tends to slightly overestimate
the reported cases for the younger population. This might be due to the beginning of the Delta
curve with rapidly increasing hospitalizations since October 2021 after a phase with rather low
hospitalization numbers. Nevertheless, our nowcast estimates show a clear improvement in terms
of reflecting the true dynamics of hospitalized cases compared to the curve of the reported values.
These results emphasize the need to adjust reported hospitalization counts, as they tend to systemat-
ically underestimate the number of recently occurred hospitalizations, which can lead to inaccurate
conclusions about the current state of the pandemic.
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Figure 5 Comparison of nowcasted (red) and reported (blue) rolling weekly sums of hospitalization counts
between 24 September and 18 November 2021, based on data reported as of 19 November 2021. Note: 95%
confidence intervals of the nowcast estimates are indicated by the shaded areas. The dashed black lines show
the realized weekly sums of hospitalization after 40 days, that is, the maximum delay assumed in our
nowcasting model. Results are displayed for the overall population (a) as well as separately for age groups
0–59 (b) and 60+ (c)

Turning to the results of the hospitalization model proposed in Section 4.2, the estimated coeffi-
cients for all age and gender combinations can be seen in Figure 6. Those estimates reveal consider-
ably lower hospitalization rates for people younger than 35 than all other age groups. We generally
observe a positive correlation between age and risk of hospitalization for both genders, that is, older
people are more likely to be hospitalized. The only exception to this intuitive finding is seen for
men over 80 years, whose expected hospitalization rates are slightly lower than men aged 60 to 79.
Statistically significant differences between men and women are visible across all age groups. While
women in the youngest and oldest age group tend to have a (slightly) higher hospitalization rate
than men, the opposite holds for the other groups.

Figure 7 depicts the random and smooth spatial effects (on the log-scale). The smooth effect in
Figure 7 (a) paints a clear spatial pattern, with generally higher hospitalization rates in the eastern
parts of Bavaria and lower rates in the north-western districts. This structure reflects the pandemic
situation in Bavaria during autumn 2021, where we observed the most severe dynamics in those
eastern districts. Districts with unexpectedly high or low hospitalization rates (when compared to
their neighbouring areas) can be located on the map of the district-specific random intercepts in
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Figure 6 Estimated linear effects for different age and gender groups in the hospitalization model, where
males aged 15–34 are the reference category. Note: Estimated standard deviations are written in brackets

Figure 7 Estimated smooth spatial effect (a) and district-specific random effect (b) in the hospitalization model

Statistical Modelling xxxx; xx(x): 1–24

12. Statistical modelling of COVID-19 data: Putting generalized additive models to work

190



16 Fritz et al.

Figure 7 (b). Contrary to its role as a hotspot during the second wave in autumn 2020, the district
with the lowest random effect is Berchtesgadener Land. We estimate an overall variance of τ 2 =
0.274 for the district-specific random effects.

5 Modelling ICU occupancy

The primary aims of healthcare management efforts during a pandemic include minimizing very
severe and fatal cases, as well as preventing the overload and collapse of the healthcare system.
Information on these very severe cases, among other quantities of interest, can be captured by the
ICU occupancy, which is the focus of our third application case.

5.1 Multinomial model
We consider the occupancy of ICUs where, as described in Section 2, beds are categorized into the
number of vacant beds (Zw,r,1), number of beds occupied by patients not infected with COVID-
19 (Zw,r,2), and number of beds occupied by patients infected with COVID-19 (Zw,r,3). Further,
we denote by Zw,r = (Zw,r,1, Zw,r,2, Zw,r,3) the vector of length three expressing the average number
of ICU-bed occupancy in week w and district r . The canonical GAM for this type of data is a
multinomial model; hence the distributional assumption is:

Zw,r ∼ Multinomial
(
Nw,r , πw,r

)
, (5.1)

where Nw,r = ∑3
j=1 Zw,r, j is the known number of available beds in district r andweekw and πw,r =

(πw,r,1, πw,r,2, πw,r,3) defines the proportion of occupied beds in the respective categories.
One advantage of this multinomial approach is that we implicitly account for displacement ef-

fects commonly observed for ICU occupancy data. Over time, as the number of beds occupied
by patients infected with COVID-19 rise, both free beds and beds occupied by patients not in-
fected with COVID-19 decrease almost simultaneously. In particular, the ‘displacement’ may be
caused by practices such as rescheduling non-urgent operations or other treatments which would
have required an ICU stay, which were already common during the first wave of COVID-19 (Stöß
et al., 2020). These effects lead to negative correlations between the entries in Zw,r , which is nat-
urally accounted for in model (5.1) as the covariance between arbitrary counts Zw,r,k and Zw,r,l is
−Nw,dπw,r,kπw,r,l ∀ k, l ∈ {1, 2, 3}, k �= l.

Taking the number of beds occupied by patients infected with COVID-19 as the reference cate-
gory, we effectively parametrize pairwise comparisons via

log
(

πw,r, j

πw,r,3

)
= ηw,r, j ∀ j = 1, 2, (5.2)
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where the linear predictors ηw,r, j are functions of covariates labeled as xw,r and defined by:

ηw,r, j =θ0, j + θ�
AR(1), j (Z̃w−1,r,1, Z̃w−1,r,2)� + θ�

I, j log(Yw−1,r + δ)+
s j (xLon,r , xLat,r ) + ur, j ∀ j = 1, 2, (5.3)

where θ0, j is the intercept term. Further, we incorporate an autoregressive component in
(5.3) by including the relative ICU occupancy observed in the previous week as a regres-
sor. We denote the distribution of the different occupancies of the previous week as Z̃w−1,d =
(Zw−1,r,1, Zw−1,r,2)/(

∑3
j=1 Zw−1,r, j ), and the respective effect is denoted by θAR(1), j for the j th lin-

ear predictor. We also let (5.3) depend on the previous week’s district and age-specific infec-
tions per 100.000 inhabitants (incidences) denoted by Yw−1,r,a , that are weighted by the coefficient
θI, j ∀ j = 1, 2. To control for district-specific heterogeneity, we include Gaussian random effects,
that is, ur, j ∼ N(0, τ 2) ∀ r ∈ {1, . . . , R} ∀ j = 1, 2. For smooth spatial deviations from these ran-
dom effects, we add a bivariate function s j (·, ·) ∀ j = 1, 2 parametrized by thin-plate splines that
take the longitude and latitude of each district as arguments (see Wood, 2003, for more details). For
notational brevity, let θ denote the joint parameter vector of (5.3) ∀ j = 1, 2.

5.2 Quantification of uncertainty
As stated, the multinomial model has the beneficial property of automatically accounting for dis-
placement effects. Note, however, that patients’ expected length of stay in intensive care may exceed
our time unit of one week, as the average stay of COVID-19 patents is about 13 days (see Vekaria
et al., 2021).This means that not all beds are completely redistributed at every time point of observa-
tion. However, apart from including the previous week’s occupancy in the covariates, our proposed
model does not adequately account for this stochastic variability.

We therefore pursue a Bayesian view and let Nw,r be the number of ICU beds in district r in week
w. This number is known, and we assume that each week only a fixed but unknown proportion α

of beds in the three categories become disposable, where 0 < α < 1. That is to say that αNw,r beds
are redistributed among the three categories, where integrity is assumed but not explicitly included
in the notation for simplicity. We assume that this new allocation is independent of the previous
status of the beds and denote the newly allocated beds with the three-dimensional vector Aw,r =
(Aw,r,1, Aw,r,2, Aw,r,3). This setting translates to:

Zw,r = (1 − α)Zw−1,r + Aw,r .

For the newly allocated beds we still assume a multinomial model:

Aw,r ∼ Multinomial
(
αNw,r , πw,r

)
, (5.4)

with πw,r specified in (5.3). Note, however, that we do not know α and that no information is pro-
vided in the data concerning the length of stay or the number of beds changing their status. To
account for that data deficiency, we impose a Dirichlet distribution on the vector πw,r , where the
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prior information is determined by the available beds, that is,

fπ (πw,r ) ∝
3∏
j=1

π
(1−α)Zw−1,r, j

w,r, j . (5.5)

Combining the prior (5.5) with the likelihood from (5.4), leads to the posterior

fπ (πw,r |Aw,d) ∝
3∏
j=1

π
Aw,r, j+(1−α)Zw−1,r, j

w,r, j =
3∏
j=1

π
Zw,r, j
w,r, j (5.6)

This, in turn, equals the likelihood resulting from the multinomial model and justifies the use of
model (5.2) even though not all beds are allocated weekly. Nevertheless, the central assumption of
independent observations in standard uncertainty quantification in GAMs (Wood, 2006) is violated.
To correct for this bias, we substitute the canonical covariance of the estimators with the robust
sandwich estimator based on M-estimators defined by:

V(θ ) = A(θ )−1B(θ )A(θ )−1, (5.7)

where we set A(θ ) = E
(− ∂

∂θ∂�θ

(θ )

)
, B(θ ) = Var

(
∂
∂θ


(θ )
)
, and 
(θ ) is the logarithmic likelihood re-

sulting from (5.1) or equivalently the logarithm of the posterior of (5.3). See also Stefanski and Boos
(2002) and Zeileis (2006).

5.3 Application to the third wave
We now employ the multinomial logistic regression (5.1) to ICU data recorded during the third
wave between March and June 2021. For the incidence data used in the covariates, we employ the
RKI data; hence we set A= 4 and the age groups are: 15–34, 35–59, 60–79 and 80+. Further, we
normalize all non-binary covariates:

x̃i = xi − x̄√
1
n

∑n
j (xj − x̄)2

with x̄ =
∑n

j xj
n

. (5.8)

This way, we facilitate the interpretation of associations and guarantee a meaningful comparison
between the covariates. Due to space restrictions, we here only present the linear effects from (5.3)
and refer to the Supplementary Material for the random and smooth estimates.

In Figure 8, we visualize the estimated coefficients, including their confidence intervals. The ref-
erence category in both pairwise comparisons is COVID-beds; thus, we refer to the two models as
free vs COVID beds and non-COVID vs COVID beds. In particular, the coefficients relate to the
association between the covariates and the logarithmic odds of a bed not being occupied compared
to being occupied by a patient with COVID-19, shown with blue dots in Figure 8. Analogously, the
orange triangles in Figure 8 illustrate the estimated association between the covariates and the log-
arithmic odds of a bed being occupied by a patient not infected with COVID-19 in comparison to a
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Figure 8 Estimated coefficients with confidence interval of the associations between normalized linear
covariates included in the multinomial model and the logarithmic odds of a bed being free vs occupied by a
patient infected with COVID-19 (blue dots) and the logarithmic odds of a bed being occupied by a patient not
infected with COVID-19 vs a patient infected with COVID-19 (orange triangles)

bed being occupied by a patient infected with COVID-19. To demonstrate the uncertainty of each
estimate, a 95% confidence interval is added. Keeping the other variables constant, the normalized
lagged log-incidences of all age groups generally have a negative effect on the logarithmic odds of
both pairwise comparisons. This translates to the finding that an increase in the incidences leads to
a decrease in the proportion of non-COVID and free-beds in when compared to COVID beds. The
lagged normalized proportion of free and non-COVID beds is estimated to have a stronger, positive
association with the logarithmic odds of both pairwise comparisons. We, therefore, expect a higher
number of non-COVIDbeds in the previous week to be followed by a higher number of non-COVID
beds in the next week.

