
Enabling the Automation of Safety and Security
Co-Analysis through Lightweight Semantics

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig-Maximilians-Universität München

eingereicht von
Yuri Gil Dantas

München, den 21.09.2023

Erstgutachter: PD. Dr. Ulrich Schöpp

Zweitgutachter: Professor Dr. Ludovic Apvrille

Drittgutachter: Professor Dr. Peter Csaba Ölveczky

Tag der mündlichen Prüfung: 17.05.2024

iii

Eidesstattliche Versicherung

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir selbstständig, ohne
unerlaubte Beihilfe angefertigt ist.

Gil Dantas, Yuri
Name, Vorname

München, 08.07.2024
Ort, Datum

Contents

Abstract viii

Acknowledgements xiii

Publications xv

1 Introduction and Background 1
1.1 Safety Activities . 3
1.2 Security Activities . 5
1.3 Safety and Security Interactions . 7

2 Methodology and Highlights of Research Outcomes 11
2.1 Lightweight Semantics for Architecture Artifacts 15
2.2 Lightweight Semantics for Safety and Security Artifacts 17
2.3 Lightweight Semantics for Safety and Security Architecture Patterns 21
2.4 Safety and Security Reasoning . 25

2.4.1 Safety Reasoning . 25
2.4.2 Security Reasoning . 27
2.4.3 Reasoning on Safety and Security Consequences 29

2.5 Connecting Lightweight Semantics with Formal Verification 31
2.6 Discussion . 33

3 Supplementary Related Work 36

4 Knowledge Representation and Reasoning for Safety System Architec-
tures 42

5 Integrating Safety Architecture Patterns into MBSE: A Plugin for Auto-
mated Pattern Synthesis 58

6 An Intruder Model for Automotive Service-Oriented Architectures 94

7 Knowledge Representation and Reasoning for Security System Architec-
tures 107

Contents v

8 Integrating Security Knowledge in MBSE: A Plugin for Automated Syn-
thesis 120

9 Knowledge Representation and Reasoning for Safety and Security Co-
Analysis 141

10 A Framework for Assessing the Safety and Security of CACC Systems 171

11 Conclusion 180

List of Figures

2.1 Breakdown of the thesis contributions presented as scientific articles. . . . 12
2.2 Example of metadata from logical architecture and allocations. 16
2.3 Example of metadata from safety artifacts (HARA + STPA). 18
2.4 Example of metadata from safety artifacts (HARA + FTA). 19
2.5 Example of metadata from security artifacts (TARA). 20
2.6 Metadata (instantiation) from the Heterogeneous Duplex pattern. 22
2.7 Metadata (attributes and requirements) from the Heterogeneous Duplex

pattern. 22
2.8 Metadata (instantiation) from the M. Authentication pattern. 23
2.9 Metadata (attributes and requirements) from the M. Authentication pattern. 24
2.10 Examples of safety and security consequences caused by architecture patterns. 30
2.11 Illustration of both initial state and search pattern of our framework. . . . 32

List of Tables

2.1 Mapping from safety artifacts (HARA + STPA) to security artifacts. . . . 27

Abstract

This thesis proposes methods to enable the automation of safety and security co-analysis
activities. Safety and security co-analysis consists of activities involving safety and security,
and their interactions on the left side of the V-model. The application of safety and
security co-analysis is especially relevant to safety-critical systems, which are systems that
may cause harm to people or the environment. Examples of safety-critical systems are
automated driving systems and aircraft flight control systems. Integrating safety and
security co-analysis poses several challenges. Safety and security have different goals, i.e.,
safety aims to protect the environment from the system, while security aims to protect the
system from the environment. It can be challenge to ensure that safety and security do not
conflict with each other. Addressing these potential conflicts late in the development process
may result in delays and additional costs for industries. Safety and security standards
(e.g., ISO 26262 and ISO/SAE 21434 for automotive) recommend that safety and security
activities are initially performed on the left side of the V-model, e.g., during the design of
the system architecture. To this end, Hazard Analysis and Risk Assessment (HARA) and,
e.g., Fault Tree Analysis (FTA), are performed to identify safety artifacts, such as hazards,
faults, and failures. Security-wise, Threat Analysis and Risk Assessment (TARA) activities
are performed to identify security artifacts, such as identification of assets, threat scenarios,
and attack paths. Several of the activities performed within safety and security analysis are
manually performed by experts. Once safety and security artifacts are identified, experts
select and instantiate safety and security architecture patterns to address the identified
safety and security artifacts, respectively. Examples of safety and security architecture
patterns are Triple Modular Redundancy and Firewall, respectively. Safety and security
architecture patterns are also manually selected and instantiated by experts. This manual
work is required because such architecture patterns are documented in textual and graphical
formats with limited support for automation. The limited support for automation is due
to the absence of explicit semantics associated with key artifacts computed by safety and
security activities. Due to the complexity of safety-critical systems, it becomes challenging
for experts to manually handle safety and security analysis processes.

This thesis proposes lightweight semantics for key artifacts computed by safety and
security activities throughout the design of safety-critical systems. By lightweight semantics,
we mean a defined vocabulary and corresponding semantics for which the meaning is
uniformly understood in the corresponding domain. For example, in the automotive domain,
the terms ECU and asset are well-known by system architects and security engineers,

Zusammenfassung ix

respectively. By incorporating lightweight semantics for key artifacts, machines may
understand their meaning, interpret, and make informed decisions based on the meaning of
such artifacts. This thesis anticipates the development of a language enabling the precise
specification of key artifacts and safety and security architecture patterns.

This thesis proposes a Domain-Specific Language (DSL) for introducing lightweight
semantics to system architecture artifacts, safety and security artifacts, and safety and secu-
rity architecture patterns. The proposed DSL has been implemented in a logic programming
solver. Within the solver, we propose reasoning rules to enable the automation of safety
and security co-analysis activities, including the recommendation of safety and security
architecture patterns. Our DSL and automated reasoning rules have been implemented
following a Model-Based Systems Engineering (MBSE) approach, which is often used in
the automotive and avionics industry. The use of this approach enabled us to integrate the
implemented DSL and reasoning rules into MBSE plugins, which function in the background
as a part of the Model-Based Systems Engineering plugin. Through this integration, we
propose safety and security MBSE plugins to reduce the workload and effort required by
safety and security engineers during the early stages of system development.

This thesis also investigates the benefits of the introduced lightweight semantics when
applied to activities conducted on the right side of the V-model. Specifically, our focus
lies on the verification activity, which determines whether the developed system fulfills the
requirements specified on the left side of the V-model. Formal verification is a well-known
method used to automate checks on whether the system meets such requirements. We
develop a formal framework to assess how the safety of Cooperative Adaptive Cruise Control
(CACC) systems is affected by intruders attacking the communication channels of the system.
The developed framework enables the specification and evaluation of security mechanisms.
This thesis investigates whether the security requirements derived from security architecture
patterns (left side of the V-model) may serve as input for the verification activity (right
side of the V-model). We anticipate that such inputs (i.e., security requirements) required
for formal verification are derived from the artifacts computed through the application of
lightweight semantics. That is, by leveraging the defined vocabulary and meanings provided
by lightweight semantics, we aim to enable the computation of requirements that may
subsequently be utilized as inputs for formal verification tools.

We draw the conclusion that this thesis proposes solutions to address an important
real-world problem. We believe that the introduction of lightweight semantics opens up a
range of opportunities to enable the automation of safety and security activities, as the
ones achieved by this thesis. The developed tools have been validated through industrial
cases studies from the automotive domain. We have also shown that the developed tools
may be used in other domains, such as the unmanned air vehicle domain.

Zusammenfassung

Diese Dissertation schlägt Methoden vor, um die Automatisierung von Co-Analyse-
Aktivitäten für funktionale Sicherheit und Cybersicherheit zu ermöglichen. Die Co-Analyse
von funktionaler Sicherheit und Cybersicherheit umfasst Aktivitäten auf der linken Seite
des V-Modells, die sich mit funktionaler Sicherheit, Cybersicherheit sowie deren Wechsel-
wirkungen beschäftigen. Eine Co-Analyse von funktionaler Sicherheit und Cybersicherheit
ist besonders für sicherheitskritische Systeme relevant, die Schaden für Menschen oder die
Umwelt verursachen können. Beispiele für sicherheitskritische Systeme sind automatisierte
Fahrassistenten und Steuerungssysteme von Flugzeugen. Die Integration der Co-Analyse
von funktionaler Sicherheit und Cybersicherheit stellt mehrere Herausforderungen dar.
Funktionale Sicherheit und Cybersicherheit haben unterschiedliche Ziele, d.h., funktionale
Sicherheit zielt darauf ab, die Umwelt vor dem System zu schützen, während Cybersicherheit
darauf abzielt, das System vor der Umwelt zu schützen. Es kann eine Herausforderung sein,
sicherzustellen, dass funktionale Sicherheit und Cybersicherheit nicht miteinander in Kon-
flikt geraten. Die Behebung dieser potenziellen Konflikte spät im Entwicklungsprozess kann
zu Verzögerungen und zusätzlichen Kosten für die Industrie führen. Normen für funktionale
Sicherheit und Cybersicherheit (z.B. ISO 26262 und ISO/SAE 21434 für die Automobilin-
dustrie) empfehlen, dass funktionale Sicherheits- und Cybersicherheits-Aktivitäten zunächst
auf der linken Seite des V-Modells durchgeführt werden, z.B. während des Designs der
Systemarchitektur. Zu diesem Zweck werden Gefährdungsanalysen und Risikobewertungen
(Hazard Analysis and Risk Assessment – HARA) sowie z.B. Fehlerbaumanalysen (Fault
Tree Analysis – FTA) durchgeführt, um funktionale Sicherheitsartefakte wie Gefährdungen,
Fehler und Ausfälle zu identifizieren. Sicherheitsseitig werden Bedrohungsanalysen und
Risikobewertungen (Threat Analysis and Risk Assessment – TARA) durchgeführt, um Cyber-
sicherheitsartefakte wie die Identifizierung von Vermögenswerten, Bedrohungsszenarien und
Angriffswege zu identifizieren. Viele der innerhalb der funktionalen Sicherheits- und Cyber-
sicherheitsanalysen durchgeführten Aktivitäten werden manuell von Experten durchgeführt.
Sobald funktionale Sicherheits- und Cybersicherheitsartefakte identifiziert sind, wählen und
instanziieren Experten funktionale Sicherheits- und Cybersicherheitsarchitektur-Muster,
um die identifizierten funktionalen Sicherheits- und Cybersicherheitsartefakte jeweils zu
adressieren. Beispiele für funktionale Sicherheits- und Cybersicherheitsarchitektur-Muster
sind Dreifachredundanz und Firewall. Diese Architekturmuster werden ebenfalls manuell
von Experten ausgewählt und instanziiert. Diese manuelle Arbeit ist erforderlich, da solche
Architektur-Muster in textuellen und grafischen Formaten dokumentiert sind, mit begrenzter

Zusammenfassung xi

Unterstützung für die Automatisierung. Die begrenzte Unterstützung für die Automa-
tisierung ist auf das Fehlen expliziter Semantik zurückzuführen, die mit den wichtigsten
Artefakten verbunden ist, die durch funktionale Sicherheits- und Cybersicherheitsaktiv-
itäten berechnet werden. Aufgrund der Komplexität sicherheitskritischer Systeme wird es
für Experten schwierig, die funktionalen Sicherheits- und Cybersicherheitsanalyseprozesse
manuell zu bewältigen.

Diese Dissertation schlägt leichtgewichtige Semantiken für Schlüsselartefakte vor, die
durch funktionale Sicherheits- und Cybersicherheitsaktivitäten während des Designs sicher-
heitskritischer Systeme berechnet werden. Unter leichtgewichtigen Semantiken verstehen wir
ein definiertes Vokabular mit einer zugeordneten Semantik, deren Bedeutung im jeweiligen
Bereich einheitlich verstanden wird. Beispielsweise sind in der Automobilbranche Begriffe
wie ECU und schützenswertes Gut bei Systemarchitekten und Cybersicherheitsingenieuren
bekannt. Durch die Einbindung leichtgewichtiger Semantiken für Schlüsselartefakte können
Maschinen deren Bedeutung verstehen, interpretieren und informierte Entscheidungen auf
Basis der Bedeutung dieser Artefakte treffen. Diese Dissertation antizipiert die Entwick-
lung einer Sprache, die die präzise Spezifikation von Schlüsselartefakten und funktionalen
Sicherheits- und Cybersicherheitsarchitektur-Mustern ermöglicht.

Diese Dissertation schlägt eine domänenspezifische Sprache (Domain-Specific Lan-
guage – DSL) vor, um leichtgewichtige Semantiken in Systemarchitektur-Artefakte, funk-
tionale Sicherheits- und Cybersicherheitsartefakte sowie funktionale Sicherheits- und
Sicherheitsarchitektur-Muster einzuführen. Die vorgeschlagene DSL wurde in einem
Logikprogrammiersolver implementiert. Mithilfe des Solvers schagen wir Schlussregeln vor,
um die Automatisierung von funktionalen Sicherheits- und Cybersicherheits-Co-Analyse-
Aktivitäten zu ermöglichen, einschließlich der Empfehlung von funktionalen Sicherheits-
und Cybersicherheitsarchitektur-Mustern. Die Implementierung der DSL und der au-
tomatisierten Schlussregeln folgt einem Ansatz des modellbasierten Systems Engineering
(Model-Based Systems Engineering – MBSE), der häufig in der Automobil- und Luft-
fahrtindustrie verwendet wird. Durch die Verwendung dieses Ansatzes konnten wir die
implementierte DSL und die Schlussregeln in MBSE-Plugins integrieren, die im Hintergrund
als Teil des modellbasierten Systems Engineering-Plugins funktionieren. Mit dieser Integra-
tion schlagen wir funktionale Sicherheits- und Cybersicherheits-MBSE-Plugins vor, um den
Arbeitsaufwand für Ingenieure, die sich mit funktionaler Sicherheit oder Cybersicherheit
beschäftigen, in den frühen Phasen der Systementwicklung zu reduzieren.

Diese Dissertation untersucht auch die Vorteile der eingeführten leichtgewichtigen Se-
mantiken, wenn sie auf Aktivitäten auf der rechten Seite des V-Modells angewendet werden.
Insbesondere konzentrieren wir uns auf Verifikationsaktivitäten zur Evaluierung, ob das
entwickelte System die auf der linken Seite des V-Modells festgelegten Anforderungen
erfüllt. Formale Verifikation ist eine bekannte Methode, um automatisierte Überprüfungen
durchzuführen, ob das System diese Anforderungen erfüllt. Wir entwickeln ein formales
Rahmenwerk, um zu bewerten, wie die funktionale Sicherheit von kooperativen adaptiven
Tempomatsystemen (Cooperative Adaptive Cruise Control – CACC) durch Angreifer, die
die Kommunikationskanäle des Systems angreifen, beeinträchtigt wird. Das entwickelte
Rahmenwerk ermöglicht die Spezifikation und Bewertung von Cybersicherheitsmechanismen.

xii Zusammenfassung

Diese Dissertation untersucht, ob die aus Cybersicherheitsarchitektur-Mustern abgeleiteten
Cybersicherheitsanforderungen (linke Seite des V-Modells) als Eingabe für Verifikationsak-
tivitäten (rechte Seite des V-Modells) dienen können. Wir erwarten, dass solche Eingaben
(d.h. Cybersicherheitsanforderungen), die für die formale Verifikation erforderlich sind,
aus den Artefakten abgeleitet werden, die durch die Anwendung leichtgewichtiger Seman-
tiken berechnet werden. Das heißt, durch die Nutzung des definierten Vokabulars und der
Bedeutungen, die durch leichtgewichtige Semantiken bereitgestellt werden, wollen wir die
Berechnung von Anforderungen ermöglichen, die anschließend als Eingaben für formale
Verifikationstools genutzt werden können.

Wir kommen zu dem Schluss, dass diese Dissertation Lösungen für ein in der Praxis
wichtiges Problem vorschlägt. Wir glauben, dass die Einführung leichtgewichtiger Seman-
tiken eine Vielzahl von Möglichkeiten eröffnet, um die Automatisierung von funktionalen
Sicherheits- und Cybersicherheitsaktivitäten zu ermöglichen, wie sie durch diese Dissertation
erreicht wurden. Die entwickelten Werkzeuge wurden durch industrielle Fallstudien aus
der Automobilbranche validiert. Wir haben auch gezeigt, dass die entwickelten Werkzeuge
in anderen Bereichen, wie dem Bereich unbemannter Luftfahrzeuge, verwendet werden
können.

Acknowledgements

I would like to thank my supervisors, Ulrich Schöpp and Vivek Nigam, for their support
and guidance throughout my doctoral journey. I am truly grateful for the supervision
meetings we had, where they provided me insightful feedback and guidance that have
been instrumental in shaping the direction and of the results presented in this thesis. In
particular, Ulrich Schöpp also provided valuable assistance throughout my doctoral journey
by offering clinical feedback and engaging in close collaboration. I would like to express my
gratitude to Vivek Nigam: Kudos to him! Vivek Nigam played a crucial role in my journey
towards becoming a researcher. Our paths crossed back in 2013, and at first, I mistook him
for a fellow student due to his youthful appearance. Little did I know that Vivek Nigam
was a professor and would become the supervisor for my Bachelor’s and Master’s theses.
Vivek Nigam’s ability to guide students towards successful careers is remarkable. He has an
amazing talent for guiding students in transforming fragments of potential research ideas
into exceptional ones. I still remember his anecdotes and insightful stories from 2013. Vivek
Nigam used to say “...writing is the only skill that improves as you age. While sight may
fade and speed may diminish, writing only gets better with time, as long as you practice.”
Since that day, I carried those words with me.

I am grateful to the examiners, Ludovic Apvrille and Peter Csaba Ölveczky, for their
time and effort to review my doctoral thesis.

I would like to thank fortiss GmbH for providing me with the opportunity to work for
this amazing research institute. The resources, infrastructure, and support they provided
have been crucial in conducting my research and achieving the results presented in this
thesis. I would like to thank my colleagues from fortiss GmbH: Simon Barner, Carmen
Cârlan, Tiziano Munaro, Chuangjie Xu, as well as my supervisor Ulrich Schöpp, the
scientific managing director Harald Rüss, and the scientific director Alexander Pretschner.
I did appreciate the research discussions we had, particularly those focused on model-based
systems engineering, as they greatly influenced the results presented in this thesis.

I would like to thank my colleagues from TU Darmstadt: Florian Dewald, Lorenzo
Gheri, Richard Grewe, Tobias Hamann, Görkem Kilinç, Matthias Perner, Johannes Schickel,
David Schneider, Markus Tasch, Alexandra Weber, and, of course, Heiko Mantel. I want to
acknowledge that every one of you has made significant contributions to this achievement.

I would like to thank my friends Cauê Azeredo, Raoni Azeredo, Camilo Cabral, Cassio
Cabral, Fernanda Martins Cabral, Arnaldo Gualberto, Hugo Neves, Hugo Noronha, Pere
Massanés Padró, Daniel Pedroza, Dorothy Rogers, Glauco de Sousa, José Ivan Vilarouca,

xiv Zusammenfassung

Stefan Weber, and Yasaman Yousefi.
A big shout goes to my family, including my parents, Maria de Fatima Gil Dantas and

João Carlos Dantas, my brothers, Sheldon Gil Dantas and Eric Gil Dantas (including, my
sister-in-law Karolina Röder), and my uncle, Wellington Gomes Dantas. Additionally, I
want to extend my deepest gratitude to my wife, Isadora Aguiar, who always believed in
me. Together, you are my home, and I am forever grateful for your love and support.

To everyone who have contributed in any other way, please accept my thanks. This
thesis would not have been possible without your support and encouragement.

Thank you all.

Publications

We have published contributions contained in this thesis at peer-reviewed conferences and
journals as follows.

1. Yuri Gil Dantas, Antoaneta Kondeva, and Vivek Nigam: Less Manual Work for Safety
Engineers: Towards an Automated Safety Reasoning with Safety Patterns. ICLP
Technical Communications 2020: 244-257

2. Yuri Gil Dantas, Tiziano Munaro, Carmen Cârlan, Vivek Nigam, Simon Barner,
Shiqing Fan, Alexander Pretschner, Ulrich Schöpp, and Sergey Tverdyshev: A Model-
based System Engineering Plugin for Safety Architecture Pattern Synthesis. MOD-
ELSWARD 2022: 36-47

3. Yuri Gil Dantas, Tiziano Munaro, Carmen Cârlan, Vivek Nigam, Simon Barner,
Shiqing Fan, Alexander Pretschner, Ulrich Schöpp, and Sergey Tverdyshev: A
Toolchain for Synthesizing and Validating Safety Architectures. SN Computer Science
2023: Volume 4, Article number: 335.

4. Yuri Gil Dantas, Simon Barner, Pei Ke, Vivek Nigam. and Ulrich Schöpp: Automating
Vehicle SOA Threat Analysis Using a Model-Based Methodology. ICISSP 2023: 180-
191

5. Yuri Gil Dantas and Ulrich Schöpp: SeCloud: Computer-Aided Support for Selecting
Security Measures for Cloud Architectures. ICISSP 2023: 264-275

6. Yuri Gil Dantas, Vivek Nigam, and Ulrich Schöpp: A Model-Based Systems Engi-
neering Plugin for Cloud Security Architecture Design. SN Computer Science 2024:
Volume 5, Article number: 553.

7. Yuri Gil Dantas and Vivek Nigam: Automating Safety and Security Co-design through
Semantically Rich Architecture Patterns. ACM Transactions on Cyber-Physical
Systems 2023: Volume 7, Issue 1, Pages: 1-28

8. Yuri Gil Dantas, Vivek Nigam, and Carolyn L. Talcott: A Formal Security Assessment
Framework for Cooperative Adaptive Cruise Control. VNC 2020: 1-8

xvi Zusammenfassung

The contributions listed below have been published but have not been included into this
thesis. Article #1 has been published in a workshop, while Article #2 has been published
as a whitepaper.

1. Tarik Terzimehic, Simon Barner, Yuri Gil Dantas, Ulrich Schöpp, Vivek Nigam,
and Pei Ke: Safety-Aware Deployment Synthesis and Trade-Off Analysis of Apollo
Autonomous Driving Platform. ICSA-C 2023: 309-316

2. Yuri Gil Dantas, Vivek Nigam, and Harald Ruess. Security Engineering for ISO 21434.
CoRR, abs/2012.15080, 2020.

Chapter 1

Introduction and Background

Safety-critical systems are systems that may cause harm to people or the environment [1].
Examples of safety-critical systems are automated driving systems and aircraft flight
control systems. These systems consist of software and hardware units implementing safety
functions, such as perception functions in automated driving systems. The malfunction
behavior of such functions may cause harm, such as serious injuries to people (e.g., driver
and passengers) or the environment (e.g., road users). Safety is the top priority for the
development of safety-critical systems, as it involves preserving human lives. In simple terms,
safety is about protecting the involved people and the environment from the system [2],
such as addressing internal malfunction behavior of the system that may lead to crashes.
Hazard Analysis and Risk Assessment (HARA) is one instance of a safety activity aimed at
protecting a system, which involves computing safety artifacts, such as hazards.

Businesses developing safety-critical systems are undergoing a transformation due to the
rapid development of highly advanced technologies and complex software solutions. This
transformation is, in particular, prominent within the automotive industry, which is focusing
on the development of automated and connected vehicles. These vehicles interact or com-
municate with the environment to improve the overall transportation system performance
and driver comfort via cooperation [3]. The introduction of communication capabilities
into vehicles brings in security risks whereby intruders may exploit vulnerabilities to gain
unauthorized access and control over the vehicle to reduce the safety of passengers. Hence,
it is imperative to also prioritize security in the development of (connected) safety-critical
systems. In simple terms, security is about protecting the system from the environment [2],
such as addressing intentional attacks carried out by external intruders. Even though
external intruders are the main actors against connected safety-critical systems, it is im-
portant to acknowledge that internal intruders also play a role in the security landscape,
as discussed in this thesis. Consequently, the scope of security shall be extended to also
protect systems against internal intruders. Threat Analysis and Risk Assessment (TARA)
consists of several activities aimed at protecting a system from a security perspective, which
involves computing security artifacts, such as assets, attack paths and threat scenarios.

The V-model [4] is a representation of a system’s development lifecycle. The left side of
the V-model represents the early stages of the system development process, starting from

2 1. Introduction and Background

requirements analysis and design. As the development progresses, the right side of the
V-model represents the verification and validation activities. Within this context, there is
a concept known as safety and security co-analysis. Safety and security co-analysis [5, 6]
consists of safety and security activities and their interactions performed on the left side of
the V-model, i.e., during the system design. Although safety and security activities may be
performed independently, their effective collaboration necessitates synchronization between
safety and security engineers. These collaborative efforts facilitate the identification of
potential synergies, including opportunities for information exchange, as well as conflicts,
including safety implications arising from the implementation of security mechanisms.

As emphasized throughout this thesis, many of the safety and security activities,
including co-analysis activities, are currently performed manually by safety or security
experts. This manual work is required due to the absence of explicit semantics associated
with safety and security artifacts computed by safety and security activities, respectively.
Our goal is to propose lightweight semantics for key artifacts computed by or relevant to
safety and security activities performed throughout the design of safety-critical systems.

By lightweight semantics, we mean a defined vocabulary, along with its associated
semantics, for which the meaning is uniformly understood in the corresponding domain. The
vocabulary shall consist of terms related to safety-critical systems, particularly used during
the system design. For example, in the automotive domain, the terms ECU (Electronic
Control Unit), hazard, and asset are well-known terms by system engineers, safety engineers,
and security engineers, respectively. These terms shall be specified in a manner that enables
machines to read and interpret them. In this thesis, the proposed lightweight semantics are
embodied in the form of specified logic programming facts and rules to enable automated
reasoning. By incorporating lightweight semantics for key artifacts into a logic programming
language, machines may understand their meaning, interpret, and make informed decisions
based on the meaning of such artifacts. We anticipate the need to enhance the reader’s
understanding of our lightweight semantics by providing a simple example. Consider the
following facts that may be specified in a logic programming solver, such as DLV [7].
% Representation of ECUs and components

ecu(adas).
component(perception).

% Representation of allocations
allocation(perception,adas).

In the example above, we specify an ECU, a component, and the allocation of the
component, i.e., a component implemented within a specific ECU. The vocabulary consists
of the terms ecu, component, and allocation, along with its associated semantics, i.e.,
adas is an ecu, perception is a component, and perception is allocated to ecu. With
this specification, a logic programming solver is able to understand the specified facts and
automatically derive all components allocated to a specific ECU. This automation is made
possible through the specification of reasoning rules, such as the following rule, which lists
all ECU components based on the specified facts.

1.1 Safety Activities 3

% Rule to make informed decisions - listing components allocated to ECU
list_ecu_components(ECU,COMPONENT) :-

ecu(ECU),
component(COMPONENT),
allocation(COMPONENT,ECU).

Hypothesis: The introduction of lightweight semantics to key artifacts advances the state-of-the-art
by enabling the automation of several safety and security activities.

The remainder of this chapter provides a concise overview of safety and security activities
undertaken by engineers during the design of safety-critical systems, including the artifacts
computed by such activities. Our main focus is on artifacts for which our goal is to provide
lightweight semantics in order to enable the automation of their corresponding activities.
To streamline our discussion, we concentrate on (automated and connected) vehicle systems.
Within this context, we emphasize industrial and research needs, as well as the research
questions addressed within the scope of this thesis. While the reminder of this chapter
provides a high-level description of safety and security activities, Chapter 2 describes the
methodology used by this thesis to provide lightweight semantics to artifacts computed by
such activities. In addition, Chapter 2 outlines the methodology used to enable automation
based on the proposed lightweight semantics.

1.1 Safety Activities
The development of safety-critical systems requires rigorous analysis at all stages of de-
velopment to ensure the correct behavior of safety functions and minimize the risk of
accidents. Moreover, the development of safety-critical systems requires compliance with
safety standards and regulations [8], such as the safety standard – ISO 26262 [9] – for
electrical and electronic (E/E) vehicle systems.

ISO 26262 [10] requires conducting safety analysis on E/E vehicle systems during the
initial phases of development. Based on the system architecture (a.k.a item definition),
often designed by system architects, safety engineers perform Hazard Analysis and Risk
Assessment (HARA) to identify hazards and define safety goals to address the identified
hazards. A hazard [9] denotes a potential source of harm, while a safety goal [9] denotes a
top-level safety requirement to address the identified hazard.

Example of a hazard:
‘The ego vehicle1 violates the safety distance to other road users or objects on the road’.
Example of a safety goal:
‘Prevent unintended safety distance violation to other road users or objects on the road’.

1The ego vehicle denotes the vehicle that implements safety functions.

4 1. Introduction and Background

Automotive Safety Integrity Level (ASIL) is a classification that denotes the criticality
of a hazard. Each hazard is assigned to an ASIL class computed based on the severity
(potential harm), exposure (likelihood of its occurrence), and controllability (e.g., driver
ability to control the hazard) of the hazard. The ASIL class ranges from A (lowest)
to D (highest). A higher ASIL level denotes a more critical hazard that requires more
stringent safety mechanisms. Notice that there exists an additional ASIL class known as
QM (Quality Management) that does not pose any safety risks and does not require any
safety mechanisms. The hazard’s description, along with its ASIL class, is denoted as a
hazardous event. This thesis often uses both hazard and hazardous event interchangeably.

Safety engineers conduct additional safety analysis to identify potential causes for
hazards. To this end, safety engineers may use top-down methods, such as Fault Tree
Analysis (FTA) [11] or System Theoretic Process Analysis (STPA) [11]. FTA identifies
faults, failures, and minimal cut sets as potential causes for hazards. A fault [12] denotes
the hypothesized cause of an error (i.e., deviation of the expected behavior of a function).
A failure [12] is the result of a fault denoting an event that when occurs results in an error.
For example, a fault (e.g., a bug) in a software unit implementing a perception function
may lead to erroneous outputs (failure). A minimal cut set is a set of basic events that
when occurring at the same time or in sequence may lead to a top event. Those basic
events may be failures that are typically represented as leaf nodes in a fault tree, while the
top event may be a hazard. STPA identifies unsafe control actions, and loss scenarios as
potential causes for hazards. An unsafe control action [11] is a control that, in a particular
context and worst-case environment, will lead to a hazard. A loss scenario [11] denotes the
casual factors that can lead to the unsafe control actions and consequently to hazards. For
example, the function perception computing erroneous outputs (loss scenario) may lead to
a high acceleration (possibly an unsafe control action) of the ego vehicle, meaning that a
collision to a front object is imminent (hazard).

This thesis uses the term safety artifacts (or safety elements) to denote the artifacts
identified by HARA (e.g., hazards), FTA (e.g., faults), or STPA (e.g., loss scenarios).

Safety engineers define a functional safety concept after the identification of safety
artifacts. A functional safety concept [10] specifies functional safety requirements to achieve
the identified safety goals. These safety requirements are specified in terms of safety
mechanisms allocated to elements of the system architecture. This thesis refers to safety
mechanisms at the architecture level as safety architecture patterns.

A safety architecture pattern [13] is an abstract representation for how to solve a general
safety problem which occurs over and over in many applications. Specifically, a safety
architecture pattern is an architecture solution for addressing recurring safety artifacts
identified during the design of the system architecture. We consider two types of safety
architecture patterns, namely fault detection pattern and fault tolerant pattern. A fault
detection pattern deactivates the system in the presence of a failure (triggered by a fault)
by either transitioning the system to a safe state or shutting down the system. Monitor-
Actuator [13, 14] is an example of a fault detection pattern. A fault tolerant pattern ensures
that the system will continue to operate in the presence of a failure (triggered by a fault)
by providing a redundant component to take over the operation. Heterogeneous Duplex

1.2 Security Activities 5

pattern [13, 14] is an example of a fault tolerant pattern.
In the field of safety-critical systems, catalogs of safety architecture patterns can be found

in the literature, such as in [13] and [14]. These patterns are documented in both textual and
graphical formats, utilizing pattern templates that describe, e.g., the structure, intent, and
specific problem addressed by each pattern. In the current industry landscape, the process of
selecting appropriate safety architecture patterns from such catalogs and instantiating them
in the system architecture relies heavily on the expertise of safety engineers, i.e., leading
the manual work by safety engineers. Due to the complexity of automotive systems, this
manual process of pattern selection and instantiation poses significant challenges. According
to [15], automotive systems have about 30.000 parts more than 100 million lines of code.
This number is expected to increase with the development of automated driving systems.
Furthermore, given the fast-paced nature of the automotive industry and the need to deliver
several projects within tight deadlines, there is an increased risk of errors introduced by
safety engineers. Making erroneous or sub-optimal design choices during the early stages of
system design can result in substantial development delays and increased costs.

This thesis aims to introduce lightweight semantics to key safety artifacts and safety
architecture patterns. To this end, the thesis conducts an investigation into the existing
descriptions of safety artifacts and safety architecture patterns, both described in textual
and graphical formats. The aim is to identify the key safety artifacts and which parts of
safety architecture patterns that are crucial for enabling the automated recommendation
of safety architecture patterns. Through the utilization of lightweight semantics, the
thesis anticipates the development of a language enabling the precise specification of safety
artifacts and safety architecture patterns. This language shall facilitate the automated
recommendation of safety architecture patterns.

This leads to our first research question:
RQ1: Can the introduction of lightweight semantics to safety artifacts and safety architecture
patterns enable the automated recommendation of safety architecture patterns?

1.2 Security Activities
Communication serves as the primary driving force behind automated driving systems [16].
By communication (a.k.a. interconnectivity) [17], we mean any direct connection between
systems to exchange data or share information resources. Automated driving systems
rely on various forms of communication, such as vehicle-to-vehicle (V2V) communication,
which allows vehicles to exchange information with one another, enabling activities like
forming vehicle platoons [18]. Additionally, vehicle-to-infrastructure (V2I) communication
enables vehicles to exchange information with the infrastructure, enabling computations
for determining the vehicle’s next trajectory based on data obtained from, e.g., traffic
lights [19]. Establishing network connections, including wireless connections, enables the
exchange of information for V2V and V2I communications. Furthermore, modern vehicles
incorporate sensors (e.g., GPS and cameras) to gather data about the vehicle itself and the
surrounding environment. This sensor data serves as input information for computing the

6 1. Introduction and Background

trajectory of vehicles driving in an autonomous mode.
There have been several attacks targeting the communication channels of automated

driving systems (as documented in the survey by [20]). What is even more concerning
is the potential safety implications that such attacks may have on people or road-users.
By introducing communication channels, attackers may exploit vulnerabilities to gain
unauthorized access to a vehicle, thereby disabling or tampering with safety functions.
For example, hackers have shown how to remotely control a Jeep vehicle by manipulating
brakes, engine and steering [21]. This attack is a reminder that security vulnerabilities in
actual vehicles may be exploited by attackers to compromise passenger safety.

The adoption of new technologies, such as Service-Oriented Architectures (SOA), in-
creases the attack surfaces (beyond external communications) that intruders may exploit.
That is, communications within an organization’s internal networks is also security relevant,
as there exists the potential for intruders to carry out attacks from within targeting critical
functions, including safety-related ones. To emphasize this point, we refer to the findings of
researchers [22], who have shown that insider intruders may exploit security vulnerabilities
in the service discovery mechanism of vehicle SOA to compromise passenger safety.

To tackle security for automotive systems (in particular E/E vehicle systems), ISO/SAE
21434 [23] has been published in 2021. ISO/SAE 2143 requires conducting security analysis
on E/E vehicle systems during the early stages of development. To this end, Threat Analysis
and Risk Assessment (TARA) are performed to identify security artifacts in the system
architecture. TARA consists of seven activities, namely asset identification (including
damage scenario identification), impact rating, threat scenario identification, attack path
analysis, attack feasibility rating, risk value determination, and risk treatment decision.
We provide below the definitions of these activities as outlined in ISO/SAE 21434 [23].
An asset is an object (e.g., a function) that has value. An asset has one or more security
properties (e.g., integrity or availability). The compromise of the asset’s security property
may damage the vehicle. This damage is represented as a damage scenario, which denotes
the adverse consequences involving a vehicle or vehicle function and affecting the road user.
The impact rating determines the impact of a damage scenario on four categories, namely
safety, financial, operational, and privacy. A threat scenario denotes a potential cause (e.g.,
tampering) to compromise the security properties of assets to realize the damage scenario.
An attack path denotes a set of deliberate actions/steps to realize a threat scenario. The
attack feasibility rating describes the ease of successfully carrying out the actions of an
attack path. The risk value determination denotes the risk of the threat scenario. The risk
value can be determined based on the impact rating and attack feasibility rating. The risk
treatment decision denotes a decision on how the risk shall be addressed, such as reducing
the risk which requires the utilization of security mechanisms to reduce the identified risk.

This thesis uses the term security artifacts (or security elements) to denote the artifacts
identified by TARA, such as assets, threat scenarios, and attack paths.

Security goals may be defined to protect assets against threat scenarios, thus reducing the
risk. A security goal [23] denotes a top-level security requirement associated with one or more
threat scenarios. To achieve the defined security goals, security requirements are specified
based on suitable security mechanisms. This thesis refers to security mechanisms at the

1.3 Safety and Security Interactions 7

architecture level as security architecture patterns. A security architecture pattern [24, 25]
is an architecture solution to address recurring security artifacts identified during the design
of the system architecture. Examples of security architecture patterns are Firewall, Message
Authentication, and Mutual Authentication patterns.

In the current industry landscape, security engineers perform TARA activities manually.
Some activities can be relatively straightforward, such as computing threat scenarios
using methodologies like STRIDE [26], and determining risk values through established
methods like risk matrices [23]. However, it is important to note that those activities are
interdependent. That is, computing threat scenarios relies on the security properties of
assets, and calculating risk values depends on factors like impact rating and attack feasibility
rating. The other activities, such as attack path analysis, may be time-consuming, requiring
a comprehensive analysis of the system. The attack path analysis is also system-specific,
dependent on the Original Equipment Manufacturer (OEM) requirements, system vehicle,
and the attacker capabilities. Consequently, security engineers may not always be able to
reuse results from previous analysis.

There are catalogs available in the literature that describe security architecture pat-
terns, such as [27, 28, 29]. Similar to safety architecture patterns, these catalogs provide
documentation in both textual and graphical formats, with limited automation support.
Security engineers face the same challenges faced by safety engineers when selecting and
instantiating security architecture patterns into the system architecture. With several
security architecture patterns [24, 25] available, thoroughly evaluating the implications of
each choice is often impractical, especially considering time constraints.

This thesis aims to introduce lightweight semantics to key security artifacts and security
architecture patterns. To this end, the thesis conducts an investigation into the existing
descriptions of security artifacts and security architecture patterns, both described in
textual and graphical formats. The aim is to identify the key security artifacts and which
parts of security architecture patterns that are crucial for enabling the automation of
TARA activities. Through the utilization of lightweight semantics, the thesis anticipates
the development of a language enabling the precise specification of security artifacts and
security architecture patterns. This language shall facilitate the automation of TARA
activities, including the recommendation of security architecture patterns.

This leads to the second research question:
RQ2: Can the introduction of lightweight semantics to security artifacts and security architecture
patterns enable the automated computation of TARA activities?

1.3 Safety and Security Interactions
Establishing a strong connection between safety and security is of utmost importance
in ensuring the overall safety of safety-critical systems. Standards and guidelines for
avionics [30] and automotive [31, 23] industries have taken steps towards integrating safety
and security. For example, ISO/SAE 21434 recommends that the organization responsible
for the security analysis shall identify disciplines interacting with security, and establish

8 1. Introduction and Background

communications channels to those disciplines to coordinate the exchange of information [23].
Safety is a very important discipline for security because the developed safety-critical system
is not safe if it is not secure [32]. Therefore, there shall be potential interaction points
between safety and security analysis during the design of safety-critical systems. These
interactions include when information gathered by safety engineers shall be made available
to security engineers and vice versa [33].

Safety and security interactions may lead to trade-offs. These trade-offs may result
in either synergies or conflicts between safety and security analysis. Synergies may arise
because safety analysis are typically conducted prior to security analysis, allowing for a
possible mapping from safety artifacts to security artifacts. This is an approach known as
safety-informed security (sometimes refereed to as security for safety [34]), which refers to
protecting safety functions in safety-critical systems from a security perspective. According
to Paul [35], safety-informed security is an approach that consists of conducting security
analysis independently from safety analysis, while considering relevant information from
the safety analysis. In this approach, the security analysis focuses on the safety artifacts
identified in the safety analysis, examining how these artifacts may be compromised from a
security perspective and proposing security mechanisms to address potential threats. As
a result, the scope of the security analysis is bounded by the safety artifacts identified in
a safety analysis. A significant benefit of this approach is the full traceability between
safety and security analysis, where one can check whether all causes of hazards (e.g., faults
and failures in FTA) have traces to the security analysis. Another clear benefit is that the
security analysis may become more efficient. For example, security engineers may quickly
identify all safety-relevant assets (such as, components of safety patterns) that shall be
analyzed from a security perspective. This thesis investigates the benefits of using the
safety-informed security approach as part of the safety and security co-analysis process.

Conflicts may arise from the use of safety and security architecture patterns [5]. The
deployment of safety architecture patterns may have consequences on security. The com-
ponents of a safety architecture pattern may be a target for intruders, and therefore they
may become assets that need to be analyzed from a security perspective. The other way
around may also be possible. The deployment of a security architecture pattern have safety
consequences. For example, the deployment of a firewall at a communication channel with
safety-relevant information may unintentionally block safety-critical flows. As a result, the
deployed security architecture patterns shall be analyzed from a safety perspective.

As mentioned earlier, this thesis aims to introduce lightweight semantics to safety and
security artifacts. Our hypothesis is that the introduction of lightweight semantics may also
be used to identify synergies between safety and security artifacts, specifically in automating
the mapping from safety artifacts to security artifacts. Moreover, it may also be used to
enable the automated identification of conflicts that may arise due to the instantiation of
safety and security architecture patterns.

This leads to the third research question:
RQ3: Can the introduction of lightweight semantics enable the automated identification of synergies
and conflicts that may arise from safety and security analysis?

1.3 Safety and Security Interactions 9

Up to this point, we have discussed safety and security activities performed on the
left side of the V-model. The left side of the V-model specifies several artifacts, including
safety and security requirements, software requirements, and hardware requirements. The
specified safety and security requirements shall be implemented in the system to achieve
the corresponding safety and security goals, respectively. The verification activity is a
crucial activity on the right side of the V-model. This activity determines whether the
developed system fulfills the requirements specified on the left side of the V-model [23].
We substantiate the above statements by mentioning Clauses 9 and 10 from ISO/SAE
21434. Clause 9 includes the specification of security goals and requirements, and Clause
10 includes the implementation and verification of security requirements. In this thesis,
security requirements are derived from security architecture patterns.

Although the main focus of this thesis is on safety and security activities on the left
side of the V-model, we also consider the verification activity to investigate (i) how the
safety of systems may be affected by security attacks, i.e., how safety goals may be violated
by attacks carried out by intruders, and (ii) how security architecture patterns may help to
both mitigate attacks and ensure the safe behavior of the system.

Consider the promising technology for connected and automotive vehicles, namely
Cooperative Adaptive Cruise Control (CACC). CACC is an extension of Adaptive Cruise
Control (ACC) to enable vehicles (e.g., a fleet of trucks) to drive in a cooperative manner,
a.k.a. platoon [36]. CACC establishes a V2V communication topology to enable vehicle
platoon to exchange information with each other. This exchange of information may result
in changes in the vehicle’s state, such as the vehicle’s speed and position. A reasonable
safety goal for CACC systems is to “prevent unintended safety distance violation between
vehicles in the platoon”. This safety goal may be violated by malicious data injected by
intruders through communication channels with the intent of maliciously changing the
vehicle’s state. These attacks may be mitigated by security mechanisms implemented based
on security architecture pattern requirements identified during the design of the system.

Formal verification is a well-known method used to automate checks on whether the
system fulfills safety and security requirements specified on the left side of the V-model.
This thesis investigates whether the security requirements derived from security architecture
patterns (left side of the V-model) may be used as input for the verification activity (right
side of the V-model) to verify the safe behavior of automotive systems. We expect that such
inputs (i.e., security requirements) are derived from the artifacts computed with the help
of the proposed lightweight semantics. That is, by leveraging the defined vocabulary and
meanings provided by lightweight semantics, we aim to enable the automated computation
of requirements that can subsequently be utilized as inputs for formal verification tools,
such as TTool [37] or Soft-Agents framework [38].

This leads to the fourth research question:
RQ4: Can the introduction of lightweight semantics assist traditional formal verification in verifying
safety-critical systems?

In summary, this thesis aims to provide contributions to both the research and industry
worlds. From a research perspective, this thesis aims to advance state-of-the-art of safety and

10 1. Introduction and Background

security co-analysis by providing (i) lightweight semantics to artifacts computed throughout
the design of safety-critical systems, and (ii) methods to enable the automation of safety
and security activities, including co-analysis activities. From an industry perspective, the
automation of safety and security activities is a significant contribution in itself. Additionally,
this thesis aims to ensure that the artifacts developed within this research align closely
with safety and security standards strictly followed by the industry.

Chapter 2

Methodology and Highlights of
Research Outcomes

This chapter outlines the methodology employed to answer the research questions introduced
in Chapter 1. Our goal is to introduce lightweight semantics to key artifacts computed
by activities performed on the left side of the V-model. By incorporating lightweight
semantics into such artifacts, the intended outcome is to enable the automation of safety
and security co-analysis activities. To this end, our methodology focuses on using a
model-based systems engineering approach and knowledge representation and reasoning.
Additionally, we investigate how the introduced lightweight semantics can enhance and
support formal verification processes. Next, we provide a brief description on model-
based systems engineering, knowledge representation and reasoning, and formal verification.
Figure 2.1 illustrates the breakdown of the results obtained in the thesis. This illustration
provides an overview of the articles used in the thesis, along with their respective chapters,
highlights the primary methodology utilized by each article, and which research question
was tackled by each article. Sections 2.1, 2.2, 2.3, 2.4, and 2.5 provide a concise overview of
how this thesis utilized the respective methodology to address the research questions. The
results achieved by this thesis were evaluated through realistic case studies from both the
automotive domain and the unmanned air vehicle domain.

Model-based Systems Engineering (MBSE). According to the INCOSE Systems
Engineering Vision [47], model-based systems engineering (MBSE) is the formalized ap-
plication of modeling to support system requirements, design, analysis, verification, and
validation of activities beginning in the conceptual design phase and continuing throughout
development and later life cycle phases. The intended outcome of MBSE is to replace the
traditional document-based approach, where engineers write documents to record informa-
tion about the developed system. A MBSE approach captures system information, such
as system requirements and architecture views (e.g., logical and hardware architectures),
using a collection of interconnected models (a.k.a. viewpoints). When changes are made
to one model, automated updates are triggered in all related models, ensuring traceability
and consistency of information across the system. This interconnectedness of models helps

12 2. Methodology and Highlights of Research Outcomes

Thesis Contributions

Article #1 [39]

Article #2 [40]

Article #3 [41]

Article #4 [42]

Article #5 [43]

Article #6 [44]

Article #7 [45] Article #8 [46]

Article Chapter Methodology Research Question(s)
#1 [39] 4 KRR RQ1
#2 [40] 5 MBSE RQ1
#3 [41] 5 MBSE RQ1
#4 [42] 6 KRR RQ2 and RQ3
#5 [43] 7 KRR RQ2
#6 [44] 8 MBSE RQ2
#7 [45] 9 KRR RQ1, RQ2, and RQ3
#8 [46] 10 FV RQ4

Figure 2.1: Breakdown of the thesis contributions presented as scientific articles.

engineers manage the complexities associated with safety-critical systems throughout the
entire development cycle. ISO 26262 [10] and ISO/SAE 21434 [23] require the availability
of an item definition prior conducting safety and security analysis, respectively. The item
definition represents the system architecture in preliminary version or more advanced version
depending on the status of the system development. The system architecture [9] represents
the structure of the system that allows identification of building blocks, their boundaries
and interfaces, and includes the allocation of functions or components to hardware and
software units. In this thesis, the system architecture (a.k.a. item definition) is expected to
be modeled using a model-based systems engineering approach. The MBSE approach is
valuable due its comprehensive representation of system information within the models,
facilitating the extraction of relevant data for reasoning about the safety and security
aspects of the system architecture. Section 2.1 describes the specification of lightweight

13

semantics obtained from relevant architecture artifacts designed using a MBSE approach.

Knowledge Representation and Reasoning (KRR). KRR [48] is the area of Artifi-
cial Intelligence (AI) concerned with how knowledge can be symbolically represented and
manipulated in an automated fashion by reasoning programs. Knowledge denotes what is
known in the world by a stakeholder, such as a person or a system. Representation denotes
how the stakeholder represents that knowledge through symbols. For example, a system
architect responsible for designing the functional architecture possesses knowledge about
system functions and their interconnections. Based on that knowledge, the system architect
represents the functions and their interconnections through models in a model-based systems
engineering tool, such as AutoFOCUS3 [49]. These MBSE tools use metadata items to
symbolically represent architecture artifacts, such as system functions and communication
channels. Reasoning denotes the manipulation of represented knowledge to produce repre-
sentations of new ones [48]. For example, consider a system architecture with functions A,
B, and C, along with a communication channel from function A to function B and another
communication channel from function B to function C. Based on this representation, one
can reason that there exists an indirect flow of information from function A to function C.

Answer Set Programming (ASP) [50] is a declarative language for KRR. ASP solvers like
DLV [7] and clingo [51] enable the knowledge representation through facts and knowledge
reasoning through rules. Facts may be represented by predicates holding a number of
arguments. We illustrate below how the above functional architecture can be represented
in DLV. This representation contains two predicates, namely function and channel. The
predicate function holds one argument representing the function name, and channel holds
two arguments representing a channel from one function to another. The representation of
those facts expresses that the following three functions and two channels are true.
% Representation of system functions

function(a).
function(b).
function(c).

% Representation of communication channels
channel(a,b).
channel(b,c).

A DLV rule may contain the form a0 ← a1,..., an, where the fact a0 is the head
of the rule, and the facts a1,..., an are the body of the rule. A DLV rule can be used
to derive new facts based on the existing ones. The head of a rule is true if all facts
represented in the body of the rule are true. We illustrate below one DLV rule to derive
indirect_information_flow from the existing facts. For the sake of simplicity, the rule
only derives indirect information flows from two subsequent communication channels.
% Reasoning for indirect information flow based on represented functions and channels

indirect_information_flow(X,Z) :-
function(X), function(Y), function(Z),
channel(X,Y), channel(Y,Z).

14 2. Methodology and Highlights of Research Outcomes

KRR methods have played a significant role in automating various technologies, in-
cluding the semantic web [52, 53]. The semantic web employs metadata representation to
facilitate automated interpretation, enabling personalized search and data integration. This
thesis proposes lightweight semantics to define the meaning and interpretation of artifacts
computed by safety and security co-analysis activities. KRR solvers, such as DLV, provide
languages to specify semantics within a given domain. By specifying semantics in KRR
solvers, one can establish a formal and structured representation of knowledge, enabling
machines to reason, query, and make inferences based on the defined semantics. This thesis
proposes (see a brief overview in Sections 2.1 through 2.4) the use of KRR to represent key
artifacts computed by or relevant to safety and security co-analysis activities and reason
about the safety and security of the system architecture.

Formal Verification (FV). Formal methods [54] are techniques to mathematically
specify the desired behavior and properties of complex systems, such as safety-critical
systems. The formal specification of the chosen system and its properties are expressed in a
formal language with a well-defined syntax and semantics to enable precise and unambiguous
specifications. Formal verification (FV) is a specific application of formal methods focusing
on automated analysis to search through the execution paths of the specified system to
identify violations of the system properties.

There are several approaches for formal verification, including symbolic execution,
abstract interpretation, and model checking [55]. This thesis focuses on both symbolic
execution and model checking. Symbolic execution analyzes the behavior of a specified
system through symbolic expressions (instead of actual values) representing the system
behavior. Symbolic execution represents system inputs and outputs as symbolic expressions
to generate a set of execution paths describing the system behavior based on the system
inputs. Model checking specifies a finite-state model of the system and explore all possible
states of the model to verify violations of a given system property.

Maude [56] is a rewriting logic specification language that may be used for formal
verification. Maude supports symbolic execution through its model checking capabilities.
To enable symbolic execution, the user of Maude specifies the system behavior following
Maude specifications, such as rewrite rules: t −→ t’ if cond, which may be interpreted
as a transition from state t to state t’ if all conditions in t are true. Maude provides a
search command that may be used to verify system properties. The search command
takes as input both an initial state and a search pattern, and uses breath-first search for
searching for states (specified by rewrite rules) that match with the search pattern [57].
For example, the user may define an initial ‘safe’ state for the system and use the search
command for searching for states that violate a safety property. In this thesis, Maude is
used for conducting safety and security verification of an automotive system, specifically
the Cooperative Adaptive Cruise Control (CACC) system. Further elaboration on this
topic can be found in Section 2.5, where we also investigate the connection between the
introduced lightweight semantics and formal verification.

2.1 Lightweight Semantics for Architecture Artifacts 15

Roadmap. As motivated in Chapter 1, it is crucial to introduce semantics into key
artifacts to enable the automation of safety and security co-analysis activities. The
challenge lies in identifying the key artifacts that necessitate the introduction of lightweight
semantics. Our proposition centers on the adoption of lightweight semantics to key artifacts
computed throughout the design of safety-critical systems. That is, this thesis proposes the
introduction of lightweight semantics to system architecture artifacts, safety and security
artifacts, and safety and security architecture patterns. By introducing lightweight semantics
into these artifacts, we have successfully enabled the automation of several safety and
security co-analysis activities (see articles 1–7 in Figure 2.1). Our proposal focuses on the
adoption of lightweight semantics that leverage metadata associated with such artifacts.
The metadata describes the knowledge about a specific artifact. To enhance the reader’s
understanding of the proposed lightweight semantics, we now provide examples illustrating
(i) the metadata of system architecture artifacts (Section 2.1), (ii) safety and security
artifacts (Section 2.2), and (iii) safety and security architecture patterns (Section 2.3).
We provide by example how such metadata may be represented as facts in a KRR solver.
Additionally, Section 2.4 provides a high-level explanation on how reasoning rules may be
specified to enable the automation of safety and security activities and their interactions
based on the represented metadata. Section 2.5 describes how we connect lightweight
semantics with formal verification. Section 2.6 discusses gaps and corresponding future
directions based on the gaps and results presented in the thesis.

2.1 Lightweight Semantics for Architecture Artifacts
System architectures designed following a MBSE approach consists of several viewpoints,
including requirements, logical architecture, software architecture, and hardware architecture.
Viewpoints are designed using a specific language (e.g., SysML) encompassing the syntax
and semantics of the viewpoint. These viewpoints are commonly stored as metadata within
an MBSE tool. For example, MBSE tools that utilize SysML often store metadata in XML
format. The metadata associated with a viewpoint provides comprehensive information
about each artifact (a.k.a. architecture element) within the viewpoint.

We illustrate a subset of the metadata items from a logical architecture. The upper part
of Figure 2.2 illustrates the metadata from a logical architecture. The logical architecture
contains seven artifacts, i.e., four components and three communication channels. The
metadata items of a component contain the unique identification (ID for short), name,
input port and output port, and component type (i.e., public, gateway or private). A
public component denotes a component outside of the system boundary that may be
accessed by external users. A gateway component denotes a component at the border
of the system boundary. A private component denotes a component within the system
boundary. The metadata items of a communication channel contain the ID, name, input
port and output port. The bottom part of Figure 2.2 illustrates the allocations of the four
components designed in the logical architecture. An allocation denotes whether a component
is implemented as software or hardware unit. The metadata items of an allocation contain

16 2. Methodology and Highlights of Research Outcomes

Figure 2.2: Example of metadata from logical architecture and allocations.

the component ID, and the ID of a hardware or a software unit. The assignment of the
component type is expected to take place at the hardware architecture, where the system
boundary and entry points (i.e., public components) are defined. This information may be
cross-referenced with other architecture views (i.e., traceability) using the allocation table.
The software architecture and hardware architecture are omitted in Figure 2.2.

Based on the metadata of system architecture artifacts, we introduce lightweight seman-
tics for different viewpoints of a system architecture. We use knowledge representation for
construction of a Domain-Specific Language (DSL) for representing system architecture
artifacts. This representation shall enable the reasoning of the system architecture from a
safety and security perspective, as demonstrated in our article [45] for pattern instantiation
and in our article [42] for attack path enumeration. Our DSL has been initially introduced
in our article [39] and has since been refined through subsequent articles, including [45].
The representation of the system architecture may be manually encoded in our DSL or

2.2 Lightweight Semantics for Safety and Security Artifacts 17

automatically obtained from an MBSE tool, as exemplified in our articles [40, 41]. The
metadata of the logical architecture, as illustrated in Figure 2.2, can be represented in our
Domain-Specific Language as follows.

% Representation of components - 'not_specified' means the data was not specified
component_input(cp01,gps,not_specified).
component_output(cp01,gps,o1).
component_input(cp02,gateway,i1).
component_output(cp02,gateway,o2).
component_input(cp03,perception,i2).
component_output(cp03,perception,o3).
component_input(cp04,planning,i3).
component_output(cp04,planning,not_specified).

% Representation of component type
public(cp01).
gateway(cp02).
private(cp03).
private(cp04).

% Representation of communication channels
channel(ch01,coordinates,o1,i1).
channel(ch02,obstacles,o2,i2).
channel(ch03,obstacles,o3,i3).

% Representation of allocations
allocation(cp01,hw01).
allocation(cp02,sw01).
allocation(cp03,sw02).
allocation(cp04,sw03).

The above representation provides lightweight semantics for a logical architecture and al-
location table. The vocabulary consists of the terms component_input, component_output,
public, private, channel and allocation, along with its associated semantics, such
as component_output(cp03,perception,o3) denoting the component cp03 (named as
perception) providing output data through output port o3.

2.2 Lightweight Semantics for Safety and Security Ar-
tifacts

The results of a safety analysis (a.k.a. safety artifacts) using methods like FTA and STPA
can be described on spreadsheet programs or special tools, such as Arbre-Analyst [58] for
FTA and XSTAMPP [59] for STPA. Similarly, the results of a security analysis (a.k.a.
security artifacts) using TARA are often described on spreadsheet programs, such as excel.
Some OEMs or suppliers may have their own tools to describe safety and security artifacts.

