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Zusammenfassung

Streuamplituden stellen eine Verbindung zwischen experimenteller und theoretischer Physik
her, weil der resultierende Wirkungsquerschnitt zur Überprüfung theoretischer Vorhersagen
in Experimenten verwendet werden kann. Darüber hinaus können Streuamplituden genutzt
werden, um Erkenntnisse über die Struktur der zugrunde liegenden Theorie zu erhalten.
Da die Stringtheorie eine konsistente Theorie der Quantengravitation darstellt, sind ins-
besondere Gravitationsamplituden phänomenologisch interessant. Die ersten Quantenko-
rrekturen zur Einstein-Hilbert-Wirkung der Stringtheorie können durch Streuamplituden
mit der Kreisscheibe oder der reellen projektiven Ebene als Weltflächen beschrieben werden
und beinhalten nicht-perturbative Objekte wie Dp-Branen bzw. Op-Ebenen.

In dieser Dissertation untersuchen wir diese Amplituden. Für beide Konstellationen
geben wir eine Vorschrift zur Berechnung der allgemeinen n-Punkt-Amplitude an und
diskutieren die Auswirkungen dieser nicht-perturbativen Objekte auf die Welftflächen-
Felder. Explizit berechnen wir die Streuamplituden von drei geschlossenen Strings auf
der Kreisscheibe und der reellen projektiven Ebene im Pure Spinor Formalismus. Für
beide Amplituden wird die analytische Fortsetzung berechnet, um die holomorphen und
antiholomorphen Koordinaten der geschlossenen Strings auf den Weltflächen unabhängig
voneinander betrachten zu können. Aufgrund der Verzweigungsstruktur des Koba-Nielsen-
Faktors müssen Monodromien berücksichtigt werden, so dass wir kompakte Ergebnisse für
die Streuung von drei geschlossenen Strings für beide Weltflächen erhalten. Letztendlich
können beide Streuprozesse durch Amplituden von sechs offenen Strings auf der Kreiss-
cheibe beschrieben werden. Mit Hilfe dieser Ergebnisse versuchen wir, unsere Erkenntnisse
zu verallgemeinern und einen Ansatz für die Streuung von n geschlossenen Strings an einer
Dp-Brane herzuleiten, der die allgemeine Struktur der Amplitude auf der Kreisscheibe
beschreibt. Diese Verallgemeinerung für eine beliebige Anzahl geschlossener Strings kann
durch Amplituden mit 2n offenen Strings ausgedrückt werden.

Diese Amplituden beschreiben gravitative Wechselwirkungen auf Baumniveau in An-
wesenheit einer Dp-Brane oder Op-Ebene. Deshalb entwickeln wir die Amplitude von
drei geschlossenen Strings auf der Kreisscheibe in der inversen Stringspannung und kön-
nen so relevante gravitative Dp-Branen-Kopplungen analysieren, die mit Korrekturen zur
Einstein-Hilbert-Wirkung verbunden sind. Außerdem vergleichen wir die String-Amplitude
mit den feldtheoretischen Ergebnissen, die wir von der Dirac-Born-Infeld-Wirkung erhalten
haben. Gleichzeitig können wir damit die Konsistenz unserer Berechnungen überprüfen.
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Abstract

Scattering amplitudes provide a connection between experimental and theoretical physics,
as the corresponding cross section can be used to check theoretical predictions in experi-
ments. In addition, scattering amplitudes can be used to gain insight on the structure of
the underlying theory. Since string theory provides a consistent theory of quantum gravity,
especially gravitational amplitudes are phenomenologically interesting in this context. The
first quantum corrections to the Einstein-Hilbert action of string theory can be captured by
scattering amplitudes with the disk or the real projective plane as worldsheets and involve
non-perturbative objects namely Dp-branes and Op-planes, respectively.

In this thesis we investigate these kinds of amplitudes: For both setups we provide
an amplitude prescription for the general n-point amplitude and discuss the implications
of these non-perturbative objects on the worldsheet fields. Explicitly, we calculate the
scattering amplitudes of three closed strings on the disk and real projective plane in the pure
spinor formalism. We analytically continue both amplitudes to disentangle the holomorphic
and antiholomorphic closed string worldsheet coordinates on the disk and real projective
plane. By introducing monodromy phases arising form the branch cut structure of the
Koba-Nielsen factor we arrive at compact expressions for the scattering of three closed
strings on the disk and real projective plane. In the end, both scattering processes can
be described in terms color ordered amplitudes of six open strings on the disk. Using
these results we try to generalize our findings and provide an ansatz for the scattering
of n closed strings from a Dp-brane, which encompasses the general structure of the disk
amplitude. This generalization for any number of closed strings can be written in terms of
color ordered open string amplitudes involving 2n open strings.

Since these amplitudes probe tree-level gravitational interactions in the presence of
a Dp-brane or Op-plane, we carry out the low energy expansion in the inverse string
tension of the three-point disk amplitude and analyse some relevant gravitational Dp-
brane couplings associated to corrections of the Einstein-Hilbert action. In particular, we
compare the string amplitude to the analogue field theory calculation obtained from the
Dirac-Born-Infeld action and thereby provide a consistency check for our calculations.
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Chapter 1

Introduction

At the beginning of the last century, our understanding of the universe underwent a fun-
damental change with the development of at that time groundbreaking theories: Quantum
mechanics [1], special relativity [2] and general relativity (GR) [3, 4]. Originally, they
were introduced to solve specific problems: Quantum mechanics provides a description for
the energy spectrum of a black body in terms of harmonic oscillators. Moreover, it was
observed that also energy carried by light appears in discrete quanta and is not following
a continuos spectrum [5], which previously could not be explained by Maxwell’s theory.
On the other hand, general relativity as a refinement of Newton’s law can explain the
precession of Mercury [6].

Combining the principles of special relativity and quantum mechanics led to the frame-
work of quantum field theory (QFT), which allowed for a consistent description of funda-
mental non-gravitational interactions in nature. This progress led to the Standard Model
(SM) of particle physics, which successfully explains the unification of electromagnetism,
the weak and strong fundamental interactions, which are all described by the exchange of
gauge bosons. However, any approach to incorporate gravity in a perturbative quantum
field theory has to break down at the Planck scale Mp ≃ 1019 GeV [7], because quantum
gravitational corrections describe an irrelevant interaction. Meaning that the gravitational
coupling grows weaker at low energies and becomes negligible at the energy scale of current
particle physics. On the other hand, the interaction becomes stronger at high energies,
which leads ultimately to a break down for energies above the Planck scale. Hence, QFT
when accommodating gravity into the formalism is a non-renormalizable theory.

Although, the success of the SM and general relativity is undeniable, i.e. they can
explain a large number of phenomena, they do not suffice to explain all observations in na-
ture. The observed positive and small value of the cosmological constant deviated from the
prediction of the SM by 120 orders of magnitude [8]. Recent measurements [9] might even
suggest that the cosmological constant is not-constant at all and the story is more involved.
But this is still under investigation and further measurements are needed. Furthermore, a
purely phenomenological approach is not satisfying. In theoretical physics understanding
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the bigger, more complete and perhaps even fundamental picture has always been pursued.
A first step to gain insights in cases, where the quantum nature of gravity becomes

non-negligible, is provided by semiclassical gravity as an approximation that treats matter
as quantum fields, while simultaneously spacetime is considered to be classical. Moreover,
the perturbative expansion for the gravitational interaction has to be truncated at the
one-loop level to avoid the issue of non-renormalizability. This ansatz led to important
insights in physical processes, where the quantum nature of gravity becomes relevant.
Examples of these progress are cosmological perturbation theory [10] and black hole (BH)
physics. Especially, the latter one has become of great interest due to recent experimental
observations via gravitational waves [11, 12] and direct imaging [13, 14]. The semiclassical
approximation of BHs resulted in a thermodynamical description for BHs, which allows to
express their entropy such that it depends only on the surface area of the BH [15, 16, 17,
18, 19]. Despite all of this progress the question about the correct and consistent theory
of quantum gravity remains unanswered in any of these frameworks.

1.1 String theory as a theory of quantum gravity
String theory is based on a rather simple geometric idea with dramatic consequences: The
fundamental degrees of freedom in perturbative string theory are described by one dimen-
sional objects moving through a D dimensional spacetime. The time evolution sweeps out
a two dimensional surface called the worldsheet of the string. Similar as the action of a
point particle corresponds to the worldline, the string action originates from the according
worldsheet. In principle, there are open and closed strings, which can be distinguished de-
pending on whether their endpoints are identified or not. This distinction has huge impact
on the spectrum describing the oscillation modes on each string. The lowest massless exci-
tations in the open string spectrum have spin-one and show the same properties as gauge
bosons of super Yang-Mills theory. On the other hand, after quantization the closed string
spectrum naturally contains a massless spin-two mode, which is identified as the graviton,
i.e. the gauge boson mediating gravity. Thus, string theory is a theory of quantum gravity.
Because of the extended nature of the string the UV-divergences of point particles in QFT
are absent. The interaction between strings is non-local and of purely topological nature,
i.e. it is described by the joining and splitting of strings. Schematically, Feynman diagrams
in QFT become the propagation of strings as depicted in figure 1.1.

The quantization of strings gives rise to a QFT on the worldsheet which is invariant
under conformal transformations. This symmetry makes string theory very powerful, as
the underlying conformal field theory (CFT) of string theory is exactly solvable in simple
backgrounds. However, this CFT is only anomaly free in ten spacetime dimensions for
the superstring. Note that from a worldsheet point of view spacetime and the fields of
general relativity and quantum field theories are emergent phenomena, because they arise
from string excitations. The number of spacetime dimensions D = 10 in string theory is
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in contradiction to the four spacetime dimensions we observe. While there are attempts to
investigate non-critical string theory [20, 21], i.e. string theory with D ̸= 10, the common
approach is to compactify the extra dimensions on a small internal manifold in order to
make contact with phenomenology. Essentially, the six extra directions predicted by string
theory are curled up on a volume small enough such that they become invisible for current
experiments, because the energy necessary to resolve the curled up dimensions is out of
reach. This process is a generalization of the idea by Kaluza [22] and Klein [23], where
in their proposal the fifth extra dimension is compactified on a circle. To curl up six
dimensions in string theory one has to choose a suitable compactification manifold. The
physics of the lower dimensional theory, i.e. the couplings, masses and quantum numbers
of the particles in the low energy effective theory, is determined by the topology and
geometry of the according internal space. Following from the string equations of motion
the geometry for this compactification manifold is required to be Ricci-flat or equivalently
it has to be a Calabi-Yau manifold. The number of known Calabi-Yau manifolds is large,
see for example [24]. Moreover, there were attempts to estimate the total number of Calabi-
Yau manifolds [25], which led to astronomically large numbers and it still remains an open
question whether this number is finite or not. Hence, finding the correct Calabi-Yau that
gives rise to the four dimensional theory we observes, seems like a hopeless task due to
the enormous amount of possibilities. However, by imposing finiteness criteria following
from universal properties of quantum gravity the swampland program [26] tries to find
the landscape of consistent (string theory) vacua and to rule out the inconsistent effective
theories in the swampland.

In addition to strings as the fundamental degrees of freedom, in a perturbative regime
at weak coupling the consistency of string theory requires (p+ 1) dimensional objects [27],
which are not quantized as fundamental objects, but have to be treated as non-perturbative
excitations with their own dynamics. These Dp-branes resemble the endpoints of open
strings, which have to satisfy either Dirichlet or Neumann boundary conditions. If for
9 − p directions the open string has endpoints with Dirichlet boundary conditions, the
other endpoints in the remaining p + 1 dimensions have to lie on the worldvolume of
the Dp-brane. Moreover, these object provide an explanation why we observe only four
spacetime dimension. This is, because we are confined to live on a D3-brane, which extends
along the four visible dimensions and is embedded in some internal, higher dimensional
manifold.

1.2 Scattering amplitudes in string theory
String theory is an S-matrix theory and therefore scattering amplitudes, which are the
elements of the S-matrix, are the fundamental quantities that originate from a perturbative
expansion in the small coupling regime. They describe the transition probability from
one state of the asymptotic Hilbert space to another. These final and initial states are
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asymptotically free states such that they have to be located infinitely far away from the
interaction.

Concretely, the elements of the S-matrix in string theory can be obtained from the
Polyakov path integral over gauge inequivalent worldsheet metrics. In the exponential of
this path integral only the free worldsheet action appears. Adding cubic or higher order
interaction terms in the matter fields is not compatible with the residual superconfor-
mal gauge transformations, which are necessary for unitarity and anomaly cancellation.
However, as already stated above considering locally only freely propagating superstring is
sufficient, as interaction originate from the global properties, i.e. the topology, of the world-
sheet, which cannot be captured by any higher order interactions in the action. Therefore,
the closed string interaction shown in figure 1.1 encompasses the joining and splitting of a
worldsheet that locally looks like a free string.

The first scattering amplitude was computed before string theory even existed [28, 29]
in order to describe hadron scattering in terms of a dual four point scattering process with
special crossing symmetries. In the high energy regime dual models behave much softer
than any quantum field theory, which provides a suitable description of hadrons exhibiting
a soft high energy behaviour. In the end, it turned our that this amplitudes arises from
(bosonic) string theory.

In perturbative QFT computing scattering amplitudes corresponds to summing Feyn-
man diagrams, whereas the perturbative expansion in string theory requires a sum over
different worldsheet topologies. Thereby, one worldsheet contributing to each order in
perturbation theory covers a wide range of Feynman diagrams of the low energy effective
QFT, which is depicted in figure 1.1. In a field theory a single Feynman diagram is only

= + + +

Figure 1.1: A single worldsheet encompasses several Feynman diagrams.

part of the bigger picture so that various kinds of symmetries can be obscured in individual
diagrams that would otherwise be present in the complete amplitude. This is absent in
string theory, because the interaction of string states is uniquely determined by the free
worldsheet theory.

However, string theory is connected to QFT: As physics allows to decouple different
energy regimes, we can model two different energy scales by different theories, which pro-
vides us with an effective description. Hence, string theory can be viewed as a high energy
completion of quantum field theory such that in the limit α′ → 0, where the string length
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ℓs =
√
α′ goes to zero, we should recover QFT amplitudes from string scattering pro-

cesses. Performing an expansion of a string scattering amplitude in α′ yields a complex
pole structure in Mandelstam variables, where each pole can be associated to different field
theoretic scattering channels, i.e. Feynman diagrams. In figure 1.1 the scattering of four
closed strings decomposes in the point particle limit into s, t, u channels and a four-point
interaction. By taking this limit the Lagrangians of many different theories such as gen-
eral relativity and super Yang-Mills (SYM) theory can be constructed from superstring
scattering amplitudes.

In super Yang-Mills theory the duality between color and kinematics in gauge theories
[30], which is hidden in a Lagrangian description, allows to rearrange kinematical factors
in amplitudes and to even interchange the role of color and kinematics in the full color
decomposition of an amplitude [31]. This duality between color and kinematics originates
from the fact that kinematic variables in scattering amplitudes of gauge theories satisfy the
same Jacobi identity as the gauge algebra. Replacing the gauge factors by the according
kinematic variables in the amplitude establishes a relation between gauge and gravity
amplitudes, which can schematically be written as

gravity ∼ gauge⊗ gauge . (1.1)

such that some of these properties also carry over to gravitational scattering processes.
Since SYM amplitudes can also be derived from string theory in the low energy limit,
we expect that they have a stringy origin. This suggests that we might get a deeper
understanding of these symmetries from string theory. Indeed, string theory provides the
color decomposition of gauge amplitudes almost as a definition, as in any string amplitude
the Chan-Paton factors are isolated and the amplitude can be split into gauge invariant
pieces. In the end, identities like the Bern-Carrasco-Johansson relations [30, 32, 33] or
Kawai-Lewellen-Tye (KLT) relations [34] can be derived and understood from string theory,
as they originate form the monodromy properties of the string worldsheet [35, 36].

Eventually, computing scattering amplitudes boils down to presenting the final result
in a compact and short form that encodes the symmetries of the underlying theory. For
string theory tree-level amplitudes this is achieved by grouping the worldsheet dependence
and the kinematics into individual building blocks and expressing both in a minimal basis.
Therefore, the calculation of string scattering amplitudes is a intriguing area of research:
The result obtained by any means necessary are analysed to find the underlying structure
leading to a compact expression. In the end, we try to understand why the simplified
results takes this form, which usually does not happen by accident.

1.3 Pure spinor formalism
The underlying degrees of freedom in string theory admit a variety of different formulations:
For the calculation of scattering amplitudes the most commonly known formulations of the
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superstring are the Ramond-Neveu-Schwarz [37, 38, 39, 40] and the Green-Schwarz [41, 42]
formalisms. At the beginning of this millennium, a new, consistent formulation of the
superstring came to life. Berkovits developed the pure spinor formalism resulting in the
first covariantly quantised super string theory that is manifestly super-Poincaré invariant
[43, 44, 45]. All of these formulations vary with respect to their implementation of the
worldsheet and supersymmetry, but are widely expected to be equivalent [46, 47, 48], which
is explicitly verified for the leading orders in string perturbation theory, i.e. all amplitudes
computed in RNS or GS formalism are in agreement with the corresponding expressions
obtained in PSF.

Moreover, the pure spinor formalism exhibits a framework to organise the kinematic and
worldsheet dependencies of a scattering process in a way that allows for a more efficient
calculation of string scattering amplitudes compared to the other two formalisms. An
outstanding example is the computation of the scattering of four closed strings at two-
loops, which required hundred pages in the RNS formalism [49, 50, 51, 52] and [53, 54], see
also [55, 56, 57, 58, 59], and was done in the PSF in only ten pages [60, 61]. This efficiency
also allowed to compute amplitudes that were out of reach in RNS and GS formalism:
Two examples are the scattering of n open strings on the disk [62, 63] and the three-loop
scattering process of four closed strings [64].

Except for computing scattering amplitudes the pure spinor formalism can be used to
study the propagation of strings in curved backgrounds [65, 66, 67, 68, 69, 70] and more
recently [71], which incorporates for example the derivation of equations of motion for
non-linear Born-Infeld theory [72]. In addition, strings in AdS5 × S5 backgrounds can be
studied [73, 74, 75, 76, 77], which led to the construction of vertex operators [78, 79, 80]
and the computation of string scattering amplitudes [81, 82] in AdS5 × S5. Furthermore,
it is possible to investigate Chern-Simons corrections, which are necessary for anomaly
cancellation [83].

1.4 Overview and organization of the thesis
There was remarkable progress (partly due to the pure spinor formalism) in the under-
standing and capabilities to compute scattering amplitudes over the last decades and it is
the goal of this thesis to contribute here. We focus on scattering amplitudes at tree-level,
as they give rise to the first quantum corrections in the limit α′ → 0 to the effective action
in string theory. In this context, our main interest are amplitudes with the disk or real
projective plane as worldsheet, which describe the interaction of closed strings with non-
perturbative objects like Dp-branes and Op-planes. For the scattering of closed strings off
a Dp-brane they provide the first gravitational corrections to the Dirac-Born-Infeld (DBI)
action and are therefore phenomenologically very interesting. For this reason, there exists
already considerable body of literature on disk amplitudes: For example, in [84] higher
derivative gravitational corrections to the DBI action are derived from disk amplitudes.
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Furthermore, the dilation one-point function in bosonic string theory was calculated in
[85, 86] and a generalization for the superstring was found in [87, 88]. The scattering of
two superstrings from a Dp-brane was first computed in the RNS formalism and performed
in [89, 90, 91, 92]. A detailed review of these computation and the calculation in the PSF
can be found in [93, 94, 95, 96] and [88], respectively. For the special case where the exter-
nal states are described by one RR field and two NSNS fields there are even computations
of scattering amplitudes involving three closed strings on the disk [97, 98, 99], but all of the
are formulated in the RNS framework. However, none of these compute the full superstring
amplitude of three closed strings on the disk. Finally, there is a variety of calculations of
disk amplitudes involving open and closed strings in both pure spinor [100, 101] and RNS
formalism [35, 102, 103, 104], see also [105, 106, 107, 108].

In this thesis we want to push the analysis of scattering processes of closed strings
from non-perturbative objects like Dp-branes and Op-planes. Therefore, we generalize the
previous work on amplitudes involving D-branes to arbitrary external states, i.e. states from
either NSNS, RNS, NSR or RR sector, for three closed strings and outline the procedure
that can be used to compute an n-point closed string amplitude on the disk. Furthermore,
we are preforming these calculations on the upper half plane contrary to [35], where the
scattering of three closed strings is computed on the double cover, i.e. the sphere. So far,
on the disk only the interaction of one closed string with an arbitrary number of open
strings was investigated in [104]. But working on the upper half plane has consequences:
In the scattering amplitude on the double cover certain poles in the kinematic invariants
are missing. The result obtained on the upper half plane in [109] shows all the expected
poles.

The scattering of closed strings on the real projective plane was only considered for
two external NSNS states in [110] and reviewed in [96]. Here, we provide a prescription
for the general n-point amplitude and compute the scattering of three closed strings of an
Op-plane utilizing the results from the disk calculation.

This thesis is organized as follows: We start with an overview of N = 1 super Yang-
Mills theory in ten spacetime dimensions in chapter 2. There we derive the equation of
motions first of the non-linear and afterwards of the linear superfields, which will be used
in various pure spinor computations. Moreover, from the equations of motion we compute
the power series of the linearized superfields in the fermionic coordinates of pure spinor
superspace.

In chapter 3 we provide an introduction in the pure spinor formalism, which includes a
derivation of the fundamental degrees of freedom and their CFT originating from Siegel’s
formulation of the GS superstring. By introducing the pure spinor ghost sector Siegel’s
ansatz for the superstring becomes anomaly free and consistent with the RNS formalism.
We analyse these ghost fields and their CFT in detail and use them to formulate integrated
and unintegrated vertex operators, which are used in scattering amplitudes to describe the
massless string excitation of the external states.
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Chapter 4 discusses the general procedure for the evaluation of scattering amplitudes
starting with a prescription for open and closed string scattering amplitudes at tree-level.
The non-zero modes of the conformal primaries with weight one can be integrated out
using Wick’s theorem. Afterwards, the zero modes of the primaries with conformal weight
zero give rise to a zero mode correlator, which is evaluated by a zero mode prescription.
We conclude this section with a sample calculation that demonstrates this procedure.

Using Wick’s theorem in the procedure described in chapter 4 is not very efficient, but
Wick contractions can be reorganised in terms of composite superfields. These are defined
recursively in chapter 5 and can be used to simplify the organisation of kinematic terms.
Then, using the cohomology properties of the pure spinor formalism and the simple form
of the BRST charge composite superfields give rise to BRST building blocks, which have
an interpretation in terms of tree graphs.

In chapter 6 a generalisation of Berends-Giele currents is constructed, which include
also the superpartner of the gluon. Similar as the BRST building blocks they have an
interpretation in terms of tree graphs, which allows to express the Berends-Giele supercur-
rents in terms of expressions obtained from the cohomology of the pure spinor formalism.
Furthermore, we derive SYM amplitudes from Berends-Giele supercurrents.

Closed string amplitudes on the sphere are discussed in chapter 7, where we explain
how the closed string can be decomposed into two open string amplitudes by using analytic
continuation. Thereby, the complex worldsheet integration over the sphere can be split
into two integrations over parts of the real line. Furthermore, the open string n-point
amplitudes are not independent, which allows to express them in a minimal basis with
(n − 3)! elements. Therefore, one has to use symmetry properties of the amplitude and
monodromy relations, which can be derived from worldsheet properties of the open string
amplitudes.

In chapter 8 we analyse the scattering of three closed string off a Dp-brane. First, we
discuss the boundary conditions imposed by the D-brane and give an amplitude prescrip-
tion for the n-point amplitude. Afterwards, we use monodromy relations of the worldsheet,
analytic continuation and a PSL(2,R)-transformation to express the closed string ampli-
tude in terms of open string six-point partial amplitudes. By performing these contour
deformations we generalized the sphere calculation of chapter 7 to the disk. In the end,
this leads to a compact formula in which the scattering of three closed strings on the disk is
written in terms of only two independent open string subamplitudes instead of six, which
is the minimal basis for six open strings.

Using the final result of the scattering of three closed strings on the disk we want to
generalise this calculation to an arbitrary number of external states and present an ansatz
for the n-point function in chapter 9. Therefore, we comment on the n-point scattering
amplitude of open strings on the disk, which are the building blocks of the closed string
generalisation.

Similar as for the computation on the disk, we start the discussion in chapter 10 on the
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scattering of three closed strings on the real projective plan by introducing the conditions
imposed by the Op-plane on the worldsheet fields at the T-dual point. Then, we continue
again by relating the closed string amplitudes to open string subamplitude using analytic
continuation. It turns out that the scattering of three closed string from an Op-plane can
be described by four open string partial amplitudes.

In chapter 11 we perform an expansion in α′ to obtain the low energy effective descrip-
tion of the scattering of three closed strings on the disk. In addition, we compare our
findings to some of the leading terms in the Dirac-Born-Infeld action and comment on the
absence of disk-corrections to the Einstein-Hilbert action.

Finally, in chapter 12 we present some concluding remarks and an outlook of possible
future work, which includes the generalization of the results in this thesis to higher genera
or massive external states.

The appendices contain some technical details: In appendix A we explain some de-
tails about the U(5) decomposition of the Wick rotated Lorentz group in ten spacetime
dimension, which are relevant for the analysis of the pure spinor constraint and the deriva-
tion of the CFT of the ghost sector in chapter 3. Appendix B discusses the invariance
of a correlator of holomorphic and antiholomorphic fields on the disk under global con-
formal transformations. These results are then used in appendix C to explicitly perform
a PSL(2,R)-transformation of the correlator, which is obtained by performing the vertex
operator contractions in the closed string three-point function. Moreover, we express the
amplitude in terms of hypergeometric functions and Berends-Giele supercurrents, i.e. SYM
amplitudes, which carry the α′-dependence and the kinematic terms, respectively. Finally,
in appendix D we give some details on the derivation of the monodromy phase, which
ensures that a disk amplitude is well defined after analytic continuation.

This thesis, especially the chapters 8, 9, 10 and 11, are based on the author’s work partly
published in:

Scattering three closed strings off a Dp-brane in pure spinor formalism [109]
Andreas Bischof, Michael Haack and Stephan Stieberger
JHEP 10 (2023) 184; arXiv: 2308.04175 [hep-th]

Superstring scattering on the real projective plane
Andreas Bischof and Stephan Stieberger
Work in progress
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Chapter 2

Super Yang-Mills theory in ten
spacetime dimensions

In the low energy limit α′ → 0 open superstring excitations describe the interaction of only
gluons and gluinos. Hence, it might not be surprising or a coincidence that the degrees of
freedom of open strings in the pure spinor formalism are essentially described by N = 1
super Yang-Mills (SYM) theory in ten spacetime dimensions. Its spectrum contains only
a gluon and gluino, which are related by sixteen supercharges [111, 112]. These degrees of
freedom can be packaged into superfields that are defined on superspace which is spanned
by ten spacetime coordinates Xm and their associated sixteen superpartners θα. The
Grassmann odd spinor variables form a right handed Majorana-Weyl spinor of SO(1, 9).
In addition, the super-Poincaré covariant formulation [113] of this SYM theory allows the
pure spinor formalism to be a very efficient tool in computing scattering amplitudes. The
presentation of the superfields here follows the corresponding chapters in [114, 115, 116,
117].

2.1 Non-linear superfields

To define the gauge theory we start by introducing covariant derivatives. Because this
theory is defined on superspace, there exist derivatives in the spacetime directions Xm and
the spinor space coordinates θα

∇m = ∂m − Am , ∇α = Dα − Aα , (2.1)

which are Lie-algebra valued connections for the superfields Am = Am(X, θ) and Aα =
Aα(X, θ) and obey the Lie-bracket [112, 113]

{∇α,∇β} = γmαβ∇m . (2.2)
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Above we have defined the spacetime derivative ∂m = ∂
∂Xm and the superspace derivative

Dα = ∂

∂θα
+ 1

2(γmθ)α∂m , (2.3)

which satisfies a Lie-bracket on its own {Dα, Dβ} = γmαβ∂m. Moreover, we have introduced
the 16× 16 Pauli matrices γmαβ.

The Pauli matrices originate from the 32 × 32 Dirac matrices Γm in ten dimensional
Minkowski space R1,9, which satisfy the Clifford algebra

{Γm,Γn} = 2ηmn132×32 for m = 0, 1, . . . , 9 , (2.4)

where the signature of the metric ηmn is mostly plus (−,+,+, . . . ,+). The chiral matrices
γm are given by the off-diagonal components of Γm in the Weyl representation

Γm =
(

0 (γm)αβ
(γm)αβ

)
(2.5)

and satisfy a Clifford algebra on their own

γmαβ(γn)βγ + γnαβ(γm)βγ = 2ηmnδδα . (2.6)

More details and the explicit form of the γm matrices can be found in [114].
We can define field strength tensors Wα and Fmn for the superfields (Aα,Am), i.e. for

the gluino and gluon, respectively. These non-linear superfields have to obey the equations
of motion1 [112, 113]

{∇α,∇β} = γmαβ∇m , [∇α,∇m] = −(γmW)α ,

{∇α,Wβ} = 1
4(γmn)αβFmn , [∇α,Fmn] = −(W[mγn])α , (2.8)

where we have introduced

Fmn = −[∇m,∇n] , Wα
m = [∇m,Wα] . (2.9)

These on-shell constraints can be derived from (2.2) and the associated Bianchi identities.
The equations of motion (2.8) are invariant under infinitesimal gauge transformations of

the gluon and gluino superfields (Am,Aα). These gauge transformations can be described
by a Lie algebra-valued gauge parameter Ω = Ω(X, θ) such that

δΩAα = [∇α,Ω] , δΩAm = [∇m,Ω] . (2.10)
1Except otherwise stated, in expression, where we symmetrize or antisymmetrize indices, we use the

convention

A1
[a1

A2
a2
· · ·Ak

ak] = A1
a1

A2
a2
· · ·Ak

ak
± permutations ,

A1
(a1

A2
a2
· · ·Ak

ak) = A1
a1

A2
a2
· · ·Ak

ak
+ permutations , (2.7)

where we do not include a factor of 1
k! .
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Similarly, the associated field strengths transform as

δΩWα = [Ω,Wα] , δΩFmn = [Ω,Fmn] , δΩWα
m = [Ω,Wα

m] . (2.11)

Moreover, we can derive the massless Dirac and Yang-Mills equations

γmαβ[∇m,Wβ] = 0 , [∇m,Fmn] = γnαβ
{Wα,Wβ} (2.12)

using the constraint in (2.2) and the equations of motion

γmαβ[∇m,Wβ] = [{∇α,∇β},Wβ]
= −[{Wβ,∇α},∇β]− [{∇β,Wβ},∇α]

= −1
4(γmn)αβ[Fmn,∇β]

= 1
4(γmnγnWm)α −

1
4(γmnγmWn)α

= 9
2γ

m
αβ[∇m,Wβ] , (2.13)

where we furthermore used that γmn is a traceless matrix, i.e. (γmn)αα = 0 and the identity
γmnγn = 9γm. Hence, equation (2.13) implies that γmαβ[∇m,Wβ] = 0. The Yang-Mills
equation in (2.12) can be obtained by taking the anticommutator of the Dirac equation
with γαδn ∇δ. By utilizing the Bianchi identity this anticommutator evaluates to

0 = 1
8γ

αδ
n γ

m
αβ{∇δ, [∇m,Wβ]}

= 1
8γ

αδ
n γ

m
αβ

(
{Wβ, [∇δ,∇m]}+ {∇m, [Wβ,∇δ]}

)
= −1

8γ
αδ
n γ

m
αβ

(
(γm)δσ{Wβ,Wσ} − 1

4(γrs)δβ[∇mFrs]
)

= γnβσ{Wβ,Wσ} − [∇m,Fmn] . (2.14)

To derive this result we have used that −(γmγnγm)βσ = 8γnβσ, which follows from the
Clifford algebra of the γ-matrices (2.6), γmγm = 10 and that 1

4 Tr(γmγnγrs) = 4(δrnδsm −
δrmδ

s
n).
The equations of motion (2.8) of the superfields can be written in an alternative form

{∇α,Aα}+ {∇β,Aα} = γmαβAm − {Aα,Aβ} , [∇α,Am] = [∂m,Aα] + (γmW)α ,

{∇α,Wβ} = 1
4(γmn)αβFmn , [∇α,Fmn] = (W[mγn])α . (2.15)

When substituting (2.1) in (2.15) the above equations become

{Dα,Aα}+ {Dβ,Aα} = γmαβAm + {Aα,Aβ} ,
[Dα,Am] = [∂m,Aα] + (γmW)α + [Aα,Am] ,
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{Dα,Wβ} = 1
4(γmn)αβFmn + {Aα,Wβ} ,

[Dα,Fmn] = (W[mγn])α + [Aα,Fmn] . (2.16)

More details on the non-linear superfields and their higher mass dimension generalisation
can be found in [114].

2.2 Linearized superfields
The asymptotic states in string scattering processes are described by the linearized descrip-
tion of the ten dimensional superfields, because interactions will be introduced later by a
perturbative approach based on string theory. These linearized superfields are obtained by
discarding the non-linear terms in (2.16) that are quadratic in the superfields

DαAβ +DβAα = γmαβAm , DαAm = (γmW )α + ∂mAα ,

DαW
β = 1

4(γmn)αβFmn , DαFmn = ∂[m(γn]W )α . (2.17)

The linearized superfields are invariant under the linearized version of the gauge transfor-
mations in (2.10), which are given by

δΩAα = DαΩ, δΩAm = ∂mΩ . (2.18)

The linearized gauge transformations will be important for the definition of the massless
vertex operators in the pure spinor formalism in section 3.6.

The superfield Am is an auxiliary field and not independent of Aα. Because a bispinor
D(αAβ) contains a one-form and a five-form, we can rephrase the first equation in (2.17)
as γαβmnpqrDαAβ = 0, which is a constraint that puts the fields on-shell. With the on-shell
constraint Am can be expressed in terms of the spinorial superfield Aα by

Am = 1
8γ

αβ
m DαAβ . (2.19)

Note that the vanishing five form does not put the fields on-shell for D < 10, i.e. if this
computation was carried out in lower dimensions the constraint would not eliminate any
p form component from D(αAβ) [115, 116].

Moreover, the fields (Wα, Fmn), which are the associated field strengths to (Aα, Am),
can be expressed in terms of (Aα, Am): By antisymmetrizing either two spinorial or one
spinorial and one spacetime component of the (Aα, Am)-Jacobi matrix we can define the
the gauge invariant field strength tensors

Wα = 1
10γ

αβ
m (DβAm − ∂mAβ) , (2.20)

Fmn = ∂mAn − ∂nAm . (2.21)
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These linearized field strength tensors satisfy the linearized version of (2.12), which can be
obtained from (2.17). Therefore, we have to act on DαW

β = 1
4(γmn)αβFmn with Dγ and

symmetrize the expression with respect to the indices (α, γ). If we then take the δγβ trace,
this yields a massless Dirac equation for the linear superfield Wα

γmαβ∂mW
β = 0 . (2.22)

Acting with the derivative γαγn Dγ on the Dirac equation (2.22) and also using the equation
of motions of the linear superfields (2.17) gives

∂mF
mn = 0 . (2.23)

Since (2.22) and (2.23) describe equations of motion for the gluino and gluon components
of the superfields, we can already conclude that the lowest order θ-components in the
θ-expansion of Wα and Am correspond to the gaugino and gauge boson, respectively [116].

2.3 The θ-expansion of linearized superfields
The equations of motion (2.17) of the N = 1 SYM superfields (Aα, Am,Wα, Fmn) can be
solved separately for Xm and θα. We can expand the superfields in θα, where at each
order O(θk) the expansion coefficient Φ(k)(X) is a spacetime function. Because of the
Grassmann odd nature of the spinorial coordinates any power series expansion in θ will
terminate at order O(θ16). Moreover, we find recursive relations between the expansion
coefficients Φ(k)(X) at neighbouring orders of θk. When making an appropriate gauge
choice (Harnad–Shnider gauge) for Ω in (2.18) we can enforce

θαAα(X, θ) = 0 , (2.24)

which is the supersymmetric analogue of choosing normal coordinates and simplifies the
θ-expansion of the superfields. In addition, by imposing this gauge we can convert the
canonical differential operator Dα of the spinorial coordinates into an ordinary derivative
θαDα = θα ∂

∂θα . We can organize the Xm-dependence of the superfields in terms of plane
waves with momentum km and parametrize the solution to the equations of motion by the
polarization vector em and spinor χα for the gluon and gluino, i.e. we can set

em = Am
∣∣∣
θ=0

, χα = Wα
∣∣∣
θ=0

. (2.25)

Putting everything together this leads to the following recursion relations for the coefficients
Φ(k) in the θ-expansion

A(k)
α = 1

n+ 1(γmθ)αA(k−1)
m ,

A(k)
m = 1

n
(θγmW (k−1)) ,
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(W (k))α = − 1
2n(γmnθ)α∂mA(k−1)

n . (2.26)

These recursive relations above can be solved by the following ansatz

A(2k)
m = 1

(2k)! [O
k]m

q
eq ,

A(2k+1)
m = 1

(2k + 1)! [O
k]m

q(θγqu) , (2.27)

where we have introduced the expression

[O]mq = 1
2(θγmqp)∂p . (2.28)

The equations (2.26) together with (2.27) fully determine the θ-expansion of all superfields
[118]. Then, the first terms in the θα power series of the superfields up to order O(θ6) are
given by [119, 120]

Aα(X, θ) = eik·X
{
em
2 (γmθ)α −

1
3(χγmθ)(γmθ)α −

1
32(γpθ)α(θγmnpθ)ik[men]

+ 1
60(γmθ)αikn(χγpθ)(θγmnpθ)

+ 1
1152(γmθ)αikr(θγmrsθ)(θγspqθ)ik[peq] +O(θ6)

}
, (2.29)

Am(X, θ) = eik·X
{
em − (χγmθ)−

1
4ikp(θγ

pq
m θ)eq + 1

12ikp(θγ
pq

m θ)(χγqθ)

+ 1
96ikn(θγ np

m θ)ikq(θγ qr
p θ)er

− 1
480ikn(θγ np

m θ)ikq(θγp θ)(θγrχ) +O(θ6)
}
, (2.30)

Wα(X, θ) = eik·X
{
χα − 1

4ik[men](γmnθ)α + 1
4ikm(γmnθ)α(χγnθ)

+ 1
48ikm(γmnθ)α(θγ pq

n θ)ik[peq] −
1
96(γmnθ)αikm(θγ pq

n θ)ikp(χγqθ)

− 1
768(γmnθ)αikm(θγ pq

n θ)ikp(θγ rs
q θ)ikres +O(θ6)

}
, (2.31)

Fmn(X, θ) = eik·X
{
ik[men] − ik[m(χγn]θ)−

1
4ik[peq]ik[m(θγ pq

n] θ)

+ 1
12ik[m(θγ pq

n] θ)ikp(χγqθ) + 1
96ik[m(θγ tp

n] θ)iktikq(θγ qr
p θ)er

− 1
480ik[m(θγ tp

n] θ)ikt(θγ qr
p θ)ikq(θγrχ) +O(θ6)

}
. (2.32)

For the purpose of calculating tree-level scattering amplitudes an expansion up to O(θ5)
is sufficient. Higher order terms don’t contribute to scattering amplitudes due to the zero
mode prescription (4.15).
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Although, the series expansion in (2.32) terminates at O(θ16), it can be formally re-
sumed to all orders in θα as [118]

Am = eik·X
{

[cosh
√
O]m

q
eq + [

√
O

−1
sinh
√
O]m

q

(θγqχ)
}
. (2.33)

The expansion in (2.32) follows an alternating pattern with respect to the gauge boson
and gaugino. For the spinorial superfields (Aα,Wα) the gluon polarization vector appears
along an odd power of θ and the gluino wave function with an even power of θ. For the
bosonic superfields (Am, Fmn) this behaviour is exactly opposite [116].
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Chapter 3

Pure spinor formalism

The pure spinor formalism is an alternative description of the superstring to the RNS and
GS formalism. The discovery by Berkovits in [43] led to an efficient method for computing
superstring scattering amplitudes: It combined various convenient properties of the RNS
[37, 38, 39, 40] and GS [41, 42] formulations such that calculations of scattering amplitudes
are possible, which were previously out of reach. The pure spinor formalism is inspired by
the GS superstring, but is quantized in a U(5) covariant way such that it is not necessary
to go to light cone gauge. Due to this Lorentz covariant quantization one can circumvent
drawbacks like a non-covariant gauge and restricted momenta. Moreover, the pure spinor
superstring is manifestly supersymmetric and does not contain worldsheet spinors, which
makes an explicit summation over spin structures obsolete. Compared to the RNS string
this shortens the calculation of higher loop amplitudes dramatically [116]. Nevertheless,
the two formalism can be related via field redefinitions [121].

In this chapter we will review the basic aspects of the CFT of the pure spinor formal-
ism. We will set the stage for computing superstring scattering amplitudes on genus zero
Riemann surfaces. The presentation will follows [114, 117], which are based on the PhD
theses [115, 116].

3.1 Origins of the pure spinor formalism
Heterotic strings [122, 123, 124], type I superstrings [125, 126, 127] and type II superstrings
[128] are supersymmetric in ten space time dimensions. Therefore, one would also like to
find a manifestly supersymmetric description of their worldsheet action. In principal, this
is achieved by the GS formalism, but unfortunately the classical action cannot be quantized
in a Lorentz covariant way.

In 1986 Warren Siegel [129] made another approach for covariant quantization of the GS
superstring. This ansatz uses the spacetime coordinates Xm of the bosonic string, which
are complemented by the spinorial fields θα. The fermionic coordinates are Majorana-Weyl
spinors that transform under SO(1, 9) and have 16 real components. These are basically
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the same degrees of freedom as in the GS formalism, but here the conjugated momenta
pα for θα are treated as independent variables in contrast to the GS formalism. We can
propose the following action for this ansatz1

SSiegel = 1
π

∫
d2z

[1
2∂X

m∂Xm + pα∂θ
α + pα̂∂θ

α̂
]
, (3.1)

where the spinor indices α̂, β̂, . . . of the antiholomorphic fields have the same (opposite)
chirality as α, β, . . . for type IIB (type IIA). Moreover, for open strings we would only have
the left-moving sector of (3.1).2 Since the holomorphic and antiholomorphic sectors are
independent, we will only focus on the holomorphic sector in the remaining chapter. More-
over, for closed strings the antiholomorphic expressions are analogous to the holomorphic
ones.

Similar as for pα the fermionic constraint dα in the GS formalism becomes a uncon-
strained variable

dα = pα −
1
2

(
∂Xm + 1

4(θγm∂θ)
)

(γmθ)α , (3.2)

which makes the problem of mixed first and second class constraints of the GS superstring
absent in Siegel’s approach. Note that the constraint of the GS formalism differs slightly
from the field (3.2) by an expression that is proportional to ∂θα and vanishes by the
equation of motion for pα.

The spacetime supersymmetry transformations that leave the action (3.1) invariant are
given by

δXm = 1
2(ηγmθ) ,

δθα = ηα ,

δpα = −1
2∂Xm(ηγm)α + 1

8(ηγmθ)(∂θγm)α , (3.3)

where ηα is a Grassmann odd infinitesimal parameter. These supersymmetry transforma-
tions are generated by the charge

Qα =
∮ dy

2πi

[
pα + 1

2(γmθ)α
(
∂Xm + 1

12(θγm∂θ)
)]

, (3.4)

1We have chosen different values for α′ for open and closed strings, i.e. α′
closed = 2 and α′

open = 1
2 ,

because we are always considering open and closed strings seperately. Moreover, this allows for a unified
treatment of open and closed strings in the following, e.g. we can use the same OPEs for open and closed
strings.

2In the spirit of [27] we use the following words synonymous

holomorphic = left-moving
antiholomorphic = right-moving

for the degrees of freedom on the string.
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which satisfies a supersymmetry algebra

{Qα,Qβ} =
∮ dz

2πi γ
m
αβ∂Xm . (3.5)

We can check that the action (3.1) is invariant under the transformations in (3.3): The
infinitesimal variation of the action is given by

δSSiegel = 1
π

∫
dz
[1
4(ηγm∂θ)∂Xm + 1

4(ηγm∂θ)∂Xm −
1
2(ηγm∂θ)∂Xm

−1
8(∂θγm∂θ)(ηγmθ)

]
(3.6)

and we can show that δSSiegel vanishes. The three terms in the first line cancel against
each other, which follows after integration by parts of the first term in (3.6). Hence, the
last term in (3.6) has to be identical zero, which can be seen by also integrating this term
by parts twice [115]∫

d2z (∂θγm∂θ)(ηγmθ) = −
∫

d2z (θγm∂θ)(ηγm∂θ)−
∫

d2z (θγm∂∂θ)(ηγmθ)

= −
∫

d2z (θγm∂θ)(ηγm∂θ) +
∫

d2z (∂θγm∂θ)(ηγmθ)

+
∫

d2z (θγm∂θ)(ηγm∂θ)

= −
∫

d2z θα∂θβηρθ
σ
(
γmαβ(γm)ρσ − γmβρ(γm)ρα + γmασ(γm)ρβ

)
= 2

∫
d2z θα∂θβηρθ

σ
(
γmβσ(γm)ρα

)
= −2

∫
d2z (∂γm∂θ)(ηγmθ) , (3.7)

where we used that γmα(β(γm)ρσ) = 0. After bringing the right hand side of the above
equation to the left hand side we have shown that

∫
d2z (∂θγm∂θ)(ηγmθ) = 0. Hence, the

variation (3.6) of the action (3.1) vanishes under supersymmetry transformations (3.3) and
we can conclude that Siegel’s approach is indeed spacetime supersymmetric.

For the action (3.1) the holomorphic component T = T (z) of the energy momentum
tensor is given by

T = −1
2∂X

m∂Xm − pα∂θα = −1
2ΠmΠm − dα∂θα , (3.8)

where the supersymmetric momentum is defined as

Πm = ∂Xm + 1
2(θγm∂θ) . (3.9)

Moreover, the action yields a Lorentz current for the spinor variables

Σmn = −1
2(pγmnθ) , (3.10)
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which can be found using Noether’s method for the infinitesimal Lorentz transformations
of pα and θα

δpα = 1
4εmn(γmn)αβpβ, δθα = 1

4εmn(γmn)αβθ
β (3.11)

and defining the variation of the action (3.1) to be

δSSiegel = − 1
π

∫
d2z

1
2∂εmnΣmn . (3.12)

The calculation is straightforward and using the antisymmetry (γmn)αβ = −(γmn)βα gives

δSSiegel = 1
π

∫
d2z δ(pα∂θα)

= 1
π

∫
d2z

[1
4εmn(γmn)αβpβ∂θα + 1

4pα∂(εmn(γmnθ)α)
]

= 1
π

∫
d2z

[1
4∂εmnpα(γmn)αβθ

β
]

(3.13)

such that when we compare (3.12) with the actual variation under Lorentz transformations
(3.13), we recover the Lorentz current (3.10).

The action (3.1) is invariant under conformal transformations and therefore defines a
conformal field theory. With standard path integral methods we can derive the following
operator product expansions (OPEs) among the fields in (3.1) [129]

Xm(z, z)Xn(w,w) ∼ −ηmn ln |z − w|2 , pα(z)θβ(w) ∼ δα
β

z − w
,

dα(z)dβ(w) ∼ −
γmαβΠm(w)
z − w

dα(z)Πm(w) ∼ (γm∂θ(w))α
z − w

,

Πm(z)Πn(m) ∼ − ηmn

(z − w)2 , dα(z)θβ(w) ∼ δαβ

z − w
, (3.14)

where ∼ indicates that we dropped the regular terms on the right hand side of the OPEs
as z → w. In principle, it would be sufficient to only have the OPEs between Xm and itself
and between pα and θα, since these are the fundamental fields and Πm and dα are composite
fields. But for calculating scattering amplitudes it is helpful to have the OPEs involving
Πm and dα, because in the pure spinor formalism these are conformal primary fields that
appear in the vertex operators. Using the energy momentum tensor (3.8) and the OPEs
(3.14) we find that the holomorphic conformal weight of the primaries ∂Xm,Πm, pα and
dα is h = 1 and θα is h = 0.

Even though, this approach has some advantages one also has to deal with difficulties,
which will later be addressed by the pure spinor formalism introduced in section 3.2. When
quantized the theory becomes anomalous, because it has a non-vanishing central charge,
which raises a first major concern. Each component of the bosonic spacetime coordinates
Xm contributes cX = 1 [27] and each pair of (pα, θα) contributes cp,θ = −2 to the total
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central charge, where we have used that the two fermionic fields correspond to a bc ghost
system with λ = 1 [27, 37]. Therefore, in ten spacetime dimensions the total central charge
of the energy momentum tensor (3.8) is

ctotal = 10 · cX + 16 · cp,θ = −22 . (3.15)

In [129] a supersymmetric integrated vertex operator for a massless open string was pro-
posed

USiegel =
∫

dz(∂θαAα(X, θ) + ΠmAm(X, θ) + dαW
α(X, θ)) , (3.16)

where {Aα, Am,Wα} are the linearized SYM fields from section 2.2. But USiegel cannot
lead to the same results for amplitudes computed in the RNS or GS formalism, because it
does not satisfy the same OPEs [43]. When using the θ-expansions (2.32) of the superfields
the vertex operator (3.16) becomes

USiegel
gluon =

∫
dz
(
em∂Xm −

1
4(pγmnθ)fmn +O(θ2)

)
eik·X (3.17)

up to order θ2, where we only kept the terms of the θ-expansion describing a gluon with
polarization em and fmn = ikmen − iknem is the field strength of the gluon. In the RNS
formalism a gluon vertex operator is given by [130]

URNS
gluon =

∫
dz
(
em∂Xm −

1
2ψ

mψnfmn

)
eik·X . (3.18)

The fields ψm are the worldsheet fermions of the RNS formalism, which have conformal
weight hψ = 1

2 . Comparing the vertex operators in (3.17) and (3.18) one can read of
contributions to the Lorentz currents coming from the fermionic fields, which are the
operators multiplied by 1

2fmn, in each formalism

Σmn
RNS = −ψmψn, Σmn

Siegel = −1
2(pγmnθ). (3.19)

Computing the OPE between the currents shows a significant difference. In the RNS
formalism we find that the level of the Kac̆-Moody current algebra is +1, which can be
read of from the coefficient of the double pole term of the OPE

Σmn
RNSΣpq

RNS ∼
ηp[mΣn]q

RNS − ηq[mΣn]p
RNS

z − w
+ ηm[qηp]n

(z − w)2 . (3.20)

Using the OPE between θα and pα in (3.14) the OPE between Lorentz currents in the PSF
takes the form

Σmn
SiegelΣ

pq
Siegel ∼

1
4
p(γmnγpq − γpqγmn)θ

z − w
+ 1

4
Tr(γmnγpq)

(z − w)2
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=
ηp[mΣn]q

Siegel − ηq[mΣn]p
Siegel

z − w
+ 4 η

m[qηp]n

(z − w)2 . (3.21)

Above we used that γmnγpq − γpqγmn = 2ηnpγmq − 2ηnqγmp + 2ηmqηnp − 2ηmpγnq and
Tr(γmnγpq) = 16δm[q δnp] to obtain (3.21). The double pole has a coefficient of +4 such that
the level of the Kac̆-Moody current algebra in the PSF differs from the RNS formalism.
When computing gluon scattering amplitudes with the two vertex operators in (3.16) and
(3.18) the different current algebra levels will lead to discrepancies.

Finally, the spectrum of Siegel’s superstring (3.1) is not in agreement with the RNS
formalism. One would need to include an appropriate set of first class constraints to
reproduce the RNS spectrum. The set of constraints should contain the Virasoro constraint
and κ-symmetry generator

T = −1
2ΠmΠm − dα∂θα , Gα = Πm(γmd)α (3.22)

of the GS formalism expressed in terms of the supersymmetric momentum Πm and GS
constraint dα. So far, the whole set of constraints was never found for the superstring.
Nevertheless, there was a successful description of the superpartical using Siegel’s ansatz
[131, 132]. In the end, all this effort was not lost. Berkovits used this ansatz in his proposal
[43] to construct the pure spinor formalism.

3.2 Fundamentals of the pure spinor formalism
We can see that it is possible to circumvent the problem associated to the mixed first and
second class constraints in the GS formalism by the approach in section 3.1. Nevertheless,
one does not arrive at a consistent theory: The non-vanishing central charge cX+cp,θ = −22
and the level +4 of the Lorentz current algebra makes it impossible for this theory to
describe the superstring known from RNS and GS formalism.