The model can be extended to a forecasting model, as shown in the supplementary material.
In particular, we demonstrate how forecasting performance changes over the different waves of the
pandemic. In principle, we could also incorporate further covariates like district-specific proportions
of vaccinated people. Unfortunately, these numbers are not very reliable and require sophisticated
cleaning, so we prefer not to present results in this direction here.

6 Discussion

The COVID-19 pandemic poses numerous complex challenges to scientists from different disci-
plines. Statisticians and epidemiologists, in particular, face the problem of extracting meaningful in-
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formation from imperfect, incomplete and rapidly changing data. Generalized additive models are
a powerful tool that, if used correctly, can help solving some of these challenges. In this work, we
have addressed three such challenges where the utilization of GAMs provided meaningful insight.

1. We investigated whether children are the main drivers of the pandemic under a time-varying
case-detection ratio.

2. We modelled hospitalization incidences controlling for delayed registrations, thereby provid-
ing both up to dates estimates of current hospitalization numbers as well as insight on the
demographic and spatio-temporal drivers of COVID-19.

3. We developed an interpretable predictive tool for ICU bed occupancy that is actively used by
the Bavarian government.

We achieved all of those results by using GAMs with different methodological extensions. Never-
theless, the use of our proposed models to extract novel information from the data provided is still
subject to both data-related andmethodological limitations. In general, our data sources are subject
to exogenous shocks (e.g., policy changes) that lead to sudden changes in population behaviour
and pose a danger to the validity of our results. Regarding the study of infection dynamics of
school kids, revised testing policies hinder the long-range comparability of our findings. In the
hospitalization data, the exact date of hospitalization is missing for about 10% of the hospitalized
cases, which we impute by the given registration date of the infection. Furthermore, the records
on the ICU-bed occupancy do not include intrinsic constraints, as the capacity of beds available
to COVID-19 patients does not equate to the capacity of beds available to patients not infected
with COVID-19. There are also methodological limitations. First of all, note that the data is
observational, not experimental. Additionally, the set of covariates in our model can easily be
extended to control for other factors, such as meteorological and socioeconomic ones.

We close this work by emphasizing that the nowcasting model can also be used as a stand-alone
model. In the German COVID-19 Nowcast Hub (KIT), the described model is used among other
nowcasting methods, including the work of Günther et al. (2020) and van de Kassteele et al. (2019),
to estimate hospitalization counts on the national and federal state level in Germany. Apart from a
systematic evaluation of the different approaches, one of the main goals of this project is to combine
individual nowcasts to an ensemble nowcast, which may lead to more accurate estimates.

Supplementary materials

Supplementary materials for this article are available online, including additional information
on the three application cases. The replication code is available in the following repository:
https://github.com/corneliusfritz/Statistical-modelling-of-COVID-19-data.
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Figure A.1 (a): Map of Germany, where the NUTS 1 regions are indicated by the black borders and the
different colours. The NUTS 2 regions, on the other hand, are drawn in grey. Note that all NUTS 1 region
borders are also NUTS 2 region borders. (b): Map of Bavaria where also the NUTS 3 regions are marked. In
the legend, we state the names of each NUTS 1 region
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Appendix: A Spatial unit

We carried out most modelling endeavours presented in this article on the NUTS 3 level, which is
shown on the right side of Figure A.1. The only exception is the Nowcasting model from Section
4.1, where we aggregate all data onto the NUTS 1 level in Bavaria. Moreover, NUTS 1 regions,
depicted on the left side of Figure A.1, are the federal states in Germany and Bavaria is one of them.
In Section 3 and 4, we are only analysing data from Bavaria, while we employ data from complete
Germany in Section 5.
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Zur Berechnung der Übersterblichkeit in Deutschland während der
COVID-19-Pandemie

Zusammenfassung Die Corona-Pandemie (COVID-19) ist mit einer erhöhten Zahl
an Todesfällen in der Bevölkerung verbunden. Die Quantifizierung der Übersterb-
lichkeit ist ein nicht triviales Problem, denn wenn man sich nur auf die öffent-
lich gemeldeten COVID-19-assoziierten Todesfälle stützt, besteht die Gefahr von
Verzerrungen. Eine Möglichkeit, das Problem zu umgehen, ist der Vergleich der
Gesamtsterblichkeit während der Pandemie mit der erwarteten Sterblichkeit, wel-
che aus den beobachteten Sterblichkeitszahlen der Vorjahre berechnet werden kann.
In unserem Artikel bauen wir auf dieser Methodik auf und schlagen zwei Metho-
den zur Berechnung der erwarteten Sterblichkeit und damit der Übersterblichkeit
vor, nämlich auf wöchentlicher und auf Jahresebene. Besonderes Augenmerk liegt
auf dem Einfluss des Alters auf die Sterblichkeit, welches eine zentrale Rolle bei
COVID-19-assoziierten Todesfällen spielt. Wir veranschaulichen unsere Methoden
anhand von Sterbedaten aus den Jahren 2016 bis 2020 in Deutschland und zeigen
wie altersgruppenspezifischen Übersterblichkeit während der COVID-19-Pandemie
im Jahr 2020 berechnet werden kann.

Schlüsselwörter COVID-19 · Übersterblichkeit · Erwartete Sterblichkeit ·
Standardisierte Mortalitätsrate

1 Introduction

First identified in Wuhan, China, in December 2019, the Coronavirus disease 2019
(COVID-19) caused by the SARS-CoV-2 virus developed into a worldwide pan-
demic during the spring of 2020 (Velavan and Meyer 2020). One of the challenges
for scientists has been to evaluate its impact in terms of life loss across different
countries and regions of the world. A possible way to do this is through directly
looking at the number of people who died while they were confirmed to be infected.
This measure, often defined as COVID-19-associated mortality, is certainly more
robust than other pandemic-related quantities such as, for example, the number of
reported COVID-19 cases, for which it has become clear that there is a non-negligi-
ble discrepancy between cases detected through tests and the number of individuals
who were infected (Lau et al. 2021; Schneble et al. 2021). Nonetheless, the raw
number of COVID-related fatalities can also be subject to interpretative issues and
biases due to underreporting and misclassification. In particular, this number might
be biased downwards, as COVID-19 cases can still remain unreported until and after
the point of death. Moreover, it is not always straightforward to identify if COVID-
19 was the primary cause of death: Some patients might have a SARS-CoV-2 infec-
tion, but the actual contribution of the virus to the death might be minimal (Vincent
and Taccone 2020). To deal with these issues, comparing all-cause mortality is gen-
erally considered a more robust alternative for assessing the damage done by the
pandemic, and to compare its impact between regions or countries. A first look at
this matter for Germany was provided by Stang et al. (2020), who looked at data
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from the first wave ranging from calendar weeks 10 to 26 in 2020. The authors
came to the conclusion that a moderate excess mortality was observable for this
period in Germany, in particular for the elderly. Morfeld et al. (2021) consider
regional variation in mortality in Germany during the first wave (see also Morfeld
et al. 2020). A calculation of the years of life lost over the course of the pandemic
in Germany in 2020 was pursued by Rommel et al. (2021). International analyses
on excess mortality due to COVID-19 include e.g. Krieger et al. (2020) looking
at data from Massachusetts, Vandoros (2020) who focuses on England and Wales,
and Michelozzi et al. (2020) investigating mortality in Italian cities. Global analyses
in this direction were pursued by Karlinsky and Kobak (2021) and Aburto et al.
(2021).

Monitoring excess mortality has a long tradition as part of analysing the impact of
pandemics (Johnson and Mueller 2002; Simonsen et al. 2013). With the EuroMOMO
project, Europe also runs an early-warning system specifically dedicated to mortality
monitoring (Mazick et al. 2007). However, no unified methodological definition
exists for deciding if the currently observed death counts are higher than what would
be expected. A very simple approach is to compare the currently observed deaths
for a selected time-period with the average of death counts for a similar period in
previous years1. Alternatively, the expected value can be computed by an underlying
time-series model based on past values, e.g. including seasonality and excluding
past phases of excess, as done in the EuroMOMO project (see e.g. Vestergaard
et al. 2020; Nørgaard et al. 2021). These approaches, however, do not come without
problems, as the age structure within a population can change significantly over
time. Given that both general and COVID-related mortality are heavily dependent
on age (Dowd et al. 2020; Levin et al. 2020), comparisons between different years
based only on raw data will often lead to biased estimates. More specifically, using
such techniques will lead to overestimating excess mortality for aging populations
(such as those, e.g., in western Europe), and underestimating it for populations
that get progressively younger. More sophisticated approaches thus need to adjust
for different or changing age structures in the population. The latter point is of
particular relevance when looking at aging populations (Kanasi et al. 2016) and the
infectious risks for the elderly (Kline and Bowdish 2016). Such age-adjustments
have a long tradition in demography when comparing mortality across different
regions with different age-structure (Keiding and Clayton 2014; Kitagawa 1964).
A general discussion on aging populations and mortality can be found in Crimmins
and Zhang (2019).

In this paper, we build on existing methodology to propose two ways of calcu-
lating expected mortality taking age into account, respectively at the weekly and at
the yearly level. These methods are compared to the existing benchmarks on data
from Germany over the years 2016–2019, for which age-stratified information is
available. We furthermore apply those methods to assess age group-specific excess
mortality in Germany during the COVID-19 pandemic in 2020. The remainder of
the manuscript is structured as follows. In Sect. 2 we look at yearly expected mor-

1 https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bevoelkerung/Sterbefaelle-Lebenserwartung/
sterbefallzahlen.html.
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tality, while the weekly view is pursued in Sect. 3. Sect. 4 ends the paper with some
interpretative caveats and concluding remarks.

2 Yearly Excess Mortality

We first look at yearly data, and tackle the question of whether there was excess
mortality in Germany in 2020. In order to obtain an age adjustment for mortality
data, we calculate expected deaths based on official life tables. Life tables give the
probability qx of a person who has completed x years of age to die before completing
their next life-year, i.e. before their x C 1th birthday. In our analysis we consider
the life table provided for the year 2017/2019 by the Federal Statistical Office of
Germany (Destatis 2020). The calculation of a life table, as simple as it sounds, is
not straightforward, and is an age-old actuarial problem. First references date far
back, to Price (1771) and Dale (1772). A historical digest of the topic is provided
by Keiding (1987). Over the last decades, the calculation of the German life-tables
made use of different methods proposed in Becker (1874), Raths (1909) and Farr
(1859). We will come back to this point and demonstrate that further adjustments
are recommendable to relate the expected number of deaths to recently observed
ones. In particular, with increasing life expectancy, the average age of the German
population has been steadily increasing (see e.g. Buttler 2003), and this has an effect
on the validity of life tables, as discussed in Dinkel (2002). Generally, an aging
population leads to increasingly high yearly death tolls (see e.g. Klenk et al. 2007).
To quantify excess mortality one therefore needs to account for age effects, leading
to the computation of standardized quantities such as the standardized mortality ratio
(SMR, see e.g. Rothman et al. 2008). The SMR is defined as the ratio of observed
death counts over expected deaths, and thus allows for an age adjusted view, meaning
that instead of pure death counts one takes the (dynamic) age structure into account.