The metadata of safety and security artifacts may be extracted from either a spreadsheet

18 2. Methodology and Highlights of Research Outcomes

Figure 2.3: Example of metadata from safety artifacts (HARA + STPA).

program or a special tool. The extraction is possible (even manually from a spreadsheet
program) because there are well-known terms associated with safety and security artifacts.

Avizienis et al [12] propose a taxonomy on dependability, where several safety-relevant
terms are defined. For example, a fault has several attributes, including the fault dimension
which defines whether the fault arises from a software or hardware error. Similarly, a
failure resulting from a fault contains several attributes, including the failure mode, which
defines how the failure manifests in the system. Examples of failure modes are erroneous
(a.k.a. content failure or malfunction), denoting incorrect computation of output values by
a function, and loss (a.k.a. halt failure), indicating that a function is no longer operating.

Security-wise, an asset has one or more security properties that shall be satisfied. One
can use the well-known CIA (Confidentiality, Integrity and Availability) triad model or
STRIDE to define the security properties of an asset. STRIDE, in particular, provides a
mapping from a security property to a threat, such as the security property availability
may be violated by denial of services attacks. ISO/SAE 21434 provides definitions and
examples of security artifacts, such as attack paths, which is a sequence of actions to realize
a threat scenario. These actions are associated with architecture elements that an attacker
may need to compromise to realize a threat scenario. In summary, we gather relevant
metadata from safety and security artifacts based on well-known terms used by researchers
and practitioners when performing safety and security analysis.

Figure 2.3 illustrates the metadata from safety artifacts computed by HARA and STPA.
The upper part of Figure 2.3 illustrates a hazard, an unsafe control action, and a loss
scenario. The bottom part of Figure 2.3 describes the metadata of such safety artifacts.

2.2 Lightweight Semantics for Safety and Security Artifacts 19

Figure 2.4: Example of metadata from safety artifacts (HARA + FTA).

The metadata items of a hazard contain an ID, name, severity, exposure, and controllability.
The metadata items of an unsafe control action contain an ID, name, type, control action,
and the hazard caused by the unsafe control action. Finally, the metadata items of a loss
scenario contain an ID, element (e.g., a component), data (computed by the element),
failure mode, and the unsafe control action caused by the loss scenario.

Figure 2.4 illustrates the metadata from safety artifacts computed by HARA and a basic
FTA. The upper part of Figure 2.4 illustrates a hazard, a minimal cut set, two failures, and
two faults. The faults in perception and planning trigger erroneous failures which are part
of the minimal cut set. If both of these failures occur (at the same time or in sequence),
the minimal cut set culminates in the manifestation of the hazard. The bottom part of
Figure 2.4 describes the metadata of such safety artifacts (similar to the above explanation).

Figure 2.5 illustrates the metadata from security artifacts computed by TARA. The
upper part of Figure 2.5 illustrates the security artifacts computed by the first six activities
of TARA, i.e., from asset identification to risk determination. The bottom part of Figure 2.5
describes the metadata of such security artifacts. The metadata items of an asset contain
an ID, an element (e.g., perception) that computes some data (e.g., obstacles), and the
relevant security property (e.g., integrity) of the asset. The damage scenario for this asset
includes an ID, and name (a.k.a. description). The impact rating includes an ID, and
the safety impact for a damage scenario. Notice, however, that the impact rating activity
may also compute information on financial, operational, and privacy impact. The threat
scenario includes an ID, and the threat (e.g., tampering) that may violate the security

20 2. Methodology and Highlights of Research Outcomes

Figure 2.5: Example of metadata from security artifacts (TARA).

property of an asset. The attack path contains an ID, the path itself (e.g., perception
→ planning), the attack surface, and the threat scenario associated with the attack path,
which one can read as a path exploited by an intruder to carry out tampering attacks. The
attack surface [43] is an abstract term that describes whether an attack path includes public
elements or not. It provides a distinction between internal interfaces, which correspond
to attack paths originating from within the system boundary without involving public
elements, and external interfaces, which correspond to attack paths that do involve public
elements. An external interface can originate from outside the system boundary (e.g., the
GPS in Figure 2.2)) or originate from within the system boundary but terminates at a
public element. The attack feasibility includes an ID, and the rating for an attack path.
Finally, the risk determination includes an ID and the risk value for a threat scenario.

We introduce lightweight semantics to represent safety and security artifacts based on
their metadata. To this end, we use knowledge representation for construction of a Domain-
Specific Language (DSL) for representing safety and security artifacts. This representation
enables reasoning capabilities for safety and security artifacts, including the mapping of
safety to security artifacts, as demonstrated in our articles [45, 42]. In our article [45], we
introduce the DSL for representing safety artifacts computed by HARA and FTA. Our
article [42] extends the DSL to specify safety artifacts computed by HARA and STPA. Our
DSL for representing security artifacts computed by TARA has been introduced by our
article [45]. The representation of safety and security artifacts may be manually encoded in
our DSL or automatically obtained a MBSE tool, as demonstranted by our articles [40, 45].
As an example, we represent the metadata of the safety artifacts illustrated in Figure 2.2
in our DSL as follows. For the sake of presentation, we use the name of the element (i.e.,

2.3 Lightweight Semantics for Safety and Security Architecture Patterns 21

perception) and data (i.e., obstacles) instead of using their IDs.
% Representation of hazards

hazard(hz01,hazard_acc,s3,e4,c3).

% Representation of unsafe control actions
unsafe_control_action(uca01,uca_acc,provided,acceleration).

% Representation of loss scenarios
loss_scenario(ls01,perception,obstacles,erroneous).

% Representation of relationships between safety artifacts
loss_scenario2uca(ls01,uca01).
uca2hazard(uca01,hz01).

The above representation provides lightweight semantics for safety artifacts computed by
HARA and STPA. The vocabulary consists of the terms hazard, unsafe_control_action,
loss_scenario, loss_scenario2uca and uca2hazard, along with its associated semantics,
such as loss_scenario2uca(ls01,uca01) denoting that the loss scenario ls01 leads to
unsafe control action uca01.

2.3 Lightweight Semantics for Safety and Security Ar-
chitecture Patterns

Safety and security architecture patterns are described in textual and graphical form.
Researchers and practitioners often describe architecture patterns using templates, such
as the pattern templates used in [13] and [24]. Our goal is to reason about safety and
security architecture patterns to enable their recommendations in an automated fashion.
To this end, the initial step involves extracting relevant metadata from safety and security
architecture patterns to enable their declarative representations.

In contrast to safety and security artifacts, there is a lack of consensus within the
scientific and industrial communities regarding the terminology used in relation to safety
and security architecture patterns, even for safety architecture patterns which have a longer
history compared to security architecture patterns. The question now is “what are the
relevant metadata associated with safety and security architecture patterns to enable their
automation?” Answering this question is no simple task due to the descriptive nature of
architecture patterns, which primarily rely on textual and graphical representations.

To answer this question, we have conducted a literature review on safety and security
architecture patterns. Chapter 3 provides a summary of this literature review. Through
our literature review, we found that examining the instantiation of pattern templates can
provide valuable insights into the relevant metadata associated with architecture patterns.
Firstly, the pattern structure is graphically described in the template. This description
illustrates the placement of pattern components and channels within the system architecture.
Consequently, we can extract relevant metadata from the instantiation of architecture
patterns. Secondly, the textual description within the pattern template describes the

22 2. Methodology and Highlights of Research Outcomes

Figure 2.6: Metadata (instantiation) from the Heterogeneous Duplex pattern.

Figure 2.7: Metadata (attributes and requirements) from the Heterogeneous Duplex pattern.

pattern’s intent and the specific problem it addresses. This description represents what
guarantees the pattern provides, and the safety or security problem addressed by the
pattern. As a result, we can extract relevant metadata on why and when to use architecture
patterns. Thirdly, the pattern template may include requirement descriptions associated
with the pattern, such as functional, software or hardware requirements. These descriptions
outline how the pattern shall be implemented to address safety or security problems. We
can extract relevant metadata from such requirements descriptions.

Figure 2.6 illustrates the metadata items related to the instantiation of a safety architec-
ture pattern. The left side of Figure 2.6 illustrates the instantiation of a pattern template for
the Heterogeneous Duplex pattern [13]. This pattern consists of three components, namely
primary, secondary (redundancy), and fault detector. The right side of Figure 2.6 illustrates
relevant metadata extracted from the first two rows (i.e., name and structure) of the pattern

2.3 Lightweight Semantics for Safety and Security Architecture Patterns 23

Figure 2.8: Metadata (instantiation) from the M. Authentication pattern.

template. The pattern instantiation contains an ID and a pattern name (assumed to be
unique as well). The metadata related to pattern components and channels are extracted
from the second row of the pattern template (left side of Figure 2.6). Notice that some
metadata related to pattern channels are not completed, e.g., the input port of channel
ch01 is not specified (n/s). This is because only a snippet of the system architecture is
illustrated in the pattern template.

Figure 2.7 illustrates the metadata items related to the intent, problem address, and
requirements of the Heterogeneous Duplex pattern. This pattern provides fault tolerance
by providing a redundant component, namely secondary. This pattern may be deployed to
address (i) life-critical hazards [13], such as ASIL D, (ii) software and hardware faults (e.g.,
by ensuring software and hardware independence), and (iii) failure mode erroneous and
loss (e.g., by implementing plausibility checks). The right side of Figure 2.7 illustrates the
relevant metadata extracted from the pattern intent and problem addressed by the pattern.
The bottom of the pattern template describes by example a single software requirement
of the Heterogeneous Duplex pattern. The metadata of this requirement is illustrated on
the right side of Figure 2.7. The metadata includes the requirement description and the
components that shall implement the requirement (i.e., primary and secondary).

Figure 2.8 illustrates the metadata items related to the instantiation of a security archi-
tecture pattern. The left side of Figure 2.8 illustrates the instantiation of a pattern template
for the Message Authentication pattern (a.k.a. Verifiable Transmission pattern) [25]. This
pattern consists of four components, namely origin, signature generator, receiver, and
signature verifier. The metadata extracted from security architecture patterns is similar to
the metadata described above for safety architecture patterns.

Figure 2.9 illustrates the metadata items related to the intent, problem address, and
requirements of the Message Authentication pattern. This pattern satisfies the integrity and
authenticity of messages computed by the origin. The Message Authentication pattern may

24 2. Methodology and Highlights of Research Outcomes

Figure 2.9: Metadata (attributes and requirements) from the M. Authentication pattern.

be deployed to address tampering and spoofing attacks against messages computed by the
origin. To this end, the origin has an asymmetric key pair, where the public key certificate
has been shared with the receiver through a secure channel. The messages computed
by the origin are signed with the origin’s private key, whereas the received messages are
verified by the receiver using the origin’s public key. This pattern is suitable for mitigating
tampering or spoofing attacks carried out within the system (internal interface). This is
because it might be impractical to expect external clients (i.e., public elements) to create
an asymmetric key pair and distribute the public key certificate to all relevant components.
The right side of Figure 2.9 illustrates the relevant metadata extracted from the pattern
intent and problem addressed by the pattern. The bottom of the pattern template describes
by example a single software requirement of the Message Authentication pattern.

We introduce lightweight semantics to represent safety and security architecture artifacts
based on their metadata items. We use knowledge representation for construction of a
Domain-Specific Language (DSL) for representing safety and architecture patterns. This
representation enables the reasoning of safety and security architecture patterns, including
pattern recommendation, as demonstrated several of our articles, such as [45]. Our arti-
cles [39] and [45] introduce the DSL for the representation of safety and security architecture
patterns, respectively. For example, one can represent the metadata extracted from the
Heterogeneous Duplex pattern in our DSL as follows. For the sake of presentation, we use
the name of components and channels instead of using their IDs.
% Representation of safety architecture patterns (intantiation)

safety_pattern(htd01,
heterogeneous_duplex,

elem(primary,secondary,fault_detector),
input(inp1,inp2,inp3),

internal(int1,int2),
output(out,fs)).

% Representation of safety architecture patterns (attributes)

2.4 Safety and Security Reasoning 25

safety_pattern_attributes(heterogeneous_duplex,
type(fault_tolerant),

asil(d),
fault(hardware,software),

failure(erroneous,loss)).

% Representation of safety architecture patterns (requirements)
requirement(rq01,

shall_be_implemented_with_different_designs,
elem(primary,secondary)).

The above representation provides lightweight semantics for safety architecture
patterns and requirements. The vocabulary consists of the terms safety_pattern,
safety_pattern_attributes, and requirement, along with its associated semantics, such
as requirement(rq01,...) denoting requirement rq01 is relevant to architecture elements
primary and secondary and that such elements shall be implemented with different designs.

2.4 Safety and Security Reasoning

2.4.1 Safety Reasoning
The first question of this thesis (RQ1) asks whether the introduction of lightweight semantics
enables the automated recommendation of safety architecture patterns. To answer this
question, we use KRR and propose safety reasoning rules to derive safety architecture
patterns from the existing knowledge represented in our DSL. The proposed DSL enables
the representation of both the system architecture often designed by a system architect,
and the safety artifacts obtained from a safety analysis performed by a safety engineer.
These representations, and the representation of safety architecture patterns, are the basis
to enable automated reasoning for safety architecture patterns.

Our safety reasoning rules infer when a safety architecture pattern can be recommended
based on the safety artifacts, and instantiate the recommended pattern based on the
system architecture. In our articles, such as [45], the safety reasoning rules for pattern
recommendation are expressed as disjunction rules of the following form

a0 v not_a0 ← a1,..., an

where a0 denotes when a pattern is recommended and not_a0 denotes when a pattern
is not recommended. The recommendation decision is based on the existing knowledge
a1,..., an. Specifically, the relevant knowledge required to make this decision consists of
the safety artifacts and the attributes of safety architecture patterns. The safety artifacts
are hazards (identified by a HARA analysis) and the potential causes for the hazards
identified by either a FTA or STPA analysis. The attributes of a safety architecture pattern
denote the intent and problem addressed by the pattern. The intent of a safety architecture

26 2. Methodology and Highlights of Research Outcomes

pattern denotes whether the pattern provides fault tolerance or fault detection. The user
may choose the desired intent of the pattern by specifying an additional requirement. The
problem addressed by the pattern has a direct link with the represented safety artifacts.

Our safety reasoning rules infer that a safety architecture pattern is recommended if
the following conditions hold:

asil_class ∈ safety_pattern_attribute
fault_dimension ∈ safety_pattern_attribute

failure_mode ∈ safety_pattern_attribute
pattern_type ∈ safety_pattern_attribute

The asil_class can be calculated based on represented severity, exposure and control-
lability of a hazard. The fault_dimension can be obtained based on faults identified by
FTA or derived from loss scenarios, i.e., check whether the element associated with a loss
scenario is implemented as software or hardware. The failure_mode can be obtained from
failures identified by FTA or loss scenarios identified by STPA. The pattern_type can be
obtained from an additional requirement that specifies the intent of the pattern.

Our articles, such as [41, 40], propose safety reasoning rules to automate the recom-
mendation of safety architecture patterns based on the aforementioned conditions. It is
important to note that a safety architecture pattern is recommended if the aforementioned
conditions are met. This may result in scalability issues as several solutions may be com-
puted. For example, consider the safety artifacts computed by HARA and FTA depicted
in Figure 2.4: Two safety architecture patterns, one for perception and one for planning,
are recommended if the aforementioned conditions are met. However, this dual-pattern
solution is not required because the minimal cut set only culminates in the manifestation
of the hazard if failures from both perception and planning occur. Consequently, having
just one safety architecture pattern, either for perception or planning, suffices to address
the hazard’s manifestation. To address scalability issues, our article [45] provides solutions
to deal with scalability by using DLV constraints. Once a safety architecture pattern is
recommended, it may be instantiated based on the system architecture. Communication
channels may be derived from the system architecture to instantiate pattern channels
(i.e., input, internal, and output channels). For example, from the Heterogeneous Duplex
pattern (see Figure 2.6), one can derive the channels for the secondary (a.k.a. redundant)
component based on the existing channels associated with the primary component. Our
articles [40, 41] discuss in more detail how to instantiate safety architecture patterns after
their recommendations. For each recommended and instantiated safety architecture pattern,
we specify reasoning rules to compute the pattern requirements. These requirements shall
be realized during the system development process to ensure the intended functionality
of the pattern. Our article [40] discusses in more detail about the pattern requirements
computed by our reasoning rules. In addition, our articles [40, 41] provide specific criteria
to assist users in their selection of an architecture solution based on the recommended
safety architecture patterns.

2.4 Safety and Security Reasoning 27

Safety Artifact Security Artifact
Element/Data of loss scenarios −→ Assets
Example: obstacles computed by perception obstacles computed by perception
Description of hazards −→ Damage scenarios
Example: safety distance violation safety distance violation
Controllability and Severity of hazards −→ Impact rating (safety)
Example: C3, S3 severe
Failure mode of loss scenarios −→ Threat scenarios
Example: erroneous integrity
Example: loss availability

Table 2.1: Mapping from safety artifacts (HARA + STPA) to security artifacts.

In summary, our safety reasoning rules enable (i) the recommendation of safety archi-
tecture patterns, (ii) the instantiation of recommended safety architecture patterns, and
(iii) the computation of pattern requirements for instantiated safety architecture patterns.

2.4.2 Security Reasoning
The second research question of this thesis (RQ2) asks whether the introduction of
lightweight semantics to security artifacts and security architecture patterns enable the
automated computation of TARA activities. To answer this question, we use KRR and
propose security reasoning rules to derive security artifacts from the existing knowledge
represented in our DSL. The representation of both safety and security artifacts and security
architecture patterns in our DSL are the basis to enable automated reasoning for TARA
activities. Additionally, the representation of system architecture artifacts plays a crucial
role in facilitating the automation of one TARA activity, namely attack path analysis.

Section 2.2 described the representation of security artifacts computed by TARA
activities. These security artifacts may be represented in our DSL as input information
provided by users. This thesis, however, investigates how much of this information can be
automated and how. To this end, we have conducted a literature review on approaches on
how to derive security artifacts from safety artifacts. Chapter 3 provides a summary of
this literature review. Based on the outcome of this literature review, we have identified
specific security artifacts that may be automated based on existing safety artifacts, namely
(i) assets, (ii) damage scenarios, (iii) impact rating, and (iv) threat scenarios. Table 2.1
provides a high-level illustration of the mapping from safety artifacts (computed by HARA
and STPA) to security artifacts. Our article [42] provides a detailed explanation about
this mapping, which can be automated through the specification of reasoning rules. This
automated mapping answers the third research question of this thesis (RQ3), paving the
way for the automated identification of synergies between safety and security analysis. This

28 2. Methodology and Highlights of Research Outcomes

is a synergy generated by combining safety and security analysis to enhance the efficiency
and safety-awareness of the security analysis process. Consequently, safety artifacts such as
hazards are analyzed and addressed also from a security perspective.

Security reasoning rules may be specified to enumerate attack paths based on the
represented system architecture and assets. An attack path consists of a sequence of
architecture elements where the first element is the entry point of the intruder and the last
element (i.e., asset) is the target of the intruder. For example, an attack path where the first
element is a public component and the last element in an asset. Security reasoning rules may
infer such a sequence of architecture elements based on, e.g., the communication channels
between components. Enumerating attack paths solely on the system architecture and
assets may be naive and lead to unrealistic attack paths. An intruder model is essential to
decide on the sequence of architecture elements of an attack path, e.g., to decide on realistic
entry points, and how the attack propagates within the architecture until reaching the
target asset. We have conducted a literature review on several attacks against automated
driving systems. Our literature focuses on automated driving systems, particularly systems
implementing Service-Oriented Architectures (SOA). Chapter 3 provides a summary of this
literature review. We formalize an intruder model tailored to SOA based on the outcome of
the literature review. The intruder model formalizes the intruder capabilities in performing
attacks from outside the system boundary and from within the system boundary. We have
specified security reasoning rules to capture the formalized intruder model and automate
the enumeration of attack paths. Our intruder model, including the formalization and
implementation of security reasoning rules, is presented by our article [42]. The attack
paths enumerated by our security reasoning rules cover several attack paths reported in the
literature and attack paths not yet reported in the literature.

The subsequent TARA activity, known as attack feasibility rating, involves determining
the rating of an attack path. The rating is assigned in ascending order, ranging from very
low to high (easier to be exploited). Expertise from a security engineer is required for
this activity, as they evaluate the feasibility of the attack path from the perspective of
an intruder. To this end, a security engineer evaluates core factors, such as elapsed time,
expertise, equipment, and knowledge of the item or component, to determine the attack
feasibility rating of an attack path. Those core factors are part of a method called attack
potential [23]. The automation of this activity is only possible if the rating of such core
factors are represented as input information, as discussed by our whitepaper [60]. The
risk value for a threat scenario is determined from the impact rating and attack feasibility
rating. Security reasoning principles may be specified to automate the risk determination
activity if both impact rating and attack feasibility rating have been represented in our
DSL. For example, our whitepaper [60] uses the risk matrix (suggested by the ISO/SAE
21434) to automate the computation of risk values.

The last activity of TARA, namely risk treatment decision, includes the selection
of security architecture patterns for addressing threat scenarios, and therefore reducing
the risk value. We specify security reasoning rules to infer when a security architecture
pattern can be recommended based on the represented security artifacts, and instantiate
the recommended pattern based on the system architecture. The relevant security artifacts

2.4 Safety and Security Reasoning 29

to make a decision on whether a pattern is recommended or not are the security property of
the asset represented in the damage scenario, the threat represented in the threat scenario,
and the attack surface represented in the attack path. The attributes (i.e., intent and
problem addressed) of a security architecture pattern are also relevant to decide on whether
the pattern is recommended. Concretely, our security reasoning rules infer that a security
architecture pattern is recommended if the following conditions hold:

security_property ∈ security_pattern_attribute
threat ∈ security_pattern_attribute

attack_surface ∈ security_pattern_attribute

The aforementioned conditions imply that a security architecture pattern shall be
recommended to mitigate a particular threat (e.g., tampering) which occurs at the attack
surface (e.g., an internal interface) targeting the security property (e.g., integrity) of an asset.
Our articles, such as [45, 43], propose security reasoning rules to enable the automation
of security architecture patterns based on such conditions. It is important to note that
a security architecture pattern is recommended whenever the aforementioned conditions
are met, which may result in scalability issues. Our article [43] provides solutions to deal
with such scalability issues and usability issues by using clingo constraints. As for safety
architecture patterns, we also specify reasoning rules for computing security requirements
once a security architecture pattern has been recommended and instantiated into the system
architecture. Those security requirements shall be realized during system development to
ensure that the pattern works as intended. Our articles [43, 44] provide specific criteria
to assist users in their selection of an architecture solution based on the requirements
associated with the recommended security architecture patterns.

In summary, our security reasoning rules enable the automation of the following TARA
activities: (i) asset identification (including damage scenarios) based on faults or loss
scenarios and hazards, (ii) safety impact rating based on the controllability and severity of
a hazard, (iii) threat scenarios derived from the failure mode, (iv) attack feasibility rating
only if the rating of core factors from the attack potential method have been represented as
input information, (v) risk determination if attack feasibility rating has been represented,
and (vi) risk treatment decision, i.e., the recommendation and instantiation of security
architecture patterns, including the specification of pattern requirements.

2.4.3 Reasoning on Safety and Security Consequences
The third research question of this thesis (RQ3) asks whether the introduction of lightweight
semantics enables the identification of conflicts between safety and security analysis. To
answer this question, we propose reasoning rules to derive safety and security consequences
based on the security and safety architecture patterns represented in our DSL, respectively.
Our work is inspired by [61] that extended safety architecture patterns to include security
considerations, in particular security consequences that may be exploited by intruders.

The instantiation of a safety architecture pattern may cause security consequences.
Each component of a safety architecture pattern is safe critical and may lead to harm if an

30 2. Methodology and Highlights of Research Outcomes

Figure 2.10: Examples of safety and security consequences caused by architecture patterns.

intruder is successful in violating its security properties. Consequently, the components of a
safety architecture pattern shall be taken into account during the security analysis. The left
side of Figure 2.10 describes two security consequences caused by the Heterogeneous Duplex
pattern. The integrity and availability of primary, secondary, and fault detector shall
be satisfied such that the Heterogeneous Duplex pattern can work as intended. The following
security artifacts may be derived from the security consequences described in Figure 2.10:
(i) each safety pattern’s component becomes an asset, where its security properties are part
of the damage scenario. The security property may be derived from the failure mode of
the loss scenario associated with primary. The description of the damage scenario may
be obtained from the hazard led by loss scenario associated with primary, and (ii) the
threat scenario associated with the asset, where the threat may be derived from the asset’s
property using the STRIDE methodology, such as integrity → tampering.

Similarly, the instantiation of a security architecture pattern may cause safety conse-
quences. This thesis focuses on security for safety, therefore the instantiation of a security
architecture patterns may include safety-related components. The malfunction behavior of
such components may lead to hazards, and shall be taken into account during the safety
analysis. The right side of Figure 2.10 describes two safety consequences caused by the
Message Authentication pattern. Faults triggering erroneous failures in either signature
generator or signature verifier may block safety-relevant information to be read by
receiver, and thus preventing receiver from properly functioning. Similarly, faults
triggering loss failures in origin will prevent receiver from even receiving any input
information from origin. Safety artifacts may be derived from the safety consequences
caused by security architecture patterns.

Our article [45] provides reasoning rules for computing safety and security consequences
based on the instantiation of security and safety architecture patterns, respectively.

In summary, our reasoning rules enable the automation of safety and security conse-
quences caused by the instantiation of security and safety architecture patterns, respectively.

2.5 Connecting Lightweight Semantics with Formal Verification 31

Specifically, our reasoning rules compute (i) assets, damage scenarios, and threat scenarios
as a direct consequence due to the instantiation of a safety architecture pattern, and
(ii) loss scenarios (STPA) or faults and failures (FTA) as a direct consequence due to the
instantiation of a security architecture pattern.

2.5 Connecting Lightweight Semantics with Formal
Verification

This thesis uses formal verification to investigate how the safety property of the system may
be violated by attacks, and how security mechanisms specified based on pattern requirements
may be used to mitigate such attacks and ensure the safety property. Safety properties may
be derived from safety goals. As an illustrative example, we consider a CACC system and
the safety goal “prevent unintended safety distance violation between vehicles in the platoon”.
In general, a safety property denotes “nothing bad ever happens”. Specifically, we derive
a safety property from the above safety goal as “no crash between vehicle platoons ever
happens”. We consider attacks against CACC systems and a security mechanism derived
from pattern requirements to investigate whether the security mechanism is effective in
mitigating such attacks. The pattern requirements may be computed in an automated
fashion with the help of the introduced lightweight semantics. This investigation is crucial
to answer the fourth research question of this thesis (RQ4), which investigates the benefits
of connecting the introduced lightweight semantics with formal verification.

Our article [46] proposes a formal framework for the safety and security verification
of CACC platoons. Our framework formalizes the behavior of a CACC platoon model in
Maude. Our model enables the specification of vehicles (e.g., their roles, positions and
speed values) and vehicle strategies for executing platooning depending on the vehicle
state, such as joining and emergency states. Our framework specifies a parametric intruder
model that subverts communication channels to carry out attacks. The capabilities of the
intruder model are either blocking messages from a communication channel or injecting
messages into communication channels. Based on the intruder model, we specify five attacks
against vehicle platoons that may violate the defined safety property for the CACC platoon.
These attacks consider an intruder positioned between the platoon leader and the follower
members. The followers are vehicles that depend on the leader for guidance. They follow the
leader’s decisions, such as adhering to a specific speed. The intruder may carry out attacks
to either block messages from the leader or impersonate the leader to inject messages.

The user of our framework can utilize Maude’s search command to verify the safety
property of the CACC platoon model in situations where an intruder has the potential to
block or inject messages. The left side Figure 2.11 illustrates an initial state specified with
two vehicles (a leader and a follower), the instantiation of an intruder that blocks legitimate
messages from the leader and inject messages with malicious speed values. The right side of
Figure 2.11 illustrates the search pattern, i.e., a crash between the follower and the leader.

When it comes to the utilization of security mechanisms, we examine two scenarios:

32 2. Methodology and Highlights of Research Outcomes

Figure 2.11: Illustration of both initial state and search pattern of our framework.

(i) the absence of security mechanisms specified in the CACC platoon model, a.k.a. the
baseline scenario, and (ii) the inclusion of a security mechanism specified to mitigate attacks
targeting the CACC platoon system. In the next paragraphs, we discuss the selection and
positioning of the security mechanism in the CACC platoon model.

During the design of the CACC architecture, one or more security architecture patterns
may be selected to mitigate threat scenarios that may violate the security properties of
components of the CACC system. We consider a threat scenario that has the potential to
compromise the integrity property of the follower systems. This threat scenario involves
tampering with the speed messages produced by the leader to manipulate the followers
into increasing their speed values. This manipulation may result in a front-to-rear crash,
i.e., violation of the safety property. Security monitor is a security architecture pattern to
mitigate threat scenarios that may violate the integrity property of the system. Acting as a
runtime monitoring and enforcement mechanism, the security monitor intercepts incoming
or outgoing messages and verifies their compliance with predefined security policies. If a
policy violation occurs, the security monitor takes appropriate enforcement actions, which
may include blocking the incoming or outgoing messages. Our article [45] provides details
on the instantiation of the security monitor pattern.

We specify the security monitor pattern in the CACC platoon model. We consider the
security requirements associated with this pattern, which encompass requirements regarding
its (i) placement, (ii) security policies, and (iii) enforcement actions. To this end, we specify
an instance of the security monitor for each follower in the platoon. These monitors are
strategically (i) positioned to intercept and analyze the messages received from the leader.
We specify plausibility checks to (ii) evaluate the validity and integrity of incoming messages.
The incoming message is (iii) blocked if the plausibility check detects a malicious message
(i.e., violation of the security policy). We evaluate the effectiveness of the security monitor
against five different attacks. Our article [46] provides a comprehensive overview of the
effectiveness achieved by the specified security monitors.

2.6 Discussion 33

In our research, we have identified benefits that arise from the integration of the intro-
duced lightweight semantics with formal verification. Firstly, when connecting lightweight
semantics with formal verification, the pattern requirements play an important role in
assisting formal verification experts in specifying security mechanisms. This is particularly
evident in terms of considering the suitable placement of these security mechanisms within
the system. Moreover, formal verification experts can define how these mechanisms should
be instantiated based on the pattern requirements. This encompasses the specification
of essential elements such as security policies and enforcement decisions for the security
monitor. The introduced lightweight semantics provide a framework for capturing these
requirements, enabling a more systematic and comprehensive approach to specify security
mechanisms. Additionally, once the security mechanism has been specified based on the
lightweight semantics, formal verification experts are able to verify the system’s properties.
This verification process involves analyzing and assessing the system behavior in both
scenarios: with the presence of the security mechanism and without it. By considering
these distinct scenarios, formal verification experts can thoroughly evaluate the impact and
effectiveness of the security mechanism on the system’s properties.

In summary, we provide a formal framework to verify the safety property (derived from a
safety goal) of a CACC platoon system. Our framework enables the specification of security
attacks (based on an intruder model) that may violate the safety property. It enables
the specification of security mechanisms that may be derived from pattern requirements.
Our framework assesses the effectiveness of the specified security mechanism in mitigating
attacks against CACC platoon systems.

2.6 Discussion
We provide lightweight semantics to specify a vocabulary, along with its semantics, for safety
artifacts resulting from HARA, FTA, and STPA. While this thesis primarily focuses on
STPA, we also investigate how to use the results of a FTA to recommend safety architecture
patterns. A fault tree includes a minimal cut set consisting of failures (a.k.a. basic events)
often represented as leaf nodes. Our reasoning rules takes such basic events into account to
recommend safety architecture patterns. For example, in our article [45] (see also the fault
tree depicted in Figure 2.4), we considered a very simple fault tree with only one layer of
failure events triggering a top event (hazard), where a single pattern may be recommended
to address the minimal cut set. In a real-world scenario, a fault tree may consists of
several layers between the basic events and the top event. Moreover, there may be several
minimal cut sets at the lowest level (not just one as exemplified in [45]). Consequently, we
overlook the information situated between the basic events and the top event. This decision
could result in the recommendation of several safety architecture patterns to address the
minimal cut sets and the top event. A more cost-effective approach would be to analyze the
information preceding the top event and recommend a pattern to address it, thus addressing
all the information in the lower layers (including the minimal cut sets). We left to future
work the modification of our reasoning rules to address this issue. The solution may be

34 2. Methodology and Highlights of Research Outcomes

relatively straightforward, as it would entail incorporating the causal relationship between
the minimal cut sets and the information from other layers until reaching the top event
as part of our input. This thesis considers the failure mode erroneous or loss from either
failures (FTA) or loss scenarios (STPA). These two failure modes are well-recognized within
the research community. It is worth noting that the industry may consider additional failure
modes beyond erroneous and loss. Our DSL may have the capability to specify further
failure modes, particularly for establishing connections with safety architecture patterns.
That is, the specification of further failure modes becomes feasible when we can connect the
problem addressed by the pattern with the specific failure mode such that the pattern can
be recommended. The investigation of further potential failure modes is left to future work.

We provide lightweight semantics to specify a vocabulary, along with its semantics, for
security artifacts resulting from TARA. In this thesis, our DSL focuses on the specification of
security architecture patterns to mitigate threat scenarios that violate the security properties
of data asset, which encompass either input and output data of assets. We recognize the
importance of security architecture patterns to mitigate threat scenarios against either
the software or hardware of assets. Those threats are particularly relevant in the context
of automated driving systems. Examples of such patterns are authenticated secure boot
(for software) and hardware security module (for hardware). Our DSL may be extended
to enable the specification of these security architecture patterns. That is, the pattern
attributes may be extended to include the threat scope, such as tampering of software,
where the authenticated security boot may be applied. Our reasoning rules would require
corresponding adaptations to accommodate these extended attributes and specifications.
Our DSL and reasoning rules may be extended to align with the guidelines recommended
by the UN Regulation No. 155 [62]. This regulation outlines security requirements that
shall be met by Original Equipment Manufacturers (OEMs) for all new vehicle types for
type approval from July 2024. Regulation 155 provides a table consisting of a list of threats
and possible mitigation solutions specifically relevant to automotive systems. Consider
a public element GNSS located outside the system boundary and the asset localization
component situated within the system boundary. According to R155, one potential threat
for this scenario is “Spoofing of messages by impersonation GNSS messages”, and the
corresponding mitigation is “The vehicle shall verify the authenticity and integrity of
messages it receives”. This mitigation is very high-level and does not explicit specify which
security mechanism shall be implemented to satisfy messages authenticity and integrity.
For this reason, this thesis opted not to strictly follow the R155 mapping, as we aimed
to be more precise on which security mechanism shall be implemented. However, some
OEMs may choose to strictly follow the R155 recommendations. In such cases, one may
extend our DSL and reasoning rules to align with these specific recommendations. This
thesis follows the safety-informed security approach [35] and provides a mapping from safety
artifacts to security artifacts inspired by related work approaches. As a result, this mapping
provides the instantiation of the safety impact rating. Typically, the financial, operation
and privacy impact are also expected to calculate the overall risk associated with a threat
scenario. These impact values are important to OEMs to deciding, e.g., which assets to
prioritize during the development of security mechanisms. Our DSL may be extended to

2.6 Discussion 35

include predicates the specify financial, operation and privacy impact, where users would
be required to provide this information as input. Our DSL expects manual input by the
user to specify artifacts regarding attack feasibility rating. This manual input is required
because this activity demands expertise from a security engineer. We envision that the
automation of the attack feasibility rating activity may be possible if a database is provided
as input. OEMs may have such a database from their previous projects. The risk value can
be automatically computed if both impact rating and attack feasibility rating are provided.
In this thesis, we provide security architecture patterns regardless of the risk value. In a
real-world scenario, OEMs or suppliers consider the risk value when determining to reduce
the risk by implementing security architecture patterns. This decision is tailored for each
specific OEM or supplier. Our reasoning rules can be augmented to include conditions for
when a security architecture pattern shall be recommended based on the risk value.

Chapter 3

Supplementary Related Work

In addition to the related work that will be discussed in the forthcoming chapters, this
chapter provides supplementary details on relevant related work that has served as a
foundation for this thesis.

From Safety Artifacts to Security Artifacts. The field of safety and security co-
analysis has a vast literature, which serves as the foundation for our mapping of safety
artifacts to security artifacts. We present an overview of key approaches that have influenced
the development of our mapping. STPA and Six Step Model [63] is an approach that
integrates safety and security artifacts in the context of automated driving systems. This
approach is built upon the Six Step Model (SSM) approach [64], which was proposed by
the same authors. The STPA and SSM approach consists of six steps, namely (i) system’s
functional architecture, (ii) system’s structure architecture, (iii) safety artifacts, (iv) security
artifacts, (v) safety countermeasures, and (vi) security countermeasures. The first step
consists of identifying system functions. The second step consists of organizing the system
into several layers of decomposition (i.e., a structure architecture), where the relationships
between the systems and functions are identified, determining which systems implement
specific functions. The third step consists of identifying safety artifacts (e.g., hazards
and loss scenarios) and the relationship between safety artifacts and systems. HARA and
STPA are performed to identify such safety artifacts. The identified safety artifacts are
considered as input for the security analysis. The fourth step consists of identifying safety
countermeasures and their relationships with safety artifacts are established. The firth
step consists of identifying security artifacts (e.g., threats and attack paths) and their
relationships with safety countermeasures. TARA is performed to identify security artifacts.
Finally, in the last step of the STPA and Six-Step Model, security countermeasures are
identified along with their relationships to the security artifacts. The SSM approach enables
the traceability of various artifacts. For example, it allows for the identification of threats
that can impact safety countermeasures and establishes the relationships between security
artifacts and safety artifacts. The latter can be viewed as how security artifacts may
trigger safety artifacts. The Safety-Aware Hazard Analysis and Risk Assessment (SAHARA)
approach, introduced in [65], expands on the HARA analysis outlined in ISO 26262 [10]

37

by incorporating security threats that may impact safety. SAHARA utilizes the STRIDE
methodology [26], which is a well-established threat modeling technique developed by
Microsoft. STRIDE encompasses six categories of threats, namely Spoofing, Tampering,
Repudiation, Information disclosure, Denial of service, and Elevation of privilege. These
threats are derived by SAHARA based on the security objectives that the system is expected
to fulfill. For example, tampering can be identified as a threat to the integrity property.
The Bosch engineers [66] proposed an approach for deriving security artifacts of TARA
from safety artifacts computed by a HARA analysis. Specifically, the Bosch approach
recommends that (i) assets are derived from safety goals, (ii) threats are derived from the
violation of safety goals, (iii) damage scenarios are derived from hazards, and (iv) impact
rating values are derived from severity and controllability of ASIL.

Our method, introduced in [42], for mapping security artifacts from safety artifacts is
inspired by the aforementioned approaches. Similar to the Bosch and STPA and Six Step
Model approaches, our method assumes that a safety analysis has been conducted as a
preliminary step. Based on the outcomes of the safety analysis, our method derives security
artifacts. To this end, we agree with the Bosch approach in terms of deriving damage
scenarios from hazards and determining impact rating values based on the severity and
controllability of ASIL. However, we differ from the Bosch approach regarding the derivation
of assets from safety goals. We find it challenging to derive such assets from safety goals as
recommended by Bosch. This challenge arises primarily because safety goals are specified as
high-level requirements without explicitly mentioning concrete system architecture elements,
i.e., which elements are required to be protected to avoid hazards. Consequently, our
method aligns with the principles of STPA and Six Step Model, considering the outputs of
STPA alongside HARA. In other words, our method derives assets from the loss scenarios
computed by STPA. Our method derives the security properties that the asset shall satisfy
from the associated failure mode of a loss scenario. In line with the recommendations of ISO
21434 and similar to the SAHARA approach, our primary approach for modeling threats is
based on the STRIDE methodology. We determine the threat category based on the desired
security property of the asset. In our work, we specifically focus on tampering and denial of
services threats that may compromise the integrity and availability of safety-critical topics
(i.e., assets), respectively. We also consider that spoofing threats have the potential to
compromise the integrity of safety-critical functions.

Attacks Against Automated Driving Systems. We present an overview of several
attacks targeting automated driving systems, including attacks targeting automated driving
vehicles adopting service-oriented architectures. These attacks have served as a source of
inspiration for us to formalize our intruder model described in [42].

A recent systematization of knowledge article [67] provides a comprehensive overview of
the state-of-the-art of the literature. The article analyzed 53 articles and taxonomize them
based on security critical aspects, including attacks targeting vehicle sensors. The article
“Drift with devil” [68] describes how an intruder may manipulate location information by
spoofing GPS radio signals. This attack is effective even against localization components

38 3. Supplementary Related Work

using multi-sensor fusion. The authors discovered scenarios where the spoofed GPS signals
become the primary input source in the fusion process, overriding other sensor data. LiDAR
sensor signals may be spoofed to remove obstacles on the road [69]. LiDAR technology is
used to create 3D maps of the surrounding environment and identify objects, including
vehicles ahead of the automated driving vehicle. This spoofing attack [69] injects additional
3D points in a different location, but in the same direction as an object in front of the
automated driving vehicle. The attack is effective because LiDAR’s default mode records
only one return signal per ray direction. As a result, the automated driving vehicle’s LiDAR
may fail to detect the actual target objects and instead identify the manipulated object
injected by the intruder. Camera signals can be manipulated to deceive the perception
component by spoofing video frames [70, 71]. This manipulation can involve disrupting
the video stream by terminating it or replacing the legitimate stream with a malicious one.
The vulnerability of this attack lies in the absence of authentication mechanisms between
the camera and the client (e.g., perception component). The client accepts requests from
any source MAC address that matches the camera’s MAC address. In addition, the lack
of encryption in the transmission of the video stream allows an intruder to intercept the
camera feed, reconstruct video frames, and decode the payload to access the image content.
An intruder may carry out spoofing attacks to manipulate the range and velocity measured
by the automated driving vehicle’s radar sensor [72]. Through this attack, the intruder
can induce an emergency braking response or deceive the vehicle into engaging in sudden
acceleration. An intruder may exploit vulnerabilities within the Bluetooth stack to lock
the vehicle’s brakes [20]. In the work by [22], the authors investigate potential security
issues in the service discovery mechanism of vehicle Service-Oriented Architecture (SOA),
specifically in SOA systems utilizing the SOME/IP protocol. The authors describe an
attack that allows an intruder to perform Man-in-the-Middle attacks between publishers and
subscribers. This attack violates the integrity property of the published data, potentially
resulting in erroneous behavior from subscribers. In the study conducted by [73], the
authors investigate potential cases of overprivilege among publishers and subscribers in the
Apollo system [19]. They propose a tool called AVGuardian, which can identify several
instances of overprivilege in the Apollo 5.0 code base. These instances include scenarios
where (a) the gnss driver may abuse a publish-overprivileged field in the transformation
topic to manipulate the estimated position of an observed obstacle on the road, and (b) the
compensator may exploit a publish-overprivileged field in the PointCloud topic to remove a
detected obstacle from the road.

Our intruder model, proposed in [42], presents a formalized representation of the
primary capabilities required by an intruder to carry out the aforementioned attacks at the
architectural level. These capabilities encompass the ability to conduct (i) spoofing attacks
through an external interface (e.g., from sensors) (ii) and (b) Man-in-the-Middle attacks
through an internal interface (e.g., between internal components), thereby compromising
the security properties of safety-critical topics in automated driving vehicles adopting
service-oriented architectures. It is worth noting that the attacks exploiting overprivileged
instances can be viewed as a specific instance of the Man-in-the-Middle attack. These attacks
leverage the vulnerability of overprivileged instances to manipulate the communication and

39

compromise properties of safety-critical components within automated driving systems.

Safety Architecture Patterns. Safety architecture patterns have been widely used in
the design of safety-critical systems, such as automated driving systems. These patterns
provides a systematic framework for incorporating safety mechanisms into the system
architecture. Several articles have been published on the topic of safety patterns, includ-
ing [74, 14, 13, 75, 76, 61]. We present the two key articles that have had the greatest
influence on the development of our automated methods for safety architecture patterns.

The PhD thesis by Armoush [13] focuses on the application of safety architecture patterns
in the context of safety-critical systems. Armoush investigates several safety architecture
patterns for addressing safety artifacts in safety-critical systems. The thesis proposes a set
of safety architecture patterns that may be used to tolerate either hardware or software
faults. Hardware redundancy is used to tolerate hardware faults and design diversity is
used to tolerate software faults. Examples are the Homogeneous Duplex pattern, which
tolerates hardware faults, and the Acceptance Voting pattern, which tolerates software
faults. To provide a structured and systematic approach for selecting appropriate safety
architecture patterns, Armoush proposes a recommendation system that considers the safety
integrity level of identified hazards. This systematic system is an extension of the procedure
proposed by the IEC 61508 standard. Armoush’s system of recommendations contains
seven categories: Not Recommended, Weakly Not Recommended, No Recommendation,
Recommended, Moderately Recommended, and Highly Recommended. The assignment of
each category is based on an integer value derived from the techniques employed by the
safety architecture pattern, such as fault detection and voter mechanisms. Furthermore,
the safety architecture patterns are presented in a pattern template, which includes pattern
information regarding, e.g., structure and implementation. The structure aspect of the
template provides guidelines on how the pattern should be instantiated within the system
architecture. The implementation aspect aids in extracting the pattern requirements
specific to a particular system. The article [74] investigates fault tolerant patterns in
the context of avionics systems. The authors investigate different levels of criticality and
fault tolerant pattern required for such systems. A key aspect in selecting an appropriate
fault-tolerant pattern is understanding the failure modes of system functions, such as loss of
function or malfunction (a.k.a. erroneous). Specific features may be developed into pattern
components to avoid loss of function or malfunction. These features include watchdog
timers, which identify function loss, and built-in tests (also referred to as plausibility
checks), which identify malfunctions. The authors acknowledge the challenge of developing
a built-in test feature that can detect 100% of malfunctions. The detection coverage of the
built-in test feature is estimated to be around 95%. The article further explores various
safety architecture patterns, including fault-tolerant patterns that incorporate redundant
components. These patterns are designed to ensure fail operational, fail passive, or fail-safe
capabilities. The outcome is a comprehensive table that outlines the number of failures (if
any) that a safety architecture pattern can avoid while ensuring either fail operational, fail
passive, or fail-safe capabilities.

40 3. Supplementary Related Work

Our articles [39, 40, 45] provide automated methods for recommending safety architecture
patterns. These recommendations are determined by four factors, including ASIL class,
fault mode, and failure mode. We consider the findings of [13] when establishing criteria
for recommending patterns based on the ASIL class and fault dimension. Furthermore,
our recommendation process for failure mode is influenced by the results of [74]. Building
upon the insights from [74], our article [45] takes a step further by including conditions to
recommend patterns based on their fail operational, fail passive, or fail-safe capabilities.
The choice of these capabilities is left to the user. Additionally, the user may also select
the type of safety architecture pattern, whether the recommended pattern shall be fault
detection or fault tolerant pattern.

Security Architecture Patterns. Safety architecture patterns are generally more estab-
lished than security architecture patterns. Safety has been an industry concern for a longer
time compared to security. As a result, safety-related articles, standards and regulations
have been developed over the years, leading to the establishment of safety architecture
patterns. Since security architecture patterns are relatively new in comparison to safety
architecture patterns, there is no established set of security architecture patterns available as
discussed by [77]. Establishing a set of security architecture patterns presents challenges due
to the dynamic nature of security threats, with new (inside and outside) threats emerging
regularly [78]. Therefore, the scientific community is still in the early stages of reaching a
consensus on the definition of security architecture patterns for application in safety-critical
systems. Some articles have been published on the topic of security architecture patterns,
such as [78, 24, 27, 28, 29]. We present the two key articles that have had the greatest
influence on the development of our automated methods for security architecture patterns.

According to [78], having a clear understanding of security building blocks is essential
for using security architecture patterns. Examples of security building blocks are data flows,
decision points and enforcement points. Data flows (a.k.a. information flow) denote the
points at which data enters and exits a system. Keeping track of data flows is crucial for
identifying sensitive or safety-critical data that requires protection from a security point of
view. Decision points denote locations within the system where security-related decisions
are made, while enforcement points are the locations where security-related enforcement
decisions are made. It is crucial to clearly identify these points, especially for specifying
requirements and transferring such requirements from the concept phase to the implemen-
tation and verification phase. In line with this, the authors emphasize the importance of
establishing a connection between security requirements and pattern components to ensure
traceability throughout the software life cycle, i.e., security requirements shall be linked
to their corresponding security architecture patterns, allowing for a traceable path from
the initial requirements to the final deployed software. The DSL proposed by this thesis
(see, e.g., article [43]) captures relevant data flows by conducting attack path enumerations.
These data flows are used as a basis for identifying suitable locations to instantiate security
architectures. Decision and enforcement points are tailored to security architecture patterns.
For example, for the Firewall pattern, the firewall component serves as both the decision

41

and enforcement point. Our DSL also enables the specification of security requirements
and their allocations to pattern components. A set of security architecture patterns for
connected and automotive systems are proposed by [27]. The authors introduce a tem-
plate to describe such patterns, similar to the one considered by this thesis. With this
template, several security architecture patterns are instantiated, categorized based on their
applicability to either inward-facing communications or outward-facing communications.
These communication types align with the concepts explored in this thesis, where inward
communications represent internal interfaces and outward-facing communications represent
external interfaces. The authors advocate for the use of the STRIDE methodology to align
security properties with potential threats. By employing the STRIDE descriptors, suitable
patterns can be identified. Similarly, this thesis (see, e.g., article [43]) incorporates both
the security property and its associated threat when recommending security architecture
patterns. The template proposed by the authors also include the consequences of using
security architecture patterns. We follow a similar approach in [45] to state the safety
consequences associated with the utilization of security architecture patterns.

Chapter 4

Knowledge Representation and
Reasoning for Safety System
Architectures

Chapter 4 proposes a Domain-Specific Language (DSL) for specifying system architecture
artifacts, safety artifacts, and safety architecture patterns. Safety reasoning rules have been
specified to enable the automation of safety architecture patterns. The DSL and safety
reasoning rules have been implemented as a dedicated logic programming tool, which has
been validated using examples taken from the automotive domain.

Contributing article: Yuri Gil Dantas, Antoaneta Kondeva, and Vivek Nigam: Less
Manual Work for Safety Engineers: Towards an Automated Safety Reasoning with Safety
Patterns. ICLP Technical Communications 2020: 244-257

Copyright information: The article [39] is licensed under a Creative Commons Attri-
bution 4.0 International license (https://creativecommons.org/licenses/by/4.0/). https:
//doi.org/10.4204/EPTCS.325.29.

Author contributions: The concept for the publication was jointly developed by Yuri
Gil Dantas, Antoaneta Kondeva, and Vivek Nigam. They jointly performed a literature
review to identify the gaps and challenges faced by safety engineers when selecting safety
architecture patterns for safety-critical systems. Through the literature review, the authors
recognized that safety engineers use certain conditions (e.g., ASIL class) for selecting and
recommending safety architecture patterns. The outcome of the literature review enabled
the authors in specifying semantically-rich (safety) architecture patterns for automated
driving systems. In terms of tool, Vivek Nigam gave the idea of using a logic programming
system (i.e., DLV) to enable the automated recommendation of safety architecture patterns.
Yuri Gil Dantas took the lead in implementing large parts of the tool developed in DLV
and carried out the experiments presented in the article. Yuri Gil Dantas and Vivek Nigam

https://doi.org/10.4204/EPTCS.325.29
https://doi.org/10.4204/EPTCS.325.29

43

jointly wrote the first draft of the article. Antoaneta Kondeva assisted them in improving
the article. Yuri Gil Dantas handled subsequent revisions and corrections.

F. Ricca, A. Russo et al. (Eds.): Proc. 36th International Conference
on Logic Programming (Technical Communications) 2020 (ICLP 2020)
EPTCS 325, 2020, pp. 244–257, doi:10.4204/EPTCS.325.29

c© Y. G. Dantas, A. Kondeva & V. Nigam
This work is licensed under the
Creative Commons Attribution License.

Less Manual Work for Safety Engineers: Towards an
Automated Safety Reasoning with Safety Patterns

Yuri Gil Dantas Antoaneta Kondeva Vivek Nigam
fortiss GmbH

Research Institute of the Free State of Bavaria
Guerickestraße 25

80805 München, Germany
dantas@fortiss.org kondeva@fortiss.org nigam@fortiss.org

The development of safety-critical systems requires the control of hazards that can potentially cause
harm. To this end, safety engineers rely during the development phase on architectural solutions,
called safety patterns, such as safety monitors, voters, and watchdogs. The goal of these patterns
is to control (identified) faults that can trigger hazards. Safety patterns can control such faults by
e.g., increasing the redundancy of the system. Currently, the reasoning of which pattern to use
at which part of the target system to control which hazard is documented mostly in textual form
or by means of models, such as GSN-models, with limited support for automation. This paper
proposes the use of logic programming engines for the automated reasoning about system safety.
We propose a domain-specific language for embedded system safety and specify as disjunctive logic
programs reasoning principles used by safety engineers to deploy safety patterns, e.g., when to use
safety monitors, or watchdogs. Our machinery enables two types of automated safety reasoning: (1)
identification of which hazards can be controlled and which ones cannot be controlled by the existing
safety patterns; and (2) automated recommendation of which patterns could be used at which place
of the system to control potential hazards. Finally, we apply our machinery to two examples taken
from the automotive domain: an adaptive cruise control system and a battery management system.

1 Introduction

The development of safety-critical systems, such as vehicles, aircraft and medical devices aims to achieve
two goals: (1) to develop systems that cannot cause any harm, and (2) to convince regulatory bodies about
the safeness of the system by demonstrating compliance to safety standards [18, 17].

To achieve the first goal, safety engineers perform safety analysis to ensure that systems cannot cause
any harm. For example, Hazard Analysis [18, 16] identifies the main hazards that shall be controlled.
Other safety techniques, e.g., FTA [16], STPA [21], FMEA [16], HAZOP [8], break down the identified
main hazards into component hazards (a.k.a component failures), i.e., faults that can trigger main haz-
ards. Safety engineers commonly use safety architectural patterns [5, 22, 23] to control the identified
component hazards (or hazards for short) thus controlling the main hazards. To achieve the second goal,
safety engineers shall develop a safety case [18, 24] for the system under development. The purpose
of the safety case is to both (a) ensure that all hazards have been analyzed and (b) answer why a safety
pattern has been deployed at a particular component to control which hazard.

Safety cases are often documented in textual form, or by models e.g., the Goal Structure Notation
(GSN) [7]. These models, however, have limited support for automated reasoning [19]. It is not possible
to automatically check whether safety arguments used in a safety case are correct, i.e., check whether all
hazards have been controlled by, e.g., safety patterns. This is because the safety reasoning used to support

Y. G. Dantas, A. Kondeva & V. Nigam 245

system safety is implicitly written textually thus lacking the precise semantics to enable automation [25].
As a result, correctness checks are performed manually, possibly leading to human errors.

Our vision is to build an incremental development process for system safety and security assurance
cases using automated methods that incorporate safety and security reasoning principles. This paper is
the first step towards achieving this vision. We provide safety reasoning principles with safety patterns
used during the definition of system architecture for embedded systems. We specify these principles
using logic and logic programming as they are suitable frameworks for the specification of reasoning
principles as knowledge bases and using them for automated reasoning [4].

Our main contributions are threefold:

• Domain-Specific Language (DSL): We propose a DSL for safety reasoning with safety patterns.
Our DSL includes (1) architectural elements, both functional components and logical communica-
tion channels; (2) safety hazards including guidewords used in typical analysis, e.g., erroneous or
loss of function; (3) a number of safety patterns including n-version programming, safety monitors,
and watchdogs;

• Reasoning Principles: We specify key reasoning principles for determining when a hazard can be
controlled or not, including reasoning principles used to decide when a safety pattern can be used
to control a hazard. These reasoning principles are specified as Disjunctive Logic Programs [11]
based on the DSL proposed;

• Automation: We illustrate the increased automation enabled by the specified reasoning principles
using the logic programming engine DLV [20]. Our machinery enables two types of automated
reasoning: (1) Controllability: which hazards can be controlled by the given deployed safety
patterns and which hazards cannot be controlled. (2) Safety Pattern Recommendation: which
safety patterns can be used and where exactly they should be deployed to control hazards that have
not yet been controlled.

We validate our machinery1 with two examples of safety-critical embedded systems taken from the
automotive domain. The first example is an Adaptive Cruise Control system installed in a vehicle to
adapt its speed in an automated fashion without crashing into objects in front and at the same time
trying to maintain a given speed. The second example is a Battery Management System [22] responsible
for ensuring that a vehicle battery is charged without risking it to explode by, e.g., overheating. Our
machinery infers a number of possible solutions involving different safety patterns that can be used to
control identified hazards.

2 Motivating Examples

This section describes two examples from the automotive domain. We refer to these examples as Adap-
tive Cruise Control system (ACC) and Battery Management System (BMS). We use the ACC as a running
example throughout the paper. We get back to the BMS example in Section 7.

Adaptive Cruise Control (ACC). Consider as a motivating example, a simplified ACC responsible for
maintaining safe distance to objects in front of its vehicle. The ACC is a critical system as harm, e.g.,
accidents, may occur if the ACC is faulty.

1All machinery needed to reproduce our results are publicly available: https://github.com/ygdantas/safpat

246 Towards an Automated Safety Reasoning with Safety Patterns

Figure 1: Adaptive Cruise Control (ACC) Functional Architecture

Figure 1 depicts the main functions composing the ACC. ACC uses information from two sensing
functions: (1) distance sensor function (DS) that computes the distance to objects immediately in front;
(2) velocity sensor function (VS) that computes the vehicle’s current speed. The ACC Management
function (ACCM) computes (adequate) acceleration and braking values for the vehicle which are sent to
the power-train control (PS) and brake control functions (BS), respectively. Notice that PS and BS are
not part of the ACC but interact with the ACC.

To address the safety of the ACC, safety analysis are carried out, such as Hazard Analysis, to deter-
mine main hazards. The main hazard is:

H0acc: The vehicle does not maintain a safe distance to any object in front.

We identify two hazards, H1acc and H2acc, that may lead to H0acc. The words loss and erroneous are
used by safety engineers to describe hazards: loss is used when a hazard is triggered whenever a function
is not working, and erroneous when a function is working but not correctly.

• H1acc– Erroneous ACC: ACC computes incorrect acceleration or braking values;

• H2acc– Loss of ACC: ACC is not functioning.

These hazards are subsequently further broken down to identify which sub-functions can trigger them
using, e.g., Fault Tree Analysis. The following hazards may lead to H1:

• H1.1acc- Erroneous DS: The DS computes an incorrect distance to the car in front;

• H1.2acc- Erroneous VS: The VS computes an incorrect velocity;

• H1.3acc- Erroneous ACCM: The ACCM computes wrong acceleration or braking values.