In [43] Berkovits modified Siegel’s approach by adding a ghost sector. These pure spinor
ghosts contribute +22 to the central charge of the energy momentum tensor and −3 to the
double pole of the Lorentz current OPE. This ansatz leads us to a consistent theory – the
pure spinor formalism – by fixing the issues of Siegel’s idea.3

We start to construct this theory by proposing a BRST operator4

Q =
∮

dz λα(z)dα(z) , (3.23)

where λ are commuting SO(1, 9) Weyl spinors and therefore ghosts of the theory and
dα corresponds to the former GS constraint (3.2). The BRST operator (3.23) must be

3In this thesis we always refer to the minimal formulation of the pure spinor formalism. The non-
minimal pure spinor formalism including additional worldsheet fields can be found for example in [45].

4The BRST charge can be derived from first principles [133] and see also [134, 135, 136, 137] for previous
attempts.
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nilpotent Q2 = 0 such that the BRST charge is invariant under gauge constraints [27].
Using the OPEs (3.14) and Cauchy’s formulas we can show that

Q2 =
∮ dz

2πi

∮ dw
2πi λ

α(z)dα(z)λβ(w)dβ(w) = −
∮ dz

2πi(λγ
mλ)Πm . (3.24)

Imposing the consistency condition Q2 = 0 for the BRST operator the above expression
vanishes if the bosonic ghost fields λα obey the pure spinor constraints

(λγmλ) = 0 for m = 1, 2, . . . , D . (3.25)

Hence, a pure spinor λα in D spacetime dimensions is defined to be a Weyl spinor that
satisfies the pure spinor constraint (3.25). These were first studied by Cartan from a
geometrical perspective [138].

3.2.1 The pure spinor constraint
It is important to understand the pure spinor constraint (3.25) in more detail: Naively, one
would assume that the constraints in (3.25) associated to m = 0, 1, . . . , 9 would eliminate
ten degrees of freedom of a pure spinor λα of SO(1, 9). But for a pure spinor λα with
16 − 10 = 6 degrees of freedom the ghost sector would not cancel the anomaly generated
by the non-vanishing central charge (3.15) of the matter sector, see below for more details.

However, a pure spinor has 11 independent degrees of freedom, i.e. the pure spinor
constraint reduces the degrees of freedom of λα by five. In order to proof this statement we
Wick rotate the Lorentz group from SO(1, 9) to SO(10) and in addition break the manifest
Euclidean Lorentz symmetry down to its U(5) subgroup as described in appendix A. Using
the 32× 32 dimensional representation of the Γm-matrices the pure spinor constraint can
be written as [138]

ΛTCΓmΛ = 0 , (3.26)
where C is the charge conjugation matrix (A.8) and Λ is a bosonic Weyl spinor that
satisfies Γ11Λ = −Λ. Because the chirality matrix (A.9) is block diagonal we find Λ =
(λ 0)T, where λα is a 16 dimensional bosonic spinor. Therefore, we recover the constraint
λαγαβλ

β = 0. Including the conjugate momentum wα of λα we obtain the 16 ⊕ 16′ states
which are the ten dimensional Weyl spinors |λ⟩ and anti-Weyl spinors |ω⟩. Because these
states are anti-chiral Γ11 |λ⟩ = − |λ⟩ and chiral Γ11 |ω⟩ = |ω⟩ the U(5) decomposition of
them is given by

|λ⟩ = λ+ |0⟩+ 1
2λabb

bba |0⟩+ 1
4!λ

aϵabcdeb
ebdbcbc |0⟩ ,

|ω⟩ = 1
5!ω+ϵabcdeb

abbbcbdbe |0⟩+ 1
2!3!ω

abϵabcdeb
cbsbe |0⟩+ wab

a |0⟩ (3.27)

in terms of the creation operators (A.21). Note that λab = −λba is an complex anti-
symmetric tensor that parametrizes a SO(10)/U(5) coset [46]. The expansions in ba follows
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from the properties of Γ11: When expressing the chirality matrix (A.24) in terms of the
creation operators it follows that Γ11 |0⟩ = − |0⟩ and {Γ11, b

a} = 0. Hence, states with an
even or odd number of creation operators acting on the vacuum have eigenvalue −1 or +1
under Γ11, respectively.

The U(5) components of |λ⟩ and |ω⟩ in (3.27) can be obtained by the following projec-
tions

λ+ = ⟨0|λ⟩ , λab = ⟨0|babb|λ⟩ , λa = ϵabcde
1
4! ⟨0|bbbcbdbe|λ⟩ (3.28)

and

ω+ = 1
5!ϵ

abcde ⟨0|babbbcbdbe|ω⟩ , ωab = − 1
3!ϵ

abcde ⟨0|bcbdbe|ω⟩ , ωa = ⟨0|ba|ω⟩ . (3.29)

Due to the fermionic nature of the creation operators ba the number of independent de-
grees of freedom of the components in (3.29) is given by #(ba1 · · · ban) =

(
5
n

)
. Hence, the

SO(10) Weyl λα and anti-Weyl ωα spinors have been decomposed into irreducible U(5)
representations

λα → (λ+, λab, λ
a) , ωα → (ω+, ω

ab, ωa) ,
16→ (1 5

2
,10 1

2
,5− 3

2
) , 16’→ (1− 5

2
,10− 1

2
,5 3

2
) . (3.30)

Before we start to analyse (3.25) we will take a look at some useful results. Let’s consider
two states ϕ and ψ which are generated by acting with an arbitrary number of creation
operators bi on the vacuum

|ϕ⟩ = ϕi1i2...imb
i1bi2 · · · bim |0⟩ , |ψ⟩ = ψj1j2...jnb

j1bj2 · · · bjn |0⟩ . (3.31)

Then, the product of these two states with the charge conjugation matrix ⟨ϕ|C |ψ⟩ is only
non-vanishing and proportional to ϵabcde if and only if ϕ†ψ is proportional to babbbcbdbe. We
can bring all ba in ⟨ϕ| to the right of C by using that

Cba = baC , Cba = baC , (3.32)

which follows from (A.7) together with (A.22) and thereby obtain

⟨ϕ|C |ψ⟩ = ϕ∗
i1i2...imψj1j2...jn ⟨0| (bim · · · bi2bi1)C(bj1bj2 · · · bjn) |0⟩

= ϕ∗
i1i2...imψj1j2...jn ⟨0|C(bim · · · bi2bi1)(bj1bj2 · · · bjn) |0⟩

= ϕ∗
i1i2...imψj1j2...jn ⟨0| (b5b4b3b2b1)(bim · · · bi2bi1)(bj1bj2 · · · bjn) |0⟩ , (3.33)

where we used (A.22) and that ⟨0|C = ⟨0| b5b4b3b2b1. The above expression is only
non-vanishing, if all the annihilation operators (b5b4b3b2b1) match the creation operators
(bim · · · bi2bi1)(bj1bj2 · · · bjn) exactly. So far, we can conclude that if ⟨ϕ|C |ψ⟩ is different
from zero then

⟨ϕ|C |ψ⟩ = (ϕ∗ ⊗ ψ)abcde ⟨0|Cbabbbcbdbe |0⟩ (3.34)
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for a, b, c, d, e ∈ {1, 2, 3, 4, 5}, which are all mutually different. Moreover, by using (A.23)
and the normalization ⟨0|0⟩ = 1 we can recognize that ⟨0|Cb1b2b3b4b5 |0⟩ = 1 and that
⟨0|Cbabbbcbdbe |0⟩ is totally antisymmetric in all indices. Hence, we find

⟨0|Cbabbbcbdbe |0⟩ = ϵabcde , (3.35)

which concludes the proof, i.e.

⟨ϕ|C |ψ⟩ = (ϕ∗ ⊗ ψ)abcdeϵabcde . (3.36)

To give an example we choose ⟨ϕ| = {⟨0| ba, ⟨0| babbbc, ⟨0| babbbcbdbe} and |ψ⟩ = |λ⟩ and find
from the spinor decomposition (3.27) that

⟨0|Cba |λ⟩ = λa ,

⟨0|Cbabbbc |λ⟩ = −1
2ϵ

abcdeλde ,

⟨0|Cbabbbcbdbe |λ⟩ = ϵabcdeλ+ . (3.37)

Under the decomposition SO(10)→ U(5) the pure spinor constraint (3.26) splits into two
independent equations: Plugging Γi in terms of bi and bi

Γi = bi + bi , Γi+5 = −i(bi − bi) (3.38)

into (3.26) and taking suitable linear combination of the constraints gives

⟨λ|Cbi |λ⟩ = 0 , ⟨λ|Cbi |λ⟩ = 0 (3.39)

for i = 1, 2, . . . , 5. If we use the component expansion ⟨λ| = ⟨0|λ+ + 1
2 ⟨0| babbλab +

1
24 ⟨0| bbbcbdbeλ

aϵabcde the first equation in (3.39) becomes

0 = ⟨λ|Cba |λ⟩ = λ+ ⟨0|Cba |λ⟩+ 1
2λbc ⟨0| bbbcCb

a |λ⟩+ 1
24λ

bϵbcdef ⟨0| bcbdbebfCba |λ⟩

= 2λ+λa − 1
4ϵ

abcdeλbcλde , (3.40)

where we have used (3.32) and (3.37). Therefore, the constraint ⟨λ|Cbi |λ⟩ = 0 allows us
to express the five vector components λa in terms of λ+ and λab:

λa = 1
8λ+ ϵ

abcdeλbcλde (3.41)

for λ+ ̸= 0. In addition, this solution automatically solves the second set of constraints in
(3.39)

⟨λ|Cba |λ⟩ = −2λabλb . (3.42)
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When substituting the solution into the above equation we get

−2λabλb = − 1
4λ+λabϵ

bcdefλcdλef = 0 , (3.43)

which vanishes due to the antisymmetric nature of the Levi-Civita symbol and λab and the
fact that the indices only take values between one and five: For any value of a one of the
other indices b, c, d, e or f must take the same value. For b = a the statement is trivially
true because λaa = 0. If c = a we find that

λabϵ
badefλadλef = −λadϵdcbefλabλef , (3.44)

which vanishes after renaming b ↔ d. Proceeding similar with the remaining indices we
can conclude that also the second set of constraints in (3.39) is automatically satisfied by
(3.41).

Therefore, a pure spinor in ten spacetime dimensions is given by (3.27) together with
the solution of the pure spinor constraint (3.41). The relation in (3.41) eliminates five
degrees of freedom of λa ∈ 5 and hence out of the 16 degrees of freedom of λα a total of 11
independent components are left in a pure spinor of SO(10). These remaining components
split into an antisymmetric 2-from λab ∈ 10 with ten and a scalar λ+ ∈ 1 with one degree
of freedom.

3.2.2 Lorentz current for the ghost sector
The pure spinor ghost λα and the dual field wα are SO(1, 9) Weyl and anti Weyl spinors.
Therefore, they contribute to the to the SO(1, 9) Lorentz current

Mmn = Σmn +Nmn , (3.45)

where Nmn is the contribution coming from the pure spinor ghost sector. The coefficient
of the double pole in the OPE of Nmn with itself is −3, which implies that Nmn satisfies
the following OPEs5

Nmn(z)Npq(w) ∼ ηp[mNn]q − ηq[mNn]p

z − w
− 3 η

m[qηp]n

(z − w)2 , (3.46)

Σmn(z)Npq(w) ∼ regular . (3.47)

Therefore, the level of the Kac̆-Moody current algebra of Mmn matches the one in the RNS
formalism, i.e. Mmn satisfies the same OPE as in (3.20).

As for the pure spinor constraint to understand the OPE (3.46) we have to break the
manifest SO(10) symmetry down to its U(5) subgroup. In terms of U(5) = SU(5)⊗ U(1)
variables the pure spinor Lorentz current decomposes into irreducible representation as

Nmn → (n, nab , nab, nab) , (3.48)
5In [139] the OPE for the ghost Lorentz current is derived form the decomposition of λα and wα.
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which have the U(1) charges (0, 0,+2,−2). After identifying (3.48) with the Lorentz
generators (A.13) and (A.14) with a traceless nab , c.f. (A.18), as

(n, nab , nab, nab)→ −
(
m√

5
,ma

b −
1
5m,m

ab,mab

)
(3.49)

the OPE in (3.46) decomposes under SO(10)→ SU(5)⊗U(1) into the following OPEs for
(3.48)

nab(z)ncd(w) ∼ regular , nab(z)ncd(w) ∼ regular ,

nab(z)ncd(w) ∼
−δ[c

[an
d]
b](w)− 2√

5δ
c
[aδ

d
b]n(w)

z − w
− 3δ

c
bδ
d
a − δcaδdb

(z − w)2 , n(z) ∼ regular ,

nab (z)ncd(w) ∼ −δ
c
bn

a
d(w) + δadn

c
b(w)

z − w
− 3

δadδ
c
b − 1

5δ
a
b δ

c
d

(z − w)2 , n(z)nab(w) ∼ 2√
5
nab(w)
z − w

,

nab(z)ncd(w) ∼
−δadnbc(w) + δbdn

ac(w)− 2
5δ
c
dn

ab(w)
z − w

, n(z)nab(w) ∼ 2√
5
nab(w)
z − w

,

nab(z)ncd(w) ∼
−δcbnad(w) + δcan

bd(w) + 2
5δ
c
dnab(w)

z − w
, n(z)n(w) ∼ − 3

(z − w)2 ,

(3.50)

where more details can be found in appendix A and [140, 141]. With the redefined U(1)
generator n the corresponding charge is then defined by [n,R] = qR√

5R. According to (3.50)
the fields (n, nab , nab, nab) transform in the (10,240,10−2,102) representation of SU(5) ⊗
U(1).

There is a further constraint on the total Lorentz current (3.45): The pure spinor λα
has to transform as a spinor under Lorentz transformations. These are generated by the
action of Mmn on λα, c.f. (A.10):

δλα = 1
2

[∮
dz εmnMmn, λα

]
= 1

4εmn(γmnλ)α . (3.51)

Since a pure spinor λα can only have a non-regular OPE with the Lorentz current Nmn,
the transformation (3.51) implies

Nmn(z)λα(w) ∼ 1
2

(γmn)αβλβ(w)
z − w

. (3.52)

Following from appendix A a SO(10) pure spinor transforms under Lorentz transformations
in terms of its U(5) representations as [140]

n(z)λ+(w) ∼ −
√

5
2
λ+(w)
z − w

, n(z)λcd(w) ∼ − 1
2
√

5
λcd(w)
z − w

,

n(z)λa(w) ∼ 3
2
√

5
λa(w)
z − w

, nab (z)λcd(w) ∼ δadλcb(w)− δacλdb(w)
z − w

− 2
5
δabλcd(w)
z − w

,
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nab (z)λ+(w) ∼ regular , nab (z)λc(w) ∼ 1
5
δabλ

c(w)
z − w

− δcbλ
a(w)

z − w
,

nab(z)λ+(w) ∼ λab(w)
z − w

, nab(z)λcd(w) ∼ ϵabcdeλ
e(w)

z − w
,

nab(z)λc(w) ∼ regular , nab(z)λ+(w) ∼ regular ,

nab(z)λcd(w) ∼ −
δa[cδ

b
d]λ

+(w)
z − w

, nab(z)λc(w) ∼ −1
2
ϵabcdeλde(w)
z − w

. (3.53)

3.3 A parametrization of the pure spinor ghosts
The solution for the pure spinor constraint and the Kac̆-Moody current algebra allows us
to write the U(5) components of the pure spinors (λ+, λab, λ

a) and the Lorentz current
(n, nab , nab, nab) in terms of the ghost variables s(z), uab(z) and their conjugate momenta
t(z), vab(z). The action of this parametrization of the pure spinor ghosts is given by [43,
46, 142]

Sλ = 1
2π

∫
d2z

(1
2v

ab∂uab − ∂t∂s
)
, a, b = 1, . . . 5 . (3.54)

Because s(z) and t(z) are chiral bosons, we have to impose their equations of motion by
hand: ∂s = ∂t = 0. Moreover, the OPEs between the ghost fields and their conjugate
momenta are given by

t(z)s(w) ∼ ln(z − w) ,

vab(z)ucd(w) ∼
δa[cδ

b
d]

z − w
. (3.55)

This parametrization of the pure spinor formalism has to respect the group-theoretic rela-
tions of λα and Nmn. Hence, the OPEs of λα and Nmn in terms of the ghost fields have
to satisfy (3.50) and (3.53). With this restriction the solution for the U(5) components is
given by [43, 46, 142]

n = − 1√
5

(1
4uabv

ab + 5
2∂t−

5
2∂s

)
, λ+ = es ,

nba = uacv
bc − 1

5δ
b
aucdv

cd , λab = uab ,

nab = −esvab , λa = 1
8e

−sϵabcdeubcude ,

nab = es
(

2∂uab − uab∂t− 2uab∂s+ uacubdv
cd − 1

2uabucdv
cd
)
. (3.56)

It is straightforward to check that these definitions reproduce (3.50) and (3.53), if the ghost
fields s(z), t(z), uab(z) and vab(z) satisfy (3.55). For example, we can compute the OPE

n(z)nab(w) = 1√
5

(1
4ucdv

cd + 5
2∂t−

5
2∂s

)
(z)es(w)vab(w)
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= 1√
5

1
4e

s(w)vcd(z)ucd(z)vab(w)−
√

5
2 ∂t(z)es(w)vab(w)

∼ 1√
5

1
4e

s(w)vcd(z)
−δa[cδbd]

z − w
−
√

5
2

1
z − w

es(w)vab(w)

∼ − 2√
5
nab(w)
z − w

(3.57)

and in addition

nab(z)λc(w) = −1
8e

s(z)e−s(w)vab(z)ϵcdefgude(w)ufg(w)

= −1
8ϵ

cdefges(z)e−s(w)
(
vab(z)ude(w)ufg(w) + ude(w)vab(z)ufg(w)

)
∼ −1

8ϵ
cdefges(z)e−s(w)

(−δa[dδbe]
z − w

ufg(w) + ude(w)
−δa[fδbg]

z − w

)

= −1
8e

s(z)e−s(w) 2ϵcabfgufg(w) + 2ϵcdeabude(w)
z − w

∼ −1
2ϵ

abcdeλde(w)
z − w

, (3.58)

where we have used the OPE for uab(z)vcd(w) ∼ −δa
[cδ

b
d]

z−w and ∂t(z)es(w) ∼ 1
z−we

s(w), which
follow from the OPEs in (3.55) of the ghost fields. Moreover, we have discarded the non-
singular terms that arise from the Taylor expansions of the fields around z and w. The
computations above reproduce the OPEs in (3.50) and (3.53), which were derived from
the group-theoretic decomposition of the SO(10) covariant OPEs. All other OPEs can be
obtained in a similar way. Although, the action Sλ of the ghosts is not manifestly Lorentz
invariant, we have constructed this parametrization such that all OPEs involving the U(5)
Lorentz current and pure spinors originate from manifestly SO(10) covariant expressions.
Therefore, the pure spinor formalism is manifestly Lorentz covariant.

The energy-momentum tensor Tλ(z) for the ghost action (3.54) can be obtained by
Noether’s theorem for the continuos symmetry corresponding to a shift in the worldsheet
coordinates, i.e. the variation of the action under δz = −ε and δz = −ε, which is given by

δSλ = 1
2π

∫
d2z

(
∂εTλ(z) + ∂εT λ(z)

)
. (3.59)

The conformal transformations for the ghost fields (∂s, ∂t) are obtained by assuming that
they depend on both (z, z) and performing a Taylor expansion for s(z, z) and t(z, z) in the
infinitesimal parameters ε and ε [140]6

δ∂s = ∂ε∂s+ ε∂2s+ ∂ε∂s+ ε∂∂s , δ∂t = ∂ε∂t+ ε∂
2
t+ ∂ε∂t+ ε∂∂t . (3.60)

6Note that the transformation for ∂s in (3.60) differs from equation (3.28) in [140], but δ∂s in (3.60)
is obtained by following the steps in [140] and gives the correct contribution to the energy momentum
tensor, see (3.62).
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The other ghosts fields (vab, uab) have conformal weights (h, h) = ((1, 0), (0, 0)) such that
their conformal transformations are given by [143]

δvab = ∂εvab + ε∂vab + ε∂vab , δuab = ε∂uab + ε∂uab . (3.61)

For the variation of the action Sλ for s and t under the above conformal transformations
we find ∫

d2z δ
(
∂t∂s

)
=
∫

d2z
[(
∂ϵ∂t+ ϵ∂

2
t+ ∂ϵ∂t+ ϵ∂∂t

)
∂s

+∂t
(
∂ϵ∂s+ ϵ∂2s+ ∂ϵ∂s+ ϵ∂∂s

)]
=
∫

d2z
[
∂
(
ϵ∂t∂s

)
+ ∂

(
ϵ∂t∂s

)
+ ∂ϵ∂t∂s+ ∂ϵ∂s∂t

]
=
∫

d2z
[
∂ϵ∂t∂s+ ∂ϵ∂s∂t

]
. (3.62)

At the boundary of integration the surface terms in (3.62) vanish such that the contribution
of s and t to the holomorphic part of the energy momentum tensor is Tst(z) = ∂s(z)∂t(z),
which follows after comparing (3.59) with (3.62). For uab and vab we find the contribution
to the energy-momentum tensor by identifying them with a bc ghost system with λ = 1.
Hence, for b = −1

2v
ab and c = uab the holomorphic part of the energy-momentum tensor is

Tuv(z) = 1
2v

ab(z)∂uab(z). Adding both pieces together we end up with

Tλ(z) = 1
2v

ab(z)∂uab(z) + ∂s(z)∂t(z) . (3.63)

When computing the OPE of Tλ(z) with n(w)

Tλ(z)n(w) = − 1√
5

(1
2v

ab∂uab + ∂s∂t
)

(z)
(1

4ucdv
cd + 5

2∂t−
5
2∂s

)
(w)

= 1
8
√

5
(
vab(z)∂uab(z)ucd(w)vcd(w) + vab(z)∂uab(z)ucd(w)vcd(w)

+vab(z)∂uab(z)ucd(w)vcd(w)
)
−
√

5
2 ∂s(z)∂t(z)∂t(w) +

√
5

2 ∂s(z)∂t(z)∂s(w)

∼ −
√

5
(z − w)3 + n(w)

(z − w)2 + ∂n(w)
z − w

, (3.64)

where the triple pole 1
(z−w)3 comes from the contraction

1
8
√

5
vab(z)∂uab(z)ucd(w)vcd(w) ∼ − 1

8
√

5
δa[cδ

b
d]

z − w
δc[aδ

d
b]

(z − w)2

= −
√

5
(z − w)3 . (3.65)



3.4 The action of the pure spinor formalism 33

The triple pole 1
(z−w)3 implies that n(w) is not a primary field, which is not the case.

However, by adding ∂2s to the energy momentum tensor the OPE (3.64) is corrected by

∂2s(z)n(w) = − 1
sqrt5∂

2s(z)
(1

2v
ab(z)∂uab(z) + ∂s(z)

)

= −
√

5
2 ∂2s(z)∂t(w)

∼
√

5
(z − w)3 (3.66)

such that n(w) is a primary field of conformal dimension h = 0. Note that it is possible to
add ∂2s, because it drops out of (3.59).

Finally, we can conclude that the holomorphic energy-momentum tensor of the ghost
sector is given by

Tλ = −1
2v

ab∂uab∂t∂s+ ∂2s . (3.67)

The central charge of the ghost sector is determined by the coefficient of the fourth order
pole 1

(z−w)4 in the OPE Tλ(z)Tλ(w) ∼ cλ

2
1

(z−w)4 . The terms that contribute to this pole are

1
4v

ab(z)∂uab(z)vcd(w)∂ucd(w) ∼ 1
4
δa[cδ

b
d]δ

c
[aδ

d
b]

(z − w)4 = 10
(z − w)4 ,

∂t(z)∂s(z)∂t(w)∂s(w) ∼ 1
(z − w)4 . (3.68)

Adding both contributions implies that cλ = 22. Therefore, the pure spinor formalism will
not exhibit a conformal anomaly: The total central charge of the energy-momentum tensor
in the pure spinor formalism

TPS = −1
2∂X

m∂Xm − pα∂θα + 1
2v

ab∂uab + ∂t∂s+ ∂2s (3.69)

vanishes, i.e. ctotal = cx + cpθ + cλ = 10− 32 + 22 = 0, because all OPEs between the pure
spinor ghosts and the matter fields are regular.

3.4 The action of the pure spinor formalism
When adding the pure spinor ghost action (3.54) to the action of the matter fields (3.1)
we obtain the U(5) covariant action [43]

SPS = 1
π

∫
d2z

(1
2∂X

m∂Xm + pαθ
α − ∂t∂s+ 1

2v
ab∂uab

)
. (3.70)

The action SPS of the pure spinor formalism can also be written in terms of the SO(10)
covariant fields as

SPS = 1
π

∫
d2z

(1
2∂X

m∂Xm + pαθ
α − wα∂λα

)
. (3.71)



34 3. Pure spinor formalism

Although, we have added the pure spinor ghosts, the action (3.71) is still supersymmetric,
because the pure spinor ghosts transform under supersymmetry as7

δωα = 0, δλα = 0 (3.72)

and the action of the matter fields is invariant under supersymmetry transformations, as
was shown in section 3.1.

From dimensional analysis we can reinstate the α′-dependence, where variables in (3.71)
have the following length dimensions [144, 145]

[α′] = 2 , [Xm] = 1 , [θα] = [λα] = 1
2 , [pα] = [wα] = −1

2 . (3.73)

Moreover, the SO(10) covariant version of the energy-momentum tensor and the Lorentz
current of the fermionic fields are given by

TPS = −1
2ΠmΠm − dα∂α + wα∂λ

α , Mmn = −1
2(pγmnθ) + 1

2(wγmnλ) (3.74)

and can be derived from the action (3.71). Above we have written TPS in terms of the
supersymmetric momentum Πm and the GS constraint dα, which are defined as

Πm = ∂Xm + 1
2(θγm∂θ) ,

dα = pα −
1
2

(
∂Xm + 1

4(θγm∂θ)
)

(γmθ)α , (3.75)

see also section 3.1 for more details.

3.5 Operator product expansions in the pure spinor
formalism

In this section we summarize the OPEs that underlie the CFT of the pure spinor formalism.
The matter fields, the supersymmetric momentum and the GS constraint satisfy

Xm(z, z)Xn(w,w) ∼ −ηmn ln |z − w|2 , pα(z)θβ(w) ∼ δα
β

z − w
,

dα(z)dβ(w) ∼ −
γmαβΠm(w)
z − w

, dα(z)Πm(w) ∼ (γm∂θ(w))α
z − w

,

Πm(z)Πn(m) ∼ − ηmn

(z − w)2 , dα(z)θβ(w) ∼ δαβ

z − w
. (3.76)

7Similarly, the U(5) covariant fields transform as δs = δt = δuab = δvab = 0 under supersymmetry
transformations.
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The pure spinor constraint implies that wα and λα are not free fields such that it is not
straightforward to give a SO(10) covariant OPE, i.e. the OPE wα(z)λβ ∼ δβ

α

z−w obtained
from the pure spinor action (3.71) is not correct. Nevertheless, by decomposing the ghost
fields into their U(5) covariant variables it is possible to find the OPE

wα(z)λβ ∼ δβα
z − w

+ . . . (3.77)

where . . . are non-covariant U(5) corrections, which are needed to make the OPE of the
conjugated momentum wα with the pure spinor constraint (λγmλ) non-singular. However,
the corrections do not contribute to the OPE of a pure spinor λα with the ghost Lorentz
current Nmn. [43, 114].

From the θ-expansions (2.32) it follows that the superfields K(X, θ) only depend on
Xm via an overall plane wave factor eik·X

K(X, θ) = eik·XK(θ) . (3.78)

The other factor K(θ) of the superfields depends only on θα such that it has a non-vanishing
OPE only with pα. Then, by using the OPEs (3.76) we find that the non-vanishing OPEs
of Πm and dα with θα and eik·X are

Πm(z)eik·X(w) ∼ ∂Xm(z)eik·X(w) ∼ −ik
m

z − w
eik·X(w) ,

dα(z)eik·X(w) ∼ −1
2(γmθ)α∂Xm(z)eik·X(w) ∼ 1

2(z − w)(γmθ)α∂meik·X(w) ,

dα(z)θβ(w) ∼ pα(z)θβ(w) ∼ 1
z − w

∂

∂θα
θβ(w) . (3.79)

We used in the second line that ikmeik·X = ∂meik·X and in the third line that δβα = ∂
∂θα θ

β

to rewrite the results of the OPEs in a form that suits our purpose. Now we can calculate
the OPE of Πm and dα with an arbitrary superfield

Πm(z)K(X(w,w), θ(w)) ∼ −∂K(X(w,w), θ(w))
z − w

,

dα(z)K(X(w,w), θ(w)) ∼ DαK(X(w,w), θ(w))
z − w

, (3.80)

where Dα = ∂
∂θα + 1

2(γmθ)α∂m is the canonical derivative, we have defined in (2.3). More-
over, the OPEs involving the fermionic Lorentz current are given by

Mmn(z)Mpq(w) ∼ ηp[mMn]q − ηq[mMn]p

z − w
+ ηm[qηp]n

(z − w)2 ,

Nmn(z)Npq(w) ∼ ηp[mNn]q − ηq[mNn]p

z − w
− 3 η

m[qηp]n

(z − w)2 ,
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Nmn(z)λα(w) ∼ 1
2

(γmn)αβλβ(w)
z − w

. (3.81)

Using these OPEs one can show that the fields {∂θα,Πm, dα, N
mn} are conformal primaries

of weight h = +1: The OPEs of these fields with the energy momentum tensor (3.74) are
given by

TPS(z){∂θα,Πm, dα, N
mn}(w) ∼ {∂θ

α,Πm, dα, N
mn}(w)

(z − w)2 + ∂{∂θα,Πm, dα, N
mn}(w)

z − w
.

(3.82)

3.6 Massless vertex operators for the N = 1 SYM mul-
tiplet

The information about asymptotic states in string scattering amplitudes is contained in
vertex operators. The integrated massless vertex operators (3.16) in Siegel’s formulation of
the superstring lead to discrepancies with the RNS formalism, because of the double pole
coefficients of the Lorentz current of the fermionic variables, see section 3.1. By adding a
correction proportional to the pure spinor Lorentz current Nmn to USiegel(z) we obtain [43]

U(z) =
[
∂θαAα(X, θ) + ΠmAm(X, θ) + dαW

α(X, θ) + 1
2N

mnFmn(X, θ)
]
(z) (3.83)

to resolve these discrepancies. The integrated vertex operator is parametrized by the
linearized superfields Aα(X, θ), Am(X, θ),Wα(X, θ) and Fmn(X, θ) of section 2.2, which
are worldsheet functions through the superspace coordinates Xm = Xm(z) and θα = θα(z)
such that we can introduce the shorthand notation K(z) = K(X(z), θ(z)) for any linearized
superfield K. Hence, the integrated massless vertex operator describes the degrees of
freedom of a massless gauge multiplet. The superfields of this multiplet have the following
length dimensions [144, 145]

[Aα] = 1
2 , [Am] = 0 , [Wα] = −1

2 , [Fmn] = −1 , (3.84)

which implies for the vertex operators

[V ] = [U ] = 1 , (3.85)

where V is the unintegrated vertex operator introduced below in (3.86). The gluon vertex
operator obtained form (3.83) contains the complete fermionic Lorentz current Mmn =
Σmn+Nmn as a coefficient of the component field strength fmn when using the θ-expansions
(2.32) of the superfields. This implies that the double pole of the vertex operator in (3.83)
is in agreement with the RNS vertex operator.
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Note that the vertex operator (3.83) has conformal weight +1, which means that it has
to appear in any superstring amplitude in the conformally invariant combination

∫
dz U(z),

where it is integrated over (parts of) the worldsheet.
For computing scattering amplitudes we also need a massless vertex operator with

conformal dimension zero. To remove the redundancies of the conformal Killing group
(Möbius transformations) we require vertex operators at fixed positions on the worldsheet.
This unintegrated vertex operator is given by

V (z) = [λαAα(X, θ)](z) . (3.86)

The physical states in the pure spinor formalism, described by the unintegrated and inte-
grated vertex operators, have to be in the cohomology of the BRST operator Q of (3.23).
A state Ψ is in the cohomology of the BRST operator Q, if it is BRST closed QΨ = 0, but
not BRST exact Ψ ̸= QΛ for some state Λ:

HBRST = Hclosed

Hexact
. (3.87)

For massless states with k2 = 0 the unintegrated vertex operator V is BRST closed when
the superfield Aα is on-shell8

QV (w) =
∮ dz

2πi λ
α(z)dα(z)λβAβ(w)

=
∮ dz

2πi
1

z − w
(
λαλβDαAβ

)
(w)

= λαλβD(αAβ) = 1
2λ

αγmαβλ
βAm = 0 , (3.88)

which follows when using the pure spinor constraint (3.25) and the OPE (3.80) between
dα and a superfield K. The conformal dimension of the unintegrated vertex operator is
determined by the OPE with the energy-momentum tensor: In a conformal field theory
the OPE of the energy-momentum T with a conformal primary ϕh of conformal weight h
is given by [143]

T (z)ϕh(w) ∼ hϕh
(z − w)2 + ∂ϕh

z − w
. (3.89)

Using (3.76) we find for the OPE of the unintegrated vertex operator (3.86) with the
energy-momentum tensor TPS in (3.74)

TPS(z)V (w) ∼ 1
2
∂m∂mV (w)
(z − w)2 + (Πm∂m + ∂θαDα)V (w) + ∂λαAα(w)

z − w
8The relationship between pure spinors and the equations of motion in super Yang-Mills theory was

already pointed out in [146, 147]. For a more recent overview for the use of pure spinors in off-shell
supersymmetric theories see [148, 149]. Moreover, an early implementation of pure spinors in classical
superstring theory in ten spacetime dimensions can be found in [150].
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= ∂V (w)
z − w

. (3.90)

The first term above vanishes due to k2 = 0 and we used the chain rule for the worldsheet
derivative

(Πm∂m + ∂θαDα)V + ∂λαAα = λα∂Aα + ∂λαAα = ∂V , (3.91)

which follows from the definitions of Πm and dα in (3.75) and

(Πm∂m + ∂θαDα)K(X, θ) =
(
∂Xm∂m + ∂θα

∂

∂θα

)
K(X, θ) = ∂K(X, θ) (3.92)

for a superfield K(X, θ), which does not depend on the pure spinor λα or derivates of Xm

or θα.
Because the unintegrated vertex operator is in the cohomology of Q, we have to exclude

pure gauge superfields: Any gauge variation (2.18) of the linearized superfield Aα corre-
sponds to adding a BRST exact piece λαδΩAα = λαDαΩ = QΩ to the vertex operator.
Hence, the gauge variation of V is not in the cohomology of the BRST operator.

In the PSF the unintegrated and integrated vertex operator for massless states are
related by

QU = ∂V . (3.93)

Acting with the BRST charge Q on the unintegrated vertex operator gives

Q(∂θαAα) = ∂λαAα − ∂θαλβDβAα

= ∂λαAα − ∂θαλβ(−DαAβ + γmαβAm) , (3.94)
Q(ΠmAm) = (λγm∂θ)Am + ΠmλαDαAm

= (λγm∂θ)Am + Πmλα((γmW )α + ∂mAα) , (3.95)
Q(dαWα) = −(λγmW )Πm − dαλβDβW

α

= −(λγmW )Πm −
1
4dαλ

β(γmn) α
β Fmn , (3.96)

Q
(1

2N
mnFmn

)
= 1

4dα(γmnλ)αFmn + 1
2N

mnλαDαFmn

= 1
4dα(γmnλ)αFmn +Nmnλα∂m(γnW )α , (3.97)

where we used the OPEs in (3.76) and (3.80) and in addition the equations of motion of
the super Yang-Mills fields (2.17). Adding the individual contributions yields

QU = ∂λαAα + ∂θαλβDαAβ + Πmλα∂mAα +Nmn(λγn∂mW ) . (3.98)

The last term Nmn(λγn∂mW ) vanishes due to the pure spinor constraint

(λγn)α(λγn)β = −1
2γ

m
αβ(λγmλ) = 0 (3.99)
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and the Dirac equation γmαβ∂mW
β = 0 such that

Nmnλα∂m(γnW )α = 1
2(wγmγnλ)(λγn∂mW )− 1

2(wλ)(λγm∂mW ) = 0 , (3.100)

where we used the definition of the ghost Lorentz current Nmn = 1
2(wγmnλ) following from

(3.74). Using the chain rule (3.91) we obtain for the action of the BRST operator on the
integrated vertex operator

QU = ∂λαAα + λα(∂θβDβAα + Πm∂mAα) = ∂λαAα + λα∂Aα = ∂(λA) = ∂V . (3.101)

Therefore, we conclude that the integrated vertex operator
∫

dz U(z) is BRST closed up to
surface terms. Surface terms do not contribute to string scattering amplitudes: They van-
ish because of the cancelled propagator argument. In addition, the cancellation of surface
terms implies the invariance of scattering amplitudes under linearized gauge transforma-
tions. For the transformations δΩAα = DαΩ and δΩAm = ∂mΩ in (2.18) with some gauge
scalar superfield Ω the variation of the unintegrated vertex operator δΩV = λαDαΩ = QΩ
vanishes in the cohomology of the BRST charge. After using the chain rule (3.91) the
variation of the integrated vertex operator reduces to the surfaces term

δΩU = Πm∂mΩ + ∂θαDαΩ = ∂Ω , (3.102)

which vanishes upon integration.
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Chapter 4

Tree level amplitudes in the pure
spinor formalism

At tree-level the interaction of massless superstring states, described by the vertex opera-
tors in section 3.6, corresponds to scattering amplitudes on the sphere and disk for closed
and open strings, respectively. Both worldsheets have no moduli and therefore we only
have to take care of the residual symmetry of the conformal Killing group (CKG) of the
worldsheet topology. Because we have three (six) conformal Killing vectors (CKV) on the
disk (sphere), we have to fix the position of three (six) real worldsheet positions [130].
Fixing the reparametrization invariance of the Möbius group of the worldsheet leads to the
insertion of unintegrated vertex operators at these positions, while the other vertex oper-
ator are integrated over. It is a convenient choice to fix the vertex operators i = 1, n − 1
and n, where n is the number of external states, to some arbitrary positions z1, zn−1 and
zn. In principle, the amplitude is independent of the assignment of the integrated and
unintegrated vertex operators. For n massless open strings we find that the scattering
amplitude prescription is given by the following correlation function of vertex operators1

[43]

A(σ) =
∫
D2(σ)

dz2 dz3 · · · dzn−2 ⟨⟨V1(z1)U2(z2)U3(z3) · · ·Un−2(zn−2)Vn−1(zn−1)Vn(zn)⟩⟩ ,

(4.1)

where ⟨⟨. . .⟩⟩ denotes the path integral over the variables in the pure spinor action (3.71).
The integration domain, which is the boundary of the disk, can be parametrized by (parts

1As discussed in [114] the computation of gauge theory scattering amplitudes simplifies tremendously
when considering ordered gauge invariants that depend only on kinematics [151, 152], i.e. color stripped
or color ordered amplitudes. The color dressed S-matrix elements can be recovered by summing over color
ordered open string amplitudes with appropriate color weights. For partial open string amplitudes the
number of local diagrams grows factorial instead of exponentially [114]. Moreover, we are interested in
closed string amplitudes, where the Chan-Paton factors of open string amplitudes are irrelevant. Therefore,
we are only considering color stripped or ordered open string amplitudes.
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of) the compactified real line

D2(σ) = {(z1, z2, . . . , zn) ∈ Rn| −∞ < zp1 < zp2 < . . . < zpn <∞} , (4.2)

where σ ≡ σ(1, 2, . . . , n) is the permutation of the labels that corresponds to the color order-
ing of the n external string states. Note that three vertex operator positions (z1, zn−2, zn) in
D2(σ) are position fixed due to the PSL(2,R) invariance of the worldsheet. A convenient
choice is (z1, zn−1, zn) = (0, 1,∞).

Similarly, the scattering amplitudes for n massless closed string states is given by [114]

An =
∫

M0,n

d2z2 d2z3 · · · d2zn−2 ⟨⟨V1(z1, z1)U2(z2, z2)

×U3(z3, z3) · · ·Un−2(zn−2, zn−2)Vn−1(zn−1, zn−1)Vn(zn, zn)⟩⟩ . (4.3)

Due to the action of the automorphism group PSL(2,C) of the sphere we have fixed
three punctures (z1, zn−1, zn) and the integration over the remaining worldsheet coordinates
z2, z3, . . . , zn−2 is realized by the integral over the moduli space of the punctured Riemann
sphere [153]

M0,n =
{
(z2, z2, . . . , zn−2) ∈ (CP1)n−3|zi ̸= zj for all i ̸= j

}
. (4.4)

Using KLT relations [34] it is possible to express the n closed string amplitude (4.3) in
terms of two n open string amplitudes (4.1), which results in [34, 154, 155]

An =
∑

σ,ρ∈Sn−3

S[σ(2, 3, . . . , n− 2)|ρ(2, 3, . . . , n− 2)]1

×A(1, σ(2, 3, . . . , n− 2), n, n− 1)Ã(1, ρ(2, 3, . . . , n− 2), n− 1, n) , (4.5)

where σ and ρ are permutations of {2, 3, . . . , n − 2} and S[·|·]p is the KLT momentum
kernel, see chapter 7 for more details. Hence, we will focus only on open string amplitudes
in the following sections, which are based on [114, 116, 117].

4.1 Wick’s theorem in the pure spinor formalism
The correlation function ⟨⟨. . .⟩⟩ in (4.1) is evaluated by integrating out the non-zero modes
of the h = 1 conformal primaries ∂θα(zi),Πm(zi), dα(zi) and Nmn(zi), which is done by
applying Wick’s theorem and using the OPEs of section 3.5. Similarly, one has to com-
pute the contractions of non-zero modes of plane wave factors eiki·X(zi,zi), which gives the
Koba-Nielsen factor of the corresponding amplitude. Thereby, one replaces the conformal
primaries by their singularities with the other fields in the correlator and obtains [156]

A(σ) =
∫
D2(σ)

dz2 dz3 · · · dzn−2 ⟨⟨V1(z1)U2(z2)U3(z3) · · ·Un−2(zn−2)Vn−1(zn−1)Vn(zn)⟩⟩
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=
∫
D2(σ)

dz2 dz3 · · · dzn−2 KN({zi})⟨Kn({zi})⟩ , (4.6)

where we have used (3.78) to strip off the open string Koba-Nielsen factor from the vertex
operators and introduced the zero mode correlator ⟨. . .⟩. The contraction of the plane wave
factors is given by

KN({zi}) =
n∏
i<j

|zij|sij , (4.7)

where sij = 1
2(ki + kj)2 = ki · kj for massless states, i.e. k2

i = 0. Moreover, the exact
dependence of Kn({zi}) on zi is determined by the OPEs of the superfields. Nevertheless,
this determines the correlator as a unique function of the worldsheet coordinates zi on the
disk [27]. More explicitly, the correlator can be expressed as

⟨Kn({zi})⟩ =
〈
λαλβλγfαβγ(θ; {zi})

〉
. (4.8)

Note that fαβγ(θ; {zi}) contains all the information of the external states like momenta
and polarization vectors/spinors. These enter fαβγ(θ; {zi}) via the θ-expansions in (2.32).

According to Wick’s theorem to compute fαβγ(θ; {zi}) in (4.8) explicitly we have to
sum over all possible contractions of the integrated and unintegrated vertex operators. For
example, the contraction between an unintegrated and integrated vertex operator follows
from the OPEs [116]

(ΠmAjm)(zj)Vi(zi) ∼ −Vi(zi)ikmi AjmλαAiα = − 1
zji

(iki · Aj)Vi ,

(dβW β
j )(zj)Vi(zi) ∼ −

1
zji
λαDβA

i
αW

β
j = − 1

zji
λα(−DαA

i
β + γmαβA

i
m)W β

j

= 1
zji

(
(QAiα)Wα

j − Aim(λγmWj)
)
,

1
2N

mnF j
mnVi(zi) ∼ −

1
4

1
zji
λαγmnα

βAiβF
j
mn = − 1

zji
Aiα(QWα

j ) , (4.9)

which were compute using (3.76). Because (∂θAj) has no OPE with Vi the OPE residue
between Uj and Vi is given by

Uj(zj)Vi(zi) ∼
1
zji

(
−(iki · Aj)Vi − Aim(λγmWj) +Q(AiWj)

)
. (4.10)

From this analysis the single contraction between the jth integrated vertex operator with
the ith unintegrated vertex operator follows [109]

Kji = zjiU j(zj)V i(zi)
∼ −(iki · Aj)Vi − Aim(λγmWj) +Q(AiWj) . (4.11)
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Moreover, the contraction between two integrated vertex operators can be denoted by

Kji = zjiU j(zj)U i(zi)
∼ −(iki · Aj)Ui + ∂θαDαA

i
βW

β
j + Πmikim(AiWj) + (∂θγmWi)Ajm

+1
4(dγmnWj)F i

mn +Nmn
(
kim(WiγnWj + ηabF j

maF
i
nb)
)
, (4.12)

where the arrow indicates that we are contracting the conformal primaries with h = 1 in Uj
with Ui or Vi but not the h = 1 primaries of Ui with Uj. Note that even after the contraction
the superfields Ki(zi) and conformal primaries still depend on the corresponding vertex
operator position zi. This will be important when we are computing Ks involving more
than two vertex operators, i.e. more than one contraction. Although, Wick’s theorem is the
most fundamental way to perform this task, it is not very efficient. During the evaluation
of correlation functions we will encounter the same contractions over and over again but
with different labels for the external states in the amplitude, which can be exploited in
these calculations by introducing composite superfields. Hence, we will connect Wick
contractions to the composite superfields of [62] in chapter 5, which provide a more suitable
framework for computing scattering amplitudes in the pure spinor formalism.

4.2 The zero mode prescription
At tree-level the fields with conformal weight one appearing in the integrated and unin-
tegrated vertex operators have no zero modes. Therefore, after integrating them out the
correlator will only depend on the zero modes of the conformal weight h = 0 fields λα and
θα,2 which have a single zero mode at genus zero [38]. This zero mode correlator is denoted
by ⟨. . .⟩ in (4.8) and will be analysed in this section.

The left side of equation (4.8) is BRST closed, because it is made out of BRST closed
objects V (zi) and

∫
dzi U(zi). This implies that the function fαβγ(θ; {zi}) has to satisfy

the constraint ∫
D2(σ)

dz2 dz3 · · · dzn−2 λ
αλβλγλδDδfαβγ(θ; {zi}) = 0 . (4.13)

In general, fαβγ(θ; {zi}) is a power series in θk for k = 0, 1, . . . , 16 according to the θ-
expansions (2.32) of the super Yang-Mills fields. But only terms proportional to θ5 give a
non-vanishing contribution to the zero mode correlator, i.e.〈

λαλβλγfαβγ(θ; {zi})
〉

=
〈
λαλβλγfαβγ(θ; {zi})

∣∣∣
θ5

〉
. (4.14)

2There is actually a further contribution of conformal primaries with conformal weight h = 0, which is
the plane wave factor eiki·X(zi,zi). The zero modes of the plane wave factor give a momentum preserving
δ-function, which is left implicit, but we always assume momentum conservation.
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Because at ghost number three there is only one element in the BRST cohomology that
is proportional to θ5, in ten dimensions all non-vanishing contributions in (4.14) to a zero
mode correlator are proportional to 〈

(λ3θ5)
〉

= 2880 , (4.15)

where we have introduced the notation

(λ3θ5) = (λγmθ)(λγnθ)(λγpθ)(θγmnpθ) . (4.16)

The normalization 2880 was chosen such that tree-level amplitude results match in PSF
and RNS formalism [157].

General properties of the zero mode prescription

The zero mode prescription (4.15) is BRST closed

Q(λγmθ)(λγnθ)(λγpθ)(θγmnpθ) = 3(λγmλ)(λγnθ)(λγpθ)(θγmnpθ)
−2(λγmθ)(λγnθ)(λγpθ)(λγmnpθ) = 0 , (4.17)

where the first term vanishes due to the pure spinor constraint λγmλ = 0 and after decom-
posing γmnp = γmδnp − δmnγp + δmpγn and using (λγm)α(λγm)β = 0 also the second term
is zero. Furthermore, the zero mode prescription ⟨(λ3θ5)⟩ is not BRST exact

(λγmθ)(λγnθ)(λγpθ)(θγmnpθ) ̸= QΩ , (4.18)

because there is no Lorentz scalar build from two λs and six θs: If there was a scalar
Ω(λ, θ) with QΩ(λ, θ) = (λ3θ5) it would be constructed out of two λs and six θs, because
Qθα = λα and ∂m in Dα vanishes for functions depending only on λ and θ. From the Fierz
identity

ψαϕβ = 1
16γ

αβ
m1(ψγm1ϕ) + 1

96(γm1...m3)αβ(ψγm1...m3ϕ) + 1
3840(γm1...m5)αβ(ψγm1...m5ϕ) ,

(4.19)
where the gamma-matrices are defined as

γm1m2...mk = 1
k!γ

[m1γm2 · · · γmk] , (4.20)

it follows that the combination λαλβ = 1
3840(λγmnpqrλ)γαβmnpqr only contains a five form

component.3 After the tensor product with an antisymmetric spinor θα1 · · · θα6 the combi-
nation λ2 ⊗ θ6 does not incorporate a Lorentz scalar. Explicitly, this can be seen from the
SO(10) representation of the tensor product λ2 ⊗ θ6 in terms of their Dynkin labels

(00002)⊗ ((01020)⊕ (201000)) = (00011)⊕ (00022)⊕ 2(00120)⊕ . . . , (4.21)
3In λαλβ the only SO(10) irreducible component is the five form: The vector (λγmλ) of λαλβ vanishes

due to the pure spinor constraint (3.25) and the 3-form is not present because of the antisymmetry of
gamma matrices γmnp

αβ = −γmnp
βα .
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where two λs are represented by the Dynkin labels (00002) and six θs are characterized
by (01020) ⊕ (201000). Hence, the tensor product in (4.21) does not exhibit a scalar
representation (00000).

The OPEs used to compute contractions between vertex operators transform appro-
priately under the generator Qα in (3.5) and will not break supersymmetry, because the
action of the pure spinor formalism is spacetime supersymmetric as was shown in section
3.1 and 3.2. It remains to show that the open string scattering amplitude prescription
(4.1) is supersymmetric. The zero mode prescription (4.15) should preserve the super-
symmetric nature of the formalism: Due to the zero mode prescription (4.15) we only
get non-vanishing contributions after the supersymmetry transformation δθα = ηα and
δλα = 0 from terms of the form

A(σ) =
∫
D2(σ)

dz2 dz3 · · · dzn−2 ⟨(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)θαΦα({zi})⟩ , (4.22)

where Φα is a θα independent spinor that contains the momenta and polarization vec-
tors/spinors of the external states. The transformation replaces one θα by ηα and there-
fore leaves us again with three λs and five θs such that after the zero mode integration the
supersymmetry variation of the amplitude becomes

δA(σ) = 2880
∫
D2(σ)

dz2dz3 · · · dzn−2η
αΦα({zi}) . (4.23)

In (4.22) we have constructed one example of a function

fαβγ(θ, zi) = (γmθ)α(γnθ)β(γpθ)γ(θγmnpθ)θδΦδ({zi}) . (4.24)

By demanding BRST closure for (4.22), i.e. plugging the function fαβγ(θ; {zi}) in (4.24)
into (4.13), we get ∫

D2(σ)
dz2 dz3 · · · dzn−2 λ

αλβλγλδΦδ({zi}) = 0 , (4.25)

which only vanishes if Φα is a total derivative of the worldsheet coordinates: Φα = ∂(. . .).
Thus, the supersymmetry variation (4.23) of the amplitude vanishes after integration and
the zero mode prescription preserves supersymmetry.

Pure spinor superspace

The last step in the computation of scattering amplitudes is to extract the contractions
between polarizations and momenta from pure spinor superspace expressions (4.8) by in-
tegrating out the zero modes of three λs and five θs utilizing the zero mode prescription
(4.15). The most general form of a pure spinor superspace expression [156] in (4.8) con-
taining only five θs can be written as

fαβγ(θ; {zi}) = λαλβλγθδ1θδ1θδ2θδ3θδ4θδ5fαβγ|δ1δ2δ3δ4δ5({zi}) , (4.26)
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where the momentum and polarization dependence is stored in fαβγ|δ1δ2δ3δ4δ5 . To perform
the zero mode integration and extract the explicit dependence on momenta and polariza-
tions we use that there is only one scalar representation in SO(10) in the decomposition
of three pure spinors λα and five Weyl spinors θα [114]

(00003)⊗ ((00030)⊕ (11010)) = 1× (00000)⊕ 2× (00011)⊗ . . . , (4.27)

where in the tensor product the SO(10) representation (00003) and (00030) ⊕ (11010)
correspond to λαλβλγ and θδ1θδ1θδ2θδ3θδ4θδ5 , respectively. Since the scalar (00000) in (4.27)
appears with multiplicity one, any expression (4.8) containing only three λs and five θs is
proportional to the scalar component (λ3θ5). Moreover, the proportionality constants can
be fully expressed in terms of Kronecker deltas, gamma functions and Levi-Civita tensors.

