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Zusammenfassung

Stark korrelierte Systeme, insbesondere im Zusammenhang mit Hochtemperatursu-
praleitung, stellen eine Herausforderung sowohl für theoretische als auch experimen-
telle Studien dar. Mit der Entstehung des Felds der Quantensimulation sind neue
Werkzeuge zur präzisen Untersuchung quantenmechanischer Systeme entstanden.
Ultrakalte Atome in optischen Gittern bilden eine herausragende Plattform für Stu-
dien solch stark korrelierter Phänomene mittels des minimalen Fermi-Hubbard Mo-
dells. Ausgehend von einem antiferromagnetisch geordneten Zustand wird vermutet,
dass das komplexe Zusammenspiel zwischen Spin- und Ladungsfreiheitsgraden in
dotierten Systemen im Mittelpunkt kollektiver Effekte wie gepaarter Fermionen steht.
Allerdings ist im Moment der Konsens, dass der Grundzustand des einfachen Fermi-
Hubbard Modells nicht supraleitend ist, sondern stattdessen eine Ladungsdichtewel-
le bildet, die als Streifenphase bezeichnet wird.

In dieser Arbeit nutzen wir einen hochauflösenden Quantensimulator mit ultra-
kalten Fermionen, um die Bildung von Streifen im Fermi-Hubbard-Modell zu unter-
suchen. Unter normalen Bedingungen liegen die Temperaturskalen für Streifenpha-
sen weit unter dem derzeitigen Stand der Technik für Quantensimulatoren. Daher
wählen wir eine spezifische Konfiguration, bei der Tunnelkopplungen nur entlang ei-
ner Richtung vorhanden sind, während der Spin-Austausch entlang beider Richtun-
gen erfolgt, was die Temperatur, bei der Streifen beginnen aufzutreten, auf etwa die
Spinwechselwirkungsenergie erhöht. Mittels der Spin- und Dichteauflösung bis zu
einzelnen Gitterplätzen messen wir ausgedehnte, fluktuierende Ladungsstrukturen,
die auf die Anwesenheit eines Streifens hindeuten. Darüber hinaus sind Signaturen
im Spinsektor konsistent mit lokalen antiferromagnetischen Domänen, die über Strei-
fen hinweg ihr Vorzeichen ändern.

Um auf dieses Kopplungsregime zugreifen zu können, haben wir ein neues, hoch-
stabiles optisches Übergitter entworfen, implementiert und charakterisiert. Durch die
Kombination eines bichromatischen Ansatzes mit verbesserter Entkopplung von der
Umgebung mittels Evakuierung und spezifischen Materialien erreichen wir eine her-
ausragende Phasenstabilität. Zusätzlich wird eine schnelle und breite Abstimmbar-
keit der relativen Übergitterphase via zweier komplementärer Methoden erzielt. Wir
charakterisieren den Aufbau mittels Ein- und Zwei-Teilchen-Quantenspaziergängen,
Rabi-Oszillationen sowie Spin-Korrelationen.

Mit diesen Verbesserungen haben wir die Grundlagen für weitere Studien zu De-
tails der Streifenphase sowie anderer exotischer Tieftemperaturphasen des Fermi-
Hubbard-Modells gelegt. Neben der Relevanz für die Quantensimulation stellt dies
außerdem einen Schritt hin zu einer zukünftigen fermionischen Quantencomputer-
Architektur dar.
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Abstract

The complex nature of strongly correlated materials, as the high-temperature super-
conducting cuprates, has proven to be a challenge in both theoretical and experi-
mental studies for decades. With the advent of quantum simulation, new tools have
emerged for the investigation of quantum systems on a microscopic level. Ultracold
atoms confined in optical lattices offer an excellent platform for exploring strongly
correlated phenomena in the minimal Fermi-Hubbard model. Starting from an anti-
ferromagnetically ordered state, the intricate interplay between spin and charge de-
grees of freedoms in doped systems is supposed to be at the centre of collective effects
such as paired states. Nevertheless, the ground state of the plain Fermi-Hubbard
model is currently suspected to not be superconducting, instead favouring the forma-
tion of a charge density wave known as a stripe phase.

In this thesis, we leverage the capabilities of a quantum simulator with ultracold
fermions to investigate the formation of stripes in the Fermi-Hubbard model. Under
normal conditions, the temperature scales associated with stripe phases fall well be-
yond the limits of current state-of-the-art quantum simulators. Therefore, we adopt
a specific mixed-dimensional setting, where tunnel couplings are restricted to one di-
rection, while spin exchange coupling persists along both, thereby elevating the onset
temperature of stripes to approximately the superexchange energy. Using single-site
spin and charge resolution, we observe extended, fluctuating charge structures in the
system, indicative of the presence of stripes. Moreover, signatures in the spin sector
are consistent with local antiferromagnetic domains that change sign across stripes.

To access this mixed-dimensional regime, we designed, implemented and char-
acterised a novel, highly-stable optical superlattice. By combining a bichromatic ap-
proach and enhanced environmental decoupling via evacuation and utilising appro-
priate materials, we achieve cutting-edge phase stability. Furthermore, we attain fast
and wide tunability of the relative superlattice phase using two complementary meth-
ods. We characterise the setup using single and two-particle quantum walks, Rabi
oscillations as well as spin correlations.

These results establish the groundwork for further investigations into the nuances
of the stripe phase and other exotic low-temperature phases of the Fermi-Hubbard
model. Finally, beyond its implications for quantum simulation, this endeavour sig-
nifies a stride towards a future fermionic quantum computing platform.
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Chapter 1

Introduction

Computational capabilities have undergone remarkable improvements over the past
decades, yet they remain constrained by the underlying physical principles of clas-
sical computing. The emergence of quantum computation has ignited hope for the
development of a uniquely powerful platform capable of providing vastly enhanced
computational power [1–4]. While theoretical advantages have been established, po-
tentially promising exponential speed-ups in computations [5, 6], the practical imple-
mentation has encountered formidable technical challenges [7]. Various approaches
leveraging trapped ions [8–10], superconducting circuits [11–14], quantum dots [15–
18], photons [19–21] or nitrogen-vacancy centres [22] have been developed but strug-
gle to attain the qubit numbers and gate fidelities necessary for full, error-corrected
computations [23]. Despite recent progress [21, 24, 25] pushing towards the so-called
noisy, intermediate-scale quantum (NISQ) regime [26] where quantum computers
could provide advantages over classical computers, applications to non-tailored ques-
tions remain pending [27].

One particular problem exceeding the capabilities of classical computers concerns
the study of strongly-correlated many-body quantum systems [28]. Numerically ad-
dressing such problems poses significant challenges due to the poorly scaling Hilbert
space and the intrinsic sign problem for fermionic particles [29]. Meanwhile, con-
ventional studies in solid-state physics encounter limitations regarding accessible pa-
rameter ranges, preparation fidelity and available observables in detection [30]. Al-
though universal quantum computers currently remain out of reach [26], quantum
simulation has emerged as a promising complementary approach [31, 32]. Rooted in
Feynman’s concept of simulating a complex quantum system in a more manageable
manner [33], implementations utilising ultracold atoms have proven to be a potent
tool for investigating a broad spectrum of otherwise elusive problems [31, 34]. Upon
laser cooling atoms down close to absolute zero [35–38], quantum properties of atoms
start to dominate. Consequently, Bose-Einstein condensates [39–41] and degenerate
Fermi gases [42] have been realised early on. Advancements in cooling and trapping
techniques [43, 44] have facilitated the study of atoms arranged in precise manners
using optical lattices or tweezers [36, 45–47]. This high level of control enables the
exploration of a wide range of parameter regimes that are otherwise experimentally
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inaccessible. However, many – especially fermionic – systems are so far still limited
in terms of their system size and temperature range. Nonetheless, experiments have
demonstrated the realisation of Bose- [48] and Fermi-Hubbard models [49–51] and
explored, for instance, artificial gauge fields [52, 53] and thermalisation [54, 55].

Studies in ultracold atoms have access to unique sets of observables. While ini-
tially limited to momentum space and low-resolution real space measurements, nowa-
days, single-site resolved imaging techniques in quantum gas microscopes [56] allow
for the calculation of arbitrary real-space correlation functions, in contrast to con-
ventional material investigations. These correlators play a pivotal role in enhancing
the microscopic understanding of various physical phenomena. For example, site-
resolved studies have delved into Mott insulators in bosonic [57–59] and fermionic [60–
63] systems. Additionally, fermionic investigations have explored antiferromagnetic
correlations [64, 65], spin and charge structure factors [64, 66], spectroscopic signa-
tures [67], transport properties [68, 69], Pauli blocking [60, 70] and fermionic pair-
ing [71, 72] among numerous other aspects.

The phase diagram of the cuprates has eluded a full microscopic understanding
despite extensive studies since the groundbreaking discovery of unconventional su-
perconductivity by Bednorz and Müller [73]. Emerging from an antiferromagneti-
cally ordered undoped state, the precise relationship to other doped phases continues
to be a subject of active inquiry [74]. Pseudogap phenomena observed at interme-
diate doping levels [75], characterised by a suppression of spectral weight in certain
parts of the Fermi surface [76], may be related to precursors of collective effects at
lower temperatures [77]. Similarly, anomalous, strange metallic transport properties
– where resistivity increases linearly with temperature – eludes full theoretical under-
standing [78, 79]. The Fermi-Hubbard model [80], serving as a possible minimal the-
ory, captures numerous features observed in cuprates, suggesting that studies of this
model could shed light onto the fundamental elements contributing to the emergence
of collective phases. Current numerical findings suggest that the optimally doped
ground state may not be superconducting [81], but instead host a stripe phase [82, 83],
potentially competing with the emergence of superconductivity [84]. This phase is
characterised by micro-phase separation where dopants line up to minimise their
overall impact on the antiferromagnetic spin background [74]. While both phases
have been separately established in materials [30] as well as numerical [85, 86] studies,
their complex relationship is numerically challenging to unravel due to small energy
gaps and possible finite size effects [87]. Meanwhile, in direct studies on cuprates, dif-
fering ground states in only marginally varying materials complicate the resolution
to this challenging problem [30].

In this work, we use a state-of-the-art quantum simulator with fermionic 6Li to
investigate the low-temperature phases of the Fermi-Hubbard model. Equipped with
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single-site spin and density resolution capabilities, we are able to calculate any high-
order correlators of real-space spin and charge operators. Via potential shaping to
redistribute entropy from the main system to a metallic reservoir, we prepare systems
at temperatures down to 0.25 t, consistent with the lowest temperatures achieved in
Fermi-Hubbard quantum simulators to date. We implemented a new set of high-
stability, bichromatic superlattices, which can be leveraged both for quantum simu-
lation purposes, as well as opening up access to new perspectives in quantum com-
putation. The phase stability of the lattices is characterised and shown to be, to our
knowledge, the highest realised for superlattices so far. In this thesis, our primary
focus lies in leveraging these superlattices to prepare mixed-dimensional quantum
systems, which have drastically increased temperature scales for collective phases
compared to conventional two-dimensional systems. Thereby, we are able to access
the regime of hole-hole attraction and for the first time observe initial indications of
extended stripe formation in such systems. Through the application of multi-point
charge and spin correlators, we manage to identify aspects of stripe phases in our
data. With further improvements in temperature, full studies of collective phenom-
ena and pseudogap physics may be approached, improving the microscopic under-
standing of high-temperature superconducting materials.
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Outline

This thesis describes the progress in understanding low-temperature phases of the
Fermi-Hubbard model using ultracold atoms with a quantum gas microscope. It is
structured as follows:

In Chapter 2, an overview of the physical principles underlying this thesis as well
as the overall experimental setup are presented. The basics of the Fermi-Hubbard
model and how optical lattices can be used to simulate it using ultracold atoms are
discussed. The procedure to prepare an ultracold atomic sample of 6Li in a single
plane of three-dimensional optical lattice is detailed, and the unique single-site and
spin resolved detection method is explained. We briefly discuss one application in the
study of the topological Haldane phase in Fermi-Hubbard ladders.

In Chapter 3, we describe the new high-stability optical superlattice setup that
was designed and implemented in the course of this thesis. Different superlattice
geometries are discussed and the advantages of a bichromatic approach shown. The
detailed optical and mechanical design of the new lattices are described and then
characterised using single-particle and many-body methods.

The main result of this thesis is shown in Chapter 4, where we focus on the low-
temperature stripe phase of the Fermi-Hubbard model. A review of the phase di-
agram of the Fermi-Hubbard model is given with a specific focus on stripe phases
and unconventional superconductivity. It is then shown how engineered mixed-
dimensional systems can provide a new pathway to increase critical temperatures for
the emergence of bound dopants in antiferromagnets. Our superlattices allowed for
the realisation of a mixed-dimensional system that is used to study the formation of
stripe order. Using multi-point correlators, numerous pieces of evidence are provided
for the presence of stripes in both charge and spin sector.
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T. Chalopin, P. Bojović, D. Bourgund, S. Wang, T. Franz, I. Bloch and T. A. Hilker.
arXiv.2405.19322 (2024).

• Formation of stripes in a mixed-dimensional cold-atom Fermi-Hubbard sys-
tem.
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Chapter 2

Quantum simulation of the Hubbard
model in optical lattices

In this chapter, we give an overview of the basics of quantum simulation, specifically
the Fermi-Hubbard model as well as optical lattices. Furthermore, we describe the
experimental setup at the centre of this thesis with more details on specific elements
added in the following chapter.

2.1 Quantum simulation and quantum gas microscopy

Quantum simulation promises to solve fundamental questions in solid-state physics.
Investigating quantum phenomena in materials is usually not limited by the available
energy scales but instead suffers from difficult preparation, material-specific proper-
ties as well as limited detection capabilities [30]. By cooling neutral atoms to close
to absolute zero temperature, quantum systems can be prepared with a high degree
of precision and control over model parameters. Thereby, in analog quantum sim-
ulation of Hubbard models with neutral atoms, a correspondence between electrons
in a solid state material to atoms in an optical lattice is established [47, 88–91]. The
energy scales in materials are much higher due to the atomic spacing on the order of
few ångström [92] compared to lattice spacings around 0.5 − 1 µm in quantum sim-
ulation [88, 93]. This severely changes the temperatures necessary to reveal quantum
effects and study order in the system, making it directly accessible for ultracold quan-
tum gases. One example is the Néel temperature (see section 2.2.3), which can be as
high as several hundred kelvin in materials [94], while for ultracold atoms it is usually
on the order of few nK [95]. This emphasises the need for efficient cooling techniques
relying on laser cooling and evaporative cooling. Meanwhile, one major difference
to real materials remains as, for the most part, no phonons are included in cold atom
simulators. However, a wide range of models can be realised using arbitrary potential
shaping, optical lattice with varying geometries [59, 96–98], as well as the implemen-
tation of real and artificial fields [53]. Furthermore, the increased length scales allow
for superior resolution useful for both addressing and detection.
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Figure 2.1: Quantum gas microscopy. a, Using a high-NA objective, single-site read-
out and addressing is achievable. The resulting atomic distribution obtained through
fluorescence imaging is shown in b, from which the occupation as shown in c can be
reconstructed using deconvolution techniques.

With the development of quantum gas microscopy [56, 99, 100], single-site read-
out and manipulation became invaluable tools in quantum simulation (see Fig. 2.1).
Using high-NA microscope objectives, the fluorescence emitted from single planes
(or bilayer systems [101, 102]) is captured on a camera and allows for the reconstruc-
tion of the occupation on individual lattices. By employing optical pushout [103, 104]
or Stern-Gerlach techniques [65, 105], this can be extended to additionally achieve
microscopic spin resolution, which reveals the pseudospin on each site as well. The
microscopic resolution expands the available observables to real-space measurements
and high-order correlation functions [66, 106–111] while retaining the high degree of
control over model parameters. As the detection occurs via projective measurements,
many realisations of the same experiment are necessary to extract correlation func-
tions or reconstruct key features of the quantum state. This requires sufficient long-
term stability of the experiments due to the slow repetition rates currently achiev-
able. While a majority of experiments require more than 20 s for a single realisa-
tion [60, 100], more recent setups managed to reduce this to few seconds [112, 113].
Using these techniques, a continuously growing number of bosonic [113–121] and
fermionic [60–63, 68, 98, 122] quantum gas microscopes has been demonstrated.
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2.2 Fermi-Hubbard model

With the lack of exact microscopic models to describe low-temperature phases in
strongly correlated materials, minimal models are essential for numerical studies as
well as experimental investigations in ultracold atoms. The Fermi-Hubbard model is
such a toy model, reducing the complex structure of real materials to spinful fermions
moving on a lattice. It simplifies the non-local, multi-orbital, multi-layered physics of
solid-states to a basic, single-orbital model, which nevertheless manages to encom-
pass many of the properties of actual materials.

2.2.1 Definition and properties

The behaviour of strongly correlated electrons in solid state materials can be approxi-
mated by the Fermi-Hubbard model [80, 123, 124]. It describes fermions in a periodic
lattice potential and is in its simplest form defined as

ĤFH = − ∑
⟨i,j⟩,σ

tij

(
ĉ†i,σ ĉj,σ + h.c.

)
+ ∑

i,σ ̸=σ ′
Uσ ,σ ′ n̂i,σ n̂i,σ ′ +∑

i,σ
∆i,σ n̂i,σ . (2.1)

where ĉ†i,σ (ĉi,σ ) is the creation (annihilation) operator for a fermion on site i with

spin σ . The on-site number operator is then defined as n̂i,σ = ĉ†i,σ ĉi,σ . The model
parameters are the tunnel coupling tij between sites at position i and j, the on-site
interactions between fermions in different spin states Uσ ,σ ′ , and the on-site poten-
tial ∆i,σ (which we will neglect for most of the following discussion) (see Fig. 2.2).
The first term represents the kinetic energy of the fermions, making delocalisation
favourable. Depending on the parameters, this can be opposed by their interactions.
For our purpose, we will restrict our discussion to the spin-1/2 Hubbard model due
to its connection to electrons in solid state materials. We note that this model does

t

UJ

 

  

Figure 2.2: Fermi-Hubbard model. Spin-1/2 fermions in a lattice potential with spin
up (red) and down (blue) are shown with tunnel coupling t, interaction energy U and
superexchange coupling J.
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not include any long-range interactions, such as Coulomb-type interactions, but only
relies on on-site contact interactions. Due to screening effects, this is often a good
approximation, but there is still an ongoing discussion whether beyond on-site inter-
actions are relevant for low-temperature phases [125]. Furthermore, we only consider
short-ranged tunnel coupling and usually restrict ourselves to nearest-neighbour, or
in some cases next-nearest-neighbour hopping. Finally, the effect of higher-bands is
neglected, which vastly simplifies the model.

The Fermi-Hubbard model hosts several important symmetries that map different
parameters spaces onto each other. In addition to the trivial symmetries of spatial
translation and parity, there is a global spin SU(2) symmetry due to the spin isotropy,
as well as a global U(1) symmetry due to particle number conservation. More inter-
esting to consider is the particle-hole symmetry. For a transformation of ĉi,σ → ηiĉ

†
i,σ

with η = ±1, we find that the repulsive and attractive side of the phase diagram are
mapped onto each other [126]. This explains the symmetry of the phase diagram at
half-filling as seen in Fig. 2.3. Away from half-filling for U > 0, this leads to a spin-
imbalanced system for U < 0. By making use of this symmetry, studies on either
attractive or repulsive models (depending on which side may be easier to approach
experimentally) can yield insights relevant for the whole phase diagram. We note that
this symmetry only holds for bipartite lattices. Therefore, next-nearest-neighbour (di-
agonal) hopping terms break this symmetry [127].

2.2.2 Simplified models: t − J and Heisenberg Hamiltonian

In the limit of strong interactions U/t ≫ 1, we can expand the Fermi-Hubbard model
in orders of t/U up to second order for [128]

Ĥ = − ∑
⟨i,j⟩,σ=↑,↓

P̂
(

tijĉ
†
i,σ ĉj,σ + h.c.

)
P̂ + ∑

⟨i,j⟩
Jij

(
Ŝi · Ŝj −

n̂in̂j

4

)

−
i ̸=k

∑
i,j,k

P̂
[

tijtjk

2U

(
ĉ†i,↑ ĉ†j,↓ + ĉ†j,↑ ĉ†i,↓

) (
ĉj,↑ ĉk,↓ + ĉk,↑ ĉj,↓

)]
P̂ +O

(
t3

U2

)
. (2.2)

This expression includes a kinetic energy term, a spin-exchange term on neighbour-
ing sites with the second-order superexchange coupling J = 4t2

U , and a next-nearest-
neighbour density-assisted hopping term, also scaling as t2/U. The model is pro-
jected onto the subspace without double occupancies using projectors P̂ . The density-
assisted hopping term, representing hopping of holes within the same sublattice, is
commonly omitted as it is much smaller than t [129]. With this, we arrive at the t − J
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Figure 2.3: Fermi-Hubbard phase diagram. Three-dimensional phase diagram at
half-filling, ⟨n̂⟩ = 1, as a function of interactions and temperature. For repulsive inter-
actions, the system is insulating and exhibits antiferromagnetic ordering at low tem-
peratures. For attractive interactions, superfluid and paired phases appear. Adapted
from [91].

model defined as

Ĥt−J = − ∑
⟨i,j⟩,σ=↑,↓

P̂
(

tijĉ
†
i,σ ĉj,σ + h.c.

)
P̂ + ∑

⟨i,j⟩
Jij

(
Ŝi · Ŝj −

n̂in̂j

4

)
. (2.3)

Due to its relative simplicity, while offering a versatile glimpse into complex many-
body systems, it is popular for theoretical investigations. For J < t, it can be a good
approximation of the Hubbard model. In the limit of half-filling, i.e. ⟨n̂i⟩ = 1 ∀i, the
kinetic energy term vanishes and the Hamiltonian reduces to a simple spin system,
the Heisenberg model given by

ĤH = ∑
⟨i,j⟩

JijŜi · Ŝj. (2.4)

2.2.3 Fermi-Hubbard phase diagram

The phase diagram of the Fermi-Hubbard model as a function of interactions and tem-
perature exhibits both charge- and spin-ordered phases (see Fig. 2.3). In this work, we
will focus on repulsive interactions at temperatures around the superexchange en-
ergy J, where dopants in an antiferromagnetic background lead to interesting new
phases (see section 4.1.1). Here, we provide a brief overview of the rest of the phase
diagram. For very high temperatures, the system behaves metallic with Fermi-liquid
like behaviour, independent of the interactions [130]. When lowering the temperature
below the energy scale given by the interactions, on the repulsive side, charge fluctu-
ations are reduced and the system becomes an incompressible Mott insulator. On the
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attractive side, this corresponds to the onset of pairing. Upon further cooling below
the Néel temperature TN [131], second-order superexchange coupling leads to antifer-
romagnetic spin order for repulsive interactions. According to the Mermin-Wagner
theorem, this is only a long-range ordered state in three dimensional systems, while
for 2d, true long-range order is only reached at T = 0 (and in 1d there is no long-range
order at all) [132]. The Néel temperature is highest at around U/t = 8, which is close
to physically relevant parameters. Correspondingly, in the attractive regime, there is
a transition to a superfluid state where a crossover from a Bose-Einstein condensate
(BEC) to a Bardeen-Cooper-Schrieffer (BCS) superfluid occurs. [89, 91]

2.3 Optical lattice potentials

Optical dipole potentials are a valuable tool, allowing to trap laser-cooled atoms in
various internal states while offering versatile trapping geometries [93]. The fast oscil-
lating electric field of the driving laser induces an electric dipole moment in the atom,
enabling the manipulation of the atom without any actual excitation. This makes use
of the AC Stark shift given (for two-level systems) by ∆E = h̄Ω2/(4∆) with Rabi
frequency Ω and detuning ∆ [133]. For far-detuned Gaussian beams with intensity
profile I(r), this leads to a dipole potential of [93]

V(r) =
3πc2

2ω0
3
Γ

∆
I(r) (2.5)

with beam waist w0, excited state decay rate Γ and detuning ∆. Note, that we can
generate attractive potentials by using negative detunings, i.e. red-detuned beams.
Comparing this to the off-resonant scattering rate given by

Γsc(r) =
3πc2

2h̄w0
3

(
Γ

∆

)2

I(r) (2.6)

we can deduce that minimised off-resonant scattering can be achieved for far-detuned
optical dipole traps.