Battery Management System (BMS). We consider a simplified BMS responsible for controlling a
rechargeable electric car battery [22]. The BMS is a critical system as harm, e.g., battery explosions,
may occur if it does not compute the charging state of the battery correctly.

Figure 2 depicts the main functions composing the BMS. The charging interface (CI) represents the
interface at the charging car station. This interface is triggered while recharging the battery (BAT) of the
car. BMS receives relevant information (e.g., voltage and temperature values) from BAT so that it can
compute the charging state of BAT. Depending on the state of BAT, BMS sends signals of activation or
deactivation of the external changer to CI. These signals are sent though a CAN bus. CI is considered the
only function accessible by external users (e.g., drivers). To avoid that an intruder can access the CAN
bus through CI, a firewall (FW) is placed between BMS and CI.2 This decision, however, comes at a
safety impact, as mentioned below. The main hazard considered here is:

H0bms: The BAT is overcharged leading to its explosion.

Y. G. Dantas, A. Kondeva & V. Nigam 247

Figure 2: Battery Management System (BMS) Functional Architecture

We identify one erroneous hazard H1bms that may lead to H0bms.

• H1bms– Erroneous CI: The CI sends charging signals when BAT is fully charged.

The following three hazards may lead to H1bms. We use the word omission as a specialization of
the erroneous behavior whenever the corresponding function does not provide an output when such an
output is expected, e.g., not outputting a fail-safe signal.

• H1.1bms– Erroneous BMS: The BMS sends wrong signals to CI;

• H1.2bms– Erroneous CAN: The CAN bus sends wrong signals to CI;

• H1.3bms– Omission FW: The FW incorrectly blocks signals from BMS.

Hazards are also associated with severity class denoting the level of harm it can cause. Severity
classes range over no effect, minor, major, fatal, and catastrophic. The hazards described in this section
are classified as catastrophic, which means that they shall be strongly controlled.

3 Preliminaries

Safety Architectural Patterns. In the architectural level, a number of safety patterns are typically
used for embedded system safety [23, 5]. Examples of such patterns are Heterogeneous Duplex Redun-
dancy (HDR), Triple Modular Redundancy (TMR), N-Version Programming (NProg), Safety Monitors
(SafMon), and Watchdog (WD).

The goal of these patterns is to control some type of hazards provided some conditions are satisfied.
WDs are used to detect when there is loss of function, thus controlling hazards associated with a loss of
function. SafMons are used to check whether a function is computing correctly, thus controlling hazards
associated with erroneous functions. HDR and TMR are used to control hazards by increasing the
redundancy of existing hardware, thus reducing the overall fault rate. They can also be used to increase
the redundancy of paths in the system in case messages are lost or incorrectly computed. NProgs are
used control hazards associated with possibly erroneous software functions by increasing the redundancy
of such functions.

Answer-Set Programming and Disjunctive Logic Programs. We assume that the reader is familiar
with Answer-Set Programming (ASP) and provide only a brief overview here. Let K be a set of propo-
sitional variables. A default literal is an atomic formula preceded by not. A propositional variable and a

2We refer the reader to [22] for more insights on why adding a FW between BMS and CI makes the system more secure.

248 Towards an Automated Safety Reasoning with Safety Patterns

default literal are both literals. A rule r is an ordered pair Head(r)← Body(r), where Head(r) = `
is a literal and Body(r) = {`1, . . . , `n} is a set of literals. Such a rule is written as ` ← `1, . . . , `n.
An Answer-Set Program (LP) is a set of rules. An interpretation M is an answer set of a LP P if
M′ = least(P∪ {not A | A /∈ M}) and M′ = M ∪ {not A | A /∈ M}, where least is the least model of
the definite logic program obtained from the program P by replacing all occurrences of not A by a new
atomic formula not A.

The interpretation of the default negation not assumes a closed-world assumption. That is, we assume
to be true only the facts that are explicitly supported by a rule. For example, the following program P
with three rules has two answer-sets {a,c} and {b}:

a← not b b← not a c← a

DLV is an engine implementing disjunctive logic programs [11] based on ASP semantics [12]. In par-
ticular, a rule may have disjunction in its head, e.g., a1∨·· ·∨am← `1, . . . , `n, where ai for 0≤ i≤m are
atomic formulas. For example, consider the program P1 with the two clauses a∨b and c← a. It has the
same two answer-sets as the program P. If a rule’s head is empty, i.e., m = 0, then it is a constraint. For
example, if we add the clause← b to P1, then the resulting program has only one answer-set {a,c}.

In the remainder of this paper, we use the DLV notation writing :- for← and v for ∨. For example,
the program P1 is written as a v b and c :- a.

4 Basic DSL: Functional, Hardware and Safety Patterns

This section introduces our domain-specific language, called SafPat, for enabling automated safety rea-
soning with safety patterns. Tables 1 and 2 describe SafPat’s main elements, i.e., key terms and pred-
icates. Table 1 describes the language used to specify functional and hardware architecture, and safety
analysis, while Table 2 describes the predicates used to specify selected safety patterns. We illustrate
SafPat by using the ACC example described in Section 2.

Example 1 The functional architecture depicted in Figure 1 is specified by the following atomic formu-
las, or facts, using the notation of the DLV prover [20]:

cp(acc). cp(accm). cp(ds). cp(vs). cp(bs). cp(ps).

subcp(accm,acc). subcp(ds,acc). subcp(vs,acc). ch(dsaccm,ds,accm).

ch(vsaccm,vs,accm). ch(accmbs,accm,bs). ch(accmps,accm,ps).

if(if1,[vsaccm,accmbs]). if(if2,[dsaccm,accmbs]).

The fact ch(vsaccm,vs,accm) denotes the logical communication between the VS and the ACCM.
The information flow if1 denotes data flows from VS to BS. The facts below specify which functions are
implemented as software, e.g., ACCM, and which as hardware, e.g., DS.

sw(accm). hw(ds). hw(vs). hw(ps). hw(bs).

Finally, the ACC hazards and their relations are specified by the following facts:

hz(h1,acc,err,cat). hz(h2,acc,loss,cat). hz(h11,ds,err,cat).

hz(h12,vs,err,cat). hz(h13,accm,err,cat).

subHz(h11,h1). subHz(h12,h1). subHz(h13,h1).

For example, the hazard H1.3acc (h13) is a sub-hazard of H1acc (h1).

Y. G. Dantas, A. Kondeva & V. Nigam 249

Functional, Hardware and Safety Analysis

Fact Denotation

cp(id) id is a function in the system.

subcp(id1,id2) id1 is a sub-function of the function id2.

ch(id,id1,id2) id is a logical channel connecting an output of the function id1 to an input of the
function id2. Notice that it denotes a unidirectional connection.

if(id, ~ch) id is an information flow following the channels in ~ch.

hw(id) Function id is implemented as hardware, e.g., circuit connected to sensors.

sw(id) Function id is implemented as a software.

hz(id,idc,tp,sv) id is a hazard associated with the function idc is of type tp, where
tp ∈ {err, loss,omission, late,early}, and severity sv, where sv ∈
{minor,major, fatal,cat}. err, loss, omission, late, and early denote, respec-
tively, erroneous, loss of function, omission, late and early types of hazards.
minor,major, fatal,cat denotes, respectively, minor, major, fatal and catastrophic
severity levels.

subHz(id1,id2) id1 is a hazard causing hazard id2.

Table 1: SafPat: a DSL for specifying functional, hardware and safety analysis.

idc smfs

−→
I = [chI1, . . . , ch

I
n]

−→
O = [chO1 , . . . , ch

O
m]

−→
Ism = [chIsm,1, . . . , ch

I
sm,n]

−−→
Osm = [chOsm,1, . . . , ch

O
sm,m]

Figure 3: Safety Monitor Pattern

Due to space limitations, we illustrate only the
safMon pattern. The remaining patterns follow a simi-
lar reasoning. We refer the reader to [5, 23] for detailed
description of these patterns.

The safMon pattern is depicted by all dashed el-
ements in Figure 3 including channels. This safMon
is associated to the function idc and is used to detect
whether idc is computing erroneous values. To this end,
it takes the values of idc’s inputs (~I) and outputs (~O) to
the function sm through the channels ~Ism and ~Osm. The
channel fs connecting sm with idc is used to send fail-safe commands whenever abnormal input-output
relations are detected by sm.

In SafPat, one identifies a safMon by specifying the fact safMon(id,idc,~I,~O,fs, ~Ism, ~Osm,sm), contain-
ing all the information related to the safety monitor as described above.

5 Safety Reasoning using DLV

One of the main goals of safety engineers during the definition of a system architecture is to place suitable
safety patterns so that the identified hazards can be controlled. This section demonstrates how much of
this safety reasoning can be automated.

To this end, we introduce two new facts used to denote when a hazard is controlled or not:

250 Towards an Automated Safety Reasoning with Safety Patterns

Safety Architectural Patterns

Fact Denotation

HDR (id,idc,Ic,idc′,Ivt1 ,Ivt2 ,vt,
vtout ,idout)

id is a duplex redundancy associated with the function idc. Ic is
a channel from idc that might convey a fault message. idc′ is a
function possibly idc. vt is a voter that receives data from idc and
idc′ through channels Ivt1 , and Ivt2 , respectively. The result from
vt is sent to idout through channel vtout .

TMR (id,idc,Ic,idc′,idc′′,Ivt1 ,Ivt2 ,
Ivt3 ,vt,vtout ,idout)

id is a triple modular redundancy associated with the function idc.
Ic is a channel from idc that might convey a fault message. idc′ and
idc′′ are functions possibly idc. vt is a voter that receives data from
idc, idc′ and idc′′ through channels Ivt1 , Ivt2 , and Ivt3 , respectively.
The result from vt is sent to idout through channel vtout .

2Prog (id,idc, ~Iidc , ~Oidc ,idc′, ~Ivt1 , ~Ivt2 ,
~VT, ~VTout , ~idout)

id is a 2-version programming associated with the function idc

(a.k.a. version 1). idc′ (a.k.a. version 2) is an identical func-
tion of idc. The inputs to idc and the outputs from idc are sent
through channels ~Iidc and ~Oidc , respectively. ~VT is a list of vot-
ers that receive data from idc and idc′ through channels ~Ivt1 and
~Ivt2 , respectively. The results from ~VT are sent to their respective
functions ~VTout through channels ~idout .

safMon(id,idc,~I,~O,fs, ~Ism, ~Osm,sm) id is a safety monitor associated with the function idc. It uses the
list of input and output channels~I and ~O, respectively. The data of
these channels are sent as input to sm through the list of channels
~Ism and ~Osm. fs is a channel from sm to idc which sends a fail-safe
signal whenever some inconsistency is detected.

watchDog(id,idc,fs,Iwd,wd) id is a watchdog associated with the function idc. It receives live-
ness messages from idc through channel Iwd. fs is a channel from
wd to idc which sends a fail-safe signal whenever some inconsis-
tency w.r.t the expected messages is detected.

Table 2: SafPat: Language for Safety Architectural Patterns.

Y. G. Dantas, A. Kondeva & V. Nigam 251

• ctl(idH , idc, tp,sv) and nctl(idH , idc, tp,sv) denote that the hazard idH of type tp, severity sv and
associated with the function idc can be, respectively, controlled and not controlled.

Before we specify controlled and not controlled hazards, we need to distinguish two types of hazards:
basic hazards and derived hazards. A hazard is classified as basic if it does not have any sub-hazards,
and derived otherwise. The following DLV rules specify this:

basic(H,CP,TP,SV) :- hz(H,CP,TP,SV), not has_subHz(H).

has_subHz(H) :- subHz(SH,H).

derived(H,CP,TP,SV) :- hz(H,CP,TP,SV), has_subHz(H).

We now use the closed-world semantics of DLV to specify controllability. A basic hazard is not
controlled if there is no rule explicitly supporting its controllability, as specified by the rule:

nctl(H,CP,TP,SV) :- basic(H,CP,TP,SV), not ctl(H,CP,TP,SV) .

A derived hazard is not controlled if any one of its sub-hazards is not controlled as specified by the
following rules:

nctl(H,CP,TP,SV) :- hz(H,CP,TP,SV), derived(H,CP,TP,SV),

hasNCTLSubHz(H,CP,TP,SV).

hasNCTLSubHz(H,CP,TP,SV) :- hz(H,CP,TP,SV), subHz(SH,H),

nctl(SH,SCP,STP,SSV).

Example 2 Consider the hazards and sub-hazards relations in Example 1. The hazards
hz(h1,acc,err,cat) can be controlled if its three sub-hazards, h11, h12 and h13, can be controlled.

Safety patterns are commonly used to control hazards by, e.g., adding redundancy to the system.
Given our language SafPat, the reasoning principles used to do so can be easily captured by DLV rules.
We list some reasoning principles for some of the patterns:

WatchDog Pattern. The following rule specifies that watch dog can be used to control hazard of type
loss of function (loss).

ctl(ID,CP,loss,SV) :- hz(ID,CP,loss,SV), watchDog(_,CP,_,_,_).

Safety Monitor Pattern. The following rules specify intuitively that a hazard associated to a func-
tion CP of type erroneous can be controlled if a safety monitor is associated to CP provided not

inpNotCovSF(ID2) and not outNotCovSF(ID2): there are no input logical channels, i.e., chan-
nels incoming to CP specified by ch(CH,_,CP), not taken as input to the safety monitor, nor out-
put channels i.e., channels outgoing from CP specified by ch(CH,CP,_). The predicate #member,
e.g., #member(CH,ICHs) specifies that CH is a member of list ICHs. You can safely ignore the fact
isexploration which is only used for the automation as described in Section 6.

ctl(ID,CP,err,SV) :- hz(ID,CP,err,SV), safMon(ID2,CP,_,_,_,_,_,_),

not inpNotCovSF(ID2), not outNotCovSF(ID2).

inpNotCovSF(ID2) :- safMon(ID2,CP,ICHs,_,FS,_,_,_), ch(CH,_,CP),

CH != FS, not #member(CH,ICHs), not isexploration.

outNotCovSF(ID2) :- safMon(ID2,CP,_,OCHs,_,_,_,_), ch(CH,CP,_),

not #member(CH,OCHs), not #member(CH,MIN),

not #member(CH,MOUT), not isexploration.

252 Towards an Automated Safety Reasoning with Safety Patterns

2-version programming. This pattern is used to improve safety by adding software redundancy.
Hence, it can only be associated with functions implemented as software as specified by the rule:

ctl(ID,CP,err,SV) :- hz(ID,CP,err,SV), 2Prog(ID2,CP,_,_,_,_,_,_),

sw(CP), not inpNotCovNP(ID2).

Here inpNotCovNP is similar to inpNotCovSF explained above.

HDR. The HDR and TMR Voter patterns can used for two different safety reasons: (1) to improve
safety by hardware redundancy or (2) to improve safety by path redundancy. These are specified by the
following rules, where omission is a type of error:

ctl(ID,CP,err,SV) :- hz(ID,CP,err,SV),

hdr(ID3,_,_,_,_,_,VOTERCP,_,_), ch(_,CP,VOTERCP).

ctl(ID,CP,omission,SV) :- hz(ID,CP,omission,SV),cp(CP),cp(CP1),cp(CP2),

ch(CHOUT,CP1,_), ch(CHIN,_,CP2), ch(CH,CP,_),if(IF,PATH),

before(CH,CHIN,IF), before(CHOUT,CH,IF),

hdr(IDPAT,CP1,_,CP2,_,_,_,_,_).

The second rule requires further explanation. The fact before, e.g., before(CH,CHIN,IF) specifies
that CH appears before CHIN in the path PATH. The rule itself specifies that if there is an IF such that
there is a hazard of type omission associated to a component CP in the information path PATH, then
placing a HDR on a functions CP1 and CP2 before and after CP in the path can control an omission
hazard. Intuitively, this is because Voters places in this way can detect when safety critical messages are
lost during transmission due to the omission of CP.

Remark: This paper specifically focuses on architectural principles. We focus on the architecture com-
ponents and how such components interact with other through channels. Encoding other reasoning prin-
ciples like, e.g., the actual behavior of such components, are left to future work.

6 Automated Pattern Recommendation

This section builds on the principles specified to automate the recommendation of safety pattern. Our
machinery enables a safety engineer to understand which options of patterns he can use to control hazards
and decide which one is more suitable given factors, such as costs and hardware availability.

The recommendation machinery uses ASP/DLV semantics to enumerate design options by attempt-
ing to place safety patterns wherever they are applicable. In this way, each answer of our DLV spec-
ification corresponds to a recommended architecture. Some recommended architectures may be better
than others, e.g., controlling more hazards. From all obtained answers, the system can recommend to the
safety engineer only the best architectures, i.e., the ones that control the most number of hazards.

The recommendation system is activated by using facts of the form.

• explore(N,Pat) denoting that the system shall recommend the placement of at most N patterns of
type Pat, where Pat is one of patterns described in Table 2.

For example, if explore(1,safMon), the system attempts to add at most one additional safety monitor to a
given architecture. Multiple such facts can be used to recommend different patterns at the same time. As
a result, safety engineers can configure the pattern recommendation machinery to search for particular
safety patterns that can control identified hazards.

Y. G. Dantas, A. Kondeva & V. Nigam 253

We have implemented rules for recommending the patterns shown in Table 2. Due to space restric-
tions, we describe only some of them used for recommending safMon, TMR, and HDR.

The following DLV rule specifies the enumeration of placement or not of a safMon(nsafMon), asso-
ciated with the function CP that is furthermore associated with a basic or not controlled hazard ID:

safMon(nuSafMon,CP,allInputs,allOutputs,nuSC,numin,numout,numcp) v

nsafMon(nuSafMon,CP,allInputs,allOutputs,nuSC,numin,numout,numcp)

:- cp(CP),hz(ID,CP,err,SV),basicOrNCTL(ID,CP,err,SV),explore(N,safMon).

We assume here that the constants starting with nu are fresh, i.e., do not appear in the given architecture,
thus used only for recommended safety patterns. Since it is enough to know to which function a safety
monitor is associated to, we do not need to enumerate all the inputs and outputs of CP, but rather simply
denote CP’s inputs and outputs using, respectively, the fresh constants allInputs and allOutputs.

The rule above will attempt to place a safety monitor in any applicable location of the architecture.
The following clause limits the number of safety monitors that can be recommended to be at most N.
Here #count is a DLV aggregate predicate returning the size of a symbolic set defined by its argument.

:- #count{CP : safMon(nuSafMon,CP,_,_,_,_,_,_)} > N, explore(N,safMon).

Notice that whenever a pattern is recommended, the controllability reasoning described in Section 5
applies to infer which hazards are controlled by this pattern and which are not.

The reasoning principles described in Section 5 can be used to further constraint the number of
recommendations. For example, a TMR used for hardware redundancy shall only be associated with
components that are not software components as specified by the following rule:

tmr(nuTMR,CP1,CH1,nucp2,nucp3,nuchm1,nuchm2,nuchm3,nuvtcp,nucho,nucpo) v

ntmr(nuTMR,CP1,CH1,nucp2,nucp3,nuchm1,nuchm2,nuchm3,nuvtcp,nucho,nucpo)

:- cp(CP1),not sw(CP1),hz(HZ0,CP1,err,SV), ch(CH1,CP1,_), explore(N,tmr).

The next example illustrates the power of our language to specify pattern recommendation. It speci-
fies conditions for recommending HDR patterns to achieve path redundancy.

hdr(nuHDR,CP1,CH1,CP2,nuchm1,nuchm2,nuvtcp,nucho,CPO)

v nhdr(nuHDR,CP1,CH1,CP2,nuchm1,nuchm2,nuvtcp,nucho,CPO)

:- hz(ID,CP,omission,SV), cp(CP), cp(CP1), cp(CP2), CP1 != CP,

CP1 != CP2, CP1 != CPO, CP2 != CPO, ch(CHOUT,CP1,_), ch(CHIN,_,CP2),

ch(CH,CP,_), ch(CH1,_,CPO), if(IF,PATH), before(CHOUT,CHIN,IF),

before(CHOUT,CH,IF), before(CHIN,CH1,IF), explore(N,hdr).

We search for functions CP0, CP1 and CP2 and a channel CH1 where to place the HDR. The goal is to
control a hazard associated with function CP by increasing path redundancy. To this end, CP1 needs to
appear before CP in an information flow PATH that uses these functions. CP2 may either be equal to CP

or located after CP in such a PATH. Thus, HDR can, in principle, detect when messages are omitted by
CP. Whenever this happens, the HDR shall send a message to the function CPO used only later in the
information flow PATH.

A constraint similar to the one for safMon, constraints the number of TMR and HDR to be searched
for. These constraints are omitted here.

254 Towards an Automated Safety Reasoning with Safety Patterns

7 Case Studies

This section illustrates the results of our automated safety reasoning for two case studies, namely Adap-
tive Cruise Control (ACC) and Battery Management System (BMS). We illustrate our results by depicting
how the architectures of both ACC and BMS would appear on a layout when our machinery is used. The
safety patterns suggested by our machinery are depicted as dark gray boxes, and the channels related
(inputs or outputs) to such patterns are depicted as dashed arrows.

Adaptive Cruise Control (ACC). We identified an erroneous (H1acc) and a loss (H2acc) hazard on
ACC, as described in Section 2. The erroneous hazard (H1acc) is broken down into three sub-hazards,
namely erroneous DS (H1.1acc), erroneous VS (H1.2acc), and erroneous ACCM (H1.3acc).

Figure 4: ACC Functional Architecture with safMon, TMR and WD

We run our recommendation machinery to automatically identify what safety patterns could be used
to control the identified hazards. Our machinery yielded five complete solutions (i.e., architectures) for
controlling these hazards. For the sake of space, we only show one of those solutions. The architecture
of the chosen solution is depicted in Figure 4. The subset of our DLV specification for this solution is
shown below. It contains the predicates for the recommended safety patterns and controllability.

{safMon(nuSafMon,accm,allInputs,allOutputs,nuSC,numin,numout,numcp),

tmr(nuTMR,ds,dsaccm,nucp2,nucp3,nuchm1,nuchm2,nuchm3,nuvtcp,nucho,nucpo),

tmr(nuTMR,vs,vsaccm,nucp2,nucp3,nuchm1,nuchm2,nuchm3,nuvtcp,nucho,nucpo),

watchDog(nuWD,acc,nuscwd,nulvwd,nuwd), ctl(["hz",accLs],acc,loss,cat),

ctl(["hz",ds],ds,err,cat), ctl(["hz",vs],vs,err,cat),

ctl(["hz",accm],accm,err,cat), ctl(["hz",accEr],acc,err,cat)}

Our machinery recommended to use three safety patterns, i.e., safMon, TMR, and watchDog, to
control the identified hazards. The main difference w.r.t. the other solutions (omitted here) is 2Prog
instead of safMon. To control the sub-hazards H1.1acc and H1.2acc, our machinery recommended to
use TMR on DS and VS, respectively. The goal is to improve safety by hardware (i.e., DS and VS)
redundancy. The remaining sub-hazard H1.3acc can be controlled by placing a safMon on ACCM. The
hazard H1acc is then controlled by using both TMR and safMon. Finally, our machinery recommended
to use a watchDog on ACC to control the loss hazard H2acc.

Battery Management System (BMS). We identified an erroneous (H1bms) hazard on CI, as described
in Section 2. This erroneous hazard (H1bms) is broken down into three sub-hazards, namely erroneous
BMS (H1.1bms), erroneous CAN (H1.2bms), and omission FW (H1.3bms). Typically, hazards on CAN
buses can be controlled by replacement only. Hence, we assume that H1.2bms has already been controlled.

Y. G. Dantas, A. Kondeva & V. Nigam 255

Our recommendation machinery yielded four complete solutions (i.e., architectures) to control
H1bms, H1.1bms, and H1.3bms. For the sake of space, we only show two of those solutions. The ar-
chitecture of the chosen solutions are depicted in Figure 4. The DLV specification for those solutions is
similar to the one presented in the ACC case study.

(a) Path redundancy for BMS and CI (b) Path redundancy for BMS and FW

Figure 5: Battery Management System Functional Architecture with safMon and HDR

Our machinery recommended to use two safety patterns, i.e., safMon and HDR, to control the iden-
tified hazards. On both solutions, a safMon is placed together with BMS to control H1.1bms. For the
ACC example, TMR is placed to improve safety by hardware redundancy. Here, HDR is placed to im-
prove safety by path redundancy. The HDR solutions are depicted in Figures 5a and 5b control H1.3bms.
They differ w.r.t which functions are composing the HDR. Figure 5a illustrates that BMS and CI sent
redundant inputs to vt so that BAT has a higher chance of getting the expected input. That is, if CI does
not send the input to BAT due to, e.g., an omission from FW, BAT receives the expected input from
BMS through vt. Similarly, Figure 5b illustrates that BMS and FW sent redundant inputs to vt with CI
as destination. Consequently, BAT should have a higher chance of getting the expected input from CI.

8 Related Work

Failure Rates Computations. An important analysis for safety is the computation of failure rates of
the system and its sub-systems as it is a requirement for safety-critical systems to have (very) low failure
rates. The automation of this computation has been subject of some previous work [15, 2]. In particular,
for a given architecture and given sub-system fault rates, the failure rate of the system is computed. Our
work on reasoning with safety patterns complements the work above as we consider the design of the
architecture itself, which is part of the input used by the work above.

Safety Case Models. GSN [7] is a model for specifying safety cases. Safety cases are tree-like struc-
tures containing different types of nodes denoting, e.g., Goals, Strategies, Contexts, Assumptions of a
safety case. As the exact meaning of each node is specified textually (inside the node), models written in
GSN enables little automation. There are, however, work that provide more structure to GSN models and
others providing means for some automation [6]. We describe some approaches below. [13] proposes
patterns encoding typical safety reasoning principles, such as those using FTA, FMEA, STPA. While
these reasoning patterns provide some structure to GSN models, they suffer from the same automation
limitations of GSN described above. On the one hand, our work complements this work by specifying
reasoning principles based on safety patterns, which was not considered in [13]. On the other hand, we
believe that it is possible to encode some of the reasoning principles described in [13] and consider not
only safety reasoning with patterns but the other types of reasoning described in [13]. [9, 10] propose

256 Towards an Automated Safety Reasoning with Safety Patterns

automated quantitative evaluation methods for GSN models that associated to Goal nodes with values for
belief, disbelief and uncertainty. It is not clear from this work how these values are related to the quality
of safety argument. We believe that the encoding of our reasoning principles can profit from this work to
make the relation between the quality of the safety argument and the belief values more explicit.

Safety Reasoning using Logic Programming. Logic programming has been used in the past for safety
reasoning. For example, [14] provides decision support for air traffic control systems by specifying land-
ing criteria in complex landing situations by using Defeasible Logic Programming (DeLP). [26] outlines
a method for safety assessment of medical devices also based DeLP. An interesting work is presented
in [3] on the formalization of automotive standard requirements [18] to enable automatic reasoning about
compliance with the standard. We take a similar approach to these works as we also use logic program-
ming and engine to support safety engineers in the designing system architecture. However, we do not
consider here reasoning with uncertain and incomplete knowledge as in the work above using DeLP.
As described above, we are considering extending the type of safety reasoning encoded to also include
uncertainty [9, 10]. DeLP is a method we could consider for modeling such arguments.

9 Conclusion

This paper establishes the first steps towards automated safety (and security) for embedded systems.
We propose a domain-specific language, called SafPat, for safety reasoning on the architectural level
using safety patterns. We encode typical safety reasoning principles as disjunctive logic programs, us-
ing these specification for increasing automated reasoning, namely, on determining controllability and
recommending patterns.

We are currently investigating a number of future directions. We are considering other types of
safety reasoning, e.g., reasoning with uncertainty. Further, as illustrated by the BMS case study, there are
a number of co-analysis reasoning deriving from the use safety and security patterns. It seems possible
to build on the grounds established by this paper to carry out such reasoning in an automated fashion.

The increased automation provided by our methods seems to support incremental methods for safety
(and in the future security). It is possible to identify, e.g., which hazards are no longer controlled when-
ever there is an incremental change to the system. We are currently investigating how to improve the
proposed automated reasoning for this purpose. Finally, we plan to integrate our machinery into the
Model-Based Engineering Tool AutoFOCUS3 [1]. The goal is to enable safety engineers to use our
automated reasoning with models written in AutoFOCUS3. This will also enable the use of automated
methods for building safety cases modeled in GSN [6].

Acknowledgment. This project has received funding from the European Union’s Horizon 2020 re-
search and innovation programme under grant agreement No 830892. Nigam is partially supported by
CNPq grant 303909/2018-8.

References

[1] AF3 – AutoFOCUS 3. Available at https://af3.fortiss.org/.

[2] Fault Tree Analysis – FT +. Available at https://tinyurl.com/faulttreean.

[3] J. P. C. Ardila, B. Gallina & G. Governatori (2018): Lessons Learned while Formalizing ISO 26262 for
Compliance Checking. In: 2nd Workshop on TeReCom - Tech. for Regulatory Compliance, pp. 5–16.

Y. G. Dantas, A. Kondeva & V. Nigam 257

[4] C. Baral (2010): Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Uni-
versity Press.

[5] C. Kreiner C. Preschern, N. Kajtazovic (2013): Security Analysis of Safety Patterns. In: 20th Conference on
Pattern Languages of Programs, PLoP ’13, USA, pp. 12:1–12:38.

[6] C. Cârlan, V. Nigam, A. Tsalidis & S. Voss (2019): ExplicitCase: Tool-support for Creating and Maintaining
Assurance Arguments Integrated with System Models. In: WoSoCer, doi:10.1109/ISSREW.2019.00093.

[7] GSN Community (2011): GSN Community Standard Version 1. Available at http://www.

goalstructuringnotation.info/documents/GSN_Standard.pdf.

[8] F. Crawley & B. Tyler, editors (2015): HAZOP: Guide to Best Practice.

[9] L. Duan, S. Rayadurgam, M. P. E. Heimdahl, A. Ayoub, O. Sokolsky & I. Lee (2014): Reasoning About
Confidence and Uncertainty in Assurance Cases: A Survey. In: FHIES, 9062, Springer, pp. 64–80,
doi:10.1007/978-3-319-63194-3 5.

[10] J. Dürrwang, K. Beckers & R. Kriesten (2017): A Lightweight Threat Analysis Approach Intertwining Safety
and Security for the Automotive Domain. In: SAFECOMP, doi:10.1007/978-3-319-66266-4 20.

[11] T. Eiter, G. Gottlob & H. Mannila (1997): Disjunctive Datalog. ACM Trans. Database Syst. 22(3),
doi:10.1145/116825.116838.

[12] M. Gelfond & V. Lifschitz (1990): Logic Programs with Classical Negation. In: ICLP, pp. 579–597.

[13] M. Gleirscher & C. Cârlan (2017): Arguing from Hazard Analysis in Safety Cases: A Modular Argument
Pattern. In: HASE, pp. 53–60, doi:10.1109/HASE.2017.15.

[14] S. A. Gómez, A. Goron & A. Groza (2014): Assuring Safety in an Air Traffic Control System with Defeasible
Logic Programming. In: 15th Argentine Symposium on Articial Intelligence, ASAI.

[15] P. Helle (2012): Automatic SysML-Based Safety Analysis. In: ACES-MB, p. 1924,
doi:10.1145/2432631.2432635.

[16] SAE International (1996): Standard ARP 4761: Guidelines and Methods for Conducting the Safety Assess-
ment. Available at https://www.sae.org/standards/content/arp4761/.

[17] SAE International (2011): ARP 4754a: Guidelines for Development of Civil Aircraft and Systems. Available
at https://www.sae.org/standards/content/arp4754a/.

[18] ISO (2011): ISO 26262, Road vehicles Functional safety - Part 6: Product Development: Software Level.
Available at https://www.iso.org/standard/43464.html.

[19] A. Kondeva, C. Carlan, H. Ruess & V. Nigam (2019): On Computer-Aided Techniques for Supporting Safety
and Security Co-Engineering. In: WoSoCer, doi:10.1109/ISSREW.2019.00095.

[20] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri & F. Scarcello (2006): The DLV
System for Knowledge Representation and Reasoning. ACM Trans. Comput. Logic 7, pp. 499–562,
doi:10.1145/1149114.1149117.

[21] N. Leveson & J. Thomas (2018): STPA Handbook.

[22] H. Martin, Z. Ma, Ch. Schmittner, B. Winkler, M. Krammer, D. Schneider, T. Amorim, G. Macher & Ch.
Kreiner (2020): Combined automotive safety and security pattern engineering approach. Reliability Engi-
neering & System Safety 198(2), pp. 1–35, doi:10.4018/jsse.2012040101.

[23] H. L. V. De Matos, A. M. da Cunha & L. A. V. Dias (2014): Using Design Patterns for Safety Assessment of
Integrated Modular Avionics. In: DASC, doi:10.1109/DASC.2014.6979473.

[24] Defence UK Ministry (2007): Safety Management Requirements for Defence Systems. Available at https:
//www.skybrary.aero/bookshelf/books/344.pdf.

[25] V. Nigam, A. Pretschner & H. Ruess (2018): Model-Based Safety and Security Engineering. Available at
https://arxiv.org/abs/1810.04866. White Paper.

[26] Gomez S.A., Groza A. & Chesnevar C.I. (2014): An Argumentative Approach to Assessing Safety in Medical
Device Software Using Defeasible Logic Programming. In: Meditech.

Chapter 5

Integrating Safety Architecture
Patterns into MBSE: A Plugin for
Automated Pattern Synthesis

Chapter 5 focuses on the integration of the developed logic programming tool [39, 45],
designed for reasoning about safety architecture patterns, into a model-based systems
engineering (MBSE) framework. Within this chapter, a plugin for safety architecture
pattern synthesis within the MBSE context is proposed. The validation of this plugin has
been conducted using an example taken from the automotive domain.

Contributing articles:
• Yuri Gil Dantas, Tiziano Munaro, Carmen Cârlan, Vivek Nigam, Simon Barner,

Shiqing Fan, Alexander Pretschner, Ulrich Schöpp, and Sergey Tverdyshev: A Model-
based System Engineering Plugin for Safety Architecture Pattern Synthesis. MOD-
ELSWARD 2022: 36-47

• Yuri Gil Dantas, Tiziano Munaro, Carmen Cârlan, Vivek Nigam, Simon Barner,
Shiqing Fan, Alexander Pretschner, Ulrich Schöpp, and Sergey Tverdyshev: A
Toolchain for Synthesizing and Validating Safety Architectures. SN Computer Science
2023: Volume 4, Article number: 335.

Copyright information:
• Article [40]: Science and Technology Publications Lda (SCITEPRESS), 2024. https:

//doi.org/10.5220/0010831700003119.

• The article [41] is reproduced with permission from Springer Nature. License number:
5798741234318. Print rights of the Version of Record are provided for; electronic
rights for use only on institutional repository as defined by the Sherpa guideline
(www.sherpa.ac.uk/romeo/) and only up to what is required by the awarding institu-
tion.

https://doi.org/10.5220/0010831700003119
https://doi.org/10.5220/0010831700003119

59

Author contributions: The idea of developing a Model-Based Systems Engineering
(MBSE) plugin for safety architecture pattern synthesis was brought up by Yuri Gil Dantas
and Vivek Nigam. They had several discussions on how the interfaces with the backend
(previously developed by Yuri Gil Dantas and Vivek Nigam [39]) should be designed. Yuri
Gil Dantas implemented the MBSE plugin after several discussions with MBSE researchers,
including Tiziano Munaro and Simon Barner. Yuri Gil Dantas took the lead in writing the
initial draft of the article. The co-authors assisted Yuri Gil Dantas in improving the article.
Yuri Gil Dantas handled subsequent revisions and corrections. Yuri Gil Dantas won the
best student paper award with this article [40].

The second article [41] is the result of a collaboration with MBSE researchers, in
particular, Tiziano Munaro and Simon Barner. This article is a successor of article [40],
where the MBSE plugin has been improved. Yuri Gil Dantas prepared the structure of the
article. Yuri Gil Dantas took the lead in organizing the structure of the article and made
substantial contributions to various sections, excluding Section 5 (Feature Degradation
Synthesis) and Section 6 (Simulation) written by Simon Barner and Tiziano Munaro,
respectively. The other co-authors assisted Yuri Gil Dantas in improving the article.

A Model-based System Engineering Plugin for Safety Architecture
Pattern Synthesis

Yuri Gil Dantas1, Tiziano Munaro1, Carmen Carlan1, Vivek Nigam2, Simon Barner1, Shiqing Fan2,
Alexander Pretschner1,3, Ulrich Schöpp1 and Sergey Tverdyshev2

1fortiss GmbH, Munich, Germany
2Huawei Technologies Düsseldorf GmbH, Düsseldorf, Germany

3Technische Universität München, Munich, Germany
fi

Keywords: Model-based System Engineering, Safety Architecture Patterns, Automation, Tooling.

Abstract: Safety architecture patterns are abstract representations to address faults in the system architecture. In the
current state of practice, the decision of which safety architecture pattern to deploy and where in the system
architecture is carried out manually by a safety expert. This decision may be time consuming or even lead
to human errors. This paper presents Safety Pattern Synthesis, a tool for automating the recommendation of
safety architecture patterns during the design of safety-critical systems: 1) Safety Pattern Synthesis recom-
mends patterns to address faults in the system architecture (possibly resulting in more than one architectural
solution), 2) the user selects the system architecture with patterns based on, e.g., the criteria provided by Safety
Pattern Synthesis, and 3) Safety Pattern Synthesis provides certain requirements that shall be considered in the
overall safety engineering process. The proposed tool has been implemented as a plugin in the model-based
system engineering tool called AutoFOCUS3. Safety Pattern Synthesis is implemented in Java while using
a logic-programming engine as a backend to reason about the safety of the system architecture. This paper
provides implementation details about Safety Pattern Synthesis and its applicability in an industrial case study
taken from the automotive domain.

1 INTRODUCTION

Safety architecture patterns, such as the Homoge-
neous Duplex or the Triple Modular Redundancy pat-
terns, are deployed to avoid harm due to faults trig-
gering failures, such as erroneous function or loss
of function (Avizienis et al., 2004). An advan-
tage of making use of such patterns in practice is
that their goal and development are well understood,
and even recommended by standards (ISO26262,
2018)(IEC61508, 2010).

In the current state of practice, the decision of
which safety architecture pattern to deploy in a given
system architecture is done with limited computer-
aided support. Currently, an expert (e.g., a safety en-
gineer) determines which pattern to deploy and where
by carrying out a manual safety analysis. As the
complexity of systems grows, it becomes challenging
for experts to make these decisions due to, e.g., time
consuming and human error issues. Moreover, since
these decisions are normally made in early stages of
design, potential errors or sub-optimal designs may

result in high development delays and costs.
Current safety-critical systems are character-

ized by an ever-increasing number of highly inter-
dependant requirements, functions and subsystems.
The safe integration of critical and non-critical com-
ponents onto a shared execution platform is very im-
portant to enable the certification of such systems.
While integration platforms such as time-space par-
titioning hypervisors or dedicated hardware units that
support the segregation of critical tasks are available
today, such constitute a large configuration space that
adds additional complexity to determine an architec-
ture configuration that satisfies all constraints (in par-
ticular in terms of safety and performance).

The inherent abstraction introduced by Model-
Based System Engineering (MBSE) has the poten-
tial to meet these challenges, as it has been shown
in e.g., an model based engineering approach for
mixed-criticality systems (Barner et al., 2017), the
model-based architecture exploration approach intro-
duced by Eder et al. (Eder et al., 2018b)(Eder et al.,
2018a)(Eder et al., 2020), or in the approaches by

36
Dantas, Y., Munaro, T., Carlan, C., Nigam, V., Barner, S., Fan, S., Pretschner, A., Schöpp, U. and Tverdyshev, S.
A Model-based System Engineering Plugin for Safety Architecture Pattern Synthesis.
DOI: 10.5220/0010831700003119
In Proceedings of the 10th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2022), pages 36-47
ISBN: 978-989-758-550-0; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

(Amorim et al., 2017)(Martin et al., 2020) that use
MBSE to address the complexity of safety architec-
ture design using architecture patterns. A key lim-
itation of the existing approaches for safety archi-
tecture patterns is that it does not provide the type
of automation successfully applied in other develop-
ment phases, such as in optimizing deployment strate-
gies (Eder et al., 2018b).

Our goal is to provide safety engineers with
computer-aided support for selecting safety architec-
ture patterns in an automated fashion. To this end,
we have developed a plugin within the MBSE tool
AutoFOCUS3 (Aravantinos et al., 2015) to enable the
model-driven approach using safety architecture pat-
terns. We refer to the developed plugin as Safety
Pattern Synthesis. Safety Pattern Synthesis relies on
MBSE practices to automatically recommend safety
architecture patterns for tolerating faults in the system
architecture. The intended outcome of Safety Pattern
Synthesis is to reduce the effort from safety engineers
during a safety analysis, in particular by assisting with
the selection of patterns to ensure the required func-
tional safety of the system architecture. To the best
of our knowledge, Safety Pattern Synthesis is the first
MBSE tool that enables the automated recommenda-
tion of safety architecture patterns.

The development of Safety Pattern Synthesis has
been motivated by concrete use-cases provided by
our industry partner. In this paper, we illustrate how
Safety Pattern Synthesis has been used for the devel-
opment of safe Highway Pilot (HWP) features, such
as Adaptive Cruise Control (ACC) and Emergency
Brake (EB) functions.

The remainder of this paper is structured as fol-
lows: Section 2 presents some background informa-
tion to help the reader to understand the results pre-
sented in the paper. Section 3 describes Safety Pattern
Synthesis, including its architecture and implementa-
tion details. Safety Pattern Synthesis is validated in
Section 4 using an industry use-case. Finally, we con-
clude the paper by pointing out to related and future
work in Sections 5 and 6.

2 BACKGROUND

2.1 Model-based Engineering in
AutoFOCUS3

AutoFOCUS3 (AF3) is a model-based open source
tool and research platform for safety-critical embed-
ded systems (fortiss GmbH, 2020). AF3 builds on
the Eclipse platform and supports the design, devel-

opment and validation of safety-critical embedded
systems in many development phases, including ar-
chitecture design, implementation, and hardware and
software integration.

The tool’s metamodel (Aravantinos et al.,
2015)(Barner et al., 2018) provides multiple view-
points to describe the different aspects of the system
under design. The logical architecture represents an
implementation-agnostic specification of the system’s
behaviour. The technical viewpoint includes a series
of models. The task and partition architectures
represent the hardware-independent interaction of
software tasks and their aggregation into partitions,
and the platform architecture describes the system’s
hardware including its properties and topology.
Finally, the distinct models are linked by means of
allocations, defining, e.g., the deployment of tasks to
hardware units.

2.2 Safety Concepts

We briefly review some basic safety concepts to set
the terminology used in the remainder of the paper.
The definition of the safety concepts described below
are mainly taken from (Avizienis et al., 2004).

A hazard is a situation that can cause harm to
users or businesses. A failure is an event that when
occurs results in a deviation of the expected behavior
of a function. An error is a deviation of the expected
system behavior. A fault is the hypothesized cause
of an error. A failure triggered by a fault may lead
to a hazard. Normally, failures are associated with a
set of predefined Guidewords that characterize intu-
itively the semantics of such failures. Examples of
Guidewords are loss and erroneous that denote, re-
spectively, a failure due to the loss of a function, i.e.,
a function not operating whatsoever, and a failure due
to an erroneous function behavior, e.g., a function not
computing correctly some output value. This paper
refers to hazards, faults, and failures as safety ele-
ments. A component is a part of a system that im-
plements a function and consists of software units or
hardware parts. Components may be assigned to an
Automotive Safety Integrity Level (ASIL), i.e., the
level of safety assurance required ranging among QM,
A, B, C, D, where D is the highest assurance level.

A safety architecture pattern (safety pattern for
short) is an architectural solution for tolerating faults
in the system architecture. A fault detection pattern
deactivates the system in the presence of a failure
(triggered by a fault) by either transitioning the sys-
tem to a safe state (e.g., informing the driver to take
over the vehicle control) or shutting down the system.
A fault tolerant pattern ensures that the system will

A Model-based System Engineering Plugin for Safety Architecture Pattern Synthesis

37

continue to operate in the presence of a failure by pro-
viding a redundant component to take over. Fault tol-
erant patterns improve the availability of the system
given the redundant component. A fault tolerant pat-
tern may also transition the system to a safe state or
shutdown the system in the presence of a failure in the
redundant component.

Examples of safety patterns are Homogeneous
Duplex, Heterogeneous Duplex, Triple Modular Re-
dundancy, Simplex Architecture, Acceptance Voting,
and Monitor Actuator (Armoush, 2010)(Preschern
et al., 2013b)(Biondi et al., 2020)(Bak et al., 2009).

Homogeneous Duplex pattern is a fault tolerant
pattern that addresses hardware faults by duplicating
the primary hardware component. Similarly, Hetero-
geneous Duplex pattern is a fault tolerant pattern that
also addresses hardware faults by duplicating the pri-
mary hardware component. However, the primary
and the redundant components shall be designed and
implemented independently from each other. Hetero-
geneous Duplex pattern may also address software
faults as long as the software running in redundant
component is implemented using a different design.
Triple Modular Redundancy pattern is a fault toler-
ant pattern that addresses hardware faults by tripli-
cating the primary hardware component. Simplex Ar-
chitecture pattern is a fault tolerant pattern that ad-
dresses software faults by providing a simple and re-
liable version of the primary component. Acceptance
Voting pattern is a fault tolerant pattern that addresses
software faults by providing diverse redundancy im-
plementations of the primary software component.
Monitor Actuator pattern is a fault detection pattern
mainly known for addressing hardware faults, but it
can also address software faults through the use of
plausibility checks.

2.3 SafPat (Backend)

A framework called SAFPAT (Dantas et al., 2020)
has been recently proposed for automating the rec-
ommendation of safety patterns. SAFPAT receives as
input the designed system architecture and safety el-
ements. SAFPAT performs changes in the system ar-
chitecture by adding safety patterns in an automated
fashion. SAFPAT has been implemented in DLV, a
logic programming language based on the Answer Set
Programming paradigm (Leone et al., 2006). SAFPAT
is the backend of the plugin proposed by this paper.

SAFPAT consists of a domain-specific language
(DSL) for embedded systems and reasoning princi-
ples that enable the automated recommendation of
which patterns and where in the system architecture
they shall be deployed. These reasoning principles
are automated by the DLV engine.

DSL. The DSL enables the specification of archi-
tectural elements (e.g., components and channels),
safety elements (e.g., faults), and safety patterns.
SAFPAT currently supports the following safety pat-
terns: Acceptance Voting, Homogeneous Duplex, Het-
erogeneous Duplex, Monitor-Actuator, Simplex Ar-
chitecture, and Triple Modular Redundancy.

Table 1 illustrates how SAFPAT provides
semantically-rich description of safety patterns.
To this end, we provide an example of a template
which is similar to pattern templates appearing in
the literature (Armoush, 2010)(Sljivo et al., 2020).
We instantiate the template with the Homogeneous
Duplex pattern. Specifically, Table 1 provides a high-
level description of the pattern and its specification in
SAFPAT. The assumptions described in the table are
not meant to be comprehensive. By assumptions, we
refer to requirements that shall be satisfied to ensure
the safety patterns work as intended.

Reasoning Principles. SAFPAT provides means to
reason about the safety of the system architecture,
in particular to recommend safety patterns. SAF-
PAT consists of reasoning principle rules to deter-
mine when (a) a failure is avoided, (b) a fault is toler-
ated, and (c) a hazard is controlled (a.k.a. mitigated).
Specifically, (a) a failure is avoided if a suitable safety
pattern is deployed, (b) a fault is tolerated if all fail-
ures triggered by that fault are avoided, and (c) a haz-
ard is controlled if the fault triggering failures leading
to that hazard is tolerated.

Whenever a safety pattern is recommended (see
next paragraph), the rules for (a), (b), and (c) apply
to infer which hazards have been controlled. SAFPAT
only outputs architectural solutions where all hazards
(received as input) have been controlled.

SAFPAT specifies reasoning rules for automating
the recommendation of safety patterns. These rules
specify conditions for when a particular pattern can
be recommended to avoid failures triggered by faults.

The following are the main conditions specified
by SAFPAT when recommending the Homogeneous
Duplex pattern (homogeneousDuplex):

• there is a fault FT in the hardware component PR
that triggers a failure FL leading to hazard HZ;

• homogeneousDuplex is suitable for addressing
hardware faults;

• homogeneousDuplex is suitable for avoiding FL’s
type of failure (i.e., erroneous or loss);

• homogeneousDuplex is suitable for addressing
the ASIL of HZ. Since the Homogeneous Duplex
pattern is suitable for ASIL D, it is also suitable
for lower levels, i.e., ASIL A, B and C.

• the safety mechanism type (i.e., fault tolerant or

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

38

Table 1: Instantiation of the Homogeneous Duplex pattern. The assumptions are not meant to be comprehensive.

Description SAFPAT Specification

Pattern name Homogeneous Duplex Pattern NAME=homogeneousDuplex;

Structure
COMPONENTS=[pr,se,fd];
INPUT CH=[inp1,inp2];
INTERNAL CH=[int1,int2];
OUTPUT CH=[out];

Intent This pattern is fault tolerant, suitable for
both addressing high criticality hazards
(ASIL D) (Armoush, 2010) and tolerating
hardware faults.

TYPE PAT=fault tolerant;
TYPE ASIL=d;
TYPE CP=[hardware];
TYPE FAIL=[erroneous,loss];

Problem ad-
dressed

This pattern tolerates faults by avoiding
failures of type erroneous or loss.

Assumptions
(requirements)

The primary and the secondary compo-
nents shall be identical.

TYPE ASSUMPTION=are identical;
COMPONENTS=[pr,se];

The primary and the secondary compo-
nents shall be allocated to different hard-
ware units.

TYPE ASSUMPTION=are decoupled;
COMPONENTS=[pr,se];

The fault detector shall be verified. TYPE ASSUMPTION=are verified;
COMPONENTS=[fd];

detection) of heterogeneousDuplex matches the
type of the safety mechanism chosen by the user.
SAFPAT may provide multiple architectural solu-

tions as output, with different safety patterns for each
solution. For example, possible patterns for tolerat-
ing a software fault include the use of either the Ac-
ceptance Voting pattern or the Heterogeneous Duplex
pattern. The user may select the most suitable system
architecture with patterns based on some criteria such
as the ones described in Section 3.1.

SAFPAT also specifies requirements for ensuring
safety integrity w.r.t. the allocation of software com-
ponents to hardware components. For example, con-
sider an allocation of a software component SW1 into
a hardware component HW1. SAFPAT’s reasoning
rules check whether the ASIL of SW1 is higher than
the ASIL of HW1. If this condition is true, SAFPAT
provides a requirement to allocate SW1 to a hardware
component with the same ASIL of SW1.

We refer the interested reader to (Dantas et al.,
2020) for the detailed description about SAFPAT, in-
cluding its reasoning principles rules.

3 SAFETY PATTERN SYNTHESIS

Safety Pattern Synthesis is a plugin of the model-
based system engineering tool AutoFOCUS (AF3)
for recommending safety patterns. Figure 1 depicts
the artifacts that are used by Safety Pattern Synthesis

(system architecture and safety elements) and which
artifacts are produced (system architecture with pat-
terns and requirements).

• System Architecture: This artifact consists of
the designed system architecture. The designed
architecture includes the task and platform archi-
tecture for the system, and the allocation of tasks
to hardware units. In addition, architectural com-
ponents (tasks or hardware units) may be assigned
to the ASIL that such components shall be imple-
mented. We assume that the system architecture
is designed following an model-based engineer-
ing approach, e.g., developed in AF3.

• Safety Elements: This artifact consists of the
results from a safety analysis1 carried out by a
safety engineer on the designed system architec-
ture. This consists of hazards, faults and fail-
ures. Faults are associated with architectural com-
ponents (tasks or hardware units) in the system
architecture. As shown in Section 3.1, we have
developed a wizard for defining these safety ele-
ments in AF3.

• Safety Pattern Synthesis: The developed plugin
recommends safety architecture patterns based on
the system architecture and safety elements. The
reasoning on which pattern to select and where
to place the selected pattern in the architecture is

1In our example described in Section 4, the safety anal-
ysis was carried out using the STPA method

A Model-based System Engineering Plugin for Safety Architecture Pattern Synthesis

39

System architecture
architecture
allocations

ASIL of components

Safety Pattern Synthesis
1

System architecture with patterns

1..n

Requirements1..m
Safety elements

hazards
faults

failures

1..t

CREATED WITH YUML

Figure 1: Safety Pattern Synthesis: Simplified diagram. Gray boxes are artifacts received as input or generated for output.

performed with the help of SAFPAT (described in
Section 2.3). Safety Pattern Synthesis generates
the following artifacts:

– System Architecture with Patterns: Safety
Pattern Synthesis provides a list of modified
AF3 architecture models with patterns. For ex-
ample, possible solutions for tolerating a hard-
ware fault in the platform architecture include
the use of either the Homogeneous Duplex pat-
tern or the Triplex Modular Redundancy pat-
tern. The user of Safety Pattern Synthesis shall
then select the most suitable architecture for the
system. Section 3.1 provides some criteria to
assist the user in selecting the architecture.

– Requirements: Safety Pattern Synthesis pro-
vides requirements that shall be implemented
during system development. In particular,
Safety Pattern Synthesis provides requirements
for (a) the recommended safety patterns, i.e.,
requirements to ensure that the recommended
safety patterns work as intended (examples of
such requirements are described in Table 1),
and (b) safety integrity, e.g., to ensure that the
allocation of tasks to hardware units complies
with the ASIL assigned to tasks.

The following section describes the high-level ar-
chitecture of Safety Pattern Synthesis, including im-
plementation details and how an user interacts with
Safety Pattern Synthesis.

3.1 High-level Architecture

The architecture of Safety Pattern Synthesis is illus-
trated by Figure 2. Safety Pattern Synthesis has been
developed, as part of the AF3 framework, in Java
(frontend) and DLV (backend), and currently works
under Linux and Windows.

Safety Pattern Synthesis receives the input arti-
facts described above. The architecture of Safety Pat-
tern Synthesis consists of the following components:

• Safety Elements Wizard: This component pro-
vides a wizard to enable users to define the safety

elements obtained from a safety analysis. The
component requires an interface to the designed
system architecture so that it can assign faults to
components (i.e., tasks or hardware units). Fig-
ure 4 illustrates our wizard to define safety ele-
ments. Firstly, the user defines a hazard consist-
ing of the hazard’s description and its ASIL. Sec-
ondly, the user selects the (possibly) faulty com-
ponents (either tasks for software faults or ECUs
for hardware faults). Thirdly, for each selected
fault, the user defines the type of failure (either
erroneous or loss) triggered by the fault.2 Finally,
the user defines which type of safety mechanism
(either fault detection of fault tolerant) shall toler-
ate the identified faults, and consequently address
the identified hazard.

• Model-to-Model Transformation from AF3 to
SAFPAT: To make use of SAFPAT for safety pat-
tern recommendation, we implemented a model-
to-model transformation from AF3 (which is im-
plemented in Java) to SAFPAT (which is imple-
mented in DLV). We transform AF3 system archi-
tecture models and safety element models (speci-
fied in the wizard) to SAFPAT models. Figure 3 il-
lustrates a model-to-model transformation from a
task architecture modeled in AF3 to SAFPAT. The
translation is implemented with the help of the
EmbASP framework (EmbASP, 2018). EmbASP
enables the Java representation of predicates that
are specified in a DLV program. We represent in
Java each relevant predicate that can be used in the
DSL of SafPat. This includes the representation of
architectural elements designed in AF3 and safety
elements. Technically, we represent each relevant
predicate by a Java class.

• SafPat: This component reasons about the safety
of the system architecture. Explained in Sec-
tion 2.3, this component is the backend of Safety

2Currently, Safety Pattern Synthesis supports two
Guidewords, erroneous and loss, which are most commonly
used in methodologies such as HAZOP. We plan in the fu-
ture to incorporate other Guidewords such as early and late.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

40

Figure 2: Architecture of Safety Pattern Synthesis. Gray boxes are artifacts either received as input or generated for output.
Safety Pattern Synthesis generates requirements for each System architecture with patterns (output artifact).

Figure 3: Illustration of a model-to-model transformation
from a task architecture modeled in AF3 (left side) to SAF-
PAT (right side) with the help of EmbASP (illustrated by the
yellow arrows). The IDs of tasks and channels in the AF3
model are omitted in the figure.

Pattern Synthesis. Once the representation is fully
realized, Safety Pattern Synthesis (via EmbASP)
invokes SafPat by sending the translated system
architecture and safety elements. Based on the
specified reasoning principles, SAFPAT attempts
to deploy safety patterns wherever they are appli-
cable to tolerate faults. SAFPAT may return a list
of modified architectures with patterns. SAFPAT
also outputs requirements (a.k.a. assumptions).

• Model-to-Model Transformation from SAFPAT
to AF3: This component translates the results
obtained from SAFPAT to AF3 models enabling
the representation of the system architecture with
safety patterns in AF3. The translation is obtained
with the help of the EmbASP framework that en-
ables the parsing of DLV facts to Java. The trans-
lation is similar to the one illustrated in Figure 3
(but in reverse order, i.e., from SAFPAT to AF3).
To identify the changes in the system architec-
ture, SAFPAT makes explicit all the changes made
in the architecture by using a prefixing scheme.
This prefixing scheme is used for new channels
and new components, and for channels (from the
baseline architecture) to be removed.

• Architecture Generation: This component pro-
vides a list of system architectures with safety pat-
terns represented as AF3 models to be selected by
the user. This component implements a wizard for
visualizing the solutions obtained from SAFPAT,
including a number of criteria to assist the user
in selecting the most suitable architecture for sys-

tem. Currently, Safety Pattern Synthesis supports
the following criteria:

1. Number of new components describes the
number of diverse application components re-
quired by the safety pattern. For example, Het-
erogeneous Duplex pattern requires one redun-
dant diverse component. The user can make a
decision based on, e.g., the number of applica-
tion components to be developed.

2. Number of replica components describes the
number of redundant components required by
the safety pattern. A user can make a decision
based on, e.g., the number of replica that need
to be introduced.

3. Number of pattern support components de-
scribes the number of non-application compo-
nents required by the safety pattern. Examples
of non-application components are the fault de-
tector of the Heterogeneous Duplex pattern and
the monitor of the Simplex Architecture pat-
tern. A user can make a decision based on, e.g.,
the overhead introduced by the safety pattern
and on the number of pattern support compo-
nents to be developed.