Calculating excess mortality on a yearly basis requires to calculate expected fatal-
ities using life tables provided by the relevant statistical bureau. We make use of data
provided by the Federal Statistical Office of Germany (Destatis 2020). A straight-
forward way of obtaining the expected number of deaths for age group A in year y

is to calculate

eA;y D
X

x2A
qxPx;y (1)

where Px;y is the population size of individuals aged x years at the beginning of
year y and qx are the age-specific death probabilities, e.g. those found in the most
recent German life table from the years 2017/19, calculated following Raths (1909).
More specifically, let Dx be the cumulated number of individuals that died at x years
old, i.e. before their x C 1-th birthday in the considered years 2017 to 2019. Let
Px;y denote the population size of x year old individuals on December 31st in year
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y 2 f2016; 2017; 2018; 2019g. qx provided in the German life-tables is then defined
as

qx D Dx

2018X

yD2016

Px;y C Px;yC1

2
C Dx

2

(2)

We label (1) in combination with (2) as Method 1 below. We now show that this
quantity is biased for estimating the expected number of deaths of x year old people
in year y. To motivate this we look at the Lexis diagram in Fig. 1, and for simplicity
we replace the calculation in (2) by looking at a single year only, i.e from y D t to
y D t C 1. This leads to Dx D I C II, where I and II refer to the observed deaths
in the two triangles in Fig. 1. Note that following the calculation principle (2) of the
Statistisches Bundesamt we would obtain qx as

qx D Dx

Px;t C Px;tC1

2
C Dx

2

(3)

where Px;t and Px;tC1 are the population sizes of x year olds indicated in Fig. 1.
That is qx is the probability of dying in triangles I and II. Let us define with eqx

the probability of an individual aged x years at the beginning of year t (i.e. on
December 31st in year t � 1) to die before year t C 1 starts. In other words eqx is
the probability of dying in triangles II and III. In fact, this is the probability we
are interested in. It is easy to see that eqx ¤ qx . Assuming that the probability of
dying in triangle I is roughly equal to the probability of dying in triangle II, and

Fig. 1 Lexis Diagram indicat-
ing the different quantities to be
estimated
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assuming the same relationship for triangles III and IV holds, we can conclude the
approximate equivalence

eqx D 1

2
qx C 1

2
qxC1 (4)

which leads to the expected number of deaths

eeA;y D
X

x2A
eqxPx;y : (5)

We label (5) as Method 2 below. The adjustment is still not complete, and in fact it
can be shown that (5) is still biased for delimited age groups (see Hartz et al. 1983).
This is because individuals dying in triangle III count as x C 1 years old, so that
part of the deaths contributes to an age group that is different from the target. We
may now assume for simplicity that the probability of dying in triangles II and III
is roughly the same, which leads to the following calculation. Let A D Œal ; ar �,

beA;y D 0.5 �eqal�1Pal�1;y C
ar�1X

xDal

eqxpx;y C 0.5 �eqar Par ;y (6)

where A is the age group, al and ar refer to the left and right age boundaries of the
group, eq�1 D eq0, and P�1;y D P0;y gives the approximation for the youngest age
group. Accordingly, for ar D max.x/ we take the full fraction of the last year, that
is we add an additional 0.5 �eqar par ;y to the formula above. We label (6) as Method
3 below.

Based on this method we can now compare expected and observed fatalities over
the last years using the same 2017/2019 life table as basis. Note that, when looking
at different years, one may more accurately also consider different life tables to
account for changing life expectancy. We omit this point for simplicity since we
only look at five years, and changes in life expectancy over this short period were
moderate (Wenau et al. 2019). This is equivalent to implicitly assuming constant age-
specific hazards over the last five years (while we still, of course, account for the
changing age structure). Fig. 2 gives a first overview of the results for all age groups
combined. In the figures, alongside Method 3, we also show the results obtained with
Methods 1 and 2. This is to demonstrate how impactful their previously underlined
biases, which may seem small on paper, can be in practice. We plot the observed
death counts as black dots, and we represent the expected death counts based on
the different methods as dashed lines. We can see that Method 1, which uses (1),
clearly underestimates the expected death counts. Method 2 and Method 3 perform
equally well, which is not surprising, since we here do not take an age-specific
view. The latter is carried out in Fig. 3 for all different age groups available from
the data. This age-specific view shows how Methods 2 and 3 differ, and that overall
Method 3 shows the better fit. We can quantify the empirical discrepancy between
the three methods by calculating the mean absolute percentage error for the different
age groups, where we explicitly exclude year 2020 due to the COVID-19 pandemic.
The results of this can be found in Table 1.
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Fig. 2 Expected deaths com-
puted by calender year with
the three different methods
described, for all age groups
combined. Realized fatalities are
shown as black dots. Note that
Methods 2 and 3 are visually
indistinguishable, as here all age
groups are pooled together

Having seen that Method 3 empirically outperforms the other two over recent
years, we can use the expected number of fatalities computed with this method for
2020 to quantify excess mortality during the first calendar year of the COVID-19
pandemic in Germany. Table 2 contains expected and observed mortality figures for
all age groups in 2020, as well as the absolute and percentage differences between
the two. From the table we can see that, for the entire population, the age-adjusted
excess mortality was in the order of 1% in 2020. We stress that these results in
terms of COVID-19 impact need to be interpreted with utmost care: We here focus
on the methodological aspects, and defer the subject-matter discussion of the results
to Sect. 4. Also note that, while this section focuses the attention on the difference
between observed and expected mortality, one could also easily obtain the yearly
SMRs by simply taking the ratio of those two quantities. We believe the (percentage)
differences to be more interesting when looking at the data at the yearly level.
Nonetheless, the real insight lies in estimating the expected number of deaths in
a given period; once that is calculated, one can use any preferred method to quantify
the excess.

In this Section we approached the problem of excess mortality from a yearly
standpoint. A natural follow up would be to zoom into a monthly or weekly view.
A way to move in this direction would be to divide the expected yearly mortality by
the total number of weeks in a year, and computing a weekly “SMR” using weekly
observed deaths. The main issue with this type of approach is that it does not allow
to take within-year seasonality into account for the expected deaths. In the following
section we therefore follow a different approach based on standardization, which can
account for seasonality and is more model-free.

3 Weekly Excess Mortality

To tackle the question of weekly excess mortality, classical standardization ap-
proaches such as direct and indirect standardization can be used to adjust the ob-
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Fig. 3 Expected deaths by calendar year and age group computed with the three different methods de-
scribed. Realized fatalities are shown as black dots

K
211



On assessing excess mortality in Germany during the COVID-19 pandemic 13

Table 1 Age-specific mean absolute percentage error for expected yearly fatalities calculated with dif-
ferent methods over the years 2016 to 2019. Year 2020 is excluded due to the COVID-19 pandemic. The
smallest value for each age group is highlighted in bold

0–30 30–40 40–50 50–60 60–70 70–80 80–90 90+ Overall

Method 1 2.74% 1.56% 2.12% 3.57% 2.24% 0.93% 7.44% 11.22% 5.23%

Method 2 2.69% 2.50% 5.56% 3.54% 2.20% 4.60% 1.90% 11.22% 1.39%

Method 3 3.37% 1.25% 1.96% 2.72% 0.99% 0.71% 2.08% 1.68% 1.39%

Table 2 Expected and observed yearly mortality in 2020 for each of the six age groups, computed with
Method 3

Age group Expected 2020 Observed 2020 Absolute diff. Relative diff.

Œ00,30/ 7471 7150 �321 �4%

Œ30,40/ 6663 6668 5 C0%

Œ40,50/ 15420 15507 87 C1%

Œ50,60/ 58929 57331 �1598 �3%

Œ60,70/ 118047 118460 413 C0%

Œ70,80/ 199569 201957 2388 C1%

Œ80,90/ 379917 378406 �1511 �0%

Œ90;1/ 193238 200093 6855 C4%

Total 979255 985572 6317 C1%

served values for age effects, see e.g. Kitagawa (1964). We will focus on indi-
rect standardization, but given an appropriate choice of reference population, direct
standardization approaches are straightforward adaptations.

Let qt;x be the mortality probability specific to age x and time period t . In
what follows, the considered time period will be one International Organization for
Standardization (ISO) week, but other intervals (e.g. months) are also imaginable.
We estimate qt;x by dividing the number of observed deaths at age x during time
period t , defined as Dt;x, by the corresponding population at the beginning of the
time period, i.e. Pt;x . To be specific, we define

bqt;x D Dt;x

Pt;x

: (7)

Since the age-stratified population is only available as a point estimate for December
31st of each year, we use linear interpolation to estimate Pt;x. The corresponding
estimates of weekly mortality probabilities (7) are shown in Fig. 4. We see that in
the age groups � 50 years old a substantial weekly excess mortality is observable
from week 45 on, with more pronounced excess mortality for the elderly. Also note
that the official 2020 population data are available since June 2021 and, hence, were
used for the present retrospective analysis. However, when performing analyses in
real time, recent population data might not (yet) be available, and projections would
therefore be needed (see e.g. Ragnitz 2021; Höhle 2021).

A weekly SMR-based excess mortality measure for the entire year 2020 can now
be computed as follows. Let t denote a specific ISO week in 2020, i.e. this will
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serve as notational shorthand for ISO week 2020-Wt , where t D 1; :::; 53. We form
the expected age-time mortality probability for this week by computing the average
of the mortality of the same week over the last 4 years, i.e.

qt;x D 1

4

2019X

yD2016

bqy-Wt;x; t D 1; :::; 53.
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Because the years 2016–2019 do not have an ISO week 53, we define y-W53 for
y D 2016; :::; 2019 as 1

2 .qy-W52 C q.yC1/-W01/. The indirect standardization now
computes the expected number of deaths for week t as

et;x D qt;x � Pt;x

This corresponds to the expected number of deaths in week t at age x, if the current
population would have been subject to the average death probability calculated over
the past four years. Since fatalities are not given with exact ages but rather by age
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group, we indicate this by using qt;A, Pt;A and et;A, where A denotes the age classes.
Fig. 4 shows bqt;A as well as qt;x for Germany for the available age classes. Also
note that this computation is equivalent to computing, for each reference year y, the
expected number of deaths for the relevant week in 2020, and then taking the average
of the expected deaths. In other words: by applying the mortality probabilities for
the same week of the reference year y to our study population (i.e. 2020-Wt) and
then averaging the four expected fatalities, we get:

et;x D 1

4

2019X

yD2016

qy-Wt;x � Pt;x :

One can now define the absolute excess mortality in week t and age-group A as
Dt;A �et;A. Instead of focusing on absolute differences, it is better in terms of inter-
pretation to look at relative estimates of excess mortality given by the standardized
mortality ratio (SMR)

SMRt;A D Dt;A

et;A
: (8)

We plot the corresponding weekly estimate resulting from (8) for all age groups
in Fig. 5. As already seen in the incidence plots, we note that in the older age
groups the first approx. 10 weeks of the year had a rather low SMR, followed by
a small increase consistent with the first COVID-19 wave. Furthermore, substantial
increases are observed in the � 50 years old age groups starting from week 45,
coinciding with the 2nd wave, and reaching up to 40% more deaths than expected in
certain weeks. Note that it would also be possible to aggregate the weekly numbers
to generate yearly excess-mortality statements similar to those in Table 2. All in all,
the results of the two methods at the yearly resolution are similar. We don’t include
the results of this aggregation here, but refer to Höhle (2021) for comparison.

