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Zusammenfassung (Summary in German)

Schwerfermionenmetalle sind eine Klasse von stark korrelierten Materialien. Sie enthalten sel-
tene Erden wie Ytterbium oder Cer, deren lokalisierte f -Schalen zur Bildung lokaler Momente
neigen. In Verbindung mit den ebenfalls vorhandenen delokalisierten Leitungsbändern führen
die lokalen Momente bei ausreichend niedrigen Temperaturen zu interessanten, stark korre-
lierten Phasen. Ein gut verstandenes Beispiel ist die so genannte schwere Fermi-Flüssigkeit,
in welcher die kollektive Verschränkung zwischen Elektronen in den Leitungsbändern und
lokalen Momenten zu einer Fermi-Flüssigkeit mit Quasiteilchenmassen von mehr als 1000
Elektronenmassen führt. Faszinierenderweise führt diese kollektive Verschränkung zu einer
Mobilisierung der lokalen Momente und somit zu einer so genannten großen Fermi-Fläche.
Diese berücksichtigt sowohl die Leitungselektronen als auch die f -Momente und kann ex-
perimentell z. B. durch eine entsprechende Änderung der Hall-Zahl nachgewiesen werden.
Inzwischen wurde gezeigt, dass diese effektive Delokalisierung der f -Momente aus allgemeinen
Gründen zu erwarten ist.

Überaschenderweise zeigen jedoch einige Verbindungen, z. B. YbRh2Si2 und CeCoIn5, Fermi-
Flüssigkeits-ähnliche Phasen, in denen die f -Momente lokalisiert zu sein scheinen. Diese
Phasen sind durch eine so genannte kleine Fermi-Fläche gekennzeichnet, die nur Leitungselek-
tronen berücksichtigt, was wiederum durch Messungen der Hall-Zahl beobachtet werden kann.
Besonders interessant sind sogenannte Kondo-Zusammenbruchsphasenübergänge zwischen
Phasen mit kleiner und großer Fermi-Fläche. Ein Kennzeichen von Kondo-Zusammenbrüchen
ist eine plötzliche Rekonstruktion der Fermi-Fläche, die als Sprung in der Hall-Zahl beobachtet
werden kann. Trotzdem scheinen Kondo-Zusammenbrüche kontinuierliche Quantenphasenüber-
gänge zu sein. Darüber hinaus weisen der quantenkritische Punkt des Kondo-Zusammenbruchs
und der zugehörige quantenkritische Bereich typischerweise ein “seltsames Metall”-Verhalten
(strange metal behavior) auf. Dazu gehören eine lineare Temperaturabhängigkeit des Wider-
standes, dynamisches Skalierungsverhalten von Suszeptibilitäten und das scheinbare Fehlen
von Quasiteilchen. Viele der Phänomene, die bei Kondo-Zusammenbrüchen beobachtet werden,
sind noch nicht vollständig verstanden, insbesondere die Phasen mit kleinen Fermi-Flächen
und das seltsame Metallverhalten im quantenkritischen Bereich. Das Hauptziel dieser Arbeit
ist es, diese Phänomene mit Hilfe numerischer Methoden zu untersuchen.

Der erste Teil dieser Arbeit befasst sich hauptsächlich mit der Verbesserung von Matrix-
Produkt-Zustands (MPS)-Algorithmen. Dort entwickeln wir ein Verfahren zur kontrollierten
Verbindungserweiterung (CBE), das die günstigen Konvergenzeigenschaften der weit ver-
breiteten 2-Gitterplatz-Aktualisierung aufweist, aber mit einem Rechenaufwand welcher
nur geringfügig höher ist als der einer 1-Gitterplatz-Aktualisierung. Eine anschließende An-
wendung von CBE auf die MPS-Grundzustandssuche für ein Kondo-Heisenberg-Modell auf
einem 4-schenkligen Zylinder, einem paradigmatischen Schwerfermionenmodell, zeigte, dass
in diesem Modell zwei Phasen existieren, die durch eine kleine bzw. eine große Fermi-Fläche
gekennzeichnet sind. Die Untersuchung eines mutmaßlichen Kondo-Zusammenbruchs zwischen
diesen Phasen wird zukünftigen Arbeiten überlassen.

Im zweiten Teil untersuchten wir das periodische Anderson-Modell, ein weiteres paradigma-
tisches Schwerfermionenmodell. Unter Verwendung der 2-Gitterplatz zellulären dynamischen
Molekularfeldtheorie zusammen mit der numerischen Renormierungsgruppe (NRG) als Stör-
stellenlöser, waren wir in der Lage, einen Kondo-Zusammenbruchsphasenübergang in diesem
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Modell zu identifizieren und gründlich zu untersuchen. Dank der Fähigkeit der NRG, ex-
ponentiell kleine Energie- und Temperaturskalen aufzulösen, erzielten wir mehrere neue
Erkenntnisse, insbesondere über die Phase mit kleiner Fermi-Fläche und über den quanten-
kritischen Bereich, in welchem wir seltsames metallisches Verhalten finden und untersuchen.
Mehrere Vergleiche zwischen numerischen Ergebnissen und experimentellen Daten zeigen eine
bemerkenswert gute qualitative Übereinstimmung.
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Summary (Summary in English)

Heavy fermion metals are a class of strongly correlated materials. They typically contain
rare earth elements like Ytterbium or Cerium which host localized f shells that tend towards
local moment formation. In conjunction with itinerant conduction bands which are also
present in these metals, the local moments give rise to interesting strongly correlated phases
at sufficiently low temperatures. A well-understood example is the so-called heavy Fermi
liquid, where collective entanglement between electrons in the conduction bands and local
moments gives rise to a Fermi liquid with quasiparticle masses in excess of 1000 bare electron
masses. A captivating property of the heavy Fermi liquid is that this collective entanglement
effectively renders the local moments mobile. This leads to a so-called large Fermi surface
which accounts for both the conduction electrons and the f moments and is experimentally
detected for instance by a corresponding change of the Hall number. By now, it is well
understood that this effective delocalization of the f moments is expected on general grounds.

It is therefore surprising that some compounds, for instance YbRh2Si2 and CeCoIn5, host
Fermi-liquid-like phases in which the f moments appear to be localized. These phases are
characterized by a so-called small Fermi surface which only accounts for the conduction
electrons, again observable via measurements of the Hall number. Particularly interesting are
so-called Kondo breakdown quantum phase transitions between small and large Fermi surface
phases. A hallmark of Kondo breakdown transitions is a sudden reconstruction of the Fermi
surface, observable as a jump in the Hall number. Despite that, Kondo breakdown transitions
appear to be continuous quantum phase transitions. Furthermore, the Kondo breakdown
quantum critical point and the associated quantum critical region typically exhibit strange
metal behavior. This includes phenomena such as linear-in-temperature resistivity, dynamical
scaling of susceptibilities, and the apparent absence of quasiparticles. Many of the phenomena
observed around Kondo breakdown transitions are not fully understood yet, particularly the
small Fermi surface phases and the strange metal behavior in the quantum critical region.
The main goal of this thesis is to shed light on these phenomena using numerical methods.

The first part of this thesis is mainly focused on improving matrix product state (MPS)
algorithms. There, we develop a controlled bond expansion (CBE) scheme that exhibits
the favorable convergence properties of the widely used 2-site update, but at a reduced
computational cost, only marginally higher than that of a 1-site update. A subsequent
application of CBE to MPS ground-state search for a Kondo-Heisenberg model on a 4-leg
cylinder, a paradigmatic heavy-fermion model, showed that this model hosts two phases,
characterized by a small and a large Fermi surface, respectively. An investigation of a putative
Kondo breakdown transition between those phases was left for future work.

In the second part, we studied of the periodic Anderson model (PAM), another paradig-
matic toy model to describe heavy fermions. Using 2-site cellular dynamical mean-field
theory (2CDMFT) together with the numerical renormalization group (NRG) as an impurity
solver, we were able to identify and thoroughly study a Kondo breakdown quantum phase
transition in this model. Facilitated by the ability of NRG to resolve exponentially small
energy and temperature scales, we were able to obtain several new insights on the small
Fermi surface phase and especially on the quantum critical region, where we find and study
strange metal behavior. Repeated comparison between numerical results and experimental
data shows remarkably good qualitative agreement.
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1 Introduction

This chapter provides some basic background on heavy fermion (HF) materials and the
concepts involved when attempting to understand them. Section 1.1 provides an overview
of basic notions in HF systems, focusing on a motivation of simple toy models and how we
can understand the emergence of a heavy Fermi liquid from those models. Section 1.2 then
provides an introduction to quantum criticality in HF systems, starting with Hertz-Millis-
Moriya theory in Sec. 1.2.1. Finally, an overview of Kondo breakdown quantum criticality is
given, focusing on experimental phenomena in Sec. 1.2.2 followed by an overview of theoretical
approaches to explain these phenomena in Sec. 1.2.3.

1.1 Heavy fermion systems – basic concepts
Heavy fermion systems are intermetallic compounds that typically contain elements with
partially filled, localized f shells [Ste84, Col07] like Cerium or Ytterbium. At low temperatures,
some of these compounds host rather extreme Fermi liquids (FL) with quasiparticle (QP)
masses several orders of magnitude larger than for instance copper. This was first observed
experimentally in CeAl3 [AGO75], where at low temperatures, a paramagnetic state with
properties consistent with an FL was observed. CeAl3 has a specific heat coefficient γ =
C/T = 1620 mJ/mole K2, more than 3 orders of magnitude larger than that of copper
(γ < 1 mJ/mole K2 [BLJF70]). Since γ is directly proportional to the effective mass m∗ in a
FL [GV05], CeAl3 hosts extremely heavy QP, hence the name “heavy fermion” [SAB+79].
Similar extreme enhancement is found in the ∼ T 2 coefficient of the resistivity and the magnetic
susceptibility of CeAl3 [AGO75]. Subsequent work has uncovered many more heavy fermion
materials [Ste84, Col07], for instance CeCu6 [SFW84] or the heavy fermion superconductors
CeCu2Si2 [SAB+79] or UBe13 [ORFS83]. Of special interest to this thesis are compounds
which show so-called Kondo breakdown quantum critical points (c.f. Sec. 1.2.2 and 1.2.3) like
YbRh2Si2 [TGM+00] or the so-called Ce-115 family including CeRhIn5 [SSHO05, JCK+15]
or CeCoIn5 [MEC+22].

1.1.1 Simple models

The key ingredient in heavy fermion compounds is the presence of partially filled, localized
f shells from rare-earth elements like Cerium or Ytterbium which hybridize with broad,
itinerant conduction bands [Col15]. The heavy-fermion compounds most relevant for this
thesis contain trivalent Ce3+ or Yb3+ ions, which have a [Xe] 4f1 or [Xe] 4f13 configuration,
respectively. The interesting strong correlation effects observed in heavy fermion compounds
like CeCoIn5 or YbRh2Si2, reviewed in subsequent sections of this introduction, emerge due
to the presence of the 4f electron or hole, respectively. The 4f states in both Ce3+ and
Yb3+ are subject to relatively strong spin-orbit coupling, which leads two sectors with total
angular momenta j = 5/2 and j = 7/2. In Ce3+, the j = 5/2 sector is lower in energy
by ∼ 0.3eV [HYK10, JGK+22], which corresponds to a temperature of ∼ 3500K, i.e. this
temperature scale is not relevant for solid-state experiments and we can therefore focus on
j = 5/2 sector. The situation is similar in Yb3+, but there the j = 7/2 sector is lower in



2 Introduction

Figure 1.1 (a) Crystal structure of CeCoIn5. Red, yellow, and blue balls denote Ce, Co, and In
atoms, respectively. Adapted from Fig. 12 of Ref. [HYK10]. (b) Energy level structure of the 4f shell
of Ce3+ in CeCoIn5. The spin-orbit coupling (SOC) splits the energy levels into a high-energy j = 7/2
sector and a low-energy j = 5/2 sector, with an energy difference of ∼ 0.3 eV [JGK+22]. The crystal
electric field (CEF) leads to a further splitting of the j = 5/2 sector into three Kramers doublets,
denoted Γ−

7 , Γ+
7 and Γ6. The excitation energy of Γ+

7 is 6.8 meV, that of Γ6 is 25 meV [SAS+19]. (c)
Shapes of the Γ−

7 , Γ+
7 and Γ6 orbitals. Adapted from Fig. 4 of Ref. [SAS+19].

energy and the energy difference between the two sectors exceeds 1eV [Nor05, LIK07], i.e. it
is even larger than for Ce3+.

The tetragonal crystal structure of e.g. CeCoIn5 or YbRh2Si2 further splits the low-
energy j = 5/2 (Ce3+) or j = 7/2 (Yb3+) angular momentum sectors due to the crystal
electric field (CEF). For the Ce3+ ion, this leads to three Kramers doublets, denoted Γ+

7 ,
Γ−

7 and Γ6 [HYK10]. The Γ−
7 orbital is usually lowest in energy, followed by Γ+

7 and Γ6.
The energy difference between Γ6 and Γ−

7 is around 25–30meV for Ce-115 compounds like
CeCoIn5 [SAS+19], which corresponds to a temperature scale around 300–350K, i.e. roughly
room temperature. Since the temperature range where heavy fermion metals like CeCoIn5
show interesting strongly correlated phenomena is considerably lower (typically T < 100K or
less), the Γ6 orbital is not expected to be highly relevant for those. On the other hand, the
energy difference to Γ+

7 is rather small and around 5–10meV [SAS+19], which corresponds to
a temperature scale of around 60–120K. In CeCoIn5 for instance, the crystal field splitting
between Γ−

7 and Γ+
7 is 6.8meV [SAS+19], corresponding to a temperature scale of 78.9K.

Since emergent strongly correlated phenomena like strange metal behavior emerge at an
even lower scale around ≃ 40K [MEC+22], an effective description of the 4f shell in terms
of only the Γ−

7 Kramers doublet can be expected to be sufficient to describe such emergent
phenomena qualitatively. The situation in CeCoIn5 described above is illustrated in Fig. 1.1,
and the situation in other tetragonal Ce-based HF compounds like CeRhIn5 or CeIrIn5 is
similar.

In YbRh2Si2, the CEF splits the j = 7/2 states into four Kramers doublets, with an
energy splitting between the two lowest-energy doublets of 17meV [SKF+06, LIK07], which
corresponds to almost 200K. Due to that, low-temperature emergent phenomena like strange-
metal behavior in YbRh2Si2 should be well described by a model considering only the lowest
energy Kramers doublet.

The 4f orbitals are comparably narrow and tightly bound to the nucleus [Col15]. As
a result, the 4f electrons in the lowest-energy Kramers doublet are localized and subject
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to strong Coulomb repulsion, which promotes local moment formation in the 4f orbitals.
Further, the 4f electrons are subject to hybridization with itinerant spd-bands present in HF
compounds like CeCoIn5 or YbRh2Si2.

Periodic Anderson model

A basic toy model that contains the key ingredients described above is the periodic Anderson
model (PAM),

HPAM =
∑
iσ

ϵf f †
iσfiσ + U

∑
i

f †
i↑f †

i↓fi↓fi↑ +V
∑
iσ

[
f †

iσciσ + h.c.
]

+
∑
kσ

ϵck c†
kσckσ . (1.1)

Here, fiσ and ckσ annihilate a spin-σ electron in the narrow f or the itinerant c band at site i
or momentum k, respectively. The spin σ should be regarded as an effective spin, accounting
for the 2-fold degeneracy of the lowest-energy Kramers doublet. From here on, we will use
the terms f electrons or c electrons to refer to the localized f band or the itinerant c band.
The f band is completely flat with energy ϵf while the c band has a dispersion ϵck with some
bandwidth W . The f and c electrons are subject to local hybridization with strength V . U
is a local Hubbard-type interaction on the f band and is typically the largest scale in the
system, i.e. W, V ≪ U . Realistic values of U are typically of the order of several eV, which
means double occupation only occurs in terms of virtual transitions at the energy scales of
interest. In this thesis, we will usually pick ϵf ≃ −U/2, such that the f band is approximately
half-filled such that also the empty state only occurs in virtual transitions. This leaves only
the spin degree of freedom of the f band active, i.e. the f -electrons form local moments at
temperatures and energy scales where the Hamiltonian (1.1) is reasonably applicable.

Kondo-Heisenberg model

The local doubly-occupied or empty states {|0⟩i, |↑↓⟩i} (from now on referred to as charge
fluctuation sector) are of order U higher in energy than the local moment sector {|↑⟩i, |↓⟩i}.
Because the interaction energy U is large, the charge fluctuations in the f band of the periodic
Anderson model (1.1) are often (approximately) integrated out [SW66, Col15, LvDW17b].
The result is an effective low-energy Hamiltonian where the f band is described as local
spin-1/2 degrees of freedom. Remarkably, this means we have cooked down the full 4f orbital
of Yb3+ or Ce3+ with a local many-body Hilbert space of dimension 47 = 16384 to its bare
minimum, an effective 2-dimensional Hilbert space. The resulting model is known as the
Kondo-Heisenberg model (KHM),

HKHM = JH
∑
⟨i,j⟩

Si · Sj + JK
∑

i

Si · si +
∑
kσ

ϵckc†
kσckσ , (1.2)

where Si are spin-1/2 operators describing the f local moments and si = ∑
ss′ c†

isσss′cis′ are
the local c-electron spin operators, with σ Pauli matrices. JK is a local antiferromagnetic
Kondo coupling between f spins and c-electrons while JH is an antiferromagnetic Heisenberg
interaction between nearest-neighbor f local moments. It should be emphasized that both
HPAM and HKHM are expected to describe the same universal phenomena at low energies,
where they should provide a good qualitative description of the otherwise more complicated 4f
shells and their hybridization with the itinerant spd bands in real heavy-fermion compounds.
Which Hamiltonian to use is mostly a matter of convenience.
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1.1.2 Hybridization, Fermi surface and heavy Fermi liquid

A striking aspect of HF metals is the emergence of a heavy Fermi liquid with extremely
large QP masses, as discussed for CeAl3 [AGO75] at the beginning of this section. The
emergence of this heavy FL is a result of c-f hybridization. At high temperatures, the f -
electron local moments are subject to thermal fluctuations, resulting in a Curie-like magnetic
susceptibility [Col15]. As the temperature is lowered, the thermal fluctuations of the local
moments gradually become insufficient to overcome the hybridization between c and f
electrons, which promotes c-f singlet formation. The heavy FL finally emerges at low
temperatures, when thermal fluctuations become weak enough to allow collective Kondo
singlet formation [Col07], similar to the Kondo singlet formation in the single impurity
Kondo or Anderson models [Hew93]. The QPs in this heavy FL are composed of both
c and f electrons, the local nature and strong interactions of the latter result in a large
effective QP mass. The f electrons thus effectively become mobile charge carriers which
contribute to the charge density in the valence band. In Ce-based HF metals, for instance,
the heavy FL formation can be thought of as a crossover in the valence of the Ce ion from
Ce3+ at high temperatures where the f electron should be regarded as a core electron,
to Ce4+ in the low-temperature heavy FL where the f electron contributes as a valence
electron [Col15]. This valence change leads to a corresponding change in Fermi surface (FS)
volume [Lut60, Osh00, Dzy03, CNHC18, NCHC18, HB20] and the Hall number nH [GV05],
both of which are proportional to the charge density in an FL. From here on, an FS whose
volume includes the f -electron density will be called a large FS, the converse will be referred
to as a small FS.

It can be argued using basic conservation laws that the large FS, i.e. the case where the f
electrons contribute as valence electrons, should be the rule at sufficiently low temperatures.
This is known as the Luttinger sum rule [Lut60, Osh00]. Some materials appear to disregard
this rule, e.g. YbRh2Si2 and CeCoIn5, and seem to have a small FS at low temperatures,
at least in some areas of their phase diagram. How this rule can be circumvented is a
major theoretical challenge, and it is one of the main goals of this thesis to improve our
understanding of this.

Periodic Anderson model

The effect of hybridization and the emergence of the heavy FL can be qualitatively understood
from the PAM. At high temperatures, the PAM exhibits local-moment behavior. This can be
qualitatively understood from the V = 0 limit with U ≫ T > 0 and ϵf = −U/2 such that
there are thermally fluctuating local moments on the f site which are decoupled from the c
electrons. As a result, the FS is determined by the c-electrons alone and is therefore small.
Non-zero V will lead to scattering of the c-electrons off the local moments and thus to a
broadening of spectral features, but the qualitative picture at high temperatures remains
unchanged.

As the temperature is lowered, the c-electron scattering amplitude increases with decreasing
temperature [Hew93]. Since the scattering phase shifts are subject to strong fluctuations,
scattering events at different sites do not develop phase coherence. The scattering described
here has some similarities to the scattering from dilute Anderson or Kondo impurities, which
also leads to a resistivity that increases with temperature (and finally saturates at low
temperatures) [Hew93]. There is however a very important difference between the periodic
Anderson model and dilute Anderson impurities. In the dilute case, what matters is the
scattering amplitude while phase coherence between scattering events is not of importance
because the scatterers are far apart and randomly distributed. In the periodic case, phase
incoherence of scattering events is key since it prevents the formation of coherent Bloch
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waves.
At low temperatures, the scattering phase shift fluctuations eventually become weaker, and

scattering eventually becomes elastic and coherent. A simple way to model this situation is to
just consider a periodic arrangement of non-interacting resonant levels with energy ϵf . This
corresponds to the PAM with U = 0 and V ̸= 0. It has a two-band structure with dispersions
E±

k = 1
2

(
ϵck + ϵf ±

√
(ϵck − ϵf )2 + 4V 2

)
. There is a gap between the bands of order |V |,

referred to as the hybridization gap (c.f. Fig. 1.2). If the chemical potential is within the
gap, the system is an insulator, referred to as a Kondo insulator in the HF context. In this
thesis, we will usually deal with situations where the chemical potential is within one of the
two bands, say in the + band. In these cases, the Fermi surface is shifted from its V = 0
position and determined by E+

k = 0. Thus, the FS is now large and determined by both the
c and f electrons and the single-particle excitations in the vicinity of the FS are now hybrid
c-f particles. Compared to ϵck, the QP dispersion is relatively flat, a feature inherited by
the localized f electrons. This means they have a large effective mass. Including interaction
effects further renormalizes the band structure and leads to QPs with an even larger effective
mass. If interactions do not trigger a phase transition, the qualitative picture will remain the
same at low temperatures.

Kondo-Heisenberg model

Both the local moment and heavy FL regimes can be described from the perspective of the
KHM. The high-temperature local moment regime can be understood by considering the
JH = JK = 0 limit. The qualitative picture is similar to the PAM and will not be further
discussed here.

On the other hand, the emergence of the heavy FL is not quite as simple. The heavy FL
in the KHM can be derived as a mean-field solution involving auxiliary fermions. Since this
approach is quite instructive, it will be shortly outlined here. We will thereby follow chapters
29-31 of Ref. [Sac23] and chapters 16 and 17 of Ref. [Col15]. For simplicity, we will only
consider the JH = 0 case.

As a first step, we represent the f -spins in terms of fermions, Si = 1
2f †

isσss′fis′ , with
the constraint ∑s f †

isfis = 1. Using σab · σcd = 2δadδbc − δabδcd, we can rewrite the Kondo
interaction as

JKSi · si = −JK
2
∑
a,b

f †
iaciac†

ibfib − JK
4
∑

a

f †
iafia︸ ︷︷ ︸

=1

∑
b

c†
ibcib . (1.3)

The second term proportional to JK/4 can be lumped together with the chemical potential of
the c-electrons and will therefore be ignored from here on. We can then write the partition
function of the KHM as a path integral (suppressing time arguments on all fields),

ZKHM =
ˆ

DλiDfiσDciσ exp
[
−
ˆ β

0
dτ
(
L0 + LK

)]
, (1.4)

L0 =
∑

k
ckσ (∂τ + ϵck) ckσ +

∑
iσ

f i(∂τ + iλi)fiσ − i
∑

i

λi , (1.5)

LK = −JK
2
∑

i

f iσciσciσ′fiσ′ , (1.6)

where sums over repeated σ-indices are implied. The expression for ZKHM above is exact
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because the constraint f iσfiσ = 1 is implemented exactly, using the identity

δ
(
f iσfiσ − 1

)
=
ˆ

Dλi exp
[
iλi

(
f iσfiσ − 1

)]
. (1.7)

It should be emphasized that λi is a τ -dependent field whose real part is fluctuating, i.e.,
integrated over. Therefore, even when JK = JH = 0, the action of the KHM is not quadratic
since L0 contains coupling term between the f spinon fields and λi. We can choose a constant
imaginary offset for λi which is not integrated over, without changing ZKHM.

For our mean-field analysis, we perform a Hubbard-Stratonovic decoupling of the Kondo
interaction,

ZKHM =
ˆ

DλiDPiDfiσDciσ exp
[
−
ˆ β

0
dτ
(
L0 + LP

)]
, (1.8)

LP =
∑

i

[ 2
JK

P iPi − Pif iσciσ − P iciσfiσ

]
. (1.9)

Following the standard procedure (c.f. Ch. 6 of [AS10]), integrating over ciσ and fiσ and
minimizing the effective action for the bosonic fields yields the mean-field equations,

⟨f iσfiσ⟩MF = 1 , P = JK
2 ⟨ciσfiσ⟩MF , (1.10)

where we assume uniform, τ -independent, isotropic and real mean-field solutions for Pi,
denoted P and ⟨·⟩MF is the average w.r.t. the mean-field action. For λi, we choose a
τ -independent and uniform imaginary part λ̃ such that the single occupancy constraint is
fulfilled on average at the mean-field level. The real part of λi should be zero at the saddle
point. Otherwise, ⟨f iσfiσ⟩MF is generically not real. This mean-field theory becomes exact in
the limit of a large number of spin flavors σ [Sac23].

The heavy FL corresponds to a mean-field solution with P ̸= 0, which always exists if
JH = 0 [Sac23]. The analytically continued Matsubara Green’s functions for f and c at the
mean-field level are (

Gfk(z) Gfck(z)
Gfck(z) Gck(z)

)
=
(

z + λ̃ −P
−P z − ϵck

)−1

, (1.11)

where z ∈ C. Thus, the picture that emerges from the auxiliary particle mean-field the-
ory of the KHM is qualitatively the same as that discussed for the PAM at U = 0. In
particular, as for the PAM, we get a bandstructure featuring two bands with dispersions
E±

k = 1
2

(
ϵck − λ̃ ±

√
(ϵck + λ̃)2 + 4P 2

)
, a hybridization gap in the c-electron density of

states, and a large FS whose volume accounts for both the c and f densities.
The physics of the KHM from a mean-field perspective is illustrated in Fig. 1.2. There, we

consider a cubic lattice with c-electron dispersion ϵck = −1
6 [cos(kx) + cos(ky) + cos(kz)] − µ,

where µ = 0.2. The band structure and FS of the c electrons (without Kondo spins)
are shown in Fig. 1.2(a). As expected, it features a single band, and the (small) FS is
centered around k = Π = (π, π, π) since the model is slightly electron doped. Figure 1.2(b)
shows the corresponding local spectral function, obtained by k-integrating the imaginary
part of the retarded Green’s function, Ac(ω) = − 1

π Im
´

k Gck(ω+) with ω+ = ω + i0+ and
ω ∈ R. Figure 1.2(c) shows the band structure of the mean-field solution with JK = 0.4. In
stark contrast to Fig. 1.2(a), the band structure now features two bands, separated by a
hybridization gap. Further, the FS is reconstructed and centered around k = Γ = (0, 0, 0),
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Figure 1.2 (a) Band structure of the c electrons on a three-dimensional cubic lattice. The inset
shows the (small) Fermi surface plotted in the first Brillouin zone. The labeled k-points correspond to
Γ = (0, 0, 0), X = (0, π, π) and Π = (π, π, π). (b) Corresponding local spectral function. (c) Mean-field
band structure of the KHM on a cubic lattice. The color scale shows the c (red) or f (blue) character
of the bands. The inset shows the (large) Fermi surface in the first Brillouin zone. (d) Local spectral
functions of the c electrons (red) and f spinons (blue), corresponding to the band structure in (c).
Note that the f -electron spectral function has been divided by a factor of 10.

counting both c and f electrons, i.e. the FS is large. At the Fermi level, the band structure
is flat compared to ϵck and is mostly f -electron-like (blue). Thus, QPs at the Fermi surface
have a large effective mass. Figure 1.2(d) shows the corresponding local spectral functions.
In contrast to the bare c-electron case in Fig. 1.2(b), the c-electron spectral function now
features a hybridization gap at small negative frequencies. At high frequencies on the other
hand, the c-electron spectral function is almost completely unaltered, illustrating that the
heavy FL is a low-energy phenomenon. The f -electron spectral weight is concentrated around
ω = 0 (note that Af (ω) has ben rescaled by a factor of 10). It also shows a hybridization gap
and sharp features in the flat regions of the QP bands.

1.2 Quantum criticality in heavy fermion systems
In Sec. 1.1.2, we have seen that the emergence of the heavy FL is due to collective Kondo singlet
formation, driven by JK, and in the mean-field theory described by a non-zero expectation
value of the bosonic field P . The Kondo temperature TK, i.e. the energy scale for Kondo
singlet formation, scales exponentially with the Kondo coupling, TK ∝ e−1/(JKρc(0)) [Hew93,
Sac23], where ρc(0) is the free c-electron density of states at the Fermi level. In a Kondo
lattice, the c electrons mediate an effective, dynamically generated interaction between
the f spins, known as Rudermann-Kittel-Kasuya-Yosida (RKKY) [RK54, Kas56, Yos57]
interaction. To leading order in the Kondo coupling, JRKKY ∝ J2

Kρc(0) [Col07, Col15], and
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this interaction is predominantly antiferromagnetic if the c electrons are approximately
half-filled. In the KHM, the RKKY interaction is often included by hand in terms of the
Heisenberg interaction JH. Since JRKKY is a polynomial of JK, in contrast to TK with
its exponential dependence, we expect that the large-JK regime is dominated by Kondo
correlations while the small-JK regime is governed by RKKY correlations. This competition
was initially pointed out by S. Doniach [Don77], who concluded that this should drive a
second-order quantum phase transition between an RKKY-correlated antiferromagnetic and
a Kondo-correlated paramagnetic state. That was explicitly confirmed on Doniach’s “Kondo
necklace model” [Don77], an XY chain with a local Kondo coupling to an array of local
moments [JFD77a, JFD77b].

Quantum criticality in HF systems is a several decades-old problem and is still an active
field of experimental and theoretical research [Ste01, LRVW07, Ste01, KPC+20]. There
is by now a large number of HF compounds that can be tuned through quantum critical
points, for instance by varying magnetic fields, pressure, or doping. In some materials, the
quantum critical behavior can be understood as a spin density wave (SDW) instability of the
heavy FL, described by Hertz-Millis-Moriya (HMM) theory [Her76, Mor85, Mil93, Sac11], see
Sec. 1.2.1. Many HF materials on the other hand show a so-called Kondo breakdown (KB)
QCP [SRIS01, CPSR01, CP02], which does not fit the description in terms of HMM theory.
At KB–QCPs, it seems like the lattice Kondo effect, responsible for the heavy FL with a large
FS, breaks down, leading to a sudden reconstruction of the FS. An overview of experimental
phenomena at the KB-QCP is given in Sec. 1.2.2 and the main theoretical approaches to
describe it are briefly summarized in Sec. 1.2.3.

1.2.1 Hertz-Millis-Moriya theory

Hertz-Millis-Moriya (HMM) theory [Her76, Mor85, Mil93, Sac11] describes ordering of a FL.
In HF materials, we are mostly concerned with magnetic order, which is what we will focus on
here. To describe such a transition, we decouple the Heisenberg interaction of the KHM with
JH > 0 [SSV03] or alternatively the Hubbard interaction of the PAM [Her76] in the magnetic
channel, with a real-valued, three component field ϕα

i [LRVW07, AS10, Sac11] representing
a fluctuating magnetic field. Integrating out the fermions leads to an effective action for ϕα

i ,
which is expanded to fourth order in the field [Her76, Mil93, LRVW07, Sac11],

Sϕ ≃
ˆ

q
T
∑
ωn

[
u2 + q2 + |ωn|/γ

]
|ϕ(q, ωn)|2 + u4

ˆ
r

ˆ β

0
dτ
[
|ϕ(r, τ)|2

]2
, (1.12)

where the first term is obtained by expanding the magnetic susceptibility of the (free) fermions
for small frequencies ωn and small wavevectors q around the ordering wavevector. Here, we
assumed antiferromagnetic ordering [Her76, LRVW07]. The constant u2, which depends on
the static susceptibility of the fermions and the interaction strength, can be tuned through
zero. u2 = 0 marks the position of the QCP at the mean-field level. The quartic term is in
principle non-local and retarded, and determined by the 4-point spin correlation function of
the fermions. In the HMM approach, it is approximated as local in time and space [Her76].

To make progress on the relevance of the ϕ4 or even higher order terms compared to the
ϕ2 term at long distances and times, we perform a scaling analysis by rescaling [Sac11]

r → r e−λ , τ → τ e−zλ , ϕ(x, τ) → ϕ(x, τ) e
d+z−2

2 λ , (1.13)

such that the kinetic (∝ q2) and dynamical (∝ |ωn|) terms [Her76] of the Gaussian part of
the action remain invariant under the scaling (u2 = 0 at the QCP where we expect scale
invariance). The dynamical critical exponent z also rescales the upper cutoff of the τ integrals,
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β → e−zλβ. At T > 0 where β = 1/T is finite, this eventually scales the time dimension
to zero. As a result, the action becomes classical and we are dealing with a classical phase
transition. At T = 0 on the other hand, the time dimension is an additional dimension with
infinite extent, and it counts as z effective dimensions [Her76]. In the present case, z = 2
makes sure that the rescaling of the q2 and |ωn| matches. Note also that at T = 0, the
Matsubara sum becomes an integral. The quartic interaction then scales as

u4 → u4 e4−d−z , (1.14)

i.e. whenever 4 − d − z < 0, it is reasonable to expect that the quartic term is irrelevant and
we are left with a Gaussian theory at long distances and times. Since z = 2, this is the case for
d > 2. Higher order ϕn interactions are naively expected to scale with un → un en− n−2

2 (d+z).
Thus, for d + z ≥ 3, higher order terms become less relevant the larger n, i.e. we can ignore
n > 4 terms from a simple naive scaling perspective.

In d = 3 dimensions and with dynamical critical exponent z = 2 (i.e. antiferromagnetic
ordering), 4 − d − z = −1 < 0, i.e. the u4 interaction is irrelevant. In this case, the
antiferromagnetic SDW–QCP described by HMM theory is Gaussian at long distances and
times. A more careful analysis confirms the naive scaling argument [Sac11]. The fermions in
HMM theory are mostly mere spectators, and quasiparticles remain stable at and across the
transition. In particular, no sudden changes of the FS are expected. The FS will reconstruct
due to elastic scattering off the order parameter in the ordered phase, but that reconstruction
is gradual at a second order transition since the scattering amplitude depends on the size
of the order parameter. Further, since the theory is Gaussian, ω/T scaling of dynamical
susceptibilities, a clear sign of an interacting fixed point [Sac11], is not expected in the HMM
theory in d = 3.

It should be emphasized that potential problems with the arguments outlined in this section
arise not so much because the naive scaling analysis of the ϕ4 theory is insufficient (instead of
properly integrating out long wavelength fluctuations, e.g. using some perturbative momentum
shell renormalization group). Instead, issues tend to arise when the fermions are integrated
out and the effective action is expanded in ϕ. At this step, we assume that nothing dramatic
happens to the fermions [Mil93, Sac11], i.e. we assume that the fermions remain stable
quasiparticles that are not seriously affected by the QCP. In d = 2 for instance, this premise
does not hold and HMM theory breaks down and a more elaborate analysis which includes
the fermionic degrees of freedom is necessary [AC00, AC04, MS10a, MS10b, Sac11, HP21].

1.2.2 Kondo breakdown: experimental phenomena

Intriguingly, there is a large number of HF materials with QCPs not compatible with an
itinerant SDW transition and show so-called KB-QCPs [SRIS01, CPSR01, CP02]. The
most prominent examples are compounds from the Ce-115 family like CeRhIn5 [SSHO05,
JCK+15] and CeCoIn5 [MEC+22], YbRh2Si2 [TGM+00, PLW+04, GSS08, CGW+03] or
CeCu6−xAux [LSSW96]. Observations on these materials indicate that the effective c-f
hybridization, i.e. the Kondo correlations described for instance by P in Sec. 1.1.2, appears to
break down across the QCP, hence the name KB-QCP. The decoupling of c and f electrons
at low energies means that the f electrons do not contribute to the FS volume anymore,
which means there is a sudden reconstruction from a large to a small FS, which is indeed
observed as outlined below. Since the f electrons do not contribute as mobile charge carriers
in the small FS phase, they can be considered as effectively localized. The KB–QCP therefore
marks a transition from delocalized (large FS) to localized (small FS) f electrons. Below, key
experimental observations on HF materials undergoing a KB transition are listed, focusing
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on universal phenomena.

The following discussion of experiments associated with KB quantum criticality is an
extended version of parts of the introduction of Ref. [P4].

Fermi surface reconstruction at T = 0

Most of the HF materials showing a KB transition feature heavy FL behavior below some low-
temperature scale TFL. This seems to be the case on either side of the QCP, though the RKKY
correlated small FS phase is often magnetically ordered. The observed heavy FL behavior is
qualitatively similar to that discussed for CeAl3 in Sec. 1.1, i.e. ∼ T 2 behavior of the resistivity
and ∼ T behavior of the specific heat is usually observed [GCG+02, CGW+03, GSS08, SS11].
Remarkable, the RKKY correlated and Kondo correlated FLs differ in their FS volume, which
has been established in many experiments.

Hall number.— An important quantity to distinguish large from small FS is the Hall
number nH ∼ 1/RH, where RH is the Hall coefficient. The Hall number is proportional to the
number of mobile charge carriers per unit cell in the system. A sudden change in nH may thus
be interpreted as a sign of a sudden FS reconstruction. The Hall number has been measured in
several HF compounds. Some of the most impressive experimental results have arguably been
obtained on YbRh2Si2 [PLW+04, FOW+10], where a clear jump in nH has been measured
if tuned across its KB–QCP. Recent measurements on CeCoIn5 show a sharp crossover of
the Hall coefficient as a function of Sn doping, c.f. Ref. [MEC+22], Fig. 1(c). While the Hall
number of CeCoIn5 is consistent with that of LaCoIn5, the analogue compound of CeCoIn5
without f electrons, substituting less than 1% of In by Sn leads to a Hall number consistent
with an additional electron per unit cell, see Figs. 1(b,c) of Ref. [MEC+22]. Thus, CeCoIn5
appears to be located close to a KB–QCP, though on the RKKY side of the transition.

Quantum oscillations.— Quantities like the magnetic susceptibility of the resistivity oscillate
as functions of the inverse of an applied magnetic field. The period of the oscillations depends
on the size and shape of the FS; quantum oscillation measurements are therefore a standard
tool to map out Fermi surfaces [AM76]. Oscillations of the magnetic susceptibility versus
magnetic field, called de Haas–van Alphen (dHvA) frequencies, have been measured mostly in
the Ce-115 compounds CeRhIn5 and CeCoIn5. When CeRhIn5 [SSHO05, JCK+15] is tuned
across its KB–QCP by varying pressure or magnetic field, dHvA frequencies exhibit a jump.
This shows that the FS reconstructs at the KB–QCP. At ambient pressure, where CeRhIn5 is
in its RKKY correlated phase, the dHvA frequencies are almost identical to those of LaRhIn5.
This strongly suggests that the Ce 4f electrons do not contribute to the FS and may thus be
considered localized. Similarly, such a jump has also been observed in CeCoIn5 [MEC+22].
A comparison of the experimental dHvA frequencies [SSI+01] to ab initio calculations with
and without including the f electrons for CeCoIn5 indicate a localization of the f electrons
across the KB–QCP [MEC+22]. Note that there are conflicting conclusions from dHvA
measurements regarding the localized or itinerant nature of f electrons in pure CeCoIn5 at
ambient conditions, with earlier studies concluding an itinerant nature [SSI+01, SSA+02] while
a recent study concludes localized behavior [MEC+22]. For YbRh2Si2, dHvA measurements
are only available in Kondo-correlated large FS phase [RML+08]. The reason is that quite
small magnetic fields (≲ 0.7 T) induce a KB transition in YbRh2Si2, from a low-field RKKY-
correlated phase to a high-field Kondo-correlated phase [PLW+04].

Angle resolved photoemission.— An even more direct way to map out the FS is provided by
angle-resolved photoemission (ARPES) measurements [KPC+20], which by now have become
possible for HF materials at the relevant temperatures. These experiments are typically done
at ambient pressures and without a magnetic field. Thus, the evolution of the FS across the
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QCP is usually not observed.
For CeCoIn5, ARPES measurements have led to conflicting conclusions, similar to dHvA ex-

periments. Early studies concluded that the f electrons are predominantly localized [KOE+09,
KBI+08]. However, these studies also found indications of c-f hybridization and concluded
that f electrons are not fully localized in CeCoIn5. By contrast, later studies concluded a more
itinerant character of the f electrons [CXN+17, JDA+20]. We note here that pure CeCoIn5
at ambient conditions does not show any signs of FL behavior. CeCoIn5 shows strange metal
behavior below ≃ 40K and becomes superconducting below Tc ≃ 2.3K directly out of this
strange metal state [KPC+20]. The above-mentioned ARPES and dHvA experiments on
CeCoIn5 were thus conducted in a quantum critical non-Fermi-liquid (NFL) state where the
distinction between localized and itinerant f electrons may indeed not be clear-cut.

The situation is somewhat clearer for RKKY correlated HF compounds CeRhIn5 and
YbRh2Si2, but nevertheless puzzling. In CeRhIn5 for instance, ARPES measurements
show an FS compatible with localized f electrons [CXN+18], as also clearly inferred from
dHvA measurements. However, the same ARPES experiments also show clear signs of c-f
hybridization [CXN+18] and the formation of Kondo resonances.

For YbRh2Si2, ARPES measurements indicate that the c-electron FS in the RKKY
regime is slightly enlarged due to small but finite c-f hybridization [DVK+11]. Further, c-f
hybridization seems to lead to strong renormalization of the band structure in the vicinity
of the FS. A later ARPES study further found that the size of this slightly enlarged FS
seems to be remarkable stable under variation of temperature [KPC+15]. In Ref. [PFW+16],
this peculiar behavior was explained by arguing that the ARPES measurements had been
performed at temperatures too high to represent the T → 0 limit with a well-defined FS. At the
temperatures considered in the aforementioned experiments [DVK+11, KPC+15], YbRh2Si2
is in the quantum critical region, where spectral weight from critical QP is suspected at
both the small and large FS. The missing spectral weight at the small FS was attributed in
Ref. [PFW+16] to the small photoemission intensity of the c electrons.

For YbCo2Si2, which has an antiferromagnetic ground state with localized f electrons, the
expected small FS has been observed in ARPES studies [GKP+14]. Interestingly, this study
also found weak but finite c-f hybridization, which however does not lead to an increase of
the FS volume.

Continuous suppression of the FL scale to zero

As outlined above, the KB transition appears to be a transition between FLs with different
FS volumes. It appears to be a continuous quantum phase transition because the FL
scale TFL continuously decreases to zero at the QCP [CGW+03, SS11]. This is further
underpinned by evidence that the QP mass diverges when approaching the KB–QCP from
either side [GCG+02, SSHO05, LSSW96].

Onset scale for hybridization

The reconstruction from a large to a small FS across the KB–QCP suggests the assumption
that c and f electrons do not hybridize in the small FS phase. However, hybridization between
c and f electrons, signaled by the presence of a hybridization gap and f -electron spectral
weight close to the Fermi level, sets in at an energy scale much higher than TFL. Following the
notation used in Refs. [P4] and [P5], we will call this scale TNFL from here on, since it marks
the scale below which typically non-Fermi liquid (NFL) behavior emerges. Interestingly, TNFL

is typically almost unaltered across the KB–QCP, as is for instance seen in ARPES studies,
which were discussed above.
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Scanning tunneling spectroscopy.— Apart from ARPES, information on single-particle
properties in both the Kondo and RKKY regimes is provided by scanning tunneling spec-
troscopy (STS) experiments [KPC+20]. STS data on CeCoIn5 [AdSNG+12], CeRhIn5
[HPT+19] and YbRh2Si2 [EKK+11, SJK+18] show the formation of a hybridization gap, a
clear sign of c-f hybridization. Interestingly, the hybridization gap seems to form around
temperatures scales where NFL behavior (see below) begins to set in. The hybridization gap
appears to form irrespective of whether the T → 0 phase has a small or large FS. It deepens
as temperature is lowered, showing that c-f hybridization increases as temperature decreases.
This is the case even for clearly RKKY correlated compounds like YbRh2Si2 and CeRhIn5.
The experiments on CeRhIn5 [HPT+19] showed that the deepening of the hybridization gap
even continues in its antiferromagnetically ordered RKKY regime where the FS is small.

Optical conductivity.— Measurements of the optical conductivity in YbRh2Si2 [KNS+04,
KSF+06], CeRhIn5 [MvdMS05], CeCoIn5 [SBBM02, MvdMS05] and CeCu6−xAux [MW90]
all show a hybridization gap regardless of the FS volume at T = 0, further supporting the
findings by ARPES and STS discussed above.

Possible absence of magnetic ordering

The KB-QCP is not necessarily associated with magnetic ordering [FWB+09, ZZL+19,
MEC+22]. CeCoIn5 orders only away from the KB–QCP in the RKKY-dominated small FS
phase [MEC+22]. Further, in YbRh2Si2, the location of the AFM–QCP and the KB–QCP
can be detuned by chemical pressure [FWB+09]. The latter changes the location of the
AFM–QCP but leaves the location of the KB–QCP almost unchanged. Thus, the jump in
nH can be tuned to either occur in the paramagnetic or in the ordered phase. Moreover,
the compound CeRh6Ge4 hosts a ferromagnetic QCP that exhibits characteristics consistent
with a KB–QCP [SZK+20]. However, the hallmark Fermi surface reconstruction typical of
a KB-QCP has yet to be observed in CeRh6Ge4. Therefore, antiferromagnetic ordering is
apparently not a universal feature of the KB–QCP [Si06, FWB+09, YS10, Si10].

Strange metal behavior

Close to the KB–QCP, a quantum critical region emerges in the temperature region TFL <
T < TNFL. In this quantum critical region, strange metal behavior [PHA22, HM22, CGPS22,
Zaa04, CBC+24] is usually observed. A hallmark feature of the strange metal is a linear-
in-T resistivity, which is observed for all of the above-mentioned materials featuring a
KB–QCP [TGM+00, PLM+20, vL96, PTH+03, MEC+22, MTK+01, SZK+20]. Additionally,
YbRh2Si2 [TGM+00, CGW+03], CeCu6−xAux [LSSW96, vL96], CeCoIn5 [BMV+03] and
CeRh6Ge4 [SZK+20] feature a ∼ T ln(T ) dependence of the specific heat. Further, recent
measurements on YbRh2Si2 nanowires find strongly suppressed shot noise in the strange
metal region [CLB+22], indicating that well-defined QPs are absent.

Further, dynamical susceptibilities exhibit ω/T scaling [VLSR+89] in the quantum critical
region, in stark contrast to expectations from HMM theory, as discussed in Sec. 1.2.1. This
was initially observed for the dynamical magnetic susceptibilites in UCu5−xPdx [AOR+95],
CeCu6−xAux [SAC+00] and CeCu6−xAgx [PLW+19] and very recently also for the optical
conductivites of both YbRh2Si2 [PLM+20] and CeCu6−xAux [YPZ+20]. Note that ω/T
scaling is a clear sign for a non-Gaussian QCP [Sac11], i.e. the critical fixed point is an
interacting one. Particularly interesting, too, are the recent observations of ω/T scaling for
the optical conductivity, as it shows that the critical behavior is not limited to the magnetic
degrees of freedom only, but also includes the charge degrees of freedom.
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1.2.3 Kondo breakdown: theoretical description

The experimental observations discussed in Sec. 1.2.2 above are inconsistent with the HMM
theory discussed in Sec. 1.2.1. Below, we first outline the challenges to theory that arise from
these observations, followed by an outline of routes to overcome those challenges.

The following discussion of theoretical aspects of the KB–QCP is an extended version of
parts of the introduction of Ref. [P4].

Challenges to theory

Description of the strange metal.— Arguably the most challenging aspect of the KB–QCP
is the strange metal behavior at finite temperatures above the QCP. There are by now
various routes to microscopically realize NFL behavior, see Ref. [CGPS22] for an extensive
recent review. Rigorous results on NFL physics can for instance be obtained from Sachdev-
Ye-Kitaev (SYK) models [CGPS22] or from impurity models featuring quantum phase
transitions [Voj06], e.g. multi-channel Kondo impurities [TW84, Tsv85, EK92, CIT95] or
multi-impurity models [Gan95, SSK90, SS92, FHLS03, LF04, SLO+96, AL92, ALJ95, Jon07,
WK23b, WK23a]. Despite considerable recent progress [ETS21, ES21, PGES23], it is to date
not fully clarified to what extent known routes to NFL physics connect to the strange metal
behavior observed experimentally in HF materials.

Description of the Fermi surface reconstruction.— Another challenging issue is to explain
how the FS can change its size in the first place. The volume of the FS is fixed to be
proportional to the particle number by the Luttinger sum rule [Lut60, Osh00], which involves
the combined particle number of the c and f electrons [Osh00]. While the FS volume matches
the Luttinger sum rule prediction in the Kondo correlated phase, this is not the case in the
RKKY correlated phase where the f electrons seem to be missing from the FS volume. A
theoretical description of the KB–QCP also needs to correctly describe both the Kondo and
RKKY correlated phases, which is far from straightforward in the latter case. Nevertheless,
this aspect of the KB–QCP is better understood and intuitively more accessible than the
strange metal physics.

Numerically exact approaches

Significant progress on physical phenomena can be made based on numerically exact solutions,
even if they are only available for simplified models. From such exact solutions, one can then
either gain direct insight into the problem at hand or the corresponding solutions can for
instance be used as benchmarks for approximate solutions which are also applicable to more
realistic settings. So far, simulations of the KHM with the goal of capturing KB phenomena
have mostly been done using Quantum Monte Carlo (QMC) methods [Ass99, Ass04, CA01,
BLST19, PTSA19, RA20, DVAG20, DLAR21, RDA22, DVGA22, FLA+23, LFJ+23], some
of which have reported evidence of a Kondo breakdown [RDA22, DVGA22].

Due to the sign problem, QMC simulations are only available at particle-hole symmetry.
At particle-hole symmetry, the KH model has a charge gap and thus no FS [Ass99, CA01];
KB quantum criticality was thus not obtained in early studies [Ass04]. Recently, progress has
been made by resorting to dimensional mismatch, i.e. by coupling D-dimensional free fermions
to a (D−1)-dimensional spin system [DLAR21, DVGA22, FLA+23, LFJ+23]. Due to the
dimensional mismatch, the spin system is not able to open a charge gap and metallic quantum
criticality can be investigated. Indeed, it was shown in references [RDA22] and [DVGA22]
that Dirac fermions in two dimensions, Kondo-coupled to a Heisenberg chain, exhibit a KB–
QCP. However, no transport properties have been reported so far. In references [FLA+23]
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and [LFJ+23] a two-dimensional Heisenberg model, Kondo-coupled to three-dimensional
electrons, was investigated. It was shown that this model does not exhibit a KB–QCP,
but rather a SDW–QCP [LFJ+23]. Interestingly, a ∼ T resistivity perpendicular to the
two-dimensional Heisenberg model was found [FLA+23] at the QCP.

The KHM can also be simulated with the Density Matrix Renormalization Group (DMRG),
which is not constrained to particle-hole symmetry but to quasi-one-dimensional geometries.
Thus, most DMRG simulations of the KHM were done in one dimension [MJRG01, MJRG02,
SSMS09, KAH+18], but without focusing on possible KB physics. As a part of this thesis,
the KHM has been studied with DMRG on a cylinder [P2]. There, we found two phases
differing in their FS volumes, indicating a KB–QCP in between.

Auxiliary particle approaches

Considerable conceptual progress on KB physics has been achieved using auxiliary-particle
approaches [Col84, BGG02, SSV03, SVS04, P0́5, Voj10, Sac23]. These approaches decompose
the degrees of freedom of the PAM or the KLM in terms of additional auxiliary fermionic
or bosonic degrees of freedom which are subject to constraints, to ensure the mapping is
exact [Col84, P0́7, BGG02, SSV03, SVS04, Voj10, ACPA22]. An explicit example of an
auxiliary particle approach to the KHM is given in Sec. 1.1.2, where we have represented
the spin in terms of auxiliary fermions with a half-filling constraint. There, we have also
seen that the auxiliary particle decomposition does not render the model exactly solvable.
However, the auxiliary particle decomposition allows for much more flexibility in constructing
approximate solutions. For instance, in the example in Sec. 1.1.2, it allowed us to describe
the heavy FL in terms of f spinons hybridizing with the c electrons. Without an auxiliary
particle decomposition of the f spins, a mean-field description of the heavy FL in the KHM
would not have been possible. Indeed, the mean-field solution of the KHM presented in
Sec. 1.1.2 is the starting point for studying KB physics using auxiliary particle methods.

In Sec. 1.1.2, we have seen that the heavy FL in the KHM is due to a condensed bosonic
field, denoted P there, which effectively hybridizes f spinons and c electrons and enlarges
the FS volume. By adding a non-zero Heisenberg interaction and choosing a suitable mean-
field decoupling, it turns out that the KHM can undergo a (non-symmetry breaking) phase
transition to a phase with P = 0, i.e. where the Kondo boson is not condensed [SSV03,
SVS04, Voj10, Sac23]. The f and c electrons are then no longer hybridized at low energies,
leading to a small FS formed by the c electrons which coexists with an f -electron spin liquid.
This spin liquid hosts fractionalized, possibly topological excitations which account for the
missing FS volume [SSV03, SVS04, BCPP16, Sac23], coining the term fractionalized FL
(FL∗). Thus, it is possible to describe a continuous transition between Kondo and RKKY
correlated phases [SVS04, Sac23], including an FS reconstruction accompanied by a jump in
the Hall coefficient [CMS05].

Early work on the KB using auxiliary particles mainly focused on the large-N approach
discussed in Sec. 1.1.2, where the number of spin labels of the fermions is large, but the
Kondo and Heisenberg interactions are decoupled with a single boson flavor per site or
link, respectively. Due to that, feedback between the large number N of fermion flavors
and critical bosonic fluctuations are suppressed by 1/N . As a result, the large-N limit is
non-interacting and does not describe strange metal behavior [ACPA22]. Recently, a different
large-N approach was considered which introduces an artificial large-N flavor index for both
bosons and fermions while considering two spin flavors per artificial flavor [ACPA22]. The
Yukawa coupling between bosons and fermions is then approximated as random, which allows
for an exact solution within the Yukawa-SYK approach [ACPA22, PGES23]. This approach
is capable of describing a strange-metal-like ∼ T ln T resistivity if a spatially random Yukawa
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coupling or anisotropic solutions are considered [ACPA22, PGES23].

Dynamical mean-field approaches

Dynamical mean-field theory (DMFT) [GKKR96, KSH+06] and its extensions [KSPB01,
MJPH05, RHT+18] have been successfully used in many studies on HF systems [SRIS01,
SK03, dMGKB05, SK05b, SKK+19, HCS20, Ov17, THKD11, DLCK08b, DLCK08a] and
have lead to valuable new insights. DMFT methods treat lattice models by mapping them
on self-consistent impurity models.

The most prominent approach, which has led to many insights, is the extended DMFT
(EDMFT) approach to KHM [SSI99, SS00, SRIS01, SRIS03, SK03, ZGS03, GI07, CYH+20,
HCC+21, HCCS21, KHSI22, HCS22a, HCS22b]. EDMFT maps the KHM on a self-consistent
Bose-Fermi-Kondo (BFK) impurity model and is able to capture a KB–QCP due to the
local competition between Kondo screening and magnetic fluctuations. One of the main
successes of EDMFT is the explanation of ω/T scaling of the dynamical spin structure factor
in CeCu6−xAux [SAC+00] at the KB–QCP. However, to the best of our knowledge, predictions
of other thermodynamic and transport properties, like the linear-in-T resistivity or the T ln T
dependence of the specific heat, are lacking to date. It is therefore still unclear whether the
EDMFT approach correctly describes the experimentally observed strange metal behavior.

A downside of the EDMFT approach is that full self-consistency leads to a first-order
phase transition [SK03, SK05a] at T > 0. A continuous transition can be recovered by
insisting on a featureless fermionic density of states (DOS) [SZG05], at the cost of giving
up self-consistency of the fermionic degrees of freedom. This is routinely done in KB–QCP
studies using EDMFT [ZGS03, GI07, HCC+21].

This downside of EDMFT has led to the proposal of using 2-site cellular DMFT (CDMFT)
[KSPB01] to study Kondo breakdown physics in the PAM [SK05b]. Using exact diago-
nalization (ED) as an impurity solver, it was shown that a 2-site CDMFT treatment of
the PAM can describe the KB–QCP as an orbital selective Mott transition (OSMT) at
T = 0 [DLCK08b, DLCK08a], where the f electrons localize while the c electrons remain
itinerant. Similar studies with QMC impurity solvers [MA08, MBA10, THKD11] were how-
ever not able to find signs of a KB–QCP in the temperature range studied. Since ED suffers
from limited frequency resolution while QMC has trouble reaching low temperatures, it was
not clear prior to the work reported in this thesis to what extent CDMFT can describe KB
physics. The ED study was further not able to establish conclusively whether the transition
is first or second order.

1.3 Scope and outline
The main goal of this thesis is to shed light on the emergent phenomena associated with
KB-QCPs and the phases in their vicinity, primarily relying on numerical methods. To achieve
this, we focused on both improving methods and applying methods to examine concrete
heavy fermion models. The structure of the thesis is outlined below.

In Chapter 2, we provide an overview of the methods employed in this thesis. Section 2.1
covers DMFT and its cluster extensions, including techniques for performing momentum
integrals for Green’s functions in Section 2.1.3, and numerically more stable alternatives to the
Dyson equation to computing the hybridization function in DMFT in Section 2.1.4. Section 2.2
introduces the numerical renormalization group (NRG), which we use as an impurity solver
for DMFT. Sections 2.1 and 2.2 provide the necessary methodological background for the
results presented in Chapter 3.
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Section 2.3 introduces MPS methods, focusing on subspace structures implied by the
isometries of an MPS. There, we also introduce the tangent space projector and its 2-site
generalization. Section 2.3.1 offers an MPS perspective on NRG. Sections 2.3.2 and 2.3.3
introduce the density matrix renormalization group (DMRG) for MPS ground-state search
and the time-dependent variational principle (TDVP) for MPS time evolution, respectively.
Section 2.4 presents Ref. [P1], where the subspace structure implied by the isometries of
an MPS is fleshed out in detail and n-site generalizations of the tangent space projector is
derived. In Sec. 2.5, we present Refs. [P2] and [P3], where the insights from Ref. [P1] are
used to arrive at a scheme called controlled bond expansion (CBE). CBE is intended as a
computationally cheap alternative to the widely used 2-site update, and we show in Refs. [P2]
and [P3] that its application to DMRG and TDVP is highly successful. Using CBE–DMRG,
Ref. [P2] also shows that the KHM on a 4-leg cylinder hosts two phases with different FS
volumes.

Chapter 3 presents Refs. [P4] and [P5], which contain an extensive 2-site CDMFT plus
NRG study of KB quantum criticality in the PAM. There, we identify a KB–QCP in the
PAM and thoroughly study its properties, gaining new insights, especially into the RKKY
phase and the quantum critical region, where we find strange metal behavior.

Chapter 4 concludes the thesis and offers an outlook on future research directions to further
explore the phenomena surrounding the KB-QCP beyond the achievements of this thesis.
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2 Methods

This chapter provides an overview of the numerical methods that have been used in this
thesis. Section 2.1 provides a brief overview of dynamical mean-field theory (DMFT) and its
most widely used cluster extensions, the cellular DMFT (CDMFT) and the dynamical cluster
approximation (DCA). In Sec. 2.1.3, a comparison of different momentum integration methods
for Green’s functions is given, which is an essential ingredient when solving DMFT equations.
Section 2.1.4 further provides a numerically more stable method to extract the dynamical
mean-field ∆(ω) in the case of limited accuracy of momentum-integrated Green’s functions.
In Section 2.2, the numerical renormalization group (NRG) is introduced, which we use as
an impurity solver in our DMFT calculations. Matrix product states (MPS) are introduced
in Sec. 2.3, including a brief overview of the structure of the MPS manifold and its tangent
space. Sections 2.3.2 and 2.3.3 introduce the density matrix renormalization group (DMRG)
for MPS ground state search and the time-dependent variational principle (TDVP) for MPS
time evolution, respectively.

2.1 Dynamical mean-field theory
This section provides an introduction to DMFT and its most commonly used cluster ex-
tensions, the cellular DMFT (CDMFT) and the dynamical cluster approximation (DCA).
DMFT has been used with great success in the past, for instance by shedding light on the
Mott metal-to-insulator transition [GKKR96] or as a powerful tool in electronic structure
calculations [KSH+06]. By now, DMFT has evolved into a standard tool to approach various
phenomena in strongly correlated metals and is used by many researchers worldwide. Similar
to other mean-field theories, DMFT has a controlled large-N limit, namely the limit of large
coordination number [GKKR96]. In contrast to many other large-N limits, the limit of a
large coordination number does not render the action Gaussian. The DMFT approximation
instead leads to an action equivalent to the action of an effective impurity model, i.e. a single
interacting site hybridizing with an effective non-interacting bath. DMFT thereby neglects
non-local correlation effects, which can, however, be of qualitative importance in certain situ-
ations. In HF metals, for instance, the competition between local and non-local correlations
is thought to drive the Kondo breakdown transition as discussed in the introduction. To
include short-ranged non-local correlation effects, cluster extensions to DMFT [MJPH05] like
CDMFT [KSPB01] and DCA [HTZJ+98, HMJK00] have been developed. These methods
approximate the lattice model by mapping it to an effective cluster impurity model, with
multiple interacting lattice sites hybridizing with an effective non-interacting bath.

2.1.1 Single-site dynamical mean-field theory: brief overview

The idea behind DMFT originated from foundational work by Metzner and Vollhardt [MV89],
followed up by Georges and Kotliar [GK92], who considered the Hubbard model in infinite
dimensions and realized its connection to the single-impurity Anderson model (SIAM). In
infinite dimensions, correlations become purely local, reflected by an entirely local self-energy,

Σij(ω) = δijΣ(ω) ↔ Σk(ω) = Σ(ω) . (2.1)
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Assuming a purely local self-energy, also in finite dimensions, and exploiting the simplifications
that arise from this approximation is at the heart of DMFT [GKKR96]. It should be
emphasized that the simplifications that arise assuming a purely local self-energy also require
a purely local bare interaction vertex U . In DMFT, non-local parts of U are truncated and
treated in a static mean-field approximation.

The DMFT equations can be conveniently derived using the Baym-Kadanoff formal-
ism [BK61, Bay62], which formulates the many-body problem as a variational optimization
of the grand potential as a functional of the Green’s function G and the bare interaction
vertex U [AGD63],

Ω[G, U ] = Φ[G, U ] + T
∑

n,k,σ

[ln Gk(iωn) − Σk(iωn)Gk(iωn)] . (2.2)

Here, Φ[G, U ] is the Luttinger-Ward (LW) functional [LW60]. Variation of Φ[G, U ] provides
the self-energy as a functional of G and U ,

δΦ[G, U ]
δGk(iωn) = TΣk[G, U ](iωn) . (2.3)

Demanding stationarity of Ω[G, U ] w.r.t variation of G gives the stationarity condition

δΩ[G, U ]
δGk(iωn) = TΣk[G, U ](iωn) + TG−1

k (iωn) − TG−1
k (iωn) != 0 ∀k , (2.4)

where Gk(iωn) is the non-interacting Green’s function and we have used Dyson’s equation,
Σk(iωn) = G−1

k (iωn) − G−1
k (iωn). We can now reshuffle the stationarity condition (2.4),

Gk(iωn) = 1
G−1

k (iωn) − Σk[G, U ](iωn)
∀k , (2.5)

which provides us with a self-consistency condition for G. Since both Φ[G, U ] and Σk[G, U ](iωn)
are generically not known, approximations are required to make progress. For instance, in
self-consistent n-th order perturbation theory, the functional Σk[G, U ](iωn) is expanded to
order n in the interaction vertex U and the self-consistency equation (2.5) is then iterated
until convergence.

DMFT uses a non-perturbative approximation which assumes that the self-energy as a
functional of G is (i) k-independent and (ii) depends only on Uloc, the local part of the
interaction vertex (in Hubbard models, U = Uloc),

Σk[G, U ](iωn) DMFT−→ Σ[G, Uloc](iωn) . (2.6)

For the LW functional, this implies that it only depends on the k-averaged or, in other words,
local Green’s functions, Gii(iωn) = 1

N

∑
k Gk(iωn),

Σ[G, Uloc](iωn) = δΦ[Gii, Uloc]
δGk(iωn) = 1

N

∑
i

δΦ[Gii, Uloc]
δGii(iωn) = Σ[Gii, Uloc](iωn) . (2.7)

By k-averaging Eq. (2.5), we get a self-consistency condition for Gii,

Gii(iωn) = 1
N

∑
k

1
G−1

k (iωn) − Σ[Gii, Uloc](iωn)
. (2.8)

We now need a way to evaluate Σ[Gii, Uloc](iωn) for a given Gii. In DMFT, this is done via a
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reference impurity model with bare interaction vertex Uloc, LW functional ϕ[Gimp, Uloc] and
Ω-functional

Ωimp[Gimp, Uloc] = ϕ[Gimp, Uloc] − T
∑
nσ

[ln Gimp(iωn) − Σ(iωn)Gimp(iωn)] , (2.9)

with Σ(iωn) = G−1
imp(iωn) − G−1

imp(iωn). Since the DMFT approximation to the lattice LW
functional is then given by Φ[G, Uloc] = ∑

i ϕ[Gii, Uloc], solving the impurity model and
computing its Green’s function Gimp(iωn) self-energy Σimp(iωn) allows us to evaluate the
DMFT Σ-functional, Σ[Gimp, Uloc](iωn) = Σimp(iωn). Since we want to evaluate the functional
at Gii to solve Eq. (2.8), a second self-consistency condition between impurity model and
lattice model is required,

Gimp(iωn) = Gii(iωn) , (2.10)

which is used to adjust the non-interacting Green’s function of the impurity model, Gimp(iωn).
The latter can be written as G−1

imp(iωn) = iωn + µ − ϵ0 − ∆(iωn), where ϵ0 is the local on-site
energy of the lattice model and the hybridization function ∆(iωn) describes the influence of
the bath on the impurity model.

The DMFT equations (2.8) and (2.10) are solved in an iterated self-consistency cycle,
initialized by some guess for Σ(iωn):

(i) Compute Gloc(iωn) = 1
N

∑
k

[
G−1

k (iωn) − Σ(iωn)
]−1

(ii) Using Gimp(iωn) != Gloc(iωn), update the hybridization function via ∆(iωn) = iωn +
µ − ϵ0 − Σ(iωn) − G−1

loc(iωn).

(iii) Solve the impurity model with the updated ∆(iωn) from step (ii) to obtain an updated
Σ(iωn), repeat with step (i) until convergence.

After the cycle has converged, Gimp(iωn) = Gii(iωn) and Eq. (2.8) is fulfilled. Usually, the
DMFT cycle converges without major issues. Convergence can be accelerated using mixing
methods [Žit09b]. These can also help to stabilize the DMFT cycle in the rare cases where it
does not converge.

2.1.2 Cluster extensions of DMFT

DMFT approximates the self-energy as entirely local/k-independent and therefore neglects
non-local correlation effects. To overcome this shortcoming of DMFT, there are by now
several different approaches, which can largely be divided into two subclasses: (i) cluster
extensions of DMFT [MJPH05] and (ii) diagrammatic extensions of DMFT [RHT+18].

Diagrammatic extensions aim to extend the self-consistency of DMFT on the single-particle
level to the n-particle level, where n = 2 is currently computationally feasible. This allows us
to deal with e.g. long-ranged spin, pairing, and charge fluctuations and their feedback on the
electronic spectral function. The reference system remains a single lattice site hybridizing with
an effective bath. Diagrammatic extensions are expected to work well in cases with strong,
long-ranged fluctuations, e.g. at magnetic (quantum) phase transitions. The dynamical vertex
approximation [TKH07] has for instance been used to study the quantum phase transition
between a Kondo insulator and an antiferromagnetic insulator in the PAM [SKK+19].

Cluster extensions on the other hand focus on short-ranged correlations and treat them
on equal footing as local correlations. This is achieved by considering a cluster of multiple
lattice sites hybridizing with an effective self-consistent bath. To date, there are two main
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Figure 2.1 (a) Tiling of a 2-dimensional square lattice into Nc = 2-site unit cells (blue ellipses).
CDMFT fully considers the self-energy within each cell but neglects self-energy contributions between
cells. (b) Patching of the Brillouin zone of a 2-dimensional square lattice into Nc = 2 equally sized
patches. DCA approximates the self-energy within each patch as k-independent, but the self-energy
for different patches may differ.

methods, the cellular DMFT (CDMFT) [KSPB01] and the dynamical cluster approxima-
tion (DCA) [HTZJ+98, HMJK00]. Both methods are described in more detail below.

Cellular dynamical mean-field theory

CDMFT takes a real-space approach by tiling the lattice into a superlattice of unit cells
containing Nc sites, c.f. Fig. 2.1(a). The method then takes the intra-cell self-energy fully
into account but neglects any inter-cell self-energy contributions. As a result, the translation
symmetry of the original lattice is broken and only the translation symmetry of the superlattice
remains. We therefore have to work in the Brillouin zone of the superlattice, corresponding
momenta will be denoted K to distinguish them from momenta k in the Brillouin zone of
the original lattice. The self-energy Σ(ω) is K-independent and is a matrix of the intra-cell
site indices [1 and 2 in Fig. 2.1(a)]. In that way, short-ranged non-local correlations within
each cell are taken into account, described for instance by Σ12(ω) in the example shown in
Fig. 2.1(a). The inter-cell hopping ϵK is a K-dependent matrix of the intra-cell site indices.

