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Zusammenfassung

Streuamplituden stellen eine Verbindung zwischen experimenteller und theoretischer Physik
her, weil der resultierende Wirkungsquerschnitt zur Uberpriifung theoretischer Vorhersagen
in Experimenten verwendet werden kann. Dariiber hinaus kénnen Streuamplituden genutzt
werden, um Erkenntnisse iiber die Struktur der zugrunde liegenden Theorie zu erhalten.
Da die Stringtheorie eine konsistente Theorie der Quantengravitation darstellt, sind ins-
besondere Gravitationsamplituden phianomenologisch interessant. Die ersten Quantenko-
rrekturen zur Einstein-Hilbert-Wirkung der Stringtheorie kénnen durch Streuamplituden
mit der Kreisscheibe oder der reellen projektiven Ebene als Weltflachen beschrieben werden
und beinhalten nicht-perturbative Objekte wie Dp-Branen bzw. Op-Ebenen.

In dieser Dissertation untersuchen wir diese Amplituden. Fiir beide Konstellationen
geben wir eine Vorschrift zur Berechnung der allgemeinen n-Punkt-Amplitude an und
diskutieren die Auswirkungen dieser nicht-perturbativen Objekte auf die Welftflachen-
Felder. Explizit berechnen wir die Streuamplituden von drei geschlossenen Strings auf
der Kreisscheibe und der reellen projektiven Ebene im Pure Spinor Formalismus. Fiir
beide Amplituden wird die analytische Fortsetzung berechnet, um die holomorphen und
antiholomorphen Koordinaten der geschlossenen Strings auf den Weltflichen unabhangig
voneinander betrachten zu konnen. Aufgrund der Verzweigungsstruktur des Koba-Nielsen-
Faktors miissen Monodromien beriicksichtigt werden, so dass wir kompakte Ergebnisse fiir
die Streuung von drei geschlossenen Strings fiir beide Weltflachen erhalten. Letztendlich
konnen beide Streuprozesse durch Amplituden von sechs offenen Strings auf der Kreiss-
cheibe beschrieben werden. Mit Hilfe dieser Ergebnisse versuchen wir, unsere Erkenntnisse
zu verallgemeinern und einen Ansatz fiir die Streuung von n geschlossenen Strings an einer
Dp-Brane herzuleiten, der die allgemeine Struktur der Amplitude auf der Kreisscheibe
beschreibt. Diese Verallgemeinerung fiir eine beliebige Anzahl geschlossener Strings kann
durch Amplituden mit 2n offenen Strings ausgedriickt werden.

Diese Amplituden beschreiben gravitative Wechselwirkungen auf Baumniveau in An-
wesenheit einer Dp-Brane oder Op-Ebene. Deshalb entwickeln wir die Amplitude von
drei geschlossenen Strings auf der Kreisscheibe in der inversen Stringspannung und kon-
nen so relevante gravitative Dp-Branen-Kopplungen analysieren, die mit Korrekturen zur
Einstein-Hilbert-Wirkung verbunden sind. Aulerdem vergleichen wir die String-Amplitude
mit den feldtheoretischen Ergebnissen, die wir von der Dirac-Born-Infeld-Wirkung erhalten
haben. Gleichzeitig konnen wir damit die Konsistenz unserer Berechnungen iiberpriifen.
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Abstract

Scattering amplitudes provide a connection between experimental and theoretical physics,
as the corresponding cross section can be used to check theoretical predictions in experi-
ments. In addition, scattering amplitudes can be used to gain insight on the structure of
the underlying theory. Since string theory provides a consistent theory of quantum gravity,
especially gravitational amplitudes are phenomenologically interesting in this context. The
first quantum corrections to the Einstein-Hilbert action of string theory can be captured by
scattering amplitudes with the disk or the real projective plane as worldsheets and involve
non-perturbative objects namely Dp-branes and Op-planes, respectively.

In this thesis we investigate these kinds of amplitudes: For both setups we provide
an amplitude prescription for the general n-point amplitude and discuss the implications
of these non-perturbative objects on the worldsheet fields. Explicitly, we calculate the
scattering amplitudes of three closed strings on the disk and real projective plane in the pure
spinor formalism. We analytically continue both amplitudes to disentangle the holomorphic
and antiholomorphic closed string worldsheet coordinates on the disk and real projective
plane. By introducing monodromy phases arising form the branch cut structure of the
Koba-Nielsen factor we arrive at compact expressions for the scattering of three closed
strings on the disk and real projective plane. In the end, both scattering processes can
be described in terms color ordered amplitudes of six open strings on the disk. Using
these results we try to generalize our findings and provide an ansatz for the scattering
of n closed strings from a Dp-brane, which encompasses the general structure of the disk
amplitude. This generalization for any number of closed strings can be written in terms of
color ordered open string amplitudes involving 2n open strings.

Since these amplitudes probe tree-level gravitational interactions in the presence of
a Dp-brane or Op-plane, we carry out the low energy expansion in the inverse string
tension of the three-point disk amplitude and analyse some relevant gravitational Dp-
brane couplings associated to corrections of the Einstein-Hilbert action. In particular, we
compare the string amplitude to the analogue field theory calculation obtained from the
Dirac-Born-Infeld action and thereby provide a consistency check for our calculations.



Xiv

Abstract




Chapter 1

Introduction

At the beginning of the last century, our understanding of the universe underwent a fun-
damental change with the development of at that time groundbreaking theories: Quantum
mechanics [1], special relativity [2] and general relativity (GR) [3, 4]. Originally, they
were introduced to solve specific problems: Quantum mechanics provides a description for
the energy spectrum of a black body in terms of harmonic oscillators. Moreover, it was
observed that also energy carried by light appears in discrete quanta and is not following
a continuos spectrum [5], which previously could not be explained by Maxwell’s theory.
On the other hand, general relativity as a refinement of Newton’s law can explain the
precession of Mercury [6].

Combining the principles of special relativity and quantum mechanics led to the frame-
work of quantum field theory (QFT), which allowed for a consistent description of funda-
mental non-gravitational interactions in nature. This progress led to the Standard Model
(SM) of particle physics, which successfully explains the unification of electromagnetism,
the weak and strong fundamental interactions, which are all described by the exchange of
gauge bosons. However, any approach to incorporate gravity in a perturbative quantum
field theory has to break down at the Planck scale M, ~ 10! GeV [7], because quantum
gravitational corrections describe an irrelevant interaction. Meaning that the gravitational
coupling grows weaker at low energies and becomes negligible at the energy scale of current
particle physics. On the other hand, the interaction becomes stronger at high energies,
which leads ultimately to a break down for energies above the Planck scale. Hence, QFT
when accommodating gravity into the formalism is a non-renormalizable theory.

Although, the success of the SM and general relativity is undeniable, i.e. they can
explain a large number of phenomena, they do not suffice to explain all observations in na-
ture. The observed positive and small value of the cosmological constant deviated from the
prediction of the SM by 120 orders of magnitude [8]. Recent measurements [9] might even
suggest that the cosmological constant is not-constant at all and the story is more involved.
But this is still under investigation and further measurements are needed. Furthermore, a
purely phenomenological approach is not satisfying. In theoretical physics understanding
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the bigger, more complete and perhaps even fundamental picture has always been pursued.

A first step to gain insights in cases, where the quantum nature of gravity becomes
non-negligible, is provided by semiclassical gravity as an approximation that treats matter
as quantum fields, while simultaneously spacetime is considered to be classical. Moreover,
the perturbative expansion for the gravitational interaction has to be truncated at the
one-loop level to avoid the issue of non-renormalizability. This ansatz led to important
insights in physical processes, where the quantum nature of gravity becomes relevant.
Examples of these progress are cosmological perturbation theory [10] and black hole (BH)
physics. Especially, the latter one has become of great interest due to recent experimental
observations via gravitational waves [11, 12] and direct imaging [13, 14]. The semiclassical
approximation of BHs resulted in a thermodynamical description for BHs, which allows to
express their entropy such that it depends only on the surface area of the BH [15, 16, 17,
18, 19]. Despite all of this progress the question about the correct and consistent theory
of quantum gravity remains unanswered in any of these frameworks.

1.1 String theory as a theory of quantum gravity

String theory is based on a rather simple geometric idea with dramatic consequences: The
fundamental degrees of freedom in perturbative string theory are described by one dimen-
sional objects moving through a D dimensional spacetime. The time evolution sweeps out
a two dimensional surface called the worldsheet of the string. Similar as the action of a
point particle corresponds to the worldline, the string action originates from the according
worldsheet. In principle, there are open and closed strings, which can be distinguished de-
pending on whether their endpoints are identified or not. This distinction has huge impact
on the spectrum describing the oscillation modes on each string. The lowest massless exci-
tations in the open string spectrum have spin-one and show the same properties as gauge
bosons of super Yang-Mills theory. On the other hand, after quantization the closed string
spectrum naturally contains a massless spin-two mode, which is identified as the graviton,
i.e. the gauge boson mediating gravity. Thus, string theory is a theory of quantum gravity.
Because of the extended nature of the string the UV-divergences of point particles in QFT
are absent. The interaction between strings is non-local and of purely topological nature,
i.e. it is described by the joining and splitting of strings. Schematically, Feynman diagrams
in QFT become the propagation of strings as depicted in figure 1.1.

The quantization of strings gives rise to a QFT on the worldsheet which is invariant
under conformal transformations. This symmetry makes string theory very powerful, as
the underlying conformal field theory (CFT) of string theory is exactly solvable in simple
backgrounds. However, this CFT is only anomaly free in ten spacetime dimensions for
the superstring. Note that from a worldsheet point of view spacetime and the fields of
general relativity and quantum field theories are emergent phenomena, because they arise
from string excitations. The number of spacetime dimensions D = 10 in string theory is
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in contradiction to the four spacetime dimensions we observe. While there are attempts to
investigate non-critical string theory [20, 21|, i.e. string theory with D # 10, the common
approach is to compactify the extra dimensions on a small internal manifold in order to
make contact with phenomenology. Essentially, the six extra directions predicted by string
theory are curled up on a volume small enough such that they become invisible for current
experiments, because the energy necessary to resolve the curled up dimensions is out of
reach. This process is a generalization of the idea by Kaluza [22] and Klein [23], where
in their proposal the fifth extra dimension is compactified on a circle. To curl up six
dimensions in string theory one has to choose a suitable compactification manifold. The
physics of the lower dimensional theory, i.e. the couplings, masses and quantum numbers
of the particles in the low energy effective theory, is determined by the topology and
geometry of the according internal space. Following from the string equations of motion
the geometry for this compactification manifold is required to be Ricci-flat or equivalently
it has to be a Calabi-Yau manifold. The number of known Calabi-Yau manifolds is large,
see for example [24]. Moreover, there were attempts to estimate the total number of Calabi-
Yau manifolds [25], which led to astronomically large numbers and it still remains an open
question whether this number is finite or not. Hence, finding the correct Calabi-Yau that
gives rise to the four dimensional theory we observes, seems like a hopeless task due to
the enormous amount of possibilities. However, by imposing finiteness criteria following
from universal properties of quantum gravity the swampland program [26] tries to find
the landscape of consistent (string theory) vacua and to rule out the inconsistent effective
theories in the swampland.

In addition to strings as the fundamental degrees of freedom, in a perturbative regime
at weak coupling the consistency of string theory requires (p+ 1) dimensional objects [27],
which are not quantized as fundamental objects, but have to be treated as non-perturbative
excitations with their own dynamics. These Dp-branes resemble the endpoints of open
strings, which have to satisfy either Dirichlet or Neumann boundary conditions. If for
9 — p directions the open string has endpoints with Dirichlet boundary conditions, the
other endpoints in the remaining p + 1 dimensions have to lie on the worldvolume of
the Dp-brane. Moreover, these object provide an explanation why we observe only four
spacetime dimension. This is, because we are confined to live on a D3-brane, which extends
along the four visible dimensions and is embedded in some internal, higher dimensional
manifold.

1.2 Scattering amplitudes in string theory

String theory is an S-matrix theory and therefore scattering amplitudes, which are the
elements of the S-matrix, are the fundamental quantities that originate from a perturbative
expansion in the small coupling regime. They describe the transition probability from
one state of the asymptotic Hilbert space to another. These final and initial states are
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asymptotically free states such that they have to be located infinitely far away from the
interaction.

Concretely, the elements of the S-matrix in string theory can be obtained from the
Polyakov path integral over gauge inequivalent worldsheet metrics. In the exponential of
this path integral only the free worldsheet action appears. Adding cubic or higher order
interaction terms in the matter fields is not compatible with the residual superconfor-
mal gauge transformations, which are necessary for unitarity and anomaly cancellation.
However, as already stated above considering locally only freely propagating superstring is
sufficient, as interaction originate from the global properties, i.e. the topology, of the world-
sheet, which cannot be captured by any higher order interactions in the action. Therefore,
the closed string interaction shown in figure 1.1 encompasses the joining and splitting of a
worldsheet that locally looks like a free string.

The first scattering amplitude was computed before string theory even existed [28, 29]
in order to describe hadron scattering in terms of a dual four point scattering process with
special crossing symmetries. In the high energy regime dual models behave much softer
than any quantum field theory, which provides a suitable description of hadrons exhibiting
a soft high energy behaviour. In the end, it turned our that this amplitudes arises from
(bosonic) string theory.

In perturbative QFT computing scattering amplitudes corresponds to summing Feyn-
man diagrams, whereas the perturbative expansion in string theory requires a sum over
different worldsheet topologies. Thereby, one worldsheet contributing to each order in
perturbation theory covers a wide range of Feynman diagrams of the low energy effective
QFT, which is depicted in figure 1.1. In a field theory a single Feynman diagram is only

HH%X*X

Figure 1.1: A single worldsheet encompasses several Feynman diagrams.

part of the bigger picture so that various kinds of symmetries can be obscured in individual
diagrams that would otherwise be present in the complete amplitude. This is absent in
string theory, because the interaction of string states is uniquely determined by the free
worldsheet theory.

However, string theory is connected to QFT: As physics allows to decouple different
energy regimes, we can model two different energy scales by different theories, which pro-
vides us with an effective description. Hence, string theory can be viewed as a high energy
completion of quantum field theory such that in the limit o/ — 0, where the string length
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l, = o/ goes to zero, we should recover QFT amplitudes from string scattering pro-
cesses. Performing an expansion of a string scattering amplitude in o’ yields a complex
pole structure in Mandelstam variables, where each pole can be associated to different field
theoretic scattering channels, i.e. Feynman diagrams. In figure 1.1 the scattering of four
closed strings decomposes in the point particle limit into s,t,u channels and a four-point
interaction. By taking this limit the Lagrangians of many different theories such as gen-
eral relativity and super Yang-Mills (SYM) theory can be constructed from superstring
scattering amplitudes.

In super Yang-Mills theory the duality between color and kinematics in gauge theories
[30], which is hidden in a Lagrangian description, allows to rearrange kinematical factors
in amplitudes and to even interchange the role of color and kinematics in the full color
decomposition of an amplitude [31]. This duality between color and kinematics originates
from the fact that kinematic variables in scattering amplitudes of gauge theories satisfy the
same Jacobi identity as the gauge algebra. Replacing the gauge factors by the according
kinematic variables in the amplitude establishes a relation between gauge and gravity
amplitudes, which can schematically be written as

gravity ~ gauge ® gauge . (1.1)

such that some of these properties also carry over to gravitational scattering processes.
Since SYM amplitudes can also be derived from string theory in the low energy limit,
we expect that they have a stringy origin. This suggests that we might get a deeper
understanding of these symmetries from string theory. Indeed, string theory provides the
color decomposition of gauge amplitudes almost as a definition, as in any string amplitude
the Chan-Paton factors are isolated and the amplitude can be split into gauge invariant
pieces. In the end, identities like the Bern-Carrasco-Johansson relations [30, 32, 33] or
Kawai-Lewellen-Tye (KLT) relations [34] can be derived and understood from string theory,
as they originate form the monodromy properties of the string worldsheet [35, 36].

Eventually, computing scattering amplitudes boils down to presenting the final result
in a compact and short form that encodes the symmetries of the underlying theory. For
string theory tree-level amplitudes this is achieved by grouping the worldsheet dependence
and the kinematics into individual building blocks and expressing both in a minimal basis.
Therefore, the calculation of string scattering amplitudes is a intriguing area of research:
The result obtained by any means necessary are analysed to find the underlying structure
leading to a compact expression. In the end, we try to understand why the simplified
results takes this form, which usually does not happen by accident.

1.3 Pure spinor formalism

The underlying degrees of freedom in string theory admit a variety of different formulations:
For the calculation of scattering amplitudes the most commonly known formulations of the
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superstring are the Ramond-Neveu-Schwarz [37, 38, 39, 40] and the Green-Schwarz [41, 42]
formalisms. At the beginning of this millennium, a new, consistent formulation of the
superstring came to life. Berkovits developed the pure spinor formalism resulting in the
first covariantly quantised super string theory that is manifestly super-Poincaré invariant
[43, 44, 45]. All of these formulations vary with respect to their implementation of the
worldsheet and supersymmetry, but are widely expected to be equivalent [46, 47, 48], which
is explicitly verified for the leading orders in string perturbation theory, i.e. all amplitudes
computed in RNS or GS formalism are in agreement with the corresponding expressions
obtained in PSF.

Moreover, the pure spinor formalism exhibits a framework to organise the kinematic and
worldsheet dependencies of a scattering process in a way that allows for a more efficient
calculation of string scattering amplitudes compared to the other two formalisms. An
outstanding example is the computation of the scattering of four closed strings at two-
loops, which required hundred pages in the RNS formalism [49, 50, 51, 52] and [53, 54], see
also [55, 56, 57, 58, 59], and was done in the PSF in only ten pages [60, 61]. This efficiency
also allowed to compute amplitudes that were out of reach in RNS and GS formalism:
Two examples are the scattering of n open strings on the disk [62, 63] and the three-loop
scattering process of four closed strings [64].

Except for computing scattering amplitudes the pure spinor formalism can be used to
study the propagation of strings in curved backgrounds [65, 66, 67, 68, 69, 70] and more
recently [71], which incorporates for example the derivation of equations of motion for
non-linear Born-Infeld theory [72]. In addition, strings in AdSs x S° backgrounds can be
studied [73, 74, 75, 76, 77], which led to the construction of vertex operators [78, 79, 80]
and the computation of string scattering amplitudes [81, 82] in AdS5 x S°. Furthermore,
it is possible to investigate Chern-Simons corrections, which are necessary for anomaly
cancellation [83].

1.4 Overview and organization of the thesis

There was remarkable progress (partly due to the pure spinor formalism) in the under-
standing and capabilities to compute scattering amplitudes over the last decades and it is
the goal of this thesis to contribute here. We focus on scattering amplitudes at tree-level,
as they give rise to the first quantum corrections in the limit o/ — 0 to the effective action
in string theory. In this context, our main interest are amplitudes with the disk or real
projective plane as worldsheet, which describe the interaction of closed strings with non-
perturbative objects like Dp-branes and Op-planes. For the scattering of closed strings off
a Dp-brane they provide the first gravitational corrections to the Dirac-Born-Infeld (DBI)
action and are therefore phenomenologically very interesting. For this reason, there exists
already considerable body of literature on disk amplitudes: For example, in [84] higher
derivative gravitational corrections to the DBI action are derived from disk amplitudes.
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Furthermore, the dilation one-point function in bosonic string theory was calculated in
[85, 86] and a generalization for the superstring was found in [87, 88]. The scattering of
two superstrings from a Dp-brane was first computed in the RNS formalism and performed
in [89, 90, 91, 92]. A detailed review of these computation and the calculation in the PSF
can be found in [93, 94, 95, 96] and [88], respectively. For the special case where the exter-
nal states are described by one RR field and two NSNS fields there are even computations
of scattering amplitudes involving three closed strings on the disk [97, 98, 99], but all of the
are formulated in the RNS framework. However, none of these compute the full superstring
amplitude of three closed strings on the disk. Finally, there is a variety of calculations of
disk amplitudes involving open and closed strings in both pure spinor [100, 101] and RNS
formalism [35, 102, 103, 104], see also [105, 106, 107, 108].

In this thesis we want to push the analysis of scattering processes of closed strings
from non-perturbative objects like Dp-branes and Op-planes. Therefore, we generalize the
previous work on amplitudes involving D-branes to arbitrary external states, i.e. states from
either NSNS, RNS, NSR or RR sector, for three closed strings and outline the procedure
that can be used to compute an n-point closed string amplitude on the disk. Furthermore,
we are preforming these calculations on the upper half plane contrary to [35], where the
scattering of three closed strings is computed on the double cover, i.e. the sphere. So far,
on the disk only the interaction of one closed string with an arbitrary number of open
strings was investigated in [104]. But working on the upper half plane has consequences:
In the scattering amplitude on the double cover certain poles in the kinematic invariants
are missing. The result obtained on the upper half plane in [109] shows all the expected
poles.

The scattering of closed strings on the real projective plane was only considered for
two external NSNS states in [110] and reviewed in [96]. Here, we provide a prescription
for the general n-point amplitude and compute the scattering of three closed strings of an
Op-plane utilizing the results from the disk calculation.

This thesis is organized as follows: We start with an overview of A/ = 1 super Yang-
Mills theory in ten spacetime dimensions in chapter 2. There we derive the equation of
motions first of the non-linear and afterwards of the linear superfields, which will be used
in various pure spinor computations. Moreover, from the equations of motion we compute
the power series of the linearized superfields in the fermionic coordinates of pure spinor
superspace.

In chapter 3 we provide an introduction in the pure spinor formalism, which includes a
derivation of the fundamental degrees of freedom and their CFT originating from Siegel’s
formulation of the GS superstring. By introducing the pure spinor ghost sector Siegel’s
ansatz for the superstring becomes anomaly free and consistent with the RNS formalism.
We analyse these ghost fields and their CF'T in detail and use them to formulate integrated
and unintegrated vertex operators, which are used in scattering amplitudes to describe the
massless string excitation of the external states.
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Chapter 4 discusses the general procedure for the evaluation of scattering amplitudes
starting with a prescription for open and closed string scattering amplitudes at tree-level.
The non-zero modes of the conformal primaries with weight one can be integrated out
using Wick’s theorem. Afterwards, the zero modes of the primaries with conformal weight
zero give rise to a zero mode correlator, which is evaluated by a zero mode prescription.
We conclude this section with a sample calculation that demonstrates this procedure.

Using Wick’s theorem in the procedure described in chapter 4 is not very efficient, but
Wick contractions can be reorganised in terms of composite superfields. These are defined
recursively in chapter 5 and can be used to simplify the organisation of kinematic terms.
Then, using the cohomology properties of the pure spinor formalism and the simple form
of the BRST charge composite superfields give rise to BRST building blocks, which have
an interpretation in terms of tree graphs.

In chapter 6 a generalisation of Berends-Giele currents is constructed, which include
also the superpartner of the gluon. Similar as the BRST building blocks they have an
interpretation in terms of tree graphs, which allows to express the Berends-Giele supercur-
rents in terms of expressions obtained from the cohomology of the pure spinor formalism.
Furthermore, we derive SYM amplitudes from Berends-Giele supercurrents.

Closed string amplitudes on the sphere are discussed in chapter 7, where we explain
how the closed string can be decomposed into two open string amplitudes by using analytic
continuation. Thereby, the complex worldsheet integration over the sphere can be split
into two integrations over parts of the real line. Furthermore, the open string n-point
amplitudes are not independent, which allows to express them in a minimal basis with
(n — 3)! elements. Therefore, one has to use symmetry properties of the amplitude and
monodromy relations, which can be derived from worldsheet properties of the open string
amplitudes.

In chapter 8 we analyse the scattering of three closed string off a Dp-brane. First, we
discuss the boundary conditions imposed by the D-brane and give an amplitude prescrip-
tion for the n-point amplitude. Afterwards, we use monodromy relations of the worldsheet,
analytic continuation and a PSL(2,R)-transformation to express the closed string ampli-
tude in terms of open string six-point partial amplitudes. By performing these contour
deformations we generalized the sphere calculation of chapter 7 to the disk. In the end,
this leads to a compact formula in which the scattering of three closed strings on the disk is
written in terms of only two independent open string subamplitudes instead of six, which
is the minimal basis for six open strings.

Using the final result of the scattering of three closed strings on the disk we want to
generalise this calculation to an arbitrary number of external states and present an ansatz
for the n-point function in chapter 9. Therefore, we comment on the n-point scattering
amplitude of open strings on the disk, which are the building blocks of the closed string
generalisation.

Similar as for the computation on the disk, we start the discussion in chapter 10 on the
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scattering of three closed strings on the real projective plan by introducing the conditions
imposed by the Op-plane on the worldsheet fields at the T-dual point. Then, we continue
again by relating the closed string amplitudes to open string subamplitude using analytic
continuation. It turns out that the scattering of three closed string from an Op-plane can
be described by four open string partial amplitudes.

In chapter 11 we perform an expansion in o’ to obtain the low energy effective descrip-
tion of the scattering of three closed strings on the disk. In addition, we compare our
findings to some of the leading terms in the Dirac-Born-Infeld action and comment on the
absence of disk-corrections to the Einstein-Hilbert action.

Finally, in chapter 12 we present some concluding remarks and an outlook of possible
future work, which includes the generalization of the results in this thesis to higher genera
or massive external states.

The appendices contain some technical details: In appendix A we explain some de-
tails about the U(5) decomposition of the Wick rotated Lorentz group in ten spacetime
dimension, which are relevant for the analysis of the pure spinor constraint and the deriva-
tion of the CFT of the ghost sector in chapter 3. Appendix B discusses the invariance
of a correlator of holomorphic and antiholomorphic fields on the disk under global con-
formal transformations. These results are then used in appendix C to explicitly perform
a PSL(2,R)-transformation of the correlator, which is obtained by performing the vertex
operator contractions in the closed string three-point function. Moreover, we express the
amplitude in terms of hypergeometric functions and Berends-Giele supercurrents, i.e. SYM
amplitudes, which carry the o/-dependence and the kinematic terms, respectively. Finally,
in appendix D we give some details on the derivation of the monodromy phase, which
ensures that a disk amplitude is well defined after analytic continuation.

This thesis, especially the chapters 8, 9, 10 and 11, are based on the author’s work partly
published in:

Scattering three closed strings off a Dp-brane in pure spinor formalism [109]
Andreas Bischof, Michael Haack and Stephan Stieberger
JHEP 10 (2023) 184; arXiv: 2308.04175 [hep-th]

Superstring scattering on the real projective plane
Andreas Bischof and Stephan Stieberger
Work in progress
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Chapter 2

Super Yang-Mills theory in ten
spacetime dimensions

In the low energy limit o — 0 open superstring excitations describe the interaction of only
gluons and gluinos. Hence, it might not be surprising or a coincidence that the degrees of
freedom of open strings in the pure spinor formalism are essentially described by N/ = 1
super Yang-Mills (SYM) theory in ten spacetime dimensions. Its spectrum contains only
a gluon and gluino, which are related by sixteen supercharges [111, 112]. These degrees of
freedom can be packaged into superfields that are defined on superspace which is spanned
by ten spacetime coordinates X" and their associated sixteen superpartners #“. The
Grassmann odd spinor variables form a right handed Majorana-Weyl spinor of SO(1,9).
In addition, the super-Poincaré covariant formulation [113] of this SYM theory allows the
pure spinor formalism to be a very efficient tool in computing scattering amplitudes. The
presentation of the superfields here follows the corresponding chapters in [114, 115, 116,
117].

2.1 Non-linear superfields

To define the gauge theory we start by introducing covariant derivatives. Because this
theory is defined on superspace, there exist derivatives in the spacetime directions X and
the spinor space coordinates ¢

Vi =0Om—Ap,  Va=Do—A,, (2.1)

which are Lie-algebra valued connections for the superfields A,, = A,,(X,0) and A, =
A, (X, 60) and obey the Lie-bracket [112, 113]

{vom Vﬂ} = Vglﬁvm . (2'2)
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Above we have defined the spacetime derivative 0,, = aXLm and the superspace derivative
0 1

Dy=—+=-(7"0) 0 , 2.3

S+ 300 (23)

which satisfies a Lie-bracket on its own { Dy, Dg} = 7430, Moreover, we have introduced
the 16 x 16 Pauli matrices ;5.