4 Discussion

The COVID-19 pandemic posed numerous challenges to scientists. One of those
challenges lies in estimating the number of fatalities brought upon by the pandemic.
To tackle this issue, we pursued an approach based on comparing observed all-cause
mortality in 2020 with the number of fatalities that would have been expected in
the same year without the advent of COVID-19. Building on existing methodology,
we proposed two simple ways of computing expected mortality, respectively at the
yearly and at the weekly level. We then put those methods to work to obtain estimates
for excess mortality in 2020 in Germany. The two approaches yield similar results at
the aggregate level, and highlight how 2020 was characterized by an overall excess
mortality of approximately 1%. The light excess mortality was apparently driven
by a spike in fatalities related to COVID-19 at the end of the year in the older age
groups.
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Interpreting COVID-19 mortality has become a politically sensitive issue, where
the same underlying data are used to either enhance or downplay the consequences
of COVID-19 infections. We therefore stress that our interests are methodological,
and that the presented results are restricted to the calendar year 2020 for Germany as
a whole. Altogether, the mild mortality in the older age groups during the first weeks
(e.g. due to a mild influenza season) balanced the excess in the higher age groups
which came later in the year. Clearly noticeable is the second wave during Nov-
Dec 2020, which also continued in the early months of 2021. To better account for
such seasonality, excess mortality computations for influenza are often pursued by
season instead of calendar year, i.e. in the northern hemisphere for the period from
July in Year X to June in Year X C 1 (Nielsen et al. 2011). Similarly, the impact of
COVID-19 cases and fatalities was not only temporally, but also spatially heteroge-
neous, with strong peaks in Dec 2020 in the federal states of Saxony, Brandenburg
and Thuringia (Höhle 2021). Hence, using mortality aggregates over periods and
regions only provides a partial picture of the impact of COVID-19. Furthermore, the
mortality figures observed in 2020 naturally incorporate the effects of all types of
pandemic management consequences, which include changes in the behavior of the
population (voluntary or due to governmental interventions). Disentangling the com-
plex effects of all-cause mortality and the COVID-19 pandemic is a delicate matter,
which takes experts in several disciplines (demographers, statisticians, epidemiolo-
gists) to solve. Timely analysis of all-cause mortality data is just one building block
of this process; Nevertheless, the pandemic has shown the need to do this in near
real-time based on sound data while adjusting for age structure.

Our analysis was motivated by the fact that many of the methods that have been
applied to tackle this issue so far fail to take the changing age structure of the
population into account. This can lead to biased results, and especially so for the
rapidly aging developed countries. In the case of Germany, for example, the absolute
number of people aged 80 or more increased by approximately 20% from 2016 to
2020. Such a remarkable increase will naturally have an effect on overall mortality,
and as such direct comparisons in the number of casualties across different years will
lead to significant overestimation of the excess mortality. Our approaches are instead
robust to such changes in population structure, and can be used regardless of the
demographic context. Note that, for both of our approaches, it would also be possible
to obtain confidence intervals through imposing distributional assumptions. This
would, however, not be straightforward, for several reasons. First of all, the residual
variability is well beyond what would be explainable through a Poisson distributional
assumption. To solve this, one could, in principle, replace the Poisson distribution
with a Negative Binomial one, or adopt an approach based on quasi-likelihood
(see McCullagh 1983) and incorporate an additional overdispersion parameter. But
in addition to this, stating confidence intervals would also require an understanding
of which (super-)population parameters the confidence intervals make statements
about. Since the all-cause excess mortality estimates are for the entire population
of interest (the German population), some kind of repeated sampling setting would
have to be assumed. For those reasons we refrain from pursuing this, and leave it
for future research on the subject. The same methodologies could also be used to
pursue a similar analysis for any country in which mortality data and a mortality
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table are available, for any given year. A natural use for the proposed methodology
would also be to assess the overall damages caused by the pandemic when it will be
finally considered a thing of the past. All in all, we hope the proposed methods will
help shedding light on the issue of computing the expected number of fatalities, and
consequently in the assessment of (potential) general excess mortality.
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Abstract In this short note, we apply the method of De Nicola et al. (2022) to
the most recent available data, thereby providing up-to-date estimates of all-cause
excess mortality in Germany for 2021. The analysis reveals a preliminary excess
mortality of approximately 2.3% for the calendar year considered. The excess is
mainly driven by significantly higher excess mortality in the 60-79 age group.
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mortality rate

Ein Update zur Übersterblichkeit im zweiten Jahr der COVID-19
Pandemie in Deutschland

Zusammenfassung In diesem kurzen Beitrag wenden wir die Methode von De
Nicola et al. (2022) auf die neuesten verfügbaren Daten an und zeigen aktuelle
Schätzungen der Gesamt-Übersterblichkeit in Deutschland für das Jahr 2021. Die
Analyse zeigt eine vorläufige Übersterblichkeit von etwa 2,3% für das betrachtete
Kalenderjahr. Dieser Wert ist hauptsächlich auf eine deutlich höhere Übersterblich-
keit in der Altersgruppe der 60-79-Jährigen zurückzuführen.
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Fig. 1 Expected deaths by year,
represented by blue squares,
plotted against observed fatal-
ities, depicted by black dots.
Overall excess mortality in 2021
was more pronounced than in
2020

In our article (De Nicola et al. 2022) in this issue, we presented a simple and
novel method to compute excess mortality in a given calendar year while effectively
taking the age structure of the population into account. We then applied our method
to age-stratified mortality data to obtain estimates for general and age group-specific
excess mortality for Germany in 2020, the first year of the COVID-19 pandemic. As
we enter 2022, mortality figures from 2021 are starting to become available. With
this short note, we thereby aim to provide the reader with up-to-date estimates of
excess mortality for the second consecutive year of the pandemic. Mortality data are
provided by the German Federal Statistical Office (Destatis 2022). Figures for 2021
are, at time point of submission of this note, not final, and numbers will presumably
increase due to data corrections. We leave this problem aside here, and work with
data as of February 1, 2022.

Table 1 Expected and observed
yearly mortality in 2021 for each
age group

Age group Expected
2021

Observed
2021

Absolute
diff.

Relative
diff.

Œ00,30/ 7383 7386 3 C0%

Œ30,40/ 6696 6910 214 C3%

Œ40,50/ 15107 16190 1083 C7%

Œ50,60/ 58593 59221 628 C1%

Œ60,70/ 120356 126183 5827 C5%

Œ70,80/ 193669 203732 10063 C5%

Œ80,90/ 397875 396578 �1297 �0%

Œ90;1/ 196878 203609 6731 C3%

Total 996410 1019809 23399 C2%
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Fig. 2 Expected deaths per year, represented by blue squares, plotted against observed fatalities, depicted
by black dots, shown separately for each age group. Relative excess mortality in 2021 was most pronounced
in the 40–50, 60–70 and 70–80 age categories
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Fig. 1 gives an overview of the results for all age groups combined. We plot
the expected death counts for each year as blue squares (see De Nicola et al. 2022
for details), and the observed death counts as black dots. We can see that overall
excess mortality in 2021 was more pronounced than in 2020. More specifically, as
of February 1, 2022, a total of 1019809 deaths were registered in Germany for the
year 2021, i.e. 23399 deaths more than expected. This corresponds to an estimated
overall excess mortality of approximately 2.3%.

Table 1 and Fig. 2 give a more complete picture of the mortality observed in 2021
for the different age groups. We observe that the most pronounced relative excess
mortality was observed in the age groups 40–50, 60–70 and 70–80. We can also
see how, in general, excess mortality was more driven by deaths in the 60–79 age
category rather than in the 80+ group.

As a concluding note, we emphasise that all results presented here are based on
provisional data, as the final death tolls for 2021 in Germany are not yet available
at the time of writing. We can therefore expect some more deaths to be registered in
the coming months. Based on past experience, those late registration should produce
an increase of a few thousand units in the final toll (last year 982489 deaths were
registered for 2020 as of January 29, 2021, while the final, official toll amounted
to 985572). All in all, we can conclude that excess mortality for 2021 in Germany
can, with data up to February 1, 2022, be estimated at a minimum of 2.3%, and that
the final estimate will most likely be higher by a few decimal points.
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Abstract
Quantifying the number of deaths caused by the COVID-19 crisis has been an ongoing challenge for scientists, 
and no golden standard to do so has yet been established. We propose a principled approach to calculate age- 
adjusted yearly excess mortality and apply it to obtain estimates and uncertainty bounds for 30 countries with 
publicly available data. The results uncover considerable variation in pandemic outcomes across different 
countries. We further compare our findings with existing estimates published in other major scientific 
outlets, highlighting the importance of proper age adjustment to obtain unbiased figures.
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1 Introduction
The COVID-19 pandemic has caused a tragically large number of casualties in the general popu
lation. Accurately quantifying the magnitude of this number has been a challenge for scientists 
since the start of the crisis. Knowing how many fatalities were caused by the pandemic is crucial 
for understanding the factors that govern its spread and severity, and to be able to evaluate the 
effectiveness of government responses to it. However, death tolls officially related to the virus 
can only paint an incomplete picture of the situation, as many fatal cases of COVID-19 went 
undetected in official reports from 2020 to 2021, because of limited testing capacity and misclassi
fication of causes of death (Acosta, 2023). Moreover, the reliability of reported deaths varies mas
sively between locations and over time, rendering comparisons largely ineffective. For these 
reasons, all-cause excess mortality is generally considered to be a more reliable way of assessing 
the death toll extracted by the pandemic (Beaney et al., 2020; Leon et al., 2020).