Analogous to DMFT, CDMFT proceeds by iteratively solving the matrix-valued self-
consistency equations,

Gii(ω) = Nc

N

∑
K

[
G−1

K (ω) − Σ[Gimp, Ucl](ω)
]−1

, (2.11)

Gimp(ω) = Gii(ω) , (2.12)

where G−1
K (ω) = ω + µ − ϵcl − ϵK, ϵcl describes intra-cell hopping and on-site energies and

N is the number of lattice sites in the original lattice and Ucl is the bare interaction vertex
truncated to the cluster. Gimp is the Green’s function of a reference impurity model, used to
non-perturbatively evaluate the functional Σ[G, Ucl](ω). This reference impurity model now
contains Nc impurities, with the impurity Hamiltonian mirroring the intra-cell Hamiltonian,
and a non-interacting Green’s function Gimp(ω) which is also matrix-valued. Except for the
complication that everything is matrix-valued, the self-consistency cycle is analogous to the
DMFT self-consistency cycle. The non-interacting impurity Green’s function can again be
written as G−1

imp(ω) = ω + µ − ϵcl − ∆(ω), where ∆(ω) is a matrix-valued hybridization
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function that determines the influence of the bath on the cluster impurity model.
In many cases, it is possible to diagonalize the local self-energy and Green’s function

matrices, with a unitary transformation independent of ω. For instance, in the example shown
in Fig. 2.1(a), if we assume that sites 1 and 2 are equivalent, such that Σ11(ω) = Σ22(ω) and
Σ21(ω) = Σ12(ω) (and the same also for cluster Green’s functions), the unitary

UH = 1√
2

(
1 1
1 −1

)

diagonalizes all intra-cell Green’s functions and self-energies. However, it is generically not
possible to diagonalize ϵK independent of K, meaning that the integrand in Eq. (2.11) remains
matrix-valued.

Dynamical cluster approximation

The DMFT approximation can also be approached from a k-space coarse-graining approach,
by averaging the bare interaction vertex U over the Brillouin zone [MH89, MJPH05]. The
DCA is motivated from the perspective of this k-space coarse-graining perspective. DCA
partitions the Brillouin zone into Nc patches Pi of equal size (the shape of the patches can
otherwise be chosen arbitrarily), see Fig. 2.1(b). The bare interaction vertex is now only
averaged over the patches, the coarse-grained vertex U now retains a coarse momentum
dependence and in particular also inter-patch momentum conservation [MJPH05]. As a result,
the LW functional depends only on the patch-averaged Green’s functions,

Gi(ω) = Nc

N

∑
k∈Pi

Gk(ω) , (2.13)

and the same goes for the Σ-functional. This leads to self-consistency equations for Gi

Gi(ω) = Nc

N

∑
k∈Pi

1
G−1

k − Σi[Gimp,i, U ](ω)
, (2.14)

Gimp,i(ω) = G(ω) , (2.15)

where Gimp is the Green’s function of an Nc-site reference impurity model with bare interaction
vertex U . The iterative solution of the self-consistency equations is analogous to DMFT and
CDMFT.

2.1.3 Momentum integrals of Green’s functions

To solve the DMFT, CDMFT, or DCA self-consistency equations, it is generically necessary
to perform momentum integrals to determine the local or patch-averaged Green’s functions.
If one works with real frequencies, ω+, the integrands are often close to singular. I describe
here methods to deal with such k integrals efficiently. It should be noted that efficiency is
of importance since the integrals typically have to be performed for O(103–104) ω-points.
Even though parallelization over ω-points is, of course, possible, it is desirable to not require
additional cores just for the integration task (the NRG impurity solver typically parallelizes
well with ∼ 10 cores). Thus, we would like to perform O(103–104) k integrals on ∼ 10 cores
within a time window of a few minutes. This means the integrator should be able to solve a
single k integral within O(10−1 sec).

Below, three methods to perform momentum integrals will be presented, (i) the adaptive
linear tetrahedron (ALT) method, (ii) iterated adaptive integration (IAI) [KBB+23] and (iii)
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η = 10−2 10−4 10−8

ALT 41.67s 87.15 s 88.85s
IAI 66.73s 198.21 s 520.19s
IQT 11.29s 24.87s 39.13s

Figure 2.2 (a) Imaginary part of the local Green’s function for η = 10−2 and 10−8, respectively,
evaluated on a linear frequency grid with 103 grid points, evenly spaced between −2.2 ≤ ω ≤ 2.2
(min |ω| = 2.2 × 10−3). All three methods, ALT, IAI, and IQT meet the absolute accuracy criterion of
ϵ = 10−3. The curves in (a) produced by all three methods are identical on the scale shown there. The
table below panel (a) shows the total wall time needed by the integrators (all calculations were done
on a single core of an Intel Core i7-9750H CPU) versus η to compute Gloc(ω + iη) on the frequency
grid used in (a). (b) Scaling of the wall time versus η away from the van Hove singularity at ω = 0.1.
As described in the text, ALT has constant scaling with η since the k-dependence of the inverse
Green’s function at the relevant k-points is reasonably well captured by a linear function. IAI has
[ln η−1]α scaling, with α ≃ 1.5 < d = 2 smaller than the expected worst scaling. IQT is by far the
fastest of the three methods and scales with [ln η−1]α−1 (see text). (c) Scaling of the wall time versus
η at the van Hove singularity at ω = 0. ALT now has power law scaling, η−1.5, since the k-dependence
of the inverse Green’s function at the relevant k-points is quadratic and therefore never well captured
by linear approximations. IAI has [ln η−1]α scaling, with α = d = 2 saturated at the expected worst
scaling. IQT has again by far the best performance and scales with [ln η−1]α−1, as expected.

iterated adaptive integration with the adaptive quadratic tetrahedron method as the initial
integrator [iterated quadratic tetrahedron (IQT)]. All of these methods are tested on the
non-interacting Green’s function of a two-dimensional square lattice with nearest-neighbor
hopping,

Gloc(ω + iη) =
ˆ π

−π

dkx

2π

ˆ π

−π

dky

2π
Gk(ω + iη) (2.16)

Gk(ω + iη) = 1
ω + iη + cos kx + cos ky

. (2.17)

Runtime and accuracy will be compared for different η, which controls the sharpness of the
features of Gk(ω + iη).

The results are shown and compared in Fig. 2.2 and are discussed below. The main message
is the following: away from van Hove singularities, ALT performs very well and runtime is
approximately constant as a function of η. Very close to van Hove singularities, however,
ALT has very unfavorable O(ηa) scaling, with a ≃ 1.5 in the present case. IAI scales as
O([log η−1]α), with α ≤ d bounded by the dimension d of the the integration area, i.e. d = 2
for G(kx,ky)(ω +iη). The exponent α seems to saturate (i.e. α = 2) at the van Hove singularity,
while away from the van Hove singularity, the scaling is more favorable with α < d. IQT
performs by far the best and scales as O([log η−1]α−1), where α is the same exponent as that
for IAI. For more details, see the discussion of the three methods below.
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Adaptive linear tetrahedron method

The integration method used for most of the results in this thesis is the linear tetrahedron
method [LV84, BJA94, Kap12], with an adaptive k-grid to improve performance and allow
us to control the accuracy [adaptive linear tetrahedron (ALT)]. When integrating Green’s
functions over momenta, the integrals can typically written in the form

I =
ˆ

A
dkf(k)

g(k) , (2.18)

where both f(k) and g(k) are smooth functions of k and A is the integration area. The idea
behind the linear tetrahedron method is now to tile the integration area into tetrahedra Ti

(triangles in 2 dimensions or lines in 1 dimension), approximate both f(k) and g(k) as linear
functions within each tetrahedron, f(k) ≃ ai + bi ·k and g(k) ≃ ci + di ·k, and then solve the
integral over each Ti exactly and sum up all contributions,

I ≃
∑

i

ˆ
Ti

dkai + bi ·k
ci + di ·k

. (2.19)

To achieve accuracy control, we can tile each tetrahedron into smaller tetrahedra, τij ∈ Ti.
To check whether an absolute error threshold ε is satisfied, we use the global criterion∣∣∣∣∣∣

∑
i

ˆ
Ti

dkai + bi ·k
ci + di ·k

−
∑

i

∑
j

ˆ
τij

dkaij + bij ·k
cij + dij ·k

∣∣∣∣∣∣ < ε . (2.20)

If the global criterion is not met, tetrahedra Ti are fine-grained if they do not meet the local
criterion ∣∣∣∣∣∣

ˆ
Ti

dkai + bi ·k
ci + di ·k

−
∑

j

ˆ
τij

dkaij + bij ·k
cij + dij ·k

∣∣∣∣∣∣ < ε
Vi

VA
, (2.21)

where VA is the volume of the integration area and Vi is the volume of Ti. The tetrahedra
Ti that do not meet the local accuracy criterion are fine-grained by promoting the finer
tetrahedra to coarse tetrahedra, τij → Tℓ, followed by fine-graining the newly promoted Tℓ

into even finer tetrahedra τℓj . This is iterated until the global accuracy criterion is passed.
More information on the adaptive linear tetrahedron method, especially also on how to deal
with matrix-valued integrands, can be found in my Master’s thesis [Gle19], Ch. 5.

For instance, in the example (2.16), g(k) = ω + iη + cos kx + cos ky and f(k) = 1, i.e. both
functions are smooth and do not contain sharp features. The main contributions to the
integral (2.16) are due to k-space regions where Re g(k) = 0. In most cases, g(k) can be very
well represented with a piecewise linear function, and the tetrahedron method is expected to
converge quickly in these cases. The runtime depends only on the number of k-points needed
to obtain a reliable piecewise linear interpolation around k-points with Re g(k) = 0. For
small η, we therefore expect that the runtime is approximately independent of η, provided
that a reliable piecewise linear interpolation around k-points with Re g(k) = 0 can be found.

Our expectations are confirmed in Fig. 2.2(a). ALT performs the integral (2.16) for 103

frequency points in less than 1.5 minutes, i.e. every frequency point requires less than 0.1s on
average. Further, η = 10−4 and η = 10−8 require almost the same amount of time, confirming
the η-independnece claimed above. This is further illustrated in Fig. 2.2(b), which shows
the time required to compute Gloc(0.1 + iη). At small η, the time required by ALT does not
depend on η, since g(k) can be sufficiently well represented by a linear interpolation in the
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momentum region satisfying cos kx + cos ky = −0.1.
However, g(k) also contains saddle points where the gradient ∇k g(k) vanishes, for instance

at (kx, ky) = (0, ±π). At these points in the BZ, piecewise linear interpolation of g(k) cannot
be expected to be very reliable. Thus, whenever Re g(k) = 0 and ∇k g(k) = 0, (which leads to
van Hove singularities in Gloc(ω + iη)), we expect ALT to converge slowly. An example is the
evaluation of (2.16) at ω = 0. As can be seen in Fig. 2.2(c), ALT has very unfavorable η−1.5

scaling there and performs considerably worse than IAI or IQT. In principle, this issue could
be cured by choosing a piecewise quadratic interpolation on every tetrahedron. Unfortunately,
the integrals over the tetrahedra are then generically not analytically solvable. An exception
is in one dimension, which will be the basis for IQT, together with insights from IAI presented
below.

Iterated adaptive integration

Another efficient way to deal with integrals over Green’s functions is iterated adaptive
integration (IAI) [KBB+23]. The idea behind iterated integration is to perform the integrals
over different dimensions in series. For the integral (2.16) for instance,

F (kx) =
ˆ π

−π

dky

2π
Gk(ω + iη) (2.22)

Gloc(ω + iη) =
ˆ π

−π

dkx

2π
F (kx) , (2.23)

where the integrals (2.22) and (2.23) is evaluated with a standard adaptive integrator, e.g.
adaptive Gauss quadrature [KBB+23]. For a given kx, the integrand in Eq (2.22) contains, in
the present example, two sharp features as a function of ky, where Re G−1

k (ω + iη) = 0. The
sharpness of the features is controlled by η. Using an adaptive grid, such a sharp feature can
be resolved with O(log η−1) ky-points; evaluating Eq. (2.22) therefore scales with O(log η−1).

To ease the discussion of Eq. (2.23), we exploit the fact that in the simple case of the
example (2.16), F (kx) is known exactly,

F (kx) = 1√
(ω + iη + cos kx)2 − 1

. (2.24)

F (kx) also contains a small set of sharp features, in the example (2.16) located where
|ω + cos kx| = 1, with their sharpness again controlled by η. Thus, evaluation of Eq. (2.23)
generically requires O(log η−1) evaluations of F (kx), which in turn requires O(log η−1) eval-
uations of Gk(ω + iη). We therefore expect that IAI requires O([log η−1]2) to evaluate the
2-dimensional integral (2.16). The scaling O([log η−1]2) should be regarded as a worst-case
scenario. Typically, the sharpness of features in F (kx) are more well-behaved w.r.t. η than
those in Gk(ω + iη), which means we can expect O([log η−1]α) scaling, with 1 ≤ α ≤ 2. For
instance, F (kx) in Eq. (2.24) scales with η−1/2 close to its singularities, while Gk(ω + iη)
scales with η−1. In general, α is expected to be upper bounded by d, where d is the dimension
of the integral [KBB+23].

The scaling and performance of IAI are illustrated in Fig. 2.2. We have used MATLAB’s
integral2 function with the option “‘method’,‘iterated’” to produce the data there. In
the table below Fig. 2.2(a), we can see that IAI takes longer than ALT to produce the curves
in Fig. 2.2(a), reflecting the O([log η−1]α) scaling of IAI versus the constant scaling of ALT for
generic frequency points [note that ω = 0 is not part of the frequency grid used in Fig. 2.2(a)].
The O([log η−1]α) scaling is further illustrated in Fig. 2.2(b), where α = 1.5 < 2 for a generic
frequency point which is not at a van Hove singularity. Figure 2.2(c) shows that at the van
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Hove singularity at ω = 0 in our example, the exponent α = 2 saturates, showing that such
points are most challenging for IAI. Importantly, IAI scales reasonably both away from a
van Hove singularity and at a van Hove singularity. In that sense, IAI is more suitable as a
general-purpose integrator, but ALT will in most cases be faster.

Iterated quadratic tetrahedron method

As we have seen in the discussions above, ALT is usually a very fast Green’s function
integration routine. An exception is van Hove singularities, where it performs very poorly
because g(k) cannot be represented reliably using a piecewise linear interpolation. A fix
for this issue would be piecewise quadratic interpolation, but an analytic expression for
the integral can only be obtained in one dimension. IAI on the other hand performs worse
than ALT for generic cases, but it has a much more favorable performance at van Hove
singularities. The performance of IAI is most severely influenced by the initial integral
[Eq. (2.22)], whose integrand is more singular than e.g. the integral Eq. (2.23). Here, I
present a new method that combines the advantages of both IAI and ALT, which I call
iterated quadratic thetrahedron (IQT) method.

The main idea is to proceed as in IAI, but using the adaptive quadratic tetrahedron method
to perform the initial integral (2.22). As for ALT, we assume an integrand of the form
f(k)/g(k), with f and g smooth functions. We proceed by performing the integral

F (kx) =
ˆ

dky
f(kx, ky)
g(kx, ky) ≃

∑
i

ˆ
Li

dky

ai(kx) + bi(kx)ky + ci(kx)k2
y

αi(kx) + βi(kx)ky + γi(kx)k2
y

, (2.25)

where we have partitioned the integration domain in ky-direction into lines Li and have chosen
a quadratic interpolation on every Li. The integral over Li is easy to evaluate analytically,
summing over the contributions gives F (kx). Error control is achieved analogous to ALT.
The remaining procedure is analogous to IAI, i.e. we use a standard adaptive integrator (in
this thesis: MATLAB’s integral function) to integrate F (kx).

We expect that the integral (2.25) has constant scaling with η, regardless of whether we
are close to a van Hove singularity or not. Similar to ALT, this is because g(kx, ky) can be
represented well with piecewise quadratic interpolation, requiring only a small number of ky

points. In contrast to ALT, this now works also close to van Hove singularities because the
interpolation is now quadratic opposed to linear. Using the same arguments as for IAI, we
therefore expect that IQT scales with O([log η−1]α−1), where α is the same exponent as in
IAI. The reason is that IQT is using a much more efficient integration routine to evaluate
Eq. (2.22) (for IAI, this step had a scaling of O(log η−1), opposed to constant for IQT).

Figure 2.2 illustrates the performance of IQT. To produce the curves in Fig. 2.2, IQT takes
between around 1/2 and 1/10 the time of the other two methods. Figures 2.2(b,c) confirm
the expected scaling and illustrate that the exceptionally good performance of IQT holds
both away and at a van Hove singularity.

2.1.4 Improved estimators for ∆(ω)
The evaluation of the local Green’s function Gloc by numerical integration is is subject to an
integration error ϵ. When computing the hybridization function in DMFT via the Dyson
equation,

∆(ω) = ω + µ − Σ(ω) − G−1
loc(ω) , (2.26)
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a relatively small error ϵ ≃ 10−3 can lead to a much larger error for ∆(ω), because (i) Gloc is
inverted and (ii) Eq. (2.26) contains a subtraction. By computing additional functions,

Floc(ω) =
ˆ

k
ϵk Gk(ω) , Iloc(ω) =

ˆ
k

ϵ2
k Gk(ω) , (2.27)

numerically more stable formulas for the hybridization function can be obtained:

∆FG(ω) = Floc(ω)G−1
loc(ω) , (2.28)

∆IFG(ω) = Iloc(ω) − Floc(ω)G−1
loc(ω)Floc(ω) . (2.29)

The formula for ∆IFG came up in a discussion with Fabian Kugler, and both formulas also
appear in Ref. [KK22], while ∆IFG also appears in Ref. [BSB22]. Here, the purpose is to show
that ∆FG and ∆IFG provide numerically more stable alternatives to Eq. (2.26), the precise
context in Refs. [KK22, BSB22] is different. Further, similar formulas also appear in the
literature as more stable alternatives to the Dyson equation for computing the single-particle
irreducible self-energy Σ(ω) [BHP98, Kug22]. A derivation of Eqs. (2.28) and (2.29) can be
found in the supplemental material of Ref. [KK22] and will not be repeated here. We will
denote ∆ computed via Eq. (2.26) by ∆G in this subsection, to clearly distiguish it from
∆FG and ∆IFG. If |∆(ω)| ≪ |Σ(ω)| ≃ |G−1

loc(ω)|, Eq. (2.26) involves the subtraction of two
almost equal numbers which are subject to numerical inaccuracies, which leads to much
larger relative inaccuracies in their difference, ∆(ω). Eqs. (2.28) and (2.29) avoid subtracting
almost equal numbers and are therefore expected to be numerically more stable.

As an example, consider the Hubbard model on a cubic lattice,

H =
∑
kσ

(ϵk − µ)c†
kσckσ + U

∑
i

ni↑ni↓ , (2.30)

with dispersion ϵk = −1
6(cos kx + cos ky + cos kz), µ = U/2 and U = 2.2 at temperature

T = 10−6. The single-site DMFT spectral function, obtained by DMFT plus NRG is shown
in Fig. 2.3(a). We use the ALT method to compute the one-dimensional density of states
integrals,

Gloc(ω) =
ˆ 1

−1
dϵ

ρ(ϵ)
ω + µ − ϵ − Σ(ω) , Floc(ω) =

ˆ 1

−1
dϵ

ϵρ(ϵ)
ω + µ − ϵ − Σ(ω) , (2.31)

Iloc(ω) =
ˆ 1

−1
dϵ

ϵ2ρ(ϵ)
ω + µ − ϵ − Σ(ω) , ρ(ϵ) =

ˆ
BZ

dk
(2π)3 δ(ϵ − ϵk) , (2.32)

where ρ(ϵ) is the non-interacting density of states the cubic lattice (which was precomputed
with high accuracy and stored in the past).

Figure 2.3(b) shows the imaginary parts of Σ, G−1
loc and ∆. The latter is a reference curve,

obtained by a high-accuracy computation of Gloc, Floc and Iloc (error less than 10−12) and
using Eq. (2.29). Around ω ≃ 10−1, we find −ImΣ ≃ ImG−1

loc ≫ −Im∆ (note that the y-axis
of Fig. 2.3(b) is in log scale!). In this region, obtaining −Im∆ via Eq. (2.26) is therefore
prone to numerical errors, and Eqs. (2.28) and (2.29) are significantly more stable. This is
illustrated in Fig. 2.3(c), which shows −Im∆ obtained via Eq. (2.26) (blue, unstable) versus
Eq. (2.29) (red dashed, stable), with the integrals now performed with a more practical
accuracy of 10−3. We have checked that Eq. (2.28) and Eq. (2.29) yield identical results
on the scales shown in Fig. 2.3(c). Around ω ≃ 10−1, −Im∆G has clearly visible artifacts,
which are not present in −Im∆IFG. In Figures 2.3(d,e,f), we show the error of ∆G, ∆FG and
∆IFG for different integration accuracies ε w.r.t the high-accuracy reference curve. Both ∆FG
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Figure 2.3 (a) Local spectral function of the Hubbard model on a cubic lattice in the single-site
DMFT approximation at U = 2.2 and T = 10−6. (b) Corresponding imaginary parts of the self-energy
Σ(ω), hybridization function ∆(ω) and inverse local Green’s function Gloc(ω). Gloc(ω) and ∆(ω) have
been evaluated using an integration accuracy of ϵ = 10−12. (c) Imaginary part of the hybridization
function ∆(ω) using the Dyson equation (2.26) (∆G, blue) and using the improved estimator (2.29)
(∆IFG, red dashed), respectively. A practical integration accuracy of ϵ = 10−3 has been used. ∆G has
clearly visible artifacts where −Im ∆G becomes negative. (d-f) Absolute errors of the estimates ∆G,
∆FG and ∆IFG to the reference curve shown in (b). Both ∆FG and ∆IFG come with an acceptable
error (< 10−3) at moderate integration accuracies (ϵ ≥ 10−4) while ∆G needs smaller ϵ ≃ 10−6 to
achieve an error of less than 10−3.

and ∆IFG have an error of order at most ε, while the error of ∆G significantly exceeds the
integration error in some frequency region.

To conclude, Eqs. (2.28) and (2.29) offer a numerically much more stable alternative to
Eq. (2.26), at the expense of requiring the evaluation of one or two additional integrals,
respectively. From current experience, ∆FG is the best choice since it requires only one
additional integral while performing similarly to ∆IFG in terms of accuracy. It should also be
emphasized that the parameters chosen in this section were picked such that ∆G is prone to
numerical inaccuracies. In many cases, ∆G is accurate for a reasonable integration accuracy
of say ε = 10−3, but ∆FG and ∆IFG offer a safer alternative which also work when Eq. (2.26)
is unstable. Also, while we have concluded here that ∆FG and ∆IFG are equally accurate for
the problem in this section, there is no guarantee that this generically the case.

2.2 Numerical Renormalization Group
In this thesis, we have employed the Numerical Renormalization Group (NRG) as an im-
purity solver to within the DMFT self-consistency equations. NRG is a non-perturbative,
real-frequency impurity solver with unparalleled low-frequency and temperature resolu-
tion [BCP08]. The original ideas for the NRG algorithm were published by Wilson [Wil75]
in 1975 as a solution to the Kondo problem. Back then, NRG could not compute Green’s
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functions or self-energies, a prerequisite for applying it in the DMFT context. This problem
was solved by subsequent work [FO86, CHZ94, BHP98, Hof00, WvD07, Kug22]. Important
developments on the way to its current status were (i) the construction of a complete basis
using NRG by F. B. Anders and A. Schiller [AS05, AS06], (ii) the subsequent development of
the full density matrix NRG (fdm-NRG) by A. Weichselbaum and J. von Delft [WvD07] for
sum-rule conserving spectral functions at arbitrary temperatures, and (iii) the computation
of self-energies via equations of motion by R. Bulla et. al. [BHP98] and F. B. Kugler [Kug22].
In the following, a brief overview of NRG is provided. The NRG code used to produce the
results in this thesis was implemented by S.-S. B. Lee and is based on A. Weichselbaum’s
QSpace tensor library [Wei12, Wei20, Wei24], which allows the exploitation of Abelian and
non-Abelian symmetries.

NRG uses a Hamiltonian formulation of the impurity model,

H = Himp + Hhyb + Hbath , Hhyb =
∑
αλ

Vαλf †
αcλ + h.c. , Hbath =

∑
λ

ϵλc†
λcλ , (2.33)

where fα are annihilation operators on the impurity with flavor α (spin, orbital, etc.), cλ are
annihilation operators for bath flavor λ and Himp is the local impurity Hamiltonian, which
can be an arbitrary function of fα but does not depend on cλ. The number of impurity
flavors Nα, is assumed to be small. NRG can, at the moment, reasonably deal with 4 spinful
fermionic orbitals (Nα = 8) if symmetries can be exploited. On the other hand, the number
of bath flavors λ is usually infinite, and the energies ϵλ are continuous.

The influence of the bath on the impurity is described by the hybridization function ∆(z),

∆αβ(z) =
∑

λ

VαλV ∗
βλ

z − ϵλ
, Γαβ(ω) =

∑
λ

VαλV ∗
βλδ(ω − ϵλ) , (2.34)

where the Hermitian matrix Γ(ω) is the spectral function of ∆(z). In the following, we assume
that Γαβ(ω) ∝ δαβ is diagonal, since this is the case in all situations considered in this thesis.
To make progress with Hamiltonian-based methods, the bath usually needs to be discretized
by approximating Γ(ω) by a discrete set of spectral peaks,

Γα(ω) ≃ Γdisc
α (ω) =

∑
n,ζ=±

|γnζ
α |2δ(ω − ξnζ

α ) . (2.35)

In NRG, a logarithmic discretization is used [Wil75, BCP08], which allows us to resolve
features at different frequency scales with equal accuracy. There, the support of Γα(ω),
[−D−

α , D+
α ], is partitioned into intervals In+

α = D+
α [Λ−n−1, Λ−n] and In−

α = −D−
α [Λ−n, Λ−n−1],

where Λ > 1 is a discretization parameter. A single peak at a representative energy
ξnζ

α ∈ Inζ
α and weight |γnζ

α |2 is chosen per interval and impurity flavor α. The weights
|γnζ

α |2 are chosen such that the total weight of the hybridization spectrum in Inζ
α is conserved,

|γnζ
α |2 =

´
Inζ

α
Γα(ω). For the representative energies, ξnζ

α , we use a scheme invented by R.
Žitko and T. Pruschke [ŽP09, Žit09a] and whose stable implementation was achieved by K. M.
Stadler, c.f. Sec. 2.2.3 of Ref. [Sta19]. The corresponding discretized bath and hybridization
Hamiltonians are

Hdisc
bath =

∑
α,n,ζ

ξnζ
α a†

αnζaαnζ , Hdisc
hyb =

∑
α,n,ζ

γnζ
α a†

αnζfα + h.c. . (2.36)

In the next step, the bath is transformed into a semi-infinite chain using Lanczos tridiagonal-
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ization, known as Wilson chain [Wil75],

Hchain
bath =

∑
α

[ ∞∑
ℓ=1

(
tℓαd†

ℓ−1αdℓα + h.c.
)

+
∞∑

ℓ=0
ϵℓαd†

ℓαdℓα

]
, Hchain

hyb =
∑

α

t0αd†
0αfα + h.c. . (2.37)

Due to the logarithmic discretization, the hopping matrix elements tℓα and on-site energies
ϵℓα decay as ∝ Λ−ℓ/2 and ∝ Λ−ℓ, respectively. The problem has therefore been separated into
energy scales, with

Hchain
L = Himp +

∑
α

[
t0αd†

1αfα + h.c. +
L∑
ℓ=1

(
tℓαd†

ℓ−1αdℓα + h.c.
)

+
L∑
ℓ=0

ϵℓαd†
ℓαdℓα

]
(2.38)

describing the spectrum with a resolution of order Λ−L /2. NRG then uses iterative diagonal-
ization to obtain a full approximate spectrum of limL →∞ Hchain

L . The chain is successively
extended, Hchain

L → Hchain
L +1 , thereby improving energy resolution by a factor Λ−1/2, but also

increasing the Hilbert space size by a factor 2Nα . To keep the problem computationally
feasible, the high-energy part of the spectrum of Hchain

L is discarded and Hchain
L is projected

to its low-energy kept sector before extending the chain. Thus, the high-energy discarded
states |s⟩D

L are not further fine-grained and therefore computed with resolution Λ−L /2, while
the low-energy kept states |s⟩K

L are further fine-grained. Because tL +1 ≪ tL , Hchain
L +1 is

not expected to strongly mix |s⟩K
L and |s⟩D

L , which justifies the truncation. Typically, the
approximate eigenenergies EL

s are shifted by the ground state energy EL
0 and rescaled by the

scale Λ−L /2. This helps to avoid small numbers and identify crossovers and fixed points in the
low-energy spectra, but is conceptionally not necessary. The iterative diagonalization is halted
at some length L max after a certain desired energy resolution Λ−L max/2 has been reached. In
fdm-NRG, this resolution is set by the temperature, Λ−L max/2 ≃ T [WvD07, Wei12].

As was pointed out by Anders and Schiller [AS05, AS06], the iterative diagonalization
generates a complete approximate eigenbasis of Hchain

L max
,

Hchain
L max |s⟩D

L ⊗ |e⟩L ≃ EL
s |s⟩D

L ⊗ |e⟩L , (2.39)

where |e⟩L = |σL +1⟩ ⊗ · · · ⊗ |σL max⟩ is some product state on sites L + 1 to L max. Thus, the
energy level EL

s has, by construction, a degeneracy of 2Nα(L max−L ), which reflects that the
discarded states have not been fine-grained further. In the fdm-NRG scheme, the approximate
eigenstates are used to set up a full approximate eigenbasis, construct a thermal density
matrix and compute spectral functions using the Lehmann representation [WvD07, Wei12].

Since we have discretized the originally continuous bath, the spectral functions computed
with fdm-NRG consist of discrete δ-peaks with an exponentially increasing density towards
ω = 0, reflecting the exponentially fine energy resolution of fdm-NRG around ω = 0. These
discrete spectral peaks are broadened using a log-Gaussian kernel [LW16] to mimic the effect
of the bath modes which have been truncated by the logarithmic discretization.

To improve the resolution of NRG, several calculations with shifted discretization grids can
be performed, known as z-averaging. For that, several, (usually equally-spaced) parameters
z ∈ [0, 1) are chosen to define shifted discretization intervals In+

α (z) = D+
α [Λ−n−1−z, Λ−n−z]

and In−
α (z) = −D−

α [Λ−n−z, Λ−n−1−z]. The results from separate fdm-NRG calculations
with different z are in the end averaged to achieve higher resolution, especially at high
frequencies [OO94, ŽP09]. By considering the effect of an infinitesimal z-shift on the spectra,
it is further possible to adaptively adjust the widths of the log-Gaussian broadening kernels,
which further improves high-frequency resolution [LW16, LvDW17a].

The z-shifting trick can also be used to reduce the computational cost if Nα is large, known
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as interleaved NRG (iNRG) [MGWF+14, SMvDW16]. For that, different shift parameters
zα are used for the different impurity flavors α, which introduces an artificial scale separation
between flavors. Due to that, different flavors can be added in series during the iterative
diagonalization, which reduces the Hilbert space dimension at every diagonalization step and
thus the computational cost.

2.3 Matrix product states
This section introduces matrix product states (MPS), which offer a very efficient representation
of one-dimensional quantum states. For reviews on MPS, see Refs. [Sch11, CPGSV21]. The
discussion which follows is partially based on parts of Ref. [P1] and extensively uses the
notation developed there. Consider a quantum state

|Ψ⟩ =
∑

σ1,...,σL

Ψσ1...σL |σ1 . . . σL ⟩ , (2.40)

where {|σℓ⟩} are basis vectors of some local, low-dimensional Hilbert space vℓ with dimension
d, e.g. a local moment or a spinful fermionic orbital. In general, the wavefunction Ψσ1...σL

can be decomposed as a product of matrices Mσℓ
ℓ , known as MPS representation,

Ψσ1...σL = Mσ1
1 . . . MσL

L =
LM1M 2M

1σ 2σ
1α 2α1 1

Lσ
1−Lα

. (2.41)

Here, we have used a graphical notation that represents the tensors Mℓ as circles with legs
representing tensor indices. Connected legs are summed over. The MPS representation
is useful if the rank of Mσℓ

ℓ is small (say at most D, called bond dimension), or if a
controlled low-rank approximation can be found. In that case, the number of parameters
needed to represent the wavefunction has been reduced dramatically, from initially O(dL ) to
O(L D2d). The existence of a controlled low-rank approximation can be proven for ground
states of one-dimensional gapped local Hamiltonians [Has07, ECP10, AKLV13, BH15]. In
general, the MPS representation is very efficient for one-dimensional systems, even if they are
critical [VC06, PMTM09]. For this reason, MPS algorithms are arguably the most powerful
numerical tools available to date to treat (quasi-) one-dimensional systems. An important
class of effectively one-dimensional systems are impurity models, as we have seen for NRG
in Sec. 2.2 where we have mapped the impurity model on a Wilson chain. As discussed in
Sec. 2.3.1, NRG can be formulated as an MPS method [Wei12]. Apart from NRG, other
impurity solvers based on MPS [WMPS14, WMS14, WGM+15, FH17, BBLG+23, CLSP24]
or more general loopless tensor network states [BZT+17, GWK+24] are becoming increasingly
popular in the DMFT community.

The MPS representation is not unique since we can insert some invertible matrix X and
its inverse between two MPS matrices, Mσℓ

ℓ M
σℓ+1
ℓ+1 = Mσℓ

ℓ XX−1M
σℓ+1
ℓ+1 = M̃σℓ

ℓ M̃
σℓ+1
ℓ+1 , with

M̃σℓ
ℓ = Mσℓ

ℓ X and M̃
σℓ+1
ℓ+1 = X−1M

σℓ+1
ℓ+1 . Since M and M̃ represent the same state, an MPS

has a gauge freedom. A very convenient gauge is the so-called bond-canonical form,

Ψσ = 1A �A LB

1−�D +1�D�D�D

�Λ1−�A +1�B
, (2.42)

where the bond matrix Λℓ ( ) is called isometry center and Aℓ̃ ( ) and Bℓ̃′ ( ) are left
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and right isometries, respectively. They fulfill the isometry conditions

= == =
�̃A

�̃
∗A
α

α′α

α

′α

′α

α

′α
ᾱ ᾱ

′�̃
∗B

′�̃
B

,′αα

]
�̃
K

[
′αα

]
1−′�̃

K
[

, (2.43)

where lines denote identities and K stands for kept space, denoted VK
ℓ̃

and WK
ℓ̃′ , respecively.

The isometry Aℓ̃ is an orthogonal map from the parent space VP
ℓ̃

= V
K
ℓ̃−1 ⊗ vℓ̃ to the kept

space VK
ℓ̃

, and likewise for Bℓ̃′ . The kept spaces are spanned by the kept states

|ΨK
ℓ̃α

⟩ =
∑

σ1...σℓ̃

[ΨK
ℓ̃α

]σ1...σℓ̃ |σ1 . . . σℓ̃⟩ , |ΦK
ℓ̃′α′⟩ =

∑
σℓ̃′ ...σL

[ΦK
ℓ̃′α′ ]σℓ̃′ ...σL |σℓ̃′ . . . σL ⟩ (2.44)

ΨK
ℓ̃α

=
1A �̃A

α ΦK
ℓ̃′α′ =

LB′�̃B
′α , (2.45)

which form an orthonormal basis due to the isometry condition (2.43). Using the kept states
and the bond matrix Λℓ (chosen to be diagonal), we obtain a Schmidt decomposition of |Ψ⟩,

|Ψ⟩ =
∑

α

[Λℓ]αα|ΨK
ℓα⟩ ⊗ |ΦK

ℓ+1α⟩ . (2.46)

We can also define orthogonal complements to Aℓ̃ and Bℓ̃′ , denoted by Aℓ̃ ( ) and B ℓ̃′

( ). They also fulfill isometry conditions and they are orthogonal to Aℓ̃ and Bℓ̃′ ,

A
†
ℓ̃
A

ℓ̃
= 1D

ℓ̃
, A†

ℓ̃
A

ℓ̃
= 0 , B

ℓ̃′B
†
ℓ̃′ = 1D

ℓ̃′−1 , B
ℓ̃′B

†
ℓ̃′ = 0 ,

1−˜= == = , , ,= 0 = 0D D

˜ ˜˜˜
˜ , (2.47)

where D stands for discarded space, denoted VD
ℓ̃

and WD
ℓ̃′ . The discarded spaces are such

that together with the kept space, they span the full parent space, i.e. VK
ℓ̃

⊕VD
ℓ̃

= VP
ℓ̃

and
W

K
ℓ̃′ ⊕WD

ℓ̃′ = WP
ℓ̃′ . Thus, the direct sum of Aℓ̃ and Aℓ̃, Aℓ̃ ⊕ Aℓ̃ = ⊕ is a unitary on the

parent space VP
ℓ̃

= V
K
ℓ̃−1 ⊗ vℓ̃, and likewise for Bℓ̃′ and B ℓ̃′ . Similar to the kept states, we

can use the isometries to write down wavefunctions for the discarded states,

|ΨD
ℓ̃α

⟩ =
∑

σ1...σℓ̃

[ΨD
ℓ̃α

]σ1...σℓ̃ |σ1 . . . σℓ̃⟩ , |ΦD
ℓ̃′α′⟩ =

∑
σℓ̃′ ...σL

[ΦD
ℓ̃′α′ ]σℓ̃′ ...σL |σℓ̃′ . . . σL ⟩ (2.48)

ΨD
ℓ̃α

=
1A

,α
�̃A

ΦD
ℓ̃′α′ =

LB
,′α

′�̃B
(2.49)

which span the discarded spaces VD
ℓ̃

and WD
ℓ̃′ , respectively.

Another convenient gauge, the so-called site-canonical gauge, can be obtained by contracting
Cℓ = AℓΛℓ in Eq. (2.42),

Ψσ =
1σ �σ1−�σ +1�σ

1A 1−�A �C +1�B

Lσ

LB

1−�D2−�D +1�D�D
. (2.50)

Shifting the isometry center or finding the canonical form can be done using singular value
decompositions (SVD) or QR decompositions as usual, c.f. for instance Eq.(7) of Ref. [P1] or
Ref. [Sch11].
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The set of MPS with bond-dimension D forms a submanifold of the full space V =
v1 ⊗ · · · ⊗ vL , denoted MD-MPS [HOV13, HMOV14]. It is not a vector space since for
instance adding two bond-dimension D MPS generally leads to an MPS with bond dimension
2D, i.e. the result is not in MD-MPS. The tangent space TΨMD-MPS ⊂ V denotes the space
of 1-site changes of |Ψ⟩ ∈ MD-MPS. A projector to TΨMD-MPS, denoted P1s, can be written
down using the kept and discarded isometries of |Ψ⟩ [LOV15, HLO+16, P1],

P1s =
L∑
ℓ=1 �

+
LL1

(2.51)

=
L∑
ℓ=1 �︸ ︷︷ ︸

P1s
ℓ

−
L −1∑
ℓ=1 �︸ ︷︷ ︸

Pb
ℓ

, (2.52)

where we have defined single-site and bond projectors P1s
ℓ and Pb

ℓ , respectively. A generic
tangent vector |∂Ψ⟩ ∈ TΨMD-MPS does not have a bond-dimension D MPS representation.
Thus, taking macroscopic steps within the tangent space will in general result in a state that
is not in MD-MPS, which reflects that this manifold has a curvature. There are, however,
subspaces of TΨMD-MPS within which we can take macroscopic steps while remaining on
MD-MPS (MD-MPS is therefore flat in these directions, i.e. the (non-uniform) MPS manifold
is a ruled manifold [HMOV14]). These are for instance the images of the single-site projectors
P1s

ℓ (denoted V1s
ℓ ) and bond projectors Pb

ℓ (denoted Vb
ℓ ), i.e. |Ψ⟩ + aP1s

ℓ |∂Ψ⟩ ∈ MD-MPS
and likewise for Pb

ℓ . Further, |Ψ⟩ ∈ V1s
ℓ and |Ψ⟩ ∈ Vb

ℓ . As a result, we can manipulate an
MPS within the subspaces V1s

ℓ and Vb
ℓ at will without leaving MD-MPS. This is for instance

used in ground-state search, c.f. Sec. 2.3.2. The tangent space projector can be decomposed
into projectors to V1s

ℓ and Vb
ℓ , c.f. Eq. (2.52) [HLO+16]. This convenient decomposition is

used in time evolution within MD-MPS, c.f. Sec. 2.3.3.
Another important projector is the 2-site generalization of P1s [HLO+16, P1],

P2s =
L −1∑
ℓ=1 �︸ ︷︷ ︸

P2s
ℓ

−
L −1∑
ℓ=2 �︸ ︷︷ ︸

P1s
ℓ

. (2.53)

For an n-site generalization, see Ref. [P1].
Similar to states, we can represent operators like the Hamiltonian Ĥ as matrix product

operators (MPO),

Ĥ =
∑
σ,σ′

|σ1 . . . σL ⟩Hσ1...σL
σ′

1...σ′
L

⟨σ′
1 . . . σ′

L | , (2.54)

Hσ1...σL
σ′

1...σ′
L

= [W1]σ1
σ′

1
. . . [WL ]σL

σ′
L

= LW1W 2W

1σ 2σ
1 1

1
′σ 2

′σ
L
′σ

Lσ
1−Lν1ν 2ν

, (2.55)

with an MPO bond dimension denoted w. Important for ground-state search and time
evolution are the bond, 1-site and 2-site projections of Ĥ,

Hb
ℓ =

� +1�

, H1s
ℓ = ,

� +1�1−�

H2s
ℓ = ,

� +1� +2�1−�

(2.56)
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with the left and right environments

Lℓ = = =

1 � �� 1−�L

, Rℓ = = =

� L � +1�R

. (2.57)

2.3.1 Numerical renormalization group as an MPS method

The kept and discarded states in NRG are naturally generated as MPS [Wei12]. Consider the
situation where we have iteratively diagonalized the Wilson chain up to site ℓ̃− 1, i.e. we have
computed the kept and discarded states |s⟩K

ℓ̃−1 and |s⟩D
ℓ̃−1, respectively. Since the discarded

states are not further fine-grained, we project Hchain
ℓ̃

to the subspaceVP
ℓ̃

= span{|s⟩K
ℓ̃−1⊗|σℓ̃⟩},

called parent space in the parlace of Sec. 2.3. We now proceed by diagonalizing the projected
Hamiltonian,

[
Hchain

ℓ̃

]P =
∑
sσℓ̃

∑
s′σ′̃

ℓ

|sK
ℓ̃−1σℓ̃⟩ ⟨sK

ℓ̃−1σℓ̃|H
chain
ℓ̃

|s′K
ℓ̃−1σ′

ℓ̃
⟩︸ ︷︷ ︸[

Hchain
ℓ̃

]
sσ

ℓ̃
,s′σ′̃

ℓ

⟨s′K
ℓ̃−1σ′

ℓ̃
| diag=

∑
s̃

|s̃⟩X
ℓ̃

E ℓ̃
s̃⟨s̃|X

ℓ̃
, (2.58)

|s̃⟩X
ℓ̃

=
∑
sσℓ̃

U
σℓ̃
ss̃ |sK

ℓ̃−1σℓ̃⟩ , (2.59)

where X is a placeholder for K or D and U is the unitary which diagonalizes the matrix[
Hchain

ℓ̃

]
sσℓ̃,s′σ′̃

ℓ
. The states |s̃⟩X

ℓ̃
are now split into kept (K) and discarded (D) based on their

energy E ℓ̃
s̃, which amounts to splitting the unitary U into kept and discarded isometries Aℓ̃

( ) and Aℓ̃ ( ), respectively. Thus, we can write the kept and discarded states as

|s̃⟩K
ℓ̃

=
∑
sσℓ̃

[
A

σℓ̃

ℓ̃
]ss̃|sK

ℓ̃−1σℓ̃⟩ , |s̃⟩D
ℓ̃

=
∑
sσℓ̃

[
A

σℓ̃

ℓ̃
]ss̃|sK

ℓ̃−1σℓ̃⟩ . (2.60)

Representing the K states from earlier shells ℓ̃′ < ℓ̃ in the same way leads to an MPS
representation of both kept and discarded states,

|s̃⟩K
ℓ̃

=
∑

σ1...σℓ̃

[
Aσ1

1 . . . A
σℓ̃

ℓ̃

]
1s̃︸ ︷︷ ︸

1A �̃A
α

|σ1 . . . σℓ̃⟩ , |s̃⟩D
ℓ̃

=
∑

σ1...σℓ̃

[
Aσ1

1 . . . A
σℓ̃−1
ℓ̃−1 A

σℓ̃

ℓ̃
]1s̃︸ ︷︷ ︸

1A
,α

�̃A

|σ1 . . . σℓ̃−1σℓ̃⟩ .

(2.61)

Using this MPS representation is very convenient for bookkeeping, and the computation of
thermal expectation values, spectral weights, etc. can be nicely formulated in terms of tensor
network diagrams [Wei12].

2.3.2 Denstiy matrix renormalization group

The density matrix renormalization group (DMRG) [Sch05, Sch11] is currently the standard
algorithm for MPS ground-state search. It was invented by S. R. White in 1992 [Whi92,
Whi93], but its connection to MPS was realized only later by S. Östlund and S. Rommer [OR95,
RO97, VPC04]. Given a Hamiltonian Ĥ, DMRG is designed to find an optimal bond-
dimension D MPS by minimizing the cost function

E(Ψ) = ⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩

(2.62)
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with |Ψ⟩ ∈ MD-MPS. To achieve that, DMRG uses that MD-MPS is ruled. Thus no matter
where |Ψ⟩ is on MD-MPS, there is a large number of directions, V1s

ℓ ⊂ TΨMD-MPS, in which
MD-MPS is completely flat. Thus, we can search for the optimal solution of E(Ψ) in V1s

ℓ

without having to worry about leaving MD-MPS. Since V1s
ℓ is a subspace of TΨMD-MPS and

therefore a vector space, we can search for the optimal solution using conventional linear
algebra operations. In the present case, we can find the optimal solution in V1s

ℓ by finding
the ground state of Ĥ projected to this space, H1s

ℓ = P1s
ℓ ĤP1s

ℓ [c.f. Eq. (2.56)], i.e. we have
to solve for the ground state of the eigenvalue problem

H1s
ℓ Cℓ = E Cℓ ,

�

E=

� +1�1−�

, (2.63)

where Cℓ is the isometry center in the bond-canonical form (2.50). Solving for the ground
state Eq. (2.64) comes with a computational cost of O(D3dw) if an iterative eigensolver is
used, see [Sch11] for more details. This concludes a local DMRG optimization step, called
single-site (1s) update since a single-site tensor of the MPS is updated. Global optimization
of E(Ψ) is achieved by iteratively moving from site to site and updating |Ψ⟩, called sweeping.
Sweeping is repeated until changes of E(Ψ) are below some convergence threshold. An
important property of the tangent space is that it is completely covered by the flat directions,
TΨMD-MPS = ∪ℓV

1s
ℓ . Due to that, the DMRG algorithm does not miss any directions, which

may otherwise constrain the solution to some submanifold of MD-MPS.
It should be noted that the manifold of uniform MPS (uMPS) with bond dimension D,

MD-uMPS, is not ruled [HMOV14]. This is because changing a single tensor in a uMPS
generally leads to a non-uniform MPS which is not in MD-uMPS. For that reason, optimizing
uMPS is usually more complicated, and is done for instance either by using retractions to
remain on MD-uMPS [HDH21] or by leaving MD-uMPS during optimization, followed by a
projection back on MD-uMPS. The latter strategy is for instance used by the variational
uMPS (VUMPS) algorithm [ZSVF+18].

In practical applications, precisely sticking to MD-MPS turns out to be not very useful.
First, D may be too small to reliably approximate the true ground state of the system. In that
case, we would like to adjust D accordingly. Generically, since DMRG scales with O(D3), it
is advantageous to start with some small D and gradually increase it while sweeping. Second,
when exploiting symmetries, the MPS manifold is not fully classified by D, but we further
need information on the sizes of the symmetry sectors (labeled by quantum numbers q) at
bond ℓ, Dq

ℓ . Thus, the set {Dq
ℓ } determines our MPS manifold and we would like to choose an

optimal manifold at a given bond dimension Dℓ = ∑
q Dq

ℓ . Third, even if the bond dimension
and quantum number sectors do not need further adjustment, it can be advantageous for
convergence to search for an optimal solution in a slightly larger space and then project back
on MD-MPS.

The standard extension of 1s DMRG to meet the demands above is 2-site (2s) DMRG,
which can grow the bond dimension, adjust the sizes of quantum number sectors, and in
general venture away from MD-MPS to accelerate convergence. Instead of solving for the
ground state of H1s

ℓ during the update, 2-site DMRG updates the state by finding the ground
state of H2s

ℓ = P2s
ℓ ĤP2s

ℓ , see also Eq. (2.56). For that, we have to solve for the ground state
of the eigenvalue problem

H2s
ℓ Ψ2s

ℓ = E Ψ2s
ℓ , E=

� +1� � +1�+2�1−�
, (2.64)
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where Ψ2s
ℓ = AℓΛℓBℓ+1 is the 2-site wavefunction. Before we can move on from site ℓ to

ℓ + 1, we have to decompose Ψ2s
ℓ into the isometries Aℓ and Bℓ+1 and the bond matrix Λℓ

using SVD. In general, Λℓ will be a Dd × Dd matrix, which means the newly optimized
MPS is not in MD-MPS. To project it back on MD-MPS, we truncate the small eigenvalues of
Λ†

ℓΛℓ (or equivalently the small singular values of Ψ2s
ℓ ), which amounts to finding the state

on MD-MPS which has the largest overlap with the state directly after 2-site optimization.
In general, the quantum number sectors of the state after optimization and truncation will
have different sizes than before optimization, i.e. the 2-site update adjusts the relative sizes
of quantum number sectors. Further, we can decide not to fully truncate down to bond
dimension D, which allows us to control the bond dimension. Typically, one monitors the
truncated weight of Λ†

ℓΛℓ to determine whether the bond dimension is adequate or not. The
truncation step concludes the 2-site update. Otherwise, 2-site DMRG functions analogous to
single-site DMRG. Due to exploring a larger space, the 2-site update comes with an increased
computational cost of O(D3d2w) for the iterative eigensolver and O(D3d3) for the SVD (the
latter has a smaller prefactor than the former).

In many cases, 2-site DMRG converges very well and, despite the increased computational
cost, is preferred over 1-site DMRG, for the reasons discussed above. There are however cases
where 2-site DMRG has convergence problems. For such situations, mixing methods like
density matrix perturbation [Whi05] or DMRG3S [HMSW15] have been developed. These
mixing methods can also be used together with the 1-site update, which would lead to 1-site
computational cost. In practice, convergence is faster if one uses mixing with the 2-site update,
which is what is often done nowadays [SW12]. In Ref. [P2], we have developed a so-called
controlled bond expansion (CBE) algorithm which has very similar convergence properties as
the 2-site update, but at a reduced computational cost of O(D3dw), i.e. 1-site cost. Using the
CBE update together with mixing provides a computationally cheap algorithm with excellent
convergence properties.

2.3.3 Time-dependent variational principle for MPS

Apart from ground state search, another important application of MPS is time evolution.
For an overview of MPS time evolution methods, see Ref. [PKS+19]. Here, we focus on the
time-dependent variational principle (TDVP) [Dir30, McL64] for MPS, which aims to solve
the time-dependent Schrödinger equation constrained to the manifold MD-MPS [HCO+11].
For that, we have to solve the differential equation [HLO+16]

d|Ψ(t)⟩
dt

= −iP1s
Ψ(t)Ĥ|Ψ(t)⟩ , (2.65)

where |Ψ(t)⟩ ∈ MD-MPS is a bond-dimension D MPS and P1s
Ψ(t) is its tangent-space projec-

tor (2.52). We have indicated Ψ(t) as a subscript of the projector to convey that it inherits
a time dependence from |Ψ(t)⟩. Due to the time dependence of the projector, Eq. (2.65)
amounts to quite an intimidating set of non-linear coupled differential equations [HCO+11].
These can be conveniently dealt with using the projector splitting integrator of C. Lubich
and I. V. Oseledets [LO13]. This approach uses the decomposition (2.52) of the tangent
space projector in terms of P1s

ℓ and Pb
ℓ . To first order in a small timestep δt, this leads to

a set of first-order linear differential equations for the site tensors Cℓ and bond matrices
Λℓ [HLO+16],

dCℓ(t)
dt

= −iH1s
ℓ Cℓ(t) ,

dΛℓ(t)
dt

= iHb
ℓ Λℓ(t) . (2.66)
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These are then solved in series, i.e. by sweeping from site 1 to L and updating Cℓ(t) →
Cℓ(t+δt), followed by an update of Λℓ(t) → Λℓ(t+δt). Integrating each individual contribution
to Eq. (2.66) can be done by exponentiating H1s

ℓ and Hb
ℓ (usually by means of a Lanczos

scheme). The projector splitting approach again uses the fact that MD-MPS is completely
flat when projecting to V1s

ℓ or Vb
ℓ , which allows us to stay on MD-MPS without having to

worry about any curvature. We have to pick δt since the projector splitting approach has an
error of O(δt2). Higher-order integration schemes can be used which introduce an error of
O(δtn+1), but also require more sweeps.

Similar to 1-site DMRG, MD-MPS is usually too restrictive to achieve reliable time evolution.
In Ref. [HLO+16], a 2-site TDVP algorithm based on Eq. (2.53) has been proposed. It amounts
to iteratively solving the differential equations

dΨ2s
ℓ (t)
dt

= −iH2s
ℓ Ψ2s

ℓ (t) ,
dCℓ(t)

dt
= iH1s

ℓ Cℓ(t) , (2.67)

for a small timestep δt. Here, Ψ2s
ℓ (t) = Aℓ(t)Λℓ(t)Bℓ+1(t) is again the 2-site wavefunction.

Similar to 2-site DMRG, it has to be decomposed into isometries Aℓ and Bℓ+1 and the bond
matrix Λℓ using SVD, followed by truncation to keep the bond dimension manageable. In
that way, 2-site TDVP can dynamically adjust the bond dimension and change the sizes of
quantum number sectors.

As for DMRG, the 1-site TDVP algorithm has a cost of O(D3dw) while the 2-site algorithm
comes at a cost of O(D3d2w) (not including the SVD). For that reason, multiple bond
expansion schemes to reduce the cost of 2-site TDVP have been proposed [YPZ+20, DC21,
XXX+22]. In Ref. [P3], we show that the CBE scheme we developed for DMRG in Ref. [P2]
also works very well for TDVP.

2.4 n-site generalization of the tangent space projector

2.4.1 Overview

In Sec. 2.3, we have introduced the tangent space projector (2.52), which was an important
conceptional ingredient of the single-site DMRG and TDVP algorithms. In Eq. (2.53), we
have further introduced its 2-site generalization, which is conceptionally important for the
2-site generalizations of DMRG and TDVP. The construction of these projectors was based
on the kept and discarded isometries discussed in Sec. 2.3.

In Ref. [P1], we use the diagrammatic notation for the kept and discarded isometries
introduced there (which was also used in Sec. 2.3) to explicitly construct n-site generalizations
of the tangent space projector (2.52), denoted Pns. We further reveal a nested structure of
these projectors. An n-site projector Pns can be decomposed into an (n−1)-site projector Pns

and an irreducible n-site projector Pn⊥. These irreducible projectors are mutually orthogonal,
Pn⊥Pn′⊥ = δn,n′Pn⊥. As a result, the n-site projectors can be decomposed into irreducible
n ≥ n′-site contributions, Pns = ∑n

n′=0 Pn′⊥, with P0⊥ = |Ψ⟩⟨Ψ|. Since PL s = 1 is the
identity on the full Hilbert space, the irreducible projectors induce a complete orthogonal
decomposition of the identity, 1 = ∑

L
n′=0 Pn′⊥.

This decomposition of the identity is particularly convenient when computing connected
equal-time correlation functions,

⟨A B⟩c = ⟨Ψ|A B|Ψ⟩ − ⟨Ψ|A|Ψ⟩⟨Ψ|B|Ψ⟩ = ⟨Ψ|A
(
1 − |Ψ⟩⟨Ψ|

)︸ ︷︷ ︸∑L

n′=1 Pn′⊥

B|Ψ⟩ =
L∑

n′=1
⟨A B⟩n′

c , (2.68)
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where ⟨A B⟩n′
c = ⟨Ψ|A Pn′⊥ B|Ψ⟩ is the irreducible n′-site contribution the connected correla-

tion function. It is in general numerically more stable to compute the connected correlation
function via orthogonal projectors instead of subtracting expectation values, especially if
⟨A B⟩c ≪ ⟨Ψ|A B|Ψ⟩. Further, if either A or B are sums of operators which act non-trivially
only on at most ℓ consecutive sites, it is easy to show that ⟨A B⟩n

c = 0 if n > ℓ. Since this
is the case in many situations of interest, it usually suffices to compute a small number
of contributions ⟨A B⟩n

c . An important example is the case where A = B = Ĥ, i.e. the
computation of the energy variance. Up to n = 2, this was first considered in Ref. [HHS18].
In Ref. [P1], we generalize this to arbitrary n.
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Any matrix product state |�〉 has a set of associated kept and discarded spaces, needed for the description
of |�〉, and changes thereof, respectively. These induce a partition of the full Hilbert space of the system into
mutually orthogonal spaces of irreducible n-site variations of |�〉. Here, we introduce a convenient projector
formalism and diagrammatic notation to characterize these n-site spaces explicitly. This greatly facilitates the
formulation of MPS algorithms that explicitly or implicitly employ discarded spaces. As an illustration, we derive
an explicit expression for the n-site energy variance and evaluate it numerically for a model with long-range
hopping. We also describe an efficient algorithm for computing low-lying n-site excitations above a finite MPS
ground state.
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I. INTRODUCTION

Matrix product states (MPS) are widely used for the nu-
merical description of quantum systems defined on one- or
two-dimensional lattices. Well-known MPS-based algorithms
include ground-state searches and time evolution using the
density matrix renormalization group (DMRG and tDMRG)
[1–6], time-evolving block decimation (TEBD) methods
[7–9], or the time-dependent variational principle (TDVP)
[10–14]; and the computation of spectral information us-
ing the numerical renormalization group (NRG) [15–17],
DMRG [18–21], or so-called post-MPS approaches [14,22];
see Refs. [23–25] for reviews.

All such algorithms involve update steps: a quantum state
of interest, |�〉, is represented in MPS form, and its con-
stituent tensors are updated, e.g., during optimization or time
evolution. During an update, highly relevant information is
kept (K) and less relevant information discarded (D). A se-
quence of updates thereby endows the full Hilbert space of
the system V with a structure of intricately nested K or D sub-
spaces, changing with each update, containing states from V,
which either do (K) or do not (D) contribute to the description
of |�〉.

The nested structure of V is rarely made explicit in the
formulation of MPS algorithms. A notable exception is NRG,
where D states are used to construct a complete basis [26] of
approximate energy eigenstates for V, facilitating the com-
putation of time evolution or spectral information [16,17].
For the computation of local multipoint correlators [27] using
NRG, it has proven useful to elucidate the structure of K and
D subspaces by introducing projectors having these subspaces
as their images. The orthogonality properties of K and D pro-
jectors bring structure and clarity to the description of rather
complex algorithmic strategies.

Inspired by the convenience of K and D projectors in the
context of NRG, we here introduce an analogous but more

general K, D projector formalism and diagrammatic conven-
tions suitable for the description of arbitrary MPS algorithms.
In particular, our K, D projectors offer a natural language for
the formulation of algorithms that explicitly or implicitly em-
ploy discarded spaces; this includes algorithms evoking the
notion of tangent spaces [10,12–14,22] and generalizations
thereof, as will be described later.

To formulate the goals of this paper, we here briefly indi-
cate how the nested subspaces mentioned above come about.
Concrete constructions follow in later sections.

An MPS |�〉 written in canonical form is defined by a set
of isometric tensors [23]. The image space of an isometric
tensor, its kept space, is needed for the description of |�〉. The
orthogonal complement of the kept space, its discarded space,
is not needed for |�〉 itself, but for the description of changes
of |�〉 due to an update step, e.g., during variational optimiza-
tion, time evolution, or the computation of excitations above
the ground state. Any such change can be assigned to one of
the subspaces Vns in the nested hierarchy

V0s ⊂ V1s ⊂ V2s ⊂ · · · ⊂ VL s = V, (1)

where V is the full Hilbert space of a system of L sites, Vns

the subspace spanned by all n-site (ns) variations of |�〉, and
V0s = span{|�〉} the one-dimensional space spanned by the
reference MPS itself. The orthogonality of kept and discarded
spaces induces a partition of each Vns into nested orthogonal
subspaces [6,28], such that

Vns = ⊕n
n′=0V

n′⊥, (2)

where Vn⊥ is the subspace of Vns spanned by all irreducible
ns variations not expressible through n′s variations with n′ <

n, and V0⊥ = V0s. In particular, the full Hilbert space can be
represented as V = ⊕L

n=0V
n⊥.

The subspaces defined above underlie, implicitly or explic-
itly, all MPS algorithms. V1s is the so-called tangent space
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of |�〉, i.e., the space of all one-site (1s) variations of |�〉.
It plays an explicit role in numerous recent MPS algorithms,
such as TDVP time-evolution, or the description of transla-
tionally invariant MPS and their excitations [13,14,28]. It also
features implicitly in MPS algorithms formulated using 1s
update schemes, such as the 1s formulation of DMRG [23],
because 1s updates explore states from V1s. Likewise, the
space V2s implicitly underlies all 2s MPS algorithms such
as 2s DMRG ground-state search, 2s time-dependent DMRG
(tDMRG), or 2s TDVP, in that 2s updates explore states from
V2s. Moreover, V1⊥ and V2⊥ are invoked explicitly when
computing the 2s energy variance, an error measure for MPS
ground-state searches introduced in Ref. [6]. Finally, Vns is
implicitly invoked in MPS algorithms defining excited states
of translationally invariant MPS through linear combinations
of local excitations defined on n sites [22].

The construction of a basis for Vns and Vn⊥ is well known
for n = 1 [12], and for n = 2 it is outlined in Ref. [6]. How-
ever, we are not aware of a general, explicit construction for
n>2, as needed, e.g., to compute the ns energy variance.
Here, we explicitly construct projectors, Pns and Pn⊥, having
Vns and Vn⊥ as images, respectively. For n = 1, this amounts
to a construction of a basis for the tangent space V1s. More
generally, our K,D projector formalism used to construct Pns

and Pn⊥ greatly facilitates the formulation of MPS algorithms
that explicitly or implicitly employ discarded spaces. As an
illustration, we derive an explicit expression for the n-site
energy variance, generalizing the error measure proposed in
Ref. [6], and evaluate it numerically for a model with long-
range hopping, the Haldane-Shastry model. We also show
how the multiparticle ns excitations proposed in Ref. [22]
are formulated in our scheme, and propose a strategy for
computing them explicitly, for any n.

We expect that the K, D projector formalism developed here
will be particularly useful for improving the efficiency of MPS
algorithms by incorporating information from Vn⊥ into suit-
ably expanded versions of V(n′<n)s without fully computing
Vn⊥. For example, we have recently developed a scheme,
called controlled bond expansion, which incorporates 2s in-
formation into 1s updates for DMRG ground-state search [29]
and TDVP time evolution [30], in a manner requiring only 1s
costs.

This paper is structured as follows. In Sec. II we col-
lect some well-known facts about MPSs, and formally define
the associated kept and discarded spaces and corresponding
projectors. Section III, the heart of this paper, describes the
construction of the Pns and Pn⊥ projectors for general n. As
applications of our projector formalism, we compute the ns
energy variance of the Haldane-Shastry model in Sec. IV, and
describe the construction and computation of ns excitations in
Sec. V. We end with a brief outlook in Sec. VI.

II. MPS BASICS

This section offers a concise, tutorial-style summary of
MPS notation and the associated diagrammatics. Moreover,
we formalize the notion of kept spaces, needed to describe an
MPS |�〉, and discarded spaces, needed to describe changes
to it at specified sites. We also recapitulate the definition of

local bond, 1s and 2s projectors routinely used in 1s and 2s
MPS algorithms.

A. Basic MPS notation

Consider a quantum chain with sites labeled � = 1, ...,L .
Let each site be represented by a d-dimensional Hilbert space
v� with local basis states |σ�〉, σ� = 1,..., d . The full Hilbert
space is V =∏

⊗� v� = span{|σ〉}, with basis states |σ〉 =
|σ1〉|σ2〉···|σL 〉. Any state |�〉 = |σ〉�σ ∈ V can be written
as an open boundary MPS, with wavefunction of the form

(3)

(This diagram depicts both the wavefunction � and the corre-
sponding state |�〉.) For clarity, we do not use ellipses in our
MPS diagrams, but instead draw them for some small choice
of L , e.g., L = 7 above. Sums over repeated indices are
implied throughout, and depicted diagrammatically by bonds.
Each M� is a three-leg tensor with elements [M�]σ�

α�−1α�
. Its

physical and virtual bond indices, σ� and α�−1, α�, have di-
mensions d and D�−1, D�, respectively. The outermost bonds,
to dummy sites represented by crosses, have D0 = DL = 1.
The bond dimensions D� are adjustable parameters, control-
ling the amount of entanglement an MPS can encode. (In
the literature, it is common practice to drop the subscript on
D� for brevity, understanding that D can nevertheless vary
from bond to bond.) Likewise, a Hamiltonian acting within
V, H = |σ〉Hσσ′〈σ′|, can be expressed as an MPO, with

(4)

where the four-leg tensors W� have elements [W�]
σ�σ

′
�

ν�−1ν�
, and

the virtual bond indices ν� have dimensions w�.
Any MPS wavefunction can be brought into canonical

form with respect to an “orthogonality center” at site � ∈
[1,L ], or with respect to bond � connecting sites � and � + 1,

(5)

where we indicated some of the bond dimensions. Here, A�̃

and B�̃′ (with 1� �̃<�<�̃′ �L ) satisfy the relations

(6)

or A†
�̃
A

�̃
= 1K

�̃
, B

�̃′B
†
�̃′ = 1K

�̃−1
for short, where 1K

�̃
denotes a

D�̃ ×D�̃ unit matrix. (The superscript K stands for “kept”, for
reasons explained below.) The open triangles representing A�̃

and B�̃′ are oriented such that their diagonals face left or right,
respectively. The orthogonality center can be shifted left or
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right by using singular value decomposition (SVD) to express
it as C� = U�−1S�−1B� or C� = A�S�V

†
� ,

(7)

Here U�−1, V †
� , S�−1, S� are square matrices, the former two

unitary, the latter two diagonal and containing SVD singular
values. (Shifting can be combined with truncation, if desired,
by discarding some small singular values and correspondingly
reducing the bond dimension.) By renaming V †

� B�+1 as B�+1

and defining �� = S�, we can also express �σ in “bond-
canonical” form with respect to bond �,

(8)

The fact that the same MPS can be written in many different
but equivalent ways reflects the gauge freedom of MPS repre-
sentations.

B. Kept spaces

Given an MPS |�〉 in canonical form, its constituent ten-
sors can be used to define a set of state spaces defined on parts
of the chain, and a sequence of isometric maps between these
state spaces. Let us make this explicit to reveal the underlying
structures.

The A�̃ tensors for sites 1 to �̃ can be used to define a set of
left kept (K) states |�K

�̃α
〉, and the B�̃′ tensors for sites �̃′ to L

can be used to define right K states |�K

�̃′α′ 〉, with wavefunctions
of the form

(9)

These states are called kept, since they are building blocks of
|�〉. Their spans define left and right K spaces,

VK

�̃
= span

{∣∣�K

�̃α

〉} ⊂ v1 ⊗ ... ⊗ v�̃, (10)

WK

�̃′ = span
{∣∣�K

�̃′α′
〉} ⊂ v�̃′ ⊗ ... ⊗ vL , (11)

of dimension D�̃ and D�̃′−1, respectively. The dummy sites 0
and L + 1 are represented by one-dimensional spaces, VK

0
and WK

L+1.
Each A�̃ and B�̃′ tensor defines an isometric map, from a

parent (P) space involving a direct product of a K space and a
local space, to an adjacent K space,

A�̃ :VK

�̃−1⊗v�̃ → VK

�̃
,

∣∣�K

�̃−1,α

〉|σ�̃〉[A�̃]σ�̃

αα′ = ∣∣�K

�̃α′
〉
,

B�̃′ :v�̃′ ⊗WK

�̃′+1 → WK

�̃′ , [B�̃′]
σ�̃′
αα′ |σ�̃′ 〉|�K

�̃′+1,α′ 〉 = |�K

�̃′α〉.
(To connect sites 1 and L to their neighboring dummy sites,
we define �K

0,1 = 1, �K
L+1,1 = 1.) We orient the triangles de-

picting A�̃ and B�̃′ such that equal-length legs point to parent
spaces and 90-degree angles to kept spaces. The dimensions
of left or right kept and parent spaces satisfy D�̃ � D�̃−1d
or D�̃′−1 � dD�̃′ , respectively. If a kept space is smaller than
its parent space, it has an orthogonal complement, called

discarded (D) space, discussed in Sec. II D below. The fact
that the maps A�̃ and B�̃′ are isometries follows from Eqs. (6).
These ensure that the left and right K basis states form or-
thonormal sets,

(12)

The basis states can be used to build projectors onto the left or
right K spaces VK

�̃
or WK

�̃′ , depicted as

(13a)

(13b)

with PK
0 = 1, QK

L+1 = 1, and (PK

�̃
)2 = PK

�̃
, (QK

�̃′ )
2 = QK

�̃′ ,

(14)

C. Bond, 1s and 2s projectors

The above projectors can, in turn, be used to construct
bond, 1s and 2s projectors acting on the full chain,

(15a)

(15b)

(15c)

defined for �∈ [0,L ], �∈ [1,L ] and �∈ [1,L −1], respec-
tively. They mutually commute and satisfy (PX

� )2 = PX
� , as

follows from Eqs. (12) and (14). For example,

The projectors Pb, P1s, and P2s map the full V into the
subspaces VK

� ⊗ WK
�+1, VK

�−1 ⊗ v� ⊗ WK
�+1, and VK

�−1 ⊗ v� ⊗
v�+1 ⊗ WK

�+2. These spaces offer three equivalent representa-
tions of the same state |�〉, in bond-, 1s- or 2s-canonical form,

|�〉 = ∣∣�K
�α

〉∣∣�K
�+1,α′

〉[
ψb

�

]
αα′ (16a)

= ∣∣�K
�−1,α

〉|σ�〉
∣∣�K

�+1,α′
〉[
ψ1s

�

]σ�

αα′ (16b)

= ∣∣�K
�−1,α

〉|σ�〉|σ�+1〉
∣∣�K

�+2,α′
〉[
ψ2s

�

]σ�σ�+1

αα′ , (16c)

ψb
� = ��, ψ1s

� = C�, ψ2s
� = A���B�+1. (16d)
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These forms emphasize the tensors describing bond �, site �

or sites (�, �+1) and the bond in between, respectively. For
example, Eqs. (16a) and (16b) are depicted as

The projections of the Hamiltonian into these spaces, Hx
� =

Px
� HPx

� , have matrix elements of the form

(17)

with left and right environments for sites � ± 1 given by

(18a)

(18b)

Here the first equalities define L� and R�, the second equalities
show how they can be computed recursively, starting from
L0 = 1, RL+1 = 1. The open triangles on L� and R� signify
that they are computed using left- or right-normalized A or B
tensors.