4. Simplified (a.k.a. degraded) describes
whether the modified architecture with patterns
contains a simplified application component.
For example, the redundant component of the
Simplex Architecture pattern is a simpler ver-
sion of the primary component. A user can
make a decision based on, e.g., the minimum
available fidelity level of components.

Safety Pattern Synthesis provides two wizards for
visualizing the architectural solutions with pat-
terns. One wizard with a spider chart view for
showing the criteria based on the recommended
patterns. The other wizard implements a table
view that provides more detail, in addition to cri-
teria, such as which safety pattern was recom-
mended and additional requirements. For exam-
ple, the highlighted solution in Figure 5 deploys
one instance of the Heterogeneous Duplex pattern

A Model-based System Engineering Plugin for Safety Architecture Pattern Synthesis

41

(htd) and one instance of the Homogeneous Du-
plex pattern (hmd). Once the user has chosen the
system architecture, the user selects and exports
an architecture by clicking on the “Select” and
“Export” buttons, respectively.

The exported architectural solution (System ar-
chitecture with patterns) will be shown the mod-
elling view of AF3. An example of the exported solu-
tion is presented in Section 4.2.
Remark: Figure 5 shows the additional requirements
for ensuring (a) the recommended safety pattern work
as intended, and (b) the safety integrity of the system.
The highlighted solution in Figure 5 contains 15 re-
quirements, including the ones for the Homogeneous
Duplex pattern described in the pattern template (see
Table 1). Once an architectural solution has been ex-
ported, the implementation of the additional require-
ments shall be carried during the system development.

3.2 Download

We have built a binary of Safety Pattern Synthesis to
ease the use of the plugin. The binary of Safety Pat-
tern Synthesis can be download here (Safety Pattern
Synthesis, 2021). It also contains a video illustrating
how one can run Safety Pattern Synthesis to select
safety patterns in an automated fashion.

4 CASE STUDY

We consider an industrial use case taken from the au-
tomotive domain. We describe the system architec-
ture and selected safety elements (e.g., faults) that will
serve as input artifacts for Safety Pattern Synthesis.
We then run Safety Pattern Synthesis to recommend
safety patterns for tolerating the identified faults.

4.1 Use Case

System Architecture. We consider an industrial
use-case, namely the Highway Pilot (HWP). The
nominal function of a HWP is predominantly defined
as the longitudinal and lateral control of a vehicle’s
movement up to a given maximum speed to realize a
trajectory under consideration of the limitations given
by the lane, other vehicles, and the ego vehicle itself.

This specification of the system’s nominal func-
tion can be further broken down into functional re-
quirements. The HWP shall

1. Req 1: not cause the ego vehicle to exceed its
maximum velocity,

2. Req 2: keep the ego vehicle either at a set speed
or adapt its speed to a leading vehicle,

3. Req 3: keep the ego vehicle at the center of the
current lane,

4. Req 4: include a stop & go functionality, and
5. Req 5: inform the driver about its status.

As the HWP takes over the complete Dynamic
Driving Task (DDT) as well as Object and Event
Response (OEDR), the system is classified as a
highly safety-critical, ASIL-D rated, level 3 Auto-
mated Driving System (ADS) according to the SAE
J3016 standard (SAEJ3061, 2012)(ISO26262, 2018).

HWP has been designed in AutoFOCUS3 (AF3)
as part of the fortissimo3 demonstrator platform. The
HWP architecture consisting of both task and plat-
form architectures are illustrated in Figure 6.

The Sensor Data Fusion processes data generated
by a front-mounted sensors to determine the distance
of leading vehicles or obstacles as well as the ego ve-
hicle’s position within the lane. The Adaptive Cruise
Control (ACC) and Lane Keeping Assistance (LKA)
provide longitudinal and lateral control, respectively
– each according to the HWP’s nominal function. The
Emergency Brake (EB) provides longitudinal control
in case a collision with an obstacle in front of the ve-
hicle is deemed unavoidable. Here, the goal is not
collision avoidance, but mitigation. The system is al-
ways active as such situations can arise both during
manual driving as well as due to a fault of the HWP.
The Motion Control coordinates the desired vehicle
states given by the driving functions and controls the
torque applied by the servo steering, and the throttle
position accordingly.

The hardware dedicated to the execution of the
HWP is specified by means of hierarchical platform
architecture models. A simplified version of the plat-
form architecture is illustrated in Figure 6.

Table 2 describes the allocation of task to hard-
ware units, as well as the ASIL requirements for each
component (i.e., the ASIL that each component shall
be implemented).

Safety Elements. For the sake of our evaluation,
we consider the following safety elements that can be
identified from a safety analysis. The identified safety
elements are not meant to be comprehensive.

Table 3 describes the identified hazards HZ1 and
HZ2. We assigned ASIL B to HZ2 as we consider
the exposure of HZ2 as low probability of happening.
These hazards may happen on the occurrence or pres-
ence of failures triggered by the following faults:

3https://www.fortiss.org/en/research/living-lab/detail/
fortissimo

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

42

Figure 4: Screenshot of the wizard for defining safety elements.

Table 2: Allocation and ASIL of components. Note that last
allocation does not comply with the safety integrity level
required (i.e., ASIL D task allocated to ASIL B hardware
unit). The intended outcome is to show that Safety Pattern
Synthesis can provide requirements to ensure the safety in-
tegrity w.r.t. allocations.

Task Hardware Unit

Sensor Data Fusion
[ASIL B]

Host SoC (GPU)
[ASIL B]

ACC
[ASIL D]

MCU
[ASIL D]

LKA
[ASIL D]

MCU
[ASIL D]

EB
[ASIL B]

Host SoC (Vector
Cores) [ASIL B]

Motion Control
[ASIL D]

AI SoC
[ASIL B]

Table 3: Identified hazard for the HWP system.

Hazard Description ASIL

HZ1 The vehicle violates the safety
distance to other road users or
objects on the road.

D

HZ2 Unintended emergency brake. B

• FT1: A software fault occurs in the algorithm im-
plemented by the task implementing ACC causes
the provided target deceleration value not be high
enough to reach the safety distance between vehi-
cles. The failure of type erroneous triggered by
fault FT1 may lead to hazard HZ1.

• FT2: A hardware fault occurs in the hardware unit
to which EB is allocated. This causes EB not to
provide the target deceleration needed to avoid a
front-end collision. The failure of type loss trig-
gered by fault FT4 may lead to hazard HZ2.

4.2 Results

Consider the system architecture and the safety ele-
ments described in Section 4.1. We run Safety Pat-
tern Synthesis to determine patterns that can tolerate
the identified faults and address the identified hazards.

Safety Pattern Synthesis recommended twelve so-
lutions for tolerating the identified faults. The recom-
mended safety patterns are described in Table 4. Con-
sidering that both the system architecture has been
loaded, and the identified safety elements have been
annotated to architectural elements, we accomplished
the results depicted in Table 4 with a few clicks only.

As an example, consider the task architecture from
Solution 10 illustrated in Figure 7, where the Het-
erogeneous Duplex pattern is applied to ACC and the
Monitor Actuator pattern is applied to EB. Both ACC
(V2) and Fault Detector tasks are created to toler-
ate the software faults that may be present in ACC
(V1). That is, if one fault is detected in ACC (V1),
the function ACC will continue operating using the
outputs from ACC (V2). This solution contains addi-
tional requirements to be implemented to ensure that
the pattern works as intended such as ACC (V1) and
ACC (V2) tasks shall be developed using different de-
sign, and for safety integrity such as ACC (V2) and
Fault Detector tasks shall be developed using ASIL
D requirements to comply with the safety integrity of
ACC (V1), as shown in Table 2.

The Monitor Actuator task is created to toler-
ate hardware faults of type loss in the hardware unit
where EB is allocated (i.e., Vector Cores). To this end,
the Monitor Actuator task shall implement a timeout
algorithm to detect failures of type loss triggered by
a fault in Vector Cores. This requirement is provided
by Safety Pattern Synthesis to be realized during the
system development.

Safety Pattern Synthesis provides requirements to
ensure safety integrity w.r.t. allocations. Consider the

A Model-based System Engineering Plugin for Safety Architecture Pattern Synthesis

43

Figure 5: Screenshot of the wizard for visualizing architectural solutions with patterns. It includes the recommended patterns,
the additional requirements to be implemented during the system development, and some criteria to assist the user in selecting
the most suitable architecture for the system.

allocation of the Motion Control [ASIL D] to AI SoC
[ASIL B] in Table 2. This allocation does not comply
with the safety integrity ASIL D given that AI SoC is
ASIL B. Safety Pattern Synthesis provides a require-
ment to ensure the safety integrity, i.e., Motion Con-
trol shall be allocated to an ASIL D hardware unit.

4.3 Discussion

We discuss some issues that are left out of the scope
of this work, but that are important for Safety Pattern
Synthesis deployment in industry.

Handling Potential Design Option Explosion.
Safety Pattern Synthesis may provide a considerably
high number of solutions to be selected by the user,
as shown in Table 4. Currently, Safety Pattern Syn-
thesis provides four criteria (see Section 3.1) to assist
the user with this decision. We are investigating fur-
ther criteria used, for example, by AutoFOCUS3 for
design space exploration (Eder et al., 2020), such as,
the performance overhead caused by safety patterns,
implementation cost, and the hardware resource us-
age required by safety patterns. These criteria can be
used to rank more precisely design options eliminat-
ing non-optimal ones, thus reducing options.

Towards Incremental Development. In this work,
we consider only one development loop. That is, once
safety elements are identified a user can make use
of Safety Pattern Synthesis to deploy safety patterns
into the system architecture. It remains to be investi-
gated how Safety Pattern Synthesis can be extended
to support incremental development where several
loops are involved. For example, consider an architec-
ture with safety patterns, possibly recommended by
Safety Pattern Synthesis, and a new unhandled fault.
Currently Safety Pattern Synthesis would recommend
new safety patterns without modifying the existing
ones. This may not lead to optimal solutions as it does
not exploit synergies between patterns, e.g., a safety
pattern that provide more fault tolerance can subsume
other weaker patterns. It seems possible to use Safety
Pattern Synthesis in a search mechanism procedure
where pattern recommendations are withdrawed by
backtracking and new more more optimized architec-
tures are recommend.

Scalability. Safety Pattern Synthesis reduces the
problem of pattern recommendation to a logical the-
ory (specified by SAFPAT) that is NP-complete in
general. This does not necessary mean that Safety
Pattern Synthesis cannot be used in practice as spe-
cialized engines, such as SMT-solvers, have been
used in industry projects (Eder et al., 2020) for other

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

44

Figure 6: Highway Pilot (HWP): Task (left side) and platform (right side) architectures.

Figure 7: HWP Task architecture with safety patterns.

design space exploration problems that are also NP-
hard. Moreover, given that the focus of Safety Pattern
Synthesis is on development time and not runtime,
Safety Pattern Synthesis’s performance requirements
ranges on hours (and even days). However, a more
dedicated study shall be carried out to determine ex-
actly the Safety Pattern Synthesis’s scalability. We
are aiming to achieve this by using more realistic ex-
amples provided by our industry collaboration. The
results shown in Section 4.2 only took a few seconds
to be computed, but the computation may change de-
pending on, e.g., the size of the system architecture
and the number of safety elements.

5 RELATED WORK

A catalog of safety architecture patterns for safety-
critical systems have been presented in (Douglass,
2012)(Armoush, 2010)(Preschern et al., 2013a). In
particular, (Armoush, 2010) has proposed a pattern
template for providing a consistent representation for
safety architecture patterns. This template has been
instantiated with several patterns for tolerating hard-
ware and software faults. Safety Pattern Synthesis
currently supports a subset of such patterns.

We have been inspired by (Martin et al., 2020) that
proposed a pattern-based approach providing guid-
ance w.r.t. selection of safety (and security) patterns.
A key difference to our work is that we propose a

tool for automating the recommendation of safety pat-
terns, while in (Martin et al., 2020) the recommenda-
tion of patterns was done in a manual fashion. This
approach also includes guidance for selecting secu-
rity patterns (e.g., firewall) to address security prob-
lems (i.e., threats), and for clarifying possible safety
conflicts when deploying such patterns. For exam-
ple, one may deploy a firewall to mitigate identified
threats. The deployed firewall may, however, lead to
new system faults if it erroneously blocks legitimate
messages. We are investigating how to include secu-
rity aspects into Safety Pattern Synthesis by extend-
ing the work by (Dantas et al., 2020) to reason about
the security of system architectures to automate the
recommendation or security patterns.

Approaches combining MBSE with safety analy-
sis have been proposed by, e.g., (Papadopoulos et al.,
2011)(Belmonte and Soubiran, 2012). For example,
the HiP-HOPS tool (Papadopoulos et al., 2011) has
been proposed to semi-automate the safety analysis
process (using FTA and FMEA techniques) on sys-
tem architectures. HiP-HOPS enables a user to anno-
tate the given architecture with data describing how
individual components can fail. HiP-HOPS examines
the data and automatically identifies a list of system
faults that shall be later addressed by safety mecha-
nisms. Our work complements (Papadopoulos et al.,
2011) by providing means to automate the recommen-
dation of such safety mechanisms to tolerate identi-
fied faults. We are interested in extending Safety Pat-
tern Synthesis to enable the automatic identification
of system faults by, e.g., using tools like HiP-HOPS.

(Eder et al., 2017) proposed a design space explo-
ration approach to enable the allocation of software
components into hardware units in an semi-automated
fashion. This approach takes into account the struc-
ture of system architectures (incl., software compo-
nents and hardware units), and a DSL to formalize re-
quirements (e.g., timing, memory consumption) w.r.t.
the design space exploration problem. This DSL is

A Model-based System Engineering Plugin for Safety Architecture Pattern Synthesis

45

Table 4: Solutions recommended by our plugin.

Solution Recommended Safety Patterns

0 Simplex Architecture for tolerating the soft-
ware fault FT1, i.e., the pattern is applied to
ACC. Heterogeneous Duplex for tolerating
the hardware fault FT2, i.e., the pattern is
applied to EB.

1 Two instances of the Heterogeneous Du-
plex pattern, where the first instance toler-
ates the software fault FT1 (i.e., pattern is
applied to ACC), and the second instance
tolerates the hardware fault FT2 (i.e., pat-
tern is applied to EB).

2 Acceptance Voting for fault FT1. Hetero-
geneous Duplex for fault FT2.

3 Simplex Architecture for fault FT1. Triple
Modular Redundancy for fault FT2.

4 Heterogeneous Duplex for fault FT1.
Triple Modular Redundancy for fault FT2.

5 Acceptance Voting for fault FT1. Triple
Modular Redundancy for fault FT2.

6 Simplex Architecture for fault FT1. Homo-
geneous Duplex for fault FT2.

7 Heterogeneous Duplex for fault FT1. Ho-
mogeneous Duplex for fault FT2.

8 Acceptance Voting for fault FT1. Homoge-
neous Duplex for fault FT2.

9 Simplex Architecture for fault FT1. Moni-
tor Actuator for fault FT2.

10 Heterogeneous Duplex for fault FT1. Mon-
itor Actuator for fault FT2.

11 Acceptance Voting for fault FT1. Monitor
Actuator for fault FT2.

specified as a first-order logic language that can be
automated by solving techniques such as Satisfiabil-
ity Modulo Theories (SMT) (de Moura and Bjørner,
2008). The combination of the proposed DSL with
the designed system architectures enabled the appli-
cability of the semi-automated design space explo-
ration for allocating software components into hard-
ware units. This approach has been extended to en-
able a synthesis of the topology of technical platforms
together with a deployment (Eder et al., 2018b). The
approach has been implemented as a feature of AF3.
Safety Pattern Synthesis currently deals with require-
ments (in terms of allocation constraints) provided by
SAFPAT in a manual fashion. We believe that we
can combine our work with (Eder et al., 2018b)(Eder
et al., 2017) to implement these requirements in an
automated fashion.

6 CONCLUSION

This paper presented Safety Pattern Synthesis – a plu-
gin for automating the recommendation of safety pat-
terns within the model-based system engineering tool
AutoFOCUS3. Safety Pattern Synthesis is guided
by the results of a safety analysis. It takes as in-
put information on how faults may trigger identified
hazards in the system architecture. Guided by this
information, Safety Pattern Synthesis automatically
recommends safety patterns to address the identified
hazards. Safety Pattern Synthesis also recommends
requirements (w.r.t. the recommended patterns and
safety integrity) that shall be implemented during the
system development.

Safety Pattern Synthesis has been developed with
the intention of reducing the effort required by safety
engineers while carrying out a safety analysis on
safety-critical systems such as autonomous vehicles.

ACKNOWLEDGEMENTS

We thank Christoph Ainhauser and Sandro Nüesch
for their help in the early phase of this work.

REFERENCES

Amorim, T., Martin, H., Ma, Z., Schmittner, C., Schnei-
der, D., Macher, G., Winkler, B., Krammer, M., and
Kreiner, C. (2017). Systematic Pattern Approach for
Safety and Security Co-engineering in the Automotive
Domain. In Tonetta, S., Schoitsch, E., and Bitsch, F.,
editors, SAFECOMP 2017.

Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., and Schätz, B.
(2015). AutoFOCUS 3: Tooling concepts for seam-
less, model-based development of embedded systems.
In ACES-MB, pages 19–26.

Armoush, A. (2010). Design Patterns for Safety-Critical
Embedded Systems. PhD thesis, RWTH Aachen Uni-
versity.

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr,
C. E. (2004). Basic concepts and taxonomy of depend-
able and secure computing. IEEE Trans. Dependable
Secur. Comput., 1(1):11–33.

Bak, S., Chivukula, D. K., Adekunle, O., Sun, M., Cac-
camo, M., and Sha, L. (2009). The system-level sim-
plex architecture for improved real-time embedded
system safety. In 15th IEEE Real-Time and Embed-
ded Technology and Applications Symposium, RTAS,
pages 99–107. IEEE Computer Society.

Barner, S., Chauvel, F., Diewald, A., Eizaguirre, F., Hau-
gen, Ø., Migge, J., and Vasilevskiy, A. (2018). Mod-
eling and Development Process, pages 87–161. CRC
Press.

MODELSWARD 2022 - 10th International Conference on Model-Driven Engineering and Software Development

46

Barner, S., Diewald, A., Migge, J., Syed, A., Fohler, G.,
Faugère, M., and Gracia Pérez, D. (2017). DREAMS
Toolchain: Model-Driven Engineering of Mixed-
Criticality Systems. In Proceedings of the ACM/IEEE
20th International Conference on Model Driven En-
gineering Languages and Systems (MODELS ’17),
pages 259–269. IEEE.

Belmonte, F. and Soubiran, E. (2012). A model based ap-
proach for safety analysis. In Ortmeier, F. and Daniel,
P., editors, Computer Safety, Reliability, and Secu-
rity - SAFECOMP 2012 Workshops: Sassur, ASCoMS,
DESEC4LCCI, ERCIM/EWICS, IWDE, Magdeburg,
Germany, September 25-28, 2012. Proceedings, vol-
ume 7613 of Lecture Notes in Computer Science,
pages 50–63. Springer.

Biondi, A., Nesti, F., Cicero, G., Casini, D., and Buttazzo,
G. C. (2020). A safe, secure, and predictable soft-
ware architecture for deep learning in safety-critical
systems. IEEE Embed. Syst. Lett., 12(3):78–82.

Dantas, Y. G., Kondeva, A., and Nigam, V. (2020). Less
manual work for safety engineers: Towards an auto-
mated safety reasoning with safety patterns. In ICLP.

de Moura, L. M. and Bjørner, N. (2008). Z3: An Efficient
SMT Solver. In Ramakrishnan, C. R. and Rehof, J.,
editors, TACAS 2008, volume 4963 of Lecture Notes
in Computer Science, pages 337–340. Springer.

Douglass, B. P. (2012). Real-Time Design Patterns: Robust
Scalable Architecture for Real-Time Systems.

Eder, J., Bahya, A., Voss, S., Ipatiov, A., and Khalil, M.
(2018a). From deployment to platform exploration:
Automatic synthesis of distributed automotive hard-
ware architectures. In MODELS 2018, MODELS ’18,
page 438–446.

Eder, J., Bayha, A., Voss, S., Ipatiov, A., and Khalil,
M. (2018b). From deployment to platform explo-
ration: Automatic synthesis of distributed automo-
tive hardware architectures. In Wasowski, A., Paige,
R. F., and Haugen, Ø., editors, Proceedings of the
21th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MOD-
ELS 2018, pages 438–446. ACM.

Eder, J., Voss, S., Bayha, A., Ipatiov, A., and Khalil, M.
(2020). Hardware architecture exploration: automatic
exploration of distributed automotive hardware archi-
tectures. Software and Systems Modeling.

Eder, J., Zverlov, S., Voss, S., Khalil, M., and Ipatiov, A.
(2017). Bringing DSE to Life: Exploring the Design
Space of an Industrial Automotive Use Case. In MOD-
ELS 2017, pages 270–280. IEEE Computer Society.

EmbASP (2018). EmbASP. Available at https://www.
mat.unical.it/calimeri/projects/embasp/.

fortiss GmbH (2020). AutoFOCUS 2.19. Available at
https://www.fortiss.org/en/publications/software/
autofocus-3.

IEC61508 (2010). IEC 61508, Functional safety of
electrical/electronic/programmable electronic safe-
tyrelated systems – Part 7: Overview of tech-
niques and measures. Available at http://www.
cechina.cn/eletter/standard/safety/iec61508-7.pdf.

ISO26262 (2018). ISO 26262, road vehicles —
functional safety — part 6: Product de-
velopment: software level. Available at
https://www.iso.org/standard/43464.html.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,
Perri, S., and Scarcello, F. (2006). The DLV system
for knowledge representation and reasoning. ACM
Trans. Comput. Log., 7(3):499–562.

Martin, H., Ma, Z., Schmittner, C., Winkler, B., Kram-
mer, M., Schneider, D., Amorim, T., Macher, G., and
Kreiner, C. (2020). Combined automotive safety and
security pattern engineering approach. Reliab. Eng.
Syst. Saf., 198:106773.

Papadopoulos, Y., Walker, M., Parker, D., Ruede, E.,
Hamann, R., Uhlig, A., Graetz, U., and Lien, R.
(2011). Engineering failure analysis and design op-
timisation with HiP-HOPS. Journal of Engineering
Failure Analysis, 18(2):590–608.

Preschern, C., Kajtazovic, N., and Kreiner, C. (2013a).
Building a safety architecture pattern system. In van
Heesch, U. and Kohls, C., editors, Proceedings of the
18th European Conference on Pattern Languages of
Program, EuroPLoP 2013, pages 17:1–17:55. ACM.

Preschern, C., Kajtazovic, N., and Kreiner, C. (2013b). Se-
curity analysis of safety patterns. PLoP, pages 12:1–
12:38.

SAEJ3061 (2012). SAE J3061: Cybersecurity guidebook
for cyber-physical vehicle systems. Available from
https://www.sae.org/standards/content/j3061/.

Safety Pattern Synthesis (2021). Safety Pattern Synthe-
sis. Available at https://download.fortiss.org/ pub-
lic/MODELSWARD2022/SafetyPatternSynthesis.zip.

Sljivo, I., Uriagereka, G. J., Puri, S., and Gallina, B. (2020).
Guiding assurance of architectural design patterns for
critical applications. J. Syst. Archit., 110:101765.

A Model-based System Engineering Plugin for Safety Architecture Pattern Synthesis

47

Vol.:(0123456789)

SN Computer Science (2023) 4:335
https://doi.org/10.1007/s42979-023-01712-5

SN Computer Science

ORIGINAL RESEARCH

A Toolchain for Synthesizing and Validating Safety Architectures

Yuri Gil Dantas1 · Tiziano Munaro1 · Carmen Carlan3 · Vivek Nigam2 · Simon Barner1 · Shiqing Fan2 ·
Alexander Pretschner1,4 · Ulrich Schöpp1 · Sergey Tverdyshev2

Received: 3 July 2022 / Accepted: 13 January 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
Autonomous vehicles handle complicated tasks that may lead to harm when performed incorrectly. These harms, in particular
when caused by system faults, may be avoided by the deployment of safety architectural patterns, such as the Heterogene-
ous Duplex pattern. Our goal is to provide safety engineers with computer-aided support for synthesizing architectures
with safety architecture patterns. To this end, we build on our previous work in which we proposed a model-based system
engineering plugin to enable the model-driven approach using safety architecture patterns. This article proposes a toolchain
for synthesizing the structure and switching logic of safety architectures, as well as for validating them through simulation-
based fault-injection. We validate our toolchain using an industrial use-case for autonomous driving systems, namely, a
Highway Pilot system.

Keywords Model-based system engineering · Toolchain · Safety architecture patterns · Reconfiguration · Simulation

This article is part of the topical collection “Advances on Model-
Driven Engineering and Software Development” guest edited by
Luís Ferreira Pires and Slimane Hammoudi.

 * Yuri Gil Dantas
 dantas@fortiss.org

 Tiziano Munaro
 munaro@fortiss.org

 Carmen Carlan
 ccarlan@ecr.ai

 Vivek Nigam
 vivek.nigam@huawei.com

 Simon Barner
 barner@fortiss.org

 Shiqing Fan
 shiqing.fan@huawei.com

 Alexander Pretschner
 pretschner@fortiss.org

 Ulrich Schöpp
 schoepp@fortiss.org

 Sergey Tverdyshev
 sergey.tverdyshev@huawei.com

1 fortiss GmbH, Munich, Germany
2 Huawei Technologies Düsseldorf GmbH, Düsseldorf,

Germany
3 Edge Case Research, Munich, Germany
4 Technische Universität München, Munich, Germany

Introduction

Autonomous vehicles consist of several functions for sensing
the environment and for driving with little or no intervention
from human drivers. Examples of such functions are Sensor
Data Fusion, Adaptive Cruise Control, and Lane Keeping
Assist. These functions enable, respectively, the perception
of road objects, the adjustment of speed values and the safe
distance from road objects, and lane detection to keep the
vehicle centered in a detected lane. Autonomous driving

functions are implemented as software and deployed over
hardware units, such as Electronic Control Units (ECUs).

Autonomous driving functions may cause harm (e.g.,
injury or even death) to drivers or passengers if performed
incorrectly. Root causes of such harm include (systematic)
software faults and (random) hardware faults. At the archi-
tecture level, safety engineers make of use of safety architec-
ture patterns to tolerate software and hardware faults [1, 2].
Examples of safety architecture patterns are Heterogeneous
Duplex and Triple Modular Redundancy.

In our previous article [3], we have proposed a model-
based system engineering (MBSE) plugin to assist safety
engineers with the selection of safety architecture patterns.

 SN Computer Science (2023) 4:335 335 Page 2 of 22

SN Computer Science

The selected system architecture with patterns (here also
called safety architecture) includes requirements with
respect to allocations of redundant components, i.e., the
primary and the redundant component shall be allocated
to different hardware units. These allocation requirements
shall be taken into account to ensure that the pattern works
as intended, in particular to avoid common hardware faults.
Once these allocations have been determined, one needs to
validate whether the safety architecture is capable of switch-
ing to the redundant component if a fault has been identified
in the primary component. To this end, this article proposes
a toolchain for synthesizing the structure and switching
logic of safety architectures, as well as for validating them
by means of simulation-based fault-injection.

The workflow of the proposed toolchain is illustrated in
Fig. 1. Our toolchain consists of (i) Safety Pattern Syn-
thesis [3]: Asafety architecture patterns (incl., fault toler-
ant patterns) to address safety artifacts (incl., software and
hardware faults) identified during a safety analysis of the
autonomous vehicle system architecture. Safety Pattern
Synthesis also provides (allocation) requirements for the
recommended patterns. (ii) Feature Degradation Synthe-
sis: A plugin for determining (potentially degraded) alloca-
tions for failure scenarios caused by hardware faults in the
hardware units, where pattern components (e.g., redundant
components) are allocated. (iii) Fault Injection Simulator:
A simulator tool for validating the fault-tolerance of the
autonomous vehicle system under test by means of fault-
injection, in particular Fault Injection Simulator validates
the switching logic of the system architecture with patterns.

This article is an extended version of our MOD-
ELSWARD 2022 article [3]. The main extensions are the
Feature Degradation Synthesis, and the Fault Injection
Simulator as part of our toolchain for synthesizing and vali-
dating safety architectures. We validate our toolchain using
an industrial use-case for autonomous driving systems,
namely, a Highway Pilot system. This article considers a far
more complex Highway Pilot system than the the simplistic
Highway Pilot system considered by our MODELSWARD
2022 article.

The remainder of the article is structured as follows. Sec-
tion "Background" briefly presents background information

to help the reader to understand the results described in the
article. Section "Case Study" describes the Highway Pilot
system architecture and selected results computed by our
safety analysis. Our toolchain and the evaluation results
are described in Sects. "Safety Pattern Synthesis", "Feature
Degradation Synthesis", and "Simulation". After a discus-
sion of the related work in Sect. "Related Work", we con-
clude in Sect. "Conclusion".

Background

AutoFOCUS3

AutoFOCUS3 [4] is an open source model-based systems
engineering tool and research platform for safety–critical
embedded systems that builds on the Eclipse Modeling
Framework [5].

Following the SPES modeling approach and engineering
methodology [6], the tool enables graphical modelling of
designs and implementations of safety–critical systems in
terms of the modeling viewpoints [7, 8] summarized below.
Besides a model of the vertical and horizontal structure, all
viewpoints provide a rich set of annotations that are mainly
used to describe non-functional properties of the respective
model element.

• The requirements viewpoint provides a simple meta-
model to capture textual requirements roughly following
the Volere template.

• The logical viewpoint [7] provides a metamodel for the
platform-independent specification of systems that con-
sists of a hierarchical network of components, whose data
interface is described using typed logical input and out-
put ports that may be conneced using directed channels.
Logical components may contain behaviour specifica-
tions in the form of timed state automata or (semantically
equivalent) code specifications [7].

• The physical hardware platform metamodel of the tech-
nical viewpoint [8] enables to describe the resources of
hierarchical networked computer systems. Execution
units such as electronic control units, processors, proces-

Fig. 1 Workflow of the proposed toolchain. Blue boxes illus-
trate the tools of the proposed toolchain and yellow boxes illustrate
either input artifacts or output artifacts. The input artifact System

architecture consists of multiple views, including task architec-
ture, platform architecture, and initial allocation of tasks to ECUs

SN Computer Science (2023) 4:335 Page 3 of 22 335

SN Computer Science

sor cores denote the processing elements provided by the
architecture. The model also captures further resources
such as memories and communication devices in terms
of transmission units (e.g., networks and busses) as well
as their interconnection. The physical hardware platform
metamodel is accompanied by a task architecture meta-
model that can be used to describe platforms-specific
aspects of software-based implementations of logical
components (e.g., memory requirements, worst-case
execution time, etc.). It consists of a flat network of tasks
whose data-dependencies are defined in terms of signals.

• The deployment viewpoint is used to trace relationships
between model elements located in different viewpoints
in terms of allocations, e.g., to relate logical component
to tasks, and tasks to execution units, respectively.

Based on these models, AutoFOCUS3 provides computer-
aided support for engineering tasks in the design and valida-
tion phase.

A major focus of the tool are prototyical implementations
for the automated optimization and analysis of system archi-
tectures, in particular for the synthesis of task-to-hardware
deployments [9–11], the exploration of platform architec-
tures [12, 13], as well as mixed-critical system architec-
ture [14, 15] product-lines [16]. The different analyses are
available from AutoFOCUS3’s Design Space Exploration
perspective [17] from the where they can be configured and
executed, and which enables to visualize the determined
solutions [18]. AutoFOCUS3 also provides a functional
simulation [7] that can be be used to validate designs in
early development stages, and supports the standardized
functional mockup interface (FMI) for co-simulation.

Safety Terminology

System safety is defined in ISO 26262 as “absence of
unreasonable risk”, where the risk is computed based on
the the probability of the occurrence of hazardous events

and their severity. A hazardous event is a hazard occurring
in a certain operational situation, leading to harm, where a
hazard is “a potential source of harm caused by malfunc-
tioning behaviour of the item” [19]. Hazardous events are
characterized by severity, probability of exposure regard-
ing operational situations, and controllability. Based on
these characteristics of the identified hazardous events, the
Automotive Safety Integrity Level (ASIL) of the system
or system components is determined. ASIL specifies the
ISO 26262 requirements and safety measures to be con-
sidered during the development of the system or system
component under consideration, with the scope to elimi-
nate unreasonable risk, where D is the most stringent and
A the least stringent level. ISO 26262 addresses functional
safety, which considers hazardous events caused by E/E
systematic and random faults. A system fault is defined in
ISO 26262 as an “abnormal condition that can cause an
element or an item to fail”, whereas a system failure is the
“termination of an intended behaviour of an element or
an item due to a fault manifestation”. Avizienis et al. [20]
propose a classification of failures, such as “halt failures”,
i.e., “loss of function”, or “content failures”, e.g., “errone-
ous output”.

System faults may be systematic, originating in software,
or random, originating in hardware. Faults that are root
causes for hazardous events shall be prevented, tolerated or
removed. Fault tolerance avoids the occurrence of system
failures in the presence of faults. To tolerate faults, safety
engineers may use different safety measures, such as safety
architecture patterns, which we present in the following
paragraph. For the sake of presentation, we refer to hazards,
faults and failure as safety artifacts.

Safety Architecture Patterns Safety architecture pat-
terns [1, 2, 21] (safety patterns for short) are abstract solu-
tions to tolerate software/hardware faults in the system
architecture. Safety architecture patterns are described in an
abstract form and they are implementation-agnostic. Safety
patterns are often described using a pattern template [1, 22].
An example of a pattern template is depicted in Table 1.

A subset of safety patterns are the so-called fault tolerant
patterns. A fault tolerant pattern ensures that the system will
continue to operate when a fault is detected by providing a
redundant component to take over. Fault tolerant patterns
improve the availability of the system given the redundant
component. A fault tolerant pattern may also transition the
system to a safe state or shutdown the system in the pres-
ence of a failure in the redundant component. Examples of
fault tolerant patterns are Acceptance Voting, Homogene-
ous Duplex, Heterogeneous Duplex, Triple Modular Redun-
dancy, and Simplex Architecture [1, 23–25].

Table 1 Architecture pattern description template

Field Description

Pattern name Name of this pattern.
Structure Block diagram of this pattern.
Intent Textual description of the purpose

of this pattern.
Problem addressed Textual description of the problem

the pattern addresses.
Assumptions (requirements) Assumptions necessary for using

this pattern, i.e., to ensure that the
pattern works as intended.

 SN Computer Science (2023) 4:335 335 Page 4 of 22

SN Computer Science

SafPat

SafPat [26] is a command-line engine for recommending
safety architecture patterns for addressing hardware and
software faults in autonomous vehicle system architectures.
SafPat has been implemented in DLV [27] (DataLog with
Disjunction), a logic programming language based on ASP.

The inputs and outputs received and generated by SafPat
are illustrated in Fig. 2. The inputs consists of the system
architecture and safety artifacts computed during a safety
analysis, such as HARA and STPA.

SafPat implements a domain-specific language (DSL)
for embedded systems, thus enabling the specification
of architecture elements such as components, channels,
tasks, and hardware units. Safetywise, the DSL enables the

specification of safety artifacts (e.g., hazards and faults) and
safety patterns.

The specification of safety patterns is the key point
towards enabling their automated recommendation. In fact,
the DSL enables the specification of, e.g., the intent and
problem addressed by the safety pattern. Table 2 illustrates
the specification of the Homogeneous Duplex pattern.

SafPat implements safety principles to reason about
the safety of the system architecture. In particular, Saf-
Pat implements safety reasoning principles specifying the
conditions for when safety patterns can be recommended
to tolerate faults, and consequently address hazards. For
example, the conditions for the Homogeneous Duplex pat-
tern (homogeneousDuplex) are specified below. Consider
a fault FT of type TYPE_FAULT associated to an archi-
tecture element (e.g., an ECU), where FT triggers a failure
FL of type TYPE_FAIL, and FL leads to a hazard of ASIL
TYPE_ASIL.

1. homogeneousDuplex is suitable for tolerating the fault
type TYPE_FAULT;

2. homogeneousDuplex is suitable for avoiding the fail-
ure type TYPE_FAIL;

3. homogeneousDuplex is suitable for addressing the
hazard type TYPE_ASIL.

Whenever such conditions hold, SafPat recommends the
Homogeneous Duplex pattern. SafPat may recommend
multiple solutions for addressing the same fault. For exam-
ple, possible solutions for addressing hardware faults are
the deployment of either the Homogeneous Duplex pattern
or the Triple Modular Redundancy pattern. SafPat com-
putes all possible solutions for addressing the safety arti-
facts received as input. Note that SafPat only outputs solu-
tions where all safety artifacts (received as input) have been
addressed, i.e., the hazards have been addressed through the
use of safety patterns tolerating all faults leading to such
hazards.

Fig. 2 Inputs and outputs artifacts received and generated by SafPat

Table 2 Instantiation of the Homogeneous Duplex pattern

Field Description SafPat Specification

Pattern
name

Homogeneous
Duplex Pattern

NAME=homogeneousDuplex;

Structure

COMPONENTS=[pr,se,fd];
INPUT CH=[inp1,inp2];
INTERNAL CH=[int1,int2];
OUTPUT CH=[out];

Intent This pattern is fault tol-
erant, suitable to address
high criticality hazards
(ASIL D) [1] and tolerate
hardware faults.

TYPE PAT=fault tolerant;
TYPE ASIL=d;
TYPE FAULT=[hardware];
TYPE FAIL=[erroneous,loss];

Problem
addressed

This pattern tolerates
faults by avoiding failures
of type erroneous or loss.

Assumptions
(require-
ments)

The primary and the sec-
ondary components shall
be identical.

TYPE ASSUMPTION=
are identical;
COMPONENTS=[pr,se];

The primary and the sec-
ondary components shall
be allocated to different
hardware units.

TYPE ASSUMPTION=
are decoupled;
COMPONENTS=[pr,se];

The fault detector shall be
verified.

TYPE ASSUMPTION=
are verified;
COMPONENTS=[fd];

The assumptions (a.k.a. requirements) are not meant to be compre-
hensive

SN Computer Science (2023) 4:335 Page 5 of 22 335

SN Computer Science

SafPat outputs requirements for each recommended pat-
tern to ensure that the pattern works as intended. Exam-
ples of requirements are “the pattern components shall be
allocated to an ASIL D hardware unit” and “the primary
and the secondary (a.k.a. redundant) components shall be
allocated to different hardware units”. SafPat also outputs
requirements to ensure safety integrity with respect to the
allocation of software components to hardware components.
For example, consider an allocation of a software component
SW1 into a hardware component HW1. SafPat ’s reasoning
principles check whether the ASIL of SW1 is higher than
the ASIL of HW1. If this condition holds, SafPat provides a
requirement to allocate SW1 to a hardware component with
the same ASIL of SW1.

Case Study

Highway Pilot

The use case considered in this work is a Highway Pilot
(HWP), implementing an SAE Level 3 Autonomous Driv-
ing (AD) function. In accordance to the “Safety First for
Automated Driving” document [28], the nominal function
is to “realize a trajectory within given limits derived from
lane, other objects, and ego-vehicle width with the given and
normal performing actuators”. We have modeled the HWP
system architecture in AF3.

For the sake of simplifying the use case while retaining
its architectural and functional complexity, the considered
HWP implements three main functions: Adaptive Cruise
Control (ACC), Lane Keeping Assistant (LKA), and Emer-
gency Brake (EB). Whereas the ACC provides longitudinal
control, the EB provides longitudinal control in case a col-
lision with an obstacle in front of the vehicle is deemed
unavoidable, and the LKA provides lateral control. In Fig. 3,
we present the task architecture we modeled in AF3 for the
considered system, describing 15 existing software tasks
and the information flow among them in terms of signals.
Furthermore, in Fig. 4, we show the platform architecture of
the system modeled in AF3, specifying the execution units
of the system, and the network topology. The ACC, LKA,
and EB are represented as different software tasks, running
on certain execution units. In addition, there is a task imple-
menting the Sensor Data Fusion function, processing sensor
data in order to compute the distance to obstacles, and the
position of the ego vehicle within the lane, and a Coordina-
tor task, which implements the decision logic. In Table 3,
we present the allocation of 5 out of the 15 existing software
tasks to the hardware units. In the same table, we also show
the ASIL assigned to each component.

Safety Analysis

To identify the faults within the system that may cause haz-
ardous events, in compliance to ISO 26262, in the context
of this work, we first conducted a hazard analysis and then
a safety analysis. Based on the outcome of the conducted
hazard analysis, we identified three hazards, namely: HZ01
Unintended lane departures while the HWP system is
engaged and executing a “lane-centering” maneuver, HZ02
Violation of safe distance to front vehicle while the HWP
system is engaged, HZ03 Unintended emergency braking
while the HWP system is engaged. After a risk assess-
ment analysis, we assigned these hazards as ASIL D. The
safety goal is often defined as the negation of the hazard,
such as SG01 Prevent unintended lane departures while the
HWP system is engaged and executing a “lane-centering”
maneuver.

To determine the potential causes of hazards, we con-
ducted a System-Theoretic Process Analysis (STPA). As in
this work, we propose a solution for automatic identification
of safety patterns that can be applied to tolerate safety–criti-
cal software and hardware faults within a given system,
while conducting the STPA analysis, we mostly focus on
the identification of such faults. For each component of the
HWP system, we identified loss scenarios that describe how
hardware or software faults in the respective component may
lead to a hazard. In Table 4, we present two exemplary loss
scenarios specifying how hardware and software faults in
the ACC component may lead to hazard HZ02. To tolerate
such faults, in Sect. "Safety Pattern Synthesis", we present
an engine for safety pattern synthesis.

Safety Pattern Synthesis

This section describes Safety Pattern Synthesis [3], a
plugin to assist safety engineers in selecting safety architecture
patterns. In particular, we describe the workflow of Safety
Pattern Synthesis as well as its activity diagram by provid-
ing some implementation details. Safety Pattern Synthesis
has been implemented as a plugin in the model-based system
engineering tool AutoFOCUS3 (AF3) [4], in particular Safety
Pattern Synthesis has been integrated into the DSE perspec-
tive of AF3. Safety Pattern Synthesis currently supports
the following safety architecture patterns: Acceptance Voting
pattern, Homogeneous Duplex pattern, Heterogeneous Duplex
pattern, Simplex Architecture pattern, and Triple Modular
Redundancy pattern.

Workflow Overview

Figure 5 illustrates the workflow of Safety Pattern Synthe-
sis. The first step is the design of the system architecture. This

 SN Computer Science (2023) 4:335 335 Page 6 of 22

SN Computer Science

Fig. 3 Baseline task architecture of the HWP

Fig. 4 Baseline platform architecture of the HWP

SN Computer Science (2023) 4:335 Page 7 of 22 335

SN Computer Science

step is usually done by a system architect. Figure 5 illustrates
a task architecture (a.k.a. software architecture) with tasks and
signals connecting the tasks. The second step is to annotate
the system architecture with safety–critical faults identified
during the system safety analysis. Figure 5 illustrates a soft-
ware fault in Task 3. Safety Pattern Synthesis receives as
input both the system architecture and safety artifacts such as
faults. Safety Pattern Synthesis automates the third step by
recommending and instantiating suitable safety architecture
patterns in the architecture. Figure 5 illustrates the instantiation
of the Heterogeneous Duplex pattern (see tasks and signals
in light green) for tolerating the software fault in Task 3.
Safety Pattern Synthesis may recommend several solutions
with different options for safety architecture patterns. The user

of Safety Pattern Synthesis shall select the most suitable
solution for the system. As described in "Activity Diagram
and Implementation Details", Safety Pattern Synthesis pro-
vides four criteria to assist the user with this decision. Safety
Pattern Synthesis also provides requirements to ensure that
implementation of each safety architecture pattern works as
intended. These requirements shall be realized during the sys-
tem development.

Activity Diagram and Implementation Details

The implementation of Safety Pattern Synthesis con-
sists of different modules implemented in Java. The excep-
tion is the SafPat module. SafPat [26] is the backend of
the plugin that recommends safety architecture patterns.
As described in Sect. "SafPat", SafPat has been imple-
mented in DLV. We use the EmbASP framework [29] for
integrating SafPat in Safety Pattern Synthesis.

The activity diagram of Safety Pattern Synthesis is
illustrated in Fig. 6. For the sake of presentation, Fig. 6
also illustrates three important modules of Safety Pattern
Synthesis, including SafPat (see dark gray boxes).

• Load system architecture. The user loads the designed
system architecture in Safety Pattern Synthesis. The
system architecture shall contain at least the follow-
ing viewpoints: Logical architecture, task architecture,
platform architecture, and allocation (a.k.a. deploy-
ment) entries. Optionally, the user may also assign
ASILs (according to ISO 26262) to either components
of the logical architecture or execution units of the plat-
form architecture. We assume that ASILs assigned to
components are safety requirements, e.g., component X
shall be implemented with ASIL D requirements, while
ASILs assigned to execution units are implemented
safety requirements, e.g., execution unit X has been
implemented with ASIL D requirements. SafPat takes
this information into account when providing require-
ments.

• Define safety artifacts. The user defines in Safety Pat-
tern Synthesis the safety artifacts obtained from the
safety analysis. Each safety artifact shall contain the

Table 3 Allocation of tasks to hardware units

Software task Hardware unit

Adaptive Cruise Control [ASIL D] Host SoC (AI Cores) [ASIL B]
Coordinator [ASIL D] Host SoC (AI Cores) [ASIL B]
Emergency Brake [ASIL D] MCU [ASIL D]
Lane Keeping [ASIL D] MCU [ASIL D]
Sensor Data Fusion [ASIL D] MCU [ASIL D]

Table 4 Exemplary loss scenario in adaptive cruise control (ACC)

Component, fault Loss scenario

ACC, HW Fault When the HWP is enabled and the relative
velocity and distance to an obstacle mean that a
collision is imminent, a hardware fault occurs in
the hardware unit to which the task implement-
ing the ACC function is allocated, causing the
target deceleration value needed to prevent a
front-end collision not to be provided by the
ACC task

ACC, SW Fault When the HWP is enabled and the relative
velocity and distance to an obstacle mean that
a collision is imminent, a software fault of
type ERRONEOUS ALGORITHM in the task
implementing the ACC function causes that the
ACC provides a target deceleration value not
high enough to prevent a front-end collision

Fig. 5 Workflow of Safety Pattern Synthesis

 SN Computer Science (2023) 4:335 335 Page 8 of 22

SN Computer Science

following information: A hazard, fault(s) and failure(s).
First, the user defines a hazard by providing a short
description and assigning the ASIL of the hazard. Sec-
ondly, the user defines one or more faults associating
each fault with an architecture element. To this end,
Safety Pattern Synthesis provides a user interface
that lists all tasks from the task architecture (software
fault) and all execution units from the platform archi-
tecture (hardware fault). For each defined fault, the user
shall define the failure type triggered by the fault. Safety
Pattern Synthesis considers failures of type erroneous
and loss. The user may read a defined safety artifact in
Safety Pattern Synthesis as follows: a fault (possibly
more than one) triggers a failure that may lead to a haz-
ard.

• Run synthesis. Upon loading the system architec-
ture and defining the safety artifacts, the user runs the
plugin. Figure 6 illustrates the three main important
modules of Safety Pattern Synthesis to enable the
recommendation of safety architecture patterns.

– M2M transformation af3 to SafPat. This module
implements a model-to-model transformation from
af3 to SafPat. That is, it transforms the model
elements specified in the af3 ’s language to the
domain-specific language specified in SafPat. The
transformation is implemented with the help of the
EmbASP framework.

– SafPat. The backend module implements reason-
ing rules to enable the recommendation of safety
architecture patterns to address the safety arti-
facts received as input. The safety reasoning rules
specify the conditions for when safety architecture
patterns may be used to tolerate faults, and where
such patterns shall be deployed in the system archi-
tecture. SafPat may recommend several different
architecture solutions with patterns where all safety
artifacts (received as input) have been addressed.
SafPat also provides requirements for the recom-
mended patterns (to ensure they work as intended),
and for checking the safety integrity with respect
to allocations (by checking the ASILs assigned to
architecture elements).

– M2M transformation SafPat to af3. This module
implements a model-to-model transformation from

SafPat to af3. That is, it transforms the architec-
ture solutions with patterns specified in SafPat to
af3 ’s model elements. This transformation ena-
bles, e.g., the instantiation of safety architecture
patterns in an automated fashion. The transforma-
tion is implemented with the help of EmbASP.

• Select system architecture with patterns. The user
selects the system architecture from the architecture
solutions recommended by SafPat. Safety Pattern
Synthesis provides four criteria to help the user with
this decision [3]:

– Number of new components describes the num-
ber of diverse redundant components required by
the safety architecture pattern. For example, Het-
erogeneous Duplex pattern requires one redundant
diverse component. The user can make a decision
based on, e.g., the number of diverse components
to be developed.

– Number of replica components describes the number
of identical redundant components required by the
safety architecture pattern. A user can make a deci-
sion based on, e.g., the number of replica that need
to be introduced.

– Number of pattern support components describes
the number of non-application components required
by the safety architecture pattern. Examples of non-
application components are the monitor (a.k.a. fault
detector) of the Heterogeneous Duplex pattern and
the voter of the Triple Modular Redundancy pattern.
A user can make a decision based on, e.g., the over-
head introduced by the pattern and on the number of
pattern support components to be developed.

– Simplified (a.k.a. degraded) describes whether the
modified architecture with patterns contains a sim-
plified application component. For example, the
diverse redundant component of the Simplex Archi-
tecture pattern is a simpler version of the primary
component. A user can make a decision based on,
e.g., the minimum available fidelity level of compo-
nents.

 The chosen architecture is exported by the user. The
exported architecture solution consists of a modified
baseline architecture with the recommended safety archi-

Fig. 6 Activity diagram of Safety Pattern Synthesis

SN Computer Science (2023) 4:335 Page 9 of 22 335

SN Computer Science

tecture patterns. In particular, Safety Pattern Synthesis
modifies the task architecture by instantiating each of the
recommended patterns. Safety Pattern Synthesis also
exports a list of requirements that shall be realized to
ensure (a) that recommended patterns work as intended
and (b) the safety integrity with respect to allocations.

Results

We run Safety Pattern Synthesis to recommend safety pat-
terns to address the identified safety artifacts for the High-
way Pilot system architecture.

Safety Pattern Synthesis computed 94 architecture
solutions. Safety Pattern Synthesis computed such solu-
tions in less than 10 min on an Intel Core i7-6700 (2.6
GHz) with 16 Gb RAM running Ubuntu Linux 20.4 LTS
(in VirtualBox with VT-X/AMD-V virtualization and KVM
para-virtualization). The computed solutions include sev-
eral mixes of three safety architecture patterns, namely,
Heterogeneous Duplex (HtD) pattern, Simplex Architecture
(SA) pattern, and Acceptance Voting (AV) pattern. Table 5
shows one example solution where these three patterns are
recommended.

Figure 7 illustrates the exported AF3 model of the
architecture solution with five instances of the HtD pat-
tern that have been recommended to tolerate the identi-
fied hardware and software faults. Figure 8 illustrates an
excerpt of the 45 requirements that have been generated
for the above solution that contains five instances of the

HtD pattern. Safety Pattern Synthesis makes explicit
via requirements when the safety integrity with respect
to allocations is violated. Requirements SafPat-14 and
SafPat-20 describe that the ACC and Coordinator tasks
shall be allocated to ASIL D hardware units, instead of
ASIL B hardware units as shown in Table 3.

Feature Degradation Synthesis

This section describes Feature Degradation Synthe-
sis, an automated workflow to analyze the degradation of
functional features in failure scenarios related to hardware
faults of execution units based on a formal model of the
system. Feature Degradation Synthesis determines,
based on a valid initial redundant task-to-execution unit
allocation, alternative potentially degraded allocations for
failure scenarios stemming from hardware fault of execu-
tion units. For the overall workflow of the described tool-
chain, feature Feature Degradation Synthesis builds
on the Heterogenous Duplex Pattern (HtD) that may be
instantiated by Safety Pattern Synthesis as described
in Sect. "Safety Pattern Synthesis" as follows: For all
instance of the HtD pattern in the given architecture,
Feature Degradation Synthesis is used to determine
the switching logic of the pattern’s fault detector, i.e. when
to switch between the primary to the secondary replica.

Table 5 Solution with one instance of SA, three instances of HtD and one instance of AV

Pattern Task Description

SA Sensor Data Fusion SA for tolerating the software fault in Sensor Data Fusion. To this end, a safe and simple (a.k.a. degraded) version
of Sensor Data Fusion shall be developed. A monitor shall be developed to identify faults in Sensor Data Fusion,
including a timeout algorithm to detect faults triggering failures of type loss. If one fault is detected in Sensor
Data Fusion, the Monitor switches to the safe and simple Sensor Data Fusion task. Requirements are created by
Safety Pattern Synthesis to tolerate hardware faults such as the tasks implementing Sensor Data Fusion shall be
allocated to different hardware units

HtD ACC HtD for tolerating software faults in ACC. To this end, a redundant version of ACC shall be developed using a
different software design, here called ACC V2. A Fault Detector (a.k.a monitor) shall also be developed to identify
faults, including a timeout algorithm to detect faults triggering failures of type loss. If one fault is detected in
ACC, the Monitor switches to ACC V2 task. Requirements are created by Safety Pattern Synthesis to tolerate
hardware faults by having ACC and ACC V2 allocated to different hardware units

HtD LKA Similar to the description above about ACC
HtD EB Similar to the description above about ACC
AV Coordinator AV for tolerating software faults in Coordinator. To this end, two additional diverse redundant implementations of

the Coordinator shall be developed, here called Coordinator V2 and Coordinator V3. For each Coordinator task,
a monitor shall be developed (using, e.g., plausibility checks) to identify faults in the outputs generated by the
Coordinator. Each monitor shall also implement a timeout algorithm to detect failures of type loss. If the output
is accepted by the Monitor (e.g., passes the plausibility check), the output is forwarded to a Voter, which selects
the resulting output based on a voter policy such as majority. In order to also tolerate hardware faults, Safety Pat-
tern Synthesis generates requirements that demand that Coordinator, Coordinator V2, Coordinator V3 shall be
allocated to different hardware units

 SN Computer Science (2023) 4:335 335 Page 10 of 22

SN Computer Science

Workflow Overview

The approach underlying the presented tool-supported
workflow is based on the work by Becker et al. [30]. It relies
on an AutoFOCUS3 [4] input model that comprises the
functional features of a system, software components real-
izing these features and an initial (redundant) deployment
of the respective tasks to the hardware platform’s execution
units. The output is a reconfiguration graph that specifies
the relocation of tasks for the different failure scenarios.

Input model Feature Degradation Synthesis relies
on the following information that has to be provided in
the input model:

• System Architecture with instantiated HmD patterns
(generated by Safety Pattern Synthesis)

• Hardware failures of execution units (from safety analy-
sis, see Sect. "Safety Analysis")

• Initial task-to-execution unit allocation with initial task
deployment types (master/ replica)

• Priorities (penalty for function unavailability, recon-
figuration cost)

In the presented tool-chain, the above information is pro-
vided in an AutoFOCUS3 model. The model is defined

in terms of the viewpoints introduced in Sect. "AutoFO-
CUS3" as well as the following extensions:

The functional viewpoint enables the specification of
system functions, as well as the decomposition of func-
tions into subfunctions in terms of a Function Architec-
ture. Atomic functions are mapped to one or more compo-
nents of the logical viewpoint, specifying concrete designs
for each function in terms of component networks in the
logical architecture. As shown in Fig. 9, in the presented
toolchain, each function in the Function Architecture is
annoated with following cost metrics related to the recon-
figuration of the system:

• Reconfiguration cost: Cost for relocating a task related
to this function from one execution unit to another

• Function unavailability penalty: Measure for the impor-
tance of the function (e.g., utility of for the user, criticality).

In order to enable the reconfiguration of the system in
the event of execution unit failures, Feature Degrada-
tion Synthesis requires the redundant deployment of
software tasks to be present in the initial system configu-
ration. The allocation of active tasks (master) and their
replica (standby) to execution units is defined in terms of
a task redundancy mapping. Figure 10 shows an exemplary

Fig. 7 HWP architecture with five instances of the HtD pattern: Light
blue highlights the instance for the EB task, dark blue highlights the
instance for the LKA task, red highlights the instance for the ACC

task, purple highlights the instance for the Sensor Data Fusion task,
and pink highlights the instance for the Coordinator task

SN Computer Science (2023) 4:335 Page 11 of 22 335

SN Computer Science

task redundancy mapping where a Task A is allocated as
active master on execution unit Generic_ECU1, and its
replica Task A’ is allocated as passive replica on execution
unit Generic_ECU2. Fault Detector is the pattern support
component of the HtD pattern that determines whether
to switch from Task A to Task A’ (e.g., to safeguard the
architecture against hardware faults of Generic_ECU1).

Output model To capture the output of the feature
degradation synthesis, we build on the approach intro-
duced in [8] and integrate a metamodel for reconfigura-
tion graphs into the AutoFOCUS3 tool. A reconfiguration
graph contains one Configuration node for each failure
scenario to consider all combinations of hardware failures
of the execution units (i.e., in an architecture with n execu-
tion units, there are 2n failure scenarios). The edges of the
reconfiguration graph reference the execution unit whose
failure triggers the transition from the source to the target
Configuration.

Each of the Configurations contains a degraded deploy-
ment of tasks (as master or as standby) to the execution
units that are still available in the respective failure scenario.

Figure 11 shows the reconfiguration graph for the example
architecture with two execution units. The task deployment
of the initial Configuration < 11 > , where all execution units
are still available, is identical to the initial task redundancy
mapping shown in Fig. 10. Figure 12 exemplarily shows the
degraded task deployment for Configuration < 01 > where

Fig. 8 Excerpt of requirements generated for solution with five instances of the HtD pattern

Fig. 9 Function Architecture with reconfiguration cost and function
unavailability penalty annotation

 SN Computer Science (2023) 4:335 335 Page 12 of 22

SN Computer Science

execution unit Generic_ECU1 has failed (see edge from
Configuration < 11 > to Configuration < 11 >). In Configu-
ration < 01 > , Task_B has been dropped to free resources
favor of the replica Task A’ (that has a higher unavailability
penalty than Task B, see Fig. 9).

Feature degradation synthesis AutoFOCUS3 extension
For the presented toolchain, the AutoFOCUS3 [4] tool

has been extended with a Feature Degradation Synthe-
sis extension that has been integrated as an optimizing
exploration into the DSE perspective. After the definition
of the input model, the feature degradation synthesis can be
launched as shown in Fig. 13.