Excess mortality can generally be defined as the number of deaths from all causes during a crisis 
beyond what we would have expected to see under ‘normal’ conditions (Checchi & Roberts, 2005). 
Specifically, our interest here lies in comparing all-cause mortality observed during the COVID-19 
pandemic with the overall number of deaths that would have been expected in its absence. If cor
rectly estimated, excess mortality allows to go beyond confirmed COVID-19 deaths, also capturing 
fatalities that were not correctly diagnosed and reported as well as deaths from other causes that are 
attributable to the overall crisis conditions. The concept of excess mortality is well established and 
has long being utilized for analysing the impact of wars, natural disasters, and pandemics (Johnson 
& Mueller, 2002; Simonsen et al., 2013), with its application dating as far back as the Great Plague 
of London in 1665 (see Boka & Wainer, 2020). Today, the concept is routinely employed by gov
ernments around the world, with e.g. Europe running an early-warning system specifically dedi
cated to mortality monitoring (the EuroMOMO project, see Mazick, 2007). Despite this long 
tradition, however, estimating excess mortality remains a challenge, and no single, unified method 
for doing so has yet been established (Acosta, 2023; Nepomuceno et al., 2022). The difficulty lies in 
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estimating the ‘counterfactual’ expected mortality, i.e. the number of deaths that would have been 
expected had the crisis not occurred. This is a hard feat as mortality rates, trends, and data avail
ability vary greatly across different regions and periods of time. Estimating expected mortality 
thus requires (i) choosing a reference period and (ii) using some model to project mortality rates 
from the reference period to the period of interest. This second point also holds for methods that 
may seem completely ‘model-free’, such as the basic approach of simply using the mean number 
of deaths during the reference period as the expected mortality for the crisis period, widely used 
in media reports at earlier stages of the pandemic. This method implicitly assumes the total (ex
pected) number of deaths to be constant over both the reference and the crisis period, disregarding 
other factors that may influence mortality, such as varying life expectancy, due to e.g. changes in 
living conditions, and shifts in the age structure of the population over time. Ignoring the role of 
age can be particularly damning, as the age structure within a population can change considerably 
over short periods of time. Moreover, countries can show large variation in how their populations 
evolve over time, even when their income levels are comparable. To showcase this, Figure 1 depicts 
the population pyramids of Germany (left panel) and the U.S. (right panel) during the years 2015 
(black contour) and 2020 (coloured), respectively. From the German pyramid, it is apparent how 
the population aged considerably over the 5 years period prior to the start of the pandemic. In par
ticular, the number of people aged 80 and older increased by approximately 25% in just 5 years. 
Since the probability of death increases sharply at higher ages, the number of deaths in Germany 
is expected to rise by about 2% per year as a result of ageing alone, as documented by the 
German Federal Statistical Office in its annual report (Destatis, 2021). This means that, for these 
countries, comparing mortality during the pandemic directly with the reference period will lead 
to severely underestimating expected mortality, and thus overestimating the excess. If we instead 
shift our focus to the US pyramid in the right panel of Figure 1, we can appreciate how the 
American population is ageing at a much slower rate than the German one, and that the pyramid 
is fairly smooth. This means that age adjustment will have a smaller impact on expected and excess 
mortality estimates. Unfortunately, the case of the U.S. is not the norm in modern day high-income 
countries. To the contrary, what we here showed for Germany is true for many other nations, 

(a) (b)

Figure 1. Population pyramids in 2015 and 2020 for Germany and the U.S. Black and coloured contours indicate 
population levels in 2015 and 2020, respectively. While the German population is rapidly ageing and its structure is 
irregular, the US pyramid is fairly smooth and stable over time. (a) Germany and (b) USA.
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rapidly ageing as a result of declining fertility rates (Bloom et al., 2015). Due to this, and given that 
both overall and COVID-related mortality are heavily dependent on age (Dowd et al., 2020; Levin 
et al., 2020), it is crucial to take age into account to avoid systematic bias in the estimates.

Several high profile studies tackling the estimation of excess mortality in multiple countries try 
to capture trends in mortality by fitting various regression models to the data in the reference pe
riod, and then extrapolating the trend to the period of the crisis to obtain expected mortality fig
ures for that period. Karlinsky and Kobak (2021) use linear fits over the years 2015–2019 to 
obtain excess mortality for 103 countries. The authors use these estimates to compile the World 
Mortality Dataset, an important source which is also used by the well know outlet Our World 
in Data (Giattino et al., 2023). The Economist also runs a page dedicated to tracking excess mor
tality in the different countries of the world by using a mix of boosted gradient, random forest and 
bootstrapping (The Economist, 2023). Wang et al. (2022) provide estimates of excess deaths due 
to the pandemic in the 2020–2021 period for 191 countries and territories by using an ensemble of 
six different regression models, including spline regression. These estimates are also the ones offi
cially reported by the IHME (Institute for Health Metrics & Evaluation, 2022). While incorpor
ating a trend can account for some of the variation in expected mortality rates over the years, the 
approach is still not free of problems, as not explicitly accounting for age in the model implicitly 
assumes the age pyramid to be smooth. This is often not the case for many modern-day European 
countries, where demographic traces of World War II are still visible. As an example of this, the 
German age pyramid depicted in the left panel of Figure 1 clearly shows a bulge in the cohorts en
tering their ninth decade of life, which causes large non-linear variation in the age-structure of the 
population over time. For this reason, a trend alone is often not capable of capturing the effect of 
age. Furthermore, incorporating country-specific trends in the estimation has the effect of projec
ting any evolution in the overall death rate observed during the reference period on the period of 
interest, including those due to factors other than age. While, on the one hand, capturing true long 
term trends in mortality would be desirable, mortality rates have been shown to exhibit large vari
ance across short periods even in the same region (Bergeron-Boucher & Kjærgaard, 2022). This 
large variation can lead to predicting large decreases or increases in expected mortality based 
on variance alone, especially if the trend estimate is based on a period of only 3–5 years, ultimately 
resulting in overly sensitive and less stable estimates (see Ioannidis et al., 2023; Levitt et al., 2023
for more detail).

Another prominent study is that by Msemburi et al. (2023), which produced the figures officially 
presented by the WHO (World Health Organization, 2022). The authors use Poisson-based spline 
regression to fit trends to the reference period, with the exact model specification varying depend
ing on data availability. Excess mortality figures are then obtained by extrapolating a smooth 
spline based on mortality trends from the 5 years prior to the pandemic (see Knutson et al., 
2023, for methodological details). While trend extrapolation, as mentioned, can already be prob
lematic when using linear models, the author’s extrapolation is based on smoothing splines, which 
tend to react strongly to short-term fluctuations. Consequently, in countries with weak influenza 
seasons in 2019, such as many European ones, a steep decline in (expected) mortality is predicted 
based on a single data point. Extrapolations from smooth splines are generally very sensitive to the 
last observation (see Carballo et al., 2021). Problems with this method have been acknowledged 
by the authors (Van Noorden, 2022), who are also working to incorporate age into their analysis 
and correct their figures (Acosta, 2023).

Given the major role that age plays in mortality, many have argued explicit age-adjustment to be 
a sensible way forward (Gianicolo et al., 2021; Levitt et al., 2022; Nepomuceno et al., 2022; Stang 
et al., 2020). Several prominent multi-nation studies also do take age into account in their analysis. 
Islam et al. (2021) provide a comparative study on excess mortality in 29 high-income countries in 
2020. Their estimates are based on Poisson regression models including the age group (0–14, 
15–64, 65–74, 75–85, and >85 years old) as a covariate and show that different states had excess 
mortality in different weeks in 2020. Konstantinoudis et al. (2022) also fit Poisson regression mod
els including different age groups, and provide overall figures for five European countries at a fine 
regional level. Levitt et al. (2022) compare different global excess mortality evaluations, and show 
the importance of age adjustment by comparing raw calculations with their proposed method for 
obtaining age-adjusted estimates, showing that the results differ strongly depending on the method 
used. The author’s age adjustment procedure consists in simply dividing the population into the five 

J R Stat Soc Series A: Statistics in Society                                                                                                  3

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/advance-article/doi/10.1093/jrsssa/qnae031/7639023 by Ludw

ig-M
axim

ilians-U
niversitaet M

uenchen (LM
U

) user on 02 April 2024

15. Estimating excess mortality in high-income countries during the COVID-19 pandemic

230



age strata (the same ones used by Islam et al., 2021) and calculating raw excess mortality for each 
strata, before summing them up to obtain the overall figure.

Distinguishing between age classes as done by the studies mentioned above reduces the magni
tude of the age-induced bias and is thus certainly better than not accounting for age at all; on the 
other hand, simply partitioning the population into age groups is equivalent to assuming age struc
ture to be homogeneous within those age groups, which is unrealistic for, e.g. the age group 15–64 
in ageing European countries, where the older part of the group (i.e. close to 64 years of age) is 
decisively more numerous than the younger part (i.e. close to 15 years). This is also visible in 
the German age pyramid depicted in Figure 1. To eradicate bias from the estimates, it is thus ne
cessary to perform age-standardization by partitioning the age-pyramid into finer age classes, 
when data to do so is available. In this article, we present a simple approach to tackle this issue. 
Building on De Nicola et al. (2022a), we propose a method to estimate yearly excess mortality fig
ures with fine-grained age adjustment, accounting for any changes occurring in the age structure of 
the target population over time. Unlike most previously described approaches, our method is not 
regression-based, and instead directly uses a corrected version of the life tables from the reference 
period to directly compute expected mortality based on hazards and population by age. This al
lows to avoid the problems with leverage points mentioned above, and makes the estimates 
more stable. In addition to point estimates, our approach also allows to compute plausible excess 
mortality ranges based on the age-specific death rates observed in the years prior to the crisis.

After showcasing our method, we go on to apply it to obtain excess mortality estimates and 
ranges for 30 countries for which the necessary data, i.e. life tables, population pyramids, and year
ly deaths tolls, is available. This includes the majority of the world’s high income countries. Our 
results show that, out of these 30 countries, 10 suffered from considerable excess mortality over 
the years 2020–2021, and 8 displayed a sizeable mortality deficit. In the remaining 12 countries, 
age-adjusted mortality did not substantially deviate from levels observed during the 5-year period 
preceding the pandemic. After presenting our estimates, we compare them with those obtained by 
five other prominent multi-country studies previously discussed, namely those from the IHME, 
WMD, Economist, WHO, and Levitt et al. (2022). The comparison showcases the impact of the 
employed methodology on the results, as the estimates differ greatly based on the method used, 
and especially so in countries were population is ageing at higher pace. In addition to presenting 
our results, we further make data and code to reproduce all of our analyses available in our public 
GitHub repository (De Nicola, 2023). This is done to enhance the reproducibility of our results, as 
well as to facilitate researchers in employing and adapting our methods for further application.

The remainder of the article is organized as follows. Section 2 describes the employed methods, 
and Section 3 introduces the various data sources used. We present our empirical results in 
Section 4, while Section 5 is dedicated to the comparison with other prominent studies. Section 6
concludes the article with an extended discussion of our contributions.