The Pauli matrices originate from the 32 x 32 Dirac matrices I'™ in ten dimensional
Minkowski space RYY, which satisfy the Clifford algebra

{Fm, Fn} = Qnmn]lggxgg for m = O, ]_, ce ,9 N (24)

where the signature of the metric ™" is mostly plus (—, 4, +, ..., +). The chiral matrices
~™ are given by the off-diagonal components of I in the Weyl representation

and satisfy a Clifford algebra on their own

Vo (V)P A+ g (Y™ = 206 (2.6)

More details and the explicit form of the 4™ matrices can be found in [114].

We can define field strength tensors W* and F,,,, for the superfields (A,, A,,), i.e. for
the gluino and gluon, respectively. These non-linear superfields have to obey the equations
of motion' [112, 113]

Ve, Vst =705V Vo, Vil = =(1mW)a ,
(Ve WP} = ™) Fon (VarFa] = =Wy, (25)
where we have introduced
Frin = =V, Vil , Wi = [V, W . (2.9)

These on-shell constraints can be derived from (2.2) and the associated Bianchi identities.

The equations of motion (2.8) are invariant under infinitesimal gauge transformations of
the gluon and gluino superfields (A,,, A,). These gauge transformations can be described
by a Lie algebra-valued gauge parameter 2 = Q(X, ) such that

doA, = [Va, Q] , doA, = [V, Q] . (2.10)

'Except otherwise stated, in expression, where we symmetrize or antisymmetrize indices, we use the
convention

Al A2 .,.A’;k] — Al A2 A’;k + permutations ,

3 a;*az
A%alAiQ e Agk) = AL A2 - Af + permutations (2.7)

where we do not include a factor of %
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Similarly, the associated field strengths transform as
JoW* = [Q, W] | JoF™™ = [Q,F™] | JoWo = [Q, W] . (2.11)
Moreover, we can derive the massless Dirac and Yang-Mills equations
VIV i, WP =0, [V, T = i {We, W7} (2.12)
using the constraint in (2.2) and the equations of motion

70%[Vmawﬂ] = [{vaﬁ}>wﬁ]
= —[{W", Va}, Vgl — [{V5, W}, V]

1 mn mn
= _1<7 )aﬁ[F 7v5]
= L W — 3 (W)
- 4 7 771, m ) 4 ’7 ’Ym nj)oa
9 m
= §’ya5[Vm,Wﬁ] , (2.13)

where we furthermore used that v™" is a traceless matrix, i.e. (Y™")," = 0 and the identity
Y™y = 9™, Hence, equation (2.13) implies that 775(V,,, W’] = 0. The Yang-Mills
equation in (2.12) can be obtained by taking the anticommutator of the Dirac equation
with v2°V;. By utilizing the Bianchi identity this anticommutator evaluates to

1
0= 7’77?67215{V57 [VTMW/B]}

8
— ;7701467215 ({Wﬁ, [Vg, Vm]} + {me [Wﬁv st]})
= _;7357215 ((Vm)éa{wﬂvwa} - i(vrs)éﬁ[vmﬂ?rso
= AW, W7} — [V, F™] . (2.14)

To derive this result we have used that —(y™9"ym)s, = 87j,, which follows from the
Clifford algebra of the y-matrices (2.6), 7", = 10 and that § Tr(ymy,7™) = 4(6505, —
07 07)-

The equations of motion (2.8) of the superfields can be written in an alternative form

Vo, As} +{V3, A} = V%Am —{Aqs, Ag}, Vo, An] = [0, Aol + (1mW)a
1
(V. W’ = Z(ymn)ﬁm , [V, F™] = (Wimam,, (2.15)

When substituting (2.1) in (2.15) the above equations become

{Da,Aa} + {D@,Aa} = ’VZLﬁAm + {AQ,AQ} ,
[Dow Am] = [amv Aoz] + (Vmw>a + [Aaa Am] )
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1
{DOU Wﬁ} = i(fymn)aﬂ]an + {AOU WIB} Y
[Dgo, F™] = (WA, 4+ [A,, F™ (2.16)

More details on the non-linear superfields and their higher mass dimension generalisation
can be found in [114].

2.2 Linearized superfields

The asymptotic states in string scattering processes are described by the linearized descrip-
tion of the ten dimensional superfields, because interactions will be introduced later by a
perturbative approach based on string theory. These linearized superfields are obtained by
discarding the non-linear terms in (2.16) that are quadratic in the superfields

DCYAB + DﬁAa = V%Am ) DaAm = (’YmW)a + am*Acy s
1
DaWﬂ - Z(an)aBan ) DOlan = 8[m(’7”}w)0‘ ! (217)

The linearized superfields are invariant under the linearized version of the gauge transfor-
mations in (2.10), which are given by

Sols = DoQ,  SoAn = 0nQ . (2.18)

The linearized gauge transformations will be important for the definition of the massless
vertex operators in the pure spinor formalism in section 3.6.

The superfield A,, is an auxiliary field and not independent of A,. Because a bispinor
D, Apy contains a one-form and a five-form, we can rephrase the first equation in (2.17)
as yon wDadAg = 0, which is a constraint that puts the fields on-shell. With the on-shell
constraint A,, can be expressed in terms of the spinorial superfield A, by

A, = ; D, Ag . (2.19)
Note that the vanishing five form does not put the fields on-shell for D < 10, i.e. if this
computation was carried out in lower dimensions the constraint would not eliminate any
p form component from D Ag) [115, 116].

Moreover, the fields (W,, Fy,,,), which are the associated field strengths to (Aa, Am),
can be expressed in terms of (A, A,,): By antisymmetrizing either two spinorial or one
spinorial and one spacetime component of the (A,, A,,)-Jacobi matrix we can define the
the gauge invariant field strength tensors

1
we = Tovglﬂ(D,@Am - amA/B) ) (2'20)

F™ = 0, Ay — OpAp . (2.21)
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These linearized field strength tensors satisfy the linearized version of (2.12), which can be
obtained from (2.17). Therefore, we have to act on D,W# = i(’ym”)aﬂ Fo with D, and
symmetrize the expression with respect to the indices («, 7). If we then take the 6g trace,
this yields a massless Dirac equation for the linear superfield W*

Vo0, WP =0 (2.22)

Acting with the derivative 737 D., on the Dirac equation (2.22) and also using the equation
of motions of the linear superfields (2.17) gives

O ™ =0 . (2.23)

Since (2.22) and (2.23) describe equations of motion for the gluino and gluon components
of the superfields, we can already conclude that the lowest order #-components in the
G-expansion of W* and A,, correspond to the gaugino and gauge boson, respectively [116].

2.3 The f0-expansion of linearized superfields

The equations of motion (2.17) of the N' =1 SYM superfields (A, A, W<, F™") can be
solved separately for X and #“. We can expand the superfields in 6%, where at each
order O(#*) the expansion coefficient ®*)(X) is a spacetime function. Because of the
Grassmann odd nature of the spinorial coordinates any power series expansion in 6 will
terminate at order O(#'%). Moreover, we find recursive relations between the expansion
coefficients ®*)(X) at neighbouring orders of #*. When making an appropriate gauge
choice (Harnad—Shnider gauge) for € in (2.18) we can enforce

0°Aa(X,0) =0, (2.24)

which is the supersymmetric analogue of choosing normal coordinates and simplifies the
f-expansion of the superfields. In addition, by imposing this gauge we can convert the
canonical differential operator D, of the spinorial coordinates into an ordinary derivative
0*D, = Qaa%. We can organize the X™-dependence of the superfields in terms of plane
waves with momentum £™ and parametrize the solution to the equations of motion by the
polarization vector e™ and spinor x® for the gluon and gluino, i.e. we can set

X =we (2.25)

Om = Amly_g 6=0 "
Putting everything together this leads to the following recursion relations for the coefficients

®*) in the f-expansion
1
*  n41

1 -
Ak — ﬁ(gﬁymw(k vy,

(,.Yme)aAT(ji*l) I
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1 _
(W ke = _%(ymne)aamAff D (2.26)

These recursive relations above can be solved by the following ansatz

(2k) _ k1 4
Am - (2k>'[0 ]m €q 5
Ak - L om0 ) (2.27)
T @k m e |
where we have introduced the expression
1
(0], = 5(97mqp)ap . (2.28)

The equations (2.26) together with (2.27) fully determine the #-expansion of all superfields
[118]. Then, the first terms in the §* power series of the superfields up to order O(6°) are
given by [119, 120]

AulX,0) = 3L 00), = L0000 (" 0)a = 5 (p0)al07" )ik

3 “ B2
1 N mn
+@(7m0)a2kn(><’7p9) (97 pe)
i (07O () 076 ik + )} (2.29)

. 1, 1.
An(X,0) = e X{e = (00) = k09, )e, + 3k, (07,70) (x70)

zk: (07,7 0)ikq (07,7 O)e,

96
1
g e (07,7 0)ik (07, ) (670 + O | (2.30)
. o 1 mn )\« 1 mn\o
W X,0) :emX{X —zlk[men](V 0) +12km(’7 0)* (xn0)
1 1
+ g hm (YO (00,7 0)ikipeq — o (9""0) ki (67,70 K (X Vg0)
1
e (V) ik (679,710)iky (67, Ok, + O(8°)} (2.31)

Fon(X,0) = e”“'X{ik[men} — ik (XY ) — j’%@ 1iKpm (67,0)

1. . o .
15 0Kim (07,7 0)iky (x746) + 96zk[m(9m "0)ikyiky(07,0)e;

—@m (07, O)ike (0,7 0)ikey (67 + 0(96)} . (2.32)
For the purpose of calculating tree-level scattering amplitudes an expansion up to O(6°)
is sufficient. Higher order terms don’t contribute to scattering amplitudes due to the zero
mode prescription (4.15).
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Although, the series expansion in (2.32) terminates at O(6'%), it can be formally re-
sumed to all orders in 0 as [118]

A, = eik'X{[cosh @]mqeq + [\/571 sinh @]mq(ﬁvqx)} : (2.33)

The expansion in (2.32) follows an alternating pattern with respect to the gauge boson
and gaugino. For the spinorial superfields (A, W) the gluon polarization vector appears
along an odd power of 6 and the gluino wave function with an even power of 6. For the
bosonic superfields (A,,, F,,) this behaviour is exactly opposite [116].
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Chapter 3

Pure spinor formalism

The pure spinor formalism is an alternative description of the superstring to the RNS and
GS formalism. The discovery by Berkovits in [43] led to an efficient method for computing
superstring scattering amplitudes: It combined various convenient properties of the RNS
(37, 38, 39, 40] and GS [41, 42| formulations such that calculations of scattering amplitudes
are possible, which were previously out of reach. The pure spinor formalism is inspired by
the GS superstring, but is quantized in a U(5) covariant way such that it is not necessary
to go to light cone gauge. Due to this Lorentz covariant quantization one can circumvent
drawbacks like a non-covariant gauge and restricted momenta. Moreover, the pure spinor
superstring is manifestly supersymmetric and does not contain worldsheet spinors, which
makes an explicit summation over spin structures obsolete. Compared to the RNS string
this shortens the calculation of higher loop amplitudes dramatically [116]. Nevertheless,
the two formalism can be related via field redefinitions [121].

In this chapter we will review the basic aspects of the CF'T of the pure spinor formal-
ism. We will set the stage for computing superstring scattering amplitudes on genus zero
Riemann surfaces. The presentation will follows [114, 117], which are based on the PhD
theses [115, 116].

3.1 Origins of the pure spinor formalism

Heterotic strings [122, 123, 124], type I superstrings [125, 126, 127] and type II superstrings
[128] are supersymmetric in ten space time dimensions. Therefore, one would also like to
find a manifestly supersymmetric description of their worldsheet action. In principal, this
is achieved by the GS formalism, but unfortunately the classical action cannot be quantized
in a Lorentz covariant way.

In 1986 Warren Siegel [129] made another approach for covariant quantization of the GS
superstring. This ansatz uses the spacetime coordinates X™ of the bosonic string, which
are complemented by the spinorial fields 8*. The fermionic coordinates are Majorana-Weyl
spinors that transform under SO(1,9) and have 16 real components. These are basically
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the same degrees of freedom as in the GS formalism, but here the conjugated momenta
Do for 6% are treated as independent variables in contrast to the GS formalism. We can
propose the following action for this ansatz!

1 1 — = —&
Ssiset = — / 42z {anmaxm + pad0” +p,08°| (3.1)

where the spinor indices &, 3, ... of the antiholomorphic fields have the same (opposite)
chirality as «a, 3, . . . for type IIB (type IIA). Moreover, for open strings we would only have
the left-moving sector of (3.1).2 Since the holomorphic and antiholomorphic sectors are
independent, we will only focus on the holomorphic sector in the remaining chapter. More-
over, for closed strings the antiholomorphic expressions are analogous to the holomorphic
ones.

Similar as for p, the fermionic constraint d, in the GS formalism becomes a uncon-
strained variable )
1(69790)) (b (32)
which makes the problem of mixed first and second class constraints of the GS superstring
absent in Siegel’s approach. Note that the constraint of the GS formalism differs slightly
from the field (3.2) by an expression that is proportional to 9% and vanishes by the
equation of motion for p,.

The spacetime supersymmetry transformations that leave the action (3.1) invariant are

1
do=pa = 5(0X7 4

given by
m 1 m
OX™ = 5(777 0),
60% =n" |
1 m 1 m
6Pa = —§8Xm(777 )a + g(m 0)(0607m)a (3.3)

where 1* is a Grassmann odd infinitesimal parameter. These supersymmetry transforma-
tions are generated by the charge

dy 1 1
w= § 5 ot 5070 (0% + 15(0900) )| | 3.4
Q %Z{p +2(7 ) +12(7 ) (3.4)
We have chosen different values for o’ for open and closed strings, i.e. o/} ..q = 2 and Qppen = %,

because we are always considering open and closed strings seperately. Moreover, this allows for a unified
treatment of open and closed strings in the following, e.g. we can use the same OPEs for open and closed
strings.

2In the spirit of [27] we use the following words synonymous

holomorphic = left-moving

antiholomorphic = right-moving

for the degrees of freedom on the string.
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which satisfies a supersymmetry algebra

d
{Qa: s} = § 55 Vb0 Xon (35)

We can check that the action (3.1) is invariant under the transformations in (3.3): The
infinitesimal variation of the action is given by

1 1 = 1 = 1 _
5SSiegel = ; /dZ {4 (U’Ymae)aXm + Z(n7m89>aXm - §<n’ym89)aXm

£ 00700)™0)] (36)

and we can show that dSgiegel vanishes. The three terms in the first line cancel against
each other, which follows after integration by parts of the first term in (3.6). Hence, the
last term in (3.6) has to be identical zero, which can be seen by also integrating this term
by parts twice [115]

/dzz (007 90) (nymb) = —/dQ,z (07™00) (nYm00) — /d2z (0y™000) (7 Ym0)
_ / 422 (07 90) (17, D6) + / 22 (997 0) (17y,0)
+ / 422 (07 90) (1 ymd0)
=— / 22 0°00° 170" (Vs (Ym )o@ — V5 (V) + Vit (V)
=2 [ @20°00" 0 (3 ()
) / 422 (3y00) (ymb) (3.7)

where we used that %T(,B(’Ym) po) = 0. After bringing the right hand side of the above
equation to the left hand side we have shown that [ d2z (00y™00)(nymf) = 0. Hence, the
variation (3.6) of the action (3.1) vanishes under supersymmetry transformations (3.3) and
we can conclude that Siegel’s approach is indeed spacetime supersymmetric.

For the action (3.1) the holomorphic component 7' = T'(z) of the energy momentum
tensor is given by

T = —;axmaxm — Pa00% = —;HmHm — d,00% | (3.8)
where the supersymmetric momentum is defined as
" — 9x™ + ;(ewae) | (3.9)
Moreover, the action yields a Lorentz current for the spinor variables
£ = (™) (310)

2
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which can be found using Noether’s method for the infinitesimal Lorentz transformations
of p, and 0

o= Jemn(™)" D 0 = Lol 07 (3.11)

and defining the variation of the action (3.1) to be
5 Sstegel = —~ / SERE . (3.12)

T 2
The calculation is straightforward and using the antisymmetry (7™*),” = —(7")?_ gives

1 _
0 Ssioge = / 422 §(pa00)

1 1 o

= — /dzz {Emn(’ymn)aﬁpﬁaea + *paa(emn(ane)a)
T 4 4
1 1

_ - / 422 {4agmnpa(w”)aﬂ9ﬁ (3.13)
T

such that when we compare (3.12) with the actual variation under Lorentz transformations
(3.13), we recover the Lorentz current (3.10).

The action (3.1) is invariant under conformal transformations and therefore defines a
conformal field theory. With standard path integral methods we can derive the following
operator product expansions (OPEs) among the fields in (3.1) [129]

5.8
X"(2,2) X" (w, W) ~ =™ In |z — w|* , Pa(2)0° (w) ~ . - =
a2y () ~ ) () - T
m (TR nm" 5 §p
™ ()11 (m) ~ G—w)’ da(2)0° (w) ~ o (3.14)

where ~ indicates that we dropped the regular terms on the right hand side of the OPEs
as z — w. In principle, it would be sufficient to only have the OPEs between X™ and itself
and between p, and 6%, since these are the fundamental fields and I1"™ and d,, are composite
fields. But for calculating scattering amplitudes it is helpful to have the OPEs involving
I and d,, because in the pure spinor formalism these are conformal primary fields that
appear in the vertex operators. Using the energy momentum tensor (3.8) and the OPEs
(3.14) we find that the holomorphic conformal weight of the primaries 0X™, II", p, and
dy,is h=1and 6% is h = 0.

Even though, this approach has some advantages one also has to deal with difficulties,
which will later be addressed by the pure spinor formalism introduced in section 3.2. When
quantized the theory becomes anomalous, because it has a non-vanishing central charge,
which raises a first major concern. Each component of the bosonic spacetime coordinates
X™ contributes ¢y = 1 [27] and each pair of (p,, %) contributes ¢,p = —2 to the total
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central charge, where we have used that the two fermionic fields correspond to a bc ghost
system with A = 1 [27, 37]. Therefore, in ten spacetime dimensions the total central charge
of the energy momentum tensor (3.8) is

Ctotal = 10 - cx + 16 - Cpo = —22. (315)

In [129] a supersymmetric integrated vertex operator for a massless open string was pro-
posed

el = / dz(00Aa(X, 0) + TI™ A (X, 0) + d W (X, 0)) (3.16)

where {A,, A,,, W} are the linearized SYM fields from section 2.2. But U5l cannot
lead to the same results for amplitudes computed in the RNS or GS formalism, because it
does not satisfy the same OPEs [43]. When using the #-expansions (2.32) of the superfields
the vertex operator (3.16) becomes

i 1 ,
Usiese = [ @z (€70 = 5(07™0) fn + O(6) ) (317)

up to order A%, where we only kept the terms of the §-expansion describing a gluon with
polarization e™ and f,,, = ik,e, — ik,e,, is the field strength of the gluon. In the RNS
formalism a gluon vertex operator is given by [130]

1 ,
Ui, = [ dz (m0X0 = S0 o ) (3.18)

The fields 9™ are the worldsheet fermions of the RNS formalism, which have conformal
weight hy = 3. Comparing the vertex operators in (3.17) and (3.18) one can read of
contributions to the Lorentz currents coming from the fermionic fields, which are the

operators multiplied by % fmn, in each formalism

mn m,/n mn 1 mn
YRNs = —¥"Y", Siegel — —5(19’7 0). (3.19)
Computing the OPE between the currents shows a significant difference. In the RNS
formalism we find that the level of the Kac-Moody current algebra is +1, which can be

read of from the coefficient of the double pole term of the OPE

z—w (z —w)?

YRNsERNS ™
Using the OPE between 6% and p,, in (3.14) the OPE between Lorentz currents in the PSF
takes the form

son spa 1P = AP0 1 Tr(y )
Siegel ~Siegel 4 ¥ —w 4 (Z . w)2
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my g mynp
np[ ESiegel - T]q[ ZSi gel +4 Ui

z—w (z —w)? "’

m[qnp]n

(3.21)

Above we used that ~«""APl — APIy™mn = IntPAMA — QAyMP 4 IApnP — 2P~ and
Tr(y™"4P1) = 166}, dy; to obtain (3.21). The double pole has a coefficient of +4 such that
the level of the Kac-Moody current algebra in the PSF differs from the RNS formalism.
When computing gluon scattering amplitudes with the two vertex operators in (3.16) and
(3.18) the different current algebra levels will lead to discrepancies.

Finally, the spectrum of Siegel’s superstring (3.1) is not in agreement with the RNS
formalism. One would need to include an appropriate set of first class constraints to
reproduce the RNS spectrum. The set of constraints should contain the Virasoro constraint

and k-symmetry generator
1
T = —51'17"1'[m — d,00% , G = 1" (ynd)” (3.22)

of the GS formalism expressed in terms of the supersymmetric momentum II"™ and GS
constraint d,. So far, the whole set of constraints was never found for the superstring.
Nevertheless, there was a successful description of the superpartical using Siegel’s ansatz
[131, 132]. In the end, all this effort was not lost. Berkovits used this ansatz in his proposal
[43] to construct the pure spinor formalism.

3.2 Fundamentals of the pure spinor formalism

We can see that it is possible to circumvent the problem associated to the mixed first and
second class constraints in the GS formalism by the approach in section 3.1. Nevertheless,
one does not arrive at a consistent theory: The non-vanishing central charge cx +c, 9 = —22
and the level +4 of the Lorentz current algebra makes it impossible for this theory to
describe the superstring known from RNS and GS formalism.

In [43] Berkovits modified Siegel’s approach by adding a ghost sector. These pure spinor
ghosts contribute +22 to the central charge of the energy momentum tensor and —3 to the
double pole of the Lorentz current OPE. This ansatz leads us to a consistent theory — the
pure spinor formalism — by fixing the issues of Siegel’s idea.?

We start to construct this theory by proposing a BRST operator®

Q= jf dz A% (2)da(2) | (3.23)

where A are commuting SO(1,9) Weyl spinors and therefore ghosts of the theory and
d, corresponds to the former GS constraint (3.2). The BRST operator (3.23) must be

3In this thesis we always refer to the minimal formulation of the pure spinor formalism. The non-
minimal pure spinor formalism including additional worldsheet fields can be found for example in [45].

4The BRST charge can be derived from first principles [133] and see also [134, 135, 136, 137] for previous
attempts.
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nilpotent Q? = 0 such that the BRST charge is invariant under gauge constraints [27].
Using the OPEs (3.14) and Cauchy’s formulas we can show that

@ = § 22§ NN Wids(w) = — f SN (324)

21 ™

Imposing the consistency condition Q? = 0 for the BRST operator the above expression
vanishes if the bosonic ghost fields A* obey the pure spinor constraints

(M"A) =0 form=12...,D. (3.25)

Hence, a pure spinor A* in D spacetime dimensions is defined to be a Weyl spinor that
satisfies the pure spinor constraint (3.25). These were first studied by Cartan from a
geometrical perspective [138].

3.2.1 The pure spinor constraint

It is important to understand the pure spinor constraint (3.25) in more detail: Naively, one
would assume that the constraints in (3.25) associated to m = 0,1,...,9 would eliminate
ten degrees of freedom of a pure spinor A* of SO(1,9). But for a pure spinor A* with
16 — 10 = 6 degrees of freedom the ghost sector would not cancel the anomaly generated
by the non-vanishing central charge (3.15) of the matter sector, see below for more details.
However, a pure spinor has 11 independent degrees of freedom, i.e. the pure spinor
constraint reduces the degrees of freedom of A* by five. In order to proof this statement we
Wick rotate the Lorentz group from SO(1,9) to SO(10) and in addition break the manifest
Euclidean Lorentz symmetry down to its U(5) subgroup as described in appendix A. Using
the 32 x 32 dimensional representation of the I'-matrices the pure spinor constraint can

be written as [138]
ATCT™A =0, (3.26)

where C' is the charge conjugation matrix (A.8) and A is a bosonic Weyl spinor that
satisfies T'1'A = —A. Because the chirality matrix (A.9) is block diagonal we find A =
(A 0)T, where \* is a 16 dimensional bosonic spinor. Therefore, we recover the constraint
A,5\% = 0. Including the conjugate momentum w, of A* we obtain the 16 & 16’ states
which are the ten dimensional Weyl spinors |A) and anti-Weyl spinors |w). Because these
states are anti-chiral I';; [A\) = —|\) and chiral I'y; |w) = |w) the U(5) decomposition of
them is given by

1 1
IA) = AT0) + 5Aabbbw |0) + EAaeabcdezfzﬂbcbc 0) |

1 1
|w) = §w+eab6debabbb6bdbe 0) + Tywabeabcdeb%%e |0) + w,b"|0) (3.27)

in terms of the creation operators (A.21). Note that A\, = —Ap, is an complex anti-
symmetric tensor that parametrizes a SO(10)/U(5) coset [46]. The expansions in b* follows
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from the properties of I'j;: When expressing the chirality matrix (A.24) in terms of the
creation operators it follows that I'1; |0) = — |0) and {I'11,0%} = 0. Hence, states with an
even or odd number of creation operators acting on the vacuum have eigenvalue —1 or +1
under I'y1, respectively.

The U(5) components of |A) and |w) in (3.27) can be obtained by the following projec-
tions

1
At =(0])) Aap = (0]baby|N) A= eabcdeg (0|bpbcbabe| \) (3.28)
and
1 1
Wy = geabcde (0|babpbebabe|w) , w™ = —ﬁea’mde (0|bebabe|w) ,  wa = (O]ba|w) . (3.29)

Due to the fermionic nature of the creation operators 6* the number of independent de-
grees of freedom of the components in (3.29) is given by #(b ---b%) = (2) Hence, the
SO(10) Weyl A* and anti-Weyl w, spinors have been decomposed into irreducible U(5)
representations

A = (AT Aap, AY) Wa = (Wi, W™, wy)
16%(1;,170%,5_%) , 16’—>(1_%,10 ,5%) . (3.30)

D=

Before we start to analyse (3.25) we will take a look at some useful results. Let’s consider
two states ¢ and 1 which are generated by acting with an arbitrary number of creation
operators b’ on the vacuum

|0) = Birig...ing 01D - D™ [0) ) = Vjy gy, OO - 0 |0) (3.31)

Then, the product of these two states with the charge conjugation matrix (¢| C'|¢) is only
non-vanishing and proportional to €%*“% if and only if ¢t} is proportional to b*°b°b%b¢. We
can bring all b, in (4| to the right of C' by using that

Cb, =b"C', Ch* =b,C , (3.32)
which follows from (A.7) together with (A.22) and thereby obtain

(D1 C 1) = &4y in Uiriagn (O] (Biy - bighiy ) C (VB2 - - - 1) |0)
= gb:(liz.“im@bjlj%--jn <0| C(me e bZQb“)(b]lij e b]”) |0>
= Oirig.rin Vinga.gn (O] (b5b4b3boby ) (b'™ - - 620" ) (V172 - - &) |0) (3.33)

where we used (A.22) and that (0|C = (0|bsbsbsbob;. The above expression is only
non-vanishing, if all the annihilation operators (bsbsb3bob;) match the creation operators
(b'm -+ b2p") (BB - - - b)) exactly. So far, we can conclude that if (¢ C|¢) is different
from zero then

(8] C' ) = (6" ® 1) abeae (0] CHBOH* |0) (3.34)
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for a,b,c,d,e € {1,2,3,4,5}, which are all mutually different. Moreover, by using (A.23)
and the normalization (0|0) = 1 we can recognize that (0] Cb'6?b*b*b°|0) = 1 and that
(0] CbebPbebb° |0) is totally antisymmetric in all indices. Hence, we find

(0] CH*b°b°bb° |0) = ebede | (3.35)
which concludes the proof, i.e.