In section 4.4 we will find a superspace expression ⟨(λγmθ)(λγnθ)(λγpθ)(θγabcθ)⟩ with
free vector indices m,n, p and a, b, c. We have to extract the unique scalar component
(λ3θ5) before we can use the zero mode prescription (4.15). Using symmetry arguments
we arrive at

⟨(λγmθ)(λγnθ)(λγpθ)(θγabcθ)⟩ = 24
3! δ

[m
a δ

n
b δ

p]
c . (4.28)

The combination of Kronecker deltas has the same symmetry properties as the superspace
expression ⟨(λγmθ)(λγnθ)(λγpθ)(θγabcθ)⟩: Both are antisymmetric in the indices [mnp] and
[abc]. Moreover, we can determine the proportionality constant by fully contracting the vec-
torial indices using δamδbnδcp. Thereby, for the left hand side of (4.28) we get ⟨(λ3θ5)⟩ = 2880
and the contracted Kronecker delta 1

3!δ
[m
m δ

n
nδ

p]
p =

(
10
3

)
= 120 gives for the right hand side

24× 120 = 2880. According to the discussion above there is only one scalar representation
for three λs and five θs in an arbitrary superspace expression such that (4.28) is the unique
choice.

The other zero mode prescription needed in section 4.4 is given by the expression

⟨(λmθ)(λγnθ)(λγpθ)(χγnθ)(ϕγpθ)⟩ = − 1
96(χγnγrstγpψ)(λγmθ)(λγnθ)(λγpθ)(θγrstθ) ,

(4.29)
where χ and ψ are arbitrary Weyl spinors and we used the Fierz identity (4.19), i.e.
θαθβ = 1

96γ
αβ
rst(θγrstθ). Thus, after applying (4.28) and γnγ

mnpγp = −72γm we obtain

⟨(λmθ)(λγnθ)(λγpθ)(χγnθ)(ϕγpθ)⟩ = −1
4(χγnγmnpγpψ) = 18(χγmψ) . (4.30)

More details and an in-depth discussion of pure spinor zero mode correlators can be found
in [114].
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4.3 Independence of scattering amplitudes on the as-
signment of unintegrated and integrated vertex
operators

In the formulation of the scattering amplitude prescription for open and closed strings in
(4.1) and (4.3) we have chosen the external states 1, n − 1 and n to be represented by
an unintegrated vertex operator V at a fixed locations z1, zn−1 and zn on the worldsheet.
Moreover, we stated that the amplitude is independent of this assignment, i.e. that the
prescriptions in (4.1) and (4.3) do not depend on which external states {i, j, k} appear
as unintegrated vertex operators Vi, Vj and Vk at fixed punctures zi, zj and zk on the
worldsheet.

Open superstring amplitudes

In an open string scattering amplitude it is possible to swap the representation of neigh-
bouring states i and i + 1 from Vi

∫
dzi+1 Ui+1 to

∫
dzi UiVi+1 [157]. For the amplitude

prescription (4.1) this implies that〈〈
V1(z1)

∫ zn−1

z1
dz2 U2(z2)

n−2∏
i=3

∫ zn−1

zi−1
dzi Ui(zi)Vn−1(zn−1)Vn(zn)

〉〉

=
〈〈∫ z1

zn

dy U1(y)V2(z1)
n−2∏
i=3

∫ zn−1

zi−1
dzi Ui(zi)Vn−1(zn−1)Vn(zn)

〉〉
. (4.31)

As before, we integrate the vertex operator positions over the compactified real line in-
cluding the point at ±∞. The integrated vertex operator itself is not BRST closed
QUi(w) =

∮
λα(z)dα(z)Ui(w) = ∂Vi(w) such that

V1(z1)Vn(zn) =
∫ z1

zn

dy ∂V1(y)Vn(zn) =
∫ z1

zn

dy Q(U1(y))Vn(zn) , (4.32)

where the contribution V1(zn)Vn(zn) coming from the lower integration boundary vanishes
by the cancelled propagator argument. Terms containing two vertex operators at the same
position can be discarded, because for two states i and j with sufficiently large and positive
ki · kj the contraction of their vertex operators is given by [157]

Vi(z)Vj(z + ϵ)→ ϵki·kj → 0 for ϵ→ 0 . (4.33)

Since a scattering amplitude is analytic in the momenta (except for the poles), the above
statement (4.33) holds for all values of ki and kj after analytic continuation, if it does for
some region of ki and kj [27]. Next, we have to deform the integration contour of the BRST
operator Q in order to encircle all other vertex operators instead of U1:〈〈

V1(z1)
∫ zn−1

z1
dz2 U2(z2)

n−2∏
i=3

∫ zn−1

zi−1
dzi Ui(zi)Vn−1(zn−1)Vn(zn)

〉〉
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= −
〈〈∫ z1

zn

dy U1(y)
∫ zn−1

z1
dz2 Q

[
U2(z2)

n−2∏
i=3

∫ zn−1

zi−1
dzi Ui(zi)Vn−1(zn−1)Vn(zn)

]〉〉

= −
〈〈∫ z1

zn

dy U1(y)
∫ zn−1

z1
dz2 ∂V2(z2)

n−2∏
i=3

∫ zn−1

zi−1
dzi Ui(zi)Vn−1(1)Vn(zn)

〉〉

=
〈〈∫ z1

zn

dy U1(y)V2(z1)
n−2∏
i=3

∫ zn−1

zi−1
dzi Ui(zi)Vn−1(zn−1)Vn(zn)

〉〉
. (4.34)

Above terms, where the BRST charge Q acts on vertex operators U(zi) for 3 ≤ i ≤ n− 2,
were discarded, since the boundary terms of the integrals

∫ zn−1
zi−1

dzi ∂Vi(zi) vanish according
to the cancelled propagator argument:

. . . Ui−1(zi−1)(Vi(zn−1)− Vi(zi−1)) . . . Vn−1(zn−1) . . . = 0 . (4.35)

Moreover, the unintegrated vertex operators are BRST closed, QVi = 0 for i = n − 1, n.
The remaining integral over QU2 = ∂V2 vanishes at the upper integration boundary z2 = zn

. . . V2(zn−1) . . . Vn−1(zn−1) . . . = 0 . (4.36)

However, the lower one at z1 leads to a non-trivial contribution in (4.34), because it does
not coincide with any other vertex operator position, which proofs the claim.

Closed superstring amplitudes

From the decomposition (4.5) it immediately follows that closed superstring amplitudes
at sphere level are independent of the choice which vertex operators are integrated and
which are unintegrated, because the two open string amplitudes in (4.5) do not depend on
that choice. Though, it is possible to show this without using KLT relations such that the
closed string amplitude is manifestly independent of the assignment. Therefore, we follow
the lines of [157] to show that in the pure spinor formalism the integrated and unintegrated
vertex operators for closed strings are not BRST closed

QQUi(z, z) = ∂∂Vi(z, z) , (4.37)

where Q and Q are the holomorphic and antiholomorphic BRST operators. Therefore, we
write a closed string amplitude at sphere level following from the prescription (4.3) as〈〈

V1(z1, z1)
n−2∏
i=2

∫
d2zi Ui(zi, zi)Vn−1(zn−1, zn−1)Vn(zn, zn)

〉〉

=
〈〈∫

d2y
∫

d2z2 (δ2(y − z1)− δ2(y − z2))V1(y, y)U2(z2, z2)

×
n−2∏
i=3

∫
d2zi Ui(zi, zi)Vn−1(zn−1, zn−1)Vn(zn, zn)

〉〉
. (4.38)
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We have shifted the vertex operator V1(z1, z1)→ V1(z1, z1)−V1(z2, z2), which is possible due
to the cancelled propagator argument, i.e. the term containing V1(z2, z2) gives a vanishing
contribution. Moreover, two δ-functions were introduced to rewrite the shifted vertex
operator as

V1(z1, z1)− V1(z2, z2) =
∫

dy2 (δ2(y − z1)− δ2(y − z2))V1(y, y) . (4.39)

These δ functions can be written in terms of a worldsheet derivative

δ2(y − z1)− δ2(y − z2) = 1
2π (∂y∂y ln|y − z1| − ∂y∂y ln|y − z2|)

= 1
2π

(
∂y∂y ln|y − z1| − ∂y∂y ln|y − z2|+ ∂y∂y ln|z2 − z1|

)
= 1

2π∂y∂y ln
∣∣∣∣∣(y − z1)(z2 − z1)

(y − z2)

∣∣∣∣∣ , (4.40)

where we added the expression 1
2π∂y∂y ln |z2 − z1| = 0 for later convenience and obtain〈〈

V1(z1, z1)
n−2∏
i=2

∫
d2zi Ui(zi, zi)Vn−1(zn−1, zn−1)Vn(zn, zn)

〉〉

=
〈〈∫

d2y
∫

d2z2
1

2π∂y∂y ln
∣∣∣∣∣(y − z1)(z2 − z1)

(y − z2)

∣∣∣∣∣V1(y, y)U2(z2, z2)

×
n−2∏
i=3

∫
d2zi Ui(zi, zi)Vn−1(zn−1, zn−1)Vn(zn, zn)

〉〉
. (4.41)

After integration by parts such that the derivatives with respect to y and y act on V1(y, y)
and using (4.37) we arrive at〈〈

V1(z1, z1)
n−2∏
i=2

∫
d2zi Ui(zi, zi)Vn−1(zn−1, zn−1)Vn(zn, zn)

〉〉

=
〈〈∫

d2y
∫

d2z2
1

2π ln
∣∣∣∣∣(y − z1)(z2 − z1)

(y − z2)

∣∣∣∣∣QQU1(y, y)U2(z2, z2)

×
n−2∏
i=3

∫
d2zi Ui(zi, zi)Vn−1(zn−1, zn−1)Vn(zn, zn)

〉〉
. (4.42)

Similar as for the open string amplitude, we deform the integration contour of the BRST
charges Q and Q such that they encircle the other vertex operators. If Q or Q acts
on an integrated vertex operator Ui(zi, zi) we obtain

∫
d2zi ∂Vi(zi, zi) or

∫
d2zi ∂Vi(zi, zi),

respectively, which vanish for i ̸= 2, because they are integrated over the sphere, which
has no boundary. The only non-vanishing contribution comes from U2(z2, z2) when both
BRST charges Q and Q encircle the punctures (z2, z2):〈〈∫

d2y U1(y, y)
∫

d2z2
1

2π ln
∣∣∣∣∣(y − z1)(z2 − z1)

(y − z2)

∣∣∣∣∣QQ
[
U2(z2, z2)
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×
n−2∏
i=3

∫
d2zj Ui(zi, zi)Vn−1(zn−1, zn−1)Vn(zn, zn)

]〉〉

=
〈〈∫

d2y U1(y, y)
∫

d2z2
1

2π ln
∣∣∣∣∣(y − z1)(z2 − z1)

(y − z2)

∣∣∣∣∣∂z2∂z2V2(z2, z2)

×
n−2∏
i=3

∫
d2zj Ui(zi, zi)Vn−1(zn−1, zn−1)Vn(zn, zn)

〉〉

=
〈〈∫

d2y U1(y, y)
∫

d2z2
1

2π∂z2∂z2 ln
∣∣∣∣∣(y − z1)(z2 − z1)

(y − z2)

∣∣∣∣∣V2(z2, z2)

×
n−2∏
i=3

∫
d2zj Ui(zi, zi)Vn−1(zn−1, zn−1)Vn(zn, zn)

〉〉

=
〈〈∫

d2y U1(y, y)
∫

d2z2 (δ(z2 − z1)− δ(y − z2))V2(z2, z2)

×
n−2∏
i=3

∫
d2zj Ui(zi, zi)Vn−1(zn−1, zn−1)Vn(zn, zn)

〉〉

=
〈〈∫

d2y U1(y, y)V2(z1, z1)
n−2∏
i=3

∫
d2zj Ui(zi, zi)Vn−1(zn−1, zn−1)Vn(zn, zn)

〉〉
, (4.43)

where we used the same steps as before but in a reversed order and the cancelled propagator
argument

. . . V1(y, y)V2(y, y) . . . = 0 . (4.44)
Hence, we obtained the original amplitude with a different assignment of vertex operators.

4.4 Computing scattering amplitudes in the pure spinor
formalism

We want to demonstrate the computation of scattering amplitudes (4.1) by applying the
steps discussed in this chapter. Therefore, we choose the simplest example, i.e. the color
ordered three-point amplitude, which is given by

A(1, 2, 3) = ⟨⟨V1(z1)V2(z2)V3(z3)⟩⟩ = ⟨⟨(λA1)(z1)(λA2)(z2)(λA3)(z3)⟩⟩ . (4.45)

The vertex operator positions z1, z2 and z3 are fixed to points on the boundary of the
disk and we do not integrate over them. The tree-level prescription does not contain any
conformal fields of weight h = 1 for less than four massless external states, because there
are only unintegrated vertex operators of conformal dimension h = 0 in (4.45). Hence, the
amplitude gets no contribution from OPE contractions except for the Koba-Nielsen factor

KN3 =
〈〈
eik1·X(z1)eik1·X(z2)eik1·X(z3)

〉〉
=

3∏
1≤i<j

|zi − zj|ki·kj = 1 , (4.46)
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because for massless external states k2
i = 0 momentum conservation km1 + km2 + k3

m = 0
implies that

ki · kj = 1
2(ki + kj)2 = 1

2k
2
k = 0 for i, j, k = 1, 2, 3 . (4.47)

Therefore, the only contribution to the amplitude (4.45) comes from the zero modes of λα
and θα. The evaluation of the component expansions of the three-point amplitude boils
down to plugging in the θ-expansion (2.32) and selecting the terms containing precisely
five θs. From the spinorial superpotential Aiα only the following bosonic terms at order θ1

and θ3

Aiα(X, θ)→
{1

2e
i
m(γmθ)α −

1
32f

i
mn(γpθ)α(θγmnpθ)

}
eiki·X (4.48)

or the fermionic term at order θ2

Aiα(X, θ)→ −1
3(γmθ)α(θγmχi)eiki·X (4.49)

can contribute to (4.45) and lead to the possibilities listed in table 4.1 to saturate θ5.
All other terms in the θ-expansion of order at least θ4 drop out of the amplitude, since

Superfield: A1α(θ) A2α(θ) A3α(θ)

Number
of θs from
each
superfield:

θ3 θ1 θ1

θ1 θ3 θ1

θ1 θ1 θ3

θ1 θ2 θ2

θ2 θ1 θ2

θ2 θ2 θ1

Table 4.1: Terms containing five θs in (4.45).

these result in superspace expressions of the form λ3θ≥6 when taking the other vertex
operators (each contributing at least one θα) into account, which vanish due to the zero
mode prescription (4.15). Taking only the terms from table 4.1, which have three λs and
five θs leads to

A(1, 2, 3) =
〈
λαλβλγ

{
−e

1
m

2 (γmθ)α
e2
n

2 (γnθ)β
fpq3
32 (γrθ)γ(θγpqrθ)

+e
m
1
2 (γmθ)α

(χ2γ
nθ)

3 (γnθ)β
(χ3γ

pθ)
3 (γpθ)γ

〉
+cyclic(123)

= − 1
128e

m
1 e

n
2f

3
pq⟨(λγmθ)(λγnθ)(λγrθ)(θγpqrθ)⟩

+ 1
18e

m
1 ⟨(λγmθ)(λγnθ)(λγpθ)(e2γ

nθ)(χ3γ
pθ)⟩+ cyclic(123) . (4.50)
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To evaluate the zero mode correlators we can use (4.28) with δrr = 10

⟨(λγmθ)(λγnθ)(λγrθ)(θγpqrθ)⟩ = 24δmrnpqr = −64δmnpq (4.51)

and (4.30). Hence, we find for the supersymmetric three-point amplitude

A(1, 2, 3) = 1
2e

m
1 e

n
2f

3
mn + em1 (χ2γmχ3) + cyclic(123) , (4.52)

where we have applied momentum conservation km1 + km2 + km3 = 0 and transversality
ei · ki = 0. Note that A(1, 2, 3) is independent of α′ and therefore equal to the three-point
SYM amplitude.
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Chapter 5

BRST bulding blocks for pure spinor
superspace

In string theory only physical states contribute to scattering amplitudes. These states
are elements of the cohomology of the BRST operator Q, which has a simple form Q =
λαDα in the pure spinor formalism. Inspired by that we want to exploiting the BRST
properties of objects, which naturally arise in the computation of super string scattering
amplitudes. Thereby, the pure spinor formalism provides an efficient method to organize
the computation of scattering amplitudes.

We will define composite super fields L̃jiki...pi obtained form OPEs between vertex op-
erators in (4.1), which can also be fundamentally defined by Wick contractions and derive
their BRST properties. Because of their recursive definition these composite superfields
will contain terms that originate from the contraction of BRST closed terms with inte-
grated vertex operators. These contractions will not contribute to scattering amplitudes,
because BRST closed/exact terms are not in the BRST cohomology, see below for more
details. This was explicitly shown for the scattering of up to six open strings on the disk
[158] and also for two and three closed strings on the disk in [88] and [109], respectively.
Moreover, it was conjectured that this pattern persists also for an n-point open string
amplitude [62, 114]. Note that terms originating from the contraction of a BRST closed
expression with an integrated vertex operator are BRST exact. Even though, they drop
out of the scattering amplitude, they contribute to the CFT correlation function, which is
crucial for conformal invariance of the correlator.

Using integration by parts relations one can eliminate (some but not all of) the BRST
exact terms in L̃jiki...pi and obtain the composite superfields Ljiki...pi, which transform
covariantly under the action of the BRST charge [159]. Furthermore, they still contain
BRST exact pieces, which can be remove due to corrections originating from double pole
integrals arising from contractions between integrated vertex operators.1 In the end, we

1Evaluating the CFT correlator of an amplitude with n ≥ 5 open strings gives rise to single and double
poles in the worldsheet coordinates of the vertex operators. These double poles can be used to correct the
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obtain a prescription for defining the BRST building blocks Tijk...p. The derivation of these
building blocks in this chapter is based on [62].

5.1 Composite superfields L̃2131...p1 and L2131...p1

As mentioned in section 4.1 using Wick’s theorem and expressing all contractions in terms
of K2131...p1 is not very efficient. Therefore, the composite superfields L̃2131...p1 were intro-
duced, which can be defined recursively as2 [62, 158, 159]

lim
z2→z1

V1(z1)U2(z2)→
L̃21(z1)
z21

,

lim
z3→z1

L̃21(z1)U3(z3)→
L̃2131(z1)
z31

,

lim
z4→z1

L̃2131(z1)U4(z4)→
L̃213141(z1)

z41
,

...

lim
zp→z1

L̃2131...p1(z1)Up(zp)→
L̃2131...p1(z1)

zp1
(5.1)

for an unintegrated vertex operator 1 and integrated vertex operators 2, 3, 4, . . . , p. Com-
posite superfields L̃2131...p1 containing contractions among integrated vertex operators are
defined using the same pattern. Note that by definition all L̃s in (5.1) depend on only
one worldsheet position z1. At first glance, this could mean that the superfields L̃2131...p1
cannot be related to Wick contractions K2131...p1. But after all conformal weight one fields
are integrated out the correlator depends only on the zero modes of λ and θ, which do not
depend on the worldsheet positions. Therefore, using partial fractioning it is possible to
combine Wick contractions K to form the composite superfields L̃ inside a correlator, see
appendix C. Nevertheless, the approach in (5.1) is a priori different from Wick’s theorem.

Using the OPEs (3.76) the composite superfields (5.1) can be expressed in terms of
the SYM fields of section 2.2. Starting with one integrated and one unintegrated vertex

numerators of single poles. In the end, this allows to transform the composite superfields Ljiki...pi into
BRST building blocks Tijk...p. Explicitly, this was done in [158, 160] and the general picture is presented
in [62]. For three closed strings on the disk we provide the calculation in appendix C.

2In a correlator as in (4.1) there are also composite superfields L̃ that involve contractions between
integrated vertex operators. These can usually be expressed through superfields in (5.1) by using equations
like (C.9) or are corrections to (5.1) in order to obtain the BRST building blocks Tijk...p [114, 62, 158].
Therefore, we will only need L̃jiki...pi for the computation of scattering amplitudes.

Moreover, without loss of generality we have chosen specific labels for the vertex operators. All other
combinations can simply be obtained by relabelling.
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operator we find3 [161]

L̃21 = lim
z2→z1

z21V1(z1)U2(z2)

∼ −A1
m(λγmW2)− V1(ik1 · A2) +Q(A1W2)

= L21 +Q(A1W2) . (5.2)

The composite superfield L̃21 (or the contraction (4.11)) contains the BRST exact piece
Q(A1W2), which decouples from the amplitude (4.1). For four external states the contri-
bution ⟨Q(A1W2)V3V4⟩ = −⟨(A1W2)Q(V3V4)⟩ = 0, because QVi = 0. Further, for higher
point amplitudes the BRST exact term is multiplied by more integrated vertex operators
such that we get Q(A1W2)U3 · · ·Un−2Vn−1Vn. The Ui are not BRST closed at the level of
the correlator, but rather satisfy QUi = ∂Vi, which implies

⟨Q(A1W2)U3 · · ·Un−2Vn−1Vn⟩ = −
n−2∑
i=1
⟨(AiWj)Um1 · · · ∂Vi · · ·Un−2Vn−1Vn⟩ ≠ 0 . (5.3)

Once we integrate over the vertex operator positions zi of Ui(zi) in the amplitude the
expression becomes BRST closed∫

D2(P )
dz2dz3 · · · dzn−2

〈
Q(A1W2)U3(z3) · · ·Un−2(zn−2)Vn−1(zn−1)Vn(zn)

〉
= −

∫
D2(P )

dz2dz3 · · · dzn−2
〈
(A1W2)Q[U3(z3) · · ·Un−2(zn−2)Vn−1(zn−1)Vn(zn)]

〉
= 0 , (5.4)

because of the cancelled propagator argument and the BRST properties of the vertex
operators (3.88) and (3.93). Following the same steps as in (5.2) we find expressions in
terms of the superfields for L̃2131 and L̃213141 in (5.1) [109]

L̃2131 ∼ L2131 − s12[(A1W3)V2 − (A2W3)V1]− (s13 + s23)(A1W2)V3

−Q[(ik1 · A2)(A1W3)]−Q[A1
m(W2γ

mW3)]−Q{U3, (A1W2)} , (5.5)
L̃213141 ∼ L213141 + (A1W4)[s12V2(ik1 · A3)− s12L32 + (s13 + s23)(ik1 · A2)V3]

+(A2W4)[−s12(ik2 · A3)V1 + s12L31] + (s13 + s23)(A3W4)L21

−(s13 + s23)(W2γ
mW4)A1

mV3 + (W3γ
mW4)[−s12A

2
mV1 + s12A

1
mV2]

−s12[U4(A1W3)V2 − {U4, (A2W3)}V1 + (A1W3)L̃42 − (A2W3)L̃41]
−(s13 + s23)[U4(A1W2)V3 + (A1W2)L̃43]
+(s14 + s24 + s34)[(ik1 · A2)(A1W3) + (W2γ

mW3)A1
m − {U3, (A1W2)}]V4 , (5.6)

3Note that we treat the contractions of the plane wave factors in the superfields separate by using
(3.78), since they result in an overall factor in the correlator of any scattering amplitude. Therefore, they
are not included in the composite superfields.
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where L2131 L213141 and are defined below. Moreover, we have introduced the shorthand
notation

{Ui, (AjWk)} = −(ikjk · Ai)(AjWk) +DαA
j
βW

β
kW

α
i + 1

4(AjγmnWi)F k
mn , (5.7)

for the contraction of Ui with (AjWk) and we used kmjk = (kj)m + (kk)m. To arrive at (5.5)
and (5.6) we had to integrate the BRST operator by parts. Consequently, we assumed
that these computation take place inside of a correlator, which allows us to drop terms like
Q(. . .) for a generic superfield expression (. . .), where the BRST charge acts on all fields
in the correlator, because ⟨Q(. . .)⟩ = 0. Moreover, we have already discarded the BRST
exact terms in L̃213141, because in the amplitudes, which we consider in chapter 8 and 10,
the superfields L̃213141 and relabelling thereof are accompanied by two unintegrated vertex
operators, which are BRST closed.

The superfields L are obtained by discarding all BRST exact terms that arise from the
contraction with BRST exact expressions in L̃, i.e. all terms in (5.5) and (5.6) that are not
contained in L. Using the OPEs (3.76) the composite superfields (5.1) evaluate to [62]

L2131 = −L21(ik12 · A3) + (λγmW3)
[
F 2
mnA

n
1 + (ik1 · A2)A1

m − (W1γmW2)
]
, (5.8)

L213141 = −L2131(ik123 · A4) + (λγmW4)
[
F 2
nmA

n
1 (ik12 · A3)− (A1 · ik2)(W2γmW3)

+F 2
pqA

p
1A

q
3k

3
m − F 2

pqA
q
1k

p
3A

3
m + F 3

mn(W1γ
nW2)− F 3

mnA
n
1 (ik1 · A2)

+(W1γmW3)(ik1 · A2) +
[
(W1γmW2)− A1

m(ik1 · A2)
]
(ik12 · A3)

+1
4(W2γpqγmW3)F pq

1 −
1
4(W1γpqγmW3)F pq

2

]
. (5.9)

The composite superfields L2131...p1 do not have any symmetries under the exchange of
labels 1, 2, . . . p. However, the lack of symmetry properties results in BRST exact terms
[114]. Removing them gives rise to redefinitions of L1,2,...,p in the next section 5.2, which
leave the amplitude invariant [62, 162]. Under the action of the pure spinor BRST charge
the composite superfields transform covariantly [62, 159] such that their BRST variation
is given in terms of lower order composite superfields. From the recursive definition of the
superfields, QVi = 0 and QVi = ∂Vi it follows that

QL2131...p1 = lim
zp→z1

zp1
[(
QL2131...(p−1)1(z1)Up(zp)− L2131...(p−1)1(z1)∂Vp(zp)

)]
, (5.10)

where the first term can be computed using again the recursive definition (5.1) (after
discarding the BRST exact terms). By applying the OPEs (3.76) the contraction of
∂Vp = ∂λαApα + Πmi(kp)mVp + ∂θαDαVp with the composite superfield L2131...(p−1)1 yields∑p−1
i=1 sipL2131...(p−1)1Vp for the second term. Explicitly, we find for the BRST variation of

the superfields defined in (5.1) [62]

QL21 = −s12V1V2 , (5.11)
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QL2131 = −(s13 + s23)L21V3 − s12(L31V2 + V1L32) , (5.12)
QL213141 = −(s14 + s24 + s34)L2131V4 − (s13 + s23)(L21L43 + L2141V3)

−s12(L3141V2 + L31L42 + L41L32 + V1L3242) . (5.13)

Hence, after dropping Q(A1W2) in order to obtain L21 from (5.2) the action of the BRST
charge on L2131 suggest that we have to drop all BRST exact terms in (5.5) that arise
from the contraction with BRST exact terms as well, since the BRST variation (5.12) only
holds for L2131 but not for L̃2131. Consequently, we proceed in the same way with the
higher order composite super fields.

5.2 BRST building blocks T123...p

As described in [62] the composite superfields can be used to define the BRST building
blocks T123...p in essentially two steps (i) and (ii)

L2131...p1
(i)−→ T̃123...p

(ii)−→ T123...p , (5.14)

which remove all remaining BRST exact terms and make the amplitude manifestly invariant
under BRST transformations. Moreover, these steps still preserve the BRST variation
identities like (5.12) and (5.13) but for the BRST building blocks T123...p, i.e. these equations
hold after the substitution L123...p → T123...p on both sides of (5.12) and (5.13).

In the first step (i) the substitution of L2131...p1 by T̃123...p depends on the previous
redefinitions L2131...q1 → T123...q for q < p. This step ensures that extra terms on the right
hand side of the BRST variation QL2131...p1 arising from the substitution L2131...q1 → T123...q
are absorbed on the left hand side of the BRST variation. Therefore, the composite
superfields L2131...p1 → T̃123...p are redefined such that their BRST variation QT̃1234...p is
written in term of the BRST building blocks T123...q rather than L2131...q1. Explicitly, for
(5.12) and (5.13) we find

QT̃123 = −s12(T13V2 + V1T23)− (s13 + s23)T12V3 , (5.15)
QT̃1234 = −(s14 + s24 + s34)T123V4 − (s13 + s23)(T12T34 + T124V3)

−s12(T134V2 + T13T24 + T14T23 + V1T234) . (5.16)

Using the BRST variations QT̃123...p one can find BRST closed expressions, which are linear
combinations of T̃123...p. For examples from (5.15) it follows that Q(T̃123 + T̃231 + T̃312) = 0.
In addition, these combinations of T̃123...p are BRST exact at the same time, because the
cohomology of Q at ghost number +1 is non-trivial (non-empty) only at conformal weight
h = 0 and h(T̃123...p) ̸= 0 [62].

Finally, we are ready to remove the remaining BRST exact terms: In the second step
(ii) we have to find all BRST exact linear combinations of T̃123...p, which are given by∑

perm.
T̃123...p = QR

(I)
123...p , I = 1, 2, 3, . . . , p− 1 , (5.17)
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in order to subtract the corresponding p− 1 BRST exact pieces R(I)
123...p from T̃123...p, which

gives rise to the definitions of T123...p. Note that the sums include different permutations
of the labels of T̃123...p with positive and negative signs. After completing step (ii) of
(5.14), which will be explicitly done in section 5.3, the BRST closed sums (5.17) become
symmetries ∑

perm.
T123...p = 0 (5.18)

of the BRST building blocks. In order to identify the exact structure of the sum over
permutations for T123...p in (5.18) it is useful to consider the diagrammatic interpretation of
the building blocks. Simultaneously, this procedure enables us to retrieve the BRST exact
parts R(I)

123...p of T̃123...p in (5.17), because by definition both sums (5.17) and (5.18) run
over the same permutations. To derive the BRST symmetries of T123 we have to consider
the diagrams associated to the building blocks in figure 5.1, where we interpret them as a
tail-end graph and as a branch. Because both interpretations have to agree, this implies

2

1

3
. . . = T123 3 . . .

2 1

= T321 − T312

Figure 5.1: The same diagram interpreted as a tail-end graph and as a branch.

that the BRST symmetries (5.18) of T123 can be written as

T123 − T321 + T312 = T123 + T231 + T312 = 0 . (5.19)

The relative sign between the two interpretations of the diagram follows from the fact
that the diagram corresponding to T123...p picks up a sign (−1)p under the inversion
(1, 2, 3, . . . , p− 1, p)↔ (p, p− 1, . . . , 3, 2, 1). Hence, in the BRST symmetry identity (5.18)
there has to be a relative sign (−1)p between T123...p and Tp(p−1)...321, c.f. (5.19). The gener-
alization for higher rank composite superfields T123...p of (5.19) can be obtained using the
same idea, see [62] for more details and is given by

p = 2n+ 1 : 0 = T12...n+1[n+2[...[2n−1[(2n)(2n+1)]]...]] − 2T2n+1...n+2[n+1[...[3[21]]...]] ,

p = 2n : 0 = T12...n[n+1[...[2n−2[(2n−1)(2n)]]...]] + T2n...n+1[n[...[3[21]]...]] , (5.20)

where the notation T...[i[jk]]... means that we consecutively antisymmetrize pairs of labels
starting from the outer bracket

T...[i[jk]]... = 1
2
(
T...i[jk]... − T...[jk]i...

)
= 1

4(T...ijk... − T...ikj... − T...jki... + T...kji...) . (5.21)

Moreover, the BRST symmetries of lower rank building blocks T123...q transfer to higher
rank building blocks T123...p with p > q for the first q label and the last labels q+1, q+2, . . . p
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remain unaffected by the lower rank identities, which follows from the recursive definition
of (5.1). The p− 1 relations between the building blocks at rank p allow us to express any
Ti1i2...ip as a combination of T1j1j2...jp−1 such that there are (p − 1)! independent building
blocks Ti1i2...ip at rank p.

To sum up the building blocks T123...p can be defined in two steps [62]

(i) Rewrite L2131...p1 → T̃123...p in such a way that QT̃123...p is expressed in terms of the
lower rank building blocks T123...q for q < p.

(ii) Remove the BRST exact pieces (5.17) from T̃123...p so that the thereby obtained T123...p
satisfy the identities (5.18).

The building blocks derived via this procedure transform under BRST variations as

QT123...p = −
p∑
j=2

∑
α∈P (βj)

(s1j + s2j + . . .+ sj−1,j)T12...j−1Tj,{β\α} , (5.22)

where βj = {j + 1, j + 2, . . . , p} and P (βj) is the power set of βj. Moreover, a BRST
building block Ti with a single index is given by an unintegrated vertex operator Vi. For
p ≤ 4 the building blocks obey the following BRST identities

QT12 = −s12V1V2 ,

QT123 = −s12(T13V2 + V1T23)− (s13 + s23)T12V3 ,

QT1234 = −(s14 + s24 + s34)T123V4 − (s13 + s23)(T12T34 + T124V3)
−s12(T134V2 + T13T24 + T14T23 + V1T234) . (5.23)

5.3 Explicit construction of T12, T123 and T1234

The construction of T12 only requires the second step (ii), because the redefinition of L12
to T̃12 is trivial, i.e. T̃12 = L12, since there are no lower rank redefinitions to consider in
the first step (i). Using the action of the BRST charge (5.11) on L12 and the equations of
motion (2.17) we find that

Q(T̃12 + T̃21) = −s12(V1V2 + V2V1) = 0 , (5.24)

because the unintegrated vertex operator anticommutes with itself. Hence, the expression
T̃12 + T̃21 is BRST closed and moreover also BRST exact

T̃12 + T̃21 = −Q(A1 · A2) = −QD12 . (5.25)

The BRST building block T12 is then defined by satisfying T12 + T21 = 0 according to
(5.18), which is achieved by [159]

T12 = T̃21 = T̃21 + 1
2QD12 (5.26)
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and concludes the derivation of the lowest order building block.
For the BRST building block T123 we have to carry out both steps of (5.14). The

substitution Lij = Tij− 1
2QD12 in (5.12) executes the first step L2131

(i)−→ T̃123, which yields

Q
(
L2131 −

1
2s12(D13V2 −D23V1)−

1
2(s13 + s23)D12V3

)
= −s12(T13V2 + V1T23)− (s13 + s23)T12V3 . (5.27)

Therefore, we find that T̃123 takes the following form

T̃123 = L2131 −
1
2s12(D13V2 −D23V1)−

1
2(s13 + s23)D12V3 . (5.28)

We consider two BRST closed sums for T̃123 to identify the remaining BRST exact terms

Q(T̃123 + T̃213) = 0 , Q(T̃123 + T̃312 + T̃231) = 0 , (5.29)

where the first sum is inherited from the antisymmetry of T12 and the second one can
be found according to section 5.2. The combinations in (5.29) can be derived by acting
with the BRST charge on the ghost number zero superfields R(1)

123 = D12(ik12 · A3) and
R

(2)
123 = D12(ik2 · A3) + cyclic(123) so that [158, 162]

T̃123 + T̃213 = QR
(1)
123 , T̃123 + T̃312 + T̃231 = QR

(2)
123 , (5.30)

which can be shown using the SYM equations of motion (2.17). Furthermore, R(1) and R(2)

can be motivated by the residues of the double pole contractions of integrated vertex oper-
ators. Finally, after subtracting the BRST exact part in (5.30) from T̃123 the corresponding
building block is given by

T123 = T̃123 −QS(1)
123

= 1
3
(
T̃123 − T̃213

)
+ 1

6
(
T̃321 − T̃312 + T̃132 − T̃231

)
(5.31)

with S
(1)
123 = 1

2R
(1)
123 + 1

6

(
R

(2)
123 −R

(2)
213

)
. For the BRST symmetries of (5.31) we find

T123 + T213 = T123 + T312 + T231 = 0 , (5.32)

which are in agreement with (5.18).
The definition of T1234 requires the lower rank redefinitions of L21 and L2131. We

proceed similarly as before: Executing the first step demands the substitutions Lji → Tij
and Ljiki → Tijk in the right hand side of the BRST variation (5.13), which gives

T̃1234 = L213141 + 1
4[(s13 + s23)D12QD34 + s12(D13QD24 +D14QD23)]

−1
2[(s13 + s23)(D12T34 −D34T12) + s12(D13T24 +D14T23 −D23T14 −D24T13)]
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+(s14 + s24 + s34)S(1)
123V4 + (s13 + s23)S(1)

124V3 − s12(S(1)
234V1 − S(1)

134V2) , (5.33)

whose transformation under the BRST charge is given in (5.16). Using (5.33) one can show
that the first labels of T̃1234 inherit the lower order identities of T̃12 and T̃123 in (5.24) and
(5.29), respectively. In addition, there is a further BRST closed sum involving also the
fourth label

Q(T̃1234 + T̃2134) = 0 , Q(T̃1234 + T̃3124 + T̃2314) = 0 ,
Q(T̃1234 − T̃1243 + T̃3412 − T̃3421) = 0 . (5.34)

From the equations of motion of the linearized SYM fields it follows that the BRST closed
combinations are actually also BRST exact

T̃1234 + T̃2134 = QR
(1)
1234 ,

T̃1234 + T̃3124 + T̃2314 = QR
(2)
1234 ,

T̃1234 − T̃1243 + T̃3412 − T̃3421 = QR
(3)
1234 , (5.35)

where we have defined the ghost number zero fields R(I)
1234 with I = 1, 2, 3 as

R
(1)
1234 = −R(1)

123(ik123 · A4) + 1
4s12[D13D24 +D14D23] , (5.36)

R
(2)
1234 = −R(2)

123(ik123 · A4) + 1
4[s12D23D14 + s23D24D13 + s13D34D12] , (5.37)

R
(3)
1234 = (ik1 · A2)[D14(ik4 · A3)−D13(ik3 · A4)]− (ik2 · A1)[D24(ik4 · A3)−D23(ik3 · A4)]

−1
4D12D34(s14 + s23 − s13 − s24) +D12[(ik4 · A3)(ik2 · A4)− (ik3 · A4)(ik2 · A3)]

+D34[(ik2 · A1)(ik4 · A2)− (ik1 · A2)(ik4 · A1)] + (W1γ
mW2)(W3γmW4) , (5.38)

and kmijk = (ki)m + (kj)m + (kk)m. Removing the BRST exact parts above the redefinitions
T̃1234

(ii)−→ T1234 in the second step lead to the rank four BRST building block

T1234 = T̃1234 −QS(2)
1234 , (5.39)

where we have introduce the field S
(2)
1234, which is defined recursively by

S
(2)
1234 = 3

4S
(1)
1234 + 1

4
(
S

(1)
1243 − S

(1)
3412 + S

(1)
3421

)
+ 1

4R
(3)
1234 ,

S
(1)
1234 = 1

2R
(1)
1234 + 1

6
(
R

(2)
1234 −R

(2)
2134

)
. (5.40)

The BRST exact sums in (5.35) become the BRST symmetries of T1234

T1234 + T2134 = T1234 + T3124 + T2314 = T1234 − T1243 + T3412 − T3421 = 0 . (5.41)
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To check that (5.41) holds, we have to express R(I)
1234 in terms of S(2)

ijkp and use (5.39) together
with (5.40).

For the an n-point amplitudes we do not need to perform step (ii) for Lj1ij2i...jn−2i,
because after substituting Lij1j2...jn−2

(i)−→ T̃ij1j2...jn−2 this building block is already BRST
exact in the correlator: The building block T̃ij1j2...jn−2 is always accompanied by two unin-
tegrated vertex operators in the CFT correlator of the n-point amplitude. Therefore, we
can drop the BRST exact terms in T̃ij1j2...jn−2 in the correlator without executing step (ii).
After integrating the BRST charge by part we can use QV = 0 such that the BRST exact
parts of T̃ij1j2...jn−2 decouple from the amplitude. Hence, in this setup the BRST exact
sums (5.30) lead to vanishing correlators, i.e. for n = 6 we find that〈(

T̃1234 + T̃2134
)
V5V6

〉
=
〈
QR

(1)
1234V5V6

〉
= 0 ,〈(

T̃1234 + T̃3124 + T̃2314
)
V5V6

〉
=
〈
QR

(2)
1234V5V6

〉
= 0 ,〈(

T̃1234 − T̃1243 + T̃3412 − T̃3421
)
V5V6

〉
=
〈
QR

(3)
1234V5V6

〉
= 0 . (5.42)

Therefore, performing the second step (ii) for T̃ijkp for the scattering of three closed strings
on the disk in appendix C is not strictly necessary and in some sense obsolete, because
⟨T̃ijkpVmVn⟩ = ⟨TijkpVmVn⟩.



Chapter 6

SYM amplitudes from pure spinor
superspace expressions

All SYM tree-level amplitudes in ten dimensions can be recovered in the field theory limit
for α′ → 0 from open superstring amplitudes at tree-level [163, 164, 165, 166]. Therefore,
their correlators are in the cohomology of the BRST charge so that it is possible to use the
BRST properties of superstring amplitudes to find pure spinor superspace expressions for
SYM amplitudes. By doing so we obtain a recursive definition of SYM amplitudes based
on supersymmetric Berends-Giele currents [162], which can be constructed from the BRST
building blocks of section 5.2. These are the generalizations of the gluonic Berends-Giele
currents [167] for YM tree amplitudes, which can be reproduced from their supersymmetric
generalizations by truncating them to their bosonic components [168].

Following the lines of [62] we want to construct supersymmetric Berends-Giele currents,
which is inspired by the fact that the BRST building blocks T12...p correspond to color
ordered diagrams of cubic vertices with p on-shell and one off-shell leg, see figure 6.1.
The additional leg has to be off-shell, because at rank p each of the 1

p

(
2p−2
p−1

)
diagrams

1

2

s12

3

s123

4

. . .

p

s12...p
. . . = T12...p

Figure 6.1: A cubic graph corresponding to the BRST building block T12...p.

has p − 2 internal poles in the Mandelstam variables s12...q for q < p and one external
propagator 1

s12...p
, which would diverge if all legs are put on-shell [116]. The pure spinor

supersymmetric generalization M12...p of the p-point Berends-Giele currents J12...p will be
obtained by combining the diagrams of T12...p to form p + 1-point field theory amplitudes
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including one off-shell leg. Furthermore, the (super)currents M12...p share the symmetries
of the gluonic currents and provide a compact representations of n-point SYM amplitudes
in ten spacetime dimensions. To derive the n-point prescription for SYM amplitudes we
will use the recursive nature of the Berends-Giele supercurrents, which enables a recursive
method for the computation of n-point SYM amplitudes.

6.1 Gluonic Berends-Giele currents
In [167] a recursive relation for gluon scattering amplitudes in QCD at tree-level was
proposed1

AYM(1, 2, . . . , n, n+ 1) = s12...nJ
m
12...nJ

m
n+1 , (6.1)

where J12...n are Berends-Giele currents. They are defined via the recursive relation in the
number of external gluons and start with the polarization vector Jmi = emi of a single gluon
i. For higher rank currents J12...p with one off-shell leg p+ 1 we find

Jmi = ei ,

s12...pJ
m
12...p =

p−1∑
i=1

[J1...i, Ji+1...p]m +
p−2∑
i=1

p−1∑
j=i+1

{J1...i, Ji+1...jJj+1...p}m , (6.2)

where the brackets [·, ·]m and {·, ·}m are defined such that they strip off one gluon with
vector index m from the cubic and quartic vertex of the Yang-Mills Lagrangian [114].
Explicitly, they are given by

[J1...i, Ji+1...p]m = (ki+1...p · J1...i)Jmi+1...p + 1
2k

m
i+1...p(J1...i · Jmi+1...p)

−({1 . . . i} ↔ {i+ 1 . . . p}) ,

{J1...i, Ji+1...j, Jj+1...p}m = (J1...i · Jj+1...p)Jmi+1...j −
1
2(J1...i · Ji+1...j)Jmj+1...p

−1
2(Ji+1...j · Jj+1...p)Jm1...i . (6.3)

From the diagrammatic representation of Jm12...p in figure 6.2 one can immediately see, that
the brackets [·, ·]m and {·, ·}m correspond to the three and four gluon interaction.

From the recursive definition it follows that the Berends-Giele currents at rank p are
conserved with respect to the total momentum [167]

km1...pJ
m
1...p = 0 , (6.4)

where the total momentum is defined as km1...p = km1 +km2 + . . .+kmp . Moreover, the currents
are invariant under reflections

Jm12...p + (−1)pJp(p−1)...1 = 0 (6.5)
1For simplicity, we are considering color stripped amplitudes here.
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Jm12...p = 1
s12...p

p−1∑
i=1

J1...i

Ji+1...p

. . . m

+ 1
s12...p

p−2∑
i=1

p−1∑
j=i+1

J1...i

Ji+1...j

Jj+1...p

. . . m

Figure 6.2: Diagrammatic representation of the gluonic Berends-Giele currents.

and the cyclic sum of J12...p is vanishing∑
σ∈cyclic

Jσ(1,2,...,p) = 0 . (6.6)

This description of gluon tree-level scattering amplitudes is very efficient: The recursive
definition utilizes the lower order result and the ansatz (6.1) captures all Feynman dia-
grams. In addition, it can be used to proof cyclicity, gauge invariance, photon decoupling
and covers the factorization in soft and collinear limits.

6.2 Supersymmetric Berends-Giele currents M123...p

The supersymmetric Berends-Giele currents M12...p can be expressed in terms of T12...p of
section 5.2 and the Mandelstam variables {s12, s123, . . . , s12...p} of the kinematic poles.2
With the starting point M1 = V1 their recursive definition is given by

E12...p =
p−1∑
j=1

M1...jMj+1...p ,

QM12...p = E12...p . (6.7)

Even though, the definition of the Berends-Giele M12...p currents is of purely algebraic
nature, similar as for the BRST building blocks they have a diagrammatic interpretation
and can be related to the sum of (2p−2)!

p!(p−1)! cubic graphs of SYM amplitudes, which are
associated to a p+1 point amplitude with one off-shell leg. Each of these cubic graphs can

2The kinematic invariant are given by s12...p =
∑p

i<j sij with sij = ki · kj .
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be connected to sums of BRST building blocks T12...p, where the relative signs between the
building blocks are determined by (6.7).

The first supersymmetric Berends-Giele supercurrents up to rank 4 correspond to the
cubic graphs of the color ordered amplitudes for n ≤ 5 in figure 6.3. The individual cubic

M12 =
2

1

. . .
s12

M123 =
2

1

. . .
s12

3

s123
+

3

2

. . .
s23

1

s123

M1234 =
2

1
s12

3

s123

4

s1234
. . . +

3

2

s23

1

s123

4

s1234
. . . +

4

3

s34

2

s234

1

s1234 . . .

+
3

2
s23

4

s234

1

s1234 . . . +
2

1

s23 s34
3

4
...

s1234

Figure 6.3: Supersymmetric Berends-Giele currents M12...p for p ≤ 4 expressed in terms of
the corresponding cubic graphs.

graphs are associated to BRST building blocks. Therefore, the supersymmetric Berends-
Giele currents in figure 6.3 can be expressed in terms of the building blocks of section 5.3
as

M12 = −T12

s12
, M123 = 1

s123

(
T123

s12
+ T321

s23

)
,

M1234 = − 1
s1234

(
T1234

s12s123
+ T3214

s23s123
+ T3421

s34s234
+ T3241

s23s234
+ T12[34]

s12s34

)
. (6.8)

The relative signs are fixed by demanding that they satisfy (6.7). Using (5.22) the BRST
variations of (6.8) are given by

QM12 = V1V2 = M1M2 ,

QM123 = −V1T23

s23
+ T12V3

s12
= M1M23 +M12M3 ,

QM1234 = V1

s234

(
T234

s23
+ T432

s34

)
+
(
T12T34

s12s34

)
+
(
T123

s12
+ T321

s23

)
V4

s123

= M1M234 +M12M34 +M123M4 , (6.9)
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which imply that the ansatz (6.8) for M12,M123 and M1234 forms a solution of (6.7) up to
p = 4. Continuing in this manner we can construct higher point Berends-Giele currents
for arbitrary p in terms of BRST building blocks. The generalization of the above BRST
variations follows immediately from the definition of M12...p [162]

QM12...p =
p−1∑
j=1

M1...jMj+1...p (6.10)

and was proven in [169]. This formula is the supersymmetric pure spinor analogue of the
recursive definition for gluonic Berends-Giele currents (6.2). The action of Q on M12...p can
be interpreted as cutting the Berends-Giele current in every possible way that is consistent
with the color ordering, which is depicted in figure (6.4).

Q

1
2

3

p− 1
p

. . .Mp =
p−1∑
j=1

1
2

j

. . .M j ×

E12...p

. . .

p

j + 1
j + 2

Mp−j

Figure 6.4: Factorisation of M12...p into two channels under the action of the BRST oper-
ator.

6.3 Symmetries of Berends-Giele currents
The supersymmetric Berends-Giele currents M12...p share symmetry properties with their
gluonic partners Jm12...p. These will be useful for the computation of superstring scattering
amplitudes in the pure spinor formalism. For the rank p = 2 supercurrent we find that
M12 satisfies M12 + M21 = 0, because the building block Tij is antisymmetric. We obtain
an analogue symmetry for M123 as for T123:

M123 +M231 +M312 = 0 , M123 −M321 = 0 , (6.11)

which can be checked by plugging in the explicit expression for Mijk in (6.8) and using
(5.19). These identities generalize for higher rank Berends-Giele currents M12...p to

M12...p = (−1)pMp(p−1)...21 ,
∑

σ∈cyclic
Mσ(1,2,...,p) = 0 , (6.12)

where the sum runs over all cyclic permutations σ of the labels (1, 2, . . . , p). By construction
all BRST closed and exact terms have been removed from T12...p and therefore also from
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M12...p, because the Berends-Giele current can be constructed using the BRST building
blocks. This implies that E12...p inherits all the symmetry properties of its ancestor M12...p
and we can use E12...p to proof the above identities. The reflection symmetry follows by
induction and that the cyclic sum vanishes can be shown as follows

∑
σ∈cyclic

Eσ(1,2,...p) =
∑

σ∈cyclic

p∑
j=1

Mσ(1,...,j)Mσ(j+1,...,p)

=
∑

σ∈cyclic

p∑
j=1

1
2
(
Mσ(1,...,j)Mσ(j+1,...,p) +Mσ(j+1,...,p)Mσ(1,...,j)

)
= 0 , (6.13)

where we have shifted all labels in the second term by j, which is possible due to the overall
cyclic sum and used that Berends-Giele currents anticommute.

The symmetries (6.12) can naturally be explained by the fact that the Berends-Giele
currents M12...p correspond to p + 1-point amplitudes with one off-shell leg. Inspired by
this interpretation we can find further relations between the Berends-Giele currents by
removing the (p+ 1)th leg from the p+ 1-point Kleiss-Kuijf identity [170]

M{β},1,α = (−1)nβ
∑

σ∈OP({α},{βT})
M1,{σ} , (6.14)

which were explicitly checked up to p = 7 in [62]. The sum over OP({α}, {βT}) runs over
all permutations of the set {α}⋃{βT} that preserve the order of the individual elements
in both {α} and {βT}, which are subsets of {2, 3, . . . , p}. Moreover, the expression {βT}
denotes the set {β} with reversed ordering of the nβ elements.

The cyclic and reflection symmetries reduces the number of independent color ordered
p + 1-point amplitudes down to p!