After selecting the Z3Reconfiguration (SMT) solver type
at the bottom of the optimization section, the Reconfigura-
tion synthesis type can be enabled at the top of the synthesis
pane. By means of the Optimize button, the feature degrada-
tion synthesis is started. It translates the input model into a
Z3 formulization based on the work of [30], where it uses
constraints to specify valid degradations of the system, e.g.:

• Initial deployment constraint: constraint encoding the
input model

• No migration constraint: constraint ensuring that soft-
ware tasks may only become a master on execution where
they have initially been deployed (as master or replica)

• Single master active constraint: constraint ensuring that
in each failure scenario, a task is deployed as a master at
most once.

The synthesis is guided by the minimization of two objec-
tives, namely

• Unavailability cost: cost for dropping tasks in a given
failure scenario

• Reconfiguration cost: cost for activating task replica.

After the exploration has terminated, the results are con-
verted back into AutoFOCUS3 models which may be
exported to the original project.

Results

For evaluation, we consider the HWP architecture intro-
ducted in Sect. "Case Study" and apply Feature Degra-
dation Synthesis to that solution yielded by Safety Pat-
tern Synthesis that contains 5 instances of the HtD pattern
(see Fig. 7). In the following, we focus on synthesizing
the switching logic for the fault detectors that have been
introduced for the Adaptive Cruise Control, the Emergency
Brake, and the Coordinator task in order to tolerate hardware
faults of type loss of the execution units Core 1, Core 3, and
Core 4 (contained by the MCU). The DMS task represents
the implementation of a Driver Monitoring System function
that may be dropped (possibly in conjunction with appro-
priate additional measures) in order to free computational
resources for the tasks of higher criticality mentioned before.

In alignment with the deployment constraints resulting
from the application of the selected patterns, we define the
following task redundancy table for the underlying tasks and
execution units.

In order to apply the Feature Degradation Synthesis,
an initial task-to-hardware allocation has to be provided
that defines on which execution unit task are initially
active in the undegraded state of the system. Therefore, we
extended the allocation defined in the baseline model such
that the requirements on the deployment resulting from
the application of safety patterns (see Fig. 8 are satisfied.
Figure 14 shows the resulting task redundancy table where
an active (master) replica and a passive (backup) replica
of each consider task are allocated to different execution
units.

In the next step, the model is imported into the Design
Space Exploration perspective of AutoFOCUS3 and the

Fig. 10 Task redundancy mapping

Fig. 11 Reconfiguration graph for an architecture with two execution
units

Fig. 12 Degraded task deployment for failure scenario < 01 >

SN Computer Science (2023) 4:335 Page 13 of 22 335

SN Computer Science

Feature Degradation Synthesis is executed. As explained
in Sect. "Workflow Overview", in this process, the Auto-
FOCUS3 model and the objective functions to maximize
the utility of degraded configurations of the system while
minimizing the reconfiguration cost is transformed into a
constraint satisfaction problem. This formal representation
is then passed to the Z3 SMT solver that determines the
task-to-hardware allocations for all failure scenarios of the
considered execution units.

Figure 15 exemplarily shows one the determined recon-
figuration graphs that specify the switching logic for the
considered fault detector component.

Each of the nodes of the graph defines a failure scenario
that defines the degradation state of the tasks realizing the
considered functions depending on the available execution
units.

Configuration <111> corresponds to the initial system
state where the execution units Core 1, Core 3, and Core 4
of the MCU are healthy. In each of the configurations

<011> , <101> , and <110> , the execution unit depicted by
the incoming edge has failed. Figure 16 exemplarily depicts
the degraded task redundancy table for configuration <011>
where Core 1 of the MCU has failed.

In each of the subsequent configurations <100> , <010> ,
and <001> , a total of two execution units has failed. Since
the safety pattern synthesis had constructed the underlying
architecture based on a one fault assumption, in each of these
configurations a critical task of the nominal channel would
have to be dropped. Therefore, these configurations mark
system states where nominal channel becomes unavailable,
and the system has to switch to the degraded channel to meet
the fail-operational requirements of the HWP functionality.
Assuming sufficient independence between the execution
units involved in the implementation of the feature degra-
dation strategy, and therefore a very low probability of a
dual hardware fault, the approach is considered as a good
compromise between increase of the nominal channel’s
availability (i.e., in the case of single hardware faults), and

Fig. 13 Integration of Feature Degradation Synthesis into AutoFOCUS3 DSE perspective

 SN Computer Science (2023) 4:335 335 Page 14 of 22

SN Computer Science

the required redundancy (and therefore resource consump-
tion and cost).

Simulation

ISO 26262 recommends simulations as complementary
method to provide evidence for the consistency and com-
pliance of safety concepts with the safety goals and for
their ability to avoid or mitigate hazards in both the design
(cf. ISO 26262-3:2018) and the development (cf. ISO
26262-4:2018) phases. The standard also requires the veri-
fication of the functional performance, accuracy and timing
of safety mechanisms. The here presented workflow includes
simulation-based fault injection testing activities to exam-
ine real-time properties of the generated safety architecture
candidates generated by Safety Pattern Synthesis and
Feature Degradation Synthesis.

Section "Requirements" discusses the requirements for
a simulation-based fault-injection framework used for the
validation of safety architectures. Section "Approach" sug-
gests a suitable approach for which Sect. "Implementation"
introduces the tool support necessary for the evaluation of
the generated safety concepts described in Sect. "Results".

Fig. 14 Initial task redundany table defining redundany deployment of Adaptive Cruise Control, Emergency Brake, and Coordinator task

Fig. 15 Reconfiguration graph defining the switching logic of the
Fault Detector tasks of the HtD patterns that instantiated for the
Adaptive Cruise Control, Emergency Brake, and Coordinator task

SN Computer Science (2023) 4:335 Page 15 of 22 335

SN Computer Science

Requirements

An approach for simulation-based fault injection testing
of safety mechanisms must have the ability to verify if a
safety concept mitigates faults in both software and hard-
ware. Therefore, a purley logical simulation is not sufficient:
The simulation needs to consider properties of the underly-
ing platform architecture that are relevant for the injection,
containment, and propagation of faults. Such information,
however, can only be leveraged if the allocation of software
units (to partitions and processing elements) and signals (to
transmission units) is taken into account as well.

Other requirements address the practical applicability of
the approach, and stem particularily from the distributed
development encountered across automotive supply chains:
The necessity to exchange behavior specifications for the
purpose of testing across organizations must not obstruct
the protection of Intellectual Property (IP). Moreover, the
heterogeneous tool landscape found in CPS engineering
demands a high level of interoperability to reduce the over-
head incurred by the testing activities, which, according to
ISO 26262-3:2018, shall be performed recurringly through-
out development.

Approach

The co-simulation-based fault injection framework we intro-
duced in [31] has been defined specifically for the early vali-
dation of system-level safety mechanisms. However, while
that methodogical framework addresses all requirements
mentioned in Sect. "Requirements", no tool support is yet
available.

In [31], we propose a co-simulation based on the Func-
tional Mock-up Interface1 (FMI) capable of accurately sim-
ulating the loss and erroneous behavior of both hardware
and software components as well as the propagation of such
faults. Hereby, each Functional Mock-up Unit (FMU) (rep-
resenting a software unit) is executed by a standalone ROS2
node. Hypervisor partitions and, in turn, processing ele-
ments are encoded by logically grouping these ROS nodes
according to the allocations of software units. In contrast
to prevalent FMI-based co-simulations, this ROS-based
simulation architecture provides the flexibility necessary for
simulating the loss of hardware and software components
while accurately considering fault containment regions.
Each transmission unit (both on-chip and off-chip) is simu-
lated by a dedicated ROS node as well. By providing the

Fig. 16 Task redundancy table for configuration <011> where Core 1 of the MCU has failed

 SN Computer Science (2023) 4:335 335 Page 16 of 22

SN Computer Science

means to intercept and transform arbitrary signals (in both
the time and value domains), these ROS nodes enable the
simulation of erroneous behavior of hardware components
and software units—despite their black-box nature.1,2

The approach presented in [31], however, requires the
behavior of all components to be specified at the time of
simulation—including pattern support components added
to the task architecture by the safety pattern synthesis (see
Sect. "SafPat"). While, for instance, voters (in the context
of, e.g., an acceptance voting pattern) can be generated, fault
detectors must be implemented manually. Requiring the
implementation of such components would either nullify the
benefits of the automated pattern synthesis, or impede the
exploration of possible safety concepts by means of simula-
tion-based fault injection. Hence, for the purpose of evaluat-
ing reconfiguration strategies, the fault detection is replaced
by a timed trigger set to the expected worst case fault detec-
tion time interval (FDTI) as defined by ISO-26262-1:2018.

Implementation

The approach described in Sect. "Approach" provides the
means for the early evaluation of the dynamic and systemic
properties of safety architectures. However, the effort of
manually setting up the simulation framework for all candi-
dates generated by Safety Pattern Synthesis and Feature
Degradation Synthesis introduced in Sects. "Safety Pat-
tern Synthesis" and "Feature Degradation Synthesis" is pro-
hibitive. To address this lack of tool support, AutoFOCUS3
has been extended with an additional plugin which, given
an exploration solution (or any other complete set of input
models), (1) generates all necessary artefacts, (2) configures
the simulation environment, and (3) provides the user with
a fault injection interface.

For a set of input models to be complete, the following
artefacts must be given:

• A task architecture, as introduced in Sect. "AutoFO-
CUS3". To be simulated, however, each task must be
associated with a behavior specification. As we lever-
age the FMI standard, the simulation is not limited to
behavior specifications modeled in AutoFOCUS3, but is
capable of co-simulating an arbitrary set FMUs as long
as the name and datatype of input and output ports on
an FMU match the respective ports on the associated
task. This requirement does not apply to pattern support
components.

• A platform architecture. As described in Sect. "Auto-
FOCUS3" execution units can be modeled hierarchically

(in terms of nodes, tiles, and cores) and connected via
transmission units (i.e., off-chip and on-chip networks).

• An allocation table (see Sect. "AutoFOCUS3") specify-
ing the deployment of tasks to execution units and signals
to routes across one or more transmission units. Cru-
cially, the requirements generated by the safety pattern
synthesis along with the safety architecture must already
be reflected in the allocations.

Optionally, the plugin can consider the following input arte-
facts as well:

• A partition architecture representing the hypervisor-
provided partitions used to meet the requirements gen-
erated by the safety pattern synthesis. Whenever a parti-
tion architecture is given, the allocation table must no
longer directly specify the allocations of tasks to execu-
tion units. Instead, allocations of tasks to partitions and,
in turn, of partitions to execution units are necessary to
accurately replicate the fault containment regions.

• A reconfiguration graph as introduced in Sect. "Feature
Degradation Synthesis", specifying the deployment type
for tasks affected by the generated reconfiguration strat-
egy.

As the allocation table references all of the aforemen-
tioned artefacts with exception of the reconfiguration graph,
it is sufficient to select these two inputs from an AutoFO-
CUS3 project as shown in Fig. 17.

Given the aforementioned input models, the plugin gener-
ates the following output artefacts:

• A set of behavior specifications including the predefined
FMUs associated with the given tasks. Redundant tasks
introduced by the safety pattern synthesis might still lack

Fig. 17 Screenshot of the AutoFOCUS3 user interface for the con-
figuration of the simulation environment: Selecting the input artefacts
enables the option to start the generator from the context menu

1 https:// fmi- stand ard. org/.
2 https:// www. ros. org/.

SN Computer Science (2023) 4:335 Page 17 of 22 335

SN Computer Science

a behavior specification, in which case the FMUs speci-
fying the nominal behavior are reused.

• The configuration files encoding the fault propagation
across networks, the system’s fault containment regions,
and its reconfiguration strategy. As the simulation frame-
work introduced in [31] is based on the same metamodel
used by AutoFOCUS3 for the specification of E/E archi-
tectures (cf. [15]), the model transformation for gener-
ating the simulation’s configuration files is straightfor-
ward. Overall, (1) a JSON file encoding the allocation
of tasks and partitions is generated, (2) a JSON file for
each transmission unit containing the source and target
of each signal routed through that network, and, finally,
(3) a JSON file breaking down the reconfiguration graph
to sets of tasks to be either activated or terminated after
each fault.

• A ROS launch file, starting a ROS node for each FMU
and each transmission unit as described in [31]. To
ensure the deterministic co-simulation of FMUs across
ROS nodes and thus retain the execution semantics
defined by the FMI standard, the FMI adapter first intro-
duced in [32] has been modified to use ROS services
instead of ROS topics. In addition, a custom ROS master
node is launched, coordinating the co-simulation.

The ROS launch file can be used to launch the co-simulation
in isolation or, ideally, in conjunction with a simulation of
actuator dynamics, sensor perception, and the physical envi-
ronment. This allows the observation of the system’s closed
loop behavior.

The plugin also provides a command-line interface to
support the user with the fault injection itself (c.f. 18). Given
the generated configuration files, the program is aware of
the system’s software-hardware integration and, thereby, the
system’s fault containment regions. Hence, the immediate
effects of a fault can be replicated accurately. The loss of an
execution unit is, for instance, translated to a loss of the allo-
cated partitions and, in turn, to the loss of the tasks running
within the affected partitions. Finally, the FMUs associated
with the identified tasks are terminated. A command-line

interface was implemented over a graphical interface to
allow for automated test case execution.

Results

To evaluate the safety architecture candidate selected in
Sects. "Safety Pattern Synthesis" and "Feature Degradation
Synthesis", the here introduced tool support for co-simu-
lation-based fault injection testing has been applied to the
highway pilot use case using the fortissimo Simulation.3 The
ROS-powered environment provided by the fortiss Mobility
Lab4 simulates the ego vehicle’s sensors, actuators, dynam-
ics as well as its environment.

For the purpose of illustrating the application of the here
presented tool support for the fault injection framework
introduced in [31], we perform two test runs. We simulate
the loss of a core to which parts of the highway pilot’s ACC
are deployed, first with the baseline architecture and then
using the synthesized safety architecture candidate:

As shown in Fig. 19, the user is informed about all tasks
stopped as a consequence of losing the processing element
they are allocated to. As the baseline architecture does not
provide any safety patterns, any functionality associated with
the affected tasks is lost. The visualization of the fortissimo
Simulation running the baseline architecture—a screenshot
of which is seen in Fig. 20—confirms the loss of the ACC
functionality: The rover stops and its control panel indicates
that the functionality is no longer available.

In case of the synthesized architecture, the consumer’s
fault detector switches to the second instance (i.e., redun-
dancy) of the ACC controller. As the fault detector was
introduced by the architecture pattern synthesis, its behavior
has not yet been specified at the time of simulation. Thus,
the switching is automatically triggered by the fault injec-
tion tool (see Fig. 21). Due to the consumer (in this case
the Driver Assistance Controller) now read-
ing the output of the second instance of the ACC task, the

Fig. 18 Overview over the
functionality provided by the
fault injection interface: The
command-line tool is aware
of the system architecture and
can inject faults in processing
elements, hypervisor-provided
partitions, and single tasks

3 https:// git. forti ss. org/ ff1/ simul ation.
4 https:// www. forti ss. org/ en/ resea rch/ forti ss- labs/ detail/ mobil ity- lab.

 SN Computer Science (2023) 4:335 335 Page 18 of 22

SN Computer Science

functionality is not disrupted: The vehicle continues driv-
ing and the control panel confirms the availability of the
functionality.

These results indicate the effectiveness of the selected
safety architecture in improving the availability of software
functions in the face of hardware losses. Nevertheless, a sin-
gle test run does not yet result in any factual evidence for the
adequacy of the safety architecture. The confidence in results
obtained by means of simulation can, however, be increased
by (1) proving the accuracy of the simulation (e.g., as sug-
gested in [33]), (2) indicating the completeness of functional
scenarios to be tested (cf., [34]), and (3) optimizing the criti-
cality of test cases, i.e. to which extent the worst cases are
covered (e.g., by means of search-based approaches as sug-
gested in [35]).

In terms of performance, a system with an Intel Core
i7-9850 H CPU and a NVIDIA Quadro T2000 GPU is capa-
ble of executing the aforementioned experiments involv-
ing the highway pilot with a real-time factor (the ratio of
simulation time to real time) of 3, i.e., the scenarios can be
simulated three times faster than real time. Here, the phys-
ics engine (Open Dynamics Engine5) is set to a step size of
3 ms (with respect to the simulation time) while the FMI-
based co-simulation is stepped at 33 Hz (with respect to
the simulation time). Two alternative task architectures of
the highway pilot use case involving 30 (47) software tasks
exchanging 145 (197) signals can still be executed with a
real-time factor of 2 (1.65). The observed reduction of the
real-time factor is mainly caused by the latency of the TCP/
IP-based communication among ROS nodes.

While increasing the step size of the physics engine
improves performance, it compromises the simulation’s
accuracy. Hence, the maximum step size depends on the
complexity of the dynamics to simulate and the desired
level of accuracy, and is, thus, use case-specific. In contrast,
the step size of the co-simulation must match the step size
required by the FMUs (with respect to the simulation time)
to ensure that the behavior of the simulated system reflects
the real-time properties of the system under test. For large
test suites, the execution of test cases can be parallelized and
distributed by means of containerization.5

Related Work

In the automotive domain, and for automated and autono-
mous driving in particular, fail-operational fault-tolerance
is essential [36–38]. A number of research projects of
investigated fault-tolerant vehicle architectures, such as
RACE [39, 40], SafeAdapt [41, 42] and SAFER [43]. The
SafeAdapt project provided a meta-modeling approach to
describe architectural patterns for fail-operational, gracefully
degrading systems, providing a library of different redun-
dancy and graceful degradation patterns, such as a fail-oper-
ational graceful degradation (FOGD) that considers different
(possibly degraded) states of system features [42]. While
the approach foresees redundancy, e.g., based on hot/cold
standbys, it does not consider the deployment of software
components to hardware units. SAFER introduced a system
architecture for dependable autonomous vehicles, including
support for graceful degradation in failure scenarios (e.g., in
cases of ECU failures) [43, 44]. While the approach foresees
environment dependent (or context aware) degradation strat-
egies, it focuses on the provision of the system architecture
rather than a methodology to deploy functions to it. The
RACE project developed a fault-tolerant software and sys-
tem automotive architecture for vehicles. The hardware plat-
form is based on the Central Platform Computer (CPC) that
consists of computing units in a DMR configuration. The
RACE runtime environment [45] is based on a data-centric
paradigm that enables that application software components
have access to data and the system’s peripherals independent
of their (current) deployment, resulting in a flexible solu-
tion in which software components may be dynamically
relocated. In the context of RACE, a model-based approach
relying on formal methods (SMT) to analyze the degradation
of functional features in failure scenarios based have been
investigated [30, 46].

Approaches combining MBSE with safety analysis meth-
ods have been proposed by, e.g., [47, 48]. For example, the
HiP-HOPS tool [47] has been proposed to semi-automate
the safety analysis process (using FTA and FMEA methods)
on system architectures. This tool has three main steps: The
first step is the system modeling and the failure annotation.
This step is performed manually by the user, in particular
the user annotates failure data to individual components of
the system such as components that provide control actions
(e.g., acceleration, steering or braking). The second step is
the fault three synthesis process to automatically determine
which components caused the failures defined the the first
step. The third step is the generation of an FMEA to obtain
the minimal cut sets, i.e., the smallest possible combinations
of failures capable of causing the failures defined the the
first step. Our work complements [47] by providing means
to automate the recommendation of safety mechanisms to

Fig. 19 Output of the command-line fault injection tool after simulat-
ing the loss of a core: In addition to informing the user about the loss
of the selected execution unit, the script also reports the tasks which
have been lost as a consequence

5 https:// ode. org/.

SN Computer Science (2023) 4:335 Page 19 of 22 335

SN Computer Science

address faults/failures. We are interested in augmenting our
tool chain to enable the automatic identification of system
faults/failures by, e.g., using tools like HiP-HOPS.

Safety Pattern Synthesis provides requirements for
each recommended safety architecture pattern, in par-
ticular allocation (a.k.a. deployment) requirements. The
allocation requirements are currently performed manually
in the toolchain proposed by this article. We believe that
some of the requirements provided by Safety Pattern
Synthesis can be automated. Eder et al. [9] proposed a
design space exploration approach to enable the allocation
of software components into hardware units in an semi-
automated fashion. This approach takes into account the
structure of system architectures (incl., software compo-
nents and hardware units), and a DSL to formalize require-
ments (e.g., timing, memory consumption) with respect
to the design space exploration problem. This DSL is
specified as a first-order logic language that can be auto-
mated by solving techniques such as Satisfiability Modulo
Theories (SMT) [49]. The combination of the proposed
DSL with the designed system architectures enabled the
applicability of the semi-automated design space explo-
ration for allocating software components into hardware
units. This approach has been extended to enable a synthe-
sis of the topology of technical platforms together with a
deployment [12]. The approach has been implemented as
a feature of AF3.

As noted in our previous work, the problem of validating
the real-time properties of safety architectures of Cyber-
Physical Systems (CPS) has been addressed by several

simulation-based Fault Injection (FI) approaches [31].
These, however, require the disclosure of tool-specific
behavior specifications—thereby violating the require-
ments for interoperability and protection of Intellectual
Property (IP) mentioned in Sect. "Requirements". [50–52],
and [53] all present system-level FI approaches relying,
however, on the availability of white box behavior speci-
fications: The MODIFI tool presented in [52], for instance,
provides extensive FI capabilities in both software and
hardware components—however, only when defined as
MATLAB Simulink models. Co-simulation-based system
integration frameworks provide a different line of action:
Often based on the FMI standard enabling the exchange
of tool-agnostic black-box behavior specifications, these
approaches meet the interoperability and IP protection
requirements—lacking, however, either indications on
how to represent E/E architectures and the deployment of
software to hardware, or adequate support for FI testing.
The FMI-based integration platforms for CPS introduced
in [54] and [55], for example, demonstrate the feasibility

Fig. 20 Screenshot of the fortissimo Simulation’s visualization: After the loss of the core used to execute the ACC, the rover stops and the con-
trol panel indicates that the function is no longer active

Fig. 21 Output of the command-line fault injection tool after simulat-
ing the loss of a core and the subsequent reconfiguration: All fault
detectors supervising affected functions are notified of the loss, trig-
gering a switch to the respective fallback tasks

 SN Computer Science (2023) 4:335 335 Page 20 of 22

SN Computer Science

of system-level FMI-based co-simulation of hardware and
software components, yet lack FI capabilities. In contrast,
the FI approach for FMI-based co-simulation proposed in
[56] does not provide any guidelines on how to represent
software and hardware components and their interactions
(e.g., through deployment relations). Aiming at filling this
gap, we previously introduced an FMI-based FI frame-
work [31]. It lacks, however, adequate tool support and
does allow for pattern support components with undefined
behavior. By automating the simulation setup and intro-
ducing an emulation mechanism for generated pattern sup-
port components, the solution presented in Sect. "Simula-
tion" addresses both shortcomings of our previous work.

Conclusion

This article presented a toolchain for synthesizing and
validating architectures with safety architecture patterns.
Specifically, our toolchain provides means to synthesize
both the structure of the architecture to include safety
architecture patterns, and the switching logic of pattern
components (i.e., the switch from the primary to redun-
dant components in the presence of faults). We validate
our toolchain by means of simulation-based fault-injection
using an industrial use-case for autonomous driving sys-
tems, namely, a Highway Pilot system.

Data availability The results have been achieved together with our
industrial partners, and not publicly available. The interested reader
may contact us for the data.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Armoush, A. Design patterns for safety-critical embedded sys-
tems. PhD thesis, RWTH Aachen University (2010)

 2. Preschern C, Kajtazovic N, Kreiner C. Building a safety
architecture pattern system. In: van Heesch U, Kohls C (eds)
Proceedings of the 18th European Conference on Pattern Lan-
guages of Program, EuroPLoP 2013, Irsee, Germany, July
10-14, 2013, pp. 17–11755. ACM, New York (2013). https://
doi. org/ 10. 1145/ 27390 11. 27390 28.

 3. Dantas YG Munaro T, Cârlan C, Nigam V, Barner S, Fan S,
Pretschner A, Schöpp U, Tverdyshev S. A Model-based System
Engineering Plugin for Safety Architecture Pattern Synthesis.
In: Pires LF, Hammoudi S, Seidewitz E (eds) Proceedings of
the 10th International Conference on Model-Driven Engineer-
ing and Software Development, MODELSWARD 2022, Online

Streaming, February 6-8, 2022, pp. 36–47. SCITEPRESS, Por-
tugal (2022). https:// doi. org/ 10. 5220/ 00108 31700 003119.

 4. fortiss GmbH: AutoFOCUS 2.21. Available at https:// af3. forti
ss. org/. https:// af3. forti ss. org/. Accessed 10 June 2022.

 5. Eclipse Foundation: Eclipse Modeling Framework (EMF).
Available at https:// www. eclip se. org/ model ing/ emf/. https://
www. eclip se. org/ model ing/ emf/. Accessed 10 June 2022.

 6. Pohl K, Hönninger R, Harald Achatz Broy M (eds) (2012) The
SPES 2020 Engineering-methodology for software-intensive
embedded systems, p. 301. Springer, New York

 7. Aravantinos V, Voss S, Teufl S, Hölzl F, Schätz B. AutoFO-
CUS 3: Tooling concepts for seamless, model-based develop-
ment of embedded systems. In: Proc. 8th Int. Workshop Model-
based Architecting of Cyber-Physical and Embedded Systems
(ACES-MB), pp. 19–26 (2015)

 8. Barner S, Chauvel F, Diewald A, Eizaguirre F, Haugen Ø,
Migge J, Vasilevskiy A. In: Ahmadian, H., Obermaisser, R.,
Perez, J. (eds.) Modeling and Development Process, pp. 87–161.
CRC Press, Boca Raton (2018). https:// doi. org/ 10. 1201/ 97813
51117 821-4

 9. Eder J, Zverlov S, Voss S, Khalil M, Ipatiov A, Bringing DSE to
life: Exploring the design space of an industrial automotive use
case. In: 20th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, MODELS 2017,
Austin, TX, USA, September 17-22, 2017, pp. 270–280. IEEE
Computer Society, Washington, D.C. (2017). https:// doi. org/
10. 1109/ MODELS. 2017. 36.

 10. Zverlov S, Voss S, Böhm T, Herpel H.-J, Kerep M, Model-
based methodology for space vehicles. In: Proceedings of the
Eurospace Annual Conference on Data Systems in Aerospace
(DASIA) (2019)

 11. Diewald A, Barner S, Saidi S, Combined data transfer response
time and mapping exploration in mpsocs. In: 10th International
Workshop on Analysis Tools and Methodologies for Embed-
ded and Real-time Systems (WATERS) Co-located with ECRTS
(2019). https:// archi ves. ecrts. org/ filea dmin/ Websi tesAr chiv/ ecrts
2019/ waters/ waters- progr am/

 12. Eder J, Bayha A, Voss S, Ipatiov A, Khalil M, From deployment
to platform exploration: Automatic synthesis of distributed auto-
motive hardware architectures. In: Wasowski, A., Paige, R.F.,
Haugen, Ø. (eds.) Proceedings of the 21th ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and
Systems, MODELS 2018, Copenhagen, Denmark, October 14-19,
2018, pp. 438–446. ACM, New York (2018). https:// doi. org/ 10.
1145/ 32393 72. 32393 85.

 13. Eder J, Voss S, Bayha A, Ipatiov A, Khalil M. Hardware architec-
ture exploration: automatic exploration of distributed automotive
hardware architectures. Software and Systems Modeling. 2020.
https:// doi. org/ 10. 1007/ s10270- 020- 00786-6.

 14. Migge J, Balbastre P, Barner S, Chauvel F, Craciunas S.S, Die-
wald A, Durrieu G, Haugen Ø, Seyed A.A.J, Pagetti C, Oliver
R.S, Vasilevskiy A In: Ahmadian, H., Obermaisser, R., Perez,
J. (eds.) Algorithms and Tools, pp. 163–259. CRC Press, Boca
Raton, 2018. https:// doi. org/ 10. 1201/ 97813 51117 821-5

 15. Barner S, Diewald A, Migge J, Syed A, Fohler G, Faugère M,
Gracia Pérez D. DREAMS toolchain: Model-driven engineering
of mixed-criticality systems. In: Proceedings of the ACM/IEEE
 20th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS ’17), pp. 259–269. IEEE, Austin,
TX, USA 2017. https:// doi. org/ 10. 1109/ MODELS. 2017. 28

 16. Barner S, Diewald A, Eizaguirre F, Vasilevskiy A, Chauvel F.
Building product-lines of mixed-criticality systems. In: Proceed-
ings of the Forum on Specification and Design Languages (FDL
2016). IEEE, Bremen, Germany 2016. https:// doi. org/ 10. 1109/
FDL. 2016. 78803 78

SN Computer Science (2023) 4:335 Page 21 of 22 335

SN Computer Science

 17. Eder J, Voss S. Usable design space exploration in AutoFO-
CUS3. In: Joint Proceedings of the 12th Educators Symposium
(EduSymp 2016) and 3rd International Workshop on Open Source
Software for Model Driven Engineering (OSS4MDE 2016) Co-
located with MODELS 2016, pp. 51–58. CEUR-WS, 2016. http://
ceur- ws. org/ Vol- 1835/ paper 08. pdf

 18. Voss S, Eder J, Hölzl F. Design space exploration and its visuali-
zation in autofocus3. In: Software Engineering (Workshops), pp.
57–66 2014. http:// ceur- ws. org/ Vol- 1129/ paper 33. pdf

 19. ISO26262: ISO 26262, road vehicles - functional safety - part 6:
Product development: software level (2018). Available at https://
www. iso. org/ stand ard/ 43464. html

 20. Avizienis A, Laprie J-C, Randell B, Landwehr CE. Basic concepts
and taxonomy of dependable and secure computing. IEEE Trans
Dependable Secur Comput. 2004;1(1):11–33.

 21. Real-Time Design Patterns: Robust Scalable Architecture for Real-
Time Systems, (2012)

 22. Sljivo I, Uriagereka GJ, Puri S, Gallina B. Guiding assurance of
architectural design patterns for critical applications. J Syst Archit.
2020;110: 101765. https:// doi. org/ 10. 1016/j. sysarc. 2020. 101765.

 23. Preschern C, Kajtazovic N, Kreiner C. Security analysis of safety
patterns. In: Proceedings of the 20th Conference on Pattern Lan-
guages of Programs (PLoP '13). 2013. pp. 1–38.

 24. Biondi A, Nesti F, Cicero G, Casini D, Buttazzo GC. A safe,
secure, and predictable software architecture for deep learning in
safety-critical systems. IEEE Embed Syst Lett. 2020;12(3):78–82.
https:// doi. org/ 10. 1109/ LES. 2019. 29532 53.

 25. Bak S, Chivukula D.K, Adekunle O, Sun M, Caccamo M, Sha
L. The system-level simplex architecture for improved real-time
embedded system safety. In: 15th IEEE Real-Time and Embed-
ded Technology and Applications Symposium, RTAS 2009,
San Francisco, CA, USA, 13-16 April 2009, pp. 99–107. IEEE
Computer Society, Washington, D.C. 2009. https:// doi. org/ 10.
1109/ RTAS. 2009. 20

 26. Dantas YG, Kondeva A, Nigam V. Less manual work for safety
engineers: Towards an automated safety reasoning with safety
patterns. In: International Conference on Logic Programming
(ICLP) 2020

 27. Leone N, Pfeifer G, Faber W, Eiter T, Gottlob G, Perri S, Scar-
cello F. The DLV system for knowledge representation and rea-
soning. ACM Trans Comput Logic. 2006;7(3):499–562.

 28. Wood M, Robbel P, Maass M, Tebbens RD, Meijs M, Harb M,
Reach J, Robinson K, Wittmann D, Srivastava T, Bouzouraa
M.E, Liu S, Wang Y, Knobel C, Boymanns D, Löhning M,
Dehlink B, Kaule D, Krüger R, Frtunikj J, Raisch F, Gruber M,
Steck J, Mejia-Hernandez J, Syguda S, Blüher P, Klonecki K,
Schnarz P, Wiltschko T, Pukallus S, Sedlaczek K, Garbacik N,
Smerza D, Li D, Timmons A, Bellotti M, O’Brien, M., Schöll-
horn, M., Dannebaum, U., Weast, J., Tatourian, A., Dornieden,
B., Schnetter, P., Themann, P., Weidner, T., Schlicht, P.: Safety
first for automated driving. Technical report, Aptiv; Audi;
Baidu; BMW; Continental; Daimler; Fiat Chrysler Automobiles;
HERE; Infineon; Intel; Volkswagen; (2019). https:// www. daiml
er. com/ docum ents/ innov ation/ other/ safety- first- for- autom ated-
drivi ng. pdf. Accessed 10 June 2022.

 29. EmbASP. Available at https:// www. mat. unical. it/ calim eri/ proje
cts/ embasp/. Accessed 10 June 2022.

 30. Becker K, Voss S, Schätz B. Formal analysis of feature degrada-
tion in fault-tolerant automotive systems. Science of Computer
Programming. 2018;154:89–133. https:// doi. org/ 10. 1016/j. scico.
2017. 10. 007. Formal Techniques for Safety-Critical Systems
2015.

 31. Munaro T, Muntean I. Early assessment of system-level safety
mechanisms through co-simulation-based fault injection. In: 2022
IEEE Intelligent Vehicles Symposium (IV), pp. 1703–1708 2022.
https:// doi. org/ 10. 1109/ IV519 71. 2022. 98273 27

 32. Schröder N, Lenord O, Lange R. Enhanced motion control of a
self-driving vehicle using modelica, fmi and ros. Proceedings of
the 13th International Modelica Conference, Regensburg, Ger-
many, March 4-6, 2019 157, 441–450 (2019). https:// doi. org/ 10.
3384/ ecp19 157441

 33. Sargent R.G. Verification and validation of simulation models.
In: Proceedings of the 2010 Winter Simulation Conference, pp.
166–183. IEEE, 2010. https:// doi. org/ 10. 1109/ WSC. 2010. 56791
66.

 34. Hauer F, Schmidt T, Holzmuller B, Pretschner A. Did we test all
scenarios for automated and autonomous driving systems?, pp.
2950–2955. IEEE, (2019). https:// doi. org/ 10. 1109/ ITSC. 2019.
89173 26.

 35. Matinnejad R, Nejati S, Briand L, Bruckmann T, Poull C. Search-
based automated testing of continuous controllers: Framework,
tool support, and case studies. Information and Software Tech-
nology. 2015;57:705–22. https:// doi. org/ 10. 1016/j. infsof. 2014. 05.
007.

 36. Sinha P. Architectural design and reliability analysis of a fail-
operational brake-by-wire system from iso 26262 perspectives.
Reliability Engineering & System Safety. 2011;96(10):1349–59.
https:// doi. org/ 10. 1016/j. ress. 2011. 03. 013.

 37. Kohn A, Käßmeyer M, Schneider R, Roger A, Stellwag C, Herk-
ersdorf A. Fail-operational in safety-related automotive multi-core
systems. In: 10th IEEE International Symposium on Industrial
Embedded Systems (SIES) 2015. https:// doi. org/ 10. 1109/ SIES.
2015. 71850 51

 38. Wei J, Snider J.M, Kim J, Dolan J.M, Rajkumar R, Litkouhi B.
Towards a viable autonomous driving research platform. In: 2013
IEEE Intelligent Vehicles Symposium (IV), pp. 763–770 (2013).
https:// doi. org/ 10. 1109/ IVS. 2013. 66295 59

 39. Sommer S, Camek A, Buckl C, Becker K, Zirkler A, Fiege L,
Armbruster M, Knoll A. Race: A centralized platform computer
based architecture for automotive applications. In: Vehicular Elec-
tronics Conference (VEC) and the International Electric Vehicle
Conference (IEVC) (VEC/IEVC 2013). IEEE 2013

 40. Knoll A, Buckl C, Kuhn K.-J, Spiegelberg G. In: Dajsuren,
Y., van den Brand, M. (eds.) The RACE Project: An Infor-
matics-Driven Greenfield Approach to Future E/E Architec-
tures for Cars, pp. 171–195. Springer. https:// doi. org/ 10. 1007/
978-3- 030- 12157-0_8

 41. Ruiz A, Juez G, Schleiss P, Weiss G. A safe generic adaptation
mechanism for smart cars. In: 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE), pp.
161–171 2015. https:// doi. org/ 10. 1109/ ISSRE. 2015. 73818 10

 42. Penha D, Weiss G, Stante A. Pattern-based approach for design-
ing fail-operational safety-critical embedded systems. In: 2015
IEEE 13th International Conference on Embedded and Ubiquitous
Computing, pp. 52–59 (2015). https:// doi. org/ 10. 1109/ EUC. 2015.
14

 43. Kim J, Bhatia G, Rajkumar R, Jochim M. Safer: System-level
architecture for failure evasion in real-time applications. In: 2012
IEEE 33rd Real-Time Systems Symposium, pp. 227–236 2012.
https:// doi. org/ 10. 1109/ RTSS. 2012. 74

 44. Kim J, Rajkumar RR, Jochim M. Towards dependable autono-
mous driving vehicles: A system-level approach. SIGBED Rev.
2013;10(1):29–32. https:// doi. org/ 10. 1145/ 24923 85. 24923 90.

 45. Becker K, Frtunikj J, Felser M, Fiege L, Buckl C, Rothbauer
S, Zhang L, Klein C. RACE RTE: A Runtime Environment for
Robust Fault-Tolerant Vehicle Functions. In: CARS 2015 - Criti-
cal Automotive Applications: Robustness & Safety, Paris, France
2015. https:// hal. archi ves- ouver tes. fr/ hal- 01192 987. Accessed 10
June 2022.

 46. Becker K. Software deployment analysis for mixed reliabil-
ity automotive systems. Dissertation, Technische Universität
München, München (2017). http:// nbn- resol ving. de/ urn/ resol ver.

 SN Computer Science (2023) 4:335 335 Page 22 of 22

SN Computer Science

pl? urn: nbn: de: bvb: 91- diss- 20170 726- 13459 14-1-1. Accessed 10
June 2022.

 47. Papadopoulos Y, Walker M, Parker D, Ruede E, Hamann R, Uhlig
A, Graetz U, Lien R. Engineering failure analysis and design opti-
misation with HiP-HOPS. Journal of Engineering Failure Analy-
sis. 2011;18(2):590–608. https:// doi. org/ 10. 1016/j. engfa ilanal.
2010. 09. 025.

 48. Belmonte F, Soubiran E. A model based approach for safety analy-
sis. In: Ortmeier, F., Daniel, P. (eds.) Computer Safety, Reliability,
and Security - SAFECOMP 2012 Workshops: Sassur, ASCoMS,
DESEC4LCCI, ERCIM/EWICS, IWDE, Magdeburg, Germany,
September 25-28, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7613, pp. 50–63. Springer, New York (2012). https://
doi. org/ 10. 1007/ 978-3- 642- 33675-1_5.

 49. de Moura L.M, Bjørner N. Z3: an efficient SMT solver. In:
Ramakrishnan, C.R., Rehof, J. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings. Lecture
Notes in Computer Science, vol. 4963, pp. 337–340. Springer,
New York, (2008). https:// doi. org/ 10. 1007/ 978-3- 540- 78800-3_
24.

 50. Uriagereka G.J, Lattarulo R, Rastelli J.P, Calonge E.A, Lopez
A.R, Ortiz H.E. Fault injection method for safety and controlla-
bility evaluation of automated driving. In: 2017 IEEE Intelligent
Vehicles Symposium (IV), pp. 1867–1872. IEEE, (2017). https://
doi. org/ 10. 1109/ IVS. 2017. 79959 77

 51. Sini J, Violante M. An Automatic Approach to Perform FMEDA
Safety Assessment on Hardware Designs. In: 2018 IEEE 24th
International Symposium on On-Line Testing And Robust System
Design (IOLTS), pp. 49–52. IEEE, (2018). https:// doi. org/ 10.
1109/ IOLTS. 2018. 84742 17

 52. Svenningsson R, Vinter J, Eriksson H, Törngren M. MODIFI:
A MODel-Implemented Fault Injection Tool. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 6351 LNCS,
210–222 2010

 53. Saraoglu M, Morozov A, Janschek K. MOBATSim: MOdel-Based
Autonomous Traffic Simulation Framework for Fault-Error-Fail-
ure Chain Analysis. IFAC-PapersOnLine. 2019;52:239–44.

 54. Neema H, Gohl J, Lattmann Z, Sztipanovits J, Karsai G, Neema S,
Bapty T, Batteh J, Tummescheit H, Sureshkumar C. Model-Based
Integration Platform for FMI Co-Simulation and Heterogeneous
Simulations of Cyber-Physical Systems. In: Proceedings of the
10th International Modelica Conference, March 10-12, 2014,
Lund, Sweden, vol. 96, pp. 235–245 2014

 55. dSPACE GmbH: Always the Right Model. dSPACE Magazin,
12–17 2015

 56. Frasheri M, Thule C, Macedo H.D, Lausdahl K, Larsen P.G,
Esterle L. Fault injecting co-simulations for safety. In: 2021
5th International Conference on System Reliability and Safety
(ICSRS), pp. 6–13. IEEE, ??? (2021). https:// doi. org/ 10. 1109/
ICSRS 53853. 2021. 96607 28

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Chapter 6

An Intruder Model for Automotive
Service-Oriented Architectures

Chapter 6 proposes the formalization of an intruder model tailored for automated driving
systems, particularly those that employ Service-Oriented Architectures (SOA). This chapter
also presents a logic programming tool that implements the proposed intruder model,
facilitating the automated enumeration of attack paths. The logic programming tool has
been validated using an example taken from the automotive domain.

Contributing article: Yuri Gil Dantas, Simon Barner, Pei Ke, Vivek Nigam, and Ulrich
Schöpp: Automating Vehicle SOA Threat Analysis Using a Model-Based Methodology.
ICISSP 2023: 180-191

Copyright information: Science and Technology Publications Lda (SCITEPRESS),
2024. https://doi.org/10.5220/0011786400003405.

Author contributions: The concept for the publication was jointly developed by Yuri
Gil Dantas, Vivek Nigam, and Ulrich Schöpp. Yuri Gil Dantas performed a literature
review to identify relevant attacks against SOA architectures implemented by automated
driving systems. Based on the results of the literature review, Yuri Gil Dantas formalized
an intruder model for SOA architectures, which is presented in the article. After several
research discussions with Vivek Nigam, Yuri Gil Dantas implemented the tool and carried
out the experiments presented in the article. Yuri Gil Dantas took the lead in writing
the initial draft of the article. The article includes the description of a SOA architecture
modeled by Ulrich Schöpp. Vivek Nigam assisted in improving the article. Yuri Gil Dantas
handled subsequent revisions and corrections.

https://doi.org/10.5220/0011786400003405

Automating Vehicle SOA Threat Analysis Using a Model-Based
Methodology

Yuri Gil Dantas1, Simon Barner1, Pei Ke2, Vivek Nigam2 and Ulrich Schöpp1

1fortiss GmbH, Munich, Germany
2Huawei Technologies Düsseldorf GmbH, Düsseldorf, Germany

Keywords: Automotive, Threat Analysis, Service-Oriented Architectures, Automation, Safe and Secure-by-Design.

Abstract: This article proposes automated methods for threat analysis using a model-based engineering methodology
that provides precise guarantees with respect to safety goals. This is accomplished by proposing an intruder
model for automotive SOA which together with the system architecture and the loss scenarios identified by
safety analysis are used as input for computing assets, impact rating, damage/threat scenarios, and attack paths.
To validate the proposed methodology, we developed a faithful model of the autonomous driving functions
of the Apollo framework, a widely used open source autonomous driving stack. The proposed machinery
automatically enumerates several attack paths on Apollo, including attack paths not reported in the literature.

1 INTRODUCTION

The automotive industry is under great transformation
to meet challenges of implementing features such
as Autonomous Driving and Over-the-Air Updates.
Instead of using distributed architectures with
domain-specific hardware, vehicles are using
software-intensive Service-Oriented Architectures
(SOA) with powerful centralized computer units.
The open-source Apollo framework (Apollo, 2021)
is an example of this transformation providing
autonomous vehicle features that have been used in
the development of real-world autonomous vehicle
applications, such as autonomous taxis and buses.

This transformation has also increased concerns
on how attackers can affect road-user safety. While
security threats to safety have been known for
more than a decade ago (WIRED, 2015), the
upcoming/recent standards ISO 21434 (ISO/SAE
21434, 2020) and the UNECE (UN, 2021) have pushed
industry to change its development process to enable
safe and secure-by-design vehicles. For example, the
ISO 21434 puts great emphasis on the development
process and on the threat analysis, e.g., Damage/Threat
Scenario/Attack Path enumeration, that shall be
performed and addressed before putting the vehicle
on the road. At the end, Original Equipment
Manufactures (OEMs) shall provide compelling
arguments and evidence, i.e., an assurance case, that
their vehicles are safe also from a security perspective.

OEMs may pay a costly price if they develop
autonomous vehicle features without previously
producing analysis, argument, and evidence
supporting vehicle safety and security. Without
these artifacts, it is hard to expect that these vehicles
will be accepted by certification agencies and
be allowed to be used in several countries, once
standards are more heavily enforced. Even more
troublesome is that several attacks have been reported
that can cause serious hazards to road-users, such
as vehicle collisions. As we claim here, many of
these attacks could have been identified during the
design of the system architecture by using a safe
and secure-by-design approach with suitable threat
analysis supported by automation.

A key challenge for the development of safe
and secure-by-design vehicles is handling the
enormous complexity involved. For example,
without adequate countermeasures, SOA allows any
software component to publish any data including
data that may be consumed by safety-critical
functions. This has been a source of, e.g.,
overprivilege attacks (Hong et al., 2020) causing
hazardous situation whenever a safety-critical function
consumes data erroneously published by a malicious
component (or even by a faulty component).
For another example, malicious components may
exploit SOA communication vulnerabilities to cause
man-in-the-middle attacks (Zelle et al., 2021).
Moreover, sensors, such as cameras and GPS radios,

180
Dantas, Y., Barner, S., Ke, P., Nigam, V. and Schöpp, U.
Automating Vehicle SOA Threat Analysis Using a Model-Based Methodology.
DOI: 10.5220/0011786400003405
In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 180-191
ISBN: 978-989-758-624-8; ISSN: 2184-4356
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

SOA Vehicle Model

Assets

Safety
Analysis
(HARA,
STPA)

Safety-Related Damage /
Threat Scenarios

Attack Paths

Security
Countermeasures

C1

C2

C3

SOA Intruder

Model
Functions,
Signals,
HW

Hazards
Loss
Scenarios

Logical/Physical
Architecture

LAUFEN

Automation

Figure 1: Illustration of the proposed Safe and
Secure-by-Design methodology, tool-chain and key
contributions (C1, C2 and C3).

are attack surfaces that may be exploited by attackers
to cause hazards (Jha et al., 2020; Shen et al., 2020).

1.1 Safe and Secure-by-Design
Methodology and Contributions

The proposed safety and security methodology and
three key contributions are depicted in Figure 1.
The methodology is built upon the following key
ideas from the automotive safety and security
co-engineering literature:

• Analysis Techniques for Software-Intensive
Systems: System Theoretic Process Analysis
(STPA) (Leveson and Thomas, 2018) has
been recommended for safety analysis of
autonomous functions by standards such as the
ISO 21448 (Safety Of The Intended Functionality
– SOTIF) (SOTIF, 2021) for assuring the safety
of features such as autonomous driving. This
is because STPA does not assume linear causal
dependency and rather puts a greater emphasis on
the faulty/malicious component interactions.

• Safety to Security: The approach recommended
by Bosch engineers (Förster et al., 2019) uses
safety artifacts, e.g., safety goals and hazards,
as inputs to security analysis. There are two
key motivations for this: 1) A safety analysis is
typically carried out before a security analysis. 2)
By using safety as input to security, one can claim,
through appropriate traceability, completeness of
security analysis w.r.t. to the results of the safety
analysis. This is done, for example, by checking
whether all causes of hazards (called loss scenarios
in STPA terminology) have traces to appropriate
security analysis.

• Model-Based Tool-Chains: Model-based
engineering approaches are based on formal
abstractions of the system under design and
therefore help mitigate the complexity of
nowadays software and hardware architectures
and to boost development speed and quality

when compared to traditional document-based
approaches by means of automated analysis,
design and validation tools.

While these methods have been proposed, this
article is the first to apply them together into
an overarching model-based methodology for SOA
vehicle architectures. As depicted in Figure 1, we
start from a (SOA) Vehicle Model, specifying the
key functions, logical components, and platform
(a.k.a. physical) architecture. These model elements
ensure the soundness of the approach, as the safety
and security analysis that follow are traced to the
model. From the Hazard Analysis and Risk Asessment
(HARA) and STPA analysis, key safety functions,
channels and physical elements are identified, which
are then traced as assets from the security perspective
that need to be protected. Loss scenarios obtained from
STPA, i.e., the situations that may lead to hazards, are
traced to damage and threat scenarios specifying how
intruders can cause safety hazards. From this point
onward, we carry out a security analysis, e.g., using
the logical and platform architectures to identify attack
paths that can cause threat scenarios. Ultimately, we
discuss potential countermeasures to address threats.

The key benefits of the approach are three-fold:
The first benefit is a full traceability between safety
and security analysis and the vehicle model. This
means that the analysis is reflected in the actual
implementation that will be deployed in the vehicle.
The second benefit is that the methodology provides
guarantees that all loss scenarios for all hazards
are considered by the security analysis, e.g., all
loss scenarios are traced to damage/threat scenarios.
This means that all identified safety issues shall be
considered from the security perspective. The third
benefit is that our model-based methodology enables
the use of automated methods, e.g., the automated
enumeration of attack paths based on intruder models.

The main contributions of this article are:
• Apollo-Based Vehicle Model (C1): By examining

the relevant pieces of code in the Apollo code-base
related to autonomous driving functions, we
designed a faithful vehicle model. The model
reflects the SOA publish and subscribe pattern, and
the information (namely the topics) between the
Apollo components. To the best of our knowledge,
it is the first model based on the Apollo v7.0.0
code base.

• Intruder Model for Vehicle SOA (C2): By
examining vehicle SOA security literature,
we formalized an intruder model for vehicle
SOA. The intruder is capable of carrying out
Man-in-the-Middle (MITM) attacks, and carrying
out spoofing attacks by infiltrating the system

Automating Vehicle SOA Threat Analysis Using a Model-Based Methodology

181

from public interfaces to, e.g., exploit perception
sensors, such as LiDAR and Camera.

• Attack Path Automation (C3): We developed
a machinery (LAUFEN) to automate the
enumeration of attack paths on the vehicle system
architecture. LAUFEN takes as input the
model, assets, damage/threat scenarios, and the
implementation of the intruder model, and outputs
all attack paths.

We demonstrate and validate our approach and
automation on the developed Apollo Vehicle Model.
Our focus is on safety assets as it is the main
concern for autonomous driving. The developed
machinery identified 246 attack paths. The attack
paths include attacks that have been reported in the
literature. Given the traceability to safety analysis, our
machinery identifies a much greater number of attack
paths that would need to be mitigated (or for which
some security rational shall be provided) by security
countermeasures. Indeed, based on the generated
attack paths, we identified potential attacks that have
not yet been reported.
Structure of This Article: Section 2 describes the
Apollo vehicle model. Section 3 describes how
to trace assets, damage/threat scenarios to artifacts
produced by safety analysis. Sections 4 and 5
describe the intruder model and the attack paths
generated, including its validation using the Apollo
model. After discussing related and potential future
work in Section 6, we conclude in Section 7.

2 APOLLO MODELING

Apollo (Apollo, 2021) is an open-source autonomous
driving stack enabling highly autonomous vehicle
features (more precisely, at Level 4 in the SAE
ranking (sae, 2018)), such as Highway and Traffic Jam
Pilots, where a vehicle can drive with limited human
supervision. Apollo v7.0.0 (Apollo, 2021) consists of
more than 500k lines of C++ code.

A central part of the Apollo implementation is
the Cyber RT middleware (cyb, 2019). Cyber RT
provides a publish/subscribe pattern to enable the
communication between software components running
over it. Components can communicate via tagged
channels, a.k.a. topics. Components may publish data
to topics by writing messages to a named topic and
may subscribe to any topic of interest by referring to
the topic name. Whenever a publisher writes data
to a topic, this data is received by all subscribers.
Cyber RT allows more than one component to publish
data on a topic, and more than one component to
subscribe to it. The announcement of (new) topics

and the subscription of components to topic names are
performed by a mechanism called service discovery.

This section describes the designed Apollo model
used to demonstrate our methodology. The model
focuses on the parts of the code-base that are related
to autonomous vehicle features, namely, sensors
(Camera, LiDAR), localization, perception, prediction,
planning, control, and HMI.

The Apollo system architecture has been
modeled in the model-based system engineering tool
AutoFOCUS3 (fortiss GmbH, 2022). The model
comprises of 9 functions, 61 logical components,
341 ports, transmitting 73 data structures with
361 members, 16 execution units, 12 transmission
units, and 6 sensors. We developed an experimental
metamodel (Aravantinos et al., 2015) extension
in AutoFOCUS3 to describe publish/subscribe
communication by means of dedicated topic port data
types. Due to the lack of space, the remainder of this
section describes only selected parts of the logical
and platform architecture, since the security results
presented in this article mainly focus on the logical
architecture and platform architecture.

Logical Architecture. The designed logical
architecture is complex and consists of four
hierarchical levels with multiple components. Figure 2
depicts the second highest level of our Apollo model
containing the main autonomous driving components.

The localization component receives sensor data
from GNSS and computes the vehicle’s position.
The vehicle’s position is received by the following
components. The perception component receives
sensor data from cameras, radars and LiDAR, and the
vehicle’s position. Perception identifies obstacles, such
as other vehicles on the road, as well as the state of
traffic lights. The prediction component takes the list
of obstacles from perception and the vehicle’s position,
and tries to predict the intention of obstacles, which
may be other vehicles or pedestrians. The prediction
includes aspects such as whether a vehicle intends to
change lanes. The relative map component aggregates
the list of obstacles and combines it with map data,
which contains information about the road, such as
lanes and traffic lights. The planning component
takes as input all the data computed by localization,
perception, prediction and relative map. Planning uses
this data to plan a safe and comfortable trajectory
for the vehicle. The control component receives the
planned trajectory and produces control commands
(steering, acceleration, etc.) for the vehicle to follow
the trajectory.

A key challenge was to ensure the faithfulness of
the model to the Apollo code. To accomplish this, we

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

182

Figure 2: Logical architecture: Main autonomous driving components.

extracted the model elements by manually inspecting
the Apollo code. For example, to find all Cyber
RT components implemented in Apollo, we inspect
the code to find all implementations of the class
cyber::Component. The next step was to identify
the topics and which components publish to them
and subscribe to them. The Apollo implementation
specifies the topic communication using the following
mechanisms: DAG configuration files, C++ code
implementing readers for topics and producers of
topics, and library code. We inspected each of these
mechanisms to map the topics that are subscribed and
published to components.

Platform Architecture. Figure 3 illustrates our
platform architecture that follows the trend for modern
smart car architectures consisting of a few, but
powerful ECUs and using network interfaces (i.e.,
switches) between ECUs.

The main ECUs in the platform architecture
are: (1) MDC: Mobile Data Center: This hardware
is responsible for the autonomous function related
components, such as inferring objects from camera
input, predicting the movement of objects in the
environment, planning trajectories. The MDC is
further sub-divided into sub-systems with different
types of processing units with different levels of safety
assurance levels, such as an ASIL-D MCU. (2) CDC:
Intelligent Cockpit: This hardware is responsible
for all the cockpit related functions, such as driver
monitoring systems and entertainment functions.
(3) VDC: Vehicle Controller: This hardware is
responsible for the basic vehicle control functions,
such as Electric Power Steering, Battery Management,
and Anti-lock Braking functions. (4) VIU 1-4: Vehicle
Integration Units: These hardware are powerful
gateways that interface the MDC, CDC, and VDC,
connected through network interfaces, to the domain
specific hardware connected through CAN buses.
The yellow shade in the model represents the system
boundary (a.k.a. item boundary). We consider as part

of the system all components that are implemented in
the Logical Architecture. For example, Sensors (e.g.,
LiDAR and GPS radio) are not part of the system itself.
They are third-party devices that are connected to the
system and provide inputs from the environment. We
consider them as public interfaces that are outside and
may be accessed by external users.

3 SAFETY-INFORMED SECURITY
ANALYSIS

Our main focus is to identify assets, damage and
threat scenarios related to safety as it is the main
concern to autonomous driving. We describe how
key safety artifacts are consumed by security analysts
to identify key security artifacts, establishing a
traceability between security and safety concerns. One
can argue from such traces the (relative) completeness
with respect to safety of the security analysis in the
sense that threats that can cause any one of the safety
loss scenarios are identified. As there is existing
literature that advocates similar traceability between
safety and security (Förster et al., 2019; Dantas and
Nigam, 2022a), albeit not using loss scenarios and
artifacts mentioned in the ISO 21434 (ISO/SAE 21434,
2020), we simply exemplify the method on examples
using the Apollo system architecture. Our mapping
from safety artifacts to security artifacts is inspired
by the following work (Sabaliauskaite et al.,)(Macher
et al., 2015)(Förster et al., 2019).

Safety Analysis. We carried out a safety analysis for
the Apollo system architecture. In compliance to ISO
26262-3 (ISO26262, 2018), we have identified hazards
by using Hazard Analysis and Risk Assessment
(HARA). Furthermore, we use System Theoretic
Process Analysis (STPA) (Leveson and Thomas, 2018)
to identify how such hazards may occur.

Relevant for this article are hazards and loss

Automating Vehicle SOA Threat Analysis Using a Model-Based Methodology

183

Figure 3: Platform architecture based on modern smart car architecture (yellow shading represents the system boundary).

Table 1: Example of safety analysis results.

Hazard HZ1 Unintended distance between the ego vehicle and other objects.

Severity Life-Threatening (S3)
Exposure High Probability (E4) Safety Risk Level: ASIL D
Controllability Difficult to Control (C3)

Loss Scenario LS1 that causes Hazard HZ1

Source Target Message Failure Mode
planning control trajectory erroneous

scenarios provided, respectively, by HARA and STPA.
A hazard is a potential source of loss (e.g., loss of life)
caused by malfunctioning behavior of the item (i.e.,
Apollo system architecture). A loss scenario describes
the casual factors that may lead to a hazard.