The above matrix elements are standard ingredients in
numerous MPS algorithms. To give a specific example, we
briefly recall their role in DMRG ground-state searches. These
seek approximate ground-state solutions to H|�〉 = E |�〉
through a sequence of local optimization steps. Focusing on
bond �, or site �, or sites (�, �+1), one updates ��, or C�,
or A���B�+1, by finding the ground-state solution of, respec-
tively,

(19a)

(19b)

(19c)

One then uses Eq. (7) to shift the orthogonality center to
the neighboring bond or site, optimizes it, and sweeps back
and forth through the chain until the ground-state energy has
converged. These three schemes are known as 0s or bond
DMRG, 1s and 2s DMRG, respectively. They differ regard-
ing their flexibility for increasing (“expanding”) virtual bond
dimensions, which increases the size of the variational space
and hence the accuracy of the converged ground-state energy.
0s and 1s DMRG offer no way of doing this, because the
tensors �� or C� have the same dimensions after the update as
before. By contrast, 2s DMRG does offer a way of expanding

bond dimensions: the bonds connecting the updated tensors
A�, ��, and B�+1 have dimensions d min(D�−1, D�+1), which
is � D�; one may thus expand bond � by retaining more than
D� singular values in ��. However, this comes at a price. The
numerical cost is O(D3d2w) for applying H2s to ψ2s during
the iterative solution of the eigenvalue problem Eq. (19c), and
O(D3d3) for SVDing the resulting eigenstate to identify the
updated A, �, and B. By contrast, for 1s DMRG the costs
are lower: O(D3dw) for applying H1s to C, and O(D3d ) for
SVDing C to shift to the next site. Various schemes have
been proposed for achieving 2s accuracy at 1s costs; see
Refs. [4,5,29].

D. Discarded spaces

In this section, we define discarded spaces as the or-
thogonal complements of kept spaces, and introduce their
corresponding isometries and discarded space projectors.

As mentioned above, the kept spaces VK

�̃
and WK

�̃′ have
dimensions smaller than the parent spaces VK

�̃−1
⊗v�̃ and

v�̃′ ⊗WK

�̃′+1
from which they are constructed. Their or-

thogonal complements are the above-mentioned discarded
spaces, to be denoted VD

�̃
and WD

�̃′ , respectively, of dimen-

sion DA
�̃

=D�̃−1d − D�̃ and DB
�̃′ =D�̃′d − D�̃′−1. By definition,

span{VK

�̃
,VD

�̃
} and span{WK

�̃′ ,W
D

�̃′ } yield the full parent

spaces, respectively. Let A�̃ and B�̃′ be isometries from the
parent to the discarded spaces,

A�̃ :VK

�̃−1⊗v�̃ → VD

�̃
,

∣∣�K

�̃−1,α

〉|σ�̃〉[A�̃]σ�̃

αα′ = ∣∣�D

�̃α′
〉
,

B�̃′ :v�̃′ ⊗WK

�̃′+1 → WD

�̃′ , [B�̃′]
σ�̃′
αα′ |σ�̃′ 〉

∣∣�K

�̃′+1,α′
〉 = ∣∣�D

�̃′α

〉
.

Then A�̃ ⊕ A�̃ and B�̃′ ⊕ B�̃′ are unitary maps on the parent
spaces, and Eq. (6) is complemented by relations expressing
orthonormality and completeness,

(20)

(21)

Here, left- or right-oriented grey triangles denote the com-
plements A�̃ and B�̃′ associated with discarded spaces. The
orthogonality relations (6) and (20) state that K meeting K

or D meeting D yield unity, whereas K meeting D yields zero.
We will use them often below. For the completeness relations
(21), 1P

�̃
= 1K

�̃−1
⊗1d and 1P

�̃′−1
= 1d ⊗1K

�̃′ are identity matrices
on the parent spaces, with 1d a d×d unit matrix. In numerical

practice, it desirable to avoid the explicit computation of A
�̃
A

†
�̃

or B
†
�̃′B�̃′ , since these are huge objects. Instead, one can always

use Eq. (21) to express them as 1P

�̃
−A

�̃
A†

�̃
or 1P

�̃′−1
−B†

�̃′B�̃′ .
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Equations (21) imply additional identities that will likewise
be useful below:

(22a)

(22b)

(22c)

The first two lines can be used to express 1s or 2s projectors
through bond projectors, as elaborated below. The third line
follows from the first two. The two equivalent forms on the
right of Eq. (22a) arise from combining the physical state
space of site � with virtual state spaces on either the left or the
right, yielding either left- or right-normalized parent spaces.

In complete analogy to Eqs. (9)–(13), the complement
isometries can be used to define orthonormal bases states for
the left and right discarded spaces VD

�̃
and WD

�̃′ ,

(23)

satisfying the orthonormality relations

(24a)

(24b)

The corresponding projectors are defined as

(25)

(26)

with PD
0 = QD

L+1 = 0. They obey orthonormality relations,

PX

�̃
PX

�̃
= δXXPX

�̃
, QX

�̃′QX

�̃′ = δXXQX

�̃′, (27)

where here and henceforth, X, X ∈ {K, D}. Moreover, Eq. (21)
implies the completeness relations

PK

�̃
+ PD

�̃
= PK

�̃−1 ⊗ 1d , QK

�̃′ + QD

�̃′ = 1d ⊗ QK

�̃′+1, (28)

stating that the kept and discarded projectors of a given site
together form a projector for their parent space. These will
play a crucial role in subsequent sections.

To conclude this section, we apply the projector identity
(22b) to the open legs of the state H2s

� ψ2s
� appearing in the 2s

Schrödinger (19c). We obtain

(29)

If only the first term is retained, the 2s Schrödinger Eq. (19c)
reduces to the bond Schrödinger Eq. (19a), sandwiched be-
tween A� and B�+1,

A�(Hb
� −E )��B�+1 = 0. (30a)

The first term together with the second or third term reduces
to the 1s Schrödinger Eq. (19b) for sites �+ 1 or �, left or right
contracted with A� and B�+1, respectively,

A�

(
H1s

�+1−E
)
C�+1 = 0, (30b)(

H1s
� −E

)
C�B�+1 = 0. (30c)

All four terms together of course give the full 2s Schrödinger
Eq. (19c), (

H2s
� −E

)
A���B�+1 = 0. (30d)

Evidently, the fourth term in Eq. (29), involving a DD pro-
jector pair, is beyond the reach of 1s schemes. A strategy for
nevertheless computing its most important contributions with
1s costs, called controlled bond expansion, has recently been
formulated by us in Ref. [29].

III. CONSTRUCTION OF Pns AND Pn⊥

As discussed in the introduction, each site of an MPS |�〉
induces a splitting of the local Hilbert space into K and D

sectors. This induces a partition of the full vector space V
into intricately nested orthogonal subspaces [6]. It is useful
to identify orthogonal projectors for these subspaces. Gauge
invariance—the existence of many equivalent representations
of |�〉—makes this a nontrivial task. It can be accomplished
systematically by Gram-Schmidt orthogonalization, formu-
lated in projector language. The following three sections are
devoted to this endeavor.

In the present section, we define a set of projectors, PXX

��̄
,

X, X ∈ {K, D}, involving kept and/or discarded sectors at sites
�, �̄. These serve as building blocks for all projectors intro-
duced thereafter. Then, in Sec. III B, we define generalized
local n-site (ns) projectors Pns

� describing variations of |�〉
involving up to n contiguous sites. In Sec. III C, we add them
up to obtain global ns projectors Pns; and in Sec. III D we
orthogonalize these to obtain irreducible global ns projectors
Pn⊥ not expressible through combinations of variations on
subsets of n′ < n sites. They are useful for various purposes,
including the computation of the energy variance [6], and the
formulation of MPS algorithms based on the notion of tangent
spaces [11–14,30] and generalizations thereof. Throughout,
we concisely summarize the properties of the various projec-
tors encountered along the way.
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A. Projectors for kept and discarded sectors PXX
��̄

We start by introducing kept and discarded space projectors
defined on the full Hilbert space V. To this end, we supple-
ment PX

� and QX
� by right or left environments (E) comprising

the entire rest of the chain, and define

(31)

with � ∈ [0,L ] for PXE
� and � ∈ [1,L + 1] for PEX

� . Equa-
tions (12) and (24) imply orthogonality relations for projectors
with E on the same side (both right or both left),

PXE
� PXE

�̄
= δ�<�̄δXKPXE

�̄
+δ��̄δXXPXE

� +δ�>�̄PXE
� δKX, (32a)

PEX
� PEX

�̄
= δ�<�̄PEX

� δKX+δ��̄δXXPEX
� +δ�>�̄δXKPEX

�̄
. (32b)

The δ symbols indicate that the first, second, and third terms
contribute only for � < �̄, � = �̄, and � > �̄, respectively.
Thus, same-site projectors are orthonormal; different-site
products with Es on the same side, of the type PXE

� PXE

�̄
(or

PEX
� PEX

�̄
), vanish if the earlier (later) site hosts a D; if it hosts a

K, they yield the projector from the other site. We depict two
cases of Eq. (32a) below:

Equation (32a) was first written down in that form in
Ref. [27], Eq. (29), in the context of NRG. There, one
deals exclusively with left-normalized states, and sites to the
right of the orthogonality center are treated purely as envi-
ronmental degrees of freedom, described by product states.
Equation (32b) is the counterpart of (32a) for right-normalized
states.

Projector products with Es in the middle, PXE
� PEX

�̄
, and

� < �̄, again yield projectors. We denote them by

(33)

They have local unit operators on n = �̄ − (� + 1) contigu-
ous sites, sandwiched between any combination of K and D

projectors to the left and right. In this sense, they generalize
Eqs. (15) and will be called generalized local ns projectors.

They fulfill numerous orthogonality relations following di-
rectly from Eqs. (32). For example,

PXX

��̄
PX′X′

��̄
= δXX′

δX X′PXX

��̄
, (34a)

∀�<�′ : PDX

��̄
PX′ X′

�′ �̄′ = 0, ∀�̄<�̄′: PXX

��̄
PX′D

�′ �̄′ = 0, (34b)

PDX

��̄
PDX′

�′ �̄′ ∼ δ��′, PXD

��̄
PX′D

�′ �̄′ ∼ δ�̄�̄′ . (34c)

Thus, two projectors having the same site indices are or-
thonormal; projector products involving a D on a site earlier
or later than all other indexed sites vanish; those involving
two Ds on the same side but different sites vanish, too. Some
of these relations are illustrated below:

Equation (28) implies another useful property (for �̄−�>1),

PKX

��̄
= PKX

�+1,�̄
+ PDX

�+1�̄
, PXK

��̄
= PXK

�,�̄−1 + PXD

�,�̄−1, (35)

reflecting Eq. (22b). Thus, a K on a given site � (or �̄) can
be decomposed into K and D on the inner neighboring site
� + 1 (or �̄ − 1), thereby expressing one projector through two
that both target one less site. This decomposition will be used
repeatedly below.

B. Local n-site projectors Pns
�

The KK projectors merit special attention. For �̄ − � = 1,
2 or 3, they correspond to the bond, 1s and 2s projectors
introduced in Eqs. (15). These can be expressed as

Pb
� = PKK

�,�+1, P1s
� = PKK

�−1,�+1, P2s
� = PKK

�−1,�+2. (36)

Generalizing the notation of (36), we define a set of local ns
projectors (for n � 0 and � ∈ [1,L +1−n]) as

(37)

Then P0s
� = Pb

�−1, and for n � 1, these projectors span the
spaces of variations of |�〉 on n contiguous sites from � to
� + n − 1. However, projectors Pns

� and Pns
�′ with � 
= �′ are

not orthogonal. Instead, the following relations hold for all
� < �′,

Pns
� Pns

�′ = P (n−1)s
�+1 Pns

�′ = Pns
� P (n−1)s

�′ = P (n−1)s
�+1 P (n−1)s

�′ ,

(38)
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as can be verified using Eqs. (32). For example, for

we obtain the same result in both cases. In particular, for n �
1, two ns projectors mismatched by one site yield an (n−1)-
site projector,

(39)

Orthogonalized versions of the Pns
� projectors will be

constructed in the next subsection. Here, we collect some
properties, following from Eq. (32), that will be needed for
that purpose,

∀� < �′: PDX

��̄
Pns

�′ = 0, (40a)

∀(�+n)� �̄′: Pns
� PX′D

�′ �̄′ = 0. (40b)

Thus, Pns
� is annihilated by a left D on its left or a right D on

its right. For example,

Using Eq. (35), Pns
� can be expressed through two (n−1)s

projectors,

(41)

The existence of two different decompositions of Pns
� , mim-

icking Eq. (22a), reflects the gauge freedom of MPSs. This
can be exploited to write PDK

�,�+n as P (n−1)s
� + PKD

�−1,�−1+n −
P (n−1)s

�+1 , converting DK to KD, or vice versa. Repeated use

yields an identity that will be useful below,

�′∑
�=�̄

PDK
�,�+n = P (n−1)s

�̄
+

�′∑
�=�̄

PKD
�−1,�−1+n−P (n−1)s

�′+1 . (42)

C. Global ns projectors, Pns

We now are ready to define the ns spaces Vns. For n = 0,
we define V0s = span{|�〉}. For n � 1, we define Vns as the
span of |�〉 and all states |� ′〉 differing from it on at most n
contiguous sites,

(43)

For n = 1, V1s is the tangent space of |�〉. More concretely,
Vns is defined as the image of all local ns projectors,

Vns = span
{
im

(
Pns

1

)
, im

(
Pns

2

)
, . . . , im

(
Pns

L+1−n

)}
. (44)

For any n′ � n, the image im(Pn′s
� ) is by construction fully

contained in the image im(Pns
� ), hence Vn′s is a subspace of

Vns, implying the nested hierarchy (1).
Let Pns be the projector having Vns as image; then,

im(Pns) contains im(Pns
� ) for all � ∈ [1,L + 1 − n]. For-

mally, Pns has the defining properties(
Pns

)2 = Pns, PnsPns
� = Pns

� , (45a)

Pns
� |�〉 = 0 ∀� ⇒ Pns|�〉 = 0. (45b)

Moreover, the nested structure of the Vnss implies

∀n′ < n : PnsPn′s = Pn′s. (46)

Let us construct Pns explicitly. Simply summing up the
local projectors Pns

� does not yield a projector because the
images of Pns

� and Pns
�′ are not orthogonal. A set of mutually

orthogonal local projectors can be obtained by projecting out
the overlap between Pns

� and Pns
�±1. We thus define

Pns
�≶ = Pns

�

(
1V − Pns

�±1

)
, (47)

so that Pns
�≶Pns

�′ = 0 holds for neighboring �, �′ with � ≶ �′.
It suffices to orthogonalize ns projectors mismatched by one
site, since from these we can select a set of projectors mutually
orthogonal on all sites. Indeed, Eqs. (39) and (41) yield (n−
1)-site projectors containing Ds,

Pns
�< = Pns

� − P (n−1)s
�+1 = PDK

�,�+n, (48a)

Pns
�> = Pns

� − P (n−1)s
� = PKD

�−1,�−1+n, (48b)

and the Ds ensure the orthonormality relations [cf. (34)]

Pns
�≶Pns

�′≶ = δ��′Pns
�≶, (49a)

∀� < �′: Pns
�<Pns

�′> = 0, (49b)

∀� ≶ �′: Pns
�≶Pns

�′ = 0. (49c)

These equations have a remarkable implication: for any choice
of �′ ∈ [1,L −n+1], the projectors Pns

�< for � ∈ [1, �′ − 1],
Pns

�′ , and Pns
�> for � ∈ [�′ + 1,L + 1 − n] form an orthonor-

mal set, and this set contains a Pns
� (in projected form) for
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every � ∈ [1,L + 1 − n]. We define the global ns projector
as their sum,

(50)

Here, �′ may be chosen freely as convenience dictates; dif-
ferent choices are equivalent, being related by Eqs. (41). The
orthogonality relations (49) ensure the properties (45a). For
example,

PnsPns
�′ = 0 + Pns

�′ Pns
�′ + 0 = Pns

�′ . (51)

The property (45b) is ensured by orthogonalizing Pns
� with

respect to each other and thus never including states with
Pns

� |�〉 = 0 ∀�. This confirms that im(Pns) contains im(Pns
� )

for all � ∈ [1,L + 1 − n]; thus, Pns indeed is the desired
projector having Vns as image. Evaluating Eq. (50) using the
middle expressions from (48), we obtain

(52a)

expressing Pns through local ns and (n − 1)s projectors in a
manner manifestly independent of �′, and not involving an D

sectors. The occurrence of the first term, a sum over all Pns
� , is

no surprise; the nontrivial part of the above construction was
establishing the form of the second term, needed to ensure that
Pns is a projector. Note that Eq. (45a) directly implies property
(45b). Alternatively, we can use the rightmost forms of (48) in
(50) to obtain

Pns =
�′∑

�=1

PDK
�,�+n + PKK

�′,�′+n +
L −n∑
�=�′

PKD
�,�+n, (52b)

now expressed purely through (n−1)s projectors, with all but
one involving D sectors.

For n = 1, Eqs. (52) reproduce the well-known tangent
space projector,

(53a)

(53b)

These expressions are widely used in MPS algorithms based
on tangent space concepts, such as time evolution using the
time-dependent variational principle (TDVP) [11–14,30]. The
form (53a), or (53b) with the choice �′ = L − 1, was first
given Lubich, Oseledts, and Vandereycken [11] (Theorem
3.1), and transcribed into MPS notation in Ref. [12]. In these
papers, it was derived in a different manner than here, using
arguments invoking gauge invariance. Our derivation has the
advantage that it generalizes directly to ns projectors. For
n = 2, our expression (52a) for P2s reproduces the projector
proposed in Ref. [12] for 2s TDVP:

(54)

D. Irreducible global ns projectors Pn⊥

Our final step is to orthogonalize the global Pns projectors
to obtain mutually orthogonal global ns projectors Pn⊥. This
step is inspired by the observation, made in Ref. [6], that a
given MPS |�〉 induces a decomposition of the full Hilbert
space into mutually orthogonal subspaces,

V = ⊕L

n=0V
n⊥, (55)

where V0⊥ is spanned by |�〉, and for n � 1 each Vn⊥ is the
complement of V(n−1)s in Vns = V(n−1)s⊕Vn⊥. Each Vn⊥ is
irreducible, comprising variations of |�〉 defined on n con-
tiguous sites that are not expressible through variations on
subsets of n′ < n sites.

The decomposition (55) induces a decomposition of the
identity on V into a sum of irreducible, mutually orthogonal
projectors Pn⊥, each with a Vn⊥ as image,

1V = 1⊗L
d =

L∑
n=0

Pn⊥, Pn⊥Pn′⊥ = δnn′Pn⊥. (56)

We now construct the Pn⊥ projectors through a Gram-
Schmidt procedure. For n � 1, we define Pn⊥ by projecting
out P (n−1)s from Pns, using Eq. (46),

Pn⊥ = Pns(1V − P (n−1)s) = Pns − P (n−1)s. (57)
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This scheme is initialized by the definition

P0⊥ = P0s = |�〉〈�| (58a)

(58b)

(58c)

The two equivalent forms for P0⊥, (58b) and (58c), reflect
MPS gauge invariance.

For n = 1, Eqs. (57) and (52a), with P0s = P0s
1 , yield

(59a)

More compact forms are obtained by evaluating Eq. (57)
using Eq. (52b), choosing either �′ = L or 0 for P0s,

(59b)

(59c)

Diagrammatically, the latter expressions also follow di-
rectly from (59a), using (22a). That two equivalent forms exist
again reflects MPS gauge invariance.

For n � 2, Eqs. (57) and (52a) yield

(60a)

A more compact form is obtained by evaluating Eq. (57) using
Eq. (52b), choosing �′ = L + 1 − n for both terms,

(60b)

We used the first and second relations in Eq. (35) to
combine the

∑
� sums and cancel the remaining terms. Di-

agrammatically, Eq. (60b) also follows directly from (60a),
using a relation analogous to (22c) (with n − 2 additional unit
operator lines in the middle). Its form is very natural: n − 2
unit operators are sandwiched between two Ds, which project
out contributions contained in n′-site projectors with n′ < n.
For future reference we also display the n = 2 projector

(61)

This projector is implicitly used in Ref. [6] to compute the 2s
variance, as will be recapitulated below. It also plays a key role
in controlled bond expansion algorithms recently developed
by us for performing DMRG ground-state searches [29] and
TDVP time evolution [30] with 2s accuracy at 1s costs.

Equations (58) to (61), giving explicit formulas for Pn⊥ for
all n, are the main results of the last three sections.

The orthonormality of the Pn⊥, guaranteed by construc-
tion, relies on gauge invariance. This is seen when verifying
orthonormality explicitly. For example, P1⊥P0⊥ = 0 can
be shown in two ways, using either PDK

�,�+1PKK
L ,L+1 = 0 or

PKD
�−1,�PKK

0,1 = 0 (both relations hold ∀� ∈ [1,L ]).
We continue with some remarks providing intuition about

the structure of states in the image of Pn⊥. The basis states
for the spaces Vn⊥ can be chosen such that they involve
wavefunctions of the following forms:

(62a)

(62b)

(62c)

(62d)

(62e)

Due to MPS gauge invariance, any choice of � in Eq. (62a)
for V0⊥ yields the same wavefunction �. Gauge invariance
also implies that the wavefunctions in Eqs. (62b) and (62c)
for V1⊥ are not all independent; nevertheless, both forms are
useful.

To explicitly construct a complete basis on V1⊥, we can for
instance use the form Eq. (62b) and construct a complete set
of mutually orthonormal bond matrices of dimension DA

� × D�

for every bond �. (DA,B
� are defined near the beginning of

Sec. II D.) Note that we could have as well used the form
Eq. (62c). Using this construction, we can also explicitly
determine the dimension of V1⊥, dim V1⊥ = ∑L

�=1 DA
� D�.

In the same way, a complete basis with states of the form
Eq. (62d) for V2⊥ can be constructed by constructing a com-
plete set of mutually orthonormal DA

� × DB
�+1 bond matrices

for every bond �. Thus, we find dim V2⊥ = ∑L −1
�=1 DA

� DB
�+1.

A complete basis for V(n>2)⊥ may be characterized by find-
ing, for every � < L − n + 1, a complete set of mutually
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orthogonal (n − 2)-site MPS, which connect A� and B�+n−1

in Eq. (62e). There are DA
� dn−2DB

�+n−1 such MPSs for every �,

i.e., dim V(n>2)⊥ = ∑L −n+1
�=1 DA

� dn−2DB
�+n−1.

The basis states for V(n>0)⊥ differ from the reference state
|�〉 in V0⊥ through the replacement of a kept by a dis-
carded space involving precisely one site for n = 1, and two
adjacent sites for n = 2. For n > 2, they differ by two dis-
carded spaces and n−2 contiguous sites sandwiched between
them, involving virtual bond spaces orthogonal to those from
|�〉. Therefore, states from Vn⊥ and Vn′⊥ are manifestly mu-
tually orthogonal if n 
= n′. This can be checked via Eqs. (24),
e.g., for V0⊥ and V1⊥:

(63)

States of the form (62) yield a complete basis for V. This
is ensured by our Gram-Schmidt construction; but for P1⊥,
the completeness is not self-evident. For example, consider a
state |� ′〉 of the following form:

(64)

It differs from |�〉 only in the K space of bond of �′, having
a bond matrix �′

�′ orthogonal to the ��′ of |�〉. Since |� ′〉
is orthogonal to |�〉 it does not lie in V0⊥, but it is not
immediately apparent that it lies in im(P1⊥). To see that it
does, we rewrite Eq. (59b) such that it contains DKs to the left
of site � and KDs to its right, using Eq. (42) (with �̄, �′ there
replaced by �′ + 1, L ),

P1⊥ =
�′−1∑
�=1

PDK
�,�+1 + P1s

�′ +
L∑

�=�′+1

PKD
�−1,� − PKK

L ,L+1. (65)

When evaluating P1⊥|� ′〉 using this form, and recalling that
PKK

L ,L+1 = |�〉〈�|, we find that all terms but the second yield
zero, and the second yields |� ′〉, as claimed above. In this
manner, one sees that the image of P1⊥ indeed contains all
single-site and single-bond variations of |�〉 that are orthogo-
nal to |�〉.

To conclude this section, we remark that the nested
structure of V is an integral part for (thermo)dynamical
computations using the NRG [16,17,24], although a slightly
different structure from Pn⊥ is used to systematically span
the full Hilbert space. While the chain considered in NRG is
in principle semi-infinite, this chain is in practice cut off nat-
urally by thermal weights [17,24]. The resulting chain length
L increases logarithmically with decreasing temperature. In
NRG, the so-called Anders-Schiller basis [26] is routinely
used, which decomposes the full identity as follows:

(66)

Here, all states of the parent space associated with the last
site L are considered discarded, i.e., the kept space of site
L has dimension 0. The projectors occurring in Eq. (66) are
constructed from approximate eigenstates of the Hamiltonian,

so that this decomposition of unity can be used, e.g., to ex-
plicitly construct time-evolution operators [26], full thermal
density matrices [17,24], or evaluate Lehmann representations
for two-point [17] or recently even multipoint [27,31] spectral
functions.

IV. ENERGY VARIANCE

The decomposition of the identity 1V into mutually or-
thogonal n-site projections can be used to similarly split the
energy variance, �E = ‖(H −E )�‖2, of a state with average
energy E = 〈�|H |�〉 into n-site contributions. For n = 1 and
2, these were given in Ref. [6]. Here, we extend their analysis
to general n,

�E =
L∑
n=0

〈�|(H −E )Pn⊥(H −E )|�〉 =
L∑
n=1

�n⊥
E , (67a)

�n⊥
E = ‖Pn⊥H�‖2 (67b)

=
{∑L

�=1 ‖PDK
�,�+1H�‖2 (n = 1),∑L +1−n

�=1 ‖PDD
�,�+n−1H�‖2 (n � 2).

(67c)

In the first line, we used (56), 1V = ∑
L

n=0 Pn⊥; since P0⊥ =
|�〉〈�| and P (n>0)⊥|�〉 = 0, the potentially large contribu-
tions linear and quadratic in E drop out. This convenient
feature, emphasized in Ref. [6], significantly improves the
accuracy of the determination of �E . The cumulative ns vari-
ance is defined as �ns

E = ∑n
n′=1 �n′⊥

E .
Expressed diagrammatically, the 1s and ns variance are

(68a)

.

(68b)

The second equality in Eq. (68a) follows from Eq. (20). To
compute these expressions in practice, the D projectors are
expressed through K projectors using Eq. (21), e.g.,

(69)

If the Hamiltonian contains only local and nearest-
neighbor terms, all contributions with n>2 are zero [6], i.e.,
�E = �2s

E . However, it has been argued in Ref. [6] that even if
long-range terms are present, �2s

E is a reliable error measure.
Here, we confirm this for the case of the spin- 1

2 Haldane-
Shastry model on a ring of length L = 40, with Hamiltonian

HHS =
∑

�<�′�L

π2S� · S�′

L 2sin2 π
L

(� − �′)
. (70)

Figure 1 shows �n⊥
E for n ∈ {1, 2, . . . , 10} and four choices

of D∗. In all cases, �n⊥
E is largest for n = 2, and smaller by an

order magnitude or more for n > 2, with the decrease being
stronger the larger D∗. For this model, therefore, �2⊥

E by itself
suffices to reliably estimate the energy error.
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FIG. 1. The n-site variance �n⊥
E of the L = 40 Haldane-Shastry

model for different D∗. �1⊥
E can in principle always be converged to

numerically zero (i.e., �1⊥
E � 10−16) by extensive DMRG sweeping;

this being the case here, we plot it symbolically at �1⊥
E = 10−16. In

practice it suffices to sweep until �1⊥
E � �2⊥

E , since the variance is
dominated by �2⊥

E .

V. n-SITE EXCITATIONS

The ns projectors can be used as an Ansatz to compute
low energy excitations. This so-called excitation Ansatz has
been very successful in infinite systems [14,22,28,32,33] and
lately also shown to be reliable on finite lattices [34]. Using
our diagrammatic notation, we generalize the 1s Ansatz for
finite systems used in Ref. [34] to n sites, similar to the ns
Ansatz for infinite systems [22,28].

We seek an ns excitation Ansatz satisfying the con-
dition Pns|�ns

ex〉 = |�ns
ex〉. Let us choose �′ = L −n+1 in

Eq. (50), such that Pns = ∑L −n
�=1 Pns

�< + Pns
�′ . Then, the follow-

ing Ansatz has the desired property:

(71)

Here, T �
i>1 are generic tensors of rank 3 and

(72)

The two forms of T �
1 reflect the presence or absence of a D

projection associated with Pns
�< or Pns

�′ , respectively.
It seems that |�ns

ex〉 cannot be efficiently computed, since
it involves a sum over L − n + 1 (i.e., many!) terms, and
performing MPS sums explicitly leads to increased bond di-
mensions. However, that can be avoided here. The isometries
A� and B� flanking the modified sites reappear in
every summand and only need to be saved once; hence, only
the tensors T �

i need to be saved. In the case of n = 1 for ex-
ample, we have to save L tensors of dimensions D × d × D,
i.e., the same memory requirement as for an MPS with bond
dimension D.

Moreover, Eq. (72) ensures that all summands are by con-
struction mutually orthogonal, facilitating the computation of
overlaps. Consider |�ns

ex〉 and |� ′ns
ex 〉, characterized by T �

i and
T ′�

i , respectively. Due to Eq. (72), their overlap involves only
L − n+1 terms (not that number squared), namely

(73)

while the computation of sums or differences can be done on
the level of the T �

i , i.e.,

(74)

If
∏n

i=1 T �
i and

∏n
i=1 T ′�

i are represented as MPSs, Eq. (74) in
effect involves a sum of two ns MPS; this is manageable if n
is not too large. In the case n = 1, there is only T �

1 and T ′�
1 ,

i.e. in this case, no MPS sums are required.
A further benefit of Eq. (72) is that it serves to fix the MPS

gauge degree of freedom on the site hosting T 1
� , improving

numerical stability.
To determine the tensors T �

i for |�ns
ex〉 explicitly, one

projects the Hamiltonian onto the space Vns and solves for
low-energy states of

PnsHPns
∣∣�ns

ex

〉 = Ens
ex

∣∣�ns
ex

〉
(75)

that are orthogonal to the ground state. This can be done using
some iterative eigensolver like the Lanczos method, initialized
by some appropriate initial wavefunction. Explicit orthogo-
nalization with respect to to the ground state is required, since
our Ansatz space Pns contains the ground state, whose kept
and discarded spaces span the image of Pns.

To run an iterative eigensolver, a scheme is needed for
efficiently applying the projected Hamiltonian PnsHPns to the
state |�ns

ex〉. The resulting state, say |�ns
ex〉 = PnsHPns|�ns

ex〉,
will again be of the form (71), but described by tensors T �

i . To
find these, we compute the tensors

(76)

and project T̃ �
1 to the discarded space to obtain T �

1 ,

(77)

such that Eq. (72) is fulfilled.
To evaluate Eq. (76), we split the sum

∑
�′ into terms with

�′ < � and �′ � �, and express these as follows:

(78)

195138-11



GLEIS, LI, AND VON DELFT PHYSICAL REVIEW B 106, 195138 (2022)

Next to the left and right environments L� and R� defined in
Eq. (18), these expressions contain another set of environ-
ments, denoted by Lm

� and Rm
� , each involving those m of the

T �′
i tensors in Eq. (76) that do not face open physical legs. For

m = 0, m∈{1, . . . , n−1} or m = n, they are defined by the
left equalities below; the right equalities show how for each m,
Lm

�+1 and Rm
�−1 can be computed recursively from Lm

� and Rm
� ,

initialized with L0
0 = 1, Lm>0

0 = 0, R0
L +1 = 1, Rm>0

L +1 = 0:

(79a)

(79b)

The solution of Eq. (75) using an iterative eigensolver has
costs scaling with O(D3dnw), the same as ns DMRG. How-
ever, because the Ansatz Eq. (71) is built from a sum over
L − n + 1 MPSs, states can be captured, which would need
significantly larger bond dimensions if represented in standard
fashion as an MPS. Because there are n summands in Eq. (71),
which differ from the ground state at site � (with correspond-
ing tensors T �

1 , . . . , T �−n+1
n at site �), an MPS representation

would need bond dimension D(1 + n), assuming A�, B�, and
T �

i are tensors of dimension D × d × D. Optimizing such an
MPS with ns DMRG comes with O(D3(n + 1)3dnw) costs,
larger by (n + 1)3 than the costs for optimizing the Ansatz
Eq. (71). Of course, the latter Ansatz is much more restrictive
than a generic MPS of bond dimension D(1 + n). However,
that should not be a limitation if the physics of interest in-
volves single- or few-particle excitations, as is the case, e.g.,
when computing correlations functions of single- or few-
particle operators.

We test the ns excitation Ansatz on a Haldane-Shastry
model on a ring of length L = 40 [see Eq. (70) for the
Hamiltonian], for which we seek to compute the lowest energy
excitation with total spin S = 1 above the total spin S = 0
ground state. For comparison, we have also computed this
state by performing a DMRG ground-state search in the S = 1
sector.

FIG. 2. Relative error in energy of the lowest-lying S = 1 excited
state of the Haldane-Shastry model, computed using the n-site ex-
citation Ansatz (circles), or using DMRG (blue diamonds). Black
diamonds show DMRG results for the S = 0 ground state. The
dashed-blue lines are guides to the eye.

Figure 2 shows the corresponding relative errors in energy
versus the bond dimension D∗. As reference values, we use
the exact energies ES=0

exact = −π2(L + 5/L )/24 and ES=1
exact =

−π2(L − 7/L )/24 for the ground state and excited state
[35–37], respectively. Remarkably, we find that for the same
D∗, the n = 1 site excitation Ansatz yields an S = 1 excitation
energy that is more accurate than that obtained from DMRG
by one to two orders of magnitude, even though the computa-
tional cost of both approaches at the same D∗ is comparable.
In fact, the relative error obtained by the excitation Ansatz for
the S = 1 state is comparable to (even slightly lower than) that
obtained by DMRG for the S = 0 ground state.

The reason for the high accuracy of the excitation Ansatz
is that the first excited state of the Haldane-Shastry model is
essentially a superposition of local spin excitations, i.e., it fits
Ansatz (71). The excitation Ansatz avoids representing this
superposition as a single MPS, which would require about
twice the bond dimension. Instead, it exploits the fact that each
local excitation differs from the ground state only locally. This
leads to a more economic Ansatz compared to DMRG, which
needs about twice the bond dimension. This can also be seen
in Fig. 2, where the relative error in energy of the 1s excitation
Ansatz at some D∗ almost coincides with the corresponding
error of DMRG at 2D∗. The latter error is slightly smaller
than the former, because the 2D∗ MPS Ansatz used by DMRG
is less restrictive than the D∗ excitation Ansatz, though this
improvement is rather marginal.

The capability of the excitation Ansatz can be further im-
proved by considering n > 1, leading to a reduction of the
relative error in energy compared to n = 1, see Fig. 2. This
reduction is rather small and further improvements seem to
become ever smaller for ever larger n. However, with in-
creasing n the costs for this Ansatz increase exponentially,
as ∼dn. Therefore, including information beyond n = 1 by
brute force, i.e., by just going to n>1, is not advisable. Never-
theless, we believe that valuable improvements of the Ansatz
may be achievable, while circumventing the exponential dn

scaling, by including only those parts of the n > 1 sectors
that contribute to the excited state with significant weight.
It should be possible to identify these parts by generalizing
the strategy proposed in our recent work on controlled bond
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expansion in both DMRG ground-state search [29] and TDVP
time evolution [30]. We leave this as a topic for future study.

More generally, we believe that the diagrammatics for the
n-site excitation Ansatz and the projector formalism devel-
oped in this work will provide a solid foundation to construct
systematic improvements to the 1-site excitation Ansatz with-
out a significant increase in computational costs.

We conclude this section by noting that the above construc-
tion will not be able to find states that differ from a given
ground state on an extensive number of sites. In particular,
if the ground-state sector has a degeneracy, e.g., due to sym-
metry breaking or topological order, the excitation Ansatz on
top of one of the ground states is not expected to reliably
find the other ground states. Further, while the excitation
Ansatz Eq. (71) can in principle be used for excitations at any
energy, it is expected to perform less reliable the higher the
energy of the excitation. Examples, where the Ansatz Eq. (71)
should have problems, are excitations of multiple independent
particles (i.e., the particles may be located far apart from
each other) or excited states with a volume-law entanglement
entropy.

VI. SUMMARY AND OUTLOOK

We have developed a projector formalism for kept and
discarded spaces of MPS, together with a convenient diagram-
matic notation. We use it to derive explicit expressions for
global n-site projectors Pns and irreducible n-site projectors
Pn⊥. We then use our results to derive explicit formulas for
the n-site variance and evaluate it for the Haldane-Shastry
model, showing that indeed the 2-site contribution is the most
dominant one. Further, we derive explicit diagrammatic for-
mulas to perform excited state computations based on the
n-site excitation Ansatz for finite, nontranslation invariant
MPS.

The K, D projector formalism and diagrammatic notation
developed here proved very convenient for the applications
considered in this paper. More generally, we expect them to
provide a convenient tool for the development of new MPS
algorithms that explicitly or implicitly utilize the properties
of discarded spaces. The information contained in these is a
resource, useful for describing changes or variations of a given
MPS, and for algorithms exploiting this resource, the K, D pro-
jector formalism facilitates book-keeping thereof. Indeed, we
have developed the formalism presented here while working
out a controlled bond expansion algorithm to perform both
DMRG ground-state searches [29] and time evolutions using
the time-dependent variational principle [30] with 2-site ac-
curacy at 1-site computational cost. Moreover, our formalism
provides the tools needed to efficiently implement the per-
spectives outlined in Refs. [14,22] for post-MPS applications,
that build on a given MPS to compute low-energy excitation
spectra.

As a final remark, we note that though we focused on MPSs
in this paper, our formalism should be generalizable to any
tensor network for which canonical forms are available, such
as tensor networks without loops.
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2.5 Controlled bond expansion

2.5.1 Overview

Even though the 2-site update for DMRG or TDVP is more expensive than the 1-site update,
the former is almost always preferred over the latter due to its superior convergence properties
(c.f. also Secs. 2.3.2 and 2.3.3). In Ref. [P2], we develop a controlled bond expansion (CBE)
scheme that mirrors the properties of the 2-site update, though at a computational cost that
is only slightly larger than that of a 1-site update. We achieve this by locally expanding the
tangent space (2.52) by a small number of directions orthogonal to it. Since the number of
added directions is small, the increase in computational cost is only marginal.

In Ref. [P2], we use CBE in the context of DMRG and thoroughly benchmark CBE–DMRG
on several models, ranging from free fermions on a chain to a doped Hubbard model on a
width 6 cylinder. As an interesting application, we use CBE–DMRG on a Kondo-Heisenberg
model on a width 4 cylinder and show that this model has two phases that differ in their FS
volumes. We therefore expect a KB–QCP which separates these two phases. A thorough
investigation especially of the small FS RKKY phase and the QCP is left as a promising
direction for future work.

In Ref. [P3], we then apply CBE to TDVP. CBE–TDVP is benchmarked and tested in
multiple applications, ranging from a simple domain wall in an XY model to the challenging
application of adiabatic spinon pumping through a chiral spin liquid.
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DMRG ground state search algorithms employing symmetries must be able to expand virtual bond
spaces by adding or changing symmetry sectors if these lower the energy. Traditional single-site DMRG
does not allow bond expansion; two-site DMRG does, but at much higher computational costs. We present
a controlled bond expansion (CBE) algorithm that yields two-site accuracy and convergence per sweep, at
single-site costs. Given a matrix product state Ψ defining a variational space, CBE identifies parts of the
orthogonal space carrying significant weight inHΨ and expands bonds to include only these. CBE-DMRG
uses no mixing parameters and is fully variational. Using CBE-DMRG, we show that the Kondo-
Heisenberg model on a width 4 cylinder features two distinct phases differing in their Fermi surface
volumes.

DOI: 10.1103/PhysRevLett.130.246402

Introduction.—A powerful tool for studying ground state
properties of one- and two-dimensional quantum systems is
the density martrix renormalization group (DMRG) [1–7].
Prominent two-dimensional applications include the t-J
[8–11] and Hubbard [12–18] models, and quantum mag-
nets [19–22]. Because of their high numerical costs, such
studies are currently limited to either small finite-sized
systems or cylinders with small circumference. Progress
towards computationally cheaper DMRG ground state
search algorithms would clearly be welcome.
In this Letter, we address this challenge. A DMRG

ground state search explores a variational space spanned by
matrix product states [23,24]. If symmetries are exploited,
the algorithm must be able to expand the auxiliary spaces
associated with virtual bonds by adjusting symmetry
sectors if this lowers the energy. Traditional single-site
(1s) DMRG, which variationally updates one site at a time,
does not allow such bond expansions. As a result, it often
gets stuck in metastable configurations having quantum
numbers different from the actual ground state. Two-site
(2s) DMRG naturally leads to bond expansion, but carries
much higher computational costs.
Hence, schemes have been proposed for achieving bond

expansions at sub-2s costs, such as density matrix pertur-
bation [25] or strictly single-site DMRG (DMRG3S) [26].
However, in these schemes, the degree of subspace expan-
sion per local update is controlled by a heuristic mixing
factor. Depending on its value, some subspace expansion
updates increase, rather than decrease, the energy.
Here, we present a controlled bond expansion (CBE)

algorithm which lowers the energy with each step and
yields 2s accuracy and convergence per sweep, at 1s costs.

Given a matrix product state Ψ defining a variational space,
our key idea is to identify parts of the 2s orthogonal space
that carry significant weight in HΨ, and to include only
these parts when expanding the virtual bonds of a 1s
Hamiltonian. Remarkably, these parts can be found via a
projector that can be constructed at 1s costs.
Using CBE–DMRG we study the Kondo–Heisenberg

model on a width 4 cylinder and show that it features two
phases differing in their Fermi surface volumes. We thereby
further advance the understanding of this highly debated
model using a controlled method.
MPS basics.—We briefly recall some standard MPS

concepts [5], adopting the diagrammatic conventions of
Ref. [27]. Consider an L -site system with an open
boundary MPS wave function Ψ having dimensions d
for physical sites and D for virtual bonds. Ψ can be written
in bond-canonical form with respect to any bond l,

ð1Þ

The tensors , and are variational
parameters. They are linked by gauge relations,
AlΛl ¼ Λl−1Bl, useful for shifting the bond tensor Λl
to neighboring bonds. Al and Bl are left- and right-sided
isometries, respectively, projecting Dd-dimensional parent
(P) spaces to D-dimensional kept (K) image spaces [27];
they satisfy

ð2Þ
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The Hamiltonian can similarly be expressed as a matrix
product operator (MPO) with virtual bond dimension w,

ð3Þ

For 2s or 1s DMRG, the energy of Ψ is lowered by
projecting H to a local variational space associated with
sites ðl;lþ 1Þ or l, respectively, and using its ground state
(GS) within that space to locally update Ψ. The effective 2s
and 1s Hamiltonians can be computed recursively using

ð4aÞ

ð4bÞ

To perform 2s or 1s updates, one replaces ψ2s
l ¼

AlΛlBlþ1 or by the GS solutions of

ð5aÞ

ð5bÞ

Updating site by site, one sweeps back and forth through
the MPS until the GS energy converges.
The local variational space is larger for 2s than 1s

DMRG by a factor d, OðD2d2Þ vs. OðD2dÞ. This enables
2s DMRG to increase (“expand”) the bond dimension
during updates by including new states (and symmetry
sectors) from the 2s space. 1s DMRG cannot do this, and
hence often fails to yield accurate GS energies. The better
performance of 2s vs 1s has its price: much higher
numerical costs, OðD3d3 þD3d2wÞ vs OðD3dwÞ [5].
Discarded spaces.—To track those parts of 2s spaces

not contained in 1s spaces, we introduce orthogonal
complements of Al and Bl, denoted and .
These isometries have image spaces, called discarded (D)
spaces [27], of dimension D ¼ Dðd − 1Þ, orthogonal to
the kept images of Al and Bl. Thus
and are unitaries on their parent spaces,
with

ð6Þ

The unitarity conditions for A1
l and B1

l imply orthonor-
mality and completeness relations complementing Eq. (2),

ð7aÞ

ð7bÞ

If the unitary maps A1†
l and B1†

lþ1 of Eq. (6) are applied to
some of the open indices ofH1s

l ψ
1s
l ,H

1s
lþ1ψ

1s
lþ1, andH

2s
l ψ

2s
l

as indicated below, they map the diagrams of Eqs. (5) to

The first three terms from the third line also appear in the
first two lines, but the fourth, involving does not. Let
DD denote the image of the orthogonal complements

, then DD is orthogonal to the variational
space explored by 1s DMRG on sites ðl;lþ 1Þ. DD is
much larger than the latter, of dimension D2 ¼ D2ðd − 1Þ2
vs 2D2d, and (importantly) may contain new symmetry
sectors. Thus DD is the 2s ingredient lacking in 1s schemes.
This can also be seen considering the energy variance

ΔE ¼ kðH − EÞΨk2. By expanding it into contributions
involving orthogonal projections on one, two, or more sites
[28], ΔE ¼ Δ1⊥

E þ Δ2⊥
E þ � � �, one obtains [27]

ð8Þ

1s DMRG minimizes only Δ1⊥
E , 2s minimizes Δ1⊥

E and
Δ2⊥

E . We thus seek to expand the K image of or at the
expense of the D image of or . This transfers weight
from Δ2⊥

E to Δ1⊥
E , making it accessible to 1s minimization.

Controlled bond expansion.—The CBE algorithm rests
on two new insights, substantiated by the quality of its
results. The first insight is that the subspace of DD relevant
for lowering the GS energy is relatively small: it is the
subspace on which H2s

l ψ
2s
l and hence Δ2⊥

E have significant
weight. When expanding a bond, it thus suffices to add
only this small subspace (hence the moniker controlled
bond expansion), or only part of it, to be called relevant DD
(rDD) [29]. Since DD is the image of ,
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rDD can be viewed as the image of
or , where the isometries or

are truncated versions of Al or Blþ1 and have

image dimensions eD, say. It turns out that one may choose
eD < D, independent of d, thus rDD, of dimension eDD, is
indeed much smaller than DD. The second insight is that eAtr

l

or eBtr
lþ1 can be constructed at 1s costs using a novel scheme

explained in Fig. 1. We call it shrewd selection since it is
cheap, efficient and practical, though not strictly optimal
(that would require 2s costs).
Shrewd selection.—Ideally, eAtr

l should minimize the cost
function C1 (Fig. 1, top), the difference between applying
the projectors AlA

†
l or eAtr

l
eAtr†
l to H2s

l ψ
2s
l B

†
lþ1Blþ1.

However, exact minimization of C1 would involve 2s costs
(feasible if d, w, and D are comparatively small, but in
general undesirable). To maintain 1s costs, OðD3dwÞ, we
instead use shrewd selection, involving two separate
truncations, depicted schematically in Fig. 2 and explained
in detail in Sec. S-1 of the Supplemental Material [30]. The
first truncation (preselection) truncates the central MPS
bond from D → D0 (specified below) in the presence of its
environment by minimizing the cost function C2 (Fig. 1,
bottom left); this replaces the full complement by a
preselected complement, , with reduced

image dimension, D → bD ¼ D0w [44]. The second trun-
cation (final selection) minimizes the cost function C3
(Fig. 1, bottom right) with central MPO bond closed as
appropriate for H2s

l ψ
2s
l : it further truncates bApr

l to yield the
final truncated complement, , bD → D̃ < D. To

ensure 1s costs for final selection we need bD ¼ D, and thus
choose D0 ¼ D=w for preselection.
CBE update.—ACBE update of bond l proceeds in four

substeps. We describe them for a right-to-left sweep for
building eAtr

l and updating Clþ1 (left-to-right sweeps,

building eBtr
lþ1 and updating Cl, are analogous).

(i) Compute using shrewd selection. (ii) Expand

bond l from dimension D to Dþ eD by replacing Al by an
expanded isometry , and Clþ1 by an
expanded tensor initialized as , defined such that

Aex
l C

ex;i
lþ1 ¼ AlClþ1:

ð9Þ

Also construct an expanded one-site Hamiltonian, defined
in a variational space of dimension DðDþ eDÞd:

ð10Þ

(iii) Update Cex
lþ1 variationally by using an iterative

eigensolver, as usual in DMRG, to find the GS solution
of ðH1s;ex

lþ1 − EÞCex
lþ1 ¼ 0, starting from Cex;i

lþ1. (We employ
a Lanczos eigensolver.) This has costs of OðD3dwÞ. Thus,
Cex
lþ1 can be updated at 1s costs, while including only the

most relevant 2s information via the contribution of eAtr
l.

(iv) Shift the isometry center from site lþ 1 to site l using
a singular value decomposition (SVD) and truncate (trim)
bond l from dimension Dþ eD back to D, removing low-
weight states. The discarded weight, say ξ, of this bond
trimming serves as an error measure [30].
The energy minimization based on H1s;ex

lþ1 is variational,
hence each CBE update strictly lowers the GS energy.
Though shrewd selection involves severe bond reductions,
it yields rDDs suitable for efficiently lowering the GS
energy (in step (iii)). Moreover, although CBE explores
a much smaller variational space than 2s DMRG, it
converges at the same rate and accuracy (see below and
Ref. [30]), since it focuses on the subspace that really
matters for energy reduction. Section S-1 in [30] illustrates
this by analyzing singular value spectra. All in all, CBE
is a 1s cost version of the 2s update, compatible with
established DMRG parallelization schemes [45]. Similar to

FIG. 1. Shrewd selection for a right-to-left sweep: Ideally, the
truncated complement should be found by minimizing
the cost function C1, but that would involve 2s cost, OðD3d2wÞ.
To achieve 1s cost, OðD3dwÞ, we instead use shrewd selection,
involving two separate truncations: The first truncation (prese-
lection) truncates to by minimizing the cost
function C2. The second truncation (final selection) further
truncates by minimizing the cost function
C3. For details, see Fig. S-2 in Sec. S-1 of the Supplemental
Material [30].

FIG. 2. The projection H2s
l ψ

2s
l ↦

A†
l
H1s

lþ1ψ
1s
lþ1 to the tangent

space (yellow) of the MPS manifold (blue) discards information
from DD (depicted by gray arrows for DD basis vectors). Relevant
information is recovered at 1s cost by constructing rDD through
preselection (red), then final selection (orange).
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2s [7], CBE can also be combined with mixing during the
initial few sweeps (see Ref. [30], Sec. S-3).
We note that bond expansion using a truncated DD has

been proposed before [26,46]. But our outperforms
that of DMRG3S [26] (see below and Ref. [30]); and we
find at 1s costs, whereas Ref. [46] (on variational
uniform MPS [47]) uses an SVD requiring 2s costs.
Sweeping.—Our computations exploit Uð1Þch ⊗

SUð2Þsp charge and spin symmetries using QSpace
[48,49], with bond dimensions D� (or D) counting sym-
metry multiplets (or states). Usually, D� is increased with
each update during sweeping, from an initial D�

i to a final
D�

f ¼ αD�
i , with α > 1. To achieve this with CBE we (i,ii)

useD0� ≃D�
f =w

�, bD� ¼ D�
f (cf. Fig. 1) and expand fromD�

i

toD�
i þ eD� ¼ D�

f ð1þ δÞ, (iii) call the iterative eigensolver,
and (iv) truncate back to D�

f when shifting the isometry
center. We use δ ¼ 0.1 for CBE, unless stated otherwise.
Benchmarks.—As a first benchmark, we consider the 1D

Hubbard-Holstein (HH) model [31–35], described by

HHH ¼ −
X
lσ

ðc†lσclþ1σ þ H:c:Þ þ 0.8
X
l

nl↑nl↓

þ 0.5
X
l

b†lbl þ
ffiffiffiffiffiffiffi
0.2

p X
l

ðnl↑ þ nl↓ − 1Þ

× ðb†l þ blÞ: ð11Þ

Here, c†lσ creates an electron and b
†
l a phonon at site l, and

nlσ ¼ c†lσclσ. We search for the GS with N ¼ L ¼ 50,
total spin S ¼ 0, and restrict the maximum local number of
excited phonons to Nmax

ph . Then, d�½d� ¼ 3ðNmax
ph þ 1Þ

½4ðNmax
ph þ 1Þ�. Figure 3(a) shows the relative error in

energy vs number of half-sweeps ns for different D�
max

at fixed d� ¼ 12, comparing CBE and 2s DMRG schemes.
The convergence with ns is similar for CBE and 2s.
Figure 3(b) compares the CPU time (measured on a single
core of an Intel Core i7-9750H CPU) per sweep for CBE
and 2s for different d� at fixed D�

max. Linear and quadratic
fits confirm the expected d� (1s) or d�2 (2s) scaling,
respectively, highlighting the speedup from CBE.
Next, we consider L x ×L y ¼ 10 × 4 and 10 × 6

Hubbard cylinders (HC), described by (following Ref. [28])

HHC ¼ −
X

hl;l0i;σ
ðc†lσcl0σ þ H:c:Þ þ 8

X
l

nl↑nl↓: ð12Þ

Here, l ¼ ðx; yÞ is a 2D site index and
P

hl;l0i a nearest-
neighbor sum. We search for the GS with total filling
N ¼ 0.9L xL y and spin S ¼ 0. We use a real-space MPO,
not the hybrid-space MPO [13,50] used in Ref. [28].
Figures 3(c) and 3(d) benchmarks CBE (black) against
2s DMRG (red); their accuracies match (same GS energy
for given D�). CBE-DMRG yields controlled convergence

for sufficiently large D�, where the energy error decreases
linearly with ξ. DMRG3S does not reach 2s accuracy for
this model, as is clear from the data shown in Ref. [28]
Sec. V E.
Further benchmarks and comparison to DMRG3S are

shown in Ref. [30], Secs. S-2,3. We find that CBE has
similar run time per sweep but converges faster than
DMRG3S [26]: for given D�

max, the energy converges in
fewer sweeps and less run time, and reaches a lower value.
Kondo-Heisenberg cylinders.—Finally, to include some

new physics results in this Letter, we study the Kondo-
Heisenberg (KH) lattice model on a cylinder. The KH
model is believed to describe the essential physics of
heavy-fermion (HF) materials [36,51–53], which feature
many interesting phenomena. One of the most intriguing is
the so-called Kondo breakdown (KB) quantum critical
point (QCP) [38,42,54], where collective Kondo singlets
[42] formed at strong coupling break up, leading to a FS
reconstruction [55–58] at T ¼ 0. Strange metal behavior is
observed at finite temperatures with, e.g., ∼T resistivity
[58–62] or ∼T logT specific heat [61–64].
Theoretical understanding of the KB-QCP is still

incomplete, in part due to scarceness of numerical simu-
lations. Prior numerical studies used dynamical mean-
field theory [65–69] and Monte Carlo methods [70–73],
but we are not aware of DMRG results on the KB-QCP.
Here, we take first steps in this direction by studying
FS reconstruction on a KH cylinder: we show that at
T ¼ 0, there are two distinct phases featuring different
Fermi surfaces.

FIG. 3. Hubbard-Holstein (HH) model: (a) Convergence
of the GS energy versus number of half-sweeps ns at fixed
d� ¼ 3ðNmax

ph þ 1Þ. E0 was obtained by linear ξ extrapolation of
data from D�

max ∈ ½1000; 1200�. (b) CPU time per sweep for
various d� at fixed D�

max, showing d� (CBE) vs d�2 (2s) scaling.
Hubbard cylinders (HC): Error in GS energy vs ξ for (c) 10 × 4
and (d) 10 × 6 HCs, obtained with CBE (black) and 2s (red)
DMRG, for various D�

max (legends). Since 2s CPU times far
exceed those of CBE, 2s data is only shown for D�

max ≤ 10k.
Reference energies E0 ¼ −27.881 694 2 (10 × 4) and
−41.747 496 1 (10 × 6) are obtained by linear ξ extrapolation
of the four most accurate CBE results to ξ ¼ 0 (gray line).
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We study aL x×L y ¼ 40×4KH cylinder, described by

HKH ¼ −
X

hl;l0i;σ
ðc†lσcl0σ þ H:c:Þ þ JK

X
l

Sl · sl

þ 1

2

X
hl;l0i

Sl · Sl0 :

Here, sl ¼ 1
2

P
σσ0 c

†
lσσσσ0clσ0 and Sl are electron and local

moment spin-1
2
operators at site l. We search for the GS

with total filling N ¼ 1.25L xL y and spin S ¼ 0.
For a L y ¼ 4 cylinder, the Brillouin zone consists of

four lines, since ky ∈ f0;�ðπ=2Þ; πg is discrete. If such
a line cuts the L y → ∞FS, that defines a “Fermi point,”
with Fermi momentum ðkFxðkyÞ; kyÞ. We have extracted the
corresponding kFxðkyÞ values from CBE-DMRG results for
the single-particle density matrix (see Ref. [30], Sec. S-4 B
for details; Fig. S-13 shows controlled convergence of this
quantity). Figure 4 shows the results for various values
of JK . There are clearly two distinct phases with qualita-
tively different Fermi points kFxðkyÞ. At small JK ≤ 2,
we find Fermi points at ðjkFxj; jkyjÞ ¼ ð0.625π; π=2Þ and
ð0.256π; πÞ, matching the free-electron values at JK ¼ 0.
By contrast, at large JK ≥ 2.8, we find Fermi points only at
ðπ=2; 0Þ, suggesting a FS reconstruction at some JKc in
between. Note also that kFxðkyÞ remains JK independent in
each of the two regimes. This is expected from Luttinger’s
sum rule [39,41], which links the effective number neff of
mobile charge carriers (defined modulo 2, i.e., up to filled
bands) to the FS volume (see Ref. [30], Sec. S-4 C for
details). For small JK ≤ 0.75, we find neff ¼ 1.25, con-
sistent with 25% electron doping. By contrast, at large JK ≥
2.8 we find neff ¼ 0.25 ¼ 2.25 mod 2, consistent with
the spins becoming mobile charge carriers by “binding” to
the electrons [42]. Pinpointing and studying a possible
KB-QCP separating the two phases is left for future work.
Summary and outlook.—CBE expands bonds by adding

subspaces on which Δ2s
E , the 2s contribution to the

energy variance, has significant weight, thus making these

subspaces accessible to 1s energy minimization. CBE is
fully variational and has 1s costs, since the variational space
is only slightly expanded relative to 1s DMRG.
By significantly saving costs, CBE opens the door to

studying challenging models of current interest at higher
accuracy (larger D) than previously possible, or tackling
more complex models, with d or w so large that they were
hitherto out of reach. Examples are multiband models with
several different type of couplings, in particular in two-
dimensional settings, models involving bosonic excitations,
and quantum-chemical applications. We have made a first
step in this direction by showing that the KH model on a
width 4 cylinder features two phases with distinct FS
volumes. Our study of the KH model opens the door to
investigate this model in more depth; for example, follow-
up work may aim to sort out the range of applicability of
existing approximate approaches, e.g., parton mean-field
theories [74,75] or DMFT based studies [65–69].
More generally, CBE can be used for any variational

MPS optimization task. Besides energy minimization, an
example is approximating a given Ψ by a Ψ0 with smaller
bond dimension through minimization of kΨ0 −Ψk. CBE
can also be used to build Krylov spaces with 2s accuracy at
1s costs, relevant for all of the many MPS methods relying
on Krylov methods. For example, in a follow-up paper [76]
we focus on MPS time evolution using the time-dependent
variational principle (TDVP), and use CBE to achieve
dramatic improvements in performance. Finally, analogous
statements hold for variational optimization or time evo-
lution of MPOs. Thus, CBE will become a widely used,
indispensable tool in the MPS=MPO toolbox.
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[40] D. Sénéchal, An introduction to bosonization, arXiv:
cond-mat/9908262.

[41] M. Oshikawa, Topological Approach to Luttinger’s
Theorem and the Fermi Surface of a Kondo Lattice, Phys.
Rev. Lett. 84, 3370 (2000).

[42] Q. Si, J. H. Pixley, E. Nica, S. J. Yamamoto, P. Goswami, R.
Yu, and S. Kirchner, Kondo destruction and quantum
criticality in Kondo lattice systems, J. Phys. Soc. Jpn. 83,
061005 (2014).

[43] Y. Nishikawa, O. J. Curtin, A. C. Hewson, and D. J. G.
Crow, Magnetic field induced quantum criticality and the
Luttinger sum rule, Phys. Rev. B 98, 104419 (2018).

[44] We could achieve the desired reduction D → D̃ already
during preselection by choosing D0 ¼ D̃=w there, so that
D̂ ¼ D̃; however, that would neglect the information that in
H2sψ2s the central MPO bond is closed. Final selection
serves to include that information.

[45] E. M. Stoudenmire and S. R. White, Real-space parallel
density matrix renormalization group, Phys. Rev. B 87,
155137 (2013).

[46] V. Zauner-Stauber, L. Vanderstraeten, M. T. Fishman, F.
Verstraete, and J. Haegeman, Variational optimization
algorithms for uniform matrix product states, Phys. Rev.
B 97, 045145 (2018).

[47] L. Vanderstraeten, J. Haegeman, and F. Verstraete, Tangent-
space methods for uniform matrix product states, SciPost
Phys. Lect. Notes 7 (2019).

[48] A. Weichselbaum, Non-Abelian symmetries in tensor net-
works: A quantum symmetry space approach, Ann. Phys.
(Amsterdam) 327, 2972 (2012).

[49] A. Weichselbaum, X-symbols for non-Abelian symmetries
in tensor networks, Phys. Rev. Res. 2, 023385 (2020).

[50] J. Motruk, M. P. Zaletel, R. S. K. Mong, and F. Pollmann,
Density matrix renormalization group on a cylinder in
mixed real and momentum space, Phys. Rev. B 93,
155139 (2016).

[51] S. Kirchner, S. Paschen, Q. Chen, S. Wirth, D. Feng, J. D.
Thompson, and Q. Si, Colloquium: Heavy-electron quan-
tum criticality and single-particle spectroscopy, Rev. Mod.
Phys. 92, 011002 (2020).

[52] H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-
liquid instabilities at magnetic quantum phase transitions,
Rev. Mod. Phys. 79, 1015 (2007).

[53] G. R. Stewart, Non-Fermi-liquid behavior in d- and
f-electron metals, Rev. Mod. Phys. 73, 797 (2001).

[54] P. Coleman and C. Pépin, What is the fate of the heavy
electron at a quantum critical point?, Physica (Amsterdam)
312–313B, 383 (2002).

[55] S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O.
Trovarelli, C. Geibel, F. Steglich, P. Coleman, and Q. Si,
Hall-effect evolution across a heavy-fermion quantum
critical point, Nature (London) 432, 881 (2004).

[56] H. Shishido, R. Settai, H. Harima, and Y. Ōnuki, A drastic
change of the Fermi surface at a critical pressure in
CeRhIn5: dHvA study under pressure, J. Phys. Soc. Jpn.
74, 1103 (2005).

[57] S. Friedemann, N. Oeschler, S. Wirth, C. Krellner, C.
Geibel, F. Steglich, S. Paschen, S. Kirchner, and Q. Si,
Fermi-surface collapse and dynamical scaling near a quan-
tum-critical point, Proc. Natl. Acad. Sci. U.S.A. 107, 14547
(2010).

[58] N. Maksimovic et al., Evidence for a delocalization quan-
tum phase transition without symmetry breaking in
CeCoIn5, Science 375, 76 (2022).

[59] V. Martelli, A. Cai, E. M. Nica, M. Taupin, A. Prokofiev,
C.-C. Liu, H.-H. Lai, R. Yu, K. Ingersent, R. Küchler, A. M.
Strydom, D. Geiger, J. Haenel, J. Larrea, Q. Si, and S.
Paschen, Sequential localization of a complex electron fluid,
Proc. Natl. Acad. Sci. U.S.A. 116, 17701 (2019).

[60] L. Prochaska, X. Li, D. C. MacFarland, A. M. Andrews, M.
Bonta, E. F. Bianco, S. Yazdi, W. Schrenk, H. Detz, A.
Limbeck, Q. Si, E. Ringe, G. Strasser, J. Kono, and S.
Paschen, Singular charge fluctuations at a magnetic quan-
tum critical point, Science 367, 285 (2020).

[61] O. Trovarelli, C. Geibel, S. Mederle, C. Langhammer, F. M.
Grosche, P. Gegenwart, M. Lang, G. Sparn, and F. Steglich,
YbRh2Si2: Pronounced non-Fermi-Liquid Effects Above a
Low-Lying Magnetic Phase Transition, Phys. Rev. Lett. 85,
626 (2000).

[62] H. Zhao, J. Zhang, M. Lyu, S. Bachus, Y. Tokiwa, P.
Gegenwart, S. Zhang, J. Cheng, Y.-f. Yang, G. Chen, Y.
Isikawa, Q. Si, F. Steglich, and P. Sun, Quantum-critical
phase from frustrated magnetism in a strongly correlated
metal, Nat. Phys. 15, 1261 (2019).

[63] H. Löhneysen, M. Sieck, O. Stockert, and M.Waffenschmidt,
Investigation of non-fermi-liquid behavior in CeCu6−xAux,
Physica (Amsterdam) 223–224B, 471 (1996).

[64] H. von Löhneysen, Non-fermi-liquid behaviour in the
heavy-fermion system CeCu6−xAux, J. Phys. Condens.
Matter 8, 9689 (1996).

[65] L. De Leo, M. Civelli, and G. Kotliar, Cellular dynamical
mean-field theory of the periodic Anderson model, Phys.
Rev. B 77, 075107 (2008).

[66] L. De Leo, M. Civelli, and G. Kotliar, T ¼ 0 Heavy-
Fermion Quantum Critical Point as an Orbital-Selective
Mott Transition, Phys. Rev. Lett. 101, 256404 (2008).

[67] D. Tanasković, K. Haule, G. Kotliar, and V. Dobrosavljević,
Phase diagram, energy scales, and nonlocal correlations in
the Anderson lattice model, Phys. Rev. B 84, 115105 (2011).

[68] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Locally
critical quantum phase transitions in strongly correlated
metals, Nature (London) 413, 804 (2001).

[69] Q. Si, S. Rabello, K. Ingersent, and J. L. Smith, Local
fluctuations in quantum critical metals, Phys. Rev. B 68,
115103 (2003).

[70] F. F. Assaad, Quantum Monte Carlo Simulations of the
Half-Filled Two-Dimensional Kondo Lattice Model, Phys.
Rev. Lett. 83, 796 (1999).

[71] S. Capponi and F. F. Assaad, Spin and charge dynamics of
the ferromagnetic and antiferromagnetic two-dimensional
half-filled Kondo lattice model, Phys. Rev. B 63, 155114
(2001).

[72] F. Parisen Toldin, T. Sato, and F. F. Assaad, Mutual
information in heavy-fermion systems, Phys. Rev. B 99,
155158 (2019).

PHYSICAL REVIEW LETTERS 130, 246402 (2023)

246402-7



[73] B. Danu, Z. Liu, F. F. Assaad, and M. Raczkowski, Zooming
in on heavy fermions in Kondo lattice models, Phys. Rev. B
104, 155128 (2021).

[74] T. Senthil, S. Sachdev, and M. Vojta, Fractiona-
lized Fermi Liquids, Phys. Rev. Lett. 90, 216403
(2003).

[75] T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and
non-Fermi liquids near heavy-fermion critical points, Phys.
Rev. B 69, 035111 (2004).

[76] J.-W. Li, A. Gleis, and J. von Delft, Time-dependent
variational principle with controlled bond expansion for
matrix product states, arXiv:2208.10972.

PHYSICAL REVIEW LETTERS 130, 246402 (2023)

246402-8



Supplemental material:
Controlled bond expansion for DMRG ground state search at single-site costs

Andreas Gleis,1 Jheng-Wei Li,1 and Jan von Delft1

1Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for
Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany

(Dated: May 31, 2023)

This supplement offers additional material on five issues:
in Sec. S-1, details on the implementation of shrewd
selection, including pseudocode, and a detailed analysis
of preselection and final selection; in Sec. S-2, a simple
additional benchmark of CBE–DMRG on free Fermions;
in Sec. S-3, a comparison to DMRG3S; and in Sec. S-4,
more details on the analysis of the Kondo-Heisenberg
model on a 4-leg cylinder.

S-1. SHREWD SELECTION

Figures 1 and 2 in the main text introduce a novel
scheme needed for CBE, called shrewd selection. In this
section, we discuss it in detail. Section S-1A provides
algorithmic details; Sec. S-1B discusses various options for
choosing the parameters involved in perselection and final
selection; Secs. S-1C and S-1D discusses the properties
of the singular values and singular vectors obtained; and
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FIG. S-1. Shrewd selection (concept). During a right-to-left

CBE sweep, bond ℓ is expanded from Aℓ( ) to Aℓ ⊕ Ãtr
ℓ ( ⊕

), where Ãtr
ℓ ( ), with image dimension D̃, is a truncation

of Aℓ( ), with image dimension D=D(d−1). This expansion

will reduce ∆2s
E significantly if Ãtr

ℓ ⊕Bℓ+1( ⊗ ) targets rDD,

a D̃D-dimensional subspace of the D2-dimensional space DD

on which H2s
ℓ ψ

2s
ℓ has significant weight. As explained in the

main text, ideally, Ãtr
ℓ ( ) should minimize the cost function

C1. To achieve this at 1s costs, we instead find Ãtr
ℓ ( ) using

shrewd selection, involving two separate truncations. The first
truncation (preselection) truncates the central MPS bond from
D→D′ in the presence of its environment by minimizing C2;
this replaces the full complement by a preselected complement,

Aℓ →Âpr
ℓ , with reduced image dimension, D→ D̂=D′w

[31]. The second truncation (final selection) minimizes C3

with central MPO bond closed as appropriate for H2s
ℓ ψ

2s
ℓ : it

further truncates Âpr
ℓ to yield the final truncated complement,

Ãtr
ℓ , → , D̂→D̃ <D. To ensure 1s costs for final selection

we need D̂=D, and thus choose D′ =D/w for preselection.
The truncations underlying preselection and final selection are
explained in detail in Fig. S-2.