2 Methods
The main challenge in estimating excess mortality during any crisis lies estimating the ‘counterfac
tual’ expected mortality, i.e. the number of deaths that would have been expected had the crisis not 
occurred. One way to do this is to consider mortality rates observed shortly before the crisis and 
project them onto the period of interest. A natural approach in this regard is to consider 
age-specific mortality data contained in official life tables, which give the probability qx of a person 
who has completed x years of age to die before completing their next life-year, i.e. before their 
x + 1th birthday. The calculation of a life table, as simple as it sounds, is not straightforward, 
and is an age-old actuarial problem. First references date far back, to Price (1771) and Dale 
(1772). A historical digest of the topic is provided by Keiding (1987). To calculate expected mor
tality in 2020 and 2021, we here make use of the 2015–2019 5-year period life tables provided by 
the Human Mortality Database (HMD), one of the most comprehensive and up to date databases 
on mortality freely available to the public (HMD, 2023). These life tables are calculated as de
scribed in Section 7.1 of the HMD Methods Protocol (Wilmoth et al., 2021). The calculation 
method is akin to that of traditional life tables (see e.g. Raths, 1909), with the sensible addition 
of smoothing the death rates via a logistic function for old ages (80+). As demonstrated in 
De Nicola et al. (2022a), further adjustments to the tables are recommendable to relate the 
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expected number of deaths to recently observed ones, especially for countries in which the age 
pyramid is not smooth, i.e. where the assumption of a stationary population (see Wilmoth 
et al., 2021, p.36) does not hold. In particular, population data and life tables need to be appro
priately matched, since life tables count the number of deaths of x-year-old people over the course 
of a year, while population data typically gives the number of x-year-old people at a fixed time 
point (typically the beginning of the year). This requires correction (1), which accounts for the 
fact that a person that dies at x years of age in a given year t was either x years old or x − 1 years 
old at the beginning of the year, i.e. the time point used for the population data. We therefore apply 
this additional correction, which consists in calculating the adjusted age-specific death probabil
ities q̃x at age x as

q̃x = 1
2

qx + 1
2

qx+1, (1) 

where qx are the death probabilities for age x contained in the life tables before the adjustment. 
Assuming the maximum possible age to be 110 years, as done in the HMD life tables, we can 
then compute the overall expected number of deaths in year t as

Et =􏽘
110

x=1

q̃xPx,t, (2) 

where Px,t is the population aged x at the beginning of year t. We can then obtain excess mortality 
estimate Δt for a given year t by simply subtracting the expected mortality estimate Et from the 
observed death toll Ot in the same year:

Δt = Ot − Et.

Computing Δt with t = 2020, 2021 using 5-year 2015–2019 life tables yields our excess mortality 
estimates for the first 2 years of the COVID-19 pandemic in a given country.

Note that the choice of a 5-year reference period is somewhat arbitrary, but driven by the fol
lowing principles. In general, it is desirable to have a reference period that is (a) long enough to 
provide robust data evidence and not fall prey of variance and (b) short enough to be as similar 
to the period of interest as possible. Given that the HMD provides life tables calculated on either 
1-year, 5-year, or 10-year periods, we picked the 5-year one as it strikes a balance between dur
ation and similarity to the pandemic period. Indeed, using only a single year as the reference period 
is generally problematic, as yearly death rates exhibit considerable variation, well beyond what 
can be explained by underlying changes in life expectancy over time. This is particularly evident 
in our application, as the year 2019, immediately preceding the pandemic, was characterized by 
relatively low mortality levels in Europe, due to e.g. a mild influenza season. On the other 
hand, using a reference period as long as 10 years is problematic due to the fact that baseline mor
tality levels can change over such a wide time window. In fact, using data from 2010 to calculate 
expected mortality 10 years later would downweigh real gains in life expectancy due to e.g. 
changes in living condition and advances in medical technology over time. As such, 5-year life ta
bles seem to be a reasonable choice to strike a balance between bias and variance. We further note 
that, as shown by Levitt et al. (2023), while the choice of the reference period does influence the 
absolute value of the estimates, it tends not to strongly impact how countries rank relative to one 
another in terms of excess mortality. In the interest of completeness, we also provide alternative 
estimates calculated with a 3-year reference period (i.e. 2017–2019) and compare them with 
the 5-year ones in the supplementary material (Section S.3). The comparison highlights how the 
shorter reference period leads to slightly higher excess mortality estimates, while leaving country 
rankings largely unaffected.

An open issue in assessing excess mortality is the quantification of uncertainty. Probability mod
els do not seem very useful here, as variation in mortality is in large part driven by external factors, 
such as, e.g. the strength of an influenza wave and other exogenous shocks. Because of that, re
sidual variability is well beyond what would be explainable via standard distributional 
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assumptions. For this reason, we explicitly refrain from pursuing model-based approaches, and 
instead propose a data-driven empirical assessment of variability. Specifically, we make use of 
age-specific single-year mortality rates to provide what we can call a ‘plausible range’ for expected 
mortality. To do so, we consider the single-year life tables for each year of the reference period, and 
use them to calculate expected mortality for the years of interest in the same way as above, i.e. us
ing (1) and (2). Assuming the reference period to contain a total of K years (in our case K = 5), we 
will obtain K different excess mortality estimates. We can then take the lowest and highest result
ing estimates as the upper and lower bound of our plausible expected mortality range. In other 
words, we use mortality rates from the ‘worst’ and ‘best’ years of the reference period to obtain 
a plausible range for expected mortality in the years of interest. To be more precise, the upper mor
tality bound for year t can be written as:

Eupper
t = max (Ẽt,1, Ẽt,2, . . . , Ẽt,K), (3) 

where Ẽt,k represents expected mortality for year t calculated using the (corrected) single-year life 
tables from year k. Analogously, the lower bound can be defined as

Elower
t = min (Ẽt,1, Ẽt,2, . . . , Ẽt,K). (4) 

These expected mortality bounds can then be used to obtain excess mortality intervals in a 
straightforward manner. Note that these bounds do not give a probabilistic measure of uncer
tainty, as no distributional model is used. Instead, they provide us with plausible high-mortality 
and low-mortality scenarios for expected mortality in the years of interest based on levels observed 
during reference years. In a sense, this is akin to the multiverse approach proposed by Levitt et al. 
(2023), whereas instead of presenting all possible universes we only present the average one, the 
best one and the worst one.

3 Data
To compute expected mortality for a given year in a single country/region, our method needs (i) life 
tables for the reference period and (ii) population data by age for the year of interest. Once ex
pected mortality is calculated, to compute the excess we also need (iii) the yearly death toll for 
the year of interest. In our case, the period of interest is given by the first 2 years of the pandemic, 
i.e. 2020 and 2021, while we set the reference period to be 2015–2019. As such, we included in our 
analysis all countries for which these three pieces of information were readily available at the time 
of the analysis. We briefly summarize where each of the data pieces was sourced from below, with 
additional details given in the supplementary material.

Life tables: A great source for population data by year and life tables is given by the Human 
Mortality Database (HMD), one of the most comprehensive and up to date databases on mortality 
freely available to the public (HMD, 2023). All life tables used here were sourced from the HMD, 
and in fact, HMD availability was used as our first inclusion criterion: only countries for which life 
tables up to 2019 are present in the HMD at the time of the analysis were included in our study. 
More specifically, 5-year life tables from 2015 to 2019 were used to calculate average expected 
mortality, while single-year life tables from 2015 to 2019 were used to calculate plausible inter
vals, as detailed in Section 2. Note that all life tables were calculated as described in the HMD’s 
method protocol (Wilmoth et al., 2021), and subsequently adjusted as described in the 
Methods section.

Population: Population data by single year of age were also sourced from the Human Mortality 
Database. The presence of this data for the years 2020 and 2021 was the second inclusion criterion 
for our analysis, as it is needed to calculate expected mortality. Exceptions were made for Italy and 
Austria, as both countries were central in the COVID-19 debate, especially in the early stages of 
the pandemic. For both countries, population pyramids were downloaded from the websites of the 
respective national statistical offices. More details on those sources are given in the supplementary 
material.
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Deaths: Overall death tolls by country for the years 2020 and 2021 are needed to calculate ex
cess mortality in those years. For EU countries, official death tolls were sourced from the Eurostat 
website (Eurostat, 2023). An exception was made for France, as the Eurostat tolls also include 
overseas territories; as the HMD life tables refer to mainland France, we sourced mainland death 
data from the website of the French national statistical office. We also obtained deaths data from 
the respective official sources for all non-EU countries included in our analysis: details on these 
sources can be found in the supplementary material.

4 Results
Using the method detailed in Section 2 and following the inclusion criteria detailed in Section 3, we 
estimated excess mortality for the years 2020 and 2021 in a total of 30 countries. Table 1 shows all 
country-specific figures pooled for the years 2020 and 2021. In particular, the table shows, for 
each country, expected, observed, and excess mortality. The table additionally provides the per
centage excess mortality, calculated as Δ%

t = Δt/Et, as well as the percentage plausible range for 
the excess in the 2 years, calculated as detailed in Section 2. Similar tables with separate figures 
for 2020 and 2021 are given in the supplementary material. From Table 1, we can see that the an
alysed countries exhibit considerable variation in pandemic outcomes, with relative figures ran
ging from an excess mortality of 22.8% in Bulgaria, all the way to a mortality deficit of 9.1% 
in South Korea. Within our sample, 17 countries had positive excess mortality, while 13 countries 
saw a mortality deficit during the analysed period. To check whether excess (or deficit) mortality 
was beyond the expected variation in a given country, we can make use of the estimated plausible 
range: Indeed, if the range is completely above zero, it means that mortality in the 2020–2021 pe
riod was higher than in any of the single years of the reference period, providing solid evidence 
towards the presence of sizeable excess mortality during the pandemic period. In contrast, a fully 
negative range implies that mortality during the pandemic period was lower than in any of the 
years of the 2015–2019 range, indicating a considerable mortality deficit during 2020 and 
2021. Using this criterion, we can say that 10 of the 30 analysed countries had substantial excess 
mortality during the first 2 years of the pandemic. Those countries, ordered by total absolute ex
cess, are: U.S., Italy, UK, Bulgaria, Czechia, Hungary, the Netherlands, Portugal, Croatia, and 
Lithuania. On the other hand, 8 countries enjoyed a considerable mortality deficit. These are, in 
order: Japan, South Korea, Taiwan, Australia, Hong Kong, New Zealand, Norway, and 
Iceland. In all other analysed countries, the two extremes of the range display opposite signs, 
meaning that pooled mortality from 2020 and 2021 was higher than in the lowest mortality 
year between 2015 and 2019, but lower than in the highest mortality year in the same range. 
For these countries, the data thus do not bring conclusive evidence of an excess or a deficit in 
mortality.