Multiple beams can be interfered with each other to generate an optical lattice. For
a single beam with electric field E(r) = E0e−ik·r−iωt and wave vector k, we define the
lattice potential as

V(r) ∝ |E1(r) + E2(r)|2 = V0 sin2
(

1
2
∆k · r

)
(2.7)

Depending on the interference angle, the corresponding lattice constant is

a =
λ

2 sinα
(2.8)
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Figure 2.4: Superlattice potentials. By adding two lattice potentials with commensu-
rate lattice constant, different geometries can be realised. For relative phase φ = 0, a
series of double-wells is created, while for φ ̸= 0, increasing offsets develop.

where λ is the wavelength and α the half-opening angle. The energy scales are then
given by the recoil energy

ER =
h2

8ma2 (2.9)

where m is the atomic mass. The depth of the lattice is typically expressed in units of
the recoil energy. Depending on the geometry of the lattice beams, a wide range of
optical lattice potentials can be achieved (see section 3.1). Here, we consider superlat-
tice potentials where two separate lattices with a fixed relation between their lattice
constants are overlapped. The resulting (one-dimensional) potential is given by

V(x) = VL sin2(kLx +φ) + VSL sin2(kSLx) (2.10)

where kL = 2kSL and the relative phase φ. This relative superlattice phase is crucial
as it determines the precise potential shape. It is given by

φ = φL − 2φSL. (2.11)

For φ = 0, the resulting potential is a series of symmetric double-wells, while for
φ = π/2, a fully imbalanced, antisymmetric potential is reached. In addition to this
relative phase, we have omitted the absolute phase from Eq. (2.10) as it only corre-
sponds to a global translation of the potential and therefore initially does not impact
any system parameters. It is given by

φabs =
1
2
(φL + 2φSL) . (2.12)

The Gaussian shape of the lattice beams leads to an additional global potential
envelope which limits the achievable system size. For red-detuned beams, there is a
confining contribution, due to the varying intensity of the Gaussian beam, which can
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be expressed as

ωc =

√
4V0

mw2
0

. (2.13)

This contribution mostly acts along the radial direction as the axial intensity variation

scales with the Rayleigh length zR =
πw2

0
λ ≫ w0. Additionally, there is an anticon-

fining contribution as the zero-point energy of the local harmonic oscillators varies
across the system. This contribution can be approximated by

ωac =
h

2maw0

(
V0

ER

)1/4

. (2.14)

For blue-detuned lattices, the confining term vanishes as the atoms sit at the posi-
tion of potential minima, while the anticonfining term remains. This term is usually
smaller than the confining part, making blue-detuned lattices advantageous.

For depths of V ≳ 5ER, the tight-binding limit is reached, where a description in
terms of Wannier functions w(r), i.e. wave functions localised on individual lattice
sites, is valid. In this limit, the potential allows for the simulation of Bose- and Fermi-
Hubbard models. By calculating the overlap of the wave functions on neighbouring
lattice sites, we can identify the tunnelling rate of Eq. (2.1) as [88]

t
ER

≃ 4√
π

(
V0

ER

)3/4

e
−2
√

V0
ER . (2.15)

For sufficiently deep lattices, it can also be simply related to the bandwidth as W =
4tD with dimensionality D and bandwidth W [134].

On the other hand, in neutral atom quantum simulators, the interactions are no
longer mediated by Coulomb interactions but instead only by contact, i.e. on-site in-
teractions [135]. The ultracold regime is reached as soon as only the lowest partial
waves contribute to the scattering process. In these cases, we can describe the inter-
actions by a single parameter, the scattering length asc. The corresponding contact
interactions are then given by [88]

U =
4πasc

m

�
d3r |w(r)|4 (2.16)

which we can simplify, again for sufficiently deep lattice potentials, to

U
ER

≃
√

8π
asc

a

(
V0

ER

)3/4

. (2.17)
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We can vary the scattering length using Feshbach resonances [136–139], i.e. by apply-
ing a magnetic field. The availability of appropriate resonances is an important factor
when choosing the atomic species. We note that for fermions, the s-wave scattering
rate of fermions in identical spin states vanishes due to the Pauli blockade such that
they are effectively non-interacting.
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2.4 Experimental setup

In this section, an overview of the experimental apparatus to produce ultracold atomic
ensembles of 6Li in a 3d optical lattice is provided. More details on the newly de-
signed lattices along x and y are given in the following chapter. For further informa-
tion on the experimental setup, see [140–142].

2.4.1 Properties of 6Li

We use fermionic 6Li in our experiment due to its numerous favourable features for
quantum simulation of the Fermi-Hubbard model. Being an alkali metal atom, its
properties are hydrogen-like with a single electron in the 2S1/2 state. This makes laser
cooling and imaging comparably easy. The most important transitions are around
671 nm with the D1 and D2 transition to the 2P1/2 and 2P3/2 state respectively, only be-
ing separated by about 10 GHz. These transitions are relatively broad with a linewidth
of 5.87× 2π MHz [143]. Therefore, spin-dependent potentials using vector light shifts
are not feasible due to excessive off-resonant scattering. Furthermore, the D2 ex-
cited state hyperfine structure is unresolved due to its small splitting of 1 − 2 MHz.
On the other hand, the ground state hyperfine splitting between the F = 1/2 and
F = 3/2 state is 228.2 MHz [143], which can easily be bridged using acousto-optic
modulators (AOM). We label the individual mF states of these two hyperfine levels
by |1⟩ to |6⟩, motivated by the energetic ordering from lowest to highest energy state
in the Paschen-Back regime. Experimentally, we mostly operate with the states |1⟩
(F = 1/2, mF = −1/2) and |2⟩ (F = 1/2, mF = 1/2). Finally, the transition to the
3P1/2 and 3P3/2 state at around 323 nm is significantly narrower with a linewidth of
Γ3P = 159 × 2π kHz, corresponding to a smaller Doppler temperature of 18 µK [144].

The relatively small ground state hyperfine splitting leads to a decoupling of nu-
clear spin and orbital momentum at small magnetic fields, such that for ca 100 G the
Paschen-Back regime is already reached. We show the dependence of the sublevel
energies on magnetic field in Fig. 2.5b. Note that for the three lowest lying states, the
slope of the Zeeman shift is close to identical and therefore applied gradients mostly
spin-independent.

Finally, the scattering length asc as a function of magnetic field between the three
lowest hyperfine states is depicted in Fig. 2.5c. All three combinations feature a broad
Feshbach resonance. Most relevant for our purpose, the |1⟩ − |2⟩ mixture has a van-
ishing background scattering length and a broad Feshbach resonance at 834 G [139].
For magnetic fields up to this value, we can therefore reach any scattering lengths
above −290aB. We can use the additional narrow resonance at 543 G (with a width of
∼ 100mG) to calibrate our magnetic field.
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a b

c

Figure 2.5: Properties of 6Li. a, Energy level diagram of 6Li. For laser cooling and
detection we use the transitions around 671 nm and 323 nm. b, Breit-Rabi diagram for
6Li in a magnetic field. In the low-field regime, the |1⟩ and |2⟩ states have opposite
magnetic moments. c, Scattering length for atoms in the three lowest hyperfine states
with data from [145]. We work in the |1⟩ and |2⟩ states below the Feshbach resonance
at 834 G [139]. The figure is adapted from [142].

2.4.2 Preparation of ultracold samples

Initial laser cooling and trapping

In our experiment, we prepare a cold ensemble of ∼ 500 atoms in a single plane of a 3d
optical lattice. A single realisation, including detection, takes about 20 s. We start with
lithium heated in an oven to about 300 ◦C. This source is set in an ultra-high vacuum
steel chamber evacuated to ∼ 5 × 10−10 mbar (with pressures further away from the
oven going down to ∼ 4 × 10−11 mbar). After exiting the oven chamber, the atomic
beam is collimated using a 10 mm aperture and travels through a Zeeman slower for
35 cm. During this stage, a counter-propagating beam that is 100 MHz detuned from
the D2 cooling transition (|2S1/2, F = 3/2⟩ → |2P3/2, F = F′⟩) in addition to a gradi-
ent of ∼ 15G/cm slows the atoms down to prepare them for subsequent trapping.
This happens in a magneto-optical trap (MOT) in a steel octagon chamber. Three
retro-reflected MOT beams address the atoms for both cooling (|2S1/2, F = 3/2⟩ →
|2P3/2, F = F′⟩) and repumping (|2S1/2, F = 1/2⟩ → |2P3/2, F = F′⟩), each detuned
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by ∼ 8Γ2P. We load the MOT for 5 s before compressing it within 10 ms. This then
leads to a cloud of ∼ 5 − 10 × 107 atoms at a temperature of 300 µK, on the order of
the Doppler limit of 140 µK. This loading procedure takes up a significant portion of
our cycle time, and is currently limited by available power in the Zeeman and MOT
beams as well as the flux of the atomic beam due to comparably low oven temper-
atures. By exchanging the oven part of the vacuum setup with a newly developed
design, the flux could be improved significantly.

For the next step, we make use of the much smaller linewidth of the UV transitions
to the 3P1/2 state. We briefly load from the red MOT into a UV MOT at 323 nm,
where we are able to reduce the temperature within 13 ms to about 50 µK. We end up
with ∼ 1.5 − 3 × 107 atoms. By turning the repumping beam off 500 µs earlier, we
optically pump the atoms into a balanced mixture of |1⟩ and |2⟩ state. Currently, we
are using a system of sum-frequency generation and doubling in a cavity to generate
the required UV light (see [140] for more details). By increasing the available power,
higher capture rates would be possible. Alternatively, sub-Doppler cooling using grey
molasses would allow for simplified setups without the need for UV light [146–149].

From this UV MOT, we then load into an optical dipole trap. This is facilitated
as the UV transition has a magic wavelength at 1069 nm where the polarisability of
the ground and excited states match. We use a broadband source at 1070 nm1 to load
into a 90 W beam focussed into the UV MOT. We transfer about 1 − 2 × 106 atoms at
a temperature of 30 µK.

The main part of the experiment is executed in a rectangular glass cell for im-
proved optical access. We transport the atoms into that glass cell by loading into a
separate transport beam at 1064 nm by mechanically moving the focus by 28.84 cm
from the initial MOT chamber into the science chamber2. Starting with about 3 × 105

atoms in the MOT chamber, we transport up to 80% into the glass cell with minimal
heating.

Single-plane loading and evaporation

After having transported the atoms into the glass cell, the next goal is to load these
into a single plane of our vertical lattice. This is a requirement for quantum gas micro-
scopes to minimise background artefacts during imaging. For this purpose, we first
transfer the atoms into a vertically crossed dipole trap projected through our high-NA
objective. To achieve a tighter focus along the vertical direction, we then load into a
strongly elliptical light sheet3 with a focus of w0 = 2.1 µm (w0 = 30 µm) along the

1YLR-200-LP by IPG Photonics
2ABL1500 by Aerotech
3λ = 780 nm, using a DFB diode
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vertical (horizontal) direction. We prepare about 2 × 104 atoms at a temperature of
3 µK in this light sheet. To further reduce the temperature and lower the chance of
loading atoms in wrong planes of the optical lattice, we evaporate in this dimple trap
by lowering its depth from 5 µK down to 1 µK before ramping back up. This lowers
the temperature down to ∼ 1µK with approximately 2500 atoms.

Loading into a vertical lattice can be facilitated by using a larger lattice constant.
We use a bichromatic superlattice with lattice constants of aL = 3 µm (aSL = 6 µm) for
the lattice and superlattice respectively. We achieve a high-degree of relative phase
stability, crucial for our detection scheme (see following section). For the initial load-
ing, we make use of the large superlattice separation which allows for direct loading
from the light sheet without the need for radio-frequency slicing. We are able to load
all atoms from the light sheet without any measurable loss or heating into the lattice.
Slow changes in the absolute phase of the lattice can lead to multiple planes being
populated. We implement a slow feedback procedure that negates this effect. Fur-
ther details on the design and implementation of this vertical lattice were described
in [101, 142, 150], with the general principle also being detailed in the next chapter.
After loading the atoms into this deep superlattice (VSL

z = 120 ER), we add the short
lattice (Vz = 50 ER) in the antisymmetric phase (φ = π/2) to achieve a stronger con-
finement of 14 kHz. Then, we apply a magnetic gradient along the y-direction while
setting the interactions to 353 aB. By slowly increasing the strength of the magnetic
gradient over the course of 5 s, we perform a forced evaporation to achieve tempera-
tures as low as T/TF = 0.1. Due to the sufficiently high magnetic fields, we are deep
in the Paschen-Back regime and therefore preserve the balanced spin mixture as both
components are addressed equally. We end our evaporation with about 400 − 500
atoms which can be easily varied using the evaporation parameters.

Final loading into optical lattices

Starting with this 2d cloud, we now want to prepare the atoms in the horizontal
lattices for the final physical parameters. For this purpose, we first load from the
vertical crossed dipole trap into a shaped potential using a digital micromirror de-
vice (DMD)4. We refer to [151] for further details on the setup. We improved on the
setup since then by exchanging the source from a superluminescent diode5 running
at 650 nm to a high-power source by combining four diodes at 638 nm6 for a total
output power of 2 W after fibre coupling to the DMD. By using a combination of a
spectrally broadband source and a (square) multimode fibre, we get a spatially in-
coherent source to minimise interference speckles [152]. This allows us to apply po-

4DLP V-7000 VIS by Vialux
5EXS210030-03 by Exalos
6HL63623HD by Ushio
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a b c d
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Figure 2.6: Arbitrary potential shaping using a DMD. Starting from the desired po-
tential shape (a), we apply a dithering algorithm to get the position of every individ-
ual micromirror (b), which results in a beam shape on a camera as seen in c. A single
realisation with this potential is shown in d. A selection of different patterns is ap-
plied in e-h to showcase the wide range of possible potentials.

tential offsets of up to 15 kHz per lattice site, which is several times larger than our
normal interaction strengths of ∼ 4 kHz. With 15.5 × 15.5 DMD mirrors per lattice
site, we are able to address individual sites and arbitrarily shape our optical poten-
tial. In Fig. 2.6 we show exemplified DMD patterns, how they translate to the optical
potential as well as the resulting fluorescence images (see also the following section
for details on the detection). We rely on a dithering algorithm to set the position of
the individual mirrors on the DMD within a lattice site to achieve the desired overall
depth [153, 154].

For most of our experiments, the DMD potential is a flat disk, surrounded by a
reservoir at higher potential and a high barrier. This geometry allows for transfer of
entropy between the (close to) Mott insulating central region and a low-filling, metal-
lic reservoir which effectively cools down the main system in the centre [64, 154, 155].
From this DMD potential we then load into our optical lattice at our final parameters
(see also section 3.4.1 for more details on preparation). We work with lattices with
a lattice constant of a = 1.15 µm which, due to lithium’s light mass, still has large
couplings while making single-site detection easier. For details on the previous lattice
setup we refer to [141] while we describe the changes to the lattice setup during the
course of this thesis in the next chapter in detail. By changing the depth of the opti-
cal lattice as well as the magnetic field, we can realise Fermi-Hubbard systems with
almost arbitrary values U/t. We usually set our system size to be between 100 − 250
sites, with an additional surrounding reservoir.
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Figure 2.7: Single-site detection. a, Histogram of counts per lattice site for recon-
struction. The peak at occupation 1 is clearly separated from empty sites. We also
have a few doubly occupied sites that can be identified at higher counts. b, Single
site-resolved image of atoms in a 2d lattice set in a box potential.

2.4.3 Spin-resolved, single-site detection

Density readout

We detect the state of the prepared ensemble by performing fluorescence imaging
with single-site resolution [60]. This allows for the readout of the occupation and
spin state on each individual lattice site. For lithium, very deep lattices are needed to
achieve high-fidelity readout which leads to high requirements on the available laser
power. Our lattices are optimised for low harmonic confinement, large spacings and
their superlattice capabilities which in turn makes imaging in these lattices not feasi-
ble. For this reason, we implement another set of lattices solely for imaging. After the
desired physical system has been prepared, we freeze the dynamics by ramping the
lattices to 45 ER within 1.5 ms. Then we transfer into a set of retro-reflected lattices
at 1064 nm7 within 20 ms at a depth of more than 1000 ER each. This leads to on-
site trap frequencies of up to 2 MHz, allowing us to apply Raman sideband cooling
during detection. With a pair of Raman lasers, we couple the |2S1/2, F = 1/2, n = n′⟩
and |2S1/2, F = 3/2, n = n′ + 1⟩ states to transfer atoms to lower vibrational sublevels
n. Adding a repumping beam on the |2S1/2, F = 1/2⟩ → |2P1/2, F = 3/2⟩ transition,
leads to a fluorescence signal that we pick up using a microscope objective8 with a
numerical aperture of 0.5. We estimate our imaging fidelity during the 1 s exposure
time to be 98% (by comparing the occupation in subsequent images of the same sam-

7Generated using fibre amplifiers ALS-IR-1064-50A-CC by Azurlight Systems
8Custom design, Special Optics
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ple), limited by the lattice depth and thus available laser power. Another important
feature gained by the separation of physics and detection lattices is the avoidance of
parity projection [57, 156–158]. While most quantum gas microscopes are thus limited
to measuring the parity of the occupation (such that doubly occupied sites appear as
holes), our detection lattices oversample the physics lattice by a factor of ∼ 8. By
applying strongly repulsive interactions during the transfer, doubly occupied sites in
the physics lattice are split into separate sites in the detection lattice and thus are not
lost during imaging, giving us access to full-counting statistics. Using simple decon-
volution algorithms, we can extract the total fluorescence counts on each lattice site
and use the resulting histogram of counts to assign the occupation. We achieve re-
construction fidelities of about 99.4% [142]. We show a single realisation of a 2d Mott
insulator as well as the corresponding histogram in Fig. 2.7.

Spin readout

Imaging the spin state of atoms on individual lattice sites is crucial for the investi-
gation of the spin order of Fermi-Hubbard systems. For this purpose, quantum gas
microscopes either rely on selective spin removal techniques [103] or spin-dependent
spatial separation [65, 101, 105]. Here, we use our vertical bichromatic superlattice to
locally resolve the atoms’ spin state. Further details of this procedure can be found
in [101, 142].

We begin by loading the sample from the short vertical lattice into the superlattice.
At this point, dynamics along x and y are frozen using the in-plane lattices. Subse-
quently, we apply a magnetic gradient of 45 G/cm along the vertical direction. We
make sure that the overall magnetic field is close to zero, such that the magnetic mo-
ments of the two spin states have opposite signs. This biases the potential in opposite
directions. We then ramp the short lattice back up in the symmetric phase config-
uration φ = 0, such that a symmetric double-well is formed. Depending on their
spin state, atoms will end up in different double-wells and are therefore separated by
3 µm. For our highly-stable system, this procedure is very robust and insensitive to
the precise phase. We check this by varying the phase at which the lattice is ramped
up and measuring the occupation in the two double-wells (see next paragraph for fur-
ther details). We show the results of this measurement in Fig. 2.8. For a wide regime
of about 350 mrad, we split the atomic cloud in half, while for larger phase offsets, all
atoms end up in one part of the double-well as the double-well detuning dominates
over the magnetic gradient.

Charge pumping

The Stern-Gerlach sequence described above spatially separates the atoms by 3 µm,
which is not much larger than the depth of focus of our objective. Therefore, when
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Figure 2.8: Spin-resolved imaging. a, Stern-Gerlach sequence with varying superlat-
tice phase φ. In red, blue we show the atom number in both parts of a double-well
after applying a magnetic gradient and loading into a superlattice potential at phase
φ. For a broad range of ∼ 350 mrad, the applied magnetic gradient splits the two spin
states in separate parts of the double-well. Once the detuning is larger than the offset
due to the gradient, no spin-dependent splitting occurs but all atoms are prepared
in a single well. Detection occurs after charge pumping to increase the separation to
21 µm. b, Single fluorescence images of spin-up and spin-down atoms in separate
planes. The reconstructed occupation from the two planes exhibits antiferromagnetic
correlations.

trying to image either plane, a substantial background to the image will be present,
which makes high-fidelity reconstruction impossible. To circumvent this problem,
we make use of the topological properties of our vertical superlattice to increase the
distances between the two planes. As pioneered in [159, 160], by performing a se-
quence of adiabatic passages, atoms initialised in different parts of a double-well will
be transported in opposite directions. This procedure, similar to a topological Thou-
less pump [161, 162], works due to the different Chern numbers of the ground and
excited band in a tilted double-well potential. The precise sequence is as follows (see
also Fig. 2.9a): we start with atoms in a double-well of a deep lattice and superlattice
(Vz = 50 ER, VSL

z = 130 ER) with a symmetric phase φ = 0. We then change the
phase such that the atoms are coupled to different double-wells, close to their sym-
metric phase. After lowering the lattice depth to Vz = 11 ER, we perform a slow
adiabatic sweep of the phase across the symmetric phase to transfer the atoms to the
other well, before ramping the lattice back up. We can repeat this sequence to increase
the distance between the atoms by 6 µm per iteration. We show absorption images
from the side in Fig. 2.9b, which showcase the stepwise separation of initially neigh-
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Figure 2.9: Charge pumping in an optical superlattice. a, Sequence for topological
charge pumping. Applying a series of adiabatic passages using the relative super-
lattice phase moves atoms in different bands in opposite directions. b, Absorption
imaging of 2d planes at different distances from the side. c, Charge pumping effi-
ciency as a function of applied cycles. We extract a fidelity of 99.61(9)% per cycle.

boured planes. We extract the fidelity of this procedure using a fit in Fig. 2.9c yielding
99.61(9)% per cycle. For our purposes, we choose three iterations, i.e. a separation
of 21 µm, where the imaging background is sufficiently small. We show fluorescence
images of two planes in 21 µm distance in Fig. 2.8c. The background from the other
plane is small and can be further suppressed using image processing techniques [163].

Bilayer readout

In order to image spin states in two separate planes, two different methods can be
applied: first, we can take two subsequent images where we move the focus of our
microscope objective in between. This method was first used when implementing
the bilayer imaging procedure [101] but suffered from a lack of stability of the objec-
tive. We would find small, not reproducible deviations in horizontal position which
added additional challenges to our reconstruction. For this reason, an alternative
method was considered, where we use two separate imaging paths. We use a polaris-
ing beamsplitter to split the fluorescence signal before then sending one part through
a 1:1 telescope. Afterwards, we recombine the two paths on another polarising beam-
splitter and send both to the EMCCD camera. By slightly adjusting the focus of the
telescope, we can precisely change the focus of this second imaging path with respect
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to the first one. This allows for simultaneous imaging of two focal planes on the same
camera (see [151] for more information).