(] C 1) = (8" @ ¥) abeaee™™ . (3.36)

To give an example we choose (¢| = {(0| b, (0] bybpbe, (0] babpbobabe} and |¥) = |A) and find
from the spinor decomposition (3.27) that

(01 Cv" [A) = A%,
1
(O CODHE|N) = = 5™ e,
(0] CH*BPbbbE | N) = ebede Nt (3.37)

Under the decomposition SO(10) — U(5) the pure spinor constraint (3.26) splits into two
independent equations: Plugging I'* in terms of b and b;

I'=bv+1b, [t = —i(b' — by) (3.38)
into (3.26) and taking suitable linear combination of the constraints gives
(A CH |\ =0, (A Cb; | A\) =0 (3.39)
for i = 1,2,...,5. If we use the component expansion (A| = (0] Ay + % (0] babpyAap +
o1 (0] bybebabe A%e®™ 4 the first equation in (3.39) becomes
0= (A 3) = X¥ (0] CH 3) + e (O] BbuC [A) + 5 Moy (0] bebabeby OB |A)

1
= 2\T\ — ZeabcdeAbCAde : (3.40)

where we have used (3.32) and (3.37). Therefore, the constraint (A| Cb* |\) = 0 allows us
to express the five vector components A in terms of AT and \%:
N = L abedey, (3.41)
— ]+ be\de .
for AT # 0. In addition, this solution automatically solves the second set of constraints in
(3.39)
(A Cbg |A) = =22\ . (3.42)
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When substituting the solution into the above equation we get

1
4Nt
which vanishes due to the antisymmetric nature of the Levi-Civita symbol and Ay, and the
fact that the indices only take values between one and five: For any value of a one of the
other indices b, ¢, d, e or f must take the same value. For b = a the statement is trivially
true because \,, = 0. If ¢ = a we find that

2\ = — AN Ay = 0 (3.43)

Aab€ Y Naiher = —Naa€™ Apdes (3.44)

which vanishes after renaming b <+ d. Proceeding similar with the remaining indices we
can conclude that also the second set of constraints in (3.39) is automatically satisfied by
(3.41).

Therefore, a pure spinor in ten spacetime dimensions is given by (3.27) together with
the solution of the pure spinor constraint (3.41). The relation in (3.41) eliminates five
degrees of freedom of A* € 5 and hence out of the 16 degrees of freedom of A* a total of 11
independent components are left in a pure spinor of SO(10). These remaining components
split into an antisymmetric 2-from )\, € 10 with ten and a scalar AT € 1 with one degree
of freedom.

3.2.2 Lorentz current for the ghost sector

The pure spinor ghost A* and the dual field w, are SO(1,9) Weyl and anti Weyl spinors.
Therefore, they contribute to the to the SO(1,9) Lorentz current

M™ = x4 N (3.45)

where N™" is the contribution coming from the pure spinor ghost sector. The coefficient
of the double pole in the OPE of N™" with itself is —3, which implies that N™" satisfies
the following OPEs®

/r]m[q/r]p}n

pplm Nmla — palm Nmlp 5
- zZ—w T (z—w)
Y (2) NP4 (w) ~ regular . (3.47)

N™(z) NP (w) (3.46)

2 )

Therefore, the level of the Kac-Moody current algebra of M™" matches the one in the RNS
formalism, i.e. M™" satisfies the same OPE as in (3.20).

As for the pure spinor constraint to understand the OPE (3.46) we have to break the
manifest SO(10) symmetry down to its U(5) subgroup. In terms of U(5) = SU(5) @ U(1)
variables the pure spinor Lorentz current decomposes into irreducible representation as

N™ — (n,n{, ng, n®) (3.48)

°In [139] the OPE for the ghost Lorentz current is derived form the decomposition of A* and w,.



3.2 Fundamentals of the pure spinor formalism 29

which have the U(1) charges (0,0,+2,—2). After identifying (3.48) with the Lorentz
generators (A.13) and (A.14) with a traceless nf, c.f. (A.18), as

a ab m a 1 ab
a - bl a 349
(nvnb7n 7nb)_> (\/S my — 5mm mb) ( )
the OPE in (3.46) decomposes under SO(10) — SU(5) ® U(1) into the following OPEs for

(3.48)

Nap(2)Neq(w) ~ regular | n®(2)n(w) ~ regular

i (2)n () ~ — oy (w )Z - ;56 - opn(w) 355((,5;__3)335 7 n(2) ~ regular |
ng(z)ng(w) ~ —5§n§(1;1)_+w5§n§(w) - 35‘??5 : i(;ié; , n(2)nap(w) ~ ngab_(lZ)) ;
(e o) o A B ) = SO w) () (w) ~ jgzab_(ﬁf ,
7 ()0 () ~ —05nga(w) + (5f;nidguw) + %(5§nab(w) | n(2)n(w) ~ _(Z_?)w)2 7
(3.50)

where more details can be found in appendix A and [140, 141]. With the redefined U(1)
generator n the corresponding charge is then defined by [n, R] = %R_ According to (3.50)
the fields (n,n¢,n%® ng) transform in the (1g,249,10_5, 10,) representation of SU(5) ®
U(l).

There is a further constraint on the total Lorentz current (3.45): The pure spinor A“

has to transform as a spinor under Lorentz transformations. These are generated by the
action of M™" on A%, c.f. (A.10):

| 1
oA = [ ey x| = ZEmn(7N)" (3.51)

Since a pure spinor \* can only have a non-regular OPE with the Lorentz current N™",
the transformation (3.51) implies
1(y™)% 5\ (w)
N™M () ~N—— . 3.52
(I () ~ 5 (352)
Following from appendix A a SO(10) pure spinor transforms under Lorentz transformations
in terms of its U(5) representations as [140]

+
\égz —<u@}3 ’ P2 Aea(w) ~ PN
3 )\“(w) 53)\61,(10) — (5")\db(w) 2 (51‘})\Cd(w)
2 a()) ~ c _z
25z —w ' 75 (2)Aea(w) Z—w 5 z—w

1 )\Cd(w

~—

n(2)A" (w) ~ —

n(2)A*(w) ~
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1A (w) A (w)

()T ~ 1 s (2)A°
()N () ~ reglar () ~ £ ) O
)\a w €abe e/\e w

nap(2)AT(w) ~ = b_(w) ) Nab(2) Aca(w) ~ b,;_u()> )

Nap(2) A (w) ~ regular | n®(2)A*(w) ~ regular ,

a5b AT (U)) 1 6abcde>\ (w)

ab ~ [c”d] ab c ~ de

n®(2)Aea(w) e (2)A(w) 5w (3.53)

3.3 A parametrization of the pure spinor ghosts

The solution for the pure spinor constraint and the Kac-Moody current algebra allows us
to write the U(5) components of the pure spinors (A", Ay, A*) and the Lorentz current
(n,n%, nap, n%) in terms of the ghost variables s(z),u%(z) and their conjugate momenta
t(2),vap(2). The action of this parametrization of the pure spinor ghosts is given by [43,
46, 142]

1 1, ~
S)\ = % /dQZ (2’Uabauab - atas) 3 CL’ b - 17 s 5 . (354)

Because s(z) and t(z) are chiral bosons, we have to impose their equations of motion by
hand: ds = 9t = 0. Moreover, the OPEs between the ghost fields and their conjugate
momenta are given by

t(z)s(w) ~ In(z —w) ,
94

z—w

V() (w) ~ (3.55)

This parametrization of the pure spinor formalism has to respect the group-theoretic rela-
tions of A* and N™". Hence, the OPEs of A* and N™" in terms of the ghost fields have
to satisfy (3.50) and (3.53). With this restriction the solution for the U(5) components is
given by [43, 46, 142]

1 /1 ) 5
n = _ﬁ (4uabvab + iat - 2(95) s )\Jr =e° s
1
nZ = U'acvbc - 552UchCd 5 )\ab = Ugh
nab — —GS’Uab ’ ¢ = ge—seabcdeubcude ’
1
Ngp = €° (28uab — UgpOt — 2UagpOS + Ugelpgv ™ — 2uabucd00d> : (3.56)

It is straightforward to check that these definitions reproduce (3.50) and (3.53), if the ghost
fields s(2),t(2), ug(2) and v (z) satisfy (3.55). For example, we can compute the OPE

1(1
= — | UV
NV

n(2)n (w) oy ;875 — Z(‘?s) (2)e* @y (w)
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= L ey ) — L)

/54

11 —0p.0y 5 1
~ 7*68(1”)7)“[(2) _[ d £ — es(w)vab(w)
V54 z—w 2 z—w
L2 n(w) (3.57)
V5 2z —w '
and in addition
1
n®(2)\(w) = —<e*Fe Wy ()l 9y (w)u s, (w)
1 o o
_ _gecdefges(z)e—s(w) (U“b(z)ude(w)ufg(w) + ude(w)vab(z)ufg (w))
1 _Je 52 __Sa 51)
o =g () )2 )
= _165(2’)6_5(’!11) 2€cabfgufg (w) + 2€Cdeabud€<w)
zZ—w
1
~ _7€abcde )\de(w) , (358)

Z—Ww

where we have used the OPE for uy(2)v(w) ~ _i;cigl] and 9t(z)e*™ ~ —L_es) which
follow from the OPEs in (3.55) of the ghost fields. Moreover, we have discarded the non-
singular terms that arise from the Taylor expansions of the fields around z and w. The
computations above reproduce the OPEs in (3.50) and (3.53), which were derived from
the group-theoretic decomposition of the SO(10) covariant OPEs. All other OPEs can be
obtained in a similar way. Although, the action S\ of the ghosts is not manifestly Lorentz
invariant, we have constructed this parametrization such that all OPEs involving the U(5)
Lorentz current and pure spinors originate from manifestly SO(10) covariant expressions.
Therefore, the pure spinor formalism is manifestly Lorentz covariant.

The energy-momentum tensor T)(z) for the ghost action (3.54) can be obtained by
Noether’s theorem for the continuos symmetry corresponding to a shift in the worldsheet
coordinates, i.e. the variation of the action under 0z = —¢ and 6z = —&, which is given by

55y = ;ﬂ [ = (3132 + 02T (2)) (3.59)

The conformal transformations for the ghost fields (9s, 0t) are obtained by assuming that
they depend on both (z,z) and performing a Taylor expansion for s(z,z) and ¢(z,%) in the
infinitesimal parameters ¢ and g [140]°

§50s = 020s + €0%s + 0z0s + £00s , 00t = Oz0t + 50 t + 00t + 00t . (3.60)

6Note that the transformation for ds in (3.60) differs from equation (3.28) in [140], but §0s in (3.60)
is obtained by following the steps in [140] and gives the correct contribution to the energy momentum
tensor, see (3.62).
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The other ghosts fields (v, u®) have conformal weights (h,h) = ((1,0), (0,0)) such that
their conformal transformations are given by [143]

S = 9ev® + cov™ + E0v? | Mgy = €O0UG + EOU - (3.61)

For the variation of the action S, for s and ¢ under the above conformal transformations
we find

/ 22 6(Dtds) = / A%z [(Fedt + €0t + Dedt + cD0t) ds
+0t (8635 + €0%s + 0€ds + €90s ) |
— / A2z [0(ctos) + O(eDtos) + Dedtds + dedsdt|
— / &z | aeatas+az685t] . (3.62)

At the boundary of integration the surface terms in (3.62) vanish such that the contribution
of s and ¢ to the holomorphic part of the energy momentum tensor is T (z) = Js(z)0t(z),
which follows after comparing (3.59) with (3.62). For u,, and v® we find the contribution
to the energy-momentum tensor by identifying them with a bc ghost system with A = 1.
Hence, for b = 12}‘“’ and ¢ = ug, the holomorphic part of the energy-momentum tensor is

Tuw(z) = 30°(2 )3uab(z). Adding both pieces together we end up with

Ty(z) = ;v“b(z)auab(z) 1 0s(2)0t(2) . (3.63)

When computing the OPE of T)(z) with n(w)

(L Loty 29 -0
Th(z)n(w) = \/5(21) 8uab+858t)(z)<4ucdv + 28t 283) (w)

i 1 ]
:égbg(vab(z)auab(z)ucd(w) 0 w) + v (2) Dty ()tea(w)o™ (w)
V5

() Dt (2t ca ()0 ) ) — \fas(z)@t(z)at(w) + 285(,2)815(7)85(10)

o V5 @) | On(w) (3.64)

(z—w)?  (z—w)? z—-w

where the triple pole )3 comes from the contraction

! L0 %%
G (a0 ) ~ T
_ V5 (3.65)

(z —w)?
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The triple pole = )3 implies that n(w) is not a primary field, which is not the case.
However, by adding 9?s to the energy momentum tensor the OPE (3.64) is corrected by

925 (2)n(w) = 2s(z )(;v b(z)auab(z)+8s(z))

sqrt5

— Lh(2)0tw)

5
V5 (3.66)
(z —w)?
such that n(w) is a primary field of conformal dimension » = 0. Note that it is possible to
add 9?s, because it drops out of (3.59).
Finally, we can conclude that the holomorphic energy-momentum tensor of the ghost

sector is given by

1
T\ = —51)“"8%582583 + 9%s . (3.67)
The central charge of the ghost sector is determined by the coefficient of the fourth order
pole — )4 in the OPE Ty(2)Th(w) ~ $ = w)4 The terms that contribute to this pole are

| 1 62,8 0¢,54 10
1" ) ~ I =

ét(z)é@t(w}és(w) ~ (2’—110)4 :

Adding both contributions implies that ¢, = 22. Therefore, the pure spinor formalism will

(3.68)

not exhibit a conformal anomaly: The total central charge of the energy-momentum tensor
in the pure spinor formalism

1 1
Tos = —50X"0X — pa00” + 5vabauab + Otds + 0%s (3.69)

vanishes, i.e. ¢iotal = ¢z + cpg + e = 10 — 32 4 22 = 0, because all OPEs between the pure
spinor ghosts and the matter fields are regular.

3.4 The action of the pure spinor formalism

When adding the pure spinor ghost action (3.54) to the action of the matter fields (3.1)
we obtain the U(5) covariant action [43]

Spg = — / 22 ( DX DX, + pad” —8t85+2v“b8uab>. (3.70)

The action Spg of the pure spinor formalism can also be written in terms of the SO(10)
covariant fields as

1 2 1 m3 ne Ay«
Ses = [ & (2(9)( DX, + pal” — wadA ) . (3.71)
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Although, we have added the pure spinor ghosts, the action (3.71) is still supersymmetric,
because the pure spinor ghosts transform under supersymmetry as’

Swa =0, A =0 (3.72)

and the action of the matter fields is invariant under supersymmetry transformations, as
was shown in section 3.1.

From dimensional analysis we can reinstate the o/-dependence, where variables in (3.71)
have the following length dimensions [144, 145]

, mi a_a_l B _1
@l=2,  [X"M=1, Fl=N=5, [bd=lwl=—3. 67

Moreover, the SO(10) covariant version of the energy-momentum tensor and the Lorentz
current of the fermionic fields are given by

1 1 1
Tps = — MLy = dad® +wedX*,  M™ = —(py"™"0) + S(wy™N)  (3.74)

and can be derived from the action (3.71). Above we have written Tpg in terms of the
supersymmetric momentum II"™ and the GS constraint d,, which are defined as

" — 9x™ + ;(Wnae) ,
d, = po — ;(axm + i(ewae)) () (3.75)

see also section 3.1 for more details.

3.5 Operator product expansions in the pure spinor
formalism

In this section we summarize the OPEs that underlie the CFT of the pure spinor formalism.
The matter fields, the supersymmetric momentum and the GS constraint satisfy

5.8
X"™(2,2)X"(w, W) ~ =™ In|z — wl|* , Pa(2)0° (w) ~ . j o
() (w) ) () o LD
mNTR n"t 5 §p
™ ()11 (m) ~ “e—wR do(2)0° (w) ~ T (3.76)

"Similarly, the U(5) covariant fields transform as ds = 0t = dug, = dv®® = 0 under supersymmetry
transformations.
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The pure spinor constraint implies that w, and A\* are not free fields such that it is not
straightforward to give a SO(10) covariant OPE, i.e. the OPE wg(2)\* ~ % obtained
from the pure spinor action (3.71) is not correct. Nevertheless, by decomposing the ghost
fields into their U(5) covariant variables it is possible to find the OPE

9

Z—Ww

wa(2) N ~ +... (3.77)
where ... are non-covariant U(5) corrections, which are needed to make the OPE of the
conjugated momentum w, with the pure spinor constraint (Ay™\) non-singular. However,
the corrections do not contribute to the OPE of a pure spinor \* with the ghost Lorentz
current N™". [43, 114].

From the #-expansions (2.32) it follows that the superfields K (X, 6) only depend on

X™ via an overall plane wave factor e?*¥

K(X,0) =e**K(9) . (3.78)

The other factor K (0) of the superfields depends only on % such that it has a non-vanishing
OPE only with p,. Then, by using the OPEs (3.76) we find that the non-vanishing OPEs
of II"™ and d,, with % and e”*X are

Hm<z)€z’k.X(w) ~ aXm(Z)eik.X(w) ~ —ik™ ez‘k-X(w)

b

z—w
. 1 . 1 .
ik-X(w) . m ik-X(w) m ik-X
du(2)e 2(7m9)a8X (2)e 5 —w) (Ym0)a0™e™ (w)
1 0
Alw) ~ Blw) ~ B
do(2)07 (W) ~ pa(2)0” (w) o waeae (w) . (3.79)

We used in the second line that ik™e™*™* = 9™e** and in the third line that 67 = ;26"

to rewrite the results of the OPEs in a form that suits our purpose. Now we can calculate
the OPE of II"™ and d, with an arbitrary superfield

7 (2) K (X (w,70), O(w)) ~ — e X (@ 0),6(w))

z—w
Do K (X (w, ),
Aol K (X 1) 6(w)) ~ PP LT O] (3.80)
where D, = 52 + 1(7™0)a0y, is the canonical derivative, we have defined in (2.3). More-

over, the OPEs involving the fermionic Lorentz current are given by

plm pnle _ palm prnlp mlqpln

M™™ () MP(w) ~ n U X nn 7
z—w (z —w)?

pelm Nrla — palm ymlp 5

z—w (z —w)

mlgppln
N™ (2) NP3 (w) i

2 )
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1™ N
2 Z—w ’

N™ (2)A*(w) (3.81)
Using these OPEs one can show that the fields {00%, 1™, d,, N"™"} are conformal primaries
of weight h = +1: The OPEs of these fields with the energy momentum tensor (3.74) are
given by

{060%,11"™, d,,, N} w) N 0{06*, 11" d,,, N"™}(w)

2

Tps(2){00%, 11", do, N™" }Hw) ~

(z —w) z—w

(3.82)

3.6 Massless vertex operators for the N/ = 1 SYM mul-
tiplet

The information about asymptotic states in string scattering amplitudes is contained in
vertex operators. The integrated massless vertex operators (3.16) in Siegel’s formulation of
the superstring lead to discrepancies with the RNS formalism, because of the double pole
coefficients of the Lorentz current of the fermionic variables, see section 3.1. By adding a
correction proportional to the pure spinor Lorentz current N to Ugiegel(2) We obtain [43]

U(z) = |90°Aa(X,0) + 1™ A, (X, 0) + da WO (X, 0) + ;Nm"an(X, Ol(z)  (3.83)

to resolve these discrepancies. The integrated vertex operator is parametrized by the
linearized superfields A, (X, 6), A,,(X,0), W*(X,0) and F""(X,0) of section 2.2, which
are worldsheet functions through the superspace coordinates X™ = X™(z) and 6% = §*(z)
such that we can introduce the shorthand notation K (z) = K(X(z),0(z)) for any linearized
superfield K. Hence, the integrated massless vertex operator describes the degrees of
freedom of a massless gauge multiplet. The superfields of this multiplet have the following
length dimensions [144, 145]

[Aa] = 5 [An] =0, [Wel = Ty [Fonn] = -1, (3.84)

Vi=[Ul=1, (3.85)

where V' is the unintegrated vertex operator introduced below in (3.86). The gluon vertex
operator obtained form (3.83) contains the complete fermionic Lorentz current M™" =
Y4 N™ as a coefficient of the component field strength f,,,, when using the #-expansions
(2.32) of the superfields. This implies that the double pole of the vertex operator in (3.83)
is in agreement with the RNS vertex operator.
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Note that the vertex operator (3.83) has conformal weight +1, which means that it has
to appear in any superstring amplitude in the conformally invariant combination [ dz U(z),
where it is integrated over (parts of) the worldsheet.

For computing scattering amplitudes we also need a massless vertex operator with
conformal dimension zero. To remove the redundancies of the conformal Killing group
(Mobius transformations) we require vertex operators at fixed positions on the worldsheet.
This unintegrated vertex operator is given by

V(2) = [\Aa(X, 0)](2) . (3.86)

The physical states in the pure spinor formalism, described by the unintegrated and inte-
grated vertex operators, have to be in the cohomology of the BRST operator @ of (3.23).
A state W is in the cohomology of the BRST operator @, if it is BRST closed Q¥ = 0, but
not BRST exact ¥ # QA for some state A:

Hclosed
Hexact

Hprst = (3.87)

For massless states with k% = 0 the unintegrated vertex operator V is BRST closed when
the superfield A, is on-shell®

dz
i Ve’ B A
QV(w) = ¢ o= A*(2)da(2)X° Ag(w)
— aypB
%27”2— )\)\DAB)()
= AN D, Ag) = iAamAﬁA =0, (3.88)

which follows when using the pure spinor constraint (3.25) and the OPE (3.80) between
d, and a superfield K. The conformal dimension of the unintegrated vertex operator is
determined by the OPE with the energy-momentum tensor: In a conformal field theory
the OPE of the energy-momentum 7" with a conformal primary ¢, of conformal weight h
is given by [143]

h 0

Using (3.76) we find for the OPE of the unintegrated vertex operator (3.86) with the
energy-momentum tensor Tpg in (3.74)

(3.89)

Tps(2)V (w) ~ ;87(';(9?‘;()?) L ("9 + aeaD;)_x/Lw) + 0N A (w)

8The relationship between pure spinors and the equations of motion in super Yang-Mills theory was
already pointed out in [146, 147]. For a more recent overview for the use of pure spinors in off-shell
supersymmetric theories see [148, 149]. Moreover, an early implementation of pure spinors in classical
superstring theory in ten spacetime dimensions can be found in [150].
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_ V() (3.90)

Z—Ww

The first term above vanishes due to k* = 0 and we used the chain rule for the worldsheet
derivative

(IT"™0p, + 00° Dy, )V + OX Ay = AXY0A, + 0N A, = 0V (3.91)
which follows from the definitions of II" and d, in (3.75) and
(118, + 90° D) K (X, ) = <8Xmam + aea£> K(X,0) = 0K (X, 0) (3.92)

for a superfield K(X,#), which does not depend on the pure spinor A* or derivates of X™
or 9«

Because the unintegrated vertex operator is in the cohomology of (), we have to exclude
pure gauge superfields: Any gauge variation (2.18) of the linearized superfield A, corre-
sponds to adding a BRST exact piece A0gA, = A\*D,Q = Q) to the vertex operator.
Hence, the gauge variation of V' is not in the cohomology of the BRST operator.

In the PSF the unintegrated and integrated vertex operator for massless states are
related by

QU =0V . (3.93)

Acting with the BRST charge ) on the unintegrated vertex operator gives

Q(00°A,) = ON* A, — 90°NP Dy A,

= ON"Aq — 00°N (=D A + V05 Am) (3.94)
Q(I™A,,) = (A\y"90) Ay, + TN D A,,

= (MY™00) Ay + T A (YW ) + OmAa) (3.95)
Qd W) = —( A" W)L, — do N’ DWW *

1
= —(M"W)IL, — Zda)\ﬁ(ym") 5" Fon (3.96)
1 1 1
Q(2Nm"]-“mn> = 14aly"" N Fon + 5N X Do Foy
1
— Zda(wu)aﬂm + N™ A0, (W ) (3.97)

where we used the OPEs in (3.76) and (3.80) and in addition the equations of motion of
the super Yang-Mills fields (2.17). Adding the individual contributions yields

QU = ON"Aq + 00°NP Dy Ay + T A0y, A + N™ (M0 W) (3.98)

The last term N™"(\v,,0,,W) vanishes due to the pure spinor constraint

(a3 = — 57 (Mmd) = 0 (399)
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and the Dirac equation ’y(%@mwﬁ = 0 such that

L) ™o, ) = 0, (3.100)

1
N X O (YW ) = §(w7m7n)‘)(>‘7namw) 5

where we used the definition of the ghost Lorentz current N™® = 1 (wy™")) following from
(3.74). Using the chain rule (3.91) we obtain for the action of the BRST operator on the
integrated vertex operator

QU = ON*Aq + N (00° DAy + IO An) = ON*Ag + \"0A, = INA) = 0V . (3.101)

Therefore, we conclude that the integrated vertex operator [ dz U(z) is BRST closed up to
surface terms. Surface terms do not contribute to string scattering amplitudes: They van-
ish because of the cancelled propagator argument. In addition, the cancellation of surface
terms implies the invariance of scattering amplitudes under linearized gauge transforma-
tions. For the transformations dgA, = D, and dgA,, = 0,82 in (2.18) with some gauge
scalar superfield 2 the variation of the unintegrated vertex operator doV = A*D,Q = Q2
vanishes in the cohomology of the BRST charge. After using the chain rule (3.91) the
variation of the integrated vertex operator reduces to the surfaces term

SqU = II"0,,Q + 00°D,Q = 0 (3.102)

which vanishes upon integration.
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Chapter 4

Tree level amplitudes in the pure
spinor formalism

At tree-level the interaction of massless superstring states, described by the vertex opera-
tors in section 3.6, corresponds to scattering amplitudes on the sphere and disk for closed
and open strings, respectively. Both worldsheets have no moduli and therefore we only
have to take care of the residual symmetry of the conformal Killing group (CKG) of the
worldsheet topology. Because we have three (six) conformal Killing vectors (CKV) on the
disk (sphere), we have to fix the position of three (six) real worldsheet positions [130].
Fixing the reparametrization invariance of the Mobius group of the worldsheet leads to the
insertion of unintegrated vertex operators at these positions, while the other vertex oper-
ator are integrated over. It is a convenient choice to fix the vertex operators ¢ = 1,n — 1
and n, where n is the number of external states, to some arbitrary positions z, z,_1 and
z,. In principle, the amplitude is independent of the assignment of the integrated and
unintegrated vertex operators. For nm massless open strings we find that the scattering
amplitude prescription is given by the following correlation function of vertex operators!
[43]

./4.(0') = ,/DQ(O) ng ng s dZn_Q <<‘/1(21)U2(22)U3(23) s Un_g(zn_g)vn_l(Zn_1>vn(2n)>> s
(4.1)

where (...) denotes the path integral over the variables in the pure spinor action (3.71).
The integration domain, which is the boundary of the disk, can be parametrized by (parts

1 As discussed in [114] the computation of gauge theory scattering amplitudes simplifies tremendously
when considering ordered gauge invariants that depend only on kinematics [151, 152], i.e. color stripped
or color ordered amplitudes. The color dressed S-matrix elements can be recovered by summing over color
ordered open string amplitudes with appropriate color weights. For partial open string amplitudes the
number of local diagrams grows factorial instead of exponentially [114]. Moreover, we are interested in
closed string amplitudes, where the Chan-Paton factors of open string amplitudes are irrelevant. Therefore,
we are only considering color stripped or ordered open string amplitudes.
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of) the compactified real line
Dy(0) ={(z1,22, ..., 2n) ER"| —00 < 2, < 2y < ... < 2p, < OO}, (4.2)

where o = (1,2, ...,n) is the permutation of the labels that corresponds to the color order-
ing of the n external string states. Note that three vertex operator positions (z1, 2,2, z,) in
Dy(0) are position fixed due to the PSL(2,R) invariance of the worldsheet. A convenient
choice is (21, 2n—1, 2n) = (0,1, 00).

Similarly, the scattering amplitudes for n massless closed string states is given by [114]

A= [ @ d s (Vi 3 a2 )
0,n
XU3(23723) e Un—Z(zn—27gn—Q)Vn—l(Zn—lvZn—l)vn(zna zn)>> . (43)

Due to the action of the automorphism group PSL(2,C) of the sphere we have fixed
three punctures (21, z,_1, z,) and the integration over the remaining worldsheet coordinates

29,23, ..., 2Zn_o is realized by the integral over the moduli space of the punctured Riemann
sphere [153]

Moy = {(ZQ, Zoy ..oy Zn_g) € (CPY)" 3|2 & z; for all i # j} : (4.4)

Using KLT relations [34] it is possible to express the n closed string amplitude (4.3) in
terms of two n open string amplitudes (4.1), which results in [34, 154, 155]

A= Y S[0(2,3,...,n=2)|p(2,3,...,n—2)]

0,p€Sn—3
xA(L,0(2,3,....,n—2),n,n— 1A, p(2,3,....,n—2),n—1,n) , (4.5)
where o and p are permutations of {2,3,...,n — 2} and S[-||, is the KLT momentum

kernel, see chapter 7 for more details. Hence, we will focus only on open string amplitudes
in the following sections, which are based on [114, 116, 117].