We have identified 4 hazards and 21 loss
scenarios. We will use the hazard (HZ1) and loss
scenario (LS1) described in Table 1 to demonstrate
the model-based methodology for threat analysis
described in Section 1.1. HZ1 is a high risk level
(ASIL D) related to the autonomous driving functions.
LS1 is a possible cause for HZ1. LS1 is traced to
two components in the model, planning and control,
and to the topic containing the trajectory produced by
planning. LS1 specifies that if the computed trajectory
is erroneous, e.g., instead of recommending a low
acceleration, it recommends a right acceleration, HZ1
may occur, i.e., the vehicle may collide with obstacles.

Assets and Damage/Threat Scenarios from Safety
Analysis. Following the ISO 21434 (ISO/SAE
21434, 2020), assets are objects (e.g., software
components, hardware units) for which the
compromise of its cybersecurity property can lead to
the damage of the item. A damage scenario denotes
the adverse consequence due to the compromise of a
cybersecurity property of an asset. A threat scenario
denotes the potential actions (or simply attack) on
assets that can lead to damage scenarios. The hazards
and loss scenarios obtained from the safety analysis

can be directly used to identify such security artifacts
related to safety-related damages.

Damage scenarios are traced to hazards. The
damage scenario traced to HZ1 specifies that
unintended distance shall be avoided also from a
security perspective. There are three main assets
that can be traced to the loss scenarios: Safety
Functions: The safety related functions (typically
implemented as pieces of software) shall be protected.
For LS1, the functions planning and control are
such assets. Topic/Messages: The safety-related
signals/messages mentioned in the loss scenarios shall
be protected. For LS1, the topic carrying the trajectory
information shall be protected. Hardware/Physical:
The hardware in which safety functions are deployed
shall be protected. The functions associated to LS1 are
deployed at the MCU (inside of MDC) hardware unit.
Moreover, the failure mode of loss scenarios indicates
which cyber-security properties (CIA properties) are
associated to the these assets. The failure mode
erroneous and loss indicate, respectively, that the
integrity and availability of the corresponding assets
shall be ensured. Notice that the confidentiality
property cannot be extracted from safety analysis as
lack of confidentiality does not lead to safety-related
damages. From the loss scenario and its derived
assets, one can elaborate threat scenarios by using,
e.g., the STRIDE methodology (Shostack, 2014). For
example, the integrity of safety functions and of
physical assets can be violated by tampering attacks,

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

184

while the integrity of topic/messages can be violated
by spoofing and elevation of privilege.

These artifacts are used to enumerate attack paths
that shall be considered, namely those that can
lead to threat scenarios. The enumeration of attack
paths depends on the technology that is being used.
For example, if a software may be updated using
Over-the-Air mechanisms, then attack paths shall
consider how these mechanisms can be exploited to
tamper the software with malicious updates. For the
Apollo system architecture considered in this article,
one needs to consider the use of SOA machinery,
e.g., protocols for service discovery, publish-subscribe
communication patterns, sensors, and other public
interfaces, e.g., Bluetooth and WiFi. These are
considered in the next section.

4 INTRUDER MODEL FOR
VEHICLE SOA

We formalize an SOA intruder model defined by the
rules in Figure 4. The intruder model is based on
the main attacks against vehicle SOA with centralized
architecture, described in Section 6. Intuitively, SOA
contain two main attack surfaces that may be exploited
if no suitable countermeasures are deployed.

• Outsider Attackers can exploit public interfaces,
such as sensors and communication interfaces, to
infiltrate the system and attack vehicle assets, such
as safety functions. For example, attackers can
spoof GPS coordinates thus violating the integrity
of published position information by localization.

• Insider Attackers can exploit vulnerabilities in the
underlying SOA protocols and carry out MITM
attacks thus violating the integrity of topics. For
example, attackers can carry out MITM attacks
between localization and perception to violate the
integrity of position information.

Figure 4 introduces the rules of the intruder model
reflecting these type of attacks. These inference rules
derive three judgments described below. Γ contains
system specifications which are extracted from the
vehicle model. These specifications are formalized as
atomic formulas using the predicate symbols described
in Table 2.

Γ`wrt(X ,Y) and Γ` rd(X ,Y) denote that the port
X of model element may write, respectively, read on
Y . Rule write1 specifies that an output eo of an ECU
may write on an input port ni of a network element
if an output port co of a component is allocated to eo
(specified by cpo(c,co),alloc(co,eo)), and there is a
channel from eo to ni (specified by ch(eo,ni)). Rule

Table 2: Description of the predicates used to define the
intruder’s capabilities.

Predicate Denotation

ecui(ecu,ei) ECU ecu and its input port ei.

ecuo(ecu,eo) ECU ecu and its output port eo.

neti(net,ni) net. interface net and its input port
ni.

neto(net,no) net. interface net and its input port
no.

ch(out, inp) channel from output port out to
input port inp.

wrt(el1,el2) element el1 writes data to el2.

rd(el1,el2) element el1 reads data from el2.

cpi(c,ci) component c and its input port ci.

cpo(c,co) component c and its output port co.

alloc(el,ecu) element el is allocated to ecu.

pub(c,co, tp) component c publishers the topic tp
through output port co.

sub(c,ci, tp) component c subscribers to the
topic tp through input port ci.

if(ecu,ci, tp) topic tp is published within ecu
through an information flow from
ci.

pro(tp) topic tp is protected by a
cryptographic primitive.

publico(el,po) public el and its output port po.

i reach(el) element el is reachable by the
intruder.

i attack(el) el may be attacked by the intruder.

write4 is similar, but for public elements. Rule write2
specifies that an input port of an ECU may write to
its own output port – we assume that there exists an
internal transmission within the ECU (ch(ei,eo)), e.g.,
components exchanging messages within the ECU.
Rule write3 is similar, but for network interfaces. Rule
read2 specifies when an ECU reads from a network
interface (similar to write1). Rule read1 specifies that
subscriber ports may read from publisher ports.

Γ ` i reach(X) denotes when a port X of a model
element is reachable by an intruder. Rule basic out
specifies that any port of a public element in the
architecture can be reached by the (outsider) intruder.
Rule reach wrt specifies that a port p2 of a model
element can be reached by the (outsider) intruder if a
port p1 writes on p2. Respectively, reach rd specifies

Automating Vehicle SOA Threat Analysis Using a Model-Based Methodology

185

Write and Read Rules
cpo(c,co),alloc(co,eo),ecuo(ecu,eo),neti(net,ni),ch(eo,ni) ∈ Γ

Γ ` wrt(eo,ni)
write1

ecui(ecu,ei),ecuo(ecu,eo),ch(ei,eo) ∈ Γ

Γ ` wrt(ei,eo)
write2

neti(net,ni),neto(net,no),ch(ni,no) ∈ Γ

Γ ` wrt(ni,no)
write3

publico(el,po),neti(net,ni),ch(po,ni) ∈ Γ

Γ ` wrt(po,ni)
write4

sub(c1,ci, tp),pub(c2,co, tp) ∈ Γ

Γ ` rd(ci,co)
read1

cpi(c,ci),alloc(ci,ei),ecui(ecu,ei),neto(net,no),ch(no,ei) ∈ Γ

Γ ` rd(ei,no)
read2

Intruder Reachability Rules
publico(el,po) ∈ Γ

Γ ` i reach(po)
basic out

pub(c,co, tp) ∈ Γ

Γ ` i reach(co)
basic ins

Γ ` wrt(p1,p2) Γ ` i reach(p1)

Γ ` i reach(p2)
reach wrt

Γ ` rd(p2,p1) Γ ` i reach(p1)

Γ ` i reach(p2)
reach rd

pub(c,co, tp),sub(c,ci, tp1),pub(c1,co1, tp1) ∈ Γ Γ ` rd(ci,co1) Γ ` i reach(co)

Γ ` i reach(ci)
reach ins rd

Intruder Attack Rules
if(ecu,p, tp) ∈ Γ Γ ` i reach(p)

Γ ` i attack(tp)
at out

sub(c1,ci, tp),pub(c,co, tp),¬pro(tp) ∈ Γ Γ ` i reach(ci) Γ ` i reach(co)

Γ ` i attack(tp)
at ins

Figure 4: Intruder model for SOA.

that a port p2 of a model element can be reached
by the (outsider) intruder if p2 reads on a port p1.
Rule basic ins specifies that any publisher port in the
architecture can be reached by the (insider) intruder.
Rule reach ins rd specifies that the (insider) intruder
can reach a subscriber port ci if ci reads on a reached
publisher port co.

Γ ` i attack(X) denotes when a topic X can
be attacked. Rule at out specifies that any topic
published within an information flow (if(ecu,p, tp))
from a reached ECU’s input port may be attacked.
Rule at ins specifies that any topic between publisher
and subscriber ports reached by the (insider) intruder
may be attacked if the topic is not protected.

Outsider Intruder (Example). Consider the
platform architecture depicted in Figure 5. The black
and white circles connected to hardware units are,
respectively, output and input ports. We assume that
Sensor is a public interface. The output port o1 of

Sensor can be reached by the intruder based on the
rule basic out. The output port o1 writes on the input
port i1 of the network interface Network1, then based
on reach wrt the intruder can reach i1 and o2. We
assume that the subscriber port (light blue square) of
component CP1 is allocated to the input port i2 of
ECU1, and that i2 reads from o2. The intruder can
then reach i2 and o3 based on reach rd. Neither i3
nor o4 can be reached by the intruder. The intruder
can reach i4 as o3 writes to i4. The intruder cannot
reach i5 and o5. Finally, an intruder may carry out,
e.g., a spoofing attack from Sensor to violate the
integrity of the topics published by either CP1 or CP2
since there is an information flow from i2 (at out).

Insider Intruder (Example). Consider the logical
architecture depicted in Figure 6. The dark and
light blue squares connected to components are,
respectively, publisher and subscriber ports. The
intruder can reach all publisher ports o1...o6 based

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

186

on basic ins. Based on reach ins rd, the intruder
can reach the subscriber ports i1...i7, as these
ports read from publishers, e.g., i7 reads from
localization via port o5. The intruder cannot reach
the subscriber port i8, as infotainment is not a
publisher. We assume the topics published by ports
o4 and o5 are protected. Assume the topic published
by planning through port o2 is the intruder’s target.
As a result, the intruder has the following options
to carry out MITM attacks. An attack may be
carried out between routing and planning or even
between perception and prediction given that
the topic published by perception may affect the
topic published by planning. The intruder can
neither carry out attacks between localization and
planning (same for perception and prediction),
nor between prediction and planning since the
topics are protected (at ins). The intruder cannot carry
out attacks from infotainment.

Figure 5: Illustration of the outsider intruder.

Figure 6: Illustration of the insider intruder.

Table 3: Number of identified attack paths and the execution
time taken by LAUFEN to computed the attack paths.

Intruder #Attack Paths Execution time
(s)

Outsider 152 1.11
Insider 94 0.06

5 AUTOMATING ATTACK PATH
ANALYSIS

LAUFEN (vehicLe threAt analysis aUtomation For
sErvice-orieNted architectures) is an SOA machinery
that enables the automated computation of several
activities of the Threat Assessment and Remediation
Analysis (TARA) analysis. This section focuses
on the automated computation of attack paths that
can cause threat scenarios to vehicle SOA, i.e., the
paths that violate cybersecurity properties of assets
(Section 3). To this end, LAUFEN implements the
proposed intruder model in the logic programming

tool DLV (Leone et al., 2006). LAUFEN encodes
the system specification as facts using the predicates
described in Table 2, and the intruder model described
in Section 4. Then the DLV solver is used to
enumerate the attack paths. We validate LAUFEN
on the modeled Apollo system architecture. The
implementation and the experimental results are
available at (Dantas and Nigam, 2022b).

Given the high complexity of the Apollo model,
naively computing the attack paths based on
reachability does not scale, in particular for the
outsider intruder. To address this problem, the
computation is divided into two steps. The first step,
Intruder reachability, computes all the model elements
that are reachable by the intruder as specified by the
write and read, and reachability rules. Since no paths
are computed, the DLV engine computes the reachable
elements in the range of milliseconds. We then use the
reachable elements as input to the second step, Path
computation, where we make use of the attack rules.
Instead of enumerating all paths, we proceed using
a goal-oriented search to enumerate only the attack
paths on assets (a.k.a. asset-centric approach). This
means that DLV does not require to compute all paths.

We run the experiments on a 1.90GHz Intel Core
i7-8665U with 16GB of RAM running Ubuntu 18.04
LTS with kernel 5.4.0-113-generic and DLV 2.1.1.
Table 3 shows the number of identified attack paths,
and the execution time of LAUFEN. The execution
time in enumerating the attack paths is rather low,
i.e., 1.11 and 0.06 seconds for the outsider and insider
intruder, respectively. The number of identified attack
paths is high due the complexity of the system, e.g.,
the great number of public elements and the great
number of information flows in the architecture. We
do not rule out any attack path to guarantee a complete
coverage of possible steps exploited by the intruder.
Section 5.1 elaborates on countermeasures that may
mitigate several of the identified attack paths.

We analyzed the generated attack paths w.r.t.
potential attacks against safety-critical topics. Table 4
organizes selected attack paths into attacks carried out
by an outsider attacker and insider attacker.

Firstly, our analysis was able to identify several
attacks that have been reported in the literature, namely
those attacks associated with a citation. The set of
attack paths computed includes attacks carried out
by outsider attackers exploiting Bluetooth, LiDAR,
Camera, GPS and Radar that may target safety-critical
topics, cause loss scenarios and harm to road-users,
as well as by insider attackers exploiting SOA
communication vulnerabilities to target topics.

Secondly, we also identified potential attacks that
up to the best of our knowledge have not been reported

Automating Vehicle SOA Threat Analysis Using a Model-Based Methodology

187

Table 4: Potential attacks derived from selected attack paths. From and To denote, respectively, the model element where the
attack starts and ends. Affected Topic denotes the actual target of the attacker. The upper and lower part of the table describe,
respectively, selected attacks carried out by the outsider and insider intruder, incl. attacks reported in the literature. NA denotes
attacks that up to the best of our knowledge have not been reported in the literature. #Attack Paths denotes that number of
computed attack paths From and To.

From To Affected Topic Article #Attack
Paths

Outsider Intruder

Bluetooth VDC signal (Chowdhury et al., 2020) 3
LiDAR MCU obstacles (Hau et al., 2021) 24
Front Left Camera MCU obstacles (Jha et al., 2020) 18
GPS MCU localization pose (Shen et al., 2020) 18
Front Radar MCU obstacles (Komissarov and Wool, 2021) 6
T-Box MCU traffic light NA 18

Insider Intruder

gnss driver velodyne detection tf (Hong et al., 2020) 1
gnss driver msf localization gnss best pose (Hong et al., 2020) 1
compensator velodyne detection pointcloud2 (Hong et al., 2020) 1
control chassis signal (Hong et al., 2020) 1
chassis gnss driver chassis (Hong et al., 2020) 1
v2x proxy traffic light traffic light NA 1
routing planning routing response NA 1
relative map planning map NA 1

in the literature (marked with NA). We analyzed in
further detail some of the attacks by using the model
and its connection to the Apollo code to find out how
such attacks can lead to safety problems.

vo id T r a f f i c L i g h t s P e r c e p t i o n C o m p o n e n t : : OnReceiveImage (
c o n s t s t d : : s h a r e d p t r<a p o l l o : : d r i v e r s : : Image> msg ,
c o n s t s t d : : s t r i n g& camera name) { . . .

/ * * S e t t r a f f i c l i g h t s t a t u s based on camera d a t a * * /
t r a f f i c l i g h t p i p e l i n e −>P e r c e p t i o n (
c a m e r a p e r c e p t i o n o p t i o n s , f r a m e . g e t ()) ; . . .

/ * * O v e r w r i t e s t r a f f i c l i g h t s t a t u s i f v a l i d v2x d a t a * * /
S y n c V 2 X T r a f f i c L i g h t s (f r a m e . g e t ()) ; . . . }

Figure 7: Overwriting traffic light status with V2X data.

V2X Traffic Light Overwrite Attack. LAUFEN
has identified attack paths targeting v2v proxy from
both outside and inside. Figure 8 illustrates the
attack from the outside. The v2v proxy component
publishes data on the traffic light status obtained from
the road infrastructure. This data is subscribed by
the traffic light component which also subscribes
data from the cameras to identify and publish the
traffic light status. Since there is a traceability from
the Apollo model and the Apollo source code, it
is straightforward to find the relevant classes for
vulnerabilities. Indeed, we found out that the function
TrafficLightsPerceptionComponent gives priority to
the data received by v2v proxy over the data received
by the cameras. Figure 7 shows a code snippet from
the TrafficLightsPerceptionComponent function. As

a result, an attacker may manipulate the traffic light
status from either outside (i.e., spoofing attack) or
inside (i.e., MITM attack). As illustrated by Figure 8,
a spoofing attack from T-Box manipulating the traffic
light status can cause serious harm to passengers and
pedestrians as the vehicle can cross a red-light.

Route/Mapping Injection Attack. The seriousness
of some of the identified attack paths may not
be too obvious from a safety perspective. For
example, LAUFEN has identified the following attack
path: {routing, planning} targeting the routing
response topic. An insider attacker may carry out
a MITM attack between routing and planning to
provide a malicious route for the ego vehicle. From a
safety perspective, a loss scenario of type erroneous
from routing to planning may be easy to control,
and hence it would lead to a low criticality hazard (e.g.,
ASIL A or B). From a security perspective, however,
there are several serious consequences, including
hijacking of passengers. The planning component
may also be affected by the road map published
by relative map, as planning takes the map into
account while computing the vehicle trajectory.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

188

Figure 8: Illustration of a spoofing attack from T-Box to manipulate traffic light status received by v2v proxy.

5.1 Potential Countermeasures

We have performed an attack path analysis to
deduce potential locations for instantiating security
countermeasures. Our analysis focused on the
computed attack paths using the outsider intruder. This
choice was made because we noticed that many of such
attack paths have the same prefix, which may be a hint
for instantiating security countermeasures.

Table 5 presents the main results of our attack
path analysis. Specifically, Table 5 shows the public
element that can be reached the outsider intruder, the
number of attack paths computed by LAUFEN from
the public element, and the common prefix for all
attack paths from the same public element.

Table 5: Attack paths analysis (outsider intruder).

Public element #Attack
Paths

Prefix

Front
Left
Camera

21 Front Left
Camera → GMSL
→ VIU 1

Front
Right
Camera

21 Front Right
Camera → GMSL
→ VIU 3

GPS 21 GPS → Serial
→ VIU 3

Front
Radar

10 Front Radar →
CAN→ MDC

Rear
Radar

10 Rear Radar →
CAN→ MDC

LiDAR 27 LiDAR→ SW4

Bluetooth 21 Bluetooth →
USB→ CDC

T-Box 21 T-Box→ SW3

The last architecture element described in the
Prefix column may be a suitable location to instantiate
a countermeasure and consequently address the attack

paths. From the Prefix column, we can also notice
that the gateway VIU 3 is a common location in the
attack paths from both Front Right Camera and
GPS. Similarly, the connection between CAN and MDC is
a common location in the attack paths from Front
Radar and Rear Radar. This gives us a hint that
security countermeasures could be placed in front
of VIU 3, and between CAN and MDC to address such
attack paths (specifically, 62 attack paths).

Firewalls are, e.g., recommended (Cheng et al.,
2019) as means to protect vehicle architectures
against such attacks. They may be deployed in
front of the last architecture elements in the Prefix
column to filter network traffic and prevent malicious
intrusion. For the network interfaces (i.e., T-Box
and Bluetooth), one could also implement a mutual
authentication mechanism (e.g., mTLS) to ensure that
only authenticated messages are accepted.

Safety architecture patterns, such as
Heterogeneous Duplex pattern (Armoush, 2010),
may also be deployed as a second-layer of defense.
Consider, e.g., the V2X traffic light overwrite attack
carried by an outsider attacker. This attack violates the
integrity of traffic light topic through T-Box. A
possible countermeasure is to include a checker in the
traffic light component to consider inputs from
both v2x proxy and cameras (i.e., heterogeneous
inputs) – the traffic light component emits an
alert to the driver or transition the system to a safe
state if the inputs do not match.

The MITM attacks (e.g., the route injection
attack) carried by an insider attacker exploit SOA
communication vulnerabilities to violate the integrity
of topics. Digital signatures are a well-known
countermeasure for ensuring authenticity and integrity
between servers (e.g., publishers) and clients (e.g.,
subscribers). To address MITM attacks, one can
implement digital signatures in the Apollo system,
where each publisher originator signs its message,
and each subscribe of the message verifies the
signature of the message. Fast-DDS provides a
cryptographic plugin for message authentication codes
computation and verification. The use of digital

Automating Vehicle SOA Threat Analysis Using a Model-Based Methodology

189

certificates to address MITM attacks in Apollo was
inspired by (Hong et al., 2020) that proposed a
countermeasure using digital signatures for mitigating
publisher-subscriber overprivilege issues in Apollo.

All 94 attack paths (insider intruder) are, in
principle, addressed upon implementing digital
signatures. The decision of using digital signatures
causes, however, a performance penalty at the
execution time of software components. The
performance penalty can then be analyzed according
to several points of view, including security, safety
and financial. However, since all of the identified
attack paths are safety critical, countermeasures shall
be implemented to ensure vehicle safety.

6 RELATED WORK

Due to the lack of space, we moved some parts of the
related work to (Dantas et al., 2022).

Attacks Against Vehicle SOA. The following work
has inspired us to formalize the intruder model for
vehicle SOA. A recent systematization of knowledge
article (Shen et al., 2022) gives an overview of
the state-of-the-art of the literature. In “Drift with
the devil” (Shen et al., 2020) it is shown that
an intruder may manipulate location information
by spoofing GPS radio signals. LiDAR sensor
signals may be spoofed to remove obstacles on the
road (Hau et al., 2021). Camera signals may also
be spoofed to manipulate video frames given that
the camera traffic is transmitted in plain text (Jha
et al., 2020). An attack may exploit vulnerabilities
in a Bluetooth stack weakness to lock the brakes
of the vehicle (Chowdhury et al., 2020). In the
work by (Zelle et al., 2021), the authors investigate
possible security issues in the service discovery
mechanism of vehicle SOA, in particular SOA using
the SOME/IP protocol, enabling the attacker to carry
out MITM attacks between publishers and subscribers.
In the work on AVGuardian (Hong et al., 2020),
the authors investigated possible publisher/subscriber
overprivilege instances in Apollo.

Our intruder model specifies the main attacker’s
capabilities needed to carry out the above attacks
at the architecture level, including the capabilities
of attackers to carry out (a) spoofing attacks from
outside (e.g., from sensors), and (b) MITM attacks
from inside (e.g., between components), thus violating
the integrity of safety-critical topics. The attacks
exploiting overprivileged instances can be seen as a
specific case of the MITM attack.

Automate Threat Analysis. A survey on threat
modeling (Xiong and Lagerström, 2019) has
shown that most threat modeling work remains
to be done manually. We briefly describe some
of the security/threat analysis tools that provide
computed-aided support in the automotive domain.

AVGuardian (Hong et al., 2020) is a static
analysis tool to detect overprivilege instances in source
code implementing service-oriented architectures for
automotive systems. AVGuardian examines each
module’s source code and automatically detects
publisher and subscriber overprivilege instances in the
fields of topics defined by the module. AVGuardian
requires the behavior specification of the system to
detect overprivilege instances. LAUFEN has been
implemented to identify threats and attack paths during
the design of the system architecture without the
behavior specification of the system. LAUFEN was
able to automatically compute attack paths that may
lead to the attacks detected by the AVGuardian tool.

ProVerif (Blanchet et al., 2022) and Tamarin
Prover (Basin et al., 2022) are well-known automated
reasoning tools to verify the security properties of
systems (in particular, security protocols) with the
Dolev-Yao intruder model (Dolev and Yao, 1983).
These reasoning tools require the formal specification
of the behavior of the system to verify its properties.
A promising future work direction is to include the
behavior specification in our Apollo model and use
such reasoning tools to verify security properties of
SOA protocols such as SOME/IP or DDS.

An attack propagation method that targets
automotive safety-critical functions has been proposed
by (Fockel et al., 2022). The commercial tool
ThreatGet (thr, 2022) enables the identification
of attack paths following ISO 21434. Microsoft
SDL Threat Modeling tool (sdl, 2022) is another
well-known commercial tool to compute threats. The
threats are computed using STRIDE. The attack path
associated to each compute threat is represented
using data flow diagrams. To the best of our
knowledge, these tools do not support intruder model
capabilities for vehicle SOA. This article advances the
state-of-the-art by proposing a machinery built upon
realistic formalized intruder models for vehicle SOA.

7 CONCLUSION

This article proposed automated methods for
threat analysis using a model-based engineering
methodology. To this end, we have (a) modeled
a faithful vehicle model of the autonomous driving
functions of the Apollo framework, (b) formalized

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

190

an intruder model for vehicle SOA based on a
literature review, and (c) developed LAUFEN, an
SOA machinery for computing several activities of
a threat analysis, including attack paths.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for valuable
comments. We thank Anait Boyajyan for the
assistance provided with the figures used in this article.

REFERENCES

(2018). SAE International Releases Updated Visual Chart
for Its “Levels of Driving Automation” Standard for
Self-Driving Vehicles.

(2019). Apollo Cyber RT. Available at https://cyber-rt.
readthedocs.io/.

(2022). Microsoft SDL Threat Modeling Tool.
Available at https://www.microsoft.com/en-us/
securityengineering/sdl/threatmodeling.

(2022). ThreatGet - Threat Analysis and Risk Management.
Available at https://www.threatget.com/.

Apollo (2021). An Open Autonomous Driving Platform.
https://github.com/ApolloAuto/apollo.

Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., and Schätz,
B. (2015). AutoFOCUS 3: Tooling Concepts for
Seamless, Model-based Development of Embedded
Systems. In ACES-MB’15.

Armoush, A. (2010). Design Patterns for Safety-Critical
Embedded Systems. PhD thesis, RWTH Aachen
University.

Basin, D., Cremers, C., Dreier, J., Meier, S., Sasse, R.,
and Schmidte, B. (2022). Tamarin Prover https://
tamarin-prover.github.io/.

Blanchet, B., Cheval, V., Allamigeon, X., Smyth, B.,
and Sylvestre, M. (2022). ProVerif https://bblanche.
gitlabpages.inria.fr/proverif/.

Cheng, B. H. C., Doherty, B., Polanco, N., and Pasco, M.
(2019). Security Patterns for Automotive Systems. In
MODELS’19.

Chowdhury, A., Karmakar, G. C., Kamruzzaman, J., Jolfaei,
A., and Das, R. (2020). Attacks on Self-Driving Cars
and Their Countermeasures: A Survey. IEEE Access.

Dantas, Y. G., Barner, S., Ke, P., Nigam, V., and Schoepp, U.
(2022). Technical Report: Automating Vehicle SOA
Threat Analysis using a Model-Based Methodology.
Technical report.

Dantas, Y. G. and Nigam, V. (2022a). Automating Safety
and Security Co-Design through Semantically-Rich
Architectural Patterns. ACM Trans. Cyber Phys. Syst.

Dantas, Y. G. and Nigam, V. (2022b). https://github.com/
ygdantas/LAUFEN.

Dolev, D. and Yao, A. C. (1983). On the security of public
key protocols. IEEE Trans. Inf. Theory, 29(2):198–207.

Fockel, M., Schubert, D., Trentinaglia, R., Schulz, H.,
and Kirmair, W. (2022). Semi-automatic integrated
safety and security analysis for automotive systems. In
MODELSWARD’22.

Förster, D., Loderhose, C., Bruckschlögl, T., and Wiemer,
F. (2019). Safety goals in vehicle security analyses: a
method to assess malicious attacks with safety impact.
In the 17th escar Europe - Embedded Security in Cars.

fortiss GmbH (2022). AutoFOCUS 2.21.
Hau, Z., Co, K. T., Demetriou, S., and Lupu, E. C.

(2021). Object removal attacks on lidar-based 3d object
detectors. CoRR, abs/2102.03722.

Hong, D. K., Kloosterman, J., Jin, Y., Cao, Y.,
Chen, Q. A., Mahlke, S. A., and Mao, Z. M.
(2020). AVGuardian: Detecting and Mitigating
Publish-Subscribe Overprivilege for Autonomous
Vehicle Systems. In EuroS&P’20.

ISO26262 (2018). ISO 26262, road vehicles — functional
safety — part 6: Product development: software level.

ISO/SAE 21434 (2020). Road vehicles - cybersecurity
engineering.

Jha, S., Cui, S., Banerjee, S. S., Cyriac, J., Tsai, T.,
Kalbarczyk, Z., and Iyer, R. K. (2020). ML-Driven
Malware that Targets AV Safety. In DSN 2020.

Komissarov, R. and Wool, A. (2021). Spoofing attacks
against vehicular FMCW radar. In ASHES@CCS’21.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,
Perri, S., and Scarcello, F. (2006). The DLV system for
knowledge representation and reasoning. ACM Trans.
Comput. Log., 7.

Leveson, N. G. and Thomas, J. P. (2018). STPA Handbook.
Macher, G., Sporer, H., Berlach, R., Armengaud, E., and

Kreiner, C. (2015). SAHARA: A Security-aware
Hazard and Risk Analysis Method. In DATE’15.

Sabaliauskaite, G., Liew, L. S., and Cui, J. C.
Shen, J., Wang, N., Wan, Z., Luo, Y., Sato, T., Hu, Z., Zhang,

X., Guo, S., Zhong, Z., Li, K., Zhao, Z., Qiao, C., and
Chen, Q. A. (2022). Sok: On the semantic AI security
in autonomous driving. CoRR, abs/2203.05314.

Shen, J., Won, J. Y., Chen, Z., and Chen, Q. A. (2020). Drift
with Devil: Security of Multi-Sensor Fusion based
Localization in High-Level Autonomous Driving under
GPS Spoofing. In USENIX’20.

Shostack, A. (2014). Threat Modeling: Designing for
Security. Wiley.

SOTIF, I. . (2021). Safety of the Intended Functionality.
UN (2021). UN Regulation No. 155 - Cyber security and

cyber security management system.
WIRED (2015). Hackers remotely kill a jeep on the

highway-with me in it. Available at https://www.wired.
com/2015/07/hackers-remotely-kill-jeep-highway/.

Xiong, W. and Lagerström, R. (2019). Threat modeling - A
systematic literature review. Comput. Secur., 84:53–69.

Zelle, D., Lauser, T., Kern, D., and Krauß, C.
(2021). Analyzing and Securing SOME/IP Automotive
Services with Formal and Practical Methods. In
ARES’21.

Automating Vehicle SOA Threat Analysis Using a Model-Based Methodology

191

Chapter 7

Knowledge Representation and
Reasoning for Security System
Architectures

Chapter 7 proposes a Domain-Specific Language (DSL) for specifying system architecture
artifacts, security artifacts, and security architecture patterns. Security reasoning rules
have been specified to enable the automation of security activities, including the recommen-
dation of security architecture patterns. The DSL and security reasoning rules have been
implemented as a dedicated logic programming tool, which has been validated using an
example taken from the unmanned air vehicle domain.

Contributing article: Yuri Gil Dantas and Ulrich Schöpp: SeCloud: Computer-Aided
Support for Selecting Security Measures for Cloud Architectures. ICISSP 2023: 264-275

Copyright information: Science and Technology Publications Lda (SCITEPRESS),
2024. https://doi.org/10.5220/0011901900003405.

Author contributions: The concept for the publication was jointly developed by Yuri
Gil Dantas and Ulrich Schöpp. They had several research discussions about specifying
semantically-rich architecture patterns for cloud architectures used in the unmanned air
vehicle domain. Yuri Gil Dantas implemented the tool and carried out the experiments
presented in the article. Yuri Gil Dantas took the lead in writing the initial draft of the
article, excluding Section 2 that was written by Ulrich Schöpp. Ulrich Schöpp assisted in
improving the article. Yuri Gil Dantas handled subsequent revisions and corrections.

https://doi.org/10.5220/0011901900003405

SeCloud: Computer-Aided Support for Selecting Security Measures for
Cloud Architectures

Yuri Gil Dantas and Ulrich Schöpp
Fortiss GmbH, Munich, Germany

Keywords: Securing Cloud Architectures, Security Architecture Patterns, Automation.

Abstract: The adoption of cloud infrastructures requires the deployment of security measures to protect assets against
threats (e.g., tampering). Several security measures/technologies are available for securing cloud infrastructures,
such as Service Mesh Istio and OpenID Connect. In the current state of practice, the selection of security
measures is manually done by an expert (e.g., a security engineer). It becomes challenging for experts to
make these selections due to the complexity of cloud infrastructures and the vast number of available security
measures and technologies. This article proposes a tool for automating the recommendation of security measures
for cloud architectures. Our tool expects as input information both the cloud architecture and assets identified
during a threat analysis, and recommends security measures for protecting such assets against threats. We
validate our tool in a case study that provides cloud services for unmanned air vehicles (UAVs).

1 INTRODUCTION

Cloud infrastructures offer runtime environments with
sophisticated mechanisms for reliability, observabil-
ity, manageability and security. These infrastructures
provide several benefits for business and IT, including
lower implementation and maintenance costs.

Security is one of the biggest concerns about cloud
infrastructures, especially because the data is no longer
controlled by the client who purchased the cloud ser-
vice. Indeed, a literature review conducted by (Carroll
et al., 2011) confirms that security is the main risk for
businesses using cloud infrastructures.

Two attack surfaces against cloud systems have
brought the attention of security researchers and en-
gineers: 1) External attackers may carry out attacks
against cloud services (Eliseev et al., 2021). For ex-
ample, without suitable security measures, an external
attacker may carry out spoofing attacks to impersonate
a legitimate client in accessing critical data. 2) An
internal service may also be the source of attacks due
to, e.g., misconfiguration, compromise, or being inten-
tionally malicious (Oleshchuk and Køien, 2011). To
implement an effective defense-in-depth strategy, it is
important to consider also threats that originate from
internal services. Internal services may, e.g., carry out
elevation-of-privilege attacks to access data from crit-
ical services without authorization. Potential attacks
through these attack surfaces shall be mitigated by se-

lecting and deploying suitable security measures for
cloud infrastructures.

Before selecting security measures, security engi-
neers perform a threat analysis to identify assets, threat
scenarios, and attack paths leading to threat scenarios.
Threat analysis is recommended for the early stages of
the system development, i.e., during the design of the
cloud architecture to avoid expensive changes later in
the cloud system lifecycle.

The identification of potential security measures
to mitigate the identified threat scenarios is a main
challenge for cloud architectures. Examples of tech-
nologies offering security measures are Service Mesh
Istio, the authentication protocol OpenID Connect, and
the Kubernetes network plugin Cilium. In the current
state of practice, the selection of security measures is
manually done by an expert (e.g., a security engineer).

There are many cloud technologies and platforms
to choose from, and it is hardly feasible to evaluate the
implications of many possible choices in detail, e.g.,
due to time constraints. Even when the technologies
are understood in principle, it is not easy to keep track
of the consequences of selecting a combination of
them. One would also like to understand the trade-offs
between different choices regarding system develop-
ment and operation, e.g., in the form of additional
requirements for certificate management, or regarding
resource overhead.

The cloud native landscape is vast, and it’s

264
Dantas, Y. and Schöpp, U.
SeCloud: Computer-Aided Support for Selecting Security Measures for Cloud Architectures.
DOI: 10.5220/0011901900003405
In Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), pages 264-275
ISBN: 978-989-758-624-8; ISSN: 2184-4356
Copyright c© 2023 by SCITEPRESS – Science and Technology Publications, Lda. Under CC license (CC BY-NC-ND 4.0)

easy to become overwhelmed by its growing
number of competing and overlapping plat-
forms and technologies.1

Figure 1 may give an impression of the vastness.

Figure 1: Cloud Native Technology Landscape (excerpt).

Contribution: This article proposes SECLOUD, a
tool for automating the recommendation of security
measures for cloud architectures. (i) SECLOUD com-
putes threat scenarios for assets provided as input in-
formation by the user. (ii) SECLOUD computes attack
paths based on an intruder model, and the cloud archi-
tecture received as input information. (iii) SECLOUD
recommends security measures for mitigating threat
scenarios (i.e., addressing all attack paths leading to
threat scenarios). The target user for SECLOUD is
security engineers responsible for assessing the se-
curity of cloud architectures and hardening such ar-
chitectures with security measures. SECLOUD has
been implemented in the logic programming engine
clingo (Potassco, 2022).

SECLOUD is built on the work by (Dantas and
Nigam, 2022), who proposed a tool for automating
the recommendation of security architecture patterns
for autonomous vehicle architectures. The original as-
pects of our work are: (i) extension of the domain-spe-
cific language for cloud architectures, (ii) specifica-
tion of security measures suitable for cloud architec-
tures, (iii) more specific reasoning principles for rec-
ommending security measures. The work by (Dantas
and Nigam, 2022) only considers the cybersecurity
property satisfied by the pattern as the main condi-
tion to recommend patterns, and (iv) specification of
constraints to reduce the number of recommended so-
lutions with security measures to deal with scalability
and usability issues.

SECLOUD is available online at (SeCloud, 2022).

Structure of this Article: The remainder of this ar-
ticle is structured as follows. Section 2 describes a

1https://www.cncf.io/blog/2020/09/15/
top-7-challenges-to-becoming-cloud-native

running example to help us introduce the contributions
of the article. Section 3 describes an intruder model for
cloud infrastructures. Section 4 describes the workflow
of SECLOUD, including its inputs and output artifacts.
Section 5 describes the domain-specific language of
SECLOUD, including how SECLOUD specifies secu-
rity measures to enable their automation through the
reasoning rules described in Section 6. Section 7 il-
lustrates the benefits of using constraints and the in-
creased automation enabled by SECLOUD. We con-
clude the article by discussing related and future work
in Sections 8 and 9.

2 RUNNING EXAMPLE

SECLOUD is intended to assist security engineers with
security architecture decisions for cloud infrastruc-
tures. We present it using a real application developed
in a research project as a running example.

The example application provides services by un-
manned air vehicles (UAVs), such as transportation
services or search and rescue services. It optimizes the
usage of UAV and implements planning, optimization
and prognostic health management functions. While
the particular details of the use-case are not important
to describe the application of SECLOUD, the applica-
tion provides a realistic use-case.

The role of SECLOUD is to support the selection
of technologies to implement security functions at an
early stage in the system development, where the main
components and their interfaces have been identified,
but where the security architecture of the system is
still under consideration.

Figure 2 gives an overview of the logical architec-
ture of the system. The main system components are
Service Broker (sb), Multi Resource Manager (mrm),
Cognitive Assistant (ca), Operations Manager (om),
Fleet Manager (fm). These components are intended to
be deployed on a cloud platform. They provide public
interfaces where clients may access the services.

The applications communicate with each other
through two mechanisms. First, the components offer
a Rest/HTTP API for access to resources. Second, they
use Kafka2 for event-based communication. Kafka im-
plements topic-based pub/sub communication. It pro-
vides named topics where the application components
may publish messages about certain aspects, e.g. the
topic av-updates is intended for messages pertaining
to the status of air vehicles. These messages are de-
livered to all components that subscribe to them. For
example, the Operations Manager receives telemetry

2https://kafka.apache.org/

SeCloud: Computer-Aided Support for Selecting Security Measures for Cloud Architectures

265

data from the ground control station and publishes
this to av-updates. The Fleet Manager subscribes to
this topic and thus receives telemetry updates. Pub/-
sub communication is convenient for decoupling com-
ponents, but also introduces challenges for security,
e.g. for limiting the impact of the compromise of one
internal component.

The main application components are each real-
ized by a set of Docker containers. Figure 3 shows a
container architecture of the system. It contains the ap-
plication containers and support containers, such as for
ingress. While, in realistic deployments, Kafka will
likely be deployed redundantly, it suffices to consider
it as a single container for our purposes.

Figure 3 shows assumptions about the deployment
and the security environment of the system. We con-
sider client a public, external component, to which
attackers have full access. Most of the components
are intended to be hosted on a cloud platform, where
ingress serves as a gateway component. While ground
control station is part of the system, it needs to be
hosted on-site at an airport rather than in the cloud.

The container architecture of Figure 3 represents
and early stage of system development. It does not con-
tain any security features. It could be deployed directly
using Docker, but the components would communicate
over plain http without authentication or authorization.
The purpose of SECLOUD is to support the design of
a security architecture for the application.

3 INTRUDER MODEL

This section describes an intruder model for cloud
infrastructures. The intruder model is taken into ac-
count by SECLOUD when computing attack paths. We
consider both external and internal intruders based
on the Dolev-Yao intruder (Dolev and Yao, 1983).
Both intruder models are inspired by related work, e.g.,
(Oleshchuk and Køien, 2011; Eliseev et al., 2021).

External Intruder. The external intruder assumes
that public interfaces may be exploited by attackers,
as in (Eliseev et al., 2021). As a result, the external
intruder may inject malicious data into the cloud in-
frastructure through public interfaces (e.g., cloud con-
sumers) to violate the cybersecurity property of assets.
Consider, e.g., the architecture described in Section 2,
where the interface from client to sb represents a public
interface of the system, and the container sb is an asset.
A malicious attacker may carry out spoofing attacks
impersonating a legitimate client to write unauthorized
data to sb, thus violating the authenticity properties
of data arriving at sb. We assume that an attack from

a public interface to an asset may be possible if there
exists an information flow from the public interface to
the asset. This is the case for the example above, as
shown in the cloud architecture illustrated Figure 3.

Internal Intruder. The internal intruder assumes
that internal containers may not be trustworthy, as in
(Oleshchuk and Køien, 2011). As a result, an internal
container may inject malicious data into other contain-
ers (possibly assets) in the cloud system. For example,
sb may not be trustworthy and carry out elevation of
privilege attacks to access data from other assets like
mrm without authorization. We assume that an attack
from an internal container to another asset container
may be possible if there exists a communication chan-
nel from the internal container and to the asset. This is
the case for sb and mrm, as illustrated in Figure 3.

4 SeCloud: OVERVIEW

Our goal is to provide automated methods for the selec-
tion of security measures for cloud architectures. To
this end, we build on SecPat proposed by (Dantas and
Nigam, 2022). We propose the use of Knowledge Rep-
resentation and Reasoning (KRR) (Baral, 2010) for
representing cloud architectures, security artifacts, and
security measures as knowledge bases. The security
measures are recommended in an automated fashion
through the specification of reasoning rules. The repre-
sentation of the knowledge bases are realizable through
a domain-specific language (DSL). We specify rules to
reason about the security of the cloud architecture, in-
cluding rules to enable the automated recommendation
of security measures. Our tool – SECLOUD – imple-
ments both the DSL and reasoning rules for securing
cloud architectures. SECLOUD has been developed in
the logic programming engine clingo (Potassco, 2022).

Figure 4 illustrates the workflow of SECLOUD.
The gray boxes represent either artifacts received as
input or generated for output. SECLOUD receives two
main artifacts as input, namely cloud architecture and
security artifacts.

Architecture Model. This input artifact consists of
a Logical Architecture, a Container Architecture, and
an Allocation Table. An allocation table denotes the
mapping of logical components to containers. Selected
containers may be annotated as public (i.e., they are
external components that are not under the control of
the system) or gateways. Annotating containers as pub-
lic is relevant for security, especially for identifying
potential attack paths.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

266

Figure 2: High-level architecture of running example.

Figure 3: Container architecture of running example.

Security Artifacts. This input artifact consists of ar-
tifacts that may be identified in a Threat Analysis and
Risk Assessment (TARA) analysis. Examples of secu-
rity artifacts identified in a TARA analysis are assets
and threat condition. SECLOUD expects that at least
assets are provided as input. Assets are objects (e.g.,
software elements) that need protection. SECLOUD
expects that an asset is associated with a container.

Both the cloud architecture and security artifacts
are specified in the DSL of SECLOUD. This speci-
fication enables SECLOUD to reason about the secu-
rity of the cloud architecture through reasoning princi-
ples. The reasoning principles enables the automated
computation of threat scenarios and attack paths. SE-
CLOUD attempts to deploy security measures wherever
they are applicable to mitigate threat scenarios. SE-
CLOUD outputs assumptions that need to be valid to
ensure that the recommended security measure works
as intended. The assumptions are turned into require-
ments that are output together with the recommended
measures. These requirements shall be implemented
and validated during the development of the system.
In summary, SECLOUD provides as output artifacts
threat scenarios and attack paths, as well as security
measures alongside assumptions/requirements.

4.1 Clingo

Clingo is an engine to implement logic programs based
on Answer-Set Programming (ASP) semantics (Gel-
fond and Lifschitz, 1990).

A logic program is a set of rules. Each rule is of

the form a0 ← a1,..., an, where the literal a0 is the
head of the rule, and the literals a1,..., an are the body
of the rule. A literal is an atom (am) or a negated atom
(¬am). A rule with an empty head is a constraint. A
model (often referred by this article as solution) is an
interpretation satisfying a set of rules.

This article uses the clingo notation, where :- de-
notes←, and not denotes ¬. Identifiers beginning with
capital letters (e.g., A, B) denote variables that dur-
ing clingo’s execution are instantiated by appropriate
terms. Identifiers beginning with a lower-case letter
(e.g., a, b) are constants. The (underscore) charac-
ter specifies that the argument can be ignored in the
current rule.

5 DOMAIN-SPECIFIC LANGUAGE

SECLOUD provides a domain-specific language (DSL)
for specifying (a) cloud architectures, (b) security arti-
facts, and (c) security measures. Table 1 provides the
predicates/facts for specifying selected architectural
elements and security artifacts. With the exception
of threat conditions, threat scenarios and attack paths,
all these facts shall be provided as input. The threat
conditions denote the adverse consequences if the cy-
bersecurity property of an asset is violated. Follow-
ing the STRIDE methodology (Shostack, 2014), this
article considers the authenticity, integrity, and autho-
rization properties. These properties may be violated
by, respectively, spoofing, tampering, and elevation of
privilege attacks.

SeCloud: Computer-Aided Support for Selecting Security Measures for Cloud Architectures

267

Figure 4: SECLOUD’s workflow. Gray boxes are artifacts either received as input or generated for output. The light blue boxes
under SECLOUD are for illustrative purposes only.

Example. Consider the container architecture
illustrated in Figure 3 and the predicates described
in Table 1. Assume that both ground control station
and sb have been identified as assets in the initial
threat analysis. The user of SECLOUD specifies the
container architecture and the identified assets as
follows.

% Containers (excerpt)
container_out(client,o1).
container_out(gcs,o2).
container_inp(gcs,i1).
container_inp(ingress,i2).
container_inp(ingress,i3).
container_onp(ingress,o3).
container_onp(ingress,o4).
container_inp(sb,i5).
container_out(sb,o6).

% Connections (excerpt)
conn(sg1,o1,client,i2,ingress).
conn(sg2,o2,gcs,i3,ingress).
conn(sg3,o3,ingress,i1,gcs).
conn(sg3,o4,ingress,i5,sb).
conn(sg3,o6,sb,i6,sb_database).

% Assets (excerpt)
asset(gcs).
asset(sb).

Listing 1: Specification of container architecture and assets.

5.1 Specifying the Security Content of
Cloud Technologies

We refer to security measures at the architectural
level as security architecture patterns (Cheng et al.,
2019). Security architecture patterns are architectural
solutions for mitigating threat scenarios. This sec-
tion describes by example how SECLOUD provides
semantically-rich description of patterns that will en-
able the automated reasoning described in Section 6.

Before introducing the security architecture pat-
terns, we describe the DSL of SECLOUD for speci-
fying security architecture patterns. The bottom of
Table 1 describes the predicates/facts for specifying
(a) the pattern instantiation, (b) the pattern attributes.

The former denotes all relevant architecture elements
for instantiating the pattern. The relevant architecture
elements are the pattern components, and the pattern
channels. The pattern attributes denote the intent and
problem addressed by the pattern. That is, the pattern
attributes consist of the desired cybersecurity property
achieved by the pattern, the threat addressed by the pat-
tern, and the attack surface suitable to instantiate the
pattern. You may read this as the pattern mitigates the
particular threats (e.g., tampering) at the attack surface
against the cybersecurity property (e.g., integrity).

We consider two kinds of attack surfaces, namely
external and internal interface. The former denotes
any attacks carried out by with external entities, such
as entities that are public or entities that send data to
the system through a gateway. The latter denotes any
attacks carried out within the system. Considering the
attack surface is relevant because some patterns may
only be applied inside the system (internal interface) or
outside the system (external interface). The traditional
firewall is an example of such patterns that may only
be applied at the external (a.k.a. network) interface.

At present, SECLOUD formulates five security ar-
chitecture patterns for the recommendation of different
kinds of technologies for cloud applications: Cilium3

is a Kubernetes network plugin with advanced func-
tionality for providing, securing, and observing net-
work connectivity between containers. Cilium uses
IPsec to transparently encrypt data in transit between
applications to avoid data tampering attacks. Cilium
is also able to enforce policies for satisfying both au-
thenticity and authorization properties. TLS (Trans-
port Layer Security) is a protocol to provide secure
communication over a network communication chan-
nel. In the context of cloud computing, TLS can be
used to enforce secure communication between con-
tainers to prevent attackers to tamper with the data
exchanged between applications. Mutual Authentica-
tion is described in Section 5.1.1. OpenID Connect4

is an authentication protocol built on top of OAuth
2.0. OpenID Connect allows a client to authenticate
itself when accessing services. An OpenID Connect

3https://cilium.io
4https://openid.net/connect

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

268

Table 1: DSL for (selected) architecture elements, security artifacts, and security architecture patterns.

Fact Description
Architectural elements

container inp(id,idi) id is a container and it has an input port idi.

container out(id,ido) id is a container and it has an output port ido.

conn
(id,id1o,id1,id2i,id2)

id is a signal connecting an output port id1o of container id1 to an input port id2i of
container id2.

gateway(id) id is a gateway container.

public(id) id is a public container that may be accessible by external users.

Security artifacts
asset(id) denotes that container id is an asset.

threat condition
(id,secp,idast)

id is the adverse consequence if the cybersecurity property secp of asset idast is
violated, where secp ∈ {authenticity, integrity,authorization}.

threat scenario
(id,tsdes,as,ts,idast)

id is a threat scenario, with description tsdes, originating from attack surface
as, to violate the cybersecurity property of asset idast with threat ts, where ts
∈ {spoofing, tampering,elevation of privilege}.

attack path
(id,el,idast)

id is an attack path denoting that malicious data may be injected from element el to
target asset idast.

Security architecture patterns
security pattern
(id,pat,cp,inp,int,out)

id is the unique identification of security architecture pattern pat. This pattern
consists of a list of components cp. The last three parameters inp, int and out denote,
respectively, the input, the internal, and the output channels related to the pattern.

security attributes
(pat,as,secp,ts)

pat is a security architecture pattern suitable for satisfying the cybersecurity property
secp by mitigating threat ts at the attack surface as.
as ∈ {external interface, internal interface},
secp ∈ {authenticity, integrity,authorization},
ts ∈ {spoofing, tampering,elevation of privilege}.

server verifies user credentials (e.g., username and
password) and issues identity tokens. Client may use
such identity token to authenticate themselves when
accessing application services. Service Mesh Istio5 is
an application-level infrastructure for managing ser-
vices in a cloud environment. Security-wise, Istio can
enforce secure communication between applications
by encrypting traffic and providing mutual authenti-
cation (i.e., to ensure integrity and authenticity). It
provides support functions, such as key distribution
and rotation. Istio provides the functionality to enforce
policies to authorize resource access in the mesh.

We describe how SECLOUD captures cloud tech-
nologies in the form of semantically-rich description of
security architecture patterns by example using Mutual
Authentication. Table 2 describes the pattern attributes
for all the patterns supported by SECLOUD.

5https://istio.io

5.1.1 Mutual Authentication

Mutual Authentication (mTLS) (Vasudev et al., 2020)
is a security measure for verifying the authenticity of
two entities that wish to exchange data over a commu-
nication channel. Assume a client and a server con-
nected through a communication channel. This pattern
ensures that the server authenticates with the client,
and the client authenticates with the server before the
actual communication occurs. To ensure the authen-
ticity of these entities over a communication channel,
both the client and the server shall provide their digital
certificates to prove their identities to each other. This
is in contrast to TLS, where only the server presents
a certificate. The Mutual Authentication pattern ad-
ditionally guarantees the integrity of data exchanged
between the client and server given that the identities
of the entities have been correctly verified. Finally,
for satisfying the authorization property, this pattern
assumes that both client and server implement policies

SeCloud: Computer-Aided Support for Selecting Security Measures for Cloud Architectures

269

Table 2: Security architecture patterns currently supported by SECLOUD. This table describes that a pattern may be used to
mitigate threat (e.g., spoofing) at the attack surface (e.g., external interface) to satisfy the security property (e.g., authenticity).

Pattern Threat→ Security Property Attack Surface
Cilium spoofing→ authenticity

tampering→ integrity
elevation of privilege→ authorization

internal interface

OpenID Connect spoofing→ authenticity internal/external interface

TLS tampering→ integrity external interface

mTLS spoofing→ authenticity
tampering→ integrity
elevation of privilege→ authorization

internal/external interface

Service Mesh Istio spoofing→ authenticity
tampering→ integrity
elevation of privilege→ authorization

internal/external interface

for data access control. Mutual Authentication may
be applied for components communicating over an
internal or external interface. The instantiation of the
Mutual Authentication pattern is shown in Table 3.

Based on the structure of mTLS shown in Table 3,
SECLOUD instantiates this pattern as shown below.

security_pattern(id,mTLS,(cp1,cp2),
(inp1,inp2),(int1,int2),none).

Listing 2: Pattern instantiation (mTLS).

security_attributes(mTLS,
attack_surface(external_interface,

internal_interface),
property(authenticity,integrity,

elevation_of_privilege),
threat(spoofing,tampering,

elevation_of_privilege)).

Listing 3: Security attributes (mTLS).

6 SECURITY REASONING
PRINCIPLES

SECLOUD specifies reasoning principles to reason
about the security of the cloud architecture, including
reasoning principles to (a) compute threat scenarios,
(b) enumerate attack paths for the identified threat sce-
narios, (c) recommend security architecture patterns
for mitigating threat scenarios. While the main focus
of this section is about the pattern recommendation,
we also provide a brief explanation of (a) and (b).

Computing Threat Scenarios. SECLOUD com-
putes threat scenarios that may violate the cyberse-
curity property of assets. We consider the authentic-

ity, integrity, authorization of assets received as input.
Based on STRIDE (Shostack, 2014), we consider that
these three properties may be violated, respectively, by
spoofing, tampering, and elevation of privilege attacks.
For example, for each asset received as input, we con-
sider that the integrity of the asset may be violated by
tampering attacks.

While this is a fairly coarse way of computing
threat scenarios, SECLOUD provides the possibility to
define more fine-grained criteria for threat scenarios
that may use all available information. This can be
done by defining inference rules of the following form.

threat_scenario(ID, THREAT, SOURCE,
TYPE, ASSET) :- ...

Listing 4: Threat scenario inference rule (snippet).

Computing Attack Paths. SECLOUD computes at-
tack paths for each threat scenario. To this end, SE-
CLOUD implements the intruder model described in
Section 3 with capabilities to carry out both external
and internal attacks.

Example. Figure 5 illustrates a potential attack path
(based on the architecture from Section 2) for three
threat scenarios. The upper part of Figure 5 illustrates
an attack path from client (public interface) targeting
the asset sb (short for service broker). The lower part
Figure 5 describes three threat scenarios for asset sb.
The attack surface is obtained from the attack path
originated at the external interface (i.e., by client).

We now introduce three predicates for specifying
whether a threat scenario is mitigated or not. First, miti-
gated by(IDTS,IDPAT) specifies when a threat scenario
IDTS is mitigated by a suitable security architecture

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

270

Table 3: Instantiation of the Mutual Authentication pattern. The assumptions represent only a selection.

Description SECLOUD Specification

Pattern name Mutual Authentication NAME=mTLS;

Structure
COMPONENTS=[cp1,cp2];
INPUT CH=[inp1,inp2];
INTERNAL CH=[int1,int2];

Intent This pattern is used when two entities over a
communication channel verify each other’s iden-
tity (authentication). Given the correct verifica-
tion of the entities, this pattern also satisfies the
integrity of messages exchanged between the
sender and the receiver. Both entities imple-
ment authorization policies.

TYPE SEC PROPERTY=
[authenticity,integrity,authorization];
TYPE THREAT=
[spoofing,tampering,elevation of privilege];
TYPE ATTACK SURFACE=
[external interface,internal interface];

Problem ad-
dressed

This pattern prevents that data exchanged be-
tween two entities in communication channel
are spoofed or tampered. This pattern prevents
such entities to gain privileges in accessing re-
sources that shall not be authorized.

Assumptions/
Requirements
(selection)

CP1 and CP2 have digital certificate signed by
a trusted CA.

TYPE ASSUMPTION=entity has received
certificate signed by trusted ca;
COMPONENTS=[cp1,cp2];

Figure 5: Illustration of one attack path and three threat
scenarios computed by SECLOUD.

pattern IDPAT. We assume that a threat scenario is miti-
gated if the attack path leading to the threat scenario is
addressed. Second, mitigated(IDTS) expresses that the
threat scenario IDTS by some pattern. Finally, nmiti-
gated(IDTS) specifies that IDTS is not mitigated. The
reasoning rules for three predicates are as follows:

mitigated(IDTS) :- mitigated_by(IDTS,IDPAT).
nmitigated(IDTS) :-
threat_scenario(IDTS,_,_,_,_),
not mitigated(IDTS).

Listing 5: Mitigation rules.

6.1 Pattern Instantiation

SECLOUD specifies reasoning rules for automating
the recommendation of security architecture patterns.
These rules specify the conditions for when a particular

security architecture pattern can be recommended to
mitigate threat scenarios targeting assets, which were
identified by the user. Whenever a security architecture
pattern is recommended, the rule mitigated by applies
to infer which threat scenarios have been mitigated.
SECLOUD only outputs architecture solutions when all
threat scenarios have been mitigated. This is ensured
through the specification of the following constraint,
which expresses that any non-mitigated threat scenario
is not allowed (implies empty/false).

:- nmitigated(IDTS).

Listing 6: Constraint: No non-mitigated threat scenarios.

A security architecture pattern is recommended
if there is a match between security artifacts and the
pattern attributes. That is, SECLOUD considers infor-
mation related to a threat scenario, i.e., attack surface,
threat, and property violated by the threat, and the
pattern attributes. A security architecture pattern is
recommended if the following conditions hold:

attack surface ∈ pattern attribute
threat ∈ pattern attribute

security property ∈ pattern attribute

We illustrate a reasoning rule specified in SE-
CLOUD to recommend security architecture patterns.
The following reasoning rule specifies the conditions
for recommending security architecture patterns. The
rule checks whether there is one instance of secu-
rity attributes for the security artifacts specified on the
right side of the rule.