2.5 Topological phases in fermionic ladders

The described experimental setup has been used for a wide variety of studies on the
Fermi-Hubbard model. Single-site resolved measurements of the occupation and
spin [60, 65, 101] allowed for investigations into doped systems, directly imaging
magnetic polarons [106] and their evolution with doping [66]. Using our potential
shaping capabilities, we are also able to study topological effects in ladder systems,
which we will briefly describe in the following. These results are published in [164]
with some details also given in [151]. Numerical calculations were performed by
Ruben Verresen and Julian Bibo.

The intriguing properties of topological phases of matter have sparked increasing
interest in recent years. One paradigmatic model is the symmetry-protected topolog-
ical Haldane spin-1 chain [165, 166], which hosts hidden spin order as well localised
spin-1/2 edge states [167, 168]. Quantum simulation can provide a complementary
perspective on previous neutron scattering [169, 170] and electron resonance stud-
ies [171, 172], which have found evidence for topological properties despite not prob-
ing the system microscopically. It has been shown, that there is a direct mapping from
a spin-1 chain to a ladder system of spin-1/2 fermions via the AKLT model [173–175].
Therefore, we can use our fermionic system to study the topology of a spin-1 chain,
making use of our microscopic resolution.

We prepare 2-leg ladder systems with 14 sites at U/t⊥ = 12.5(6), J⊥/J∥ = 1.3(2).
We use potential shaping to load into ladders with two different edge configurations
(see Fig. 2.10a, b). Depending on the edges, we realise either a ’trivial’ or a ’topologi-
cal’ configuration. For an infinite system, these two configurations would be indistin-
guishable. By choosing a specific unit cell which can either be vertical or diagonal, we
map the system on a spin-1 or spin-0 chain. In our finite size system, we configure the
edges to match a specific unit cell to distinguish the two regimes. This does, however,
not change the bulk properties itself.

To analyse our ladder system as it maps onto a spin-1 chain, we measure observ-
ables on unit cells, i.e. using Ŝk = Ŝk,0 + Ŝk,1 in unit cell k. To then reveal the topolog-
ical features of the system, we use a string correlator. Spin-spin correlations (between
unit cells) are short-ranged and decay quickly. By taking into account the spin order
between the endpoints, specifically how many spin-0 components are present, we can
correct the sign of the correlator (see Fig. 2.10c, d). To be precise, we can define the
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Figure 2.10: Haldane phase signatures in Fermi-Hubbard ladders. a (b), Prepared
density profile in the topological (trivial) configuration. We identify the correspond-
ing unit cell in c (d) with total magnetisation per unit cell of 0, ±1. We calculate the
string correlator with endpoint operators Sz (1) in green (grey) for the two configura-
tions in e and f. We observe long-range correlations for gSz ,Rz (g1,Rz) in the topological
(trivial) configuration. Meanwhile, without the string (i.e. Ûl = 1), correlations are
short ranged (see insets). g, Magnetisation per unit-cell for Mz = ±1, where the ex-
cess magnetisation is localised at the edges. h, Robustness to charge fluctuations. The
correlator g̃Sz ,P↓ stays constant when lowering U/t∥. We show the full correlator in i.
DMRG results in h at T = 0 in the thermodynamic limit are qualitatively similar.

string correlator as [167, 176]

gO,U(d) =

〈
Ôk

(
k+d−1

∏
l=k+1

Ûl

)
Ôk+d

〉
(2.18)

where Ûl is an on-site symmetry and Ôk the endpoint operator in unit cell l with
distance d. By using Ûl = R̂z

l ≡ exp
(
iπ Ŝz

l
)
, we probe the bulk SO(3) symmetry of

a spin-1 chain. Choosing endpoint operators Ôk = Ŝz
l recovers the long-range order
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within the system. Therefore, we can identify the presence of the topological Haldane
phase via finite values of this correlator at large distances. Meanwhile, we expect the
opposite correlator with endpoint operators Ôk = 1 to be consistent with zero. Both
correlators behave exactly inverted in the trivial, non-topological phase, i.e. gSz ,Rz is
zero while g1,Rz remains finite.

We study the behaviour of these correlators in Fig. 2.10e, f. We filter our data to
have exactly 14 atoms, even atom number within the string of the correlator as well as
total magnetisation Mz = 0. For diagonal unit cells, we observe a finite value of gSz ,Rz

across the system, consistent with the expected topological behaviour. For vertical
unit cells, the correlators trade place indicating trivial topology. In either case, the
spin-spin correlator with Ûl = 1, however, decays quickly (see insets). We can also
use this data to identify edge states by considering the local magnetisation per unit
cell. For a total magnetisation of Mz = ±1, the excess value is mostly localised at the
edges with only some decay into the bulk (see Fig. 2.10g).

Finally, the versatility of our approach allows us to leave the Heisenberg regime
of strong interactions and consider the weakly interacting Fermi-Hubbard regime,
where charge fluctuations are increasingly present. This changes the symmetry of the
bulk state from SO(3) to SU(2), such that the bulk and edges cannot be distinguished
as easily any more [177, 178]. However, due to the presence of the sublattice and
parity symmetry of spin-down particles, P̂↓

l ≡ exp
[
iπ
(

n̂↓
l,A + n̂↓

l,B

)]
, we can define a

new correlator gSz ,P↓ which still reveals the hidden order within the system [179]. We
lower the interactions down to U/t∥ = 2.5, where we still find finite values for this
correlator at the largest distance (see Fig. 2.10h, i). This exemplifies the robustness of
the topological order due to the inherent symmetries, despite our finite temperature.
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Chapter 3

Design and characterisation of
high-stability optical superlattices

This chapter focuses on the details of tunable optical lattices, specifically superlattices.
We describe the requirements, design and implementation of high-stability, bichro-
matic superlattices in our experiment. Following a similar approach to our recently
added superlattice along the vertical direction [101], we show how we improved on
that design for our in-plane lattices. We characterise the stability and tunability of the
lattices in detail using both single-particle and many-body measurements. Some re-
sults on the superlattice characterisation in this chapter are contained in [180]. Quan-
tum Monte Carlo calculations for temperature estimations were performed by Zhen-
jiu Wang.

3.1 Optical lattice geometries and realisations

Interfering a set number of optical lattice beams offers a tremendous amount of versa-
tility in creating numerous potential geometries such as square [181], hexagonal [182],
triangular [97], Kagome [183] or Lieb lattices [184]. Depending on the desired appli-
cation, different ways of generating the individual potential may be beneficial. In
the following discussion, for simplicity we will limit ourselves to 2d optical lattice
geometries, though the extension to 3d lattices is in many cases trivial.

3.1.1 Static optical lattices

The simplest possible lattice potentials are achieved by interfering pairs of beams with
opposite wave vector to realise a square optical lattice with a lattice constant equal to
half the wavelength. Similarly, by interfering the beams under a half-angle α (i.e. not
directly retro-reflected), lattices with larger lattice constant a = λ/(2 sinα) may be
created. Finally, three interfering beams can create e.g. honeycomb lattices. In general,
these lattices are inherently stable up to global phase factors. This can be shown for
any lattice involving at most d + 1 beams in d dimensions [185]. In this manner, a
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variety of different optical lattice geometries without the additional need for active
phase stabilisation can be engineered. In addition to the aforementioned lattices, bow-
tie lattices are a useful tool to achieve the same kind of stability. Interfering a single-
beam four times with itself by folding it back onto itself, allows for phase stable 2d
lattices using only a single beam.

3.1.2 Tunable optical lattices

For many applications, static lattices may not be enough, such that additional degrees
of freedom for further tunability are desirable. In recent years, a growing number of
tunable lattices has been realised, each focussing on different aspects. In the follow-
ing, we will provide a short overview of past realisations as context for our superlat-
tice described in detail later on (see Fig. 3.1).

First, adding additional frequency components to three interfering beams creates
different sets of overlapping optical lattices (see Fig. 3.1a). By tuning the phase be-
tween the added frequency sidebands, the geometry may be dynamically tuned from
honeycomb (β = 0) via boron-nitride (β = π/3) to triangular lattices (β = π) [186].
The stability of the lattice geometry is thus reduced to the stability of the frequency
source generating the sidebands, which can easily fulfil the necessary requirements.

An alternative method involves changing the polarisation vectors of the individ-
ual beams (see Fig. 3.1b). Rotation of the polarisation of each beam by θ continu-
ously changes the geometry from a state-independent honeycomb lattice (θ = 0) via
a constant-intensity ‘polarisation lattice’ (θ = π/4) to a (possibly state-dependent)
triangular lattice at θ = π/2. This offers complementary applications to the fully
state-independent multi-frequency approach described above. [187]

A folded bow-tie lattice only uses a single beam to create a 2d lattice. This al-
lows for more beams while still preserving passive stability. As shown in Fig. 3.1c
and [59, 109, 188], by adding a 1d, non-interfering optical lattice on top of a bow-tie
lattice, a variety of geometries from a square lattice (A1/A0 = 0) to triangular lat-
tices (A1/A0 ∼ 2) and eventually one dimensional tubes/dimerised lattices can be
realised.

Dynamic tunability can also preserve the overall geometry of the lattice while still
varying spatial parameters significantly by changing the lattice constant. The so-
called ‘accordion’ lattice [189–191], remains a square lattice throughout, but changes
the lattice constant along one or more directions. This is typically achieved by vary-
ing the interference angle of the lattice beams, e.g. via galvanometric control [192].
Applications can, amongst others, be found in facilitated single-site imaging [113] or
loading into single 2d planes [192, 193].
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Figure 3.1: Lattices with tunable geometries. a, Multi-frequency lattice as demon-
strated in [186], realising hexagonal, boron-nitride and triangular lattices. b, Polari-
sation lattice, shown in [187]. Similarly, the potential can be tuned from hexagonal
to state-dependent polarisation or triangular lattices. c, Bow-tie lattice with addi-
tional 1d lattice [188]. Continuous tuning between square, triangular and dimerised
lattices is possible. d, ‘Accordion’ lattices allow for smooth changes of the lattice con-
stant [189]. e, Superlattices lead to symmetric or imbalanced double-well potentials.

Finally, the method most relevant to this thesis, is an optical superlattice. In this
case, another lattice is superimposed onto the first lattice with a fixed relation between
their lattice constants. The capability to realise symmetric (φ = 0) as well as imbal-
anced double-well lattices (φ ̸= 0) and fully staggered lattices (φ = π/2) by adjust-
ing local detunings on different sublattices, allows for a wide range of applications in
preparation, detection and coupling control. In that manner, interferometric measure-



32 3. Design and characterisation of high-stability optical superlattices

ments [194, 195], double-well oscillations [196, 197], topological effects [159] as well
as antiferromagnetic correlations [51] have been studied. It also enabled single-site
spin-resolved detection in quantum gas microscopes [65, 106]. Finally, preparation of
low-entropy states using controlled coupling has been demonstrated [198]. However,
a challenge arises due to the fact that this configuration is not inherently stable in con-
trast to many of the previous setups. Due to the high sensitivity to environmental
factors such as temperature, pressure or humidity, either active stabilisation or pas-
sive isolation has to be implemented. Because of the severe technical difficulties and
ultimate limitations associated with active phase stabilisation [51], we focus here on a
passively stable method.

3.2 Requirements on optical superlattices

The design of an optical lattice for an ultracold atoms experiment is subject to nu-
merous constraints, depending on the precise application as well as the rest of the ex-
perimental setup. In the following, we briefly summarise common requirements and
how these affect design considerations, especially in the context of fermionic quantum
simulators.

One important design choice is the lattice constant of the optical lattice. For exper-
iments relying on any kind of (short-ranged) coupling between lattice sites, this de-
termines the experimental time scales. In order to keep these time scales sufficiently
small (to minimise the effect of technical noise), choosing small lattice constants is
beneficial. This becomes even more crucial the heavier the species of atom chosen. We
show the tunnelling rates at a typical lattice depth of VL = 6 ER as a function of lattice
constant for 6Li, 40K and 87Rb in Fig. 3.2a. Typical tunnel couplings are on the order of
100− 1000 Hz. However, on the other hand, exceedingly small lattice constants pose a
technical problem for detection. While not necessarily required, read-out of atoms on
the scale of individual lattice sites is highly beneficial and allows access to many oth-
erwise hard or impossible to measure observables. Similarly, addressing of individual
lattice sites is also a requirement for many experiments. Therefore, the resolution of
the imaging system has to be sufficiently high compared to the lattice constant. A
common limit is given by the diffraction limit λ/(2NA), such that for numerical aper-
tures (NA) of 0.7 − 0.8, a resolution on the order of 500 nm is possible (where details
depend on the species and thus the imaging wavelength). In recent years, methods
have been developed to bypass this limit which rely e.g. on machine-learning assisted
reconstruction [121] or expanding the quantum system before imaging [199]. How-
ever, so far, most experiments still remain above this threshold in lattice constant.
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Figure 3.2: Tunnel coupling in superlattices. a, Tunnel coupling t in a lattice at
VL = 6 ER with variable lattice constant aL for 6Li (blue) [143], 40K (red) [200] and
87Rb (grey) [201]. Energy scales are significantly higher for the light 6Li. The
dashed line marks the lattice constant chosen in our experiment. b, Intrawell de-
tuning ∆ as a function of superlattice phase φ for a different superlattice depths
(VSL = 10, 15, 20, 25, 30 ER) and lattice depth VL = 8 ER for aL = 1.15 µm. The
dashed line corresponds to the detuning our gradient can provide. The inset shows
the corresponding intrawell tunnelling values.

Optical lattice experiments are often limited by the amount of available laser power1.
This is caused by the inherent competition between lowering the harmonic confine-
ment by increasing the waist and requiring sufficient power to freeze the dynamics
of the system for detection. Harmonic confinement scales inversely proportional to
the waist of the lattice beams while the depth scales as 1/w2

0. Most experiments im-
age the atomic distribution in the same lattices where the physical investigation oc-
curred. In that case, for most setups, lattice depths on the order of ∼ 1000ER need
to be achieved to minimise detection errors. One possibility to circumvent this re-
quirement is by adding an additional set of lattices solely for imaging with a smaller
waist as harmonic confinement does not matter as much any more at this point. This
is tremendously helpful as the harmonic confinement during preparation ultimately
sets the maximum system size that can be achieved. While in recent years increas-
ingly high-power laser sources have become available, system sizes are still set by
power availability. One possible solution to this issue is by using cavity enhancement
to increase the lattice depth [202, 203].

Finally, the stability of optical lattices is a crucial question in their design. As
mentioned in the previous section, depending on the design strategy, tunable geome-

1for a given laser detuning. Higher depths for the same power can be achieved by going closer to
resonance, which, however, leads to unwanted off-resonant heating.
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tries may either be inherently stable or require active or passive stabilisation meth-
ods. Focussing on superlattices, the relative superlattice phase stability determines
the possible applications. First, performing local Stern-Gerlach separation of the spin
components into separate parts of the double-well potential for spin detection is a
common goal. The stability required depends on the feasible magnetic gradient. In
our experiment, we can apply a gradient of at most 6 kHz/µm. For high-fidelity spin
detection, we require a phase stability of ∼ 200 mrad which is reasonably easy to re-
alise (see Fig. 3.2b). For further double-well (or bilayer) physics, requirements may be
far higher, especially in the context of fermionic quantum computation. We discuss
the consequences of phase noise on the coherence in section 3.4.4. Finally, a high de-
gree of both pointing and absolute phase stability is also crucial in any optical lattice
experiment.

3.3 Bichromatic superlattice design

In the following, we describe the specific design of our newly implemented bichro-
matic superlattices. The general idea follows the design previously used in our ver-
tical superlattice shown in [101, 150] and is briefly summarised in the following.
Many improvements in terms of tunability and mechanical design are discussed sub-
sequently.

3.3.1 General features

To realise an optical superlattice2, i.e. two lattices with commensurate lattice con-
stants where aSL = 2aL, we interfere two pairs of beams at wavelengths of 532 nm and
1064 nm under a half-angle of 13.37 ◦, resulting in lattice constants of aL = 1.15 µm
and aSL = 2.3 µm. We improve the stability of the setup by spatially overlapping the
beams of the lattice and superlattice such that disturbances affect both lattices equally.
Both lattices originate from the same source, where we implement single-pass second-
harmonic-generation for the lattice. We use a combination of a delay line in one lattice
arm with frequency shifting of the lattice beams using broadband acousto-optic de-
flectors (AODs) to tune the relative superlattice phase fast and precisely. Furthermore,
rotatable glass plates allows for coarse changes of the lattice phase. Finally, in order
to improve the stability of the setup, the most sensitive parts are both evacuated and
thermally isolated from the environment

The most crucial components of this design are related to the phase stability of the
lattice. As stated in the previous section, a highly stable relative superlattice phase is

2In the following, we will refer to both the long lattice as well as the full potential as a superlattice
and to the short lattice as simply lattice.
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Figure 3.3: Phase change with environmental fluctuations. Relative superlattice
phase change for varying conditions compared to normal conditions of T = 22 ◦C,
p = 1 atm, H = 40 % for a delay line of 41.6 cm and λL = 532 nm.

required for many applications while posing a significant technical challenge. Here,
we use a passively stable implementation without any need for active feedback. This
both allows for high overall stability and simplifies the setup itself. The central idea
is based on using two different, commensurate wavelengths for the lattice and super-
lattice. While traversing a distance L, a single beam with wavelength λ can pick up
phase noise δφ via a fluctuating refractive index of the air δn due to either changes in
temperature, pressure or humidity

δφ = δkL =
πδnL
λ

. (3.1)

When now considering the relative superlattice phase for a bichromatic lattice as de-
fined in Eq. (2.11), the total phase fluctuations are

δφ = δkLL − 2δkSLL = πL(
δnL

λL
− 2

δnSL

λSL
) =

πL
λL

(δnL − δnSL). (3.2)

From this it follows, that as long as the dependence of the refractive index on wave-
length is weak, i.e. δnL ≈ δnSL ≈ δn, phase fluctuations in the lattice and superlattice
cancel and the relative superlattice phase is inherently stable. This relation holds very
well in typical parameter regimes around standard conditions. Following empirical
equations for changes of the refractive index of air with temperature, pressure and hu-
midity [204, 205], we can show that residual phase fluctuations due to environmental
changes in normal lab conditions are negligible (see Fig. 3.3). This is only the case
for bichromatic superlattices, as opposed to monochromatic superlattices, which then
require active phase stabilisation. We note that this only holds for the relative super-
lattice phase, while the absolute phase still fluctuates as δφabs =

πL
2λL

(δnL + 2δnSL) ̸= 0
which is non-zero both for monochromatic and bichromatic superlattices. Therefore,
a stable absolute phase either requires active feedback (as e.g. implemented for our
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Figure 3.4: Lattice setups. Sketches (a, c) and images (b, d) of the evacuated lattice
setups along y (a, b) and x (c, d).

vertical superlattice, see [142]) or passive isolation from the environment, which is the
approach we decided on here, see the following sections for details.

We show the final design of the lattice setups along x and y in Fig. 3.4. The general
setup is very similar, however only the y-lattice has a delay line due to lack of space
in the experimental setup. Tuning of the relative superlattice phase is however still
possible using rotatable glass plates, that are implemented in both lattices.

3.3.2 Optical design

The full optical setup is divided in three parts: the seed laser and amplification, fre-
quency shifting using AODs and the final lattice setup directed at the atoms. For
details on the AOD setups we refer to our previous work in [150].
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Figure 3.5: Relative intensity noise. Measured noise spectrum for a free-running
laser at a wavelength of 532 nm.

We use a 40 W solid-state laser amplifier3 at a wavelength of 1064 nm as a seed
for both the lattice and the superlattice. This seed has excellent linewidth (∼ 1 kHz)
and intensity noise (<−120 dBc/Hz) properties and provides enough power for both
the x- and y-superlattice. We also split off small fractions that are then either first
frequency shifted using AODs (y-lattice) or directly sent to another 45 W amplifier4

before being used for second-harmonic generation. Following our earlier setup de-
scribed in [206], we use single-pass doubling in periodically-poled magnesium-doped
stoichiometric LiTaO3

5 to achieve a maximum of 14 W of 532 nm light. After inten-
sity stabilisation using an AOM6 and fibre coupling into a photonic crystal fibre7, we
end up with up to 8 W at the setup that goes to the atoms. In this way, we achieve a
high-power, fibre coupled source of 532 nm light with narrow linewidth, low inten-
sity noise (see Fig. 3.5) as well as tunable power and frequency.

In the final setup, the green beam is outcoupled using an high-power collimation
lens with f = 30 mm8 while the infrared light comes directly from the initial source
using a high-power fibre9 and is collimated with a f = 8 mm doublet lens10. The two
beams are then overlapped on a dichroic mirror before being sent to an evacuated
aluminium box (see next section). Here, the beams are split on a 50:50 non-polarising

3Mephisto MOPA 42 W by Coherent
4ALS-IR-1064-50-A-CC by Azurlight Systems
5PPMgSLT by Oxide
6I-M110-2C10B6-3-GH26 by Gooch&Housego
7LMA-PM-15 by ALPhANOV
8HFTLSQ-20-30PY2 by Optosigma
9PMC-E-980-10.5-NA009-3-APC.EC-500-P by Schäfter-Kirchhoff

1060FC-SF-4-M8-08 by Schäfter-Kirchhoff
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Figure 3.6: SHG beam degradation. a (b), Exemplary green beam profiles at low
(high power). The waist as a function of power along the horizontal (blue) and vertical
(red) direction is shown in c. Strong thermal lensing deteriorates the beam, mainly
along the horizontal direction.

beam splitter11. One beam then travels through a delay line of 41.6 cm in the y-lattice
as well as passes two glass plates12 mounted on miniaturised rotation stages (gal-
vanometers)13. In the end, both beams are focussed using f = 500 mm lenses to
achieve a waist of w532

0 = 110 µm (w1064
0 = 350 µm). The beams interfere under a

half-angle of 13.37 ◦ and enter the glass cell under an angle of 12.5 ◦ (25 ◦ for the x-
lattice) from below to allow for further optical access in the plane of the atoms. All
elements in the beam path are strictly UV-grade fused silica to avoid thermal lensing.
To facilitate alignment, we have motorised mirrors14 in both beams before the atoms
as well as for overlap in both arms and right in front of the evacuated boxes.

Considering the waist at the position of the atoms, we can achieve lattice depths
of up to 50 ER, which is enough to slow down tunnelling dynamics to below 0.1 Hz
(where further suppression can be achieved using the superlattices). For a waist of
w532

0 = 110 µm, we expect a harmonic deconfinement of 68 × 2πHz for reasonable
experimental parameters of 7 ER. Increasing the waist would require higher power
to still achieve the same maximum depths. In our current setup this is limited by
the second-harmonic generation and seems to be quite consistent between different
setups and in the literature [207–209]. The main limitation are thermal problems
within the doubling crystal. In addition to the significant absorption of the crys-
tal at 532 nm, green-induced infrared absorption leads to heating of the crystal and
therefore a change in refractive index. As the power of the 532 nm beam increases
throughout the crystal, so does the thermal load. Therefore, the phase matching con-
dition cannot be fulfilled at every point within the crystal. While this limits the power

11custom coating by Layertec
12d = 3 mm by Laser Components
13U-624.03 by Physik Instrumente
148885 Piezo mirror mount by Newport and POLARIS-K05P2 by Thorlabs
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that can be achieved, it turns out the first effect is a strong degradation of the out-
going beam profile from a very high-quality Gaussian profile, to a ‘donut’ shape,
which makes high-efficiency fibre coupling impossible (see Fig. 3.6). This problem
becomes more severe for longer crystals and highly depends on the precise design on
the oven responsible for temperature stabilisation [210, 211]. In our case of a crystal
with dimensions of L × W × H = 30 × 2 × 0.5 mm as well as an oven surrounding
the crystals on all sides, we have observed good beam profiles up to 14 W with most
stable configurations running at around 10 − 11 W. There are proposals that might
allow for higher powers, even at lower fundamental power, by operating the system
in a double-pass configuration [212]. Alternatively, coherent combination of multiple
sources has been shown to realise higher powers as well [213]. For now, the available
power in the simplified setup is enough for our current purposes.