4.1 Wick’s theorem in the pure spinor formalism

The correlation function (...) in (4.1) is evaluated by integrating out the non-zero modes
of the h = 1 conformal primaries 90%(z;), 11" (2;), dn(2;) and N™(z;), which is done by
applying Wick’s theorem and using the OPEs of section 3.5. Similarly, one has to com-
pute the contractions of non-zero modes of plane wave factors e®X(=2) which gives the
Koba-Nielsen factor of the corresponding amplitude. Thereby, one replaces the conformal
primaries by their singularities with the other fields in the correlator and obtains [156]

A(O‘) = /Dg(g) dZQ ng e dZn_g <<%(21)U2(22)U3(23) R Un_g(Zn_Q)Vn_l(Zn_l)Vn(Zn)»
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where we have used (3.78) to strip off the open string Koba-Nielsen factor from the vertex
operators and introduced the zero mode correlator (...). The contraction of the plane wave
factors is given by

KN({z}) = H |255|%9 (4.7)

i<j

where s;; = %(kl + k:j)Q = k; - k; for massless states, i.e. k? = 0. Moreover, the exact
dependence of K,,({#;}) on z; is determined by the OPEs of the superfields. Nevertheless,
this determines the correlator as a unique function of the worldsheet coordinates z; on the
disk [27]. More explicitly, the correlator can be expressed as

(Kn({2i3)) = (ANXT fapy (05 {2i})) - (4.8)

Note that f.g,(0;{z}) contains all the information of the external states like momenta
and polarization vectors/spinors. These enter f.g,(0;{z;}) via the #-expansions in (2.32).

According to Wick’s theorem to compute fu5,(0;{z}) in (4.8) explicitly we have to
sum over all possible contractions of the integrated and unintegrated vertex operators. For

example, the contraction between an unintegrated and integrated vertex operator follows
from the OPEs [116]

1

(T A () Vilz:) ~ =Vilz)ik]" AL XAy, = — (ks - ANV,
i
B8 1 o i B8 1 a i m At B
(dﬁW] )(ZJ)V;(ZZ> ~ _;A DﬁAaWj = _;)\ (_DOéAB + ’yaﬁAm>Wj
i i
1 % « % m
— Zﬁ((QAa)Wj = ALMW))
1 ) 11 S 1 .
SN Vi(z) ~ = =AM AR = —— AL QW) (4.9)
2 4 Zji i

which were compute using (3.76). Because (00 A;) has no OPE with V; the OPE residue
between U; and V; is given by

U (2)Vilz) ~ i(—(m LAV = AL + QAW)) (4.10)

Zji

From this analysis the single contraction between the ;™ integrated vertex operator with
the ' unintegrated vertex operator follows [109]

e
Kji = U ;(2)Vi(2i)
~ —(ik; - Aj)Vi — AL (Y™ W;) + QA W) . (4.11)
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Moreover, the contraction between two integrated vertex operators can be denoted by

S
Kji = 2iU;(2)Ui(2)
~ —(ik; - Aj)U; + 00° D ALWY + ™kl (A W) + (907™W;) Al

LW B 4 N (W W, 4+ FL L) (112)
where the arrow indicates that we are contracting the conformal primaries with 4 = 1 in Uj;
with U; or V; but not the h = 1 primaries of U; with U;. Note that even after the contraction
the superfields K;(z;) and conformal primaries still depend on the corresponding vertex
operator position z;. This will be important when we are computing K's involving more
than two vertex operators, i.e. more than one contraction. Although, Wick’s theorem is the
most fundamental way to perform this task, it is not very efficient. During the evaluation
of correlation functions we will encounter the same contractions over and over again but
with different labels for the external states in the amplitude, which can be exploited in
these calculations by introducing composite superfields. Hence, we will connect Wick
contractions to the composite superfields of [62] in chapter 5, which provide a more suitable
framework for computing scattering amplitudes in the pure spinor formalism.

4.2 The zero mode prescription

At tree-level the fields with conformal weight one appearing in the integrated and unin-
tegrated vertex operators have no zero modes. Therefore, after integrating them out the
correlator will only depend on the zero modes of the conformal weight h = 0 fields \* and
6,2 which have a single zero mode at genus zero [38]. This zero mode correlator is denoted
by (...) in (4.8) and will be analysed in this section.

The left side of equation (4.8) is BRST closed, because it is made out of BRST closed
objects V/(z;) and [dz; U(z;). This implies that the function f,s,(0;{z}) has to satisfy
the constraint

/ dzadzy - daus XNXN Difusy (0 {2:) = 0. (4.13)
Do (o

In general, faos,(0;{z:}) is a power series in 6% for k = 0,1,...,16 according to the 6-
expansions (2.32) of the super Yang-Mills fields. But only terms proportional to 6° give a
non-vanishing contribution to the zero mode correlator, i.e.

(NNX fan (03 {2i}) ) = (XTNX fagy (0: {})

) (4.14)

2There is actually a further contribution of conformal primaries with conformal weight h = 0, which is
the plane wave factor e?*i"X(21:%) The zero modes of the plane wave factor give a momentum preserving
d-function, which is left implicit, but we always assume momentum conservation.



4.2 The zero mode prescription 45

Because at ghost number three there is only one element in the BRST cohomology that
is proportional to #°, in ten dimensions all non-vanishing contributions in (4.14) to a zero
mode correlator are proportional to

(X%67)) = 2880 , (4.15)
where we have introduced the notation
(A%0°) = (AMY"0) (Ay"0)(MyP0) (0 Yimnpl) - (4.16)

The normalization 2880 was chosen such that tree-level amplitude results match in PSF
and RNS formalism [157].

General properties of the zero mode prescription

The zero mode prescription (4.15) is BRST closed

QANY"0)(M"0)(M0) (0Vmnpt) = 3(AY™ A)(AY"0) (M0) (07 mnpt)
—2(M"0) (A" 0) (AP0) (A Ymnpt) = 0 (4.17)

where the first term vanishes due to the pure spinor constraint Ay = 0 and after decom-
POSINE Yinnp = YmOnp — OmnYp + OmpYn and using (AY")a(Aym)s = 0 also the second term
is zero. Furthermore, the zero mode prescription ((A36°)) is not BRST exact

(970) (\"0) (0170 (B ) 7 QS (4.18)
because there is no Lorentz scalar build from two As and six s: If there was a scalar
Q(N, 0) with QQ(), 0) = (A20°) it would be constructed out of two As and six 6s, because

Q0 = \* and 0,, in D, vanishes for functions depending only on A and #. From the Fierz
identity

(e} mi [0 mi...Mm 1 « mi...Mm,
Vg = v,m(m @) + (%m ma) (WY ) + o maam ) (Y™ 00)
(4.19)
where the gamma-matrices are defined as
,ymlmg...mk _ k|7[m17 R ,Ymk] , (420)
it follows that the combination A*A\ = == (Ay™™P"\)y28 = only contains a five form

component.® After the tensor product with an antisymmetric spinor - - - ¢ the combi-
nation A\? ® % does not incorporate a Lorentz scalar. Explicitly, this can be seen from the
SO(10) representation of the tensor product A?> ® #° in terms of their Dynkin labels

(00002) ® ((01020) & (201000)) = (00011) & (00022) @ 2(00120) @ . .. |, (4.21)

3In A%\ the only SO(10) irreducible component is the five form: The vector (Ay™\) of A*A® vanishes

due to the pure spinor constraint (3.25) and the 3-form is not present because of the antisymmetry of

. mn mnp
gamma matrices fyaﬂ = V3o -
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where two As are represented by the Dynkin labels (00002) and six s are characterized
by (01020) & (201000). Hence, the tensor product in (4.21) does not exhibit a scalar
representation (00000).

The OPEs used to compute contractions between vertex operators transform appro-
priately under the generator Q, in (3.5) and will not break supersymmetry, because the
action of the pure spinor formalism is spacetime supersymmetric as was shown in section
3.1 and 3.2. It remains to show that the open string scattering amplitude prescription
(4.1) is supersymmetric. The zero mode prescription (4.15) should preserve the super-
symmetric nature of the formalism: Due to the zero mode prescription (4.15) we only
get non-vanishing contributions after the supersymmetry transformation 00* = n® and
0A* = 0 from terms of the form

A) = [ deadey - dzica (07O ) (0 0Dl {)) . (422

where &, is a 6 independent spinor that contains the momenta and polarization vec-
tors/spinors of the external states. The transformation replaces one §* by n® and there-
fore leaves us again with three As and five fs such that after the zero mode integration the
supersymmetry variation of the amplitude becomes

dA(0) = 2880 dzedzs -+ - dzp—on®®a({2:}) - (4.23)

D (o)

In (4.22) we have constructed one example of a function

Fapy(0,20) = (170)a(7"0)5(170) (0 Ymnp)0° P5({2:}) - (4.24)

By demanding BRST closure for (4.22), i.e. plugging the function f.g,(0;{z}) in (4.24)
into (4.13), we get

/ oy d2ddzs - dm NN ({2)) = 0, (4.25)
Do (o

which only vanishes if ®, is a total derivative of the worldsheet coordinates: ®, = (.. .).
Thus, the supersymmetry variation (4.23) of the amplitude vanishes after integration and
the zero mode prescription preserves supersymmetry.

Pure spinor superspace

The last step in the computation of scattering amplitudes is to extract the contractions
between polarizations and momenta from pure spinor superspace expressions (4.8) by in-
tegrating out the zero modes of three As and five fs utilizing the zero mode prescription
(4.15). The most general form of a pure spinor superspace expression [156] in (4.8) con-
taining only five #s can be written as

fagy (0 {zi}) = A NIXNV0°10%10%20%0°40% fo5115,5655065 ({2i}) (4.26)
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where the momentum and polarization dependence is stored in fugy|s,5,556455- 10 perform
the zero mode integration and extract the explicit dependence on momenta and polariza-
tions we use that there is only one scalar representation in SO(10) in the decomposition
of three pure spinors A* and five Weyl spinors 6¢ [114]

(00003) ® ((00030) & (11010)) = 1 x (00000) & 2 x (00011) @ ... | (4.27)

where in the tensor product the SO(10) representation (00003) and (00030) & (11010)
correspond to A* NP A7 and 6°10910%20% 6% 0% respectively. Since the scalar (00000) in (4.27)
appears with multiplicity one, any expression (4.8) containing only three As and five s is
proportional to the scalar component (A\26°). Moreover, the proportionality constants can
be fully expressed in terms of Kronecker deltas, gamma functions and Levi-Civita tensors.

In section 4.4 we will find a superspace expression ((Ay™0)(Ay"0)(AyP0)(07ancd)) with
free vector indices m,n,p and a,b,c. We have to extract the unique scalar component
(A30°) before we can use the zero mode prescription (4.15). Using symmetry arguments
we arrive at

24
~glmgnerl (4.28)

((AY"0) (A" 0) (AVP0) (0anel)) = 510

The combination of Kronecker deltas has the same symmetry properties as the superspace
expression ((AY™0)(Ay"0)(AVP0)(0vap0)): Both are antisymmetric in the indices [mnp] and
[abc]. Moreover, we can determine the proportionality constant by fully contracting the vec-
torial indices using 0,07 05. Thereby, for the left hand side of (4.28) we get ((A?6°)) = 2880

and the contracted Kronecker delta %5@52551 = (130> = 120 gives for the right hand side
24 x 120 = 2880. According to the discussion above there is only one scalar representation
for three As and five fs in an arbitrary superspace expression such that (4.28) is the unique

choice.

The other zero mode prescription needed in section 4.4 is given by the expression

((A"0) (X" O)(AP0) (x1m0) (¢70)) = —916(X'yn'y’"“w)(AW)(M"G)(Mpe)(ewsﬂ) ,
(4.29)
where x and 1 are arbitrary Weyl spinors and we used the Fierz identity (4.19), i.e.
6°0° = %fyfﬁ (64"'6). Thus, after applying (4.28) and ~,, 7"y, = —727™ we obtain

((A"0) (A" 0) (AYP0) (X V) (97p0)) = —i(mwm"pvp@/)) = 18(xy™) . (4.30)

More details and an in-depth discussion of pure spinor zero mode correlators can be found
in [114].
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4.3 Independence of scattering amplitudes on the as-
signment of unintegrated and integrated vertex
operators

In the formulation of the scattering amplitude prescription for open and closed strings in
(4.1) and (4.3) we have chosen the external states 1,n — 1 and n to be represented by
an unintegrated vertex operator V' at a fixed locations 21, 2,1 and z, on the worldsheet.
Moreover, we stated that the amplitude is independent of this assignment, i.e. that the
prescriptions in (4.1) and (4.3) do not depend on which external states {i,j,k} appear
as unintegrated vertex operators V;,V; and V) at fixed punctures z;,z; and 2z, on the
worldsheet.

Open superstring amplitudes

In an open string scattering amplitude it is possible to swap the representation of neigh-
bouring states ¢ and i + 1 from V; [dz;.1 Ui11 to [dz; U;Viiy [157]. For the amplitude
prescription (4.1) this implies that

<<V1(z1)/:" dzy Uy(2) H/ dz U Zvn_l(zn_l)vn(zn>>>
<</ dy Ui(y)Va(=1 H/Zl 1 dz U an—l(Zn—l)Vn(zn)>>. (4.31)

As before, we integrate the vertex operator positions over the compactified real line in-
cluding the point at £oo. The integrated vertex operator itself is not BRST closed
QUi(w) = § \*(2)d(2)U;(w) = 0V;(w) such that

VileValz) = [ dyavi)Vate) = [ dwQUAValz) . (432)

where the contribution Vi (z,)V,(2,) coming from the lower integration boundary vanishes
by the cancelled propagator argument. Terms containing two vertex operators at the same
position can be discarded, because for two states ¢ and 7 with sufficiently large and positive
ki - k; the contraction of their vertex operators is given by [157]

Vi(2)Vi(z+¢€) = " =0 for e—0. (4.33)

Since a scattering amplitude is analytic in the momenta (except for the poles), the above
statement (4.33) holds for all values of k; and k; after analytic continuation, if it does for
some region of k; and k; [27]. Next, we have to deform the integration contour of the BRST
operator () in order to encircle all other vertex operators instead of U;:

<<V1(21) / " Qg Un(2 H / “aau anl(znl)Vn(zn)>>

21
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—_<</ dy U (y) / dszQlU2 % 1‘[/ dz; U an_l(zn-l)Vn(zn)]>>
_<</ dy U, (y) / dzy V(2 H/Zl o dal an—l(l)Vn(Zn)>>

<</ dy Ur(y)Valzr H/zl 1 dz U an—l(Zn—l)Vn(zn)>>. (4.34)

Above terms, where the BRST charge @) acts on vertex operators U(z;) for 3 <i <n —2,
were discarded, since the boundary terms of the integrals [7" ' dz; 0Vi(z;) vanish according
to the cancelled propagator argument:

.. UZ'_1<ZZ'_1>(‘/¢(Z7L_1) - ‘/i(zi—l» PN Vn—l(zn—1> ...=0. (435)

Moreover, the unintegrated vertex operators are BRST closed, QV; = 0 for i = n — 1,n.
The remaining integral over QUs; = 0V, vanishes at the upper integration boundary 2o = z,

Valzne1) oo Via(zpe1) ... =0 (4.36)

However, the lower one at z; leads to a non-trivial contribution in (4.34), because it does
not coincide with any other vertex operator position, which proofs the claim.

Closed superstring amplitudes

From the decomposition (4.5) it immediately follows that closed superstring amplitudes
at sphere level are independent of the choice which vertex operators are integrated and
which are unintegrated, because the two open string amplitudes in (4.5) do not depend on
that choice. Though, it is possible to show this without using KLT relations such that the
closed string amplitude is manifestly independent of the assignment. Therefore, we follow
the lines of [157] to show that in the pure spinor formalism the integrated and unintegrated
vertex operators for closed strings are not BRST closed

QQU;(z,%z) = 90Vi(2,7) , (4.37)

where (Q and Q are the holomorphic and antiholomorphic BRST operators. Therefore, we
write a closed string amplitude at sphere level following from the prescription (4.3) as

<<V1(21,21 /d2le(zz,zl)Vn L (Znets Zne 1)Vn(zn,zn)>>
([ [ @2 - P - )il )
x E / d2z, Ui(zi,zi)Vn1(zn1,zn1)Vn(zn,zn)>> . (4.38)
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We have shifted the vertex operator Vy(z1,%1) — Vi(21,21)—Vi(22, Z2), which is possible due
to the cancelled propagator argument, i.e. the term containing V;(29,%3) gives a vanishing
contribution. Moreover, two J-functions were introduced to rewrite the shifted vertex
operator as

Vi(z1,71) — Vi(22,%2) = /d?JQ (8*(y — 21) — 0*(y — 22))Va(y, ) - (4.39)
These § functions can be written in terms of a worldsheet derivative
1
0y —21) — 0% (y — 20) = g@%lnw — 21| — 0,05 Inly — z)

1
= 27T<8y8371n]y — 21| — 0,05 Inly — 25| + 0,05 1In|2 — zﬂ)

1 Yy —21)(22—2
:%ay%m‘( )z = 2) : (4.40)

(y — 22)

where we added the expression iﬁy%ln |29 — 21| = 0 for later convenience and obtain
n—2
<<V1(21721) H /d2zi Uz’(Zi,Zi)Vn1(Zn172n1)vn(2n72n)>>
=2

= <</de /d222 ;ﬂayagln‘ (y _(21¥ZZ22)_ z1)

n—2
< T1 / d2z Ui(zi,zi)Vn_l(Zn_l,zn_l)Vn(zn,zn)>> . (4.41)
1=3

Vi(y,7)Us(22, %2)

After integration by parts such that the derivatives with respect to y and 7 act on Vi(y,7)
and using (4.37) we arrive at

<<‘/1(Zl,2’1)n1:[2/d222‘ Ui(zi,zi)Vn_l(zn_l,zn_l)Vn(zn,zn)>>

(y — 21)(22 — 21)

- <</d2y/d2z221ﬂ1n .

n—2
<11 / a2z Ui(zi,zi)Vn_l(zn_l,zn_l)Vn(zn,zn)>> . (4.42)
=3

QQU(y,7)Uz(22, Z2)

Similar as for the open string amplitude, we deform the integration contour of the BRST
charges Q and @ such that they encircle the other vertex operators. If Q or @ acts
on an integrated vertex operator U;(z;, %;) we obtain [ d?z; OVi(z;,%;) or [d?2z;9Vi(z, %),
respectively, which vanish for i # 2, because they are integrated over the sphere, which
has no boundary. The only non-vanishing contribution comes from Us(z9,%Z5) when both
BRST charges @ and @Q encircle the punctures (29, Zo):

<</d2y Ur(y,7) /sz2 217T 1n| (y = 21) (22 — 21)

(y — 22)

QQ[U2(22,22)
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X 7:1[_[3 /d22j Ui(zi7Zi)Vn—l(zn—hZn—l)vn(2n72n)] >>
X 71_[:)’ /dQZj Ui(zi7Zi)Vn—l(Zn—hZn—l)vn(zn,Zn)>>

_ <</d2y Ul(y,@)/dQZg 2;822852 ln| (y —(Zl)_(zzz)— 1)

azz&zz‘/?(zéa z2)

Va(22,7%2)

X Ti:[g /dQZj Ui(zi7Zi)Vn—l(Zn—hZn—l)vn(zn,zn)>>
= <</d2?/ Ur(y,7) / A%z (6(z0 — 21) — 6(y — 22))Va(20, Z2)
X Tiji;) /dQZ]‘ Ui(zi7Zi)Vn—l(Zn—hZn—l)vn(zn,zn)>>

= <</d2y Ul(y,y>‘/é(21,21)n /dQZj Ui(zi,zi)Vn_l(zn_l,zn_l)Vn(zn,zn)>> s (443)

where we used the same steps as before but in a reversed order and the cancelled propagator
argument

Vi Ve ) =0 (4.44)

Hence, we obtained the original amplitude with a different assignment of vertex operators.

4.4 Computing scattering amplitudes in the pure spinor
formalism

We want to demonstrate the computation of scattering amplitudes (4.1) by applying the
steps discussed in this chapter. Therefore, we choose the simplest example, i.e. the color
ordered three-point amplitude, which is given by

A(1,2,3) = (Vi(21)Va(22)Va(23)) = ((AAL)(21)(AA2)(22)(AA3)(23)) - (4.45)

The vertex operator positions zq, 29 and z3 are fixed to points on the boundary of the
disk and we do not integrate over them. The tree-level prescription does not contain any
conformal fields of weight h = 1 for less than four massless external states, because there
are only unintegrated vertex operators of conformal dimension h = 0 in (4.45). Hence, the
amplitude gets no contribution from OPE contractions except for the Koba-Nielsen factor

Riki — 1 (4.46)

KNg = <<ez'k1-X(znez’kl-X(zQ)eikl-X(ZS)>> - ﬁ |2 — 2

1<i<j
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because for massless external states k? = 0 momentum conservation k7" + k7' + k3, = 0
implies that

1 1
ki k= 5(1@ +k;)? = 5/@3 =0 fori,j,k=1,2,3. (4.47)

Therefore, the only contribution to the amplitude (4.45) comes from the zero modes of A\*
and #¢. The evaluation of the component expansions of the three-point amplitude boils
down to plugging in the f-expansion (2.32) and selecting the terms containing precisely
five 0s. From the spinorial superpotential A’ only the following bosonic terms at order 6!

and 63

AL(X,0) = {56,000 — 55 Fin (30)a(677770) b (1.45)

or the fermionic term at order #?
, 1 .
AL(X,0) — —5(7’"9)(1(9%%)6’“ * (4.49)

can contribute to (4.45) and lead to the possibilities listed in table 4.1 to saturate 6°.
All other terms in the f-expansion of order at least #* drop out of the amplitude, since

Superfield:  A;,(0) ‘ Asa(0) ‘ As,(0)

03 A A
Number 0" 03 o1
of fs from o1 A 03
each 0! 62 62
superfield: 62 ot 62
02 6? o1

Table 4.1: Terms containing five fs in (4.45).

these result in superspace expressions of the form A30=% when taking the other vertex
operators (each contributing at least one 6%) into account, which vanish due to the zero
mode prescription (4.15). Taking only the terms from table 4.1, which have three As and
five fs leads to

Pq

A,2.3) = (3= 2 60,5070 5 (0701 530

et x2Y"0 x37P0 .
+ 8 000 0 5,00, 0D ), hcyetetizs

- 1218671” <()\’ym9) (A" 0)(AY"0) (07pgr0))

e 8 () ) (e ™0) (xr0) + evelic(123) . (150)
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To evaluate the zero mode correlators we can use (4.28) with §7 = 10

(™) (X"0)(Xy"0) (9 0)) = 24677 = — 64T (4.51)

pgr

and (4.30). Hence, we find for the supersymmetric three-point amplitude
1
A(1,2,3) = FeTes 3 el (xaymXs) + cyclic(123) (4.52)
where we have applied momentum conservation k" + k3' + ki = 0 and transversality

e; - k; = 0. Note that A(1,2,3) is independent of ¢’ and therefore equal to the three-point
SYM amplitude.
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Chapter 5

BRST bulding blocks for pure spinor
superspace

In string theory only physical states contribute to scattering amplitudes. These states
are elements of the cohomology of the BRST operator (), which has a simple form @) =
A*D, in the pure spinor formalism. Inspired by that we want to exploiting the BRST
properties of objects, which naturally arise in the computation of super string scattering
amplitudes. Thereby, the pure spinor formalism provides an efficient method to organize
the computation of scattering amplitudes.

We will define composite super fields I:ﬂkimm- obtained form OPEs between vertex op-
erators in (4.1), which can also be fundamentally defined by Wick contractions and derive
their BRST properties. Because of their recursive definition these composite superfields
will contain terms that originate from the contraction of BRST closed terms with inte-
grated vertex operators. These contractions will not contribute to scattering amplitudes,
because BRST closed/exact terms are not in the BRST cohomology, see below for more
details. This was explicitly shown for the scattering of up to six open strings on the disk
[158] and also for two and three closed strings on the disk in [88] and [109], respectively.
Moreover, it was conjectured that this pattern persists also for an n-point open string
amplitude [62, 114]. Note that terms originating from the contraction of a BRST closed
expression with an integrated vertex operator are BRST exact. Even though, they drop
out of the scattering amplitude, they contribute to the CF'T correlation function, which is
crucial for conformal invariance of the correlator.

Using integration by parts relations one can eliminate (some but not all of) the BRST
exact terms in [N/jiki...pi and obtain the composite superfields Lji. i, which transform
covariantly under the action of the BRST charge [159]. Furthermore, they still contain
BRST exact pieces, which can be remove due to corrections originating from double pole
integrals arising from contractions between integrated vertex operators.! In the end, we

!Evaluating the CFT correlator of an amplitude with n > 5 open strings gives rise to single and double
poles in the worldsheet coordinates of the vertex operators. These double poles can be used to correct the
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obtain a prescription for defining the BRST building blocks 7}, ,. The derivation of these
building blocks in this chapter is based on [62].

5.1 Composite superfields [:2131“@1 and Loj31.

As mentioned in section 4.1 using Wick’s theorem and expressing all contractions in terms
of Ka131..p1 is not very efficient. Therefore, the composite superfields Loi3;1. 1 were intro-
duced, which can be defined recursively as® [62, 158, 159]

L
lim Vi(21)Us(20) — 21(21) ,

zZ2—21 Z21

. L
Hm Loy (21)Us(23) — Loz (1) ,
23—21 231

5 L
lim L2131(21)U4(Z4) — M s
Z4—21 241

E2131...p1(2’1)

Jim Loigrpn (21)Up(2p) = o (5.1)
for an unintegrated vertex operator 1 and integrated vertex operators 2, 3,4,...,p. Com-

posite superfields [:2131,,_1)1 containing contractions among integrated vertex operators are
defined using the same pattern. Note that by definition all Ls in (5.1) depend on only
one worldsheet position z;. At first glance, this could mean that the superfields Z~L2131,,,p1
cannot be related to Wick contractions K131, p1. But after all conformal weight one fields
are integrated out the correlator depends only on the zero modes of A and 6, which do not
depend on the worldsheet positions. Therefore, using partial fractioning it is possible to
combine Wick contractions K to form the composite superfields L inside a correlator, see
appendix C. Nevertheless, the approach in (5.1) is a priori different from Wick’s theorem.

Using the OPEs (3.76) the composite superfields (5.1) can be expressed in terms of
the SYM fields of section 2.2. Starting with one integrated and one unintegrated vertex

numerators of single poles. In the end, this allows to transform the composite superfields Ljip;.. pi into
BRST building blocks T;j.. ». Explicitly, this was done in [158, 160] and the general picture is presented
in [62]. For three closed strings on the disk we provide the calculation in appendix C.

2In a correlator as in (4.1) there are also composite superfields L that involve contractions between
integrated vertex operators. These can usually be expressed through superfields in (5.1) by using equations
like (C.9) or are corrections to (5.1) in order to obtain the BRST building blocks Tjjk.., [114, 62, 158].
Therefore, we will only need -Z/jiki..‘pi for the computation of scattering amplitudes.