SeCloud: Computer-Aided Support for Selecting Security Measures for Cloud Architectures

271

{ recommended_pattern(PAT,IDTS,IDAP, EL1,EL2)
: security_attributes(PAT,AS,SECP,TS) } = 1

:- threat_scenario(IDTS,_,AS,TS,AST),
threat_condition(_,SECP,AST),
get_ap_from_ts(IDTS,IDAP),
attack_path(IDAP,EL1,EL2).

Listing 7: Pattern recommendation rule.

The above rule derives facts of the form recom-
mended pattern(PAT,IDTS,IDAP,EL1,EL2), which ex-
press that pattern PAT has been recommended to ad-
dress attack path IDAP of threat scenario IDTS. EL1
and EL2 are architectural elements in the attack path
IDAP. These architecture elements may become pattern
components. For example, assume that the mTLS pat-
tern has been recommended. The instantiation denotes
that mTLS used for the communication from EL1 (i.e.,
client) to EL2 (i.e., server). SECLOUD may derive the
input, internal and output channels from the (baseline)
system architecture received as input. Omitted here,
we have a rule for mapping recommended pattern to
security pattern (described in Table 1).

6.2 Combinations and Constraints

Pattern instantiation will produce a large number of
possible solutions. The number of solutions depends
on the number of (a) assets, (b) attack paths leading
to threat scenarios, and (c) security architecture pat-
terns. SECLOUD computes all possible solutions with
security architecture patterns as long as there exists a
match between security artifacts and pattern attributes.

The purpose of SECLOUD is to assist the selec-
tion of architecture options, so it is essential to select
reasonable options from the set of possible instantia-
tions. By building on an ASP solver like clingo, we
can define sophisticated constraints on the possible
combinations of patterns, which can be checked effi-
ciently by the solver. Indeed, the intended usage of
ASP solvers is to generate a (possibly very large) set
of potential solutions up front and to select suitable
ones using constraints (Lifschitz, 2019).

SECLOUD uses the following constraints.
1. All threats have been mitigated. SECLOUD spec-

ifies a constraint to only computes architecture
solutions where all threat scenarios have been mit-
igated. That is, SECLOUD discards solutions if at
least one threat scenario has not been mitigated.
This constraint is shown in Listing 6.

2. Only one pattern for addressing each threat
scenario. SECLOUD may output two security ar-
chitecture patterns for addressing the same threat
scenario. For example, possible solutions for mit-
igating tampering threats violating the integrity

of assets are Mutual Authentication and Service
Mesh patterns. SECLOUD specifies a constraint to
only recommend one pattern for each threat sce-
nario avoiding that two patterns are recommended
for the same threat scenario.

3. No TLS and mTLS for the same element. SE-
CLOUD may compute solutions where TLS and
mTLS are recommended for the same element.
These solutions may be redundant in the sense
that the element should have two certificates, one
for TLS and one for mTLS. SECLOUD specifies
a constraint to avoid TLS and mTLS from being
recommended for the same element.

4. No mTLS for public elements. Mutual Authen-
tication may be impractical for public elements,
as certificates would need to be distributed to all
external clients. SECLOUD therefore specifies a
constraint to avoid the mTLS pattern from being
recommended for public elements.

5. Only one pattern for addressing equivalent se-
curity artifacts. SECLOUD may compute several
combinations of patterns for addressing threat sce-
narios. This might lead to expensive solutions to
be implemented during the development of the
system. For example, SECLOUD may output a
solution where Service Mesh is recommended for
two containers, and Cilium is recommended for
the remaining containers in the system. It might
be expensive and unnecessary to deploy a Service
Mesh for only two containers of the system, es-
pecially when Cilium may be deployed for all
containers. SECLOUD specifies constraints to rec-
ommend the same pattern to address security arti-
facts with equivalent attributes (i.e., attack surface,
threat, and cybersecurity property).

7 CASE STUDY

This section illustrates the use of SECLOUD for the
cloud architecture described in Section 2. We evaluate
the use of the constraints defined in Section 6.2, and
discuss the recommended patterns by SECLOUD.

For the sake of illustration, we assume two assets:
ground control station and sb. As described in Sec-
tion 2, we assume that client is a public component,
ingress is a gateway, and ground control station sends
and receives data through ingress. This means that all
attack paths involving client and ground control station
denote potential attacks through an external interface.
The remaining attack paths denote potential attacks
through an internal interface.

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

272

Table 4: Experiments with constraints. Scenario with 2
assets, 31 attack paths, and 5 security architecture patterns.
The entry ‘-’ means that SECLOUD has not returned all
solutions after 60 minutes. The constraint’s ID (e.g., 1, 2,...)
refers to the constraints described in Section 6.2.

Constraint #Solutions Execution time (s)

none - 3600

1 - 3600

1, 2 - 3600

1, 2, 3 2916 0.27

1, 2, 3, 4 1458 0.13

1, 2, 3, 4, 5 6 0.06

SECLOUD has computed 93 threat scenarios, and
31 attack paths (28 and 3 attack paths based on, re-
spectively, the external and internal intruder). For each
attack path, SECLOUD considers three threat scenar-
ios that may violate the property of the asset through
spoofing, tampering, and elevation of privilege. Thus,
the number of threat scenario is 31 × 3 = 93.

There are many ways of applying the security ar-
chitecture patterns to mitigate these threat scenarios.
With the patterns and constraints defined in Sections 5
and 6, SECLOUD recommends six architecture options
almost instantly. These options are shown in Table 5.

To understand how SECLOUD may deal with a
larger number of possible solutions, e.g., when ex-
tended with more patterns, it may be instructive to
consider also its performance when some of the con-
straints from Section 6.2 are lifted. Table 4 describes
the results of our experiments. We ran the experiments
on a 1.9GHz Intel Core i7-8665U with 16GB RAM
wuth Ubuntu 18.04 LTS and clingo 5.2.2.

SECLOUD could not enumerate all solutions with-
out any constraints and with constraints 1, and 1 &
2. With constraints 1 & 2 & 3, and 1 & 2 & 3 &
4, SECLOUD computed all solutions within 0.27 and
0.13 seconds, respectively. These results illustrate
that while the number of pattern instantiations being
considered is the same in all cases, imposing con-
straints to filter solutions is sufficient to improve per-
formance. However, the number of solutions were still
high, impacting the usability of SECLOUD (i.e., it is
impractical for the user to choose a solution). The
breakthrough was the specification of constraint 5 for
only recommending one type of pattern to address
equivalent security artifacts. Together with the other
constraints, SECLOUD computed six solutions within
0.06 seconds.

The six solutions are shown in Table 5. In general,
they represent a reasonable selection of architecture
options to address the 93 threat scenarios identified by

SECLOUD. Solution 6 has previously been selected
manually in the development of the system that serves
as our running example. One aspect that is perhaps not
reasonable is that all solutions use the authorization
policies of the Istio service mesh to verify OpenID
Connect tokens, even when no components are placed
in the mesh. This is an artifact of the current small
selection of security architecture patterns. However,
the reasons for selecting the patterns are documented
by SECLOUD, so users may replace individual patterns
in each solution.

Indeed, SECLOUD provides documentation for the
identified attack paths, threat scenarios, and new re-
quirements for each solution. The requirements are
traced to threat scenarios, which themselves are asso-
ciated to attack paths. For each threat scenario, SE-
CLOUD documents which security architecture pattern
in the selected solution has mitigated the threat.

To aid the user in selecting a solution, SECLOUD
computes simple metrics of the solution. We consider
the number of new requirements on application com-
ponents and on the infrastructure deployment as one
selection criterion. We distinguish such requirements
in the following sense:

• Application requirements need to be considered
in the development of the applications themselves.
For example, Solution 1 adds the new application
requirement that sb uses mTLS to communicate
with sb database. This needs to be considered by
the developers, e.g., by using a suitable library.

• Infrastructure requirements need to be imple-
mented when building the infrastructure and de-
ploying the components. For example, Solution 6
adds a requirement that an authorization policy for
the communication from sb to mrm has been de-
fined. The configuration of the Istio service mesh
is also defined in the form of requirements. For
example, Solution 6 has a requirement that sb must
be part of the service mesh.

If the aim is to provide security measures in a transpar-
ent manner for the application developers, then Solu-
tion 6 will likely be preferable over Solution 1. This
choice is indeed the case as Solution 6 makes encryp-
tion transparent, while Solution 1 requires application
developers to use mTLS explicitly.

8 RELATED WORK

SECLOUD is built on SecPat proposed by (Dantas
and Nigam, 2022). SecPat enables the recommenda-
tion of security architecture patterns for autonomous
vehicle architectures, while SECLOUD supports the

SeCloud: Computer-Aided Support for Selecting Security Measures for Cloud Architectures

273

Table 5: Solutions recommended by SECLOUD.

Solution Recommended Security Patterns # Additional
Application
Requirements

Additional
Infrastructure
Requirements

1 Mutual Authentication for mitigating the threat scenarios with
attack paths based on the internal intruder, including attack
paths targeting ground control station. TLS for ingress acting
as a server for client to mitigate tampering attacks. OpenID
Connect for client for authentication purposes to address spoof-
ing attacks. The identity tokens of client obtained by OpenID
Connect can be checked by an instance of Service Mesh Istio
for all containers receiving data from client.

19 34

2 Cilium for mitigating selected threat scenarios with attack
paths based on the internal intruder, and Mutual Authentica-
tion for addressing the attack paths targeting ground control
station. In this solution, Mutual Authentication has been rec-
ommended for addressing attacks from outside the system
(external interface). TLS for ingress acting as a server for
client to mitigate tampering attacks. OpenID Connect for client
for authentication purposes to address spoofing attacks. The
identity tokens of client obtained by OpenID Connect can be
checked by an instance of Service Mesh Istio for all containers
receiving data from client.

11 22

3 Cilium for mitigating selected threat scenarios with attack
paths based on the internal intruder. TLS for ingress acting
as a server for client and ground control station to mitigate
tampering attacks. OpenID Connect for both client and ground
control station for authentication purposes to address spoofing
attacks. The identity tokens of client and ground control station
obtained by OpenID Connect can be checked by an instance of
Service Mesh Istio for all containers receiving data from client
and ground control station.

11 25

4 Mutual Authentication for mitigating selected threat scenar-
ios with attack paths based on the internal intruder. TLS for
ingress acting as a server for client and ground control station
to mitigate tampering attacks. OpenID Connect for both client
and ground control station for authentication purposes to ad-
dress spoofing attacks. The identity tokens of client and ground
control station obtained by OpenID Connect can be checked by
an instance of Service Mesh Istio for all containers receiving
data from client and ground control station.

19 37

5 Service Mesh Istio for mitigating selected threat scenarios with
attack paths based on the internal intruder. TLS for ingress act-
ing as a server for client and ground control station to mitigate
tampering attacks. OpenID Connect for both client and ground
control station for authentication purposes to address spoofing
attacks. The identity tokens of client and ground control station
obtained by OpenID Connect can be checked by the instance
of Service Mesh Istio.

11 40

6 Service Mesh Istio for mitigating selected threat scenarios
with attack paths based on the internal intruder, and Mutual
Authentication for addressing the attack paths targeting ground
control station. TLS for ingress acting as a server for client
to mitigate tampering attacks. OpenID Connect for client
for authentication purposes to address spoofing attacks. The
identity tokens of client obtained by OpenID Connect can be
checked by the instance of Service Mesh Istio.

11 37

ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy

274

recommendation of patterns suitable for cloud archi-
tectures. SecPat provides a DSL and reasoning prin-
ciples to automate the recommendation of patterns.
SecPat only considers one condition to recommend
patterns, namely the cybersecurity property satisfied
by the pattern. SECLOUD extends SecPat’s DSL to
include further pattern’s attributes, namely the threat
mitigated by the pattern, and the attack surface that
the pattern may be deployed. SECLOUD follows the
STRIDE methodology to map threats to cybersecurity
properties. This extension enables a more precise rec-
ommendation of patterns through reasoning principle
rules. Another extension is the specification and evalu-
ation of constraints to reduce the number of solutions
with patterns. This extension deals with scalability
issues and improves the usability of SECLOUD.

ThreatGet6 is a commercial tool for threat analysis.
ThreatGet identifies threat scenarios and attack paths
in an automated fashion. To deal with such security
artifacts, ThreatGet provides a list of potential security
measures to be selected by the user. ThreatGet does not
instantiate the selected security measures in the system
architecture. As a result, it might be unclear for the
user to identify which components are relevant to the
selected security measures. SECLOUD instantiates the
recommended security measures by making explicit
which components are part of the security measure
(e.g., mTLS for components A and B).

Another commercial tool for STRIDE analysis
of cloud architectures is Microsoft’s Threat Analysis
tool 7. While SECLOUD is also based on STRIDE, it
is able to automatically compute architecture options.
Its flexible definition using ASP allows the extension
to more fine-grained threat scenario models.

SECLOUD outputs requirements alongside the rec-
ommended security measures. Other tools, such as
Ansible (Spanaki and Sklavos, 2018), may be used
to harden cloud infrastructures by implementing such
requirements. Ansible provides the means of, e.g.,
installing SSL certificates, installing and configuring
monitoring tools, and configuring user accounts.

9 CONCLUSION

This article proposed SECLOUD, a tool to assist secu-
rity engineers with the selection of security measures
for cloud architectures. We validated SECLOUD in a
case study that provides cloud services for unmanned
air vehicles (UAVs). We are currently investigating
several future directions, including (i) specification

6https://www.threatget.com
7https://www.microsoft.com/en-us/

securityengineering/sdl/threatmodeling

of security measures to address threat scenarios that
violate the availability of assets, and (ii) integration of
SECLOUD in a model-based system engineering tool
that will serve as a frontend to improve its usability.

ACKNOWLEDGMENTS

We thank the German Ministry for Economic Affairs
and Climate Action of Germany for funding this work
through the LuFo V-3 project RTAPHM.

REFERENCES

Baral, C. (2010). Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University
Press.

Carroll, M., Kotzé, P., and van der Merwe, A. (2011). Se-
cure cloud computing: Benefits, risks and controls. In
Venter, H. S., Coetzee, M., and Loock, M., editors,
Information Security South Africa Conference 2011,
ISSA 2011. ISSA, Pretoria, South Africa.

Cheng, B. H. C., Doherty, B., Polanco, N., and Pasco, M.
(2019). Security Patterns for Automotive Systems. In
MODELS’19.

Dantas, Y. G. and Nigam, V. (2022). Automating Safety
and Security Co-Design through Semantically-Rich
Architectural Patterns. ACM Trans. Cyber Phys. Syst.

Dolev, D. and Yao, A. C. (1983). On the security of public
key protocols. IEEE Trans. Inf. Theory, 29(2):198–207.

Eliseev, V., Miliukova, E., and Kolpinskiy, S. (2021). Neural
Network Cryptographic Obfuscation for Trusted Cloud
Computing. In Integrated Models and Soft Computing
in Artificial Intelligence, pages 201–207.

Gelfond, M. and Lifschitz, V. (1990). Logic programs with
classical negation. In ICLP.

Lifschitz, V. (2019). Answer Set Programming. Springer.
Oleshchuk, V. A. and Køien, G. M. (2011). Security and pri-

vacy in the cloud a long-term view. In 2011 2nd Inter-
national Conference on Wireless Communication, Ve-
hicular Technology, Information Theory and Aerospace
& Electronic Systems Technology (Wireless VITAE).

Potassco (2022). Clingo: A grounder and solver for logic
programs https://github.com/potassco/clingo.

SeCloud (2022). https://github.com/ygdantas/SeCloud.
Shostack, A. (2014). Threat Modeling: Designing for Secu-

rity. Wiley.
Spanaki, P. and Sklavos, N. (2018). Cloud Computing: Secu-

rity Issues and Establishing Virtual Cloud Environment
via Vagrant to Secure Cloud Hosts. In Computer and
Network Security Essentials, pages 539–553. Springer.

Vasudev, H., Deshpande, V., Das, D., and Das, S. K. (2020).
A Lightweight Mutual Authentication Protocol for
V2V Communication in Internet of Vehicles. IEEE
Trans. Veh. Technol., 69(6):6709–6717.

SeCloud: Computer-Aided Support for Selecting Security Measures for Cloud Architectures

275

Chapter 8

Integrating Security Knowledge in
MBSE: A Plugin for Automated
Synthesis

Chapter 8 focuses on the integration of the developed logic programming tool [43], designed
for reasoning about security activities, into a model-based systems engineering (MBSE)
framework. Within this chapter, a plugin aimed at automating security synthesis within
the MBSE context is proposed. We exemplify the use of the developed plugin using an
example taken from the unmanned air vehicle domain.

Contributing article:

• Yuri Gil Dantas, Vivek Nigam, and Ulrich Schöpp: A Model-Based Systems Engi-
neering Plugin for Cloud Security Architecture Design. SN Computer Science 2024:
Volume 5, Article number: 553.

Copyright information: The article [44] is reproduced with permission from Springer
Nature. License number: 5798741399960. Print rights of the Version of Record are provided
for; electronic rights for use only on institutional repository as defined by the Sherpa
guideline (www.sherpa.ac.uk/romeo/) and only up to what is required by the awarding
institution.

Author contributions: The idea of developing a Model-Based Systems Engineering
(MBSE) plugin for securing cloud architectures was brought up by Yuri Gil Dantas, Vivek
Nigam and Ulrich Schöpp. They had several discussions on how the interfaces with the
backend (previously developed by the same authors [43]) should be designed. With the
help of Ulrich Schöpp, Yuri Gil Dantas implemented the MBSE plugin. Yuri Gil Dantas
also had several discussions with MBSE researchers at fortiss. Yuri Gil Dantas and Ulrich
Schöpp took the lead in writing the initial draft of the article, in particular Yuri Gil Dantas
wrote the core sections (i.e., Section 3 and Section 4) of the article.

Vol.:(0123456789)

SN Computer Science (2024) 5:553
https://doi.org/10.1007/s42979-024-02748-x

SN Computer Science

ORIGINAL RESEARCH

A Model‑Based Systems Engineering Plugin for Cloud Security
Architecture Design

Yuri Gil Dantas1 · Vivek Nigam2 · Ulrich Schöpp1

Received: 23 July 2023 / Accepted: 26 February 2024
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024

Abstract
Security is one of the biggest concerns for cloud infrastructures. Cloud infrastructures are susceptible to a wide range of threats,
including external and internal threats. Without proper security mechanisms, these threats may compromise the security proper-
ties of services hosted in the cloud. To secure cloud infrastructures against threats, it is crucial to perform a threat analysis in the
early stages of the system development (i.e., during the design of the system architecture). Threat Analysis and Risk Assessment
(TARA) is a well-known approach used by researchers and practitioners. TARA consists of several activities, including asset
identification, threat scenarios, attack paths, and risk treatment decision. The risk treatment decision activity involves selecting
appropriate security measures to mitigate the identified threat scenarios. In the current state of practice, TARA activities are
performed manually by engineers, leading to time-consuming processes and potential errors. In our previous article, we proposed
a logic programming tool to enable the automation of TARA activities, including the recommendation of cloud-based security
measures. This article proposes Security Pattern Synthesis, a Model-Based Systems Engineering (MBSE) plugin for securing
cloud architectures. Security Pattern Synthesis is implemented in Java while using the previously proposed logic-programming
tool as a backend to reason about the security of the cloud architecture.

Keywords Securing cloud architectures · Model-based systems engineering · Security architecture patterns · Automation

Introduction

Providing connected applications presents many challenges.
It it not enough to implement just the application functions
themselves. For productive operation, there are additional
requirements for reliability, observability, manageability and
security. Cloud technologies offer building blocks to address
such requirements. They provide runtime environments with
mechanisms to address reliability, scalability and resilience,

e.g., by load balancing, automatic scaling and redundant,
and distributed deployment of components. They provide
interfaces and tools for monitoring performance and opera-
tional details. They support the implementation of modern
security architectures, such as zero trust architectures [1],
e.g., by providing the interfaces and components to imple-
ment authentication and authorization architectures.

While cloud infrastructures provide many benefits to the
application developer, their use presents significant chal-
lenges. Security is one of the biggest concerns. A literature
review conducted by [2] confirms that security is the main
risk for businesses using cloud infrastructures. One risk is
that when using cloud infrastructures operated by third-party
providers, the application data is no longer controlled by the
client who purchased the cloud service.

Two attack surfaces need to be considered for cloud
applications: First, external attackers may carry out attacks
via external interfaces [3]. For instance, external attacker
may carry out spoofing attacks to impersonate legitimate
clients. Second, because application components are hosted
on a cloud infrastructure that may be controlled by third
parties, it is also essential to consider internal interfaces as

This article is part of the topical collection “Recent Trends on
Information Systems Security and Privacy” guest edited by Steven
Furnell and Paolo Mori.

 * Yuri Gil Dantas
 dantasyg@gmail.com

 Vivek Nigam
 vivek.nigam@gmail.com

 Ulrich Schöpp
 schoepp@fortiss.org

1 Fortiss GmbH, Munich, Germany
2 Federal University of Paraíba, João Pessoa, Brazil

 SN Computer Science (2024) 5:553 553 Page 2 of 20

SN Computer Science

possible attack surfaces. An internal interface may be the
source of attacks, e.g., because of a misconfiguration of the
network connection between data centers, allowing unau-
thorized access, or even intentionally malicious insiders [4].
To implement an effective defense-in-depth strategy, it is
important to also consider threats originating from internal
services. Potential attacks through these attack surfaces must
be mitigated by selecting and deploying suitable security
measures for cloud infrastructures.

To secure cloud applications against threats at these two
attack surfaces, it is important to perform a threat analy-
sis in the early stages of the system development, so that
the application architecture can be designed to mitigate
potential threats and to avoid expensive changes later in
the cloud system life-cycle. A threat analysis includes of
identifying assets, threat scenarios, and possible attack
paths. On the basis of a threat analysis, one can then select
security measures to mitigate the identified threat scenarios
and reduce the risk of threats to an acceptable level. Threat
Analysis and Risk Assessment (TARA) [5] is a well-know
threat analysis approach used in several domains, such as
automotive.

Identifying threat scenarios and selecting a suitable secu-
rity architecture to mitigate them is a difficult challenge for
cloud applications. Performing a comprehensive threat
analysis and keeping it up-to-date during development is
requires a lot of effort. In addition to having to consider
both internal and external attack surfaces, the complexity

of cloud technologies and the number of possible design
choices makes the evaluation and comparison of architecture
options a difficult task.

There are a vast number cloud architectures, technolo-
gies, components, frameworks and platforms to choose
from, and it is hardly feasible to evaluate the implications
of all possible choices in detail, e.g., due to resource and
time constraints. Even when the technologies are under-
stood in principle, it is not easy to keep track of the con-
sequences of selecting a combination of them. One would
also like to understand the trade-offs between different
choices regarding system development and operation, e.g.,
in the form of additional requirements for certificate man-
agement, or regarding resource overhead.

In an effort to give a systematic overview of the avail-
able cloud technologies, the Cloud Native Foundation has
produced the cloud native landscape.1 An excerpt of the
landscape is shown in Fig. 1. Each of the tiles in this figure
represents a component or framework that may be used in
an application. It may require weeks to understand in detail
the impacts of using each of these components for an appli-
cation. The challenge of selecting a suitable combination
of components may be summarized by the following quote:

The cloud native landscape is vast, and it’s easy
to become overwhelmed by its growing number of

Fig. 1 Cloud native technology landscape (excerpt) [6]

1 https:// lands cape. cncf. io/.

SN Computer Science (2024) 5:553 Page 3 of 20 553

SN Computer Science

competing and overlapping platforms and technolo-
gies.2

To give a concrete example of possible choices to address
a potential threat, consider the problem of securing internal
service to service communication. Suppose our cloud appli-
cation consists of several internal services that communicate
with each other internally. Depending on the configuration
of the cloud infrastructure, these services may be deployed
in different data centers, so it is important to secure the com-
munication between them. Services need to be authenticate
themselves between each other to avoid spoofing attacks. The
transmitted data must be protected against tampering. Figure 3
shows a few options for securing service-to-service communi-
cation against tampering and spoofing, and to achieve mutual
authentication (Fig. 2).

• Baseline: The baseline is unsecured communication
using http. While this communication is susceptible to
spoofing and tampering attacks, this baseline option may
still be suitable if a security perimeter can be established.

This may be the case if both services are hosted on a
trusted private network or private infrastructure.

• Mutual TLS: A second option is to use the mTLS proto-
col for encrypting communication and to achieve mutual
authentication. It is the responsibility of the application
developers to secure the communication using mTLS, i.e.,
the use of mTLS will become an application requirement.
It is important to take into account that this requires the
application developers to have experience with secure cod-
ing practices. The incorrect use of cryptographic libraries
has been the source of many security issues, see, e.g., [7].
Moreover, the use of mTLS requires both services to be
issued with TLS certificates, which need to be renewed in
operation when they expire or are revoked.

• TLS with OpenID Connect: A third option is to use
TLS just for encryption and to use an authentication
protocol like OpenID Connect [8]. This option can be
implemented by integrating off-the-shelf components of
this protocol, such as Keycloak, where the authentication
servers need to be operated an be available for reliable
operation. Application developers need to make sure that
the services perform authentication.

• Kubernetes network plugin: A more transparent option
is to build on the infrastructure to perform encryption and

Fig. 2 Some options for securing service-to-service communication

Fig. 3 High-level architecture of
running example

2 https:// www. cncf. io/ blog/ 2020/ 09/ 15/ top-7- chall enges- to- becom
ing- cloud- native.

 SN Computer Science (2024) 5:553 553 Page 4 of 20

SN Computer Science

mutual authentication between services. For example,
the Kubernetes network plugin Cilium is able to encrypt
communication and to authenticate the communication
between services on the network level using the IPSec
protocol. In this case, there are no additional application
requirements for the development of the services. How-
ever, the application deployment to Kubernetes must be
configured to use the Cilium plugin correctly.

• Service mesh: Another option for transparent securing
of service-to-service communication is the use of a ser-
vice mesh like Istio or linkerd. Here, the communica-
tion is secured on the application level rather than on
the network level as in the previous option. The idea if a
service mesh is to deploy additional proxy components,
which implement the communication along a software
defined service mesh. The application services commu-
nicate only locally with proxy components. The proxies
are managed by the service mesh. It is their responsibility
to securely relay the communication to the target service.
They take care of tasks like encryption, authentication,
and authorization. The service mesh is responsible for
administrative tasks like certificate rotation.

This outlines the several options that require consideration
when selecting a security architecture for cloud-based sys-
tems. As outlined, each of these options has a advantages,
such as being transparent to the application, and disadvan-
tages, such as importing a dependency to a complex technol-
ogy component like Cilium or Istio. Moreover, the discus-
sion addresses only the threats of tampering and spoofing
attacks. To protect against elevation of privilege attacks, one
would additionally like to authorize the actions of services.
As one considers multiple threat scenarios and possible miti-
gations, it becomes a complex task to consider all possible
options and to understand how they may be combined and
what the trade-offs between different choices are.

Goal and Contribution

In our previous article [6], we proposed SeCloud: a logic-
based automated tool for the recommendation of security
measures for cloud architectures. Despite its effectiveness
in automating the recommendation of security measures,
SeCloud operates solely through a command-line inter-
face. Recognizing that the industry frequently employs a
model-based systems engineering approach across various
disciplines, including security, we aim to align with this
approach. Model-based development is based on the idea
of providing integrated tool support for the whole design
and development process from requirement analysis and
architecture modeling up to the final configuration of the
completed system. This integrated approach is essential for

the design of the security architecture of cloud systems.
The security architecture needs to be maintained, revisited
and updated throughout the life-cycle of an application. As
shown in this article, a model-based approach allows us to
automate security activities in the application design phases.

The goal of this article is to leverage a model-based
approach for seamlessly integrating SeCloud into a
model-based systems engineering tool. This integration
enhances the tool’s usability and makes it more accessible
to a broader user base. We propose Security Pattern Syn-
thesis, a plugin for the model-based systems engineering
tool AutoFOCUS 3 [9]. The developed plugin supports the
security analysis and selection of cloud architectures using
a model-based approach. The core functionality of the pro-
posed plugin is SeCloud [6]. SeCloud is implemented in
the logic programming engine clingo [10], while AutoFO-
CUS 3 is implemented in Java. We have integrated SeCloud
into AutoFOCUS 3 in the form of the Security Pattern
Synthesis plugin. The main target user for Security Pat-
tern Synthesis is security engineers responsible for assess-
ing the security of cloud architectures and hardening such
architectures with security measures.

In summary, this article is an extended version of our
article published at ICISSP 2023 [6]. To ensure the self-con-
tained nature of this article, we provide a detailed descrip-
tion of the reasoning core of SeCloud, which was omitted
from the ICISSP article due to space constraints. Addition-
ally, as the main contribution, we present the integration
of SeCloud into a model-based systems engineering tool.

Roadmap

The remainder of this article is structured as follows:

• Section “Running Example” provides the description of
a real cloud application serving as a running example for
explaining Security Pattern Synthesis.

• Section “SeCloud”” provides a verbose description of
SeCloud, including its workflow, domain-specific language,
and reasoning core. This verbose description represents a
minor contribution to this article, which had been omitted
from our prior publication due to space constraints.

• Section “Security Pattern Synthesis” provides the
description Security Pattern Synthesis, specifically
focusing on how SeCloud integrates into a model-based
systems engineering tool. This section represents the
main contribution of the article.

• Sections “Related Work” and “Conclusion” conclude the
article by discussing related and future work.

SN Computer Science (2024) 5:553 Page 5 of 20 553

SN Computer Science

SeCloud is available online at [11], and interested readers
have the option to request the binary of Security Pattern
Synthesis when needed.

Running Example

The Security Pattern Synthesis plugin assists with the
design of a technical security architecture for cloud applica-
tions. In this section, we introduce a running example for the
explanation and evaluation of both SeCloud and Security
Pattern Synthesis.

The running example is a real cloud application devel-
oped in a research project on the digitalization and auto-
mation in avionics systems. The application coordinates
unmanned air vehicles (UAVs) and provides services, such
as transportation services or search-and-rescue services.
It optimizes the usage of UAV and implements planning,
optimization and prognostic health management functions.
While the particular details of the use-case are not important
for the presentation of our tools, the application provides a
realistic use-case. Security is particularly important in this
use-case, as attacker may gain control over UAVs, which
may have severe implications for safety.

The role of Security Pattern Synthesis is to automate
parts of the security analysis and to support the selection of
cloud technologies at an early stage in the system develop-
ment, where the main components and their interfaces have
been identified, but where the security architecture of the
system is still under consideration.

Following, a model-based approach, we model different
aspects of the application at different abstraction levels.

Logical Architecture

The logical architecture captures the hierarchical structure
of the application into logical blocks of systems and their
sub-systems. The logical architecture captures communica-
tion interfaces between these components.

Figure 3 gives an overview of the logical architecture of
the components of the example application. They are the
Service Broker (SB), Multi Resource Manager (MRM),
Cognitive Assistant (CA), Operations Manager (OM), Fleet
Manager (FM). Together, these components perform the
provided services like goods transportation or search-and-
rescue operations. The SB manages the requests by the user,
MRM and CA plan and optimize the selection of assets,
OM is responsible for orchestrating operative tasks, such as
pre-flight preparation of UAVs and post-flight maintenance,
and FM records and analyzes fleet data to enable predictive
maintenance. These components are intended to be deployed
on a cloud platform. They implement the overall service and
provide public interfaces where clients can access the ser-
vices. They communicate with with ground control stations
for executing missions. Ground control stations are operated
by Drone Operators with their own infrastructure.

The components communicate with each other through
two mechanisms. First, components communicate directly
with each other over bidirectional channels. On a technical
level, these direct communication interfaces will be realized
by Rest/HTTP APIs that allow direct access to resources.
Second, the components use a service-based architecture for
pub/sub communication. On a technical level, this will be
implemented by Kafka.3 Kafka provides named topics where
the application components may publish messages about
certain aspects, e.g. the topic av-updates is intended for
messages pertaining to the status of air vehicles. These mes-
sages are delivered to all components that subscribe to them.
For example, the Operations Manager receives telemetry
data from the ground control station and publishes this to
av-updates. The Fleet Manager subscribes to this topic
and thus receives telemetry updates. Pub/sub communica-
tion is convenient for decoupling components, but also intro-
duces challenges for security, e.g. for limiting the impact of
the compromise of one internal component.

Fig. 4 Task architecture of
running example: The gray area
specifies the item boundary

3 https:// kafka. apache. org/.

 SN Computer Science (2024) 5:553 553 Page 6 of 20

SN Computer Science

Task Architecture

The task (a.k.a. software) architecture models the software
components that implement the components from the logical
architecture. In our case, the components of the task archi-
tecture are given by Docker components. The components
of the logical architecture are implemented by containers.

Figure 4 shows the task architecture of the our example
application system. It contains containers that implement
the application components, as well as additional support
containers. The logical components from Fig. 3 are subdi-
vided into sub-component that, in this example, each map
to exactly one container. For example, the Service Broker
has two sub-components SB and SB-DB, the first of which
implements the component’s nominal functions, and the
second of which provides a database to support the main
component. On a technical level, both components are real-
ized by containers, as shown in Fig. 4. In general, it is also
possible to map multiple logical components on the same
container.

In addition to containers implementing the components
of the logical architecture, there are additional support con-
tainers, such an Ingress component that acts as a gateway for
external communication from the cloud infrastructure that
hosts the main components of the system. In particular, the
topic-based communication of the service-oriented archi-
tecture from Fig. 3 is implemented by Kafka. The deploy-
ment of Kafka is now made explicit in the task architec-
ture. While, in realistic deployments, Kafka will likely be
deployed redundantly, it suffices to consider it as a single
container for our purposes. A GCS-Relay container that
provides an interface for ground control stations to and that
relays messages from and to Kafka topics.

Figure 4 shows assumptions about the deployment and
the security environment of the system. We consider client
a public, external component, to which attackers have full
access. Most of the components are intended to be hosted on
a cloud platform, where ingress serves as a gateway com-
ponent. While ground control station is part of the overall
system, it needs to be hosted on-site at an airport rather than
in the cloud. These assumptions are formalizes by a mapping

of the task architecture to a platform architecture, which we
outline next.

Platform Architecture

The final layer of the architecture considered in this work is
the platform architecture. It captures assumptions about the
hardware that the containers are deployed.

Figure 5 shows the coarse design of a platform architec-
ture at an early design stage. The red boxes represent hard-
ware units, such as data centers or individual machines. The
blue boxes model network connections and assumptions
about the network.

The components from the task architecture are allocated
to hardware units in the platform architecture. In our exam-
ple, the containers of the drone operator are allocated to the
GCS Drone Center, the Client is allocated to a catch-all node
for external systems, Ingress is allocated to the Gateway,
and the remaining components of the cloud infrastructure
are allocated to the Internal Data Center. These allocations
formalize the item boundaries from Fig. 4.

We provided an informal description of the relationships
between logical, task, and platform architecture using the
example. In AutoFOCUS3 [12], the allocations from logical
architecture to task architecture and from task architecture
to platform architecture are defined in the form of allocation
tables.

SeCloud

SeCloud is a tool for automating the computation of TARA
activities. The current implementation of SeCloud auto-
mates four TARA activities, namely threat conditions, threat
scenarios, attack paths, and security architecture patterns
for mitigating threat scenarios. These patterns are specifi-
cally designed for cloud-based systems, aiming to mitigate
threat scenarios that may arise within cloud infrastructures.
SeCloud has been implemented in the logic programming
tool clingo [10]. SeCloud has been introduced in our previ-
ous article [6]. This article provides a more comprehensive

Fig. 5 Platform architecture of
running example

SN Computer Science (2024) 5:553 Page 7 of 20 553

SN Computer Science

description of SeCloud, including further implementation
descriptions. Although the main focus of this article is on
the cloud, we present SeCloud in a more generic manner.

SeCloud provides lightweight semantics for key artifacts
computed by activities performed throughout the design of
the system architecture (i.e., during the concept phase).
By lightweight semantics, we mean a defined vocabulary
for which the meaning is understood in the corresponding
domain. We consider three domains, namely systems engi-
neering, security and cloud. Key artifacts from such domains
for automating TARA activities are system architecture arti-
facts, security artifacts computed by TARA activities, and
cloud-based patterns. By incorporating lightweight seman-
tics for key artifacts into a (domain specific) language,
machines may understand their meaning, interpret, and make
informed decisions based on the meaning of such artifacts.

Before delving into technical details (i.e., how SeCloud
represents lightweight semantics to key artifacts and reason to
automate TARA activities), we provide a high-level descrip-
tion of SeCloud ’s behavior. This is illustrated through the
activity diagram depicted in Fig. 6. Actions in the activity dia-
gram are represented as yellow rectangles, with the action title
written at the top of each rectangle. Each action may contain
one or more parameters represented as light red rectangles.
Input parameters are positioned on the left side or at top of the
action and output parameters are positioned on the right side
or at the bottom of the action. Control flows from one action
to another are represented as dashed lines, while object flows
from output to input parameters are represented as normal
line. The blue circles represents the sequence of the actions.

The first two actions denote the specification of system
architecture and security artifacts. Examples of system
architecture artifacts are logical components and commu-
nication channels between logical components, which may

be modeled using a model-based systesm engineering tool.
Regarding the security artifacts, SeCloud expects that at
least assets are specified, such as which logical components
shall be protected from a security perspective. The action
Compute threat conditions receives the specified assets as
input and compute one or more threat conditions, i.e., which
security properties are relevant for the asset. Next, the action
Compute attack paths receives the specified assets and
system architecture artifacts as input and computes attack
paths. The action Compute threat scenarios receives the
specified assets and attack paths as input and computes one
or more threat scenarios that may violate the security prop-
erties of the corresponding asset. The action Recommend
security architecture patterns recommends a set of suit-
able cloud-based patterns based on the outputs from actions
Compute threat conditions, Compute threat scenario
and Compute attack path. The next action Instantiate
patterns provides an instantiation of each recommended
pattern into the system architecture. Finally, the last action
Compute pattern requirements provides requirements for
the recommended patterns, i.e., requirements that shall be
implemented and tested to ensure that the pattern works as
intended.

The rest of this section describes SeCloud, including
the implementation details that have been implemented in
clingo. To help the reader in comprehending these imple-
mentation details, we present a brief description of clingo.

Clingo [10]. Clingo is an open-source software tool used
for solving logic programs implemented based on Answer-
Set Programming (ASP) semantics [13]. A logic program
consist of rules that define relationships and constraints.
Each rule is of the form a0 ← a

1
,..., an , where the literal a0

is the head of the rule, and the literals a
1
,..., an are the body

of the rule. A literal is an atom (a
m

) or a negated atom (¬

Fig. 6 SeCloud: activity diagram

 SN Computer Science (2024) 5:553 553 Page 8 of 20

SN Computer Science

a
m
). A rule is considered valid if the body of the rule is valid.

A rule with an empty head is a constraint. An answer set is
an interpretation satisfying a set of rules and constraints.
When an answer set if found by clingo, it provides a pos-
sible solution to the given problem. If there are multiple
answer sets, each one represents a distinct solution. In the
context of this article, we refer to these clingo solutions as
architecture solutions. This article uses the clingo notation,

where :- denotes ← , and not denotes ¬ . Identifiers beginning
with capital letters (e.g., Ax, By) denote variables that dur-
ing clingo’s execution are instantiated by appropriate terms.
Identifiers beginning with a lower-case letter (e.g., a, b) are
constants. The _ (underscore) character specifies that the
argument can be ignored in the current rule.

Table 1 SeCloud: DSL for
selected architecture elements
and security artifacts

Fact Description

Architectural elements

component inp(id,idi) id is a logical component and it has an input port idi.

component out(id,ido) id is a logical component and it has an output port ido.

channel(id,ido,idi) id is a logical channel connecting an output port ido to an
input port idi, where the ports belong to different logical
components.

pub(id,tp,ido) id is a logical component that publishers topic tp through
output port ido.

sub(id,tp,idi) id is a logical component that subscribers to topic tp through
input port idi.

task inp(id,idi) id is a task container and it has an input port idi.

task out(id,ido) id is a task container and it has an output port ido.

signal(id,ido,idi) id is a signal connecting an output port ido to an input port
idi, where the ports belong to different task containers.

hardware inp(id,idi) id is a hardware unit and it has an input port idi.

hardware out(id,ido) id is a hardware unit and it has an output port ido.

transmission
(id,ido,idi)

id is a transmission channel connecting an output port ido
to an input port idi, where the ports belong to different
hardware units.

gateway(id) id is a gateway element.

public(id) id is a public element that may be accessible by external
users.

allocation(id1,id2) denotes the allocation of element id1 to id2, such the
allocation of task container id1 to hardware unit id2.

Security artifacts

asset(id) denotes that element id is an asset.

threat condition
(id,secp,idast)

id is the adverse consequence if the security prop-
erty secp of asset idast is violated, where secp ∈
{authenticity, integrity, authorization}.

threat scenario
(id,tsdes,as,ts,idast)

id is a threat scenario, with description tsdes, orig-
inating from element as, to violate the security
property of asset idast with threat ts, where ts ∈
{spoofing, tampering, elevation of privilege}.

attack path
(id,el,idast)

id is an attack path denoting that malicious data may be
injected from element el to target asset idast.

SN Computer Science (2024) 5:553 Page 9 of 20 553

SN Computer Science

Domain‑Specific Language

SeCloud provides a Domain-Specific Language (DSL) for
specifying system architecture artifacts, security artifacts,
and security architecture patterns. The goal is to provide a
precise specification of such artifacts and patterns to facili-
tate the automatation of TARA activities. Table 1 describes
our DSL for specifying selected system architecture arti-
facts and security artifacts. The DSL for specifying system
architecture artifacts consists of different architecture views:
logical architecture, task architecture, and platform (a.k.a.

hardware) architecture. Our DSL provides a predicate allo-
cation to specify the allocation from logical components to
task containers and from task containers to hardware units.
A hardware unit may be annotated as either a public ele-
ment or a gateway element. The former specifies a hardware
unit that may be accessed by external users (e.g., attackers),
while the latter specifies a gateway sitting between a trusted
and untrusted network. We expect that the user of SeCloud
specifies both the system architecture artifacts and security
artifacts (at least the identified assets). This specification
can be done manually or derived in an automated fashion

Table 2 SeCloud: DSL for
security architecture patterns [6] Fact Description

Security architecture patterns

security pattern
(id,pat,cp,inp,int,out)

id is the unique identification of security architecture pattern
pat. This pattern consists of a list of components cp. The
last three parameters inp, int and out denote, respectively,
the input, the internal, and the output channels related to
the pattern.

pattern attribute
(pat,as,secp,ts)

pat is a security architecture pattern suitable for satisfying
the security property secp by mitigating threat ts at the
attack surface as.
as ∈ {external interface, internal interface},
secp ∈ {authenticity, integrity, authorization},
ts ∈ {spoofing, tampering, elevation of privilege}.

Table 3 Instantiation of the
OpenID Connect pattern. The
assumptions represent only a
selection

Description SeCloud Specification

Name OpenIDConnect NAME=openIDConnect;

Structure
COMPONENTS=[s1,s2,server];
INTERNAL CH=[int1,int2,int3];
OUTPUT CH=[out1];

Intent This pattern is used when a client
(Service 1) wants to authenti-
cate herself before accessing cloud
services (Service 2). The authen-
tication process is performed by
the OpenIDConnect Server and
confirmed by (Service 2).

TYPE SEC PROPERTY=
[authenticity];
TYPE THREAT=[spoofing];
TYPE ATTACK SURFACE=
[external interface,
internal interface];

Problem
addressed

This pattern prevents spoofing
attacks performed by the client.
The client may be an external
entity or an internal entity.

Assumptions
(selection)

Service 1 has has obtained the
credentials from OpenIDConnect
Server.

TYPE ASSUMPTION=
has obtained credentials from
OpenID Connect Server;
COMPONENTS=[s1,server];

 SN Computer Science (2024) 5:553 553 Page 10 of 20

SN Computer Science

from a model-based system engineering tool, as shown in
Section “Security Pattern Synthesis”.

Example: We provide an example on how a user of
SeCloud may specify one logical component, one task con-
tainer, and one hardware unit from the logical, task, and plat-
form architectures illustrated, respectively, in Figs. 3, 4, and 5.

As discussed in Section “Security Reasoning Principles”,
SeCloud may reason about the above representation in
order to, e.g., infer that task task_client and logical com-
ponent client are public elements by interpreting the facts
specified in the allocation predicate.

Our DSL provides predicates specifically tailored for
specifying security architecture patterns. It consists of predi-
cates that allow for the specification of

 (i) the attributes of security architecture patterns, and
 (ii) the instantiation of security architecture patterns.

The attributes of a security architecture pattern includes the
intent of the pattern and the problem addressed by the pat-
tern, while the instantiation of a security architecture pattern
consists of pattern components and channels. Specifically,
the pattern attribute consists of the desired security property
achieved by the pattern (i.e., intent of the pattern), the threat
addressed by the pattern, and the attack surface suitable to
instantiate the pattern. The attack surface is an abstract
term that describes whether an attack path includes public
elements or not. It provides a distinction between internal
interfaces, which correspond to attack paths originating from
within the system boundary without involving public ele-
ments, and external interfaces, which correspond to attack
paths that do involve public elements. Table 2 provides an
overview and description of such predicates and the cor-
responding facts.

The current implementation of SeCloud supports five
security architecture patterns, namely Cilium, TLS, Mutual

Authentication, OpenID Connect, and Service Mesh Istio.
Our previous article [6] explained the specification of the
predicates from Table 2 for the Mutual Authentication pat-
tern. This article focuses on providing explanations for the
specification of the OpenID Connect pattern.

OpenID Connect.4 OpenID Connect is an authentica-
tion protocol built on top of OAuth 2.0. OpenID Connect
allows a client to authenticate herself when accessing web
or cloud services. An OpenID Connect server verifies the
client’s credentials (e.g., username and password) and
issues identity tokens [6]. The authenticity of these iden-
tity tokens is subsequently verified by a cloud service,
ensuring a secure authentication process against spoofing
attacks. OpenID Connect may be used by either internal
cloud services or an external client trying to access an
internal cloud service. The instantiation of the OpenID-
Connect pattern is shown in Table 3.

Based on the content of OpenIDConnect described in
Table 3, SeCloud instantiates the predicates security_pat-
tern and pattern_attribute as follows:

Security Reasoning Principles

SeCloud provides reasoning principles to automate TARA
activities based on the proposed DSL. That is, by leverag-
ing SeCloud ’s DSL, one can specify system architecture
artifacts, security artifacts, and security architecture pat-
terns, and query clingo’s reasoning engine to automate
TARA activities. SeCloud automates the computation of
four TARA activities, namely threat condition, attack paths,
threat scenarios, and the recommendation of security archi-
tecture patterns to mitigate threat scenarios.

SeCloud performs its analysis at the task architecture,
in particular for enumerating attack paths. To this end,
SeCloud derives relevant information annotated to either
the logical architecture or the platform architecture to the
task architecture. For example, assets are specified in the
logical architecture, and public or gateway hardware units
are specified in the platform architecture. SeCloud derives
assets and public elements (gateway is derived in a similar
way) to tasks as follows:

4 https:// openid. net/ conne ct

SN Computer Science (2024) 5:553 Page 11 of 20 553

SN Computer Science

Example: Consider, e.g., the asset Service Broker in the
logical architecture depicted in Fig. 3. Based on the first rule,
the task SB, from the task architecture illustrated in Fig. 4,
will become an asset.

Threat Conditions. SeCloud considers the assets pro-
vided as input information by the user to compute threat
conditions. A threat condition includes the security prop-
erty of the asset that shall be protected from a security
perspective. The current implementation of SeCloud
considers three security properties, namely authenticity,
authorization, and integrity. SeCloud implements the fol-
lowing rule to enable the automated computation of threat
conditions.

Example: Consider, e.g., the asset SB in the task archi-
tecture illustrated in Fig. 4. SeCloud computes three threat
conditions for SB, i.e., one threat condition for each security
property, namely authenticity, authorization, and integrity.
Notice that additional properties may be considered, such
as availability.

Attack Paths. SeCloud considers the specified sys-
tem architecture artifacts along with an intruder model to
compute attack paths. Our intruder model is based on the
intruder models proposed by [14] and [4], which are referred
to as the external and internal intruders, respectively.

• The external intruder [14] may inject malicious data
into the cloud through public interfaces. The intruder
intends to violate the security property of assets (inside
the system boundary) from outside the system boundary.

• The internal intruder [4] is a powerful intruder that may
access every port within the task/container architecture,
all within the system boundary. As a result, the internal
intruder may inject malicious data into other containers
(assets), ultimately compromising the security properties
of these assets.

The initial step in computing attack paths based on the exter-
nal intruder is the identification of the entry points in the
architecture. This information is obtained from the speci-
fied system architecture artifacts in which public elements
are assigned to hardware units in the platform architecture.
SeCloud performs the attack path analysis in the task archi-
tecture, where entry points may be inferred through the facts
specified in the allocation predicate, i.e., every task allocated
to a public hardware are themselves considered public ele-
ments. The assets are specified to components within the
logical architecture. Similarly, which tasks are assets may be
inferred through the facts specified in the allocation predi-
cate. Based on the existing information flow specified in the
task architecture, SeCloud computes every possible path
starting from the asset and tracing backward until reach-
ing an entry point. SeCloud implements recursive rules for
computing such attack paths:

• Base case: The identified asset task and its input port are
added to the path.

• Inductive case 1: If Task (possibly the identified asset)
and its input port are in the path, and there exists another
task (Task’) that writes to Task, then Task’ and its output
port are added to the path.

• Inductive case 2: If Task and its output port are in the
path, and there exists another task (Task’) that writes to
Task, then Task and its input port are added to the path.

The inductive cases continue until reaching a port belonging
to a public element. For details about our rules, we refer the
interested reader to SeCloud ’s implementation [11].

Example: Consider the task architecture illustrated in
Fig. 4, where Client is a public element and SB is an asset.
One of the attack paths computed by SeCloud is:

Client → Ingress → SB
The key step in computing attack paths, based on the

internal intruder, involves identifying assets and determining
which tasks might be able to write to those identified assets.
SeCloud operates under the assumption that all ports within
the system boundary are accessible to the intruder. This
assumption is valid because each container port is deployed
to a cloud service, often managed by a third-party provider.
SeCloud implements a reasoning rule for computing attack
paths based on the internal intruder. This rule is outlined
below. This rule checks whether another task (SOURCE)
can write to the task asset through a signal communication.

 SN Computer Science (2024) 5:553 553 Page 12 of 20

SN Computer Science

Notice that this rule is applicable only if SOURCE is not a
public element.

Example: Consider the task architecture illustrated in
Fig. 4, where SB is an asset. One of the attack paths com-
puted by SeCloud is:

Event Broker (Kafka) → SB
Threat Scenarios. SeCloud considers the specified

assets and their corresponding threat conditions to compute
threat scenarios. Additionally, SeCloud also specifies as
part of a threat scenario the source element that may initi-
ate the attack. The source element is obtained from attack
paths. SeCloud uses STRIDE [15] to map security proper-
ties (specified by threat conditions) to threats. This mapping
is illustrated below for the currently three security properties
considered by SeCloud.

authenticity → spoofing
authorization → elevation of privilege
integrity → integrity
SeCloud automates the computation of threat scenarios

with the following rule:

Example: Consider the task architecture illustrated in
Fig. 4, where Client is a public element and SB is an asset.
Additionally, consider the security property authentica-
tion for SB and the attack path Client → Ingress → SB.
SeCloud may compute the following threat scenario, where
the threat description is derived based on the selected argu-
ments as shown in the above rule.

Security Architecture Patterns. SeCloud provides
reasoning rules to enable the automated recommendation
of security architecture patterns. To this end, SeCloud
considers the computed threat conditions, threat sce-
narios, and attack paths. As discussed earlier, SeCloud
provides a predicate, namely pattern_attribute for speci-
fying the intent and problem addressed by the pattern. By
using this predicate along with the provided input infor-
mation, SeCloud takes into account the following condi-
tions for recommending security architecture patterns:

Fig. 7 SeCloud: Illustration of all possible solutions (system architecture with patterns)

Fig. 8 Security Pattern Synthesis: High-level architecture. The artifacts introduced in this article are highlighted in green

SN Computer Science (2024) 5:553 Page 13 of 20 553

SN Computer Science

attack_surface ∈ pattern_attribute
threat ∈ pattern_attribute
security_property ∈ pattern_attribute
SeCloud will recommend a pattern whenever those condi-

tions are met. The next reasoning rule implements the rec-
ommendation of security architecture patterns.

Once the pattern is recommended (i.e., the right side of
the above rule holds), SeCloud instantiates the pattern into
the system architecture. Our instantiation rules are tailored
to each pattern, i.e., specific rules are implemented for each
security architecture pattern. We show below how we instan-
tiate the OpenIDConnect pattern.

The above rule considers the recommended security
pattern, in particular the last argument (i.e., attack path)
specified in recommended_security_pattern. From the
attack path, SeCloud obtains the (malicious) source (i.e.,
the first element) and checks whether the source is a public
element. This is always true if the attack path is computed
based on the external intruder. Next, SeCloud checks the
next element in the path (i.e., the next element after the
source element). The OpenIDConnect pattern is intended
to be instantiated between two services, with the first ser-
vice (i.e., source) sending an identity token to the second
service. It is crucial that the authentication of the token does
not take place through a gateway, but rather by a cloud ser-
vice within the system boundary. To ensure this, SeCloud
checks whether the next element in the path is a gateway.
If SeCloud identifies a gateway, it proceeds to retrieve the
subsequent element in the path (referred as T2 in the above
rule). As a result, SeCloud instantiates the pattern com-
ponents, namely T1, T2 and openIdServer(T1). The pat-
tern channels may be derived in another rule by taking into
account the system architecture artifacts.

SeCloud computes pattern assumptions that shall be valid
to ensure that the pattern works as intended. We show below
one of the assumptions computed by SeCloud for the OpenID
Connect pattern. It assumes that the source service (i.e., T1) has
obtained the credentials from the server (i.e. openIdServer).

The pattern assumptions may translated into require-
ments that shall be realized during the system development.
SeCloud categorizes these requirements into two groups,
namely application requirements and infrastructure require-
ments. The former denotes requirements that need to be con-
sidered in the development of the applications themselves.
The latter denotes requirements that need to be implemented
when building the infrastructure and deploying the compo-
nents. By splitting the requirements into these categories,
our goal is to assist in selecting the most appropriate solution
for their system. For example, a lower number of applica-
tion requirements would require less effort from developers,
as security measures have already been integrated into the
system’s infrastructure.

Design-Space Exploration. Security architecture
patterns are recommended to mitigate threat scenarios.
SeCloud explores which specified patterns are suitable to
mitigate such threat scenarios. That is, SeCloud recom-
mends a security architecture pattern when certain condi-
tions are met. By building on the clingo solver, SeCloud
computes all possible solutions (i.e., system architecture
with security architecture patterns) that satisfies the imple-
mented reasoning rules. Figure 7 depicts several possible
solutions that may be computed by SeCloud.

We acknowledge the possibility of a solution explosion,
where the number of solutions becomes vast, resulting in
issues related to scalability and usability. To address those
issues, SeCloud implements a set of constraints to stream-
line the search process, focusing on the most suitable solu-
tions for the user’s benefit. For example, SeCloud enables
users to trace which threat scenario has been mitigated by
a particular security architecture pattern. This traceability
is facilitated through the mitigated_by(ID_TS,ID_PAT)
predicate, which consists of two parameters, namely the
threat scenario ID and the pattern ID. With the help of this
predicate, SeCloud provides constraints to filter out solu-
tions where (i)a threat scenario has not been mitigated,
and (ii) more than one pattern is instantiated for the same

 SN Computer Science (2024) 5:553 553 Page 14 of 20

SN Computer Science

threat scenario. To further enhance the selection process,
we implement pattern-based constraints where we investi-
gate scenarios where certain solutions may not be optimal.
For example, SeCloud filter out solutions where the TLS
and Mutual Authentication pattern are recommended for
the same element. This decision is taken to avoid redun-
dant solutions where the element would unnecessarily carry
two separate certificates, one for TLS and one for Mutual
Authentication. Our article [6] provides descriptions of all
constraints implemented by SeCloud.

By making use of clingo solver (including the specifica-
tion of constraints), SeCloud achieves automatic search and
optimization to reduce the number of solutions while pre-
serving the most suitable solutions for the user’s benefit. This
constitutes a significant advantage of using ASP solvers like
clingo over other languages, e.g., Java, where the optimiza-
tion process could be time-consuming and prone to errors.

Security Pattern Synthesis

We propose Security Pattern Synthesis, a model-based
systems engineering plugin for hardening cloud architectures
with security architecture patterns. Security Pattern Syn-
thesis has been implemented as part of the Design Space
Exploration (DSE) of AutoFOCUS3 (AF3) [12]. SeCloud

functions as the backend of the proposed plugin to reason
about the security of the system architecture.

The proposed plugin has been developed in Java, while
SeCloud has been developed in the logic programming lan-
guage clingo. EmbASP [16] is a framework for the integra-
tion of logic programming into external systems, such as
systems implemented in Java. We use EmbASP to enable the
Java representation of the predicates specified in SeCloud.
That is, we use EmbASP for the model-to-model (M2M)
transformation from AF3 (Java) to SeCloud (clingo) and
from SeCloud (clingo) to AF3 (Java).

Figure 8 depicts the high-level architecture of Security
Pattern Synthesis. The input artifacts and output artifacts
are depicted in gray. The artifacts highlighted in green
denote the artifacts introduced by this article.

• System architecture: This input artifact consists of the
designed system architecture in the modeling view of
AF3. The system architecture consists of the following
architecture views: logical architecture, task architecture,
platform (a.k.a. hardware) architecture, and allocation
tables. The publish/subscriber pattern for SOA is imple-
mented in the logical architecture enabling the specifica-
tion of publisher ports, subscriber ports, and topics. The
task architecture consists of tasks realizing the imple-
mentation of logical components as software units. The

Fig. 9 Security Pattern Synthesis: Screenshot of the wizard for specifying assets

Fig. 10 Security Pattern Syn-
thesis: Example of M2M trans-
formation: AF3 to SeCloud

SN Computer Science (2024) 5:553 Page 15 of 20 553

SN Computer Science

platform architecture consists of hardware units, where
annotations are allowed to specify which hardware units
are public or which hardware units are gateways. The
allocation table provides a traceability between differ-
ent architecture views. Specifically, the allocation table
consists of allocations of logical components to tasks,
and tasks to hardware units. By checking the allocation
tables, one can check which tasks are public tasks or
gateway tasks. The annotation of which elements are
public or gateways is required by SeCloud to enable the
enumeration of attack paths in an automated fashion.