An alternative pathway to minimise the harmonic confinement may be achieved
by using elliptical beams. As evidenced in our vertical superlattice [150], increas-
ing the waist along the relevant axis while decreasing it along less crucial directions
allows for effectively lower harmonic confinement. For lattices along x and y, the ver-
tical axis is less relevant as it does not contribute to the physical system15. While this
is a valid approach, the bichromatic nature of the lattice makes a precise alignment
of the focus along both directions non-trivial (in addition to the greater space require-
ments associated with further optical elements). For these reasons, we decided against
elliptical beams in this design.

3.3.3 Mechanical design

General considerations

The mechanical design of the lattice setup is dedicated to achieve maximal stabil-
ity, both in terms of pointing as well as absolute and relative phase stability. The
beam path starting with the non-polarising beam splitter is encased in an evacuated
aluminium box. In this manner, the residual fluctuations of the relative superlattice
phase due to environmental changes in the delay line are minimised as only ∼ 15 cm
are between the lattice box and the glass cell. Evacuation is achieved using a mem-
brane pump16. We operate the pump continuously to avoid any drifts due to changing
pressure, but make sure no vibrations from the pump are transferred via the tubes. To
avoid drifts between the optics before and after the beam splitter, the evacuated box
is mounted on a large aluminium base, that also contains the optics outside the box.

15The vertical confinement does however have an effect on our subsequent charge pumping for
detection. After exchanging the lattices along x and y, we observe an increase in charge pumping
fidelity compared to before due to the reduced vertical harmonic confinement.

16MP101V by Pfeiffer Vacuum
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Figure 3.7: Misalignment due to evacuation. Beam movement due to repeated evac-
uation in x-lattice (a, b, two lattice beams respectively) and y-lattice (c, d, long and
short arm respectively). Red markers are evacuated, blue markers are in atmosphere
with similar shadings corresponding to subsequent iterations. The larger y-lattice box
has stronger beam movement.

Both the base and the evacuated box have copper pipes inserted into the bottom which
allow for the possibility of water cooling for improved temperature stability. Finally,
for further stability, we minimise the number of optical elements and make sure that
the only movable elements are motorised mirrors while all others are directly glued
on their respective mount. Despite all this, misalignment of the lattices is possible.
For fast and easy realignment after large movements, we place multiple reference
cameras. As our glass cell is not anti-reflection coated, we can use this reflection and
pick it up easily. After splitting on a dichroic mirror, the infrared and green beam are
both sent onto a camera and their position noted. We placed the camera as far away
as possible while still easily fitting the beams onto the camera chip.

Evacuation

During evacuation down to ∼ 3.4 mbar, a misalignment of the setup is to be expected.
We measure the repeatability and magnitude of this misalignment by monitoring the
beam on a camera at the position of the atoms. We show the results in Fig. 3.7. It
can be seen that the direction and magnitude of the shift is rather repeatable. The
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magnitude is significantly larger for the y-lattice, as expected due to its longer beam
path. In either case, the observed shifts on the order of 10 − 100 µm can easily be
compensated for with the motorised mirrors in the setup.

As mentioned before, both lattice setups sit below the height of the atoms such that
the beams are angling upwards in the end. This allows for additional optical access
in the atomic plane. Some optical elements are then placed directly on the lid of the
box. To avoid huge changes when evacuating the boxes due to bending of the lid, it
is made out of stainless steel. This allows evacuation with only minimal movement.
Remaining misalignment is mitigated by appropriately placed reference cameras.

Absolute phase stability using Zerodur®

In the similarly designed vertical lattice, we found the absolute phase stability to be
a significant challenge due to large drifts over short time scales caused by thermal
changes. To avoid this issue, we attempted to isolate the crucial parts of the setup
even more from the environment. While the evacuation already helps to reduce the
impact from the surrounding air, the large linear thermal expansion coefficient of alu-
minium ofα = 23.6× 10−6 1

K [214] still couples the system with the environment. This
is only relevant in the delay line, where we are sensitive on lengths scales around the
wavelength, i.e. on the sub-micron level. There are two ways to possibly circumvent
this issue: we can either attempt to stabilise the temperature of the setup to a very
high precision, or try to passively isolate it better from the surroundings. We again
chose the passive solution to this problem. In this case, it means that aluminium
is not the most suitable material to mount optics on. Other possibilities include
stainless steel

(
α = 17.2 × 10−6 1

K

)
[214], titanium

(
α = 8.6 × 10−6 1

K

)
[214], Macor(

α = 9.3 × 10−6 1
K

)
[215], Invar

(
α = 1.2 × 10−6 1

K

)
[216] and Zerodur® (α = 0 ± 0.1

×10−6 1
K) [217]. We decide to use Zerodur® (as patented by Schott AG), which is a

glass ceramic material that has a thermal expansion coefficient consistent with zero.
It is commonly used as a substrate in high-precision lithography or as a mirror mate-
rial in large astronomical telescopes [218]. It has also been successfully used for full
optical setups in cold atomic experiments on the international space station [219, 220].
One disadvantage compared to e.g. aluminium is the more limited machining op-
tions. For our application, we do not design every individual mount and element
out of Zerodur®, but instead only prepare a Zerodur® base where the individual alu-
minium mounts are mounted on. This already serves our purpose as the Zerodur®

serves as an insulating, non-expanding layer between the aluminium box and the op-
tical setup, such that the precise delay line length stays constant.

To test this application, we directly compare a Zerodur® with an aluminium test
setup (see Fig. 3.8a). We use a Michelson interferometer and create interference fringes
on a camera using a 1064 nm laser. A sketch of the setup and the resulting fringes is
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Figure 3.8: Interferometric phase for different materials. a, Schematic setup to com-
pare stability of a setup built on aluminium compared to Zerodur. b, Measured inter-
ference fringes on camera. c, Measured phase over time in interferometer setup built
on aluminium (blue) and Zerodur (red) base. The drift is far reduced in the Zerodur
setup. The correlation between phase and temperature is shown in d, with both cases
showing clear correlation but much stronger dependency for aluminium.

shown in Fig. 3.8b). We build two identical setups, once on aluminium and once on
Zerodur®, and measure for both setups the position of the interference fringes as well
as the temperature of the base. We show the resulting measurement in Fig. 3.8c, d. The
observed drift is about one order of magnitude stronger for aluminium compared to
Zerodur®. Furthermore, the correlation between the phase and temperature is signif-
icantly stronger for aluminium. We emphasise that the setup is not evacuated such
that observed drift in the case of Zerodur® can also be attributed to changes in air
temperature and pressure.

Due to the mentioned limited machinability of Zerodur®, the optical mounts can-
not be fixed with screws as no threads are available. Therefore, all mounts are instead
glued on the Zerodur® base. For a more detailed study of the glueing process we refer
to [220]. Here, we use the UV curing optical adhesive NBA107. The main advantage
of this adhesive is its fast curing properties as well as the relative ease with which
components can be removed again without damaging them. To facilitate the glueing
procedure, a mask was manufactured which referenced all elements with respect to
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Figure 3.9: Delay line principle. Two beams are interfered under an angle to generate
a superlattice. By changing the frequency of the green lattice beams by ∆ f , traversing
through an additional delay line of length ∆L in one arm changes the relative super-
lattice potential by ∆φ.

the Zerodur® base. Then, glueing was performed while aligning a beam throughout
the setup. Due to the limited number of degrees of freedom, this is very helpful to po-
sition elements with sufficient precision. After glueing, the mask was removed from
the setup. While in our case, the stability of the components turned out to be suffi-
cient, it is possible to add additional, vacuum-compatible slow-curing glue such as
Torr Seal®. Furthermore, the Zerodur itself also cannot be fixed inside the aluminium
box using screws. Instead, we use Viton® pads that are fixed on the bottom of the
Zerodur plate and set into small indentations in the aluminium box.

3.3.4 Tunability

Precise tunability of the relative superlattice phase is essential in setting the desired
couplings within the system. Here, we use two separate, complementary approaches:
a combination of frequency shifting and a delay line is used for fast phase control
while a rotatable glass plate acts as a wider range, slow phase changing element.

Frequency shifting and delay line

As described above, the frequency change occurs in the seed of the amplifier used for
second-harmonic generation. We use two acousto-optic deflectors17 in a double-pass
configuration in series to realise large frequency shifts. Each AOD has a bandwidth
of 130 MHz within which a deflection efficiency of above 60 % can be reached. There-
fore, starting with about 400 mW of power at 1064 nm, we can ensure 30 − 50 mW

17AOD 4225-2 by Gooch&Housego
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as a seed for the amplifier. For more details on the setups, see also [150]. The to-
tal frequency shift of the 532 nm light is therefore 2 × 2 × 2 × 130 MHz = 1.04 GHz
where an additional factor of 2 is won due to the frequency shift happening before the
second-harmonic generation.

By applying a frequency change of ∆ f in addition to a traversed optical path of
length L, the corresponding phase shift is

∆φ = kL =
πn∆ f

c
L. (3.3)

The desired phase range depends on the application. For most cases, the minimal
range is given by the possibility to access to the full range of symmetric to antisym-
metric superlattice potential, i.e. a range of π/2. In some cases, a larger range is use-
ful as simultaneous access to two separate symmetric phase configurations may be
required (e.g. in the charge pumping protocol of our vertical lattice, see section 2.4.3).
In that case, at least a range of π is necessary, although that depends on the precise
position of the symmetric phase configuration within the phase range. Without any
further control over the relative superlattice phase, in order to be sure to have two
such configurations, a phase range of 2π is needed. These values translate into the
length of the delay line. In our case, we settled for a length of L = 41.6 cm for the
y-lattice, while for the x-lattice, the delay line is only 4.2 cm long (and thus negligible)
due to lack of space in the experimental setup. This realises a total phase range of
1.4π for the y-lattice.

Electronics for phase control

With the AODs, the control of the phase of the y-lattice is effectively a change in fre-
quency. Therefore, a fast and high-quality RF frequency source is required. First, the
linewidth of the RF source has to be narrow in order to not add phase noise, which
is directly transferred from frequency noise. For the numbers given above for the y-
lattice, to achieve phase noise below 1 mrad, a linewidth of less than 30 kHz is needed.
Furthermore, this source must never fully turn off, even when changing frequencies
as this would interrupt the seed of the following amplifier. However, many commer-
cial frequency sources are not able to provide uninterrupted output over the desired
frequency range of 150 − 300 MHz. We here use a direct digital synthesizer (DDS)18

which fulfils our requirements. It provides RF signals up to 400 MHz at 1 GS/s with a
linewidth of < 10 kHz. We can either directly program the desired ramps, or use the
analog input to control the phase directly via our experimental control system. Using
the analog input control option increases the linewidth by a factor of two, which is
still narrow enough to not significantly impact the phase stability.

18Flex-DDS-NG by Wieserlabs
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Figure 3.10: Superlattice tuning with rotatable glass plate. a, Change in relative
phase after rotation from normal incidence to a given final angle for glass plates of
thickness 1, 2, 3 and 5 mm respectively. b, Corresponding beam shift of a 532 nm
beam as a function of final angle after rotation from normal incidence, showing the
required compensation. The inset depicts the offset between the two beams.

Galvanometric phase control

In a situation, where spatial constraints do not allow for a delay line (such as for our
x-lattice), alternative solutions for the control of the relative superlattice phase are
required. One possibility is a rotatable glass plate inserted into the beam [221]. Due
to the different refractive indices for the 532 nm and 1064 nm beam, the optical path
length through the material differs. When rotating the glass plate, the path length
changes for both proportionally and therefore induces a change in the relative phase
of the superlattice. More specifically, for a glass plate of thickness d with refractive
index nλ and incidence angle α for both beams (with wavelengths λL and λSL), the
optical path length behaves as

Lλ = d/ cos(arcsin(sin(α)/nλ)). (3.4)

The corresponding phase shift when rotating to an angle α from normal incidence is
then

∆φ =
π

λL
[nλ,L(Lλ,L − d)− nλ,SL(Lλ,SL − d)] . (3.5)

The corresponding relative phase shift for different plate thickness d is shown in
Fig. 3.10a. By appropriately choosing the initial incidence angle as well as the thick-
ness d, the sensitivity and range can be set. However, not only the relative superlattice
phase is affected, but also the position of the beam (see Fig. 3.10b). These movements
are rather large and have to be compensated for. By using two glass plates that rotate
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Figure 3.11: Galvanometer for coarse phase control. Positional error after gal-
vanometer movement. The set position is shown in the dashed black line, the actual
position in blue and the corresponding error in red. After movement by 20 ◦, it takes
ca. 25 ms for it to react and in total more than 250 ms until it has finally settled.

in opposite directions, the positional shift can be compensated for, while the phase
shift adds up from both elements.

For our purpose, we use glass plates with d = 3 mm, mounted on galvanome-
ters by Physik Instrumente. We choose these devices based on their exceptionally
small size of 30 × 30 mm in conjunction with the very high precision of movement.
They are able to rotate by more than 360 ◦ with a maximum velocity of 720 ◦/s. The
specified sensor resolution is 35 µrad with an incremental motion of 105 µrad, while
the bidirectional repeatability is specified for ±210 µrad. This would correspond to
a precision for the relative phase of ∼ 5 mrad. The main disadvantage of using this
method for phase control is due to its slow speed on the order of 100 ms. We show the
recorded movement of the galvanometer in Fig. 3.11. First, there is a significant delay
of the movement with respect to the set point signal of 25 ms. However, this delay
turns out to be very repeatable such that it can effectively be partially mitigated by
sending the signal at an appropriate earlier time. However, the final error is usually
still on the order of 175 µrad and it takes about 180 − 200 ms to to settle to its final
position. For these reasons, this method is significantly worse than using a delay line
in terms of speed and precision and prevents dynamic tuning of the phase during the
experimental sequence. But, as it is able to provide arbitrarily large phase shifts with
minimal size, it can be used in situations with very little available space. Ideally, using
it in conjunction with a delay line allows for a shorter delay line.
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3.4 Characterisation

3.4.1 Preparation and temperature

Before characterising the specific properties of the superlattice potential as it is unique
to this setup, we first make sure that the general preparation scheme works at least as
well as before the change in lattice. For this, the relevant observables are the on-site
charge fluctuations (such that a Mott insulator is formed) and spin-spin correlations.
As the new, bichromatic lattices are blue-detuned, our preparation scheme had to be
adjusted to account for the different confining potentials. We start with a cold cloud
in a single plane of a vertical lattice that is confined in-plane by a crossed dipole trap.
At this point, we load from the harmonic dipole potential into a repulsive, box-like
potential projected using a DMD. This potential is already adjusted for the final pa-
rameters we require after loading into the lattice. We hold in this potential for 1 s.
Then we ramp up the lattices within 200 ms to their final parameters. The DMD po-
tential is set up such that a flat, central region is surrounded by a reservoir with ∼ U/2
higher chemical potential and then a barrier that is several U high. The transition be-
tween these regions is smoothed to avoid sharp edges that might introduce additional
fluctuations or instabilities. The resulting density profile and on-site fluctuations are
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Figure 3.12: Preparation of low-entropy Mott insulators. a, Preparation sequence
from atoms in a 2d plane into the final 2d lattices. b, Resulting density profile and c,
on-site fluctuations at U/t = 6.5(2).
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Figure 3.13: Spin-spin correlations. a, Sign-corrected spin-spin correlations as a func-
tion of distance |d| at half filling. A fit to QMC data (solid line) reveals temperatures
of kBT/t = 0.249(3). The inset shows the same data logarithmically to extract the
correlation length ξ = 2.6(3) (dashed line). b, Spin-spin correlation map showing
symmetric couplings in the system. Distances where correlations are consistent with
zero are not shown.

shown in Fig. 3.12 at half-filling and U/t = 6.5(2). We achieve on-site fluctuations as
low as 0.09. This shows the high-fidelity preparation of a Mott insulating state that is
required for most of our experiments.

To ensure that there is no excessive heating present in the system, we study spin
correlations at half filling at U/t = 6.5(2) by performing the spin detection technique
as described in Ch. 2. We define the spin correlator Css(d) as

Css(d) =
1
Nd

∑
i

〈
Ŝz

i Ŝz
i+d
〉
−
〈

Ŝz
i
〉 〈

Ŝz
i+d
〉

σ(Ŝz
i )σ(Ŝz

i+d)
. (3.6)

The resulting spin correlations are shown as a function of distance in Fig. 3.13. We
find correlations extending up to 8 sites with a characteristic correlation length of
ξ = 2.6(3) sites. By comparing to quantum Monte Carlo simulations, we extract a
temperature of kBT = 0.249(3) t = 0.405(5) J, which is consistent with the lowest
temperatures achieved in fermionic quantum simulators using optical lattices [64].

3.4.2 Stability

Due to the large amount of experimental realisations required to extract precise higher-
order correlation functions, stability both on short as well as long timescales is of ut-
most important in the design of optical lattice setups. Here we will summarise the
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resulting stability of beam pointing as well as the phase stability of the new bichro-
matic setup.

Pointing and alignment

The limited size of the lattice beams due to the available power leads to a high degree
of precision required in alignment. Misalignment will increase the harmonic decon-
finement and move it away from the centre of the system as defined by the DMD.
Therefore, beam alignment based solely on lattice depth is not precise enough for our
purpose. Instead, we prepare a large circular cloud of atoms and add only individual
lattice beams (such that no lattice is formed). The anticonfinement of the individual
beams forms a hole in the atomic cloud that we centre with respect to the DMD where
we are sensitive on positional mismatch on the order of one lattice site. This proce-
dure is repeated for every lattice beam and usually does not impact the overall depth
of the lattice at all. Due to the available motorised mirrors, the whole alignment can
be executed with high precision within about one hour. Usually, in continuous oper-
ation, alignment is conserved for several days up to one week. which allows for long,
uninterrupted measurements.

Relative phase stability and tunability

One main reason for a bichromatic superlattice design is the inherent, passive stability
of the setup as described in section 3.3. Here, we investigate the resulting stability
of the relative superlattice phase. For this purpose, we load into isolated double-
wells with Vx = 40(2) ER, Vy = 11.0(5) ER and VSL

y = 31(1) ER such that ty =

h × 518(76)Hz. We set the chemical potential to achieve a filling of ⟨n̂⟩ ≈ 0.75, i.e.
slightly above one atom per double-well. By varying the phase using the frequencies
of the AODs, we are able to realise different geometries (see Fig. 3.14a): for φ < 0 or
φ > 0, we have imbalanced double-wells, which lead to only one of the wells being
populated. For φ = 0, the double-well is symmetric and both wells are populated
equally. We calculate the normalised imbalance between the two wells as I = (⟨n̂L⟩−
⟨n̂R)⟩/(⟨n̂L⟩+ ⟨n̂R⟩), where n̂L/R is the population in the left/right part of the double-
well, and plot it as a function of phaseφ in Fig. 3.14b. Here, we postselect on a specific
total population per double-well with one atom per double-well shown in blue and
two atoms per double-well in red. For singly occupied double-wells, only the lower
well has finite populations for φ ̸= 0. Only in a narrow phase regime around φ = 0,
both wells are equally populated. Away from the symmetric configuration, we find
an average imbalance of I = 0.985(2) for φ ≥ 50 mrad. The solid line corresponds
to theory calculations for a two-site Fermi-Hubbard model without free parameters.
When considering double-wells with two atoms, interaction effects play a role. We set
the interactions to U = h × 7.7 kHz at φ = 0. As a result, the detuning between the
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Figure 3.14: Double-well preparation using a superlattice. a, Single-site resolved
fluorescence images for different lattice potentials. For φ < 0 and φ > 0, lattices
are isolated on one part of the double-well with balanced occupations at φ = 0. The
corresponding lattice potentials are shown below. b, Imbalance between different
parts of a double-well as a function of relative superlattice phaseφ and thus detuning
∆/U. For one atom per double-well, there is a sharp transition around the symmetric
phase, while for two atoms, there is a plateau due interaction effects. Ground state
theory calculations are shown in solid lines.

wells first needs to overcome the interaction energy U before both atoms can occupy
the same well. This leads to a plateau around φ = 0 whose width corresponds to ±U.
Again, theory calculations agree well with our obtained data. We commonly use this
measurement for a precise calibration of the relative superlattice phase.

We perform a long-term measurement on the relative superlattice phase to deter-
mine its stability. For this, we extract the exact symmetric phase from the measure-
ment as stated above and track it over time (see Fig. 3.15). We find a small, slow drift
of about 2.0(1)mrad/h, consistent over several measurement. We do not find any
correlation between this drift and the table temperature, humidity or beam position,
such that at this point, the exact origin of this drift is unknown. Fortunately, we can
easily compensate for this drift by using this kind of measurement as a short calibra-
tion that can be executed in less than three minutes.

Finally, we investigate shot-to-shot fluctuations of the relative superlattice phase
by measuring solely at φ = 0 and tracking the imbalance as a function of time (see
Fig. 3.16). In addition to the slow drift observed in Fig. 3.15, we observe fluctuations
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Figure 3.15: Superlattice phase drift. a, Imbalance as a function of phase for different
subsequent measurement times to extract symmetric phase. b, Symmetric phase as a
function of time as extracted from a. A linear fit (black dashed line) with a slope of
2.0(1)mrad/h is consistent with the observed drift.

in individual realisations. By comparing these imbalance fluctuations to the slope of
the full phase scan, we can estimate the corresponding phase fluctuations. After sub-
traction of the overall drift, we estimate fluctuations of 5 mrad. This is far below the
requirement for spin-resolved detection as well as many applications in double-well
Fermi-Hubbard physics (see section 3.2). The superlattices in use in earlier iterations
of our experiment were significantly worse with a short-term stability of 53(4)mrad
(in addition to strong long term drifts) [141]. Similar bichromatic setups in previ-
ous experiments using retro-reflected superlattices reported relative phase stabilities
of 9 mrad [222] (14 mrad [223]). More recent work for bichromatic superlattices for
bosonic systems also demonstrated a stability of 9 mrad [224]. For tunable lattices in
other geometries, good passive stability using a reduced number of beams has been
achieved. For a folded, tunable lattice, 31(3)mrad have been achieved [188] while for
a multi-frequency lattice, stabilities as low as 3 mrad have been reached [186].