Moreover, without loss of generality we have chosen specific labels for the vertex operators. All other
combinations can simply be obtained by relabelling.
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operator we find® [161]

Loy = lim 291 Vi(21)Us(22)
z22—21

~ —A}n()\’ymWQ) — ‘G(’Lkl . AQ) + Q(A1W2)
- L21 —|— Q(A1W2) . (52)

The composite superfield Ly, (or the contraction (4.11)) contains the BRST exact piece
Q(A; W), which decouples from the amplitude (4.1). For four external states the contri-
bution (Q(A;W2)V3Vy) = —((AiW2)Q(V5Vy)) = 0, because QV; = 0. Further, for higher
point amplitudes the BRST exact term is multiplied by more integrated vertex operators
such that we get Q(A;W5)Us ---U,_2V,,_1V,,. The U; are not BRST closed at the level of
the correlator, but rather satisfy QU; = dV;, which implies

n—2
<Q(A1W2)U3 e Un,QVn,1Vn> - — Z<(A1W])Um1 st a‘/; e Un,QVn,1Vn> 7& O . (53)

i=1

Once we integrate over the vertex operator positions z; of U;(z;) in the amplitude the
expression becomes BRST closed

/ dzodzs - - - dzn—2<Q(A1W2)U3(23) ce Un—2(Zn—2)Vn—1(Zn—1)Vn(Zn)>
Dy(P)

= — /DQ(P) dzodzg - - -dzn_2<<A1W2)Q[U3(23) e UN—Q(Zn—Q)Vn—l(Zn_1)Vn(Zn)]>
=% (5.4)

because of the cancelled propagator argument and the BRST properties of the vertex
operators (3.88) and (3.93). Following the same steps as in (5.2) we find expressions in
terms of the superfields for Loy and Lgyzi41 in (5.1) [109]

E2131 ~ Loz — 312[(A1W3)V2 - (A2W3)V1] - (813 + 823)(A1W2)V3

—Q(iky - A2)(A1Ws)] — Q[A,, (Way"Ws)] — Q{Us, (A, W2)} (5.5)

Loiziar ~ Loiziar + (A1Wy)[s12Va(iky - As) — s1aL3z + (s13 + 523) (iky - A2) V3]
+(AoWy)[—512(1k2 - A3)V1 + s19L31] + (513 + 523) (AsWy) Loy
—(s13 + 523) (Way"Wi) AL V3 + (W™ Wa) [—s12A2 Vi + s124,,Va]
—s12[Us(A1W3)Va — {Us, (AsW3) Vi + (A1 Ws) Lyp — (Ao W3) Ly
— (513 + 593) [Us( A1 W) Vs + (A Wa) Lys)
(514 + S04 + 834)[(iky - A)(ALW3) + (Woy™ W) AL — {Us, (A\W) Vi, (5.6)

3Note that we treat the contractions of the plane wave factors in the superfields separate by using
(3.78), since they result in an overall factor in the correlator of any scattering amplitude. Therefore, they
are not included in the composite superfields.
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where Lo131 Lojsi41 and are defined below. Moreover, we have introduced the shorthand
notation
(U (AW} = (ks - AN(AWR) + DaASWEWE + L(Ay ™ W),

for the contraction of U; with (A;Wy) and we used k7 = (k;)™ + (kx)™. To arrive at (5.5)
and (5.6) we had to integrate the BRST operator by parts. Consequently, we assumed
that these computation take place inside of a correlator, which allows us to drop terms like
Q(...) for a generic superfield expression (...), where the BRST charge acts on all fields
in the correlator, because (Q(...)) = 0. Moreover, we have already discarded the BRST
exact terms in Lojs141, because in the amplitudes, which we consider in chapter 8 and 10,
the superfields Loi3141 and relabelling thereof are accompanied by two unintegrated vertex
operators, which are BRST closed.

The superfields L are obtained by discarding all BRST exact terms that arise from the
contraction with BRST exact expressions in L, i.e. all terms in (5.5) and (5.6) that are not
contained in L. Using the OPEs (3.76) the composite superfields (5.1) evaluate to [62]

(5.7)

Lovgy = — Lo (iknz - As) + (W™ Ws) [F2, A7 + (iky - A9 AL, — (Wi Wa)],  (5.8)
Loig1a1 = —Loygi(ik2g - Ag) + (A" Wy) [FfmA?(ikm - Ag) — (A - ko) (Wary,, Ws)
+FL AL ALK, — FoATREAD + F) L (Win"Wa) — AT (iky - As)
+(WiymWs) (iky - Ag) + {(WﬂmWﬂ — Ay, (iky - A2)} (tk1a - As)

1 1
+Z(W27pq7mWS)qu - 4(W17pq7mW3)F§q} . (5'9)

The composite superfields Lgi3;1. 1 do not have any symmetries under the exchange of
labels 1,2,...p. However, the lack of symmetry properties results in BRST exact terms
leave the amplitude invariant [62, 162]. Under the action of the pure spinor BRST charge
the composite superfields transform covariantly [62, 159] such that their BRST variation
is given in terms of lower order composite superfields. From the recursive definition of the
superfields, QV; = 0 and QV; = 9V} it follows that

QL2131...p1 = z;l,igil Zpl {(QL2131...(p71)1(Zl)Up(Zp) - L2131...(p71)1(21)8‘/}(210))} ) (5-10)

where the first term can be computed using again the recursive definition (5.1) (after
discarding the BRST exact terms). By applying the OPEs (3.76) the contraction of
oV, = OX* AP + 11,,,i(k,)™V,, 4+ 00° D, V,, with the composite superfield Loz, (1)1 yields
Zf;ll SipLois1...(p—1)1Vp for the second term. Explicitly, we find for the BRST variation of
the superfields defined in (5.1) [62]

QLo = —s12V1V2 (5.11)
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QLois1 = —(s13 + S23) L1 Vs — s12(L31Va + ViLsa) (5.12)
QLoi3141 = —(S14 + Soa + S34) Lo131Va — (S13 + S23) (Lo1 Lz + Lo1a1 V3)
—512(L3141Va + L1 Lag + L1 L3a + Vi L3oss) - (5.13)

Hence, after dropping Q(A;W>) in order to obtain Ly from (5.2) the action of the BRST
charge on Lyj3; suggest that we have to drop all BRST exact terms in (5.5) that arise
from the contraction with BRST exact terms as well, since the BRST variation (5.12) only
holds for Lgi3; but not for I~/2131. Consequently, we proceed in the same way with the
higher order composite super fields.

5.2 BRST building blocks 7123

As described in [62] the composite superfields can be used to define the BRST building
blocks Tia3.., in essentially two steps (i) and (i7)

Loi31..pm 9, T123...p 9, T3, p , (5.14)
which remove all remaining BRST exact terms and make the amplitude manifestly invariant
under BRST transformations. Moreover, these steps still preserve the BRST variation
identities like (5.12) and (5.13) but for the BRST building blocks T}a3._,, i.e. these equations
hold after the substitution Ljs3_, — Ti23., on both sides of (5.12) and (5.13).

In the first step (i) the substitution of L3 ,1 by Tlgg_._p depends on the previous
redefinitions Lai31..q1 — Ti23..4 for ¢ < p. This step ensures that extra terms on the right
hand side of the BRST variation ()Lai31.. 1 arising from the substitution Loisi. g1 — 1234
are absorbed on the left hand side of the BRST variation. Therefore, the composite
superfields Loiz1. 1 — Tlggmp are redefined such that their BRST variation QT 1234..p 18
written in term of the BRST building blocks Ti23._ 4 rather than Los; q1. Explicitly, for
(5.12) and (5.13) we find

QT3 = —s12(Th3Va + ViTog) — (513 + 523)T12Vs (5.15)
QT1234 = —(S14 + S24 + S34)T123Ve — (513 + S23) (L1254 + T124V53)
—512(T134Va + Ti3Tog + ThaTos + ViTos4) - (5.16)

Using the BRST variations Qﬁgg“,p one can find BRST closed expressions, which are linear
combinations of ng“_p. For examples from (5.15) it follows that Q(ng +Thsy + T312> =0.
In addition, these combinations of T123mp are BRST exact at the same time, because the
cohomology of @ at ghost number +1 is non-trivial (non-empty) only at conformal weight
h =0 and h(Tiss.,) # 0 [62].

Finally, we are ready to remove the remaining BRST exact terms: In the second step
(77) we have to find all BRST exact linear combinations of Tugmp, which are given by

S Tis ,=QR%,.,, 1=1,23,....p—1, (5.17)

perm.



60 5. BRST bulding blocks for pure spinor superspace

in order to subtract the corresponding p — 1 BRST exact pieces Rg%._p from T123mp, which
gives rise to the definitions of 7’93 ,. Note that the sums include different permutations
of the labels of Tlggmp with positive and negative signs. After completing step (i) of
(5.14), which will be explicitly done in section 5.3, the BRST closed sums (5.17) become
symmetries

> Tisz. =0 (5.18)

perm.
of the BRST building blocks. In order to identify the exact structure of the sum over
permutations for T'a3_, in (5.18) it is useful to consider the diagrammatic interpretation of
the building blocks. Simultaneously, this procedure enables us to retrieve the BRST exact
parts Rg‘%mp of Thas., in (5.17), because by definition both sums (5.17) and (5.18) run
over the same permutations. To derive the BRST symmetries of Ti23 we have to consider
the diagrams associated to the building blocks in figure 5.1, where we interpret them as a
tail-end graph and as a branch. Because both interpretations have to agree, this implies

2 1

3
: Y
>_‘*"':T123 3 oo = T391 — T312

1

Figure 5.1: The same diagram interpreted as a tail-end graph and as a branch.

that the BRST symmetries (5.18) of 1123 can be written as
Thio3 — T321 + T312 = T3 + Tos1 + T312 =0 . (5.19)

The relative sign between the two interpretations of the diagram follows from the fact
that the diagram corresponding to Tia3. , picks up a sign (—1)P under the inversion
(1,2,3,...,p—1,p) < (p,p—1,...,3,2,1). Hence, in the BRST symmetry identity (5.18)
there has to be a relative sign (—1)? between Tha3..,, and Tj,,—1)..321, ¢.f. (5.19). The gener-
alization for higher rank composite superfields Tia3., of (5.19) can be obtained using the
same idea, see [62] for more details and is given by

p=2n+1: 0 =Tia. ni1ns2l..2n—1[@n)@nt D)) — 212041, na2n 1] [3121))..]] 5
p=2n: 0 = T2, nfn+1]..2n—2[2n—1)@n)])..]] T Lon .1l [321]]..] > (5.20)

where the notation T’ j;x.. means that we consecutively antisymmetrize pairs of labels
starting from the outer bracket

1

1
T K. = §<T...i[jk]... - T...[jk]i...) =

Z(Tz]k =T g, =T g + T gji.) - (5.21)

Moreover, the BRST symmetries of lower rank building blocks Tig3., transfer to higher
rank building blocks T'93., with p > ¢ for the first ¢ label and the last labels ¢+1,¢+2,...p
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remain unaffected by the lower rank identities, which follows from the recursive definition
of (5.1). The p — 1 relations between the building blocks at rank p allow us to express any
T}yiy..i, @s a combination of T3 4, ;,_, such that there are (p — 1)! independent building
blocks Tj,,..;, at rank p.

To sum up the building blocks T3, can be defined in two steps [62]

(i) Rewrite Lojg1 p, — T123mp in such a way that Qfmg,_,p is expressed in terms of the
lower rank building blocks Th93. 4 for ¢ < p.

(7i) Remove the BRST exact pieces (5.17) from ng,_p so that the thereby obtained Tia3.
satisfy the identities (5.18).

The building blocks derived via this procedure transform under BRST variations as
p
QTas.p == > (sy+sy+...+si1:)T2 17Tjp\a) (5.22)
7=2 a€P(B;)

where 8; = {j + 1,7+ 2,...,p} and P(B;) is the power set of ;. Moreover, a BRST
building block T; with a single index is given by an unintegrated vertex operator V;. For
p < 4 the building blocks obey the following BRST identities

QTiy = —s512V1 Vo,
QThg3 = —s12(T13Va + ViTa3) — (513 + s23)T12V5
QT934 = — (514 + 524 + 534)T123Va — (513 + 523) (112734 + T124V3)
—512(T134Va + Ti3Tog + T14To3 + ViThas) (5.23)

5.3 Explicit construction of Ty, 7193 and Tio3y

The construction of T only requires the second step (i7), because the redefinition of Ly
to Ty is trivial, i.e. Ty = L5, since there are no lower rank redefinitions to consider in
the first step (¢). Using the action of the BRST charge (5.11) on L;3 and the equations of
motion (2.17) we find that

Q(Tio + To1) = —s12(ViVa + VoV1) =0, (5.24)

because the unintegrated vertex operator anticommutes with itself. Hence, the expression
Ti9 + T5; is BRST closed and moreover also BRST exact

Tm + T21 = —Q(A1-Ay) = —QDss . (5.25)

The BRST building block Tis is then defined by satisfying Tio + T5; = 0 according to
(5.18), which is achieved by [159]

~ ~ 1
Tio =T =T + §QD12 (5.26)
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and concludes the derivation of the lowest order building block.
For the BRST building block T3 we have to carry out both steps of (5.14). The

substitution L;; = T;; — %QDH in (5.12) executes the first step Lajg ﬂ) T3, which yields

1 1
Q(Lzlsl - 5312(D13V2 - D23V1) - 5(513 + 823)D12V}>)

= —s12(T13Va + ViTos3) — (s13 + S23)T12V5 - (5.27)

Therefore, we find that T123 takes the following form

- 1 1
T93 = Loiz1 — 5512(D13V2 - D23V1) - 5(813 + 523)D12V3 . (5-28)

We consider two BRST closed sums for Tjs3 to identify the remaining BRST exact terms
Q(Tia3 + T13) =0, Q(Tio3 + T2+ Th31) = 0, (5.29)

where the first sum is inherited from the antisymmetry of 775 and the second one can
be found according to section 5.2. The combinations in (5.29) can be derived by acting
with the BRST charge on the ghost number zero superfields R§12)3 = Dis(ik1 - Az) and
R\, = Dys(iks - As) + cyclic(123) so that [158, 162]

T123 + T213 = QR%)?, ) T123 + T312 + T231 = QRg)g ) (5.30)

which can be shown using the SYM equations of motion (2.17). Furthermore, R and R
can be motivated by the residues of the double pole contractions of integrated vertex oper-
ators. Finally, after subtracting the BRST exact part in (5.30) from T'23 the corresponding
building block is given by

T123 = T123 - ngg’)

= ;(Tn?, - T213) + é(Tg;gl — Tglg + T132 — T231> (5.31)

with SS% =

%RE% + é(R%)g — R§21)3) For the BRST symmetries of (5.31) we find

Thoz + T3 = Tios + T512 + 151 =0, (5.32)

which are in agreement with (5.18).

The definition of Tis34 requires the lower rank redefinitions of Loy and Lojz;. We
proceed similarly as before: Executing the first step demands the substitutions L;; — T;;
and Lj;,; — T;ji in the right hand side of the BRST variation (5.13), which gives

~ 1
T934 = Lo13141 + Z[(SB + S93) D12Q D34 + $12(D13Q Doy + D14QDa3)]

1
—5[(513 + 593)(D12T34 — D3sTh2) + s12(D13To4 + D14To3 — DosTiy — DoyTh3)]
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(514 + Sa0 + 532) S\ Vi + (515 + 523)SoAVa — s12(SSVi — SiaVa) . (5.33)

whose transformation under the BRST charge is given in (5.16). Using (5.33) one can show
that the first labels of Ti934 inherit the lower order identities of Tj5 and Tias in (5.24) and
(5.29), respectively. In addition, there is a further BRST closed sum involving also the
fourth label

Q(T1234 + T2134) =0, Q(T1234 + T3124 + T2314) =0,
Q(T1231 — Th2az + Taa1a — Ta21) = 0. (5.34)

From the equations of motion of the linearized SYM fields it follows that the BRST closed
combinations are actually also BRST exact

T1234 + T2134 = QR%)M )
T1234 + T3124 + T2314 = QR§22)34 )
Ti3s — Thoas + Tagro — Taao1 = QRQM ) (5.35)

where we have defined the ghost number zero fields Rg)M with [ =1,2,3 as

R, = =R (ikos - Ag) + 111312[1913024 + D14Dss) (5.36)

R§22)34 = —Rgé(ik’lz:a - Ag) + i[512D23D14 + 893024 D13 + 813D34D12] (5.37)

R\, = (iky - Ag)[Dy(iky - As) — Dys(iks - Ay)) — (iky - Ay)[Dos(iky - As) — Das(iks - Ay)]
—1111)121934(314 + Sog — S13 — S24) + Dia|(iks - A3)(iks - Ay) — (iks - A)(iks - A3)]

+D34[(ik32 . A1)<Zk‘4 . Ag) — (’Lkl . Ag)(lk4 . Al)] + (meWQ)(ngmWQ s (538)

and kjfy, = (k)™ + (k;)™ + (kx)™. Removing the BRST exact parts above the redefinitions
T1234 ﬂ T1934 in the second step lead to the rank four BRST building block

T1234 = T1234 - QS£3?S4 ) (539)

where we have introduce the field ngﬂ, which is defined recursively by

3 1 1
Sggﬂ = ZSSE’A + Z(SSBLB - 5:5,411)12 + S:g)zli)m) + ZR%)M y
1 1
Sgg’,zx = §R§12)34 =+ 6 (R%)M - Rg21)34) - (5.40)

The BRST exact sums in (5.35) become the BRST symmetries of T34

To34 4 To134 = Tho3a + T3124 + To314 = Tho3a — Thoag + Taa12 — T3421 = 0 . (5.41)
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To check that (5.41) holds, we have to express R\, in terms of Sff,zp and use (5.39) together
with (5.40).
For the an n-point amplitudes we do not need to perform step (%) for L ijmi. jn_sis

because after substituting Lij, j,. i, » o, Tijljz_,jn_z this building block is already BRST
exact in the correlator: The building block Tijl jo.jn_» 15 always accompanied by two unin-
tegrated vertex operators in the CF'T correlator of the n-point amplitude. Therefore, we
can drop the BRST exact terms in T} j,.;,_, in the correlator without executing step (ii).
After integrating the BRST charge by part we can use QV = 0 such that the BRST exact
parts of T,-jmmjn_Q decouple from the amplitude. Hence, in this setup the BRST exact

sums (5.30) lead to vanishing correlators, i.e. for n = 6 we find that

<<T1234 + T2134)V5V6> = <QR§12)34‘/5‘/6> =0,
Tioza + Taroa + Toz1a ) VsVis ) = QR§22)34V:5V6 =0,
(( JVVe) =
=0.

Tia31 — Thoas + Taarz — Thaon ) VsVs) = QR34 V5 Ve (5.42)
(3)

Therefore, performing the second step (i) for Tijkp for the scattering of three closed strings
on the disk in appendix C is not strictly necessary and in some sense obsolete, because

< ijkpvmvn> = < ijkpvmvn>-



Chapter 6

SYM amplitudes from pure spinor
superspace expressions

All SYM tree-level amplitudes in ten dimensions can be recovered in the field theory limit
for o’ — 0 from open superstring amplitudes at tree-level [163, 164, 165, 166]. Therefore,
their correlators are in the cohomology of the BRST charge so that it is possible to use the
BRST properties of superstring amplitudes to find pure spinor superspace expressions for
SYM amplitudes. By doing so we obtain a recursive definition of SYM amplitudes based
on supersymmetric Berends-Giele currents [162], which can be constructed from the BRST
building blocks of section 5.2. These are the generalizations of the gluonic Berends-Giele
currents [167] for YM tree amplitudes, which can be reproduced from their supersymmetric
generalizations by truncating them to their bosonic components [168].

Following the lines of [62] we want to construct supersymmetric Berends-Giele currents,
which is inspired by the fact that the BRST building blocks T}, , correspond to color
ordered diagrams of cubic vertices with p on-shell and one off-shell leg, see figure 6.1.

The additional leg has to be off-shell, because at rank p each of the %(2;’:12) diagrams
3 4 p
2 \
=T
S12 S123 S12..p 12

1

Figure 6.1: A cubic graph corresponding to the BRST building block T}2. .

has p — 2 internal poles in the Mandelstam variables s, for ¢ < p and one external

propagator 5121 , which would diverge if all legs are put on-shell [116]. The pure spinor
...p

supersymmetric generalization My, of the p-point Berends-Giele currents Ji2_, will be

obtained by combining the diagrams of T2, to form p + 1-point field theory amplitudes
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including one off-shell leg. Furthermore, the (super)currents Mj, , share the symmetries
of the gluonic currents and provide a compact representations of n-point SYM amplitudes
in ten spacetime dimensions. To derive the n-point prescription for SYM amplitudes we
will use the recursive nature of the Berends-Giele supercurrents, which enables a recursive
method for the computation of n-point SYM amplitudes.

6.1 Gluonic Berends-Giele currents

In [167] a recursive relation for gluon scattering amplitudes in QCD at tree-level was
proposed!
Avm(1,2,...,n,n+ 1) = s10. 015 o dnie s (6.1)

where Ji5. , are Berends-Giele currents. They are defined via the recursive relation in the
number of external gluons and start with the polarization vector J;" = e]" of a single gluon
i. For higher rank currents Ji2_, with one off-shell leg p + 1 we find

J;nzei7
p—1 -2 p—1
812...pJ$...p=ZI[J1 i Jit1.p) +Zl ZI{JI i it il " (6.2)
= 7 Jj=i+

where the brackets [-,]™ and {-,-}" are defined such that they strip off one gluon with
vector index m from the cubic and quartic vertex of the Yang-Mills Lagrangian [114].
Explicitly, they are given by

(1o Jivr.p)™ = (Kirp - S Ty, + 21%711 (i I )
(i it ),

m m 1 m
{/1..4, Jiv1..5, Jj+1...p} = (Jii- Jj+1...p) it §(J1...i : Ji+1...j) J+1..p

1
5 irrg - Jirp) i - (6.3)

From the diagrammatic representation of Ji5 , in figure 6.2 one can immediately see, that
the brackets [-,-|™ and {-,-}" correspond to the three and four gluon interaction.

From the recursive definition it follows that the Berends-Giele currents at rank p are
conserved with respect to the total momentum [167]

Kp =0, (6.4)

where the total momentum is defined as 7" , = k" + k3" +. ..+ k}". Moreover, the currents
are invariant under reflections

Sy p+ (=) Jpp-1).1 =0 (6.5)

'For simplicity, we are considering color stripped amplitudes here.
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Ji—l—l.‘.p

-1
1 P
S5, = m
S12..p j—1

S

Jj+1...p

1 p—2 p-1

Z Z Ji—l—l.‘.j e

812..p i=1 j=it1

+

Jii

Figure 6.2: Diagrammatic representation of the gluonic Berends-Giele currents.

and the cyclic sum of Ji,_, is vanishing

Y Je2..) =0 (6.6)

oecyclic

This description of gluon tree-level scattering amplitudes is very efficient: The recursive
definition utilizes the lower order result and the ansatz (6.1) captures all Feynman dia-
grams. In addition, it can be used to proof cyclicity, gauge invariance, photon decoupling
and covers the factorization in soft and collinear limits.

6.2 Supersymmetric Berends-Giele currents M3 ),

The supersymmetric Berends-Giele currents My, can be expressed in terms of 715, of
section 5.2 and the Mandelstam variables {sj2, s123,...,512.,} of the kinematic poles.?
With the starting point M; = V; their recursive definition is given by

p—1
B p=> M. ;M ,,
=1
QMia p = Era p . (6.7)

Even though, the definition of the Berends-Giele M, , currents is of purely algebraic
nature, similar as for the BRST building blocks they have a diagrammatic interpretation
and can be related to the sum of 15!2(]; :21))!! cubic graphs of SYM amplitudes, which are

associated to a p+ 1 point amplitude with one off-shell leg. Each of these cubic graphs can

2The kinematic invariant are given by s12., = >+

i<j Sij with Sij = k‘z . k‘j.
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be connected to sums of BRST building blocks 715 ,, where the relative signs between the
building blocks are determined by (6.7).

The first supersymmetric Berends-Giele supercurrents up to rank 4 correspond to the
cubic graphs of the color ordered amplitudes for n < 5 in figure 6.3. The individual cubic

3
2 2 3
523 5123
1 1 2 1

9 3 4 5 4 .
M1234 — ‘ ‘ o \ 593 3123‘ o+ S34 S234 S1234 N
/ S12 S123 S1234 ‘ 51234 / ‘ ‘
1 2 3
1 2 1
4
3 9 3
‘ 51234 \ Sa3 S34 /
+ N
/ 523 8234‘
2 1 1 51234 4

Figure 6.3: Supersymmetric Berends-Giele currents My, for p < 4 expressed in terms of
the corresponding cubic graphs.

graphs are associated to BRST building blocks. Therefore, the supersymmetric Berends-
Giele currents in figure 6.3 can be expressed in terms of the building blocks of section 5.3
as

M12 = - ) M123 =

512 5123 \ 512 523
1 T'934 15014 T3491 T5041 T'o(34
+ + + 2B
5125123 5235123 5345234 5235234 512534

T 1 <T123 n T321) 7

M1234 - — (68)

51234
The relative signs are fixed by demanding that they satisfy (6.7). Using (5.22) the BRST

variations of (6.8) are given by

QM = V1Vo = MM,
ViTas — ThaVs

QM3 = — + = My Moz + Mo Ms
523 512
Vi /T T Ty.T T, T Vi
QM = 1 ( 234+ 432>+( 12 34>+( 123+ 321) 4
5934 \ 523 534 512534 512 593 / 5123

= MMz + Miog M3z + Moz My (6.9)
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which imply that the ansatz (6.8) for Mo, Mi93 and Mia34 forms a solution of (6.7) up to
p = 4. Continuing in this manner we can construct higher point Berends-Giele currents
for arbitrary p in terms of BRST building blocks. The generalization of the above BRST
variations follows immediately from the definition of M, , [162]

p—1

QM. p =) M. M1 p (6.10)

j=1
and was proven in [169]. This formula is the supersymmetric pure spinor analogue of the
recursive definition for gluonic Berends-Giele currents (6.2). The action of @ on M., can
be interpreted as cutting the Berends-Giele current in every possible way that is consistent
with the color ordering, which is depicted in figure (6.4).

Figure 6.4: Factorisation of Mj,_, into two channels under the action of the BRST oper-
ator.

6.3 Symmetries of Berends-Giele currents

The supersymmetric Berends-Giele currents M., share symmetry properties with their
gluonic partners Ji; . These will be useful for the computation of superstring scattering
amplitudes in the pure spinor formalism. For the rank p = 2 supercurrent we find that
M, satisfies My 4+ My = 0, because the building block T;; is antisymmetric. We obtain
an analogue symmetry for Moz as for Tias:

M123 + M231 + M312 == 0 5 M123 — M321 = 0 y (611)

which can be checked by plugging in the explicit expression for M,j, in (6.8) and using
(5.19). These identities generalize for higher rank Berends-Giele currents My, to

M12...p == (_1)pMp(p—1)...21 3 Z Mo‘(l,2 ..... D) — 0 ; (612)
o€Ecyclic
where the sum runs over all cyclic permutations o of the labels (1,2, ..., p). By construction

all BRST closed and exact terms have been removed from T}, _, and therefore also from
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M., because the Berends-Giele current can be constructed using the BRST building
blocks. This implies that Eio_, inherits all the symmetry properties of its ancestor M.,
and we can use Ej5 , to proof the above identities. The reflection symmetry follows by
induction and that the cyclic sum vanishes can be shown as follows

p
> Eoaop= Y. Y. Msa. yMogi1,. p)

oecyclic oéecyclic j=1

P
= > X 5(Mo(l,...,j)Ma(m,...,p) + Mo, pMoa,5)) =0, (6.13)

oéecyclic j=1

where we have shifted all labels in the second term by j, which is possible due to the overall
cyclic sum and used that Berends-Giele currents anticommute.

The symmetries (6.12) can naturally be explained by the fact that the Berends-Giele
currents Mo, correspond to p + 1-point amplitudes with one off-shell leg. Inspired by
this interpretation we can find further relations between the Berends-Giele currents by
removing the (p + 1) leg from the p + 1-point Kleiss-Kuijf identity [170]

Mgyia= (D" > My, (6.14)
€OP({a},{8™})

which were explicitly checked up to p = 7 in [62]. The sum over OP({a}, {3"}) runs over
all permutations of the set {a} U{S"} that preserve the order of the individual elements
in both {a} and {87}, which are subsets of {2,3,...,p}. Moreover, the expression {37}
denotes the set {8} with reversed ordering of the ng elements.