2 . This number can be further decreased to (p − 1)!
independent amplitudes by the Kleiss-Kuijf relations. Since these identities do not involve
any kinematic factors, they also hold for amplitudes with one off-shell leg. This statement
is not surprising: The the Berends-Giele currents M12...p satisfy similar relations and can be
identified with p+1-point amplitudes with one off-shell leg. Therefore, we expect that there
are only (p − 1)! independent M12...p. For nβ = 1 the special case {β} = {p} reproduces
the vanishing cyclic sum in (6.12) from the Kleiss-Kuijf relation (6.14). However, for p ≥ 6
to reduce the number of independent Mi1i2...ip down to (p − 1)! the dual Ward identity
or photon decoupling identity (6.12) alone is not sufficient [62, 170]. Nevertheless there
are only (p− 1)! independent BRST building blocks Ti1i2...ip , which suggests that Mi1i2...ip

also have a basis of precisely (p − 1)! elements. Hence, the Kleiss-Kuijf relations (6.14)
should hold also for higher rank p ≥ 7 Berends-Giele currents. Note that it is not possible
to reduce the number of independent M12...p to (p − 2)! using the field theory analogues
of monodromy relations [35, 36]. These are only valid if all momenta are on-shell and
therefore the Berends-Giele currents do not obey similar relations.
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6.4 From Berends-Giele currents to SYM amplitudes
The expressions for Berends-Giele currents look like lower order field theory amplitudes.
For three external states the SYM amplitude is given by [43]

ASYM(1, 2, 3) = ⟨V1V2V3⟩ = ⟨M1M2M3⟩ = ⟨E12V3⟩ . (6.15)

At first, one might think that this amplitudes is BRST exact, because E12 = QM12 = QT12
s12

,
and thus vanishes. However, for three massless particles all Mandelstam variables vanish,
see section 4.4, which implies that E12 is not BRST exact. Hence, E12 ̸= QT12

s12
such that the

amplitude is not BRST trivial. The four- and five-point SYM amplitudes can be written
in terms of Berends-Giele currents as [161, 160]

ASYM(1, 2, 3, 4) = −⟨T12V3V4⟩
s12

− ⟨V1T23V4⟩
s23

= ⟨M12M3M4⟩+ ⟨M1M23M4⟩ = ⟨E123V4⟩ ,

ASYM(1, 2, 3, 4, 5) = ⟨T123V4V5⟩
s12s45

+ ⟨T321V4V5⟩
s12s45

+ ⟨T12T34V5⟩
s12s34

+ ⟨V1T234V5⟩
s23s15

+ ⟨V1T432V5⟩
s23s15

= ⟨M123M4M5⟩+ ⟨M12M34M5⟩+ ⟨M1M234M5⟩ = ⟨E1234V5⟩ . (6.16)

Also for these higher point examples E123 and E1234 are not BRST exact, which follows
from the more general statement: If the momentum kp+1 = −∑p

i=1 ki of an external state
p+ 1 goes on-shell k2

p+1 = 0, the prefactor in M12...p ∼ 1
s12...p

diverges. Hence, we conclude
that the field E12...p in (6.7) is conditionally BRST exact

QE12...p = 0 , if s12...p ̸= 0 ,
QE12...p ̸= 0 , if s12...p = 0 , (6.17)

because E12...p = QM12...p in (6.7) containing the propagator 1
s12...p

on the right hand side
only holds for s12...p ̸= 0 and becomes ill defined for s12...p = 0. For an n-point SYM ampli-
tude involving only massless states with k2

i = 0 momentum conservation implies∑n
i=1 ki = 0

such that s12...n−1 = 0. In this case E12...n−1 is not BRST exact and E12...n−1Vn is in the
cohomology of the BRST operator Q. Therefore, we propose the n-point generalization of
the SYM amplitudes above [162]:

ASYM(1, 2, . . . n) = ⟨E12...n−1Vn⟩ =
n−2∑
j=1
⟨M1...jMj+1...n−1Vn⟩ . (6.18)

The n-point amplitude is in the cohomology of the BRST charge, because for n massless
states with s12...n−1 = 0 the superspace expression E12...Vn is BRST closed. The action of
the BRST charge on the composite superfield E12...p is given by

QE12...p =
p−1∑
i=1

Q(M1...iMi+1...p) =
p−1∑
i=1

(M1...iEi+1...n + E1...iMi+1...n)



72 6. SYM amplitudes from pure spinor superspace expressions

=
p−1∑
i=1

i−1∑
j=1

M1...jMj+1...iMi+1...p −
p−1∑
i=1

p−1∑
j=i+1

M1...iMi+1...jMj+1...p

=
p−1∑

1≤j<i
M1...jMj+1...iMi+1...p −

p−1∑
1≤i<j

M1...iMi+1...jMj+1...p

=
p−1∑
i=1

p−1∑
j=i+1

(M1...iMi+1...jMj+1...p −M1...iMi+1...jMj+1...p)

= 0 (6.19)

such that together with QVn = 0 we obtain Q(E12...n−1Vn) = 0 [114].
The diagrammatic representation of ASYM(1, 2, . . . n) in figure 6.5 corresponds to the

two currents M1...j and Mj+1...n−1 of rank j and n−j−1, respectively, which are connected
via a cubic interaction to the nth on-shell leg. The formula (6.18) is the supersymmetric

ASYM(1, 2, . . . , n) =
n−2∑
j=1

j

1
2

M j

Vn

j + 1
j + 2

n− 1

Mn−j−1

Figure 6.5: Decomposition of SYM amplitudes using pure spinor cohomology methods.

generalization of the amplitude prescription (6.1) for color ordered n gluon amplitudes of
[167]. Compared to (6.1) the n − 1 rank current in (6.18), which is multiplied by the
Mandelstam invariant s12...n−1, is substituted by E12...n−1 and the current of rank one Jmn
can be identified with Vn.

6.5 BRST integration by parts and cyclic symmetries
Because one external state was singled out in the prescription (6.18) for the n-point SYM
amplitude, the manifest cyclic symmetry of color stripped field theory amplitudes were
hidden. Nevertheless, the amplitude (6.18) is invariant under cyclic permutations

ASYM(1, 2, . . . n) = ASYM(2, 3, . . . n, 1) , (6.20)
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which follows after regrouping terms in QM12...n = ∑n−1
i=1 M1...iMi+1...n. Therefore, we can

consider the BRST variation

Q
n−2∑
i=2

M1...iMi+1...n = M1

n−2∑
i=2

M2...iMi+1...n +
n−2∑

2≤j<i
M1...jMj+1...iMi+1...n

−
n−2∑

2≤i<j
M1...iMi+1...jMj+1...n −

n−2∑
i=2

M1...iMi+1...n−1Mn

= M1(E23...n −M23...n−1Mn)− (E12...n−1 −M1M23...n−1)Mn

= V1E12...n − E12...n−1Vn , (6.21)

where the sums in the first line cancel each other and also M1M23...n−1Mn in the third line
drops out. All combinations M1...iMi+1...n are well defined for n massless external states,
because the highest rank supercurrents have non-singular poles in s12...n−2 and s12...n−1 such
that

⟨E12...n−1Vn⟩ − ⟨E2...nV1⟩ = −⟨Q(M12M3...n +M123M4...n + . . .+M1...n−2M(n−1)n)⟩ = 0 ,
(6.22)

because a BRST exact superspace expression vanishes under the pure spinor bracket.
Therefore, the amplitude (6.18) is invariant under cyclic permutations i → i + 1 mod n

[114] and we obtain
⟨E12...n−1Vn⟩ = ⟨E2...nV1⟩ . (6.23)

To make the cyclic symmetry of (6.18) manifest we can take advantage of cohomological
properties of the pure spinor superspace expression of ASYM(1, 2, . . . n). In this process we
will derive an alternative expression for the n-point SYM amplitudes with manifest cyclic
symmetry and reduce the rank of the Berends-Giele currents needed for the amplitude,
which makes the evaluation of amplitudes more efficient.

Since for three external states the cyclic symmetry is already manifest

ASYM(1, 2, 3) = 1
3⟨M1M2M3⟩+ cyclic(123) , (6.24)

we start by considering the four-point amplitude: Because the combination MiMj is BRST
exact MiMj = Eij = QMij and BRST exact terms of the form ⟨Q(. . .)⟩ = 0 decouple from
the cohomology of Q, we find

ASYM(1, 2, 3, 4) = ⟨M12M3M4 +M1M23M4⟩ = ⟨M12E34 + E41M23⟩
= ⟨M12QM34 +QM14M23⟩ = ⟨E12M34 +M41E23⟩

= 1
2⟨M12E34⟩+ cyclic(1234) (6.25)

after integrating the BRST charge by parts. This integration by parts identity of the BRST
charge can be generalized to

⟨Mi1i2...ipEj1j2...jq⟩ = ⟨Mi1i2...ipQMj1j2...jq⟩ = ⟨Ei1i2...ipMj1j2...jq⟩ . (6.26)
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Next, we want to continue with the five-point amplitude to demonstrate that the pattern
persists also for higher point n ≥ 5 amplitudes. Therefore, we utilize (6.26), which for
instance implies that

⟨M123E45⟩ = ⟨E123M45⟩ = ⟨(M1M23 +M12M3)M45⟩ , (6.27)

where we have used QM123 = M1M23 + M12M3 in order to write the amplitude in a form
that is manifest cyclic symmetric

ASYM(1, 2, 3, 4, 5) = ⟨M123M4M5 +M12M34M5 +M1M234M5⟩
= ⟨M123E45 +M12M34M5 + E51M234⟩
= ⟨E123M45 +M12M34M5 +M51E234⟩
= ⟨(M1M23 +M12M3)M45 +M12M34M5 +M51(M2M34 +M23M4)⟩
= ⟨M12M3M45⟩+ cyclic(12345) . (6.28)

The highest rank Berends-Giele currents M123 and M234 of rank three in (6.28) have been
traded for rank two Mij. For an n-point SYM amplitude the cohomology formula (6.18)
involves Berends-Giele currents M12...n−2 with rank up to n− 2. Using BRST integration
by parts (6.26) one can lower the rank of the highest rank building block down to at most
⌊n2 ⌋, where ⌊·⌋ denotes the Gauß bracket ⌊x⌋ = max{n ∈ Z|n ≤ x}, which selects the
nearest integer that is smaller or equal to its argument [162].

By applying BRST integration by parts and/or exploiting the fermionic nature of the
Berends-Giele currents the n = 6 SYM amplitude takes the following cyclic symmetric
form

ASYM(1, 2, 3, 4, 5, 6) = ⟨M12M34M56⟩+ ⟨M23M45M61⟩+ ⟨M123(M45M6 +M4M56)⟩
+⟨M234(M56M1 +M5M61)⟩+ ⟨M345(M61M2 +M6M12)⟩

= 1
2⟨M123E456⟩+ 1

3⟨M12M34M56⟩+ cyclic(123456) . (6.29)

The fractional coefficients in (6.29) and also (6.24) and (6.25) are important to avoid over-
counting in the explicit sum over cyclic permutation. For particular superfield kinematics
the cyclic orbits are shorter than the number of legs n [62, 114]: Due to (6.26) the cyclic
sum over ⟨Mi1i2...ipEj1j2...jq⟩ results in an overcounting by a factor two for p = q. To com-
pensate this we have to introduce a factor of 1

2 for terms like ⟨M1...kEk+1...2k⟩ for an even
number of external states n = 2k. For ⟨Mi1i2...ipMj1j2...jqMk1k2...kr⟩ the cyclic sum leads to
an overcounting by a factor three for p = q = r. Hence, we have to multiply this expression
by a factor of 1

3 for n ∈ 3N external states. If n is not dividable by 2 or 3 we do not have to
introduce any fractional coefficients in the manifestly cyclic form of the n-point amplitude.



Chapter 7

Superstring KLT and monodromy
relations

In chapter 4 we have already exploited that n closed string scattering amplitudes on the
sphere factorise into two n open string amplitudes on the disk. In this chapter we want to
construct this double copy for closed string amplitudes and moreover find relations between
open string amplitudes. Here, we follow the presentation in [114, 171, 155] and the review
[172] for the derivation of the KLT relations and [35, 109] for the discussion on monodromy
relations.

7.1 KLT relations for closed string scattering ampli-
tudes

The closed string Hilbert space is a tensor product of two open string Hilbert spaces

Hclosed = Hopen ⊗Hopen . (7.1)

Immediately one can imagine that this property carries over to the vertex operators de-
scribing the states in the Hilbert space Hclosed. Indeed, using the operator state correspon-
dence and the factorisation of the Hilbert space (7.1) the closed string vertex operators
Vi(zi, zi) = Vi(zi)⊗ V i(zi) and Ui(zi, zi) = Ui(zi)⊗ U i(zi) are double copies of open string
vertex operators. Hence, this amounts to

Vi(zi, zi) = |λαAiα|2(zi, zi) ,

Ui(zi, zi) =
∣∣∣∂θαAiα + ΠmAm + dαW

α
i + 1

2N
mnF i

mn(zi, zi)
∣∣∣2(zi, zi) , (7.2)

where we used the notation |λαAiα|2(zi, zi) =
(
λαAiα(θ)

)
(zi)

(
λ
α̂
A
i
α̂(θ)

)
(zi)eiki·X(zi,zi).1 Over-

lined SYM or worldsheet fields are the antiholomorphic counterparts of the corresponding
1Here, we have used (3.78) to separate the plane wave factor from the θ-dependent part of the superfields.

Alternatively, we could separate Xm(z, z) = Xm(z)+X
m(z) into left- and right movers. This would imply
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holomorphic fields, whose spinorial indices with hats α̂, β̂, . . . have the opposite (same)
chirality as α, β, . . . for type IIA (type IIB) superstring theory. Moreover, we have used
(3.78) to emphasise that the closed string vertex operator depends on a plane wave factor
eiki·X(zi,zi). The θ-expansions for the antiholomorphic fields are as in (2.32) but with in-
dependent polarizations emi , χαi instead of emi , χαi , whose tensor product forms the closed
string polarization. For example, the purely bosonic (NSNS) closed string polarization
tensor is given by ϵmni = emi ⊗ eni .

For antiholomorphic fields the OPEs on the sphere are the same as on the disk,
but they depend on z instead of z. Moreover, there are no OPEs involving holomor-
phic and antiholomorphic fields, i.e. no cross contractions between holomorphic and an-
tiholomorphic fields on the sphere. This implies that the calculation (OPE contractions)
of the correlator ⟨⟨. . .⟩⟩ in (4.3) on the sphere separates for the holomorphic and anti-
holomorphic parts of (7.2) and the plane wave factors lead to the Koba-Nielsen factor
⟨⟨∏n

i=1 e
iki·X(zi,zi)⟩⟩ ∼ KN({zp, zp}) = ∏n

i<j |zij|2sij and a momentum preserving delta func-
tion δ(∑n

i=1 ki). Similar, the zero mode integration via (4.15) is performed independently
for λα, θα and λα̂, θα̂. Due to this factorization the scattering amplitude (4.3) can be written
as

An =
∫

M0,n

d2z2d2z3 · · · d2zn−2 ⟨⟨V1(z1)U2(z2) · · ·Un−2(zn−2)Vn−1(zn−1)Vn(zn)⟩⟩

×⟨⟨V 1(z1)U2(z2) · · ·Un−2(zn−2)V n−1(zn−1)V n(zn)⟩⟩

=
∫

M0,n

d2z2d2z3 · · · d2zn−2

n∏
i<j

|zij|2sij⟨Kn({zp})⟩⟨Kn({zp})⟩ , (7.3)

where Kn({zp}) and Kn({zp}) contain the zero modes of λα, θα and their antiholomorphic
counterparts, respectively. Moreover, the singularities z−1

ij in Kn({zp}) obtained by OPE
contractions are the complex conjugates of z−1

ij in Kn({zp}).
Next, we want to discuss the decomposition of the sphere integrals in (4.3) into open

string integrals. This double copy has a geometrical interpretation: The open string
integrals run over the punctured disk, which can be deformed into a punctured hemi-
sphere. Taking two punctured hemispheres and gluing them together along their bound-
ary and matching punctures results in a punctured sphere, which is depicted in figure
7.1. This gluing process corresponds to a map from two integrals over punctured real
lines to an integral over the punctured complex plane:

∫
Rn ⊗

∫
Rn →

∫
Cn , where we have

to ensure that this map is single valued. More formally, we have to split the Koba-
Nielson factor KN(zi, zi) into products of meromorphic and antimereomorphic functions,
i.e. |zij|2sij = (zij)sij (zij)sij such that (7.3) is an integral over a holomorphic square of a

that the plane wave factor for the left-moving part of a vertex operator only depends holomorphically on
z via Xm = Xm(z) in (2.32). Nevertheless, the full closed string vertex operator (7.2) contains the plane
wave factor eiki·X(zi,zi), because the plane wave factors of the holomorphic and antiholomorphic sector in
(7.2) can be combined into eiki·X(zi,zi) [109].
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ξn−1
ξn

ξn−2

. . .

ξ1 ξ2

ξ3

ηn−2

ηn−1
ηn . . .

η1 η2

η3

zn zn−1 zn−2

z1 z2 z3

...

Figure 7.1: Gluing two open string amplitudes together along the boundary of the disk to
form one closed string amplitude on the sphere.

multivalued function ⟨Kn({zp})⟩
∏n
i<j(zij)sij with branch points at vertex operator posi-

tions zi = zj. This double copy structure requires monodromy phases e±iπsij to become
single valued and well defined. These monodromy phases will give rise to the KLT kernel
S[·|·]i in (4.3) and were first discovered by Kawai, Lewellen and Tye in 1986 [34].

To realize this double copy relation we have to manipulate the integrals over the com-
plex plane in (7.3). Therefore, we start by rewriting the n − 3 integrations over complex
worldsheet positions into integrals over the real line by using zi = xi + iyi and zi = xi− iyi

n−2∏
i=2

∫
C

d2zi =
(
i

2

)n−3 n−2∏
i=2

∫
C

dzi ∧ dzi =
n−2∏
i=2

∫
R

dxi
∫
R

dyi . (7.4)

Although, the integration was split into two real integrals, the amplitude (7.3) does not
factorize into two open string amplitudes, because the vertex operators still depend on the
complex worldsheet positions xi ± iyi. To regroup the integrals into open string integrals
we have to substitute xi± iyi with two real variables [34]. We can take the imaginary part
of zi and zi and recognize that the amplitude is an analytic function in yi except for the
branch points at zi−zj = 0 and zi−zj = 0. Thus, without changing the amplitude we can
analytically continue the real variable yi to the complex plane by rotating the integration
contour simultaneously for all yi from the real line to the purely imaginary axis

yi −→ ie−2iεyi ≃ i(1− 2iε)yi , (7.5)

where ε > 0 is a small constant. The small shift in ε away from the purely imaginary axis is
introduced to avoid the branch points of the integrand. Note that this is possible, because
there are no poles, genus or other obstructions along the rotation. The only contribution
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comes from the monodromy of the integrand during the rotation of the integration contour.
To determine these let us consider the Koba-Nielsen factor in (7.3) up to linear order in ε

after the rotation2

|zi|2s1i =
(
x2
i + y2

i

)s1i −→
(
x2
i − y2

i + 4iεy2
i

)s1i

,

|zi − 1|2si(n−1) =
(
(xi − 1)2 + y2

i

)si(n−1) −→
(
(xi − 1)2 − y2

i + 4iεy2
i

)si(n−1)
,

|zi − zj|2sij =
(
(xi − xj)2 + (yi − yj)2

)sij −→
(
(xi − xj)2 − (1− 4iε)(yi − yj)2

)sij

,

(7.6)

where without loss of generality we have made a particular choice for (z1, zn−1, zn) =
(0, 1,∞) to simplify the discussion and i, j = 2, 3, . . . , n− 2. After the transformation

ξi = xi − yi , ηi = xi + yi (7.7)

the above expressions in (7.6) of the KN-factor become

|zi|2s1i = (ξi + iεδi)s1i(ηi − iεδi)s1i ,

|zi − 1|2si(n−1) = (ξi − 1 + iεδi)s1i(ηi − 1− iεδi)si(n−1) ,

|zi − zj|2sij = (ξi − ξj + iε(δi − δj))s1i(ηi − ηj − iε(δi − δj))sij , (7.8)

where we have defined δi = ηi − ξi. Thereby, the amplitude (7.3) takes the following form

An =
(1

2

)n−3 ∫ ∞

−∞

n−2∏
p=2

dξidηi ⟨Kn({ξp})⟩⟨Kn({ηp})⟩
n−2∏
i=2

(ξi + iεδi)s1i(ηi − iεδi)s1i

×(ξi − 1 + iεδi)s1i(ηi − 1− iεδi)si(n−1)

×
n−2∏

2≤j<i
(ξi − ξj + iε(δi − δj))s1i(ηi − ηj − iε(δi − δj))sij . (7.9)

The factor
(

1
2

)n−3
appears due to the Jacobian of the coordinate transformation (xi, yi)→

(ξi, ηi) in the integral.
For the following discussion we want to assume that at least one ηi ∈]−∞, 0[. For the

terms in (7.9) containing a specific ξi, which are given by
∫ ∞

−∞
dξi ⟨Kn({ξp})⟩(ξi + iεδi)s1i(ξi − 1 + iεδi)s1i

n−2∏
2≤j<i

(ξi − ξj + iε(δi − δj))s1i , (7.10)

the terms linear in ε show the following behaviour near the branch points

ξi ≈ 0 : δi = ηi − ξi ≈ ηi < 0 ,
2The branch points at zij = 0 and zij = 0 of the integrand in (7.3) are contained in KN({zp, zp}),

because the poles in Kn and Kn have integer powers.
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ξi ≈ 1 : δi ≈ ηi − 1 < 0 ,
ξi ≈ ξj : δi − δj ≈ ηi − ηj < 0 for ηi < ηj . (7.11)

If ηi > ηj we have to look at a different ξk integral, which would correspond to the smallest
ηk. This ηk is again in the interval ] −∞, 0[ due to the assumption that at least one ηi
is in this interval. Hence, we conclude that the integral of ξi can be closed by analytic
continuation in the lower half plain and the integral vanishes, because the closed integration
contour does not encircle any poles of the integrand. More generally, we evade branch
points ξi = ξj below or above the real axis for ηi < ηj or ηi > ηj, respectively. Hence,
at least one integration contour of ξi can be entirely below or above the real axis, if the
corresponding ηi is either in the range ]−∞, 0[ or ]1,∞[ such that all ηi ∈]0, 1[ in order to
get a non-vanishing contribution from (7.10), i.e. all ηi-integrations can be written as

∫
0<η2<η3...<ηn−2<1

n−2∏
i=2

dηi ⟨Kn({ηp})⟩(ηi)s1i(ηi − 1)s1i

n−2∏
2≤j<i

(ηi − ηj)s1i . (7.12)

Note that we made a choice for the ordering 0 < η2 < η3 . . . < ηn−2 < 1. To obtain
the entire closed string amplitude we have to sum over all permutations σ(2, 3, . . . , n− 2)
of this ordering for ηi. Moreover, the integrals in (7.12) can be identified with the n-
point color ordered open string amplitude (4.1) with fixed vertex operator positions at
(z1, zn−1, zn) = (0, 1,∞).3 In the end, the ηi-integration will result in summing the open
string amplitudes A(1, σ(2, 3, . . . , n− 2), n− 1, n) over all permutations σ.

In a similar way, we want to examine which integration contour for ξi is dictated by
the imaginary parts of (7.8) proportional to ε. For ηi ∈]0, 1[ we find

ηi ≈ 0 : δi ≈ ξi > 0 ,
ηi ≈ 1 : δi ≈ ξi − 1 < 0 ,
ηi ≈ ηj : δi − δj ≈ ηi − ηj < 0 for ξi < ξj (7.13)

such that the integration contour of ξi + iεδi lies above and below the real axis for ηi < 0
and ηi > 1, respectively. In the interval between 0 and 1 the contour of ξi + iεδ is above
the one for ξj + iεδj for i > j, which is depicted in figure 7.2. Because the individual
ξi-contours cannot intersect each other, beginning with the rightmost (leftmost) we need
to deform the integration contours for ξi + iεδi to the left around the branch cut at ξi = 1
(the right around the branch cut at ξi = 0), which closes the contour below (above) the
real axis. Thereby, we obtain integration regions corresponding to open string scattering

3Usually, for this identification we have to rescale α′ → α′

4 in the open string amplitude in order to get
the correct closed string Koba-Nielsen factor from open strings, i.e. such that the kinematic invariants in
the KN-factor agree sopen

ij = 2α′ki · kj → sclosed
ij = α′

2 ki · kj . Alternatively, we could have defined the open
string momenta as kopen = 1

2 kclosed, which is known as the doubling trick.
With our choice for α′ = 2 for closed strings and α′ = 1

2 for open strings, we don’t have to introduce
any additional factor, since we have thereby accounted for the relative factor.
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Figure 7.2: Nested structure for the integration contours Ci for ξi + iεδi corresponding to
the ordering 0 < η2 < η3 < . . . < ηn−2 < 1.

amplitudes. In this process we have the freedom to chose the number of contours we want
to close to the left or right. For example, for 2 ≤ j ≤ n − 1 all contours from 2 to j − 1
can be pulled to the left and the reaming contours from j to n − 2 can be closed to the
right. Moreover, it is also possible to close all of the contours either to the left (j = 2) or
the right (j = n− 1).

In addition, we have to ensure that the integrand takes the correct form such that we
can also identify the integrand with an open string correlator. This can be done by pulling
out phase factors e±iπsij , but we have to be careful not to cross a branch cut. Therefore,
we chose the branch cut to lie on the negative real axis and restrict the power function to
zc = |z|ceicθ with −π < θ < π. According to [172] this implies that

zc =
{
eiπc(−z)c for ℑ(z) ≥ 0 ,
e−iπc(−z)c for ℑ(z) < 0 . (7.14)

Note that (7.14) is valid for both signs of ℜ(z) and not only ℜ(z) < 0 as stated in [172].
For more details see appendix A of [172].

We want to demonstrate the contour deformation for an arbitrary j and start by closing
the integration contour C2 (see figure 7.2) of ξ2 to the right, which gives∫

C2
dξ2 (ξ2)s12(1− ξ2)s2(n−1)

n−2∏
j=3

(ξj − ξ2)s2j

=
(
eiπs12 − e−iπs12

) ∫ 0

−∞
dξ2(−ξ2)s12(1− ξ2)s2(n−1)

n−2∏
j=3

(ξj − ξ2)s2j

= 2i sin(πs12)
∫ 0

−∞
dξ2(−ξ2)s12(1− ξ2)s2(n−1)

n−2∏
j=3

(ξj − ξ2)s2j (7.15)

where we have only displayed the Koba-Nielsen factor and shown terms with branch cuts
in ξ2 for simplicity. We can continue by closing the contour for ξ3 to the left and get∫

C3
dξ3 (ξ3)s13(1− ξ3)s3(n−1)(ξ3 − ξ3)s23

n−2∏
j=4

(ξj − ξ2)s2j
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= 2i sin(πs13)
∫ 0

ξ2
dξ3(−ξ3)s13(1− ξ3)s3(n−1)(ξ3 − ξ2)s23

n−2∏
j=4

(ξj − ξ3)s2j

+2i sin(π(s12 + s13))
∫ ξ3

−∞
dξ3(−ξ3)s13(1− ξ3)s3(n−1)(ξ2 − ξ3)s23

n−2∏
j=4

(ξj − ξ2)s2j . (7.16)

We proceed in this way until we arrive at the last contour ξj−1, which we have pulled to
the left.

On the other side, we also have the possibility to deform the integration contours around
the branch point ξi = 1 to the right. Therefore, we start with closing the contour for ξn−2,
which gives
∫
Cn−2

dξn−2 (ξn−2)s1(n−2)(1− ξn−2)s(n−2)(n−1)
n−3∏
j=3

(ξn−2 − ξj)sjn−2

= 2i sin
(
πs(n−2)(n−1)

) ∫ ∞

1
dξn−2(ξn−2)s1(n−2)(ξn−2 − 1)s(n−2)(n−1)

n−3∏
j=3

(ξn−2 − ξj)sjn−2 (7.17)

Next, we take the ξn−3 contour and deform it such that
∫
Cn−3

dξn−3 (ξn−3)s1(n−3)(1− ξn−3)s(n−2)(n−1)(ξn−2 − ξn−3)s(n−3)(n−2)
n−4∏
j=3

(ξn−3 − ξj)sjn−3

= 2i sin
(
πs(n−3)(n−1)

) ∫ ξn−2

1
dξn−3(ξn−3)s1(n−3)(ξn−3 − 1)s(n−3)(n−1)

×(ξn−2 − ξn−3)s(n−3)(n−2)
n−4∏
j=3

(ξj − ξn−3)sj(n−4)

+2i sin
(
π(s(n−3)(n−1) + s(n−3)(n−2))

) ∫ ∞

ξn−2
dξn−3(ξn−3)s1(n−3)(ξn−3 − 1)s(n−3)(n−1)

×(ξn−3 − ξn−2)s(n−3)(n−2)
n−4∏
j=3

(ξn−3 − ξj)sj(n−4) (7.18)

Again, we can continue with this pattern until we reach the contour for ξj, which is the last
one, we want to close to the right. Hence, the integrations over the worldsheet variables
ξi result in a sum over color ordered open string amplitudes Ã(γ(σ(2, . . . , j − 1)), 1, n −
1, β(σ(j, . . . , n− 2)), n), which are multiplied by monodromy phases.

In the end, the different ways of closing the contours lead to the following expression
for the n-point closed string amplitude on the sphere

An =
∑

σ,ρ,γ∈Sn−3

A(1, σ(2, . . . , n− 2), n− 1, n)S[ρ(σ(2, . . . , j − 1))|σ(2, . . . j − 1)]1

×S[σ(j + 1, . . . , n− 2))|β(σ(j + 1, . . . n− 2))]n−1

×Ã(γ(σ(2, . . . , j − 1)), 1, n− 1, β(σ(j, . . . , n− 2)), n) (7.19)
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with 2 ≤ j ≤ n − 1 as before. Note that the momentum kernels in (7.19) depend on the
momenta k1 and kn−1 of the external states at the branch points at 0 and 1. They can be
defined recursively as [114, 155]

S[p1, . . . , ps, j|q1, . . . qr, j, qr+1, . . . , qs]i = 2
π

sin(πkj · kiq1,...qr)S[p1, . . . , ps|q1, . . . qs]i ,
(7.20)

where the starting point of this recursion is given by S[∅|∅] = 1. Moreover, the normaliza-
tion of the momentum kernel is such that after reinstating α′ we recover the field theory
momentum kernel S[·|·]i of [154, 173, 174] in the field theory limit α′ → 0.

Equation (7.19) demonstrates how an n-point closed string amplitude factorises into
two open string color ordered amplitudes on the disk. It can be interpreted as gluing two
amplitudes A(. . .) and Ã(. . .) together by the kinematic factors in the KLT kernel S such
that they form one closed string amplitude An similar as in figure 7.1. The amplitude
(7.19) is independent of j, which reflects the arbitrariness in the number of contours that
are either closed to the left or right. The j-independence originates from the fact that the
open string amplitudes satisfy monodromy relations, see section 7.2. In total there are
(n− 3)!× (j− 2)!× (n− 1− j)! terms in the sum (7.19). Therefore, the maximum number
of terms is achieved for j = 2 or j = n− 1 and given by (n− 3)!× (n− 3)!. For this choice
we recover (4.5):

An = −
∑

σ,ρ∈Sn−3

A(1, σ(2, 3, . . . , n− 2), n, n− 1)

×S[σ(2, 3, . . . , n− 2)|ρ(2, 3, . . . , n− 2)]1Ã(1, ρ(2, 3, . . . , n− 2), n− 1, n) . (7.21)

On the other hand, in [34] they have chosen to close one half of the contours to the left
and the other half to the right, which corresponds to the minimum value (n− 3)!× (⌈n2 ⌉−
2)!× (⌊n2 ⌋ − 1)! of terms in the sum over permutations and is obtained for j = ⌈n2 ⌉.

4

7.2 Monodromy relations for open string scattering
amplitudes

In the previous section we have seen that any n-point closed string amplitude on the sphere
decomposes in two n-point color ordered open string amplitudes on the disk, see (7.21).
Since these are the components of the closed string amplitudes, in which we are interested,
it is important to study them in more detail. In general, there are (n − 1)! inequivalent
color stripped subamplitudes, but they are not independent and can be expressed via a
basis with (n− 3)! elements [35, 36].

4The ceiling function is defined as ⌈x⌉ = min{n ∈ N|n ≥ x} similar to the floor function.
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7.2.1 Relating massless open string subamplitudes
In string theory the worldsheet properties of open string amplitudes imply that under
reflection the vertex operators have eigenvalues ±1 such that the same holds for the am-
plitude itself [116]. Hence, by applying reflection and parity symmetries we find that the
partial amplitudes satisfy

A(1, 2, . . . , n) = (−1)nA(n, n− 1 . . . , 1) , (7.22)

which reduces the number of independent amplitudes from (n−1)! to 1
2(n−1)!. Note that

this is a symmetry that is also well known from field theory amplitudes and follows form
studying the sum of Feynman diagrams [35].

Further, algebraic relations between subamplitudes can be derived by applying world-
sheet methods. Therefore, let us consider the canonically ordered amplitude in (4.6) and
change the vertex operator fixing to some arbitrary positions (zi1 , zi2 , zi3) such that we
obtain

A(1, 2, . . . , n) =
∫

−∞<z1<z2<...<zn<∞

N∏
i=1

i ̸=i1,i2,i3

dzi
n∏
k<l

|zk − zl|skl⟨Kn({zp})⟩ , (7.23)

where we introduced the notation A to distinguish the amplitude above from (4.1) with
fixed positions (z1, zn−1, zn). In the remainder of this section we want to find relations
between A(1, 2, . . . , n) and permutations thereof following the presentation in [109, 35].
Note that (7.23) also satisfies (7.22).

We are only concerned with the Koba-Nielsen factor, since it contains the branch points
of the amplitude and therefore prevents the amplitude from being an analytic function of
the worldsheet variables zi. For a specific integration variable z1, where i1, i2, i3 ̸= 1, the
corresponding terms in the KN-factor ∏n

j=2 |z1j|sij can be related to a holomorphic function
by using (7.14), i.e. [116]

n∏
j=2

(z1j)sij =
n∏
j=2
|z1j|sij ×



1 : −∞ < z1 < z2 ,

eiπs12 : z2 < z1 < z3 ,

eiπs12eiπs13 : z3 < z1 < z4 ,
... ...∏n−1

j=1 e
iπs1j : zn−1 < z1 < zn ,

1 : zn < z1 <∞ .

(7.24)

Then, we can analytically continue the z1 integral to the entire complex plane: We integrate
z1 along the real axis followed by a semicircle of infinite radius in the upper half plane
rather than over ]−∞, z2[, which is depicted in figure 7.3. The semicircle in the upper half
plane vanishes at infinity, since the integrand in (7.23) scales as z−2h1

1 → 0 for |z1| → ∞,
where h1 = 1 is the conformal weight of the integrated vertex operator U1(z1) in the pure
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A(1, 2, 3, . . . , n)

A(2, 1, 3, . . . , n)

A(2, 3, 1, 4, . . . , n)
. . .

. . .
A(2, 3, . . . , n− 1, 1, n)

A(2, 3, . . . , n− 1, n, 1)

ℜ(z1)

ℑ(z1)

znz2 z3

Figure 7.3: Contour integral in the complex z1-plane.

spinor formalism. From Cauchy’s theorem it follows that the integral over the holomorphic
integrand in z1 vanishes along the closed contour of z1 in figure 7.3. Hence, we obtain [116]

0 =
∫
R

dz1

∫
z2<z3<...<zn

n∏
i=2

i ̸=i1,i2,i3

dzi
n∏
j=2

(z1j)s1j

n∏
2≤k<l

|zkl|skl⟨Kn({zp})⟩

=
∫ z2

−∞
dz1

∫
z2<z3<...<zn

n∏
i=2

i ̸=i1,i2,i3

dzi
n∏
j=2
|z1j|s1j

n∏
2≤k<l

|zkl|skl⟨Kn({zp})⟩

+
n∑
q=3

eiπ(s12+...s1(q−1))
∫ zq

zq−1
dz1

∫
z2<z3<...<zn

n∏
i=2

i ̸=i1,i2,i3

dzi
n∏
j=2
|z1j|s1j

n∏
2≤k<l

|zkl|skl⟨Kn({zp})⟩

+
∫ ∞

zn

dz1

∫
z2<z3<...<zn

n∏
i=2

i ̸=i1,i2,i3

dzi
n∏
j=2
|z1j|s1j

n∏
2≤k<l

|zkl|skl⟨Kn({zp})⟩

= A(1, 2, . . . , n) +
n∑
q=3

eiπ(s12+...s1(q−1))A(2, . . . , q − 1, 1, q, . . . n) + A(2, . . . , n, 1) . (7.25)

Here, we have divided the z1-integration along R into smaller intervals ]−∞, z2[, ]zq−1, zq[
and ]zn,∞[ for q = 3, 4, . . . , n. Moreover, we used (7.24) to relate the holomorphic factors
(z1j)sij to |z1j|s1j in the Koba-Nielsen factor of the open string amplitude. This process
required to introduce the phase factors eiπ(s12+...s1(p−1)) for the individual subsets of R.
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Further, this can be interpreted as follows: Each time when we encircle another vertex
operator position zi for i = 2, 3, . . . n while integrating z1 along the real axis, we pick up
a phase. The phase arises when we express the integrand of A(1, 2, . . . , n) in terms of the
integrand of A(2, . . . , j, 1, j + 1, . . . , n) by applying (7.14). For example the subamplitude
A(1, 2, . . . , n) contains a factor (z1−z2)s12 whereas A(2, 1, 3, . . . , n) has a factor (z2−z1)s12 ,
which can be related via (7.14) [175].

This discussion leads us to relations among open string subamplitudes [109]

0 = A(1, 2, . . . , n− 1, n) + eiπs12A(2, 1, 3, . . . , n− 1, n)
+eiπ(s12+s13)A(2, 3, 1, . . . , n− 1, n) + . . .

+eiπ(s12+s13+...+s1(n−1))A(2, 3, . . . , n− 1, 1, n) + A(2, . . . , n− 1, n, 1) , (7.26)

which are an analogue to the dual Ward identity in field theory. Compared to [35] we
obtained a slightly different monodromy relation in (7.26), where we have A(2, . . . , n −
1, n, 1) corresponding to zn < z1 < ∞, which is not equivalent to A(1, 2, . . . , n− 1, n)
corresponding to −∞ < z1 < z2, because there is no vertex operator with position zi →∞.
Moreover, the open string subamplitudes A(1, 2, . . . , n − 1, n) and A(2, . . . , n − 1, n, 1)
appear with the same phase in the monodromy relation (7.26). Hence, we do not pick
up a phase when jumping from +∞ to −∞, since there is no vertex operator localized
at infinity. This suggests that they can be combined into one amplitude and in fact they
are only parts of the same open string subamplitude,5 which becomes clear in the next
subsection if one unintegrated vertex operator ip is fixed to zip →∞ for p ∈ {1, 2, 3} [109].

7.2.2 The minimal basis of subamplitudes
Before we use the relations obtained from the monodromy of the worldsheet to reduce
the number of inequivalent partial amplitudes, we want to consider the case where one
vertex operators is fixed to infinity, which can be obtained form (7.23) by performing a
PSL(2,R)-transformation,6 see section 8.3.2 for an example. For simplicity, we choose
zn →∞ such that the partial amplitudes can be written as

A(1, 2, . . . , n) =
∫

−∞<z1<z2<...<zn−1<∞

n∏
i=1

i ̸=i1,i2

dzi
n−1∏
k<l

|zk − zl|skl⟨Kn({zp})⟩ , (7.27)

where two other vertex operator positions (zi1 , zi2) are fixed to (0, 1). By taking (zi1 , zi2) =
(z1, zn−1) we would recover (4.6) in the PSL(2,R)-frame (z1, zn−1, zn) = (0, 1,∞).

5Hence, some A(ρ(1, 2, . . . , n)) do not immediately correspond to open string partial amplitudes with
some color ordering ρ of the n open strings, but they can be combined and rewritten such that they will
be promoted to open string subamplitudes.

6This statement is true up to the subtlety that some of the subamplitudes (7.23) have to be combined
to yield one open string partial amplitude (7.27).
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By following the same steps as before we obtain the monodromy relations [35, 36]

0 = A(1, 2, . . . , n− 1, n) + eiπs12A(2, 1, 3, . . . , n− 1, n)
+eiπ(s12+s13)A(2, 3, 1, . . . , n− 1, n)
+ . . .+ eiπ(s12+...+s1(n−1))A(2, 3, . . . , n− 1, 1, n) . (7.28)

If we now consider the amplitude A(2, 3, . . . , n− 1, n, 1) this would correspond to zn =
−∞ < z1 < z2, because the boundary of the disk corresponds to the compactified real line,
i.e.−∞ and +∞ describe the same point on the boundary of the worldsheet. Therefore, the
subamplitudes A(1, 2, 3, . . . , n− 1, n) and A(2, 3, . . . , n− 1, n, 1) are the same, which was
not the case for (7.23). Furthermore, the open string subamplitudeA(1, 2, 3, . . . , n− 1, n) is
given by the combined partial amplitudes A(1, 2, . . . , n) and A(2, . . . , n, 1) after performing
a PSL(2,R)-transformation, where the fixed vertex operators are (zi1 , zi2 , zn) in both cases.
From A(1, 2, . . . , n) one could have guessed that there are n! inequivalent amplitudes, but
this identification shows that there are really only (n−1)! independent amplitudes to begin
with.

Due to the monodromy relations the dimension of the basis of independent subampli-
tudes is smaller than 1

2(n− 1)! suggested by (7.22). To derive the minimal basis following
the discussion in [116] we write the set of monodromy relations (7.28) in a more general
way

A(1, α1, . . . , αr, n, β1, . . . βs) = (−1)s
s∏
i<j

eiπsβiβj

∑
σ∈OP({α},{β})

r∏
k=0

s∏
l=1

eiπsαiβjA(1, σ, n) (7.29)

where α0 = 1 and a definition of OP({α}, {β}) is given below (6.14). After using (7.28) and
(7.29) the only independent amplitudes left have the external states 1 and n at positions
next to each other. The total number of these amplitudes is given by (n − 2)! due to the
Sn−2 permutations of the remaining states 2, 3, . . . , n − 1. So far, we have neglected that
the amplitudes are real A(1, 2, . . . , n) ∈ R, which makes it possible to take only the real
part of (7.29) to carry out the reduction to (n − 2)! amplitudes A(1, σ, n). Further, the
imaginary parts of these relations can be used to find a simpler set of identities. They
include one term less than (7.26) and are given by

0 = sin(πs12)A(2, 1, 3, . . . , n− 1, n) + sin(π(s12 + s13))A(2, 3, 1, . . . , n− 1, n)
+ . . .+ sin(π(s12 + . . .+ s1(n−1)))A(2, 3, . . . , n− 1, 1, n) (7.30)

and relabellings thereof. With (7.30) we are able to write any subamplitude as a linear
combination of (n − 3)! basis elements. Note that this number is identical to the dimen-
sion of the basis of generalized Gaussian hypergeometric functions, which can be used to
characterize the open string n-point amplitude [176, 177, 178].

The CFT correlator ⟨Kn({zp})⟩ is independent on any permutation of the external states
in A(1, 2, . . . , n) and can be evaluated before specifying the partial amplitude. Only the
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integration region is different for each subamplitude. Moreover, the branch cuts originate
from the Koba-Nielsen factor and not from ⟨Kn({zp})⟩, which has only poles with integer
powers in the worldsheet coordinates and therefore does not influence the analytic prop-
erties of the amplitude. Hence, the results in this section are universal for all amplitudes
consisting of a correlator with these properties and a Koba-Nielsen factor similar (with
the same branch cut structure) to the open string amplitudes considered in this section.
Furthermore, the discussion in this section did not depend on the number of spacetime
dimension or the amount of spacetime supersymmetry.
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Chapter 8

Scattering three closed strings off a
Dp-brane

The first quantum corrections to the effective action obtained in the limit α′ → 0 from string
theory can be captured among others by disk amplitudes. For example, they give rise to
higher derivative gravitational corrections to the Dirac-Born-Infeld action [84] and it should
be possible to infer disk level corrections to the Einstein-Hilbert term in four dimensions
from graviton scattering with only external polarizations. These could originate from a
disk level term like e−Φϵ10ϵ10R

4 when compactifying on a Calabi-Yau with non-vanishing
Euler number and were conjectured in [179] to exist in the worldvolume theory of a D9-
brane. Hence, it would be interesting to explicitly check for the existence of these terms
in the scattering of closed strings off a Dp-brane. In this chapter, which is based on [109],
we present the procedure for the computation of these amplitudes: As the scattering of
two closed strings did not exhibit the desired gravitational corrections we continue by
investigating the scattering of three closed strings on the disk. However, in chapter 11 we
will show that also our results do not show any hints of such a disk level corrections to the
Einstein-Hilbert term. Nevertheless, we build the foundation for future computations to
investigate this further.

8.1 Boundary conditions on the disk

In chapter 7 we considered only closed string states that interact on the sphere. As was
argued in section 7.1 on the sphere left- and right-movers can be treated independently,
i.e. there is no interaction between the holomorphic and antiholomorphic sector. But the
boundary of the disk imposes non-vanishing correlators between the left- and right-moving
parts of the worldsheet fields: The holomorphic and antiholomorphic part of closed string
vertex operators are not independent any more. In general, an operator Oh,h(z, z) =
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Oh(z)⊗Oh(z) with conformal weight (h, h) at the boundary has to satisfy [180]

0 =
〈
B
∣∣∣[(z′)hOh(z′)− zheiπhOh(z)

]∣∣∣
z= 1

z′
, (8.1)

where ⟨B| is the boundary state of the disk. For the computation of the three-point
amplitude we can use the doubling trick, which according to (8.1) becomes [27]

Oh(z) =
(
∂z′

∂z

)h
Oh(z′) for z′ = 1

z
. (8.2)

to rewrite the right-moving part of the vertex operators in (7.2) and allow for a unified
treatment of the holomorphic and antiholomorphic sector. Note that the Z2 identification
z′ = 1

z
can be used to obtain the disk as the quotient S2/Z2 form the sphere. Moreover,

this identification leaves the disk invariant. Furthermore, we can map the disk to the upper
half plane H+ by using

w = i
1− z
1 + z

, (8.3)

where w are the worldsheet coordinates on the upper half of the complex plane. This
conformal transformation maps the boundary of the disk onto the boundary of H+, which
is the real line R. Consequently, we map z′ = 1

z
7→ w′ = w such that (8.2) on H+ becomes

Oh(w) =
(
∂w′

∂w

)h
Oh(w′) for w′ = w . (8.4)

Since we can express right-moving fields via the left-moving counterpart, the action of
the boundary state ⟨B| on an operator O(h,h) imposes an interaction between Oh and Oh.
Moreover, applying the doubling trick extends the field O from the upper half plane to the
entire complex plane.

The scattering amplitude of three closed strings is described by type IIB string theory
in a flat ten dimensional spacetime, which contains a Dp-brane that is spanned in the
X1×X2× . . . Xp dimensions. Therefore, at the boundary of H+ the first p+ 1 components
of the worldsheet fields have to satisfy Neumann boundary conditions and the remaining
9− p components Dirichlet boundary conditions. By using the doubling trick (8.4) we can
replace the antiholomorphic spacetime vectors and spinors by

vectors: Xm(z) = Dm
nX

n(z) ,
spinors: Ψα(z) = Mα

βΨβ(z) or Ψα(z) = N β
α Ψβ(z) , (8.5)

where Ψα ∈ {θα, λα} and Ψα ∈ {pα, wα} and D,M and N are constant matrices, which
account for the Neumann or Dirichlet boundary conditions. Moreover, as stated above
these fields are now defined on the entire complex plane. This was first derived in [88] in
the pure spinor formalism and the corresponding discussion for the RNS formalism can be
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found in [92]. In the remaining section we will derive the consequences of (8.5) following
the lines of [88].

The matrix Dmn describing the boundary condition for spacetime vectors is the same
as in the RNS formalism [91, 92]. In a flat background Dmn is a diagonal matrix with
diagonal components

Dmn =


ηmn for m,n ∈ {0, 1, . . . , p} ,
−ηmn for m,n ∈ {p+ 1, . . . , 9} ,
0 , otherwise .

(8.6)

In the small coupling regime the D-brane is infinitely heavy and is capable of absorbing
an arbitrarily large amount of momentum in the directions Xp+1, . . . X9 transverse to the
D-brane. Hence, in this regime momentum is only conserved along the D-brane. We can
introduce a parallel and transverse momentum

ki∥ = 1
2(ki +D·ki) , ki⊥ = 1

2(ki −D·ki) , (8.7)

for i = 1, 2, . . . , n such that only the momenta ki∥ are conserved

n∑
i=1

ki∥ = 0 , (8.8)

where n is the number of external closed string states. Moreover, we are considering
massless states so that the momenta satisfy k2

i = 0 and all ki are orthogonal to the
corresponding polarization tensors kmi ϵimn = ϵimnk

n
i = 0.

For only holomorphic fields we use the correlators on the upper half plane

⟨Xm(z)Xn(w)⟩ = −ηmn ln(z − w) ,

⟨pα(z)θβ(w)⟩ = δβα
z − w

,

⟨wα(z)λβ(w)⟩ = δβα
z − w

(8.9)

derived from the OPEs in (3.76) and the antiholomorphic part is analogous. Following
from the boundary conditions of the worldsheet fields for the interaction between the two
sectors we need the correlators

⟨Xm(z)Xn(w)⟩ = −Dmn ln(z − w) ,

⟨pα(z)θβ(w)⟩ = Mβ
α

z − w
, ⟨pα(z)θβ(w)⟩ = Nα

β

z − w
,

⟨wα(z)λβ(w)⟩ = Mβ
α

z − w
, ⟨wα(z)λβ(w)⟩ = Nα

β

z − w
. (8.10)
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The matrices M and N are different from the RNS formalism, because we use a different
spinor representation in the pure spinor formalism. According to [88] M and N are not
independent. From the two versions of the OPE

pα(z)θβ(w) = Nα
γpγ(z)Mβ

δθ
δ(w) = Nα

γMβ
γ

z − w
,

pα(z)θβ(w) = δβα
z − w

(8.11)

it follows that Nα
γMβ

γ = δβα or N = (MT)−1. Moreover we would expect that also the
supersymmetric momentum Πm and GS constraint dα satisfy (8.5). Explicitly, we find1

Πm(z) =
(
Dm

n∂X + 1
2(θMTγmM∂θ)

)
(z) = Dm

nΠn(z) , (8.12)

which holds if

Mγ
αγ

m
γδM

δ
β = Dm

nγ
m
αβ , i.e. (MTγmM)αβ = Dm

nγ
n
αβ (8.13)

and we get a similar relation for Nα
γγmγδNβ

δ = Dm
nγ

m
αβ. Furthermore, the fermionic part of

the Lorentz current should respect these boundary conditions as well. Hence, by demanding
for the ghost contribution N

mn(z) = Dm
kD

m
lN

kl(z) we find

Nγ
α(γm)γδNδ

β = Dm
n(γn)αβ , i.e. (NTγmN)αβ = Dm

n(γn)αβ , (8.14)

because otherwise

N
mn(z) = 1

2(wγmnλ) = 1
2(wNTγmnMλ)

= 1
4(wNTγ[mNMTγn]Mλ) = 1

4D
m
kD

m
lN

kl(wγ[kγl]λ) =

= Dm
kD

m
lN

kl(z) (8.15)

would not be satisfied. Again, we also can find the corresponding equation for M , which
is given by

Mα
γ(γm)γδMβδ = Dm

n(γn)αβ , i.e. (MγmMT)αβ = Dm
n(γn)αβ . (8.16)

Note that these relations between M and N are sufficient such that the OPEs (3.76) can
be used with the doubling trick and we will not find any further conditions.

Instead of working with the correlators (8.10) we can use the doubling trick and replace
the antiholomorphic fields in the right-moving superfields K[e, χ, k](X, θ) by X and θ.