In addition to controlling the relative superlattice phase via the frequency of the
lattice beams, we can also tune it using the rotatable galvanometer glass plates. We
calibrate the glass plates by performing phase scans using the AODs to determine the
symmetric phase configuration and repeat this for different galvanometer angles (see
Fig. 3.17). We observe the expected quadratic relation between the galvanometer an-
gle and the symmetric phase and calibrate the absolute galvanometer angle by using
only this angle as a free parameter in the fit (dashed line in Fig. 3.17b).
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Figure 3.17: Relative phase control with galvanometer. a, Scans of the relative su-
perlattice phase φ using the applied AOD frequency for various angles of the gal-
vanometers. We extract the symmetric phase, where the imbalance goes to zero and
show the result as a function of galvanometer angle in b. The dashed line is a theory
prediction with only the absolute angular offset as free parameter.
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Absolute phase stability

Not only the relative superlattice phase stability but also the absolute phase stability
can be highly relevant for specific experiments. This is most crucial when addressing
individual sites or small scale structures using the DMD. Drifts of the absolute lattice
phase with respect to the DMD will then move patterns from their intended position,
changing preparation or addressing procedures (as e.g. in the case of quantum walks,
see section 3.4.3). We assume that drifts of the DMD are usually small as the projec-
tion via the objective grants inherent positional stability. We track the absolute phase
of the lattices as a function of time in Fig. 3.18. The observed drifts occur over several
hours and are below 0.2 lattice sites. This is more than precise enough to have well
defined edges in most experiments where no additional small scale structures are im-
plemented. For single-site addressing, the slow timescales of the drift make feedback
procedures straightforward to implement. By tracking the absolute phase of the lat-
tice, the position of the DMD can be adjusted continuously to follow the lattice phase.
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Figure 3.18: Absolute phase stability. Extracted lattice phase along x (blue) and y
(red) over two days. Slow drifts are smaller than 0.2 lattice sites.

3.4.3 Quantum walks

The homogeneity of the lattice potential can have significant impact on the resulting
physics as small disorder may change the preferred ground state [225]. Density mea-
surements will only be sensitive on the of the interactions U for half-filled systems
and on the order of the tunnelling energy t for doped systems. To be precise on lower
energy scales, we here study time-resolved dynamics in quantum walks where we are
sensitive down to the superexchange energy J.
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Figure 3.19: Preparation for quantum walks. a, Lattice ramps for quantum walk
preparation with variable final superlattice power and final holding time. b, Resulting
atomic density, with reservoirs on either end that are neglected in the analysis.

We investigate the single- and two-particle time evolution in different 1d superlat-
tice potentials. For this purpose, we prepare a single decoupled line of atoms along
x, which we will then subsequently release and observe the evolution along y. To
prepare a single line of atoms with at most one atom per chain, we make use of the
superlattice potential along y by loading into a deep lattice with Vx,y = 40(2) ER,
VSL

y = 25(1) ER. We set the phase to the antisymmetric configuration φ = π/2,
where we achieve the highest nearest-neighbour potential offset for a given lattice
depth. By combining this with our DMD potential, we can load into a single line of
atoms with high fidelity with lower requirements on the addressing resolution of the
DMD (see Fig. 3.19). Starting from this situation, we quench the lattice potential along
y within 1 ms to a given final configuration at time τ = 0 and observe the dynamics
as a function of time.

Single-particle, flat lattice

We first consider a flat lattice, without any additional superlattice potential. By ramp-
ing to Vy = 11.0(5) ER, we arrive at a tunnelling rate of t = h × 98(11) ER, governing
the time scales of the observed dynamics. We show the resulting measurements in
Fig. 3.20a where we postselect the data on a occupation of exactly one atom per chain.
We compare this to theory calculations using ED in Fig. 3.20b. While for short times
we observe excellent agreement with theoretical calculations, for later times the exper-
imental density distribution becomes asymmetric with a centre of mass drift towards
negative positions. This is caused by a combination of the harmonic deconfinement
due to the Gaussian envelope of the individual lattice beams and an offset of this
confining potential with respect to the centre of the system. The latter is dependant
on the instantaneous alignment of the lattice beams and may thus be optimised. The
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Figure 3.20: Single-particle quantum walk. a, Density distribution as a function of
time for the evolution after initialisation of a localised state at i = 0 at τ = 0. The
delocalisation follows the timescale of the tunnel coupling t̃ = t. We observe good
agreement with ED calculation in b.
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Figure 3.21: Simulated single-particle quantum walk with harmonic confinement.
a, Calculated density distribution as a function of time for the evolution after initial-
isation of a localised state at i = 0 at τ = 0 with added harmonic confinement and
positional offset. b, Staggered quantum walk with harmonic confinement and offset.

overall harmonic confinement can be reduced by reducing the depth of the lattice and
thus the confinement. We include this harmonic contribution in our calculations in
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Figure 3.22: Single-particle quantum walk in staggered lattice. a, Density distri-
bution as a function of time for the evolution after initialisation of a localised state
at i = 0 at τ = 0 in a staggered potential. Next-nearest-neighbour hopping allows
for delocalisation despite detuning at nearest distances. We observe good agreement
with ED calculation in b.

Fig. 3.21a. We observe qualitative agreement for a confinement of 83 × 2π Hz and an
offset of approximately two lattice site. This measurement shows that there is no local
disorder on the order of t within the lattice potential and only global confinement due
to the Gaussian envelope.

Single-particle, staggered lattice

We then add the staggered potential to study the evolution of of a single particle in a
superlattice potential. We work in a final configuration with Vy = 6.0(3) ER, VSL

y =

1.00(5) ER. This leads to nearest-neighbour tunnelling rates of t = h × 327(25)Hz.
However, the staggered potential leads to local detunings of ∆ = h × 1.38(14) kHz,
such that ∆/t ≫ 1 and therefore nearest-neighbour hopping is far detuned and thus
suppressed. Meanwhile, the site at distance 2 is again resonant with the initial site
such that tunnelling via an intermediate state is possible as a second-order order pro-
cess. The corresponding amplitude of this process follows t(2) = t2/∆. The effec-
tive tunnelling rate to next-nearest-neighbouring sites is then a combination of this
second-order hopping effect and the direct next-nearest-neighbour tunnelling t′, as a
result of the residual overlap of the Wannier functions. Whether these two have the
same or opposite sign depends on whether one considers the tunnelling process be-
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tween sites with higher or lower energy which will then consequently either sum with
identical (upper) or opposite (lower) signs. In either case, the delocalisation of the par-
ticle is restricted to a single sublattice. As we prepare our system in the lower well,
the total tunnelling rate to the same sublattice is then t̃ = t2/∆− t′ = h × 65(20)Hz.

We show the experimental results in Fig. 3.22a, with theory calculations again in
b. We observe the expected delocalisation over a single sublattice across several sites.
As in the case of the quantum walk in a flat lattice, delocalisation over longer times
is limited due to the harmonic confinement. Most importantly, the energy scales of
this process are much lower than before. Instead of the nearest-neighbour tunnelling
rate t, the import energy scale is here only a bit above what would be the superex-
change energy J = 4t2/U (as U ≈ 4.7 kHz). As we observe coherent time evolution
over many hopping events, another upper bound on possible local inhomogeneities is
placed. We include the harmonic confinement of 72 × 2π Hz into the ED calculations
in Fig. 3.21b, which is consistent with the result obtained before. The fast oscillations
visible in theory are due to off-resonant tunnelling to the other sublattice, which is not
seen in the experiment due to the lower time sampling rate.

Two-particle, staggered lattice

Finally, we can extend the quantum walks by considering the case, where more than
a single particle is prepared initially. If there is no superlattice present in the system,
the doublon will only delocalise as a single, bound object [226] with a reduced rate
compared to the single-particle tunnelling rate. Adding a superlattice potential, how-
ever, offers up more possibilities. In general, the motion of the doublon is confined to
its initial position as the delocalisation via the previous second-order hopping process
would now be a fourth-order hopping and thus for our purposes negligible. We show
data on the delocalisation as a function of detuning for singly and doubly occupied
initial states in Fig. 3.23a, where we consider the mean distance of the atoms from the
initial position after a fixed time τ = 4 ms. For single particles (grey markers), we ob-
serve the continuous slow-down of the delocalisation with increasing detuning, while
the particles are never fully localised at the initial position. For doubly occupied initial
sites (red markers), the situation is very different, as for most detunings, no delocal-
isation happens and the doublon remains at its initial position (see Fig. 3.23b). Only
for ∆/U = 0 and ∆/U = 0.5 there is substantial spreading of the atomic distribution,
which is seen both in experimental data and in theoretical results (solid lines). While
the spread at ∆/U = 0 is explained by the second-order hopping of the doublon itself,
a different effect happens at ∆/U = 0.5.

We study this specific situation in Fig. 3.24. By specifically tuning the potential
offset to U/2, we enable a resonant process by which the doublon, initially situated
in a site with lower potential, breaks up into two individual atoms on the two sites
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Figure 3.23: Spreading of density as a function of staggered potential. a, Mean size
of density distribution after a fixed time τ = 4 ms. For singly-occupied initial states
(grey markers), delocalisation is increasingly suppressed with applied detuning ∆.
Doubly-occupied initial states (red markers) are suppressed (see b), except at ∆ =
U/2 where the doublon can split up and then delocalise. Theory predictions (solid
lines) matches the experimental data well.
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Figure 3.24: Two-particle quantum walk. a, Density distribution as a function of time
after initialisation of a doubly occupied state at i = 0 at τ = 0. After initial breaking of
the doublon into two individual atoms, they delocalise with next-nearest-neighbour
hopping as in Fig. 3.22. The two particles moving into opposite directions remain
correlated as shown in b. Theory results match the experimental data.
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on either side. As these two sites both are detuned by U/2, this exactly compensates
for the interaction energy U of the doublon. After this initial breaking of the doublon,
the individual atoms are then free to delocalise via resonant next-nearest neighbour
hopping as in Fig. 3.22. The two atoms can then be found at spatially far separated
positions, but they are not independent of each other. We also note, that a broad
resonance is also expected at ∆ = U, as the doublon can break in a first-order process
and then subsequently delocalise. The low amplitude in both theory and experiment
is due to the long time scales of the subsequent single particle, next-nearest-neighbour
hopping at these large detunings.

Finally, we find strong spatial correlations between the two atoms breaking due
to the process at ∆ = U/2 as shown in Fig. 3.24b. We show two correlation maps at
specific times τ = h̄/t̃ and τ = 3.5h̄/t̃ where we define Γi j = ⟨ĉ†i ĉ†j ĉ j ĉi⟩ = ⟨n̂in̂ j⟩ −
⟨n̂i⟩δi j. The agreement with theoretical calculations demonstrates the coherent, low-
noise evolution of the atoms across the system.

3.4.4 Double-well Rabi oscillations

Optical superlattices allow for the preparation of atoms in double-well potentials,
which may have applications as qubits with collisional gates. Here, we show single
particle and many-body double-well systems, to showcase the high degree of stability
and tunability of our system.

We start with single particles in a double-well system. Following a similar prepara-
tion procedure to Fig. 3.19, we load atoms into a deep lattice along x and superlattice
along y in a far detuned phase, Vx = 40(2) ER, VSL

y = 31(1) ER, Vy = 10.0(5) ER,
φ = −400 mrad. We set the chemical potential to prepare one atom per double-well
along y. We then quench the phase to the symmetric double-well configuration at
φ = 0 at time τ = 0 within 50 µs to initiate the oscillations between the wells. After
holding for a variable time, we then freeze the system for detection. The resulting
occupation in one part of the double-well as a function of holding time ⟨n̂L(τ)⟩ is
presented in Fig. 3.25 where we postselected on having a single atom per double-
well. We observe coherent oscillation over tens of milliseconds. We can model our
data with a damped oscillation as ⟨n̂L(τ)⟩ = 1

2 (1 + cos(ωτ)e−ατ) with oscillation
frequency ω and damping α and find good agreement for ω = 2π × 1.273(1) kHz
and α−1 = 38(7)ms = 48(9)× 2π/ω. The frequency matches the expected value of
ωth. = 2ty/h̄ = 2π × 1.33(20) kHz from band structure calculations using the afore-
mentioned lattice depths.

As mentioned before, it is possible to use these double-wells in quantum compu-
tation by interpreting the double-well two-state system as a qubit. A transfer from
one part of the double-well to the other is then one component for a single qubit op-
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Figure 3.25: Rabi oscillations in a double-well. Evolution of a single-particle ini-
tialised in one part of a double-well after a quench to the symmetric phase. The
weakly damped oscillation persists for tens of ms. We show high fidelity π-pulses
in b and late-time oscillation in c. The solid line refers to a fit with decay time of
α−1 = 38(7)ms.

eration using a π-pulse. We achieve π-pulse fidelities of Pπ = 1 − ⟨n̂L(τ = π/ω)⟩ =
99.5(1)% as extracted from the fit to the oscillation in Fig. 3.25. We estimate a mea-
surement error of 0.3 % by measuring differences in occupation between subsequent
fluorescence images of the same realisation. Correcting for this error, we have a fi-
delity of P̃π = 99.8(1)%. While these numbers are already encouraging considering
the recent implementation of this type of qubit encoding, it so far cannot compete
with the state-of-the-art in many other (non-fermionic) platforms (see below for more
details). In the following, we will discuss possible sources and improvements to the
dephasing in the system.

Spatial dephasing

One possible issue arises from the global lattice potential itself. We average over a cer-
tain spatial region where the individual double-wells may be slightly dephased with
each other. On the one hand, the gradient of the harmonic confinement from the lattice
beams could induce spatially varying offsets within the system. On the other hand,
misalignment between the lattice and the superlattice can lead to lattice constants that
are not perfectly commensurate which introduces spatially varying phases between
the lattice and the superlattice. To study this effect, we measure the double-well os-
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Figure 3.26: Local Rabi frequencies. Spatial map of local oscillation frequencies ex-
tracted from Rabi oscillations, normalised to the mean frequency ω̄.

cillation frequency as a function of position within the system as local detunings will
lead to off-resonant Rabi oscillations at higher frequencies. We show the result in
Fig. 3.26. We observe a small variation over the main system, dominated by the har-
monic deconfinement of the lattice beams. We average over these inhomogeneities
in simulated oscillations and show the result in Fig. 3.27a. For future improvements
of this issue, there are several pathways: either increasing the lattice beam diameter
(which is severely limited by the available power), or trying to compensate the dif-
ferent confinement contributions by precisely choosing lattice depths. Finally, precise
compensation of this potential with a DMD is also a possibility.

Noise-induced dephasing

Several noise sources can lead to dephasing of the observed oscillations. First, we
can also investigate phase noise and its impact on the decay due to varying detun-
ing between the wells. This leads to dephased, off-resonant oscillations, leading to a
change in both contrast and frequency of the oscillation. Simulated data is shown in
Fig. 3.27b, where the resulting power-law decay can be seen. For this, we used the up-
per bound from section 3.4.2 of 5 mrad for shot-to-shot phase fluctuations (25 mrad in
red). For experimentally relevant parameters, this might explain the observed deco-
herence in the experiment. Furthermore, the late time behaviour shows an offset from
the balanced distribution around 0.5. This feature is also visible in the experimental
data, but may also be an artefact of drifts as discussed in the next section.

Similarly, intensity noise on the lattice beams will transfer to frequency noise due
to time-dependant couplings and thus dephased oscillations. We chose our laser
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Figure 3.27: Decoherence sources. Comparison of dephasing of double-well Rabi
oscillations induced by a, spatial inhomogeneities, b, phase noise (5 and 25 mrad re-
spectively), c, phase drifts (over 2 and 4 h), and d, interwell coupling. Multiple effects
possibly add up to the observed dephasing.

sources to try to minimise intensity noise and stabilise the intensity further with
AOMs (see section 3.3.2) such that intensity noise should not impact the data.

Drift induced dephasing

We have previously shown that the relative phase of our superlattice is subject to slow
drifts of the relative superlattice phase on the order of ∼ 2 mrad/h. As we require sev-
eral realisations of the experiment per setting, phase drifts within the measurement
window are present. These drifts are especially relevant in this situation where we
work close to the symmetric phase and are therefore most sensitive to small devia-
tions. Drifts will manifest similarly to phase noise in the data, as shown in Fig. 3.27c
where a linear drift of 2.0 mrad/h over measurement time of 2 (4) hours was assumed
for the blue (red) line. While the exact cause of this drift is so far not known, we can
mitigate it by performing regular calibration measurements. By interweaving phase
scans as in Fig. 3.14 into the main measurement, we can determine the exact phase in
very few realisations. This allows us to compensate for this drift without losing too
much experimental statistics.
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Dephasing due to interwell couplings

So far we have assumed all double-well to be closed systems and perfectly indepen-
dent of each other. This is only exactly the case in the limit of infinite lattice depths
along x and the superlattice along y. While the coupling along x at Vx = 40 ER is only
h × 0.7 Hz and thus negligible, the superlattice is only at VSL

y = 31(2) ER. Therefore,
the remaining interwell coupling is h × 14 Hz. Comparing this to the intrawell cou-
pling of h × 663 Hz, it can be quite significant and lead to reduced coherence times.
In principle, it is straightforward to solve this problem by adding more power to the
y-superlattice. In this case, we are not limited by the available laser power as it is
operated at 1064 nm. While we are at the moment restricted by technical limits, we
plan to improve on this issue and thereby significantly increase the coherence time.

In summary, several of these noise sources could potentially contribute to the ob-
served decay rate, where a more precise identification of the limiting effect requires
further investigations. Further improvements in the compensation of harmonic con-
finement in addition to frequent recalibration of the lattice phase can reveal the origin
of the dephasing and allow for significant improvements in fidelity.

Comparison to other platforms

Ultracold fermions have been proposed as a platform for quantum computation by
making use of their inherent statistical properties [227, 228]. Here, single-qubit gates
can be implemented using single particles in a double-well potential, as shown in
the experiment above. Two-qubit gates are then in direct extension to be realised via
collisions between two atoms in a double-well [229]. In that sense, a superlattice po-
tential already forms a basic building block for a fermionic quantum processor. How-
ever, to connect different double-wells with each other, additional tweezer potentials
may be used to shuttle atoms between sites. Using bosons in a superlattice potential,
there has already been progress and single-qubit gate errors of 1.2 × 10−4 have been
shown [119]. An alternative approach to using a superlattice potential is found in
optical tweezers arrays. Building the potential in a ‘bottom-up’ approach [230] leads
to an architecture without the need for an additional superlattice by simple ‘merge’
and ‘shuttle’ gate operations [231]. The required homogeneity for tweezers to build
an optical lattice potential has also been demonstrated in 1d and 2d [105, 232].

In recent years, using optical tweezers in combination with Rydberg excitation
has emerged as a powerful tool for quantum computation [233, 234]. Nuclear qubits
encoded in alkaline and alkaline-earth atoms allow for precise global and local qubit
manipulation. Both single- and multi-qubit gates have been implemented and error-
correction codes have been demonstrated [25, 235]. Usual single-qubit error rates are
on the order of 10−3 − 10−4 [236–242] with exceptional fidelities down to 3.0(7) ×
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Figure 3.28: Gate performance comparison. Comparison of single-qubit gate fidelity
and duration for different platforms. Highest gate fidelities have been achieved in
trapped ions ( [248]), while fastest performance is found in superconducting qubits
( [224]).

10−5 having been shown [243, 244].

There are numerous other platforms which compete with ultracold atoms in achiev-
ing the highest gate fidelities with short gate durations in large systems. Promi-
nently, superconducting qubits have been under much investigation. In this case,
single-qubit gate errors down to 7.4 × 10−5 have been shown [224]. Similar fideli-
ties are found using quantum dots (down to 4.4 × 10−4 [245]) and NV centres (4.8 ×
10−5 [246]). The best gate fidelities so far have been demonstrated using trapped ions
where errors down to 1.0(3)× 10−6 have been achieved [247, 248].

We note that especially single-qubit gate fidelity is by far not the only relevant
quantity to compare the performance of quantum processors. We show a comparison
of these fidelities and gate durations for different platforms in Fig. 3.28. We empha-
sise that a more thorough optimisation of gate performance as well as more thorough
testing using randomised benchmarking was not performed so far on this experiment
and thus remains as a future prospect. Furthermore, despite so far lower gate perfor-
mance, cold atoms have multiple advantages compared to other platform, especially
due to their indistinguishability and scalability.

3.4.5 Engineering Fermi-Hubbard couplings in ladder systems

For the purposes of our experimental setup, one major application is the possibility to
explore new parameter regimes of the Fermi-Hubbard Hamiltonian. The introduction
of well-controlled potential offsets ∆ on every other lattice site, leads to modified tun-
nel and spin couplings. By tuning both lattice and superlattice depths as well as the
relative phase between the lattices, we can cover a wide range of different parameters.
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Figure 3.29: Tunable spin coupling using superlattices. a, Preparation sequence of
detuned ladder systems. b, Nearest-neighbour spin correlations along x (red markers)
and y (blue markers) as a function of detuning. Around ∆ = U, strong mass trans-
port leads to vanishing correlations. For ∆ > U, the sign of the correlations along
y changes to become positive. The correlations along y are strongest for ∆ ≈ 0.5 U.
Theory results in c at kBT/t = 0.2 at half-filling (solid lines) and a doping of δ = 0.125
(dashed line) agrees with experimental results. Full 2d correlation maps in d show
the mixed AFM-FM correlation produced at detunings ∆ > U.

While the overlap of the Wannier functions only changes marginally with detuning,
resonant tunnelling is suppressed (see also section 4.3 for more detailed discussion).
However, spin couplings are a second order effect that change continuously with de-
tuning. Following the discussion in [249], we perturbatively find

J =
2t2

U + ∆
+

2t2

U − ∆
(3.7)

which holds as long as the virtual population in the intermediate state is small enough,
i.e. for ∆ ̸= U. This has been experimentally explored in optical superlattices in [197]
and more recently using single-site addressing been applied to ladder systems in [164].

Here, we explore the basic physics using a ladder system. To avoid mass trans-
port, we prepare the system by first loading into two decoupled 1d chains before
restoring their coupling (see Fig. 3.29a and section 4.3 for more details). We load
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into individual 2-leg ladders of size Lx × Ly = 11 × 8 with Vx = 9.0(5) ER, Vy =

11.0(5) ER, VSL
y = 23(1) ER with varying relative superlattice phase φ. We set the

interactions to U = h × 5.04(12) kHz, with tunnel couplings tx = h × 167(20)Hz
and ty = h × 345(51)Hz. The chemical potential is such that the system is slightly
hole-doped with ⟨n̂⟩ = 0.93. We evaluate nearest-neighbour spin-spin correlations
as a function of detuning along x (red markers) and y (blue markers) in Fig. 3.29b.
We observe an increase in spin correlations along y with increasing detuning, which
is consistent with the increase in superexchange coupling. Around ∆ = U, the per-
turbative result of Eq. (3.7) does not hold any more due to excessive population in
the intermediate state such that spin correlations along both directions vanish. For
∆ > U, the spin correlations along y turn ferromagnetic, consistent with the change
in sign of the superexchange coupling in this regime. Meanwhile, couplings along
x stay approximately constant or decrease slightly below ∆ = U, as correlations are
‘redistributed’ towards y. For ∆ > U, correlations become more strongly negative
as the correlations along y change sign. The qualitative features of these results are
reproduced in finite temperature exact diagonalisation (ED) calculations in Fig. 3.29c
on a small system of Lx × Ly = 4 × 2. The solid (dashed) line is at a filling of ⟨n̂⟩ = 1
(⟨n̂ = 0.875⟩) at a temperature of kBT/t = 0.2. Despite significant finite size effects,
especially for the doped system, the change of sign for ∆ > U as well as the increase
in correlations along y for ∆ < U are clearly visible. We show the spin correlation
map for several detunings in Fig. 3.29d. In addition to the nearest-neighbour signals
discussed before, we also observe an increase in correlation length along x. While
for ∆ = 0, correlations at distance dx = 2 are slightly negative, they now become
significantly positive for ∆ = 0.5 U and ∆ = 1.3 U.