Sec. S-1E discusses the convergence rate per sweep.

A. Algorithmic details

For convenience, Fig. 1 of the main text is shown again
in Fig. S-1, with a caption summarizing the main ideas
underlying shrewd selection. Its two ingredients, pre-
selection and final selection, are explained in detail in
Fig. S-2 using tensor network diagrams. Table I provides
pseudocode for the tensor network diagrams in Fig. S-2.

In the remainder of this section we discuss preselection
and final selection in more detail, and illustrate their
effects on the properties of various singular value spectra
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prÂ �

prÂ�
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FIG. S-2. Shrewd selection (details). Computation of (a-c) the

preselected complement Âpr
ℓ ( ) to minimize C2, and (d) the

final truncated complement Ãtr
ℓ ( ) to minimize C3, using four

SVDs, all with at most 1s costs. For each, an arrow indicates a
bond being opened before doing the SVD, shading and symbols
in matching colors indicate the SVD input and output, and
the latter is written as USV † or usv† when involving no
or some truncation, respectively. Importantly, we express

AℓA
†
ℓ and B

†
ℓ+1Bℓ+1 (grey) as 1P

ℓ −AℓA
†
ℓ and 1

P
ℓ −B†

ℓ+1Bℓ+1

(Eq. (7b)), avoiding the computation of Aℓ and Bℓ+1. (a) The
first SVD canonicalizes the right side of the diagram, assigning
its weights to the central MPS bond. (b) The second SVD
and truncation reduces the dimension of this bond, D→D′=
D/w. (c) The third SVD regroups indices to combine the
truncated MPS bond and the MPO bond into a composite

bond of dimension D̂ = D′w = D, yielding the preselected

complement Âpr
ℓ = Û ( ). Nominally, step (c) would require

no truncation if exact arithmetic were used, but in practice
(numerically) zero singular values, of order O(10−16), may

arise; these must be discarded to ensure A†
ℓÂ

pr
ℓ = 0. (d)

The fourth SVD and truncation yields the final truncated

complement Ãtr
ℓ =Âpr

ℓ ũ ( ), with bond reduction D̂→D̃<D.
Table I gives a pseudocode for shrewd selection.
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Algorithm 1 Computation of truncated complement
using shrewd selection

Input: 2s Hamiltonian H2s
ℓ = Lℓ−1WℓWℓ+1Rℓ+2, 2s wave-

function ψ2s = AℓΛℓBℓ+1 in bond-canonical form, prese-
lection bond dimension D′, truncated complement dimen-

sion D̃
Output: truncated complement Ãtr

ℓ ( )
1: function getRorth(Rℓ+2,Wℓ+1,Bℓ+1,Λℓ)
2: Compute Rtmp

ℓ+1 = ΛℓBℓ+1Wℓ+1Rℓ+2

3: Compute Rorth
ℓ+1 = Rtmp

ℓ+1 −Rtmp
ℓ+1B

†
ℓ+1Bℓ+1

4: return Rorth
ℓ+1

5: end function
6: (Fig. S-2(a)): SVD ℓ-bond of Rorth

ℓ+1 = USV †

7: function getLorth(Lℓ−1,Wℓ,Aℓ,U ,S)
8: Compute Ltmp

ℓ = Lℓ−1WℓUS

9: Compute Lorth
ℓ = Ltmp

ℓ −AℓA
†
ℓL

tmp
ℓ

10: return Lorth
ℓ

11: end function
12: (Fig. S-2(b)): SVD Lorth

ℓ =U ′S′V ′† and truncate all except

the largest D′ singular values in S′: U ′S′V ′† trunc→ u′s′v′†

13: (Fig. S-2(c)): Redirect the MPO-leg of u′s′ and perform

an SVD on its combined MPO- and ℓ-bond, u′s′ = Û ŜV̂ †.
Truncate all singular values in Ŝ which are numerically

zero to ensure A†
ℓÛ = 0. ▷ warning: A†

ℓÛ = 0 is crucial
and must be ensured!

14: (Optional): safety orthogonalization of Û by SVD on

Û −AℓA
†
ℓÛ plus truncation of small singular values.

15: Assign Âpr
ℓ = Û ( )

16: function getCorth(Lℓ−1,Wℓ,Wℓ+1,Rℓ+2,Aℓ,Λℓ,Bℓ+1,Â
pr
ℓ )

17: Compute Lpr
ℓ = (Âpr

ℓ )†Lℓ−1WℓAℓ

18: Compute Ctmp
ℓ+1 = Lpr

ℓ ΛℓBℓ+1Wℓ+1Rℓ+2

19: Compute Corth
ℓ+1 = Ctmp

ℓ+1 − Ctmp
ℓ+1B

†
ℓ+1Bℓ+1

20: return Corth
ℓ+1

21: end function
22: (Fig. S-2(d)): SVD Corth

ℓ+1 = Ũ S̃ Ṽ † and truncate all except

the largest D̃ singular values: Ũ S̃ Ṽ † trunc→ ũ s̃ ṽ†

23: Compute Ãtr
ℓ = Âpr

ℓ ũ ( )

TABLE I. Pseudocode for computing the truncated comple-

ment Ãtr
ℓ using shrewd selection.

and singular vectors. We here write bond dimensions
with ∗, indicating numbers of multiplets (not states),
since these determine computational complexities and
truncation thresholds and are the quantities shown in the
figures. Relations such as D̂ = D′w, exact for Abelian
symmetries where all symmetry multiplets have dimension
1, become approximate, D̂∗ ≃ D′∗w∗, when written for
non-Abelian symmetries.

B. Options for preselection and final selection

The key idea of CBE is to expand the isometry Aℓ( ),
whose image (the kept space) initially has dimension D∗

i ,
through a direct sum with a so-called truncated comple-

ment, an isometry with image dimension D̃∗ (<D∗
i ). The

latter is obtained through a suitable truncation of the full
complement, Aℓ( ), whose image (the discarded space)
initially has dimension D∗≃D∗

i (d
∗−1). Figure 1 defines

three cost functions, C1, C2 and C3, relevant for construct-
ing the truncated complement. The optimal choice for
the truncated complement, to be denoted Atr

ℓ ( ) here, is
obtained by exact minimization of C1, but that requires
2s costs. Therefore, the main text proposes an alternative
two-step strategy, requiring only 1s costs. First perform
preselection: obtain a preselected complement Âpr

ℓ ( ),

with image dimension D̂∗≃D′∗w∗, through minimization
of C2 (Fig. S-2, steps (a-c)). Then perform final selection:

obtain the desired truncated complement, denoted Ãtr
ℓ

( ), through minimization of C3 (Fig. S-2, step (d)).
The minimization of the cost functions C1 and C3 de-

fined in Fig. 1 involves performing SVDs and truncations
of the following two tensors, respectively:

M full =

�

+1�

�=

u sSU V † v†

D∗
D∗ D∗

d∗
D∗

D∗

d∗
D∗

, (S1a)

M̂pr =

+1

=

U S V † v†u s

D∗

d∗
D∗

d∗
D∗

D∗
D∗

D∗
. (S1b)

They differ only in one ingredient, A
†
ℓ( ) vs. Âpr

ℓ
†( ),

but since these have vastly different open leg dimensions,
D∗ vs. D̂∗, the SVD costs differ vastly too, 2s vs. 1s. The

isometries u( ) or ũ( ) obtained from the above SVDs

and truncations, both with image dimension D̃∗, can then

be used to construct A
tr

ℓ ( ) or Ãtr
ℓ ( ) as follows:

=
Atr A u

D∗D∗
d∗

, (S2a)

=
uAtr Apr

D∗D∗
d∗

. (S2b)

Both A
tr

ℓ ( ) and Ãtr
ℓ ( ) have image dimension D̃∗; the

former serves as reference (equivalent to using no prese-
lection, D′∗ = D∗, the latter is an approximation to the
former. An even cruder approximation is obtained if one
performs preselection without final selection: for that,
truncate Û ≃ û in step (c) of Fig. S-2 using D̂∗=D̃∗ (not

D′∗w∗), and use the resulting isometry, Âtr
ℓ ( ) = û, as

approximation for A
tr

ℓ ( ), omitting step (d) altogether:

=
D∗D∗

d∗

Atr û
. (S2c)

To illustrate the effects of preselection, we will com-
pare four settings: (I) the reference, Atr( ); or three
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versions of preselection with D′∗=D∗
f /w

∗, 0.1D∗
f /w

∗ or
1, to be called (II) moderate, (III) severe or (IV) extreme
preselection, respectively, all followed by final selection,
yielding three versions of Ãtr( ). Here, D∗

f is the final
bond dimension after an update, obtained by expanding
the bond from dimension D∗

i to D∗
i +D̃

∗=D∗
f (1+δ), then

trimming it back to D∗
f . To illustrate the importance of

final selection we also consider a fifth setting: (V) mod-

erate preselection and Û ≃ û truncation, without final
selection, yielding Âtr

ℓ ( ).

In the main text, we recommended performing CBE
updates using moderate preselection followed by final
selection. We showed (Fig. 4(a)) that this yields equally
fast convergence per sweep for the GS energy as 2s update.
Below, we elucidate why moderate preselection works
so well. To this end, we analyze various singular value
spectra (Sec. S-1C) and left singular vectors (Sec. S-1D),
with D∗

f = D∗
max fixed. We also show that severe and

even extreme preselection likewise yield full convergence,
albeit at slower rates, by comparing various convergence
rates per sweep while increasing D∗

f (Sec. S-1E).

C. Singular values

We start by comparing the singular values of the tensors
M full and M̂pr, i.e. the diagonal elements of the diagonal
matrices S( ) and S̃( ) in Eqs. (S1), denoted Si (i =

1, . . . , D∗) and S̃i (i = 1, . . . , D̂∗), respectively. They
differ strongly in number, but if the largest S̃i values
roughly mimic the largest Si values, serving as reference,
then preselection is “efficient”, in that it yields essentially
optimal results for the dominant singular values.

Figure S-3 compares Si (grey) and S̃i (orange: moderate
or brown: severe preselection) for bond ℓ = L /2 of both
the least and most challenging models considered in this
work: (a,b) the free fermion chain of Fig. 3, and (c,d) the
KHH cylinder of Fig. S-10. Here, we consider the case
that D∗

f has reached D∗
max and is not grown further, and

hence choose D̃∗=D∗
f δ (with δ = 0.1), so that D∗

i = D∗
f .

For (II) moderate preselection (D′∗ =D∗
f /w

∗) the S̃i

(orange) and Si (grey) values coincide quite well in the
range where they are largest, and eventually drift apart
as they get smaller. Especially for the largest D̃∗=D∗

f δ
(δ=0.1) singular values, i.e. the ones that survive final
selection and are used for bond expansion, the agreement
is rather good (Figs. S-3 (b,d)). This is a very important
finding—it indicates that moderate preselection is efficient.
By contrast, (III) severe preselection (D′∗=0.1D∗

f /w
∗),

shown only in Fig. S-3 (a,b), yields Si (brown) values
that differ substantially from their S̃i (grey) counterparts,
even in the range of largest values. Therefore, in this case
preselection is too severe to be very efficient.

(We note in passing that when using severe preselection,
the corresponding final selection involves almost no further

FIG. S-3. Comparison of singular values for three truncation
settings (I-III) defined in Sec. S-1B: the singular values Si of
the tensor M full, obtained (I) without preselection (reference,

grey); and the singular values S̃i of the tensor M̂pr, obtained
using (II) moderate preselection (D′∗=D∗

f /w
∗, orange) and

(III) severe preselection (D′∗=0.1D∗
f /w

∗, brown), all followed

by final selection with D̃∗=0.1D∗
f . They are all computed for

bond ℓ=L /2 of (a,b) the free fermion chain of Fig. 3, and (c,d)
the KHH cylinder of Fig. S-10(d). (b,d) Subsets of the data
from (a,c), shown on linear scales, focusing on the range of the

largest D̃∗=D∗
f δ singular values Si and S̃i (with δ=0.1). This

range contains all singular vectors comprising the truncated

complement Ãtr( ) obtained after final selection and used
for bond expansion. The singular values found with moderate
(orange) or no (grey) preselection agree rather well, but those
from severe preselection (brown) differ significantly from these.

truncation, since D̂∗ (given by ≃ D′∗w∗ = 0.1D∗) is

almost equal to D̃∗ (given by D∗δ). For the present

example, we have D̂∗=63 and D̃∗=60.)

In Figs. S-3 (a,b), the length of the grey vs. orange lines
visually illustrates the main rationale for our CBE strat-
egy: the number of Si values is generally very much larger
than needed for successful bond expansion, D

∗ ≫ D̃∗.
Thus, the 2s full complement subspace (obtained by ex-
cluding the 1s variational space from the 2s variational
space), is likewise much larger than needed for energy
minimization—only a small subspace thereof really mat-
ters. CBE aims to identify parts of that small subspace;
shrewd selection offers a cheap way of doing so, yield-
ing a notable speedup when computing the truncated
complement.
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FIG. S-4. Comparison of weights (S3) with which reference
singular vectors Si from Atr

ℓ ( ) are supported in truncated
spaces obtained with three truncation settings (II-IV) defined
in Sec. S-1B: w̃i gives the weight of |Si⟩ in span{|S̃j⟩}, the
image of Ãtr

ℓ ( ), computed through shrewd selection, using ei-
ther (II) moderate (orange dots) or (III) severe (brown crosses)
preselection; and ŵi gives the weight of |Si⟩ in span{|Ŝj⟩}, the
image of Âpr

ℓ ( ), computed using (IV) moderate preselection
without final selection (pink circles). Both panels show the
same data, on (a) a linear and (b) a log scale.

D. Singular vectors

We next turn to a comparison of singular vectors to
further quantify the benefits of using (II) moderate rather
than (III) severe preselection, and of using final selection.

For the latter purpose, we consider a truncation scheme
(V) involving moderate preselection but no final selection:
after the minimization of the cost function C2 (see Fig. S-

2(c)), we directly truncate Û Ŝ V̂ † ≃ û ŝ v̂† from D̂∗ to

D̃∗, and define the truncated complement as Âtr
ℓ = û ( ),

with singular vectors |Ŝi⟩.
To compare singular vectors we compute the weights

w̃i =
D̃∗∑

j=1

|⟨S̃j |Si⟩|2 =

i

i

, (S3a)

ŵi =
D̃∗∑

j=1

|⟨Ŝj |Si⟩|2 =

i

i

. (S3b)

Here, w̃i is the weight with which a singular vector
|Si⟩ (ordered by size of corresponding singular value)
from the image of Atr

ℓ ( ) is supported in the subspace

span{|S̃j⟩}, the image of Ãtr
ℓ ( ); and ŵi gives its weight

in span{|Ŝj⟩}, the image of Âtr
ℓ ( ). In less technical

terms, the weights characterize how well reference singu-
lar vectors can be represented in these truncated spaces.

These weights are shown in Fig. S-4 for the free fermion
data corresponding to Fig. S-3(a). For (II) moderate pre-
selection plus final selection (w̃i, orange dots), all weights
are close to one. Thus, this truncation scheme almost per-
fectly captures that part of the 2s subspace most relevant
for minimizing the GS energy. By contrast, for both (III)
severe preselection plus final selection (w̃i, brown crosses)
and (V) moderate preselection without final selection (ŵi,
pinc circles), most weights are significantly smaller than 1;
four are numerically zero. Thus, both these schemes dis-
card a significant part of the space relevant for minimizing
the GS energy.

The above analysis illustrates that final selection in-
cludes valuable additional information for the D̂∗ → D̃∗

truncation, which is not available when truncating Ŝ from
D̂∗ → D̃∗ directly after preselection. This is because the
central MPO bond, open during preselection, is closed
during final selection (compare their cost functions, C2
and C3 in Fig. 1). Closing the central MPO bond, as
appropriate for H2s

ℓ ψ
2s
ℓ , brings in additional information.

The SVD in step (d) of Fig. S-2 involves an additional

rotation (encoded in ũ) before the D̂∗ → D̃∗ truncation,
incorporating this additional information.

E. Convergence rate per sweep

The weights obtained for severe preselection (D′∗ =
δD∗/w∗) in Fig. S-4 pose the question whether D′∗ can be
too small to give converged results. In this case, preselec-
tion would not only be inefficient, but actually unsuccess-
ful. To explore this, Fig. S-5 compares the CBE–DMRG
convergence rate for several choices of D′∗, correspond-
ing to (II) moderate (red), (III) severe (green), and (IV)
extreme (blue) preselection.

As expected, convergence slows down with smaller D′∗.
Remarkably, however, once convergence has been reached,
the converged results agree (even for D′∗ = 1, a truly
extreme choice!). In this sense, the preselection strat-
egy is robust—converged results don’t depend on D′∗.
Note, though, that the computation time does not de-
pend significantly on D′∗ (provided it is clearly smaller
than D∗). On the other hand, it obviously does depend
on the number of sweeps, and the time per sweep can be
very large for expensive models. Therefore, D′∗ should
not be chosen too small, to avoid a time-costly increase
in the number of sweeps.

To summarize: a bond expansion is efficient, yielding
a significant reduction in GS energy and therefore quick
convergence, if D′∗ is large enough that the “most im-
portant” states |Si⟩, i.e. those with the largest singular
values Si, are well represented in the expanded space, i.e.
have weights w̃i ≃ 1.
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FIG. S-5. Influence of preselection on CBE–DMRG conver-
gence rate, for a half-filled free-fermion chain (L = N = 20).
The GS energy is plotted as a function of the number of half-
sweeps, ns, for three values of D′∗, used for preselection. We
start from a D∗

i = 1 valence bond state, set δ = 0.1, increase
D∗ using α = 1.1 until D∗ = 300 is reached, and continue
sweeping with α = 1 thereafter.

However, even if D′∗ is so small that most of the im-
portant states |Si⟩ are represented with small weights,
a bond expansion can nevertheless be successful, in the
sense of adding some relevant new states, provided that
these weights are non-zero, w̃i ̸= 0. The reason is that
the states |S̃i⟩ added to Aℓ( ) contain information about
the optimal states |Si⟩ with finite w̃i, i.e. those |Si⟩ are
not orthogonal to the expanded kept space. As long as
this information is available, subsequent 1s updates will
optimize the kept sector accordingly; the states |S̃i⟩ just
offer a somewhat less optimal starting point for that than
the |Si⟩.

Note that it is of utmost importance for successful
bond expansion that information on the most important
|Si⟩ is included. Since only a small set of states is in
the end used for expansion, the most important states
must be prioritized; otherwise, inferior information is
included in the kept space, rendering the bond expansion
unsuccessful: Subsequent 1s updates may then optimize
towards a suboptimal kept sector, as the optimal one may
not be available to the 1s update, e.g. due to symmetry
constraints. The energy will still decrease due to the
unsuccessful bond expansion plus 1s update, but not as
much as if the correct information on the most important
|Si⟩ is correctly included. The result will be a suboptimal
final state at the desired finite bond dimension D∗

max, i.e.
we have wasted resources.

Fig. S-5 shows that CBE–DMRG correctly includes in-
formation on the most optimal states when expanding the
bond, independent ofD′∗. Even with extreme preselection
(D′∗ = 1), it does not get stuck with some sub-optimal
state at D∗

max = 300, but eventually converges (albeit
slowly) to the same GS as found with larger choices of
Dmax.

FIG. S-6. Benchmark results for free fermions. Relative
error in GS energy vs. (a) CPU time xt and (b) number of
half-sweeps ns, for CBE and 2s DMRG. Eex is the exact
GS energy. (c) Quality of linear extrapolation of the GS
energy using various error measures. Dashed (solid) lines show
linear fits to data points lying on or above (on or below) the
grey bar, computed using D∗

max ≤ 300 (≥ 300), representing
intermediate (high) accuracy calculations; when these lines
touch zero, the extrapolated error changes sign.

S-2. SIMPLE BENCHMARK: FREE FERMIONS

In this section, we benchmark CBE–DMRG for free
fermions in one dimension (1D). The main purpose is
to evaluate the validity of the CBE discarded weight as
an error measure usable for extrapolation on an exactly
solvable model and compare it to other established error
measures. All CPU time measurements were done on a
single core of an Intel Core i7-9750H processor.
Consider a chain of spinful free fermions, exactly

solvable but non-trivial for DMRG, with Hamiltonian
HFF = −∑L−1

i=1

∑
σ

(
c†iσci+1σ + h.c.

)
and L = 100 sites.

We exploit U(1)ch ⊗ SU(2)sp charge and spin symmetry,
with local dimension d∗[d] = 3[4]. The MPO dimension
is w∗[w]=4[6]. We seek the GS in the sector with total
spin S=0, at half-filling, with particle number N=L .

Figure S-6(a) plots the relative error in energy vs. CPU
time for different D∗

max for both CBE and 2s schemes;
Fig. S-6(b) plots it vs. the number of half-sweeps ns.
While convergence with ns is comparable for CBE and
2s, CBE requires less CPU time than 2s by a factor of
≃ 2. (This speedup factor is less than d∗ = 3, since
d∗ is quite small and steps not involving the iterative
eigensolver have the same numerical cost for both CBE
and 2s schemes.)

Figure S-6(c) shows linear-fit extrapolations of the en-
ergy in terms of the discarded weight ξ and the 2s variance
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(the latter computed following Ref. [28]). The quality of
the extrapolations is comparable for all considered meth-
ods: they all reduce the error in energy by roughly one
order compared to the most accurate data point con-
sidered, as expected [25, 28]. The error is smaller for
δ = 0.3 than for δ = 0.1, and its dependence on discarded
weight is slightly less noisy (though this hardly affects the
extrapolation).

S-3. COMPARISON OF CBE TO DMRG3S

In this section, we provide a comparison between
DMRG3S and CBE–DMRG. First, we formulate
DMRG3S in terms of the kept-discarded (KD) space lan-
guage developed by us in Ref. 27 and also used in this
paper. Based on that, we then discuss to what extent
the bond-expansion term in DMRG3S is different to that
occurring in CBE-DMRG. We then compare the per-
formance of DMRG3S and CBE–DMRG based on two
models.

A. DMRG3S in KD language

In case of a right-to-left sweep, DMRG3S expands and
truncates the right isometry as follows:

D
d

w
D

(a)

d
D

=

�Dw ·α⊕
+1�C

+1�C

DdD d

D
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=

d

D
D
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D
�
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D
d

D
=
(c) B3S

+1

�

=
Dd

�

D
=
(d)

H1s,3S

C3S,i

, (S4)

where represents a unitary, in analogy to Eq. (6) in
the main text. Here, Cℓ+1 is direct-summed with the
expansion term multiplied by a mixing parameter α, then
(a) singular value decomposed and (b) truncated to bond
dimension D, yielding the new isometry B3S

ℓ+1. Finally in
steps (c) and (d), Cℓ andH

1s
ℓ are “expanded”, respectively,

similar to CBE (DMRG3S first updates Cℓ+1 and then
uses the mixing expansion of Eq. (S4) to expand Bℓ+1; by
contrast, CBE first expands Aℓ via Eq. (9), then updates

Cℓ+1). Note that in step (c), C3S,i
ℓ needs to be normalized

explicitly because

= , (S5)

i.e. the kept space spanned by the old isometry Bℓ+1

is not fully contained in the new one, B3S
ℓ+1, since part

of the kept space has been truncated. Finally, C3S
ℓ is

updated with the GS of H1s,3S
ℓ obtained with an iterative

eigensolver (Lanczos in our case), initialized with C3S,i
ℓ .

Our CBE strategy differs from DMRG3S in the follow-
ing ways:

(i) When constructing the expansion term, CBE considers
H2s

ℓ ψ
2s
ℓ , i.e. the action of the full 2s Hamiltonian on the 2s

wavefunction. By contrast, DMRG3S only considers part
of H2s

ℓ ψ
2s
ℓ (the right “half” in the right-to-left sweep dis-

cussed here). We found however that considering H2s
ℓ ψ

2s
ℓ

fully is crucial to not experience convergence issues. Note
that the expansion term in DMRG3S is more heuristic
than that in CBE and does not have the interpretation
of an effective Hamiltonian acting on a wavefunction.

(ii) CBE projects H2s
ℓ ψ

2s
ℓ fully to the DD sector, i.e. the

image of the orthogonal complements Aℓ ⊗Bℓ+1 ( ⊗ ).
This ensures that the kept space is not truncated dur-
ing the bond expansion and crucially, the energy of the
variational wavefunction remains the same. By con-
trast, DMRG3S does not involve any DD or D projec-
tions. Thus, part of the K sector is usually truncated
during the DMRG3S bond expansion, raising the energy
of the variational wavefunction. Thus, CBE–DMRG is
fully variational (bond expansion does not lead to a less
optimal wavefunction) while DMRG3S is not (see also
the discussion of Fig. 1 of Ref. 26).

(iii) Because DMRG3S changes the variational wavefunc-
tion by truncating part of the K sector, the weight of the
expansion term in DMRG3S has to be controlled by a
heuristic mixing factor α to ensure the variational energy
is not raised too much. This mixing factor has to be
carefully adapted during the calculation to ensure reliable
convergence and is model dependent (see Ref. 26 Sec. VI).
By contrast, there is no such mixing parameter in CBE.
In CBE, there is a parameter δ which controls the amount
of bond expansion. We found however that CBE–DMRG
is not at all sensitive to the value of δ and most important,
δ is not model dependent. Indeed, we have set δ = 0.1 in
our CBE calculations independent of the model. Further,
δ remains constant during the calculation.

Note that if 3S would include projections to the D

sector and would not truncate part of the kept space
during expansion, it would be similar to CBE without
preselection and final selection. However, leaving out
preselection is expensive while leaving out final selection
is inefficient (see Sec. S-1).

B. Results

We now benchmark the accuracy and speed of DMRG3S
against that of CBE–DMRG. For that, we use three mod-
els: a 1D Hubbard-Holstein model, spinful free fermions
on a short 4-leg cylinder and a free fermion chain with
only next-nearest neighbor hopping. All CPU time mea-
surements were done on a single core of an Intel Core
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FIG. S-7. Error in energy for the Hubbard-Holstein (HH)
model versus (a) CPU time and (b) number of half-sweeps ns,
computed using CBE–DMRG (solid) or DMRG3S (dashed).
E0 is obtained via ξ-extrapolation of calculations done at
D∗ ≥ 1000.

i7-9750H processor.
Hubbard-Holstein model.— We start our comparison

with the 1D Hubbard-Holstein model [32–36], with Hamil-
tonian

HHH = −
∑

iσ

(
c†iσci+1σ + h.c.

)
+ U

∑

i

ni↑ni↓ (S6)

+ ωph

∑

i

b†i bi + g
∑

i

(
ni↑ + ni↓ − 1

)(
b†i + bi

)
.

We chose U = 0.8, g =
√
0.2, ωph = 0.5, L = N = 100,

total spin S=0, and restrict the maximum local number
of excited phonons to Nmax

ph = 3. Both CBE–DMRG and
DMRG3S are initialized with the same D∗ = 1 MPS with
uniform charge distribution and the bond dimension is
grown by a factor of

√
2 every half sweep, i.e. it is doubled

every sweep. The DMRG3S mixing parameter is adapted
according to the prescription described in Ref. 26, Sec. VI.

Figures S-7 (a) and (b) show a comparison between the
error in energy versus CPU time and number of sweeps,
respectively, for different bond dimensions. As a function
of CPU time, the error in energy of DMRG3S initially
converges at the same rate as CBE–DMRG. Subsequently,
however, the convergence of 3S slows down compared to
CBE, ultimately requiring significantly more CPU time
to reach the final converged result. Further, the final
converged 3S result is not as accurate as the CBE result,
though this is more severe at small D∗ than at large D∗.
At D∗ = 150, the relative error from 3S is about 1.3 times
that of CBE.
Spinful free fermion cylinder.— For our next bench-

mark, we use free fermions on a Lx×Ly=10×4 cylinder,

described by Hcyl = −∑
⟨ℓ,ℓ′⟩,σ

(
c†ℓσcℓ′σ+h.c.

)
. We search

for the GS with N = Lx · Ly and S = 0. Again, we start
with a D∗ = 1 state with uniform charge distribution
and increase the bond dimension by a factor of

√
2 every

half-sweep.
Figures S-8 (a) and (b) show a comparison of the error

in energy versus CPU time and the number of sweeps
obtained with both CBE and 3S, respectively. Again,

FIG. S-8. Error in energy for spinful free fermions on a 10×4
cylinder versus (a) CPU time and (b) number of half-sweeps
ns. Eex is the exact ground-state energy.

CBE and 3S initially converge at the same rate w.r.t.
CPU time, but DMRG3S eventually slows down and
takes longer to reach final convergence compared to CBE.
Further, for all considered bond dimensions, 3S converges
now to a noticeably larger error, about 1.2 to >1.5 times
that of CBE.

Next-nearest neighbor free fermion chain.— As a last
model for our comparison, we choose free fermions on a
chain with only next-nearest neighbor hopping, described
by Hnnn = −∑L−2

ℓ=1 (c†ℓcℓ+2 + h.c.). Choosing L = 100
and exploiting U(1)ch symmetry, we initialize DMRG with
a half-filled product state consisting of a succession of two
occupied sites followed by two empty sites.

As shown in Fig. S-9(a), this rather simple model ini-
tialized with the product state described above poses a
serious challenge to 2s DMRG, which does not converge.
The reason for the failure of 2s DMRG is that the initial
state has ∆1⊥

E = 0 and ∆2⊥
E = 0 (c.f. Eq. (8)), implying

that H2s
ℓ ψ

2s
ℓ is parallel to ψ2s

ℓ . From the perspective of
2s DMRG, the initial state is therefore an eigenstate.

By contrast, both DMRG3S and CBE–DMRG do con-
verge, with CBE–DMRG again reaching convergence
faster in terms of number of sweeps and converging to a
sightly lower energy than DMRG3S. During the initial
few sweeps, CBE–DMRG lowers the energy somewhat

FIG. S-9. Error in energy for the next-nearest neighbor
free fermion chain, computed using CBE and 2s, (a) without
mixing, and (b) with mixing (α = 0.1), during the initial 14
half-sweeps. DMRG3S results in (a) and (b) are the same
data. Eex is the exact ground-state energy.
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more slowly than DMRG3S, reflecting the close relation
between CBE–DMRG and 2s DMRG. In contrast to the
latter, however, CBE–DMRG eventually does converge.
The reason is that CBE expands the MPS bond from D
to D + D̃ even if the projection of H2s

ℓ ψ
2s
ℓ to DD yields

zero — indeed, final selection (Fig. 2(d)) generates D̃
additional states even if some or all of the associated
singular values (from s̃ in Fig. 2(d)) are numerically zero.

This enlarges the kept space from D to D + D̃, such that
eventually ∆1⊥

E becomes nonzero and the energy can be
lowered during the CBE 1s update.

As suggested in Ref. 7, Section 3.1, adding noise terms
in the spirit of DMRG3S or density matrix perturbation
of Ref. 25 during the initial few sweeps can help 2s DMRG
to converge. The same is true for CBE–DMRG, which
also struggles during the initial sweeps in the present
case, as mentioned above. To demonstrate this, we there-
fore performed 2s and CBE calculations combined with
DMRG3S mixing, dubbed 2s+α and CBE+α, respectively.
(For CBE+α, first the CBE expansion of Aℓ according
to Eq. (9) is used, then Cℓ+1 is updated, and finally a
mixing expansion of Bℓ+1 according to Eq. (S4) is used.)
We choose α = 0.1 during the initial 7 sweeps (i.e. 14 half-
sweeps) and then continue without mixing. Note that we
do not need to fine-tune α, in contrast to DMRG3S. The
results of this strategy are displayed in Fig. S-9(b), which
shows that both 2s+α and CBE+α converge similarly
w.r.t. the number of sweeps.

Summary of CBE to DMRG3S comparison.— CBE
generically converges significantly faster w.r.t. number of
sweeps than 3S but takes about the same CPU time per
sweep. This leads to overall significantly faster conver-
gence of CBE compared to 3S. Further, the accuracy of
CBE is generically better than that of 3S at the same bond
dimension, meaning that CBE uses variational resources
more efficiently than 3S. This seems to be especially the
case for more challenging models where single-site meth-
ods provide the most benefit due to reduced computa-
tional demands. An exception are situations where 2s
DMRG fails entirely. In such cases, the convergence dur-
ing the initial few sweeps is significantly slower for CBE
than DMRG3S (though CBE eventually catches up, uti-
mately reaching a lower final energy than DMRG3S). The
initial CBE convergence can be sped up, if desired, by
including some mixing during the first few sweeps, using
a mixing parameter that need not be fine-tuned. This
strategy is the one we would recommend as standard
practice when dealing with challenging models.

S-4. KONDO-HEISENBERG CYLINDERS

In this section, we provide supplementary informa-
tion on the two most challenging models considered in
this work, both defined on a 4-leg cylinder: the Kondo-
Heisenberg (KH) model discussed in the main text, where

we presented evidence for Fermi surface (FS) reconstruc-
tion; and the Kondo-Heisenberg-Holstein (KHH) model,
included here to demonstrate the feasibility of using CBE
for tackling truly complex models.

The KH model is relevant for heavy-fermion materials,
which consist of itinerant conduction electrons, hybridiz-
ing with localized f orbitals [37]. At low energies, only
the spin degree of freedom of the f electrons remain,
describable by a KH model,

HKH = −
∑

σ=↑,↓

∑

⟨ℓ,ℓ′⟩

(
c†ℓσcℓ′σ + h.c.

)
(S7)

+ JK
∑

ℓ

Sℓ · sℓ + JH
∑

⟨ℓ,ℓ′⟩
Sℓ · Sℓ′ .

Here, c†ℓσ is a fermionic creation operator at site ℓ = (x, y)

with spin σ, sℓ =
1
2

∑
ss′ c

†
ℓsσss′cℓs′ is the corresponding

electron spin operator and Sℓ the spin operator of a spin-12
local moment, all for site ℓ.
The KHH model is obtained from the KH model by

additionally including Holstein phonons, motivated by
experimental data suggesting that phonons may play a
role in heavy-fermion physics [38]:

HKHH = HKH + ωph

∑

ℓ

b†ℓbℓ + g
∑

ℓσ

(nℓσ − 1
2 )
(
b†ℓ + bℓ

)
.

(S8)

Here, b†ℓ is phonon creation operator for site ℓ. To deal
with the infinite local phonon Hilbert space, we restrict
the maximum number of local phonon excitations toNmax

ph

(specified below) in our DMRG calculations.
In Sec. S-4A we first show stable convergence of CBE–

DMRG for the KHH model on a 10×4 cylinder. Then, in
Sec. S-4B, we describe how to extract information on the
FS in 40× 4 KH cylinders from ground states computed
with CBE–DMRG. Finally, in Sec. S-4C, we show that
our KH cylinder results are consistent with Luttinger’s
sum rule, relating the electron density to the FS volume.

A. Kondo-Heisenberg-Holstein cylinders:
convergence

Our intention is to show that CBE–DMRG is stable for
the KHH model, which is at the edge of what is possible
with current DMRG techniques. To check the applicability
of CBE–DMRG to the KHH model on a 10× 4 cylinder,
we use Kondo coupling JK=5, Holstein coupling g=0.5
to the phonons and optical phonon frequency ωph=0.5.
We considered two different values for Nmax

ph ∈ {0, 3} and
the Heisenberg coupling JH ∈ {0, 0.5}.
We performed GS searches for N=L (1+ 1

4 )=50 and
S = 0, i.e. at 25% electron doping. Figure S-10 shows
the energy error vs. ξ for four parameter combinations
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FIG. S-10. Error in GS energy versus discarded weight for the
Kondo-Heisenberg-Holstein (KHH) model on a 10×4 cylinder,
with (a) only Kondo coupling, (b) Kondo and Heisenberg
coupling, (c) Kondo and Holstein coupling and (c) Kondo,
Heisenberg and Holstein coupling. Legends state our choices
for JH and Nmax

ph , and corresponding values of d∗[d] and w∗[w].
For each panel, E0 was obtained by linear ξ-extrapolation to
ξ=0 (grey line) using the four largest D∗ values. The very
largest D∗ is shown next to its data point; D∗ changes by 1k
between adjacent data points.

(see legends). The linear ξ-dependence of E demonstrates
proper convergence of CBE–DMRG. Very large D∗ values
are achievable despite the rather huge values of d and w.
This is remarkable especially for JH=0.5 and Nmax

ph =3
(Fig. S-10(d)), where d∗[d] = 16[32] and w∗[w] = 14[30]
are large, so that 2s schemes become excessively costly.
These results encouragingly illustrate the potential of
CBE for handling very complex models.

B. Kondo-Heisenberg cylinders: Fermi surface

Having established stable convergence of CBE–DMRG
for the KHH model on a 10× 4 cylinder, we turn to the
Kondo-Heisenberg (KH) model on longer 40 × 4 cylin-
ders. In this section, we provide some supplementary
information on our discussion of the Fermi surface (FS)
reconstruction in the KH model.

Heavy-fermion materials feature many interesting
phenomena. One that is not so well understood is
the so-called Kondo breakdown (KB) quantum critical
point (QCP). When the system is tuned across this KB–
QCP, the FS volume abruptly changes [39], leading to a
violation of Luttinger’s sum rule [40] and strange metal
behavior at finite temperatures.

In Fig. 6 of the main text, we have shown strong evi-
dence for the existence of two distinct phases with different
FS volumes in the KH model on a 4-leg cylinder. This in
turn strongly suggests the existence of a KB-QCP in the
KH model on 4-leg cylinders, which can be studied in a
non-perturbative, controlled and unbiased way using our
newly developed CBE–DMRG method. Here, our goal is
to explain in detail how we extracted the Fermi points
from our CBE–DMRG data on the 40× 4 KH cylinder,

FIG. S-11. ky-resolved eigenvalues, ρky (α) of the single-
particle density matrix of the Kondo-Heisenberg (KH) model
on a 40 × 4 cylinder at 25% electron doping, JH = 0.5 and
(a) JK = 0.5 and (b) JK = 2.5. Eigenvalues are extrapolated
to truncation error ξ → 0, error bars are below symbol sizes.
Dashed lines highlight jumps in the spectra.

thereby establishing the two distinct phases reported in
the main text. We leave the study and discussion of a
possible KB–QCP and its rich physics to future work.
To illustrate our Fermi point extraction strategy, we

here focus on JK = 1 and JK = 5, representative for the
two phases with different Fermi surfaces at small and
large JK, respectively. We extract the Fermi points from
the single-particle density matrix,

ρky
(x, x′) =

∑

σ

⟨c†xkyσ
cx′kyσ

⟩ , (S9)

where cxkyσ = 1
2

∑4
y=1 e

ikyycxyσ , with ky ∈ {0,±π
2 , π},

is the y-Fourier transform of the fermionic annihilation
operator cxyσ = cℓσ.

Figure S-11 shows the eigenvalues of ρky
(x, x′), dubbed

ρky
(α), for given ky (extrapolated to zero discarded weight

ξ). The structure of the eigenvalue spectra for JK = 1
and JK = 5 differ qualitatively: For JK = 1, they show a
jump for ky = ±π

2 and ky = π, but not for ky = 0, while
for JK = 5 it is the other way around.
A jump in ρky

(α) suggests that the corresponding ky
value is visited by the Fermi surface, i.e. there exists a
point on the FS with Fermi wavevector kF = (kFx(ky), ky).
Note, however, that since we use open boundary condi-
tions, the eigenbasis of ρky

is not the Fourier basis. We

FIG. S-12. Absolute values of the off-diagonal elements of the
single-particle density matrix of the Kondo-Heisenberg model
on a 40× 4 cylinder at 25% electron doping, for JH = 0.5 and
(a) JK = 1, (b) JK = 5. Solid lines are CBE–DMRG data;
black dotted lines are fits to Eq. (S10) to extract λ and kFx.
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FIG. S-13. Discarded weight extrapolation of (a,b) the corre-
lation length and (c,d) the corresponding Fermi wavevectors,
obtained through the fits of ρky (x0, x) to Eq. (S10), as shown
in Fig. S-12. Error bars indicate 68.2% confidence intervals (i.e.
one standard deviation) for the fit parameters (below symbol
size in (c,d)).

can therefore not rely on the eigenbasis of ρky
to determine

the corresponding x-direction Fermi wavevector kFx(ky).
Instead, we use the off-diagonal elements ρx0x(ky) in the
real space basis, for fixed x0 = 3, and study the behaviour
of ρky(x0, x) as a function of |x− x0|. The expected be-
haviour in the case of a Fermi point can be parametrized
by the Ansatz

ρky
(x0, x) ∼ cos (kFx(ky)|x− x0|+ ϕ)

e−|x−x0|/λ

|x− x0|α
.

(S10)

Here, the exponent in the denominator is given by α = 1
in case of a Fermi liquid (obtained by Fourier transforming
a step function), or takes some non-universal, interaction-
dependent value in the case of a Luttinger liquid [41]. Be-
cause CBE–DMRG approximates the true ground state by
a MPS, the correlation length λ is finite. When D∗ → ∞,
or equivalently when ξ → 0, we expect λ→ ∞. In Fig. S-
12, we show that a fit of ρky

(x0, x) to Eq. (S10) indeed
works well for those ρky

with gapped spectrum (green, red
curves in Fig. S-11(a), blue curve in Fig. S-11(b)). Note
that such fits are not possible for the remaining cases.

Figures S-13(a,b) show the behaviour of the inverse
correlation length 1/λ versus discarded weight ξ. In the
cases where we have identified a possible Fermi wavevec-
tor kFx(ky), 1/λ indeed extrapolates to zero (i.e. λ→ ∞)
within our numerical accuracy, consistent with expecta-
tions for either a Fermi or Luttinger liquid. In Fig. S-
13(c,d), we show the corresponding Fermi wavevectors
kFx(ky) plotted against discarded weight ξ. It turns out
that kFx(ky) is almost independent of ξ, which means the
determination of kFx(ky) is highly accurate.

Our way of extracting Fermi wavevectors from DMRG
ground states using the single-particle density matrix is
reliable and numerically robust. In Fig. 5 of the main
text, we only presented Fermi wavevectors for values of
JK where we were able to converge the DMRG calcula-
tion with reasonable numerical effort (D∗ ≤ 12k on the
40× 4 cylinder). Closer to the putative KB-QCP, more
numerical resources are needed. These more challenging
calculations are beyond the scope of the current work
(which mainly focuses on the development of the CBE
method) and are left for the future.

C. Kondo-Heisenberg cylinders: Fermi volume and
Luttinger’s sum rule

The FS is especially interesting in the context of Lut-
tinger’s sum rule [40, 42],

neff =2vFS (S11)

(prefactor 2 for spin). It links the volume enclosed by the
FS, vFS (measured in terms of Brillouin zone volumes), to
the effective number of mobile charge carriers neff (defined
modulo 2, i.e. excluding filled bands).
An unambiguous definition of the volume of the FS

must include a criterion distinguishing its inside and out-
side. The inside of the Fermi volume is usually defined as
those momentum space states which are “filled”, having
nk =

∑
σ⟨c

†
kσckσ⟩ ≃ 2. We point out that the criterion

based on nk is only stringent in the non-interacting limit
where nk ∈ {0, 2} can only take two values, which is not
the case for interacting systems. A stringent criterion for
interacting systems can be formulated in terms of single-
electron Green’s functions (see, e.g., Ref. 44, Eq. (7)),
but the computation of such dynamical quantities is be-
yond the scope of this work. Here, we take the heuristic
approach based on nk.

To make progress on a formula for vFS in 2D, we assume
that single-electron states in the vicinity of k = (0, 0)
are usually lower in energy than those in the vicinity
of k = (π, π). Thus, we consider the states between
∈ [−kFx(ky), kFx(ky)] filled. For an infinite 2D system,
we can now compute

vFS =

∫ π

−π

dky
2π

∫ kFx(ky)

−kFx(ky)

dkx
2π

=

∫ π

−π

dky
2π

|kFx(ky)|
π

.

(S12)

Our KH cylinders at hand are however not infinite 2D
systems due to the finite circumference of Ly = 4 (the
finite length Lx can in practice chosen large enough to
not play a conceptionally problematic role). In this case,
we replace the integral in Eq. (S12) by a sum to obtain

vFS = 1
Ly

∑

ky

|kFx(ky)|/π . (S13)
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Note that we are now faced with the ambiguity of how
to define kFx(ky) for those ky values for which no Fermi
points exist. The corresponding kFx(ky) could be either π
or 0, depending on whether nk is filled or empty for all kx,
respectively. For Ly → ∞, this can be decided based on
continuity of kFx(ky). By contrast, for finite Ly, where
ky takes only discrete values, the definition of kFx(ky)
has to be based on heuristic arguments. To this end, we
use the eigenvalues of the single-particle density matrix
ρky

(α) (see Fig. S-11) as a proxy for nk (in the limit
Lx → ∞, these quantities coincide). If the eigenvalues
ρky

(α) are close to (or not close to) 2 for all α, we take
that as an indication that all states are filled (or empty),
and accordingly define kFx(ky) = π (or = 0).
For JK = 1, only kFx(ky = 0) is undecided. Since

ρ0(α) ≃ 2 (see Fig. S-11(a), blue dots), we define
kFx(0) = π. Together with the Fermi points found at
ky = ±π

2 , π, we thus find (|kFx|, |ky|) = (π, 0), (0.625π, π2 )
and (0.256π, π), matching the free-electron values at JK =

0. Inserting these into Eq. (S13), we find vFS = 0.627 and
neff = 1.25, consistent with 25% electron doping.
By contrast, for JK ≥ 5, we find Fermi points only at

(π2 , 0). For ky = ±π
2 , π, we have to consult ρky

(α) shown
in Fig. S-11(b) (green squares and red diamonds). Since
these are well below 2, we define kFx = 0 for these, so that
(|kFx|, |ky|) = (0, π2 ) and (0, π). Insertion into Eq. (S13)
yields vFS = 0.125 and neff = 0.25 = 2.25mod 2 (neff
is only defined modulo 2, i.e. up to filled bands). This
is consistent with spins becoming mobile charge carriers
by “binding” to the electrons [43] by forming collective
Kondo singlets. These collective Kondo singlets break up
when approaching the KB–QCP from JK > JK,c (hence
the name “Kondo breakdown”) and cease to exist for
JK < JK,c. The existence of collective Kondo singlets
manifests in a pole in the single-electron self-energy. Due
to this pole, the Fermi wavevector is shifted, leading to
a FS consistent with spins counting as mobile charge
carriers [42, 43].
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We present a controlled bond expansion (CBE) approach to simulate quantum dynamics based on
the time-dependent variational principle (TDVP) for matrix product states. Our method alleviates
the numerical difficulties of the standard, fixed-rank one-site TDVP integrator by increasing bond
dimensions on the fly to reduce the projection error. This is achieved in an economical, local
fashion, requiring only minor modifications of standard one-site TDVP implementations. We il-
lustrate the performance of CBE–TDVP with several numerical examples on finite quantum lattices.

DOI:

Introduction.— The time-dependent variational prin-
ciple (TDVP) [1–4] is a standard tool for time-evolving
the Schrödinger equation on a constrained manifold
parametrizing the wave function. Tensor networks (TN)
offer efficient parametrizations based on low-rank approx-
imations [5–12]. Their combination, TN–TDVP, holds
much potential for studying the dynamics of quantum
lattice models [13–32], quantum field theories [33, 34],
and quantum chemistry problems [35–40].

Here, we focus on matrix product states (MPSs), an
elementary class of TN states. Their time evolution, pio-
neered in Refs. [41–43], can be treated using a variety of
methods, reviewed in Refs. [8, 44]. Among these, MPS–
TDVP [15, 18–22], which uses Lie-Trotter decomposi-
tion to integrate a train of tensors sequentially, arguably
gives the best results regarding both physical accuracy
and performance [44]: it (i) is applicable for long-ranged
Hamiltonians, and its one-site (1s) version (1TDVP) en-
sures (ii) unitary time evolution, (iii) energy conservation
[15, 45] and (iv) numerical stability [18, 21, 23].

A drawback of 1TDVP, emphasized in Refs. 46–48, is
use of a fixed -rank integration scheme. This offers no
way of dynamically adjusting the MPS rank (or bond
dimension), as needed to track the entanglement growth
typically incurred during MPS time evolution. For this,
a rank-adaptive two-site (2s) TDVP (2TDVP) algorithm
can be used [22], but it has much higher computational
costs and in practice does not ensure properties (ii-iii).

To remedy this drawback, we introduce a rank-adap-
tive integrator for 1TDVP that is more efficient than pre-
vious ones [49–52]. It ensures properties (i-iv) at the
same numerical costs as 1TDVP, with marginal over-
head. Our key idea is to control the TDVP projection
error [22, 49, 53] by adjusting MPS ranks on the fly via
the controlled bond expansion (CBE) scheme of Ref. [54].
CBE finds and adds subspaces missed by 1s schemes but
containing significant weight from HΨ. When used for
DMRG ground state searches, CBE yields 2s accuracy
with faster convergence per sweep, at 1s costs [54]. CBE–

TDVP likewise comes at essentially 1s costs.
MPS basics.— Let us recall some MPS basics, adopting

the notation of Refs. 54 and 55. For an L -site system an
open boundary MPS wave function Ψ having dimensions
d for physical sites and D for virtual bonds can always
be written in site-canonical form,

Ψ =
1A 2A 1−A C +1B LBLB

DD d

1−
. (1)

The tensors C` ( ), A` ( ) and B` ( ) are variational pa-
rameters. A` and B` are left and right-sided isometries,
respectively, projectingDd-dimensional parent (P) spaces
to D-dimensional kept (K) images spaces; they obey

= == =
�A

�
∗A

�
∗B

�B

,=�A�
†A =

�

†B
�

B
�
K

1−�
K . (2)

The gauge relations C` = A`Λ` = Λ`−1B` ensure that
Eq. (1) remains unchanged when moving the orthogonal-
ity center C` from one site to another.

The Hamiltonian can likewise be expressed as a matrix
product operator (MPO) with virtual bond dimension w,

H = LWLW1W 2W �W

d dw
1−

. (3)

Its projection to the effective local state spaces associated
with site ` or bond ` yields effective one-site or zero-site
Hamiltonians, respectively, computable recursively via

H1s
` =

� +1�1−� � +1�1−�

D Dd

1

=
L

, (4a)

Hb
` =

� +1�

D D

=

� +1�1−�
=

� +1� +2�

. (4b)

These act on 1s or bond representations of the wave func-
tion, ψ1s

` =C`( ) or ψb
` =Λ`( ), respectively.

Let A` ( ) and B` ( ) be isometries that are orthogo-
nal complements of A` and B`, with discarded (D) image
spaces of dimension D=D(d−1), obeying orthonormality
and completeness relations complementing Eq. (2) [54]:
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= == = , , ,= 0 = 0
�
D

1−�
D

� � � �

, (5a)

,= =+
� � �� � �

= =+
�
P

1−�
P . (5b)

Tangent space projector.— Next, we recapitulate the
TDVP strategy. It aims to solve the Schrödinger equa-
tion, iΨ̇ = HΨ, constrained to the manifold M of all
MPSs of the form (1), with fixed bond dimensions. Since
HΨ typically has larger bond dimensions than Ψ and
hence does not lie in M, the TDVP aims to minimize
‖iΨ̇−HΨ‖ within M. This leads to

iΨ̇(t) = P1s(t)HΨ(t), (6)

where P1s(t) is the projector onto the tangent space of
M at Ψ(t), i.e. the space of all 1s variations of Ψ(t):

P1s = −∑ ∑L 1−L

=1′� ′� ′�=1′�1 1L L

(7)

= + +
∑ ∑L
=1′� ′� +1=′�1 L1 L ′�1 L�̄ �̄

�̄
.

The form in the first line was derived by Lubich, Oseledts,
and Vandereycken [21] (Theorem 3.1), and transcribed
into MPS notation in Ref. [22]. For further explanations
of its form, see Refs. [55, 56]. The second line, valid for
any ¯̀=1, . . . ,L−1, follows via Eq. (5b); Eq. (5a) implies
that all its terms conveniently are mutually orthogonal,
and that the projector property (P1s)2 = P1s holds [55].

One-site TDVP.— The 1TDVP algorithm [21, 22] rep-
resents Eq. (6) by 2L−1 coupled equations, iĊ`=H1s

` C`
and iΛ̇` = −Hb

` Λ`, stemming, respectively, from the L

single-site and L−1 bond projectors of P1s (Eq. (7), first
line). Evoking a Lie-Trotter decomposition, they are then
decoupled and for each time step solved sequentially, for
C` or Λ` (with all other tensors fixed). For a time step
from t to t′= t+δ one repeatedly performs four substeps,
e.g. sweeping right to left: (1) Integrate iĊ`+1 =H1s

`+1C`+1

from t to t′; (2) QR factorize C`+1(t′) = Λ`(t
′)B`+1(t′);

(3) integrate iΛ̇` =−Hb
` Λ` from t′ to t; and (4) update

A`(t)C`+1(t)→ C`(t)B`+1(t′), with C`(t) = A`(t)Λ`(t).
1TDVP has two leading errors. One is the Lie-Trotter

decomposition error. It can be reduced by higher-order
integration schemes [45, 57]; we use a third-order inte-
grator with error O(δ3) [58]. The second error is the
projection error from projecting the Schrödinger equa-
tion into the tangent space of M at Ψ(t), quantified by
∆P = ‖(1−P1s)HΨ(t)‖2. It can be reduced brute force
by increasing the bond dimension, as happens when using
2TDVP [22, 44, 47], or through global subspace expan-
sion [50]. Here, we propose a local approach, similar in
spirit to that of Ref. [52], but more efficient, with 1s costs,
and without stochastic ingredients, in contrast to [40].

Controlled bond expansion.— Our key idea is to use
CBE to reduce the 2s contribution in ∆P , given by ∆2⊥

P =∥∥P2⊥HΨ
∥∥2

, where P2⊥ = P2s(1−P1s). Here, P2s is the
projector onto 2s variations of Ψ, and P2⊥ its component

orthogonal to the tangent space projector (see also [55]):

P2s =
1 L=1 1 L

L 1−

=2

L 1−
− , (8a)

P2⊥ =
∑1−L

=1� �1 L

, ∆2⊥
P =

� +1�
=1�

∑1−L 2

= ,. (8b)

Now note that ∆2⊥
P is equal to ∆2⊥

E = ‖P2⊥(H−E)Ψ‖2,
the 2s contribution to the energy variance [53–55]. In
Ref. [54], discussing ground state searches via CBE–
DMRG, we showed how to minimize ∆2⊥

E at 1s costs:
each bond ` can be expanded in such a manner that the
added subspace carries significant weight from P2⊥HΨ.
This expansion removes that subspace from the image
of P2⊥, thus reducing ∆2⊥

E significantly. Consider, e.g.,

a right-to-left sweep and let Ãtr
` ( ) be a truncation of

A` ( ) having an image spanning such a subspace, of

dimension D̃, say. To expand bond ` from D to D + D̃,
we replace A`( ) by Aex

` ( ), C`+1( ) by Cex
`+1( ) and

H1s
`+1 by H1s,ex

`+1 , with expanded tensors defined as

⊕ =
D DD D̃ D

d d d

�
exA�A �

trÃ
=

D
d +1�

+1�
exC +1�C

)D̃+D(
, (9)

H
(1,ex)
`+1 =

+1�

=
Dd

)δ(1+D

+1�

D̃+D
. (10)

Note that Ψ remains unchanged, Aex
` C

ex
`+1 = A`C`+1.

Similarly, the projection error ∆2⊥
P can be minimized

through a suitable choice of the truncated complement
Ãtr
` ( ) [54]. We find Ãtr

` using the so-called shrewd selec-
tion strategy of Ref. [54] (Figs. 1 and 2 there); it avoids
computation of , and has 1s costs regarding CPU
and memory, thus becoming increasingly advantageous
for large D and d. Shrewd selection involves two trunca-
tions (D→D′ and D̂→D̃ in Ref. [54]). Here, we choose
these to respect singular value thresholds of ε′ = 10−4

and ε̃= 10−6, respectively; empirically, these yield good
results in the benchmark studies presented below.

CBE–TDVP.— It is straightforward to incorporate
CBE into the 1TDVP algorithm: simply expand each
bond ` from D→ D+D̃ before time-evolving it. Con-
cretely, when sweeping right-to-left, we add step (0): ex-
pand A`, C`+1, H

1s
`+1 → Aex

` , C
ex
`+1, H

1s,ex
`+1 following Eq. (9)

(and by implication also Λ`, H
b
` → Λex

` , H
b,ex
` ). The

other steps remain as before, except that in (2) we re-
place the QR factorization by an SVD. This allows us
to reduce (trim) the bond dimension from D + D̃ to a
final value Df , as needed in two situations [49, 51, 59]:
First, while standard 1TDVP requires keeping and even
padding small singular values in order to retain a fixed
bond dimension [13, 18], that is not necessary here. In-
stead, for bond trimming, we discard small singular val-
ues below an empirically determined threshold ε = 10−12.
This keeps the MPS rank as low as possible, without im-
pacting the accuracy [49]. Second, once D + D̃ exceeds
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FIG. 1. 100-site XX spin chain: Time evolution of a do-
main wall, computed with time step δ = 0.05 and U(1) spin
symmetry. (a) Local magnetization profile Sz` (t). (b) Entan-
glement entropy EE(t) between the left and the right half of
the chain. (c) Bond dimension Df(t) and its pre-trimming

expansion D̃(t) per time step, for Dmax = 120. (d,e) Error
analysis: magnetization δSz(t) (solid line),i.e., the maximum
deviation (over `) of Sz` (t) from the exact result, , energy
δE(t) (dashed line), and discarded weight ξ(t) (dotted line)
for Dmax =40 (red), 80 (blue) and 120 (black), computed with
(d) CBE–TDVP or (e) 2TDVP. Remarkably, the errors are
comparable in size, although CBE–TDVP has much smaller
computational costs.

Dmax, we trim it back down to Dmax aiming to limit com-
putational costs. The trimming error is characterized by
its discarded weight, ξ(t), which we either control or mon-
itor. The TDVP properties of (ii) unitary evolution and
(iii) energy conservation [51] hold to within order ξ(t).

Results.— We now benchmark CBE–TDVP for three
spin models, then illustrate its performance for large d us-
ing the Peierls–Hubbard model with d = 36. Our bench-
mark comparisons track the time evolution of the entan-
glement entropy EE(t) between the left and right halves

of a chain, the bond dimensions Df(t) and D̃(t), the dis-
carded weight ξ(t), the deviations from exact results of
spins expectation values, δS(t), and the energy change,
δE(t), which should vanish for unitary time evolution.

XX model: domain wall motion.— We consider a spin
chain with Hamiltonian HXX =

∑
`(S

x
` S

x
`+1 + Sy` S

y
`+1).

We compute the time evolution of the local magnetiza-
tion profile Sz` (t) = 〈Ψ(t)|Ŝz` |Ψ(t)〉, initialized with a
sharp domain wall, |Ψ(0)〉 = |↑↑ . . .↑↓↓ . . .↓〉. For com-
parison, the analytical solution for L → ∞ reads [60]

Sz` (t) = −1/2
∑`−1
n=1−` Jn(t)2, for ` ≥ 1 (right half) and

Sz` = −Sz1−` otherwise, where Jn(t) is the Bessel func-
tion of the first kind. The domain wall spreads with
time [Fig. 1(a)], entailing a steady growth of the entan-
glement entropy (EE) between the left and right halves

of the spin chain [Fig. 1(b)]. D(t) and D̃(t) [Fig. 1(c)]

start from 1 and 0. Initially, D̃ remains remarkably small
(. 10), while Df increases in steps of D̃ until reaching

Dmax. Thereafter D̃ increases noticeably, but remains
below Dmax for all times shown here. This reflects CBE
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FIG. 2. 100-site one-axis twisting model: Time evolution of
an initially x-polarized spin state, computed using δ = 0.01
and Z2 spin symmetry. (a) Total spin Stot

x (t), (b) entan-
glement entropy, and (c) bond dimensions. (d) Error anal-
ysis: error in total spin density δstotx (t) (solid line), energy
δE(t) (dashed line), and discarded weight ξ(t) (dotted line),
for Dmax = 500.

frugality—bonds are expanded only as much as needed.

Figure 1(d) illustrates the effects of changingDmax, fol-
lowing the error analysis of Ref. 61. The leading error is
quantified by δSz(t) (solid line), the maximum deviation
(over `) of Sz` (t) from the exact result. Comparing the
data for Dmax = 40, 80, 120, we observe a finite bond di-
mension effect: The error δSz increases appreciably once
the discarded weight ξ (dotted line) becomes larger than
10−11. By contrast, the energy change (dashed line) stays
small irrespective of the choice of Dmax. (For more dis-
cussion of error accumulation, see Ref. [56].) Figure 1(e)
shows a corresponding error analysis for 2TDVP, com-
puted using D=Dmax; its errors are comparable to those
of CBE–TDVP, though the latter is much cheaper.

One-axis twisting (OAT) model: quantum revivals.—
The OAT model has a very simple Hamiltonian, HOAT =
(
∑
` S

z
` )2/2, but its long-range interactions are a chal-

lenge for tensor network methods using real-space
parametrizations. We study the evolution of Stot

x (t) =

〈Ψ(t)|∑` Ŝ
x
` |Ψ(t)〉, for an initial |Ψ(0)〉 having all spins

x-polarized (an MPS with D = 1). The exact result,
Stot
x (t) = (L/2)cosL−1(t/2), exhibits periodic collapses

and revivals [62]. Yang and White [50] have studied
the short-time dynamics using TDVP with global sub-
space expansion, reaching times t ≤ 0.5. CBE–TDVP is
numerically stable for much longer times [Fig. 2(a)]; it
readily reached t = 12π, completing three cycles. (More
would have been possible with linear increase in com-
putation time.) This stability is remarkable, since the
rapid initial growth of the entanglement entropy, the
finite time-step size, and the limited bond dimension
[Fig. 2(b,c)] cause some inaccuracies, which remain vis-
ible throughout [Fig. 2(d)]. However, such numerical
noise evidently does not accumulate over time and does
not spoil the long-time dynamics: CBE–TDVP retains
the treasured properties (i-iv) of 1TDVP, up to the trun-
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FIG. 3. 40-site SU(2) Haldane-Shastry model: (a-d) Time
evolution of a spin excitation, computed with δ = 0.05 and
SU(2) spin symmetry. (a1,a2) Real and imaginary parts of
C(x, t), (b) entanglement entropy, and (c) bond dimensions.
(d) Error analysis: δC(t), the maximum of δC(x, t) over x
(solid line), energy δE(t) (dashed line) and discarded weight
ξ(t) (dotted line), for Dmax = 500. (f) Normalized spec-
tral function S(k, ω)/S(π, 0), obtained using tmax = 60. (g)
S(π, ω)/S(π, 0), obtained using tmax = 20, 40, 60; red lines
indicate exact peak heights.

cation tolerance governed by ξ.
SU(2) Haldane-Shastry model: spectral function.—

Our final benchmark example is the SU(2) Haldane-
Shastry model on a ring of length L , with Hamiltonian

HHS = J
∑

`<`′≤L

π2S` · S`′
L 2sin2 π

L
(`− `′) . (11)

Its ground state correlator, C(x, t)=〈Ψ0|Ŝx(t)Ŝ0(0)|Ψ0〉,
is related by discrete Fourier transform to its spectral
function, S(k, ω), given by (0 < `′ < ` ≤ L /2) [63, 64]

S
(

2(`+ `′) π
L
, π

2

L2 ((`+ `′)L − 2(`2 + `′
2
) + `− `′)

)
(12)

=
2`− 2`′ − 1

(2`− 1)(L − 2`′ − 1)

`−1∏

`=`′+1

2`(L − 2`)

(2`− 1)(L − 2`− 1)
.

Figures 3(a,b) show the real and the imaginary parts
of C(x, t), computed using CBE–TDVP. For early times
(t ≤ 20), the local excitation introduced at ` = 0, t = 0
spreads ballistically, as reported previously [28, 65, 66].
Once the counter-propagating wavefronts meet on the
ring, an interference pattern emerges. Our numerical re-
sults remain accurate throughout, as shown by the error
analysis in Fig. 3(e). Figure 3(f) shows the corresponding
spectral function S(k, ω), obtained by discrete Fourier

FIG. 4. Peierls–Hubbard model: Real-space scattering of two
electron wave packets, for U=10 and ωph =3, computed with
δ = 0.05, nph

max == 8 and U(1) spin symmetry. (a,b) Spin
magnetic moment Sz(x, t) for g = 0 and g = 1. (c) Phonon
density nph(x, t), (d) bond dimensions, and (e) error analysis:
energy δE(t) (dashed line) and discarded weight ξ(t) (dotted
line), all computed for g=1, with Dmax = 500.

transform of C(x, t) using a maximum simulation time
of tmax. Figure 3(g) shows a cut along k=π: peaks can
be well resolved by increasing tmax, with relative heights
in excellent agreement with the exact Eq. (12).

Peierls–Hubbard model: scattering dynamics.— Fi-
nally, we consider the scattering dynamics of interact-
ing electrons coupled to phonons. This interaction leads
to non-trivial low-energy physics involving polarons [67–
79]; the numerical study of polaron dynamics is currently
attracting increasing attention [69, 80–84]. Here, we con-
sider the 1-dimensional Peierls–Hubbard model,

HPH =
∑

`

Un`↑n`↓ +
∑

`

ωphb
†
`b` (13)

+
∑

`σ

(c†`σc`+1σ+h.c.)
(
−t+ b†`+b`−b

†
`+1−b`+1

)
.

Spinful electrons with onsite interaction strength U and
hopping amplitude t = 1, and local phonons with fre-
quency ωph, are coupled with strength g through a Peierls
term modulating the electron hopping.

We consider two localized wave packets with opposite
spins, average momenta k = ±π/2 and width W [85, 86],

initialized as |Ψ±〉 =
∑
`Ae

−(
x`∓x0

W )2e∓ikx`c†`± |0〉, where
|0〉 describes an empty lattice. Without electron-phonon
coupling [g = 0, Fig. 4(a)], there is little dispersion ef-
fect through the time of flight, and the strong interac-
tion causes an elastic collision. By contrast, for a sizable
coupling in the nonperturbative regime [77, 79] [g = 1,
Figs. 4(b-e)], phonons are excited by the electron motion
[Fig. 4(c)]. After the two electrons have collided, they
show a tendency to remain close to each other (though
a finite distance apart, since U is large) [Fig. 4(b)]; they
thus seem to form a bi-polaron, stabilized by a significant
phonon density in the central region [Fig. 4(c)].

We limited the phonon occupancy to nph
max =8 per site.

Then, d = 4(nph
max+1)=36, and D=35Df is so large that

2TDVP would be utterly unfeasible. By contrast, CBE–
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TDVP requires a comparatively small bond expansion of
only D̃(t) ≤ 4Dmax for the times shown; after that, the
discarded weight ξ(t) becomes substantial [Figs. 4(d,e)].

Conclusions and outlook.— Among the schemes for
MPS time evolution, 1TDVP has various advantages (see
introduction), but its projection error is uncontrolled.
2TDVP remedies this, albeit at 2s costs, O(d2wD3),
and is able to simulate dynamics reliably [44]. CBE–
TDVP at 1s costs, O(dwD3) achieves the same accu-
racy as 2TDVP. Moreover, CBE–TDVP comes with sig-
nificantly slower growth of bond dimensions D in time,
which speeds up the calculations further (see Ref. [56]).

Our benchmark tests of CBE–TDVP, on three exactly
solvable spin models (two with long-range interactions),
demonstrate its reliability. Our results on the Peierls–
Hubbard model suggest that bi-polarons form during
electron scattering—an effect not previously explored nu-
merically. This illustrates the potential of CBE–TDVP
for tracking complex dynamics in computationally very
challenging models.

For applications involving the time evolution of MPSs
defined on “doubled” local state spaces, with effective
local bond dimensions deff = d2, the cost reduction of
CBE–TDVP vs. 2TDVP, O(d2wD3) vs. O(d4wD3), will
be particularly dramatic. Examples are finite tempera-
ture properties, treated by purification of the density ma-
trix [87] or dissipation-assisted operator evolution [88];
and the dynamics of open quantum systems [89], de-
scribed by Liouville evolution of the density matrix [90–
92] or by an influence matrix approach [93].
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S-1. SINGLE SITE (FIXED RANK) TANGENT
SPACE PROJECTOR

The structure (7) of the tangent space projector P1s

can be motivated by the following short-cut argument
(equivalent to invoking gauge invariance [21, 22]). If Ψ
is represented as an MPS, then its tangent vectors δΨ
under the fixed-rank approximation can be expressed as
a sum of MPSs each containing one derivative of a local
tensor. This representation is not unique, but its gauge
redundancy can be easily removed. To do so, let us first
consider the variation of MPS in Eq. (1) on a single bond
`, i.e., A`C`+1 = A`Λ`B`+1, while the other tensors re-
main fixed (and hence are not depicted below). Its first
order variation then gives us δA`Λ`B`+1 + A`δΛ`B`+1 +
A`Λ`δB`+1. By further rewriting δA`Λ` as A`Λ

′
` +A`Λ

′
`

and Λ`δB`+1 as Λ′′`B`+1+Λ′′`B`+1, we obtain the following
unique decomposition,

+ +=
�Λ +1�B�A +1�B +1�B�A �A�A �

′
Λ �Λ̃ �

′′
Λ +1�B

, (S1)

with Λ̃` = Λ′` + δΛ` + Λ′′` . The three terms on the right
are mutually orthogonal to each other. Each of them
belongs to the image space of one of the following three
orthogonal projectors:

, , ; (S2)

their sum is a tangent space projector for A`Λ`B`+1. Re-
peating the same argument for all the bonds, while avoid-
ing double counting, i.e., including every term only once,
we readily obtain P1s given by the second line of Eq. (7).