1In the contraction of fermions like (θγm∂θ) the left spinor has to be transposed, which is left implicit
in the notation of the pure spinor formalism.
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Then, we only need the correlators in (8.9), where the prior antiholomorphic fields are still
at positions z. Thus, the θ-expansion in (2.32) for the gluonic part of Aα(X, θ) is given by

Aα[e, k](X, θ) = Aα[e, k](D·X,Mθ) =

= eik·D·X
{
em(γmMθ)α −

1
16(γpMθ)α(θMTγmnpMθ)ik[men]

}
= eik·D·X

{
em((MT)−1MTγmMθ)α −

1
16((MT)−1MTγpMθ)α(θMTγmnpMθ)ik[men]

}
= eik·D·X((MT)−1)α

β
{

(D·e)m(γmθ)β −
1
16(γpθ)β(θγmnpθ)i(D·k)[m(D·e)n]

}
= ((MT)−1)α

β
Aβ[D·e,D·k](X, θ) , (8.17)

and the gluino components of Aα(X, θ) can be written as

Aα[χ, k](X, θ) = Aα[χ, k](D·X,Mθ) =

= eik·D·X
{
− 1

3(χγmMθ)(γmMθ)α + 1
60(γmMθ)αikn(χγpMθ)(θMTγmnpMθ)

}
= eik·D·X

{
− 1

3(χ(MT)−1MTγmMθ)((MT)−1MTγmMθ)α

+ 1
60((MT)−1MTγmMθ)αikn(χ(MT)−1MTγpMθ)(θMTγmnpMθ)

}
= eik·D·X((MT)−1)α

β
{
− 1

3(χ(MT)−1γmθ)(γmθ)β

+ 1
60(γmθ)βi(D·k)n(χ(MT)−1γpθ)(θγmnpθ)

}
= ((MT)−1)α

β
Aβ[M−1χ,D·k](X, θ) (8.18)

where we have used (MT)−1MT = 1 and displayed only the first terms in the θ-expansion,
but this holds also for the higher order terms. For the other superfields we can perform a
similar calculation and find analogously

Am[e, χ, k](X, θ) = D n
m An[D·e,M−1χ,D·k](X, θ) ,

Wα[e, χ, k](X, θ) = M β
α Wβ[D·e,M−1χ,D·k](X, θ) ,

Fmn[e, χ, k](X, θ) = D a
m D b

n Fab[D·e, χ,M−1χ,D·k](X, θ) . (8.19)

Replacing also the remaining antiholomorphic worldsheet fields according to (8.5)

Πm = Dm
nΠn , dα = (M−1)α

β
dβ , λ

α = Mα
βλ

β , N
mn = Dm

aD
n
bN

ab (8.20)

in the right-moving part of the vertex operators in (7.2) we get after applying the doubling
trick

V (z)→ V (z) =
(
λαAα[D·e,M−1χ,D·k](X, θ)

)
(z) ,
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U(z)→ U(z) =
(
∂θαAα[D·e,M−1χ,D·k](X, θ) + ΠmAm[D·e,M−1χ,D·k](X, θ)

+dαWα[D·e,M−1χ,D·k](X, θ) + 1
2N

mnFmn[D·e,M−1χ,D·k](X, θ)
)

(z) .
(8.21)

To sum up the doubling trick boils down to replacing each antiholomorphic superfield by
its holomorphic counterpart and at the same time multiplying gluonic polarisation vector
and momentum by D and the polarization spinors with M−1 to account for the boundary
conditions.

To simplify the notation we omit the dependence of the superfields on polarisation and
momentum, but introduce the following notation instead

Kı(z) ≡ Ki[ei, χi, ki](X(zi), θ(zi)) = Ki[D·ei,M−1χi, D·ki](X(zi), θ(zi)) (8.22)

for any superfield Ki of an external string state i. We also use this notation for vertex
operators, composite superfields, Berends-Giele currents and to label string states in open
string subamplitudes, see for example section 8.3 and appendix C. In general, an overlined
label indicates that we employed the doubling trick (8.22) for the antiholomorphic part of
the corresponding state.

8.2 The disk correlator of closed strings
The prescription to compute open superstring amplitudes on the disk was already pre-
sented in chapter 4 and the results derived using (4.1), see for example [62, 158, 160], are
well tested. Therefore, this is also the case for closed strings, as the tree-level scattering
amplitude on the sphere can be computed via KLT relations [34], which were presented in
section 7.1. The prescription for both cases is very straight forward, since the worldsheets
do not have moduli and their CKVs of PSL(2,C) and PSL(2,R) can be used to fix three
closed or open string vertex operator positions, respectively. But for closed strings on the
disk the conformal Killing group PSL(2,R) of the disk does not allow for this possibility.
Instead, the three real CKVs of the disk allow to gauge fix one real position each. Hence,
we can only gauge fix the position of one and a half vertex operators corresponding to
three real coordinates of the vertex operator positions zi = xi+ iyi on the disk. The vertex
operator with half fixed position has to be a product of an unintegrated and integrated
vertex operator, e.g. Vi ⊗ U i or Ui ⊗ V i, which was derived in [88, 117] and also discussed
in [101, 181]. Compared to the sphere this is different, i.e. the vertex operators in (7.2) are
of the form Vi ⊗ V i or Ui ⊗ U i.

For the scattering of n-closed strings on the disk we can take the first two states and
place their vertex operator insertions on the disk at positions z1 = x1+iy1 and z2 = x2+iy2.
Then, we fix the real parameters of these insertions to the positions x1 = 0, y1 = 1 and
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x2 = 0 while keeping the integration over y2 = y. As was argued in [88, 117] this leads to
the prescriptions for n-closed strings on the disk

AD2
n = 2ignc Tp

∫ 1

0
dy
〈〈
V1(i)V 1(−i)V2(iy)U2(−iy)

n∏
j=3

∫
H+

d2zj Uj(zj)U j(zj)
〉〉
, (8.23)

where gc is the closed string coupling constant and Tp the tension of the Dp-brane. The
PSL(2,R) frame above restricts the integration over z2 and z2 to the purely imaginary
axis. Here, we integrate y form 0 to 1 and not over the entire real line, because we have to
restrict the y-integration to the moduli space of a punctured disk. To determine the moduli
space we consider the disk with punctures at the vertex operator positions at z1 = x1 + iyi
and z2 = x2 + iy2, where x ∈] −∞,∞[ and yi ∈ [0,∞[ are the real and imaginary parts
of zi respectively. If the two points z1 and z2 in the upper half plane are different, we can
define two PSL(2,R)-transformations

f±(z; z1, z2) =

= (x2 − x1)y1z + ((x1 − x2)x2 + (y1y± − y2)y2)y1

((x1 − x2)2 + (y2 − y1y±)y2)z − x3
1 + 2x2

1x2 + x2y2
1 − x1(x2

2 + y2
1 + y2

2 − y1y2y±)
(8.24)

with

y± =
((x1 − x2)2 + y2

1 + y2
2)±

√
4(x1 − x2)2y2

1 + ((x1 − x2)2 − y2
1 + y2

2)2

2y1y2
, (8.25)

which map z1 to i and z2 to iy±. Moreover, we notice that y− ∈ [0, 1] and y+ ∈ [1,∞[
and for the spacial case where x1 = x2 and for some particular values for y1 and y2 the
entire range of the intervals [0, 1[ and ]1,∞[ are covered by y− and y+, respectively. We
excluded the limiting value 1 in the intervals, because it would require x1 = x2 and y1 = y2
simultaneously, which is forbidden by z1 ̸= z2. Hence, we find that the moduli space of the
disk with two closed string punctures is given by [0, 1[ or equivalently ]1,∞[. However, we
still need to check whether a disk with punctures at i and iy can be mapped to another
disk with punctures at i and iy′, where y ̸= y′. For concreteness, we focus on the case
y, y′ ∈ [0, 1[. If there exists such a PSL(2,R)-transformation, the two variables y and y′

would describe the same punctured disk and therefore the moduli space would be smaller
than [0, 1[, which is not the case. By performing a PSL(2,R)-transformation two points i
and iy with y ∈ [0, 1[ can only be mapped to two points i and iy′ with y′ ∈ [0, 1[ if they
are already the same point y = y′ on the disk.
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8.3 Three closed strings as six opens strings
According to the prescription in (8.23) the scattering of three closed strings off a Dp-brane
is given by

AD2
3 = 2ig3

cTp

∫ 1

0
dy
∫
H+

d2z ⟨⟨V1(i)V 1(−i)V2(iy)U2(−iy)U3(z)U3(z)⟩⟩

= 2ig3
cTp

∫ 1

0
dy
∫
H+

d2z ⟨⟨V1(i)V1(−i)V2(iy)U2(−iy)U3(z)U3(z)⟩⟩ . (8.26)

where we have employed the doubling trick (8.22). The computation of the correlator can
be done following the steps in [62, 158] and is explicitly carried out in appendix C. When
performing the contractions of the h = 1 fields and the plane wave factors the amplitude
becomes schematically

AD2
3 =

∫ 1

0
dy
∫
H+

d2z 2s11|2y|s22|1− y|2s12|1 + y|2s12|i− z|2s13|i+ z|2s13

×|iy − z|2s23 |iy + z|2s23|z − z|s33⟨K(y, z, z)⟩ . (8.27)

The correlator of the amplitude (8.26) looks similar to (4.1) for n = 6 and also the compu-
tation in appendix C suggests that (8.26) can be connected to the scattering of six open
strings on the disk when using the identification

1↔ 1 , 2↔ 2 , 3↔ 3 , 3↔ 4 , 2↔ 5 , 1↔ 6 (8.28)

between closed and open strings. But the complex integral over the upper half plane does
not correspond to an open string integral, which are defined as integrals over parts of the
real line. Thus, in this section we want to use the method that was proposed in [34] and
explicitly applied in [104] to write the closed integral over H+ as open string integrals that
arise from the color ordered scattering of six open strings on the disk.

For the amplitude in (8.26) we already start with one completely position fixed vertex
operator and another vertex operator whose worldsheet position is integrated over parts
of the real line. Therefore, we have to split only the integration over z and z of the third
vertex operator into two real integrals by applying the same method as for the derivation
of the KLT relations in section 7.1. Afterwards we will use monodromy relations of section
7.2 to simplify the result similar as in [35]. Together with the calculation in appendix C
for the correlator this allows us to identify the scattering of three closed strings on the disk
as open string partial amplitudes with a certain colour ordering of the open string vertex
operators.

We want to remark that the discussion in [35] was performed on the double cover,
which simplifies the computation and has some physical implications as discussed below
such that both computations actually described different scattering processes.
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8.3.1 Analytic continuation and monodromy relations
The analytic continuation of (8.26) can be performed analogously to the derivation of the
KLT relations in section 7.1. We start by writing the complex integral over the upper
half plane as two integrals over (parts of) the real line. Therefore, we split the integration
variable z in real and imaginary part z = z1 + iz2 such that the integrand becomes an
analytic function in z1 except for the branch points at ±i(1 − z2),±i(1 + z2),±i(y − z2)
and ±i(y + z2). Next, we analytically continue the z1-integration to the complex plane
by deforming the integration contour for z1 from the real axis at ℑ(z1) = 0 to the purely
imaginary axis ℜ(z1) = 0, which is depicted in figure 8.1. As discussed in section 7.2 and

ℜ(z1)

ℑ(z1)

i(1 + z2)

i(y + z2)

−i(1− z2)

−i(y − z2)

i(1− z2)

i(y − z2)

−i(y + z2)

−i(1 + z2)

Figure 8.1: Branch point structure and contour deformation in the complex z1-plane for
z2 > 1.

similar as in figure 7.3 both arcs vanish for |z| → ∞. After the contour deformation the
amplitude becomes

AD2
3 =
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= −2ig3
cTp

∫ 1

0
dy
∫ i∞

−i∞
dz1

∫ ∞

0
dz2 ⟨⟨V1(i)V1(−i)V2(iy)U2(−iy)U3(z1 + iz2)U3(z1 − iz2)⟩⟩

= 2g3
cTp

∫ 1

0
dy
∫ ∞

−∞
dz1

∫ ∞

0
dz2 ⟨⟨V1(i)V1(−i)V2(iy)U2(−iy)U3(i(z1 + z2))U3(i(z1 − z2))⟩⟩ ,

(8.29)

where we used (7.4), but the imaginary part z2 ∈ [0,∞[, because z ∈ H+. Then, we can
define the real variables

ξ = z1 + z2 , η = z1 − z2 , (8.30)

which are constrained by ξ − η ≥ 0 to make sure that we are still integrating over the
upper half plane, i.e. ξ and η preserve z2 ≥ 0. After performing the change of variables
(z1, z2)→ (ξ, η) in the integral we obtain

AD2
3 = g3

cTp

∫ 1

0
dy
∫ ∞

−∞
dξ
∫ ξ

−∞
dηΠ(y, ξ, η)⟨⟨V1(i)V1(−i)V2(iy)U2(−iy)U3(iξ)U3(iη)⟩⟩ ,

(8.31)
where we included the Jacobian

∣∣∣∂(z1,z2)
∂ξ,∂η

∣∣∣ = 1
2 of the transformation.

We can pull out the factor of i in all of the vertex operators in (8.31), because the
correlator is invariant under rotations and dilatations, i.e. the transformations that are
generated by L0, see (B.2) and [130]. From (B.2) it follows that each conformal primary
of dimension h satisfies ϕ(az) = ahϕ(z). Since the unintegrated and integrated vertex
operators have conformal dimension h = 0 and h = 1 we find

V (az) = V (z) , U(az) = aU(z) (8.32)

and a similar scaling relation for the antiholomorphic parts such that using conformal
invariance for a = i the amplitude becomes

AD2
3 = ig3

cTp

∫ 1

0
dy
∫ ∞

−∞
dξ
∫ ξ

−∞
dηΠ(y, ξ, η)⟨⟨V1(1)V1(−1)V2(y)U2(−y)U3(ξ)U3(η)⟩⟩ .

(8.33)
Already in (8.31) we have introduce the monodromy phase Π(y, ξ, η), which is necessary
to split the integration over the upper half plane into the integration of two real variables
ξ and η while avoiding branch cuts. More details on how to derive this phase can be found
in appendix D or [35, 104]. Including this phase the amplitude becomes a holomorphic
and well defined function in ξ and η, because it accounts for the correct branch of the
integrand. In addition, the phase factor is independent on the kinematical structure of the
correlator and depends only on the worldsheet coordinates. Explicitly, the monodromy
phase is given by

Π(y, ξ, η) = eiπs13Θ(−(1−ξ)(1+η))eiπs13Θ(−(1+ξ)(1−η))eiπs23Θ(−(y−ξ)(y+η))

×eiπs23Θ(−(y+ξ)(y−η))eiπs33Θ(−(ξ−η)) , (8.34)
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where Θ is the Heaviside step function. Because the phase factor depends on the world-
sheet fields via Heaviside step functions, we can split the (ξ, η)-integration into smaller
integration regions. Then, for each integration region the phase becomes independent of
the particular value of the worldsheet coordinates, but depends on the ordering of ξ and
η relative to the other vertex operator insertions. The kinematic invariants in (8.34) are
defined as

sij = 1
2(ki + kj)2 = ki·kj , siȷ = 1

2(ki +D·kj)2 = ki·D·kj , (8.35)

which are not independent and can be related via momentum conservation:

s11̄ = −s12 − s12̄ − s13 − s13̄ ,

s22̄ = −s12 − s12̄ − s23 − s23̄ ,

s33̄ = −s13 − s13̄ − s23 − s23̄ . (8.36)

Hence, there are six independent Mandelstam variables for the scattering of three closed
strings off a Dp-brane [35].

Compared to appendix D we have added eiπs33Θ(−(ξ−η)) for completeness in (8.34). Even
though, we are integrating over η < ξ such that the contributions from eiπs33Θ(−(ξ−η)) = 1,
we will use monodromy relations (7.26) later and thereby encounter integration regions
with η > ξ such that eiπs33Θ(−(ξ−η)) is necessary to get the correct monodromy phase.

We evaluate the phase factor by performing the (ξ, η)-integration over the Θ-functions
and thereby split the integral η < ξ into smaller integration regions. As argued above the
monodromy phase becomes constant and therefore independent of the worldsheet coordi-
nates in each integration patch. In the end, the integral in (8.33) is divided into 15 smaller
regions in the (ξ, η)-plane, which are listed in table 8.1.

The amplitude in (8.33) together with the integration regions in table 8.1 are in cor-
respondence with the open string subamplitudes (7.23) of section 7.2.2 In (8.33) we have
singled out the integration over y from 0 to 1 and chosen the PSL(2,R)-frame, where
zi1 ≡ z1 = −1, zi2 ≡ z1 = 1 and zi3 ≡ z2 = y. Taking all the phases and the accord-
ing integration regions in table 8.1 into account and writing them in terms of the partial
amplitudes A the amplitude (8.33) becomes3

AD2
3 = eiπs13eiπs13eiπs23eiπs23A(3, 3, 1, 2, 2, 1) + eiπs13eiπs23eiπs23A(3, 1, 3, 2, 2, 1)

+eiπs23eiπs23A(1, 3, 3, 2, 2, 1) + eiπs13eiπs23A(3, 1, 2, 3, 2, 1) + eiπs23A(1, 3, 2, 3, 2, 1)
2One might be concerned that the closed string amplitude does not match the open string subamplitudes

(7.23) perfectly, e.g. the closed string amplitude is purely imaginary, whereas the open string amplitudes
are real, but the discussion in section 7.2 holds for any amplitude with the same branch cut structure as
(7.23). Since the amplitude (8.33) fulfils precisely this requirement, we can utilize the results of section
7.2.

3As stated at the end of section 7.2 some A are only part of open string subamplitudes, which is the
case if A starts or ends with 3 or 3, e.g. A(3, . . .) or A(. . . , 3).
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η < ξ

ξ < −1 eiπs13eiπs13eiπs23eiπs23

η < −1 −1 < η < ξ

−1 < ξ < −y eiπs13eiπs23eiπs23 eiπs23eiπs23

η < −1 −1 < η < −y −y < η < ξ

−y < ξ < y eiπs13eiπs23 eiπs23 1

η < −1 −1 < η < −y −y < η < y y < η < ξ

y < ξ < 1 eiπs13 1 eiπs23 eiπs23eiπs23

η < −1 −1 < η < −y −y < η < y y < η < 1 1 < η < ξ

1 < ξ 1 eiπs13 eiπs13eiπs23 eiπs13eiπs23eiπs23 eiπs13eiπs13eiπs23eiπs23

Table 8.1: Π(y, ξ, η) for each integration region in the (ξ, η)-plane.

+A(1, 2, 3, 3, 2, 1) + eiπs13A(3, 1, 2, 2, 3, 1) + A(1, 3, 2, 2, 3, 1)
+eiπs23A(1, 2, 3, 2, 3, 1) + eiπs23eiπs23A(1, 2, 2, 3, 3, 1) + A(3, 1, 2, 2, 1, 3)
+eiπs13A(1, 3, 2, 2, 1, 3) + eiπs13eiπs23A(1, 2, 3, 2, 1, 3)
+eiπs13eiπs23eiπs23A(1, 2, 2, 3, 1, 3) + eiπs13eiπs13eiπs23eiπs23A(1, 2, 2, 1, 3, 3) , (8.37)

where we made use of (8.22) and also the comment below (8.22). We know from the
discussion in section 7.2 that the subamplitudes are not independent, but related via the
monodromy relations (7.26). Using the identification (8.28) we obtain permutations of
(7.26)

0 = A(3, 1, 2, 2, 1, 3) + eiπs13A(1, 3, 2, 2, 1, 3) + eiπs13eiπs23A(1, 2, 3, 2, 1, 3)
+eiπs13eiπs23eiπs23A(1, 2, 2, 3, 1, 3) + eiπs13eiπs23eiπs23eiπs13A(1, 2, 2, 1, 3, 3)
+A(1, 2, 2, 1, 3, 3) ,

0 = A(3, 1, 2, 2, 1, 3) + eiπs13A(3, 1, 2, 2, 3, 1) + eiπs13eiπs23A(3, 1, 2, 3, 2, 1)
+eiπs13eiπs23eiπs23A(3, 1, 3, 2, 2, 1) + eiπs13eiπs13eiπs23eiπs23A(3, 3, 1, 2, 2, 1)
+A(3, 3, 1, 2, 2, 1) (8.38)

to reduce the number of partial amplitudes in (8.37). The second monodromy relation in
(8.38) was derived by complex conjugation of (7.26) and multiplication by a factor of (−1)
to account for the reversal of the contour

0 = −A(3, 3, 1, 2, 2, 1)− e−iπs33A(3, 3, 1, 2, 2, 1)− e−iπs33e−iπs13A(3, 1, 3, 2, 2, 1)
−e−iπs33e−iπs13e−iπs23A(3, 1, 2, 3, 2, 1)− e−iπs33e−iπs13e−iπs23e−iπs23A(3, 1, 2, 2, 3, 1)
−A(3, 1, 2, 2, 1, 3) . (8.39)
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The partial amplitudes in (7.23) are real, whereas the subamplitudes in (8.37) are purely
imaginary due to the overall factor of i in (8.33). Hence, the complex conjugate A = −A
such that we find

0 = A(3, 3, 1, 2, 2, 1) + e−iπs33A(3, 3, 1, 2, 2, 1) + e−iπs33e−iπs13A(3, 1, 3, 2, 2, 1)
+e−iπs33e−iπs13e−iπs23A(3, 1, 2, 3, 2, 1) + e−iπs33e−iπs13e−iπs23e−iπs23A(3, 1, 2, 2, 3, 1)
+A(3, 1, 2, 2, 1, 3) . (8.40)

Using momentum conservation results in the second monodromy relation in (8.38)

0 = A(3, 3, 1, 2, 2, 1) + eiπs13eiπs13eiπs23eiπs23A(3, 3, 1, 2, 2, 1)
+eiπs13eiπs23eiπs23A(3, 1, 3, 2, 2, 1) + eiπs13eiπs23A(3, 1, 2, 3, 2, 1) + eiπs13A(3, 1, 2, 2, 3, 1)
+A(3, 1, 2, 2, 1, 3) . (8.41)

By applying the first monodromy relation in (8.38) the subamplitudes in (8.37) corre-
sponding to the bottom row with 1 < ξ in table 8.1 combine into A(1, 2, 2, 1, 3, 3): The
integration regions for 1 < ξ form a closed contour in the complex η-plane with one missing
piece along the real line. This missing piece is the subamplitude A(1, 2, 2, 1, 3, 3), which
closes the integration contour. Also the integration region in the left column with η < −1
in table 8.1 can be reduced by using the second monodromy relation in (8.38) to the sub-
amplitudes A(3, 1, 2, 2, 1, 3) and A(3, 3, 1, 2, 2, 1). In the end, the scattering amplitude of
three closed strings can be written as

AD2
3 = −A(3, 3, 1, 2, 2, 1) + eiπs23eiπs23A(1, 3, 3, 2, 2, 1) + eiπs23A(1, 3, 2, 3, 2, 1)

+A(1, 2, 3, 3, 2, 1) + A(1, 3, 2, 2, 3, 1) + eiπs23A(1, 2, 3, 2, 3, 1)
+eiπs23eiπs23A(1, 2, 2, 3, 3, 1)− A(3, 1, 2, 2, 1, 3)− A(1, 2, 2, 1, 3, 3) , (8.42)

and we have also listed the integration regions of the subamplitudes in table 8.2. After
performing a suitable PSL(2,R)-transformation the amplitude (8.42) can be written in
terms of the open string subamplitudes (7.27).

8.3.2 PSL(2,R)-transformation and monodromy relations
Comparing the fixed vertex operator positions in (8.33) with (7.27) we want to perform
a PSL(2,R)-transformation that maps (−1, y, 1) to (0, 1,∞), which was already done
for the scattering of two closed strings off a Dp-brane in [88, 91, 92], see for example
equation (3.9) in [88]. To find this transformation we consider a general fractional linear
transformation z′ := f(z) = az+b

cz+d with ad − bc = 1 and determine the parameters a, b, c
and d by solving f(z) = z′ for z ∈ {−1, y, 1} and z′ ∈ {0, 1,∞}. The computation results
in the transformation

1√
2(1− y2)

(
1− y 1− y
−(1 + y) 1 + y

)
∈ PSL(2,R) . (8.43)
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ξ < η < −1
ξ < −1 −1

−1 < η < ξ

−1 < ξ < −y eiπs23eiπs23

−1 < η < −y −y < η < ξ

−y < ξ < y eiπs23 1

−1 < η < −y −y < η < y y < η < ξ

y < ξ < 1 1 eiπs23 eiπs23eiπs23

η < −1 ξ < η

1 < ξ −1 −1

Table 8.2: Π(y, ξ, η) for each integration region in the (ξ, η)-plane after applying mon-
odromy relations.

The above PSL(2,R) matrix gives rise to the fractional linear transformation for the
coordinates of the vertex operators

z′ = f(z) = (1− y)(1 + z)
(1 + y)(1− z) , (8.44)

which is a special case of (C.11). To change the vertex operator positions from (−1, y, 1)
to (0, 1,∞) in the amplitude we define the new variables

x = f(−y) = (1− y)2

(1 + y)2 ,

ξ̃ = f(ξ) = (1− y)(1 + ξ)
(1 + y)(1− ξ) ,

η̃ = f(η) = (1− y)(1 + η)
(1 + y)(1− η) (8.45)

and it is also helpful to have the inverse transformations, which are given by4

y = 1−
√
x

1 +
√
x
,

4The transformation of y here is the same as in (3.9) in [88].
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ξ = ξ̃ −
√
x

ξ̃ +
√
x
,

η = η̃ −
√
x

η̃ +
√
x
. (8.46)

In principal, from (8.45) we can find a second solution y = 1+
√
x

1−
√
x

for x = f(−y). We
ignore this second solution here, because for x ∈ [0, 1] we would require y ∈ [1,∞[, but it
will be important for the computation of the scattering of three closed strings on the real
projective plane in chapter 10.

Because the unintegrated vertex operators have conformal weight zero and the inte-
grated vertex operators have weight one, they transform under global conformal transfor-
mations as

V (z)→ V ′(z′) , U(z)→
(
∂z

∂z′

)−1

U ′(z′) . (8.47)

The explicit PSL(2,R)-transformation of the integrand of each of the different integration
regions in table 8.2 was performed in appendix C and can be schematically presented as
∫

dy dξ dη ⟨⟨V1(1)V1(−1)V2(y)U2(−y)U3(ξ)U3(η)⟩⟩

→ 1
2

∫
dx dξ̃ dη̃ ∂(y, ξ, η)

∂(x, ξ̃, η̃)

〈〈
V ′

1(∞)V ′
1(0)V ′

2(1)
(
∂y

∂x

)−1

U ′
2(x)

(
∂ξ

∂ξ̃

)−1

U ′
3(ξ̃)

(
∂η

∂η̃

)−1

U ′
3(η̃)

〉〉

= 1
2

∫
dx dξ̃ dη̃ ⟨⟨V1(∞)V1(0)V2(1)U2(x)U3(ξ̃)U3(η̃)⟩⟩ . (8.48)

To get from the second to the last line we have used (B.1), i.e. that the correlator is invariant
under PSL(2,R)-transformations. Moreover, we have the choice to consider either vertex
operator 2 at y or 2 at −y as position fixed and integrate over the other one [88]. Hence
this leads to an additional factor two, which we have taken into account by introducing a
factor 1

2 in (8.48). In addition, the worldsheet derivatives coming from the transformation
of the integrated vertex operators cancel against the Jacobian of the measure. Moreover,
in appendix C we explicitly check that the integrand of each of the integration regions in
table 8.2 is mapped correctly.

From (8.45) it follows immediately that for y ∈ [0, 1] the variable x is integrated from 0
to 1. Since we have singled out the y-integration due to the gauge fixing of the amplitude,
also the x-integration is the same for all subamplitudes. In contrast to the y-integration the
integral over x is not singled out any more, as there is a vertex operator at position z1 = 0
and z2 = 1, which promotes it to the integration region of an open string subamplitude.
Next, we want to transform the integration regions of the worldsheet coordinates of the
third vertex operator in table 8.2. We would expect that after the transformation the
integration boundaries would be determined by the position of other vertex operators
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as in (7.27).5 However, for the interval [1,∞[ (or ] − ∞,−1]) in table 8.2 the upper
(lower) integration boundary ±∞ is mapped under (8.45) onto −

√
x. Hence, the upper

(lower) boundary of the ξ- and/or η-integration is not a worldsheet position of another
vertex operator and the transformed integration region does not resemble an open string
partial amplitude.6 But as discussed in section 7.2 in the PSL(2,R)-frame, where no
vertex operator is at infinity, the amplitudes A can be combined to form one open string
subamplitude (7.27), because they are only parts of partial amplitudes. Indeed, after the
transformation (8.44) we can combine for example7

A(3, 3, 1, 2, 2, 1) + A(1, 2, 2, 1, 3, 3) + A(3, 1, 2, 2, 1, 3) PSL(2,R)−−−−−→ A(3, 4, 1, 2, 5, 6) (8.50)

into one open string integration region corresponding to a subamplitude (7.27). Performing
the PSL(2,R)-transformation for all integration regions in table 8.2 and combining them
if necessary allows us to write (8.42) in terms of (7.27)

AD2
3 = −A(3, 3, 1, 2, 2, 1) + eiπs23eiπs23A(1, 3, 3, 2, 2, 1) + eiπs23A(1, 3, 2, 3, 2, 1)

+A(1, 2, 3, 3, 2, 1) +A(1, 3, 2, 2, 3, 1) + eiπs23A(1, 2, 3, 2, 3, 1)
+eiπs23eiπs23A(1, 2, 2, 3, 3, 1) , (8.51)

whose integration regions are given in table 8.3. Under permutations 3 ↔ 2 and 2 ↔ 3
the representation of the amplitude in (8.51) is invariant, whereas the symmetries under
1↔ 2, 2↔ 1 and 1↔ 3, 3↔ 1 can only be seen after applying monodromy relations.

As argued in section 7.2 there are (n− 1)! = 120 open string subamplitudes (7.27) for
n = 6, which can be reduced down to (n − 3)! = 6 independent amplitudes by applying
cyclic symmetries, reflection (7.22) and monodromy relations (7.28) [35, 36]. This suggests
that the seven open string subamplitudes in (8.51) are not written in terms of a minimal
basis and we can rewrite one of them in terms of the others via (7.28). Therefore, we
consider the three monodromy relations

W1 := A(1, 2, 2, 1, 3, 3) + eiπs13A(1, 2, 2, 3, 1, 3) + eiπ(s13+s13)A(1, 2, 2, 3, 3, 1)
5This is also crucial for the computation of the correlator in section C.2, as the integration by parts

relations rely heavily on the integration boundaries being vertex operator positions.
6This reflects the fact that some A are not open string subamplitudes to begin with.
7Explicitly, this can be seen by transforming the integrals∫ −1

−∞
dξ

∫ −1

ξ

dη +
∫ ∞

1
dξ

∫ ∞

ξ

dη +
∫ ∞

1
dξ

∫ −1

−∞
dη

(8.44)∼
∫ 0

−
√

x

dξ̃

∫ 0

ξ̃

dη̃ +
∫ −

√
x

−∞
dξ̃

∫ −
√

x

ξ̃

dη̃ +
∫ −

√
x

−∞
dξ̃

∫ 0

−
√

x

dη̃

=
∫ 0

−∞
dξ̃

∫ 0

ξ̃

dη̃ . (8.49)
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ξ̃ < η̃ < 0
ξ̃ < 0 −1

0 < η̃ < ξ̃

0 < ξ̃ < x eiπŝ35eiπŝ45

0 < η̃ < x x < η̃ < ξ̃

x < ξ̃ < 1 eiπŝ35 1

0 < η̃ < x x < η̃ < 1 1 < η̃ < ξ̃

1 < ξ̃ 1 eiπŝ35 eiπŝ35eiπŝ45

Table 8.3: Π(x, ξ̃, η̃) for each integration region in the (ξ̃, η̃)-plane.

+eiπ(s11+s13+s13)A(1, 1, 2, 2, 3, 3) + e−iπs12A(1, 2, 1, 2, 3, 3) = 0 , (8.52)
W2 := A(1, 2, 2, 3, 1, 3) + eiπs13A(1, 3, 2, 2, 3, 1) + eiπ(s13+s23)A(1, 2, 3, 2, 3, 1)

+eiπ(s13+s23+s23)A(1, 2, 2, 3, 3, 1) + e−iπs13A(1, 2, 2, 3, 3, 1) = 0 , (8.53)
W3 := A(1, 3, 3, 2, 2, 1) + eiπs12A(1, 3, 3, 2, 1, 2) + eiπ(s12+s12)A(1, 2, 3, 3, 2, 1)

+eiπ(s12+s12+s23)A(1, 3, 2, 3, 2, 1) + e−iπs22A(1, 3, 3, 2, 2, 1) = 0 , (8.54)

which combined as W1 − eiπs13W 2 − eiπ(s13+s13+s11)W3 = 0 and subject to cyclic reflection
symmetries of the open string subamplitudes yield

A(1, 2, 2, 1, 3, 3) = A(1, 3, 2, 2, 3, 1) + e−iπs23A(1, 2, 3, 2, 3, 1)
+eiπ(s13+s13+s33)A(1, 2, 2, 3, 3, 1) +A(1, 2, 3, 3, 2, 1)
+eiπs23A(1, 3, 2, 3, 2, 1) + e−iπ(s12+s12+s22)A(1, 3, 3, 2, 2, 1) . (8.55)

Plugging (8.55) into (8.51) and using momentum conservation as well as k2
i = 0 leads to

the compact result

AD2
3 = 2i sin(πs23)A(1, 2, 3, 2, 3, 1) + 2i sin(π(s23 + s23))A(1, 2, 2, 3, 3, 1) . (8.56)

Note that the expansion in α′ of (8.56) only starts at subleading order in α′, because
the lowest order in α′ vanishes, c.f. chapter 11. After applying monodromy relations for
open strings and performing a global conformal transformation we arrive at the following
integration regions in the (ξ̃, η̃)-plane

A(1, 2, 3, 2, 3, 1) : I1 =
{
(ξ̃, η̃) ∈ R2 | 1 < ξ̃ <∞, x < η̃ < 1

}
,

A(1, 2, 2, 3, 3, 1) : I2 =
{
(ξ̃, η̃) ∈ R2 | 1 < ξ̃ <∞, 1 < η̃ < ξ̃

}
(8.57)



106 8. Scattering three closed strings off a Dp-brane

for each of the subamplitudes x ∈ R and always 0 < x < 1. Hence, we could express the
scattering of closed strings off a Dp-brane in terms of scattering amplitudes of six open
strings on the disk. More importantly, we were able to write the closed string scattering
process in terms of only two independent open string amplitudes instead of six as was
originally predicted by [35].

From the computation in appendix C it follows that we can express the correlator of
the partial amplitudes in terms of SYM amplitudes of section 6.4 as8

A(1, 2, 3, 2, 3, 1) = − i2g
3
cTp

∑
σ∈S3

ASYM(1, σ(2, 3, 3), 2, 1)F σ(2,3,3)
I1 ,

A(1, 2, 2, 3, 3, 1) = − i2g
3
cTp

∑
σ∈S3

ASYM(1, σ(2, 3, 3), 2, 1)F σ(2,3,3)
I2 , (8.58)

where the sum σ ∈ S3 runs over all permutations of the labels (2, 3, 3). Eventually, inserting
(8.58) into (8.56) gives

AD2
3 = g3

cTp
∑
σ∈S3

{
sin(πs23)F σ(2,3,3)

I1 + sin[π(s23 + s23)]F
σ(2,3,3)
I2

}
ASYM(1, σ(2, 3, 3), 2, 1) ,

(8.59)
where the hypergeometric integrals F σ(2,3,3)

Ip
are given by

F
σ(2,3,3)
Ip

= −
∫

Ip

dz2 dz3 dz3

(∏
i<j

|zij|sij

)
s1σ(2)

z1σ(2)

sσ(3)2

zσ(3)2

(
s1σ(3)

z1σ(3)
+
sσ(2)σ(3)

zσ(2)σ(3)

)
, p = 1, 2 .

(8.60)
The product above over i < j also involves overlined indices. In (8.60) the two integration
domains (8.57) can be written as

I1 : z1̄ < z2̄ < z3̄ < z2 < z3 < z1 ,

I2 : z1̄ < z2̄ < z2 < z3̄ < z3 < z1 (8.61)

and are subject to the vertex operator position fixing

z1 = 0 , z2 = 1 , z1 =∞ , (8.62)

which we have also applied in the amplitude (8.59) itself.
The final result (8.59) is independent of whether the external states in the scattering

process are fermions or bosons. In the language of the RNS formalism the external states
could be from either of the four sectors, i.e. we consider NSNS, RR, RNS, NSR states in
the amplitude. For the derivation of (8.59) we have only assumed that the external states
are massless k2

i = 0. Therefore, the open string subamplitudes contain both gluons and
gluinos, which will form closed string states.

8Alternatively, one could have used equation (2.5) in [63] together with the identification (8.28) and
included overall factors like the closed string coupling or the tension of the Dp-brane.
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In [35] the scattering of three closed strings was computed on the double cover of the
disk, i.e. H+ ∪ H− = C, which introduces a manifest symmetry between left- and right-
movers. The result for the string amplitude on the double cover can be found in (3.65) in
[35] and is given by

ADC
3 = sin(πs23)A(1, 2, 3, 2, 3, 1) + sin(πs23)A(1, 2, 3, 2, 3, 1)

+ sin(πs13)[A(1, 2, 2, 3, 1, 3) + A(1, 2, 2, 3, 1, 3)]
+[sin(π(s23 + s23)) + sin(π(s13 + s13))][A(1, 2, 2, 3, 3, 1) + A(1, 2, 2, 3, 3, 1)],

(8.63)

where we used the identification (8.28) to write (3.65) in [35] in terms of closed string
labels. Although, this result is different from (8.56) they can be connected for a specific
kinematical configuration. If we impose the symmetries 3 ↔ 3 and 2 ↔ 2 on (8.56) by
hand, we get the amplitude

AS2

3 := 2i sin(πs23)A(1, 1, 2, 3, 2, 3) + 2i sin(π(s23 + s23))A(1, 1, 2, 2, 3, 3)
+2i sin(πs23)A(1, 1, 2, 3, 2, 3) + 2i sin(π(s23 + s23))A(1, 1, 2, 2, 3, 3)
+2i sin(πs23)A(1, 1, 2, 3, 2, 3) + 2i sin(π(s23 + s23))A(1, 1, 2, 2, 3, 3)
+2i sin(πs23)A(1, 1, 2, 3, 2, 3) + 2i sin(π(s23 + s23))A(1, 1, 2, 2, 3, 3) . (8.64)

Then, using monodromy relations (7.29) for open string subamplitudes subject to (8.36)
the amplitudes in (8.63) and (8.64) agree up to an overall factor:

AS2
3 = 2iADC

3 . (8.65)

Hence, we have found a connection between the worldsheet integrals on the disk and those
on its double cover for each specific kinematical factor. Furthermore, the symmetrization,
which is equivalent to extending the disk amplitude to the double cover, corresponds to
extending the integration over y and η in (8.31) to [−1, 1] and ] − ∞,∞[, respectively.
Compared to the disk amplitude the resulting integrals miss some poles in the α′-expansion.
More concretely, by going to the double cover we lose the s-channel poles. In the disk
amplitude the pole 1

s22
originates from the y-integration over terms proportional to ys22−1.

On the double cover this pole is absent and in the limit α′ → 0 the corresponding singularity
becomes finite, because we integrate a term with odd power and pole at 0 over both positive
and negative values of y.9 Explicitly, we can see that by going to the double cover we discard
the s-channel poles by symmetrizing the disk amplitude: If we impose the symmetry 3↔ 3,
the first term

⟨M12M33M21⟩ =
〈
T12
s12

T33
s33

T21

s21

〉
(8.66)

9This was explicitly demonstrated for the scattering of two closed strings off a Dp-brane in appendix
E of [109].
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in the SYM amplitude, c.f. (6.29) with the identification (8.28),

ASYM(1, 2, 3, 3, 2, 1) = ⟨M12M33M21⟩+ ⟨M23M32M11⟩+ ⟨M123(M32M1 +M3M21)⟩
+⟨M233(M21M1 +M2M11)⟩+ ⟨M332(M11M2 +M1M12)⟩

= 1
2⟨M123E321⟩+ 1

3⟨M12M33M21⟩+ cyclic(123321) (8.67)

vanishes due to the antisymmetry of the BRST building block T33. Simultaneously, we
drop the pole in s33.

We conclude that going to the double cover has dramatic consequences for the low
energy theory. Therefore, the scattering of three closed strings on the disk and the double
cover of the disk are two different physical processes. This is not surprising: Gluing together
H+ and H− is a non-trivial process, since the amplitude (8.26) has poles along the real line
z− z = 0. Hence, promoting the real line from the boundary to the bulk of the integration
region by going from H+ and H− to C changes the pole structure of the amplitude. More
details on the pole structure in the field theory limit α′ → 0 of the disk amplitude (8.59)
can be found in chapter 11.



Chapter 9

Higher multiplicity of closed string
amplitudes on the disk

To conclude the scattering of closed strings off a Dp-brane we want to conjecture an ansatz
for the nc-point function of closed strings on the disk by following the lines of [109]. Since
open string partial amplitudes are the building blocks of closed string scattering amplitudes
at tree-level, we start by generalising the discussion for open string amplitudes and give the
prescription for the n-point open string amplitude on the disk following the idea presented
in [62].

9.1 Higher multiplicity open string scattering ampli-
tudes

As we can see in appendix C for the correlator of closed strings on the disk and as was
discussed for various open string amplitudes [62, 158, 160], integrating out the non-zero
modes of the h = 1 fields corresponds to summing over their OPE singularities. For n
external states this results in a sum over (n−2)! single pole terms and a number of double
pole integrands that will be used as corrections to the single pole integrands to form the
BRST building blocks Tijk...p from the associated OPE residue Ljiki...pi. The composite
superfields L2131...p1 of the single pole residues are derived from the contraction of vertex
operators, when the integrated vertex operators U2U3 · · ·Up approach an unintegrated ver-
tex operator V1, where we have chosen the external states 1, n − 1 and n to be position
fixed. The final result is independent on the order of integrating out the h = 1 primaries
and we can choose for example the order z1 → z3 → . . . → zp → z1, which is reflected in
the zij in the denominator:

V1(z1)U2(z2)U3(z3) . . . Up(zp) ∼
2p−2L[p1,[(p−1)1,[...,[41,[31,21]]...]]]

z23z34 · · · z(p−1)pzp1
. (9.1)
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Performing these steps to express all single pole composite superfields in terms of Ljiki...pi
and after the double pole correction are absorbed to transform the composite superfields
in their according building blocks Tijk...p the scattering amplitude of n open strings on the
disk takes the form

A(ρ(1, 2, . . . , n)) =

=
n−2∏
q=2

∫
D2(ρ)

dzq ⟨V1(0)U2(z2)U3(z3) · · ·Un−2(zn−2)Vn−1(1)Vn(∞)⟩

=
n−2∏
q=2

∫
D2(ρ)

dzq
∏
i<j

|zij|sij

n−2∑
p=1

〈
T12...pT(n−1)(n−2)...p+1Vn

(z12z23 · · · z(p−1)p)(z(n−1)(n−2)z(n−2)(n−3) · · · z(p+2)(p+1))

+P(2, 3, . . . , n− 2)
〉
, (9.2)

which is manifestly symmetric in the labels 2, 3, . . . , n−2 of the integrated vertex operators
Ui. This is denote above by the sum over all (n − 3)! permutations of these labels. Re-
markably, the poles in zij associated to the BRST building block in the numerator follow
a pattern. From the above correlator we find that

T12...p ←→
1

z12z23 · · · z(p−1)p
. (9.3)

Because of the (n − 3)! permutations of the labels of the integrated vertex operators and
the sum over p that collects n−2 distinct permutation orbits, this special structure (9.3) of
the open string amplitude allows to express (9.2) in terms of (n−2)! kinematic numerators
and hypergeometric integrals.

To simplify the scattering of n open strings further we exchange the BRST build-
ing blocks T12...p for the Berends-Giele supercurrents M12...p, which is possible due to the
pattern (9.3), i.e. the zij-dependence in the denominator of the associated T12...p. This
connection relies on the synergy of different terms in the sum over permutations and the
BRST symmetries (5.20) of the building blocks. At level p this interplay reduced the num-
ber of independent building blocks Tijk...p down to (p − 1)!. Therefore, we find that the
building blocks and currents are related inside the amplitude as

T12...p

z12z23 · · · z(p−1)p
+ P(2, 3, . . . , p) = (−1)p−1

p∏
k=2

k−1∑
i=1

sik
zik
M12...p + P(2, 3, . . . , p) ,

T(n−1)(n−2)...p+1

z(n−1)(n−2) · · · z(p+2)(p+1)
+ P(2, 3, . . . , p) = (−1)n−p−1

n−2∏
k=p+1

n−1∑
j=k+1

sik
zik
M(n−1)(n−2)...p+1

+P(2, 3, . . . , p) ,

= (−1)n−p−1
n−2∏
k=p+1

n−1∑
j=k+1

skj
zkj

M(p+1)(p+2)...n−1
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+P(2, 3, . . . , p) , (9.4)

where we have used the reflection symmetry (6.12) of the rank n − 1 − p Berends-Giele
currents in the last line to rewrite M(n−1)(n−2)...p+1 = (−1)n−p−2M(p+1)(p+2)...n−1.

The structure of the substitution (9.4) is precisely of the form that we can apply inte-
gration by parts relations to the chain of sik

zik
sums, which arise after exchanging T12...p for

M12...p using (9.4). The basic idea is that the integration boundaries correspond to zeros
in the Koba-Nielson factor, i.e. vertex operator positions. Hence, the boundary terms in
the worldsheet integrals vanish:∫

D2(ρ)
dz2 · · · dzn−2

∂

∂zk

∏
i<j |zij|sij

zi1j1zi2j2 · · · zin−4jn−4

= 0 , (9.5)

which relates different integrals in the n open string amplitude with n− 3 powers of zimjm
in the denominator. In the case where the differentiation variable zk does not appear in
any zimjm , i.e. k /∈ {im, jm} for m = 2, 3, . . . n − 4, the derivative ∂

∂zk
acts only on the

Koba-Nielsen factor such that∫
D2(ρ)

dz2 · · · dzn−2

∏
i<j |zij|sij

zi1j1zi2j2 · · · zin−4jn−4

n−1∑
i=1
i ̸=k

sik
zik

= 0 . (9.6)

Leaving the first n
2 − 1 factors ∑k−1

i=1
sik

zik
untouched and using these relations to integrate

the other n−3
2 factors by parts yields

n−2∏
q=2

∫
dzq

∏
i<j

|zij|sij
s12

z12

(
s13

z13
+ s23

z23

)
· · ·

(
s1(n−2)

z1(n−2)
+ . . .+ s(n−1)(n−2)

z(n−1)(n−2)

)

=
n−2∏
q=2

∫
dzq

∏
i<j

|zij|sij

( n
2∏

k=2

k−1∑
i=1

sik
zik

)(
n−2∏

k= n
2 +1

n−1∑
j=k+1

skj
zkj

)
. (9.7)

After introducing Berends-Giele currents in the n-point function the above relation can be
used to write (9.2) as

A(1, 2, . . . , n) =
n−2∏
q=2

∫
D2(ρ)

dzq
∏
i<j

|zij|sij

〈
n−2∑
p=1

( p∏
k=2

k−1∑
i=1

sik
zik
M12...p

)

×
(

n−2∏
k=p+1

n−1∑
j=k+1

skj
zkj

Mp+1,...,n−2,n−1

)
Vn + P(2, 3, . . . , n− 2)

〉

=
n−2∏
q=2

∫
D2(ρ)

dzq
∏
i<j

|zij|sij

{( n
2∏

k=2

k−1∑
m=1

smk
zmk

)(
n−2∏

k= n
2 +1

n−1∑
n=k+1

skn
zkn

)

×
n−2∑
p=1
⟨M12...pMp+1...n−2,n−1Vn⟩+ P(2, 3, . . . , n− 2)

}
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=
n−2∏
q=2

∫
D2(ρ)

dzq
∏
i<j

|zij|sij

{( n
2∏

k=2

k−1∑
m=1

smk
zmk

)(
n−2∏

k= n
2 +1

n−1∑
n=k+1

skn
zkn

)

×ASYM(1, 2, 3, . . . , n− 1, n) + P(2, 3, . . . , n− 2)
}
. (9.8)

In the final result of these manipulations the kinematic building blocks can be expressed
as a linear combination of (n − 3)! field theory amplitudes, which are each multiplied by
a hypergeometric integral F σ(2,3,...,n−2)

Iρ
with Iρ = D2(ρ), which is given by the worldsheet

dependent part of (9.8) and σ ∈ Sn−3 refers to the sum over permutations. The string
integrands are integrated over parts of the real line given by D2(ρ) depending on the color
ordering ρ.

9.2 Scattering n closed strings from a Dp-brane
Similar, the pure closed string nc-point amplitude on the disk can be expanded in terms
of (2nc − 3)! SYM amplitudes

ASYM(1, σ(2, 3, 3, . . . , nc, nc), 2, 1) , σ ∈ S2nc−3 , (9.9)

which are inherited from the open superstring amplitude (9.8). Here, we again employ
the notation defined in (8.22). But different as for the open string amplitude, where
each kinematical building block ASYM is accompanied by a single form factor F σ(2,3,...,n−2)

Iρ

referring to the color ordering ρ under consideration, in the closed string amplitude there
are Lnc form factors F σ(2,3,3...,nc,nc)

Iρl
for each (9.9), where each is integrated over a different

open string color ordering ρl with l = 1, 2, . . . , Lnc . Moreover, each of these combinations
is multiplied by a chain of nc−2 phase factors, which appear hear in form of sin-functions.
These arise as a consequence of disentangling the left- and right-moving part of the vertex
operators on the disk.

To get a better feeling for the underlying systematic we consider the simplest scattering
amplitude containing only nc = 2 closed strings and find for L2 = 1 [88]

AD2
2 ∼ g2

cTpF
(2)
I1 ASYM(1, 2, 2, 1) , (9.10)

which contains the form factor:

F
(2)
I1 =

∫
dz2

∏
i<j

|zij|sij
s12

z12
= Γ(1 + s12)Γ(1 + s22)

Γ(1 + s12 + s22)
. (9.11)

For an additional external state, i.e. nc = 3, we can find that L3 = 2 in chapter 8 and the
final result for the scattering of three closed strings is presented in (8.59), c.f. also (8.58),
such that

AD2
3 ∼ g3

cTp
∑
σ∈S3

{ 2∑
l=1

sin(πsρl
) F σ(233)

Iρl

}
ASYM(1, σ(2, 3, 3), 2, 1) , (9.12)
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where the form factors F σ(233)
Iρl

are given in (8.60). For the permutations ρ1 = (1, 2, 3, 2, 3, 1)
and ρ2 = (1, 2, 2, 3, 3, 1) the kinematic invariants take the form sρ1 = s23 and sρ2 = s23+s23,
respectively.

Generalizing this for nc ≥ 4 the result may be summarized in the following way:

AD2
nc
∼ gnc Tp

∑
σ∈S2nc−3

{Lnc∑
l=1

[
nc−2∏
k=1

sin(πsρl,k
)
]
F
σ(2,3,3,...,nc,nc)
Iρl

}

×ASYM(1, σ(2, 3, 3, . . . , nc, nc), 2, 1) . (9.13)

The angles sρl
inside the sin-functions are linear combination of kinematic invariants. The

sum, which is running over the Lnc different integration regions ρl, can be obtained by
applying 2nc-point open string monodromy relations. Therefore, the number Lnc < (2nc−
3)!, which can be seen in (8.56), where we find for nc = 3 that Lnc = 2, but it still remains
an open question what the exact nc-dependence of Lnc is.



114 9. Higher multiplicity of closed string amplitudes on the disk



Chapter 10

Scattering three closed strings off an
Op-plane

The scattering of three closed strings off an Op-plane is described by a scattering amplitude
on the real projective plane. As the disk this worldsheet topology contributes to the first
quantum corrections obtained from string theory. Hence, terms like e−Φϵ10ϵ10R

4 could arise
(partially) from the scattering of closed strings on the real projective plane such that these
amplitudes are phenomenologically very interesting.

The real projective plane can be defined as S2/Z2 where the action of Z2 identifies
antipodal points. Here, Z2 : z 7→ −1

z
is the identification used to obtain the real projective

plane as the quotient S2/Z2 form the sphere. Moreover, this identification preserves the
real projective plane and acts without fixed points such that the real projective plane has
no boundary. Topologically RP2 is equivalent to a sphere with a crosscap. The conformal
Killing group of this configuration is SU(2) with three real parameters and corresponds
to the subgroup of PSL(2,C), which commutes with the Z2 action [130]. Therefore, the
real projective plane has three conformal Killing vectors, which allow us to fix one and a
half, i.e. three real, vertex operator positions as on the disk. With similar arguments as in
section 8.2 the n-point closed string amplitude becomes

ARP2

n = 2ignc T ′
p

∫ 1

0
dy
〈〈
V RP2

1 (i,−i)(V ⊗ U)RP2

2 (iy,−iy)
n∏
j=3

∫
H+

d2zj U
RP2

j (zj, zj)
〉〉
, (10.1)

where T ′
p is the tension of the Op-plane representing the crosscap state and (V ⊗ U)RP2

is the half position fixed vertex operator. In addition, we integrate the integrated vertex
operators over the upper half plane, because the fundamental domain of the real projective
plane is the disk, which can be mapped to the upper half plane. Therefore, the discussion
in section 8.2 is also relevant here to derive (10.1).
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10.1 Scattering amplitude prescription for the real
projective plane

Type II string theory can be obtained from unoriented type I string theory via T-duality.
At the fixed points of the T-dual space this procedure gives rise to Op-planes. In the
original type I theory states are invariant under the world sheet parity Ω, which requires
Ω = +1 to form unoriented closed strings [110]. According to [27] this can be interpreted
as gauging Ω such that we include orientation reversal to the transition functions that form
the worldsheet. Hence, this produces unoriented worldsheets like the real projective plane.
For the spacetime coordinates Xm the T-dual theory can be found by using X ′m(z, z) =
Xm(z)−Xm(z) instead of Xm(z, z) = Xm(z)+Xm(z), where Xm(z) is the left-moving and
Xm(z) is the right-moving part of Xm(z, z). In the original type I theory the worldsheet
parity Ω, which acts on Xm as [27]

Ω : Xm(z)←→ Xm(z) , (10.2)

becomes a gauge symmetry. In addition, the T-dual spacetime coordinates transform as
[27]

Ω : Xµ(z, z)←→ Xµ(z, z) for µ = 0, 1, . . . p ,
X ′µ̃(z, z)←→ −X ′µ̃(z, z) for µ̃ = p+ 1, p+ 2, . . . 9 , (10.3)

which combines a worldsheet parity transformation with a spacetime reflection. Moreover,
we use lower case Latin letters to describe the entire ten dimensional space time, lower case
Greek letters represent directions in the world volume of the O-plane and lower case Greek
letter with a tilde correspond to the directions transverse to that space, i.e. the coordinates
on which the T-dual has been taken.