3.5 Summary

We have shown the design and characterisation of a new, high-stability bichromatic
superlattice setup. We made use of the inherent passive phase stability of the bichro-
matic design to reduce our fluctuations below 5 mrad, which is the lowest value
achieved for a square superlattice so far. By shielding the system from the environ-
ment using a Zerodur® base, we have reduced absolute phase changes to below 0.2
lattice sites over many hours of measurements. We characterise the stability by ob-
serving single-particle Rabi oscillations in individual double-wells, where we detect
long coherence times, opening the possibility of fermionic quantum computation. The
high degree of homogeneity of the lattice is shown in 1d quantum walks both in flat
and staggered potentials. Finally, we have shown an application of the tunable super-
lattice phase in the engineering of superexchange coupling from antiferromagnetic to
ferromagnetic correlations in 2-leg ladders.
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Despite the large capabilities of our lattice, there are still several ways to further
improve the setup in a possible next iteration. First, more power in both the lattice
and superlattice would reduce the harmonic confinement and thus allow larger sys-
tem sizes by increasing the beam waist. With limited available laser sources, intro-
ducing elliptical beams may be required here. While the cause of the residual phase
fluctuations are not known precisely, reducing the path travelled through air between
the lattice setups and the main vacuum system, may lead to improved relative phase
stability.

The high-degree of stability opens up a plethora of applications, including the
realisation of stripe phases in mixed-dimensional systems discussed in the next chap-
ter. However, also in the context of quantum computation, our optical superlattice
shows promise. By building on top of the already demonstrated single-particle op-
erations, we can implement two-qubit operations by using the interactions between
particles [228, 229]. This can be done either globally by setting the global phase such
that the two wells are in resonance, or locally by adding additional single-site poten-
tials to shift individual double-wells into resonance. Finally, superlattices are useful
tools in achieving lower temperatures. In a bilayer configuration, the high degree of
control over the relative detuning can be used to set up one layer as a reservoir to carry
excess entropy from the main system [250]. Alternatively, exploiting the large gaps of
band insulators allows for the preparation of very low entropy states which in turn
can be adiabatically transferred into a Mott insulating state using superlattices [251].
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Chapter 4

Signatures of stripe formation in a
mixed-dimensional system

In this chapter, we describe the experimental progress towards the study of low-
temperature stripe phases of the Fermi-Hubbard model. We discuss past experimen-
tal and theoretical studies and how this phase relates to superconducting phases. We
then show our particular realisation of stripes in a Fermi-Hubbard system which, due
to the strict temperature requirements, relies on a specific, mixed-dimensional geom-
etry to increase energy scales to experimentally accessible regimes. We present results
in both the charge and the spin sector, pointing towards stripes forming in the system.
The results of [206] are contained in this chapter. Numerical calculations presented
here were performed by our collaborator Henning Schlömer.

4.1 Stripe phases in context

4.1.1 Low-temperature phases of the doped Fermi-Hubbard model

After high-temperature superconductivity had been discovered in the cuprate com-
pound La2−xBaxCuO4 (LBCO) [73], the unexpected insulating nature of the undoped
state sparked numerous theoretical investigations. This discovery was surprising at
first as it could not be explained based on phonon-mediated attraction by the success-
ful BCS theory of superconductivity. Therefore a new theoretical description was re-
quired. Such a model was found in the 2d Fermi-Hubbard Hamiltonian as defined in
Eq. (2.1) [80, 254], which is a minimal model for strongly correlated phases, driven by
the competition of its two terms: kinetic delocalisation versus magnetic ordering. This
leads to a rich phase diagram which may describe both the insulating behaviour as
well as the superconducting regime based on the exact parameters. A brief overview
of the phase diagram for strong interactions U/t ≫ 1 as depicted in Fig. 4.1 is given
here.

In the undoped state, the 2d Fermi-Hubbard model is insulating and forms a Mott
insulator as doubly occupied sites are suppressed. Depending on the temperature,
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a b c

Figure 4.1: Phase diagrams. a, Conjectured phase diagram of the 2d Fermi-Hubbard
model for strong interactions U/t ≫ 1 with antiferromagnetic (AFM), superconduct-
ing (SC) and Fermi liquid (FL) phases. b (c), Phase diagram of cuprate materials
La2−xSrxCuO4 (La2−xBaxCuO4). Even between two closely related materials, sig-
nificant differences in their phase diagram are visible. The interplay between spin
and charge stripe order (SO and CO) with the addition of structural changes between
low-temperature (less-)orthorombic (LTO/LTLO) and tetragonal (LTT) lattices lead to
complex behaviour that is hard to model in theoretical investigations. The phase dia-
grams are adapted from [91], [252] and [253] respectively.

this can be a paramagnetic state for T > TNéel or an antiferromagnetic state for
T < TNéel. Note, however, that for 2d systems there is only long-range order in the
ground state [132]. In the opposite limit of large doping (δ ≳ 30%), the system can
be accurately described by Landau’s Fermi liquid theory, making the system metal-
lic. Between these two limits, the ground state is dominated by collective effects,
which have been speculated to be superconducting, as discussed in more detail later
on. The exact processes governing the doping region around ca 10 − 20% doping are
still under heavy debate and may depend strongly on the precise model parameters.
For higher temperatures T > TC, the system returns to a metallic state. However,
the physics in this region also feature peculiar effects, that are not fully understood,
as excitations seem to be suppressed in certain regions of the Fermi surface. This
so-called pseudogap regime is often considered as a precursor to the more collective
effects coming into play when cooling the system further down. Even the metallic
phase (dubbed strange metal) exhibits non-trivial properties as its resistivity rises lin-
ear with temperature.

The 2d Fermi-Hubbard model of Eq. (2.1) is a minimal model for strongly corre-
lated systems, but does not capture the full phenomenology of cuprate materials. As
can be seen in Fig. 4.1b, c, while La2−xSrxCuO4 (LSCO) seems to exhibit similar fea-
tures to the conjectured Fermi-Hubbard phase diagram, LBCO on the hand displays
interesting effects at a doping of 1/8 (see below for further discussion). The exces-
sively wide range of possible coupling terms and parameter regimes impedes a full,
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comprehensive study of the Fermi-Hubbard model, with small out-of-plane, diagonal
or next-nearest-neighbour couplings playing important roles (see section 4.1.3).

4.1.2 Stripe phase definition and signatures

Historical overview

Despite superconductivity being the most prominent low-temperature phase in the
doped cuprates, numerous alternative states have been observed and investigated.
Especially the so-called stripe phase has attracted a lot of interest due to its proximity
and overlap with possible superconducting phases. While the exact origin and rela-
tionship of superconductivity and stripes is not conclusively known, the last decades
have led to many insights into the properties of stripe phases.

In 1994/95, almost a decade after the discovery of high-temperature superconduc-
tivity, Tranquada et al. discovered charge-ordered stripes in La1.6−xNd0.4SrxCuO4
and La2NiO4 at a doping of 1/8 [82, 83, 255, 256]. Already a few years earlier, un-
expected features in the spin structure factor in LSCO had indicated the presence of
spin stripes, pointing towards the possible existence of charge stripes as well [257–
263]. Due to the very similar temperature dependence of charge and spin stripes,
theories citing the spin order as the origin of charge ordering were proposed.

While the subsequent rise of DMRG allowed for more detailed studies, the near-
degeneracy of many different states remained a numerical challenge. Only in re-
cent years, numerical progress as well as cross-comparison between many differ-
ent methods allowed for more rigorous studies of the low-temperature phase dia-
gram [81, 85, 87].

Stripe order properties

In general, stripe order is a charge density wave where dopants align along a spe-
cific lattice direction, leading to a breaking of the crystal symmetry. While this charge
order can in some cases be accompanied by a similar spin density wave, it has been
shown that in reverse, spin stripe order requires charge stripe order [264]. The charge
density wave may be seen as micro-phase separation along a given axis [74]. This
axis can either be any direction (thus forming fluctuating stripes) or unidirectional,
leading to static stripes. It has been suggested that stripe order is enhanced by spe-
cific lattice distortions [82, 255, 265, 266]. In DMRG studies, a similar effect is reached
due to the anisotropic geometry of the system as well as the periodic/open bound-
ary conditions along the short/long lattice axis. The charge and spin density waves
are closely intertwined with the nodes of the spin density wave sitting at the posi-
tions of highest dopant density such that the dopants act as domain walls in the spin
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Figure 4.2: Dopant delocalisation. Effect of dopant delocalisation in an antiferro-
magnetic background. With every hopping event with amplitude t of a single hole in
the system, the surrounding antiferromagnetic spin order is destroyed (a). Therefore
kinetic energy advantages are penalised with a cost in magnetic energy. For charges
arranged in a stripe, the whole structure can delocalise without disturbing the mag-
netic background (b).

pattern [267]. Consequently, while the exact periodicity of stripe order has not yet
been conclusively determined theoretically, it is usually observed between 4 and 8
sites [87], where spin stripes have a period twice that of charge stripes. Furthermore,
there exist many more variations to stripe order. Both experimental [268] and theoret-
ical [269, 270] investigations have revealed the possibility of half-filled stripes while
diagonal stripes may also dominate in specific situations [87, 268, 271]. Finally, the
question whether stripes prefer to be bond- or site-centred with respect to the lattice
is not yet determined either [125].

Microscopic picture

While there is no conclusive, microscopic theory describing stripe formation in either
theoretical models or the cuprates, there are numerous proposals trying to explain the
observed phenomenology. In the following, we will introduce three prominent mi-
croscopic interpretations of stripe ordering where we will focus on coexisting charge
and spin stripes as e.g. in La-based compounds. In the undoped regime, the system
has antiferromagnetic correlations due to superexchange couplings. Individual holes
introduced into the system will then try to delocalise to lower their kinetic energy. De-
localisation of dopants does, however, negatively impact the magnetic order, leaving
behind a ‘string’ of displaced spins (see Fig. 4.2a). This leads to a competition between
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kinetic and magnetic energy, which drives most of the physics at low temperatures.
The result is each dopant being surrounded by a region of disturbed spin correlations,
forming a new quasiparticle called a magnetic polaron [272].

Starting from this picture, we can now interpret stripes as interacting polarons,
where for suitable doping and couplings, the lattice symmetry is broken, leading to
effective attraction along one direction. This state is energetically favourable in the
sense of micro-phase separation as bunching dopants together in charge stripes leads
to overall less disturbance of the magnetic AFM background. The spin stripe structure
is then inherited from polaronic spin correlations which already show a phase jump
across a dopant (see Fig. 4.2b) [106].

A second, similar interpretation of stripes is found based on pairing of dopants.
Real-space pairing of charge carriers to bosonic pairs [78] may allow for condensation
of these pairs into metallic ‘rivers’, forming stripes. This interpretation would lead to
(super)conducting stripes, as found in for example LBCO at δ = 1/8. This interpreta-
tion is limited as there are also many materials, such as LSCO, where the ground state
exhibits insulating stripes.

Finally, instead of starting from a strong coupling perspective, we can also think
about it in the weak coupling limit. Starting from Fermi liquid theory, stripe order
occurs when there are nearly nested segments of the Fermi surface [74]. While this
interpretation can lead to interesting insights especially for transport measurements,
for many observables there is experimental evidence more in favour of a strong cou-
pling approach. Most importantly, whenever charge and spin stripes are present in
a material, charge stripes appear at higher temperatures than spin stripes [273, 274],
while in the weak coupling regime, they appear simultaneously [74].

Experimental observables and measurements

Over the years, many experimental methods have been used to identify stripe order in
numerous materials. For a more detailed review of experimental studies see [30, 74].
One of the most prominent methods are diffraction measurements, either elastic neu-
tron or x-ray scattering. By measuring the magnetic and nuclear structure factors
S(k,ω = 0), charge and spin stripes can be investigated. After the original neu-
tron scattering measurements in 1995 on La1.48Nd0.4Sr0.12Cu04 (see Fig. 4.3), similar
studies on hole-doped La- and Y-based superconductors found evidence of charge
stripes. Complementary to these momentum space measurements, advances in scan-
ning tunnelling microscopy (STM) lead to the possibility of real-space studies on
an atomic scale by measuring the local density of states (see Fig. 4.4). Surveys on
Bi2Sr2CaCu2O8+δ [275, 276], Bi2Sr2−xLaxCuO6+δ [277] as well as LBCO [278] added
local information for systems with short coherence lengths. In addition, studies using
e.g. NMR [279], ARPES [278, 280] or TEM [281, 282] have been performed.
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a                              b                                                    c

Figure 4.3: Solid state stripe measurements. Neutron scattering studies on
La1.48Nd0.4Sr0.12Cu04 for a doping of δ = 1/8. a, Evidence of charge stripes in su-
perlattice peaks at a period of 2δ = 0.25 by scanning along (0, 2 − q). b, Spin stripe
signature from diffraction peaks at (1/2, 1/2 ± δ). The orientation of the stripe is
pinned by the low-temperature tetragonal (LTT) crystal structure (in contrast to low-
temperature orthorombic (LTO) structures). c, Temperature dependence of diffraction
peaks shown in a, b. Charge structure survives to higher temperature than spin struc-
ture but disappears below LTT-LTO transition. Adapted from [83].

Figure 4.4: Real space solid space measurement. Topographic STM measurement on
Bi2Sr2CaCu2O8+δ with clearly visible supermodulation on a field of view of 560 Å.
The inset shows the atomic resolution with higher magnification. Adapted from [275].

Theoretical methods and limits

The inherent fermion sign problem of the Hubbard model has been a main limitation
to definite solutions of the low-temperature phase diagram. In the last decades, many
methods have been applied to tackle this problem. Early on, a lack of computational
resources led to main results being extracted from mean-field calculations [267, 283,
284]. The rise of density-matrix renormalisation-group (DMRG) methods allowed for
more precise studies, limited by the available system size. Finally, several different
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Method System size Limits
DMRG 6 − 7 × 64 System size and boundary conditions
METTS 32 × 4 System size and boundary conditions

CP-AFQMC 72 × 12 Error from constrained path approximation
DQMC 32 × 32 Lowest achievable temperature kBT/t ∼ 0.2
iPEPS Thermodynamic limit Empirical extrapolation techniques
DMET Thermodynamic limit Finite impurity-size error

Table 4.1: Overview of numerical techniques. List of algorithms based on matrix-
product-state (density-matrix renormalisation group, DMRG, and maximally en-
tangled typical thermal states, METTS), quantum Monte-Carlo (constrained-path,
auxilliary-field QMC, CP-AFQMC and determinant QMC, DQMC), density matrix
embedding DMET and infinite projected entangled pair states, iPEPS

quantum Monte-Carlo methods have ben successfully applied on larger system sizes,
despite also only being able to investigate specific parameter regimes or relying on
approximations [87]. A selected overview of available methods and some of their
limitations is given in Tab. 4.1. Wide-range studies in recent years cross-referencing a
number of different methods showed consistent results, albeit with very small en-
ergy gaps for some states [81, 87]. Most importantly, it has been shown that the
ground state of the plain, 2d Fermi-Hubbard model at physically relevant parame-
ters of U/t ∼ 8 and δ = 1/8 is indeed a striped state [81]. Meanwhile, many details
concerning the exact properties of this state are not yet determined as e.g. the exact
periodicity of these stripes. As shown in [87] (see Fig. 4.5a), the energy gaps between
stripe states of different periodicity is within the uncertainty of the individual meth-
ods. While λ = 8 seems to be slightly favourable, exact claims on this result remain a
subject of further debate. Especially methods limited by their small system size along
one direction (such as DMRG and METTS), are affected by this as in this case com-
mensurability effects between stripe filling, periodicity and doping can be relevant.
For example, as shown in [81], for a 6-legged system, only fully filled or 2/3-filled
stripes can be stabilised. Similarly, 4-leg systems are essentially two coupled plaque-
ttes, such that pairing and half-filled stripes are indistinguishable. Finally, due to
the aforementioned small energy differences between states, model variations have
large effects on the ground state properties. In this case, it may matter whether the
full Fermi-Hubbard model or the strong-coupling limit t − J model is being simu-
lated. Furthermore, as will be discussed in the next section, next-nearest-neighbour
couplings can have significant impact when being included in the model.
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a                                                                      b                   

Figure 4.5: Numerical stripe studies. a, Stripe state energies from different numerical
methods as a function of wavelength λ for U/t = 8, δ = 1/8 relative to the energy at
λ = 8. Adapted from [87]. b, Staggered spin correlations from DQMC for δ = 0.125,
U/t = 6, kBT/t = 0.22 for several t′/t. Adapted from [85].

4.1.3 Stripes and superconductivity

The presence of charge stripes in direct vicinity or in coexistence with superconduc-
tivity in the cuprates poses the question, what exactly the relationship between these
two phases is. The ’1/8-anomaly’, where materials such as LBCO exhibited a strong
suppression in Tc at a specific doping, was assumed to be caused by the emergence of
stripe order at this doping level due to commensurability effects [83]. Therefore, the
interpretation that stripe order competes with spatially uniform d-wave superconduc-
tivity seemed likely [84]. However, there is also experimental evidence of stripes co-
existing with superconductivity [285]. One possible explanation for this may be non-
uniform superconducting states, where the individual static charge stripes become
superconducting once coherence is established between the regions of high dopant
concentration [125].

From a theoretical point of view, recent studies have established a few main points
concerning the intricate connection between these two phases. First, it has recently
been shown using AFQMC and DMRG methods that the pure, 2d Fermi-Hubbard
model without next-nearest-neighbouring coupling t′ for U/t = 8 and δ = 1/8 is
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a stripe phase without superconducting correlations1 [81]. The pair-pair correlations
decay exponentially with a correlation length of ∼ 2.9 sites. Furthermore, by applying
a pairing field, it has been shown that there is actual competition between these two
states as stripe order vanishes with increasing pairing field. This result is fairly robust
with respect to changes of U/t, as for U/t ≥ 6, i.e. in the strong coupling regime,
stripe phases seem to dominate. Similarly, changes in the exact doping mostly affect
the stripe periodicity or filling. [81]

The impact of next-nearest-neighbour coupling has been investigated in DQMC
for U/t = 6 and kBT/t = 0.2 [85]. For t′/t = 0 the system is a stripe phase, consistent
with the study described above. However, for t′/t = −0.25, the periodicity of the
stripes is λ ∼ 5 instead of λ = 8 and thus closer to experimental results [83] while
retaining the same general stripe phase features (see also Fig. 4.5b). On the other hand,
for t′/t > 0, the stripe phase is not favourable any more. In this case, simple AFM
order dominates as dopants can again move freely diagonally through the system
without any frustration [85].

Finally, the question remains, where the key differences between different experi-
mental findings in the cuprates and numerical results in the Fermi-Hubbard model
arise. One key ingredient has been found in [85] to be the aforementioned next-
nearest-neighbour hopping. Agreement is substantially better when including slightly
negative values of t′/t. However, it is still not ultimately known whether the long-
range Coulomb interaction is a relevant and necessary component in the description
of the low-temperature phases of the cuprates. This may also help to explain differ-
ences in stripe periodicity. Lastly, the precise impact of interlayer couplings remains
an open question [125].

4.1.4 Perspective from quantum simulation with ultracold atoms

Between the numerically difficult theoretical studies of the Fermi-Hubbard model and
the experimental work on the cuprates that depend on the precise material being in-
vestigated, new approaches hold the potential to yield new insights into strongly cor-
related systems. Quantum simulation using ultracold atoms in optical lattices allows
for the precise characterisation and tunability of system parameters while measuring
a wide range of both local and global observables (see chapter 2 and 3). While so far
not being able to achieve sufficiently low temperatures to fully delve into the lowest
collective phases of the phase diagram of the Fermi-Hubbard model, cold atoms can
exceed the system sizes achieved e.g. in DMRG or METTS. The microscopic resolu-

1These are defined via the pairing operator ∆̂i j = (ĉi↑ ĉ j↓ + ĉi↓ ĉ j↑)/
√

2 and the resulting pair-pair

correlation function Pi′ j′ ,i j = ⟨∆̂†
i′ j′ ∆̂i j⟩. This term can explicitly added to the Hamiltonian using a

pairing field Ĥp = −∑⟨i, j⟩ hi j
p (∆̂i j + ∆̂

†
i j)/2 [81].
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Figure 4.6: Polaron signatures in quantum simulation. a, Evolution of connected
hole-spin-spin correlations around a hole with doping. Above 30% doping, the sys-
tem only shows Fermi-liquid like behaviour. b, Comparison of correlations at specific
distances with different theories. Only exact diagonalisation and effective string the-
ories yield the correct sign at low doping. Adapted from [66].

tion allowed for the study of the evolution of polarons with doping in the repulsive
Fermi-Hubbard model (see Fig. 4.6) [66, 106, 286]. A detailed comparison to different,
effective theories revealed a good agreement with Fermi-liquid like behaviour at high
doping, while at low doping only effective string theories captured the correct sign of
the correlators. Similarly, studies on the attractive side of the Fermi-Hubbard model
found non-local pairs [72].

To truly investigate phases closer to the ground state, improvements in tempera-
ture are required. With latest studies already showing signs of approaching the pseu-
dogap regime [111] and theoretical studies hinting towards pairing at temperatures
that are within reach [287], several methods for further cooling have been proposed
and partially implemented [198, 250, 251]. An alternative route lies in the engineering
of couplings as will be discussed in the next section.
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4.2 Charge order in mixed-dimensional systems

While ultracold atoms have several advantages over solid state experiments in terms
of microscopic control and readout, the main limitation for the exploration of the
Fermi-Hubbard model is usually the lowest achievable temperature. State-of-the-
art fermionic quantum gas microscopes realise temperatures as low as 0.4J [64, 111].
However this is still significantly above the previously stated temperatures where
stripe order is expected in Fermi-Hubbard systems. The microscopic origin of the
small energy scale can be found in the fermionic nature of the charge carriers. Ev-
ery dopant is inclined to delocalise in order to reduce its kinetic energy. As soon as
dopants are in close proximity with each other, as e.g. in the case of stripe order, delo-
calisation is suppressed due to the Pauli exclusion principle. At high temperatures at
or above the superexchange energy, this is the dominant mechanism which then pre-
vents dopants from forming pairs or stripes (see Fig. 4.7a). Only once the spin order is
strong enough to supersede this repulsion, does hole pairing or stripe order become
beneficial.

While sufficiently low temperatures remain out of reach for ultracold atom exper-
iments, more exotic couplings present another path to observe stripe order in optical
lattices. To remove the dominant effect of Pauli blocking of dopants, one possibility
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Figure 4.7: Mixed-dimensional Fermi-Hubbard systems. a, Illustration of the
isotropic 2d Fermi-Hubbard model. Holes delocalise within small regions and dis-
turb their respective spin background, forming magnetic polarons. The overall hole
density is uniform and holes repel each other due to their fermionic statistics at ex-
perimentally accessible temperatures of kBT = 0.4J. There are no domain walls in
the spin order. b, By raising the potential on every other lattice site along y by ∆,
one can suppress tunnelling along this direction, thus disabling the Pauli repulsion,
while preserving the superexchange coupling Jy. The holes form collective structures,
which also result in a domain wall in the AFM correlations of the system, indicated
by the sign structure at the top.
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ba

Figure 4.8: Numerical mixD studies on ladder and bilayer systems. a (b) Binding
energy as a function of the ratio t∥/J⊥ for 2-leg ladders (a) and bilayer systems (b).

For t∥/J⊥ ≫ 1, the binding energy scales as t1/3
∥ /J2/3

⊥ . Adapted from [288].

can be found in so-called mixed-dimensional (mixD) systems (Fig. 4.7b). These systems
are two-dimensional systems where spin exchange coupling is present along both
axes while hopping of particles is only possible along one axis. This biases stripe
formation along the direction without tunnel coupling as the binding mechanism in
the form of the antiferromagnetic spin order still exists. Therefore, without the dom-
inant Pauli blocking, energy scales are increased to more easily accessible regimes.
Meanwhile, the general phenomenology of the system is supposed to stay close to the
original isotropic Fermi-Hubbard model.