Therefore, given an MPS of the form (1), P1s is indeed
the orthogonal projector onto its tangent space under
the fixed-rank approximation. For real-time evolution,
applying the Hamiltonian to |Ψ〉 leads the state out of
its tangent space. In the 1TDVP scheme, H |Ψ〉 is ap-
proximated by P1sH |Ψ〉, its orthogonal projection onto
the tangent space, leading to Eq. (6).

S-2. ANALYSIS OF CBE-TDVP ERROR
PROPAGATION

The TDVP time evolution of an MPS under the fixed-
rank approximation is unitary, with energy conservation
if the Hamiltonian is time-independent. Expanding the

tangent space does not spoil these desirable properties,
provided that no truncations are performed. However,
then the bond dimension would keep growing with time,
which is not practical for studies of long-time dynamics.

With our CBE approach, we instead restrict the bond
dimension growth by bond trimming using ε = 10−12,
and also stopping the increase of Df once it has reached
a specified maximal value Dmax. Due to these trunca-
tions, the desirable TDVP properties are no longer sat-
isfied exactly. However, for each time step they do hold
within the truncation error, as shown by Ceruti, Kusch,
and Lubich [51]. Thus, the time evolution per time step
is almost unitary. Nevertheless, errors can accumulate
with time, hence it is unclear a priori to what extent the
desirable TDVP properties survive over long times.

To investigate this, we revisit our first benchmark ex-
ample for the domain wall motion of the XX model. We
use CBE–TDVP (while exploiting U(1) spin symmetry)
to compute the forward-backward fidelity [Fig. S-1(a)]

F (t̄) = |〈Ψ−(t̄)|Ψ+(t)〉|2 , t̄= tmax−t ∈ [0, tmax] . (S3)

Here, |Ψ+(t)〉 = e−iHt |Ψ(0)〉 is obtained through for-
ward evolution for time t, and |Ψ−(t̄)〉=eiHt̄ |Ψ+(tmax)〉
through forward evolution until time t= tmax, then back-
evolution for t̄= tmax−t to get back to time t. The de-
viation of the fidelity from unity, δF (t̄)=1−F (t̄), equals
zero for unitary evolution; increases with t̄ if time evo-
lution is computed using truncations; and tends to 1 for
t̄→ tmax if truncations are too severe.

Figure 1(b) shows the back-evolution of the domain
wall described by |Ψ−(t̄)〉 as t̄ increases from 0 to tmax =
40, where both |Ψ+(t)〉 and |Ψ−(t̄)〉 were computed us-
ing CBE–TDVP with the truncation parameters stated
in the main text, namely ε̃= 10−6 and Dmax = 120. The
corresponding δF (t̄) (Fig. 1(d), black dashes) shows ini-
tial transient growth, but then saturates at a remarkably
small plateau value of 6.7 × 10−5. Moreover, the cor-
responding bond expansion per update, D̃(t̄) (Fig. 1(e),
black dots), increases only fairly slowly. For these trun-
cation settings, the CBE–TDVP errors are thus clearly
under good control and do not accumulate rapidly, so
that long-time evolution can be computed accurately.

The fidelity becomes worse (δF (t̄) increases) if the
singular-value threshold for bond expansion, ε̃, is raised
(Fig. 1(d), dashed lines). Nevertheless, even for ε̃ as large
as 10−2 we find long-time plateau behavior for δF (t̄), im-
plying that the errors remain controlled. This illustrates
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FIG. S-1. (a) Forward-backward time evolution for the com-
putation of F (t). (b,c) Back-evolution of the domain wall,
described by |Ψ−(t̄)〉, computed using (b) CBE–TDVP and
(c) 1TDVP. (d) Time evolution of δF (t̄) = 1−F (t̄), computed
via 1TDVP with D = 120 (dash-dotted line), and via CBE–
TDVP using three values of ε̃, and either with Dmax = 120
(dashed lines) or Dmax =∞ (solid lines). (e) Time evolution
of the corresponding bond dimensions Df(t̄) (solid lines) and

D̃(t̄) (dots). (The solid green curve shows Df/5.)

the robustness of CBE–TDVP. The plateau value can
be decreased by increasing Dmax, but the reduction be-
comes significant only if ε̃ is sufficiently small. Even for
Dmax =∞ (Fig. 1(d), solid lines) the plateau reduction
relative toDmax =120 is modest, whereas the correspond-
ing growth in Df (Fig. 1(e), solid lines) becomes so rapid
that this setting is not recommended in practice.

Finally, Figs. 1(c) and 1(d) (dash-dotted, purple line)
also show 1TDVP results, computed with D = 120: the
domain wall fails to recontract to a point, and the fidelity
reaches zero (δF (t̄) reaches 1). This occurs even though
1TDVP uses no truncations besides the tangent space
projection, and hence yields unitary time evolution. This
poor performance illustrates a key limitation of 1TDVP
when exploiting symmetries (as here): time evolution in-
volves transitions to sectors having quantum numbers not
yet present, but 1TDVP cannot include these, due to the
fixed-rank nature of its tangent space projection. CBE–
TDVP by construction lifts this restriction.

S-3. COMPARISON OF CPU TIME FOR
CBE–TDVP AND 2TDVP

In this section, we compare the CPU time for CBE–
TDVP and 2TDVP. As a demonstration, we use the one-
axis twisting (OAT) model discussed in Results in the
main text. All CPU time measurements were done on a
single core of an Intel Core i7-9750H processor.

First, we compare the early-time behavior of CBE–
TDVP and 2TDVP. From t = 0 to 1.5, both methods
yield good accuracy as shown in Fig. S-2(a). The CPU
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FIG. S-2. 60-site one-axis twisting model for spin S = 1/2:
Time evolution of an initially x-polarized spin state, com-
puted using δ = 0.01, Dmax = 500, and Z2 spin symmetry.
(a) Total spin Stot

x (t) for CBE–TDVP (blue), 2TDVP (red)
and the exact solution (black). (b) CPU time for CBE-TDVP
(blue) and 2TDVP (red). (c,d) Color scale plot of the bond
dimension as a function of time for all MPS bonds, for (c)
2TDVP and (d) CBE–TDVP.

time spent to achieve this, however, is quite different. In
Fig. S-2(b), we see that while the 2TDVP takes about
two days, CBE–TDVP accomplishes the same time span
overnight.

The main reason for this difference does not lie in the
1s vs. 2s scaling of CBE–TDVP vs. 2TDVP (discussed
below), because d = 2 (for S = 1/2) is small, and CBE
involves some algorithmic overhead for determining the
truncated complement Ãtr

` ( ). Instead, the difference
reflects the fact that the growth in MPS bond dimen-
sion D(t) with time is much slower for CBE-TDVP than
2TDVP. This implies dramatic cost savings, since both
methods have time complexity proportional to D3. Fig-
ure S-2(c,d) show the time evolution of bond dimensions
for all MPS bonds for CBE–TDVP and 2TDVP respec-
tively. For 2TDVP [Fig. S-2(c)], the bond dimensions
grow almost exponentially and quickly saturate to their
specified maximal value, here Dmax = 500. This sat-
uration is reflected by the early onset of linear growth
in the CPU time in Fig. S-2(b). By contrast, the bond
dimensions of CBE–TDVP show a much slower growth
[Fig. S-2(d)], yielding a strong reduction in CPU time
compared to 2TDVP.

Second, we demonstrate that when D is fixed, the time
complexity of CBE–TDVP vs. 2TDVP scales as d vs.
d2, implying 1s vs. 2s scaling. Figure S-3 shows this by
displaying the CPU time per sweep for the OAT model
for several different values of the spin S, with the MPS
bond dimension fixed at Dmax = 500.
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3 Heavy-fermion quantum criticality in the periodic
Anderson model

3.1 Overview
This chapter presents an extensive high-resolution study of heavy-fermion (HF) quantum
criticality in the periodic Anderson model (PAM) using 2-site cellular dynamical mean-field
theory (2CDMFT) with the numerical renormalization group (NRG) as an impurity solver.
It is based on earlier studies of quantum criticality in the PAM using 2CDMFT with an exact
diagonalization (ED) impurity solver [DLCK08a, DLCK08b].

The 2CDMFT plus ED studies [DLCK08a, DLCK08b] identified a Kondo breakdown (KB)
QCP in the PAM, described in terms of an orbital selective Mott transition (OSMT). This
OSMT features an FS reconstruction and a depletion of f -electron spectral weight at the
Fermi level, suggesting a low-energy decoupling of the c and f electrons. Further, it was
clarified that magnetic ordering at the transition should be interpreted as a byproduct of the
OSMT [DLCK08b], in stark contrast to an itinerant magnetic transition as it is described for
instance by Hertz-Millis-Moriya theory, c.f. Sec. 1.2.1. However, due to the coarse frequency
resolution of the ED impurity solver, these studies left many questions unanswered or without
a clear definitive answer. For instance, it was not clear whether the OSMT is continuous or a
weakly first-order transition, or whether the FS undergoes a sudden jump, or whether the
reconstruction is continuous, see e.g. Fig. 3 of Ref. [DLCK08b]. Further, it was not possible
to properly resolve and access the quantum critical region governed by the QCP. Thus, it
was not clear whether this region hosts non-Fermi liquid (NFL) behavior and whether it is
consistent with the strange metal behavior found in many HF compounds.

The question regarding the quantum critical region is highly non-trivial. 2CDMFT maps
the PAM on an effective two-impurity Anderson model (2IAM). This impurity model hosts an
unstable impurity QCP with NFL behavior in its quantum critical region [FHLS03]. However,
the effective 2IAM which arises in 2CDMFT is a priori subject to relevant perturbations
that destabilize the impurity QCP. Therefore, it has been argued in Ref. [DLCK08a] that
the KB transition found there using 2CDMFT plus ED is governed by the proximity to the
impurity QCP, even though this QCP cannot be reached due to the presence of a relevant
perturbation. This, of course, leaves open the question of how close the 2CDMFT solution
gets to the impurity QCP, and how severely it is influenced by the impurity QCP.

It should also be noted that a later 2CDMFT study of the PAM using a quantum Monte
Carlo (QMC) impurity solver did not find signs of KB quantum criticality [THKD11]. The
same goes for a DCA study which also used QMC as an impurity solver [MBA10]. However,
the 2CDMFT study reached temperatures of order 10−3 in terms of the c-electron bandwidth
while the DCA study had to stick to even higher temperatures of order 10−2 in terms of
the c-electron bandwidth. Thus, the temperatures considered in the QMC-based studies
may have been too high for conclusive answers regarding the existence of a KB–QCP and
its properties. Nevertheless, the absence of KB physics in the 2CDMFT or DCA plus
QMC studies raises the question whether the KB transition found in the 2CDMFT plus ED
studies [DLCK08a, DLCK08b] is due to the coarse frequency resolution of ED or a genuine
feature of the 2CDMFT approximation to the PAM.
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To shed light on the questions left open by earlier studies, we studied the PAM in Refs. [P4]
and [P5] using 2CDMFT with NRG as an impurity solver. Due to the logarithmic frequency
resolution and the ability to study arbitrary temperatures, NRG is perfectly suited to study
quantum critical phenomena and is not faced by the limitations of ED (coarse frequency
resolution) or QMC impurity solvers (limited by temperature).

In Ref. [P4], we show that 2CDMFT indeed captures a KB–QCP in terms of an OSMT,
confirming this finding of the earlier 2CDMFT plus ED studies [DLCK08a, DLCK08b]. Due
to the unprecedented low-frequency resolution of NRG, we can confirm that this transition
is continuous and show that the FS indeed undergoes a discrete jump at zero temperature.
Apart from that, we find several surprising aspects that go far beyond the early 2CDMFT
plus ED work: First, we show that even though the FS jumps across the transition and is
small in the RKKY phase, c and f electrons are not decoupled in the RKKY phase. This
leads to the emergence of a third narrow QP band in the RKKY phase, which is surprising
considering that the PAM has two orbitals (c and f) per site. Further, we find that the
CDMFT self-consistency conditions stabilize a novel quantum critical NFL fixed point which
governs the physics at the QCP and in the quantum critical region. This fixed point bears
some similarities to the impurity fixed point mentioned above, but with the important
difference that the former exists in the presence of perturbations which would render the
latter unstable.

In Ref. [P5], we study the NFL behavior of the quantum critical fixed point in more
detail. We uncover several intriguing aspects, including ω/T scaling of several dynamical
susceptibilities. Interestingly, this includes the current susceptibility,1 which implies ω/T
scaling of the optical conductivity. We find that this ω/T scaling is with corresponding
strange metal scaling in YbRh2Si2.

P4 Emergent Properties of the Periodic Anderson Model: a High-Resolution, Real-Frequency
Study of Heavy-Fermion Quantum Criticality
Andreas Gleis, Seung-Sup B. Lee, Gabriel Kotliar, and Jan von Delft
© 2023 The Authors
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1Note that the current operator is zero at the impurity QCP mentioned earlier. This is because single-particle
hopping between impurities is a relevant perturbation that destabilizes this impurity QCP [FHLS03].
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We study paramagnetic quantum criticality in the periodic Anderson model (PAM) using cellular
dynamical mean-field theory (CDMFT), with the numerical renormalization group (NRG) as a cluster
impurity solver. The PAM describes itinerant c electrons hybridizing with a lattice of localized f
electrons. At zero temperature, it exhibits a much-studied quantum phase transition from a Kondo
phase to an RKKY phase when the hybridization is decreased through a so-called Kondo breakdown
quantum critical point (KB–QCP). There, Kondo screening of f spins by c electrons breaks down,
so that f excitations change their character from somewhat itinerant to mainly localized, while c
excitations remain itinerant. Building on Phys. Rev. Lett. 101, 256404 (2008), which interpreted the
KB transition as an orbital selective Mott transition, we here elucidate its nature in great detail by
performing a high-resolution, real-frequency study of various dynamical quantities (susceptibilities,
self-energies, spectral functions). NRG allows us to study the quantum critical regime governed
by the QCP and located between two temperature scales, TFL < TNFL. In this regime we find
fingerprints of non-Fermi-liquid (NFL) behavior in several dynamical susceptibilities. Surprisingly,
CDMFT self-consistency is essential to stabilize the QCP and the NFL regime. The Fermi-liquid
(FL) scale TFL decreases towards and vanishes at the KB–QCP; at temperatures below TFL, FL
behavior emerges. At T = 0, we find the following properties. The KB transition is continuous.
The f quasiparticle weight decreases continuously as the transition is approached from either side,
vanishing only at the KB–QCP. Therefore, the quasiparticle weight of the f -band is nonzero not
only in the Kondo phase but also in the RKKY phase; hence, the FL quasiparticles comprise c and
f electrons in both phases. The Fermi surface (FS) volumes in the two phases differ, implying a
FS reconstruction at the KB–QCP. Whereas the large-FS Kondo phase has a two-band structure
as expected, the small-FS RKKY phase unexpectedly has a three-band structure. We provide a
detailed analysis of quasiparticle properties of both the Kondo and, for the first time, also the RKKY
phase and uncover their differences. The FS reconstruction is accompanied by the appearance of
a Luttinger surface on which the f self-energy diverges. The volumes of the Luttinger and Fermi
surfaces are related to the charge density by a generalized Luttinger sum rule. We interpret the
small FS volume and the emergent Luttinger surface as evidence for f -electron fractionalization in
the RKKY phase. Finally, we compute the temperature dependence of the Hall coefficient and the
specific heat, finding good qualitative agreement with experiments.

I. INTRODUCTION

For more than twenty years, quantum criticality in
heavy-fermion (HF) systems has remained a subject of on-
going experimental and theoretical research [1–3]. In this
paper, we study several open theoretical questions within
a canonical model for HF systems, the periodic Anderson
model (PAM) in three dimensions. Our new insights are
derived from real-frequency results with unprecedented
energy resolution at arbitrarily low temperatures. To
set the scene, we begin with a survey of the state of the
field, focusing in particular on aspects relevant for the
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subsequent discussion of our own results. Readers well
familiar with HF physics may prefer to skip directly to
section I E, which offers an outline of our own work and
results.

A. Heavy fermion compounds and phenomena

HF compounds are a class of strongly correlated sys-
tems. They contain partially filled, localized f orbitals
featuring strong local Coulomb repulsion. These local-
ized orbitals hybridize with weakly interacting itinerant
conduction bands (c bands) [4]. Particularly interesting
is the appearance of a so-called Kondo breakdown (KB)
quantum critical point (QCP) [5, 6], which will be subject
of this work. The most prominent HF compounds fea-
turing a KB–QCP derive their f orbitals from Yb or Ce.
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Examples are YbRh2Si2, CeCu6−xAux or the so called
Ce-115 family, including CeCoIn5 or CeRhIn5. In the
following, we will first introduce HF materials in general
and then focus on experimental and theoretical aspects
of the KB–QCP.

In HF systems, the hybridization between c and f elec-
trons in combination with the strong local repulsion of
f electrons generates Kondo correlations [4]. The strong
repulsion effectively leads to the formation of local mo-
ments in the f orbitals. These experience an effective
antiferromagnetic interaction with the c electrons due to
hybridization. This promotes singlet formation between
c and f electrons, similar to the Kondo singlet formation
in the single impurity Kondo or Anderson models [7].
At temperatures below some scale TFL, these Kondo cor-
relations ultimately lead to the formation of a Fermi
liquid (FL) with quasiparticles (QP) composed of both c
and f electrons. Due to the local nature of the f electrons,
these QPs usually have a large effective mass, hence the
name heavy fermions.

If Kondo correlations are strong, the f electrons effec-
tively become mobile and contribute to the density of
mobile charge carriers. This especially affects the Fermi
surface (FS) volume [8–13] and the Hall number nH [14],
which are both proportional to the charge density in a
FL.

Kondo correlations compete with Rudermann-Kittel-
Kasuya-Yosida (RKKY) [15–18] correlations. The RKKY
interaction is an effective exchange interaction between
f electrons mediated by the c electrons. If the c band is
close to half-filling, this interaction is antiferromagnetic
and promotes f -f singlet formation. This competes with
the aforementioned c-f singlet formation [19].

It is believed that quantum criticality in HF systems is
largely driven by this competition between RKKY and
Kondo correlations [4, 18, 19]. Many HF materials can
be tuned through a QCP by varying, e.g., magnetic fields,
pressure, or doping [1, 2]. At these QCPs, a transition
from the Kondo correlated heavy FL to some other, often
magnetically ordered phase occurs. In some HF materials,
this quantum phase transition may be understood in terms
of a spin density wave (SDW) instability of the heavy FL,
i.e. a magnetic transition in an itinerant electron system,
described by Hertz-Millis-Moriya theory [20–23]. The
antiferromagnetic ordering occurring at this SDW–QCP
leads to a doubling of the unit cell, but QPs remain intact
across the transition. In particular, the charge density
involved in charge transport does not change abruptly
across the SDW–QCP. It is therefore expected that the
Hall coefficient, which is sensitive to the carrier density,
likewise does not abruptly change at such a QCP [5,
6]. Further, in d = 3 spatial dimensions, such a QCP
is essentially described by a ϕ4 theory above its upper
critical dimension. The long wavelength order parameter
fluctuations are therefore Gaussian. Due to that, ω/T
scaling of dynamical susceptibilities, a clear sign of an
interacting fixed point [23], is not expected at a SDW–
QCP.

Interestingly however, there is a large class of HF ma-
terials which show QCPs not compatible with the spin
density wave scenario [1]. Examples include YbRh2Si2 [24–
27], CeCu6−xAux [28], CeRhIn5 [29, 30] and CeCoIn5 [31].
In these materials, experimental observations point to-
wards a sudden localization of the f electrons as the QCP
is crossed from the Kondo correlation dominated heavy
FL phase. In contrast to the SDW scenario, QP seem to
be destroyed at this QCP [5, 6, 27]. It thus seems that the
Kondo correlations between f and c electrons suddenly
break down at the QCP, hence the name KB–QCP.

B. Experimental phenomena at the KB–QCP

In the following, we briefly summarize some experimen-
tal results indicative of the sudden breakdown of Kondo
correlations and a corresponding sudden localization of
the f electrons. We first focus on results close to T = 0
that indicate that the f electrons localize. After that, we
discuss some remarkable dynamical and finite tempera-
ture properties of the KB–QCP. We focus on universal
phenomena and omit material-specific aspects.

Fermi liquid behavior at low T .— In most HF systems,
FL behavior is observed at temperatures below some FL
scale TFL, on either side of the KB–QCP (on the RKKY
side, the FL is often antiferromagnetically ordered). Below
TFL, ∼ T 2 behavior of the resistivity and ∼ T behavior
of the specific heat is usually observed [26, 27, 32, 33].

FS reconstruction at T = 0.— A smoking gun signal of
a KB–QCP is a sudden reconstruction of the FS at T = 0.
In a FL, the volume of the FS is connected to the density
of charge carriers by Luttingers theorem [8, 9, 34, 35].
Thus, a sudden change in the FS volume is also a sign for
partial localization of charge carriers. A sudden change
in the carrier density has been observed in terms of a
sudden jump of the Hall number nH ∼ 1/RH (where RH

is the Hall coefficient) in many HF materials, including
YbRh2Si2 [25, 36], CeCu6−xAux [28] and CeCoIn5 [31].
Further evidence for a FS reconstruction is due to de Haas–
van Alphen (dHvA) frequency measurements, with sudden
jumps of dHvA frequencies observed in CeRhIn5 [29, 30]
and CeCoIn5 [31, 37, 38]. More direct access to the FS
is provided by angle resolved photoemission (ARPES)
measurements [3], which have by now been performed on
several HF compounds like CeCoIn5 [39–42], CeRhIn5 [43],
YbRh2Si2 [44–46] or YbCo2Si2 [47]. Close to criticality,
ARPES data on HF compounds is to date not quite
conclusive yet since low-temperature scans across the
KB–QCP (often tuned by magnetic field or pressure) are
challenging.

Possible absence of magnetic ordering.— The KB–QCP
is not necessarily accompanied by magnetic ordering [31,
48, 49]. In CeCoIn5, antiferromagnetic order only occurs
well away from the KB–QCP inside the RKKY dominated
phase where the f electrons are localized [31]. Further,
while for pure YbRh2Si2 antiferromagnetic ordering sets
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in at the KB–QCP, this may be changed by chemical
pressure [48]. In this way, the jump of nH can be tuned
to occur either deep in the antiferromagnetic phase or
deep in the paramagnetic phase. This fact suggests that
the KB–QCP is not tied to magnetic ordering [48, 50].

Continuous suppression of the FL scale to zero.— The
above mentioned sudden FS reconstruction suggests that
the KB–QCP marks a transition between two FL phases
with different densities of mobile carriers. Observations
on various different materials suggests that this transition
is continuous: The FL scale TFL decreases continuously
to zero at the KB–QCP [27, 33] and the QP mass at the
QCP diverges in many compounds [28, 29, 32] from both
sides of the transition.

Onset scale for c-f hybridization.— Besides the FL
scale TFL, another important scale in HF compounds is
the scale below which c-f hybridization begins to build
up. We denote this scale by TNFL, for reasons explained
later. (It is often also denoted T0.) This scale is visible
for instance in scanning tunneling spectroscopy (STS)
experiments [3] or in optical conductivity measurements
in terms of a distinct gap in the STS or optical spectra,
called hybridization gap. TNFL is then the temperature be-
low which hybridization gap formation sets in. This scale
has been determined in many different HF compounds
via STS, for instance in CeCoIn5 [51], CeRhIn5 [52]
and YbRh2Si2 [53, 54], or via optical conductivity mea-
surements, e.g. in YbRh2Si2 [55, 56], CeRhIn5 [57],
CeCoIn5 [57, 58] and CeCu6−xAux [59]. These exper-
iments unambiguously show that TNFL is virtually unaf-
fected by the distance to the KB–QCP or whether the f
electrons are (de-)localized at T = 0.

Strange metal behavior.— Close to the KB–QCP, there
is a vast scale separation between TNFL and the FL scale,
giving rise to an intermediate quantum critical region
with NFL behavior. In this NFL region, a linear in
temperature resistivity is measured universally for all of
the above mentioned materials [24, 31, 60–63]. Further,
YbRh2Si2 [24, 27], CeCu6−xAux [28, 61] and CeCoIn5 [64]
feature a ∼ T ln(T ) dependence of the specific heat. Both
observations are in stark contrast to the ∼ T 2 dependence
of the resistivity and ∼ T dependence of the specific heat
expected from a FL [14]. Recent shot-noise measurements
on YbRh2Si2 nanowires further indicate the absence of
QP in the strange metal region [65].

Further, dynamical susceptibilities exhibit ω/T scal-
ing [66] at the KB–QCP. This was initially observed for the
dynamical magnetic susceptibilites in UCu5−xPdx [67],
CeCu6−xAux [68] and CeCu6−xAgx [69] and very recently
also for the optical conductivites of both YbRh2Si2 [60]
and CeCu6−xAux [70]. Note that ω/T scaling is a clear
sign for a non-Gaussian QCP [23], i.e. the critical fixed
point is an interacting one. Particularly interesting, too,
are the recent observations of ω/T scaling for the optical
conductivity, as it shows that the critical behavior is not
limited to the magnetic degrees of freedom only, but also
includes the charge degrees of freedom.

To summarize, the following phenomena seem to be

almost universal for the KB–QCP: (i) a sudden jump of
nH as the KB–QCP is crossed at T = 0; (ii) a sudden
reconstruction of the FS as the KB–QCP is crossed at T =
0; (iii) a diverging QP mass as the KB–QCP is approached
from either side at T = 0; (iv) a ln(T ) dependence of
γ = C/T at finite temperatures above the KB–QCP;
(v) a linear-in-T dependence of the resistivity at finite
temperatures above the KB–QCP; (vi) ω/T scaling of
dynamical susceptibilities at finite temperatures above
the QCP. All of these phenomena are not compatible with
a magnetic transition in an itinerant electron system. To
the best of our knowledge, a full understanding of the
KB-QCP has not yet been achieved.

C. Theory of the KB–QCP: basics and challenges

Below, we introduce the basic models which have been
proposed to describe the essentials of HF physics, includ-
ing the KB–QCP. We further review some basic intuitive,
qualitative notions associated with the physics of these
models. Then, we give a qualitative overview of the chal-
lenges faced when attempting to describe the KB–QCP.
Concrete approaches for tackling those challenges are
reviewed in the next subsection.
The universal physics of HF systems is believed to be

described by the periodic Anderson model (PAM),

HPAM =
∑

iσ

ϵff
†
iσfiσ +

∑

i

Uf†i↑fi↑f
†
i↓fi↓

+
∑

iσ

V
(
c†iσfiσ + h.c.

)
+

∑

kσ

ϵckc
†
kσckσ , (1)

which we consider here on a 3-dimensional cubic lattice.
Here, fiσ and ciσ annihilate an f or c electron with spin
σ ∈ {↑, ↓} at site i, respectively, ckσ is the discrete Fourier

transform of ciσ, while ϵf = ϵ0f −µ and ϵck = ϵ0ck−µ, with
ϵ0ck = −2t

∑
a=x,y,z cos(ka), denote the local f energy and

c-band dispersion relative to the chemical potential µ,
respectively. The f electrons experience a strong local
repulsion U , and hybridize with the c electrons with
hybridization strength V .

At U = 0, the PAM features a two-band structure, with
a band gap determined by the hybridization strength V
(therefore also often called hybridization gap). The hy-
bridization thereby shifts the FS such that both f and c
electrons are accounted for and QP in the vicinity of the
FS are hybrid c-f objects. The low-energy physics of the
Kondo correlated FL phase can be thought of as a renor-
malized version of the U = 0 case. The interaction does
not destroy the low-energy hybridization between c and
f electrons, but merely renormalizes it. When approach-
ing the KB–QCP from the Kondo correlated phase, the
interaction renormalizes the hybridization to ever smaller
values. The point where the hybridization renormalizes
to zero and c and f electrons decouple at low energies
marks the KB–QCP [71]. In the RKKY correlated phase,
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c and f electrons have been argued to remain decoupled,
so that the FS is that of the free c electrons, with QP of
purely c electron character [3, 71]. Surprisingly, we find
a somewhat different scenario. Indeed, we show in the
present work that even in the RKKY correlated phase
QP close to the FS are c-f hybridized, see Sec. VIC.

Description of the strange metal.— Arguably the most
challenging aspect of the KB–QCP is the strange metal
behavior at finite temperatures above the QCP. There
are by now various routes to microscopically realize NFL
behavior, see Ref. 72 for an extensive recent review. Rig-
orous results on NFL physics can for instance be obtained
from Sachdev-Ye-Kitaev (SYK) models [72] or from impu-
rity models featuring quantum phase transitions [73], e.g.
multi-channel Kondo impurities [74–77] or multi-impurity
models [78–88]. Despite considerable recent progress [89–
91], it is to date not fully clarified to what extent known
routes to NFL physics connect to the strange metal be-
havior observed experimentally in HF materials.

Description of the Fermi surface reconstruction.— An-
other challenging issue is to explain how the FS can
change its size in the first place. The volume of the FS
is fixed to be proportional to the particle number by the
Luttinger sum rule [8, 9], which involves the combined
particle number of the c and f electrons [9]. While the
FS volume matches the Luttinger sum rule prediction in
the Kondo correlated phase, this is not the case in the
RKKY correlated phase where the f electrons seem to be
missing from the FS volume. A theoretical description of
the KB–QCP also needs to correctly describe both the
Kondo and RKKY correlated phases, which is far from
straight forward especially in the latter case. Neverthe-
less, this aspect of the KB–QCP is better understood
and intuitively more accessible than the strange metal
physics.

D. Theory of the KB–QCP: approaches

The KB–QCP has been subject to many theoretical
studies in the past, using both analytical and numerical
approaches. Below, we briefly list what has been achieved
so far and point out the main issues of the corresponding
approaches.
Numerically exact methods.— Significant progress on

physical phenomena can be made based on exact solu-
tions obtained with controlled numerical methods. The
main advantage is that such an approach is highly unbi-
ased: the bare PAM or the closely related Kondo lattice
model (KLM) is solved exactly, potentially in some simpli-
fied geometry and usually in some constrained parameter
regime. Results have so far been obtained with Quantum
Monte Carlo (QMC) methods [92–101] and the Density
Matrix Renormalization Group (DMRG) [102], some of
which have reported evidence of a KB–QCP [98, 99, 102].
Even though reports dynamical or transport properties
is scarce, numerically exact studies can provide valuable

benchmarks for less controlled approaches.

Slave-particle theories.— Considerable conceptual
progress on KB physics has been achieved using slave-
particle approaches [103–108]. These approaches decom-
pose the degrees of freedom of the PAM or the KLM
in terms of additional fermionic or bosonic degrees of
freedom (often called partons) which are subject to gauge
constraints, to ensure the mapping is exact [103–106, 108–
110]. While the parton decomposition does not render the
models solvable, it allows for more flexibility when con-
structing approximate solutions. For instance, a certain
effective low-energy form of the Hamiltonian and some
effective dynamics of the gauge fields (which are static
after the initial exact mapping) are usually assumed. The
effective theory can then be solved by means of approx-
imate methods, for instance by taking certain large N
limits and/or resorting to static mean-field theory.

One of the early successes of slave-particle approaches is
the prediction of a RKKY phase in which f -electrons are
localized and do not contribute to the FS in terms of an or-
bital selective Mott phase [105, 106, 108]. The missing FS
volume in the RKKY phase was linked to emergent topo-
logical excitations of fractionalized spins [105, 106, 111],
thus coining the term fractionalized FL (FL∗). It was
further established that a continuous transition between
Kondo and RKKY correlated phases can exist [106], in-
cluding a FS reconstruction accompanied by a sudden
jump in the Hall coefficient [112]. Recently, by consider-
ing spatially disordered interactions [91, 110], it has been
been possible to account for a strange-metal-like ∼ T lnT
resistivity using a slave particle approach (though to our
knowledge, a lnT correction to the ∼ T resistivity has
not been reported in YbRh2Si2 [113], which shows the
most extensive strange metal regimes of all known HF
compounds).

Dynamical mean-field theory.— Dynamical mean-field
theory (DMFT) [114, 115] and its extensions [116–118]
have been successfully used in many studies on HF sys-
tems [119–128] and have lead to valuable new insights.
DMFT methods treat lattice models by mapping them
on self-consistent impurity models.

The most prominent approach, which has lead to many
insights, is the extended DMFT (EDMFT) approach to
KLM [119, 120, 129–139]. EDMFT maps the KLM on a
self-consistent Bose-Fermi-Kondo (BFK) impurity model
and is able to capture a KB–QCP due to the local compe-
tition between Kondo screening and magnetic fluctuations.
One of the main successes of EDMFT is the explanation
of ω/T scaling of the dynamical spin structure factor in
CeCu6−xAux [68] at the KB–QCP. However, to the best
of our knowledge, predictions of other thermodynamic
and transport properties, like the linear-in-T resistivity
or the T lnT dependence of the specific heat, are lacking
to date. It is therefore still unclear whether the EDMFT
approach correctly describes the experimentally observed
strange metal behavior. We expect though that these
gaps in the literature will be filled in future studies.

A downside of the EDMFT approach is that full self-
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consistency leads to a first-order phase transition [120,
140] at T > 0. A continuous transition can be recov-
ered by insisting on a featureless fermionic density of
states (DOS) [141], at the cost of giving up self-consistency
of the fermionic degrees of freedom, as is routinely done
in KB–QCP studies using EDMFT [132, 133, 135]. This
downside of EDMFT has lead to the proposal of using 2-
site cellular DMFT (CDMFT) [116] to study Kondo break-
down physics [122]. Using exact diagonalization (ED) as
an impurity solver, it was shown that a 2-site CDMFT
treatment of the PAM [Eq. (1)] can describe the KB–
QCP as an orbital selective Mott transition (OSMT) at
T = 0 [127, 128], where the f electrons localize while the
c electrons remain itinerant. Similar studies with QMC
impurity solvers [126, 142, 143] were however not able to
find signs of a KB–QCP in the temperature range stud-
ied. Since ED suffers from limited frequency resolution
while QMC has trouble reaching low temperatures, it is
to date not clear to what extent CDMFT can describe
KB physics. The ED study was further not able to estab-
lish conclusively whether the transition is first or second
order.

E. Overview of our main results

In this work, we revisit the CDMFT approach of
Refs. 127 and 128, now using the Numerical Renormaliza-
tion Group (NRG) [144, 145] as an impurity solver. The
NRG is numerically exact, produces spectral data directly
on the real frequency axis and is able to access arbitrarily
low temperatures and frequencies. NRG therefore elimi-
nates the limitations of both ED and QMC for studying
quantum critical phenomena. In particular, using NRG,
we are able to settle the question of whether a 2-site
CDMFT approximation of the PAM on a simple cubic
lattice is capable of describing a KB–QCP. Furthermore,
leveraging the high resolution of NRG, we find several new
features of the RKKY phase which were not accessible
to lower resolution methods. Most important, NRG can
explore the quantum critical regime governed by the QCP.
We stick to the parameters used in Refs. 127 and 128 and
vary the c-f hybridization strength V and temperature
T [c.f. Eq. (1) and Sec. II]. Similar in spirit as Ref. 127,
we focus on purely paramagnetic solutions by artificially
preventing the breaking of spin rotation symmetry. This
is motivated by experimental observations which suggest
that the KB–QCP and magnetic ordering are distinct
phenomena [31, 48, 146]. Here, we decide to focus on the
paramagnetic KB–QCP and refrain from the additional
complications introduced by possible magnetic ordering.
The interplay between KB physics and symmetry breaking
will be considered in detail in future work.

The main goals of our work are to (i) establish that
2-site CDMFT is able to describes a continuous KB–QCP;
(ii) establish that the QCP is governed by a NFL criti-
cal fixed point and characterize its properties; (iii) make

progress on our understanding of the fate of c-f hybridiza-
tion in the vicinity of the QCP; and (iv) explore to what
extent CDMFT is able to qualitatively capture the exper-
imental phenomena described in Sec. I B. In the process,
we reveal several new aspects of the CDMFT solution.
The remainder of this subsection is intended as a sum-
mary of our main results and a guide to where to find
them in our paper.

(i) The KB–QCP is a continuous OSMT.— Using NRG,
we clearly establish that 2-site CDMFT describes a con-
tinuous KB–QCP. First and foremost, this is shown in
Sec. III and Fig. 2, where we present the phase diagram
obtained with CDMFT-NRG. Here, we establish the pres-
ence of two energy scales: the FL scale TFL, below which
we find FL behavior; and a NFL scale TNFL(≥ TFL), which
marks the onset of c-f hybridization [c.f. Figs. 11 and 12]
and below which we find strange-metal-like NFL behavior
in the vicinity of the QCP. We find that as V approaches
a critical hybridization strength Vc from either side, TFL

continuously decreases to zero while TNFL remains non-
zero throughout. We identify Vc as the location of a
KB–QCP. While the FS volume in the Kondo correlated
phase at V > Vc counts both the c and the f electrons, it
only counts the c electrons in the RKKY correlated phase
at V < Vc [c.f. Sec. VIII]. The KB–QCP thereby marks
a continuous transition between two FL phases, which
differ in their FS volumes [c.f. Figs. 13 and 17 and their
corresponding sections]. The FS reconstruction, which
occurs at the KB–QCP, is accompanied by the appearance
of a dispersive pole in the f -electron self-energy. This
also implies the appearance of a Luttinger surface [10],
the locus of points in the Brillouin zone at which the
f self-energy pole lies at ω = 0 [c.f. Secs. VI and VII].
Ref. 147 recently suggested that Luttinger surfaces may
define spinon Fermi surfaces. The appearance of a Lut-
tinger surface therefore suggests that the f -electron is
fractionalized (i.e. spinon degrees of freedom emerge at
low energies as stable spin-1/2 excitations) in the RKKY
phase. In the parlance of Refs. 105 and 106, this suggests
that the RKKY phase is a fractionalized FL (FL∗). We
will explore this more concretely in future work. Follow-
ing Refs. 127 and 128, we therefore identify the KB–QCP
as a continuous OSMT, in which the f electrons partially
localize while the c electrons do not.

(ii) NFL physics at intermediate T close to the QCP.—
In the vicinity of the QCP, there is a scale separation
between TFL and TNFL, giving rise to an intermediate NFL
region extending down to T = 0 at Vc [c.f. Fig. 2]. Our
evidence that this intermediate region is a NFL region is
based on NRG finite size spectra [Fig. 3], dynamical corre-
lation functions [Fig. 4] and a ∼ T lnT of the specific heat
[Fig. 19]. In a companion paper [148], we will present a
detailed analysis of the optical conductivity, showing ω/T
scaling, and the temperature dependence of the resistivity,
showing linear-in-T behavior in the NFL regime. More-
over, our KB–QCP for the PAM shows several similarities
with QCPs found for the 2-impurity and 2-channel Kondo
models [c.f. Sec. X]. Very surprisingly, we find a stable
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FIG. 1. Three left columns: k dependent spectral function Ak(ω) of the PAM at T = 0, zooming in on frequencies |ω| ≤ 10−1,
10−2 and 10−3. V is chosen close to the KB–QCP, in either the Kondo phase (upper row) or the RKKY phase (lower row). At
relatively high frequencies (first column), the spectral functions of both phases seem to have a similar structure, involving two
bands, labeled 1○ and 2○. However, zooming in to lower frequencies (second and third columns) we find a striking difference: in
the RKKY phase, a narrow third band emerges at low frequencies, labeled 3○, as indicated by the dashed lines in the third
column and in the schematic sketch of the band structure in the fourth column. This difference also leads to different Fermi
surfaces, shown on the far right as red surfaces; the blue surface shows the Luttinger surface in the RKKY phase. For more
details, see Sec. VII.

NFL fixed point even though the effective 2-impurity
model lacks the symmetries necessary to stabilize a NFL
fixed point without self-consistency [79–82, 84–86, 149–
152]. We find that the CDMFT self-consistency conditions
are essential for the stability of the NFL fixed point [c.f.
Sec. IV and App. A 4].

(iii) Fate of c-f hybridization across the KB–QCP.—
One of our most surprising findings is that low-energy c-f
hybridization is not destroyed as the KB–QCP is crossed
from the Kondo (V > Vc) to the RKKY phase (V < Vc).
We elaborate this in detail in Sections V, VI, VII and VIII.
Indeed, we find that the QP weights for both the c and f
electrons are non-zero in both T = 0 phases adjacent to
the KB–QCP, vanishing only at at the KB–QCP [Fig. 9].
This is one of our most surprising results and in stark
contrast to previous work. It implies that, contrary to
widespread belief [3], the difference between the Kondo
and RKKY phase is not due to non-zero versus zero f -
electron QP weight. Instead, it is caused by a sign change
of the effective f -level position close to the center of the
Brillouin zone [Fig. 9 and its discussion; Sec. VIII]. We
connect this sign change to the aforementioned emergence
of a dispersive self-energy pole [Fig. 10 and its discussion].
It thus reflects the orbital selective Mott nature of the
RKKY phase.

The non-zero f -electron QP weight and the dispersive
self-energy pole leads to the emergence of a third band in
the RKKY phase [c.f. Figs. 13 and 14 and their discussion].
The emergence of a third band in a model constructed
from only two bands is our most striking and unexpected
result. Its emergence is previewed in Fig. 1, showing the
total (c and f) spectral function Ak(ω): at high frequency
(|ω| ≲ 10−1, measured in terms of the bare c-electron half-

band width) its structure remains qualitatively unaltered
as the KB–QCP is crossed—it seems as if in both cases,
there is a two-band structure characteristic for HF systems.
However, as one zooms in further to lower frequencies, it
becomes clear that the low frequency physics is entirely
different: a third band emerges in the RKKY phase and
the FS is shifted relative to that in the Kondo phase.
The emergence of the third band is intimately tied to the
emergence of a Luttinger surface [c.f. Sec. VII and VIII].
It was concluded in Ref. 147 that Luttinger surfaces may
define spinon Fermi surfaces. From that perspective, the
third band can be viewed as a direct manifestation of the
fractionalization of the f -electrons in the RKKY phase:
their spinon degrees of freedom become independent, long-
lived excitation, giving rise to the third band. A more
concrete investigation will be the subject of future work.

(iv) Relation to experiment.— We repeatedly make
contact to experimental observations in our manuscript.
In table I, we provide a list of experimental observa-
tions which are qualitatively reproduced by our CDMFT-
NRG approach. We include references to the relevant
experimental publications and reviews (without claim of
completeness) and pointers to where our corresponding
CDMFT results appear in this paper.

To conclude our overview, we summarize the structure
of the paper: After reviewing CDMFT and NRG in Sec. II,
we present and discuss the phase diagram in Sec. III. By
detailed discussion of real-frequency dynamical suscepti-
bilities and NRG finite size spectra, we demonstrate in
Sec. IV that TFL vanishes at the QCP and gives rise to
NFL behavior at intermediate temperatures below TNFL.
After reviewing expectations on single particle properties
in HF systems in Sec. V, a detailed discussion of single-
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phenomenon experiment PAM, CDMFT
phase diagram [3, 27, 33] Fig. 2

sudden FS reconstruction [29–31, 37, 38] Figs. 13, 17

jump of Hall coefficient [25, 31, 36] Fig. 18, App C

control parameter
dependence of THall

[25] Fig. 2

divergent QP mass [27–29, 32] Fig. 9, 19

TFL → 0 at KB–QCP [3, 27, 33] Fig. 2

hybridization gap forms at
[3, 51–59] Figs. 2, 11, 12

TNFL; TNFL ̸= 0 at KB–QCP

NFL: ∼ T lnT specific heat [24, 27, 28, 64] Fig. 19

NFL: linear-in-T resistivity [24, 31, 60–63] [148]

NFL: ω/T scaling [60, 67–70] [148]

TABLE I. Left: Experimental phenomena associated with
heavy-fermion behavior that can be recovered qualitatively
from the periodic Anderson model, treated using 2-site
CDMFT+NRG. Middle: References and reviews (without
claiming completeness) which have inferred these phenomena
from experimental data. Right: Figures in this work or a
follow-up paper [148] exhibiting these phenomena.

particle properties of the self-consistent 2IAM follows in
Sec. VI. Using NRG, we show unambiguously that the
f electron QP weight is finite in both the Kondo and
RKKY correlated phases. In Sec. VII, we discuss how the
single-particle properties of the self-consistent impurity
model translate to lattice properties. There, we show
that the FS indeed reconstructs across the KB–QCP. In
Sec. VIII, we discuss the details of this FS reconstruction
in the context of Luttinger’s theorem and present our
results for the Hall coefficient. Section IX shows results
on the specific heat. Finally, in Section X, we discuss the
similarities and differences between the KB–QCP in the
PAM studied with 2-site CDMFT and the impurity QCPs
in the two-channel and two-impurity Kondo models. Sec-
tion XI presents our conclusions and an outlook. Several
appendices discuss technical details of our methods.

II. MODEL AND METHODS

Although the CDMFT treatment of the PAM is well-
established [126–128], we describe it in some detail, to
introduce notation and terminology that will be used
extensively in subsequent sections.

Before starting, a general remark on notation. Matsub-
ara propagators analytically continued into the complex
plane will be denoted G(z), with z ∈ C. The correspond-
ing retarded propagators are G(ω+), with z = ω + i0+,
ω ∈ R. Ditto for self-energies.

A. Periodic Anderson model

We consider the PAM on a three-dimensional cubic
lattice, where each lattice site hosts a non-interacting
conduction c orbital and an interacting localized f orbital.
The Hamiltonian, HPAM, is given by Eq. (1). In this work,
we set t = 1/6 so that the c-electron half-bandwidth
is 1, and use the latter as unit of energy. Following
the choices of De Leo, Civelli and Kotliar [127, 128],
we set the chemical potential to µ = 0.2, the f -level
energy to ϵ0f = −5.5 and the f -level Coulomb repulsion
to U = 10, so that the system is electron-doped. When
exploring the phase diagram in Sec. III, we will vary the
c-f hybridization V and temperature T .
In the momentum representation, the lattice propaga-

tors can be expressed as

Gk(z) =

(
z − ϵf − Σfk(z) −V

−V z − ϵck

)−1

=

(
Gfk(z) Gfck(z)
Gfck(z) Gck(z)

)
, (2)

The matrix elements in the second line of Eq. (2), defined
by computing the matrix inverse stated in the first, are
given by

Gfk(z) =
[
z − ϵf −∆fk(z)− Σfk(z)

]−1
, (3a)

Gck(z) =
[
z − ϵck − Σck(z)

]−1
, (3b)

Gfck(z) = Σck(z)Gck(z)/V = ∆fk(z)Gfk(z)/V , (3c)

∆fk(z) = V 2
[
z − ϵck

]−1
, (3d)

Σck(z) = V 2
[
z − ϵf − Σfk(z)

]−1
. (3e)

For brevity, we will often omit momentum and/or fre-
quency arguments. The f -hybridization function ∆f

and the one-particle irreducible f self-energy, Σf , de-
scribe, respectively, the effects of hybridization and in-
teractions on f electrons. Their effects on c electrons
are described by Σc, which is not one-particle irreducible
and a function of Σf . In particular, hybridization leads
to so-called hybridization poles in Σc(z), which in turn
cause so-called hybridization gaps in the spectral func-
tions Ac(ω) = − 1

π ImGc(ω
+) (discussed in detail in later

sections).

B. Two-site cellular DMFT

We study the PAM using a two-site CDMFT approxi-
mation, considering a unit cell of two neighboring lattice
sites as a cluster impurity and the rest of the lattice as
a self-consistent bath. We choose to focus solely on so-
lutions with SU(2) spin rotation symmetry, U(1) total
charge symmetry and inversion symmetry, i.e. solutions
which treat sites 1 and 2 as equivalent. Enforcing these
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symmetries may induce artificial frustration in some re-
gions of the phase diagram; in particular, they exclude
the possibility of symmetry-breaking order such as anti-
ferromagnetism. We have two reasons for nevertheless
focusing only on non-symmetry-broken solutions. First,
in some materials the antiferromagnetic QCP (AF-QCP)
and the KB–QCP do not coincide: in YbRh2Si2 they can
be shifted apart by applying chemical pressure [48], and in
CeCoIn5 they naturally lie apart [31]. This strongly sug-
gests that the onset of antiferromagnetic order is not an
intrinsic property of the KB–QCP itself [146]. (The ques-
tion why the AF-QCP often coincides with the KB–QCP
is interesting, but not addressed in this paper.) Second, in
experimental studies, symmetry-breaking order is usually
absent in the quantum critical region. It is therefore of
interest to understand the properties of the KB–QCP
and the NFL regime above it in the absence of symmetry
breaking. Having chosen to exclude symmetry breaking,
we refrain from studying the limit V → 0, where its occur-
rence is increasingly likely for energetic reasons. Studies
of symmetry-broken phases are left for future work.
The CDMFT approximation for the PAM, excluding

symmetry breaking, leads to a self-consistent two-impurity
Anderson model (2IAM) defined by [126–128]

H2IAM =
∑

iσ

ϵff
†
iσfiσ +

∑

i

Uf†i↑fi↑f
†
i↓fi↓ (4)

+
∑

iσ

V
(
c†iσfiσ + h.c.

)
−
∑

ijσ

c†iσ(tτ
x + µ1)ijcjσ

−
∑

ijλσ

Vijλ
(
c†iσaλjσ + h.c.

)
+
∑

λiσ

Eλia
†
λiσaλiσ .

Here i ∈ {1, 2} labels the two cluster sites in the “po-
sition basis”, and 1 =

(
1 0
0 1

)
, τx =

(
0 1
1 0

)
. There are two

spinful baths, with annihilation operators aλiσ. Both
baths hybridize with both cluster sites, whose assumed
equivalence implies Vijλ = Vjiλ. These couplings, chosen
to be real, and the bath energies, Eiλ, together define the
c-hybridization function

(∆c)ij(z) =
∑

λl

VilλVjlλ
z − Eλl

. (5)

The cluster correlators of the 2IAM are 2× 2 matrix
functions. In the cluster position basis they are given by

Gf (z) = [z − ϵf −∆f (z)− Σf (z)]
−1
, (6a)

Gc(z) = [z + µ+ t · τx −∆c(z)− Σc(z)]
−1
, (6b)

Gfc(z) = Σc(z)Gc(z)/V = ∆f (z)Gf (z)/V , (6c)

∆f (z) = V 2 [z + µ+ t · τx −∆c(z)]
−1
, (6d)

Σc(z) = V 2 [z − ϵf − Σf (z)]
−1
. (6e)

These have to be solved self-consistently, by iteratively
computing Σf via an impurity solver and re-adjusting the
dynamical mean field ∆c (see App. A and Refs. [116, 117]).

By SU(2) spin symmetry the hybridization function ∆c

is spin-diagonal and spin-independent. The same is true

for ∆f , which is fully determined by ∆c. Moreover 1↔2
inversion symmetry ensures that they are linear combi-
nations of 1 and τx. They can therefore be diagonalized
independently of ω using the Hadamard transformation
UH = 1√

2

(
1 1
1 −1

)
, which maps τx to τz =

(
1 0
0 −1

)
. It is thus

convenient to correspondingly transform H2IAM, express-
ing it through the bonding/antibonding operators

f±,σ = 1√
2
(f1σ ± f2σ) , c±,σ = 1√

2
(c1σ ± c2σ) . (7)

After reperiodization (discussed in App. A 3), these modes
represent Brillouin zone regions centered at Γ = (0, 0, 0)
and Π = (π, π, π), respectively [153, 154]. The labels α ∈
{+,−} on fασ and cασ will thus be called “momentum”
labels. The ± modes are only coupled via the Coulomb
interaction term, which can only change the total charge in
each channel by 0 or ±2. This implies two Z2 symmetries:
the number parity operators P̂± = N̂± mod 2 for the
+ and − channels are both conserved, with eigenvalues
P± ∈ {0, 1}.

C. Numerical renormalization group

We solve the 2IAM using the full-density-matrix
NRG [155–157]. Following Wilson [144, 145], the bath’s
continuous spectrum is discretized logarithmically and the
model is mapped onto a semi-infinite Wilson chain. We
represent the impurity f and c orbitals by sites n = −1
and 0, respectively, and the bath by sites n ≥ 1. The hop-
ping amplitudes for n ≥ 1 decay exponentially, ∼ Λ−n/2,
where Λ > 1 is a discretization parameter. This energy-
scale separation is exploited to iteratively diagonalize
the model, adding one site at a time while discarding
high-energy states. For a “length-N” chain (i.e. one with
largest site index N), the lowest-lying eigenergies have
spacing ∼ Λ−N/2. By increasing N , one can thus zoom
in on ever lower energy scales.
We set up the Wilson chain in the momentum basis,

in which the ± modes are coupled only via the interac-
tion term on site −1. To reduce computational costs,
we use an interleaved chain [158, 159] of alternating +
and − orbitals. (Interleaving slightly lifts degeneracies,
if present, of the sites being interleaved—but this is not
an issue here, since the ± modes are non-degenerate due
to τz contributions to hopping terms. Indeed, we have
double-checked, especially close to the QCP, that our
interleaved results are reproduced when using a compu-
tationally more costly standard Wilson chain geometry.)
We exploit the SU(2) spin, U(1) charge and both Z2 par-
ity symmetries in our NRG calculations using the QSpace
tensor library [160, 161], further reducing computational
costs. Together with interleaving, this allows us to achieve
converged data using a fairly small NRG discretization
parameter of Λ = 3 while keeping Nkeep ≤ 20, 000 SU(2)
multiplets. Because spectra close to the QCP can be quite
sensitive to z-shifting, we refrained from z-averaging.
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FIG. 2. (a) Paramagnetic phase diagram of the PAM as a
function of the c-f hybridization V and temperature T (on
a log scale). At T = 0, there are two distinct phases, the
RKKY phase and the Kondo phase, separated by a QCP at
Vc = 0.4575(25). At T > 0, we find four different regimes, la-
beled LM (local moment), RKKY, Kondo and NFL, connected
via smooth crossovers. For the first three, associated band
structures are depicted schematically in insets. (See Fig. 1
and Figs. 13–15 for the CDMFT band structure results.) The
crossovers are charaterized by the temperature scales TNFL

(orange solid line) and TFL (purple and blue solid lines) below
which NFL and FL behaviors emerge, respectively. The scales
TNFL(V ) and TFL(V ) were determined by analyzing dynam-
ical susceptibilities of the self-consistent 2IAM at T = 0, as
explained in Sec. IVB and App. B. The red dots marked THall

(and the guide-to-the-eye red dashed line) indicate how the
crossover from a large FS in the Kondo phase to the small
FS in the RKKY phase evolves with temperature. THall was
determined by analyzing the Hall coefficient similar to Ref. 25
(see Fig. 18 and App. C). (b) Equal-time intersite f -f spin
correlation ⟨Sf1·Sf2⟩ and local c-f spin correlation ⟨Sf1·Sc1⟩,
and (c) static susceptibilities for the total f spin Sz

f1 + Sz
f2,

the intersite staggered f -f spin Sz
f1 − Sz

f2 and the local stag-
gered f -c spin Sz

f1 − Sz
c1 of the effective 2IAM, all plotted at

T = 10−11 as a function of V .

For further methodological details on achieving DMFT
self-consistency and reperiodization, see App. A.

III. PHASE DIAGRAM

Based on a detailed study of the dynamical proper-
ties of various local operators, described in Sec. IVB, we
have established a phase diagram for the PAM, shown
in Fig. 2(a). While its generic structure has been known
for a long time [4, 19, 50, 105, 146], we reach orders of
magnitude lower temperatures and better energy resolu-
tion than previously possible and characterize the various
regimes through a detailed analysis of real-frequency cor-
relators. We first focus on zero temperature, involving
two distinct phases separated by a QCP, then discuss
finite-temperature behavior, involving smooth crossovers
between several different regimes.

Zero temperature: At T = 0, we find two phases when
tuning V , separated by a QCP at Vc = 0.4575(25). For
V > Vc, we find a Kondo phase, where the f and c
bands are hybridized to form a two-band structure and
the correlation between f -orbital local moments in the
effective 2IAM is weak, as shown by the blue line in
Fig. 2(b) and discussed below. This phase is a FL, with a
Fermi surface (FS) whose volume satisfies the Luttinger
sum rule [8, 9] when counting both the f and c electrons
(see Fig. 17, to be discussed later). We henceforth call a
FS large or small if its volume accounts for both c and
f electrons, or only c electrons, respectively. The Kondo
phase is adiabatically connected to the case of U = 0 and
V > 0 and is thus a normal FL.
For V < Vc, we find a RKKY phase, where the local

moments at nearest neighbours have strong antiferromag-
netic correlations (see blue line in Fig. 2(b) and its dis-
cussion below), while SU(2) spin symmetry is conserved
by construction. This phase, too, is a FL, with a small
FS accounting only for c electrons. While this phase thus
appears to violate Luttinger sum rule, it still obeys a
more general version of that rule [10, 35, 105]: we find a
surface of poles of Σfk(z = 0) (Luttinger surface), which,
together with the FS, accounts for the total particle num-
ber. We will discuss this in detail in Secs. VII and VIII.
In the RKKY phase, the FS coincides with the FS of
the free c band but the effective band structure differs
from that of a free c band: there are three bands (see
Fig. 1 and Fig. 13 below, to be discussed later), including
a narrow QP band crossing the Fermi level. This narrow
QP band is responsible for the FL behavior we observe
in the RKKY phase. Based on Ref. 147 revealing that
Luttinger surfaces may define spinon Fermi surfaces, we
conjecture that the RKKY phase is a fractionalized FL
(FL∗) [105, 106]. We will explore this conjecture in more
detail in future work.
Figure 2(b) shows the equal-time f -f intersite spin

correlators ⟨Sf1 ·Sf2⟩ and the local c-f ⟨Sf1 ·Sc1⟩ of
the effective 2IAM at T = 10−11, plotted as functions
of V . ⟨Sf1 ·Sf2⟩ smoothly evolves from ≃ 0 at V =
0.6 deep in the Kondo phase to ≃ −0.75 deep in the
RKKY phase. On the other hand, the absolute value of
⟨Sf1·Sc1⟩ smoothly decreases when going from the Kondo
phase to the RKKY phase. This shows that the Kondo
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phase is dominated by local c-f correlations, indicative
of spin screening, and only has weak non-local f -f spin
correlations. By contrast, the RKKY phase is dominated
by non-local antiferromagnetic f -f spin correlations and
has only weak local c-f correlations. Note that equal-
time spin correlations of the self-consistent 2IAM are
continuous across the QCP and do not show non-analytic
behavior at Vc. Rather, we will see below that the QCP is
characterized by a zero crossing of the effective bonding f
level (see discussion of Fig. 9 below). This is accompanied
by a sharp jump of the FS and the appearance of a
dispersive pole in the f self-energy (see the discussion of
Figs. 13, 14 and 17 below).

Figure 2(c) shows static susceptibilities for the total f -
spin Sz

f1+S
z
f2, the staggered intersite f -f -spin Sz

f1−Sz
f2,

and the staggered local f -c-spin Sz
f1 − Sz

c1, plotted ver-

sus V at T = 10−11. (Susceptibilities are defined in
Eq. (8) below.) While the total f -spin susceptibility
evolves smoothly across the QCP, both staggered suscep-
tibilities, which are related to intersite f -f singlet for-
mation and Kondo singlet formation, respectively, show
singular behavior near the QCP. This suggests that the
latter arises from a competition between intersite f -f
singlet formation and Kondo singlet formation. Further,
both staggered susceptibilities become very large deep in
the RKKY phase, reflecting the tendency of this phase
towards antiferromagnetic order.

Finite temperature: When the temperature is increased
from zero, both FL phases cross over, at a V -dependent
scale TFL(V ), to an intermediate NFL critical regime,
characterized by the absence of coherent QP (see Fig. 15
and Sec. IVA). Importantly, the scale TFL(V ) vanishes
when V approaches Vc from either side, thus the NFL
regime extends all the way down to T = 0 at the QCP.
With increasing temperature, the NFL regime crosses
over, at a scale TNFL(V ) (larger than TFL(V )) , to a local
moment (LM) regime, which is adiabatically connected
to V = 0. There, free c electrons are decoupled from f
orbital local moments, resulting in a one-band structure.
The crossover scales TNFL and TFL can be extracted from
an analysis of dynamical susceptibilities at T = 0 (see
Sec. IVB and App. B). To make qualitative contact with
experimental results on YbRh2Si2 [25], we also show a
scale THall, which marks the crossover between large and
small FS based on analyzing the Hall coefficient in a way
which closely resembles the analysis done in Ref. 25 (see
Fig. 18 and App. C). In qualitative agreement with the
experimental data of Ref. 25, Fig. 3, THall depends on the
tuning parameter (V in our case, B-field in Ref. 25) and
bends towards the Kondo side of the phase diagram.

IV. TWO-STAGE SCREENING

The presence of two crossover scales, TNFL and TFL,
implies that the evolution, with decreasing energy, from
unscreened local f moments to a fully-screened FL regime

FIG. 3. NRG flow diagrams for the self-consistent effective
2IAM at T = 0, in (a) the Kondo phase at V = 0.46 and
(b) the RKKY phase at V = 0.455, both close to the QCP.
The rescaled eigenenergies are plotted as functions of the
energy scale Λ−N/2, for odd values of N . The vertical dashed
lines indicate the scales TFL and TNFL. Quantum numbers
for selected energy levels are indicated in the legend. Energy
levels with total charge |Q| = 0, 1 or 2 are shown using solid,
dash-dotted or dashed lines, respectively.

evolves through two stages. In this section we study this
evolution from two perspectives, focusing first on NRG
finite-size spectra (Sec. IVA), then on the dynamical prop-
erties of various local susceptibilities at T = 0 (Sec. IVB).

A. Finite size spectra

We begin our discussion of the physical properties of
the different regimes shown in Fig. 2(a) by studying NRG
energy-level flow diagrams of the self-consistent effective
2IAM. Such diagrams show the (lowest) rescaled eigenen-
ergies, ΛN/2Ei(N), of a length-N Wilson chain as a func-
tion of the energy scale Λ−N/2. Conceptually, the Ei(N)
form the finite-size spectrum of the impurity plus bath
in a spherical box of radius RN ∝ ΛN/2, centered on the
impurity [144, 162]: with increasing N , the finite-size
level spacing, ∼ 1/RN , decreases exponentially. The re-
sulting flow of the finite-size spectrum is stationary (N
independent) while Λ−N/2 lies within an energy regime
governed by one of the fixed points, but changes when
Λ−N/2 traverses a crossover between two fixed points. We
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label eigenenergies by the conserved quantum numbers
(Q, 2S, P+, P−), where Q is the total charge relative to
the ground state, S the total spin, and P± ∈ {0, 1} the
number parity eigenvalues in the ± sectors.

Kondo phase: Fig. 3(a) shows the NRG flow diagram
for the self-consistent 2IAM at T = 0 and V = 0.46, which
is in the Kondo phase close to the QCP. The ground state
has quantum numbers (0, 0, 0, 0). As already indicated in
the discussion of Fig. 2(a), we find a FL at low energy
scales and a NFL at intermediate energy scales. In the
FL region below TFL > Vc, the low-energy many-body
spectrum can be constructed from the lowest particle
and hole excitations. These come with quantum num-
bers (±1, 1, 1, 0) and (±1, 1, 0, 1) for the bonding and
anti-bonding channel, respectively, with the P± quantum
numbers identifying the channel containing the excitation.
The low-energy many-body spectrum can then be gener-
ated by stacking these single-particle excitations, leading
to towers of equally spaced energy levels, characteristic
for FL fixed points [145]. This directly shows that the
Kondo phase is a FL featuring a QP spectrum at low
energies.

At intermediate energy scales between TFL and TNFL,
the effective 2IAM flows through the vicinity of a NFL
fixed point. Our calculations strongly suggest that this
NFL fixed point also governs the low-energy behavior of
the QCP at T = 0 and V = Vc. We thus identify this NFL
fixed point with the critical fixed point of the QCP in the
two-site CDMFT approximation. As will be pointed out in
subsequent sections and summarized in Sec. X, this fixed
point shares several similarities with the NFL fixed points
of the two-channel Kondo model (2CKM) [74, 75, 163–
167], the two impurity Kondo model (2IKM) [84–86, 149–
152] and the 2IAM without self-consistency [79–82], which
is closely related to the 2IKM. One may therefore argue
that it is not surprising to find such a NFL fixed point also
in a self-consistent solution of the 2IAM. On the other
hand, the NFL fixed points of the 2IKM and the 2IAM
are known to be unstable to breaking ± mode degener-
acy or particle-hole symmetry [79, 80, 83, 86]. Further,
for the 2IKM and the 2IAM, the RKKY interaction has
to be inserted by hand as a direct interaction because
if ± mode symmetry and particle-hole symmetries are
present (as needed to make the NFL fixed point accessi-
ble), then these symmetries prevent dynamical generation
of an antiferromagnetic RKKY interaction [168]. It has
therefore been argued that this NFL fixed point is artifi-
cial and not observable in real systems [168–170]. From
this perspective, the behavior found here for our effective
self-consistent 2IAM is indeed unexpected and remark-
able: although it lacks particle-hole symmetry or ± mode
degeneracy and we do not insert the RKKY interaction by
hand, it evidently can be tuned close to a QCP controlled
by a NFL fixed point with 2IKM-like properties.

We note in passing that self-consistency is crucial to
reach the NFL fixed point—we checked that naively
tuning V without self-consistency leads to a continuous
crossover without a QCP (see also App A4 for more de-

tails). It is not entirely clear to us why the self-consistency
stabilizes the NFL fixed point, though we suspect the Lut-
tinger sum rule [8, 9] to play a crucial role. We will
discuss the Luttinger sum rule in more detail in Sec. VIII.
We also remark that for the non-self-consistent 2IKM
mentioned above, frequency-independent or only weakly
frequency-dependent hybridization functions were used
in the analyses concluding that its NFL fixed point re-
quires some special symmetries. By contrast, for the
self-consistent 2IAM studied here, the self-consistent hy-
bridization functions acquire a rather strong frequency
dependence in the vicinity of the KB–QCP and appear
to become singular at the QCP itself (see App A4). Re-
garding the energy level structure of the self-consistent
2IAM, we did not find obvious similarities to the NFL
fixed point of the 2IKM, i.e. the level structure seems
quite different.
RKKY phase: Fig. 3(b) shows the NRG flow diagram

for the self-consistent 2IAM at V = 0.455 < Vc, which is
in the RKKY phase close to the QCP. Again, a NFL is
found at intermediate energies and a FL fixed point at low
energies. This directly establishes that the RKKY phase,
too, is a FL described by a QP spectrum at low energies.
However, note that close to the QCP, the level structure
of the FL fixed point in the RKKY phase (V = 0.455) is
quite different from that in the Kondo phase (V = 0.46).
This suggests that these Fermi liquids are not smoothly
connected. Indeed, we will see in Sec. VIII that their
FS volumes differ. This implies different scattering phase
shifts and hence different NRG eigenlevel structures, con-
sistent with the fact that the level structures of Figs. 3(a)
and 3(b) differ strikingly in the FL regimes on the left.

B. Dynamical susceptibilities

The characteristic level structure of RG fixed points
governs the behavior of dynamical properties at T = 0,
causing striking crossovers at the scales TFL and TNFL.
In this section, we extract these from the dynamical
susceptibilities of local operators.
Let O be a local operator acting non-trivially only on

the cluster impurity in the self-consistent 2IAM. We define
its dynamical susceptibility as

χ[O](ω+) = −i

∫ ∞

0

dt eiω
+t⟨[O(t), O†(0)]⟩ , (8)

⟨·⟩ = Tr(ρ ·) denotes a thermal expectation value. When
ω lies within an energy range governed by a specific
fixed point, the imaginary part of such a susceptibil-
ity typically displays power-law behavior, χ′′[O](ω) =
− 1

π Imχ[O](ω
+) ∼ ωα. When ω traverses the crossover

region between fixed points, the exponent α changes, in-
dicating a change in the degree of screening of the local
fluctuations described by O. A log-log plot of χ′′ vs. ω
thus consists of straight lines with slope α in regions gov-
erned by fixed points, connected by peaks or kinks (see
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FIG. 4. Dynamical impurity susceptibilities χ′′(ω) for various operators defined in Eq. (9), computed in (a,c) the Kondo phase,
at V = 0.46, and (b,d) the RKKY phase at V = 0.455, both at T = 0, close to the QCP. For the susceptibilities collected in
(c,d), the χ′′ curves exhibit a maximum around TNFL; for those in (a,b), they instead exhibit a plateau between TFL and TNFL.
This plateau indicates that the FL is reached in a two-stage screening process, leading to the emergence of NFL behavior at
intermediate energy scales. Grey dashed lines are guides-to-the-eye for ∼ ω behavior.

Fig. 4). We thus define the crossover scales TNFL and TFL

via the position of these kinks, as described below. (A
systematic method for determining the kink positions is
described in App. B.) When discussing finite-temperature
properties in later sections, we will see that the scales so
obtained also serve as crossover scales separating low-,
intermediate- and high-temperature regimes.
We have computed χ′′[O](ω) for the following local

cluster operators, defined in the momentum-spin basis,
with indices α ∈ {+,−} and σ ∈ {↑, ↓}:

T a = 1
2f

†
αστ

a
αα′δσσ′fα′σ′ (momentum) (9a)

Sb = 1
2f

†
ασδαα′σb

σσ′fα′σ′ (spin) (9b)

Xab = 1
2f

†
αστ

a
αα′σb

σσ′fα′σ′ (spin-momentum) (9c)

W a = f†αστ
a
αα′δσσ′cα′σ′ + h.c. (hybridization) (9d)

P a = 1√
2
fαστ

a
αα′ iσ

y
σσ′fα′σ′ (singlet pairing) (9e)

Qab = fασfα′σ′ τ̂
a
αα′ Ĵb

σσ′ (triplet pairing) (9f)

j = −ite(c†1σc2σ − h.c) (current) (9g)

Here, sums over repeated indices are implied, τa and σb

are Pauli matrices in the momentum and spin sectors,
respectively, iσy =

(
0 1

−1 0

)
, and Ĵb are SU(2) generators

in the triplet representation. These operators can also
be expressed in the position spin basis via the Hadamard
transformation UH , which maps τx → τz, τy → −τy and
τz → τx. For example, T z can be expressed as

T z =
∑

α,α′=±

1
2f

†
αστ

z
αα′fα′σ =

2∑

i,j=1

1
2f

†
iστ

x
ijfjσ , (10)

describing f hopping between sites 1 and 2. Similarly,
Sz describes the total f -electron spin, Xxz = Sz

f1 − Sz
f2

the staggered magnetization, W z =
∑

ij f
†
iστ

x
ijcjσ + h.c.

nearest-neighbor f -c hybridization, and P z f -electron
nearest-neighbor singlet pairing.