After splitting the string wave function into its internal part and the center of mass
dependent piece xµ̃, where the former one is an eigenstate of Ω, the projection onto Ω = +1
determines the wave function at the points−xµ̃ and xµ̃ to be the same up to a sign [27]. The
components of massless states corresponding to the NSNS sector in the RNS formalism,
i.e. the spacetime metric and the antisymmetric Kalb-Ramond B-field, obey [110]

Gµν(xα,−xα̃) = Gµν(xα, xα̃) , Bµν(xα,−xα̃) = −Bµν(xα, xα̃) ,
Gµν̃(xα,−xα̃) = −Gµν̃(xα, xα̃) , Bµν̃(xα,−xα̃) = Bµν̃(xα, xα̃) ,
Gµ̃ν̃(xα,−xα̃) = Gµ̃ν̃(xα, xα̃) , Bµ̃ν̃(xα,−xα̃) = −Bµ̃ν̃(xα, xα̃) ,

(10.4)

where the orientifold fixed plane is at xα̃ = 0. These relations can be written in a compact
way [130]

Gmn(xα,−xα̃) = Dm
rDn

sGrs(xα, xα̃) , Bmn(xα,−xα̃) = −Dm
rDn

sBrs(xα, xα̃) ,
(10.5)
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where the matrix D describing the conditions imposed by an Op-plane is the same as for
a Dp-brane, c.f. equation (8.6) and section 8.1 in general. The graviton and Kalb-Ramond
wave functions that solve the above conditions are given by

Gµν(xα,−xα̃) = ϵµνe
ikαxα cos(kα̃xα̃) , Bµν(xα,−xα̃) = iϵµνe

ikαxα sin(kα̃xα̃) ,
Gµν̃(xα,−xα̃) = iϵµν̃e

ikαxα sin(kα̃xα̃) , Bµν̃(xα,−xα̃) = ϵµν̃e
ikαxα cos(kα̃xα̃) ,

Gµ̃ν̃(xα,−xα̃) = ϵµ̃ν̃e
ikαxα cos(kα̃xα̃) , Bµ̃ν̃(xα,−xα̃) = iϵµ̃ν̃e

ikαxα sin(kα̃xα̃) . (10.6)

As for the disk the polarization tensors are orthogonal to their momenta kmi ϵimn = ϵimnk
n
i =

0 and the momenta satisfy k2
i = 0, since we are considering massless states. Combining

the above wave functions these can be rewritten in all ten spacetime dimensions as

Gmn = 1
2
(
ϵmne

ik·x + (D·ϵT·D)mneik·D·x
)
,

Bmn = 1
2
(
ϵmne

ik·x + (D·ϵT·D)mneik·D·x
)
. (10.7)

Therefore, a vertex operator representing the insertion of a closed string state on the real
projective plane takes the form

V RP2

i (zi, zi) = 1
2
(
Vi[ei, ki](zi)V i[ei, ki](zi) + Vi[D·ei, D·ki](zi)V i[D·ei, D·ki](zi)

)
,

URP2

i (zi, zi) = 1
2
(
Ui[ei, ki](zi)U i[ei, ki](zi) + Ui[D·ei, D·ki](zi)U i[D·ei, D·ki](zi)

)
,

(V ⊗ U)RP2

i (zi, zi) = 1
2
(
Vi[ei, ki](zi)U i[ei, ki](zi) + Vi[D·ei, D·ki](zi)U i[D·ei, D·ki](zi)

)
,

(10.8)

where V and U are the usual unintegrated and integrated vertex operators in the pure
spinor formalism, respectively, and we used ϵi = ei ⊗ ei.

Similar as for the disk in (8.1) an operator O(h,h) = Oh(z) ⊗ Oh(z) approaching a
crosscap state is a non-trivial process and puts constraints on the operator [180]:

0 =
〈
C
∣∣∣[(z′)hOh(z′)− zhOh(z)

]∣∣∣
z=− 1

z′
, (10.9)

where ⟨C| represents a crosscap state, which again imposes an interaction between the
holomorphic and antiholomorphic sector. Moreover, in (10.9) the real projective plane is
parametrized by the disk. Therefore, the worldsheet coordinates z, z ∈ D2. The above
relation implies that when using the doubling operators the different sectors can be related
as [27]

Oh(z) =
(
∂z′

∂z

)h
Oh(z′) for z′ = −1

z
. (10.10)
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When mapping the fundamental domain of RP2 from the disk to the upper half plane via
(8.3) the Z2 identification is invariant: z′ = −1

z
7→ w′ = − 1

w
, where w are the coordinates

on the upper half plane. Hence, the doubling trick becomes

Oh(w) =
(
∂w′

∂w

)h
Oh(w′) for w′ = − 1

w
. (10.11)

When using the doubling trick we have to account for the spacetime boundary conditions
enforced by the Op-plane: As we have seen above for NSNS states we had to introduce
the matrix D in (10.8). More generally, we will again substitute the right-moving fields
according to (8.5) such that they also satisfy the constraints imposed by the O-plane. In
addition, applying the doubling trick not only relates the holomorphic and antiholomorphic
sector, but also converts the correlator on RP2 to a correlator on the disk, which makes it
possible to use the two point functions in (8.9) to integrate out the h = 1 primary fields.

As in section 8.1 in (8.22) substituting the antiholomorphic fields by the holomorphic
counterparts in (10.8) using the doubling trick (10.11) results in the following vertex op-
erators for massless NSNS states

V RP2

i (zi, zi) = 1
2

(
Vi[ei, ki](zi)V [D·ei, D·ki]

(
− 1
zi

)
+ Vi[D·ei, D·ki](zi)Vi[ei, ki]

(
− 1
zi

))
= 1

2

(
Vi(zi)Vı

(
− 1
zi

)
+ Vı(zi)Vi

(
− 1
zi

))
,

URP2

i (zi, zi) = 1
2

1
z2
i

(
Ui[ei, ki](zi)Ui[D·ei, D·ki]

(
− 1
zi

)
+ Ui[D·ei, D·ki](zi)Ui[ei, ki]

(
− 1
zi

))
= 1

2
1
z2
i

(
Ui(zi)Uı

(
− 1
zi

)
+ Uı(zi)Ui

(
− 1
zi

))
. (10.12)

Moreover, for the half unintegrated and half integrated vertex operator we get

(V ⊗ U)RP2

i (zi, zi) =

= 1
2

1
z2
i

(
Vi[ei, ki](zi)Ui[D·ei, D·ki]

(
− 1
zi

)
+ Vi[D·ei, Di·ki](zi)Ui[ei, ki]

(
− 1
zi

))
= 1

2
1
z2
i

(
Vi(zi)Uı

(
− 1
zi

)
+ Vı(zi)Ui

(
− 1
zi

))
, (10.13)

where we made use of the notation in (8.22). The derivative
(
∂z′

∂z

)h
=
(

1
z2

)h
for z′ = −1

z

coming from (10.11) explains the prefactor for the integrated vertex operator with h = 1.
Moreover, the vertex operator Ui(zi, zi) is integrated over the upper half plane such that∫

H+
d2zi U

RP2

i (zi, zi) = 1
2

∫
H+

d2zi
1
z2
i

(
Ui(zi)Uı

(
− 1
zi

)
+ Uı(zi)Ui

(
− 1
zi

))
= 1

2

∫
H+

d2zi
1
z2
i

Ui(zi)Uı
(
− 1
zi

)
+ 1

2

∫
H−

d2zi
1
z2
i

Uı

(
− 1
zi

)
Ui(zi)
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= 1
2

∫
C

d2zi
1
z2
i

Ui(zi)Uı
(
− 1
zi

)
(10.14)

where we have performed the coordinate transformation (zi, zi)→
(
− 1
zi
,− 1

zi

)
in the second

term. On the disk it is not possible to combine H+ ∪H− = C, because the disk amplitude
(8.23) has poles along the real axis at zi − zi = 0, c.f. the discussion at the end of section
8.3.2. For the amplitude on the real projective plane we can take H+∪H− = C, because this
amplitude does not exhibit poles on the real line. As we will see below, the corresponding
term obeys 1 + zizi ̸= 0, because |zi|2 ≥ 0.

Applying the results derived in this section the amplitude (10.1) becomes

ARP2

n = −
(1

2

)n
ignc T

′
p

∫ 1

0
dy
〈〈

(V1(i)V1(−i) + V1(i)V1(−i))

× 1
y2

(
V2(iy)U2

(
− i
y

)
+ V2(iy)U2

(
− i
y

))
n∏
j=3

∫
C

d2zj
1
z2
j

Uj(zj)Uȷ
(
− 1
zj

)〉〉
.

(10.15)

After the change of variables in the amplitude (y, z, z) → (−y,−z,−z) in the terms pro-
portional to V1(i)V1(−i) in (10.15) we can utilize that the correlator is invariant under
conformal transformations, i.e. we can rescale all vertex operators via (8.32) with a = −1
and get

ARP2

n = −
(1

2

)n
ignc T

′
p

〈〈( ∫ 1

0
dy V1(i)V1(−i)−

∫ 0

−1
dy V1(−i)V1(i)

)

× 1
y2

(
V2(iy)U2

(
− i
y

)
+ V2(iy)U2

(
− i
y

)) n∏
j=3

∫
C

d2zj
1
z2
j

Uj(zj)Uȷ
(
− 1
zj

)〉〉

= −
(1

2

)n−1
ignc T

′
p

∫ 1

−1
dy 1

y2

〈〈
V1(i)V1(−i)

(
V2(iy)U2

(
− i
y

)
+ V2(iy)U2

(
− i
y

))

×
n∏
j=3

∫
C

d2zj
1
z2
j

Uj(zj)Uȷ
(
− 1
zj

)〉〉
, (10.16)

where we used that the unintegrated vertex operators anticommute to proceed from the
first to the second line. Afterwards, we perform the substitution y → − 1

y
in the terms

proportional to V2(iy)U2
(
− i
y

)
, which become after the transformation(1

2

)n−1
ignc T

′
p

∫ 1

−1
dy 1

y2

〈〈
V1(i)V1(−i)V2(iy)U2

(
− i
y

)
n∏
j=3

∫
C

d2zj
1
z2
j

Uj(zj)Uȷ
(
− 1
zj

)〉〉

= −
(1

2

)n−1
ignc T

′
p

∫ −1

−∞
dy
〈〈
V1(i)V1(−i)V2

(
− i
y

)
U2(iy)

n∏
j=3

∫
C

d2zj
1
z2
j

Uj(zj)Uȷ
(
− 1
zj

)〉〉

−
(1

2

)n−1
ignc T

′
p

∫ ∞

1
dy
〈〈
V1(i)V1(−i)V2

(
− i
y

)
U2(iy)

n∏
j=3

∫
C

d2zj
1
z2
j

Uj(zj)Uȷ
(
− 1
zj

)〉〉
,

(10.17)
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in order to use the independence of the assignment of integrated and unintegrated vertex
operators inside an amplitude, which was explicitly shown in [88] for closed string ampli-
tudes on the disk, to exchange V2

(
− i
y

)
U2(iy) → − 1

y2U2

(
− i
y

)
V2(iy). Here, we provide the

most important steps as the calculation is analogue to [88]. Without loss of generality we
omit vertex operators with n > 2, as their BRST variation vanishes when integrating over
them, i.e. when carefully applying Cauchy’s theorem such that QUȷ

(
− 1
zj

)
= z2

j∂jUȷ
(
− 1
zj

)
,

Q
∫
C

d2zj
1
z2
j

Uj(zj)Uȷ
(
− 1
zj

)
=
∫
C

d2zj

(
1
z2
j

∂jVj(zj)Uȷ
(
− 1
zj

)
+ Uj(zj)∂jVȷ

(
− 1
zj

))

=
∫
C

d2zj

[
∂j

(
1
z2
j

Vj(zj)Uȷ
(
− 1
zj

))
+ ∂j

(
Uj(zj)Vȷ

(
− 1
zj

))]
= 0 , (10.18)

because the complex plane has no boundary. Hence, along the lines of the computation in
appendix C of [88] we find∫ ∞

1
dy
〈〈
V1(i)V1(−i)V2

(
− i
y

)
U2(iy)

〉〉
=
∫ ∞

1
dy
〈〈
V1(i)V1(−i)

∫ − i
y

−i
dz QU2(z)U2(iy)

〉〉

= −i
∫ ∞

1
dy
〈〈
V1(i)V1(−i)

∫ − i
y

−i
dz U2(z)∂yV2(iy)

〉〉

= −i
∫ ∞

1
dy ∂y

〈〈
V1(i)V1(−i)

∫ − i
y

−i
dz U2(z)V2(iy)

〉〉

+i
∫ ∞

1
dy
〈〈
V1(i)V1(−i)∂y

∫ − i
y

−i
dz U2(z)V2(iy)

〉〉

= −i
〈〈
V1(i)V1(−i)

∫ 0

−i
dz U2(z)U2(∞)

〉〉

−
∫ ∞

1
dy 1

y2

〈〈
V1(i)V1(−i)U2

(
− i
y

)
V2(iy)

〉〉
.

(10.19)
With a similar calculation we get∫ −1

−∞
dy
〈〈
V1(i)V1(−i)V2

(
− i
y

)
U2(iy)

〉〉
= i

〈〈
V1(i)V1(−i)

∫ 0

−i
dz U2(z)V2(−∞)

〉〉

−
∫ −1

−∞
dy 1

y2

〈〈
V1(i)V1(−i)U2

(
− i
y

)
V2(iy)

〉〉
(10.20)

such that the two terms cancel:

−i
〈〈
V1(i)V1(−i)

∫ 0

−i
dz U2(z)U2(∞)

〉〉
+ i

〈〈
V1(i)V1(−i)

∫ 0

−i
dz U2(z)U2(−∞)

〉〉
= 0 ,

(10.21)
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because the amplitude does not distinguish whether a vertex operator is at∞ or −∞. The
remaining terms after the reassignment of vertex operators are given by∫ −1

−∞
dy
〈〈
V1(i)V1(−i)V2

(
− i
y

)
U2(iy)

〉〉
+
∫ ∞

1
dy
〈〈
V1(i)V1(−i)V2

(
− i
y

)
U2(iy)

〉〉

= −
∫ −1

−∞
dy 1

y2

〈〈
V1(i)V1(−i)V2(iy)U2

(
− i
y

)〉〉
−
∫ ∞

1
dy 1

y2

〈〈
V1(i)V1(−i)V2(iy)U2

(
− i
y

)〉〉
(10.22)

and imply that (10.17) becomes(1
2

)n−1
ignc T

′
p

∫ 1

−1
dy 1

y2

〈〈
V1(i)V1(−i)V2(iy)U2

(
− i
y

)
n∏
j=3

∫
C

d2zj
1
z2
j

Uj(zj)Uȷ
(
− 1
zj

)〉〉

=
(1

2

)n−1
ignc T

′
p

∫ −1

−∞
dy 1

y2

〈〈
V1(i)V1(−i)V2(iy)U2

(
− i
y

)
n∏
j=3

∫
C

d2zj
1
z2
j

Uj(zj)Uȷ
(
− 1
zj

)〉〉

+
(1

2

)n−1
ignc T

′
p

∫ ∞

1
dy 1

y2

〈〈
V1(i)V1(−i)V2(iy)U2

(
− i
y

)
n∏
j=3

∫
C

d2zj
1
z2
j

Uj(zj)Uȷ
(
− 1
zj

)〉〉
.

(10.23)

Adding the individual contributions, which are integrated over y ∈]−∞,−1[ and y ∈]1,∞[
together with y ∈]− 1, 1[, provides the scattering amplitude prescription for closed strings
on the real projective plane

ARP2

n = −
(1

2

)n−1
ignc T

′
p

∫ ∞

−∞
dy 1

y2 e
iπ(Θ(y−1)+Θ(−y−1))

〈〈
V1(i)V1(−i)V2(iy)U2

(
− i
y

)

×
n∏
j=3

∫
C

d2zj
1
z2
j

Uj(zj)Uȷ
(
− 1
zj

)〉〉
, (10.24)

where eiπ(Θ(y−1)+Θ(−y−1)) accounts for the different sign of the integration regions of y ∈
]− 1, 1[ and y ∈]−∞,−1[∪]1,∞[, which arises from the reassignment of vertex operators.

10.2 Analytic continuation and monodromy relations
on unoriented surfaces

The scattering amplitude of three closed strings on the real projective plane follows from
the prescription (10.24) for n = 3:

ARP2

3 = 2ig3
cT

′
p

∫ 1

0
dy

∫
H+

d2z ⟨⟨V RP2

1 (i,−i)(V ⊗ U)RP2

2 (iy,−iy)URP2

3 (z, z)⟩⟩

= −1
2ig

3
cT

′
p

∫ ∞

−∞
dy
∫
C

d2z
1
y2

1
z2 e

iπ(Θ(y−1)+Θ(−y−1))
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×
〈〈
V1(i)V1(−i)V2(iy)U2

(
− i
y

)
U3(z)U3

(
−1
z

)〉〉
, (10.25)

whose Koba-Nielsen factor is given by [27]

KN(y, z, z) = 2s11|1− y|2s21|1− y|2s21|1 + y2|s22|i− z|2s13| − i− z|2s31

×|iy − z|2s23|1− iyz|2s23|1 + zz|s33 . (10.26)

The correlator of the amplitude is very similar as for three closed strings on the disk.
Hence, the computation of the correlator in (10.25) is analogous as in appendix C subject
to the additional factor 1

y2
1
z2 and the modified positions z2 = − i

y
and z3 = −1

z
. The

analytic continuation of (10.25) follows the same steps as in section 8.3.1. Therefore, we
write the integral over the complex plane as two integrals over the real line. By splitting
z = z1 + iz2 into real and imaginary part the integrand in (10.25) becomes an analytic
function in z1 with branch points at z1 = ±i(1−z2),±i(1+z2),±i(y−z2) and ± i

y
(1+yz2).

Because all branch points are purely imaginary, we can rotate the z1 contour from the real
to the purely imaginary axis similar as in figure 8.1. Introducing the real variables

ξ = z1 + z2 , η = z1 − z2 , (10.27)

which are not constrained here, i.e. ξ, η ∈ R as z, z ∈ C, leaves us with1

ARP2

3 = −1
4g

3
cT

′
p

∫ ∞

−∞
dy
∫ ∞

−∞
dξ

∫ ∞

−∞
dη 1

y2
1
η2 Π(y, ξ, η)

×
〈〈
V1(i)V1(−i)V2(iy)U2

(
− i
y

)
U3(iξ)U3

(
i

η

)〉〉
. (10.28)

Moreover, including the monodromy phase Π(y, ξ, η) ensures again that the integrand
is holomorphic in ξ and η and accounts for the correct branch of the integrand. After
absorbing eiπ(Θ(y−1)+Θ(−y−1)) into the phase factor we find with a similar derivation as in
appendix D that the total phase takes the form

Π(y, ξ, η) = eiπ(Θ(y−1)+Θ(−y−1))eiπs13Θ(−(1−ξ)(1+η))eiπs13Θ(−(1+ξ)(1−η))

×eiπs23Θ(−(y−ξ)(y+η))eiπs23Θ(−(1+yξ)(1−yη))eiπs33Θ(−(1−ξη)) . (10.29)

Furthermore, we pull out the factor of i in each of the vertex operators using (8.32) and
conformal invariance of the correlator:

ARP2

3 = −1
4ig

3
cT

′
p

∫ ∞

−∞
dy
∫ ∞

−∞
dξ

∫ ∞

−∞
dη 1

y2
1
η2 Π(y, ξ, η)

×
〈〈
V1(1)V1(−1)V2(y)U2

(
−1
y

)
U3(ξ)U3

(
1
η

)〉〉
. (10.30)

1Even though, the vertex operator position − i
y and 1

η diverge for y, η → 0 the integrand in (10.28) is
well defined, as the prefactor 1

y2
1

η2 cancels these divergences.
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Due to the Θ-functions in the phase factor the integration over ξ and η splits into smaller
intervals, in which the monodromy phase becomes constant and independent of the world-
sheet coordinates. The individual integration patches and the according phases are listed
in table 10.1 for 0 < y < 1. The integration regions for the amplitude with −∞ < y < −1

η < −1 −1 < η < −y −y < η < 1
ξ

1
ξ
< η < 0 0 < η < 1 1 < η < 1

y
1
y
< η

ξ < − 1
y

1 eiπs13eiπs23eiπs23eiπs33 eiπs13eiπs23eiπs33 eiπs13eiπs23 eiπs13eiπs23 eiπs23 1

η < −1 −1 < η < 1
ξ

1
ξ
< η < −y −y < η < 0 0 < η < 1 1 < η < 1

y
1
y
< η

− 1
y
< ξ < −1 eiπs13eiπs13eiπs23eiπs33 eiπs13eiπs23eiπs33 eiπs13eiπs23 eiπs13 eiπs13 1 eiπs23

η < 1
ξ

1
ξ
< η < −1 −1 < η < −y −y < η < 0 0 < η < 1 1 < η < 1

y
1
y
< η

−1 < ξ < 0 eiπs13eiπs23eiπs33 eiπs13eiπs23 eiπs23 1 1 eiπs13 eiπs13eiπs23

η < −1 −1 < η < −y −y < η < 0 0 < η < 1 1 < η < 1
y

1
y
< η < 1

ξ
1
ξ
< η

0 < ξ < y eiπs13eiπs23 eiπs23 1 1 eiπs13 eiπs13eiπs23 eiπs13eiπs23eiπs33

η < −1 −1 < η < −y −y < η < 0 0 < η < 1
ξ

1 < η < 1
ξ

1
ξ
< η < 1

y
1
y
< η

y < ξ < 1 eiπs13 1 eiπs23 eiπs13eiπs23 eiπs13eiπs23 eiπs13eiπs23eiπs33 eiπs13eiπs23eiπs23eiπs33

η < −1 −1 < η < −y −y < η < 0 0 < η < 1
ξ

1
ξ
< η < 1 1 < η < 1

y
1
y
< η

1 < ξ 1 eiπs13 eiπs13eiπs23 eiπs13eiπs23eiπs33 eiπs13eiπs23eiπs33 eiπs13eiπs13eiπs23eiπs33 1

Table 10.1: Π(y, ξ, η) for each integration region in the (ξ, η)-plane for 0 < y < 1.

have almost the same monodromy phases, but one has to exchange k2 ↔ D·k2 and simul-
taneously y ↔ − 1

y
, because

y ∈]0, 1[ and − 1
y
∈]−∞,−1[ for 0 < y < 1 ,

y ∈]−∞,−1[ and − 1
y
∈]0, 1[ for −∞ < y < −1 ,

(10.31)

such that the vertex operators 2 and 2 switch places. Therefore, the analysis of these two
intervals of the y-integration is very similar and we will only discuss 0 < y < 1 explicitly.
Note that the other two y-integration regions, which are given by y ∈]−1, 0[ and y ∈]1,∞[,
behave similar and we only discuss −1 < y < 0 below.

Not all of these integration patches in table 10.1 are in correspondence with open string
subamplitudes, as the integration boundary of η is not always given by another vertex
operator position, i.e. they are only parts of subamplitudes. Similar as for the scattering
of three closed strings on the disk in section 8.3.1 we encounter integration regions, which
begin or end at ±∞. Since also here there is no vertex operator positioned at infinity, the
corresponding integration regions are only parts of partial amplitudes, c.f. the discussion
at the end of section 7.1 and footnote 3. Strictly speaking, splitting the y-integration into
four integration regions, which is necessary to perform the analytic continuation, means
that all integration regions are no longer complete partial amplitudes. But this gets easily
resolved when combining two y-integrations. We explicitly discuss this below and show that
taking all four integration regions for y leads to well defined open string subamplitudes. To
streamline the following analysis we ignore this fact, as it does not influence any analytic
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properties or the branch cut structure of the (ξ, η)-integration except for the position of the
y-dependent poles on the real line. The explicitly y-integration in the subamplitudes (7.23)
follows from the context and is always denoted when considering the total amplitude, c.f.
for example (10.32).

Nevertheless, the amplitude has the correct branch cut structure such that we can
use Cauchy’s theorem and build closed integration contours in the complex plane. This
becomes clear when performing a coordinate transformation of the integration regions in
table 10.2: We change η → 1

η
which puts η and ξ on equal grounds in the sense that after

the change of variables the ξ- and η-integration have poles at the same vertex operator
positions (− 1

y
,−1, y, 1) and we obtain2

ARP2

3

∣∣∣
0<y<1

= 1
4ig

3
cT

′
pΠ
∫ 1

0
dy
∫

dξ
∫

dη 1
y2

〈〈
V1(1)V1(−1)V2(y)U2

(
−1
y

)
U3(ξ)U3(η)

〉〉
,

(10.32)

where the integration regions are given in table 10.2. As mentioned above these integration

−1 < η < 0 − 1
y
< η < −1 ξ < η < − 1

y
η < ξ 1 < η y < η < 1 0 < η < y

ξ < − 1
y

1 eiπs13eiπs23eiπs23eiπs33 eiπs13eiπs23eiπs33 eiπs13eiπs23 eiπs13eiπs23 eiπs23 1

−1 < η < 0 ξ < η < −1 1
y
< η < ξ η < − 1

y
1 < η y < η < 1 0 < η < y

− 1
y
< ξ < −1 eiπs13eiπs13eiπs23eiπs33 eiπs13eiπs23eiπs33 eiπs13eiπs23 eiπs13 eiπs13 1 eiπs23

ξ < η < 0 −1 < η < ξ − 1
y
< η < −1 η < − 1

y
1 < η y < η < 1 0 < η < y

−1 < ξ < 0 eiπs13eiπs23eiπs33 eiπs13eiπs23 eiπs23 1 1 eiπs13 eiπs13eiπs23

−1 < η < 0 − 1
y
< η < −1 η < − 1

y
1 < η y < η < 1 ξ < η < y 0 < η < ξ

0 < ξ < y eiπs13eiπs23 eiπs23 1 1 eiπs13 eiπs13eiπs23 eiπs13eiπs23eiπs33

−1 < η < 0 − 1
y
< η < −1 η < − 1

y
1 < η ξ < η < 1 y < η < ξ 0 < η < y

y < ξ < 1 eiπs13 1 eiπs23 eiπs23 eiπs13eiπs23 eiπs13eiπs23eiπs33 eiπs13eiπs23eiπs23eiπs33

−1 < η < 0 − 1
y
< η < −1 η < − 1

y
ξ < η 1 < η < ξ y < η < 1 0 < η < y

1 < ξ 1 eiπs13 eiπs13eiπs23 eiπs13eiπs23 eiπs13eiπs23eiπs33 eiπs13eiπs13eiπs23eiπs33 1

Table 10.2: Π(y, ξ, η) for each integration region in the (ξ, η)-plane for 0 < y < 1 after the
transformation η → 1

η
.

region can be written as open string subamplitudes (7.23) or parts of partial amplitudes
after the transformation, where again the integration over y from 0 to 1 is singled out.3
The PSL(2,R) position fixing of (10.32) corresponds to zi1 ≡ z1 = −1, zi2 ≡ z1 = 1

2When performing a coordinate transformation only the integration patches changes but not their
respective phases, since the phase factor becomes independent of the worldsheet coordinates. This can be
seen explicitly by comparing table 10.1 and table 10.2. Hence, for the phase Π we dropped the dependence
on the worldsheet coordinates but kept Π to indicate that each integration patch enters with a monodromy
phase.

3For concreteness, we are only considering 0 < y < 1 here, but this also holds for the other y-integration
regions.
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and zi3 ≡ z2 = y in the open string subamplitude. The integration where either the ξ
or η-integration begins or ends at 0 are not partial amplitudes, because 0 is not a vertex
operator position.4 Therefore, we introduce partial subamplitudes like

A(2, 1, 3|2, 3, 1) = 1
4ig

3
cT

′
p

∫ 1

0
dy
∫ 1

y
dξ

∫ 0

−1
dη 1

y2

〈〈
V1(1)V1(−1)V2(iy)U2

(
−1
y

)
U3(ξ)U3(η)

〉〉
(10.33)

such that the notation A(. . . , 3| . . .) implies that the integration region for η ends at 0.
Similar, for A(. . . |3, . . .) the corresponding integration region for η begins at 0. The same
holds for ξ, but there it would be in principle possible to combine some of these integration
regions into proper open string subamplitudes. Hence, if we have two subamplitudes
with the same monodromy phase, they can be joined as A(. . . , 3| . . .) + A(. . . |3, . . .) =
A(. . . , 3, . . .). With this notation and momentum conservation (10.32) becomes

ARP2

3

∣∣∣
0<y<1

= A(3, 2, 1, 3|2, 1) + e−iπs13A(3, 2, 3, 1, 2, 1) + e−iπ(s13+s23)A(3, 3, 2, 1, 2, 1)

+eiπ(s13+s23)A(3, 3, 2, 1, 2, 1) + eiπ(s13+s23)A(3, 2, 1, 2, 1, 3)
+eiπs23A(3, 2, 1, 2, 3, 1) + A(3, 2, 1|3, 2, 1) + e−iπs23A(2, 3, 1, 3|2, 1)
+e−iπ(s13+s23)A(2, 3, 3, 1, 2, 1) + eiπ(s13+s23)A(2, 3, 3, 1, 2, 1)
+eiπs13A(3, 2, 3, 1, 2, 1) + eiπs13A(2, 3, 1, 2, 1, 3) + A(2, 3, 1, 2, 3, 1)
+eiπs23A(2, 3, 1|3, 2, 1) + eiπ(s13+s23+s33)A(2, 1, 3, 3|2, 1)+
+eiπ(s13+s23)A(2, 1, 3, 3|2, 1) + eiπs23A(2, 3, 1, 3|2, 1) + A(3, 2, 1, 3|2, 1)
+A(2, 1, 3|2, 1, 3) + eiπs13A(2, 1, 3|2, 3, 1) + eiπ(s13+s23)A(2, 1, 3|3, 2, 1)
+eiπ(s13+s23)A(2, 1, 3|3, 2, 1) + eiπs23A(2, 3, 1|3, 2, 1) + A(3, 2, 1|3, 2, 1)
+A(2, 1|3, 2, 1, 3) + eiπs13A(2, 1|3, 2, 3, 1) + eiπ(s13+s23)A(2, 1|3, 3, 2, 1)
+e−iπ(s13+s23)A(2, 1|3, 3, 2, 1) + eiπs13A(2, 1, 3|2, 3, 1) + A(2, 3, 1, 2, 3, 1)
+eiπs23A(3, 2, 1, 2, 3, 1) + eiπs23A(2, 1, 2, 3, 1, 3) + eiπ(s13+s23)A(2, 1, 2, 3, 3, 1)
+e−iπ(s13+s23)A(2, 1, 2, 3, 3, 1) + e−iπs13A(2, 1|3, 2, 3, 1) + A(2, 1, 3|2, 1, 3)
+eiπs13A(2, 3, 1, 2, 1, 3) + eiπ(s13+s23)A(3, 2, 1, 2, 1, 3)
+eiπ(s13+s23)A(2, 1, 2, 1, 3, 3) + eiπ(s13+s23+s33)A(2, 1, 2, 1, 3, 3)
+e−iπs23A(2, 1, 2, 3, 1, 3) + A(2, 1|3, 2, 1, 3) . (10.34)

Even though, there are integration regions like (10.33) we can find closed contours appear-
ing in (10.34), which give rise to monodromy relations. For the integration patches for
which −1 < η < 0 and 0 < η < y, i.e. the first and last column in table 10.2, we find the

4For the y-integration we do not use this notation, because for y ∈]0, 1[ the vertex operator position
z2 = − 1

y ∈]−∞, 1[ and furthermore we have already mentioned that this integration is singled out.
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relations

0 = A(3, 2, 1, 3|2, 1) + eiπs13eiπs13eiπs23eiπs33A(2, 3, 1, 3|2, 1)
+eiπs13eiπs23eiπs33A(2, 1, 3, 3|2, 1) + eiπs13eiπs23A(2, 1, 3, 3|2, 1)
+eiπs13eiπs23A(2, 1, 3|3, 2, 1) + eiπs13A(2, 1, 3|2, 3, 1) + A(2, 1, 3|2, 1, 3) ,

0 = A(3, 2, 1|3, 2, 1) + eiπs23A(2, 3, 1|3, 2, 1) + eiπs13eiπs23A(2, 1, 3|3, 2, 1)
+eiπs13eiπs23A(2, 1|3, 3, 2, 1) + eiπs13eiπs23eiπs33A(2, 1|3, 3, 2, 1)
+eiπs13eiπs23eiπs23eiπs33A(2, 1|3, 2, 3, 1) + A(2, 1|3, 2, 1, 3) (10.35)

and for the upper most and lowest row in table 10.2, which correspond to ξ < − 1
y

and
1 < ξ the following equations hold

0 = A(3, 3, 2, 1, 2, 1) + eiπs33A(3, 3, 2, 1, 2, 1) + eiπs23eiπs33A(3, 2, 3, 1, 2, 1)
+eiπs13eiπs23eiπs33A(3, 2, 1, 3, 2, 1) + eiπs13eiπs23eiπs23eiπs33A(3, 2, 1, 2, 3, 1)
+A(3, 2, 1, 2, 1, 3) ,

0 = A(3, 2, 1, 2, 1, 3) + e−iπs23A(2, 3, 1, 2, 1, 3) + e−iπs13e−iπs23A(2, 1, 3, 2, 1, 3)
+e−iπs13e−iπs23e−iπs23A(2, 1, 2, 3, 1, 3) + e−iπs13e−iπs13e−iπs23e−iπs23A(2, 1, 2, 1, 3, 3)
+A(3, 2, 1, 2, 1, 3) . (10.36)

Finally, we want to rewrite the remaining η-integration for − 1
y
< ξ < −1 and the left over

ξ-integration for y < η < 1 by applying the monodromy relations

0 = A(3, 2, 1, 2, 3, 1) + eiπs23A(2, 3, 1, 2, 3, 1) + eiπs13eiπs23A(2, 1, 3, 2, 3, 1)
+eiπs13eiπs23eiπs23A(2, 1, 2, 3, 3, 1) + eiπs13eiπs23eiπs23eiπs33A(2, 1, 2, 3, 3, 1)
+A(2, 3, 1, 2, 1, 3) ,

0 = A(3, 2, 3, 1, 2, 1) + eiπs23A(2, 3, 3, 1, 2, 1) + eiπs23eiπs33A(2, 3, 3, 1, 2, 1)
+eiπs13eiπs23eiπs33A(2, 3, 1, 3, 2, 1) + eiπs13eiπs23eiπs23eiπs33A(2, 3, 1, 2, 3, 1)
+A(2, 3, 1, 2, 1, 3) . (10.37)

Contrary to the other monodromy relations above we have to multiply the first equation
in (10.37) by e−iπs23 and the second relation by eiπs13 to reduce the number of partial
subamplitudes in (10.34). In the end, we obtain

ARP2

3

∣∣∣
0<y<1

= −A(3, 2, 1, 3, 2, 1)− eiπs23A(3, 2, 1, 2, 3, 1)− eiπs23A(2, 3, 1, 3, 2, 1)

−A(2, 1, 2, 3, 1) + A(3, 2, 1, 3, 2, 1) + eiπs23A(2, 3, 1, 3, 2, 1) + A(2, 1, 3, 2, 1, 3)
+eiπs23A(3, 2, 1, 2, 3, 1) + A(2, 3, 1, 2, 3, 1) + eiπs23A(2, 1, 2, 3, 1, 3)
−A(2, 1, 3, 2, 1, 3)− eiπs23A(2, 1, 2, 3, 1, 3) , (10.38)

which is written in terms of only open subamplitudes (7.23). The integration regions of
the partial amplitudes are listed in table 10.3.
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η < ξ ξ < η < − 1
y
− 1
y
< η < −1 −1 < η < y y < η < 1 1 < η

ξ < − 1
y

−1 −e−iπs23

η < − 1
y
− 1
y
< η < ξ ξ < η < −1 −1 < η < y y < η < 1 1 < η

− 1
y
< ξ < −1 −e−iπs23 −1

η < − 1
y
− 1
y
< η < −1 −1 < η < ξ ξ < η < y y < η < 1 1 < η

−1 < ξ < y 1 eiπs23 1

η < − 1
y
− 1
y
< η < −1 −1 < η < y y < η < ξ ξ < η < 1 1 < η

y < ξ < 1 eiπs23 1 eiπs23

η < − 1
y
− 1
y
< η < −1 −1 < η < y y < η < 1 1 < η < ξ ξ < η

1 < ξ −1 −eiπs23

Table 10.3: Π(y, ξ, η) for each integration region in the (ξ, η)-plane for 0 < y < 1 after
applying monodromy relations.

Similar as for the scattering of three closed strings off a Dp brane, we want to change
the PSL(2,R)-frame to perform the transition A → A of the subamplitudes. Therefore,
we apply the PSL(2,R)-transformation (8.44) and thereby introduce the new variables
(8.45) such that the amplitude can be written as

ARP2

3

∣∣∣
0<y<1

= 1
8ig

3
cT

′
pΠ
∫ 1

0
dx
∫

dξ̃
∫

dη̃ ⟨⟨V1(0)U2(−x)U3(ξ̃)U3(η̃)V2(1)V1(∞)⟩⟩ (10.39)

where the boundaries of the ξ̃ and η̃-integration can be found in table 10.4. Moreover, in
(10.39) we made use of (8.48) and that − 1

y
gets mapped to −x by (8.44). The integration

over x is still singled out, as the integration range −x ∈]− 1, 0[ does not correspond to an
open string integral.5 Nevertheless, this is not a problem, because the integration over y
from −∞ to −1 will be mapped to −x ∈] −∞,−1[ such that they can be combined to
form proper subamplitudes.

The explicit calculation to get (10.39) is similar as in appendix C. After combining
partial amplitudes A along (8.50), c.f. also section 7.2, the individual integration patches

5As for the scattering of three closed strings on the disk the PSL(2,R)-transformation (8.48) maps the
integration over 0 < y < 1 onto 0 < x < 1.
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of the amplitude (10.39) are given in table 10.4 and can be written in terms of (7.27) as6

ARP2

3

∣∣∣
0<y<1

= eiπs23A(3, 2, 1, 2, 3, 1) +A(2, 3, 1, 2, 3, 1) +A(3, 2, 1, 3, 2, 1))

+eiπs23A(2, 3, 1, 3, 2, 1)− e−iπs23A(2, 3, 1, 3, 2, 1)−A(2, 3, 1, 2, 3, 1)
−A(3, 2, 1, 3, 2, 1)− e−iπs23A(3, 2, 1, 2, 3, 1) . (10.40)

As discussed in section 8.3.2 these partial amplitudes can be written in a basis with di-

η̃ < ξ̃ ξ̃ < η̃ < −x −x < η̃ < 0 0 < η̃ < 1 1 < η̃

ξ̃ < −x −1 −e−iπs23

η̃ < −x −x < η̃ < ξ̃ ξ̃ < η̃ < 0 0 < η̃ < 1 1 < η̃

−x < ξ̃ < 0 −e−iπs23 −1

η̃ < −x −x < η̃ < 0 0 < η̃ < ξ̃ ξ̃ < η̃ < 1 1 < η̃

0 < ξ̃ < 1 1 eiπs23

η̃ < −x −x < η̃ < 0 0 < η̃ < 1 1 < η̃ < ξ̃ ξ̃ < η̃

1 < ξ̃ eiπs23 1

Table 10.4: Π(x, ξ̃, η̃) for each integration region in the (ξ̃, η̃)-plane for 0 < x < 1.

mension six. Therefore, we can use monodromy relations between the subamplitudes in
(10.40) to simplify the expression further. One can recognize that all of the subamplitudes
have a neighbouring subamplitude, i.e. a partial amplitude that can be obtained by one
permutation of the labels, which in addition has the correct monodromy phase so that we
can consider the relations

0 = A(3, 2, 1, 2, 3, 1) +A(2, 3, 1, 2, 3, 1)eiπs23 +A(2, 1, 3, 2, 3, 1)eiπ(s13+s23)

+A(2, 1, 2, 3, 3, 1)eiπ(s13+s23+s23) +A(2, 1, 2, 3, 3, 1)eiπ(s13+s23+s23+s33)

0 = A(3, 2, 1, 3, 2, 1) +A(2, 3, 1, 3, 2, 1)e−iπs23 +A(2, 1, 3, 3, 2, 1)e−iπ(s13+s23)

+A(2, 1, 3, 3, 2, 1)e−iπ(s13+s23+s33) +A(2, 1, 3, 2, 3, 1)e−iπ(s13+s23+s23+s33)

0 = A(3, 2, 1, 3, 2, 1) +A(2, 3, 1, 3, 2, 1)eiπs23 +A(2, 1, 3, 3, 2, 1)eiπ(s13+s23)

+A(2, 1, 3, 3, 2, 1)eiπ(s13+s23+s33) +A(2, 1, 3, 2, 3, 1)eiπ(s13+s23+s23+s33)

0 = A(3, 2, 1, 2, 3, 1) +A(2, 3, 1, 2, 3, 1)e−iπs23 +A(2, 1, 3, 2, 3, 1)e−iπ(s13+s23)

6Also here the amplitudes are only parts of subamplitudes, as the x-integration runs from 0 to 1, c.f.
also the comment above. As before we ignore this subtlety here, but make it explicit in the end result
(10.42) of this computation.
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+A(2, 1, 2, 3, 3, 1)e−iπ(s13+s23+s23) +A(2, 1, 2, 3, 3, 1)e−iπ(s13+s23+s23+s33) (10.41)

and express the amplitude (10.40) in terms of only two open string partial amplitudes

ARP2

3

∣∣∣
0<y<1

= 2i sin(πs13)A(2, 1, 3, 2, 3, 1)
∣∣∣
0<x<1

+ 2i sin(πs13)A(2, 1, 3, 2, 3, 1)
∣∣∣
0<x<1

.

(10.42)

With an analogous calculation we get for −∞ < y < −1

ARP2

3

∣∣∣
−∞<y<−1

= 2i sin(πs13)A(2, 1, 3, 2, 3, 1)
∣∣∣
1<x<∞

+ 2i sin(πs13)A(2, 1, 3, 2, 3, 1)
∣∣∣
1<x<∞

,

(10.43)

which is not the same as (10.42), because the x-integration in (10.43) goes from 1 to ∞.
After performing the coordinate change x → −x we can combine the two results and
obtain7

ARP2

3

∣∣∣
−∞<y<−1

+ARP2

3

∣∣∣
0<y<1

= 2i sin(πs13)A(2, 1, 3, 2, 3, 1) + 2i sin(πs13)A(2, 1, 3, 2, 3, 1)

= 1
4g

3
cT

′
p

∑
σ∈S3

{
sin(πs13)F

σ(2,3,3)
I1 + sin(πs13)F σ(2,3,3)

I2

}
×AYM(1, σ(2, 3, 3), 2, 1) , (10.44)

where we have used the results from appendix C to express the correlator of (10.42) and
(10.43) in terms of YM amplitudes and hypergeometric integrals. The hypergeometric
integrals are defined as in (8.60), but their integration regions are given by

I1 =
{
x ∈ R ∪ (ξ, η) ∈ R2| −∞ < x < 0, 0 < ξ < 1, 1 < η <∞

}
,

I2 =
{
x ∈ R ∪ (ξ, η) ∈ R2| −∞ < x < 0, 1 < ξ <∞, 0 < η < 1

}
. (10.45)

The computation for −1 < y < 0 is very similar as for 0 < y < 1, which also holds for
the integration over 1 < y < ∞ and −∞ < y < −1 so that we will only display the
most important steps as before only for −1 < y < 0. After the transformation η → 1

η
the

amplitude

ARP2

3

∣∣∣
−1<y<0

= 1
4ig

3
cT

′
p

∫ 0

−1
dy
∫ ∞

−∞
dξ

∫ ∞

−∞
dη 1

y2 Π(y, ξ, η)

×
〈〈
V1(1)V1(−1)V2(iy)U2

(
−1
y

)
U3(ξ)U3(η)

〉〉
(10.46)

can be written in terms of open string subamplitudes (7.23) as

ARP2

3

∣∣∣
−1<y<0

= A(3, 1, 2, 3|1, 2) + e−iπs23A(3, 1, 3, 2, 1, 2) + e−iπ(s13+s23)A(3, 3, 1, 2, 1, 2)

7This is possible, because the amplitude has no pole at x = −1 after the transformation. Moreover, we
are considering complete subamplitudes (7.27) here.
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+eiπ(s13+s23)A(3, 3, 1, 2, 1, 2) + eiπ(s13+s23)A(3, 1, 2, 1, 2, 3)
+eiπs13A(3, 1, 2, 1, 3, 2) + A(3, 1, 2|3, 1, 2) + e−iπs13A(1, 3, 2, 3|1, 2)
+eiπ(s13+s23+s33)A(1, 3, 3, 2, 1, 2) + eiπ(s13+s23)A(1, 3, 3, 2, 1, 2)
+eiπs23A(3, 1, 3, 2, 1, 2) + eiπs23A(1, 3, 2, 1, 2, 3) + A(1, 3, 2, 1, 3, 2)
+eiπs13A(1, 3, 2|3, 1, 2) + eiπ(s13+s23+s33)A(1, 2, 3, 3|1, 2)
+eiπ(s13+s23)A(1, 2, 3, 3|1, 2) + eiπs13A(1, 3, 2, 3|1, 2) + A(3, 1, 2, 3|1, 2)
+A(1, 2, 3|1, 2, 3) + eiπs23A(1, 2, 3|1, 3, 2) + eiπ(s13+s23)A(1, 2, 3|3, 1, 2)
+eiπ(s13+s23)A(1, 2, 3|3, 1, 2) + eiπs13A(1, 3, 2|3, 1, 2) + A(3, 1, 2|3, 1, 2)
+A(1, 2|3, 1, 2, 3) + eiπs23A(1, 2|3, 1, 3, 2) + eiπ(s13+s23)A(1, 2|3, 3, 1, 2)
+e−iπ(s13+s23)A(1, 2|3, 3, 1, 2) + eiπs23A(1, 2, 3|1, 3, 2) + A(1, 3, 2, 1, 3, 2)
+eiπs13A(3, 1, 2, 1, 3, 2) + eiπs13A(1, 2, 1, 3, 2, 3) + eiπ(s13+s23)A(1, 2, 1, 3, 3, 2)
+eiπ(s13+s23+s33)A(1, 2, 1, 3, 3, 2) + e−iπs23A(1, 2|3, 1, 3, 2) + A(1, 2, 3|1, 2, 3)
+eiπs23A(1, 3, 2, 1, 2, 3) + eiπ(s13+s23)A(3, 1, 2, 1, 2, 3)
+eiπ(s13+s23)A(1, 2, 1, 2, 3, 3) + eiπ(s13+s23+s33)A(1, 2, 1, 2, 3, 3)
+e−iπs13A(1, 2, 1, 3, 2, 3) + A(1, 2|3, 1, 2, 3) . (10.47)

The six variations of the monodromy relations in (7.26) for n = 6

0 = A(3, 1, 2, 3|1, 2) + eiπs13eiπs23eiπs23eiπs33A(1, 3, 2, 3|1, 2)
+eiπs13eiπs23eiπs33A(1, 2, 3, 3|1, 2) + eiπs13eiπs23A(1, 2, 3, 3|1, 2)
+eiπs13eiπs23A(1, 2, 3|3, 1, 2) + eiπs23A(1, 2, 3|1, 3, 2) + A(1, 2, 3|1, 2, 3) ,

0 = A(3, 1, 2|3, 1, 2) + eiπs13A(1, 3, 2|3, 1, 2) + eiπs13eiπs23A(1, 2, 3|3, 1, 2)
+eiπs13eiπs23A(1, 2|3, 3, 1, 2) + eiπs13eiπs23eiπs33A(1, 2|3, 3, 1, 2)
+eiπs13eiπs13eiπs23eiπs33A(1, 2|3, 1, 3, 2) + A(1, 2|3, 1, 2, 3) ,

0 = A(3, 3, 1, 2, 1, 2) + eiπs33A(3, 3, 1, 2, 1, 2) + eiπs13eiπs33A(3, 1, 3, 2, 1, 2)
+eiπs13eiπs23eiπs33A(3, 1, 2, 3, 1, 2) + eiπs13eiπs13eiπs23eiπs33A(3, 1, 2, 1, 3, 2)
+A(3, 1, 2, 1, 2, 3) ,

0 = A(3, 1, 2, 1, 2, 3) + e−iπs13A(1, 3, 2, 1, 2, 3) + e−iπs13e−iπs23A(1, 2, 3, 1, 2, 3)
+e−iπs13e−iπs13e−iπs23A(1, 2, 1, 3, 2, 3) + e−iπs13e−iπs13e−iπs23e−iπs23A(1, 2, 1, 2, 3, 3)
+A(1, 2, 1, 2, 3, 3) ,

0 = A(3, 1, 2, 1, 3, 2) + eiπs13A(1, 3, 2, 1, 3, 2) + eiπs13eiπs23A(1, 2, 3, 1, 3, 2)
+eiπs13eiπs13eiπs23A(1, 2, 1, 3, 3, 2) + eiπs13eiπs13eiπs23eiπs33A(1, 2, 1, 3, 3, 2)
+A(1, 2, 1, 3, 2, 3) ,

0 = A(3, 1, 3, 2, 1, 2) + eiπs13A(1, 3, 3, 2, 1, 2) + eiπs13eiπs33A(1, 3, 3, 2, 1, 2)
+eiπs13eiπs23eiπs33A(1, 3, 2, 3, 1, 2) + eiπs13eiπs13eiπs23eiπs33A(1, 3, 2, 1, 3, 2)
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+A(1, 3, 2, 1, 2, 3) (10.48)

are used to rewrite the corresponding partial amplitudes in (10.47). Thus, the amplitude
is reduced to the integration patches

ARP2

3

∣∣∣
−1<y<0

= −A(3, 1, 2, 3, 1, 2)− eiπs13A(3, 1, 2, 1, 3, 2)− eiπs13A(1, 3, 2, 3, 1, 2)

−A(1, 3, 2, 1, 3, 2) + A(3, 1, 2, 3, 1, 2) + eiπs13A(1, 3, 2, 3, 1, 2)
+A(1, 2, 3, 1, 2, 3) + eiπs13A(3, 1, 2, 1, 3, 2) + A(1, 3, 2, 1, 3, 2)
+eiπs13A(1, 2, 1, 3, 2, 3)− A(1, 2, 3, 1, 2, 3)− eiπs13A(1, 2, 1, 3, 2, 3) . (10.49)

Carrying out the PSL(2,R)-transformation (8.44) maps the interval −1 < y < 0 to 1 <
x <∞. Therefore, the inverse transformation requires for y that

y = 1 +
√
x

1−
√
x

(10.50)

in order to map 1 < x <∞ back to −1 < y < 0. Consequently, the inverse transformations
for η and ξ are given by

ξ = ξ̃ +
√
x

ξ̃ −
√
x
,

η = η̃ +
√
x

η̃ −
√
x
. (10.51)

With these the amplitude yields in the new PSL(2,R)-frame

ARP2

3

∣∣∣
−1<y<0

= 1
8ig

3
cT

′
pΠ
∫ ∞

1
dx
∫

dξ̃
∫

dη̃ ⟨⟨V1(0)U2(−x)U3(ξ̃)U3(η̃)V2(1)V1(∞)⟩⟩ ,
(10.52)

where the integration regions of ξ̃ and η̃ correspond to the partial amplitudes in (10.53)
below. After the transition A→ A the above result in (10.49) becomes

ARP2

3

∣∣∣
−1<y<0

= eiπs13A(2, 1, 3, 2, 3, 1) +A(2, 3, 1, 2, 3, 1) +A(3, 2, 1, 3, 2, 1))

+eiπs13A(3, 2, 3, 1, 2, 1)− e−iπs13A(3, 2, 3, 1, 2, 1)−A(2, 3, 1, 3, 2, 1)
−A(3, 2, 1, 3, 2, 1)− e−iπs23A(3, 2, 1, 2, 1, 3) , (10.53)

which can be further simplified using the following monodromy relations originating form
(7.28) for the subamplitudes A

0 = A(3, 2, 3, 1, 2, 1) +A(2, 3, 1, 2, 1)eiπs23 +A(2, 3, 3, 1, 2, 1)eiπ(s23+s33)

+A(2, 3, 1, 3, 2, 1)eiπ(s13+s23+s33) +A(2, 3, 1, 2, 3, 1)eiπ(s13+s23+s23+s33)
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0 = A(3, 2, 1, 3, 2, 1) +A(2, 3, 1, 3, 2, 1)e−iπs23 +A(2, 1, 3, 3, 2, 1)e−iπ(s13+s23)

+A(2, 1, 3, 3, 2, 1)e−iπ(s13+s23+s33) +A(2, 1, 3, 2, 3, 1)e−iπ(s13+s23+s23+s33)

0 = A(3, 2, 1, 3, 2, 1) +A(2, 3, 1, 3, 2, 1)eiπs23 +A(2, 1, 3, 3, 2, 1)eiπ(s13+s23)

+A(2, 1, 3, 3, 2, 1)eiπ(s13+s23+s33) +A(2, 1, 3, 2, 3, 1)eiπ(s13+s23+s23+s33)

0 = A(3, 2, 3, 1, 2, 1) +A(2, 3, 3, 1, 2, 1)e−iπs23 +A(2, 3, 3, 1, 2, 1)e−iπ(s23+s33)

+A(2, 3, 1, 3, 2, 1)e−iπ(s13+s23+s33) +A(2, 3, 1, 2, 3, 1)e−iπ(s13+s23+s23+s33) . (10.54)

These reduce the number of partial amplitudes in (10.53) down to two such that

ARP2

3

∣∣∣
−1<y<0

= 2i sin(πs23)A(2, 3, 1, 3, 2, 1)
∣∣∣
1<x<∞

+ 2i sin(πs23)A(2, 3, 1, 3, 2, 1)
∣∣∣
1<x<∞

,

(10.55)

where 1 < x <∞. With a similar calculation the contribution coming from 1 < y <∞ is
described by the subamplitudes

ARP2

3

∣∣∣
1<y<∞

= 2i sin(πs23)A(2, 3, 1, 3, 2, 1)
∣∣∣
0<x<1

+ 2i sin(πs23)A(2, 3, 1, 3, 2, 1)
∣∣∣
0<x<1

(10.56)
and we integrate x from 0 to 1. With the coordinate transformation x → −x we end up
with

ARP2

3

∣∣∣
−1<y<0

+ARP2

3

∣∣∣
1<y<∞

= 2i sin(πs23)A(2, 3, 1, 3, 2, 1) + 2i sin(πs23)A(2, 3, 1, 3, 2, 1)

= 1
4g

3
cT

′
p

∑
σ∈S3

{
sin(πs23)F

σ(2,3,3)
I3 + sin(πs23)F σ(2,3,3)

I4

}
×AYM(1, σ(2, 3, 3), 2, 1) , (10.57)

where the two integration regions of the hypergeometric functions are given by

I3 =
{
x ∈ R ∪ (ξ, η) ∈ R2| −∞ < x < 0,−x < ξ < 0, 0 < η < 1

}
,

I4 =
{
x ∈ R ∪ (ξ, η) ∈ R2| −∞ < x < 0, 0 < ξ < 1,−x < η < 0

}
. (10.58)

In the end, combining the two results for the different y-integrations we find that the
scattering of three closed strings off an Op-plane is given by

ARP2

3 = 2i sin(πs13)A(2, 1, 3, 2, 3, 1) + 2i sin(πs13)A(2, 1, 3, 2, 3, 1)
+2i sin(πs23)A(2, 3, 1, 3, 2, 1) + 2i sin(πs23)A(2, 3, 1, 3, 2, 1)

= 1
4g

3
cT

′
p

∑
σ∈S3

{
sin(πs13)F

σ(2,3,3)
I1 + sin(πs13)F σ(2,3,3)

I2

+ sin(πs23)F
σ(2,3,3)
I3 + sin(πs23)F σ(2,3,3)

I4

}
AYM(1, σ(2, 3, 3), 2, 1) . (10.59)

Hence, it was possible to write the scattering of three closed strings off an Op-plane in
terms of four open string subamplitudes. Moreover, this result is manifestly symmetric
under the exchange 3↔ 3.