The cyclic and reflection symmetries reduces the number of independent color ordered
p + 1-point amplitudes down to %!. This number can be further decreased to (p — 1)!
independent amplitudes by the Kleiss-Kuijf relations. Since these identities do not involve
any kinematic factors, they also hold for amplitudes with one off-shell leg. This statement
is not surprising: The the Berends-Giele currents M., satisfy similar relations and can be
identified with p+1-point amplitudes with one off-shell leg. Therefore, we expect that there
are only (p — 1)! independent Mis_,. For ng = 1 the special case {8} = {p} reproduces
the vanishing cyclic sum in (6.12) from the Kleiss-Kuijf relation (6.14). However, for p > 6
to reduce the number of independent M;;, ;, down to (p — 1)! the dual Ward identity
or photon decoupling identity (6.12) alone is not sufficient [62, 170]. Nevertheless there
are only (p — 1)! independent BRST building blocks T;,;,. ;,, which suggests that M;
also have a basis of precisely (p — 1)! elements. Hence, the Kleiss-Kuijf relations (6.14)
should hold also for higher rank p > 7 Berends-Giele currents. Note that it is not possible
to reduce the number of independent Mo, to (p — 2)! using the field theory analogues

1%22...7p

of monodromy relations [35, 36]. These are only valid if all momenta are on-shell and
therefore the Berends-Giele currents do not obey similar relations.
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6.4 From Berends-Giele currents to SYM amplitudes

The expressions for Berends-Giele currents look like lower order field theory amplitudes.
For three external states the SYM amplitude is given by [43]

Asym(1,2,3) = (ViVaVs) = (M1 Mo M) = (E1oVs) (6.15)

At first, one might think that this amplitudes is BRST exact, because E15 = QMis = %,
and thus vanishes. However, for three massless particles all Mandelstam variables vanish,
see section 4.4, which implies that F, is not BRST exact. Hence, Fq5 # Q% such that the
amplitude is not BRST trivial. The four- and five-point SYM amplitudes can be written

in terms of Berends-Giele currents as [161, 160]

Ty, V5V, Vi T53V,
Asyui(1,2,3,4) = ! — 2 _ = Y MMMy + (M MasMy) = (EyssVi)
12 23
Ti93V, Vs IESAAZ T19T54 V5 VT34 Vs V1T ys9 Vs
ASYM(1,2,3,4,5)=< 123VaVs) +( 321 VaVs) +< 12134 5>+< 11234 5>+< 1132 V5)
512545 512545 512534 523515 523515
= (Myos My Ms) + (MiaMsyMs) + (M MazaMs) = (E1934V5) . (6.16)

Also for these higher point examples Fio3 and FEjs34 are not BRST exact, which follows
from the more general statement: If the momentum k,,; = —>_7_; k; of an external state
p + 1 goes on-shell kfjﬂ = 0, the prefactor in My _, ~ !

S12...p

that the field Eyo_, in (6.7) is conditionally BRST exact

diverges. Hence, we conclude

QEIQ...p =0 s if S12..p 7é 0 N
QFEw. »,#0, ifsip , =0, (6.17)

because Eis., = QMs., in (6.7) containing the propagator sml,_.p on the right hand side
only holds for s12._, # 0 and becomes ill defined for sy2_, = 0. For an n-point SYM ampli-
tude involving only massless states with k? = 0 momentum conservation implies > k; = 0
such that si3_,—1 = 0. In this case E15_,_; is not BRST exact and Ei9_,_1V, is in the
cohomology of the BRST operator (). Therefore, we propose the n-point generalization of
the SYM amplitudes above [162]:

n—2

ASYM(L 27 e n) = <E12“_n_1vn> — Z<M1...ij+1...n—1Vn> : (618)

=1

The n-point amplitude is in the cohomology of the BRST charge, because for n massless
states with s12.,-1 = 0 the superspace expression Fo V,, is BRST closed. The action of
the BRST charge on the composite superfield Ey,_, is given by

p—1

p—1
QE12...p = Z Q(MlelJrlp) = Z(Mleerln =+ E11M1+1n)
=1

i=1
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—14i-1 -1 p—1

:ZZMI .J ]+1 K z+1 .p Z Z Ml K z+1 ]M]+1 .p
i=1j=1 =1 j=i+1
p—1 p—1

= Z My, M iMigq.p — Z My iMigq. M.,
1<j<i 1<i<y

=> > (My My jMjgr.p— My iMigy jMj. )
i=1 j=i+1

=0 (6.19)

such that together with QV,, = 0 we obtain Q(F12. ,-1V,) = 0 [114].

The diagrammatic representation of Agyn(1,2,...n) in figure 6.5 corresponds to the
two currents M j and Mj;q. -1 of rank j and n—j —1, respectively, which are connected
via a cubic interaction to the n'® on-shell leg. The formula (6.18) is the supersymmetric

J J+1

Figure 6.5: Decomposition of SYM amplitudes using pure spinor cohomology methods.

generalization of the amplitude prescription (6.1) for color ordered n gluon amplitudes of
[167]. Compared to (6.1) the n — 1 rank current in (6.18), which is multiplied by the
Mandelstam invariant si5_,—1, is substituted by Fys ,_1 and the current of rank one J"
can be identified with V/,.

6.5 BRST integration by parts and cyclic symmetries

Because one external state was singled out in the prescription (6.18) for the n-point SYM
amplitude, the manifest cyclic symmetry of color stripped field theory amplitudes were
hidden. Nevertheless, the amplitude (6.18) is invariant under cyclic permutations

ASYM(1;2>-"n) = ASYM(2737'--n71) s (620)
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which follows after regrouping terms in QMy,_,, = S My ;M;1..,,. Therefore, we can
consider the BRST variation

n—2 n—2 n—2
Q Z Ml...iMi+1...n = Ml Z MQ...iMi—l—l...n + Z Ml...ij+1...iMi+1...n
=2 =2 2<5<1
n—2 n—2
- Z Ml...iMi—l—l..Aij—l-l...n - Z Ml...iMi—l-l...n—an
2<i<y =2
= Ml(EQS...n - M23...n—1Mn) - (E12...n—1 - M1M23...n—1)Mn
=Vikw.n— Fia.naVa, (6.21)

where the sums in the first line cancel each other and also M;Mas ,,—1 M, in the third line
drops out. All combinations M; ;M;.. ., are well defined for n massless external states,
because the highest rank supercurrents have non-singular poles in s15._,,_2 and s15._,_1 such
that

(Er2.n—1Va) = (E2.nVi) = —(Q(M12 M3,y + Mgz My + ... + My noMpn_1y,)) =0,
(6.22)
because a BRST exact superspace expression vanishes under the pure spinor bracket.
Therefore, the amplitude (6.18) is invariant under cyclic permutations ¢ — i + 1 mod n
[114] and we obtain

To make the cyclic symmetry of (6.18) manifest we can take advantage of cohomological
properties of the pure spinor superspace expression of Agym(1,2,...7n). In this process we
will derive an alternative expression for the n-point SYM amplitudes with manifest cyclic
symmetry and reduce the rank of the Berends-Giele currents needed for the amplitude,
which makes the evaluation of amplitudes more efficient.

Since for three external states the cyclic symmetry is already manifest

1
ASYM(L 2, 3) = §<M1M2M3> -+ Cy011C(123) s (624)

we start by considering the four-point amplitude: Because the combination M;M; is BRST
exact M;M; = E;; = QM,;; and BRST exact terms of the form (Q(...)) = 0 decouple from
the cohomology of @), we find

Asym(1,2,3,4) = (MiaM3zMy + My MyzMy) = (M2 E3y + Eyy Mag)
= (M12Q M3y + QM4 Mo3) = (E19Msy + My E»3)
1
= §<M12E34> + CyChC<1234) (625)
after integrating the BRST charge by parts. This integration by parts identity of the BRST
charge can be generalized to

(M; Ejijojg) = Miyiy..i,Q My, j,) = (Bivig.iy Mjy g ) - (6.26)

192...0p
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Next, we want to continue with the five-point amplitude to demonstrate that the pattern
persists also for higher point n > 5 amplitudes. Therefore, we utilize (6.26), which for
instance implies that

(Mg Eys) = (EyasMys) = (M Mag + Mo Ms) Mys) (6.27)

where we have used (Q)Mi93 = M7 Msz + Mi5 M3 in order to write the amplitude in a form
that is manifest cyclic symmetric

Agym(1,2,3,4,5) M3 My My + Mo My Ms + My Mgy Ms)
MiosEys + Myo M3y My + Esy Masy)

(
(
(Er23Mys + Myp My Ms + Msy Ezy)
(
(

(My Mas + Mo Ms)Mys + Myo My My + Mgy (Mo Msy + Moz My))
= M12M3M45> + CYCIIC(12345> . (628)

The highest rank Berends-Giele currents Mja3 and Magy of rank three in (6.28) have been
traded for rank two A;;. For an n-point SYM amplitude the cohomology formula (6.18)
involves Berends-Giele currents Mis_ ,_ o with rank up to n — 2. Using BRST integration
by parts (6.26) one can lower the rank of the highest rank building block down to at most
| 5], where [-| denotes the Gauf bracket [z] = max{n € Z|n < x}, which selects the
nearest integer that is smaller or equal to its argument [162].

By applying BRST integration by parts and/or exploiting the fermionic nature of the
Berends-Giele currents the n = 6 SYM amplitude takes the following cyclic symmetric

form

Agym(1,2,3,4,5,6) = (Mo MsyMsg) + (MasMysMer) + (Miog(MasMe + My Mse))
+(Masg(Msg My + MsMey)) + (Msgs(Mey My + MgMs))

1 1 .
= §<M123E456> + §<M12M34M56> -+ CyChC(123456) . (629)

The fractional coefficients in (6.29) and also (6.24) and (6.25) are important to avoid over-
counting in the explicit sum over cyclic permutation. For particular superfield kinematics
the cyclic orbits are shorter than the number of legs n [62, 114]: Due to (6.26) the cyclic
sum over <Mi1i2...ipEj1 jzqu> results in an overcounting by a factor two for p = ¢q. To com-
pensate this we have to introduce a factor of % for terms like (M. xFxi1..0x) for an even
number of external states n = 2k. For (M, i, M, js... 5 Mp,ko...k,) the cyclic sum leads to
an overcounting by a factor three for p = ¢ = r. Hence, we have to multiply this expression
by a factor of % for n € 3N external states. If n is not dividable by 2 or 3 we do not have to

introduce any fractional coefficients in the manifestly cyclic form of the n-point amplitude.



Chapter 7

Superstring KLT and monodromy
relations

In chapter 4 we have already exploited that n closed string scattering amplitudes on the
sphere factorise into two n open string amplitudes on the disk. In this chapter we want to
construct this double copy for closed string amplitudes and moreover find relations between
open string amplitudes. Here, we follow the presentation in [114, 171, 155] and the review
[172] for the derivation of the KLT relations and [35, 109] for the discussion on monodromy
relations.

7.1 KLT relations for closed string scattering ampli-
tudes

The closed string Hilbert space is a tensor product of two open string Hilbert spaces
Hclosed = Hopen & Hopen . (71)

Immediately one can imagine that this property carries over to the vertex operators de-
scribing the states in the Hilbert space Hoseq- Indeed, using the operator state correspon-
dence and the factorisation of the Hilbert space (7.1) the closed string vertex operators
Vi(zi, %) = Vi(2z:) @ Vi(z;) and Uy(z,%Z;) = Us(z;) @ U;(%;) are double copies of open string
vertex operators. Hence, this amounts to

Vi(zi,zi) = [\ AL (2, 7)

= a At m o 1 armn i —\ |2 =
Uiz, %) = |00 Al + T Ay + do W + INT™ L (2, %)| (21,7 (7.2)

where we used the notation [A*A? |*(z;,Z;) = (/\“AQ(H)) (z) (Xng (5)) (z;)etkiX(z7) 1 Over-
lined SYM or worldsheet fields are the antiholomorphic counterparts of the corresponding

'Here, we have used (3.78) to separate the plane wave factor from the -dependent part of the superfields.
Alternatively, we could separate X (z,%Z) = X" (z)+X " (Z) into left- and right movers. This would imply
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holomorphic fields, whose spinorial indices with hats &, B, ... have the opposite (same)
chirality as a, §, ... for type IIA (type IIB) superstring theory. Moreover, we have used
(3.78) to emphasise that the closed string vertex operator depends on a plane wave factor
etki-X(z%) - The f-expansions for the antiholomorphic fields are as in (2.32) but with in-
dependent polarizations €], X5 instead of e, x{*, whose tensor product forms the closed
string polarization. For example, the purely bosonic (NSNS) closed string polarization
tensor is given by €"" = e ® e]'.

For antiholomorphic fields the OPEs on the sphere are the same as on the disk,
but they depend on Z instead of z. Moreover, there are no OPEs involving holomor-
phic and antiholomorphic fields, i.e. no cross contractions between holomorphic and an-
tiholomorphic fields on the sphere. This implies that the calculation (OPE contractions)
of the correlator ...) in (4.3) on the sphere separates for the holomorphic and anti-
holomorphic parts of (7.2) and the plane wave factors lead to the Koba-Nielsen factor
(T e XE20) ~ KN({z,,%,}) = [T, |2i;/* and a momentum preserving delta func-

tion 0(3°1 k;). Similar, the zero mode integration via (4.15) is performed independently

for A%, #* and X*,8”. Due to this factorization the scattering amplitude (4.3) can be written
as

An = /MO § d222d223 cee dQZn,Q <<%(21>U2(22> ce Un,Q(Zn,Q)Vn,1(Zn,1>vn(2n>>>
x(Vi(z1)U2(Z2) -+ Un—2(Zn—2)Vu-1(Zn-1)Vn(Zn))
= d*zad?zg - dzns [ Lo (Ka({z D) (Ka({Z})) (7.3)

Mo,n i<j

where C,,({2,}) and K,,({Z,}) contain the zero modes of A%, 6% and their antiholomorphic
counterparts, respectively. Moreover, the singularities Zi_jl in K,,({z,}) obtained by OPE
contractions are the complex conjugates of zzgl in IC,,({2,})-

Next, we want to discuss the decomposition of the sphere integrals in (4.3) into open
string integrals. This double copy has a geometrical interpretation: The open string
integrals run over the punctured disk, which can be deformed into a punctured hemi-
sphere. Taking two punctured hemispheres and gluing them together along their bound-
ary and matching punctures results in a punctured sphere, which is depicted in figure
7.1. This gluing process corresponds to a map from two integrals over punctured real
lines to an integral over the punctured complex plane: [zn ® [gn — [cn, Where we have
to ensure that this map is single valued. More formally, we have to split the Koba-
Nielson factor KN(z;,z;) into products of meromorphic and antimereomorphic functions,
ie. |22 = (245)%9(2;;)*% such that (7.3) is an integral over a holomorphic square of a

that the plane wave factor for the left-moving part of a vertex operator only depends holomorphically on
z via X™ = X™(z) in (2.32). Nevertheless, the full closed string vertex operator (7.2) contains the plane
wave factor et X(2::%)) hecause the plane wave factors of the holomorphic and antiholomorphic sector in
(7.2) can be combined into e?¢X(i:%:) [109)].
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Figure 7.1: Gluing two open string amplitudes together along the boundary of the disk to
form one closed string amplitude on the sphere.

multivalued function (K, ({2,})) ITi-;(2i;)* with branch points at vertex operator posi-
tions z; = z;. This double copy structure requires monodromy phases e to become
single valued and well defined. These monodromy phases will give rise to the KLT kernel
S[]); in (4.3) and were first discovered by Kawai, Lewellen and Tye in 1986 [34].

To realize this double copy relation we have to manipulate the integrals over the com-
plex plane in (7.3). Therefore, we start by rewriting the n — 3 integrations over complex

worldsheet positions into integrals over the real line by using z; = x; +iy; and z; = x; — iy;

n—2 ) j\"—3 n=2 - n—2
g/cdzi:<§> g/{cdzi/\dzizg/Rdxi/Rdyi. (7.4)

Although, the integration was split into two real integrals, the amplitude (7.3) does not
factorize into two open string amplitudes, because the vertex operators still depend on the
complex worldsheet positions x; + 7y;. To regroup the integrals into open string integrals
we have to substitute x; & iy; with two real variables [34]. We can take the imaginary part
of z; and Z; and recognize that the amplitude is an analytic function in y; except for the
branch points at z; —z; = 0 and z; —z; = 0. Thus, without changing the amplitude we can
analytically continue the real variable y; to the complex plane by rotating the integration
contour simultaneously for all y; from the real line to the purely imaginary axis

y; — ie” My ~i(1 — 2ie)y; (7.5)
where € > ( is a small constant. The small shift in € away from the purely imaginary axis is
introduced to avoid the branch points of the integrand. Note that this is possible, because

there are no poles, genus or other obstructions along the rotation. The only contribution
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comes from the monodromy of the integrand during the rotation of the integration contour.
To determine these let us consider the Koba-Nielsen factor in (7.3) up to linear order in ¢
after the rotation?

S14

[ = (22 +92) " — (27 — o2 +iey?) ™
|7 — 100 = (25 = 1)* + )

Si(n—1)

— (2 = 1) =y} + diey) :
855

= (= 2)’ + = 1)*) " — (=) = (1= dig) s - %)
(7.6)

Si(n—1)

|2 — 2

where without loss of generality we have made a particular choice for (z1, 2, 1,2,) =
(0,1, 00) to simplify the discussion and 4,j = 2,3,...,n — 2. After the transformation

§i=xi— Vi, N = Ti + Yi (7.7)
the above expressions in (7.6) of the KN-factor become
|2il 1 = (& +126,)™ (i — i26;)™
’Zi —1 28i(n—1) = (fz -1 + ZE(Sz)sh(ﬁl -1 iééi)si("_l) s
|2 = 2% = (& — & +ie(d; — ;) (s — my — ie(d; — ;)" (7.8)

where we have defined §; = n; — &;. Thereby, the amplitude (7.3) takes the following form

A, = (;)n_ _O;ﬁdiidni (icn({gp}»(@({np}»?ﬁ(&Hgdi)su(m — ieb;)"

i=2
X(& — 1+ 1e6;)™ (g — 1 — igdy) ™D

 TI (6 — & + (6 — 6,))°" (1 — my — ie(6, — 5,))" (7.9

2<j<i

-3
The factor (%)n appears due to the Jacobian of the coordinate transformation (z;,y;) —
(&,m;) in the integral.

For the following discussion we want to assume that at least one n; €] — 0o, 0[. For the

terms in (7.9) containing a specific &, which are given by
00 n—2

/ A& (Kn({& D) (& +120)™ (& — 1 +1i0:)™ T] (& — & +ie(d; — ;)™ ,  (7.10)
- 2<5<i

the terms linear in € show the following behaviour near the branch points

§&~0: o =m—&~n <0,

2The branch points at z;; = 0 and Z;; = 0 of the integrand in (7.3) are contained in KN({z,,%,}),
because the poles in ), and IC,, have integer powers.
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G~ 1: o;~mn—1<0,
f’bzf‘] 51—(53%7]Z—77]<0 for 771<7]j (711)

If n; > n; we have to look at a different &, integral, which would correspond to the smallest
M- This 7, is again in the interval | — oo, 0 due to the assumption that at least one n;
is in this interval. Hence, we conclude that the integral of & can be closed by analytic
continuation in the lower half plain and the integral vanishes, because the closed integration
contour does not encircle any poles of the integrand. More generally, we evade branch
points § = §; below or above the real axis for 7, < n; or n; > n;, respectively. Hence,
at least one integration contour of & can be entirely below or above the real axis, if the
corresponding 7; is either in the range | — 0o, 0] or |1, oo such that all n; €]0, 1] in order to
get a non-vanishing contribution from (7.10), i.e. all n;-integrations can be written as

n—2
doy; (K ) (s = 1) =) 7.12
Lo E o Eatl) ) =" TL =) (7.12)

Note that we made a choice for the ordering 0 < 75 < 73... < 1,2 < 1. To obtain
the entire closed string amplitude we have to sum over all permutations ¢(2,3,...,n — 2)
of this ordering for n;. Moreover, the integrals in (7.12) can be identified with the n-
point color ordered open string amplitude (4.1) with fixed vertex operator positions at
(21, Zn_1,2n) = (0,1,00).3 In the end, the n;-integration will result in summing the open
string amplitudes A(1,0(2,3,...,n —2),n — 1,n) over all permutations o.

In a similar way, we want to examine which integration contour for &; is dictated by
the imaginary parts of (7.8) proportional to €. For n; €]0, 1] we find

n; ~0: 0;~ & >0,
n o~ =& —1<0,
;e 5i_§j%77i_77j<0 fOI‘£¢<£j (713)

such that the integration contour of &; + icd; lies above and below the real axis for 7; < 0
and 7; > 1, respectively. In the interval between 0 and 1 the contour of §; 4 icd is above
the one for & + ied; for ¢ > j, which is depicted in figure 7.2. Because the individual
&;-contours cannot intersect each other, beginning with the rightmost (leftmost) we need
to deform the integration contours for &; 4 icd; to the left around the branch cut at & =1
(the right around the branch cut at & = 0), which closes the contour below (above) the
real axis. Thereby, we obtain integration regions corresponding to open string scattering

3Usually, for this identification we have to rescale o/ — %/ in the open string amplitude in order to get
the correct closed string Koba-Nielsen factor from open strings, i.e. such that the kinematic invariants in
the KN-factor agree s;7" = 2a'k; - kj — sd‘“ed o 2 ki - kj. Alternatively, we could have defined the open
string momenta as k°P" = 1k°1°5ed which is known as the doubling trick.

With our choice for o = 2 for closed strings and o = % for open strings, we don’t have to introduce
any additional factor, since we have thereby accounted for the relative factor.
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~

0 | i En—2 _

Y

Figure 7.2: Nested structure for the integration contours C; for &; + i€d; corresponding to
the ordering 0 < my <m3 < ... < 1Mo < L.

amplitudes. In this process we have the freedom to chose the number of contours we want
to close to the left or right. For example, for 2 < 7 < n — 1 all contours from 2 to j — 1
can be pulled to the left and the reaming contours from j to n — 2 can be closed to the
right. Moreover, it is also possible to close all of the contours either to the left (j = 2) or
the right (j =n —1).

In addition, we have to ensure that the integrand takes the correct form such that we
can also identify the integrand with an open string correlator. This can be done by pulling
out phase factors e but we have to be careful not to cross a branch cut. Therefore,
we chose the branch cut to lie on the negative real axis and restrict the power function to
2¢ = |z|%"Y with —1 < 6 < 7. According to [172] this implies that

e | em(=z)¢ for 3(z) >0,
-7 { e ™ (—2)¢ for §(z) <0 . (7.14)
Note that (7.14) is valid for both signs of R(z) and not only R(z) < 0 as stated in [172].
For more details see appendix A of [172].
We want to demonstrate the contour deformation for an arbitrary j and start by closing
the integration contour Cy (see figure 7.2) of &, to the right, which gives

/ d& 52 812 1 _ Sz(n 1) H 52 82]
) . 0
_ (ewrsw _ e—wsw)/ A& (—&)*2(1 — &) H — &)

= gisin(msio) [ Ooo Ay (—&) 2 (1 — €)1 H ) (7.15)

where we have only displayed the Koba-Nielsen factor and shown terms with branch cuts
in & for simplicity. We can continue by closing the contour for &5 to the left and get
n—2

L a6 (&) (1~ &) (6 — &) T1(E — &)™

Jj=4
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0 n—2
=2 Sin(7T813)/f dés(—E3)"3 (1 — &)1 (&5 — &) [[ (& — &)™
2 j=4
&5 n—2
—|—22 SiH(’iT<812 =+ 813)) / dfg(—fg)sw(l - 53)53(7171) (52 - 53)823 H (5] - £2)52j . (716)
— 0 j=4

We proceed in this way until we arrive at the last contour §;_;, which we have pulled to
the left.

On the other side, we also have the possibility to deform the integration contours around
the branch point & = 1 to the right. Therefore, we start with closing the contour for &, s,
which gives

n—3

/ dgan (fan)SI(WFQ) (1 - ’Sn72)8(n72)<n71> H (fan - fj)sjn72
Cn72 ]:3
o] n—3
=2 sin(ws(n_Q)(n_l)) /1 dgn_2(§n_2)s1(n-2)(§n_2 _ 1)s(n-2>(n—1) H (&_2 _ §j>s]'n_z (7'17)
j=3
Next, we take the &,_3 contour and deform it such that
n—4
L € (§ama) 0 (1= o) 0 (€ = §ug) 0 ] (60 — )0
n—3 _]23

£n72
=2 Sin(ﬂ'S(n_g)(n_l)) /1 dgn_3<§n_3)81(n—3) (gn_s _ 1)s(n—3)(n—1)

n—4
X (Enma — &ng) =902 TT (& — &uog)

J=3

+2i Sin(ﬁ(s(n,g)(n,l) + S(n,:),)(n72))> /{ dén_3(&n_s)® 19 (&,_g — 1)*(=3)n-1)
n—2
n—4
X (€n—g — Ep_g)=3n-2) H (&n_g — &)%) (7.18)
j=3

Again, we can continue with this pattern until we reach the contour for {;, which is the last
one, we want to close to the right. Hence, the integrations over the worldsheet variables
& result in a sum over color ordered open string amplitudes A(y(c(2,...,7 — 1)), 1,n —
1,8(c(4,...,n —2)),n), which are multiplied by monodromy phases.

In the end, the different ways of closing the contours lead to the following expression

for the n-point closed string amplitude on the sphere

A= > AL0(2,....,n—2),n—1,n)Sp(c(2,....,5 = 1)|o(2,...5 — D

7,0,YESn—3
xSle(i+1,....n—=2)B0G +1,...1n—2))]nr
xA(y(o(2,...,5=1),1,n—1,B8(c(j,...,n—2)),n) (7.19)
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with 2 < j < n — 1 as before. Note that the momentum kernels in (7.19) depend on the
momenta k; and k,_; of the external states at the branch points at 0 and 1. They can be
defined recursively as [114, 155]

Slp1, -0 dlars @y Jy@rgry - @5l = iSiH(Wk?j “Kigyoq)SIPL, - Dl - sl
(7.20)
where the starting point of this recursion is given by S[}|] = 1. Moreover, the normaliza-
tion of the momentum kernel is such that after reinstating o/ we recover the field theory
momentum kernel S[-|-|; of [154, 173, 174] in the field theory limit o/ — 0.

Equation (7.19) demonstrates how an n-point closed string amplitude factorises into
two open string color ordered amplitudes on the disk. It can be interpreted as gluing two
amplitudes A(...) and A(...) together by the kinematic factors in the KLT kernel S such
that they form one closed string amplitude A,, similar as in figure 7.1. The amplitude
(7.19) is independent of j, which reflects the arbitrariness in the number of contours that
are either closed to the left or right. The j-independence originates from the fact that the
open string amplitudes satisfy monodromy relations, see section 7.2. In total there are
(n—=3)!'x(j—2)! x (n—1—j)! terms in the sum (7.19). Therefore, the maximum number
of terms is achieved for j = 2 or j = n—1 and given by (n —3)! x (n —3)!. For this choice
we recover (4.5):

A, =— > A1,0(2,3,...,n—2),n,n—1)

presnf?:

xS[o(2,3,...,n—2)[p(2,3,...,n—2)|1 AL, p(2,3,...,n—=2),n—1,n) . (7.21)

On the other hand, in [34] they have chosen to close one half of the contours to the left
and the other half to the right, which corresponds to the minimum value (n —3)! x ([5] —

2)!' x ([2] — 1)! of terms in the sum over permutations and is obtained for j = [%].4

7.2 Monodromy relations for open string scattering
amplitudes

In the previous section we have seen that any n-point closed string amplitude on the sphere
decomposes in two n-point color ordered open string amplitudes on the disk, see (7.21).
Since these are the components of the closed string amplitudes, in which we are interested,
it is important to study them in more detail. In general, there are (n — 1)! inequivalent
color stripped subamplitudes, but they are not independent and can be expressed via a
basis with (n — 3)! elements [35, 36].

4The ceiling function is defined as [z] = min{n € N|jn > x} similar to the floor function.



7.2 Monodromy relations for open string scattering amplitudes 83

7.2.1 Relating massless open string subamplitudes

In string theory the worldsheet properties of open string amplitudes imply that under
reflection the vertex operators have eigenvalues 4+1 such that the same holds for the am-
plitude itself [116]. Hence, by applying reflection and parity symmetries we find that the
partial amplitudes satisfy

AL,2,...n)=(—1)"A(n,n—1...,1), (7.22)

which reduces the number of independent amplitudes from (n—1)! to 5(n—1)!. Note that
this is a symmetry that is also well known from field theory amplitudes and follows form
studying the sum of Feynman diagrams [35].