Fig. 4 shows various χ′′ susceptibilities at T = 0 for
the choices V = 0.46 [(a,c)] and V = 0.455 [(b,d)], in
the Kondo and RKKY phases close to the QCP, respec-
tively. For ω < TFL, all χ

′′’s decrease linearly with de-
creasing ω, indicative of FL behavior. Hence all local
fluctuations are fully screened in that energy window,
leading to well-defined Fermi-liquid QPs. By contrast, for
TFL < ω < TNFL only the χ′′’s in panels (c) and (d) (e.g.
χ′′[Sz]) decrease with decreasing ω, while the ones in pan-
els (a) and (b) (e.g. χ′′[T z], χ′′[Xxz], χ′′[W z] and χ′′[P z])
all traverse plateaus. These plateaus are reminiscent of
those found for χ′′

2CK[S
z] of the overscreened, S = 1

2 two-
channel Kondo model (2CK), and for χ′′

2IKM[Sz
1 − Sz

2 ] of
the two-impurity Kondo model (2IKM) in their respec-
tive NFL regimes (see Fig. 20 below). This implies that
the total spin in the ± basis is screened, whereas the
momentum, spin-momentum, pairing and hybridization
fluctuations are overscreened, yielding the intermediate
NFL.

The χ′′ curves at T = 0 in Fig. 4 clearly demonstrate
that when V is close to Vc, the screening process evolves
through two stages, characterized by TNFL and TFL. Pre-
cisely at the critical point, where TFL =0, the plateaus
would extend all the way to zero. Conversely, when V is
tuned away from the QCP, TFL tends toward TNFL (see
Fig. 2(a)). The two scales merge for |V −Vc| ≳ 0.1, where
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FIG. 5. Evolution of χ′′[Xxz] with V across the QCP at T = 0.
Solid lines: RKKY phase; dashed lines: Kondo phase. As
V → Vc from either above or below such that TFL → 0, the
dashed and dotted plateaus both extend to ever lower scales
(they would coincide at Vc, where TFL = 0), demonstrating
that the KB–QCP is continuous.

the χ′′ plateaus have shrunk to become mere peaks, shown
for χ′′[Xxz] in Fig. 5. The curves in Fig. 5 further illus-
trate that the KB–QCP is continuous because χ′′[Xxz]
evolves smoothly without any discontinuities across the
KB–QCP. We find similar behavior for the other dynami-
cal susceptibilities shown in Fig. 4. In a companion pa-
per [148], we show that those χ′′ which exhibit a plateau
[those shown in Fig. 4(a,b)] exhibit logarithmic ω/T scal-
ing in the NFL region while the corresponding static
susceptibilities are singular at the KB–QCP, where the
NFL region extends down to T = 0. The fact that many
static susceptibilities with different symmetries diverge
at the QCP suggests that many different, possibly com-
peting symmetry breaking orders may be possible in the
vicinity of the QCP. Which order prevails (if any) will be
carefully studied in future work.

V. SINGLE-PARTICLE PROPERTIES –
PRELIMINARIES

The fact that TFL → 0 at the QCP (Fig. 2(a)) indicates
a breakdown of the FL and QP concepts at the KB–QCP.
Experimental evidence for such a breakdown is found
in the sudden reconstruction of the FS [25, 36], and the
divergence of the effective mass [27] at the KB–QCP. It is
to date not fully settled how this should be understood [3,
5]. In the next two sections, Sec. VI and VII, we revisit
such questions, exploiting the ability of CDMFT–NRG to
explore very low temperatures and frequencies. This will
allow us to clarify the behavior of spectral functions and
self-energies in unprecedented detail. We discuss their
cluster versions for the self-consistent 2IAM in Sec. VI,
and the corresponding lattice functions for the PAM in
Sec. VII.
In the present section we set the stage for this anal-

ysis by summarizing, for future reference, some well-
established considerations regarding single-particle proper-
ties. We first recall standard expressions for low-frequency
expansions of correlators and self-energies in the PAM,

and the definition of its Fermi surface (Sec. VA). Even
though our focus here is on the PAM, we note that low-
frequency expressions similar to those reviewed in Sec. VA
can be obtained for the Kondo lattice using slave parti-
cles [3, 71, 105, 106]. In Sec. VB, we discuss possible sce-
narios how the parameters appearing in the low-frequency
expansions in Sec. VA behave in the vicinity of a KB–
QCP.

A. Fermi-liquid expansions, Fermi surface,
Luttinger surface

In what follows, we will often refer to the low-energy
expansions, applicable in conventional FL phases, of the
the functions Gxk(z) and Σxk(z) (x = f, c) defined in
Eqs. (3). We list them here for future reference.
Fermi-liquid expansions: For z below a characteristic

FL scale, |z| ≪ TFL, and for k close to the FS, the self-
energies can be expanded as [171]

Σxk(z) = ReΣxk(0) + zReΣ′
xk(0) + δΣxk(z) , (11)

where Σ′(z) = ∂zΣ(z) and δΣxk(z) is of order of
O(z2/T 2

FL). Moreover, analyticity of Gxk(z) in the upper
half-plane requires ImΣxk(z) < 0 for Im z > 0. For z =
ω+ this implies ImΣxk(ω

+) < 0 and ReΣ′
xk(0) ≤ 0 (the

latter follows since δΣxk(z) ∼ z2 implies ImΣxk(0) = 0).
The expansion coefficients determine the so-called free

QP energies, weights and the effective hybridization,

ϵ∗xk = Zxk

[
ϵxk +ReΣxk(0)

]
, (12a)

Zxk =
[
1− ReΣ′

xk(0)
]−1

, (12b)

V ∗
k =

√
ZfkV , (12c)

with ϵxk = ϵf or ϵck for x = f, c. Since ReΣ′
xk(0) ≤ 0,

the QP weights satisfy Zxk ≤ 1. The QP energies and
weights, in turn, appear in the low-frequency expansions
of Σc and Gc (cf. Eqs. (3)):

Σck(z) =
(V ∗

k )
2

z − ϵ∗fk
+O(z2/T 2

FL) , (13a)

Gck(z) =
Zck

z − ϵ∗ck
+O(z2/T 2

FL) . (13b)

Evidently, the low-energy expansion of Σc is fully deter-
mined by that of Σf , with

ReΣck(0) = −V
∗2
k

ϵ∗fk
, ReΣ′

ck(0) = −V
∗2
k

ϵ∗2fk
, (14)

Zck =

[
1 +

V ∗2
k

ϵ∗2fk

]−1

=
ϵ∗2fk

ϵ∗2fk + V ∗2
k

. (15)

These expressions make explicit how c-f hybridization
effects c electrons: the sign of the energy shift ReΣck(0) is
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determined by and opposite to that of ϵ∗fk; and ReΣ′
ck(0)

changes from zero to negative, thereby decreasing Zck

below 1 and causing c electron mass enhancement [171].
Since ϵ∗fk ∼ Zfk and V ∗

k ∼
√
Zfk, Eq. (15) implies Zck ∼

Zfk when Zfk ≪ 1.
Fermi surface: Next, we recall the definition of the

FS. For the PAM, this is not entirely trivial, since the
correlators Gc and Gf are not independent, but coupled
through Eqs. (3).

We focus on T = 0 (else the FS is not sharply defined).
If there is no hybridization, V = 0, the situation is simple:
the partially-filled c band is metallic and the half-filled f
band a Mott insulator. Then, the FS comprises essentially
only c electrons and is defined by the conditions [12, 171]

ϵ∗ck = 0 , Zck > 0 , ImΣck(0) = 0 . (16)

The first condition identifies the FS as the locus of k
points in the Brillouin zone for which the free QP energy
vanishes; the second states that the QP occupation should
exhibit an abrupt jump when this surface is crossed (Zck

governs the size of this jump); and the third requires
the QP scattering rate to vanish at the FS. Together,
they imply that the FS is the locus of k points at which
G−1

ck (0) = 0.
More generally, for V ̸= 0, we start from the matrix

form, Gk(z), of the combined f and c correlators [Eq. (2)].
Then, the FS is defined as the locus of k points for which
some eigenvalue of G−1

k (0) vanishes. Thus, all points on

the FS satisfy the condition det
[
G−1

k (0)
]
= 0, or

ϵck
(
ϵf +Σfk(0)

)
− V 2 = 0 . (17)

For V → 0, either the first or second factor on the left must
vanish, implying ϵck = 0 or ϵf +Σfk(0) = 0, respectively.
The first condition defines the bare FS for the c band; the
second condition is never satisfied for the case of present
interest, where the bare f electrons form a half-filled Mott
insulator with µ lying within the gap.
If V is non-zero, Eq. (17) implies that both of the fol-

lowing inequalities hold on the FS (assuming that Σfk(0)
does not diverge there):

ϵck ̸= 0 , ϵf +Σfk(0) ̸= 0 . (18)

Thus, the bare and actual FS do not intersect. Dividing
Eq. (17) by the first or second factor, we obtain [127, 128]

G−1
fk (0) = 0 , G−1

ck (0) = 0 . (19)

These two conditions are equivalent, in that one implies
the other, via Eq. (17). Moreover, the second inequal-
ity in (18) ensures that Σck(0) does not diverge, hence
the second condition in (19) implies Eqs. (16). We thus
conclude that Eqs. (16) define the FS also for nonzero V .
Luttinger surface: A second surface of importance is

the Luttinger surface (LS) [10, 172, 173]. For the PAM
it is defined [127] as the locus of k points for which
Σfk(z) has a pole at z = 0. This definition, together with

Eqs. (3a,3e), implies that the following relations hold on
the LS:

|Σfk(0)| = ∞ , Gfk(0) = 0 , Σck(0) = 0 . (20)

The first relation just restates the definition of the LS; the
second should be contrasted with the relationGfk(0) = ∞
holding on the FS; and the third implies, via (12a), that
ϵ∗ck = Zckϵck, i.e. on the LS, the renormalized dispersion
is obtained from the bare one purely by rescaling, without
any shift. If the LS coincides with the bare FS, then the
FS, too, coincides with the bare c-electron FS (ϵck = 0).
Note that |Σfk(ω)| can only diverge at isolated fre-

quency values, not on extended frequency intervals, since
the frequency integral over its spectral function must be
finite. Terefore, when |Σfk(0)| diverges, |Σ′

fk(0)| diverges
too. By Eq. (12b), it follows that Zfk = 0 on the LS.
The behavior of Zck depends on how strongly Σfk(z)

diverges for z → 0. For example, suppose Σfk(z) ∼ z−α

for some α > 0. Then, Eq. (3e) implies Σck ∼ zα, Σ′
ck ∼

zα−1. Thus, we obtain Zck ∼ z1−α → 0 or ∈ (0, 1) or = 1
for α < 1 or = 1 or > 1, respectively, i.e. the c-QP weight
may or may not be renormalized.
We show results for the FS and LS in Sec. VII, and

discuss their volumes together with Luttinger’s sum rule
in Sec. VIII.

B. Kondo breakdown

In the introduction, we have qualitatively described the
Kondo breakdown scenarios that have been proposed to
characterize the KB–QCP. For future reference, we here
distinguish KB scenarios of two types: (1) a KB–QCP
with Kondo destruction (KD), defined below, and (2) a
KB-QCP without KD. In both scenarios, the f electron
quasiparticle weight Zf decreases to zero when approach-
ing the KB–QCP from the Kondo side. However, in (1)
Zf remains zero on the RKKY side (i.e. all Kondo corre-
lations have been destroyed, hence the monicker “KD”),
whereas in (2), Zf is non-zero on the RKKY side, too
(i.e. some Kondo correlations survive there). (Thus, our
nomenclature distinguishes between KB, which happens
only at the critical point, and KD, which, in a type (1)
scenario, happens throughout the RKKY phase.) We
emphasize that (2) is different from the Hertz–Millis type
SDW–QCP where the QP weight is also non-zero at the
QCP. Fig. 6 sketches the different scenarios. Most of the
scenarios for the KB–QCP proposed in the literature are
of type (1), with KD. By contrast, we find a KB–QCP of
type (2), without KD. We summarize below the concepts
used to describe the HF problem and in particular how
type (1) and (2) scenarios differ.
(i) Hybridization gap: The hybridization of c and f

electrons leads to a well-developed pole in Σck(z), called
hybridization pole (h-pole), lying at energies well above
the FL scale TFL. It manifests itself as a strong peak in
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FIG. 6. Sketch of the generic f -band QP weight in different
scenarios for quantum criticality. In the conventional SDW–
QCP (red), the QP weight is finite at the QCP. At a KB–QCP,
it is zero at the QCP. In a type (1) scenario with KD (green),
it remains zero in the RKKY phase; in a type (2) scenario
without KD (blue), it is finite there.

−ImΣck(z), causing the corresponding c-electron spectral
functions to exhibit distinctive gaps or pseudogaps, called
hybridization gaps (h-gaps). It occurs irrespective of
whether the T = 0 phase is Kondo or RKKY correlated
and is present for temperatures both above and below
TFL. The formation of a h-gap has been observed in many
experiments, as reviewed in the introduction. Note that
while in the non-interacting PAM (U = 0), the h-gap is
positioned at ϵ∗fk, this is not the case in the interacting
case: the h-gap forms at scales which can much larger
than the FL scale (in our case, it forms at TNFL, see
next section), i.e. ϵ∗fk and the position of the h-gap are
renormalized differently by interactions.
(ii) Kondo phase: In the Kondo phase, Zfk is non-

zero for all k. The presence of Kondo correlations is
phenomenologically described [3, 71] by Eq. (13a). This
situation can phenomenologically be interpreted as aris-
ing through an effective hybridization with strength V ∗

k
(sometimes referred to as “amplitude of static Kondo cor-
relations” [3, 71]) of c electrons with an effective f band
with dispersion ϵ∗fk. This effective hybridization shifts
the c-electron Fermi surface from its V = 0 form, defined
by ϵck = 0, to a form defined by ϵ∗ck = 0, i.e.

ϵck − V ∗2
k

ϵ∗fk
= 0 . (21)

Therefore the FS volume changes, reflecting the influ-
ence of f orbitals. Within the Kondo phase, V ∗

k remains
non-zero but continuously approaches zero as the KB–
QCP is approached. Moreover, in the Kondo phase the
ratio (V ∗

k )
2
/ϵ∗fk remains essentially constant as long as

V ∗
k is finite because both (V ∗

k )
2 ∼ Zfk and ϵ∗fk ∼ Zfk

(c.f. Eq. (12a)). Therefore, the FS will remain basically
unchanged in the Kondo phase, even very close to the
KB–QCP.

Two comments are in order. First, in general, the first
term in Eq. (13a) usually does not represent an actual
pole of Σck: it was derived assuming |z| ≪ TFL and k close
to the FS, whereas ϵ∗fk typically lies outside that window

(i.e. for z → ϵ∗fk, Eqs. (11) and (13a) no longer apply).
Second, ϵ∗fk is not directly related to the hybridization

gaps, as already mentioned in point (i) above: the latter
are determined by pseudogaps of Gck of (3b), and since
these lie at high energies of order ±TNFL, their positions
are not governed by Eq. (13a), but rather by the general
form (3e) of Σck (see Sec. VII below).

(iii) Kondo breakdown: As summarized in Refs. [3, 71],
the following behavior is expected when approaching the
KB–QCP from the Kondo phase: V ∗

k , or equivalently
Zfk, decreases continuously to zero, hence the low-energy

hybridization becomes weaker, while the ratio (V ∗
k )

2
/ϵ∗fk

and thus the FS remain constant, and different from the
bare c-electron FS. Since Zck ∼ Zfk if Zfk ≪ 1 [c.f.
Eq. (15) and its discussion], e.g. close to the KB–QCP,
both QP weights are expected to continuously decrease
to zero when approaching the KB–QCP. At the KB–QCP,
V ∗ vanishes, i.e. low-energy hybridization and thus Kondo
correlations break down.

(iv) RKKY with Kondo destruction: In the type (1) KD
scenario [3, 71], V ∗

k , or equivalently Zfk, remains zero in
the RKKY phase, i.e. Kondo correlations remain absent,
i.e. they have been destroyed. By Eq. (21), that implies
the FS reduces to the bare c-electron one, accounting for
c electrons only. All in all, the FS jumps across the KB–
QCP due to Kondo destruction. Since Zfk = 0 in this
scenario, Eq. (11) for the f -electrons and therefore also
Eq. (13a) does not apply anymore. Eq. (11) may however
still apply for the c-electrons [see also the discussion below
Eq. (20)], leading to QP mass enhancement due to the
existence of c-f hybridization at finite frequencies. This
is sometimes referred to as “dynamical Kondo correla-
tions” [26, 174]. The type (1) KD scenario emerges from
the Kondo lattice model both in a slave-particle [105, 106]
or an EDMFT treatment [119, 131–133].
(v) RKKY without Kondo destruction: Here, we de-

scribe the type (2) scenario of a Kondo breakdown with-
out Kondo destruction in the RKKY phase. We empha-
size that also in this scenario, the QP weights become
zero at the KB–QCP and the FS is small in the RKKY
phase. Nevertheless, in the RKKY phase the f -electron
QP weight is non-zero at the FS. In the type (2) scenario,
Zfk becomes zero only at a LS [see Eq. (20)], where the
f -electron self-energy diverges. If the LS does not coin-
cide with the FS (the converse would require significant
fine-tuning), this implies non-zero Zfk at the FS and c-f
hybridized QPs also in the RKKY phase.

The type (2) scenario described above is not so unusual:
there is growing evidence that Mott insulators described
beyond the single-site DMFT approximation generically
feature momentum-dependent Mott poles [175–177], with
a singular part of the f self-energy of the form [177],

Σf,singular ∼
1

z − ϵ∗Σk

. (22)

Here, ϵ∗Σk is related to the free dispersion with renor-
malized parameters and opposite sign of the hopping
amplitudes [177]. Such a self-energy therefore features a
LS, defined by ϵ∗Σk = 0. It has been suggested that the
LS is the defining feature of Mott phases and that this
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feature is stable to perturbations [178–180]. The LS of a
Mott phase should therefore in principle be stable to small
hybridization with a metal, provided the hybridization
strength is not too large, resulting in a OSMP. Zfk is
only zero at the LS where Σf diverges. If the LS and the
FS do not coincide, it follows that Zfk is non-zero at the
FS.
A comment is in order regarding single-site DMFT or

EDMFT, where the Mott pole is not momentum depen-
dent and the QP weight is zero throughout the whole
BZ. In single-site DMFT, this phase is not stable to inter-
orbital hybridization [121, 181]. As a result, single-site
DMFT will always describe a Kondo phase at T = 0 [121].
By contrast, OSMPs described by EDMFT seem to be
stable to inter-orbital hybridization [182], leading to the
type (1) scenario described above.

In our own CDMFT-NRG studies of the PAM, we find
a KB scenario of type (2). In Sec. VI, we will establish
this by a detailed study the low-energy behavior of the
self-consistent effective 2IAM. There, the role of k is taken
by α = ±, i.e. we will show that

Σcα(z) =
V ∗2
α

z − ϵ∗fα
+O

(
z2/T 2

FL

)
(23)

is valid, with V ∗
α ̸= 0 on both sides of the QCP. When V

approaches Vc from either side, V ∗
α approaches 0, leading

to a breakdown of Kondo correlations at the KB–QCP.
We will find that the FS reconstruction at Vc is caused
by a sign change of ϵ∗f+, as explained in the Sec. VI.
The consequences for the lattice model are established in
Sec. VII, and for the Luttinger sum rule in Sec. VIII.

VI. SINGLE-PARTICLE PROPERTIES –
CLUSTER

In this section we discuss the single-particle properties
of the self-consistent 2IAM, focusing on the spectral func-
tions and retarded self-energies of both c and f orbitals. A
discussion of the corresponding momentum-dependent lat-
tice properties follows in Sec. VII. We will argue that the
KB quantum phase transition is a continuous orbital selec-
tive Mott transition (OSMT) at T = 0. The Kondo phase
is a normal metallic phase while in the RKKY phase, the
f electrons are in a Mott phase, i.e. this phase is an orbital
selective Mott phase (OSMP). The defining feature of the
OSMP is a momentum-dependent pole in the f -electron
self-energy, not a single-particle gap. The RKKY phase
is thus not an orbital selective Mott insulator. Indeed,
we find that even in the OSMP, the f electrons exhibit
a finite QP weight due to finite hybridization with the c
electrons.

In sections VIA and VIB, we discuss spectral functions
and self-energies at T = 0 on the real-frequency axis,
exploiting the capabilities of NRG to resolve exponentially
small energy scales. We then investigate QP properties

in more detail in Sec. VIC: we clearly show that both the
c and f -electron QP weights are finite in both the Kondo
and RKKY phases, but vanish at the KB–QCP. Finally,
in Sec. VID, we discuss finite temperature properties,
showing that c-f hybridization is already fully developed
around TNFL, whereas QP coherence and self-energy poles
are only fully formed at TFL.

A. Cluster spectral functions at T = 0: overview

In this subsection, we provide a phenomenological
overview over the cluster spectral properties of the self-
consistent 2AIM at T = 0 as functions of V ; details and
physical insights follow in Sec. VIB. We adopt the ±
basis, where Gf and Gc from Eq. (6) are both diagonal,
and study A(ω) = − 1

π ImG(ω+) for both f and c orbitals.
(When referring to Af below, we mean both components,
Af±, and likewise for Ac.) Our results for Af and Ac are
shown in Fig. 7 on a linear frequency scale to provide
a coarse overview. We enumerate some of their charac-
teristic features, proceeding from high- to low-frequency
features.
(i) Hubbard peaks, band structure: Figures 7(a,b,e,f)

and (c,d,g,h) show the spectral functions Af (ω) and Ac(ω)
for different V on a linear frequency scale, for the ranges
ω ∈ [−10, 10] and ω ∈ [−1.25, 1.25], respectively, contain-
ing all significant spectral weight. Af has two Hubbard
bands around ω ≃ ±5 = ±U/2. They are almost indepen-
dent of V . Moreover, they show the same structure for
Af+ and Af−, implying that these high-energy features
are momentum independent. By contrast, Ac has no
Hubbard bands since the c electrons do not interact, with
spectral weight only in the range of the non-interacting
bandwidth, ω ∈ [−1.2, 0.8]. Its shape mimics that ob-
tained for V = 0 (insets of Figs. 7(c,d)), reflecting the
bare c-electron band structure, except for some sharp
structures at intermediate and low frequencies, discussed
below.
(ii) Center of c band: For Ac, the highest-frequency

sharp feature furthest from ω = 0 lies at ω ≃ −0.2, the
middle of the bare c-electron band. This feature is promi-
nently developed deep in the RKKY phase at V = 0.4
(Fig. 7(g,h)) but almost invisible deep in the Kondo phase
at V = 0.6 (Fig. 7(c,d)). It is due to scattering of c
electrons by antiferromagnetic fluctuations and reflects a
tendency towards antiferromagnetic order in the RKKY
phase. Though our CDMFT setup excludes such order,
it does find strong antiferromagnetic correlations in the
RKKY phase (see ⟨Sf1 ·Sf2⟩ in Fig. 2(b)), causing en-
hanced scattering of c electrons at the band center.
(iii) Kondo peaks, hybridization gaps: Deep in the

Kondo phase at V = 0.6 (red lines), Af shows a sharp
Kondo peak near ω ≃ 0, while Ac has a distinct dip,
known as hybridization gap (h-gap, see also Sec.V), at
a small, negative value of ω. Both these features are
indicative of strong c-f hybridization and coherent QPs.
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FIG. 7. Cluster spectral functions at T = 0, for V = 0.6 (top row, deep in the Kondo phase) and for V = 0.4 (bottom row, deep
in the RKKY phase). Panels (a,b,e,f) and (c,d,g,h) show the f and c-electron spectral functions, respectively. The insets in (c,d)
show the c-electron spectral functions at V = 0; the insets in all other panels show a zoom into the low-frequency region.

By contrast, deep in the RKKY phase at V = 0.4 (blue
lines), the Kondo peak in Af has disappeared, giving
rise to a pseudogap (see the insets of Fig. 7(e,f)), and
the h-gap in Ac has become very weak. Nevertheless, we
will see in Sec. VIB that even deep in the RKKY phase,
c-f hybridization is present even at low energies and the
f -electron QP weight is finite in this phase. This leads
to a sharp peak inside the h-gaps of Ac (see the insets
of Fig. 7(g,h)). As will be discussed in more detail in
Sec. VII, this sharp feature reflects a narrow QP band
with a FS close to Π = (π, π, π).

(iv) Momentum dependence: The spectral functions
and self-energies show several qualitative and/or quanti-
tative differences between the + and − channels (different
Kondo peak heights, different h-gap shapes, etc.) Such
channel asymmetries reflect the fact that our system is
electron-doped—the Fermi surface lies closer to the Γ
point than the Π point, causing a stronger c-f hybridiza-
tion (encoded in Σc±) for bonding than anti-bonding
orbitals. This asymmetry leads to different behavior for
momenta near Γ = (0, 0, 0) and Π = (π, π, π). However,
these asymmetries in the spectral functions are not nec-
essarily indicative of non-local correlations. Especially
deep in the Kondo phase, the channel asymmetries are
mostly due to the single-particle dispersion and are not
non-local self-energy effects. We discuss this in more
detail in Sec. VIB.

B. Cluster spectral functions and self-energies at
T = 0: details

Next, we discuss the main spectral features relevant
to KB physics, referring to Fig. 8. It shows both
the spectral functions Axα(ω) and retarded self-energies

Σxα(ω
+) using a symmetric logarithmic frequency scale

with |ω| > 10−10. Figures 8(a–d) show this evolution for
Af and Ac while Figs. 8(e–h) show the corresponding
self-energies.
(i) Self-energy poles for Σf : The most important fea-

ture is the pole in Σf (denoted as fs-pole), which is present
in the RKKY phase but not in the Kondo phase, see
Fig. 8(e,f). This fs-pole in the RKKY phase is indicative
of Mott physics [127, 128] present in the f band but not
in the c band (see also the discussion in Sec. VB). This
brings us to one of our main conclusions: the RKKY
phase is an OSMP and the KB quantum phase transition
is an OSMT. Moreover, the fs-pole continuously disap-
pears when approaching the KB–QCP from the RKKY
phase. This further shows that the KB quantum phase
transition is a continuous OSMT (see also Fig. 5 and
its discussion). We also note that we found no coexis-
tence region, which further underpins our conclusion of a
continuous QPT.
Our conclusion that the KB is an OSMT matches the

conclusion of previous CDMFT plus ED studies of the
PAM using the same parameters [127, 128]. Nevertheless,
the considerably improved accuracy of our NRG impurity
solver compared to the ED impurity solver used there
yields new conceptional insights and reveals new emergent
physics.
The fs-pole in the RKKY phase is positioned at a

negative frequency for Σf+ (at ω ≃ −TFL) and at a
positive frequency for Σf− (at ω ≃ TFL). Therefore, its
position depends on momentum, i.e. it is dispersive. A
dispersive fs-pole is a generic feature of Mott phases in
finite dimensions d <∞ [175, 177] (see also Sec. VB). By
contrast in the d→ ∞ limit (or equivalently in the single-
site DMFT approximation) where the self-energy and thus
also the fs-pole is momentum independent, the OSMP is
not stable against interorbital hopping [181] (i.e. against
finite c-f hybridization V in the present context). The
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Kondo-like peak

FIG. 8. Evolution of cluster spectral functions Axα(ω) and retarded self-energies Σxα(ω
+) at T = 0 as V is tuned across the

QCP. Colored curves correspond to V values marked by ticks on the color bar. A symmetric log scale with 10−10 < |ω| < 1.25 is
used. On such a scale, the plateaus seen for all curves for very low frequencies, |ω| < 10−8, demonstrate that no new features
arise in that range. Triangles and circles mark the crossover scales ±TNFL and ±TFL, respectively, with filled (open) symbols
identifying curves in the Kondo (RKKY) phase. The insets in (a-d) show the spectral functions on a linear frequency scale for
|ω| < 2·10−4.

momentum resolution provided by 2-site CDMFT, though
coarse, is therefore a crucial ingredient to stabilize the
OSMP. We will show in Sec. VII that after reperiodization
of the CDMFT self-energy, the dispersive nature of the fs-
pole leads to a reperiodized self-energy with a continuous
k-dependence of the form of Eq. (22). Based on the results
of Ref. 147, the fs-pole can be associated with emergent
spinon excitations; its emergence therefore suggests a
fractionalization of the f -electron. Since the position of
the sf-pole is momentum dependent, the emergent spinon
is dispersive.

Even though the dispersive fs-pole is the most pro-
nounced momentum-dependent feature of Σf , more sub-
tle momentum-dependent features are responsible for the
NFL physics close to the QCP: In the Kondo phase,
shoulder-like structures show up in Σf below TFL < |ω| <
10−4 [see insets of Figures 8(e,f)]. These are more pro-
nounced for Σf− than for Σf+, leading to momentum-
dependent scattering rates at the corresponding energy
scales.

The features of Af [Figs. 8(a,b)], Ac [Figs. 8(c,d)] and
Σc [Figs. 8(g,h)] can largely be understood in terms of a
continuous OSMT. In the following, we enumerate and
describe the main spectral and self-energy features and
discuss their connection to the presence or absence of fs-
poles in Σf . We follow the evolution, with decreasing V ,
from the Kondo phase through the QCP into the RKKY
phase, noting the following salient features:

(ii) From Kondo peak to pseudogap for Af±: In the
Kondo phase, the Kondo peak of Af+ lies slightly below
−TFL, that of Af− slightly below TFL. As V decreases to-

wards Vc, the Kondo peaks of both Af+ and Af− shift to-
wards zero and become higher and narrower [Figs. 8(a,b)],
leaving behind shoulder-like structures at ±TNFL (marked
by triangles). The Kondo peak of Af+ is higher than that
of Af−, reflecting the fact that in the Kondo phase, the
FS is positioned closer to the Γ point than to the Π point.
When V crosses Vc, the Kondo peak abruptly changes
into a pseudogap, flanked by the two shoulders. The
emergence of the pseudogap in Af is caused by the ap-
pearance of fs-poles in Σf in the RKKY phase. A further
decrease of V deepens the pseudogap because the poles
in Σf become stronger. The pseudogap never becomes
a true gap (except for V = 0) because the poles of Σf

are positioned away from ω = 0. Thus, the QP weight
of the f electrons is finite even in the RKKY phase (see
also Sec. VIC). This is one of the crucial differences to
the findings of Refs. 127 and 128; there, a charge gap in
Af was found due to the poor energy resolution of the
ED impurity solver used in these studies.

(iii) Pseudogap for Ac+, Kondo-like peak for Ac−: Once
V drops below Vc, Ac+ rapidly develops a pronounced
pseudogap around ω = 0, which weakens (becomes less
pronounced) when V is decreased further. This pseudogap
emerges because ϵ∗f+ (see Eq. (23)) continuously changes
sign at the KB–QCP, from ϵ∗f+ < 0 in the Kondo phase to

ϵ∗f+ > 0 in the RKKY phase (see Fig. 9(b) below). Due

to the low energy form of Σc+ shown in Eq. (23), this
leads to a h-pole in Σc+ which is close to ω = 0 in the
vicinity of the KB–QCP and whose position changes sign
across the QCP, in the same way as ϵ∗f+. This h-pole is

clearly visible in Fig. 8(g), where we show −ImΣc+. We
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discuss the sign change of ϵ∗f+ in more detail in Sec. VIC,
where we also show that this sign change is intricately
connected to the emergence of the fs-pole in Σf+. The
sign change of ϵ∗f+ and therefore also the pseudogap in
Ac+ is therefore an integral part of the OSMT. We further
show in Sec. VIII that the sign change of ϵ∗f+ is ultimately
tied to a reconstruction of the FS.

In striking contrast, Ac− develops a Kondo-like peak
around ω = 0, whose peak height increases rapidly as V
drops below Vc, and then decreases when V is decreased
further. The emergence of such a peak for delocalized
electrons is rather unexpected, which is why we call it
“Kondo-like” (in contrast to “Kondo peak” for localized
electrons). This sharp peak suggests that close to the
KB–QCP, the c-electrons become more localized, i.e. that
their Fermi velocity is strongly renormalized downward
due to the momentum dependence of Σc.

(iv) Hybridization poles for ImΣc: The h-gap at nega-
tive frequencies for Ac is caused by a corresponding peak
in ImΣc [Figs. 8(g,h)]. It reflects a c self-energy pole, to be
called left hybridization pole (left h-pole). The frequency
location of the h-gap and left h-pole is comparable in
magnitude to the NFL scale. When V is reduced towards
and past Vc into the RKKY phase, the left h-pole in ImΣc

weakens and almost disappears, causing the same for the
h-gap in Ac. At the same time, for the bonding channel
a peak in −ImΣc+ at positive frequencies emerges in the
RKKY phase. It corresponds to an additional pole of
Σc+, to be called right h-pole, located at ≃ TFL. It causes
the h-gap in Ac+ around ω = 0 close to the KB–QCP.
By contrast, for the anti-bonding channel ImΣc− does
not have a second pole—its very weak peak on the right
in fact is the tail of its left h-pole (This becomes more
clear from the temperature dependence of Σc and will be
explained in more detail in Sec. VID.)

(v) Low-energy Fermi liquid: For all considered val-
ues of V , the ω = 0 quantities ImΣf (i0

+) and ImΣc(i0
+)

all vanish. This implies FL behavior at the lowest en-
ergy scales for all V ̸= Vc (consistent with the results
of Sec. IVA). Moreover, Af (0) and Ac(0) never vanish,
even in the RKKY phase. Thus the pseudogap in Af

never becomes a true gap, implying that f electrons keep
contributing to the QPs constituting the low-energy FL.

C. Quasiparticle properties

In this subsection, we substantiate our claims made in
the previous subsection regarding QP weights and ϵ∗f . In
particular, we seek to show that the low-frequency form
Eq. (23) applies to Σc on both sides of the KB–QCP. Note
that Eq. (23) is meaningful only if the low-energy physics
shows FL behavior; our study of finite-size spectra in
Sec. IVA confirmed that this is the case.

We define cluster QP weights and effective level posi-
tions for both f and c electrons by replacing k → α in

FIG. 9. (a) QP weights and (b) effective level positions of
the self-consistent effective 2IAM, computed directly from the
NRG finite size spectra at T = 0. Blue and purple dashed lines
in panel (b) mark ±TFL and ±TFL∗ for reference, respectively.

Eqs. (12a):

ϵ∗xα = Zxα

[
ϵxα +ReΣxα(0)

]
, (24a)

Zxα =
[
1− ReΣ′

xα(0)
]−1

, (x = f, c) (24b)

with ϵfα = ϵf −µ and ϵcα = −αt−µ. The f -electron QP
weight is non-zero as long as Σ′

fα(0) is not infinite, i.e. as
long as Σfα has no pole at z = 0. In the Kondo phase,
there are no low-frequency poles in Σfα at all, while the
poles appearing in the RKKY phase are shifted away from
z = 0.
The QP weights Zxα and effective level positions ϵxα

can be extracted directly from NRG finite size spec-
tra [183, 184], which avoids fitting frequency dependent
data. Figure 9 shows them all. We see that both Zf

and Zc vanish at the KB–QCP, as expected. However,
Zf is finite not only in the Kondo phase but also in the
RKKY phase. This further substantiates our claim that

sf-pole

sf-pole

FIG. 10. Evolution of V 2ReΣ−1
c±(ω+) at T = 0 as V is tuned

in a narrow range across the QCP. As V is lowered, non-
monotonic behavior emerges, whose double-wiggle structure
(local maximum followed by local minimum) reflects the fs-
poles of −ReΣf± (c.f. Eq. (25a)). Circles, triangles and tick
marks on the color bar have the same meaning as in Fig. 8.
Black dashed lines indicate linear behavior around ω = 0.
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FIG. 11. Evolution of cluster spectral functions and retarded cluster self-energies Σxα(ω
+) at V = 0.46 > Vc (Kondo phase at

T = 0) as temperature is increased. Colored curves correspond to T values marked by ticks on the color bar. A symmetric log
scale with 10−10 < |ω| < 1.25 is used. Vertical blue and orange lines mark ±TFL and ±TNFL, respectively.

the f electrons contribute to the low energy QP even for
V < Vc.
The key difference between the RKKY and Kondo

phases therefore is not zero versus non-zero Zf — instead,
the key difference turns out to be the sign of ϵ∗f+. Note
that our discussion below is applicable for the electron-
doped case considered in this work; a corresponding dis-
cussion of the hole-doped case would follow along the
same lines, but with the signs of ϵ∗fα flipped and the role
of bonding and anti-bonding cluster orbitals interchanged.
Both ϵ∗f+ and ϵ∗f− are negative in the Kondo phase, see

Fig. 9(b). The same is true for U = 0, and in this sense
the non-interacting limit is adiabatically connected to the
Kondo phase. However, while ϵ∗f− remains negative in
the RKKY phase, ϵ∗f+ changes sign at the KB–QCP and

becomes positive. Now, Eqs. (6e) and (24a) imply

V 2Σ−1
cα (z) = z − ϵf − Σfα(z) , (25a)

sgn ϵ∗fα = −sgnReΣ−1
cα (0) . (25b)

Thus, the sign change in ϵ∗f+ is also visible in Fig. 10(a)

as a sign change of V 2ReΣ−1
c+(0). In Sec. VIII, where we

perform a careful analysis of the Luttinger sum rule for
the PAM, we will show explicitly that this sign change of
ϵ∗f+ leads to a jump of the FS volume corresponding to
exactly one electron per site.

Figure 10(a) also reveals how the sign change of ϵ∗f+ is

connected to the fs-pole in Σf+(ω
+). Close to the KB–

QCP, in both the Kondo and RKKY phases, when ω is
increased (starting from large negative), V 2ReΣ−1

c+(ω
+)

increases through zero around ω ≃ −TNFL. This sign
change results in the left h-pole in Σc+, visible in Fig. 8(g).
(Deeper in the RKKY phase, V 2ReΣ−1

c+(ω+) does not ac-

tually change sign at ω ≃ −TNFL but nevertheless becomes
almost zero, again causing the left h-pole of Σc+.) This
feature is adiabatically connected to the U → 0 case,
where it is also present. It is an intermediate energy fea-
ture which characterizes the onset of NFL behavior. (We
will show in Sec. VID that the left h-pole in Σc forms
around T ≃ TNFL, irrespective of V > Vc or V < Vc.)

In the Kondo phase, the sign of V 2ReΣ−1
c+(ω+) changes

only once with increasing ω, remaining positive for ω >
−TNFL and in particular at ω = 0, so that ϵ∗f+ is negative.
By contrast, in the RKKY phase the initial increase with
ω in V 2ReΣ−1

c+(ω
+) for ω large negative is counteracted

by the fs-pole in Σf+(ω
+), which induces a double-wiggle

structure in V 2ReΣ−1
c+(ω

+) near ω ≃ −TFL. As a result,

V 2ReΣ−1
c+(i0+) is negative and ϵ∗f+ positive in the RKKY

phase. The KB-QCP lies in between, at ϵ∗f+ = 0.
To summarize: In the Kondo phase, the sign change of

V 2ReΣ−1
c (ω+) around ω ≃ −TNFL leads to the left h-pole

and to V 2ReΣ−1
c (0) > 0, implying ϵ∗f+ < 0. In the RKKY

phase, the formation of the fs-pole in Σf+(ω
+) at energy

scales between −TNFL and −TFL results in V 2ReΣ−1
c+(0) <

0 and therefore ϵ∗f+ > 0.

D. Temperature dependence close to Vc

We next discuss the temperature dependence of cluster
spectral functions and self-energies close to the QCP at
Vc = 0.4575. We first discuss the case V = 0.46 > Vc
(Fig. 11), then V = 0.455 < Vc (Fig. 12), which at T = 0
yield the Kondo and RKKY phases, respectively. For
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FIG. 12. Same as Fig. 11, but for V = 0.455 < Vc (RKKY phase at T = 0).

each we proceed from high to low temperatures.

V = 0.46, T ≳ TNFL: When the temperature is lowered
in the LM regime from T = 10−3 towards TNFL, the
onset of c-f hybridization leads to the emergence of a
hybridization gap in Ac(ω) (Fig. 11(c,d)) and a left h-pole
in −ImΣc(ω

+) (Fig. 11(g,h)), all at ω ≃ −10−4 ≃ −TNFL.
This triggers the onset of screening, signified by increased
spectral weight in Af around ω = 0 (Fig. 11(a,b)) and a
decrease of −ImΣf at ω = 0 (Fig. 11(e,f)). However, at
TNFL, no coherent QP have formed yet: both −ImΣf and
−ImΣc have significant spectral weight around ω ≃ 0,
implying strong scattering for electrons near the chemical
potential.

V = 0.46, TFL ≲ T ≲ TNFL: When the temperature is
lowered further towards TFL, screening becomes stronger:
both −ImΣf and −ImΣc at ω ≃ 0 decrease, albeit slowly,
as ∼ ln(T ). (In Figs. 11(e–h), T values equally spaced on
logarithmic scale yield −ImΣ(i0+) values equally spaced
on a linear scale.) At the same time, coherent QPs begin
to form: a sharp Kondo peak gradually forms in Af , and
narrow structures Ac emerge.

V = 0.46, T ≲ TFL: Below TFL, coherent QP have
formed (Σf (i0

+) and Σc(i0
+) approach zero), and the

T -dependence of the spectral functions becomes weak.

We next consider the case V < Vc.

V = 0.455, T ≳ TNFL: In the LM regime, the behavior
for V < Vc is similar to that for V > Vc: as T is lowered
from 10−3 towards TNFL, a hybridization gap emerges
in Ac(ω

+) (Fig. 12(c,d)) , and a left h-pole in −ImΣc

(Fig. 12(g,h)), all at ω ≃ −10−4. Correspondingly, Af

increases for frequencies near ω = 0, the temperature
dependence at T > TNFL is thus similar to V > Vc, as
expected.

V = 0.455, TFL ≲ T ≲ TNFL: By contrast, below TNFL

the temperature dependence is quite different from V >

Vc. When T is lowered within the NFL regime from TNFL

towards TFL, ImΣf develops fs-poles (Fig. 12(e,f)). At
the same time, −ImΣc+ develops a right h-pole at a small
positive frequency, ω ≳ TFL (Fig. 12(g)), causing a strong
increase of −ImΣc+(0). The formation of the right h-pole
is associated with the formation of the fs-poles in Σf ,
as discussed in Sec. VIC. On the other hand, −ImΣc−
behaves quite similar to its counterpart at V = 0.46 in
the NFL region, decreasing logarithmically around ω = 0.
The appearance of fs-poles in the f -electron self-energies is
accompanied by the formation of (somewhat asymmetric)
pseudogaps in Af around ω = 0 (Fig. 12(a,b)). Moreover,
the right h-pole in −ImΣc+ in the NFL region causes
a pseudogap in Ac+ in the same temperature window
(Fig. 12(c)). Ac−, on the other hand, develops a sharp
peak around ω = 0 in the NFL region, similarly to the
behavior of Af+ for V > Vc (Fig. 12(d)).

V = 0.455, T ≲ TFL: When T is lowered below TFL,
the imaginary parts of all self-energies quickly tend to
zero at ω = 0, as expected in a FL. (Thus, the overall
behavior of −ImΣc+(i0

+) with decreasing temperature is
non-monotonic, first increasing in the NFL regime, then
decreasing down to zero in the FL regime.)

No marginal FL phenomenology: In the NFL regime
neither the f nor the c electron self-energies show
marginal FL phenomenology. The latter would require
−ImΣ(ω+, T ) ∼ max(|ω|, T ) [66]. Instead, the imaginary
parts of the self-energies have a much weaker, namely loga-
rithmic frequency and temperature dependence. Nonethe-
less, the spectral parts of various susceptibilities all show
the same phenomenological frequency dependence [66] in
the NFL region, namely a plateau for T ≲ |ω| ≲ TNFL and
a ∼ ω dependence for ω < T [66]. This frequency depen-
dence has already been shown above in Fig. 4; we discuss
the temperature dependence in a companion paper [148].
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There, we also emphasize that the susceptibilities are not
governed by the self-energy alone, as would be the case, in
diagrammatic parlance, when evaluating only the bubble
contribution—instead, vertex corrections play a crucial
role. This especially also concerns the conductivity, which
shows a ∼ 1/T dependence in the NFL region despite the
∼ ln(T ) dependence of ImΣ(i0+) [148].

VII. SINGLE PARTICLE PROPERTIES –
LATTICE

Having focused on the single-particle properties of the
effective 2IAM in the previous section, we now discuss
how these translate to the lattice model. Our analysis
builds on that of De Leo, Civelli and Kotliar [127, 128],
but with our better energy resolution, we uncover much
additional detail and new emergent physics at low energies.
In particular, we obtain a detailed understanding of the
Fermi surface reconstruction occurring when traversing
the KB–QCP.

A. Reperiodization

Since the CDMFT artificially breaks translation in-
variance, the c and f electron self-energies have to be
reperiodized before computing lattice spectral functions .
To this end, we reperiodize the cluster cumulant [153, 154]

M(z) =
[
z + µ− Σc(z)

]−1
. (26)

It may be viewed as a c-electron propagator excluding bare
nearest-neighbor hopping, and in an expansion around the
t = 0 limit [185] takes the role of the cluster self-energy.
Its reperiodized version Mk(z) is defined as

Mk(z) =M11(z) +M12(z)
∑

a=x,y,z

1
3 cos(ka) . (27)

Here, M11 and M12 are the local and nearest-neighbor
cluster cumulants, respectively, and the latter is accom-
panied by the cosine factors arising when diagonalizing
a non-interacting hopping Hamiltonian. At the points
Γ = (0, 0, 0) and Π = (π, π, π), the lattice cumulants
reduce to the cluster ones, M+ =M11 +M12 =MΓ and
M− = M11 −M12 = MΠ. This reflects the correspon-
dence, mentioned in Sec. II, of the BZ points Γ, Π and the
bonding, anti-bonding cluster orbitals. The k-dependent
self-energies are then defined via the relations

Mk(z) =
[
z + µ− Σck(z)

]−1
(28a)

Σck(z) = V 2
[
z − ϵ0f + µ− Σfk(z)

]−1
. (28b)

We will see in Sec. VIII that the CDMFT solution to the
PAM must fulfill a generalized version of the Luttinger

sum rule — this sum rule is verifiable via cluster quanti-
ties only, i.e. without reperiodization. The reperiodization
scheme above is however not guaranteed to preserve this
property. We therefore slightly modify the above scheme
by adjusting µ in Eq. (26) and Eq. (28a) during the repe-
riodization only, such that the reperiodized self-energies
fulfill this generalized Luttinger sum rule in the same
way as the corresponding cluster quantities. We describe
our reperiodization procedure and evaluate its validity in
detail in App. A 3.

B. Lattice spectral functions

Figure 13 (top row) shows the evolution with V of the
(T = 0) momentum-dependent spectral function Ak(ω) =
Afk(ω) +Ack(ω) and of the FS. (Corresponding retarded
self-energies ImΣfk(ω

+) and ImΣck(ω
+) are shown in

Fig. 14 below.) To highlight all relevant energy scales
and the changes of Ak(ω) at low frequencies close to the
QCP, we use a logarithmic frequency grid for |ω| > 10−9

and a linear grid for |ω| < 10−9 (grey shaded region) to
cross ω = 0.

Figure 13 (bottom row) shows three different surfaces,
defined in Sec. VA: the free Fermi surface V = 0 (FS0,
green), where ϵck = 0; the actual Fermi surface (FS, red),
where ReG−1

xk (i0
+) = 0 for both x = f, c (numerically,

we use ReG−1
ck (i0+) = 0); and the Luttinger surface (LS,

blue), where |Σfk(0)| = ∞, Gfk(0) = 0 and Σck(0) = 0
(numerically, we use ReΣck(i0

+) = 0). To summarize:

FS0: ϵck = 0 , (29a)

FS: ReG−1
xk (i0

+) =0 ⇔





detG−1
k (i0+)

ϵ∗ck
ϵ∗fk − (V ∗

k )2

ϵck



 = 0 , (29b)

LS: |Σfk(0)| = ∞ ⇔ Σck(i0
+) = 0 . (29c)

Next, we discuss some salient features of Fig. 13.
Band structures: In the Kondo phase, Ak(ω) has a

two-band structure [186] (marked 1○ and 2○ in Fig. 13)
with a well-defined QP peak in band 1○, as expected
in this phase. The dispersion around ω = 0 is clearly
shifted away from the V = 0 dispersion (indicated by a
dashed green line in Fig. 13). As V is lowered towards
the QCP at Vc, the upper band develops a broad region
of incoherent spectral weight in the NFL energy window
TFL < |ω| < TNFL.

Interestingly, in the RKKY phase, the spectral function
shows a three-band structure (marked 1○, 2○ and 3○ in
Fig. 13): The top and bottom bands ( 1○ and 2○) do not
cross ω = 0. In addition, there is a third, narrow middle
band ( 3○) of width ∼ TFL crossing ω = 0 near Π. The
dispersion around ω = 0 of band 3○ almost matches the
V = 0 dispersion. Band 3○ is separated from the other
two bands by a region of incoherent spectral weight in the
NFL window TFL < |ω| < TNFL. The additional bandgap
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FIG. 13. Top row: Momentum resolved total spectral function Ak(ω) = Ack(ω) + Afk(ω) at T = 0, for various V crossing
the QCP at Vc = 0.4575(25), plotted from X = (π, π, 0) over Γ = (0, 0, 0) to Π = (π, π, π). Ak(ω) is shown on a logarithmic
frequency scale for |ω| > 10−9 and on a linear scale for |ω| < 10−9 (grey shaded region). The green dashed line marks the
c-electron dispersion at V = 0. On the Kondo side (V > Vc), Ak(ω) shows a two-band structure, marked 1○ and 2○, as expected
from adiabatic continuation from the U = 0, with the upper band intersecting ω = 0 close to Γ. On the RKKY side (V < Vc),
Ak(ω) shows a three-band structure, marked 1○, 2○ and 3○, with the narrow middle band intersecting ω = 0 close to Π. Middle
row: Corresponding FS (red) where ϵ∗ck = 0, FS at V = 0 (green, FS0) where ϵck = 0, and LS where Σfk(0) = ∞ (blue), in an
octant of the first Brillouin zone. For V > Vc, the FS is centered around Γ. Crossing the QCP towards V < Vc, the FS center
point jumps to Π and a LS emerges. Bottom row: Brillouin zone cuts showing the FS (red lines), FS0 (green lines) and LS (blue
lines) at constant kz = 0 (solid) or kz = π (dashed) versus kx and ky.

in the RKKY phase comes from a dispersive fs-pole in
Σf (see Figs. 8 and 14 and their discussions), associated
with orbital selective Mott physics. Ref. 147 suggests that
the fs-pole may be interpreted as an emergent coherent
spinon excitation [147]. This suggests that the f -electron
is fractionalized and the RKKY phase is a fractionalized
FL [105, 106]. We will clarify this view in future work. As
discussed in Sec. VB, for non-single-site DMFT (as here,
where we use 2-site CDMFT), it is natural for a Mott
insulator (the f band in the present case) to hybridize
with a metal (the c band) and contribute non-zero weight
to the low-energy QP, resulting in an OSMP. Because the
f band, which is in a (strongly correlated) Mott phase,
contributes non-zero QP weight, the QP dispersion is
strongly renormalized, leading to the narrow middle band.
Its narrow width (∼ TFL) for V < Vc indicates a large
effective mass m∗, as observed experimentally e.g. in
Refs. 32 and 187 and discussed in detail in Sec. IX below.
Note that this strong-correlation effect occurs even though
the actual FS lies very close to the free c-electron Fermi
surface FS0, for reasons discussed below.

Fermi surface reconstruction: In the Kondo phase, the
FS (red) is electron-like and centered around the Γ =
(0, 0, 0)-point, in contrast to the hole-like free FS0 (green)
of the c electrons, centered at Π = (π, π, π). The FS
depends only very weakly on V because it is constrained
by the Luttinger sum rule: the latter relates the density
nf +nc to the FS volume (see Sec. VIII for details), which

depends only very weakly on V (see Fig. 17). As the QCP
is crossed, the FS undergoes a sudden reconstruction and
becomes centered around Π, positioned close to FS0. This
leads to a jump of the Hall coefficient, as discussed with
Fig. 18. The FS reconstruction is accompanied by the
emergence of a LS (blue), which accounts for the change
in the FS volume (see Sec. VIII). The emergence of a LS
is the hallmark property of a Mott phase and it has been
shown that the LS is stable to small perturbations [178].
This emphasizes again our claim that the RKKY phase
is an OSMP. In the RKKY phase, the FS again depends
only very weakly on V due to the Luttinger sum rule
constraint (the weak V -dependence is again due to a
weak V -dependence of the filling).

C. Lattice self-energies

To get a better understanding how the features of the
spectral functions in Fig. 13 emerge, Fig. 14 shows the
imaginary parts of the momentum-dependent c- and f -
electron self-energies. In the Kondo phase at V > Vc,
−ImΣfk(ω

+) shows only weak momentum dependence.
It is large at high frequencies but vanishes towards ω = 0,
consistent with the presence of coherent QP. Interest-
ingly, its structure is almost independent of V in the
Kondo regime. However, as we have seen in Sec. VI, the
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FIG. 14. Momentum resolved f and c spectral functions and imaginary parts of retarded self-energies, Afk(ω) (top row),
−ImΣfk(ω

+) (second row), Ack(ω) (third row), and −ImΣck(ω
+) (bottom row) at T = 0, corresponding to the spectral functions

shown in Fig. 13. The three left-most panels (V < Vc) of the top row show 5×Afk(ω) to improve the visibility of f -electron
spectral features in the OSMP. Note that in the RKKY phase, the spectral weight of Afk(ω) close to ω = 0 is underestimated
by our reperiodization scheme, as discussed in App. A 3. We have scaled it by a factor of 5 to improve visibility. As discussed in
Sec. VI, there is a non-zero f -electron contribution to the FS throughout the RKKY phase.

f -electron self-energy becomes slightly non-local in the
Kondo regime close to the QCP (though this is not easily
visible in Fig. 14).

Crossing the QCP to the RKKY phase at V < Vc, the
non-dispersive high frequency structure remains essen-
tially the same as in the Kondo phase. However, addi-
tionally a sharp dispersing pole emerges in Σfk at low
frequencies for |ω| < TFL. As discussed in Sec. VB and VI,
this dispersive pole in Σfk in the RKKY phase is a clear
sign of Mott physics present in the f band. Importantly,
the fact that the pole is dispersive (c.f. Eq. (22)) re-
sults from employing cluster DMFT instead of single-site
DMFT. We are therefore not in the d→ ∞ limit where
the OSMP (i.e. the RKKY phase) would be unstable to
finite c-f hybridization V [181].

The c self-energy, shown in the bottom row of Fig. 14,
has most of its spectral weight at ω ≃ −TNFL deep in the
Kondo phase. It is mostly momentum independent and
signals the position of the hybridization gap. As V is
decreased towards Vc, −ImΣck(ω

+) becomes increasingly
momentum dependent, with more spectral weight at Γ
than at Π. Further, at V = 0.46 close to the QCP on the
Kondo side, spectral weight starts to smear out signifi-
cantly over the NFL region and significant weight appears
at positive frequencies. This suggests that f and c begin
to hybridize more strongly at positive frequencies. When
the QCP is crossed to V < Vc, the spectral weight of Σck

is now stronger at ω > 0 than at ω < 0, showing that c

and f now hybridize more strongly at positive frequencies
than in the Kondo regime. However, significant spectral
weight does also remain at ω < 0, reflecting the presence
of a left and right h-pole, as discussed already in the
previous section. This suggests that in the RKKY regime,
the f band is split apart by the pole in Σfk and the c
electrons then hybridize with both of the resulting two f
bands, leading to a three-band structure. Thus, the f elec-
trons still hybridize significantly with the c electrons in
the RKKY phase close to the QCP, explaining intuitively
the strong renormalization of m∗ in the RKKY regime
mentioned earlier and observed in experiments [188]. Fi-
nally, as V is lowered further towards V = 0, the overall
magnitude of −ImΣck(ω

+) decreases rapidly, suggesting
that f and c bands continuously decouple when V → 0.

D. Finite temperature

In Figure 15 we show the temperature dependence of
Ak(ω) both at V = 0.46 > Vc and V = 0.455 < Vc. For
T < TFL, the spectral functions are mostly independent
of temperature as expected. As T crosses TFL into the
NFL region, the incoherent features at TFL < |ω| < TNFL

are thermally broadened and the sharp QP features at
ω = 0 are smeared out, indicating a thermal destruction
of the QP. Deep in the NFL region at T ≃ 10−5, spectral
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FIG. 15. Temperature dependence of Ak(ω) at V = 0.46 > Vc = 0.4575 (rows 1 and 2) and V = 0.455 < Vc (rows 3 and 4). The
layout of rows 1 and 3 mirrors that of the top row of Fig. 13. Rows 2 and 4 show cuts at ω = 0 and kz = 0. These illustrate how
the sharp FS at T = 0, large for V > Vc and small for V < Vc, dissolves as T increases into the NFL regime and finally evolves
to a (temperature-broadened) small FS in the LM regime at high T .

weight around ω = 0 is completely incoherent and no
FS with sharp QP excitations can be made out. At
T = 10−2 > TNFL in the LM region, the features of Ak(ω)
become sharp again around ω = 0 and a single band forms
which coincides with the V = 0 c-electron dispersion. In
this temperature regime, the f electrons can be viewed
as free local moments decoupled from the free c electrons.
The interaction between c electrons and f moments then
leads to scattering, slightly smearing out the features in
the spectral function while leaving the qualitative picture
of the LM region unaltered.

VIII. GENERALIZED LUTTINGER SUM RULE

In this section, we discuss the FS reconstruction of the
previous section from the perspective of the generalized
Luttinger sum rule [8–13, 173, 189, 190]. It states that
if a Fermi surface exists, the density, n, of electrons in
partially-filled bands can be expressed as n = 2vFS + 2IL,
where vFS is the FS volume and IL is an integral known
as Luttinger integral. In case of a FL, the generalized

Luttinger sum rule as stated above can be derived from
a simple, exact decomposition of the Green’s function
based on Dyson’s equation (we review this decomposition
below). The sum rule becomes useful when it is possible
to formulate constraints on IL.
For instance, if the interacting and non-interacting

ground states are adiabatically connected [8, 191], pertur-
bative arguments can be used to show that IL = 0, lead-
ing to the celebrated Luttinger sum rule, n = 2vFS (also
called Luttinger’s theorem). Subsequent work [189, 190]
has shown that IL = 0 is a consequence of U(1) charge
conservation in case Σ is Φ-derivable, i.e. if Σ = δΦ/δG,
where Φ is the Luttinger–Ward (LW) functional.

Explicitly, consider a multi-band model with a U(1)
total charge symmetry (we assume every band has the
same gauge charge). The Green’s function Gk(z) is matrix
valued, with entries Gαβk(z) where α and β label the
bands. If the matrix-valued self-energy is Φ-derivable, i.e.
Σk(z) = δΦ/δGk(z), then the Luttinger integral,

IL =
−1

π
Im

∫

BZ

dk

VBZ

∫ 0

−∞
dωTr [Gk(ω

+) ∂ωΣk(ω
+)] (30)

equals zero, IL = 0. Note that IL = 0 only holds in the
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T → 0 limit.

This extends the applicability of Luttinger’s theorem
beyond the perturbative regime (see also Ref. [9] for a
different approach), but requires the existence of the LW
functional Φ[G], at least in the vicinity of the physical
Green’s function G (note that Φ can be constructed non-
perturbatively [192]). However, it has been established
that in general, the LW functional is multivalued [193–195]
and does not exist for certain physically relevant Green’s
functions [13, 196], which can lead to IL ̸= 0 [13, 173, 196].

A very instructive analysis of a situation where IL = 0
breaks down is provided in Refs. 11 and 12 in terms of
a fermionic two-impurity model, where the role of the
Luttinger sum rule is taken by the Friedel sum rule [186].
This model exhibits a QPT from a Kondo-type to an
RKKY-type phase, with the local density remaining con-
stant while the free QP density changes abruptly. This
violates the Friedel sum rule, and the violation was traced
to a Luttinger integral abruptly becoming nonzero.

In this section, we perform a similar analysis for the
KB–QPT of the PAM. We find that the Luttinger inte-
gral is numerically zero in both the RKKY and Kondo
phases; the FS reconstruction is due to the appearance
of a LS in the RKKY phase and not due to a failure
of Luttinger’s theorem as formulated in Ref. 189. As a
warm-up, we first consider a single partially-filled band
of conduction electrons and briefly recall the origin of
the generalized Luttinger sum rule. Then we focus on
the PAM and derive a generalized Luttinger sum rule for
nc + nf (there are no useful separate sum rules for only
nc or only nf , as these are not conserved quantities). It
involves not only the FS, comprising all k points in the
Brillouin zone at which Gfk(i0

+) and Gck(i0
+) have poles,

but also the Luttinger surface (LS), at which Σfk(i0
+)

diverges [10]. We then express our results purely through
cluster quantities that are directly available from cellular
DMFT calculations without requiring reperiodization or
interpolation. Thereafter, we show that the discontinuous
jump of the FS volume when crossing the QCP into the
RKKY phase is accompanied by the emergence of a LS
while IL remains zero throughout. Finally, we discuss
this finding together with the Hall coefficient calculated
from our data and relate it to experimental findings on
YbRh2Si2 and CeCoIn5.

A. Luttinger’s theorem for a single band

We begin by recalling standard arguments leading to
Luttinger’s theorem, following Refs. [8, 12, 171, 189]. We
consider a one-band model at T = 0, with propagator
Gk(z) = [z− ϵk −Σk(z)]

−1. The average electron density
can be expressed as

n =
−2

π
Im

∫

BZ

dk

VBZ

∫
dωGk(ω

+) θ(−ω) , (31)

where the prefactor 2 accounts for spin, VBZ is the volume
of the Brillouin zone, and the step function θ(−ω) is the
zero-temperature limit of the Fermi function.
For the next step, we need the identity

Gk = ∂z lnG
−1
k +Gk ∂zΣk , (32)

expressing the correlator through derivates. Using the
latter in Eq. (31), together with Im lnG−1

k = argG−1
k , we

obtain

n = 2vFS + 2IL , (33)

vFS =

∫

BZ

dk

VBZ

δk
π
, (34)

δk = −Im

∫ 0

−∞
dω ∂ω lnG−1

k (ω+) = −
[
argG−1

k (ω+)
]0
−∞

,

IL =
−1

π
Im

∫

BZ

dk

VBZ

∫ 0

−∞
dωGk(ω

+) ∂ωΣk(ω
+) . (35)

Here, δk is the phase shift of G−1
k (ω+) ω = −∞ and 0;

vFS is a shorthand for its integral over the BZ; and IL is
the Luttinger integral (cf. Eq. (30)). Equation (33) is the
generalized Luttinger sum rule. It is an exact expression
of the electron density n; no assumptions on FL behavior
have been made yet. We will show below that in a FL, the
average phase shift Eq. (34) is given by the FS volume.

As mentioned above, it can be argued on rather general
grounds that IL = 0 in many cases [189]. Conditions
are that (i) the interaction preserves the U(1) charge
symmetry and (ii) Σ is Φ-derivable, i.e. Σ = δΦ/δG,
where Φ is the LW functional. Condition (ii) breaks down
if Σ is sufficiently singular, i.e. if no functional Φ exists
whose variation w.r.t. G produces Σ [13, 196]; in that
case, IL can become non-zero.

Now, if a sharp FS exists, i.e. if the imaginary part of
the retarded self-energy vanishes at ω = 0 (cf. Eq. (16)),

ImΣk(i0
+) = −0+, (36)

then the integral vFS defined in (34) gives the FS vol-
ume. Let us recapitulate why this is the case. Con-
dition (36) holds for regular Fermi liquids, and more
generally in the perturbative regime considered by Lut-
tinger and Ward [8, 191]. Now, Eq. (36) implies
argG−1

k (i0+) = πθ
(
−ReG−1

k (i0+)
)
, while ImΣk(ω

+) < 0

implies argG−1
k (−∞ + i0+) = π. Therefore, the phase

shift is

δk = π − πθ
(
−ReG−1

k (i0+)
)

= πθ
(
−ϵk−ReΣk(i0

+)
)
= πθ(−ϵ∗k) . (37)

By definition, the Fermi surface encloses all k points in
the Brillouin zone having ϵ∗k < 0. For these, δk/π equals
1, for all others it vanishes. Hence, Eq. (34) reduces to

vFS =

∫

BZ

dk

VBZ

θ(−ϵ∗k) , (38)
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which is the FS volume measured in units of VBZ (hence
dimensionless). Moreover, in a normal FL, Σ is not singu-
lar, hence IL = 0 holds, hence the generalized Luttinger
sum rule (33) reduces to the Luttinger sum rule for a FL,
n = 2vFS, relating the density to the FS volume.

B. Generalized Luttinger theorem for the PAM

The PAM describes hybridized f and c electrons, the
former with local interactions, the latter without. Their
correlators, Gf and Gc, are coupled through Eqs. (3).
Importantly, because Φ does not depend on propagators
involving non-interacting orbitals [171], the LW func-
tional for the PAM depends only on Gf , not on Gc or
Gfc. Therefore, Σf = δΦ/δGf is the only Φ-derivable,
proper (i.e. 1-particle irreducible) self-energy in the PAM.
Σc knows about interactions only via its dependence on
Σf and hence is not a proper self-energy; in particular
δΦ/δGc = δΦ/δGfc = 0. Analogous to the previous sub-
section, we first derive general formulas for the phase
shifts. We then make assumptions on the self-energies
compatible with our observations in Sec. VI and VII.
These allow us to write down expressions in terms of the
FS and LS volumes.
Our starting point again is an identity expressing cor-

relators through derivatives. Equation (2) implies

TrGk = Gfk +Gck = TrGk∂zG
−1
k +Gfk ∂zΣfk

= ∂zTr lnG
−1
k +Gfk ∂zΣfk

= ∂z lnG
−1
ck + ∂z lnΣ

−1
ck +Gfk ∂zΣfk. (39)

To derive the last equality, note that the definitions (2)
and (3) for the lattice correlators imply the relation

detG−1
k = (z − ϵck)(z − ϵf − Σfk)− V 2

=
(
z − ϵck − V 2

z − ϵf − Σfk

)
(z − ϵf − Σfk)

= G−1
ck Σ−1

ck /V
2 (40)

which, together with Tr lnG−1
k = ln detG−1

k , yields
Eq. (39). Integrating Gf +Gc as in Eq. (31),

nf+nc =
−2

π
Im

∫

BZ

dk

VBZ

∫ 0

−∞
dω

[
Gfk(ω

+) +Gck(ω
+)
]
,

and using (39), we obtain

nf+nc = 2vFS + 2vLS + 2IL , (41)

with ingredients defined in analogy to Eqs. (34) to (35):

vFS =

∫

BZ

dk

VBZ

δck
π
, vLS =

∫

BZ

dk

VBZ

δΣk
π

, (42)

δck = −Im

∫ 0

−∞
dω ∂ω lnG−1

ck (ω+) = −
[
argG−1

ck (ω+)
]0
−∞

,

δΣk = −Im

∫ 0

−∞
dω ∂ω lnΣ−1

ck (ω+) = +
[
arg Σ+1

ck (ω
+)
]0
−∞

,

IL =
−1

π
Im

∫

BZ

dk

VBZ

∫ 0

−∞
dωGfk(ω

+) ∂ωΣfk(ω
+) . (43)

Here, δck and δΣk describe the phase shifts of G−1
ck and

Σ+1
ck between ω = −∞ and 0; vFS and vLS are shorthands

for their integrals over the BZ; and IL is the Luttinger
integral, now involving only f (no c) functions. Eqs. (41)
to (43) are exact and, in the spirit of Refs. 11 and 12, we
will refer to (41) as generalized Luttinger sum rule for
the PAM, or Luttinger-PAM sum rule, for short. To the
best of our knowledge, the existence of such a relation,
involving the phase shifts not only of G−1

ck but also of Σ+1
ck ,

has so far not been appreciated in the literature. The
form (41) is specific to the PAM. For other multiband
models, the arguments presented here will have to be
suitably adapted.
Now, if a sharp FS exists, i.e. if

ImΣck(i0
+) = −0+ , (44)

then the integrals vFS and vLS defined in Eqs. (42)
give the FS and LS volumes, respectively. The argu-
ment proceeds as in the previous subsection. Equa-
tion (44) implies argG−1

ck (i0
+) = πθ

(
−ReG−1

ck (i0
+)
)
and

arg Σck(i0
+)=−πθ

(
−ReΣck(i0

+)
)
, while ImΣck(ω

+)<0

implies argG−1
ck (−∞+i0+) = π and arg Σck(−∞+i0+) =

−π. Therefore, the phase shifts in Eq. (43) yield:

δck = π − πθ
(
−ReG−1

ck (i0+)
)

= πθ
(
−ϵck−ReΣck(i0

+)
)
= πθ(−ϵ∗ck) , (45a)

δΣk = π − πθ
(
−ReΣck(i0

+)
)
= πθ

(
ReΣck(i0

+)
)
. (45b)

The phase shifts δck and δΣk are either 0 or π. The
jump between these values occurs at the FS, defined by
ReG−1

ck (i0+) = 0 and the LS, defined by ReΣck(i0
+) = 0,

respectively (see Eqs. (29b) and Fig. 16). Thus, Eqs. (42)
reduce to

vFS =

∫

BZ

dk

VBZ

θ(−ϵ∗ck) , vLS =

∫

BZ

dk

VBZ

θ(ReΣck(i0
+)) ,

(46)

giving the FS and LS volumes in units of VBZ. Thus, if a
sharp FS exists, the Luttinger-PAM sum rule (41) relates
the density of c and f electrons to the FS and LS volumes
vFS and vLS and the Luttinger integral IL.
The above arguments are directly applicable to our

CDMFT+NRG results for the PAM, since the condition
(44) is consistent with our results for 0 < V ̸= Vc: indeed,
we find that the imaginary part of Σc vanishes at ω = 0,
both in the effective impurity model (see Sec. VI) and
after reperiodization (see Sec. VII).
Since Φ depends only on Gf , so that δΦ/δGc = 0 and

δΦ/δGfc = 0, IL as defined in Eq. (43) has the same
form as Eq. (30). We therefore expect IL = 0 if the
functional Φ exists in the vicinity of Gf , but we will not
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FIG. 16. Sketch of the qualitative behavior of ϵ∗fk, ϵ
∗
ck and

ϵ∗fk − (V ∗
k )

2/ϵck in (a) the RKKY phase and (b) the Kondo
phase. They are related to the Green’s functions and the c-
electron self-energy via ReG−1

ck (0) = −ϵ∗ck/Zck, ReG−1
fk (0) =

−
[
ϵ∗fk − (V ∗

k )
2/ϵck

]
/Zfk and ReΣck(0) = −(V ∗

k )
2/ϵ∗fk. The

FS (marked by kF) is defined by ϵ∗ck = ϵ∗fk−(V ∗
k )2/ϵck = 0; its

inside is defined by ϵ∗ck < 0. |ϵ∗fk| = ∞ (ReΣck(0) = 0) defines
the LS (marked by kL), with its inside defined by ϵ∗fk < 0.