Chapter 11

Low energy expansion and effective
action expansion of three closed
strings on the disk

In this chapter, which follows the presentation in [109], we take the field theory limit of
the amplitude in (8.59). The α′-dependence in (8.59) is completely captured by F

σ(2,3,3)
Ip

,
because the SYM amplitudes are independent of the inverse string tension such that the
field theory limit results in performing an expansion of the hypergeometric integrals for
α′ → 0.

Furthermore, we want to compare the scattering of three gravitons in the presence of
a Dp-brane with the low energy limit of (8.59) in field theory, which can be obtained form
the DBI-action. For simplicity, we consider only terms where the polarisations are fully
contracted among themselves and not with any momenta, otherwise we would have to deal
with an enormous amount of terms, which makes the discussion unnecessary complicated.

11.1 Expansion of hypergeometric integrals in the in-
verse string tension α′

To evaluate the α′-expansion of the amplitude (8.59) we have to express the integrals
F
σ(2,3,3)
Ip

subject to the integration regions (8.61) for p = 1, 2 in terms of a power series
with respect to small α′. Therefore, we undo the vertex operator fixing and introduce the
volume of the CKG by

∫
Ip

∏3
i=1dzi dzi
VCKG

= |z11z12z12|
∫

Ip

dz2 dz3 dz3 (11.1)
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such that the hypergeometric integrals become

F
σ(2,3,3)
Ip

= −V −1
CKG

∫
Ip

3∏
k=1

dzk dzk
(∏
i<j

|zij|sij

)
1

z12z11z21

s1σ(2)

z1σ(2)

sσ(3)2

zσ(3)2

(
s1σ(3)

z1σ(3)
+
sσ(2)σ(3)

zσ(2)σ(3)

)
,

(11.2)
where σ ∈ S3 and p = 1, 2. The order of the worldsheet coordinates in (8.61) suggest a
more suitable gauge choice

z1 = 0 , z3 = 1 , z1 =∞ . (11.3)

Then, we can drop the volume of the CKG again by implementing the new gauge choice

F
σ(2,3,3)
Ip

= −
∫

In

dz2 dz2 dz3
z1σ(3)

z12

(∏
i<j

|zij|sij

)
s1σ(2)

z1σ(2)

sσ(3)2

zσ(3)2

(
s1σ(3)

z1σ(3)
+
sσ(2)σ(3)

zσ(2)σ(3)

)
(11.4)

and integrate over z2, z2 and z3. After introducing the maps for the two integration regions

φ1 : (1, 2, 3, 2, 3, 1) 7→ (1, 2, 3, 4, 5, 6) for I1 ,

φ2 : (1, 2, 2, 3, 3, 1) 7→ (1, 2, 3, 4, 5, 6) for I2
(11.5)

the hypergeometric integrals yield

F
σ(2,3,3)
Ip

=


F (σ(φ1(2)φ1(3),φ1(3)),4)

∣∣∣
ŝij→φ−1

1 (ŝij)
for p = 1 ,

F (σ(φ2(2)φ2(3),φ2(3)),3)
∣∣∣
ŝij→φ−1

2 (ŝij)
for p = 2 .

(11.6)

The kinematic invariant with a hat are defined as

ŝij = 1
2(pi + pj)2 = pi · pj (11.7)

and the momenta pi can be obtained from left-and right-moving momenta ki and D ·ki via
the maps φp:

φ1 : (D·k1, D·k2, D·k3, k2, k3, k1) 7→ (p1, p2, p3, p4, p5, p6) for I1 ,

φ2 : (D·k1, D·k2, k2, D·k3, k3, k1) 7→ (p1, p2, p3, p4, p5, p6) for I2 .
(11.8)

Hence, the kinematic invariants can be related using the inverse map φ−1
p as

φ−1
1 :



ŝ12 7→ s12 ,

ŝ23 7→ s23 , ŝ123 7→ s12 + s23 + s13 ,

ŝ34 7→ s23 , ŝ234 7→ s23 + s23 + s22 ,

ŝ45 7→ s23 , ŝ345 7→ s23 + s23 + s33
ŝ56 7→ s13 ,

ŝ61 7→ s11 ,

(11.9)
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and

φ−1
2 :



ŝ12 7→ s12 ,

ŝ23 7→ s22 , ŝ123 7→ s12 + s12 + s22 ,

ŝ34 7→ s23 , ŝ234 7→ s23 + s23 + s22 ,

ŝ45 7→ s33 , ŝ345 7→ s23 + s23 + s33 .

ŝ56 7→ s13 ,

ŝ61 7→ s11 ,

(11.10)

Explicitly, using the map φp the integrals in (11.6) are given by

F (σ(2),σ(3),σ(5),4) = −
∫

0<z2<z3<z4<1

dz2 dz3 dz4

(∏
i<j

|zij|ŝij

)
1
z41

ŝ1σ(2)

z1σ(2)

ŝ4σ(5)

zσ(5)4

(
ŝ1σ(3)

z1σ(3)
+ ŝσ(2)σ(3)

zσ(2)σ(3)

)
,

F (σ(2),σ(4),σ(5),3) = −
∫

0<z2<z3<z4<1

dz2 dz3 dz4

(∏
i<j

|zij|ŝij

)
1
z31

ŝ1σ(2)

z1σ(2)

ŝ3σ(5)

zσ(5)3

(
ŝ1σ(4)

z1σ(4)
+ ŝσ(2)σ(4)

zσ(2)σ(4)

)
.

(11.11)

Finally, we can build on the results in [63], as the pair of six functions F (p1,p2,p3,4) with
pj = 2, 3, 4 and F (q1,q2,q3,3) with qj = 2, 4, 5 given in (11.11) are part of an extended
set of 24 hypergeometric functions introduced in [63], which originate from the six point
open superstring amplitude with canonical color ordering (1, 2, 3, 4, 5, 6). Due to (dual)
monodromy relations all 24 triple hypergeometric functions can be written in terms of the
six dimensional basis F (i1,i2,i3) ≡ F (i1,i2,i3,5) with ij = 2, 3, 4 as [62]

F (2354)

F (3254)

F (5324)

F (3524)

F (5234)

F (2534)


= K∗

1



F (234)

F (324)

F (432)

F (342)

F (423)

F (243)


,



F (2453)

F (4253)

F (5423)

F (4523)

F (5243)

F (2543)


= K∗

2



F (234)

F (324)

F (432)

F (342)

F (423)

F (243)


, (11.12)

respectively and K∗
p = (KT

p )−1. The 6 × 6 matrices can be determined via the (dual)
monodromy relations and take the following form [63]

(K1)ij =

= ŝ−1
46



ŝ5 − ŝ123 0 0 0 ŝ14 −d̂1
0 ŝ5 − ŝ123 ŝ14 ŝ3 + ŝ14 0 0

ŝ1ŝ4d̂0
ŝ15ŝ246

ŝ4ŝ13(ŝ25−ŝ46)
ŝ15ŝ246

−ŝ13ŝ14ŝ25
ŝ15ŝ246

−ŝ13ŝ25(ŝ3+ŝ14)
ŝ15ŝ246

ŝ14(ŝ46−ŝ1)d̂0
ŝ15ŝ246

ŝ1(ŝ3+ŝ4)d̂0
ŝ15ŝ246

−ŝ1ŝ4
ŝ246

−ŝ4(ŝ1+ŝ2)
ŝ246

ŝ14d̂4
ŝ246

(ŝ14+ŝ3)d̂4
ŝ246

ŝ14(ŝ1−ŝ46)
ŝ246

−ŝ1(ŝ3+ŝ4)
ŝ246

ŝ1ŝ4(ŝ35−ŝ46)
ŝ15ŝ125

ŝ4ŝ13d̂3
ŝ15ŝ125

(ŝ46−ŝ13)d̂3ŝ14
ŝ15ŝ125

(ŝ4+ŝ24)ŝ13d̂3
ŝ15ŝ125

−ŝ1ŝ14ŝ35
ŝ15ŝ125

ŝ1ŝ35d̂1
ŝ15ŝ125

ŝ4(ŝ1−ŝ123)
ŝ125

−ŝ4ŝ13
ŝ125

ŝ14(ŝ13−ŝ46)
ŝ125

−ŝ13(ŝ4+ŝ24)
ŝ125

−ŝ14d̂2
ŝ125

d̂1d̂2
ŝ125


(11.13)
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and

(K2)ij =

= ŝ−1
36



ŝ123 − ŝ1 ŝ13 0 0 0 d̂14

0 0 ŝ3 + ŝ13 ŝ13 d̂14 0
ŝ1(ŝ345−ŝ4)d̂13

ŝ145ŝ15

(ŝ36−ŝ1)ŝ13d̂13
ŝ145ŝ15

−(ŝ3+ŝ13)ŝ14ŝ25
ŝ145ŝ15

−ŝ13ŝ14ŝ25
ŝ145ŝ15

d̂8ŝ14ŝ35
ŝ145ŝ15

ŝ1ŝ35d̂13
ŝ145ŝ15

ŝ1(ŝ4−ŝ345)
ŝ145

(ŝ1−ŝ36)ŝ13
ŝ145

(ŝ3+ŝ13)d̂5
ŝ145

ŝ13d̂5
ŝ145

−(ŝ1+ŝ24)ŝ35
ŝ145

−ŝ1ŝ35
ŝ145

ŝ1ŝ4(ŝ1−ŝ123)
ŝ125ŝ15

−ŝ1ŝ4ŝ13
ŝ125ŝ15

ŝ14(ŝ2+ŝ35)d̂3
ŝ125ŝ15

ŝ13d̂3d̂7
ŝ125ŝ15

ŝ14ŝ35d̂3
ŝ125ŝ15

ŝ1(ŝ4−ŝ36)ŝ35
ŝ125ŝ15

(ŝ123−ŝ1)d̂6
ŝ125

ŝ13d̂6
ŝ125

−ŝ14(ŝ2+ŝ35)
ŝ125

−d̂7ŝ13
ŝ125

−ŝ14ŝ35
ŝ125

d̂1ŝ35
ŝ125


,

(11.14)

where in the above matrices we have defined combinations of kinematic invariants as

d̂0 = ŝ15 + ŝ35 , d̂1 = ŝ3 − ŝ5 + ŝ123 , d̂2 = ŝ1 − ŝ4 − ŝ5 ,

d̂3 = ŝ3 − ŝ5 − ŝ345 , d̂4 = ŝ4 + ŝ5 − ŝ13 , d̂5 = ŝ1 + ŝ24 − ŝ36 ,

d̂6 = −ŝ1 + ŝ5 + ŝ35 , d̂7 = ŝ1 − ŝ5 + ŝ24 − ŝ35 , d̂8 = ŝ6 − ŝ4 + ŝ13 − ŝ24 ,

d̂13 = ŝ15 + ŝ45 , d̂14 = ŝ123 − ŝ1 + ŝ3 (11.15)

and ŝijk = ŝij + ŝik + ŝjk.
Finally, we can move on to the α′-expansion of the twelve integrals in (8.60). According

to the discussion above the latter can be expressed in terms of the six hypergeometric basis
functions 

F
(233)
Ip

F
(323)
Ip

F
(332)
Ip

F
(332)
Ip

F
(323)
Ip

F
(233)
Ip


= K∗

p



F (234)

F (324)

F (432)

F (342)

F (423)

F (243)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ŝij→φ−1

p (ŝij)

for p = 1, 2 . (11.16)

Applying the method proposed in [176] and thereafter refined and systematized in [177, 182]
the low energy expansion of (11.16) is realized by

F (234) = 1− ζ2(s45s56 + s12s61 − s45s123 − s12s345 + s123s345) + ζ3(. . .) +O(α′4) ,
F (324) = −ζ2s13(s23 − s61 + s345) + ζ3(. . .) +O(α′4) ,
F (432) = −ζ2s14s25 + ζ3s14s25(−s23 − s34 + s56 + s61 + s123 + s234 + s345) +O(α′4) ,
F (342) = ζ2s13s25 + ζ3s13s25(−s12 + s23 + 2s34 − s16 − s123 − 2s234 − s345) +O(α′4) ,
F (423) = ζ2s14s35 + ζ3s14s35(2s23 + s34 − s45 − s56 − s123 − 2s234 − s345) +O(α′4) ,
F (243) = −ζ2s35(s34 − s56 + s123) + ζ3s35[−2s12s23 − 2s12s34 + s2

34 + s34s45 − s45s56
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+s2
56 + s123(2s23 + s45 + s123) + 2s12s234 + s345(s34 − s56 + s123)] +O(α′4) .

(11.17)

Eventually, inserting (11.16) and (11.17) into (8.59) yields the field theory limit of the
α′-dependent part of the scattering amplitude of three closed strings on the disk

sin(πs23)



F
(233)
I1

F
(323)
I1

F
(332)
I1

F
(332)
I1

F
(323)
I1

F
(233)
I1


+ sin(π(s23 + s23))



F
(233)
I2

F
(323)
I2

F
(332)
I2

F
(332)
I2

F
(323)
I2

F
(233)
I2


= π



0

s23

0

s23 + s23

0

0



+πζ2



−s12s23 (s13 + s13 − s23)

s23[s2
12 + s12s12 + s12s13 + s12s13 + s2

13 + s13s13 + 2s12s23 + s12s23 + s13s23 + s2
23 + s12s23 + s23s23]

−s13(s12s23 + s12s23 − s23s23 − s2
23

)

(s23 + s23)[s2
12 + s12s12 + s2

13 + s13s13 + 2s12s23 + s12s23 + s13s23 + s2
23 + (s12 + s23)s23] + s13s23(s12 + s12)

s13s2
23

−s12s2
23



+O(α′4) . (11.18)

11.2 Interpretation of the low energy expansion
The scattering of three closed strings off a Dp brane features an intricate structure of
poles, which is displayed in (C.33) together with (C.30). These arise at the boundaries of
moduli space where two vertex operators approach each other or the boundary of the disk,
respectively. Even though, we do not analyse the pole structure in detail, the relevant
regions in moduli space can be visualized as in figures 11.1–11.3. In the expansion for
small momenta all field theory Feynman digrams contribute at order O(k0), where k stand
schematically for an arbitrary combination of external momenta.

In all Feynman diagrams in this section the dotted lines represent the propagation of
position scalar X i or vector fields Aa living on the D-brane worldvolume. In both cases
the fields originate from massless open string excitations on the D-brane. The dashed lines
stand for the propagation of massless closed string excitations, which could be a dilaton,
a Kalb-Ramond B-field, a graviton or an RR field depending on the external states of
the closed string amplitude. However, if the external states are all dilaton and graviton
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Dp-brane

O(k)

O(k)
O(k−2)

Dp-brane

O(k)

O(k)

O(k2)O(k−2)

O(k−2)

Figure 11.1: Degeneration limits with no vertex collisions.

excitations, also all internal (dashed) lines describe only the propagation of dilatons and
gravitons. Since, the propagating fields are all massless their propagator scales as O

(
1
k2

)
,

where again k represents some combination of external momenta. The scaling with respect
to the external momenta of the vertex operators in the figures 11.1–11.3 can be derived
following the steps in [92, 102]. The vertices off the D-brane, which are in the bulk, can
be read off form the bulk action

SNS−NS =
∫

d10x
√
−g
[ 1
2κ2R−

1
2(∇ϕ)2 − 3

2e
−

√
2κϕH2

]
+ . . . (11.19)

in Einstein-frame, where we have focused on the NSNS sector (in the RNS formalism) and
omitted higher derivative α′-corrections. The string-frame metric Gµν is related to the
Einstein-frame metric gµν by the rescaling Gµν = eΦ/2gµν . Because all terms involve at
least one derivate, the corresponding bulk vertices scale as O(k2), which is also true when
adding RR fields. On the other hand, the vertices on the D-brane can be found from the
DBI-action

SDBI = −Tp
∫
dp+1σTr

(
e

p−3
4 Φ

√
−det(g̃ab + e−Φ/2B̃ab + 2πℓ2

s e
−Φ/2Fab)

)
, (11.20)
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Dp-brane

O(k0) O(k2)
O(k−2)

Dp-brane

O(k)

O(k) O(k2)

O(k−2)

O(k−2)

Figure 11.2: Degeneration limits with one vertex collisions.

where the pull-back of the bulk metric in the Einstein-frame is given by

g̃ab = gab + 2gi(a∂b)X i + gij∂aX
i∂bX

j (11.21)

and we can find a similar formula for the the pull-back of the Kalb-Ramond B-field. At
leading order the vertex operators scale as O(kn) in the momenta, where n is the number of
open string legs attached to a vertex. This is due to the fact that the number of derivatives
in an interaction vertex is directly connected to the amount of open string legs going in or
out of the vertex. This relation follows directly from the terms in the DBI action (11.20),
including the pull-back (11.21), or from performing a series expansion of the closed string
fields in the coordinates transverse to the D-brane.

So far, we have only discussed the scenario involving one D-brane. In the case of a
stack of D-branes, which corresponds to a non-Abelian gauge group, we have to add terms
containing commutators of non-Abelian D-brane scalars to the DBI action (11.20) [183].
In addition, the pull-back has to be computed with the covariant derivative with respect
to the D-brane scalars in the non-Abelian case [184]. In figures 11.1 and 11.2 all open
string excitations, which propagate along the D-brane, have either U(1) gauge group or
are center-of-mass fluctuations, because they couple linearly to the external closed string
states [102]. Since there is no non-vanishing vertex involving three open string excitations
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Dp-brane

O(k0)

O(k2)

O(k−2)

Dp-brane

O(k0) O(k2)

O(k2)

O(k−2)

Figure 11.3: Degeneration limits with two vertex collisions. In the upper diagram the three
vertex operators approach each other at a uniform pace whereas in the lower diagram the
lower two vertex operators collide first and are then approached by the third one.

with gauge group U(1) or center-of-mass fluctuations on the D-branes [102], we do not
get any contribution from the degeneration depicted in figure 11.4. Therefore, only terms
with at most two poles in the field theory limit should appear in the closed string disk
amplitude (8.59).

For simplicity, we solely consider the subset of terms in the amplitude (8.59) corre-
sponding to external states from the NSNS sector, where the polarisation tensors have no
contractions with momenta, i.e. the polarizations are only contracted among themselves.
At leading order in the α′-expansion we get for (8.59)

lim
α′→0
A
∣∣∣∣ ei·pj

ei·pj
}→0

=

= 1
2g

3
cTp

[(
s12s13 − s13s23 − s12(s13 + s23)

s11s23
+ s12s13

s23(s12 + s13 + s23)

)
Tr(D·ϵ1) Tr(ϵT2 ·ϵ3)

+s23 Tr(ϵ1·ϵT2 ·D·ϵT3 )
s12 + s13 + s23

+ s23 Tr(ϵ1·ϵT3 ·D·ϵT2 )
s12 + s13 + s23

− (s12 + s13)
s11

Tr(D·ϵ1) Tr(D·ϵ2·D·ϵ3)
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O(k)

O(k)

O(k)

O(k3)

O(k−2)

Figure 11.4: Degeneration limits with no vertex collisions.

−1
3 Tr(ϵ1·D·ϵ2·D·ϵ3·D)− 1

3 Tr(ϵT1 ·D·ϵT2 ·D·ϵT3 ·D)

−
(

1
3 + s12 + s13 − s23

2s11
+ s12s13

s22s33
+ s11(s12 + s13 + s23)

4s22s33

)
Tr(D·ϵ1) Tr(D·ϵ2) Tr(D·ϵ3)

]
+{1↔ 2}+ {1↔ 3} , (11.22)

where we have inserted the expansion for the hypergeometric integrals in (11.18) and
explicitly carried out the zero mode integration in the SYM amplitudes. The expression
for ASYM in terms of polarizations and momenta can be found in [185]. The momenta pj
stand schematically for closed string momenta of the left- and right-movers similar as in
(11.8). Note that (11.22) is manifestly invariant under exchanging of the external states.

We want to compare (11.22) with the field theory result derived from the DBI action
(11.20), for the special case where all external states are graviton excitations. Also for the
field theory calculation we again restrict the discussion to those terms where the graviton
polarization tensors are completely contracted among themselves and take ei·pj → 0 and
ei·pj → 0. In addition, we assume that all gravitons have orthogonal polarizations so that
(ϵi)µν(ϵj)νρ = 0. Therefore, the Einstein-Hilbert term in the bulk does not contribute to
scattering processes in this setup, i.e. in this case the only non-vanishing contributions
from the diagrams shown in figure 11.1–11.3 come from the two diagrams in figure 11.1.

For the scattering of three gravitons we only require the part

SgravityDBI = −Tp
∫

dp+1σTr
(√
−det(g̃ab)

)
(11.23)

of (11.20), which contains the gravitational interaction of Dp-branes. To expand the La-
grangian L of the action (11.23) around a flat background gµν = ηµν + 2κhµν we utilize√

−det(δab +Ma
b) = 1 + 1

2M
a
a −

1
4M

a
bM

b
a + 1

8(Ma
a)2 + 1

6M
a
bM

b
cM

c
a

−1
8M

a
aM

b
cM

c
b + 1

48(Ma
a)3 + . . . . (11.24)
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Keeping only the relevant terms for the calculation of the diagrams in figure 11.1 the
expansion of L results in

L = −κ
[
Tph

a
a +

√
Tpλ

i∂ih
a
a + 1

2λ
iλj∂i∂jh

a
a + 1

2(∂λ)2haa

]
−κ2

[
−Tphabhba + 1

2
√
Tpλ

i∂i(haa)2 −
√
Tpλ

i∂i(habhba)
]

−κ3Tp

[1
6(haa)3 − haahbchcb + 4

3h
a
bh
b
ch
c
a

]
+ . . . , (11.25)

where the open string modes along the Dp-brane were normalized as X i = 1√
Tp
λi. This

Lagrangian describes the interaction of one or two gravitons with open string excitations
on the Dp-brane, whose vertices are given by

Ṽ αβ;i
hλ = κ

√
TpV

αβkin ,

Ṽ αβ,γδ;i
hhλ = κ2

√
Tp(kin1 + kin2)

(1
2V

αβV γδ − V αδV βγ
)
,

Ṽ αβ;i,j
hλλ = i

2κ
(
kin1k

j
n1 − (kn1 + kn2) · V · kn2N

ij
)
V αβ (11.26)

and the corresponding Feynman diagrams are shown in figure 11.5. In (11.26) we have

λi

hαβ

Dp-brane

Ṽhλ

k∥
n

kn

(a)

λi
hγδ

hαβ

Dp-brane

Ṽhhλ

k∥
n1 + k∥

n2

kn1

kn2

(b)

λj

λi

hαβ

Dp-brane

Ṽhλλ

k∥
n2

k∥
n1 + k∥

n2

kn1

(c)

Figure 11.5: Interactions of one and two gravitons with open string excitations on the
Dp-brane.

introduced the projector Vµν = 1
2(ηµν + Dµν) into the subspace parallel to the Dp-brane.

Moreover, one can also define the orthogonal projector into the subspace transverse to the
Dp-brane Nµν = 1

2(ηµν−Dµν). More details on these projectors can be found in appendix A
of [92]. Furthermore, the contact term in the Lagrangian (11.25) generates an interaction
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hµν

hαβ

hγδ

Dp-brane

S̃hhh

Figure 11.6: Three gravitons sourced from a Dp-brane.

of three gravitons on the brane, which gives rise to the diagram in figure 11.6. The source
of this contact term can be read off the Lagrangian as

S̃αβ,γδ,µνhhh = −iκ3Tp

(1
6V

αβV γδV µν − V αβV γνV µδ + 4
3V

ανV γβV µδ
)
. (11.27)

With these preparations we can compute the Feynman diagrams in figure 11.1. In terms
of the vertex operators (11.26) the first diagram can be written as

Ahhh =
∑
σ∈S3

ϵ
σ(1)
αβ ϵ

σ(2)
γδ ϵσ(3)

µν Ṽ αβ;i
hλ Gλ

ijṼ
γδ;j,mGλ

mnṼ
µν;n

= −iκ3Tp
∑
σ∈S3

(
2kσ(1)·N ·kσ(2)kσ(2)·N ·kσ(3) + kσ(1)·N ·kσ(3)kσ(2)·V ·kσ(2)

4kσ(1)·V ·kσ(1)kσ(3)·V ·kσ(3)

−
kσ(1)·N ·kσ(3)

4kσ(1)·V ·kσ(1)
−

kσ(1)·N ·kσ(3)

4kσ(3)·V ·kσ(3)

)
Tr(ϵσ(1)·V ) Tr

(
ϵσ(2)·V

)
Tr(ϵσ(3)·V ) , (11.28)

where the propagator of the open string scalars with momentum k is given by [102]

Gλ
mn = −i Nmn

k · V · k
. (11.29)

The second diagram can be evaluated as follows

Ahh2 =
∑
σ∈S3

ϵ
σ(1)
αβ ϵ

σ(2)
γδ ϵσ(3)

µν Ṽ αβ;i
hλ Gλ

ijṼ
γδ,µν;j

= −iκ3Tp
∑
σ∈S3

(
kσ(1)·N ·kσ(2) + kσ(1)·N ·kσ(3)

2kσ(1)·V ·kσ(1)
Tr(ϵσ(1)·V ) Tr

(
ϵσ(2)·V

)
Tr(ϵσ(3)·V )

−
kσ(1)·N ·kσ(2) + kσ(1)·N ·kσ(3)

kσ(1)·V ·kσ(1)
Tr(ϵσ(1)·V ) Tr(ϵσ(2)·V ·ϵσ(3)·V )

)
. (11.30)
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Furthermore, if we include the contribution coming from the contact term

Ah3 =
∑
σ∈S3

ϵ
σ(1)
αβ ϵ

σ(2)
γδ ϵσ(3)

µν S̃αβ,γδ,µνhhh

= −iκ3Tp

[
Tr(ϵ1·V ) Tr(ϵ2·V ) Tr(ϵ3·V )− 2 Tr(ϵ1·V ) Tr(ϵ2·V ·ϵ3·V )

−2 Tr(ϵ2·V ) Tr(ϵ1·V ·ϵ3·V )− 2 Tr(ϵ3·V ) Tr(ϵ1·V ·ϵ2·V )

+8 Tr(ϵ1·V ·ϵ2·V ·ϵ3·V )
]
, (11.31)

the field theory calculation for the interaction of three gravitons with orthogonal polariza-
tions in the presence of a Dp-brane yields

Ahhh + Ahh2 + Ah3 =

= −iκ3Tp

[
−
(

2 + 2k1·N ·k2

k1·V ·k1
+ 2k1·N ·k3

k1·V ·k1

)
Tr(ϵ1·V ) Tr(ϵ2·V ·ϵ3·V )

+
(

1
3 + k1·N ·k3k2·N ·k3

2k1·V ·k1k2·V ·k2
+ k1·N ·k2k2·N ·k3

2k1·V ·k1k3·V ·k3
+ k1·N ·k2k3·V ·k3

4k1·V ·k1k2·V ·k2

+ k1·N ·k3k2·V ·k2

4k1·V ·k1k3·V ·k3
+ k1·N ·k2

2k1·V ·k1
+ k1·N ·k3

2k1·V ·k1

)
Tr(ϵ1·V ) Tr(ϵ2·V ) Tr(ϵ3·V )

+ 8
3 Tr(ϵ1·V ·ϵ2·V ·ϵ3·V )

]
+ {1↔ 2}+ {1↔ 3} . (11.32)

In the limit α′ → 0 the result (11.22) obtained from the scattering of three closed strings off
a Dp-brane in (8.59) should reproduce the field theory result presented above. To compare
these we rewrite the kinematic invariants

s12 = 1
2k3·V ·k3 −

1
2k1·V ·k1 −

1
2k2·V ·k2 + k1·N ·k2 ,

s13 = 1
2k2·V ·k2 −

1
2k1·V ·k1 −

1
2k3·V ·k3 + k1·N ·k3 ,

s23 = 1
2k1·V ·k1 −

1
2k2·V ·k2 −

1
2k3·V ·k3 + k2·N ·k3 . (11.33)

which follows from Dµν = 2Vµν − ηµν . If all external states are described by gravitons with
orthogonal polarizations (11.22) becomes

lim
α′→0
A
∣∣∣∣ ei·pj

ei·pj
}→0

= −1
2g

3
cTp

[
(s12 + s13)

s11
Tr(D·ϵ1) Tr(D·ϵ2·D·ϵ3) +

(
1
3 + s12 + s13 − s23

2s11

+s12s13

s22s33
+ (s12 + s13 + s23)s11

4s22s33

)
Tr(D·ϵ1) Tr(D·ϵ2) Tr(D·ϵ3)

+2
3 Tr(D·ϵ1·D·ϵ2·D·ϵ3)

]
+ {1↔ 2}+ {1↔ 3} (11.34)
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= −g3
cTp

[
−
(

2 + 2k1·N ·k2

k1·V ·k1
+ 2k1·N ·k3

k1·V ·k1

)
Tr(ϵ1·V ) Tr(ϵ2·V ·ϵ3·V )

+
(

1
3 + k1·N ·k3k2·N ·k3

2k1·V ·k1k2·V ·k2
+ k1·N ·k2k2·N ·k3

2k1·V ·k1k3·V ·k3
+ k1·N ·k2k3·V ·k3

4k1·V ·k1k2·V ·k2

+ k1·N ·k3k2·V ·k2

4k1·V ·k1k3·V ·k3
+ k1·N ·k2

2k1·V ·k1
+ k1·N ·k3

2k1·V ·k1

)
Tr(ϵ1·V ) Tr(ϵ2·V ) Tr(ϵ3·V )

+ 8
3 Tr(ϵ1·V ·ϵ2·V ·ϵ3·V )

]
+ {1↔ 2}+ {1↔ 3} . (11.35)

After assuming that gc ∼ κ and comparing the string result with the field theory compu-
tation we find that they are related via

A ∼ i(Ahhh + Ahh2 + Ah3) , (11.36)

which provides a non-trivial consistency check for (8.59).
To conclude this chapter we want to give some remarks about the α′-expansion of

section 11.1: Relative to the field theory contribution, which is the lowest order in the
expansion (11.18), the α′-corrections start at order O(α′2). This is in agreement with the
results of the scattering of two closed strings on the disk [91, 92, 102]. Hence, α′-corrections
to the DBI action involve terms with at least four derivatives, as was argued in [84] for
R2-terms. Especially, there is evidence for a contribution to the Einstein-Hilbert term,
which is coming from the disk. According to [179] S-duality between heterotic and type
I string theory provides indirect arguments for the existence of an ϵ10ϵ10R

4 term in the
worldvolume theory of a D9-brane. Upon compactification on a Calabi-Yau manifold with
non-vanishing Euler number it was anticipated by [186] that this term results in corrections
of the Einstein-Hilbert term in four dimensions. As the scattering of three gravitons with
four dimensional polarisations is agnostic about the shape of the additional six dimensions,
one might assume that an Einstein-Hilbert term on the D9 worldvolume exists. Moreover,
the scattering of two on-shell gravitons in the presence of a D9-brane vanishes [91, 92, 102]
such that this 2-point function seems to degenerate in order to draw any conclusion about
the existence of an Einstein-Hilbert term. Hence, the scattering of three closed string on
the disk was the next logical candidate to provide the correct low energy contribution for
such a term, but our result speaks against it.

In principal, there are further higher derivative corrections in addition to the predicted
term e−Φϵ10ϵ10R

4 at disk level [179, 187]. Contrary to the e−Φϵ10ϵ10R
4-term, which does

not correct the dilaton equations of motion in ten dimensions1 [186], the additional R4

terms can lead to corrections of the ten dimensional dilation at disk level. Therefore,
when we compactify the ten dimensional Einstein Hilbert term e−2ΦR to four dimensions
following the steps in [188], we would also have to account for the contribution from the

1Due to the epsilon tensors in e−Φϵ10ϵ10R4 the flat non-compact space enters in at least one of the
Riemann tensors.
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additional terms. Thus, these two contributions from the disk to the four dimensional
Einstein-Hilbert term might cancel against each other.



Chapter 12

Concluding remarks

In this thesis we have studied the interactions of closed strings with non-perturbative
objects: We have computed the complete tree-level disk amplitude involving any three
external closed string states in the NSNS, NSR, RNS or RR sector, which can be found in
(8.59) and also provide an ansatz for the generalization to an arbitrary number of closed
strings in (9.13). Therefore, these result are interesting both from a conceptual and physical
point of view. We have demonstrated that the closed string amplitude on the disk can be
expressed in terms of a basis of six-point open string subamplitudes. This allows us to
connect the closed string amplitude on the disk to the scattering of open strings on the
disk via KLT-like relations and a PSL(2,R)-transformation. Surprisingly, the final result
(8.56) can be expressed in terms of only two six-point open string subamplitudes, whereas
the basis of these subamplitudes contains six elements. Hence, one might have guessed
that also the scattering of three closed strings is given in terms of six subamplitudes. We
conjecture that this pattern persists for a closed string n-point function as shown in (9.13).
In order to derive our result, we introduced monodromy relations for open strings in section
7.2, which contain n terms instead of only n− 1 terms as in the open string subamplitude
relations in [35].

The evaluation of the correlator in appendix C shows that we can express the correlator
of three closed strings on the disk in terms of SYM amplitudes, c.f. (C.34). This might
not be surprising, because similar relations have been found for open strings on the disk in
[62, 162]. Nevertheless, it is an important and non-trivial consistency check, as it required
some additional computational effort to show this. For example, we had to perform a
PSL(2,R)-transformation, which required to use composite superfields still containing
all BRST exact terms that are usually discarded from the beginning. These composite
superfields in the correlator are commonly compute by using OPE contractions in the PSF
[158, 160, 161]. We have chosen a different (more fundamental) approach and computed
the correlator in the PSF by applying Wick’s theorem.

In the low energy limit, where α′ → 0, we verified that for a subset of terms the field
theory result from the string theory calculation (11.35) matches the corresponding terms
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(11.32) obtained from the DBI action. In addition, we could show that the result in (11.22)
has the correct pole structure, which is expected to be found for the physical amplitude. In
the literature, see for example [35, 189], the scattering of three closed strings was performed
on the double cover of the disk, i.e. the sphere. In this case the s-channel poles in siı are
not present in the low energy expansion. The absence of these terms on the double cover
is not surprising and we presented an argument at the end of chapter 8 that should also
hold for higher-point scattering amplitudes. More importantly, this argument shows that
it is not possible to extend the integration over the upper half plane to the entire complex
plane for a closed string amplitude on the disk, as it was done in [189].

Furthermore, we pioneer the scattering of closed strings on the real projective plane
with more than two vertex operator insertions. We provide a prescription for the scattering
of n closed strings off an Op-plane and explicitly apply this prescription for n = 3: Using
parts of the previous calculation of three closed strings on the disk we arrive at an expres-
sion that can be written in terms of four open string partial amplitudes. Similar as for the
disk amplitude, the final result contains less open string subamplitudes than the number
of elements in the minimal basis. To achieve this we had to carry out the analytic contin-
uation for an unoriented surface, which turned out to be a more involved calculation than
anticipated in [189], where an attempt was made to derive the general expression for the
n-point function of closed strings on the real projective plane after analytic continuation.
Hence, our calculation leads a different result compared to [189].

There are a lot of possible directions to generalize the computations in this thesis:
Performing the corresponding evaluations at one-loop would be interesting. For example,
this would amount to closed string scattering on a cylinder worldsheet, which would give
an explicit application of the techniques developed in [190, 191, 192, 193] to perform the
cylinder worldsheet integrations. On the other hand, KLT or monodromy relations on genus
one non-oriented surfaces are mostly uncharted territory, but an ansatz was proposed in
[194]. Another direction could be to extend the scattering process on the disk and projective
plane to massive external states in the spirit of [195, 196]. So far, we have only performed
the computation of the scattering of three closed strings on the real projective plan, but it
would be interesting to investigate the low energy effective description that arises from this
amplitude. Maybe it would be possible to get further insight on a term like e−Φϵ10ϵ10R

4

from this amplitude. Finally, it would be important to understand why the disk calculation
does not see any hints of an Einstein-Hilbert term on the disk, which should arise when
compactifying an e−Φϵ10ϵ10R

4 term in the worldvolume of a D9-brane to four dimensions as
discussed in chapter 11. In this case it might be helpful to analyse the corresponding three
graviton amplitude on the projective plane or go beyond three external closed string states
on the disk. In any case, it would be important to compute higher multiplicity closed string
amplitudes on the disk starting with four closed strings scattered off a Dp-brane to see if
the desired term is hidden somewhere in these amplitudes. Thereby, it could be possible
to find the precise n-point generalization of our ansatz in (9.13).



Appendix A

U(5) decomposition of SO(10)

To analyse the pure spinor constraint (3.25) in section 3.2.1 we have to decompose the
Lorentz group SO(1, 9) after a Wick rotation in terms of U(5). Hence, we will give the
basics of the U(5) = SU(5) ⊗ U(1) decomposition of the Wick rotated Lorentz group
SO(10) in this appendix following the lines of [114].

A.1 The Wick rotated Clifford algebra in R10

Before we can start with the U(5) decomposition of SO(10) we have to establish the
Clifford algebra of a Euclidean space with ten dimensions. Therefore, we can Wick rotate
the Lorentz group SO(1, 9) and obtain SO(10). The Clifford algebra in ten dimensional
Euclidean space becomes

{Γm,Γn} = 2δmn, m, n = 1, 2, . . . , 10 . (A.1)

This algebra admits a redefinition [197] for the Γ-matrices in terms of Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.2)

together with the unit matrix 1 = 12×2. The Pauli matrices satisfy {σi, σj} = 2δij for
i, j = 1, 2, 3. According to [198] we can use the Kronecker product of Pauli sigma matrices
to construct the 25 × 25 gamma matrices Γm in ten dimensions

Γ1 = σ2 ⊗ σ1 ⊗ 1⊗ 1⊗ 1 , Γ6 = σ2 ⊗ σ2 ⊗ 1⊗ 1⊗ 1 ,

Γ2 = σ2 ⊗ σ3 ⊗ σ1 ⊗ 1⊗ 1 , Γ7 = σ2 ⊗ σ3 ⊗ σ2 ⊗ 1⊗ 1 ,

Γ3 = σ2 ⊗ σ3 ⊗ σ3 ⊗ σ1 ⊗ 1 , Γ8 = σ2 ⊗ σ3 ⊗ σ3 ⊗ σ2 ⊗ 1 ,

Γ4 = σ2 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ1 , Γ9 = σ2 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ2 ,

Γ5 = σ2 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 , Γ10 = −σ1 ⊗ 1⊗ 1⊗ 1⊗ 1 , (A.3)
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which is the analogous representation of Γm for Minkowski spacetime R1,9, see (2.5). The
properties of the Kronecker product

(A⊗B)(C ⊗D) = (AC ⊗BD) , (A⊗B)T = AT ⊗BT (A.4)

ensure that the Clifford algebra (A.1) is satisfied by the matrices (A.3). In addition, we
find the following symmetry properties of the Γ-matrices (A.3)

ΓT
m =

{
−Γm , m = 1, . . . , 5

Γm , m = 6, . . . , 10 . (A.5)

Moreover, this representation is hermitian: Because the gamma matrices in (A.3) are
constructed from an even or odd number of σ2, they are purely imaginary for m = 1, . . . , 5
and real for m = 6, . . . 10. Hence, they satisfy

Γ†
m = Γm . (A.6)

We can define a charge conjugation matrix C, which has to obey

CΓm = −ΓT
mC (A.7)

according to the above symmetry properties of Γm. Hence, the charge conjugation matrix
C is given by the product of all antisymmetric gamma matrices [199] and can be written
in the representation of the Pauli matrices as

C = Γ1Γ2Γ3Γ4Γ5 = −σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗ σ2 . (A.8)

Therefore, the charge conjugation matrix itself is antisymmetric. Further, it is off-diagonal
and satisfies C2 = 132×32.

The chirality matrix Γ11 can be written as a product of all ten gamma matrices

Γ11 = −iΓ1 · · ·Γ10 =
(

116×16 0
0 −116×16

)
(A.9)

and is the same as for a ten dimensional Lorentzian spacetime.

A.2 Vector and spinor representations and Lorentz
generators of SO(10)

The vector V p and spinor Ψ representation of the Wick rotated Lorentz group SO(10) are
defined by their transformation under SO(10)

[Mm,n, V p] = δmpV n − δnpV m ,
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[Mmn,Ψ] = 1
2ΓmnΨ , (A.10)

where Mmn are the generators of the group SO(10). They are antisymmetric Mmn =
−Mnm and satisfy the following Lie algebra

[Mmn,Mpq] = δmpMnq − δnpMmq − δmqMnp + δnqMmp . (A.11)

We are interested in the U(5) decomposition of the vectors V p, spinors Ψ and the Lorentz
generators Mmn. To decompose the vectorial representation form SO(10)→ U(5) we have
to split the ten components of the vector V p with p = 1, . . . , 10 in two sets. For a = 1, . . . , 5
we can define two vectors va, va as a linear combination of the components V p

va = 1√
2
(
V a + iV a+5

)
, va = 1√

2
(
V a − iV a+5

)
, a = 1, . . . , 5 . (A.12)

We split the components of tensors of SO(10) following the same pattern as for the vec-
tor decomposition in (A.12) while preserving the symmetries of the corresponding tensor.
Concretely, the Lorentz generators Mmn decompose as

mab = 1
2
(
Mab + iMa(b+5) + iM (a+5)b −M (a+5)(b+5)

)
,

mab = 1
2
(
Mab − iMa(b+5) − iM (a+5)b −M (a+5)(b+5)

)
,

ma
b = 1

2
(
Mab − iMa(b+5) + iM (a+5)b +M (a+5)(b+5)

)
(A.13)

and the trace of ma
b is given by

m =
5∑

a=1
ma
a = i

5∑
a=1

M (a+5)a . (A.14)

We can invert (A.12) and (A.13) to write the SO(10) components in terms of their U(5)
decomposition. Then, plugging them in (A.11) gives the SO(10) Lie algebra decomposed
to U(5) as

[mab,mcd] = 0 , [mab,mcd] = 0 ,
[mab,m

cd] = −δcamd
b + δdam

c
b + δcbm

d
a − δdbmc

a , [mab,m
c
d] = −δcbmab + δcambd ,

[mab,m
c
d] = −δadmbc + δbdm

ac , [ma
b ,m

c
d] = −δcbma

d + δadm
c
b ,

[m,mab] = 2mab , [m,mab] = −2mab ,

[m,ma
b ] = 0 , [m,m] = 0 . (A.15)

Similarly, the commutators of the SO(10) Lorentz generators with the vectors in (A.10)
decompose under U(5) as follows

[mab, vc] = 0 , [mab, vc] = 0 ,
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[mab, v
c] = δcavb − δcbva , [mab, vc] = δac v

b − δbcva ,
[ma

b , v
c] = −δcbva , [ma

b , vc] = δac vb ,

[m, vc] = −vc , [m, vc] = vc . (A.16)

Hence, from (A.15) we can conclude that ma
b are the generators of U(5) embedded in

SO(10) and mab and mab transform as two forms under U(5). Furthermore, in (A.16) the
vectors va and va transform in the defining representations 5 and 5 of U(5).

From the commutator
[ma

b ,m
c
d] = −δcbma

d + δadm
c
b (A.17)

it follows that the SO(10) Lie algebra has an 52 = 25 dimensional subalgebra, which
contains a U(1) subgroup generated by m and the other 52 − 1 = 24 generators are given
by

m̃a
b = ma

b −
1
5δ

a
bm , (A.18)

which are traceless and generate the SU(5) algebra

[m̃a
b , m̃

c
d] = −δcbm̃a

d + δadm̃
c
b . (A.19)

Hence, we have shown that U(5) decomposes into SU(5) ⊗ U(1) [141]. Each of these
representations R carries a U(1) charge qR, which is defined by [m,R] = qRR. We can
denote this charge by a subscript NqR

for an N -dimensional representation of SU(5). For
the components of the antisymmetric tensor Mmn and vector V p we find the following
transformations under the SU(5)⊗ U(1) decomposition of SO(10)

V m → va ⊕ va , Mmn → mab ⊕mab ⊕ma
b ⊕m ,

10→ 5−1 ⊕ 51 , 45→ 10−2 ⊕ 102 ⊕ 240 ⊕ 10 . (A.20)

To obtain the decomposition of the spinorial representation of SO(10) under SU(5)⊗U(1)
we will consider a linear combination of the Γ-matrices [200]

ba = 1
2
(
Γa + iΓa+5

)
, ba = 1

2
(
Γa − iΓa+5

)
, a = 1, . . . , 5 . (A.21)

Following from (A.5) and (A.6) these matrices satisfy

b†
a = ba , (ba)† = ba ,

bT
a = −ba , (ba)T = −ba , (A.22)

for a = 1 . . . , 5. The Clifford algebra (A.1) for the matrices ba and ba becomes

{ba, bb} = δba , {ba, bb} = {ba, bb} = 0 . (A.23)

Since (A.23) is a fermionic oscillator algebra, we can interpret the matrices ba and ba as
creation and annihilation operators, respectively. Hence, we can define a vacuum state



A.2 Vector and spinor representations and Lorentz generators of SO(10) 153

|0⟩ that is annihilated by all ba operators, i.e. ba |0⟩ = 0 and similarly ⟨0| ba = 0, and
normalized ⟨0|0⟩ = 1. We can create up 32 states by acting with the creation operators ba
on the vacuum. Moreover, for such a state we define ⟨ψ| = |ψ⟩T. In terms of the raising
and lowering operators the charge conjugation and chirality matrices are given by

C =
5∏

a=1
(ba + ba) , Γ11 =

5∏
a=1

(baba − baba) =
5∏

a=1
(2baba − 1) . (A.24)

The Lorentz generators Mmn for the spinorial representation of SO(10) are given by

Mmn → −1
2Γmn = −1

4[Γm,Γn] , (A.25)

which can be checked to satisfy the Lie algebra (A.11) of the Lorentz generators. We use
the (inverted) U(5) decomposition (A.21) of SO(10) for the Euclidean gamma matrices
to write the U(5) generators (A.13) and (A.14) in terms of the matrices ba and ba after
plugging in the spinorial representation (A.25) as

ma
b = −1

2(babb − bbba) , m = −1
2(baba − baba) = −baba + 5

2 ,

mab = −babb , mab = −babb . (A.26)

The spinorial U(5) Lorentz generators satisfy the decomposition (A.15) of the SO(10)
Lie algebra, which can be verified using [A,BC] = [A,B], C + B[A,C] and [A,BC] =
{A,B}C +B{A,C}. Moreover, the equivalent of the U(5) vector transformations is given
by

[mab, bc] = 0 , [mab, bc] = 0 ,
[mab, b

c] = δcabb − δcbba , [mab, bc] = δac b
b − δbcba ,

[ma
b , b

c] = −δcbba , [ma
b , bc] = δac bb ,

[m, bc] = −bc , [m, bc] = bc . (A.27)

From these relations it follows that ma
b are the generators of U(5) and m is the generator

of U(1) in the decomposition U(5) = SU(5) ⊗ U(1) as before. Similarly, the creation
operators ba and annihilation operators ba transform in the vector representations 5−1 and
51 of SU(5)⊗ U(1), respectively.