4.2.1 Theoretical mixD studies

Numerically, mixD systems have been studied in recent years, mostly using DMRG.
First results in 2-leg ladders revealed hole binding energies slightly below the su-
perexchange coupling J while scaling as t1/3 J2/3 for t/J ≫ 1 (see Fig. 4.8) [288]. Sim-
ilarly, in a mixD bilayer system, pairing between planes was also observed at experi-
mentally accessible temperatures. The results agree (especially in the ladders system)
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a b

Figure 4.9: Two-dimensional, mixD Fermi-Hubbard systems in DMRG. a, Ground
state hole distribution and spin correlations for a system of 40 × 4 sites and δ = 0.1.
The static spin structure factor S2(qx) shows a clear splitting of the peak at qx = π ,
associated with incommensurate magnetism. b, Finite temperature calculations. The
critical temperature Tc is extracted from the splitting of the static spin structure factor
at qx = π and rises with increasing doping. Adapted from [289].

with an effective parton model based on a spinon and chargon connected by a string
of displaced spin bonds. Experimentally important, however, is the obtained binding
length between two dopants EB ∝ t1/3

∥ J2/3
⊥ . The consequence is that in the regime of

strongest binding energy EB > J⊥, the binding length is very large, making it very
challenging to observe experimentally.

As an extension of this study, two-dimensional mixD systems were also investi-
gated [289] (see Fig. 4.9). Here, they found stripes at temperatures of 0.5 − 1 J, de-
pending on the doping level. A transition from a chargon gas of individual holes to
a striped state was extracted using the splitting of the spin structure factor. However,
this does not account for potential differences in the transition temperatures between
spin and charge stripes, which, as was established in solid state experiments, may dif-
fer substantially. Furthermore, small numerical system size may introduce significant
finite size effects.

4.2.2 Experimental studies

The aforementioned theoretical mixD proposals led to experimental interest on dif-
ferent platforms. In quantum simulation, improved control of the on-site potential
allowed for the observation of paired holes in 2-leg ladders [71] (see Fig. 4.10). Here,
we found tightly-bound hole pairs at temperatures slightly below the superexchange
energy. Furthermore, the strong Pauli repulsion along the perpendicular direction
yielded signatures of Pauli crystals of pairs forming in the ladder (Fig. 4.10b, c). How-
ever, no clear signature in the spin sector was found, in agreement with the expecta-
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Figure 4.10: Hole pairing in ladders with ultracold atoms. a, Hole-hole correlations
as a function of distance in mixD and standard ladders. For mixD ladders, there is a
clear signature of tightly bound holes. b (c), Pair-pair correlations for a doping of 4
(6) holes, showing signs of a Pauli crystal. Adapted from [71].

tion of spin signatures (especially for J⊥ ≫ J∥) forming at lower temperatures than
charge signatures. Finally, recent studies of the bilayer nickelates found critical tem-
peratures of ∼ 80K, which according to numerical studies, is related to the mixed-
dimensional character of this platform [290–292].

4.3 Preparation of mixD systems

4.3.1 Model and parameter regime

Our quantum gas microscope is uniquely suited to explore mixD systems. The addi-
tional couplings that we can introduce using optical superlattices (see section 3.4.5)
as well as our full readout of spin and charge degrees of freedom allows for the
study of highly controlled systems with system sizes well exceeding what is currently
achievable in numerical simulations. We experimentally realise a Fermi-Hubbard
type Hamiltonian of Eq. (2.1), where we introduce potential offsets between neigh-
bouring sites along y using our optical superlattice. We now consider the local detun-
ing in more detail. Hopping of particles to an unoccupied neighbouring site is only
possible if the detuning between the two sites is sufficiently small, i.e. smaller than
the bandwidth W. While for ∆ > W hopping is suppressed, spin coupling between
two occupied sites is still possible as it is mediated via virtual intermediate double
occupancies. However the effective spin coupling changes as a function of the detun-
ing as stated in Eq. (3.7). Due to the differing signs in the two contributing terms, this
leads to several different regimes depending on U/∆ and ∆/W:
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Figure 4.11: Available mixD parameter space. MixD regimes based on potential off-
set and interactions in a 2d system. For small offsets and large interactions, hopping
is not suppressed and an imbalance is created (regime 1). Around ∆ = U, doublons
are formed (regime 5), while for ∆ > U the spin couplings are ferromagnetic (regime
3). There is a narrow resonance around ∆ = U/2 due to the described higher order
process, creating doublons and holes (regime 4). The red cross marks the experimen-
tal parameters where tunnelling is suppressed with AFM spin couplings (regime 2).
Everything is drawn for for a fixed ratio of ty/tx = 27/17.

1. ∆/W < 1, U/∆ < 1: Hopping is still allowed, antiferromagnetic spin coupling
with J > J∆=0

2. ∆/W > 1, U/∆ < 1: Hopping is suppressed, antiferromagnetic spin coupling

3. ∆/W > 1, U/∆ > 1: Hopping is suppressed, ferromagnetic spin coupling

For the realisation of mixD systems we work in the intermediate regime of sup-
pressed hopping and AFM spin coupling. However, this also leads to restrictions on
the possible parameter regime due to conflicting requirements: as the mechanism un-
derlying stripe formation is based on spin coupling, higher values of J/t (i.e. lower
values of U/t) are beneficial. On the other hand, for tilts approaching U, we cre-
ate doublons in the lower chain as the transfer of particles to already occupied sites
is then resonant. This transition also has a finite width, reducing the available pa-
rameter space as well. Calculations performed to map out the parameter space are
shown in Fig. 4.11 and match the described intuitive expectations. Overall, these con-
ditions lead to experimentally rather large values of U/tx = 27(2) and U/ty = 17(1)
(see Tab. 4.2 for full parameter list). We choose to work with anisotropic parameters
where Jy/Jx ≈ 4. While it is known for 2-leg ladders that the binding energy increases
for larger tx [288, 293], larger values of tx also lead to stronger fluctuations of charge
structures along x, making them experimentally harder to observe. Therefore, using
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2d system mixD system
tx h × 163(10)Hz h × 163(10)Hz
ty h × 253(13)Hz 0 Hz
U h × 4.4(1) kHz h × 4.4(1) kHz

U/tx 27(2) 27(2)
U/ty 17(1) -
∆/U 0 0.65(5)

Jx h × 24(4)Hz h × 24(4)Hz
Jy h × 58(7)Hz h × 104(23)Hz

Table 4.2: Experimental parameter overview List of coupling strengths used in the
experiment after the full preparation procedure described in the text. Where relevant,
we denote the couplings in the 2d system in the text with superscripts (e.g. t2d

y ).

anisotropic couplings reduces these fluctuation, while the reduced coupling along x
makes interactions between several stripes more difficult to realise, limiting the ob-
servables available to identify stripes (see section 4.5).

We prepare a system of 109 lattice sites in a circular region which is surrounded
by a low-density reservoir required to achieve low temperature (see Fig. 4.12 as well
as Fig. 3.12) [155]. For comparison we prepare both 2d and mixD systems. We set the
chemical potential to achieve a hole doping of 10 − 30% by adjusting the height of the
surrounding reservoir to be slightly below U/2. In total, we collect 11675 experimen-
tal realisations, out of which 1254 were taken in a 2d system with ∆ = 0 U, while the
remaining 10421 are in the mixD setting with ∆ = 0.65(5)U. We ensure that there is
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Figure 4.12: MixD system preparation. a, DMD potential for mixD preparation. The
main central region is surrounded by a low density reservoir. b, Density of central
region of 109 sites used for analysis. There is a small residual imbalance due to the
preparation process. c, Single experimental realisation of spin up (red) and spin down
(blue) atoms with their reconstructed occupation.
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Figure 4.13: Data statistics. Histograms of doping (a) and magnetisation (b). We take
data at 10 to 30% doping while the total magnetisation is well centred around 0.

no overall magnetisation Mz = ∑i⟨Sz
i ⟩ within the system by checking the distribution

of magnetisation normalised by the system size (see Fig. 4.13b). We find the width of
this distribution to be below shot-noise.

4.3.2 Lattice ramps

To prepare the system at these given settings, care needs to be taken to avoid mass
transport during the loading process. Specifically, direct loading into mixD systems
from a bulk gas will create a strong occupation imbalance between chains regardless
of the final parameters as small potential offsets at intermediate times will still have
finite ty. Therefore a quench into a mixD system is required. In order to avoid heating,
we first prepare the system in decoupled 1d chains along x by exponentially ramping
the lattices within 200 ms from a 2d gas confined by the vertical lattices and the DMD
potential to Vx = 3 ER, Vy = 35 ER. At this point we quench the superlattice along
y within 1 ms to VSL

y = 2 ER at φ = π/2 to create the desired staggered potential.
Finally the lattices are being ramped linearly within 56 ms to their final depths of
Vx = 9 ER, Vy = 7 ER leading to the parameters as listed in Tab. 4.2. The full ramps
and corresponding energy scales are shown in Fig. 4.14.

Further care needs to be taken when considering the interactions as the large
changes in the lattice depths during the preparation lead to varying interactions at
fixed scattering length. Changes in the interactions during the second part of the
ramp might inadvertently introduce doublons into the system due to the resonant
process at ∆ = U. To avoid this, we set the scattering length such that the inter-
actions in the decoupled 1d chains are already at the desired final value of 4.4 kHz
with as = 1160 aB. From then on we adjust the scattering length depending on the
instantaneous lattice depths such that the interactions stay constant.
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Figure 4.14: Ramps for mixD preparation. a, Lattice ramps to prepare the mixD
system with the corresponding tunnelling and superexchange couplings plotted in b.
We first ramp in 200 ms to decoupled 1d chains, then quench the y-superlattice before
ramping to the full mixD system.

4.3.3 Calibration

Relative superlattice phase calibration

To controllably apply offsets between neighbouring sites, we calibrate our superlat-
tice potential with two separate methods. First, we determine the relative superlattice
phase with high accuracy. For this, similarly to the measurements in section 3.4.2, we
adiabatically load a dilute cloud of atoms into a system of decoupled double-wells
along y where Vx = 40 ER, Vy = 8 ER and VSL

y = 21 ER. For any small offset between
neighbouring sites, the atoms will be loaded into the lower site, creating an imbalance
I = (⟨n̂L⟩ − ⟨n̂R⟩)/(⟨n̂L⟩+ ⟨n̂R⟩) in the occupation of the system (see Fig. 4.15). We
can neglect interactions effects due to the small filling and postselection on double-
wells with only one atom. We observe a sharp transition from negative to positive
imbalance which we identify as the symmetric phase φ = 0 where the detuning ∆ be-
tween sites vanishes. For a given intrawell coupling ty(φ = 0) = h × 724 Hz between
sites, the large slope of the curve points to a high degree of homogeneity of the phase
within the system. To realise mixD systems, we work at φ = π/2 which is the fully
antisymmetric configuration where interwell and intrawell couplings are identical.

Potential offset calibration

While the calibration of lattice depths (via modulation spectroscopy) already yields
the potential offset as a function of superlattice depth, we confirm these results and
check whether our chosen regime allows for the realisation of mixD systems as ex-
pected from the calculations shown in Fig. 4.11. For this purpose, we follow the load-
ing procedure described in the previous section, preparing a slightly hole doped sys-
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Figure 4.16: Potential offset scan. Doublon density (a) and imbalance between chains
(b) as a function of potential offset ∆ (i.e. superlattice power) for a relative superlattice
phase of π/2. The peak in the doublon density coincides with the interaction energy
U (grey line) at which atoms are then resonantly transferred to neighbouring chains.
For small offsets, tunnelling is not yet fully suppressed and an imbalance is created.
Above an intermediate peak at U/2 (created by a higher order process), there is a low
imbalance regime where the experiment is performed (black line).

tem while varying the superlattice depth to realise different potential offsets. We show
the resulting doublon density and imbalance in Fig. 4.16. We clearly identify the dif-
ferent regimes described earlier: initially, for offsets smaller than the bandwidth, hop-
ping is not yet suppressed and atoms will tunnel to the lower chain, creating a strong
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imbalance (regime 1). Around ∆ = U, if both legs are occupied, doublons are created
on the lower chains, increasing both the doublon density and the imbalance (regime
5). In between these two regimes, we see a signature of the higher-order process at
U/2 which produces doublons in the lower chains from two adjacent atoms in the
upper chains (regime 4, see also Fig. 3.24). The position of these resonances match the
expectations from band structure calculations. We identify a promising regime above
U/2 at ∆/U = 0.65(5) where we can prepare a mixD system with low imbalance.

Thermometry

We use nearest-neighbour spin-spin correlations (as defined in Eq. (3.6)) as a function
of doping as a measure for the temperature in our system by comparing to numerical
DMRG calculations on a system size of Lx × Ly = 8 × 3 sites with open boundary
conditions. We simulate the mixD t − J model of Eq. (2.3) where couplings are set to
ty = 0, Jy/tx = 0.5, Jx/tx = 0.15. Due to the small system size in the simulation, we
expect finite size effects in the spin-correlations, especially away from half-filling. This
will affect correlations along x and y differently due to the rectangular geometry. For
this reason, we extract individual temperatures along x and y per doping level. Aver-
aging over all doping levels per direction yields temperatures of kBT/tx = 0.3(1) and
kBT/tx = 0.4(1) along x and y respectively. The difference in temperature compared
to the state-of-the-art reported in section 3.4.1 can be attributed to the very differ-
ent energy scales due to the large interactions used here, as well as heating during the
more elaborate mixD preparation sequence. Note, that correlations along x are mostly
independent of doping, which may already hint towards the results in higher-order
spin correlators examined in section 4.5.
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Figure 4.17: Spin-spin correlations as thermometer. Nearest-neighbour spin-spin
correlations along x (a) and y (b) for different doping levels. We compare the ex-
perimental (grey markers) to numerical data for Css(1) for different temperatures for
simulations on Lx, Ly = 8, 3 and Jy/tx = 0.5 to get an estimate for our temperature.
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4.4 Results in the charge sector

One of the main characteristics of stripes is extended charge ordering. Commonly
identified via charge structure factors [83], this observable is challenging for our aniso-
tropic parameter regime. However, the microscopic observables in ultracold atoms
allow to study arbitrary equal-time spin- or density correlation functions. In the fol-
lowing we show charge correlations indicating stripe ordering in our mixD system.

4.4.1 Correlation functions

For the characterisation of correlations within a system, the N-particle correlation
function G(N) is of particular use. It is defined as

G(N) = ⟨Ô1...ÔN⟩, (4.1)

This can be normalised to g(N) by the individual operator expectation values such
that its uncorrelated limit is set to 1.

g(N) =
⟨Ô1...ÔN⟩
⟨Ô1⟩...⟨ÔN⟩

. (4.2)

For correlation functions of order 2 and higher, we define a connected correlator by
subtracting all combination of lower order correlations. This serves to isolate the spe-
cific effect of higher-order correlations from lower-order correlations. For the most
common example of two-point correlation functions, this just subtracts the expecta-
tion value of the individual operators. In the case of hole-hole correlations, the full
connected, normalised, two-point correlator then takes the form of

g(2)hh (d)− 1 =
1
Nd

∑
i

(
⟨n̂h

i n̂h
i+d⟩

⟨n̂h
i ⟩⟨n̂h

i+d⟩
− 1

)
− oδ, (4.3)

with the fermionic hole operator n̂h
i , global offset oδ and the sum being evaluated over

all possible positions i within the system.

This two-point correlator should be close to the interpretation of a probability dis-
tribution where it describes the probability for the position a second particle with
respect to the first one. However, as we will show in the following section, even fully
uncorrelated particles will exhibit finite correlations corresponding to a global offset.

We consider a system of N fermions on V lattice sites with density n = N/V with-
out any further assumptions on the geometry of the system or nature of the fermions.

We define the local two-point correlator Γ(i, j) =
⟨n̂in̂ j⟩
nin j

− 1 where ni = ⟨n̂i⟩ is the local
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density. After summation over all possible pairs of sites i, j, this can be expressed as

∑
i, j

Γ(i, j) = ∑
i, j

( ⟨n̂in̂ j⟩
nin j

− 1
)
≈
(
⟨N̂2⟩

n2 − V2
)

, (4.4)

where we used N̂2 = ∑i, j n̂in̂ j and assumed a homogeneous system such that and
ni ≈ n j ≈ n. This yields

1
V2 ∑

i, j
Γ(i, j) =

Var(N̂)

N2 . (4.5)

Without any further assumptions, we can simplify this sum by splitting off the on-site
term where i = j using fermionic statistics n̂2 = n̂ (and thus Γ(i, i) = 1

n − 1), leading
to

1
V2 ∑

i ̸= j
Γ(i, j) =

Var(N̂)− N(1 − n)
N2 . (4.6)

This expression now allows us to consider a few specific cases. First of all, we note that
in general the right-hand-side of this equation can be non-zero even at infinite tem-
perature. This contradicts the intuition that at sufficiently high temperatures, there
should be no correlations present within the system. Instead, this only holds in cer-
tain situations where the global fluctuations are also fermionic (i.e. multinomial such
that Var(N̂) = N(1 − n)). Alternatively in the thermodynamic limit N → ∞, where
usually Var(N̂) scales as 1/N or less, the expression vanishes as well.

Experimentally we find that when computing hole-hole correlations on the full
dataset, the fluctuations are close to multinomial such that the expression of Eq. (4.6)
is small. However, by evaluating correlations for specific doping levels, the variance
within this subset is different, which in turn leads to large correlator offsets. For this
reason we define the offset oδ in Eq. (4.3) to be

oδ =
Var(N̂h)− Nh(1 − nh)

(Nh)2 , (4.7)

such that we recover vanishing correlations for i ̸= j for infinite temperature. We note
that this offset is global and does not depend on distance d = i − j. Furthermore, it is
only relevant when evaluating correlations on subsets of data. Whenever we evaluate
correlations on the full dataset, no offset correction is required.

4.4.2 Hole-hole correlations

We evaluate the two-point correlator of Eq. (4.3) for ty = 0 and a doping of δ = 0.18
and show the symmetrised result as a function of distance d in Fig. 4.18. Most promi-
nently, we observe strong positive correlations at the nearest distance along y for
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Figure 4.18: Extended mixD hole-hole correlations. a, Symmetrised hole-hole corre-
lations in a mixD system for δ = 0.18. We observe extended positive correlations for
dy ≥ 1 and strong Pauli anticorrelations for dy = 0. Positive signals at dx = 5 hint
towards the presence of a second charge structure in the system. b, Cuts along x (y)
in light (dark) green for the mixD system with the outset showing the equivalent data
for a normal 2d system. Error bars are estimated using bootstrapping.

dx = 0. However, even at larger distances dy > 1, the correlations remain posi-
tive. This is indicative of charge structures that exceed pairing of holes at closest
distances as larger stripe-like configurations of holes begin to form. Furthermore,
positive correlations along the diagonals (i.e. d = (±1, 1)) show that the emerging
charge structures are not fully static along x. While we work at an anisotropic param-
eter regime, hopping along x is of a similar order of magnitude as the superexchange
along y (which is then related to stripe formation). Therefore, charge fluctuations
along x are not fully suppressed which in turn may decrease signals at larger dis-
tances for dx = 0. We also clearly observe the effect of the next-nearest-neighbour
hopping term studied in Ch. 3 as it leads to lowered correlations at distance dy = 2.
We are still able to observe positive correlations as the spin exchange dominates over
next-nearest-neighbour hopping t̃y ≈ 0.8Jy (see also section 3.4.3).

Along x, the main feature for dy = 0 is a strong anticorrelation at short distances
which is expected due to the Pauli repulsion of holes within the same chain. However,
at distance dx = 5, there are weak positive correlations for dy ≤ 2. This may point
towards the presence of a second stripe-like structure beginning to form within the
system.

We also compare this to a normal 2d system with both tx, t2d
y ̸= 0 (see inset of

Fig. 4.18b). In this case, we only observe anticorrelations along both directions as the
Pauli repulsion vastly dominates over the effective attraction via the superexchange
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Figure 4.19: MixD hole-hole correlations by doping level. For distances d =
(0, 1), (1, 1), (0, 2), (0, 3) we show the corresponding mixD hole-hole correlations in
red, purple, blue, grey as a function of doping with a binning of ±0.009. Around
δ = 0.2, correlations at larger distances dy > 1 become positive. Error bars are esti-
mated using bootstrapping.

coupling. Comparing the Pauli repulsion along x for mixD and 2d, it can be seen that
removing the Pauli repulsion along y strengthens the anticorrelations along x as there
is no more competition between the two directions.

By binning the data by doping level, we study the evolution of mixD hole-hole
correlations at specific distances as a function of doping (see Fig. 4.19). For nearest-
neighbour and diagonal distances, we observe a decrease of correlations with doping.
As spin correlations along y are responsible for binding in our system, they can be
linked to the presence of charge structures within the system. However, as shown in
Fig. 4.17, spin correlations decrease with increasing doping, which in turn decreases
the effective attraction between charges along y and thus the correlations. This only
easily holds for dy = 1, while for larger distances the situation is more complicated.
Due to the preparation from 1d chains, the doping level in each individual chain is
probabilistic. Therefore, for low doping levels, the probability to have dopants in
three or more neighbouring chains is low such that there are mostly only individual
holes or pairs of holes present. Meanwhile, at very high doping level, even the pair
formation probability decreases as explained above, such that no larger structures
form either. Thus only in an intermediate regime, that we find to be around δ ∼ 0.2,
are longer-ranged correlations present in our system. This may be interpreted as a
transition from individual hole pairs, to larger stripe-like structures, to a chargon gas
of unbound holes.
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Figure 4.20: Numerical hole-hole correlations. a, Hole density from DMRG for Lx ×
Ly = 8× 3, δ = 0.25, kBT/tx = 0.41. Two separate stripes at a distance of ∼ 4 sites are
found in the system. b, Renormalised hole-hole correlations as a function of distance.
As in the experiment, the strongest signal is for d = (0, 1) but there are also significant
contributions at d = (1, 1) due to fluctuations along x. c, Hole-hole correlations as a
function of temperature for dy = 1 (red) and dy = 2 (blue) for δ = 0.125 (dashed
lines) and δ = 0.25 (solid lines).

Theory comparison

To compare these results to theory, DMRG calculations of the mixD t − J model were
performed by our theory collaborators. Due to the fermion sign problem, numerical
simulations of this model are very computationally expensive and limited in system
size. This makes quantitative comparison hard due to finite size effects only present
in the simulation. When using open boundary conditions, this will introduce sharp
edges. This can immediately be seen when considering the density for a given dop-
ing level. While experimentally the density is homogeneous, in the numerical data
the dopants aggregate in the centre of the system to increase their kinetic energy by
avoiding the edges (see Fig. 4.20). For a fully pinned stripe, the connected correla-
tor introduced in Eq. (4.3) vanishes as the contribution from the density is explicitly
subtracted. To partially mitigate this issue, we introduce the renormalised correlator

g̃(2)hh (d) =
1
Nd

∑
i

(
⟨n̂h

i n̂h
i+d⟩

nhnh − 1

)
, (4.8)

where instead of using the local density ni in the denominator, we use the global
density nh = δ. In the limit of a perfectly homogeneous system, this is equivalent to
Eq. (4.3).
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We show hole-hole correlations as a function of distance for δ = 0.25 and kBT/tx =
0.41 in Fig. 4.20b and for specific distances as a function of temperature in Fig. 4.20c.
Quantitative comparison to experimental results is hard due to several reasons. First
of all, the small system size along y leads to significant finite size effects and effectively
increases the obtained hole-hole correlations. Furthermore, the calculations do not in-
clude the next-nearest-neighbour hopping term, which is present in the experiment.
Finally, in the experiment in each realisation the global doping level can vary signif-
icantly from the local doping level in each individual chain as it depends entirely on
how dopants are distributed between individual 1d chains. This means that there are
realisations where despite the global doping level being optimal for the formation of
charge structures, the distribution between chains may not allow such configurations.
Meanwhile, in the simulation global and local doping levels are identical. Therefore
the values in the experiment are further lowered compared to the the simulation.