Further, algebraic relations between subamplitudes can be derived by applying world-
sheet methods. Therefore, let us consider the canonically ordered amplitude in (4.6) and
change the vertex operator fixing to some arbitrary positions (z;, 2i,, 2i,) such that we
obtain

A(1,2,...,n):/ HdzZH]zk 2l (I ({2,))) (7.23)

—00<21<22<...<2pn <00 i=1 k<l
141,102,143

where we introduced the notation A to distinguish the amplitude above from (4.1) with
fixed positions (z1, 2,-1,2,). In the remainder of this section we want to find relations
between A(1,2,...,n) and permutations thereof following the presentation in [109, 35].
Note that (7.23) also satisfies (7.22).

We are only concerned with the Koba-Nielsen factor, since it contains the branch points
of the amplitude and therefore prevents the amplitude from being an analytic function of
the worldsheet variables z;. For a specific integration variable z;, where i1, 15,73 # 1, the
corresponding terms in the KN-factor [T}_, [21,/*/ can be related to a holomorphic function

by using (7.14), i.e. [116]

1 oo <2 < 29,
eimsi2 2o < 21 < 23,
TS TS
ﬁ S” B H |Zl s e'neIz oS 23 < 21 <24, (7'24)
Jj=2 :
- gimy Zno1 < 21 < Zn
1 : Zn < 21 <00 .

Then, we can analytically continue the z; integral to the entire complex plane: We integrate
z1 along the real axis followed by a semicircle of infinite radius in the upper half plane
rather than over | — 0o, 5[, which is depicted in figure 7.3. The semicircle in the upper half
plane vanishes at infinity, since the integrand in (7.23) scales as z; " — 0 for |z — oo,
where hy =1 is the conformal weight of the integrated vertex operator Ui(z;) in the pure
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S(21)

A

n—1,n,1)

Figure 7.3: Contour integral in the complex z;-plane.

spinor formalism. From Cauchy’s theorem it follows that the integral over the holomorphic
integrand in z; vanishes along the closed contour of z in figure 7.3. Hence, we obtain [116]

n

O:/IR{dZ1/z ﬁdzi ﬁ(zu)slj I 2l (Kn({2}))

2<z3<...<7fn i=2 j=2 2<k<l
1#£11,12,13
z2 n n e
= [Tan TLdz T Il TT leul™ (Ca({z})
—c0 22<23<...<zZn ;_o j=2 2<k<l
i1 12, -

n n n

—1—26”(512*'"31(4—1))/ ! dzl/ Hdzz H |215]° H |2 (K ({2p}))
Zg—1 z j=2

=3 2<z3<...<,‘zn i=2 2<k<l
17£11,12,13
00 n n n
—|—/ dzl/ Hdzi H |Z1j|81j H |Zkl|8kl <’Cn<{zp})>
Zn 29<23<...<2n i=2 j=2 2<k<l

i1 ,i2,i3
n

= A(L,2,...,n) + Y emertena A2 g —1,1,q,...0) +A2,...,n,1) . (7.25)
q=3

Here, we have divided the z;-integration along R into smaller intervals | — 0o, za[, |24-1, 24|
and |z,,00] for ¢ = 3,4,...,n. Moreover, we used (7.24) to relate the holomorphic factors
(21;)%% to |z1;]°V in the Koba-Nielsen factor of the open string amplitude. This process
required to introduce the phase factors e/™*12+-s16-1) for the individual subsets of R.
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Further, this can be interpreted as follows: Each time when we encircle another vertex
operator position z; for ¢ = 2,3,...n while integrating z; along the real axis, we pick up

a phase. The phase arises when we express the integrand of A(1,2,...,n) in terms of the
integrand of A(2,...,7,1,7+1,...,n) by applying (7.14). For example the subamplitude
A(1,2,...,n) contains a factor (z; — 22)*'* whereas A(2,1,3,...,n) has a factor (2o —21)2,

which can be related via (7.14) [175].
This discussion leads us to relations among open string subamplitudes [109]

0=A(1,2,...,n—1,n) +e™2A(2,1,3,...,n — 1,n)
FemtsIA (231, ... n—1,n)+...

feimtsntetnn-nA(23 . n—1,1,n)+A2,....,n—1,n,1), (7.26)
which are an analogue to the dual Ward identity in field theory. Compared to [35] we
obtained a slightly different monodromy relation in (7.26), where we have A(2,...,n —
1,m,1) corresponding to z, < z; < oo, which is not equivalent to A(1,2,...,n—1,n)

corresponding to —oo < 21 < 2o, because there is no vertex operator with position z; — oco.
Moreover, the open string subamplitudes A(1,2,...,n — 1,n) and A(2,...,n — 1,n,1)
appear with the same phase in the monodromy relation (7.26). Hence, we do not pick
up a phase when jumping from +o0o to —oo, since there is no vertex operator localized
at infinity. This suggests that they can be combined into one amplitude and in fact they
are only parts of the same open string subamplitude,® which becomes clear in the next
subsection if one unintegrated vertex operator i, is fixed to z;, — oo for p € {1,2,3} [109].

7.2.2 The minimal basis of subamplitudes

Before we use the relations obtained from the monodromy of the worldsheet to reduce
the number of inequivalent partial amplitudes, we want to consider the case where one
vertex operators is fixed to infinity, which can be obtained form (7.23) by performing a
PSL(2,R)-transformation,® see section 8.3.2 for an example. For simplicity, we choose
z, — 0o such that the partial amplitudes can be written as

A(L,2,... n) = /_ ﬁdzi nf[ 2 — 2 ({2, ) (7.27)

00<21<29<..<2p—1<00 i=1 k<l
111,02

where two other vertex operator positions (z;,, z;,) are fixed to (0, 1). By taking (z;,, 2;,) =
(21, 2n—1) we would recover (4.6) in the PSL(2,R)-frame (21, 2,—1, 2,) = (0,1, 00).

SHence, some A(p(1,2,...,n)) do not immediately correspond to open string partial amplitudes with
some color ordering p of the n open strings, but they can be combined and rewritten such that they will
be promoted to open string subamplitudes.

6This statement is true up to the subtlety that some of the subamplitudes (7.23) have to be combined
to yield one open string partial amplitude (7.27).
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By following the same steps as before we obtain the monodromy relations [35, 36]

0=A(1,2,...,n—1,n)+e™24(2,1,3,...,n—1,n)
_’_eiﬂ'(s12+s13)A(2’ 3,1,...,n—1,n)
4. Femetetnn-n) (23, n—1,1,n). (7.28)

If we now consider the amplitude A(2,3,...,n — 1,n,1) this would correspond to z, =
—00 < 21 < 29, because the boundary of the disk corresponds to the compactified real line,
i.e. —oo and +o00 describe the same point on the boundary of the worldsheet. Therefore, the
subamplitudes A(1,2,3,...,n — 1,n) and A(2,3,...,n — 1,n,1) are the same, which was
not the case for (7.23). Furthermore, the open string subamplitude A(1,2,3,...,n — 1,n)is
given by the combined partial amplitudes A(1,2,...,n) and A(2,...,n,1) after performing
a PSL(2, R)-transformation, where the fixed vertex operators are (z;,, 2;,, 2,) in both cases.
From A(1,2,...,n) one could have guessed that there are n! inequivalent amplitudes, but
this identification shows that there are really only (n—1)! independent amplitudes to begin
with.

Due to the monodromy relations the dimension of the basis of independent subampli-
tudes is smaller than %(n — 1)! suggested by (7.22). To derive the minimal basis following
the discussion in [116] we write the set of monodromy relations (7.28) in a more general
way

AL o, .. ap,n, B, ... Bs) = (—1)5H6”55iﬁj > 11 Hemsaiﬁa‘A(l,o, n) (7.29)

i<j o€OP({a},{B}) k=01=1

where oy = 1 and a definition of OP({a}, {8}) is given below (6.14). After using (7.28) and
(7.29) the only independent amplitudes left have the external states 1 and n at positions
next to each other. The total number of these amplitudes is given by (n — 2)! due to the
S,_o permutations of the remaining states 2,3,...,n — 1. So far, we have neglected that
the amplitudes are real A(1,2,...,n) € R, which makes it possible to take only the real
part of (7.29) to carry out the reduction to (n — 2)! amplitudes A(1,0,n). Further, the
imaginary parts of these relations can be used to find a simpler set of identities. They
include one term less than (7.26) and are given by

0 =sin(7s12)4(2,1,3,...,n— 1,n) +sin(7(s12 + s13))A(2,3,1,...,n — 1,n)
.. +sin(m(si2 + ..+ s10-1)))A2,3, ... ,n = 1,1,n) (7.30)

and relabellings thereof. With (7.30) we are able to write any subamplitude as a linear
combination of (n — 3)! basis elements. Note that this number is identical to the dimen-
sion of the basis of generalized Gaussian hypergeometric functions, which can be used to
characterize the open string n-point amplitude [176, 177, 178].

The CFT correlator (K,,({#,})) is independent on any permutation of the external states
in A(1,2,...,n) and can be evaluated before specifying the partial amplitude. Only the
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integration region is different for each subamplitude. Moreover, the branch cuts originate
from the Koba-Nielsen factor and not from (K,,({z,})), which has only poles with integer
powers in the worldsheet coordinates and therefore does not influence the analytic prop-
erties of the amplitude. Hence, the results in this section are universal for all amplitudes
consisting of a correlator with these properties and a Koba-Nielsen factor similar (with
the same branch cut structure) to the open string amplitudes considered in this section.
Furthermore, the discussion in this section did not depend on the number of spacetime
dimension or the amount of spacetime supersymmetry.
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Chapter 8

Scattering three closed strings off a
Dp-brane

The first quantum corrections to the effective action obtained in the limit o/ — 0 from string
theory can be captured among others by disk amplitudes. For example, they give rise to
higher derivative gravitational corrections to the Dirac-Born-Infeld action [84] and it should
be possible to infer disk level corrections to the Einstein-Hilbert term in four dimensions
from graviton scattering with only external polarizations. These could originate from a
disk level term like e~ %910 R* when compactifying on a Calabi-Yau with non-vanishing
Euler number and were conjectured in [179] to exist in the worldvolume theory of a D9-
brane. Hence, it would be interesting to explicitly check for the existence of these terms
in the scattering of closed strings off a Dp-brane. In this chapter, which is based on [109],
we present the procedure for the computation of these amplitudes: As the scattering of
two closed strings did not exhibit the desired gravitational corrections we continue by
investigating the scattering of three closed strings on the disk. However, in chapter 11 we
will show that also our results do not show any hints of such a disk level corrections to the
Einstein-Hilbert term. Nevertheless, we build the foundation for future computations to
investigate this further.

8.1 Boundary conditions on the disk

In chapter 7 we considered only closed string states that interact on the sphere. As was
argued in section 7.1 on the sphere left- and right-movers can be treated independently,
i.e. there is no interaction between the holomorphic and antiholomorphic sector. But the
boundary of the disk imposes non-vanishing correlators between the left- and right-moving
parts of the worldsheet fields: The holomorphic and antiholomorphic part of closed string
vertex operators are not independent any more. In general, an operator Ohﬁ(z,é) =
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On(z) ® Oz(z) with conformal weight (h, h) at the boundary has to satisfy [180]

0 = (B|[(Z)"0n(Z) — 2"e™On(2)]

, (8.1)

[~

Z==

w|

where (B| is the boundary state of the disk. For the computation of the three-point
amplitude we can use the doubling trick, which according to (8.1) becomes [27]

(8.2)

IS

92 \"
O5(z) = <8z> Op(2') for 2/ =

to rewrite the right-moving part of the vertex operators in (7.2) and allow for a unified

treatment of the holomorphic and antiholomorphic sector. Note that the Z, identification

Z = % can be used to obtain the disk as the quotient Sy/Zy form the sphere. Moreover,

this identification leaves the disk invariant. Furthermore, we can map the disk to the upper
half plane H, by using

P

YT +z

where w are the worldsheet coordinates on the upper half of the complex plane. This

conformal transformation maps the boundary of the disk onto the boundary of H, , which

is the real line R. Consequently, we map 2z’ = = +— w’ = w such that (8.2) on H, becomes

) (8.3)

W=

O5(w) = (%) Op(w") forw' =w. (8.4)

Since we can express right-moving fields via the left-moving counterpart, the action of
the boundary state (B| on an operator O,y imposes an interaction between O, and Oy.
Moreover, applying the doubling trick extends the field O from the upper half plane to the
entire complex plane.

The scattering amplitude of three closed strings is described by type IIB string theory
in a flat ten dimensional spacetime, which contains a Dp-brane that is spanned in the
X1 x Xy x...X, dimensions. Therefore, at the boundary of H the first p+ 1 components
of the worldsheet fields have to satisfy Neumann boundary conditions and the remaining
9 — p components Dirichlet boundary conditions. By using the doubling trick (8.4) we can
replace the antiholomorphic spacetime vectors and spinors by

vectors: X (2) = D™ X"(%) ,
spinors: U (z) = MU (z) or  U,(2) = N,"¥s(2) , (8.5)

where U* € {#*, \*} and ¥, € {pa,ws} and D, M and N are constant matrices, which
account for the Neumann or Dirichlet boundary conditions. Moreover, as stated above
these fields are now defined on the entire complex plane. This was first derived in [88] in
the pure spinor formalism and the corresponding discussion for the RNS formalism can be
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found in [92]. In the remaining section we will derive the consequences of (8.5) following
the lines of [88].

The matrix D™" describing the boundary condition for spacetime vectors is the same
as in the RNS formalism [91, 92]. In a flat background D™ is a diagonal matrix with
diagonal components

nm for m,n € {0,1,...,p},
pmn — —nmn for m,n € {p+1,---79} ) <8'6)
0, otherwise .

In the small coupling regime the D-brane is infinitely heavy and is capable of absorbing
an arbitrarily large amount of momentum in the directions X, ... Xy transverse to the
D-brane. Hence, in this regime momentum is only conserved along the D-brane. We can
introduce a parallel and transverse momentum

1 1
ki = i(kz + Dk;) kip = 5(/‘% - D-k;) , (8.7)
for i =1,2,... n such that only the momenta k;; are conserved

> k=0, (8.8)
i=1

where n is the number of external closed string states. Moreover, we are considering

massless states so that the momenta satisfy k& = 0 and all k; are orthogonal to the
corresponding polarization tensors ke’ == ¢! kP = 0.

For only holomorphic fields we use the correlators on the upper half plane

(X" () X™(w)) = =™ In(z — w) ,
5B
(pa(2)07 (w) = —=—,
R

(wa ()N (w)) =

(8.9)

derived from the OPEs in (3.76) and the antiholomorphic part is analogous. Following
from the boundary conditions of the worldsheet fields for the interaction between the two
sectors we need the correlators

(X" (2)X"(w)) = —D™" In(z — W)

_ B B
(I @) = P w) = 2
_ 8 B
(wa (X (@) = L2 (@Wa(2) N (w)) = 20 (8.10)

Z—W Z—w
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The matrices M and N are different from the RNS formalism, because we use a different
spinor representation in the pure spinor formalism. According to [88] M and N are not
independent. From the two versions of the OPE

N, M2,

— — Y

Pa(2)0° () = Nop, (2)MP36° (W) = —=——
B Oa
0 =@ 8.11
a7 () = o s.1)
it follows that N,"M?, = 6% or N = (M™)~!. Moreover we would expect that also the

supersymmetric momentum I~ and GS constraint d, satisfy (8.5). Explicitly, we find"

—m _ 1 _

" (z) = (DmnaX 4 Q(HMTwMae)) (2) = D™ I1"(3) | (8.12)
which holds if

MY M5 = D™y, i (MTy™M)ag = D™ 305 (8.13)

and we get a similar relation for N, 75N 55 = D™, a5 Furthermore, the fermionic part of
the Lorentz current should respect these boundary conditions as well. Hence, by demanding
for the ghost contribution N (z) = D™, D™ N* (%) we find

N2A(Y™)°Ns” = D™, ("), ie. (NTy™N)* = D™, ("), (8.14)

because otherwise

- mn 1

- 1
N"™(2) = S (@™ ) = 5 (N A

1 1
= 1(wNTy[mj\fzw%”lMA) = ZDmkpmmf’fl(m[’wlu) =

= D™, D™ N* (%) (8.15)

would not be satisfied. Again, we also can find the corresponding equation for M, which
is given by

MO(y™ M = D™ (v de (My" M) = D™ (") (8.16)

Note that these relations between M and N are sufficient such that the OPEs (3.76) can
be used with the doubling trick and we will not find any further conditions.

Instead of working with the correlators (8.10) we can use the doubling trick and replace
the antiholomorphic fields in the right-moving superfields Kle, ¥, k](X,6) by X and .

In the contraction of fermions like (#y™d@) the left spinor has to be transposed, which is left implicit
in the notation of the pure spinor formalism.
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Then, we only need the correlators in (8.9), where the prior antiholomorphic fields are still
at positions z. Thus, the f-expansion in (2.32) for the gluonic part of A,(X,0) is given by

A e, K|(X,0) = Au[e, k|(D-X, M) =
{em(ymMQ)a _ 116(%Me)a(eMTwane)m[men]}
= kDX {em((MT)_lMTymMQ)a - 116((MT)‘IMT%MQ)Q(QMTvm”pMé’)ik[men]}
= DX (), (DR n(70)5 = 1 ()OO (D-R)n (D)

= (MT)™),” As[D-e, D-K](X, ) , (8.17)
and the gluino components of A,(X,#) can be written as
ALY, K(X,0) = ALY, K](D-X, M0) =

- lm{ S0 MO ME), + o (o MOk (X M6) (O A10)

60
XM My, MO (MY M ™ MO),

»—CO

_ szX

((MT) M Ty MO) ik (X (MT)‘IMT%MG)(GMTM””I’MH)}

_ eik-D-X«MT)—l)f{ - LRIy ,0)(70);

3

45 )i (DR (X(MT)2,0) (0770) |

= (M™)™)." Ag[M ', D-E)(X, 6) (8.18)

where we have used (MT)"!M7T = 1 and displayed only the first terms in the f-expansion,
but this holds also for the higher order terms. For the other superfields we can perform a
similar calculation and find analogously

A,[e. . (X, 0) = D, A,[De, M~'X, D-K](X,6)
Wale, X, K(X,8) = M, Ws[Dz, M"Y, D-k|(X,6)
Fonle, X, k)(X,0) = Dm“Dn Fu|De,x, M~ X7D.k](X, 0) . (8.19)

Replacing also the remaining antiholomorphic worldsheet fields according to (8.5)
0" =D"00",  do=M"Nds, X'=M\, N™=D",D",N® (8.20)

in the right-moving part of the vertex operators in (7.2) we get after applying the doubling
trick

V(z) = V(2) = (\Au[De, M~'X, Dk|(X,0))(3) ,
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U(z) = Uz) = (aeaAa (D2, M~'x, D-K|(X, 0) + I A,,,[D-e, M~'x, D-k](X, 0)

1
+d W [De, M~ 'x, D-k](X,0) + 5N Fun| D2, M X, D-RJ(X, 0)) (z) -
(8.21)

To sum up the doubling trick boils down to replacing each antiholomorphic superfield by
its holomorphic counterpart and at the same time multiplying gluonic polarisation vector
and momentum by D and the polarization spinors with M~! to account for the boundary
conditions.

To simplify the notation we omit the dependence of the superfields on polarisation and
momentum, but introduce the following notation instead

K:(z) = Kilei, Xi, ki) (X (z:),0(z:)) = Ki[D-&;, M~'x;, D-ki]) (X (z:), 0(z:)) (8.22)

for any superfield K; of an external string state i. We also use this notation for vertex
operators, composite superfields, Berends-Giele currents and to label string states in open
string subamplitudes, see for example section 8.3 and appendix C. In general, an overlined
label indicates that we employed the doubling trick (8.22) for the antiholomorphic part of
the corresponding state.

8.2 The disk correlator of closed strings

The prescription to compute open superstring amplitudes on the disk was already pre-
sented in chapter 4 and the results derived using (4.1), see for example [62, 158, 160], are
well tested. Therefore, this is also the case for closed strings, as the tree-level scattering
amplitude on the sphere can be computed via KLT relations [34], which were presented in
section 7.1. The prescription for both cases is very straight forward, since the worldsheets
do not have moduli and their CKVs of PSL(2,C) and PSL(2,R) can be used to fix three
closed or open string vertex operator positions, respectively. But for closed strings on the
disk the conformal Killing group PSL(2,R) of the disk does not allow for this possibility.
Instead, the three real CKVs of the disk allow to gauge fix one real position each. Hence,
we can only gauge fix the position of one and a half vertex operators corresponding to
three real coordinates of the vertex operator positions z; = x; +1y; on the disk. The vertex
operator with half fixed position has to be a product of an unintegrated and integrated
vertex operator, e.g. V; @ U; or U; ® V;, which was derived in [88, 117] and also discussed
in [101, 181]. Compared to the sphere this is different, i.e. the vertex operators in (7.2) are
of the foorm V; ® V,; or U; ® U,.

For the scattering of n-closed strings on the disk we can take the first two states and
place their vertex operator insertions on the disk at positions z; = x1+1y; and 25 = xo+iys.
Then, we fix the real parameters of these insertions to the positions z; = 0,y; = 1 and
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x9 = 0 while keeping the integration over y, = y. As was argued in [88, 117] this leads to
the prescriptions for n-closed strings on the disk

AP =2, [y (OTs M- [T [, #50,00E)) . (629

where g. is the closed string coupling constant and 7), the tension of the Dp-brane. The
PSL(2,R) frame above restricts the integration over zp and Zs to the purely imaginary
axis. Here, we integrate y form 0 to 1 and not over the entire real line, because we have to
restrict the y-integration to the moduli space of a punctured disk. To determine the moduli
space we consider the disk with punctures at the vertex operator positions at z; = xy + 1y;
and zo = g + Yo, where x €] — 00, 00[ and y; € [0, 00][ are the real and imaginary parts
of z; respectively. If the two points z; and 2, in the upper half plane are different, we can
define two PSL(2, R)-transformations

fi(za 21, Z2> =
(2 — x1)th2 + (1 — z2)@2 + (V1Y+ — Y2)Y2) Y1

(21 — 22)% + (y2 — iy+)y2)z — o} + 22320 + Toyi — x1(23 + Y7 + Y3 — 11Y2y+)
(8.24)

with

(21— 22) + 12 + 12) & VA1 — 22)208 + (31 — 22)2 — 1 + 13)°
2Y1Y9

Y+ = , (8.25)

which map 2; to ¢ and 2y to iyx. Moreover, we notice that y_ € [0,1] and y, € [1,00[
and for the spacial case where x1 = x5 and for some particular values for y; and ys the
entire range of the intervals [0, 1] and |1, 00| are covered by y_ and y., respectively. We
excluded the limiting value 1 in the intervals, because it would require 1 = x5 and y; = s
simultaneously, which is forbidden by z; # z;. Hence, we find that the moduli space of the
disk with two closed string punctures is given by [0, 1[ or equivalently |1, co[. However, we
still need to check whether a disk with punctures at ¢ and iy can be mapped to another
disk with punctures at 7 and iy, where y # 3. For concreteness, we focus on the case
y,y" € [0,1[. If there exists such a PSL(2, R)-transformation, the two variables y and ¢’
would describe the same punctured disk and therefore the moduli space would be smaller
than [0, 1[, which is not the case. By performing a PSL(2,R)-transformation two points i
and iy with y € [0, 1] can only be mapped to two points i and iy’ with " € [0, 1] if they
are already the same point y = ¢’ on the disk.
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8.3 Three closed strings as six opens strings

According to the prescription in (8.23) the scattering of three closed strings off a Dp-brane
is given by

AP = 2i3T, /O 1 dy /H ) Az (Vi(i)V1(—=i)Va(iy)Us(—iy)Us(2)Us(2))

2T, [ dy [ @ OBV BETE) - (520

where we have employed the doubling trick (8.22). The computation of the correlator can
be done following the steps in [62, 158] and is explicitly carried out in appendix C. When
performing the contractions of the h = 1 fields and the plane wave factors the amplitude
becomes schematically

1
A= [May [ atenypal - gyl - 2l s
+
iy — =Py + 25z — (K, 2, 7) 8.27)

The correlator of the amplitude (8.26) looks similar to (4.1) for n = 6 and also the compu-
tation in appendix C suggests that (8.26) can be connected to the scattering of six open
strings on the disk when using the identification

I1+1, 242, 33, 34, 25, 1+6 (8.28)

between closed and open strings. But the complex integral over the upper half plane does
not correspond to an open string integral, which are defined as integrals over parts of the
real line. Thus, in this section we want to use the method that was proposed in [34] and
explicitly applied in [104] to write the closed integral over H, as open string integrals that
arise from the color ordered scattering of six open strings on the disk.

For the amplitude in (8.26) we already start with one completely position fixed vertex
operator and another vertex operator whose worldsheet position is integrated over parts
of the real line. Therefore, we have to split only the integration over z and Z of the third
vertex operator into two real integrals by applying the same method as for the derivation
of the KLT relations in section 7.1. Afterwards we will use monodromy relations of section
7.2 to simplify the result similar as in [35]. Together with the calculation in appendix C
for the correlator this allows us to identify the scattering of three closed strings on the disk
as open string partial amplitudes with a certain colour ordering of the open string vertex
operators.

We want to remark that the discussion in [35] was performed on the double cover,
which simplifies the computation and has some physical implications as discussed below
such that both computations actually described different scattering processes.
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8.3.1 Analytic continuation and monodromy relations

The analytic continuation of (8.26) can be performed analogously to the derivation of the
KLT relations in section 7.1. We start by writing the complex integral over the upper
half plane as two integrals over (parts of) the real line. Therefore, we split the integration
variable 2z in real and imaginary part z = 23 + 729 such that the integrand becomes an
analytic function in z; except for the branch points at +i(1 — 25), +i(1 + 29), Fi(y — 22)
and +i(y + 2). Next, we analytically continue the z;-integration to the complex plane
by deforming the integration contour for z; from the real axis at $(z;) = 0 to the purely
imaginary axis R(z1) = 0, which is depicted in figure 8.1. As discussed in section 7.2 and

S(21)

A

Z(l + 2’2) ]
i(y + 22) 9y
—i(y — z2) ¢

—i(l — 22) p

'i(l - 2’2)
i(y — 22)
p —i(y + 22)

b —i(1 4 22)

Figure 8.1: Branch point structure and contour deformation in the complex z;-plane for
29 > 1.

similar as in figure 7.3 both arcs vanish for |z| — oo. After the contour deformation the
amplitude becomes

Dy _
Az? =
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——2ig?T, [ dy [ a1 [ e (VOV-DValin)Us(—ig)Us (a1 + U521 — i22))

22T, [y [~ e [ e (ViG)Va(-i)Vali)Us(—in)Us(iCe1 + 22))UsliCer — )
(8.29)

where we used (7.4), but the imaginary part z; € [0, co[, because z € H,. Then, we can
define the real variables

E=2+2z, n=zz-—2, (8.30)

which are constrained by & —n > 0 to make sure that we are still integrating over the
upper half plane, i.e. £ and n preserve zo > 0. After performing the change of variables
(21, 22) — (&, 1) in the integral we obtain

1 oo
AP =g, [y [~ ae [* antity, & )V )Vi(-)Vali)Us(—in) Us(i€)Ustin))
(8.31)
where we included the Jacobian 8&%;?)’ = 1 of the transformation.