Applications to pure spinors

For the fundamentals of the pure spinor formalism it is important to know how the U(5)
components of a pure spinor λα transform under SO(10) rotations. For this purpose we use
the notation [200] O |ψ⟩ = |Oψ⟩ for an arbitrary operator O to read off how the different
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components transform under O. The spinorial Lorentz transformations (A.10), which in
this case are generated by Mmn = −1

2Γmn, decompose as follows

mab |λ⟩ = −λab |0⟩ −
1
2ϵabcdeλ

ebdbc |0⟩ ,

ma
b |λ⟩ = 1

2δ
a
b |λ⟩ − λcdbabc |0⟩ −

1
3!λ

cϵcdefbb
abfbebd |0⟩ ,

m |λ⟩ = 5
2λ

+ |0⟩+ 1
4λabb

bba |0⟩ − 1
16ϵabcdeb

ebdbcbb |0⟩ (A.28)

when using the U(5) decomposition (A.26) for the Lorentz generators. We can project
these transformations onto the U(5) components (3.29): For example, the 10 component
of SU(5) can be obtained from the projection

|mλ⟩ab = ⟨0| babbm |λ⟩ = 1
4λcd ⟨0| babbb

cbd |0⟩ = 1
2λab . (A.29)

Consequently, the SO(10)-transformations imply

mabλ
+ = −λab , mabλcd = −ϵabcdeλe , mabλ

c = 0 ,

mabλ+ = 0 , mabλcd = δa[cδ
a
d]λ

+ , mabλc = 1
2ϵ

abcdeλde ,

ma
bλ

+ = 1
2δ

a
bλ

+ , ma
bλcd = δa[cλd]b + 1

2δ
a
bλcd , ma

bλ
c = δcbλ

a − 1
2δ

a
bλ

c ,

mλ+ = 5
2λ

+ , mλcd = 1
2λcd , mλc = −3

2λ
c . (A.30)

After performing the identification (3.49) we find the SO(10) → SU(5) ⊗ U(1) decompo-
sitions for the projections of the SO(10)-transformations

nabλ
+ = λab , nabλcd = ϵabcdeλ

e , nabλ
c = 0 ,

nabλ+ = 0 , nabλcd = −δa[cδad]λ
+ , nabλc = −1

2ϵ
abcdeλde ,

nabλ
+ = 0 , nabλcd = −δa[cλd]b −

2
5δ

a
bλcd , nabλ

c = −δcbλa + 1
5δ

a
bλ

c ,

nλ+ = −
√

5
2 λ+ , nλcd = − 1

2
√

5
λcd , nλc = 3

2
√

5
λc , (A.31)

which are the single pole coefficients in the OPE (3.52).
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PSL(2,R)-transformations on the disk

In [130] the invariance of a correlator on the sphere under SL(2,C)-transformations is
discussed to derive the general structure of OPEs between conformal primaries. Moreover,
in [130] differential equations were derived, which have to be satisfied by each correlation
function of conformal primaries. Following the steps in [109] we want to derive similar
relations for a correlator on the disk, which will be used to change the PSL(2,R) frame of
the correlator in (C.10).

A correlation function on the disk can be interpreted as the vacuum expectation value
of a radially ordered product of fields, where the ground state is invariant under PSL(2,R)-
transformations. Therefore, a CFT correlator with n primary fields ϕi(zi, zi) has to trans-
form as

⟨⟨ϕ′
1(z1, z1) · · ·ϕ′

n(zn, zn)⟩⟩D2
= ⟨⟨ϕ1(z1, z1) · · ·ϕn(zn, zn)⟩⟩D2

, (B.1)

where ϕ′
i(zi, zi) = Uϕi(zi, zi)U−1 is the PSL(2,R) transformed field ϕi(zi, zi) and the

transformation U leaves the in and out state invariant. As mentioned in section 8.1 due to
the boundary of the disk the holomorphic and anthropomorphic fields interact with each
other. Compared to the sphere we cannot separate left- and right-movers.

The globally defined generators L−1, L0 and L1 of PSL(2,R) act on conformal primaries
ϕ(z, z) as

L−1 : translations U = ebL−1 ϕ′(z, z) = ϕ(z + b, z + b) ,

L0 : dilatations and
rotations U = eln aL0 ϕ′(z, z) = ahahϕ(az, az) ,

L1 : special conformal
transformations U = ecL1 ϕ′(z, z) =

(
1

1−cz

)2h(
z

1−cz

)2h
ϕ
(

z
1−cz ,

z
1−cz

)
,

(B.2)
where (h, h) is the conformal dimension of ϕ(z, z). The transformation parameters have
to be real, because the conformal Killing group of the disk is PSL(2,R).1 Moreover, this

1Note that the CKG of the disk is actually SU(1, 1) and the upper half plane H+ has CKG PSL(2,R).
Since we can map the disk to the upper half plane, we use the two expressions synonymously.
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implies that the infinitesimal conformal transformation for worldsheet coordinates are given
by

z′ = z + ε(z) , z′ = z + ε(z) = z + ε(z) , (B.3)
where also here the transformation parameters are real, i.e. ε(z) = ε(z). Using (B.3) we
proceed to calculate the infinitesimal transformation of a primary field ϕ(z, z)

δεϕ(z, z) = ϕ′(z, z)− ϕ(z, z) = ϕ′(z′ − ε(z), z′ − ε(z))− ϕ(z, z) . (B.4)

Then, we carry out a Taylor expansion of ϕ′(z′−ε(z), z′−ε(z)) in the infinitesimal parameter
ε up to linear order in ε so that (B.4) becomes

δεϕ(z, z) = ϕ′(z′, z′)− ε(z)∂ϕ(z, z)− ε(z)∂ϕ(z, z)− ϕ(z, z) +O(ε2) . (B.5)

In general, the conformal transformation of a primary field with dimension (h, h) is given
by

ϕ′(z′, z′) =
(
∂z′

∂z

)−h(
∂z′

∂z

)−h

ϕ(z, z) . (B.6)

Inserting this transformation in (B.5) yields

δεϕ(z, z) =
[
(1 + ∂ε(z))−h(1 + ∂ε(z))−h −

(
1 + ε(z)∂ + ε(z)∂

)]
ϕ(z, z) +O(ε2)

= −
(
h∂ε(z) + h∂ε(z) + ε(z)∂ + ε(z)∂

)
ϕ(z, z) +O(ε2) . (B.7)

Then, writing the infinitesimal parameter ε of the transformation of the worldsheet fields
as

ε(z) = ε−1 + ε0z + ε1z
2 (B.8)

and plugging it into (B.7) gives after computing derivatives and rearranging some terms

δεϕ(z, z) = −
[
ε−1

(
∂ + ∂

)
+ ε0

(
h+ z∂ + h+ z∂

)
+ ε1

(
2hz + z2∂ + 2hz + z2∂

)]
ϕ(z, z) .

(B.9)
Because a CFT correlator is invariant under conformal transformations, i.e. satisfies (B.1),
the corresponding infinitesimal transformation of the correlator has to vanish

0 = δε⟨⟨ϕ1(z1, z1) · · ·ϕn(zn, zn)⟩⟩D2
=

n∑
i=1
⟨⟨ϕ1(z1, z1) · · · δεϕi(zi, zi) · · ·ϕn(zn, zn)⟩⟩D2

=
n∑
i=1

[
ε−1

(
∂i + ∂i

)
+ ε0

(
hi + zi∂i + hi + zi∂i

)
+ε1

(
2hizi + z2

i ∂i + 2hizi + z2
i∂i
)]
⟨⟨ϕ1(z1, z1) · · ·ϕn(zn, zn)⟩⟩D2

, (B.10)

where we have used (B.9) for the fields ϕi. Because the parameters in the transformation
(B.8) are in general not vanishing, by equating coefficient for ε−1, ε0 and ε1 we can extract
three independent equations from (B.10)

0 =
n∑
i=1

(
∂i + ∂i

)
⟨⟨ϕ1(z1, z1) · · ·ϕn(zn, zn)⟩⟩D2

,
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0 =
n∑
i=1

(
hi + zi∂i + hi + zi∂i

)
⟨⟨ϕ1(z1, z1) · · ·ϕn(zn, zn)⟩⟩D2

,

0 =
n∑
i=1

(
2hizi + z2

i ∂i + 2hizi + z2
i∂i
)
⟨⟨ϕ1(z1, z1) · · ·ϕn(zn, zn)⟩⟩D2

. (B.11)

Hence, if a correlator satisfies the equations (B.11), it is invariant under global conformal
transformations and vice versa.

Splitting the primary fields into their holomorphic and antiholomorphic components,
which we denote by ϕi(zi) and ϕi(zi) depending only on zi and zi, respectively, and inserting
them into (B.1) gives

⟨⟨ϕ1(z1, z1) · · ·ϕn(zn, zn)⟩⟩D2
→ ⟨⟨ϕ1(z1)ϕ1(z1) · · ·ϕn(zn)ϕn(zn)⟩⟩D2

. (B.12)

Because ϕi(zi) and ϕi(zi) have to be treated as independent fields, we have obtained a
correlator of 2n primaries, where each field interacts with the 2n − 1 other fields. Thus,
we can interpret (B.11) in the following way: They describe the conditions for a correlator
of 2n primary fields with conformal weight hi or hi to be conformally invariant. In that
sense, they are very similar to the equivalent relations on the sphere, c.f. for example [130].

Conformal invariance of the Koba-Nielsen factor

We use in appendix C that (B.11) is linear in the derivatives of the worldsheet coordinates.
Hence, it is possible to check that the Koba-Nielsen factor and the correlator in (C.10) sat-
isfy (B.11) separately. More importantly, the Koba-Nielsen factor is not involved in finding
the relations (C.14) and those relations originate only from the zero modes correlators.

Here, we want to be more general and consider the Koba-Nielsen factor of n-closed
strings scattering off a Dp-brane, which can be written as

KNn =
〈〈

n∏
i=1

eiki·X(zi,zi)
〉〉
D2

=
n∏
i=1
|zi − zi|kiDki

n∏
i,j=1
i<j

|zi − zj|2ki·kj |zi − zj|2ki·D·kj . (B.13)

For the first equation in (B.11) we need to compute the derivatives with respect to zi and
zi of the Koba-Nielsen factor

∂i KNn = 1
2

[
2ki·D·ki
zi − zi

+
n∑
j=1
i ̸=j

(
2ki·kj
zi − zj

+ 2ki·D·kj
zi − zj

)]
KNn ,

∂i KNn = 1
2

[
−2ki·D·ki
zi − zi

+
n∑
j=1
i ̸=j

(
2ki·kj
zi − zj

+ 2ki·D·kj
zi − zj

)]
KNn . (B.14)

Summing over all derivatives and rearranging terms yields
n∑
i=1

(
∂i + ∂i

)
KNn =

n∑
i,j=1
i ̸=j

[
ki·kj

(
1

zi − zj
+ 1
zi − zj

)
+ ki·D·kj

(
1

zi − zj
+ 1
zi − zj

)]
KNn
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= 0 , (B.15)

which vanishes, because each term appears twice but with a different overall sign: For
instance we find 1

zi−zj
and 1

zj−zi
for fixed i and j, which add up to zero.

The conformal weight of the plane wave factor eiki·X(zi,zi) is given by (h, h) = (k
2
i

2 ,
k2

i

2 )
such that we get for the second equation in (B.11)

n∑
i=1

(
k2
i

2 + zi∂i + k2
i

2 + zi∂i

)
KNn =

n∑
i=1

(
k2
i + ki·D·ki

)
KNn

+
∑
i,j=1
i ̸=j

[
ki·kj

(
zi

zi − zj
+ zi
zi − zj

)
+ ki·D·kj

(
zi

zi − zj
+ zi
zi − zj

)]
KNn

=
∑
i,j=1

(ki·kj + ki·D·kj) KNn = 0 . (B.16)

To get from the first to the second line we used that terms like zi

zi−zj
and zj

zj−zi
add up

to one. After using momentum conservation the expression vanishes and also the second
equation is satisfied by the n closed string Koba-Nielsen factor.

Furthermore, we find for the last equation in (B.11)
n∑
i=1

(
2zi

k2
i

2 + z2
i ∂i + 2zi

k2
i

2 + z2
i∂i

)
KN =

n∑
i=1

[
n∑
j=1

ki·(kj +D·kj)(zi + zi)
]

KN = 0 . (B.17)

Thus, the Koba-Nielsen factor of n closed strings scattered off a Dp-brane is conformally
invariant.



Appendix C

The correlator of three closed strings
on the disk

After using the doubling trick one would expect the correlation function of n closed strings
on the disk to be similar to the correlation function of 2n open strings on the disk. But
the gauge fixing of the path integral for closed strings on the disk results in a correlation
function that has no vertex operator fixed at infinity. Therefore, the contractions in the
correlator involve all vertex operators, which is different compared to [62]. For open strings
on the disk one vertex operator position can be fixed at infinity using the invariance
under Möbius transformations of the amplitude. This vertex operator contributes to the
amplitude only via the zero mode correlator, because contractions with the vertex operator
whose position is fixed at infinity vanish as they go as limz→∞

1
z
→ 0.

In this appendix we want to connect these two approaches and explicitly write the
correlator of three closed string on the disk as a correlator of six open strings. Therefore,
we use the invariance of this correlator under PSL(2,R)-transformations to change the
vertex operator fixing to (0, 1,∞).

Moreover, we want to explicitly execute the steps presented in the chapters 4–6 to
obtain a simple form of the amplitude in terms of SYM amplitudes. The discussion in this
appendix is based on [109].

C.1 The correlator of three closed strings expressed
as the correlator of six open strings

According to section 4.1 the correlator of the amplitude in (8.26) can be expressed as a
sum over all possible contractions of the integrated vertex operators among themselves
and with the unintegrated vertex operators. Using the OPEs (3.76) we can organise the
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contractions in terms of the composite superfields K2i3j3k and thereby obtain1

⟨⟨V1(z1)V1(z1)V2(z2)U2(z2)U3(z3)U3(z3)⟩⟩ =
∑
i,j,k

KN(z2, z3, z3)
⟨K2i3j3k⟩
z2iz3jz3k

(C.1)

for the disk correlator of three closed strings in (8.26) with position fixed vertex oper-
ators (z1, z1, z2). Note that we use the notation zı ≡ zi. The sum runs over i, j, k ∈
{1, 1, 2, 2, 3, 3} with the restriction i ̸= 2, j ̸= 3 and k ̸= 3. After contracting the plane
wave factors the Koba-Nielsen factor takes the following form

KN(z2, z3, z3) =
〈〈
eik1·X(z1,z1)eik2·X(z2,z2)eik3·X(z3,z3)

〉〉
=

3∏
i=1
|zi − zi|siı

3∏
i,j=1
i<j

|zi − zj|2sij |zi − zj|2siȷ . (C.2)

Since we can contract each integrated vertex operator with five other vertex operators,
the sum contains a total of 5× 5× 5 = 125 different contractions K2i3j3k. For two vertex
operators the contractions are given by (4.11) and (4.12) and for contractions involving
more than two vertex operators we find for example

K2132 = z21z32U2(z2)U3(z3)V 1(z1)

=
[
(ik1 · A2)(ik2 · A3)− ik1

m(W2γ
mW3) + s12(A2W3)

]
V1

+(λγmW2)(ik2 · A3)A1
m −

1
4(λγmγpqW3)A1

mF2
pq − s23(A1W2)V3

−Q
[
(ik2 · A3)(A1W2)−

1
4(A1γ

mnW3)F2
mn

]
, (C.3)

K213231 = z21z32z31U2(z2)U3(z3)U3(z3)V 1(z1)

=
[
(ik1 · A2)(ik2 · A3)− ik1

m(W2γ
mW3) + s12(A2W3)

]
K31 +

[
(λγmW2)(ik2 · A3)

−1
4(λγmγpqW3)F2

pq

](
−(ik1 · A3)A1

m + (W1γ
mW3) + k1

m(A1W3)
)

+1
8

[
(λγrsγmW2)(ik2 · A3)−

1
4(λγrsγmγpqW3)

]
A1
mF2

pqF3
rs

+s23

[
(ik1 · A3)(A1W2)V3 +DαA

1
βW

β

2 W
α
3 V3

]
−s13

[
(ik2 · A3)(A1W2) + 1

4(A1γ
mnW3)F2

mn

]
V3 , (C.4)

K233232 = z23z32z32U2(z2)U3(z3)U3(z3)
1We have left the (uncontracted) unintegrated vertex operators implicit here to obtain this compact

expression, but they are still present in the correlator.
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= (1− s23)
{

(ik2 · A3)[(A2W3) + (A3W2)− (A2 · A3)]−DαA
2
βW

β
3 W

α
3

−1
4(A3γ

mnW3)F2
mn + (W2γ

mW3)A3
m + (ik2 · A3)(A2W3)

}
. (C.5)

As explained before the arrow notation is defined such that for example in (C.3) the
contraction U2(z2)V 1(z1) is given by (4.11). After the contraction fields with index 2
depend on z2 (and only those fields). The contraction between integrated vertex operators
U2(z2)U3(z3) corresponds to the contraction of h = 1 primaries in U3(z3) with only those
terms in U2(z2)V1(z1) originating from U2 and depending on z2. Similar remarks hold for
(C.4) and (C.5).

This comparably large number of terms can be reduced by relating the composite
superfields K and L̃. Therefore, we can use partial fractioning

1
zjizki

+ 1
zjkzji

= 1
zjkzki

, (C.6)

to express the denominators in (C.1) in terms of the denominators obtained by computing
the correlator using (5.1). For a particular denominator we can compare the numerators
obtained from both methods for integrating out the h = 1 fields in the correlator, which
leads to the set of relations2

L̃2i3i3i = K2i3i3i +K2i3i32 +K2i3i33 +K2i323i +K2i3232 +K2i3233 ,

L̃233i3i = K233i3i +K233i32 +K233i33 −K2i323i −K2i3232 −K2i3233 ,

L̃23333i = K23333i −K233i33 −K233i32 +K2i3232 +K2i3233 −K23323i ,

L̃232333 = K233232 −K233332 −K233233 −K233232 +K233333 ,

L̃2i333i = K2i333i −K2i3i33 −K2i3233 +K2i3332 ,

L̃2i333j = K2i

(
K333j −K3j33

)
, L̃2i3i3j =

(
K2i3i +K2i32

)
K3j ,

L̃233333 = K233233 +K233232 , L̃2i3333 = K2i3333 ,

L̃2i3j3k = K2iK3jK3k (C.7)

and similar relations with permutations of vertex operator labels. Therefore, we can reor-
ganize the correlator by using these relations between the kinematic terms and write the
integrand of the scattering process of three closed strings on the disk as a sum over single
and double poles

⟨⟨V1(z1)V1(z1)V2(z2)U2(z2)U3(z3)U3(z3)⟩⟩ =

2These relations can also be viewed as the definition of the composite superfields L̃, but they are only
valid inside a correlator, because K depends on various vertex operator positions, whereas L̃ depends only
on one worldsheet coordinate.
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= KN(z2, z3, z3)
〈∑
i,j,k

ϵijk

(
L̃2i3j3k

z2iz3jz3k
+
L̃2i3i3jVk

z2iz3iz3j
+
L̃2i3j3iVk

z2iz3jz3i
+
L̃2j3i3iVk

z2jz3iz3i
+
L̃2i333jVk

z2iz33z3j

+
L̃233i3jVk

z23z3iz3j
+
L̃233i3jVk

z23z3iz3j
+ L̃2i3i3iVjVk

z2iz3iz3i
+ L̃2i333iVjVk

z2iz33z3i
+ L̃233i3iVjVk

z23z3iz3i
+ L̃233i3iVjVk

z23z3iz3i

+ L̃23333iVjVk
z23z33z3i

+ L̃23333iVjVk
z23z33z3i

+ L̃2i3333VjVk
z2iz

2
33

+ L̃23233iVjVk
z2

23z3i
+ L̃23233iVjVk

z2
23z3i

)

+ L̃233333V1V1V2

z23z
2
33

+ L̃233333V1V1V2

z23z
2
33

+ L̃232333V1V1V2

z2
23z33

+ L̃232333V1V1V2

z2
23z33

〉
, (C.8)

where the sum runs over i, j, k ∈ {1, 1, 2} with mutually different i, j, k and ϵ112 = 1.
For the computation of (C.1) and also (C.8) we have chosen a particular order to

integrate out the conformal dimension one fields: We start with 2, continue with 3 and in
the end contract 3. But in string theory the CFT correlator is independent of the order
of contraction and we could instead start with 3 or 3.3 Since all possibilities give the
same result in the end, we can compare the different orders of contraction to find identities
between the kinematic factors [160].

The different orders of contraction can be obtained by just relabelling the composite
superfields L̃ and their worldsheet dependent denominators 1

zijzmnzrs
according to the new

order in which the vertex operators will be contracted. After relabelling zij in the denom-
inators of (C.8) we recognize that we have introduced new poles in the correlator that
are not present the original integrand (C.8). Hence, comparing (C.8) and the relabelled
expression is not straightforward. However, utilizing partial fractioning (C.6) we can sub-
tract correlators with different orders of vertex operator contractions and obtain identities
of the form [158, 160]

L̃233i3i = L̃3i2i3i − L̃2i3i3i ,

L̃2i333i = L̃2i3i3i − L̃2i3i3i ,

L̃23333i = L̃3i3i2i − L̃3i2i3i + L̃2i3i3i − L̃3i2i3i ,

L̃233i3j = L̃3i2i3j − L̃2i3i3j ,

L̃2j333i = L̃2j3i3i − L̃2j3i3i . (C.9)

Furthermore, the identities (C.9) reduce the amount of superfield manipulations we have to
perform, as they decrease the number of composite superfields, which we have to consider:
For example, we do not have to compute L23333i explicitly, which is rather tedious, because
the contractions involve OPEs among unintegrated vertex operators. On the other hand,
computing kinematic factors L̃3i3i2i, L̃3i2i3i, L̃2i3i3i and L̃3i2i3i is simpler, since we have to
consider contractions between unintegrated and integrated vertex operators.

3Nevertheless, for a particular computation one has to chose an order for integrating out the h = 1
primaries and stick to it during this computation.
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Using the relations (C.9) between the composite superfields the correlator (C.8) be-
comes

⟨⟨V1(z1)V1(z1)V2(z2)U2(z2)U3(z3)U3(z3)⟩⟩ =

= KN(z2, z3, z3)
〈∑
i,j,k

∈{1,1,2}

ϵijk

(
L̃2i3j3k

z2iz3jz3k
+
L̃3i2i3jVk

z23z3iz3j
+
L̃2j3i3iVk

z2jz33z3i
+
L̃3i3j2iVk

z23z33z3i
−
L̃2i3i3jVk

z23z2iz3j

−
L̃2i3j3iVk

z23z2iz3j
−
L̃2j3i3iVk

z33z3iz2j
+ L̃2i3i3iVjVk

z23z33z2i
+ L̃3i3i2iVjVk

z23z33z3i
+ L̃3i3i2iVjVk

z23z33z3i
− L̃3i2i3iVjVk

z23z23z3i

− L̃2i3i3iVjVk
z23z33z2i

− L̃3i2i3iVjVk
z23z23z3i

+ L̃2i3333VjVk
z2iz

2
33

+ L̃23233iVjVk
z2

23z3i
+ L̃23233iVjVk

z2
23z3i

)

+ L̃233333V1V1V2

z23z
2
33

+ L̃233333V1V1V2

z23z
2
33

+ L̃232333V1V1V2

z2
23z33

+ L̃232333V1V1V2

z2
23z33

〉
. (C.10)

A priori the composite superfields in (C.10) contains contractions with all vertex operators.
By using the invariance of the amplitude under PSL(2,R)-transformations we map the
fixed vertex operator positions (z1, z2, z1) to (0, 1,∞). Thereby, the kinematic factors
containing V1(z1) should drop out of the correlator and we arrive at a similar expression
as in [62, 158]. The corresponding Möbius transformation is given by

F (z) = −(z2 − z1)(z − z1)
(z1 − z2)(z − z1)

, (C.11)

which reduces to (8.44) for (z1, z1, z2) = (1,−1, y). Just using the transformation (C.11)
we obtain a correlation function that has a non-trivial dependence φ({zi}) on the vertex
operator positions. But due to conformal invariance only differences zi − zj of vertex
operator positions can appear in a correlator after contracting conformal primaries [130].
Therefore, we have to ensure that (C.10) is manifestly invariant under global conformal
transformations. According to appendix B this is equivalent to the correlator satisfying
(B.11), which become here4

0 =
3∑
i=1

(
∂i + ∂i

)
⟨⟨V1(z1)V1(z1)V2(z2)U2(z2)U3(z3)U3(z3)⟩⟩ ,

0 =
3∑
i=1

(
hi + zi∂i + hi + zi∂i

)
⟨⟨V1(z1)V1(z1)V2(z2)U2(z2)U3(z3)U3(z3)⟩⟩ ,

0 =
3∑
i=1

(
2hizi + z2

i ∂i + 2hizi + z2
i∂i
)
⟨⟨V1(z1)V1(z1)V2(z2)U2(z2)U3(z3)U3(z3)⟩⟩ . (C.12)

4Using momentum conservation and that we are considering massless states the Koba-Nielsen factor
satisfies these equations immediately, which is discussed in appendix B. Therefore, we can consider the
vertex operators without a plane wave factor in (C.12), since these differential equations are linear in the
derivates.



164 C. The correlator of three closed strings on the disk

The unintegrated vertex operators V and the integrated vertex operators U have conformal
dimension h = 0 and h = 1, respectively. Using this the first two equations are satisfied
by (C.10) after applying momentum conservation. But the third equation implies the
following condition for the composite superfields

0 =
3∑
i=1

(
2hizi + z2

i ∂i + 2hizi + z2
i∂i
)
⟨V1(z1)V1(z1)V2(z2)U2(z2)U3(z4)U3(z3)⟩ =

= 1
z12z23

⟨L̃233131V2V1 + V1L̃2331L̃32V1 + V1V2L̃2331L̃31⟩+ 1
z12z13

⟨L̃213131V2V1 + L̃2131L̃32V1

+L̃2131V2L̃31 + L̃233131V2V1 + V1L̃2331L̃32V1 + V1V2L̃2331L̃31⟩+ . . . . (C.13)

In general, the fractions 1
zijzmn

in (C.13) do not vanish for arbitrary zi (and zı) and are
independent. Hence, by equating coefficients (C.13) gives rise to relations between the
building blocks L̃

0 = ⟨L̃213131V2V1 + L̃213331V2V1 + L̃233131V2V1 + L̃233331V2V1 + L̃233131V2V1

+L̃3131L̃22V1 + L̃3331L̃22V1 + L̃3131V2L̃21 + L̃3331V2L̃21⟩ ,
0 = ⟨L̃213131V2V1 + L̃213331V2V1 + L̃2131L̃32V1 + L̃2131V2L̃31 + L̃233131V2V1

+L̃2331L̃32V1 + L̃2331V2L̃31⟩ ,
0 = ⟨L̃233331V2V1 + V1L̃233332V1 + V1V2L̃233331 − L̃233331V2V1 − V1L̃233332V1 − V1V2L̃233331⟩ ,
0 = ⟨L̃213131V2V1 + L̃2131L̃32V1 + L̃2131V2L̃31 + L̃233131V2V1 + L̃2331L̃32V1 + L̃2331V2L̃31⟩ ,
0 = ⟨L̃2131L̃32V1 + L̃2331L̃32V1 + L̃2331L̃32V1 + L̃31L̃2232V1 + L̃31L̃32L̃21⟩ ,
0 = ⟨L̃21L̃3333V2V1 + L̃233333V1V2V1 + L̃233333V1V2V1 + V1L̃22L̃3333V1 + V1V2L̃21L̃3333⟩ ,
0 = ⟨L̃213331V2V1 + L̃233331V2V1 − L̃233331V2V1 + L̃3331L̃22V1 + L̃3331V2L̃21⟩ ,
0 = ⟨L̃2131L̃32V1 + L̃2331L̃32V1 + L̃2331L̃32V1 + L̃31L̃2232V1 + L̃31L̃32L̃21⟩ ,
0 = ⟨L̃2131L̃32V1 + L̃21L̃3332V1 + L̃21L̃3232V1 + L̃21L̃32L̃31⟩ ,
0 = ⟨L̃232333V1V2V1 − L̃2323L̃31V2V1 − L̃2323V1L̃32V1 − L̃2323V1V2L̃31⟩ ,
0 = ⟨L̃233131V2V1 + L̃233331V2V1 + L̃31L̃2332V1 + L̃31V2L̃2331⟩ ,
0 = ⟨L̃2323L̃31V2V1 + L̃232333V1V2V1 + L̃2323V1L̃32V1 + L̃2323V1V2L̃31⟩ ,
0 = ⟨L̃233131V2V1 + L̃2332L̃32V1 + L̃31V2L̃2331 + L̃233331V2V1⟩ (C.14)

and permutations thereof. Finally, with (C.14) and the permutations of these relations we
can perform the PSL(2,R)-transformation (C.11) of the correlator in (C.10) and obtain

⟨⟨V1(0)U2(z2)U3(z3)U3(z3)V2(1)V1(∞)⟩⟩ =

= 1
2 det(J )−1 KN(z2, z3, z3)

〈 ∑
i,j∈{1,2}

ϵij

(
L̃2i3i3jV1

z2iz3iz3j
+
L̃2i3j3iV1

z2iz3jz3i
+
L̃2j3i3iV1

z2jz3iz3i
+
L̃2i333jV1

z2iz33z3j

+
L̃233i3jV1

z23z3iz3j
+
L̃233i3jV1

z23z3iz3j
+ L̃2i3i3iVjV1

z2iz3iz3i
+ L̃2i333iVjV1

z2iz33z3i
+ L̃233i3iVjV1

z23z3iz3i
+ L̃233i3iVjV1

z23z3iz3i
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+ L̃23333iVjV1

z23z33z3i
+ L̃23333iVjV1

z23z33z3i
+ L̃2i3333VjV1

z2iz
2
33

+ L̃23233iVjV1

z2
23z3i

+ L̃23233iVjV1

z2
23z3i

)

+ L̃233333V1V2V1

z23z
2
33

+ L̃233333V1V2V1

z23z
2
33

+ L̃232333V1V2V1

z2
23z33

+ L̃232333V1V2V1

z2
23z33

〉
, (C.15)

where the Jacobi determinant of this transformation is given by

det(J ) = − (z1 − z2)2(z1 − z1)(z2 − z1)
((z1 − z2)z2 + z2 − z1)2((z1 − z2)z3 + z2 − z1)2((z1 − z2)z3 + z2 − z1)2 .

(C.16)
After the identification (8.28) and up to an overall factor (C.15) has the same form as the
correlator of six open strings on the disk in [158]. The overall factor det(J )−1 will cancel
against the Jacobian of the PSL(2,R)-transformation, when we take also the measure
of the worldsheet integrals into account, i.e. when we consider the complete three point
amplitude in the next section.

C.2 The three–point amplitude on the disk
In the previous section we have discussed the relation between the correlator of three closed
strings and six open strings on the disk. Next, we can apply the procedure presented in
chapter 5 and chapter 6, c.f. [62, 158, 162], to write the amplitude in terms of SYM
amplitudes. We start by replacing the superfield expressions L̃ji, L̃jiki and L̃jikili by their
corresponding BRST building blocks Tij, Tijk and Tijkl.

C.2.1 Double pole integrands and total derivative techniques
Contrary to [158] the correlator in (C.15) still contains BRST exact terms, i.e. we have L̃
instead of L, which are crucial for the invariance of the correlator under global conformal
transformations. Hence, they were important to find (C.14) and moreover the relations
between kinematic terms would not hold, even though the BRST exact terms do not
contribute to the end result of the amplitude.

Since we have performed the PSL(2,R)-transformation, we can simplify the amplitude
and drop these additional terms. In the end, we obtain the same correlator as in (C.15)
with the substitution L̃ → L. In order to cancel the BRST exact terms we have to use
partial fractioning and integration by parts. Therefore, we include the integration over
worldsheet variables of the integrated vertex operators:5

A = 1
2

∫
dz2 dz3 dz3 ⟨⟨V1(0)U2(z2)U3(z3)U3(z3)V2(1)V1(∞)⟩⟩

5The Jacobian obtained by the PSL(2,R)-transformation of the measure cancels against the prefactor
in (C.15).
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= 1
2

∫
dz2 dz3 dz3 KN(z2, z3, z3)

{ ∑
i,j∈{1,2}
i ̸=j

ϵij

(
⟨L2i3i3jV1⟩
z2iz3iz3j

+
⟨L2i3j3iV1⟩
z2iz3jz3i

+
⟨L2j3i3iV1⟩
z2jz3iz3i

+
⟨L2i333jV1⟩
z2iz33z3j

+
⟨L233i3jV1⟩
z23z3iz3j

+
⟨L233i3jV1⟩
z23z3iz3j

+ ⟨L2i3i3iVjV1⟩
z2iz3iz3i

+⟨L2i333iVjV1⟩
z2iz33z3i

+ ⟨L233i3iVjV1⟩
z23z3iz3i

+ ⟨L233i3iVjV1⟩
z23z3iz3i

+ ⟨L23333iVjV1⟩
z23z33z3i

+⟨L23333iVjV1⟩
z23z33z3i

+ ⟨L2i3333VjV1⟩
z2iz

2
33

+ ⟨L23233iVjV1⟩
z2

23z3i
+ ⟨L23233iVjV1⟩

z2
23z3i

)

+⟨L233333V1V2V1⟩
z23z

2
33

+ ⟨L233333V1V2V1⟩
z23z

2
33

+ ⟨L232333V1V2V1⟩
z2

23z33
+ ⟨L232333V1V2V1⟩

z2
23z33

}
. (C.17)

In the following discussion, which is based on [109] and is an application of the procedure
outlined in [114, 158], we want to cancel the tachyonic poles 1

1−sij
in (C.17), which orig-

inate from double poles in the integrand (C.17), i.e. the terms proportional to |zij|sij−2.
Therefore, we are going to derive total derivative relations. With our choice of fixed vertex
operator positions (z1, z2, z1) = (0, 1,∞) the Koba-Nielsen factor (C.2) takes the following
form

KN(z2, z3, z3) = |z2|s12 |z3|s13 |z3|s13|1− z2|s22|1− z3|s23|1− z3|s23

×|z2 − z3|s23|z2 − z3|s23|z3 − z3|s33 . (C.18)

In addition to partial fractioning (C.6), we can then find further relations among different
1

zijzmnzrs
appearing in (C.17), which are given by

∫
dz2

∫
dz3

∫
dz3

∂

∂zI

(
KN(z2, z3, z3)

zijzkl

)
= 0 , i, j, k, l ̸= I, I ∈ {2, 3, 3} ,

∫
dz2

∫
dz3

∫
dz3

∂

∂zI

(
KN(z2, z3, z3)

zIjzkl

)
= 0 , i, j, k, l ̸= I, I ∈ {2, 3, 3} . (C.19)

The boundaries of the two integration regions in (8.56) correspond to vertex operator
positions. Hence, for positive and sufficiently large (real part of) sij the Koba-Nielsen
factor has zeros at all integration boundaries such that the boundary terms in (C.19)
vanish. Moreover, we can analytically continue this result using the cancelled propagator
argument (4.33) such that the validity of (C.19) can be extended for generic complex sij.
Explicitly, the first equation in (C.19) leads to multiple equations of the following form

s12
z21z31z31

+ s23
z23z31z31

+ s23
z23z31z31

+ s12
z21z31z31

= 0 . (C.20)

Similarly, the second equation in (C.19) gives rise to relations
s12

z21z23z31
− 1− s23

z2
23z31

+ s23
z23z23z31

+ s12
z21z23z31

= 0 . (C.21)
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After dropping the BRST exact terms the OPE computations of the double poles in the
last two lines of (C.17) lead to

L2i3333 = −(1− s33)D33L2i , (C.22)
L23233i = −(1− s23)D23L3i , (C.23)
L23233i = −(1− s23)D23L3i . (C.24)

Applying total derivative relations in (C.19) the overall factors (1− sij) above cancel the
tachyonic double poles that would otherwise appear in the integrand (C.17). The remaining
OPE contractions of the double pole terms are given by

L233333 = (D33(ik3 · A2)−D23(ik2 · A3))(1− s23 − s33) +D23(ik2 · A3)(1− s23 − s33)
−(D23(ik3 · A3)−D33(ik3 · A2))s23 +D23(ik3 · A3)s23 ,

L233333 = (D33(ik3 · A2)−D23(ik2 · A3))(1− s23 − s33) +D23(ik2 · A3)(1− s23 − s33)
−(D23(ik3 · A3)−D33(ik3 · A2))s23 +D23i(k3 · A3)s23 ,

L232333 = (1− s23)D23(A3 · (ik2 + ik3)) ,
L232333 = −(1− s23)D23(A3 · (ik2 + ik3)) . (C.25)

The integrands in (C.17) of the first two superfield expressions above are proportional to
|z23|s23−1|z33|

s33−2 and |z23|s23−1|z33|
s33−2 , which correspond to tachyonic poles in 1

1+sijk
. But

also for these we can utilize the equations (C.19) to rewrite double pole integrals such that
they become corrections to single pole integrals.

C.2.2 The three-point amplitude with BRST building blocks
Following the lines of [62, 158] we use these corrections, which were obtained by writing the
ten double pole integrals as correction to the (n−2)! = 24 single pole integrals, to transform
the composite superfield Lij, Lijki and Lijkili into their corresponding BRST building blocks
Tij, Tijk and Tijkl. The exact form of the BRST building blocks and how to preform the
substitution L → T can be found in chapter 5 and more details on the construction of
Tij, Tijk and Tijkl in section 5.2. After a long but straightforward computation involving
the total derivative relations (C.19) one can check that the corrections are precisely of the
correct form such that we arrive at a rather simple result

A = 1
2

∫
dz2 dz3 dz3 KN(z2, z3, z3)

∑
i,j∈{1,2}
i ̸=j

ϵij

(
⟨Ti233VjV1⟩
z23z33z2i

+ ⟨Ti332VjV1⟩
z23z33z3i

+⟨Ti332VjV1⟩
z23z33z3i

− ⟨Ti323VjV1⟩
z23z23z3i

− ⟨Ti233VjV1⟩
z23z33z2i

− ⟨Ti323VjV1⟩
z23z23z3i

+
⟨Ti32Tj3V1⟩
z23z3iz3j

+
⟨Tj2Ti33V1⟩
z2jz33z3i

+ ⟨Ti32Tj3V1⟩
z23z33z3i

−
⟨Ti23Tj3V1⟩
z23z2iz3j

− ⟨Ti23Tj3V1⟩
z23z2iz3j

−
⟨Tj2Ti33V1⟩
z33z3iz2j

)
. (C.26)
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In (C.26) the denominators of the associated BRST building blocks follow a patter: For an
unintegrated vertex operator i ∈ {1, 2} and integrated vertex operators j, k, l ∈ {2, 3, 3}
we find that

Tij ↔
1
zij

, Tijk ↔
1

zijzjk
, Tijkl ↔

1
zijzjkzkl

. (C.27)

Moreover, the building blocks have always the same structure but with permutations in
the labels of integrated vertex operators such that we can write the amplitude in a more
compact form

A = −1
2

∫
dz2 dz3 dz3 KN(z2, z3, z3)

(
⟨T1233V2V1⟩
z12z23z33

+ ⟨T123T23V1⟩
z12z23z23

+⟨T12T233V1⟩
z12z23z33

+ ⟨V1T2332V1⟩
z12z23z33

+ P(2, 3, 3)
)
, (C.28)

where P(2, 3, 3) refers to the sum over all (n− 3)! permutations of the labels (2, 3, 3).

C.2.3 The three-point amplitude in terms of SYM amplitudes
As discussed in section 6.2 the BRST building blocks are the components of the super-
symmetric Berends-Giele currents and the corresponding definition of the supercurrents
can be found in (6.8). Therefore, it is only natural that (C.28) can be written in terms
of supersymmetric Berends-Giele currents. Based on the discussion in [62] we want to
perform the conversion from T to M , which can be done by realising for example that

T12
z12

= −s12
z12

M12 ,

T123
z12z23

+ P(2, 3) = s12
z12

(
s13
z13

+ s23
z23

)
M123 + P(2, 3) ,

T1233
z12z23z33

+ P(2, 3, 3) = −s12
z12

(
s13
z13

+ s23
z23

)(
s13
z13

+ s23
z23

+ s33
z33

)
M1233 + P(2, 3, 3) . (C.29)

For completeness we give the definition of the Berends-Giele currents above here once
again:

M12 = −T12
s12

,

M123 = 1
s123

(
T123
s12

+ T123 − T132
s23

)
,

M1233 = − 1
s1233

(
T1233
s12s123

+ T1233 − T1323
s23s123

+ T1233 − T1233 + T1332 − T1332
s33s233

+T1332 − T1323 + T1233 − T1323
s23s233

+ T1233
s12s33

− T1233
s12s33

)
. (C.30)



C.2 The three–point amplitude on the disk 169

After using (C.29) to transform the BRST building blocks into the corresponding Ms we
obtain for (C.28) the following result

A = 1
2

∫
dz2 dz3 dz3 KN(z2, z3, z3)

{
s12
z12

(
s13
z13

+ s23
z23

)(
s13
z13

+ s23
z23

+ s33
z33

)
⟨M1233V2V1⟩

+s12
z12

(
s13
z13

+ s23
z23

)
s32
z32
⟨M123M32V1⟩+ s12

z12

(
s33
z33

+ s32

z32

)
s32
z32
⟨M12M233V1⟩

+s32
z32

(
s33
z33

+ s32

z32

)(
s22
z22

+ s32
z32

+ s32
z32

)
⟨V1M2332V1⟩+ P(2, 3, 3)

}
, (C.31)

which at first seems to be more complicated than (C.28). But we can simplify this expres-
sion utilizing integration by parts. For example, we can use that∫

dz2 dz3 dz3 KN(z2, z3, z3)
s12
z12

(
s13
z13

+ s23
z23

)(
s13
z13

+ s23
z23

+ s33
z33

)

=
∫

dz2 dz3 dz3 KN(z2, z3, z3)
s12
z12

(
s13
z13

+ s23
z23

)
s32
z32

(C.32)

and thereby obtain

A = 1
2

∫
dz2 dz3 dz3 KN(z2, z3, z3)

{
s12
z12

(
s13
z13

+ s23
z23

)
s32
z32
⟨M1233V2V1

+M123M32V1 +M12M332V1 + V1M2332V1⟩+ P(2, 3, 3)
}
. (C.33)

In (C.33) we can identify the combination of Berends-Giele currents as ASYM(1, 2, 3, 3, 2, 1),
see (8.67) and (6.18) for the general definition of SYM amplitudes in terms of Berends-
Giele currents. Therefore, the final result for scattering of three closed strings on the disk
is given by

A = 1
2

∫
dz2 dz3 dz3 KN(z2, z3, z3)

{
s12
z12

(
s13
z13

+ s23
z23

)
s32
z32

ASYM(1, 2, 3, 3, 2, 1)

+P(2, 3, 3)
}

= −1
2ASYM(1, 2, 3, 3, 2, 1)F (2,3,3) + P(2, 3, 3) . (C.34)

The integrals in (C.34) are the six hypergeometric basis integrals

F (2,3,3) = −
∫

dz2 dz3 dz3 KN(z2, z3, z3)
s12
z12

(
s13
z13

+ s23
z23

)
s32
z32

= −
∫

dz2 dz3 dz3

(∏
i<j

|zij|sij

)
s12
z12

s32
z32

(
s13
z13

+ s23
z23

)
, (C.35)
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where the fixed positions are given by (z1 = 0, z2 = 1, z1 = ∞) and the product over
i < j also involves overlined indices. The basis of hypergeometric functions in (C.35) can
be related to the previously found basis functions in (2.9) in [63] under the identification
(8.28) and up to the integration region. Here, we integrate over the domains in (8.61)
instead of 0 < z2 < z3 < z4 < 1.

Note that the polarization dependence of the amplitude is entirely carried by the linear
combination of six field theory SYM amplitudes, whereas the α′-dependence of (C.34)
resides in the integrals over parts of the real line. Therefore, all stringy corrections to
SYM amplitudes are given by scalar integrals that are independent of the polarization
[114].

By performing these steps all singularities in the correlator (C.17) have become log-
arithmic, since the zij in the individual denominators appear with power one. When
interpreting the poles 1

zij
as edges between vertices i and j the corresponding logarithmic

singularities correspond to tree graphs. Moreover, the loop subdiagrams arising from for
instance double poles like 1

z2
ij

or 1
zijzjkzki

are removed using integration by parts. This is
possible, because the tachyon poles are accompanied by numerators proportional to (1−sij)
and (1−sijk), which originate from contractions of integrated vertex operators. In general,
it was shown in [201] that non-logarithmic singularities can be removed utilizing integra-
tion by parts. Nevertheless, it is a special feature of the superstring that any tree-level
amplitude becomes free of tachyon poles and is homogenous in α′, since this is not the case
for bosonic of heterotic strings [114, 202, 203].



Appendix D

Complex integration and analytic
continuation

In [34] a relation between open and closed string scattering amplitudes was proposed.
Therefore, to account for the correct branch of integration a phase was introduced, which
depends only on the kinematic invariants and the ordering of the worldsheet coordinates.
In this appendix we want to present the derivation of the corresponding phase (8.34) for
the scattering of three closed strings on the disk. This appendix is based on [109], which
in turn follows the steps of [34] and is guided by the review [172].

The amplitude (8.26) can be split into the Koba-Nielsen factor KN(y, z, z) containing
the branch cuts of the amplitude and the branch cut independent correlator ⟨K(y, z, z)⟩
originating from the vertex operator contractions. So far, we have a similar setup as in
section 7.1 and can write the amplitude (8.26) as

A ∼
∫ 1

0
dy
∫
H+

d2z ⟨⟨V1(i)V1(−i)V2(iy)U2(−iy)U3(z)U3(z)⟩⟩

=
∫ 1

0
dy
∫
H+

d2z ⟨K(y, z, z)⟩2s11 |2y|s22|1− y|2s12|1 + y|2s12 |i− z|2s13|i+ z|2s13

×|iy − z|2s23|iy + z|2s23 |z − z|s33 . (D.1)

Since we integrate 0 < y < 1 and (z, z) over the upper half plane, i.e. ℑ(z) ≥ 0, no branch
cuts arise from |2y|s22 , |1−y|2s12 , |1+y|2s12 and |z−z|s33 = |2ℑz|s33 as they are all bigger or
equal to zero in this integration domain. Hence, they will not contribute to the monodromy
phase.

Then, the analytic continuation described in section 8.3.1 can be carried out by de-
forming the integration contour of ℜ(z) = z1 while avoiding all branch cuts as shown in
figure 8.1. Formally, this can be achieved by

z1 → ie−2iεz1 ≈ i(1− 2iε)z1 = iz1 + 2εz1 , (D.2)

where ε is a small and positive constant. Thus, for λ ∈ R the terms in (D.1) containing
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branch cuts can be written after the analytic continuation as1

|iλ− z|2s =
[
z2

1 + (λ− z2)2
]s

→
[
(iz1 + 2εz1)2 + (λ− z2)2

]s
= [(ξ − λ− iεδ)(−η − λ+ iεδ)]s , (D.3)

where we have introduced δ = 2z1 = ξ + η and the variables

z → iz1 + iz2 = iξ , z → iz1 − iz2 = iη , (D.4)

where ξ ∈ R and η ∈ R have to satisfy ξ− η ≥ 0 to preserve the integration over the upper
half plane. Performing the coordinate transformation the amplitude (D.1) yields

A ∼
∫ 1

0
dy
∫ ∞

−∞
dξ
∫ ξ

−∞
dη ⟨K(y, ξ, η)⟩2s11|2y|s22|1− y|2s12|1 + y|2s12|ξ − η|s33

×[(ξ − 1− iεδ)(−η − 1 + iεδ)]s13 [(ξ + 1− iεδ)(−η + 1 + iεδ)]s13

×[(ξ − y − iεδ)(−η − y − iεδ)]s23 [(ξ + y − iεδ)(−η + y + iεδ)]s23 (D.5)

=
∫ 1

0
dy
∫ ∞

−∞
dξ
∫ ξ

−∞
dη ⟨K(y, ξ, η)⟩2s11|2y|s22|1− y|2s12|1 + y|2s12|ξ − η|s33

×(−ξ + 1 + iεδ)s13(η + 1− iεδ)s13(−ξ − 1 + iεδ)s13(η − 1− iεδ)s13

×(−ξ + y + iεδ)s23(η + y − iεδ)s23(−ξ − y + iεδ)s23(η − y − iεδ)s23 . (D.6)

To get from the first to the second line we utilized that

(z1z2)c = (−z1)c(−z2)c for sign(ℑ(z1)) = − sign(ℑ(z2)) . (D.7)

As in section 7.1 we have chosen the branch cut of the power function zc to lie on the
negative real axis. Therefore, for the power function zc = |z|ceicθ with −π < θ < π we can
again use (7.14), which together with

(z1z2)c = zc1z
c
2 for sign(ℑ(z1)) = − sign(ℑ(z2)) . (D.8)

results in equation (D.7).
Next, we want to determine the η-integration contour by analysing the behaviour of

the imaginary parts in the η-terms at the branch points. For ξ < −1 we find

η ≈ −1 : δ = ξ + η ≈ ξ − 1 < 0 ,
η ≈ −y : δ ≈ ξ − y < 0 ,
η ≈ y : δ ≈ ξ + y < 0 ,
η ≈ 1 : δ ≈ ξ + 1 < 0 (D.9)
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ξ < −1:

−1 −y 0 y 1ξ

ξ > 1:

−1 −y 0 y 1 ξ

Figure D.1: η-integration contour (η < ξ in blue and η > ξ in orange) for ξ < −1 and
1 < ξ.

and similar for ξ > 1 at all branch points we get δ > 0, which yields the integration
contours depicted in figure D.1. The η-integration in figure D.1 only ranges over the blue
contour, because it has to end at ξ. Moreover, for ξ ∈]− 1, 1[ we get δ < 0 for η < −ξ and
δ > 0 for η > −ξ and the corresponding η-integration contour is shown in figure D.2 for
the particular case y < ξ < 1.

−ξ

−1

−y 0 y 1ξ

δ < 0 δ > 0

Figure D.2: η-integration contour (η < ξ in blue and η > ξ in orange) for y < ξ < 1.

Next, we want to demonstrate how to determine the correct monodromy phase for each
integration branch. Therefore, we consider the integration region 0 < y < 1, for which
(D.6) has the following behaviour of the imaginary parts in the η-terms at the branch
points

η ≈ −1 : δ = ξ + η ≈ ξ − 1 < 0 ,
η ≈ −y : δ ≈ ξ − y > 0 ,
η ≈ y : δ ≈ ξ + y > 0 ,
η ≈ 1 : δ ≈ ξ + 1 > 0 . (D.10)

1The definition of δ in this appendix deviates form δ in section 7.1.
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For this particular example the real part of the ξ-dependent terms is negative except for
1− ξ + iεδ, which has positive real part. We want all the real parts of ξ-dependent terms
to be positive, which can be achieved by altering the signs in the former case using (D.7)
while simultaneously changing the signs in the corresponding η-terms:

A
∣∣∣∣
y<ξ<1

∼
∫ 1

0
dy
∫ 1

y
dξ
∫ ξ

−∞
dη ⟨K(y, ξ, η)⟩2s11|2y|s22 |1− y|2s12|1 + y|2s12|ξ − η|s33

×(−ξ + 1 + iεδ)s13(η + 1− iεδ)s13(ξ + 1− iεδ)s13(−η + 1 + iεδ)s13

×(ξ − y − iεδ)s23(−η − y + iεδ)s23(ξ + y − iεδ)s23(−η + y + iεδ)s23 . (D.11)

Furthermore, we want all the real parts of η-dependent terms in the Koba-Nielsen factor

η < −1 −1 < η < −y −y < η < y y < η < ξ

1 + η: < 0 > 0 > 0 > 0
1− η: > 0 > 0 > 0 > 0
−y − η: > 0 > 0 < 0 < 0
y − η: > 0 > 0 > 0 < 0

Table D.1: Real part of the η-dependent terms in (D.11) for y < ξ < 1.

to be positive as well: Each time one of the η-dependent terms in table D.1 has a negative
sign, we use (7.14) to make it positive. Thereby, we pick up a monodromy phase eiπsj3

or e−iπs
j3 , depending on the sign of the imaginary part of zj − η, i.e. the sign of δ at the

branch point zj given in figure D.2. Because we are now avoiding all branch points, we can
take the limit ε→ 0 and write the amplitude (D.11) as

A
∣∣∣∣
y<ξ<1

∼
∫ 1

0
dy
∫ 1

y
dξ
∫ ξ

−∞
dη ⟨K(y, ξ, η)⟩Π(y, ξ, η)2s11|2y|s22 |1− y|2s12|1 + y|2s12|ξ − η|s33

×|1− ξ|s13|1 + η|s13|1 + ξ|s13|1− η|s13|y − ξ|s23|y + η|s23|y + ξ|s23|y − η|s23

(D.12)

where the phase Π(y, ξ, η) along the integration contour for η is shown in figure D.3. The

−1

−y 0 y 1ξ

eiπs13 1 eiπs23 eiπs23eiπs23

Figure D.3: Phase Π(y, ξ, η) for y < ξ < 1.

above procedure shows that for an integration region we get a monodromy phase from
corresponding ξ- and η-dependent terms, if their real parts have opposite signs. In the
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end, the phase factor derived by this analysis is consistent with

Π(y, ξ, η) = eiπs13Θ(−(1−ξ)(1+η))eiπs13Θ(−(1+ξ)(1−η))eiπs23Θ(−(y−ξ)(y+η))eiπs23Θ(−(y+ξ)(y−η)) .

(D.13)

In section 8.3.1 we have added eiπs33Θ(−(ξ−η)) to the phase factor for completeness. This
factor accounts for the contribution coming from (ξ − η)s33 for ξ < η such that we can
write

(ξ − η)s33 = |ξ − η|s33eiπs33Θ(−(ξ−η)) (D.14)

using (7.14) for all values of ξ and η.
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