The function ϵ∗fk − (V ∗
k )

2/ϵck changes sign via a pole both
at the LS (due to ϵ∗fk) and at the free FS (marked by kF0)
due to ϵck = 0. In the Kondo phase, ϵ∗fk remains negative
everywhere in the BZ while in the RKKY phase, ϵ∗fk changes
sign between Γ and Π [c.f. also Fig. 9] via a pole at the LS.
As a result, ϵ∗fk − (V ∗

k )2/ϵck changes sign twice in the Kondo
phase (via a zero at kF and a pole at kF0) and three times in
the RKKY phase (via a pole at kL, a zero at kF and a pole at
kF0). The pole at kL shifts the position of kF in the RKKY
phase compared to its position in the Kondo phase. Note that
the distance between kF and kF0 in (a) is exaggerated in the
sketch above.

concern ourselves here with general considerations about
the existence of the LW functional. We have, however,
checked numerically that IL = 0 holds in our study of the
PAM, for all considered values of V at T = 0, i.e. both
in the Kondo and RKKY regimes. Thus we henceforth
assume that IL = 0 throughout.

While nc and nf evolve smoothly with V , sudden jumps
can occur for vFS and vLS, which must compensate each
other appropriately if IL remains zero. In particular, by
Eq. (41) a jump in vLS induces a jump in vFS, imply-
ing a FS reconstruction, even though IL = 0 remains
unchanged.

C. Luttinger’s theorem in CDMFT: computing vFS,
vLS and IL without reperiodization

The formulas derived in Sec. VIIIA require explicit
knowledge of the k-dependence of Σf to compute vFS,
vLS and IL. As CDMFT artificially breaks translation
invariance, we have to reperiodize Σf if we want to ac-
quire knowledge on its k-dependence. Reperiodization is
however a post-processing step which is to some extent
ad-hoc. The specific choice of reperiodization will affect
the values of the aforementioned quantities. In particular,
the question whether IL = 0 holds can therefore not be
answered conclusively when relying on some reperiodiza-
tion scheme. In the following, we therefore provide and

motivate formulas for vFS, vLS and IL which do not require
reperiodization.
First, we note that the momentum integrals in the

preceding part of this section represent a trace over all
quantum numbers. In case of translational invariance,
it is convenient to use the momentum basis to perform
this trace, as the Green’s functions and self-energies are
diagonal in this basis. In the 2-site CDMFT approach, it
is however more convenient to represent them as 2×2 ma-
trices depending on momenta K in the cluster BZ (cBZ).
This leads to the replacement

∫

BZ

dk

VBZ
→ 1

2
Tr

∫

cBZ

dK

VcBZ
(47)

in the formulas presented in Sec. VIIIB. Here, VcBZ =
VBZ/2 the volume of the cBZ and Tr is the trace of the
K-dependent 2× 2 matrices.

Now, within the CDMFT approximation, Σf and there-
fore also Σc are independent of K,

ΣxK(z) = Σx(z) (x = f, c) . (48)

(This K-independence breaks the translation invariance.)
Moreover, the cluster propagators of Eq. (6), defined as
K-integrated objects, are likewise K-independent:

Gx(z) ≡
∫

cBZ

dK

VcBZ
GxK(z) (x = f, c) . (49)

Using Eqs. (47) to (49), the ingredients (42) to (43) of
the Luttinger-PAM sum rule (41) can now readily be
transcribed to obtain the following expressions:

vFS = Tr

∫

cBZ

dK

VcBZ

δcK
2π

, vLS = Tr

∫

cBZ

dK

VcBZ

δΣ
2π

,

(50)

δcK = −Im

∫ 0

−∞
dω ∂ω lnG−1

cK(ω+)

δΣ = −Im

∫ 0

−∞
dω ∂ω lnΣ−1

c (ω+) = +
[
arg Σ+1

c (ω+)
]0
−∞

,

IL =
−1

2π
Im

∫ 0

−∞
dωTr [Gf (ω

+) ∂ωΣf (ω
+)] . (51)

Here, vFS, vLS are expressed as traces of the cBZ integrals
of the matrix-valued phase shifts δcK, δΣ. For the latter,
which is K-independent δΣ, the integral is trivial. For the
K-dependent δcK, we use

∂z lnG
−1
cK(z) = GcK(z)(1− ∂zΣc(z)) , (52)

such that the K integral yields a local cluster quantity,

δc =

∫

cBZ

dK

VcBZ
δcK=−Im

∫ 0

−∞
dωGc(ω

+)(1−∂ωΣc(ω
+)) .

(53)

Note that in Eq. (53), 1− ∂zΣc(z) ̸= ∂zG
−1
c (z) because

Gc(z) is a K-integrated quantity, so that G−1
c (z) contains
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FIG. 17. FS and LS volumes, vFS (red) and vLS (blue), and
the Luttinger integral IL (pink), together with the particle
numbers nf and nc (black dotted) and their sum (green),
plotted as functions of V at T = 0.

an additional hybridization term ∆c(z), c.f. Eq. (6b).
Thus, Eqs. (50) reduce to

vFS = 1
2πTr δc , vLS = 1

2πTr δΣ . (54)

Equations (54), (53) and (51) achieve our stated goal of
expressing vFS, vLS and IL purely through the local Green’s
functions and self-energies of the effective 2IAM. They
can hence can be computed without using reperiodization.

D. Results

Our CDMFT results for vFS, vLS and IL (obtained with
the formulas from Sec. VIIIC) are shown in Fig. 17, to-
gether with the particle numbers nc and nf . As mentioned
before, we find IL = 0 for all considered values of V . We
note that IL = 0 is an empirical numerical finding and may
not hold if e.g. different fillings are considered [197, 198];
this will be explored in more detail in future work. Fur-
ther, we find that the particle numbers nc and nf evolve
smoothly across the KB–QCP, in contrast to vFS and
vLS which exhibit a jump when crossing the KB–QCP.
The jumps are such that 2vFS + 2vLS = nf + nc evolves
smoothly across the KB–QCP, i.e. the jumps of vFS and
vLS compensate each other.
In the Kondo phase, vLS = 1 and vFS is such that

together, vLS and vFS account for the total particle number.
Note that vLS = 1 means that the LS volume fills the
whole BZ, i.e. there is no LS in the Kondo phase. In the
RKKY phase on the other hand, vLS = 1

2 ≃ 1
2nf while

vFS ≃ 1
2nc. vLS takes a fractional value in the RKKY

phase, which means the LS volume fills a fraction of the
BZ and there is a LS. The presence of a LS can be linked to
an emergent spinon FS [147], suggesting that the RKKY
phase is a fractionalized FL [105, 106]. We will provide a
more detailed analysis of this in future work.
In the Kondo phase, vFS is the same as in the U = 0

limit at the same filling (the same is true for vLS). The FS
in the Kondo phase is therefore as expected in a normal
FL in the PAM. vFS “trivially” (in the sense that one can
infer it from the U = 0 limit) accounts for both the f
and c electrons which is why it is called a “large” FS,

even though the value of vFS is smaller than in the RKKY
phase. In the RKKY phase by contrast, vFS ≃ 1

2nc takes
almost the value expected for V = 0 with U ̸= 0. The
FS seems to account only for the c electrons and hence
is called a “small” FS. Based on the shape and volume
of the FS in the RKKY phase, one may be tempted to
conclude that c and f electrons have decoupled. However,
this is not the case, as elaborated in sections VI and VII
above.

We now elaborate how the jump in vFS and vLS is
connected to the sign change of ϵ∗f+ across the KB–
QCP, which we have discussed in Sec. VIC. To make
this connection, we examine Eq. (54) for vLS (computed
without reperiodization) in more detail, while assuming
ImΣc(0) = −0+ (Eq. (44)), consistent with our results.
Analogously to our discussion of δΣk under the afore-
mentioned assumption (see Eq. (45b)), the corresponding
phase shift of the effective 2IAM (see Eq. (51)) is given
by δΣ = πθ(ReΣc(i0

+)) (note that both δΣ and Σc(i0
+)

are 2× 2 matrices which are in our case diagonal in the ±
basis). We can identify three different cases, which lead
to distinct values of vLS: both eigenvalues of ReΣc(i0

+)
are (i) positive, (ii) negative or (iii) the eigenvalues of
ReΣc(i0

+) have opposite signs, i.e. one is positive, the
other negative. Inserting these into vLS = Tr δΣ/(2π)
(see Eq. (54)), we find (i) vLS = 1, (ii) vLS = 0 or (iii)
vLS = 1

2 . The value of vLS is therefore connected to the
signs of the eigenvalues of ReΣc(i0

+), which in our case
are ReΣc±(i0+). The signs are related to those of ϵ∗f±
via Eq. (25b), namely sgnReΣc±(i0+) = −sgn ϵ∗f±. Thus,
we find (i) vLS = 1 if ϵ∗f± are both negative, (ii) vLS = 0 if

ϵ∗f± are both positive and (iii) vLS = 1
2 if ϵ∗f± come with

opposite signs.

In the Kondo phase, both ϵ∗f± are negative (cf. Fig. 9),
just as in the U → 0 limit for the parameters we have
chosen, which leads to vLS = 1 in the Kondo phase. As
discussed in more detail in Sec. VIC, when the KB–QCP
is crossed from the Kondo to the RKKY phase, ϵ∗f+
changes sign and becomes positive while ϵ∗f− remains

negative, which leads to vLS = 1
2 in the RKKY phase.

Since vLS jumps due to the sign change of ϵ∗f+, vFS exhibits
a corresponding jump.

We note that a jump of vLS and vFS is not at odds with a
continuous QPT. Indeed, ϵ∗f+ changes smoothly across the
KB–QCP. The reason why vLS jumps is because it is not
sensitive to the absolute value of ϵ∗f±, but only to the signs.
Signs are by definition discrete quantities and changes
can only occur via jumps, which is why both vLS and vFS

change via a jump, even though the QPT is continuous.
We emphasize that a prerequisite for this sign sensitivity
is that ImΣc(i0

+) = 0−, i.e. that the T → 0 phase is a
FL. If ImΣc(i0

+) were finite, vLS and vFS could change
continuously. Because finite ImΣc(i0

+) would imply that
the T → 0 phase is not a FL, vLS and vFS then would
not have the interpretations of being volumes in the BZ
bounded by sharply defined Fermi or Luttinger surfaces.

Further, our analysis shows that the FS reconstruction
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FIG. 18. Hall coefficient versus V for different temperatures.

is a priori independent of possible translation symmetry
breaking like antiferromagnetic or charge density wave
order. Translation symmetry breaking increases the size
of the unit cell and thus reduces the size of the BZ. While
this may change the FS volume measured in units of the
smaller BZ, it does not change the average phase shifts
vLS and vFS as they appear in Eqs. (42) and (50). For
instance, the onset of antiferromagnetic order without
jumps in the phase shifts vLS and vFS marks a SDW–QCP
while jumps in the phase shifts vLS and vFS mark a KB–
QCP, regardless of whether it is or is not accompanied
by the onset of e.g. AFM order.
The generalized Luttinger’s theorem also offers a pos-

sible explanation why the QCP in the 2IAM is stabi-
lized by the CDMFT self-consistency condition. Without
self-consistency, the QCP in the 2IAM is only stable if
the scattering phase shifts are constrained by symme-
try [84, 86, 170]. The symmetry constraint then pre-
vents a smooth change of the phase shifts, resulting in
a QCP where the phase shifts jump between allowed
values [84, 86]. However, if such symmetry constraints
are absent, the phase shifts will simple change without a
QCP [86]. In the self-consistent 2IAM, the phase shifts
are constrained, not by symmetry, but by the Luttinger
sum rule, as we have seen in the previous discussions in
this section. We conjecture that this Luttinger sum rule
constraint is the reason why the self-consistent 2IAM does
have a QCP. A more detailed analysis will be presented
in future work.

One of the experimental hallmarks of a FS reconstruc-
tion at a KB–QCP is a sharp crossover of the Hall coef-
ficient, RH ∼ 1/nH, and thus of the Hall carrier density,
nH [5, 25, 31]. This has been observed in experiments on
YbRh2Si2 [25, 36, 199] and CeCoIn5 [31]. A sign change
of RH has also been observed in CeCu6−xAuxwhen in-
creasing x from 0 to 0.1 [200]. To make contact to these
experiments, we show the Hall coefficient calculated from
our data in Fig. 18, as a function of V at different tem-
peratures. It is calculated using reperiodized self-energies
with the formulas shown in App. A 5. At all considered
temperatures, we find two qualitatively distinct values of
RH deep in the Kondo regime (high V ) and deep in the
RKKY regime (low V ). It shows a sign change across
Vc, reflecting a reconstruction from a particle-like FS in
the Kondo regime to a hole-like FS in the RKKY regime.
These are connected by a smooth crossover at high temper-
atures, which becomes sharper as temperature is lowered

and almost step-like at the lowest temperature. This is
qualitatively very similar to the experimental findings on
YbRh2Si2 [25, 36, 199] and CeCoIn5 [31].

The analysis of generalized Luttinger sum rules for
coupled c and f bands presented in this section makes no
claims for generality—it focuses solely on the PAM and
is based on assumptions consistent with our numerical
results for this model. Nevertheless, similar analyses are
likely possible for related models hosting QPTs with FS
reconstruction, and we expect the LS to play a crucial
role, there, too.

IX. SOMMERFELD COEFFICIENT AND
ENTROPY

A further quantity showing interesting behavior at a
heavy-fermion QCP is the lattice Sommerfeld coefficient,

γlatt = Clatt/T = ∂Slatt/∂T . (55)

Here, Clatt and Slatt are the lattice specific heat and
entropy per 2-site cluster (not just the impurity con-
tribution). Slatt can be computed from the f -electron
contribution to the entropy Sf of the effective 2IAM and
a correction term Scorr [114, 201], as follows:

Slatt = Sf + Scorr , (56a)

Sf = − ∂Ωf

∂T

∣∣∣∣
∆f=const.

, (56b)

Ωf =Φ[Gf ]− 2
π Tr

∫

ω

fT (ω)
(
δf− Im [ΣfGf ]

)
, (56c)

Scorr =
2
π Tr

∫

ω

∂fT (ω)

∂T

(
δc + δΣ−δf

)
, (56d)

δf (ω
+) = −Im lnG−1

f (ω+) , (56e)

δΣ(ω
+) = −Im lnΣ−1

c (ω+) , (56f)

δc(ω
+) = −Im

∫

cBZ

dK

VcBZ
lnG−1

cK(ω+) . (56g)

Here, Φ is the Luttinger-Ward functional of the 2IAM,
fT (ω) = 1/ [exp(ω/T ) + 1] is the Fermi-Dirac distribu-
tion, Tr is a trace over the cluster indices and δf , δΣ
and δc are matrix-valued phase shifts. The derivative
in Eq. (56b), which is evaluated while keeping the hy-
bridization function ∆f fixed, is accessible via NRG [202].
The correction Scorr accounts for the fact that ∆f (T )
actually depends on temperature [201]. To compute the
Sommerfeld coefficient γlatt = ∂Slatt/∂T , we numerically
differentiate Slatt(T ).

The Sommerfeld coefficient is a measure of the density
of states. In a FL, it is proportional to the QP mass (m∗)
and QP weight (Z), γ ∼ m∗ ∼ Z−1 [14] and hence is
expected to be independent of temperature. By contrast,
a γlatt ∼ ln(T ) dependence, indicating NFL behavior, has
been observed almost universally for numerous compounds
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FIG. 19. Temperature dependence of (a) the lattice entropy
and (b) the specific heat coefficient per 2-site cluster. Triangles
mark the position of TNFL/TFL.

in strange metallic regimes at finite temperatures above
QCPs [4, 6, 203, 204], e.g. for YbRh2Si2 [24, 27, 188, 205],
CeCu6−xAux [28, 61] and CeCoIn5 [64]. Further, γlatt
has been observed to diverge when approaching the KB–
QCP from either side [27, 187]; this implies a divergent
effective mass m∗ at the QCP. A divergence of m∗ when
approaching the KB–QCP from either side has been ob-
served in many HF materials using different measurement
techniques [27–29, 32]. This is direct evidence for a break-
down of the FL at the QCP [27]

Our results for Slatt(T ) and γlatt(T ) are shown
Figs. 19(a,b). At very high temperatures (T ≫ TNFL),
Slatt decreases from some high-T value and, for V < 0.6,
exhibits a shoulder around 2 ln(2) (the entropy of two
local moments). This shoulder becomes more pronounced
for lower V (and is not visible for V = 0.6). In the same
high-temperature range, γlatt shows a shoulder which is
also more pronounced for lower V (and again not visible
for V = 0.6). Thus, the entropy in this high-temperature
regime has a linear T -dependence, Slatt(T ) ≃ 2 ln(2)+a·T ,
with a slope a which is almost independent of V (since
γlatt = ∂TSlatt is roughly independent of V in the high-T
shoulder region). This behavior can be understood in
terms of thermally fluctuating f moments (leading to the
shoulder of Slatt) and unrenormalized thermally excited
c electrons, leading to the V -independent linear-in-T de-
pendence and hence a V -independent shoulder in γlatt.
Such a temperature dependence is characteristic for the
LM regime, which is also expected to be more pronounced
for lower V .

As T is lowered, the free moments begin to hybridize
with the c electrons. This leads to screening of the mo-
ments, both by forming Kondo singlets and inter-impurity
singlets, thus reducing the entropy. Far away from Vc
(blue, red curves), where TFL ≃ TNFL, the entropy drops
to zero as T → 0 without notable features at interme-
diate temperatures. Deep in RKKY regime (V = 0.3),
this entropy decrease reflects the formation of f -electron
singlets and is very rapid, leading to a pronounced hump

of γlatt around T ≃ TFL ≃ TNFL.

However, close to Vc (green, orange curves), Slatt(T )
flattens considerably in the intermediate range TFL≲T ≲
TNFL, resulting in a second shoulder near ln

√
2. Concur-

rently, γlatt(T ) shows a logarithmic T dependence (black
dashed lines), implying a T lnT behavior for the specific
heat. As mentioned above, this is an almost universal
feature of heavy-fermion compounds with KB–QCPs.

The shoulder at ln
√
2 for the lattice entropy suggests

that at the QCP, where TFL = 0, the zero-temperature
entropy would be non-zero, Slatt(T → 0) = ln

√
2. This

value is also found for the zero-temperature impurity
entropy of the two-channel Kondo model and the two-
impurity Kondo model, where it can be attributed to an
unscreened Majorana zero mode at the QCP [76, 162, 206]
(see also the next section). For the PAM, this means that
2-site CDMFT predicts a non-zero, extensive entropy at
T = 0 at the QCP. This suggests that the KB–QCP in
2-site CDMFT would be highly unstable to symmetry
breaking orders tending to get rid of the non-zero entropy.
It remains to be checked in future work (by studying
larger cluster sizes) whether this extensive entropy is due
to the finite cluster size, i.e. whether the entropy per
lattice site at the KB–QCP scales to zero with increasing
the cluster size, or whether the nonzero T → 0 entropy
per lattice site is robust, independent of cluster size.

When T is decreased to about 1 to 2 orders of magnitude
below TNFL, the lnT dependence of γlatt turns to a T

−η de-
pendence, with η ≃ 4/3, before becoming constant below
TFL. A somewhat similar power-law T -dependence, with
an onset temperature of less than 1 order or magnitude be-
low TNFL, has also been found in YbRh2Si2 [27, 188, 205],
albeit with different exponent of η = 1/3 < 1 [27]. Ref. 27
suggested that for YbRh2Si2, the T

−η dependence is a
property of the NFL. For our PAM however, this cannot
be the case: since at Vc the NFL regime reaches down
T → 0, it cannot support T−η behavior with η > 1,
since its specific heat Clatt = Tγlatt ∼ T 1−η would di-
verge, which is thermodynamically impossible. Further,
since γlatt = ∂TSlatt, the T

−η behavior of γlatt implies
Slatt(T ) ∼ T 1−η/(1 − η) + const in this regime. If the
powerlaw dependence would extend all the way down to
T = 0, η > 1 would imply Slatt(T = 0) = −∞, which is
clearly nonsense. Therefore, we view the T−η power law
of γlatt to be a property of the NFL-FL crossover, rather
than of the NFL regime itself. Since γlatt ∼ lnT in the
NFL region is a much weaker singularity than the T−η

crossover behavior, the latter takes over at a relatively
high temperature compared to TFL.

For T < TFL, γlatt(T ) is constant for all V values shown,
as expected in a FL. It is orders of magnitude larger close
to the QCP on either side (green, orange curves) than
further away from it (blue, red curves), reflecting the
divergence of the QP mass m∗ ∼ γlatt(T = 0) ∼ Z−1 at
the QCP. It is noteworthy that far from the QCP, the
value of γlatt(T = 0) for the RKKY phase is comparable
to that in the Kondo phase. This suggests that in the
RKKY phase the localized spins, though tending to lock
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FIG. 20. (a,b) Spectral part of the spin susceptibility of (a) a 2ICK and (b) a 2CKM close to their QCPs. χ′′
2IKM[Sz

1 − Sz
2 ] and

χ′′
2CKM[Sz] show similar features as χ′′[Xzx] in the PAM close to the KB–QCP (c.f. Fig. 4). (c) Sommerfeld coefficient and (d)

impurity contribution to the entropy of the 2IKM, 2CKM and PAM close to their QCPs. The data for the PAM is taken at
V = 0.46. Most notable, in the NFL region, γ shows a ln(T ) behavior for the 2CKM and the PAM, and Sf ≃ 1

2
· ln(2) for all

three models.

into nearest-neighbor singlets, nevertheless contribute
quite significantly to the density of states. Understanding
this aspect in more detail is left as an interesting task for
future work.

X. RELATION TO OTHER MODELS

The NFL regime in the PAM shares several similarities
with the NFL in the two-impurity Kondo model [84–86,
151, 152] and the two-channel Kondo model [74, 75, 163–
167]: (i) The Sommerfeld coefficient γ shows a region of
ln(T )-dependence [cf. Fig. 19(b)]; (ii) the entropy takes

the value of ln
√
2; and (iii) plateaus in dynamical suscep-

tibilities imply overscreening.
In this section, we compare the features of the effective

2IAM describing the PAM at V = 0.46 close to the QCP to
known features of the two-impurity Kondo model (2IKM)
close to its QCP. We also include data on the two-channel
Kondo model (2CKM) close its QCP [74, 75, 163–167],
since its critical behavior is known to be closely related
to that of the 2IKM [151, 152].

The Hamiltonian describing the 2IKM is given by

H =
∑

i=1,2

[∑

kσ

ϵkc
†
ikσcikσ + JSi · si

]
+KS1 · S2 . (57)

Here, cikσ destroys an electron in channel i = 1, 2 with

energy ϵk and spin σ, si =
1
2

∑
kk′σσ′ c

†
ikσσ̂σσ′cik′σ′ de-

scribes the local spin of channel i at the origin, and Si

describe two impurity spin 1/2 degrees of freedom at
the origin. The impurity spins are coupled antiferromag-
netically to the corresponding conduction electrons with

coupling strengths J > 0. S1 and S2 are further coupled
antiferromagnetically with coupling strength K > 0. The
2IKM can be tuned through a QCP from a Kondo regime
at K < Kc, where Si is screened by its corresponding
bath, to an RKKY regime at K > Kc, where S1 and
S2 form a singlet. At the QCP, TFL vanishes and an
intermediate NFL region emerges, similar to the case of
the PAM discussed in the main text.
The NFL in the 2IKM is closely related to the NFL

found in the 2CKM, described by the Hamiltonian

H =
∑

i=1,2

[∑

kσ

ϵkc
†
ikσcikσ + JiS · si

]
. (58)

Here, there is only one impurity spin, coupled antifer-
romagnetically to two channels, i = 1, 2, with coupling
strengths Ji > 0. The 2CKM has a QCP at J1 = J2,
where the impurity changes from being screened by chan-
nel 1 at J1 > J2 to being screened by channel 2 at J1 < J2.
Close to its QCP, a NFL fixed point is found which ex-
tends to T = 0 at the QCP and shows features similar
to these of the NFL in the 2IKM and in the PAM as
presented in the main part.
In the following, we consider a 2IKM and a 2CKM

tuned close to their respective QCP’s. We compare their
Sommerfeld coefficients, impurity contributions to the
entropy and dynamical correlation functions to the f
electron contribution to the entropy and Sommerfeld co-
efficient of the self-consistent 2IAM describing the PAM
close to its QCP, shown in Fig. 20. For both the 2IKM
and the 2CKM, a box shaped, particle-hole symmet-
ric density of states with width 2 and height 1/2 is
used for both channels. As parameters, J = 0.256 and
K = 7.2 · 10−4 where used for the 2IKM and J1 = 0.29,
J2 = 0.2894 was chosen for the 2CKM. Both models are



33

solved with NRG using Λ = 3 and keeping Nkeep = 2000
SU(2)charge × SU(2)charge × SU(2)spin multiplets at every
NRG iteration.
Fig. 20(a) shows χ′′

2IKM[Sz
1 + Sz

2 ] and χ
′′
2IKM[Sz

1 − Sz
2 ],

together with the NFL and FL scales extracted from the
kinks of χ′′

2IKM[Sz
1 + Sz

2 ] and χ
′′
2IKM[Sz

1 − Sz
2 ] on the ln-ln

scale, respectively, similar as described for the PAM before.
In Fig. 20(b), we show the impurity spin susceptibility of
the considered 2CKM, χ′′

2CKM[Sz], with the corresponding
NFL and FL scales both extracted from χ′′

2CKM[Sz]. The
similarity of χ′′

2IKM[Sz
1 − Sz

2 ] in Fig. 20(a), χ′′
2CKM[Sz] in

Fig. 20(b) and χ′′[Xzx] in Fig. 4 is evident.
The Sommerfeld coefficient γ = dSf/dT , and the impu-

rity contribution to the entropy Sf are shown in Fig. 20(c)
and (d), respectively, for the 2IKM, the 2CKM and the
PAM at V = 0.46. Qualitatively similar behavior is found,
most notably a plateau in Sf with Sf ≃ 1

2 ln(2) for all
three models, and a ln(T ) dependence of γ at intermedi-
ate temperatures for the 2CKM and the PAM (the 2IKM
shows similar behavior, though without a clean ln(T ) de-
pendence). A further elucidation of the nature of the
NFL in the PAM will require an impurity model analysis
as done in Refs. [207, 208]. We leave this for future work.

XI. CONCLUSION AND OUTLOOK

We have presented an extensive 2-site CDMFT plus
NRG study of the PAM, following up on and considerably
extending and refining previous work done with an ED
impurity solver [127, 128]. Leveraging the capabilities
of NRG to resolve exponentially small energy scales on
the real-frequency axis, we confirmed the existence of
the KB–QCP found in Refs. 127 and 128, which can be
understood in terms of a continuous OSMT at T = 0.
Beyond that, we unambiguously showed that the KB–

QCP marks a second-order transition between two FL
phases [Fig. 3] which differ in their FS volumes [Sec. VIII],
leading to a sharp jump of the FS volume [Fig. 17] and
the Hall coefficient [Fig. 18]. We found that, in contrast
to widespread belief [3], the f -electron QP weight is non-
zero both in the Kondo and the RKKY phase [Sec. VI,
in particular Fig. 9] and only becomes zero at the QCP
itself. We showed that the FS reconstruction across the
KB–QCP can be understood in terms of a sign change
of the effective level position ϵ∗f+ [Fig. 9 and Sec. VIII],
which is connected to the emergence of a dispersive pole
in the RKKY phase [Fig. 10]. An interesting consequence
of the non-zero f -electron QP weight is that in the RKKY
phase, the band structure consists of three bands, with a
very narrow band crossing the Fermi level [Sec. VII]. We
also showed that both in the Kondo and RKKY phases,
the specific heat is linear in T , as expected from a FL; we
find that the Sommerfeld coefficient diverges when the
KB–QCP is approached from either side [Sec. IX].
We find that the physics at the KB–QCP and at non-

zero temperatures in its vicinity is governed by a NFL

fixed point [Sec. IV], which has some resemblance to
the NFL fixed points in the 2-impurity and 2-channel
Kondo models [Sec. X]. In this paper, we reported a
strange-metal like ∼ T lnT specific heat in the NFL region
[Sec. IX]. A more detailed analysis of the NFL regime
is provided in a companion paper [148], where we show
data regarding ω/T of the optical conductivity closely
resembling experimental data [60] and evidence for linear-
in-T resistivity.

We should however also mention some caveats in our
work, which may be addressed in future work. For in-
stance, while we provided some extensive formal treatment
of Luttinger’s theorem [Sec. VIII], we refrained from of-
fering any physical interpretation on how and why the
FS in the RKKY phase can be small. Indeed, Oshikawa’s
non-perturbative treatment of Luttinger’s theorem [9]
implies that in case of a violation of Luttinger’s theo-
rem, additional low-energy degrees of freedom must be
present [105, 111]. We leave their identification within
the context of the PAM to future work. We expact that
this could also lead to a connection to slave particle theo-
ries [105, 110]. Further insights could possibly be pursued
along the lines of recent work by Fabrizio [147, 172, 209].
As we have pointed out repeatedly in this paper, the
work cited above draws a connection between Luttinger
surfaces and fractionalized spinon excitations. Our work
paves the way to explore this connection in detail in terms
of a concrete example.

An unsatisfactory aspect of our 2-site CDMFT treat-
ment is that it yields a non-zero entropy at the KB–QCP
at T = 0, see Sec. IX. As already mentioned in that sec-
tion, such a non-zero entropy would render the KB–QCP
highly unstable to symmetry breaking. Whether this is a
finite cluster size effect or continues to be the case also
for larger cluster sizes needs to be checked in future work.

Lastly, our CDMFT treatment requires reperiodization
of self-energies to obtain a periodic self-energy with k-
dependence. Reperiodization is an ad-hoc post-processing
procedure. We have checked that our most important
claims are consistent with our non-repriodized bare data.
Nevertheless, in our view it would be important to cross-
check our results in future studies, for instance with nu-
merically exact methods. Such studies will be very useful
for establishing the range of applicability of CDMFT for
describing KB physics.

Our work motivates several follow-up studies. For in-
stance, as mentioned before, it would be interesting to
explore the interplay between KB physics and potential
symmetry breaking orders of all kind, e.g. antiferromag-
netic or superconducting orders. Similar studies could also
be done for models appropriate to other classes of strongly
correlated materials. Obvious candidate material classes,
which experimentally show quantum critical behavior
quite similar to heavy fermions, are cuprates [210–215] or
twisted bilayer graphene [216–218].
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Appendix A: CDMFT for the PAM

In the two-site CDMFT treatment of the PAM, the
three-dimensional lattice is tiled into a superlattice of
two-site clusters [116, 126, 128]. An effective action can
then be constructed via the cavity method [114]. It takes
the form of a 2IAM coupled to an effective bath, describ-
ing the rest of the lattice from the point of view of the
two-site cluster in the CDMFT approximation. The c
electrons can either be treated explicitly, or they can be
integrated out and merged with the effective bath, as
they are non-interacting. We decided to treat the c elec-
trons explicitly, as this enables us to directly calculate
dynamical susceptibilities involving c-electron degrees of
freedom. Additional calculations, treating the c electrons
together with the bath, confirmed that both methods give
the same results. Note that both methods have roughly
the same amount of computational complexity for the
NRG impurity solver. Since the f electrons only couple
to the bath via the c electrons as they do not have any
non-local hopping term, one obtains two bands of spinfull
bath electrons in both cases. For a detailed description
of 2-site CDMFT for the PAM, see Ref. 126.

1. Self-consistency

In the CDMFT approximation, the cluster Green’s
function is given by

Gloc(z) =

∫

k

(
z − ϵf − Σf (z) −V

−V G−1
0,ck(z)

)−1

(A1a)

=

(
Gloc,f (z) Gloc,fc(z)
Gloc,fc(z) Gloc,c(z)

)
, (A1b)

where G0,ck is the c-band Green’s functions at V =0,

G0,ck(z) =
1

(z + µ)2 − (ϵ0ck)
2

(
z + µ eikxϵ0ck
e−ikxϵ0ck z + µ

)
,

(A2)

and Σf (z) is the cluster f -electron self-energy (which is
a proper, single-particle irreducible self-energy),

Σf (z) =

(
Σf11(z) Σf12(z)
Σf21(z) Σf22(z)

)
, (A3)

which is k-independent in CDMFT. Gloc,c(z) can be com-
puted by performing a momentum integral (c.f. Sec. A 2),

Gloc,c(z) =

∫

k

[
G−1
0,ck(z)− Σc(z)

]−1

, (A4)

while Gloc,f (z) and Gloc,fc(z) are related to Gloc,c(z) via
Eq. (6c). Σc(z) is the cluster c-electron self-energy (which
is not single-particle irreducible), related to Σf (z) via
Eq. (6e). Σf (z) can be computed from an auxiliary
self-consistent two-impurity Anderson model (2IAM) [c.f.
Eq. (4)] with Gloc(z) = G2IAM(z), with the corresponding
Green’s functions of the 2IAM given in Eq. (6).
The self-consistent solution is not known a priori and

has to be computed via a self-consistency cycle. For
that, the hybridization function of the 2IAM Eq. (5) is
initialized with some guess. Then, (i) the self-energies
are computed via NRG, (ii) Gloc,c(z) is computed via
Eq. (A4) and (iii) the hybridization function is updated
via

∆c(z) = z + µ+ t · τx − Σc(z)−G−1
loc,c(z) . (A5)

This cycle is repeated until convergence is reached.

2. Momentum integration

To achieve accurate results, a method for precise
momentum integration of propagators is needed in
the CDMFT. For this, we employ the tetrahedron
method [219, 220], which is applicable for integrals of
the form

∫

1.BZ

dk
fk
gk
, (A6)

where fk and gk are smooth functions of k. The Brillouin
zone is tiled into tetrahedra and both f and g are interpo-
lated linearly on this tetrahedron. The integral can then
be performed analytically, yielding

Itetra =
∑

i

fiwi({gi}) . (A7)

Here, fi and gi are the functions f and g evaluated at the
corners of the tetrahedron and wi({gi}) are integration
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FIG. A.1. Comparison of local cluster spectral functions (solid
lines) and local lattice spectral function (dashed lines) after
periodization of the self-energies. The upper and lower rows
show the f - and c-electron spectral function, respectively. The
left panels show data for four different temperatures at fixed
V = 0.46, close to Vc. The right panels show data for four
different V at T = 0. The layout mirrors that of Fig. 8.

weights which depend on g only. Formulas for these
weights are quite lengthy and can be found in [220] for
one-, two- and three-dimensional integration. We further
use an adaptive momentum grid to reduce computational
effort, adjusting the grid size according to the degree of
difficulty of the integral in a certain region. This enables
us to evaluate all our integrals with an absolute error less
than 5 ·10−4. For this, the integration domain is tiled into
a coarse and a fine grid, and the grid is iteratively refined
in regions where the error bound is not fulfilled, until
convergence is reached within the error bounds. Using
the tetrahedron method, we then calculate Gloc,c(ω) via
Eq. (A4). The computational effort for this integral can
be reduced by treating the integral over ky and kz as a
density of states integration, thereby mapping Eq. (A4)
to a two dimensional integral:

ϵ(kx, E) = −2t (cos(kx) + E)

G−1
0,c (z, kx, E) =

(
z + µ −eikxϵ(kx, E)

−e−ikxϵ(kx, E) z + µ

)

Gloc,c(z) =

∫

kx

∫

E

ρ2D(E)
[
G−1
0,c (z, kx, E)− Σc(z)

]−1

ρ2D(E) =

∫

ky

∫

kz

δ(E − cos(ky)− cos(kz)) ,

(A8)
where ρ2D is the density of states of a square lattice.

3. Reperiodization of the self-energy

To determine transport properties such as the resis-
tivity, the Hall coefficient or the FS, the lattice sym-
metries have to be restored by reperiodizing the cluster
self-energy. We accomplish this via a modified periodiza-
tion of the cumulant M(z) = [z + µ − Σc(z)]

−1 (M -
periodization) [153, 154]. As we discussed in Sec. VIII,
the Luttinger integral (at T = 0) without reperiodization
Eq. (51) is zero (c.f. Fig. 17). This property is not re-
spected by conventional M -periodization; the Luttinger
integral with reperiodization Eq. (43) will generically be
non-zero. To ensure that the Luttinger integral vanishes
also after reperiodization, we therefore modify the cumu-
lant by a V -dependent shift of the chemical potential in
the denominator only for reperiodization purposes:

M̃(z) =
[
z + µ+ δµ(V )− Σc(z)

]−1
(A9a)

M̃k(z) = M̃11(z) + M̃12(z)
3∑

α=1

1
3 cos(kα) (A9b)

=
[
z + µ+ δµ(V )− Σck(z)

]−1
. (A9c)

Here, Eq. (A9a) defines the modified cumulant used for
reperiodization, Eq. (A9b) defines the reperiodization of

M̃(z) and Eq. (A9c) relates it to Σck, thereby defining
Σck; quantities like Σfk or Gxk are obtained from Σck

using the relations Eqs. (3). Note that the shift δµ(V )
appears both in Eq. (A9a) and in Eq. (A9c); it there-
fore does not constitute an actual shift in the chemical
potential but rather slightly redefines the quantity used

for reperiodization (i.e. M̃ instead of M is reperiodized).
The shift δµ(V ) is chosen such that the Luttinger inte-
gral after reperiodization (Eq. (43)) coincides with that
before reperiodization (Eq. (51)) at T = 0. The same
shift δµ(V ) is then used at T > 0 for the same V . After

reperiodization, we have M̃Γ = M̃11 + M̃12 = M̃+ and

M̃Π = M̃11 − M̃12 = M̃−; the same relation also holds
between Σxk and Σxα. This establishes a correspondence
between Γ/Π point in the lattice model and +/− orbital
in the effective cluster model.
To benchmark our reperiodization scheme, we com-

pare the local spectral functions with and without repe-
riodization, shown in Fig. A.1. For V not too close to
Vc = 0.4575 and at elevated temperatures, these two func-
tions agree, implying that reperiodization works well here.
Close to the QCP (low temperatures, V ≃ Vc) however,
reperiodized and cluster results show differences. These
differences are mostly quantitative, while most of the
qualitative features remain similar. For instance, for Af

at T = 0, both the Kondo peak height at V = 0.46 and
the pseudogap at V = 0.455 are more pronounced after
periodization, but the qualitative behavior is the same
before and after periodization [Fig. A.1(c)]. The most
severe qualitative mismatch is the Ac,loc(0) for V < Vc
[Fig. A.1(d)]: at T = 0 in the RKKY phase, as V is in-
creased towards Vc, a Kondo-like peak develops in Ac,loc
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FIG. A.2. Evolution of the self-consistent hybridization functions ∆xα(ω
+) at T = 0 as V is tuned across the QCP. Colored

curves correspond to V values marked by ticks on the color bar. The layout mirrors that of Fig. 8 in the main text. Top row:
imaginary parts; bottom row: real parts. The insets show the hybridization functions on a linear frequency scale for |ω| < 2·10−4.

before periodization (see our discussion in Sec. VIB), i.e.
Ac,loc(0) increases as V approaches Vc (solid green curve
lies above solid blue curve at ω = 0); after periodization,
the converse happens, i.e. Ac,loc(0) decreases as V ap-
proaches Vc (dashed green curve lies below dashed blue
curve at ω = 0). Our periodization procedure thus misses
the development of the Kondo-like peak in Ac,loc.

We emphasize that reperiodization is an ad-hoc post-
processing procedure. Features in reperiodized data
should always be substantiated by analyzing the raw data
before reperiodization. We have done so repeatedly in the
main text, for instance for the FS and LS volumes, the
dispersive pole in Σf or the two and three-band structures
in the Kondo and RKKY phases, respectively.

4. Self-consistent hybridization function versus V

In the main text, we emphasized the importance of
self-consistency to access the KB–QCP in 2-site CDMFT.
Here, we elaborate this aspect by showing that the self-
consistent hybridization functions in the vicinity of the
KB–QCP show (i) a strong ω-dependence and (ii) a strong
V -dependence. This implies that self-consistency is of
high importance if one wants to capture the KB–QCP.

Figure A.2 shows the hybridization functions at T =
0 on a logarithmic frequency scale, plotted for several
different values of V close to the KB–QCP. As seen from
the insets, showing the same data on a linear frequency
scale, the hybridization functions have sharp features at
low frequencies. The sharp features appear stretched
out on the log scale of the main panels, which reveal

that for V very close to Vc (green, yellow), they occur at
frequencies as low as |ω| ≃ 10−8. This shows that the
hybridization functions of the effective 2IAM describing
the self-consistent PAM depend strongly on frequency.
For a non-self-consistent 2IKM with weakly frequency-
dependent hyrbidization functions, it has been shown
that the NFL fixed point and thus the QCP is unstable
to the breaking of symmetries which are absent in our
effective 2IAM [79, 80, 83, 86]. Our work implies that this
conclusion does not generalize to the case of hybridization
functions displaying a strong frequency dependence.

Figure A.2 shows that the hybridization functions are
also strongly V -dependent, especially close to ω = 0. A
change of V by 5 · 10−3 in the vicinity of the KB–QCP
induces comparably large changes in the hybridization
functions, of the order of 10−1 at some frequencies. Thus,
close to the KB–QCP, a tiny change in V leads to a con-
siderable readjustment of the self-consistent hybridization

FIG. A.3. Absolute value of the derivative of the hybridization
function as zero frequency, |∂ω∆xα(ω

+)|ω=0 at T = 0, plotted
as a function of V .
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function by iterating the CDMFT self-consistency cycle.
This shows that self-consistency is of high importance to
capture the KB–QCP.
In Figure A.3, we plot the absolute value of the

derivative of the hybridization functions at ω = 0,
|∂ω∆xα(ω

+)|ω=0, at T = 0 as functions of V . The zero
frequency derivative of the hybridization functions has a
peak at the KB–QCP at Vc, indicative of a divergence.
This suggests that the self-consistent hybridization func-
tions become singular at ω = 0 at the KB–QCP. This
further emphasizes that (i) results obtained on the 2IAM
with weakly frequency dependent hybridization functions
are not straightforwardly applicable to the self-consistent
2IAM arising in our CDMFT solution of the PAM; and
(ii) self-consistency is important to capture this singular
behavior at the KB–QCP. A more detailed study investi-
gating how the self-consistency equations manage to drive
the 2IAM to a stable QCP will be subject to future work.

5. Transport properties

For the calculation of the resistivity and the Hall co-
efficient, the M -reperiodized self-energy is used. The
formulas for the optical conductivity σ(ω) ignoring vertex
corrections, resistivity ρxx = 1/σxx and the Hall coeffi-
cient RH = σxy/(σ

2
xxH) are given by [221, 222]

σ(ω) = 2πe2
∫
dϵΦxx(ϵ)σ̃(ϵ, ω) ,

σ̃(ϵ, ω) =

∫
dω̃

f(ω̃)− f(ω̃ + ω)

ω
Ac(ϵ, ω̃)Ac(ϵ, ω̃ + ω) ,

σxx = lim
ω→0

σ(ω) ,

σxy = 4
3π

2e3H

∫
dϵΦxy(ϵ)

∫
dω

[
−∂f
∂ω

]
A3

c(ϵ, ω) ,

Φxx(ϵ) =

∫

1.BZ

dk

(2π)3
(ϵxk)

2
δ(ϵ− ϵck) ,

Φxy(ϵ) =

∫

1.BZ

dk

(2π)3

∣∣∣∣∣
ϵxkϵ

x
k ϵxyk

ϵykϵ
x
k ϵyyk

∣∣∣∣∣ δ(ϵ− ϵck) ,

(A10)
where H denotes the magnetic field, e < 0 the charge of
the electrons, f(ω) the Fermi function, ϵxk = ∂kx

ϵck the
derivative of the dispersion by kx (and correspondingly
for e.g. ϵxyk ) and | · | the determinant. In the above
formulas, only the c-electron spectral function appears,
as there are no terms involving the f electrons which do
not conserve local charge. Note also that the k-dependent
spectral function depends on k only through ϵck after
reperiodization via Eq. (A9).

Eqs. (A10) include only the bubble contribution to the
conductivities and ignore vertex corrections. In a com-
panion paper [148], we show that vertex corrections to
the conductivity are qualitatively important in order to
capture the correct scaling of the optical conductivity in

FIG. B.1. (a) χ̃[Sz](ω) plotted versus ln10(ω) at V = 0.46
and T = 0. We extract the NFL scale from the position of
the minimum marked by the orange arrow. (b) χ̃[Xxz](ω)
plotted versus ln10(ω) at V = 0.46 and T = 0. The FL scale
is extracted from the position of the minimum marked by the
blue arrow. Note that while the other minimum is associated
with TNFL, it is not used to extract this scale. (c) χ̃[T z](ω)
plotted versus ln10(ω) at V = 0.445 and V = 0.44 at T = 0.
While the FL scale can still be extracted from χ̃[T z](ω) at
V = 0.445 because both minima in χ̃[T z](ω) are still clearly
distinguishable, it is not possible any more for V = 0.44 as
the minima have merged.

the NFL region. A full treatment of vertex corrections
is currently computationally unfeasible with our NRG
impurity solver because the computation of 4-point corre-
lation functions for the 2IAM at hand is too expensive.
To compute the Hall coefficient shown in Fig. 18, we have
therefore not considered vertex corrections but just used
the formulas presented in Eqs. (A10).

Appendix B: Determination of energy scales

To determine the crossover scales TFL and TNFL, we
exploit the fact that the spectral functions of particular
susceptibilities show a well-defined power law dependence
in the fixed point regions, which changes when traversing
the crossover regions. On a log-log scale this leads to
straight lines with kinks in the crossover regions, as can
be seen in Fig. 4 in the main text. The second derivative
of χ′′[O](ω) on the log-log scale,

χ̃[O](ω) =
∂2 ln10(χ

′′[O](ω))

∂ ln10(ω)2
, (B1)

tracks the change in slope at the crossover, enabling us
to determine the corresponding scale. We use χ′′[Sz] to
determine the NFL scale and χ′′[Xxz], χ′′[T z], χ′′[T y]
and χ′′[P z] to determine the FL scale. The corresponding
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FIG. B.2. FL scales, extracted from different correlators (grey
lines). For more information on the energy scales, see Fig. 2
in the main text and the corresponding discussion there.

operators are defined in Eq. (9) in the main text. χ′′[Xxz],
χ′′[T z], χ′′[T y] and χ′′[P z] are shown in Fig. 2.
Examples for the determination of the NFL scale via

χ′′[Sz] and of the FL scale via χ′′[Xxz] are shown in
Figs. B.1(a) and (b), respectively. While χ′′[T y] and
χ′′[P z] are much smaller than χ′′[T z] and χ′′[Xxz], they
are more suitable than the latter two far away from the
QCP, especially for V < Vc. The reason for this is shown
in Fig. B.1(c) for χ′′[T z]: the second derivative on the ln-
ln scale shows two minima, the first related to TFL and the
second related to TNFL. The same is true for χ′′[Xxz] (not
shown). These two minima merge away from the QCP,
preventing the determination of TFL. The determination
via χ′′[T y] and χ′′[P z] is not faced with these difficulties,
as they have only one minimum, associated with TFL.
We note that the determination of TFL via χ′′[Xxz]

works well in the Kondo regime for all V but in the
RKKY regime only close to the QCP, while χ′′[T z] works
only close to the QCP both in the Kondo and the RKKY
regime. As the FL scale extracted from different correla-
tors in are generally not exactly equal, we define TFL as
their geometric mean as shown in Fig. B.2. Each grey line
there show a FL scale extracted from a different correlator,
while the blue and purple lines show their geometric mean.
The grey lines do not exactly lie on top of each other,
but they are sufficiently similar to justify the averaging

described above.

Appendix C: Determination of THall

Figure 2 includes data points (red dots) marked
THall(V ), showing how the crossover from a large FS
in the Kondo phase to a small FS in the RKKY phase
evolve with temperature. Here, we describe how THall

was determined.
We closely follow the procedure used in Ref. 25. We

fit our numerical V -dependent Hall coefficient data (see
Fig. 18) at T = 10−4, 10−5 and 10−6 to the form

RH(V )

RH,0

fit≃ a+
b

1 + (V/VHall)p
, (C1)

with fit parameters a, b, p and VHall, i.e. we impose the
same functional form as used in Ref. 25 (except for the
different tuning parameter, V in our case and B-field in
Ref. 25). To closely mirror the procedure used in Ref. 25,
we constrain our fit for a given, fixed T to the crossover
region from Kondo to RKKY regime by only fitting in
a V -region determined by T > 0.1·TFL(V ) (i.e. we omit
datap oints deep in the FL regions). This yields VHall(T ),
and inverting this function yields THall(V ). Figure C.1
shows our Hall effect data with the corresponding fits.

FIG. C.1. Hall coefficient data from Fig. 18 (symbols) and
corresponding fits via Eq. (C1) (black lines). To improve
visibility, the data for T = 10−5 and T = 10−6 is offset by 2
and 4, respectively.
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[6] P. Coleman and C. Pépin, What is the fate of the heavy
electron at a quantum critical point?, Physica B: Con-
densed Matter 312-313, 383 (2002), the International
Conference on Strongly Correlated Electron Systems.

[7] A. C. Hewson, The Kondo Problem to Heavy Fermions,
Cambridge Studies in Magnetism (Cambridge University
Press, 1993).

[8] J. M. Luttinger, Fermi surface and some simple equi-



39

librium properties of a system of interacting Fermions,
Phys. Rev. 119, 1153 (1960).

[9] M. Oshikawa, Topological approach to Luttinger’s the-
orem and the Fermi surface of a Kondo lattice, Phys.
Rev. Lett. 84, 3370 (2000).

[10] I. Dzyaloshinskii, Some consequences of the Luttinger
theorem: The Luttinger surfaces in non-Fermi liquids
and Mott insulators, Phys. Rev. B 68, 085113 (2003).

[11] O. J. Curtin, Y. Nishikawa, A. C. Hewson, and D. J. G.
Crow, Fermi liquids and the Luttinger integral, Journal
of Physics Communications 2, 031001 (2018).

[12] Y. Nishikawa, O. J. Curtin, A. C. Hewson, and D. J. G.
Crow, Magnetic field induced quantum criticality and
the Luttinger sum rule, Phys. Rev. B 98, 104419 (2018).

[13] J. T. Heath and K. S. Bedell, Necessary and sufficient
conditions for the validity of Luttinger’s theorem, New
J. Phys. (2020).

[14] G. Giuliani and G. Vignale, Quantum Theory of the
Electron Liquid (Cambridge University Press, 2005).

[15] M. A. Ruderman and C. Kittel, Indirect exchange cou-
pling of nuclear magnetic moments by conduction elec-
trons, Phys. Rev. 96, 99 (1954).

[16] T. Kasuya, A theory of metallic ferro- and antiferro-
magnetism on Zener’s model, Prog. Theor. Phys. 16, 45
(1956).

[17] K. Yosida, Magnetic properties of Cu-Mn alloys, Phys.
Rev. 106, 893 (1957).

[18] A. Nejati, K. Ballmann, and J. Kroha, Kondo destruc-
tion in RKKY-coupled Kondo lattice and multi-impurity
systems, Phys. Rev. Lett. 118, 117204 (2017).

[19] S. Doniach, The Kondo lattice and weak antiferromag-
netism, Physica 91B+C, 231 (1977).

[20] J. A. Hertz, Quantum critical phenomena, Phys. Rev. B
14, 1165 (1976).

[21] T. Moriya, Spin fluctuations in itinerant electron mag-
netism (Springer Verlag Berlin, 1985).

[22] A. J. Millis, Effect of a nonzero temperature on quantum
critical points in itinerant Fermion systems, Phys. Rev.
B 48, 7183 (1993).

[23] S. Sachdev, Quantum Phase Transitions, 2nd ed. (Cam-
bridge University Press, 2011).

[24] O. Trovarelli, C. Geibel, S. Mederle, C. Langhammer,
F. M. Grosche, P. Gegenwart, M. Lang, G. Sparn, and
F. Steglich, YbRh2Si2: Pronounced non-Fermi-liquid
effects above a low-lying magnetic phase transition, Phys.
Rev. Lett. 85, 626 (2000).

[25] S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart,
O. Trovarelli, C. Geibel, F. Steglich, P. Coleman, and
Q. Si, Hall-effect evolution across a heavy-Fermion quan-
tum critical point, Nature 432, 881 (2004).

[26] P. Gegenwart, Q. Si, and F. Steglich, Quantum criticality
in heavy-Fermion metals, Nat. Phys. 4, 186 (2008).

[27] J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier,
Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pépin,
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M. Lizaire, B. Vignolle, D. Vignolles, H. Raffy, Z. Z.
Li, P. Auban-Senzier, N. Doiron-Leyraud, P. Fournier,
D. Colson, L. Taillefer, and C. Proust, Universal T -
linear resistivity and Planckian dissipation in overdoped
cuprates, Nature Physics 15, 142 (2019).

[215] X. Li, J. Kono, Q. Si, and S. Paschen, Is the optical
conductivity of heavy fermion strange metals Planckian?,
Frontiers in Electronic Materials 2 (2023).

[216] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,
E. Kaxiras, and P. Jarillo-Herrero, Unconventional su-
perconductivity in magic-angle graphene superlattices,
Nature 556, 43 (2018).

[217] Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-
Bigorda, K. Watanabe, T. Taniguchi, T. Senthil,
and P. Jarillo-Herrero, Strange metal in magic-angle
graphene with near Planckian dissipation, Phys. Rev.
Lett. 124, 076801 (2020).

[218] A. Jaoui, I. Das, G. Di Battista, J. Dı́ez-Mérida, X. Lu,
K. Watanabe, T. Taniguchi, H. Ishizuka, L. Levitov, and
D. K. Efetov, Quantum critical behaviour in magic-angle
twisted bilayer graphene, Nature Physics 18, 633 (2022).
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We study dynamical scaling associated with a Kondo-breakdown quantum critical point (KB-QCP)
of the periodic Anderson model, treated by two-site cellular dynamical mean-field theory (2CDMFT).
In the quantum critical region, the staggered spin exhibits SYK-like slow dynamics and its dynamical
susceptibility shows ω/T scaling. We propose a scaling Ansatz that describes this behavior. It also
implies Planckian dissipation for the longest-lived excitations. The current susceptibility follows
the same scaling ansatz, leading to strange-metal scaling. This demonstrates that the KB-QCP
described by 2CDMFT is an intrinsic (i.e., disorder-free) strange-metal fixed point. Surprisingly, the
SYK-like dynamics and scaling are driven by strong vertex contributions to the susceptibilities. Our
results for the optical conductivity match experimental observations on YbRh2Si2 and CeCoIn5.

DOI:

Introduction.—Strange metals are enigmatic states of
matter which, despite extensive theoretical and experimen-
tal effort, still defy clear and unified understanding [1–5].
They are found in the phase diagrams of a large number
of strongly correlated materials, such as cuprate supercon-
ductors [6–9], iron based superconductors, twisted bilayer
graphene [10–12] or heavy fermion metals [13–18].

The phenomenology of strange metals is incompatible
with our current understanding of conventional metals.
Most prominently, they show T -linear resistivity [9] down
to temperatures too low to be of phononic origin (cur-
rent record: ∼ 15 mK in YbRh2Si2 [19]) and a ∼ T lnT
specific heat. Both are incompatible with the ∼ T 2 re-
sistivity and ∼ T specific heat expected in normal Fermi
liquids [20]. In many materials, ω/T scaling of dynamical
susceptibilities [21–23] and more recently also of the op-
tical conductivity [8, 16, 18, 24] is observed. Dynamical
scaling is incompatible with Fermi liquids, where quasi-
particles with ∼ T 2 decay rates lead to Lindhard-type
susceptibilities and to a Drude peak with width ∼ T 2

in the optical conductivity. A recent experiment on a
strange-metal YbRh2Si2 nanowire further found an al-
most complete suppression of the shot noise, indicating
the absence of well-defined quasiparticles [25].

Despite the ubiquity of materials and experiments show-
ing strange metallicity, even basic questions are to date
not fully settled [1]. Do strange metals arise due to quan-
tum critical points and quantum critical phases, or are
they intimately connected to quantum criticality at all?
Do intrinsic strange metals, i.e., ones without disorder, ex-
ist [26, 27]? Recent work showed that many of the features
of strange metals can arise from a critical boson coupled
to fermions [28, 29], provided that the boson-fermion cou-
pling is disordered. On the other hand, measurements on
cuprates suggest that disorder only affects the residual

resistivity, while the linear-in-T slope is unaffected [30].
Further, there exist many stochiometric strange-metal
compounds with comparably small residual resistivities.
In this Letter, we show that intrinsic strange-metal

scaling can arise due to a heavy-fermion quantum criti-
cal point (QCP), described via cellular dynamical mean-
field theory (CDMFT) [31, 32]. We study the periodic
Anderson model (PAM). It exhibits a so-called Kondo
breakdown (KB) QCP [33–35] arising as a continuous
orbital-selective Mott transition [36–39]. Its hallmark
is a partial localization of electrons, accompanied by a
Fermi surface reconstruction, experimentally observable,
e.g., via Hall effect or quantum oscillation measurements.
Experimental studies in the quantum critical region of
KB–QCPs at T > 0 often show strange-metal behavior.
In a long companion paper, Ref. [39], we showed that

two-site CDMFT (2CDMFT) combined with the numeri-
cal renormalization group (NRG) [40] describes many
experimental features of the KB–QCP. This includes
a novel quantum critical point (stabilized by DMFT
self-consistency) and strange-metal behavior, such as a
∼ T lnT specific heat in the non-Fermi liquid (NFL) quan-
tum critical region. Here, we focus on quantum critical
dynamical scaling. We find (i) SYK-like slow dynam-
ics; (ii) ω/T scaling of dynamical susceptibilities; (iii)
Planckian dissipation; (iv) strange-metal-like ω/T scaling
of the optical conductivity σ(ω); and (v) results for σ(ω)
consistent with measurements on YbRh2Si2 and CeCoIn5.

Model and methods.—We consider the PAM on a three-
dimensional cubic lattice, consisting of an itinerant c band
and a localized f band, described by the Hamiltonian

HPAM =
∑

kσ

(
ϵf − µ

)
f†kσfkσ + U

∑

i

f†i↑fi↑f
†
i↓fi↓

+ V
∑

kσ

(
c†kσfkσ + h.c.

)
+

∑

kσ

(ϵck − µ) c†kσckσ.
(1)
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FIG. 1. (a) Phase diagram of the PAM obtained by
2CDMFT+NRG. The dots (connected by lines as guides to
the eye) denote relevant energy scales TFL and TNFL below
which we observe FL and NFL behavior, respectively, and
THall, the crossover scale between a large and small FS [see
Ref. [39] for details]. The color scale denotes the exponent α
of the imaginary-time correlator ⟨Xxz(τ)Xxz⟩ ∝ τ−α. The
white dashed line denotes V = 0.46, used for all subsequent
plots in this work. (b) Spectra of Xxz and Sz at T = 0.

Here, f†kσ [c†kσ] creates a spin-σ f [c] electron with momen-
tum k, and ϵck = −2t

∑
a=x,y,z cos(ka) is the c-electron

dispersion. We set the c-electron hopping t = 1/6 as an
energy unit (half bandwidth = 1) and fix the f -orbital
level ϵf = −5.5, the interaction strength U = 10, and the
chemical potential µ = 0.2, as chosen in prior 2CDMFT
studies [37–39]. We tune the c-f hybridization V and
the temperature T as control parameters.
We study the PAM using 2CDMFT, which maps the

lattice model to an effective two-impurity Anderson model
(2IAM) with a self-consistent bath (cf. Refs. [36–39] for
more details). The 2CDMFT approach allows us to study
the competition between local Kondo correlations and
nonlocal RKKY correlations, which is believed to drive
quantum criticality in heavy fermion systems [33, 41–43].
We solve the effective 2IAM using NRG [40], enabling us
to reach exponentially small frequency and energy scales.
We exploit and enforce U(1) charge and SU(2) spin sym-
metries (using the QSpace tensor library [44, 45]), thereby
excluding the possibility of symmetry-breaking order by
hand. We thus study KB quantum criticality in the ab-
sence of symmetry breaking [46–49], as can be observed,
e.g., in experiments on YbRh2Si2 [50] and CeCoIn5 [51].
We do not find tendencies towards symmetry breaking
(divergent susceptibilities) for V > Vc or anywhere within
the quantum critical region emanating from the KB-QCP.
Phase diagram.—Figure 1(a) shows our 2CDMFT+

NRG phase diagram in the (V, T ) plane close to the KB–

QCP. At T = 0, we find two Fermi liquid (FL) phases,
separated by a KB–QCP located at Vc = 0.4575(25),
featuring a sudden Fermi surface (FS) reconstruction [39].
At finite excitation energies, we find two crossover scales,
TFL(V ) and TNFL(V ) [39]. FL behavior emerges below TFL,
which decreases towards and vanishes at Vc. The high-
energy region above TNFL is characterized by thermally
fluctuating f -electron local moments decoupled from the
c electrons. TNFL does not decrease for V near Vc, hence
strong scale separation between TNFL and TFL occurs close
to the QCP. For excitation energies between TFL and TNFL,
we find NFL behavior—the main subject of this work.

Dynamical susceptibilities.—The different regions can
be most conveniently distinguished in terms of the dynam-
ical behavior of response functions. For now, we focus on
the staggered f -electron spin on a two-site cluster, Xxz =
Sz
1 − Sz

2 , with Sz
i = 1

2

[
f†i↑fi↑ − f†i↓fi↓

]
. The color scale

in Fig. 1(a) shows the exponent α of the imaginary-time
autocorrelation function of Xxz, ⟨Xxz(τ)Xxz⟩ ∝ τ−α, ob-
tained via log-derivative. For long times, τ−1 < TFL, we
find α = 2, consistent with FL behavior and the presence
of long-lived quasi-particles (QP) [3] and thus quickly
decaying, localized spin excitations. For short times,
τ−1 > TNFL, staggered spin excitations decay very slowly
with an exponent α < 0.5, consistent with local moment
behavior. For intermediate times, TFL < τ−1 < TNFL,
we find an SYK-like exponent α ≃ 1 in the NFL re-
gion, indicative of the absence of coherent QP [3]. For
at V = 0.46, our data closest to Vc, this behavior ex-
tends over almost 4 orders of magnitude: in fact, our data
suggests that it extends down to τ−1 → 0 at Vc, where
TFL = 0. We note that we do not find ∝ τ−1/2 behavior of
the single-electron Green’s function G(τ), in contrast to
the SYK model [3]. Thus, ⟨Xxz(τ)Xxz⟩ is not ∝ G(τ)2,
i.e., the τ−1 behavior is governed by vertex contributions.
To understand the origin of the τ−1 dependence, we

consider the spectral representation of bosonic correlators,

⟨A†(τ)B⟩ =
∫ ∞

−∞
dω

e−τω

1− e−βω
χ′′[A,B](ω) . (2)

Here, the spectrum χ′′(ω) is obtained from the dynamical
susceptibility χ(ω) = χ′(ω)− iπχ′′(ω),

χ[A,B](ω) = −i

∫ ∞

0

dt ei(ω+i0+)t
〈[
A†(t),B

]〉
. (3)

We use the shorthand χ[A](ω) = χ[A,A](ω).
The spectra for Xxz and for the total spin Sz = Sz

1+S
z
2

are shown in Fig. 1(b) at V = 0.46 and T = 0. The
spectra χ′′[Xxz] and χ′′[Sz] both show ∝ ω behavior
below TFL, indicating that these fluctuations are screened
in the FL, as expected. For long times, τ−1 < TFL, the
corresponding imaginary time correlation function Eq. (2)
therefore decays as τ−2, as shown for Xxz in Fig. 1(a).
In the NFL region (TFL<ω<TNFL) the spectra differ

qualitatively: while χ′′[Sz] ∝ ω still holds, χ′′[Xxz] has an
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FIG. 2. Dynamical susceptibility χ[Xxz](ω, T ): (a) spectral
part and (b) corresponding real part; (c,d) scaling collapse of
spectral and real parts. Black dashed lines show the scaling
functions X ′′(ω/T ) and X ′(ω/T ), respectively [cf. Eq. (5)].
Inset: χ′(0, T ) (orange) and X ′

0(T/TNFL) + c [black dashed,
cf. Eq. (5)]. The constant shift c accounts for spectral weight
at |ω| > TNFL. Grey areas indicate fitting uncertainties [56].

ω-independent plateau; hence Sz fluctuations are screened,
Xxz fluctuations are over-screened (reminiscent of the
two-channel or two-impurity Kondo models [52–54]). For
intermediate times ⟨Sz(τ)Sz⟩ thus decays as τ−2 (not
shown) whereas ⟨Xxz(τ)Xxz⟩ decays as τ−1 [cf. Fig. 1(a)].
We note that besides Xxz, many other operators also have
plateaus in their spectra, see Fig. 4 in Ref. [39]. Thus,
the FL is reached via a two-stage screening process: as ω
drops below TNFL, some excitations are screened, others
over-screened; below TFL, the latter are screened, too.

Dynamical scaling.—We now turn to the T > 0 be-
havior, focusing on V = 0.46 and χ[Xxz], whose spec-
trum shows a plateau in the NFL region at T = 0.
The T -dependent spectra χ′′(ω, T ) and the correspond-
ing real parts χ′(ω, T ) are shown in Figs. 2(a) and (b),
respectively. As T is decreased from around TNFL to TFL,
the aforementioned plateau in χ′′(ω, T ) emerges between
T < ω < TNFL, crossing over to ∝ ω behavior for ω < T .
For T < TFL, the spectrum becomes T -independent, tak-
ing the same form as already shown in Fig. 1(b) for T = 0.

χ′(ω, T ) is related to χ′′(ω, T ) via a Kramers–Kronig
relation. It thus shows a logarithmic [55] ω-dependence
for max(T, TFL) < ω < TNFL where χ′′(ω, T ) has a plateau,
and is constant for ω < max(T, TFL) where χ′′(ω, T ) ∝
ω. As a result, χ′(0, T ) [inset of Fig. 2] has a ∝ lnT
dependence for TFL< T <TNFL and is constant for T <
TFL, where X

xz fluctuations are screened.

Figure 2(c) shows χ′′(ω, T ) vs. ω/T . In the NFL region
(TFL< T <TNFL, |ω| < TNFL), the spectra all collapse onto
a single curve. This demonstrates that the T -dependent
spectra show dynamical scaling in the sense that in the
NFL region, Tαχ′′(ω, T ) = X ′′(ω/T ) with α = 0. Thus,
χ′′(ω, T ) depends on ω only via the ratio ω/T , implying

that T is the only scale in this region. The scaling function
X ′′(x) is flat for x > 1 and ∝ x for x < 1 (we discuss a
phenomenological fit below). The real part also shows
ω/T scaling, χ′(ω, T )− χ′(0, T ) ≃ X ′(ω/T ).
Scaling function and Planckian dissipation.—In the

NFL region (TFL< T <TNFL, |ω| < TNFL), the spectra of
dynamical susceptibilities showing plateaus (e.g., χ[Xxz])
can be fitted with a phenomenological ansatz for ω > 0:

χ̃′′(ω, T ) = χ0

∫ TNFL

T

dϵ

π

(1− e−
ω
T )( ϵ

T )
νbT

(ω − aϵ)2 + (bT )2
. (4)

ω < 0 follows from anti-symmetry of χ̃′′, the real part χ̃′

is determined through a Kramers–Kronig relation. χ0,
a, b, and ν are determined by fits to our spectra in the
NFL region [56]. We find a ≃ 10−1, b ≃ 1 and ν ≃ 0;
χ0 determines the plateau value. (These parameters are
V -independent within our fitting accuracy.) When Eq. (4)
is evaluated for |ω|, T ≪ TNFL one finds the scaling form

χ̃(ω, T ) ≃ X ′
0

( T

TNFL

)
+ X ′

(ω
T

)
− iπX ′′

(ω
T

)
. (5)

An explicit T -dependence, due to the high-energy cutoff
TNFL, only enters via X ′

0(T/TNFL) ≃ χ̃′(0, T ); otherwise,
χ̃(ω, T ) only depends on the ratio ω/T (for more informa-
tion on the scaling functions X ′

0, X ′ and X ′′, see Ref. [56]).
In Fig. 2(c,d), we show that the scaling function X cap-
tures χ[Xxz] well in the NFL region (black dashed lines).
The ansatz (4) is motivated by a fit of ⟨Xxz(t)Xxz⟩

to a superposition of coherent excitations with mean
energy aϵ, decay rate bT and density of states (ϵ/T )ν [56].
Since b ≃ 1, these coherent excitations have a decay rate
γ ≃ T or correspondingly a lifetime τ ≃ 1/T , i.e., the
longest-lived Xxz excitations have a Planckian lifetime.
By contrast, we do not observe a Planckian lifetime for
single-particle excitations [cf. Fig. 3(d) and its discussion].
Optical conductivity.—Our 2CDMFT approximation

allows us to compute the local current susceptibility
χ[jai ](ω, T ) of the lattice model from the effective im-

purity model. Here, jai = −ite
∑

σ

(
c†iσci+aσ − c†i+a,σciσ

)

is the current operator in a-direction, where i and i+a are
nearest neighbors on the lattice, chosen to also correspond
to the two sites of the self-consistent impurity model.
For optical experiments and electronic transport, the

uniform current susceptibility χ[jaq=0](ω, T ) is relevant,
where jaq is the q-dependent current in a-direction, jaq =
1
N

∑
iσ e

−iq·rijai . Assuming translation symmetry, χ[ja0 ]
can be expressed as a sum χ[jai ] + χnl[j] of local and non-
local parts, with χnl[j] =

1
N

∑
ℓ ̸=i χ[j

a
ℓ , j

a
i ] = χ[ja0 ]−χ[jai ].