As mortality data are inherently spatial in nature, it is often useful to visualize it on a map, to 
allow for a better overall view as well as to recognize any spatial patterns that may emerge. 
Given that many of the analysed countries are in Europe, and given that our data cover most of 
the western part of the continent, we provide a heat-map of excess mortality in Europe during 
the 2020–2021 period in Figure 2. From the map, we can clearly see that Bulgaria stands out as 
the state with the highest excess mortality, with a value of 22.8% (as seen from Table 1). An im
portant thing to note in this regard is that Bulgaria is the only country within our sample which is 
not high-income by World Bank standards but is rather found within the upper-middle income 
bracket (World Bank, 2022). This is relevant, as it provides an indication of how much harder low
er income countries were hit by the pandemic in terms of life loss. While our study only focuses on 
countries for which the necessary data is fully available, i.e. primarily high-income countries, stud
ies working with incomplete data such as those of Msemburi et al. (2023) and Karlinsky and 
Kobak (2021) corroborate this. From the map, a spatial pattern is also visible: Within Europe, 
southern and eastern countries suffered from excess mortality, while northern countries mostly 
display mortality deficits. Lower mortality in the Nordic countries may be due to a combination 
of campaigns delivering vaccines faster to more people than the European Union (EU) average, ef
fective non-pharmaceutical public health interventions (NPIs) and high baseline capacities of the 
health care systems (Schöley et al., 2022). Lower population densities may also have played a role 
in stifling the spread of the disease (Rocklöv & Sjödin, 2020).
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Zooming in on the four largest EU countries, Figure 3 plots expected and observed mortality 
figures by calendar year in Germany (top-left), France (top-right), Italy (bottom-left), and Spain 
(bottom-right). Note that expected deaths from years 2015–2019 were calculated the same way 
as the 2020–2021 ones, i.e. using corrected 2015–2019 life tables. We plot the observed death 
counts for each year as black dots, while expected death counts are represented by blue squares. 
Furthermore, the light-blue bands mark the plausible expected mortality range for each year, cal
culated using (3) and (4). From the figure, we can immediately appreciate the importance of age 
adjustment for these four countries, as both expected and observed mortality tend to naturally in
crease year over year due to ageing populations. Calculating excess mortality using raw data 
would thus return inflated figures. Focusing on the single countries we can see how Germany 
did not suffer from sizeable excess mortality during the pandemic, with age-adjusted mortality 
in 2020 and 2021 being in line with previous years. On the other hand, the three 
Mediterranean countries depicted all suffered from varying degrees of increased mortality in 
2020, with mortality converging back to more normal levels in the second pandemic year.

Table 1. Expected and observed mortality in the 2020–2021 period for each of the 30 countries included in the 
analysis

Country Pop. Expected Observed Excess %Excess (%) Plausible range

Australia 25.6M 358,397 332,769 −25,628 −7.2 (−10.4%, −3.8%)

Austria 8.9M 176,736 183,561 6,825 +3.9 (−0.5%, +7.1%)

Belgium 11.5M 232,757 239,227 6,470 +2.8 (−2.1%, +7.4%)

Bulgaria 6.9M 222,890 273,730 50,830 +22.8 (+19.5%, +25.5%)

Canada 37.9M 611,142 620,052 8,910 +1.5 (−0.3%, +4.1%)

Croatia 4.0M 111,092 119,735 8,642 +7.8 (+1.9%, +12.9%)

Czechia 10.5M 237,489 269,180 31,691 +13.3 (+8.7%, +16.7%)

Denmark 5.8M 115,349 111,797 −3,552 −3.1 (−5.2%, +0.1%)

Finland 5.5M 116,484 113,147 −3,337 −2.9 (−5.4%, +1.0%)

France 65.4M 1,268,041 1,298,800 30,759 +2.4 (−0.5%, +5.3%)

Germany 83.2M 2,005,161 2,009,259 4,098 +0.2 (−3.2%, +3.5%)

Hong Kong 7.5M 108,628 102,189 −6,439 −5.9 (−12.1%, −1.4%)

Hungary 9.8M 270,804 297,457 26,653 +9.8 (+6.0%, +13.0%)

Iceland 0.4M 4,926 4,637 −289 −5.8 (−11.2%, −2.0%)

Ireland 5.0M 68,404 65,445 −2,959 −4.3 (−8.6%, +0.4%)

Italy 59.4M 1,352,461 1,449,352 96,891 +7.2 (+2.0%, +10.8%)

Japan 123.5M 2,944,310 2,825,044 −119,266 −4.1 (−6.4%, −1.9%)

Lithuania 2.8M 83,293 91,293 8,000 +9.6 (+3.5%, +17.2%)

Luxembourg 0.6M 9,211 9,098 −113 −1.2 (−3.0%, +2.1%)

Netherlands 17.4M 325,475 339,650 14,175 +4.4 (+1.9%, +7.9%)

New Zealand 5.1M 72,746 67,545 −5,201 −7.2 (−9.3%, −5.4%)

Norway 5.4M 87,031 82,613 −4,418 −5.1 (−8.2%, −1.6%)

Portugal 10.3M 237,744 248,198 10,454 +4.4 (+1.9%, +7.8%)

South Korea 51.3M 684,662 622,628 −62,034 −9.1 (−14.4%, −2.6%)

Spain 47.4M 905,407 941,717 36,310 +4.0 (−1.2%, +9.4%)

Sweden 10.4M 192,763 190,082 −2,681 −1.4 (−4.2%, +4.1%)

Switzerland 8.6M 145,131 147,387 2,256 +1.6 (−4.3%, +5.2%)

Taiwan 23.6M 383,471 357,239 −26,232 −6.8 (−10.4%, −3.2%)

UK 66.9M 1,285,300 1,357,108 71,808 +5.6 (+2.4%, +9.5%)

U.S. 330.7M 5,921,695 6,842,426 920,731 +15.6 (+14.1%, +17.4%)
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Figure 4 shows the same plot for four of the largest non-EU countries included in our analysis, 
namely the U.S. (top-left), the UK (top-right), Japan (bottom-left) and Australia (bottom-right). 
From the U.S. plot, we can immediately notice the anomalous mortality levels that characterized 
the years 2020 and 2021—quantifiable in 14.5% and 16.6% excess mortality by year, respectively. 
Overall, total excess deaths in the country for those 2 years amount to almost one million—by far 
the largest figure within our sample. The deaths are mainly attributable to COVID-19, with out
comes worsened by lower vaccination uptake (Suthar et al., 2022) as well as conditions that may 
have resulted from delayed medical care and overwhelmed health systems (Woolf et al., 2021). 
From the US plot we can also see how mortality from COVID-19 is especially high among the eld
erly: after regularly increasing from 2015 to 2020, expected mortality remains almost constant 
from 2020 to 2021, as the victims of COVID-19 in 2020 were in large part pertaining to the elderly 
population, which disproportionately contributes to expected mortality. This change in growth 
rate in expected mortality is also visible in other countries, such as Italy and Spain in Figure 3, as 
well as the UK in the top-right panel of Figure 4. From the latter plot, we can see how the UK 
also suffered from increased mortality levels in both pandemic years, even though to a lesser extent 
than the U.S. On the other hand, the countries depicted in the bottom panels of the same figure, i.e. 
Japan and Australia, paint a completely different picture. Both nations withstood the first two pan
demic years without incurring in excess mortality, and instead registered considerable mortality 
deficits in both years. Note that a mortality deficit during the pandemic years does not imply over
reporting of COVID-19 deaths, but rather that deaths avoided or postponed by NPIs and behav
ioural changes in the population outweighed deaths caused by the virus. These changes may 
have led to, e.g. reduced mortality from other respiratory infections as well as accidents (Barnes 
et al., 2022; Olsen et al., 2020). Geographical isolation of the two island countries may also 
have contributed to reduce the spread of COVID-19, as in the case of New Zealand (Kung et al., 
2021). From the data in Table 1, we can see how similar levels of reduced mortality during the pan
demic were observed, among others, in other East Asian regions (South Korea, Taiwan, Hong 
Kong) as well as other islands (Iceland and New Zealand), hinting at the presence of geographical 
patterns. Plots similar to those in Figures 3 and 4 for all other countries included in our analysis are 
provided in the supplementary material (Section S.5).

Figure 2. Heat-map of excess mortality in Europe in the 2020–2021 period. Dark grey indicates that the necessary 
data is not available at the time of the analysis.
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5 Comparison with other estimates
This section is dedicated to comparing excess mortality estimates obtained through our method 
with figures produced by five other prominent multi-country studies. In particular, we contrast 
our results with those obtained in the already mentioned studies by Msemburi et al. (2023), 
Karlinsky and Kobak (2021), Wang et al. (2022), The Economist (2023), and Levitt et al. 
(2022). The reasoning behind the choice of these benchmarks is the following: All five studies 
are very high profile, and the first four were used by prominent institutions and media outlets 
as their official estimates. Respectively, the first one is used by the WHO (World Health 
Organization, 2022), the second one for the World Mortality Database (WMD) and Our 
World In Data (Giattino et al., 2023), the third one by the IHME (Institute for Health Metrics 
& Evaluation, 2022), and the fourth one by The Economist. As for the fifth method by Levitt 
et al., while it is not currently used by official sources, we include it as we want at least one method 
performing some type of explicit age adjustment, and because, not unlike the other methods, it is 
highly published and well cited. Note that, while our analysis encompasses 30 countries, countries 
for which estimates are not available for all six methods were excluded from the comparison. The 
results for the remaining 25 countries are shown in Figure 5, which depicts percentage excess mor
tality estimates for the period 2020–2021 calculated with the six different methods. Countries are 
shown in ascending order with respect to excess mortality computed with our method. Note that, 
as before, percentage excess mortality was calculated using expected mortality as the base, i.e. 
Δ%

t = Δt/Et, and that our own measure of expected mortality was used as base for all six methods, 
for reasons of comparability and to ensure consistent rankings. Also note that, while results are 
here only presented graphically, tables containing figures for all six different methods are provided 
in the supplementary material (Section S.2).

From the figure, we can appreciate how different estimation methods result in sizeable differen
ces in the estimates. In particular, several patterns emerge. Firstly, we can see how the IHME and 
Economist methods, which do not account for age at all, consistently produce the highest excess 
mortality estimates among the six methods. This is to be expected, due to the fact that all 

Figure 3. Expected and observed mortality figures by calendar year for the four largest EU countries: Germany, 
France, Italy, and Spain. Black dots indicate observed mortality in a given calendar year, while blue squares indicate 
estimated yearly expected mortality. Shaded bands represent the estimated expected mortality range.
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populations considered are ageing to at least some extent. Not considering age thus causes upward 
bias in the estimates. This difference is also directly related to the extent to which the population is 
ageing, as it is smaller and almost negligible for countries with relatively stable age pyramids, such 
as, e.g. the U.S., while it gets larger for rapidly ageing countries, like e.g. Germany and France. 
From the plot, we also see how the WHO and WMD methods tend to produce estimates that 
are lower than those of IHME and Economist, but still considerably larger than those of the 
two explicitly age-adjusted methods considered. As already mentioned in Section 1, the WMD cal
culates expected mortality through use of a linear trend, and thus is only able to partially capture 
the effect of age, as age pyramids are generally not smooth. As for the WHO method, it uses 
Poisson-based spline regression to fit a smooth trend to the reference period and then extrapolates 
it to calculate expected mortality in the period of interest. While trend extrapolation can already be 
problematic when using linear models, splines have the additional issue of reacting strongly to 
short-term fluctuations. As 2019 was a generally a year of low mortality in many of the analysed 
countries, as visible, e.g. in Figure 3, it is likely for that to have led to overestimation in excess mor
tality. Shifting our focus to the remaining two methods, i.e. that of Levitt et al. and ours, we can see 
that the corresponding estimates not only tend to be lower than the other methods but are also 
closer to each other than to the other ones. Furthermore, the two methods also rank countries simi
larly. However, we can also observe considerable differences between the two, with the Levitt 
method tending to produce slightly higher excess mortality estimates. These differences are, in 
some cases, in the order of 5%. We believe this to be mainly due to two factors. Firstly, the 
Levitt method uses 2017–2019 as reference period, while we use 2015–2019. Given that mortality 
was overall slightly higher in 2015 and 2016 than in the 2017–2019 window, estimates of ex
pected mortality based only on the latter years will naturally be slightly lower. In our opinion, 
both choices of reference period are equally valid, with each having pros and cons. Crucially, 
our choice of a 5-year reference period allows us to more effectively apply our uncertainty quan
tification approach by using yearly age-specific mortality rates. Nonetheless, we also recalculated 
our mean estimates using the same 2017–2019 window as the reference period and included the 
results in the supplementary material (Section S.3). The alternative reference period results in 