4.4.3 Multi-point charge correlations

The two-point hole correlator g(2)hh shown so far reveals nearest-neighbour pairing
between holes and shows correlations that extend over larger distances. Whether
these are isolated pairs or larger charge structures is however not entirely clear from
this observable. To study the interactions of pairs with other dopants and pairs, we
define a pair as two directly adjacent holes with distance dh = (0, 1) such that n̂p

i =

n̂h
(ix ,iy)

n̂h
(ix ,iy+1). This is a valid definition as we have shown before that these pairs are

present (see Fig. 4.18). However, the significant fluctuations along x seen previously
are neglected for simplicity in this case. Therefore, the charge ordering in the system,
as extracted from these pairs, may be underestimated. We then consider the ‘partially
connected’ pair-hole and pair-pair correlators

g(2)ph (d)− 1 =
1
Nd

∑
i

(
⟨n̂p

i n̂h
i+d⟩

⟨n̂p
i ⟩⟨n̂h

i+d⟩
− 1

)
, (4.9)

and

g(2)ph (d)− 1 =
1
Nd

∑
i

(
⟨n̂p

i n̂p
i+d⟩

⟨n̂p
i ⟩⟨n̂

p
i+d⟩

− 1

)
. (4.10)

These are still technically only connected two-point correlators, just between pairs
instead of individual holes. They may also be interpreted as 3-point (Eq. (4.9)) and
4-point (Eq. (4.10)) correlators where contributions involving the two holes in the pair
individually are not subtracted.

The results for these correlators applied to the data is shown in Fig. 4.21. For im-
proved statistics we do not select any doping level but use the full dataset as shown in
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Figure 4.21: Pair correlations. Symmetrised pair-hole (a) and pair-pair (b) correlation
maps with pairs being defined as nearest-neighbouring holes along y. We observe
positive correlations at dy ≥ 1 extending through the system in addition to diagonal
contributions. Averaging over y shows a maximum at dx = 4, potentially related to
another stripe-like structure forming.

Fig. 4.13. We observe positive correlations at nearest distances along y for both corre-
lators. This already shows that pairs do not repel each other. Instead, they align along
y and form stripe-like structures that extend far through the system. Along x the main
feature is the strong anticorrelation due to the Pauli repulsion of the individual holes
in the pair. However, when averaging over all distances along y, the correlations are
slightly positive at dx ≈ 4 (see cut on top of correlation maps). Similar to the signal
found in Fig. 4.18, this may be a second stripe-like structure in the system forming
at that distance. It is found at a smaller distance than the previous signature in the
hole-hole correlator. This may be due to more dopants being available at higher dop-
ing levels (which is relevant here as all doping levels are included for this correlator),
reducing the average optimal distance between stripes. Both signatures may be seen
as the onset of a charge density wave.

As mentioned before, there are several contributions to a fully connected multi-
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Figure 4.22: Connected 3-point correlations. Connected hole-hole-hole correlations
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There is a positive signal for d = (0, 1.5) which indicates that holes are attracted to
each other beyond pair formation.

point correlator neglected in Eq. (4.9). By adding these additional terms, we consider
whether it is favourable for a third hole to be added to a pair in excess of the pair
formation probability associated with the individual two-point correlations between
the first two holes and the third one. The fully connected, three-point hole-hole-hole
correlator is defined as

Cc
hhh(d

h, d) =
1

Ndh ,d
∑

i
j=i+dh/2+d

1
⟨n̂h

i ⟩⟨n̂h
i+dh⟩⟨n̂h

j ⟩
×

(
⟨n̂h

i n̂h
i+dh n̂h

j ⟩ − ⟨n̂h
i n̂h

i+dh⟩⟨n̂h
j ⟩ − ⟨n̂h

i ⟩⟨n̂h
i+dh n̂h

j ⟩ − ⟨n̂h
i n̂h

j ⟩⟨n̂h
i+dh⟩+ 2⟨n̂h

i ⟩⟨n̂h
i+dh⟩⟨n̂h

j ⟩
)

.

(4.11)

We show the value of this correlator for dh = (0, 1) as a function of distance d in
Fig. 4.22. The only feature significantly deviating from zero here is the positive sig-
nal at d = (0, 1.5). This is a striking result as it shows that larger structures are
not simply ‘stacked pairs’, but instead are energetically favourable beyond individual
pairs. It also shows that simple two-point correlations are not able to capture the full
physical picture of stripe formation, further highlighting the strength of quantum gas
microscopy.

4.4.4 Stripe identification

All correlators shown so far have significant diagonal contributions due to the cou-
pling along x. To be able to study charge structure formation despite these fluctua-
tions, we want to define an observable that directly identifies stripe-like structures. As
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Figure 4.23: Identification of stripe-like structures. By identifying stripe-like struc-
tures in individual snapshots (a, see text), we calculate the histogram of stripe lengths
for mixD (green points) and 2d (brown points) systems for several doping levels (b-
d). For comparison, we show random distributions of holes including Pauli repulsion
along x (grey lines, see text) and calculate the difference in the insets. We use an effec-
tive mean field theory (see text) to describe the low doping behaviour and find good
agreement for kBT/tx = 0.355 (green line in b).

we have access to individual snapshots in our quantum gas microscope, we identify
a ‘stripe’ as a continuous line of holes along y. To allow for fluctuations along x, we
include any structures where the distance along x between holes in adjacent chains is
at most 1 (see Fig. 4.23a). We denote the length ℓ of such a structure by the number
of involved chains along y and then label the snapshot with the longest length found.
This analysis is performed on a subregion of 9 × 9 sites to avoid effects from chains
of different length within the system. The fraction ζ of experimental realisations con-
taining a ‘stripe’ of length at least ℓ for several different doping levels is shown in
Fig. 4.23b-d where we compare mixD measurements (green) with 2d measurements
(brown). There is a clear difference between the two systems with mixD measure-
ments favouring longer structures compared to 2d systems.

To provide a more meaningful interpretation to this observable, we compare the
measured fraction ζ with randomly generated data. Depending on the assumptions
involved in generating this data, quantitative differences may arise, while we find
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Figure 4.24: Doping analysis of stripe length histograms. Comparing the stripe
length histograms of Fig. 4.23 to random distributions, we calculate the full doping
dependence for mixD (top) and 2d systems (bottom). Excess occurrences tend to-
wards longer lengths with larger doping.

results to stay qualitatively the same. Here, we chose to include the strong Pauli
repulsion between holes along x by sampling holes according to the measured anti-
correlations as shown in Fig. 4.10b. This repulsion could in principle lead to structures
of increased length in finite systems and sufficiently high doping levels compared to
fully randomly distributed holes. The resulting data is shown as grey lines in Fig. 4.23.
The difference between the random data and the experimental data δζ is shown in
the corresponding insets. We also show the full distribution as a function of doping
in Fig. 4.24. We find an excess of stripes for all doping levels of mixD while the 2d
system is consistent with randomly distributed holes. This corroborates the interpre-
tation of long charge structures forming in the system as extracted from the two- and
three-point correlation analysis.

Effective theories for stripe length analysis

Full numerical simulation of this is out of reach as system sizes typically do not ex-
ceed Ly = 3 (Ly = 4 under some circumstances), which is much smaller than the
experimental size of Ly = 9. Therefore we rely on effective theories to compare to our
data. We show a mean-field theory (MFT) at kBT/tx = 0.355 in Fig. 4.23b (green line)
and find good agreement with the measured mixD results. We give a brief summary
of the theories here with more details to be found in [206].

First, we consider a mean-field model where we assume to have exactly one hole
per chain described by the mixD t − J model. For tx/Jx/y ≪ 1, we can use the frozen
spin approximation where spin wave functions (in squeezed space) and charge wave
functions can be separated. Using this ansatz, we can then define an effective inter-
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Figure 4.25: Effective models for stripe identification. a Thermally averaged string
length distribution for a mean field model for temperatures of kBT/tx ∈ [0.2, 0.625]
and tx/Jy = 2. Thermal correlations in the Heisenberg model are taken from DMRG
calculations with Jx/Jy = 0.3. b, Illustration of MHZ estimate where hole positions
are sampled according to the red probability distributions, whereby the distribution
for position xl + 1 is centred around xl – capturing fluctuating, extended stripes. c,
Hole distance distributions for various temperatures kBT/Jy ∈ [0.4, 0.91].

chain potential between holes that are separated by a string of displaced spins Σ along
x. This potential is extracted from nearest-neighbour and diagonal spin correlations
along y in the undoped Heisenberg model for Jx/Jy = 0.3. Finally, we can use exact
diagonalization to determine the distribution of these string lengths (related to the
distance a hole has travelled from the centre of a stripe), see Fig. 4.25a.

Alternatively, we also employ a classical model using the Müller-Hartmann-Zittartz
(MHZ) approach. Here we reduce the problem to 1d systems of fluctuating holes,
bound by an effective potential (again with exactly one hole per chain), Fig. 4.25b.
As before, we use the Heisenberg spin correlations to describe the effective potential
Vpot(|d|; T) and then sample the distance d of holes from the centre according to the
probability distribution

p(d) = exp[−βVpot(|d|; T)]/

(
Lx

∑
d=−Lx

exp[−βVpot(|d|; T)]

)
. (4.12)

The resulting distribution is shown in Fig. 4.25c.

We compare both approaches to experimental data in Fig. 4.26. We find agreement
with measurements for temperatures around kBT/tx ≈ 0.3, matching the estimations
from spin correlations. However, for both models, effective theories slightly overesti-
mate the amount of order compared to the experimental results.
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Figure 4.26: Comparison of effective models and experimental data.. Difference of
MFT stripe length histograms to random distribution for kBT/tx ∈ [0.2, 0.625] and
Jx/Jy = 0.3 (a) as well as classical MHZ results for kBT/Jy

1 ∈ [0.4, 0.91] (b). Experi-
mental data for δ = 0.111 is shown as green markers.

4.5 Results in the spin sector

In many materials exhibiting charge density wave ordering2, charge ordering goes
hand in hand with the formation of a related spin density wave where the parity of the
AFM pattern changes at the position of the stripes. However, due to the rather short-
ranged spin correlations along x in our anisotropic system, we do not have large,
global AFM domains but instead only local AFM patches. This means that common
signatures, such as weight in the spin structure factor away from (π , π), are not to
be expected in our parameter and temperature range. Instead, we rely on more local
observables to extract the spin ordering at the onset of charge ordering.

4.5.1 Spin-charge correlations

First we investigate three-point spin-charge correlations, similar as to what has pre-
viously been studied in much detail in isotropic 2d systems (see section 4.1.4). In a
similar fashion, we employ a hole-spin-spin correlator, which allows us to determine
the effect of individual dopants on the local spin correlations. For this we define the
normalised, bare hole-spin-spin correlator as

Chss(d
s, dh) =

1
Nds ,dh

∑
i

j=i+dh−ds/2

⟨n̂h
i Ŝz

j Ŝz
j+ds⟩

⟨n̂h
i ⟩σ(Ŝz

j )σ(Ŝz
j+ds)

, (4.13)

2but not all materials, e.g. YBCO [294]
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Figure 4.27: Spin-charge correlations. Hole-spin-spin correlations in the experiment
(a) and theory (b, δ = 0.125, kBT/tx = 0.4). The main figures show the connected
correlators while the inset is the same data with only the bare correlator. The bond
across the hole at distance ds = (2, 0) is strongly negative, consistent with the onset
of a domain wall in the local AFM pattern.

where ds is the spin bond vector, dh the distance of the bond from the dopant and we
normalise by hole density ⟨n̂h⟩ and the spin standard deviationσ(Ŝz). This correlator
directly measures the total spin environment around a hole. For some applications
it might be more interesting to consider what is the effect of the hole on the spin
background by subtracting out the background AFM pattern. We do this by defining
the connected correlator as

Cc
hss(d

s, dh) =
1

Nds ,dh
∑

i
k−j=ds ,

(k+j)/2−i=dh

⟨n̂h
i Ŝz

j Ŝz
k⟩ − Cdisc

⟨n̂h
i ⟩σ(Ŝz

j )σ(Ŝz
k)

(4.14)

where we used the disconnected part

Cdisc = ⟨n̂h
i ⟩⟨Ŝz

j Ŝz
k⟩+ ⟨n̂h

i Ŝz
j ⟩⟨Ŝz

k⟩+ ⟨n̂h
i Ŝz

k⟩⟨Ŝz
j ⟩ − 2⟨n̂h

i ⟩⟨Ŝz
j ⟩⟨Ŝz

k⟩. (4.15)

We apply these two correlators to our data in Fig. 4.27a. The connected correlator
reveals negative correlations in the direct vicinity of the hole with the strongest signal
being the bond across the hole with ds = (2, 0). As visible in the bare correlator in
the inset, this specific bond also has a negative sign in the bare correlator, where an
undoped system should have a positive correlation. This is consistent with a change
in parity of the local AFM pattern across the hole, which may be seen as a precursor of
true, spin density wave ordering. The negative diagonal correlations around the hole
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are due to the fluctuations of the hole along x. We compare these results to DMRG
simulations at δ = 0.125, kBT/tx = 0.4 in Fig. 4.27b. We find qualitatively similar
features as in the experimental data. Slight deviations can be attributed to differences
in the doping level as well as the precise spin couplings.

While this feature is consistent with what is expected from stripe-ordered systems,
similar signals are present in isotropic 2d systems with magnetic polarons. Therefore,
this spin signature is only a necessary but not a sufficient condition for spin density
wave ordering.

4.5.2 String correlators

To expand the discussion beyond observables used in 2d systems, we introduce the
notion of string correlators and ‘squeezed space’. Introduced in 1d chains [295], the
idea is to correct the spin order for every dopant between the two spins of interest.
Due to the presence of spin-charge separation in 1d chains [296], this allows for the
observation of hidden AFM ordering [297]. Here, we can use these kinds of correlators
in mixD systems to extract the sign change across dopants, similar to the three-point
correlations shown above. We therefore define the spin-string correlator in a given
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Figure 4.28: String correlator. a, Spin-string (dark green) and spin-spin correlator
as function of distance d for δ = 0.18. The string correlator recovers the pattern
expected from undoped systems for small enough distances. b, Both correlators at
distance d = 2 as a function of doping, showing a change of sign when adding the
string between the spins. Shaded regions are theory results for kBT/tx = 0.3. Error
bars are estimated using bootstrapping and are smaller than the marker size if not
visible.
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chain as

Cstr(d) =
1
Nd

∑
i

〈
Ŝz

i

(
∏

d−1
j=1 R̂i+ j

)
Ŝz

i+d

〉
−
〈

Ŝz
i
〉 〈

Ŝz
i+d
〉

σ(Ŝz
i )σ(Ŝz

i+d)
, (4.16)

where R̂i = eiπ n̂h
i . Note that for R̂i = 1 the common spin-spin correlator of Eq. (3.6)

is recovered. This correlator is only well-defined in 1d or 1d-like systems where the
string between the two endpoints is uniquely defined. We show the results for both
the spin-string and spin-spin correlator as function of distance d at a doping of δ =
0.18 in Fig. 4.28a, where the string correlator recovers the alternating pattern expected
from undoped systems. In Fig. 4.28b we study these correlators at distance d = 2 as
a function of doping. We observe a change in sign when adding the string operators.
Furthermore, the signal is mostly independent of doping. This is consistent within
the interpretation of dopants forming stripe-like structures that act as domain walls
within the local AFM pattern, even without long-range spin ordering. Meanwhile,
the normal spin-spin correlator has a significant dependence on doping. We compare
this to theory at kBT/tx = 0.3 and find good agreement with our measurement.

A similar yet slightly different observable is the ‘squeezed space’ operator. For
this operator, all holes are removed from the system in post-analysis. This is very
similar to the string correlator introduced above, except that distances are changed as
by removing a hole between two spins, a distance of 2 is reduced to a distance of 1.
We apply this correlator to our data in Fig. 4.29. We find results very similar to the
results obtained by using the string correlator.
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Figure 4.29: Squeezed space analysis. Squeezed space (dark green) and real space
spin-spin correlator (light green) at distance d = 2 as a function of doping with sim-
ilar results as for the string correlator shown in Fig. 4.28. Shaded regions are DMRG
results (Lx × Ly = 8 × 3) for kBT/tx = 0.3. Error bars are estimated using bootstrap-
ping and are smaller than the marker size if not visible.
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4.6 Discussion

We have shown experimental results on features of the stripe phase in a mixed-dimen-
sional Fermi-Hubbard system using ultracold atoms in optical lattices. Using multi-
point correlation functions, clear indications of extended charge ordering at temper-
atures around the superexchange energy have been provided. By exploiting our mi-
croscopic resolution, we were able to identify stripe-like structures in individual reali-
sations for further evidence of stripe formation. Finally, the spin environment around
stripe-like structures is consistent with a change in phase in the local antiferromag-
netic pattern across dopants. These prominent features in a system with otherwise
only short-ranged correlations may provide new insights into the intertwined rela-
tionship between spin and charge ordering in doped antiferromagnets. Meanwhile,
the current study does not provide clear evidence of spin stripes or large-scale AFM
domain phase changes. Despite mostly being limited to charge order within indi-
vidual stripes, it already points towards interaction between stripes. So far, these
signatures are rather weak and thus require further studies to unravel.

While the current study showed the first signatures of stripe order in a cold atomic
system, it holds the potential for a wide range of further, more detailed studies. First
and most obviously, realising lower temperatures will significantly improve the cur-
rently observed signals as well as uncover new regimes. The longer spin correlation
lengths hold the potential to manifest in splitting of peaks at (π , π) in the spin struc-
ture factor due to incommensurate magnetism. Similarly, signals in the charge struc-
ture factor may appear as multiple stripes forming at specific distances. Past obser-
vation of spin stripes, the intriguing question of differences in the transition temper-
atures of charge and spin stripe ordering will become available. The well-controlled
parameter settings of ultracold systems allow for the variation of t/J as well as tx/ty
to determine more favourable regimes. The aforementioned effect of next-nearest-
neighbour hopping also lends itself to further studies. Furthermore, the investigation
of the breakdown of stripe order due to diagonal tunnel couplings provides an in-
teresting challenge, as these couplings are more difficult to realise in optical lattices.
Lastly, the numerically unresolved issue of the precise periodicity of stripes is a com-
pelling open question for cold atomic systems. Despite current temperature mostly
limiting these studies to mixed-dimensional systems, the energy scales of dopant pair-
ing in normal 2d systems may also already be within reach [287].

Mixed-dimensional systems may also provide further insights into related phases
of matter. It has been shown that via the mapping from the repulsive to the attrac-
tive side of the Fermi-Hubbard model [127], the stripe phase relates to the Fulde-
Ferrell-Larkin-Ovchinnikov state [298, 299] in attractive, undoped, spin-polarised sys-
tems [300]. Finally, the connection to the recently discovered nickelate family of super-
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conductors is highly striking. Their mixed-dimensional, bilayer structure is in direct
correspondence to the capabilities of our unique experimental platform, promising
the possibility to study this new class of materials from a complementary point of
view.



106 4. Signatures of stripe formation in a mixed-dimensional system
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Chapter 5

Conclusion

In this thesis, new achievements on improvements in the microscopic understanding
of the Fermi-Hubbard model using a quantum gas microscope have been presented.
The first observation of stripes in a cold atomic system was shown by increasing en-
ergy scales in a mixed-dimensional approach. As a complementary study to solid-
state measurements, we were able to focus on multi-point correlations, pointing to-
wards favourable conditions for stripe formations. Signatures in both spin and charge
sector reveal the presence of stripes at temperatures around the superexchange cou-
pling. This measurement was enabled by the technical advancements achieved in
this thesis. Implementing a bichromatic superlattice with superior phase stability
opens up access to new parameter regimes for quantum simulation. Adding addi-
tional on-site detunings can remove unwanted tunnel couplings as well as change the
magnitude and sign of spin-exchange couplings. Furthermore, it presents a alterna-
tive approach for quantum computation using neutral atoms by preparing isolated
double-wells.

From this starting point, future endeavours in quantum simulation promise pos-
sible improvements in temperature. With the exceptional phase stability achieved
here, we have laid the technical groundwork for the implementation of cooling meth-
ods for the high-fidelity preparation of low-entropy quantum systems [198, 250, 251].
These may now be implemented without any required additional changes to the ex-
perimental setup. Lowering the temperature even further – compared to the already
state-of-the-art values of 0.25 t – pushes the frontier of quantum simulation of the
Fermi-Hubbard model, where a multitude of incompletely understood phases await
further investigation. Already at the present temperatures, pseudogap phenomena
may be revealed [66, 111, 301], while theoretical calculations also predict direct pair-
ing of holes [287]. Modest improvements in temperature below 0.1 t may then unveil
stripe order in pure 2d systems without modified couplings, and thus adding comple-
mentary information to the discussion on the relationship between superconductivity
and stripe phases in the Fermi-Hubbard model.

On the other hand, the promising results for single-qubit gates obtained in the
course of characterising the superlattice are essential building blocks for future stud-
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ies on quantum computation. Despite no significant gate optimisation, the obtained
error rates have been encouraging. With the implementation of optimised control
theory [302] for the precise gate sequence, the so-far comparably slow speed may be
vastly improved [303]. Simple proposals for multi-qubit gates are also within reach
of this experiment, where the actual gate fidelities remain to be investigated. Finally,
future experiments may combine the advantages of collisional gates [227] with the
connectivity obtained in optical tweezer arrays to realise functional fermionic proces-
sors [228, 231].
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Lukin. High-fidelity parallel entangling gates on a neutral-atom quantum computer.
Nature 622, 268–272 (2023). (Cited on page 63)

[236] T. Xia, M. Lichtman, K. Maller, A. W. Carr, M. J. Piotrowicz, L. Isenhower, and
M. Saffman. Randomized Benchmarking of Single-Qubit Gates in a 2D Array of
Neutral-Atom Qubits. Phys. Rev. Lett. 114, 100503 (2015). (Cited on page 63)

[237] Y. Wang, A. Kumar, T.-Y. Wu, and D. S. Weiss. Single-qubit gates based on targeted
phase shifts in a 3D neutral atom array. Science 352, 1562–1565 (2016). (Cited on
page 63)

[238] T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman,
Y. Sun, M. Ebert, and M. Saffman. Rydberg-Mediated Entanglement in a Two-
Dimensional Neutral Atom Qubit Array. Phys. Rev. Lett. 123, 230501 (2019). (Cited
on page 63)

[239] I. Madjarov, J. Covey, A. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkol-
nik, J. Williams, and M. Endres. High-fidelity entanglement and detection of alkaline-
earth Rydberg atoms. Nat. Phys. 16, 857–861 (2020). (Cited on page 63)

[240] H. Levine, D. Bluvstein, A. Keesling, T. T. Wang, S. Ebadi, G. Semeghini, A. Om-
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