The computation of χnl[j] would require four-point corre-
lators [63, 64] for the self-consistent two-impurity model,
which currently exceeds our computational resources.
Hence we approximate it by its bubble contribution,
χnl,B[j] = χB[j

a
0 ]− χB[j

a
i ]. Thus, we use

χ[ja0 ] ≈ χ[jai ] + χnl,B[j] = χB[j
a
0 ] + χvtx[j

a
i ] , (6)
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FIG. 3. (a) Real part of the optical conductivity, σ′(ω, T ).
(b) ω/T scaling of Tσ′(ω, T ); black dashed line: the scaling
function S ′ of Eq. (7). (c) The resistivity ρ(T ). (d) The
single-particle decay rate at the Fermi level, γ∗(T ).

where χvtx[j
a
i ] = χ[jai ]−χB[j

a
i ] is the vertex contribution

to the local current susceptibility.
The uniform current spectrum determines the real part

of the optical conductivity, σ′(ω, T ) = π
ωχ

′′[ja0 ](ω, T ). It
is shown in Fig. 3(a). At T ≪ TFL (blue/black), it features
a hybridization gap around ω ≃ TNFL, ω

−1 behavior for
TFL < ω < TNFL, and a Drude peak at low frequencies
below TFL. These features emerge as the temperature is
lowered from T ≫ TNFL: The hybridization gap forms
around T ≃ TNFL (red), the ω−1 feature emerges between
TFL < T < TNFL (yellow/green) and the Drude peak
finally emerges for T < TFL (blue/black).
The most interesting feature is the ω−1 behavior in

the NFL region. This feature is due to the fact that
χ′′[jai ] (Fig. S2 in Ref. [56]) exhibits a plateau similar
to that of χ′′[Xxz] [Fig. 2(a,c)] for |ω|, T < TNFL. This
plateau is entirely due to the vertex contribution χ′′

vtx[j
a
i ],

which in the NFL region completely dominates the bubble
contribution, |χ′′

vtx[j
a
i ]| ≫ |χ′′

B[j
a
0 ]| [56]. (The same is true

for χ[Xxz].) Remarkably, χ′′[jai ], just as χ
′′[Xxz], is well

described by the ansatz (4) (see Fig. S6 of Ref. [56]),
implying ω/T scaling and Planckian dissipation of current
fluctuations. This implies that in the NFL region TFL <
T < TNFL, σ

′(ω, T ) is governed by a scaling function S ′:

Tσ′(ω, T ) = (T/ω)πX ′′(ω/T ) = S ′(ω/T ) . (7)

Figure 3(b) shows that Tσ′(ω, T ) is indeed well described
by this scaling function (black dashed line). We discuss
scaling of the imaginary part σ′′(ω, T ) in Ref. [56].

The scaling behavior (7) has two striking implications
for the NFL region TFL < T < TNFL: First, a scaling col-
lapse is achieved for Tασ′(ω, T ) with α = 1, an exponent
which is also found experimentally [16, 18, 24]. Second,
the static conductivity σ(T ) = σ′(0, T ) = S ′(0)/T scales
as 1/T , implying T -linear behavior for the resistivity,
ρ(T ) = 1/σ(T ) ∝ T . This is born out in Fig. 3(c): ρ(T )

has a maximum around TNFL, where the hybridization
gap forms, then decreases with T approximately ∝ T for
TFL < T < TNFL, before finally becoming ∝ T 2 below TFL.
In Ref. [56], we analyze the complex optical conductiv-
ity, see Sec. S-IV, Fig. S10. In the high-T part of the
NFL region TNFL/10 <∼ T <∼ TNFL, it shows qualitative
similarities to data on CeCoIn5 of Ref. [65]: a dynami-
cal transport scattering rate ∝ ω2, and a renormalized
transport scattering rate ∝ T 2.

In the FL region, on the other hand, the Drude peak
and ρ(T ) ∝ T 2 behavior are due to the nonlocal bubble
part χnl,B[j]. These features can be understood from the
single-particle decay rate [66],

γ∗ = Zγ , γ = ImG−1
kF

(0) , Z−1 = ∂ωReG
−1
kF

(0) , (8)

shown in Fig. 3(d). In the FL region, γ∗ ∝ T 2 as expected,
leading to a Drude peak of width ∝ T 2 and ρ(T ) ∝ T 2,
i.e., these features are due to long-lived coherent QP
carrying the current. Since we neglect nonlocal vertex
contributions, the transport relaxation rate, and thus the
T 2 prefactor of ρ(T ), is set purely by the QP decay rate
and is therefore very likely overestimated [67].

In the NFL region, we find Z ∝ T and γ ∝ lnT , leading
to γ∗ ∝ T lnT . The latter is also found in the marginal
FL (MFL) [68] approach, but there, by contrast, one has
Z ∝ lnT and γ ∝ T . Further, Fig. 3(d) shows γ∗(T ) > T
in the NFL region, i.e., single-particle excitations are not
Planckian and decay faster than, for instance, current or
Xxz fluctuations. We emphasize that in the NFL region
(in contrast to the FL region), the transport relaxation
rate is not set by the single-particle decay rate: there,
σ(ω, T ) and thus ρ(T ) are qualitatively influenced by the
vertex contribution χ′′

vtx[j
a
i ], as discussed above.

We conjecture that the following two features in
Fig. 3(c) are artifacts of neglecting nonlocal vertex contri-
butions: First, ρ(T ) shows a slight deviation from perfect
T -linear behavior. This deviation results from the fact
that the bubble part of the nonlocal current susceptibil-
ity, χB,nl[j], does not show ω/T scaling [not visible in
Fig. 3(b)]. In Sec. S-IID of Ref. [56], we provide indica-
tions that the full χnl[j] does show scaling of the same
type as χ′′[jai ](ω), which would imply perfect T -linear be-
havior. Second, ρ(T ) has a shoulder somewhat below TFL.
This likely reflects the above-mentioned overestimation
of the T 2 prefactor of ρ(T ) in the FL region.

Discussion and Outlook.—Our work provides a promis-
ing route towards an intrinsic strange metal. However, we
have not yet achieved a full understanding of the current
decay mechanism. An inherent feature of (C)DMFT is
that the interaction vertex does not ensure conservation of
crystal momentum [32, 69]. Therefore, electron-electron
scattering does not conserve crystal momentum, leading
to current decay. This mechanism usually manifests as a
dominant bubble contribution (in single-site DMFT, this
is the only contribution). A dominant bubble contribution
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is also key to the Yukawa–SYK approach [28] to strange
metals. There, a disordered Yukawa coupling leads to non-
conserved momentum in scattering processes. The result
is a MFL where strange-metal scaling arises in the bubble
contribution and interaction disorder is needed to avoid
its cancellation by the vertex contribution. By contrast,
in our 2CDMFT approach the strange-metal scaling in the
NFL region arises entirely from the vertex contribution,
and not at all from the (much smaller) bubble contribution.
This strongly suggests that the current decay mechanism
is not due to the non-conservation of crystal momentum
at the interaction vertex. Our 2CDMFT approach also
includes crystal momentum conserving Umklapp scatter-
ing processes between momenta around k = (0, 0, 0) and
k = (π, π, π) which flip the current. We conjecture that
these cause our observed strange-metal scaling.

A detailed analysis of the current decay mechanism is
left for future work. This will involve studying (i) the
frequency and temperature dependence of three- and four-
point vertices in the NFL region and (ii) the relevance of
Umklapp scattering in 2CDMFT.
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In Sec. S-I, we provide basic definitions and expres-
sions regarding the Fourier transforms of operators and
regarding the optical conductivity. Section S-II provides
additional information on the numerical computation of
the optical conductivity, the role of vertex contributions,
and to what extent the Drude term vanishes. Section S-
III provides more information on the scaling functions X
and S. In Sec. S-IV, we discuss scaling of the imaginary
part of the optical conductivity and provide an analysis
of the complex optical conductivity similar in spirit to the
analysis of experimental data on CeCoIn5 of Ref. [65].

S-I. OPTICAL CONDUCTIVITY

In this section, we state some textbook [67] formulas
that are important in the context of the optical conduc-
tivity for the PAM.

A. Fourier transforms of operators

We define the Fourier transform of fermionic creation
and annihilation operators in a unitary fashion,

ckσ =
1√
N

∑

i

e−ik·riciσ , (S1)

ensuring {c†kσ, ck′σ′} = δσσ′δkk′ . For bosonic observables
Oi like the current density, on the other hand, we define
it as an orthogonal but non-unitary transformation,

Oq =
1

N

∑

i

e−iq·riOi . (S2)

This ensures that the expectation values ⟨Oq⟩ and ⟨Oi⟩
scale the same way with N in the thermodynamic limit.
(if we had used a unitary Fourier transforms for bosonic
observables, ⟨Oq⟩ ∼

√
N would not be well-defined in the

thermodynamic limit). The same goes for source fields
like the vector potential.

B. Current and conductivity

In presence of a vector potential A, the Hamiltonian (1)
is modified by replacing the hopping between site i and
i+ a by t→ t exp (−ieAa

i ), where a is some unit lattice
vector. The current density is

jai = − ∂H

∂Aa
i

= −ite
∑

σ

(
e−ieAa

i c†iσci+aσ − h.c.
)
. (S3)

If no lattice symmetry is broken, the current response to
a q- and ω-dependent electric field Eq(ω) = iω+Aq(ω)
(where ω+ = ω + i0+) takes the form ⟨jaq⟩(ω) =
σq(ω)E

a
q(ω), where the dynamical conductivity is given

by

σq(ω) =
1

iω+

[
⟨K̂⟩ − χ[jaq](ω)

]
, (S4)

K̂ = − te
2

N

∑

iσ

(
c†iσci+aσ + h.c.

)
,

and jaq = 1
N

∑
i e

−iq·rijai . In a d-dimensional hypercubic

lattice, ⟨K̂⟩ is proportional to the kinetic energy density
ϵkin = d

e2 ⟨K̂⟩.
The optical conductivity σ(ω) = σq=0(ω) is the re-

sponse to a uniform electric field. It can be decomposed
as [57, 58] σ(ω) = σD(ω) + σreg(ω), with

σD(ω) = D

[
δ(ω) + P i

πω

]
, (S5)

D = π
[
χ′[ja0 ](0)− ⟨K̂⟩

]
, (S6)

σreg(ω) = P 1

iω

[
χ′[ja0 ](0)− χ[ja0 ](ω)

]
, (S7)

where P denotes the principal part. The regular term
σreg(ω) describes currents that decay at long times; the
Drude term σD(ω) with Drude weight D describes persis-
tent currents. For a non-superconducting, thermodynam-
ically large lattice model at non-zero temperature, one
expects D = 0.
The optical conductivity fulfills the f -sum rule,

∫ ∞

−∞

dω

π
σ′(ω) = −⟨K̂⟩ , (S8)



S2

which follows when evaluating χ′[ja0 ](0) using the Kramers–
Kronig relation for general susceptibilities,

χ′[O](ω′) = −P
∫ ∞

−∞
dω χ′′[O](ω)/(ω − ω′). (S9)

C. Bubble contribution

The bubble contribution to the current susceptibility is
defined as the susceptibility of a free system but with the
Green’s functions replaced by the Green’s function of the
interacting system. We shortly outline the corresponding
formulas for the bubble contribution to the local current
susceptibility, χB[j

a
i ] and to the uniform q = 0 suscep-

tibility, χB[j
a
0 ]. Since the current operator in Eq. (S3)

consists only of c-electron operators, the formulas for
the bubble contribution only involve c-electron Green’s
functions. For brevity, we suppress the c labels on all
Green’s functions, spectral functions and self-energies in
this section and in Sec. S-II A. The current operators can
be written in terms of the bare current vertex J a,

jai =
∑

ℓℓ′σ

J a
iℓℓ′c

†
ℓσcℓ′σ , (S10a)

J a
iℓℓ′ = −ite (δiℓδi+aℓ′ − δi+aℓδiℓ′) , (S10b)

jaq =
1

N

∑

i

e−iq·rijai =
∑

kk′σ

J a
qkk′c

†
kσck′σ (S10c)

J a
qkk′ =

−2te

N
δq,k−k′ei

q·a
2 sin

[(
k− q

2

)
· a

]
. (S10d)

We define the polarization bubble (with Im z > 0),

Pg,g′(z) =T
∑

m

Gg(iωm)Gg′(iωm + z) (S11)

=

∫ ∞

−∞
dω f(ω)[Ag(ω)Gg′(ω + z) (S12)

+Ag′(ω)Gg(ω − z)] ,

where G(z) is the Masubara Green’s function, A(ω) the
corresponding spectral function, f(ω) the Fermi-Dirac
distribution function and g and g′ are quantum numbers
like momentum, spin or spatial distance, rij = ri − rj
and we assume G depends on |ri − rj | only.

The bubble contribution to the q = 0 current suscepti-
bility is

χB[j
a
0 ](z) =

8t2e2

N

∑

k

sin2(k · a)Pk,k(z)

=
8t2e2

N

∑

k

sin2(k · a)
∫ ∞

−∞
dω f(ω)× (S13)

[Ak(ω)Gk(ω + z) +Ak(ω)Gk(ω − z)] .

The corresponding spectral function is (ν± = ν ± i0+)

χ′′
B[j

a
0 ](ν) =

i

2π

[
χB[j

a
0 ](ν

+)− χB[j
a
0 ](ν

−)
]

=
8t2e2

N

∑

k

sin2(k · a)Ik(ν) (S14a)

Ik(ν) =

∫ ∞

−∞
dω [f(ω)−f(ω+ν)]Ak(ω)Ak(ω+ν) .

(S14b)

The bubble contribution to the local current-current
susceptibility (involving one link in the lattice, i.e., two
sites) is then

χB[j
a
i ](z) = 2

∑

mm′

∑

nn′

J a
imm′J a

inn′Prmn′ ,rm′n(z)

=− 4t2e2
∫ ∞

−∞
dω f(ω)× (S15)

[
[Ari,i+a(ω)Gri+a,i(ω + z)−Ari,i(ω)Gri,i(ω + z)]

+[Ari+a,i(ω)Gri,i+a(ω − z)−Ari,i(ω)Gri,i(ω − z)]
]
.

The local current-current spectral function is

χ′′
B[j

a
i ](ν) =

i

2π

[
χB[j

a
i ](ν

+)− χB[j
a
i ](ν

−)
]

(S16)

= 4t2e2
∫ ∞

−∞
dω [f(ω)− f(ω + ν)]× (S17)

[Ari,i(ω)Ari,i(ω + ν)−Ari,i+a(ω)Ari+a,i(ω + ν)] .

S-II. OPTICAL CONDUCTIVITY: NUMERICAL
COMPUTATION

In this section, we describe how we compute the bub-
ble contribution χ′′

B[j
a
0 ](ν) [Eq. (S14a)] in a numerically

efficient way, how we treat the electronic self-energy close
to zero frequency and temperature, and how we deal with
vertex contributions and fulfillment of the f sum rule. We
further discuss the potential role of vertex contributions
for short-ranged nonlocal current fluctuations.

A. Bubble contribution

Computing the bubble contribution to the optical con-
ductivity requires numerical evaluation of Eq. (S14a).
This is challenging, especially close to ν = 0 or T = 0,
due to the close-to-singular behavior of Ak(ω)Ak(ω+ν)
in the integrand.
To deal with this, we exploit our knowledge of

G−1
k (ω+) = ω+ + µ− ϵk − Σk(ω

+). It is a smooth func-
tion of ω and known on a predetermined frequency grid
ω ∈ {ωi}. Since G−1

k (ω+) is a smooth function, we rep-
resent it by linear interpolation, G−1

k (ω+) = ai + biω,
for Ii = [ωi, ωi+1]. Due to the logarithmic resolu-
tion of NRG, we use a logarithmic frequency grid with
10−12 ≤ |ωi| ≤ 104 and 200 grid points per decade.

By writing

Ak(ω)Ak(ω+ν)=
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FIG. S1. Self-energy of the f electrons for the self-consistent
2IAM at different temperatures. (a,b) Bonding orbital (+)
and (c,d) anti-bonding orbital (−). Solid lines denote the nu-
merical data, dashed lines (not visible whenever they coincide
with solid lines) denote the extrapolated self-energy. Visible
differences occur only for |ω|, T < 10−1TFL, i.e., well below
the FL scale TFL.

1
π Im

[
Gk(ω

+)
Gk(ω+ν

+)−Gk(ω+ν
−)

2πi

]
, (S18)

the frequency integral in Eq. (S14b) can be computed by
evaluating the integrals,

I±k (ν) =

∫ ∞

−∞
dω [f(ω)−f(ω+ν)]Gk(ω

+)Gk(ω+ν
±)

=
∑

i

∫

Ii

dω
αi + βiω

(ai + biω)(ci,± + di,±ω)
(S19)

where αi+βiω is a linear interpolation of f(ω)−f(ω+ν)
on the interval Ii and ai + biω and ci,± + di,±ω are the
linear interpolations of G−1

k (ω+) and G−1
k (ω + ν±), re-

spectively. The integral over every interval Ii in Eq. (S19)
is very simple to evaluate exactly, summing up the con-
tributions from all intervals gives I±k (ν).

The k sum/integral in Eq. (S14a) is finally computed us-
ing a standard integrator. (We use MATLAB’s integral
function.) We use the periodized self-energy when com-
puting Eq. (S14a), cf. App. A.3 of Ref. [39]. In our case,
this allows us to reduce the three-dimensional k integral
in Eq. (S14a) to a one-dimensional one, cf. Eq. (A10) of
Ref. [39].

B. Self-energy at ω, T ≃ 0

The Drude peak which emerges in the optical conduc-
tivity at T < TFL for small frequencies arises due to
−ImΣ(ω+) = aω2 + bT 2 behavior for |ω|, T < TFL. Cap-
turing this ω, T -dependence for very small TFL (≪ TNFL),
as is the current case close to the QCP, is highly chal-
lenging. To achieve this, we keep a large number of
states—up to 40,000 U(1)×SU(2) symmetry multiplets—
in iterative diagonalization and use an interleaved Wilson

chain [59, 60] to keep the computational cost manageable.
We compute the f -electon self-energy by using the sym-
metric improved estimator of Ref. [61] which significantly
reduces numerical artifacts and leads to state-of-the-art ac-
curacy. This accuracy allows us to obtain −ImΣf±(ω+) =
aω2+ bT 2 behavior for |ω|, T ∈ (TFL/10, TFL) (but not for
|ω|, T ∈ (0, TFL/10), because there −ImΣf±(ω+) becomes
smaller than 10−4, and numerical inaccuracies become
significant). Therefore, we fit the coefficients a and b with
the data for (TFL/10, TFL) then extrapolate −ImΣf±(ω+)
to (0, TFL/10) based on the fitting. Figure S1 shows the
low T and ω behavior of −ImΣf±(ω+) before (solid) and
after (dashed) extrapolation. The c-electron self-energy
Σc±(ω+) = V 2/

(
ω+ − ϵf − Σf±(ω+)

)
(which is not one-

particle irreducible) follows from Σf±(ω+).
Note that in an FL, aπ2/b = 1 should hold. On the

other hand, our fits yield aπ2/b = O(2–3) due to the
broadening used in NRG, which overestimates a. We have
checked that a → b/π2 when we lower the broadening
width. This however comes at the expense of severe
discretization artifacts. Since the exact value of a is
irrelevant to the present work, we preferred to adopt the
procedure described above.

C. Local vertex contributions

We stated several times in the main text that vertex con-
tributions are crucial for the current-current correlation
functions to capture the strange metallicity and Planck-
ian dissipation. As described in the main text, we have
included vertex contributions only for the local contribu-
tion, χ[jai ], to the uniform current susceptibility, χ[ja0 ] =

χ[jai ]+χnl[j
a
0 ], where j

a
i = −ite

∑
σ(c

†
iσci+aσ−h.c.) is the

current between lattice sites i and i+a, the neighbor of i in
a-direction. The main reason is that we do not currently
have access to three- or four-point correlation functions.
By choosing sites i and i + a as the two sites of our
self-consistent two-impurity model, we can compute χ[jai ]
directly as a two-point correlation function using NRG.
Here, we provide supplemental data that shows to what
extent the full local susceptibility χ[jai ] is influenced by
its vertex contribution χvtx[j

a
i ] = χ[jai ]− χB[j

a
i ]. To this

end, we compare χ[jai ] to its bubble contribution χB[j
a
i ],

computed via Eq. (S17). The integrand of the latter is
not close-to-singular [in contrast to that of Eq. (S14b)]
and can therefore be efficiently evaluated via a standard
integrator.

The bare output of NRG are discrete spectra for χ′′[jai ],
which are subsequently broadened through log-Gaussian
broadening kernels, see Ref. [62] for more details. The
spectral functions used in Eq. (S17) to compute χ′′

B[j
a
i ]

on the other hand are obtained by computing the self-
energy via the symmetric improved estimators of Ref. [61];
χ′′
B[j

a
i ] therefore contains finer high-frequency details than

achievable with NRG for χ′′[jai ]. To compare the full
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FIG. S2. (a) Spectrum of the local current susceptibility
χ′′[jai ](ω, T ). Solid lines are full susceptibilities χ′′[jai ], dashed
lines are the bubble contributions χ′′

B[j
a
i ]. χ′′

B[j] is almost
temperature independent, which is why the χ′′

B[j
a
i ] curves for

T < 10−3 are covered by the T = 10−3 curve. χ′′
B[j

a
i ] and

χ′′[jai ] are almost identical at T = 10−3. (b) The ratio between
full susceptibility and bubble contribution.

χ′′[jai ] and its bubble contribution χ′′
B[j

a
i ] [computed from

Eq. (S17)], we, therefore, smear out the continuous curve
of χ′′

B[j
a
i ] by further applying the log-Gaussian kernel used

to broaden the discrete data for χ′′[jai ], to match their
resolution levels. We emphasize here that this broadening
of χ′′

B[j
a
i ] only affects high-frequency details at |ω| > TNFL,

the basic features remain the same.
Figure S2(a) shows the spectrum of the full local current

susceptibility χ′′[jai ] and of the corresponding bubble
contribution χ′′

B[j
a
i ], while Fig. S2(b) shows their ratio.

The bubble contribution captures only the high-frequency
behavior at |ω|, T > TNFL well: the spectra in Fig. S2(a)
almost coincide and the ratios in Fig. S2(b) are close to
1.

On the other hand, the plateau emerging below |ω|, T <
TNFL is not captured at all by the bubble contribution, i.e.,
both the ω/T scaling and the Planckian dissipation dis-
cussed in the main text and in Sec. S-III result from vertex
contributions. The ratio shown in Fig. S2(b) increases
dramatically in the NFL region (TFL < |ω|, T < TNFL) by
several orders of magnitude and saturates close to 103 in
the FL region (|ω|, T < TFL).

D. Estimate of nonlocal vertex contributions

To estimate what to expect for nonlocal current fluc-
tuations in terms of scaling and vertex contributions,
we define “current” operators that lie across the cluster
boundaries,

ji = (−1)i
ite√
5

(
c†iσaiσ − h.c.

)
, (S20)

where aiσ annihilates a spin-σ electron in the first bath
orbital (within the Wilson chain) that directly couples
to the c orbital of the cluster site i = 1, 2. According
to the effective medium construction of DMFT (which
defines bath sites by replacing the interaction on the
original lattice sites by the self-energy, cf. Sec. III D of
Ref. [69]), the Green’s function of aiσ is the same as

FIG. S3. (a,b) Absolute values of the spectra of different nonlo-
cal current susceptibilities, χ′′[jai , j1](ω, T ) and χ

′′[j1, j2](ω, T ).
Solid lines are full susceptibilities, dashed lines are the bubble
contributions. Cusps indicate sign changes in the spectra.
(c,d) Ratios between the spectra of the full susceptibility and
the bubble contribution. The cusps at |ω| > 10−1 arise due to
a slight misalignment between the sign changes in χ′′ and χ′′

B.

that of a symmetric superposition of the five nearest
neighbors (on the lattice) of site i which are not located
on the same cluster. Due to that, we can interpret these
orbitals as a proxy for the aforementioned symmetric
superposition. The current operators in Eq. (S20) can
therefore be interpreted as a proxy for the average (hence
normalization by

√
5) current between these five nearest-

neighbor sites and the corresponding cluster site. Since
there is no specific direction in the lattice associated
with these currents, we did not specify a superscript a in
Eq. (S20). We emphasize that this correspondence is not
exact since the first bath sites are non-interacting orbitals
that belong to the dynamical mean field. Correlators
involving j1 or j2 do not enter the results shown in the
main text.

We compute χ[jai , j1] and χ[j1, j2] to estimate the be-
havior of nearest-neighbor and next-nearest-neighbor cur-
rent susceptibilities, respectively. Their spectra, includ-
ing the corresponding bubble contribution, are shown in
Fig. S3(a,b). The spectra of the full susceptibilities again
show a similar plateau as observed for the local current
susceptibility. Figure S3(c,d) shows the ratio between full
susceptibility and bubble contribution. Similarly to the
local current susceptibility, the ratio is somewhat close to
1 for |ω|, T > TNFL and becomes large for |ω|, T < TNFL,
suggesting that vertex contributions are important also
on the nonlocal level in this region.

In Fig. S4, we further illustrate that χ′′[jai , j1] and
χ′′[j1, j2] show ω/T scaling very similar to χ′′[jai ]. Since
the behavior of the nonlocal susceptibilities is qualitatively
similar to that of the local susceptibility, we expect that
the full nonlocal current susceptibility χ′′

nl[j], in contrast
to its bubble contribution χ′′

B,nl[j], will show similar ω/T
scaling as χ′′[jai ]. As discussed in the main text, we expect
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FIG. S4. Current spectra versus frequency (left columns) and
versus ω/T (right columns). (a,b) Local current spectrum.
(c,d) Proxy to the nearest-neighbor current spectrum. (e,f)
Proxy to the next-nearest-neighbor current spectrum.

that the full inclusion of vertex contributions in χ′′
nl[j] will

ameliorate or fully avoid the artifacts seen in Fig. 3(c)
for the resistivity ρ(T ): (i) in the NFL region, the nearly-
T -linear behavior will become fully-T -linear; and (ii) in
the FL-to-NFL crossover region, the shoulder will become
less prominent or disappear.

E. Drude weight

In this section, we discuss the Drude weight of Eq. (S6),
D/π = χ′[ja0 ](0)− ⟨K̂⟩. According to Eq. (S5), if D ̸= 0
that would imply (i) a δ(ω) contribution to σ′(ω) and
therefore zero resistivity (i.e., persistent currents), and
(ii) a 1/ω contribution in σ′′(ω). Since our study of σ(ω)
considers only non-superconducting solutions at T > 0,
we expect that our system does not support persistent
currents and D = 0. Accordingly, we have set D = 0 for
all results shown in this manuscript.
As a consistency check, we have also computed the

Drude weight directly. This is a difficult task, since the
numerical challenges involved in computing χ′[ja0 ](0), a
uniform, zero-frequency susceptibility, and ⟨K̂⟩, a local,
equal-time expectation value, are quite different. More-
over, our computation of χ′[ja0 ] involves a rather crude
approximation [Eq. (6) of the main text]. Nevertheless,
we find |D|/π to be remarkably small, <∼ 10−3, with an
estimated numerical uncertainty that is likewise of the
order of 10−3. This justifies our choice to set D = 0.
Below, we describe how we obtained these values.

Figure S5 shows the Drude weight D/π, with the static
current response χ′[ja0 ](0) computed via Eq. (6) in the

FIG. S5. The Drude weight D/π = χ′[ja0 ](0)−
〈
K̂
〉
vs. tem-

perature. For the upper (or lower) row of the legend, χ′[ja0 ](0)
was approximated as χ′

B[j
a
0 ](0) (or χ

′
B[j

a
0 ](0)+χ

′
vtx[j

a
i ](0)), i.e.,

using only the bubble contribution (or including also the local
vertex contribution). When computing these χ′[j](0) terms via
the Kramers–Kronig transformation (S9), we either integrated
over all ω ∈ R (solid lines) or only high frequencies |ω| > TNFL

(dashed lines). Since solid and dashed lines almost match,
χ′[j](0) is governed by high-frequency contributions, where
NRG has poorer frequency resolution. From that perspective,
the values for the Drude weight found here, D/π <∼ 10−3, are
remarkably close to the expected value of zero.

main text. Both the bubble contribution χ′
B[j

a
0 ](0) and

our locally vertex-corrected result χ′
B[j

a
0 ](0) + χ′

vtx[j
a
i ](0)

show a deviation from ⟨K̂⟩ of the order of 10−3. The
inclusion of χ′

vtx[j
a
i ](0) slightly reduces this deviation

at low T but slightly increases it at high T . The solid
and dashed lines in Fig. S5 compare results obtained by
computing the χ′[ja0 ](0) contributions via the Kramers–
Kronig transform (S9) in two ways, either including the
spectral weight from all frequencies, ω ∈ R (solid), or
only from large frequencies, |ω| > TNFL (dashed). Since
the solid and dashed lines almost match, the contribution
to D from low frequencies |ω| < TNFL (including the
contribution from the plateau in χ′′

vtx[j
a
i ](ω)) is negligible.

Therefore, the non-fulfillment of D = 0 is mainly due to
inaccuracies at high frequencies.

High-frequency inaccuracies are to be expected in NRG
spectra, due to the use of logarithmic discretization and an
asymmetric log-Gaussian broadening kernel (cf. Eqs. (17)
and (21) from Ref. [62]), which can lead to slight shifts
in spectral weight. The broadened spectral function is
evaluated on a logarithmic frequency grid and approx-
imated by linear interpolation between grid points. In
practice, this means that if a discrete spectrum of the
form χ′′(ω) =

∑
j χ

′′
j δ(ω − Ej) is broadened, the integral

of the broadened spectrum can differ slightly from the
actual weight,

∑
j χ

′′
j , typically by an amount ∼ O(10−3).

As a result, the Kramers–Kronig transformation used to
compute χ′(0) = −P

∫
χ′′(ω)/ω usually induces an er-

ror ∼ O(10−3), compared to the result directly computed
from the discrete data, χ′(0) = −∑

j χ
′′
j /Ej . Since our ap-

proximation of χ′′[ja0 ](ω) involves the bubble contributions
χ′′
B[j

a
0 ](ω) and χ

′′
B[j

a
i ](ω) which are only available as broad-
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ened spectral functions, direct computation of χ′
B[j

a
0 ](0)

from discrete data is not possible. All of the aforemen-
tioned issues, on top of the approximation (6), can lead to
inaccuracies in the spectral weights and their correspond-
ing frequencies. We have checked that shifting spectral
positions by O(1%), i.e., ω → (1±10−2)ω and normalizing
the spectra accordingly, i.e., χ′′(ω) → (1± 10−2)−1χ′′(ω),
is sufficient to change χ′[ja0 ](0) by O(10−3). For all these
reasons, we estimate the numerical uncertainty of our
determination of the Drude weight D to be at least of the
order of 10−3.

S-III. SCALING FUNCTION

In the main text, we proposed the phenomenological
ansatz χ̃′′(ω, T ) to capture the Xxz and current spectra
in the NFL region. In the limit of |ω| ≪ TNFL, the
ansatz is governed by the scaling function (5), X (x) =
X ′(x)− iπX ′′(x). To ease future referencing, we duplicate
the ansatz (4) and its relation (5) to the scaling function
here:

χ̃′′(ω, T ) = χ0

∫ TNFL

T

dϵ

π

(1− e−
ω
T )( ϵ

T )
νbT

(ω − aϵ)2 + (bT )2
, (S21)

χ̃(ω, T ) ≃ X ′
0

( T

TNFL

)
+ X ′

(ω
T

)
− iπX ′′

(ω
T

)
, (S22)

In this Section, we motivate the ansatz, derive the scaling
function, and provide the detail of the fitting, for the Xxz

susceptibility. The discussion for other susceptibilities
showing a plateau and scaling in the NFL region (e.g.,
the current susceptibility) is analogous.

We start with representing the greater correlation func-
tion χ>[X

xz] in terms of a superposition of coherent
excitations,

χ>[X
xz](t) = −iθ(t)⟨Xxz(t)Xxz⟩ (S23)

≃ χ̃>[X
xz](t) = −i

∫ TNFL

T

dϵ
( ϵ
T

)ν

e−i(aϵ−ibT )t .

These coherent excitations have mean energy aϵ, decay
rate bT , and a power-law density of states with exponent
ν. We assume that the spectrum of this ansatz,

χ̃>[X
xz](ω) = −i

∫ ∞

0

dt ⟨Xxz(t)Xxz⟩eiω+t , (S24)

χ̃′′
>[X

xz](ω) = − 1

π
Im χ̃>[X

xz](ω) ,

captures the low-frequency behavior, |ω| < TNFL. High
frequencies |ω| > TNFL are not governed by the quantum
critical point and contain information on the local-moment
behavior which is not of interest here. The spectrum
should also fulfill the fluctuation-dissipation theorem,

χ̃′′
>[X

xz](−ω) = −1− e−ω/T

1− eω/T
χ̃′′
>[X

xz](ω) , (S25)

which mainly affects and constrains the very low-frequency
spectrum, |ω| <∼ T . We therefore use our ansatz (S23)
to compute the ω > 0 part of the spectrum (S24) and
we then determine the ω < 0 part via Eq. (S25), i.e., we
enforce Eq. (S25).

The spectrum of the corresponding retarded correlator
is given by

χ̃′′[Xxz](ω) = (1− e−ω/T )χ̃′′
>[X

xz](ω) , (S26)

which leads to the ansatz (S21) for ω > 0. The ω < 0 side
is given by the oddity, χ̃′′[Xxz](−ω) = −χ̃′′[Xxz](ω). The
real part is obtained via the Kramers–Kronig relation,

χ̃′[Xxz](ω) = P
∫ ∞

−∞
dω′ χ̃

′′[Xxz](ω′)
ω − ω′ . (S27)

To get the scaling function X ′′, we take the limit of
TNFL → ∞ in Eq. (S21). (This limit exists for ν < 1,
while our data shows ν ≃ 0.) Equation (S21) is then a
function of x = ω/T ,

X ′′(x) = χ0

∫ ∞

1

dy

π

(1− e−x)yνb

(x− ay)2 + b2
, x > 0 , (S28)

X ′′(−x) = −X ′′(x) .

In Eq. (S27), χ̃′[Xxz](ω) is singular in TNFL/T → ∞ if
ν ≥ 0. Therefore, we split the real part into a potentially
singular static part, χ̃′[Xxz](0), and a non-singular part,
χ̃′[Xxz](ω)− χ̃′[Xxz](0). Using

1

ω − ω′ −
1

−ω′ =
ω

(ω − ω′)ω′ ,

we can take the TNFL/T → ∞ limit of the non-singular
χ̃′[Xxz](ω)− χ̃′[Xxz](0) part,

X ′(x) = P
∫ ∞

−∞
dx′

xX ′′(x′)
(x− x′)x′

. (S29)

This defines the scaling function X (x) = X ′(x)− iπX ′′(x).
For the potentially singular static contribution

χ̃′[Xxz](0), we cannot safely take the TNFL → ∞ limit.
In the TNFL/T ≫ 1 limit, the spectral part χ̃′′[Xxz](ω)
sharply drops to zero for |ω| > TNFL, so that we can
approximate χ̃′[Xxz](0) ≃ X ′

0(T/TNFL), with

X ′
0(y) = −P

∫ y

−y

dx′
X ′′(x′)
x′

. (S30)

X ′
0(T ) describes the contribution of the excitations within

the NFL region to the static response,

χ′
NFL(0) = −P

∫ TNFL

−TNFL

dω′ χ
′′(ω′)
ω′ . (S31)

The remaining contribution from high-energy excitations,

χ′
high(0) = χ′(0)− χ′

NFL(0) , (S32)
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FIG. S6. (a) χ′′[Xxz](ω) and (b) χ′′[j](ω) (solid lines) versus
scaling function X ′′(x) (black dashed line). The grey shaded
area indicates the deviation when fitting at different tempera-
tures. Only curves used in the fitting process are shown, the
ticks on the color bar at the top indicate the temperature, and
the color range is the same as in Fig. 3 of the main text. (c,d)
Corresponding real parts. Insets: NFL contribution to the
static susceptibility. (e,f) Fit parameters at different tempera-
tures. The 95% confidence interval is smaller than the symbol
size.

may dominate the temperature dependence of χ′(0). In
that case, X ′

0(T/TNFL) only governs χ′
NFL(0) but not χ

′(0).
This is for instance the case for the static current sus-
ceptibility, where only χNFL[j]

′(0) follows X ′
0(T ). On the

other hand, χ′[Xxz](0) is well described by X ′
0(T ) up to

an additive constant.

We determine the parameters a, b, ν and χ0 in Eq. (S28)
by fitting logarithms of χ′′

>(ω) to the logarithm of our
scaling ansatz (S28). We employ a least-square fit on a
logarithmic frequency grid with 20 grid points per decade
and frequencies between ωmin = 10−9 and ωmax = TNFL/4,
i.e., we stay well below the crossover temperature TNFL.
Our fits are done for seven logarithmically spaced tem-
peratures between (TFL ≪)10−6.5 and 10−5(≪ TNFL), i.e.,
for temperatures well separated from the crossover tem-
peratures TFL and TNFL. We then determine a scaling
curve by the geometric average over the fitted curves at
different temperatures. The largest deviations from the
geometric average serve as an error bar. X ′(x) and X ′

0(T )
are determined via Eqs. (S29) and (S30), respectively.

Figure S6(a–d) shows the fitting result for χ′′[Xxz](ω)
and χ′′[j](ω). In both cases, our ansatz fits our data
very well, with all temperatures yielding very similar
curves (the grey area, indicating the largest deviations
from the geometric mean, is relatively small). Fig. S6(e,f)

FIG. S7. Effect of log-Gaussian broadening width σ = α lnΛ
on the fit parameter b for (a) χ′′[Xxz](ω) and (b) χ′′[j](ω).

shows the results for the fit parameters a, b and ν. The
fitting parameters for both χ′′[Xxz](ω) and χ′′[j](ω) are
very similar and the variation with temperature is small.
We note that the fits for the highest temperatures are
a little less reliable because the plateau in χ′′(ω) is not
that well developed yet. Most important to us is the
result for b, which varies between 1.153 at T = 10−6.5

and 1.005 at T = 10−5 for χ′′[Xxz](ω) and between 1.130
at T = 10−6.5 and 0.999 at T = 10−5 for χ′′[j](ω). Thus,
our results are consistent with Planckian dissipation, i.e.,
the lifetime of Xxz or current excitations is τ ≃ 1/T , up
to a prefactor close to 1.

The fit parameters also depend on how the discrete
spectral data from NRG is broadened. For our scaling
analysis, we used both a log-Gaussian broadening ker-
nel (cf. Eq. (17) of Ref. [62]) with width σ = 0.7 lnΛ
(Λ = 3) and the derivative of the Fermi-Dirac distribution
with width γ = T/10 (cf. Eq. (21) of Ref. [62]) as linear
broadening kernel. The broadening parameters are chosen
such that the data is almost underbroadened (i.e., dis-
cretization artifacts become visible for smaller broadening
width). In Fig. S7, we show the effect on b of varying the
width σ = α lnΛ of the log-Gaussian broadening kernel.
Most importantly, b remains of order 1 and changes from
b ≃ 1.4 for α = 0.4 (underbroadened) to b ≃ 0.66 for
α = 1.2 (overbroadened). Interestingly, the parameter b
which determines the decay rate decreases with increasing
broadening width. The linear broadening parameter γ
(not shown) appears to have the converse effect, i.e., lower
γ leads to lower b and vice versa.

The scaling function S(x) for the optical conductivity
follows from the scaling function X (x) for the current
susceptibility,

Tσ(ω) = S(x) = − 1

ix
X (x) = S ′(x) + iS ′′(x) ,

S ′(x) =
π

x
X ′′(x) , (S33)

S ′′(x) =
1

x
X ′(x) = P

∫ ∞

−∞
dx′

X ′′(x′)
(x− x′)x′

.

We show and discuss the scaling of the real part of σ in
the main text; the scaling of the imaginary part is shown
in Fig. S8(b).
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FIG. S8. (a) Imaginary part of the optical conductivity at
different temperatures. σ′′(ω) becomes negative around ω <∼
10−3. (b) Dynamical scaling of the imaginary part. In the
NFL region, all curves fall onto the scaling curve S ′′(ω/T ).
Data at ω > 10−3 has been omitted for clarity.

S-IV. COMPLEX OPTICAL CONDUCTIVITY

In this section, we provide data on the imaginary part
of the optical conductivity. Further, we make contact
with recent experimental data on CeCoIn5 from Ref. [65],
where the dynamical scattering rate τ−1(ω) and the dy-
namical effective mass m∗(ω) were studied. Even though
CeCoIn5 has a strange-metal-like τ−1(0) ∝ ρ(T ) ∝ T ,
the authors of Ref. [65] found that both the freqnency
dependence of τ−1(ω) and the temperature dependence
of the renormalized scattering rate τ∗−1 = τ−1(0)/m∗(0)
show FL-like ω2 and T 2 behavior, respectively. We make
contact with these surprising experimental findings by
showing that in our CDMFT+NRG data, (i) τ−1(ω) ∝ ω2

holds at low frequencies (|ω| <∼ T ) throughout the strange-
metal region TFL < T < TNFL; and (ii) τ∗−1 ∝ T 2 holds
for TNFL/10 <∼ T < TNFL while deep in the strange metal,
τ∗−1 ∝ T holds.
The imaginary part σ′′(ω) = Imσ(ω) is shown in

Fig. S8. As expected from our discussion on σ′, also
σ′′ exhibits ω/T scaling in the NFL region, where it is
well described by the scaling curve S ′′(x).

Following Ref. [65], we define the ω-dependent transport
scattering rate τ−1(ω) and effective mass m∗(ω),

τ−1(ω) = Re

[
1

σ(ω)

]
, m∗(ω) = − 1

ω
Im

[
1

σ(ω)

]
, (S34)

σ(ω) =
1

τ−1(ω)− iωm∗(ω)
. (S35)

Since we are interested in the qualitative frequency and
temperature dependence of these quantities, we omitted
the constant prefactors in Eq. (1) of Ref. [65]. Note that
τ−1(0) = τ−1

0 = ρ(T ), which is shown in Fig. 3(c) of the
main text. In a normal FL (without disorder) exhibiting a
usual Drude peak in σ(ω), we expect τ−1

0 ∼ T 2, τ−1(ω) =
τ−1
0 + aω2, while m∗(ω) ≃ m∗(0) = m∗

0 is expected to be
a temperature-independent constant.
Figure S9(a) shows our results for τ−1(ω). It shows

a peak around |ω| = TNFL where the hybridization gap
forms and then decreases towards ω = 0. There, τ−1(0) =
τ−1
0 = ρ(T ) ∝ T for TFL < T < TNFL. At intermediate

FIG. S9. Frequency dependence of (a) the transport scattering
rate τ−1(ω), (b) the effective mass m∗(ω), and (c) τ−1(ω)−
τ−1
0 , where τ−1

0 = τ−1(0) = ρ. (d) Temperature dependence
of τ∗−1 = τ−1

0 /m∗
0 and m∗

0 = m∗(0).

frequencies within the NFL region (max(TFL, T ) < |ω| <
TNFL), τ

−1(ω) has a non-trivial ω- and T -dependence
and does not seem to follow a simple power law with
possible logarithmic corrections. In this region, the optical
conductivity does not fit to a usual Drude peak. This
non-Drude behavior is most clearly visible from our data
for σ′(ω, T ) [Fig. 3(a) in the main text], which shows a
ω−1 dependence in the NFL region, while a usual Drude
peak would imply an ω2 dependence. Similar non-Drude
behavior of the optical conductivity has been observed in
YbRh2Si2 [16, 18].

Remarkably, in the NFL region (TFL < T < TNFL) at
low frequencies |ω| <∼ T , we also find τ−1(ω)− τ−1

0 ∼ ω2

similar to a FL, cf. Fig. S9(c). An ∼ ω2 dependence of
τ−1(ω) has also been found in CeCoIn5, cf. Fig, 4(a,c)
of Ref. [65] and its discussion. However, an important
difference to normal FL behavior lies in the temperature
dependence of the ω2 prefactor of τ−1(ω)−τ−1

0 = a(T )ω2:
in the NFL strange-metal region, a(T ) is temperature
dependent, which is not the case in a normal FL phase.
At low frequencies, m∗(ω) ≃ const. [c.f. Fig. S9(b)] and
τ−1
0 ∼ 1/T , hence the ω/T scaling of σ(ω, T ) we have
shown in this work dictates a(T ) ∼ 1/T . This is in line
with the data shown in Fig. S9(c).

We emphasize that in our results, τ−1(ω) is not propor-
tional to −ImΣ(ω) (without vertex contributions, a pro-
portionality would be expected). In our CDMFT+NRG
approach to the PAM, −ImΣ(ω) has a logarithmic fre-
quency and temperature dependence, cf. Figs. 11 and 12
of Ref. [39]. The frequency and temperature dependence
τ−1(ω) discussed above is different from that. This again
directly illustrates the importance of vertex contributions.
In an MFL [68] as it appears for instance in the Yukawa–
SYK approach [28] with interaction disorder, the strange-
metal behavior arises due to a dominant bubble contri-
bution and therefore τ−1(ω) ∼ −ImΣ(ω) ∼ max(T, |ω|)
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FIG. S10. (a) Scattering rate τ−1
0 = ρ(T ) versus temperature

for T <∼ TNFL ≃ 1.5 · 10−4 for the PAM. Green squares are
data points, and the blue line is a spline interpolation that
serves as a guide to the eye. (b) Scattering rate τ−1

0 (green
squares) and rescaled resistivity (blue line) for CeCoIn5 close
to its coherence temperature T ∗ = 40K. The data in (b)
is adapted from Fig. 4(b) of Ref. [65]. (c) Renormalized
scattering rate (blue circles) and effective mass (red squares)
versus temperature for the PAM. The black dashed line is
a quadratic fit to the renormalized scattering rate in this
temperature region. (d) Renormalized scattering rate (blue
circles) and effective mass (red squares) versus temperature
for CeCoIn5, adapted from Fig. 4(d) of Ref. [65].

would be linear in frequency.
Figure S9(b) shows m∗(ω). In the NFL region (TFL <

T < TNFL), m
∗(ω) is strongly frequency dependent around

the NFL scale, ω ≃ 10−3–10−4 ≃ TNFL, and then saturates
to an almost frequency and temperature-independent
value m∗(ω) ≃ m∗(0) = m∗

0. The weak frequency and
temperature dependence of m∗(ω) does not seem to follow
a simple power law. Interestingly, even though there are
no well-defined QPs in the strange-metal region, there
nevertheless seems to be a somewhat well-defined effective

mass m∗
0. We emphasize though that in the NFL region,

m∗
0 ≃ 5 · 104 ∼ 10/TNFL is orders of magnitude smaller

than in the FL region, where m∗
0 ≃ 1.5 · 107 ∼ 1/TFL,

cf. Fig. S9(d). The effective mass in the NFL region is
therefore decisively distinct from the QP mass in the
low-temperature FL region.

In Fig. S9(d), we show the temperature dependence of
the renormalized scattering rate τ∗−1 = τ−1

0 /m∗
0 (blue),

together with m∗
0 (red). Deep in the NFL region, we

find τ∗−1 ∼ T , since τ−1
0 ∼ T and m∗

0 = const. In-
terestingly, in the crossover region between T ≃ TNFL

and T ≃ 10−1TNFL, τ
∗−1 deviates from the linear-in-T

behavior and is consistent with FL-like T 2 behavior.

A similar T 2 behavior was reported for CeCoIn5 in
Ref. [65], where this behavior was interpreted as evi-
dence for a hidden Fermi liquid. Our calculations suggest
that the T 2 behavior is rather a crossover behavior and
measurements at lower temperatures are necessary for a
definite conclusion. Such measurements are presumably
not possible in CeCoIn5 due to its relatively high Tc. A
promising candidate material to clarify whether τ∗−1 ∼ T
or ∼ T 2 may be YbRh2Si2. To emphasize the similarity
between the experimental data on CeCoIn5 and our re-
sults on the PAM more visually, we show the resistivity
ρ(T ) of the PAM in Fig. S10(a) on a linear scale in the
crossover region, next to the corresponding experimental
data on CeCoIn5 [Figs. S10(b)], adapted from Fig. 4(b)
of Ref. [65]. In Figs. S10(c) and (d), we further show the
data for the renormalized scattering rate and the effec-
tive mass for both the PAM and CeCoIn5, respectively
(adapted from Fig. 4(d) of Ref. [65] for the latter). The
experimental data on CeCoIn5 and our numerical data on
the PAM show remarkable qualitative agreement in the
crossover region: (i) the resistivity has a broad maximum
and turns to linear-in-T ; (ii) the renormalized scattering
rate τ∗−1 ∝ T 2; and (iii) the effective mass m∗

0 increases
with temperature in a remarkably similar fashion.
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4 Conclusion and Outlook

In this thesis, we have presented results relevant to Kondo breakdown (KB) quantum criticality
in heavy fermions (HF). We obtained these results by conducting numerical studies of two
toy models, the Kondo-Heisenberg model (KHM) and the periodic Anderson model (PAM).

In the first part of this thesis, we developed a controlled bond expansion (CBE) scheme for
matrix product state (MPS) algorithms. CBE offers an update scheme for MPS methods
that mirrors the favorable convergence properties of 2-site updates with a computational
cost that is only marginally higher than that of 1-site updates. We applied CBE to the
density matrix renormalization group (DMRG) for ground state search in Ref. [P2] and to
the time-dependent variational principle (TDVP) for MPS in Ref. [P3]. Due to the reduced
computational cost, we were able to tackle the KHM on a 4-leg cylinder using CBE–DMRG
in Ref. [P2]. This allowed us to show that this model exhibits two phases that differ in their
Fermi surface (FS) volumes, a large FS Kondo phase and a small FS RKKY phase. The
study of a putative KB quantum critical point (QCP) separating these two phases is left for
future work.

In the second part, we obtained an extensive set of results on the PAM using 2-site cellular
dynamical mean-field theory (2CDMFT) with the numerical renormalization group (NRG)
as an impurity solver. There, we identified and studied a KB–QCP and its vicinity in
detail, facilitated by the exceptional frequency and temperature resolution of NRG. In
Ref. [P4], we were able to answer numerous questions or uncertainties that were left open
by previous studies [DLCK08a, DLCK08b, MBA10, THKD11]. We confirmed the findings
in Refs. [DLCK08a, DLCK08b] where a KB–QCP was found and interpreted as an orbital
selective Mott transition (OSMT) and we confirmed that this OSMT is continuous. Further,
we showed that the FS undergoes a discrete jump as the system is tuned through the QCP.
We were able to unambiguously connect this FS jump to a continous, momentum selective
sign change of the effective f -electron level position. This sign change results in the emergence
of a dispersive pole in the f -electron self-energy and a Luttinger surface (LS) at the momenta
where this pole crosses the Fermi level. Remarkably, in contrast to previous results based
on auxiliary particle approaches [SSV03, SVS04, Voj10, Sac23] and extended dynamical
mean-field theory (EDMFT) [SRIS01, ZGS03], we find that c and f electrons retain their
low-energy hybridization in the small FS RKKY phase, i.e. the QP in this phase are also
hybrid c-f objects. Further, we find that the RKKY phase exhibits a three-band structure,
which is surprising since the PAM only hosts two orbitals per lattice site.

We were further able to show that the 2CDMFT self-consistency conditions stabilize a
novel non-Fermi liquid (NFL) fixed point that governs the QCP and the quantum critical
region at non-zero temperatures. The existence of such an NFL fixed point is unexpected
since similar fixed points found in impurity models are unstable to perturbations [FHLS03]
which are present in the 2CDMFT approach to the PAM. In Ref. [P5], we extensively studied
the properties of this NFL fixed point and showed that it exhibits many features that are
found in the strange metal regions of several HF compounds. These include a ∝ T ln T
specific heat a ∝ T resistivity and ω/T scaling of the optical conductivity, in good qualitative
agreement with experimental data on YbRh2Si2 and CeCoIn5.

Despite considerable progress, our work left many questions to be answered in future
studies. Most important is a better understanding of the nature of the small FS phase and
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the strange metal region. Possible future directions to achieve this are discussed in Sec. 4.1
and 4.2, respectively. Section 4.3 briefly comments on the possibility of symmetry breaking
in the vicinity of the KB–QCP.

4.1 Nature of the small Fermi surface phase
A major open question concerns the nature of the RKKY phase which features a small FS.
To a large extent, this boils down to the question of what the effective low-energy degrees
of freedom are in this phase. Because the FS is small, the low-energy physics of the RKKY
phase cannot be described entirely by gapless degrees of freedom associated with the small
FS since that would be inconsistent with either charge or momentum conservation [Osh00].
Possible scenarios could be a topologically degenerate ground state (i.e. topological order)
or the presence of additional gapless degrees of freedom which are not associated with the
small FS [Sac23]. Since it is rather unlikely that 2CDMFT can describe topological order, we
currently conjecture the presence of gapless excitations in addition to the small FS.

Because the RKKY phase in 2CDMFT is characterized by a dispersive pole in the f -electron
self-energy and a Luttinger surface, it seems natural to try to associate those with such
gapless excitations. Conceptional work in this direction has been published by M. Fabrizio,
who argued that Luttinger surfaces may be associated with spinon Fermi surfaces hosting
gapless spinon excitations [Fab22]. So far, we have not been able to confirm the presence of
gapless spinons at the Luttinger surface we find in our 2CDMFT study.

Another important direction of future work is to benchmark the 2CDMFT results against
other approaches, which would help to establish to what extent 2CDMFT describes universal
features. This could either be done by increasing the cell size in CDMFT or by comparing
to results obtained by MPS methods. The latter is preferable since that would provide a
perspective from an entirely different class of methods (in contrast to CDMFT with just
increased cell size). However, to compare to 2CDMFT plus NRG, it is necessary to compute
spectral functions and self-energies with MPS. These are typically obtained through time
evolution methods like TDVP, which is however unfeasible if the ground state calculation
using DMRG is already borderline challenging (this is the case for the doped KHM on a
cylinder). In a project together with Sasha Kowalska and Jan von Delft, we are currently
working on a method based on the excitation ansatz [VDVH+21] to overcome these limitations.
This may render such comparisons feasible in the near future.

4.2 Nature of the strange metal
Another highly interesting open question regards the nature of the strange metal which
we find in the 2CDMFT approach in the quantum critical region. In Ref. [P5], we have
shown that vertex corrections to the optical conductivity are highly important to achieve a
qualitatively correct description. However, we were only able to compute vertex corrections
to the local cluster contribution by computing the current susceptibility of the effective
impurity model. Longer-range vertex corrections would require the computation of three-
or four-point correlation functions of the effective impurity model. This is in principle
possible with NRG [KLvD21, LKvD21], but currently computationally too expensive for
the effective impurity model which arises in the 2CDMFT approach to the PAM. This
will hopefully change in the near future, by improving the efficiency of NRG for multipoint
correlation functions [KLvD21, LKvD21] and/or decreasing the computational cost for solving
the effective impurity model, e.g. by choosing a larger discretization parameter in NRG.

Obtaining data on three- or four-point correlation functions is not only desirable to obtain
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more reliable data for the optical conductivity but also to understand the current decay
mechanism in the strange metal. This is for instance important to establish whether 2CDMFT
describes an intrinsic strange metal [ETS21, ES21], i.e. a strange metal that does not rely on
disorder and which features the linear-in-T resistivity as a property of the quantum critical
fixed point. In Ref. [P5], we have conjectured that the strange metal described by 2CDMFT
is intrinsic, but we were not able to make a definitive claim. Note that such an intrinsic
resistivity would be in stark contrast to Fermi liquids, whose intrinsic resistivity is zero,1 and
to a recent universal theory of strange metals [PGES23] which relies on interaction disorder
to account for a linear-in-T resistivity.

If the resistivity of the quantum critical fixed point described by 2CDMFT is indeed
intrinsic, it would mean that this fixed point is not stable in free space and requires a lattice
or some other preferred reference system to exist (in stark contrast to e.g. an FL). This
naturally raises the question of what property the lattice exhibits that is absent in free space.
An obvious candidate would be (crystal momentum conserving) Umklapp scattering. Since
coarse-grained Umklapp scattering is included in the 2CDMFT description [P5], it would be
interesting in future studies to artificially suppress the Umklapp scattering terms in 2CDMFT
and explore whether this destabilizes the strange metal.

4.3 Symmetry breaking
Finally, it would be highly interesting to explore whether the quantum critical fixed point that
arises in the 2CDMFT description triggers some secondary symmetry-breaking instabilities
in its vicinity. Possible candidates are magnetic order or superconductivity. The QCP
we find in the 2CDMFT description of the PAM bears some striking similarities to an
impurity QCP in the two-impurity Anderson model [FHLS03]. Since the latter is unstable
to pairing or magnetism, it seems natural that such instabilities may also arise near the
former. Similar conjectures have also been put forward in Ref. [DLCK08a]. Further, we find
several divergent local susceptibilities in the vicinity of the KB–QCP [P4]. A thorough study
of symmetry breaking in the PAM from a 2CDMFT perspective should consider different
possible instabilities on equal footing.

1The usual T 2 correction is due to perturbations that are irrelevant to the FL fixed point, i.e. do not
destabilize it. Such corrections would for instance not arise in free space.
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Ōnuki, Superconductivity of CeRhIn5 under high pressure, Journal of the Phys-
ical Society of Japan 70 (2001), no. 11, 3362–3367. See page: 12

[MV89] Walter Metzner and Dieter Vollhardt, Correlated lattice fermions in d = ∞
dimensions, Phys. Rev. Lett. 62 (1989), 324–327. See page: 17

[MvdMS05] F. P. Mena, D. van der Marel, and J. L. Sarrao, Optical conductivity of CeM In5
(M = Co, Rh, Ir), Phys. Rev. B 72 (2005), 045119. See page: 12



Bibliography 163

[MW90] F. Marabelli and P. Wachter, Temperature dependence of the optical conductivity
of the heavy-Fermion system CeCu6, Phys. Rev. B 42 (1990), 3307–3311. See
page: 12

[NCHC18] Y. Nishikawa, O. J. Curtin, A. C. Hewson, and D. J. G. Crow, Magnetic field
induced quantum criticality and the Luttinger sum rule, Phys. Rev. B 98 (2018),
104419. See page: 4

[Nor05] M. R. Norman, Hall number in ybrh2si2, Phys. Rev. B 71 (2005), 220405. See
page: 2

[OO94] Wanda C. Oliveira and Luiz N. Oliveira, Generalized numerical renormalization-
group method to calculate the thermodynamical properties of impurities in metals,
Phys. Rev. B 49 (1994), 11986–11994. See page: 29

[OR95] Stellan Östlund and Stefan Rommer, Thermodynamic limit of density matrix
renormalization, Phys. Rev. Lett. 75 (1995), 3537–3540. See page: 33

[ORFS83] H. R. Ott, H. Rudigier, Z. Fisk, and J. L. Smith, Ube13: An unconventional
actinide superconductor, Phys. Rev. Lett. 50 (1983), 1595–1598. See page: 1

[Osh00] Masaki Oshikawa, Topological approach to Luttinger’s theorem and the Fermi
surface of a Kondo lattice, Phys. Rev. Lett. 84 (2000), no. 15, 3370–3373. See
pages: 4, 13, and 148

[Ov17] Žiga Osolin and Rok Žitko, Fine structure of the spectra of the Kondo lattice
model: Two-site cellular dynamical mean-field theory study, Phys. Rev. B 95
(2017), no. 3, 035107. See page: 15

[P0́5] Catherine Pépin, Fractionalization and Fermi-surface volume in heavy-Fermion
compounds: The case of YbRh2Si2, Phys. Rev. Lett. 94 (2005), no. 6, 066402.
See page: 14

[P0́7] C. Pépin, Kondo breakdown as a selective Mott transition in the Anderson
lattice, Phys. Rev. Lett. 98 (2007), 206401. See page: 14

[PFW+16] S. Paschen, S. Friedemann, S. Wirth, F. Steglich, S. Kirchner, and Q. Si,
Kondo destruction in heavy Fermion quantum criticality and the photoemission
spectrum of YbRh2Si2, Journal of Magnetism and Magnetic Materials 400
(2016), 17–22. See page: 11

[PGES23] Aavishkar A. Patel, Haoyu Guo, Ilya Esterlis, and Subir Sachdev, Universal
theory of strange metals from spatially random interactions, Science 381 (2023),
no. 6659, 790–793. See pages: 13, 14, 15, and 149

[PHA22] Philip W. Phillips, Nigel E. Hussey, and Peter Abbamonte, Stranger than
metals, Science 377 (2022), no. 6602, eabh4273. See page: 12

[PKS+19] Sebastian Paeckel, Thomas Köhler, Andreas Swoboda, Salvatore R. Manmana,
Ulrich Schollwöck, and Claudius Hubig, Time-evolution methods for matrix-
product states, Ann. Phys. 411 (2019), 167998. See page: 35

[PLM+20] L. Prochaska, X. Li, D. C. MacFarland, A. M. Andrews, M. Bonta, E. F. Bianco,
S. Yazdi, W. Schrenk, H. Detz, A. Limbeck, Q. Si, E. Ringe, G. Strasser, J. Kono,
and S. Paschen, Singular charge fluctuations at a magnetic quantum critical
point, Science 367 (2020), no. 6475, 285–288. See page: 12



164 Bibliography

[PLW+04] S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel,
F. Steglich, P. Coleman, and Q. Si, Hall-effect evolution across a heavy-Fermion
quantum critical point, Nature 432 (2004), no. 7019, 881. See pages: 9 and 10

[PLW+19] Lekh Poudel, Jon M. Lawrence, Liusuo S. Wu, Georg Ehlers, Yiming Qiu,
Andrew F. May, Filip Ronning, Mark D. Lumsden, David Mandrus, and
Andrew D. Christianson, Multicomponent fluctuation spectrum at the quantum
critical point in CeCu6−xAgx, npj Quantum Materials 4 (2019), no. 1, 52. See
page: 12

[PMTM09] Frank Pollmann, Subroto Mukerjee, Ari M. Turner, and Joel E. Moore, Theory
of finite-entanglement scaling at one-dimensional quantum critical points, Phys.
Rev. Lett. 102 (2009), 255701. See page: 30

[PTH+03] Johnpierre Paglione, M. A. Tanatar, D. G. Hawthorn, Etienne Boaknin, R. W.
Hill, F. Ronning, M. Sutherland, Louis Taillefer, C. Petrovic, and P. C. Canfield,
Field-induced quantum critical point in CeCoIn5, Phys. Rev. Lett. 91 (2003),
246405. See page: 12

[PTSA19] Francesco Parisen Toldin, Toshihiro Sato, and Fakher F. Assaad, Mutual
information in heavy-Fermion systems, Phys. Rev. B 99 (2019), 155158. See
page: 13

[RA20] Marcin Raczkowski and Fakher F. Assaad, Phase diagram and dynamics of the
SU(N) symmetric Kondo lattice model, Phys. Rev. Res. 2 (2020), 013276. See
page: 13

[RDA22] Marcin Raczkowski, Bimla Danu, and Fakher F. Assaad, Breakdown of heavy
quasiparticles in a honeycomb Kondo lattice: A quantum Monte Carlo study,
Phys. Rev. B 106 (2022), L161115. See page: 13

[RHT+18] G. Rohringer, H. Hafermann, A. Toschi, A. A. Katanin, A. E. Antipov, M. I.
Katsnelson, A. I. Lichtenstein, A. N. Rubtsov, and K. Held, Diagrammatic
routes to nonlocal correlations beyond dynamical mean field theory, Rev. Mod.
Phys. 90 (2018), 025003. See pages: 15 and 19

[RK54] M. A. Ruderman and C. Kittel, Indirect exchange coupling of nuclear magnetic
moments by conduction electrons, Phys. Rev. 96 (1954), no. 1, 99–102. See
page: 7

[RML+08] P. M. C. Rourke, A. McCollam, G. Lapertot, G. Knebel, J. Flouquet, and S. R.
Julian, Magnetic-field dependence of the YbRh2Si2 Fermi surface, Phys. Rev.
Lett. 101 (2008), 237205. See page: 10

[RO97] Stefan Rommer and Stellan Östlund, Class of ansatz wave functions for one-
dimensional spin systems and their relation to the density matrix renormaliza-
tion group, Phys. Rev. B 55 (1997), 2164–2181. See page: 33

[SAB+79] F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and
H. Schäfer, Superconductivity in the presence of strong pauli paramagnetism:
Cecu2si2, Phys. Rev. Lett. 43 (1979), 1892–1896. See page: 1

[SAC+00] A. Schröder, G. Aeppli, R. Coldea, M. Adams, O. Stockert, H.v. Löhneysen,
E. Bucher, R. Ramazashvili, and P. Coleman, Onset of antiferromagnetism in



Bibliography 165

heavy-Fermion metals, Nature 407 (2000), no. 6802, 351–355. See pages: 12
and 15

[Sac11] Subir Sachdev, Quantum phase transitions, 2 ed., Cambridge University Press,
2011. See pages: 8, 9, and 12

[Sac23] Subir Sachdev, Quantum phases of matter, Cambridge University Press, 2023.
See pages: 5, 6, 7, 14, 147, and 148

[SAS+19] M. Sundermann, A. Amorese, F. Strigari, B. Leedahl, L. H. Tjeng, M. W.
Haverkort, H. Gretarsson, H. Yavaş, M. Moretti Sala, E. D. Bauer, P. F. S.
Rosa, J. D. Thompson, and A. Severing, Orientation of the ground-state orbital
in CeCoIn5 and CeRhIn5, Phys. Rev. B 99 (2019), 235143. See page: 2

[SBBM02] E. J. Singley, D. N. Basov, E. D. Bauer, and M. B. Maple, Optical conductivity
of the heavy Fermion superconductor CeCoIn5, Phys. Rev. B 65 (2002), 161101.
See page: 12

[Sch05] U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77
(2005), 259–315. See page: 33

[Sch11] Ulrich Schollwöck, The density-matrix renormalization group in the age of
matrix product states, Annals of Physics 326 (2011), no. 1, 96–192, January
2011 Special Issue. See pages: 30, 31, 33, and 34

[SFW84] G. R. Stewart, Z. Fisk, and M. S. Wire, New ce heavy-fermion system: cecu6,
Phys. Rev. B 30 (1984), 482–484. See page: 1

[Si06] Qimiao Si, Global magnetic phase diagram and local quantum criticality in
heavy Fermion metals, Physica B: Condensed Matter 378-380 (2006), 23–27,
arxiv: cond-mat/0601001. See page: 12

[Si10] Qimiao Si, Quantum criticality and global phase diagram of magnetic heavy
fermions, physica status solidi (b) 247 (2010), no. 3, 476–484. See page: 12

[SJK+18] S. Seiro, L. Jiao, S. Kirchner, S. Hartmann, S. Friedemann, C. Krellner,
C. Geibel, Q. Si, F. Steglich, and S. Wirth, Evolution of the Kondo lattice and
non-Fermi liquid excitations in a heavy-Fermion metal, Nature Communications
9 (2018), no. 1, 3324. See page: 12

[SK03] Ping Sun and Gabriel Kotliar, Extended dynamical mean field theory study of
the periodic Anderson model, Phys. Rev. Lett. 91 (2003), no. 3, 037209. See
page: 15

[SK05a] Ping Sun and Gabriel Kotliar, Consequences of the local spin self-energy ap-
proximation on the heavy-Fermion quantum phase transition, Phys. Rev. B 71
(2005), 245104. See page: 15

[SK05b] Ping Sun and Gabriel Kotliar, Understanding the heavy Fermion phenomenology
from a microscopic model, Phys. Rev. Lett. 95 (2005), no. 1, 016402. See page:
15

[SKF+06] O. Stockert, M.M. Koza, J. Ferstl, A.P. Murani, C. Geibel, and F. Steglich,
Crystalline electric field excitations of the non-fermi-liquid YbRh2Si2, Physica B:
Condensed Matter 378-380 (2006), 157–158, Proceedings of the International
Conference on Strongly Correlated Electron Systems. See page: 2



166 Bibliography

[SKK+19] T. Schäfer, A. Katanin, M. Kitatani, A. Toschi, and K. Held, Quantum criticality
in the two-dimensional periodic Anderson model, Phys. Rev. Lett. 122 (2019),
no. 22, 227201. See pages: 15 and 19

[SLO+96] J. B. Silva, W. L. C. Lima, W. C. Oliveira, J. L. N. Mello, L. N. Oliveira,
and J. W. Wilkins, Particle-hole asymmetry in the two-impurity Kondo model,
Phys. Rev. Lett. 76 (1996), 275–278. See page: 13

[SMvDW16] K. M. Stadler, A. K. Mitchell, J. von Delft, and A. Weichselbaum, Interleaved
numerical renormalization group as an efficient multiband impurity solver, Phys.
Rev. B 93 (2016), no. 23, 235101. See page: 30

[SRIS01] Qimiao Si, Silvio Rabello, Kevin Ingersent, and J. Lleweilun Smith, Locally
critical quantum phase transitions in strongly correlated metals, Nature 413
(2001), no. 6858, 804–808. See pages: 8, 9, 15, and 147

[SRIS03] Qimiao Si, Silvio Rabello, Kevin Ingersent, and J. Lleweilun Smith, Local
fluctuations in quantum critical metals, Phys. Rev. B 68 (2003), 115103. See
page: 15

[SS92] Osamu Sakai and Yukihiro Shimizu, Excitation spectra of the two impurity
Anderson model. I. Critical transition in the two magnetic impurity problem
and the roles of the parity splitting, Journal of the Physical Society of Japan 61
(1992), no. 7, 2333–2347. See page: 13

[SS00] J. Lleweilun Smith and Qimiao Si, Spatial correlations in dynamical mean-field
theory, Phys. Rev. B 61 (2000), 5184–5193. See page: 15

[SS11] O. Stockert and F. Steglich, Unconventional quantum criticality in heavy-
Fermion compounds, Annual Review of Condensed Matter Physics 2 (2011),
no. 1, 79–99. See pages: 10 and 11

[SSA+02] Hiroaki Shishido, Rikio Settai, Dai Aoki, Shugo Ikeda, Hirokazu Nakawaki,
Noriko Nakamura, Tomoya Iizuka, Yoshihiko Inada, Kiyohiro Sugiyama, Tet-
suya Takeuchi, Kouichi Kindo, Tatsuo C. Kobayashi, Yoshinori Haga, Hisatomo
Harima, Yuji Aoki, Takahiro Namiki, Hideyuki Sato, and Yoshichika Ōnuki,
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