Figure 4. Expected and observed mortality figures by calendar year for four large non-EU high-income countries: 
U.S., UK, Japan, and Australia. Black dots indicate observed mortality in a given calendar year, while blue squares 
indicate estimated yearly expected mortality. Shaded bands represent the estimated expected mortality range.
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slightly higher excess mortality estimates, while leaving country rankings largely unaffected (see 
also Levitt et al., 2023). More importantly, differences between the two sets of estimates persist 
even after aligning the reference periods, leading us to discuss the second main distinguishing fac
tor between the two methods, namely the method used to perform age adjustment. Levitt et al.’s 

Figure 5. Comparison of country-specific excess mortality estimates obtained by six different studies, including 
ours. Methods not accounting for age are considerably overestimating excess mortality in countries with ageing 
populations.
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procedure consists in dividing the population into five age strata (0–14, 15–64, 65–74, 75–85, and 
>85 years old) and calculating raw excess mortality for each strata, before summing them up to 
obtain the overall figure. While this is far better than no age adjustment at all, it still disregards 
age variation within the age groups. This can be especially problematic if the age classes are large, 
as for example the central age class of 15–64 used by the authors, or if variation within the age 
classes is large, as e.g. in the 75–85 group for of Germany, depicted in Figure 1. The latter point 
may thus constitute a cause of bias in excess mortality estimation. In contrast, our method per
forms age standardization by partitioning the population pyramid at the finest available resolution 
of the data, i.e. 1-year age classes, which we argue to be preferable when data to do so is available.

6 Discussion
Accurately measuring excess deaths in times of COVID-19 is vital to assess the pandemic’s impact 
on public health across different countries and regions of the world. Precise excess mortality esti
mation is also crucial for explaining the pandemic curve, for understanding the factors contribut
ing to differences in the infection-fatality rate among populations, and for gauging the 
effectiveness of alternative policy options for managing future crises. In this article, we demon
strated the importance of taking age into account to obtain unbiased excess mortality estimates 
in high-income countries, and proposed a simple and effective method to do so when the necessary 
data is available. We applied our method to 30 different countries, and compared our results with 
other estimates obtained by five other high profile studies. The comparison sheds light on how dif
ferent estimation methods result in sizeable differences in the estimates. Results are especially sen
sitive to the absence of age adjustment, which can lead to considerable downward bias, and is most 
relevant for countries with rapidly ageing populations. For example, estimates in South Korea, one 
of the countries with the lowest total fertility rates in the world, range from slightly positive excess 
mortality for methods without age adjustment to a 9.2% mortality deficit using our method. Large 
differences are also observable in most other high-income countries, while estimates for popula
tions ageing at a slower rate, such as, e.g. the U.S., are more convergent. It is thus crucial to expli
citly take age into account for excess mortality estimation in ageing high-income countries. Note 
that the focus of most of the studies included in the comparison does not lie specifically on high- 
income countries, but rather on obtaining global estimates of excess deaths, including situations in 
which high-quality data is not available. Nonetheless, even in the case of global estimates, we 
argue that it would be relevant to incorporate age adjustment in the estimates for countries in 
which data to do so is available, as the latter make up a non-negligible portion of the global popu
lation. Moreover, we are fortunate that countries where age adjustment tends to be most impactful 
are also the ones for which high-resolution data is available, making unbiased estimation possible. 
From the comparison, we further see that performing age adjustment at a fine level, as opposed to 
doing so by dividing the population into large age classes (as done by Levitt et al., 2022), also re
sults in considerable differences in excess mortality estimates. Unsurprisingly, these differences are 
also more pronounced for countries in which the structure of the population pyramid is less stable 
over time. This speaks to the importance of utilizing high-resolution age-stratified data to perform 
the estimation.

Turning our attention from the method to the empirical results obtained, our estimates uncover 
large variation in pandemic outcomes among the 30 analysed countries. More specifically, over the 
2020–2021 period, 10 countries showed excess mortality beyond what could be explained by 
standard variation, and 8 displayed a sizeable mortality deficit. In the remaining 12 countries mor
tality was neither markedly higher nor lower than during the 2015–2019 reference period. The 
countries with the worst outcomes relative to population were Bulgaria, the only non-high-income 
country in our sample, which had a 2 years excess of 22.8%, and the U.S., which have seen a 
15.6% increase in mortality over the pandemic period. The latter increase is particularly notable 
given the size of the country’s population, as it corresponds to more than 920.000 excess deaths 
over the 2 years. Other countries that experienced excess mortality (in the order of 5 to 10%) in
clude most of the Eastern and Southern European states, as well as the UK. In contrast, consider
able mortality deficits of similar magnitude were observed in some of the Nordic European 
countries, as well as in Australia, New Zealand, South Korea, Taiwan, and Japan. We here 
want to stress that, while the absence of excess mortality (or the presence of a mortality deficit) 
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in a given country does indicate that the country fared well in terms of life loss during the pandem
ic, it does not imply that no people died because of COVID-19. Instead, reduced mortality during 
pandemic years simply indicates that deaths from other causes which were prevented during the 
pandemic, e.g. through governmental NPIs and/or behavioural changes in the population, out
numbered COVID-19 victims. Likewise, for the same reasons, a value of overall excess mortality 
lower than the officially reported COVID-19 death toll in a given country does not imply overre
porting of COVID-related deaths. In fact, if the healthcare system keeps functioning normally (i.e. 
the same way as before the pandemic), one would actually expect there to be less overall excess 
mortality than total deaths caused by COVID-19, as lockdowns can prevent or postpone deaths 
from other causes, such as e.g. accidents or other respiratory infections (Calderon-Anyosa & 
Kaufman, 2021; Olsen et al., 2020). Assuming a perfectly functioning reporting system, this 
should also be reflected in the official death tolls (note that official COVID-19 death tolls for 
the studied period are given in the supplementary material, for comparison purposes). Of course, 
even within our high-income sample, the latter assumption only holds to a certain degree in prac
tice, as reporting systems can vary substantially between countries (Karanikolos & McKee, 2020). 
Likewise, the assumption on the functioning healthcare system is not always valid, as over
whelmed healthcare systems were reported at various stages of the crisis (Alderwick, 2022; 
Dorsett, 2020; Senni, 2020). Issues with reporting and healthcare systems pose even bigger prob
lems in countries falling within low- and middle-income brackets (Chatterjee, 2020; Lone & 
Ahmad, 2020). It is therefore not a random occurrence that Bulgaria, being the sole 
non-high-income country in our sample, displays the highest relative excess mortality of all ana
lyzed regions. Indeed, our selection of countries is not at all representative of the whole world, and 
outcomes are likely to be much worse in regions with fragile and less efficient healthcare systems 
(Bong et al., 2020). To obtain global estimates one would therefore need to use estimation tech
niques which work with deficient data, which our method does not do. Further, we note that 
our method performs retrospective excess mortality estimation using historical data, which is use
ful to understand the impact of a crisis and to learn policy lessons in preparation for future ones. 
On the other hand, the need to use full historical data limits its effectiveness for managing an on
going crisis, for which a real-time monitoring tool would be needed. While it would be possible to 
use weekly data as soon as they are available, as done e.g. in Section 3 of De Nicola et al. (2022a), 
complete weekly data still usually arrive with a delay of at least several weeks, rendering it unfit for 
live monitoring. A possibility for developing a truly real-time tool would be to make use of so- 
called nowcasting techniques, i.e. methods bridging the delay between events and their reporting, 
to estimate the number of fatalities which already occurred based on the ones that were already 
reported. Examples of this are given by Schneble et al. (2021) and De Nicola et al. (2022b), 
who perform nowcasting for fatal and general COVID-19 infections, respectively. While this is 
beyond the scope of this article, nowcasting all-cause mortality data to create a real-time monitor
ing tool is certainly an interesting direction for future research, with great potential for real-world 
impact. Another thing to note is that our method for calculating expected mortality does not ac
count for potential trends in life expectancy over time. This is equivalent to implicitly assuming 
constant age-specific hazards over the considered years (while we still, of course, account for 
the evolving age structure of the population). As discussed in Section 1, using a time trend to pro
ject changes in death rates observed during the reference period on the period of interest can lead to 
instability in the estimates, due to the large degree of natural variation that is present in all-cause 
deaths. Furthermore, there is no guarantee that mortality rates should continue to follow the same 
trend that was observed during the reference period, even in the absence of major perturbation 
events (Ioannidis et al., 2023; Levitt et al., 2023). For these reasons, we opted to not incorporate 
any trend, and instead simply use the age-specific average death rates over the 5-year reference pe
riod. This work particularly well in our case, as both the period of interest and the reference period 
are relatively short, and changes in life expectancy over the reference period were generally 
moderate in high-income countries (Aburto et al., 2022). However, if one would aim at estimating 
excess mortality over a longer period following the pandemic, accounting for (expected) changes 
in life expectancy would be recommendable. While certainly not straightforward, as it requires 
several further assumptions, such an adjustment could be attempted by adapting projection tech
niques (see e.g. Lee, 2000) while still keeping the estimators’ variance in check by, e.g. incorpor
ating cross-country time trends instead of country-specific ones.
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One of the features of our method is that, in addition to point estimates, it also allows to produce 
excess mortality ranges, providing us with best- and worst-case mortality scenarios under condi
tions observed during the reference period. We stress that these are not classical confidence inter
vals, and as such they do not give us a probabilistic measure of uncertainty. As detailed in Section 2, 
however, calculating standard confidence intervals would require imposing unconvincing distribu
tional assumptions on both the reference population and the mortality process, thus injecting a 
large amount of model-related uncertainty in the figures. We, therefore, opted for the data-driven, 
multiverse-style approach described, which is considerably more robust and allows us to make 
clear statements on whether or not mortality was substantially different in the period of interest 
than in the reference period.

Given the primary role of age in both overall and COVID-related mortality, incorporating it 
into the estimation in some way is essential to obtain unbiased estimates. With this article, we 
hope to make explicit age adjustment a standard practice for excess mortality estimation in cases 
for which age-stratified data is available. To this avail, we have publicly shared all data and code 
relevant to this study, to facilitate researchers in reproducing our findings as well as to enable them 
to utilize and build on our methods for future applications.
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