We can pull out the factor of ¢ in all of the vertex operators in (8.31), because the
correlator is invariant under rotations and dilatations, i.e. the transformations that are
generated by Lo, see (B.2) and [130]. From (B.2) it follows that each conformal primary
of dimension h satisfies ¢(az) = a"¢(z). Since the unintegrated and integrated vertex

operators have conformal dimension h = 0 and h = 1 we find
V(az) =V(z), Ulaz) = aU(z) (8.32)

and a similar scaling relation for the antiholomorphic parts such that using conformal
invariance for a = i the amplitude becomes

AP =gty [y [~ ag [* anTity, € n)(Vi()Va(-)Va(o)Ua( ) Us(€)Us(m))

(8.33)
Already in (8.31) we have introduce the monodromy phase Il(y, £,n), which is necessary
to split the integration over the upper half plane into the integration of two real variables
¢ and n while avoiding branch cuts. More details on how to derive this phase can be found
in appendix D or [35, 104]. Including this phase the amplitude becomes a holomorphic
and well defined function in ¢ and 7, because it accounts for the correct branch of the
integrand. In addition, the phase factor is independent on the kinematical structure of the
correlator and depends only on the worldsheet coordinates. Explicitly, the monodromy
phase is given by

M(y, £,7) = 130 1=E+m) fims 50— (1+€)(1-m) yims230(~ (=€) y-+1))
x £330~ W+ (y=m)) gimszO(=(¢-n)) (8.34)
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where O is the Heaviside step function. Because the phase factor depends on the world-
sheet fields via Heaviside step functions, we can split the (£, n)-integration into smaller
integration regions. Then, for each integration region the phase becomes independent of
the particular value of the worldsheet coordinates, but depends on the ordering of ¢ and
n relative to the other vertex operator insertions. The kinematic invariants in (8.34) are

defined as
1 1
Sij = 5(1{3@ -+ k’j)Q = ]Czk‘j s Sij = 5(]{3@ + D'k’j)2 = ]CZD]C] y (835)

which are not independent and can be related via momentum conservation:

§11 = —S12 — 812 — S13 — 813
S9g = —S12 — S13 — S23 — S93
S33 = —S13 — 513 — 523 — S93 - (8-36)

Hence, there are six independent Mandelstam variables for the scattering of three closed
strings off a Dp-brane [35].

Compared to appendix D we have added e £=7) for completeness in (8.34). Even
though, we are integrating over n < & such that the contributions from e"™s3®(~(E=m) = 1

7:71'835@(*(

we will use monodromy relations (7.26) later and thereby encounter integration regions
with 1 > & such that ¢539(=(€=7) is necessary to get the correct monodromy phase.

We evaluate the phase factor by performing the (£, n)-integration over the ©-functions
and thereby split the integral n < £ into smaller integration regions. As argued above the
monodromy phase becomes constant and therefore independent of the worldsheet coordi-
nates in each integration patch. In the end, the integral in (8.33) is divided into 15 smaller
regions in the (£, n)-plane, which are listed in table 8.1.

The amplitude in (8.33) together with the integration regions in table 8.1 are in cor-
respondence with the open string subamplitudes (7.23) of section 7.2.2 In (8.33) we have
singled out the integration over y from 0 to 1 and chosen the PSL(2,R)-frame, where
ziy = %1 = —1,%2, = 2z = 1 and z;,;, = 2z = y. Taking all the phases and the accord-
ing integration regions in table 8.1 into account and writing them in terms of the partial
amplitudes A the amplitude (8.33) becomes®

A3DQ — ezﬁrslgezﬁrslgeiwsm emz§A(§, 3’ T, éa 2’ 1) + eiw813 eiwszs 6i7r52§A(§7 T, 3’ ?, 27 1)
e ™™ A(T,3,3,2,2,1) 4+ ™32 (3,1,2,3,2,1) + ™2A(T,3,2,3,2,1)

20ne might be concerned that the closed string amplitude does not match the open string subamplitudes
(7.23) perfectly, e.g. the closed string amplitude is purely imaginary, whereas the open string amplitudes
are real, but the discussion in section 7.2 holds for any amplitude with the same branch cut structure as
(7.23). Since the amplitude (8.33) fulfils precisely this requirement, we can utilize the results of section
7.2.

3As stated at the end of section 7.2 some A are only part of open string subamplitudes, which is the
case if A starts or ends with 3 or 3, e.g. A(3,...) or A(...,3).
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n<§
f < _1 eiﬂ'813eiﬂ'slgeiﬂ'szge’iﬂ'82§
n<-—1 —l<n<¢
—1<é&<—y EITS13 o523 piTS o3 £lims23 oimS,3
n<-—1 —“l<n<—y|—y<n<§&
—y < é‘ <y ei‘rrslgeiﬂsgg eiﬂ'szg 1
n<-1 —1<n<—-y|-y<n<y y<n<g
y < f <1 6”513 1 ei‘ﬂ'323 ei7r523€i7r32§
n<-—1 —“l<n<—y|—y<n<y y<n<l l<np<¢
1 < { 1 61'71'513 eiﬂ'slgeifrszgg eiﬂ'slgeiﬂsgg ei7'r52§ eiﬂ'slgeiﬂ'slgeiwszgeiﬂ'szg

Table 8.1: TI(y, &, n) for each integration region in the (£, n)-plane.

+A(1,2,3,3,2,1) + A3, 1,2,2,3,1) + A(L,3,2,2,3, 1)
+ei7r523A(T,§ g 2 3 1) + 6”8236m523A( Q 2’37 3’ 1) -+ A(S, 1 Z 2, 1, 3)
_'_€i7r813A<T’g ? 2, 1)3) + 627r513 27r523A( Q g 2, 173)

+e 18235 A(T,2,2,3,1,3) 4 €™ e ™ e ™8 ™5 A(T,2,2,1,3,3) ,  (8.37)

where we made use of (8.22) and also the comment below (8.22). We know from the
discussion in section 7.2 that the subamplitudes are not independent, but related via the

monodromy relations (7.26). Using the identification (8.28) we obtain permutations of
(7.26)

0=A(3,1,2,2,1,3) +e™3A(T,
_|_eZ7I'8136’L7I'823 ZW823A< ? 2 g
+A(T,
0=A(31,221, 3) +em™A(3,1,2,2,3,1) + e e A3, 1,2,3,2,1)
+ezw$13€ZW$23 Z7I'S23A(g T 3,§7 27 1) + ezwslgezwsﬁezwszg, lwsng(g 3 T ? 2 1)
+A(3,3,1,2,2,1) (8.38)

3,2,2,1,3) + e™1ei™nA(T1,2,3,2,1, 3)
1,3) + e Eeimae™ ™ A (T, 2,2, 1,3, 3)

2,
.2,

to reduce the number of partial amplitudes in (8.37). The second monodromy relation in
(8.38) was derived by complex conjugation of (7.26) and multiplication by a factor of (—1)
to account for the reversal of the contour

(ﬁ:—&@:?1§21)— e ™3A(3,3,1,2,2,1) — e ™3 ™13A(3,1,3,2,2,1)
—67”8356 TSy ZWS??’A( ) - efiwsﬁefiwslgefiﬂsﬁefiﬂ'szgx(g, T’ é, 27 37 1)

“A(3,1,2,2, 1,3) . (8.39)

co\
=
ol
w
N
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The partial amplitudes in (7.23) are real, whereas the subamplitudes in (8.37) are purely
imaginary due to the overall factor of 7 in (8.33). Hence, the complex conjugate A = —A
such that we find

0=A(3,3,1,2,2,1) + e ™5A(3,3,1,2,2,1) + e"m5e™5A(3,1,3,2,2,1)
e e e ™5 A(3,1,2,3,2,1) + e e s Mme ™23 A (3,1, 2,2, 3,1)
+A(3,1,2,2,1,3) . (8.40)

Using momentum conservation results in the second monodromy relation in (8.38)

0=A(3,3,1,2,2,1) + e™ e ™m0 A(3,3,1,2,2,1)
e ez (3, 1,3,2,2,1) + ™3™ A(3,1,2,3,2,1) + ™A (3,1,2,2,3,1)
+A(3,1,2,2,1,3) . (8.41)

By applying the first monodromy relation in (8.38) the subamplitudes in (8.37) corre-
sponding to the bottom row with 1 < £ in table 8.1 combine into A(T,2,2,1,3,3): The
integration regions for 1 < ¢ form a closed contour in the complex n-plane with one missing
piece along the real line. This missing piece is the subamplitude A(T,2,2,1,3,3), which
closes the integration contour. Also the integration region in the left column with n < —1
in table 8.1 can be reduced by using the second monodromy relation in (8.38) to the sub-
amplitudes A(3,1,2,2,1,3) and A(3,3,1,2,2,1). In the end, the scattering amplitude of
three closed strings can be written as

AP = —A(3,3,1,2,2,1) + e™2e™5A(T,3,3,2,2,1) + e™5A(1,3,2,3,2,1)
+A( 1,2,3,3,2,1) + A(T,3,2,2,3,1) + ¢™»A(T,2,3,2,3,1)
e A(T,2,2,3,3,1) — AB,1,2,2,1,3) — A(T,2,2,1,3,3) , (8.42)

and we have also listed the integration regions of the subamplitudes in table 8.2. After
performing a suitable PSL(2, R)-transformation the amplitude (8.42) can be written in
terms of the open string subamplitudes (7.27).

8.3.2 PSL(2,R)-transformation and monodromy relations

Comparing the fixed vertex operator positions in (8.33) with (7.27) we want to perform
a PSL(2,R)-transformation that maps (—1,y,1) to (0,1,00), which was already done
for the scattering of two closed strings off a Dp-brane in [88, 91, 92|, see for example
equation (3.9) in [88]. To find this transformation we consider a general fractional linear
transformation 2/ := f(z) = az”’ with ad — bc = 1 and determine the parameters a,b, ¢
and d by solving f(z) = 2/ for : z 6 {—=1,y,1} and 2’ € {0,1,00}. The computation results

in the transformation

# 11—y 1—y
2(1-9?) <—(1 +y) 1+ y) € PSLEZR). (8.43)
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E<n<—1
< -1 —1

—l<n<¢

—1< é‘ < —y 6i7r5236i7r52§
—l<n<—y|—y<n<g§

_y < 5 < y eiﬂ’sgg 1
—l<n<-y|-y<n<y|y<n<g

Y < f <1 1 eiﬂszg, eiwsggeiws2§
n<-1 §£<n
1<¢ -1 -1

Table 8.2: TI(y,&,n) for each integration region in the (&, n)-plane after applying mon-

odromy relations.

The above PSL(2,R) matrix gives rise to the fractional linear transformation for the
coordinates of the vertex operators

!/

= [f(2) =

(1—y)(1+2)
(T+y)(1—2)°

(8.44)

which is a special case of (C.11). To change the vertex operator positions from (—1,y,1)
to (0,1, 00) in the amplitude we define the new variables

and it is also helpful to have the inverse transformations, which are given by

(1—y)?
- (1-y)(1+9)
- (1-y)(1+n)
Ty

1
y_1+\/5’

4The transformation of y here is the same as in (3.9) in [88].

(8.45)

4
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AN
|
B

§:§:+\/57
Ik (8.46)

il
+
B

In principal, from (8.45) we can find a second solution y = }fﬁ for v = f(—y). We
ignore this second solution here, because for x € [0, 1] we would require y € [1, oo[, but it
will be important for the computation of the scattering of three closed strings on the real
projective plane in chapter 10.

Because the unintegrated vertex operators have conformal weight zero and the inte-
grated vertex operators have weight one, they transform under global conformal transfor-
mations as

/ !/ az - ! /
V(z) = V'(¢), U(z) — <8z’> U'(z') . (8.47)
The explicit PSL(2, R)-transformation of the integrand of each of the different integration
regions in table 8.2 was performed in appendix C and can be schematically presented as

[ dyag dn V() Vi(=1)Valy)Us(—9)Us(€)Us(n))

4 faracan 208D (vioomzomin(2) v %) v (20) i)

— L [ 4o dE 4 (0 VOV DU s @)U ) 6.48)

To get from the second to the last line we have used (B.1), i.e. that the correlator is invariant
under PSL(2,R)-transformations. Moreover, we have the choice to consider either vertex
operator 2 at y or 2 at —y as position fixed and integrate over the other one [88]. Hence
this leads to an additional factor two, which we have taken into account by introducing a
factor 1 in (8.48). In addition, the worldsheet derivatives coming from the transformation
of the integrated vertex operators cancel against the Jacobian of the measure. Moreover,
in appendix C we explicitly check that the integrand of each of the integration regions in
table 8.2 is mapped correctly.

From (8.45) it follows immediately that for y € [0, 1] the variable z is integrated from 0
to 1. Since we have singled out the y-integration due to the gauge fixing of the amplitude,
also the z-integration is the same for all subamplitudes. In contrast to the y-integration the
integral over z is not singled out any more, as there is a vertex operator at position z; = 0
and 2z, = 1, which promotes it to the integration region of an open string subamplitude.
Next, we want to transform the integration regions of the worldsheet coordinates of the
third vertex operator in table 8.2. We would expect that after the transformation the
integration boundaries would be determined by the position of other vertex operators
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as in (7.27).> However, for the interval [1,00[ (or | — oo, —1]) in table 8.2 the upper
(lower) integration boundary +oo is mapped under (8.45) onto —/z. Hence, the upper
(lower) boundary of the &- and/or n-integration is not a worldsheet position of another
vertex operator and the transformed integration region does not resemble an open string
partial amplitude.® But as discussed in section 7.2 in the PSL(2,R)-frame, where no
vertex operator is at infinity, the amplitudes A can be combined to form one open string
subamplitude (7.27), because they are only parts of partial amplitudes. Indeed, after the
transformation (8.44) we can combine for example’

A(3,3,1,2,2,1) + A(1,2,2,1,3,3) + A(3,1,2,2,1,3) 22225, 4

(3,4,1,2,5,6) (8.50)
into one open string integration region corresponding to a subamplitude (7.27). Performing
the PSL(2,R)-transformation for all integration regions in table 8.2 and combining them
if necessary allows us to write (8.42) in terms of (7.27)

AP =~ A(3,3,1,2,2,1) + e™mei™n A(T,3,3,2,2,1) + e™= A(1,3,2,3,2,1)
YAT,2,3,3,2,1) + A(1,3,2,2,3,1) + ™= A(1,2,3,2,3,1)
+e”523e”523.,4( 1,2,2,3,3,1) , (8.51)

whose integration regions are given in table 8.3. Under permutations 3 <> 2 and 2 < 3
the representation of the amplitude in (8.51) is invariant, whereas the symmetries under
1+ 2,2+ 1and 1+ 3,3« 1 can only be seen after applying monodromy relations.

As argued in section 7.2 there are (n — 1)! = 120 open string subamplitudes (7.27) for
n = 6, which can be reduced down to (n — 3)! = 6 independent amplitudes by applying
cyclic symmetries, reflection (7.22) and monodromy relations (7.28) [35, 36]. This suggests
that the seven open string subamplitudes in (8.51) are not written in terms of a minimal
basis and we can rewrite one of them in terms of the others via (7.28). Therefore, we
consider the three monodromy relations

W= A(1,2,2,1,3,3) + ™12 A(T,2,2,3,1,3) + e™C13+93) A(T,2,2,3,3,1)

This is also crucial for the computation of the correlator in section C.2, as the integration by parts
relations rely heavily on the integration boundaries being vertex operator positions.

6This reflects the fact that some A are not open string subamplitudes to begin with.

"Explicitly, this can be seen by transforming the integrals

-1 1 o IS’} %) —1
/ d{/ d77+/ df/ d77+/ d{/ dn
—o00 13 1 I3 1 —o00
(8.44) 0 -0 VE Ve Ve 0
~ / df[ df]+/ d§/ dﬁ+/ df/ dn
-z 3 —0o0 3 —o0 —Vz
0 5 0
= / dé / dij . (8.49)
— 00 13
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E<ii<0

—1

0<i<é&

s s
e!™835 plTS45

O<n<z

<<

TS
ele3s

1

O<n<zx

r<n<l

l<n<é

9T S: iT835 L1845
e 35 e 306 45

1<é& 1

Table 8.3: II(z, £, 7) for each integration region in the (€, 7)-plane.

Lemiristeg) A(T)1,2,2,3,3) + —mlm(

Wy = A(1,2,2,3,1,3) + ™38 A(T,3,2,2,3,1) + ¢
telmstenten) A(T,2,2,3,3,1) + e ™5.A(1,2,2,3,3,1) =

Wy = A(T,3,3,2,2,1) + e™3A(T,3,3,2,1,2) + et A(T, 2, 3 1)
+elmztsnten) A(13,2,3,2,1) + e ™5A(1,3,3,2,2,1) =0

2,1,2,3,

3) = (8.52)
m(s13+523) A(

w\
\_/

(8.53)

(8.54)

which combined as Wi — e™13WW, — eims1s+siztsi) 1, = (0 and subject to cyclic reflection
symmetries of the open string subamphtudes yield

A(T,2,2,1,3,3) = A(1,3,2,2,3,1) + e ™2 A(1,2,3,2,3,1)
teimsstsisteg) A(T,2,2,3, 3, 1) + A(1,2,3,3,2,1)

+e™3 A(1,3,2,3,2,1) + e mltsaten) A(1,3,3,2,2,1) . (8.55)

Plugging (8.55) into (8.51) and using momentum conservation as well as k? = 0 leads to
the compact result

AP? = 2isin(msq3)A(T,2,3,2,3,1) + 2isin(m(sg3 + 553))A(T,2,2,3,3,1) . (8.56)

Note that the expansion in o of (8.56) only starts at subleading order in o/, because
the lowest order in o’ vanishes, c.f. chapter 11. After applying monodromy relations for
open strings and performing a global conformal transformation we arrive at the following
integration regions in the (&, 7)-plane

AT,
A(T,

Nl

1) L:{(é,ﬁ)€R2|1<€<oo,x<ﬁ<l},

g’ b
2,3,3,1):  L={(neR|1<{<o01<i<}

2,3
7373

Nl

(8.57)
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for each of the subamplitudes x € R and always 0 < x < 1. Hence, we could express the
scattering of closed strings off a Dp-brane in terms of scattering amplitudes of six open
strings on the disk. More importantly, we were able to write the closed string scattering
process in terms of only two independent open string amplitudes instead of six as was
originally predicted by [35].

From the computation in appendix C it follows that we can express the correlator of
the partial amplitudes in terms of SYM amplitudes of section 6.4 as®

A(1,2,3,2,3,1) = —igcT S Asya(T,0(2,3,3),2, 1) FE®*%
oES3

A(1,2,2,3,3,1) = —5967’ S Asya(T,0(2,3,3),2, 1) FE®*% (8.58)
oES3

where the sum o € S3 runs over all permutations of the labels (2, 3,3). Eventually, inserting
(8.58) into (8.56) gives

APz = g7 3 {Sm (595) FZ5 1 sinf (s + 323)]F§2(2’3’3)}ASYM(1, 0(2,3,3),2,1) ,
oES3
(8.59)

where the hypergeometric integrals Ffp (23.3)

F 7(2,3,3) / d22d2,’3d23 <H|Z7,]

1<)

are given by

5) S (T ST S _(5
SU) 10(2) 2o (3)2 < 10(3) + O’(2)0’(3)> : p= 1, 9
f16(2) ?o(3)2 \F1o(3)  “o(®)a(3)

(8.60)
The product above over i < j also involves overlined indices. In (8.60) the two integration
domains (8.57) can be written as

Ti:21<23<23<23<23<21,
Ly:2z1<23<2y<z3<23<2 (8.61)

and are subject to the vertex operator position fixing
21=0, zp=1, 2 =00, (8.62)

which we have also applied in the amplitude (8.59) itself.

The final result (8.59) is independent of whether the external states in the scattering
process are fermions or bosons. In the language of the RNS formalism the external states
could be from either of the four sectors, i.e. we consider NSNS, RR, RNS, NSR states in
the amplitude. For the derivation of (8.59) we have only assumed that the external states
are massless k? = 0. Therefore, the open string subamplitudes contain both gluons and
gluinos, which will form closed string states.

8 Alternatively, one could have used equation (2.5) in [63] together with the identification (8.28) and
included overall factors like the closed string coupling or the tension of the Dp-brane.
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In [35] the scattering of three closed strings was computed on the double cover of the
disk, i.e. H, UH_ = C, which introduces a manifest symmetry between left- and right-
movers. The result for the string amplitude on the double cover can be found in (3.65) in
[35] and is given by

APC = sin(ms,35)A(T,2,3,2,3,1) +sin(msas) A1, 2,3,2,3,1)
+sin(msi3)[A(T,2,2,3,1,3) + A(T, 2,2,3,1,3)]
+[Sin(7’(’(823 + 82§)) + SiIl(ﬂ'(Slg + 813))” (T ? 2 3 s 1) + A(T, 2,?, 3,3, 1)],
(8.63)

where we used the identification (8.28) to write (3.65) in [35] in terms of closed string
labels. Although, this result is different from (8.56) they can be connected for a specific
kinematical configuration. If we impose the symmetries 3 <> 3 and 2 <> 2 on (8.56) by
hand, we get the amplitude

A5 = 2isin(msa3)A(1,1,2,3,2,3) + 2isin(m(sa3 + 555))A(1,1,2,2,3,3)
+2isin(msy3)A(1,1,2,3,2,3) + 2isin(m(s23 + 823))A(1 ? 2,3,3)
+2isin(msyz)A(1,1,2,3,2,3) + 2isin(m(sa23 + sq93))A(1, 1,2,2,3, 3)
+2isin(msa3)A(1,1,2,3,2,3) + 2isin(m(s23 + $93))A(1,1,2,2,3,3) . (8.64)

Then, using monodromy relations (7.29) for open string subamplitudes subject to (8.36)
the amplitudes in (8.63) and (8.64) agree up to an overall factor:

A2 = 2 ADC (8.65)

Hence, we have found a connection between the worldsheet integrals on the disk and those
on its double cover for each specific kinematical factor. Furthermore, the symmetrization,
which is equivalent to extending the disk amplitude to the double cover, corresponds to
extending the integration over y and 7 in (8.31) to [—1,1] and ] — oo, 00|, respectively.
Compared to the disk amplitude the resulting integrals miss some poles in the o/-expansion.
More concretely, by going to the double cover we lose the s-channel poles. In the disk
amplitude the pole % originates from the y-integration over terms proportional to y®221.
On the double cover this pole is absent and in the limit o/ — 0 the corresponding singularity
becomes finite, because we integrate a term with odd power and pole at 0 over both positive
and negative values of y.? Explicitly, we can see that by going to the double cover we discard
the s-channel poles by symmetrizing the disk amplitude: If we impose the symmetry 3 <> 3,

the first term
TmT33T21>

ST2 833 S21

<MEM3§M21> = < (866)

9This was explicitly demonstrated for the scattering of two closed strings off a Dp-brane in appendix
E of [109].
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in the SYM amplitude, c.f. (6.29) with the identification (8.28),

Asym(1,2,3,3,2,1) = (MygMggMa) + (Mag Mg, M) + (Migs(Mgy My + MzMyy))
+(Magz(May My + MaMi1)) + (Mg, (M1 Mz + My Myz))
1 1 _
= §<M§3E§21> - §<M5M3§M21> + cyclic(123321) (8.67)
vanishes due to the antisymmetry of the BRST building block T43. Simultaneously, we
drop the pole in s43.

We conclude that going to the double cover has dramatic consequences for the low
energy theory. Therefore, the scattering of three closed strings on the disk and the double
cover of the disk are two different physical processes. This is not surprising: Gluing together
H, and H_ is a non-trivial process, since the amplitude (8.26) has poles along the real line
z—7Z = 0. Hence, promoting the real line from the boundary to the bulk of the integration
region by going from H, and H_ to C changes the pole structure of the amplitude. More
details on the pole structure in the field theory limit o/ — 0 of the disk amplitude (8.59)
can be found in chapter 11.



Chapter 9

Higher multiplicity of closed string
amplitudes on the disk

To conclude the scattering of closed strings off a Dp-brane we want to conjecture an ansatz
for the n.-point function of closed strings on the disk by following the lines of [109]. Since
open string partial amplitudes are the building blocks of closed string scattering amplitudes
at tree-level, we start by generalising the discussion for open string amplitudes and give the
prescription for the n-point open string amplitude on the disk following the idea presented
in [62].

9.1 Higher multiplicity open string scattering ampli-
tudes

As we can see in appendix C for the correlator of closed strings on the disk and as was
discussed for various open string amplitudes [62, 158, 160], integrating out the non-zero
modes of the h = 1 fields corresponds to summing over their OPE singularities. For n
external states this results in a sum over (n — 2)! single pole terms and a number of double
pole integrands that will be used as corrections to the single pole integrands to form the
BRST building blocks Tjji. , from the associated OPE residue Lji. . The composite
superfields L9311 of the single pole residues are derived from the contraction of vertex
operators, when the integrated vertex operators UsUs - - - U, approach an unintegrated ver-
tex operator V;, where we have chosen the external states 1,n — 1 and n to be position
fixed. The final result is independent on the order of integrating out the A = 1 primaries
and we can choose for example the order z; — 23 — ... — 2, — 21, which is reflected in
the z;; in the denominator:

2L
Vi(20)Us(22)Us(23) - .. Up(2) ~ lpL{p= DL 41,31 200 ) (9.1)

223234 " " Z(p—1)pcpl
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Performing these steps to express all single pole composite superfields in terms of Ljixi. pi
and after the double pole correction are absorbed to transform the composite superfields
in their according building blocks 7;j;. ,, the scattering amplitude of n open strings on the
disk takes the form

Alp(1,2,...,n)) =

n—2

/1:>2(p) dzg (Vi(0)Us(22)Us(23) - - - Up—2(2n—2) Vie_1(1) Vi (00))

9=

n— n—2
Tha. pTin—1)(n— V.,
=11 / dzg [T 21 > < 12..p2 (n—1)(n=2)..p+1
q=2 D2(p) i<j p=1 (Z12Z23 e Z(pfl)p)(Z(nfl)(n72)z(n—2)(n73) e Z(p+2)(p+1))
+77(2,3,‘..,n—2)> , (9.9)
which is manifestly symmetric in the labels 2, 3, ... n—2 of the integrated vertex operators

U;. This is denote above by the sum over all (n — 3)! permutations of these labels. Re-
markably, the poles in z;; associated to the BRST building block in the numerator follow
a pattern. From the above correlator we find that

1
T12...p 7 . (93)

212223 * " Z(p—1)p

Because of the (n — 3)! permutations of the labels of the integrated vertex operators and
the sum over p that collects n — 2 distinct permutation orbits, this special structure (9.3) of
the open string amplitude allows to express (9.2) in terms of (n—2)! kinematic numerators
and hypergeometric integrals.

To simplify the scattering of n open strings further we exchange the BRST build-
ing blocks Tis. ), for the Berends-Giele supercurrents Mo 5, which is possible due to the
pattern (9.3), i.e. the z;-dependence in the denominator of the associated Tis. ,. This
connection relies on the synergy of different terms in the sum over permutations and the
BRST symmetries (5.20) of the building blocks. At level p this interplay reduced the num-
ber of independent building blocks Tjjx., down to (p — 1)!. Therefore, we find that the
building blocks and currents are related inside the amplitude as

T p k-1 s;
12...p +P(2,3,7p) — (_1)17*1 H Z JMIQ.A.p+P<2737" 7p) )
R127223 """ Z(p—1)p k=2 i=1 ik
Tnf n—2)... n v
(n=D(n=2)...p+1 +P(27377p): ot H Z JMTL D(n—-2)..p+1
Zn-1)(n-2) """ Z(p+2)(p+1) k=p+1j=k+1 “ik
+P(2,3,... ,p)

n—1

Skj
_ n—p—1 “kJ M
_( 1 H Z (p+1)(p+2)..n—1
k=p+1 j=k+1 “kj
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+P(2,3,...,p), (9.4)

where we have used the reflection symmetry (6.12) of the rank n — 1 — p Berends-Giele
currents in the last line to rewrite M,—1)(—2). p11 = (—1)" P72 Mpi1)(pt2)..n—1-

The structure of the substitution (9.4) is precisely of the form that we can apply inte-
gration by parts relations to the chain of 2 2k sums, which arise after exchanging T}, for
M., using (9.4). The basic idea is that the integration boundaries correspond to zeros
in the Koba-Nielson factor, i.e. vertex operator positions. Hence, the boundary terms in
the worldsheet integrals vanish:

0 .
/ dzg - dzy g — —0, (9.5)
D2(p) aZk Zzljl ZZQ_]Q tt

which relates different integrals in the n open string amplitude with n — 3 powers of z; ;.

Zin74jn74

in the denominator. In the case where the differentiation variable z; does not appear in
any 2., i.e. k & {im,jm} for m = 2,3,...n — 4, the derivative 6%@ acts only on the
Koba-Nielsen factor such that

N A Sij n—1 S
/ Aoy - dzy_y i< 2l Sk _ g (9.6)
Da(p) Rirj1Zizgy """ Fip—ajn-a j—1 “ik
i#k
Leaving the ﬁrst 2 — 1 factors Zk ! z’; unt