• Security artifacts: This input artifact consists of the
results of the first TARA activity, namely asset identifi-
cation. The security artifacts provided as input consists
of assets specified as components designed in the logical
architecture. The user may define one or more assets that
needs to be protected from a security perspective. To this
end, we have implemented a wizard to facilitate users
in specifying assets. Figure 9 shows a screenshot of our
wizard for specifying assets. This illustration showcases
the specification of two assets, namely the logical com-
ponents SB and Ground Control Station. This speci-

Fig. 11 Security Pattern
Synthesis: Example of M2M
transformation: SeCloud to
AF3

Fig. 12 Security Pattern Synthesis: Screenshot of the wizard for visualizing architecture solutions with security architecture patterns

 SN Computer Science (2024) 5:553 553 Page 16 of 20

SN Computer Science

fication provides a traceability between assets and the
logical architecture, denoting that such components of
the logical architecture are annotated as assets. The intro-
duction of our wizard improves the usability of SeCloud
by transitioning from a command-line asset specification
to a GUI-based specification.

• M2M Transformation from AF3 to SeCloud: This artifact
provides a M2M transformation from AF3 to SeCloud. That
is, we have implemented a model-to-model transformation
to transform the system architecture models and security
artifacts models to SeCloud models. Figure 10 illustrates
a M2M transformation from a simplistic task architecture
modeled in AF3 to SeCloud. The right side of Fig. 10 illus-
trates the representation of the predicates/facts specified in
SeCloud based on the task architecture modeled in AF3
(left side). The task architecture contains three tasks, namely
Task1,Task2 and Task3, and two signals connecting Task1
to Task3, and Task2 to Task3. The M2M transformation is
implemented with the help of the EmbASP framework. We
represent in Java each relevant predicate specified in the DSL
of SeCloud. This includes the representation of architec-
ture elements (e.g., components, tasks and hardware units)

from each architecture view of AF3, and the representation
of security artifacts. Each predicate is represented by a Java
class. The right side of Fig. 10 illustrates the instantiation
of three predicates in SeCloud, namely task_out(TASK_
ID,OUT_PORT), task_inp(TASK_ID,INP_PORT), and
signal(SIGNAL_ID,OUT_PORT,INP_PORT).

• SeCloud: SeCloud consists of a DSL for specifying system
architecture artifacts, security artifacts, and security archi-
tecture patterns. Additionally, SeCloud consists of security
reasoning rules for automating (i) the computation of threat
conditions for the assets specified as input, (ii) the computa-
tion of threat scenarios for violating security properties of
assets, (iii) the enumeration of attack paths for threat scenar-
ios, and (iv) the recommending security architecture patterns
for mitigating threat scenarios. SeCloud computes pattern
requirements for each recommended security architecture
pattern. These requirements shall be realized to ensure
that the pattern works as intended. A more comprehensive
description of SeCloud has been provided in Sect. 3.

• M2M Transformation from SeCloud to AF3: This artifact
provides a M2M transformation from SeCloud to AF3. That
is, we have implemented a model-to-model transformation to

Fig. 13 Security Pattern Synthesis: Screenshot of the modeled threat scenarios in AutoFOCUS3

SN Computer Science (2024) 5:553 Page 17 of 20 553

SN Computer Science

transform SeCloud models to AF3 models. The transforma-
tions primarily involve the following artifacts computed by
SeCloud, namely (i) threat scenarios, (ii) attack paths, (iii)
security architecture patterns, and (iv) pattern requirements.
The transformation process is similar to the one shown
in Fig. 10, albeit in a reverse order. Figure 11 illustrates a
M2M transformation from a threat scenario computed by
SeCloud to AF3. The upper part of Fig. 11 illustrates the
facts in threat_scenario computed by SeCloud, while the
lower part illustrates the transformed threat scenario mod-
eled within AF3. The predicate threat_scenario contains
the following arguments: threat scenario ID, threat scenario
description, port of architecture element where the attack
may be initiated, threat, and targeted asset. The M2M trans-
formation is implemented with the help of EmbASP.

• Architecture generation: This output artifact provides a
set of solutions, i.e., system architectures along with their
corresponding security architecture patterns. The system
architectures are represented as AF3 models following our
M2M transformation. We have implemented a user-friendly
wizard for visualizing the solutions generated by SeCloud.
The introduction of this wizard improves the usability of
SeCloud by providing users with a GUI-based solution vis-
ualization rather than a command-line solution visualization.
Figure 12 illustrates the developed wizard. This illustration
showcases six architecture solutions computed by SeCloud

along with their respective security architecture patterns. The
number displayed in parentheses next to the security archi-
tecture pattern denotes the required number of instances for
that pattern, e.g., Solution 5 requires one instance for mTLS.
The wizard describes three criteria, namely number of appli-
cation requirements, number of infrastructure requirements,
and number of pattern components. The intended outcome of
these criteria is to assist the user of our plugin in determin-
ing the most suitable architecture solution for their needs.
As described by the next artifact, threat scenarios and attack
paths are also represented as AF3 models, which can be visu-
alized once the user selects a suitable system architecture
with its corresponding security architecture patterns.

• System architecture with patterns and requirements:
This output artifact provides the selected system archi-
tecture with security architecture patterns. The selected
system architecture, along with the pattern requirements,
is exported to the modeling view of AF3. The instan-
tiation of security architecture patterns in the system
architecture may be done automatically. In the current
plugin implementation, Security Pattern Synthesis
instantiates the OpenID Connect pattern in the task
architecture. The specification for the other patterns is
realized by means of security requirements. For exam-
ple, a requirement for the Mutual Authentication pattern
is ‘entities X and Y communicating over a channel Z

Fig. 14 Security Pattern Synthesis: Screenshot of the modeled attack paths in AutoFOCUS3

 SN Computer Science (2024) 5:553 553 Page 18 of 20

SN Computer Science

shall implement the mTLS protocol’, where X, Y and Z
are specific architecture elements. The provided security
requirements shall be implemented and validated during
the system development process. By using our plugin,
patterns and requirements have been incorporated into
the model, ensuring traceability between requirements
and components of the architecture.

• Threat scenarios and attack paths: This output arti-
fact provides threat scenarios and attack paths for the
exported solution selected by the user. Both threat sce-
narios and attack paths are shown in the modeling view
of AF3. Figure 13 depicts a screenshot of the threat sce-
narios in AF3. It contains the description of the threat
scenario, the source (i.e., which port element initiates the
threat scenario), the threat itself, and the targeted asset.
The last column contains which security architecture pat-
tern has been recommended to mitigate the correspond-
ing threat scenario. Omitted in Fig. 13, our wizard also
provides links to pattern requirements, i.e., ensuring
traceability between a threat scenario and the require-
ments designed to mitigate that particular threat scenario.
Figure 14 depicts a screenshot of the attack paths in AF3.
This illustration showcases the attack paths computed by
SeCloud based on the external intruder. The last column
contains the targeted asset for each attack path, such as
the asset Task_SB__ID_12636 from the first attack
path.

Summary

We opted for a model-based approach to integrate SeCloud
into AutoFOCUS 3 in the form of the Security Pattern
Synthesis ’s plugin. This integration involved the trans-
lation of architecture layers within AutoFOCUS 3 into
SeCloud ’s domain-specific language. This translation
enables SeCloud to conduct a security analysis of the sys-
tem architecture. Upon conducting the security analysis,
SeCloud generates results that are subsequently translated
back into AutoFOCUS 3. The introduction of Security Pat-
tern Synthesis establishes traceability between (a) security
artifacts and architecture elements, such as assets and com-
ponents of the logical architecture, and (b) security artifacts,
such as threat scenarios and requirements. As a result, users
can effectively monitor and manage the outcomes of secu-
rity analysis into AutoFOCUS3, including the requirements
required for implementation. To further augment SeCloud
’s user experience, Security Pattern Synthesis introduces
wizards designed to enhance usability. These wizards incor-
porate a user-friendly GUI-based asset specification and
solution visualization. The wizard for solution visualization

is equipped with a set of criteria to assist the user in deter-
mining the most suitable solution for the system.

In our previous article [6], we have performed experi-
ments to evaluate the performance overhead caused by
SeCloud while computing architecture solutions. The per-
formance overhead depends on the number of (a) assets,
(b) attack paths leading to threat scenarios, and (c) security
architecture patterns. SeCloud implements constraints to
achieve automatic search and optimization to reduce the
number of solutions while preserving the most suitable
solutions for the user’s benefit. The implementation of such
constraints resulted in a reduction of the performance over-
head from 3600 s to 0.06, as showed in [6]. While this article
does not include a performance evaluation of Security Pat-
tern Synthesis, reserving this activity for future endeavors,
the results presented in this section (considering two assets)
were computed in a matter of seconds. It is crucial to note,
however, that the computation duration may vary based on
the number of assets, attack paths, and security architecture
patterns taken into consideration, as mentioned earlier.

Related Work

Securing cloud application is an important goal. As we have
explained in Section “Introduction”, in the cloud landscape
one finds a large number of frameworks and components that
support the implementation of secure cloud applications.
The security analysis of application architectures remains
a largely manual activity that can be supported by analy-
sis tools. For example, tools like kube-bench5 can analyse
whether a cloud deployment follows certain guidelines for
secure deployment. Our work in this article is intended to
build on such frameworks and tools by supporting their
selection in the architecture design phase.

In other contexts, especially for safety-critical applica-
tions in the automotive or aerospace sector, regulations make
it necessary to follow a more structured approach to security.
For example, the automotive security standard ISO 21434
defines requirements for the management of security in auto-
motive applications. This includes a systematic threat analy-
sis and risk assessment. There is work on supporting such
activities with model-based approaches, e.g., [17]. There are
commercial tools for support threat analysis and risk assess-
ment, such as itemis SECURE.6

Our work in this article is based on work for automat-
ing security-related activities for automotive applications.
SeCloud is based on SecPat, which as proposed in [18] for
an automotive use case in the context of ISO 21434. SecPat
has been developed using DLV [19]. The intruder model in

5 https:// github. com/ aquas ecuri ty/ kube- bench
6 https:// www. itemis. com/ en/ produ cts/ itemis- secure/.

SN Computer Science (2024) 5:553 Page 19 of 20 553

SN Computer Science

this article is decomposes the intruder model of [14], which
was tailored to service-oriented automotive architectures.

For cloud applications, there also exist tools to support
threat analysis and risk management. One example is com-
mercial took ThreatGet.7 ThreatGet allows the automatic
identification of threat scenarios and attack paths. It provides
suggestions for potential security measures to be selected by
the user. ThreatGet does not instantiate the selected security
measures in the system architecture. As a result, it might be
unclear for the user to identify which components are rel-
evant to the selected security measures. With SeCloud, it is
possible to compute a selection of architecture options where
all identified threats are mitigated by a suitable selection of
security measures. SeCloud instantiates the recommended
security measures by making explicit which components are
part of the security measure (e.g., mTLS for components A
and B).

Microsoft’s Threat Analysis tool8 is another example of
a commercial tool to support the security analysis for cloud
architectures. It is based on STRIDE and helps architects in
identifying potential threats and in documenting their miti-
gation. While SeCloud is also based on STRIDE, it enables
the automated recommendation of architecture options that
address all identified threat scenarios. SeCloud flexible
definition using ASP makes it possible to extend the method
to more fine-grained threat scenario models than STRIDE.

The large number of possible design choices for cloud
applications makes the automation of development tasks
very desirable. For example, there is existing work on auto-
mating the setup of multi-cloud environments [20], or on
the configuration of cloud systems [21]. The overview arti-
cle [22] gives an overview of various approaches to secur-
ing cloud-based microservices, including various tools for
analysing and securing them. SeCloud is intended as a tool
to help users select combinations of the tools and services
outlined in [22] and combine them into a coherent security
architecture that meets the needs of their application. To
achieve this, the list of patterns in SeCloud needs to be
expanded to cover a wider range of framework, tools, and
services.

Conclusion

This article proposes Security Pattern Synthesis, a model-
based system engineering plugin. The proposes plugin
enables the automation of key TARA activities, including
threat scenarios, attack paths, and the recommendation of
security architecture patterns for mitigating threat scenarios.

SeCloud [6] serves as the backend for this proposed plugin.
This article extends the description of SeCloud by provid-
ing a detailed explanation of its core functionality, which
was left out in our previous article. Security Pattern Syn-
thesis has been developed with the intention of reducing
the effort required by security engineers while carrying out
a threat analysis on cloud architectures.

Acknowledgements We thank the German Ministry for Economic
Affairs and Climate Action of Germany for funding this work through
the LuFo V-3 project RTAPHM.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no Conflict of interest.

References

 1. Rose S, Borchert O, Mitchell S, Connelly S. Zero Trust Architec-
ture. Special Publication (NIST SP), National Institute of Stand-
ards and Technology, Gaithersburg, MD 2020. https:// doi. org/ 10.
6028/ NIST. SP. 800- 207

 2. Carroll M, Kotzé P, Merwe A. Secure cloud computing: Benefits,
risks and controls. In: Venter, H.S., Coetzee, M., Loock, M. (eds.)
Information Security South Africa Conference 2011, ISSA 2011.
ISSA, Pretoria, South Africa 2011. https:// doi. org/ 10. 1109/ ISSA.
2011. 60275 19

 3. Eliseev V, Miliukova E, Kolpinskiy S. Neural network crypto-
graphic obfuscation for trusted cloud computing. In: Integrated
Models and Soft Computing in Artificial Intelligence, 2021;pp.
201–207

 4. Oleshchuk VA, Køien GM. Security and privacy in the cloud a
long-term view. In: 2011 2nd International Conference on Wire-
less Communication, Vehicular Technology, Information Theory
and Aerospace & Electronic Systems Technology (Wireless
VITAE), 2011;pp. 1–5 . https:// doi. org/ 10. 1109/ WIREL ESSVI
TAE. 2011. 59408 76

 5. ISO/SAE AWI 21434: Road vehicles - cybersecurity engineering.
2021

 6. Dantas YG, Schöpp U. SeCloud: Computer-aided support for
selecting security measures for cloud architectures. In: Proceed-
ings of the 9th International Conference on Information Systems
Security and Privacy, Lisbon, Portugal, February 22-24, 2023; pp.
264–275. SciTePress, Setúbal, Portugal (2023). https:// doi. org/ 10.
5220/ 00119 01900 003405 .

 7. Egele M, Brumley D, Fratantonio Y, Kruegel C. An empirical
study of cryptographic misuse in android applications. CCS ’13,
2013;pp. 73–84. Association for Computing Machinery, New
York, NY, USA . https:// doi. org/ 10. 1145/ 25088 59. 25166 93

 8. Mainka C, Mladenov V, Schwenk J, Wich T. Sok: Single sign-on
security - an evaluation of openid connect. In: 2017 IEEE Euro-
pean Symposium on Security and Privacy (EuroS &P), 2017;pp.
251–266 . https:// doi. org/ 10. 1109/ EuroSP. 2017. 32

 9. Aravantinos V, Voss S, Teufl S, Hölzl F, Schätz B. AutoFO-
CUS 3: Tooling concepts for seamless, model-based development
of embedded systems. In: Proc. 8th Int. Workshop Model-based
Architecting of Cyber-Physical and Embedded Systems (ACES-
MB), 2015;pp. 19–26

 10. Potassco project: Clingo: A grounder and solver for logic pro-
grams. https:// github. com/ potas sco/ clingo

7 https:// www. threa tget. com.
8 https:// www. micro soft. com/ en- us/ secur ityen ginee ring/ sdl/ threa
tmode ling.

 SN Computer Science (2024) 5:553 553 Page 20 of 20

SN Computer Science

 11. SeCloud: https:// drive. google. com/ file/d/ 1a5Uq ihDLy 9lyL3
MRjgz cy9jx- xhwoG 2o (2022)

 12. fortiss GmbH: AutoFOCUS3 2.21. Available at https:// af3. forti ss.
org/

 13. Gelfond M, Lifschitz V. Logic programs with classical negation.
In: ICLP. 1990

 14. Dantas YG, Barner S, Ke P, Nigam V, Schöpp U. Automating
Vehicle SOA Threat Analysis Using a Model-Based Methodology.
In: Proceedings of the 9th International Conference on Informa-
tion Systems Security and Privacy, Lisbon, Portugal, February
22-24, 2023;pp. 180–191. SciTePress, Setúbal, Portugal (2023).
https:// doi. org/ 10. 5220/ 00117 86400 003405

 15. Shostack A. Threat Modeling: Designing for Security. John Wiley
& Sons, Inc., New York, NY, USA 2014. https:// doi. org/ 10. 5555/
28292 95

 16. EmbASP. Available at https:// www. mat. unical. it/ calim eri/ proje
cts/ embasp/

 17. Jungebloud T, Nguyen N, Kim D, Zimmermann A. Hierarchi-
cal model-based cybersecurity risk assessment during system
design. In: 38th IFIP TC 11 International Conference, SEC 2023
(IFIPSEC) 2023. To appear.

 18. Dantas YG, Nigam V. Automating safety and security co-design
through semantically rich architecture patterns. ACM Trans Cyber
Phys Syst. 2023;7(1):5–1528. https:// doi. org/ 10. 1145/ 35652 69.

 19. Leone N, Pfeifer G, Faber W, Eiter T, Gottlob G, Perri S, Scarcello
F. The DLV system for knowledge representation and reasoning.
ACM Trans. Comput. Log. 2006;7https:// doi. org/ 10. 1145/ 11491
14. 11491 17

 20. Sousa G, Rudametkin W, Duchien L. Automated setup of multi-
cloud environments for microservices applications. In: 2016 IEEE
9th International Conference on Cloud Computing (CLOUD),
2016;pp. 327–334 . https:// doi. org/ 10. 1109/ CLOUD. 2016. 0051

 21. Etedali A, Lung C.-H, Ajila S, Veselinovic I. Automated con-
straint-based multi-tenant SaaS configuration support using XML
filtering techniques. In: 2017 IEEE 41st Annual Computer Soft-
ware and Applications Conference (COMPSAC), vol. 2, 2017;pp.
413–418 . https:// doi. org/ 10. 1109/ COMPS AC. 2017. 69

 22. Minna F, Massacci F. Sok: Run-time security for cloud microser-
vices. Are we there yet? Computers & Security 127, 2023;103119
https:// doi. org/ 10. 1016/j. cose. 2023. 103119

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

Chapter 9

Knowledge Representation and
Reasoning for Safety and Security
Co-Analysis

Chapter 9 provides an improved version of the Domain-Specific Language (DSL) for
specifying system architecture artifacts, safety and security artifacts, and safety and security
architecture patterns. Reasoning rules have been specified to enable the automation of
safety and security architecture patterns. Additionaly, reasoning rules have been specified
to enable the identification of synergies between safety and security artifacts, and safety
and security consequences caused by architecture patterns. The DSL and reasoning rules
have been implemented as a dedicated logic programming tool, which has been validated
using an example taken from the automotive domain.

Contributing article: Yuri Gil Dantas and Vivek Nigam: Automating Safety and
Security Co-design through Semantically Rich Architecture Patterns. ACM Transactions
on Cyber-Physical Systems 2023: Volume 7, Issue 1, Pages: 1-28.

Copyright information: © 2023 Association for Computing Machinery. https://doi.
org/10.1145/3565269.

Author contributions: The concept for the publication was jointly developed by Yuri
Gil Dantas and Vivek Nigam. Yuri Gil Dantas performed a literature review to identify the
main conditions used by safety and security engineers for recommending safety and security
architecture patterns. The review also focused on understanding the potential consequences
associated with the use of these patterns. The outcome of the literature review enabled
the authors in specifying semantically-rich (safety and security) architecture patterns for
automated driving systems. Safety-wise, this article is a successor of article [39], where
large parts of the article have been improved. After several research discussions with Vivek
Nigam, Yuri Gil Dantas implemented the tool and carried out the experiments presented in

https://doi.org/10.1145/3565269
https://doi.org/10.1145/3565269

142
9. Knowledge Representation and Reasoning for Safety and Security

Co-Analysis

the article. Yuri Gil Dantas took the lead in writing the initial draft of the article, excluding
Section 2 that was written by Vivek Nigam. Vivek Nigam assisted Yuri Gil Dantas in
improving the article. Yuri Gil Dantas handled subsequent revisions and corrections.

5

Automating Safety and Security Co-design through
Semantically Rich Architecture Patterns

YURI GIL DANTAS, fortiss GmbH, Germany
VIVEK NIGAM, Federal University of Paraíba, Brazil, and Huawei Technologies Düsseldorf
GmbH, Germany

During the design of safety-critical systems, safety and security engineers make use of architecture patterns,
such as Watchdog and Firewall, to address identified failures and threats. Often, however, the deployment of
safety architecture patterns has consequences on security; e.g., the deployment of a safety architecture pat-
tern may lead to new threats. The other way around may also be possible; i.e., the deployment of a security
architecture pattern may lead to new failures. Safety and security co-design is, therefore, required to under-
stand such consequences and tradeoffs in order to reach appropriate system designs. Currently, architecture
pattern descriptions, including their consequences, are described using natural language. Therefore, their
deployment in system design is carried out manually by experts and thus is time-consuming and prone to hu-
man error, especially given the high system complexity. We propose the use of semantically rich architecture
patterns to enable automated support for safety and security co-design by using Knowledge Representation
and Reasoning (KRR) methods. Based on our domain-specific language, we specify reasoning principles as
logic specifications written as answer-set programs. KRR engines enable the automation of safety and secu-
rity co-engineering activities, including the automated recommendation of which architecture patterns can
address failures or threats, and consequences of deploying such patterns. We demonstrate our approach on
an example taken from the ISO 21434 standard.
CCS Concepts: • Computing methodologies→ Knowledge representation and reasoning; • Computer sys-
tems organization→ Architectures; • Theory of computation→ Logic; • Security and privacy;

Additional Key Words and Phrases: Safety architecture patterns, security architecture patterns, automation,
safety and security co-design, automotive vehicle systems
ACM Reference format:
Yuri Gil Dantas and Vivek Nigam. 2023. Automating Safety and Security Co-design through Semantically
Rich Architecture Patterns. ACM Trans. Cyber-Phys. Syst. 7, 1, Article 5 (February 2023), 28 pages.
https://doi.org/10.1145/3565269

1 INTRODUCTION
Safety-critical systems are systems whose failure may result in severe consequences to human life,
including death [21]. Examples of safety-critical systems are autonomous vehicles and aircraft

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 830892.
Authors’ addresses: Y. Gil Dantas, fortiss GmbH, Munich, Germany; email: dantas@fortiss.org; V. Nigam, Federal
University of Paraíba, João Pessoa, Brazil, and Huawei Technologies Düsseldorf GmbH, Düsseldorf, Germany; email:
vivek.nigam@huawei.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Association for Computing Machinery.
2378-962X/2023/02-ART5 $15.00
https://doi.org/10.1145/3565269

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

5:2 Y. Gil Dantas and V. Nigam

flight control. The challenge for engineers is to ensure that such systems are safe at all times by,
e.g., providing protective measures to reduce the risk of failures to an acceptable level.

This challenge increases substantially with the interconnectivity of safety-critical systems. For
example, vehicle platoons share information about their speed or position with other vehicles
through wireless communication to enable vehicles to quickly react to sudden speed reductions.
The system interconnectivity brings security to the development life cycle of safety-critical sys-
tems, as an intruder might cause catastrophic events by remotely disabling safety functions. In-
truders may attack such communication channels to infiltrate vehicles and, e.g., disable safety
functions, thus reducing passenger safety [34] or even causing accidents [10].

These types of attacks have served as motivation for the new ISO 21434 standard for Automotive
Cyber-Security [20]. The standard also advocates a closer alignment between safety and security
in order to ensure vehicle safety. That is, it advocates interactions between safety and security to
coordinate the exchange of relevant information such as threat scenarios and hazard information
or where a security requirement might conflict with a safety requirement. These interactions are
part of safety and security system co-design, where tradeoffs between safety and security are well
understood, and optimal system designs are reached.

During system design, safety and security engineers deploy architecture patterns, i.e., patterns
that are known to provide some type of guarantee for safety, e.g., fault tolerance, and security,
e.g., separation. Examples of safety architecture patterns are Watchdog and Monitor Actuator, and
examples of security architecture patterns are Firewall and Security Monitor.

Currently, however, architecture patterns are documented in a rather informal fashion [1, 18,
29, 33] using natural language. Therefore, it is the job of the safety and security engineers to cor-
rectly understand the textual description of patterns and propose manually the use of a particular
pattern at a particular location of the system architecture. As system complexity grows, this task
becomes more complicated. This is because often patterns used for one aspect may have conse-
quences for other aspects [27]. These consequences are context dependent. It may be that placing
a pattern in one location of the system architecture may have serious consequences, while placing
the same pattern in another location of the system architecture may not have these consequences.
For example, placing a firewall at a communication channel with safety-relevant information may
unintentionally block safety-critical flows, while placing a firewall at a communication channel
without safety-relevant information does not have safety consequences. A second complicating
factor is the correct understanding under which conditions a pattern can be used for attaining a
safety goal or mitigating a security threat. For example, placing a safety pattern that adds heteroge-
neous redundancy, i.e., different implementations for the primary and secondary channels, instead
of homogeneous redundancy, i.e., same implementation for both channels, propagates assumptions
on the independence or not between primary and secondary channels. These assumptions need to
be carefully understood during the development of the system.

Instead of describing architecture patterns informally using natural language, a better approach
is to provide more precise semantics by using Domain-specific Languages (DSLs).1 Semantically
rich architecture pattern descriptions enable increased automated support during system design.
In our previous work [6], we demonstrate how system safety design can be automated by using
semantically rich safety patterns encoded as knowledge bases [3], e.g., checking whether a safety
pattern placed in the system architecture can be correctly used to attain a safety goal.

1The semantics provided by DSL is not formal semantics, i.e., set of traces, but rather lightweight semantics, i.e., defining
a vocabulary for which the meaning is uniformly understood in the corresponding domain. For example, it is clear in the
automotive domain what ECU and CAN buses are.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

Automating Safety and Security Co-design 5:3

This article’s main goal is to enable safety and security co-design automation by using semanti-
cally rich architecture patterns. Our main contributions are:
• DSL: We considerably extend our previous work [6] with a DSL for security and for safety

and security co-design. Moreover, we improve our DSL for safety to, e.g., more precisely
specify the intent of safety patterns.
• Semantically Rich Safety and Security Patterns: We propose a safety and security ar-

chitecture pattern template that contains semantic information provided by the proposed
DSL. Due to space restrictions, we describe in the article only four patterns, two for safety
and two for security. Notice that our machinery (described below) currently supports 10
patterns [8]. The supported patterns are Acceptance Voting, Homogeneous Duplex, Het-
erogeneous Duplex, Monitor Actuator, Simplex Architecture, Triple Modular Redundancy,
Watchdog, Firewall, and Security Monitor.
• Reasoning Principles: We extend the safety reasoning principles proposed in our previous

work [6], increasing their precision by, e.g., considering when a safety architecture pattern
fails operationally. We specify security reasoning principles based on formal intruder models,
e.g., path reachability used to determine whether an attack may pose a threat to some sub-
component from outside the system, and when a security architecture pattern can be used
to mitigate some types of threats. We specify safety and security co-design reasoning rules,
e.g., conditions for when a security architecture pattern may cause safety failures and when
safety architecture patterns may be targeted by intruders to reduce the system safety.
• Automated Reasoning: We automate our machinery by using the off-the-shelf solver

DLV [23]. It enables the automated safety and security co-design with patterns. We demon-
strate this by using an example taken from the ISO 21434 [20]. We refer to the whole ma-
chinery proposed in this article as SafSecPat. SafSecPat is capable of automating several
activities currently carried out manually by an expert. SafSecPat is publicly available in [8].

The remainder of this article is organized as follows: Section 2 reviews basic safety and security
concepts, the V-model used in vehicle system development, and a template used for describing
patterns. Section 3 describes the running example taken from ISO 21434. It also illustrate the main
artifacts constructed during the execution of the V-model. Section 4 describes our DSL for safety,
security, and safety and security co-analysis. Sections 5 and 6 demonstrate with some examples
how to semantically enrich patterns using the proposed DSL. Section 7 demonstrates how safety
and security co-design can be supported by semantically rich architecture patterns by automation
through DLV. Finally, we conclude by pointing out related and future work in Sections 8 and 9.

2 SAFETY AND SECURITY CONCEPTS, V-MODEL, AND PATTERNS
The process, methods, and artifacts that shall be produced during the development of vehicle em-
bedded systems are detailed in the standards ISO 26262 [19] for safety and ISO 21434 [9, 20] for
security. The overall process follows the so-called V-model, shown in Figure 1.

Before we enter into the details of the process, we briefly review some basic concepts in safety
and security to set the terminology used in the remainder of the article. For both safety and security,
an item is the system or combination of systems to implement a function at the vehicle level.

Basic Safety Concepts: The definitions of the following safety concepts are taken in their great
majority from [2]. A hazard is a situation that can cause harm to users or businesses. A failure
is an event that when occurring results in a deviation of the expected behavior of a function. An
error is a deviation of the expected system behavior. A fault is the hypothesized cause of an er-
ror. A Minimal Cut Set (MCS) is a set of failures that when occurring at the same time (or in
sequence) may lead to a (top-level) failure. This top-level failure is often associated with a hazard

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

5:4 Y. Gil Dantas and V. Nigam

Fig. 1. Integrated V-model for system and safety [32].

using techniques such as Hazard and Operability study (HAZOP). Normally, failures are as-
sociated with a set of predefined Guidewords that characterize intuitively the semantics of such
failures. Examples of Guidewords are loss and erroneous that denote, respectively, a failure due to
the loss of a function, i.e., a function not operating at all, and a failure due to an erroneous func-
tion behavior, e.g., a function not computing correctly some output value. The MCSs of a top-level
failure are typically computed from a Fault Tree Analysis (FTA), which is a deductive safety
analysis method that decomposes failures using an and/or tree of sub-failures. Fault tolerance is a
means to avoid service failures in the presence of faults. A safety architecture pattern (described in
further detail in Section 2.1) is a system architecture solution that is known to provide some level
of fault tolerance.

Basic Security Concepts: The definitions of the following security concepts are taken in their
great majority from the ISO 21434 [20]. An asset is an object for which the compromise of its
cybersecurity properties can lead to damage for an item’s stakeholder. A damage scenario is an
adverse consequence due to the compromise of a cybersecurity property of an asset. An attack
is a deliberate action or interaction with the item or component or its environment that has po-
tential to result in an adverse consequence. A threat scenario is a statement of potential negative
actions that lead to a damage scenario. An attack path is a sequence2 of actions that could lead to
the realization of a threat scenario. A cybersecurity property is an attribute of an asset including
confidentiality, integrity, and availability. A cybersecurity risk is the effect of uncertainty on road
vehicle security expressed in terms of attack feasibility and impact. A security architecture pat-
tern is a system architecture solution that is known to control security risks by mitigating threat
scenarios.

At the top left of the V-model shown in Figure 1, one defines the item that will be the subject
of safety and security analysis. The item provides details such as the preliminary architecture and
operational conditions. Then safety and security analysis is performed in order to define safety
and security goals (top left boxes in the left branch of the V-model depicted in Figure 1). Safety
analyses, such as Hazard Analysis and Risk Assessment (HARA), FTA, and HAZOP, identify
losses, hazards, failures leading to hazards, and faults that may trigger such failures. Security anal-
ysis, such as Threat Agent Risk Assessment (TARA), STRIDE,3 Attack Trees [31], and path

2The ISO 21434 defines a path as a set and not as a sequence. We will use it here as a sequence.
3The threats considered by STRIDE are Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and
Elevation of privilege.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

Automating Safety and Security Co-design 5:5

analysis [20], identify key assets and their corresponding threats. Security risks are determined
by assessing the attack feasibility and impact of each identified attack path in the system leading
to a threat scenario. Typically, an attack path feasibility is evaluated by using different factors
such as the time needed to carry out an attack and the knowledge/tooling needed by the intruder.
Moreover, different categories for impact may be considered, such as financial, privacy, and safety.
Safety-related impacts have the highest impact for safety-critical systems.

Based on the risk evaluation of such hazards and threats, functional safety and security concepts
are formulated for the item by establishing safety goals/key risks on the system architecture [19]
(second boxes in the left branch of the V-model depicted in Figure 1).

The safety functional concept establishes the level of criticality required by elements in the
system. For safety, vehicle functions are assigned values between ASIL QM, A, B, C, and D, where
QM has no safety criticality, while A, B, C, and D have ascending criticality requirements. Safety
goals may also assign the level of tolerance to faults for functions as defined below:
• Fail silent is a more strict type of fault tolerance when compared to fail active (function

fails without any measure) as the failure of the fail-silent function shall necessarily lead to
the loss of the functionality (e.g., shut down the function). Thus, it shall not be possible that
the faults of a fail-silent function, e.g., incorrect computations, are propagated within the
system.
• Fail safe adds the requirement to fail silent in that if a function fails, then it shall necessar-

ily switch to a safe state. Safe state is a state without significant harm to users or businesses.
Moreover, as we will describe below with the architecture patterns, it is possible to effec-
tively detect when a function is no longer functioning and switch to a safe state and trigger
appropriate measures, e.g., inform the driver.
• Fail operational is the strongest type of fault tolerance as it requires that a function operate

with the same level of safety even after facing a specific number of faults. For example, a lane-
keeping function typically shall operate complying to the requirements of the highest level
of criticality, i.e., ASIL D, after at least one fault occurred.

The security goals establish the properties, e.g., confidentiality, integrity, and availability, that
need to be satisfied by the identified assets in the system architecture.

2.1 Safety and Security Architecture Patterns
Once the functional safety and security concepts are completed, the technical safety and security
concepts are developed (third boxes in the left branch of the V-model depicted in Figure 1). This is
done by further establishing safety and security requirements on the item system architecture, to
comply, for example, with the level of safety criticality established and security properties required.
Typically, safety and security engineers make use of architecture solutions called architecture pat-
terns.

Architecture patterns are abstract solutions to recurrent system problems such as safety and secu-
rity.4 For example, safety engineers make use of a Triple Modular Redundancy to address failures
(both erroneous and losses), thus avoiding hazards. Similarly, security engineers use firewalls to
isolate the system architecture, thus reducing security risks. These architecture patterns are de-
scribed in an abstract form and they are implementation agnostic. The description of architecture
patterns makes them easier to understand and can be seen as guidelines for the design of the
system architecture. It is not the part of architecture patterns to define exactly how pattern com-
ponents shall be implemented, although requirements might be provided. The actual implementa-
tion of pattern components such as monitors shall be tailored to specific functions. For example,

4Other measures like testing and established coding practices may be used in addition to or instead of architecture patterns.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

5:6 Y. Gil Dantas and V. Nigam

Table 1. Architecture Pattern Description Template

Field Description
Pattern name Name of this pattern
Structure Block diagram of this pattern
Intent Textual description of the purpose of this pattern
Problem addressed Textual description of the problem the pattern addresses
Assumptions (requirements) Assumptions necessary for using this pattern
Consequences Textual description of the consequences to other concerns,

e.g., security, performance, reliability

monitors are often implemented using plausibility checks (tailored to specific functions). A collec-
tion of known patterns is available in the ISO 26262 [19] as well as in the literature [1, 29].

Since patterns are commonly used and many times different names are used, pattern templates
have been proposed [1, 29, 33] as a means to uniformly describe a pattern. An example of a template
is depicted in Table 1, which is similar to pattern templates appearing in the literature [1, 33]. The
description of the pattern contains a name for which a pattern is known; its structure, typically
shown as a block diagram; its intent, i.e., the purpose for which this pattern is normally used, e.g.,
to enable fail-operational level of fault tolerance; problem addressed, e.g., to control erroneous
functions or loss of functions; assumptions (a.k.a. requirements) required to use this pattern, e.g.,
different types of implementations for the primary and redundant channels; consequences of using
this pattern; and other concerns, such as security, performance, reliability, and costs.

3 RUNNING EXAMPLE
This section describes an example from the automotive domain, namely headlamp system, taken
from the ISO 21434 standard [20]. We use this example to illustrate the concepts and process re-
viewed in Section 2, as well as to illustrate the machinery introduced in the next sections. Follow-
ing the process described in Section 2, we start by providing a description of both the item, i.e.,
headlamp system, and the results of a safety analysis of the headlamp system.

Functionalities and System Architecture. A headlamp system is responsible for switching on/off
the headlamp of a vehicle. The headlamp system has two specific features, namely high-beam light
and low-beam light. The driver can turn on or off the headlamp and switch between high beam and
low beam from the steering wheel. Since high beam may affect the visibility of drivers incoming
from the opposite direction, it is a safety recommendation that a vehicle’s headlamp is switched to
low beam whenever an oncoming vehicle is approaching from the opposite direction. A proposed
solution is to use a sensor, e.g., a camera, to detect approaching vehicles. If the headlamp is in
high-beam mode, the headlamp system switches the headlamp automatically to low-beam mode
when an oncoming vehicle is detected. It returns automatically the headlamp to high-beam mode
if the oncoming vehicle is no longer detected [20].

Figure 2 depicts both the logical and the platform (a.k.a. hardware) architecture of the headlamp
system, as well as the deployment table of the logical architecture to the platform architecture.
The boxes in the logical architecture represent components, e.g., PWRSWT, BDCTL, and the boxes in
the platform architecture represent hardware units, e.g., Interface 1, CAN Bus 2. The black and
white circles connected to components/hardware units are, respectively, output and input ports.
The arrows connected to ports represent unidirectional channels between components/hardware
units.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

Automating Safety and Security Co-design 5:7

Fig. 2. Architecture of the headlamp system.

A Camera (CAM) detects oncoming vehicles and sends signals to the Power Switch (PWRSWT). The
Body Control (BDCTL) sends signals to PWRSWT. These signals are requests from the driver (coming
from the Headlamp Switch, HLSWT) to turn the headlamp on or off. Note that the channel from
BDCTL to PWRSWT is deployed to a CAN bus (CAN Bus 2) in the platform architecture. The left-hand
side of the logical architecture depicts external components that may access the headlamp system.
There is a Gateway (GW) that controls access from other components located outside the headlamp
system, e.g., Navigation (NAVIG). GW receives signals from an OBD-II Connector (OBDConn). NAVIG has
two interfaces, namely Cellular (CELL) and Bluetooth (BT). Both CELL and BT interfaces and OBDConn
may access BDCTL to, e.g., carry out software updates. Note that in the platform architecture the
channel from NAVIG to GW is deployed to CAN Bus 1, the channel from GW to BDCTL is deployed to CAN
Bus 2, and the channel from OBDConn to GW is deployed to CAN Bus 3.

Safety Analysis Results. We now focus on the safety of the headlamp system. While not claiming
to be comprehensive, we describe potential hazards, faults, and failures that can be identified from
a safety analysis. We also describe safety goals that shall be met to address the identified hazards.

Table 2 describes the identified hazards for the headlamp system. The ASIL level of a hazard is
assigned based on three parameters: Severity, Exposure, and Controllability [19]. Severity denotes
the consequences to the life of the user of the system in the presence of a failure that leads to the
hazard. Exposure denotes the possibility of the system being in a hazardous situation that can cause
harm. Controllability denotes the extent to which the user of the system can control the system
in the presence of a failure that leads to the hazard. For the sake of example, we assign ASIL C to
HZ1: We consider the severity as life-threatening injuries (S3), the exposure as medium probability
of happening (E3), and the controllability as difficult to control (C3). We assign ASIL A to HZ2:
We consider the severity as light and moderate injuries (S1), the exposure as high probability of
happening (E4), and the controllability as normally controllable (C2).

We list below the identified faults and failures that may lead to the presence of hazards HZ1
and HZ2. Specifically, we consider failures of type erroneous and loss.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

5:8 Y. Gil Dantas and V. Nigam

Table 2. Identified Hazard for the Headlamp System

Hazard Description ASIL

HZ1 Headlamp turns off unintentionally during night driving. C
HZ2 Unintended low beam of headlamp when no oncoming vehicle is detected. A

Table 3. Safety Goals to Prevent the Presence of Identified Hazards

Safety Goal Description ASIL Hazard

SG1 The system shall fail operational always after the 1st erroneous
failure of the Body Control. The system shall transition to a safe
state always after the 2nd failure of type erroneous.

C HZ1

SG2 The system shall fail silent always after most 1st erroneous fail-
ures on the Camera.

A HZ2

• FT1: The Body Control is faulty, thus leading to not turning the headlamp on upon the
driver’s request. This may happen if fault FT1 triggers a failure FL1 of type erroneous. The
failure FL1 may lead to hazard HZ1.
• FT2: The logical channel between the Body Control and the Power Switch is faulty, leading

to not turning the headlamp on upon the driver’s request. This may happen if fault FT2
triggers a failure FL2 of type loss. The failure FL2 may lead to hazard HZ1.
• FT3: The Camera is faulty, not providing the expected information to the Power Switch to

enable the high-beam light. This may happen if fault FT3 triggers a failure of type erroneous.
The failure FL3 may lead to hazard HZ2.

Since all of these failures can lead independently to the hazard, the minimal cut sets are {FL1},
{FL2}, and {FL3}.

Table 3 describes a safety goal to address HZ1. Notice that safety goals are often expressed as a
negation of a hazard. Here, we consider a more specific safety goal to enable the reasoning of safety
patterns. The safety goal SG1 aims at avoiding potential harm always after the first failure of type
erroneous. The system shall transition to a safe state always after the second failure. If achieved,
this safety goal improves both the safety and availability of the headlamp system. SG1 can be
achieved by the implementation of safety patterns, implementing, e.g., fault tolerance tactics. SG2
describes a safety goal that allows the system to fail silent due the low criticality of hazard H2.
Note that we neglect fault FT2, as we consider that this fault is unlikely to happen.

Security Analysis Results. For demonstrating system safety, one shall argue that the defined
safety goals are met. Since the headlamp system is safety critical, it is considered an asset.

The next step is to determine the threats to the headlamp system. Failures shall immediately
be considered as threats as recommended by the ISO 26262 [19] and the ISO 21434 [20].5 For
example, one shall evaluate the risk of attacking the Body Control to cause it to fail. Notice that
the intruder can also cause the CAN to fail. So, although from a safety perspective a CAN failure is
very rare, from a security perspective a CAN denial-of-service attack may be carried out provided

5Notice, however, that security shall also consider threats that are not directly safety related, such as threat posed to privacy.
Since our focus is on safety, we do not focus on these types of threats in this article.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

Automating Safety and Security Co-design 5:9

the intruder can access that CAN. Section 7.2 demonstrates how the association of failures and
threats can be derived by reasoning rules.

Once the threats are identified, one carries out a risk analysis. This is done by enumerating
the attack paths leading to threats to the headlamp. To compute the attack paths, one identifies
which are the platform architecture elements from which the intruder may access the system. We
classify such elements as public. Consider the platform architecture of the headlamp system. We
consider the following hardware units as public elements: Interface 1 (OBD-II Connector), Interface
2 (Cellular), and Interface 3 (Bluetooth). That is, an attack may access each of these hardware units
to carry out attacks against the headlamp system. The exact attack path depends on the threat
model considered. In Section 7.3, we consider a threat model based on the Dolev-Yao intruder [12]
used in protocol security, where the intruder attempts logical attacks to the identified assets. The
attack paths are enumerated based on this threat model.

Finally, security requirements with security countermeasures, e.g., security patterns, are pro-
posed to mitigate the identified high-risk threats.

4 KNOWLEDGE BASES FOR SAFETY AND SECURITY SYSTEM ARCHITECTURE
Our goal is to provide mechanisms to support the automated hardening of system architectures us-
ing safety and security patterns. To this end, we propose the use of Knowledge Representation
and Reasoning (KRR) methods [3] (revisited in Section 4.1). KRR enables the specification of so-
phisticated reasoning principles that can be automated by reasoner tools such as DLV and clingo.

We have recently proposed the use of KRR for hardening system architectures using safety pat-
terns [6]. The main outcome of this work was SafPat. SafPat consists of a DSL for embedded
systems and safety reasoning principles for some selected safety patterns specified as disjunctive
logic programs. Finally, we demonstrated how SafPat can recommend safety patterns in an auto-
mated fashion.

This article substantially extends the previously developed SafPat. More concretely, we extend
SafPat [6] in the following ways:
• We extend our DSL to specify minimal cut sets, faults, failures, and safety goals, thus follow-

ing more closely the process described in Section 2.
• We extend our DSL to more precisely specify safety patterns, including when a safety pattern

enables a system to fail operational, fail safe, and fail silent, and which safety patterns are
suitable for addressing life-critical (ASIL C and D) and low-critical (ASIL A and B) hazards.
• The main extension of SafPat is the introduction of security aspects to enable the auto-

mated recommendation of security patterns. Since SafPat now includes security aspects (in
addition to safety aspects), we changed its name from SafPat to SafSecPat.
• Another important extension is the introduction of security consequences when applying

safety patterns, and safety consequences when applying security patterns.
• We specify reasoning principles to specify assumptions required to use patterns.
• We specify constraints to limit the number of architecture solutions with patterns recom-

mended by SafSecPat.
The focus of this section is on the DSL of SafSecPat. Sections 5 and 6 describe, respectively, our

specification of safety and security patterns by example. Section 7 describes our reasoning princi-
ples that are automated by DLV. Next, we provide a brief overview on Knowledge Representation
and Reasoning to help readers grasp the developed SafSecPat.

4.1 Knowledge Bases and Answer-set Programming
KRR [3] is a mature field of Artificial Intelligence based on logic-based methods to represent
and reason about knowledge bases. A knowledge base is a declarative representation of the

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

5:10 Y. Gil Dantas and V. Nigam

world/system. The declarative nature of knowledge bases enables the programming of reasoning
rules by using existing logic programming engines such as DLV [23].

A disjunctive logic program M is a set of rules of the form a1 ∨ · · · ∨ am ← �1, . . . , �n or where
�, �1, . . . , �n are literals, that is, atomic formulas, a, or negated atomic formulas, not a. The inter-
pretation of the default negation not assumes a closed-world assumption. That is, we assume to be
true only the facts that are explicitly supported by a rule.

The semantics of a disjunctive logic program M is based on the stable model semantics [17]. We
illustrate the semantics of logic programs with an example.6

Consider the program P1 with the following two rules:
a ∨ b c ← a.

P1 has two answer-sets {a, c} and {b}. Intuitively, each answer-set is a minimal model of the logic
program that makes each rule of the program to be true. Moreover, if a rule’s head is empty, i.e.,
m = 0 from the set of rules above, then it is a constraint. For example, if we add the clause← b to
P1, then the resulting program has only one answer-set {a, c}.

DLV [23] is an engine implementing disjunctive logic programs based on ASP semantics [17]. In
the remainder of this article, we use the DLV notation writing :- for← and v for ∨. For example,
the program P1 is written as a v b and c :- a. As with DLV, capital letters X,Y,Z are variables that
during execution are instantiated by appropriate terms, and minuscule letters a,b,c are constants.
Variables or constants surrounded by [] are lists. The _ (underscore) character specifies that the
argument can be ignored in the current rule.

4.2 A Domain-specific Language for Embedded Systems
SafSecPatconsists of a DSL for embedded systems. This DSL enables the specification of architec-
ture elements, safety and security artifacts, and architecture patterns. The architecture elements
and safety and security artifacts are specified by the user of SafSecPat, while the reasoning rules
in Section 7 are under the hood. We illustrate our DSL using the headlamp system described in
Section 3.

4.2.1 Architecture Elements. Table 4 describes selected architecture elements specified in our
DSL, including components, sub-components, channels, and information flows.

Example 4.1. Consider the architecture of the headlamp system described in Section 3. A user
may specify the logical architecture of the headlamp system as follows:
cp(cam). cp(bdCtl). cp(ps). cp(hlSwt). cp(hls). cp(gw). cp(navig). cp(obdC). cp(cell).
cp(bt). subcp(cam,hls). subcp(bdCtl,hls). subcp(ps,hls). subcp(hlSwt,hls).
ch(cmpsa,cam,ps). ch(hsbd,hlSwt,bdCtl). ch(bcps,bdCtl,ps). ch(gwbc,gw,bdCtl).
ch(navgw,navig,gw). ch(obdgw,obdC,gw). ch(celnav,cell,navig). ch(btnav,bt,navig).
if(if1,[cmps]). if(if2,[hsbd,bcps]). if(if3,[obdgw,gwbc,bcps]).
if(if4,[celnav,navgw,gwbc,bcps]). if(if5,[btnav,navgw,gwbc,bcps]).

The facts cp(hlSwt), cp(bdCtl), cp(ps), and cp(hls) denote, respectively, the Headlamp
Switch, the Body Control, the Power Switch, and the Headlamp system components. The fact
subcp(bdCtl,hls) denotes that the Body Control is a sub-component of the Headlamp system.
The fact ch(bcpsa,bdCtl,ps) denotes the logical communication channel bcpsa between the
Body Control and the Power Switch. The information flow if2 denotes data flows from channel
hsbd to channel bcps.

6We refer to [3] for the precise formal semantics of logic programs.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

Automating Safety and Security Co-design 5:11

Table 4. SafSecPat: Language for (Selected) Architecture Elements

Fact Description

cp(id) id is a component in the system.
subcp(id1,id2) id1 is a sub-component of component id2.
ch(id,id1,id2) id is a logical channel connecting an output of component id1 to an input of

component id2. Notice that it denotes a unidirectional connection.
if (id, [ch1, . . . , chn]) id is an information flow following the channels in [ch1, . . . , chn].
ecu(id) id is an Electronic Computing Unit (ECU) that can run components.
can(id) id is a Controller Area Network (CAN) to communicate between ECUs.
interface(id) id is a hardware interface that allows the connection of external peripheral to

components.
dep(id,idd) Component id is deployed (i.e., executed) in ECU idd or in interface idd, or

alternatively, the logical channel id is deployed in CAN idd to establish the
communication between id’s components.

A user may specify the hardware units of the platform architecture as follows. We only consider
the hardware units shown in Figure 2, omitting, e.g., the communication medium between the Body
Control and the Power Switch.
ecu(ecu1). ecu(ecu2). ecu(ecu3). ecu(ecu4). can(can1). can(can2). wireless(wl).
interface(int2). actuator(act). interface(int1). interface(int3). can(can3).switch(swt).

The fact ecu(ecu1) denotes the ECU ecu1. The facts switch(swt) and actuator(act) denote
the switch swt and the actuator act, respectively. The fact interface(int1) denotes interface
int1. The fact wireless(wl) denotes a wireless communication apparatus identified as wl.

The deployment of the logical architecture to the platform architecture is specified as follows:
dep(cam,ecu1) dep(bdCtl,ecu2). dep(gw,ecu3). dep(navig,ecu4). dep(navgw,can1).
dep(gwbc,can2). dep(bcps,can2). dep(obdgw,can3). dep(cell,int1). dep(bt,int2).
dep(obdC,int3). dep(celnav,wl). dep(btnav,wl).

The fact dep(bdCtl,ecu2) denotes that the Body Control is deployed to ECU ecu2. The fact
dep(gwbc,can2) denotes that the channel from the Gateway to the Body Control is deployed to
CAN bus can2. The fact dep(btnav,wl) denotes that the data transmission of logical channel
btnav is performed via wireless.

4.2.2 Safety and Security Artifacts. Our DSL consists of safety and security artifacts described
in Table 5. By safety artifacts, we refer to safety goals, hazards, faults, failures, and minimal cut sets.
By security artifacts, we refer to potential threat and threat scenarios.7 A potential threat associated
with a hardware unit HWCP becomes a threat if there is a path P from a public element to HWCP.
Table 5 also includes further elements (e.g., ft2fl, and reachI) needed to reason about safety and
security as described in Section 7.

Motivated by [18], we consider safety goals that require the system to either fail operational,
fail silent, or fail safe. These safety goals have great impact on the precision of SafSecPat in

7Our DSL enables the specification of further security artifacts such as damage scenario and risk determination as shown
in [9]. We omit these security artifacts for the sake of presentation given that our focus is on safety and security co-design
using architecture patterns.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

5:12 Y. Gil Dantas and V. Nigam

Table 5. SafSecPat: Language for Safety and Security Artifacts

Fact Description

hz(idhz,[sys,hzsev,hzexp,hzctl]) idhz is a hazard for system sys of severity hzsev, exposure
hzexp, and controllability hzctl.

ft(idft,[idcp]) idft is a fault associated with component idcp.
fl(idfl,[fltp]) idfl is a failure of type fltp, where fltp ∈ {err, loss}.
ft2fl(idft,idfl) idft is a fault that triggers failure idfl.
mcs(idmsc,[idfl]) idmsc is a minimal cut set consisting of failure(s) idfl.
lmcs2hz([idmsc],idhz) idmsc is a list of minimal cut sets that leads to hazard idhz.
sg(idsg,[idhz,fop,fsl,fsf]) idsg is a safety goal to address hazard idhz. This safety

goal requires the system to either fail operational (fop),
fail silent (fsl), or fail safe (fsf) in the presence of idhz.

public(idhw) idcp is an HW unit that may be accessible by external
users.

pThreat(idpt,[idcp,idhw,pttp,ptsv]) idpt is a potential threat associated with component idcp
and HW unit idhw. idpt is of type pttp, where
pttp ∈ {con, int, avl}, and of severity ptsv, where
ptsv ∈ {neg,maj,mod, sev}.

reachI(idcp,idhw, P) component idcp and HW unit idhw may be reached by an
intruder through path P in the technical architecture.

threat([idth,P],[idcp,idhw,thtp,thsv]) idth is a threat associated with component idcp and HW
unit idhw that may be reached through path P. idth is of
type thtp and of severity thsv (both as for pThreat).

recommending safety patterns, as, e.g., only a subset of safety patterns can ensure that the system
fails operational. Whether the system fails operational, silent, or safe is specified as parameters
of the predicate sg (see Table 5). Either of these parameters (fop, fsl, fsf) may be assigned to the
following constants:

fop, fsl, fsf ∈ {allXfail,mostXfail, never}, where
allXfail denotes always after X failures have been detected, where X is an integer. For example, the
system shall fail operational always after the first failure has been detected. According to [18] and
[25], safety patterns that implement plausibility checks (e.g., monitor-actuator pattern [1]) can only
detect about 95% of the failures. Hence, we consider the constant mostXfail that denotes always
after most X failures have been detected, where X is an integer. For example, the system shall
fail safe after most first failures. This means that some of the failures will not be detected by the
pattern and the system will not always fail safe. This is an important distinction between allXfail
and mostXfail. In order to detect 100% of the failures, one shall consider robust patterns such as the
dual self-checking pair pattern [18]. The constant never denotes that the system shall never fail
operational, fail silent, or fail safe; e.g., the system shall never fail silent when a failure is detected.

Example 4.2. Consider the results of the safety analysis described in Section 3. A user may spec-
ify the safety analysis results in our DSL as follows:

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

Automating Safety and Security Co-design 5:13

hz(hz1,[hls,s3,e4,c3]). hz(hz2,[hls,s3,e3,c2]). ft(ft1,[bdCtl]). fl(fl1,[err]).
sg(sg1,[hz1,all1fail,never,all2fail]). sg(sg2,[hz2,never,most1fail,never]).
ft(ft2,[bcps]). ft2fl(ft1,fl1). fl(fl2,[loss]). ft2fl(ft2,fl2). ft(ft3,[cam]).
fl(fl3,[err]). ft2fl(ft3,fl3). mcs(mcs1,[fl1]). mcs(mcs2,[fl2]).
lmcs2hz([mcs1,mcs2],hz1). mcs(mcs3,[fl3]). lmcs2hz([mcs3],hz2).

The facts hz(hz1,[hls,s3,e4,c3]) and hz(hz2,[hls,s3,e3,c2]) denote, respectively, the
hazards HZ1 and HZ2 identified in Section 3. Consider hazard hz1. The safety goal for address-
ing hazard hz1 is specified by the fact sg(sg1,[hz1,all1fail,never,all2fail]). The faults
that trigger failures leading to hz1 are specified as ft(ft1,[bdCtl]) and ft(ft2,[bcps]). These
faults are associated, respectively, to the Body Control and to the logical channel between the Body
Control and the Power Switch. The fault ft1 triggers failure fl(fl1,[err]) of type erroneous,
and the fault ft2 triggers failure fl(fl2,[loss]) of type loss. The minimal cut set mcs1 consists
of failure fl1 and mcs2 consists of failure fl2. Either minimal cut set mcs1 or mcs2 leads to hazard
hz1 (as specified by the fact lmcs2hz([mcs1,mcs2],hz1)).

Security-wise, we expect the user (e.g., a security engineer) to provide all public elements as
input to SafSecPat. The considered public elements for the headlamp system are shown in the
example below. We, however, do not expect a user to provide (potential) threats as input to Saf-
SecPat, even though it is completely possible to do so. Instead, we derive (potential) threats from
identified faults and failures. The association of faults/failures and (potential) threats may be de-
rived by reasoning rules, as demonstrated in Section 6.

Example 4.3. Consider the platform architecture of the headlamp system illustrated in Figure 2.
Specified in our DSL, we consider the following hardware units as public:
public(int1). public(int2). public(int3).

These facts denote, respectively, the Interfaces int1, int2, and int3.
4.2.3 Safety and Security Architecture Patterns. Our DSL enables the specification of safety pat-

terns for addressing failures, and security patterns for mitigating threats. Table 6 describes the
predicates for instantiating a pattern and for specifying the intent of a pattern. The former repre-
sents the necessary components (e.g., the faulty component for safety) and channels for the pat-
tern. The latter represents the intent of the pattern, including for which type of failure or threat
the pattern is suitable to be applied.

Sections 5 and 6 describe how to declaratively specify safety and security patterns by example
using the predicates safetyPattern, safetyIntent, securityPattern, and securityIntent (see Table 6).

5 SPECIFICATION OF SAFETY ARCHITECTURE PATTERNS
This section illustrates how we can use SafSecPat to provide semantically rich description of
safety architecture patterns that will enable the automated reasoning described in Section 7. In
particular, we instantiate the pattern template described in Section 2 with two safety patterns.
For each instantiation, we provide a high-level description of the pattern and its specification in
SafSecPat. The pattern template includes pattern assumptions and security consequences from
applying safety patterns. The assumptions described in this section are not meant to be compre-
hensive.

5.1 Dual Self-checking Pair with Fail Safe
The dual self-checking pair pattern [18] with fail safe consists of two pairs and a fault detector for
each pair. Each pair consists of a primary and a secondary component that are identical and oper-
ate in parallel. The primary and secondary components from the second pair are developed with a

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

5:14 Y. Gil Dantas and V. Nigam

Table 6. SafSecPat: Language for Safety and Security Architecture Patterns

Fact Description

safetyPattern(id,[name, [cp],
[inp],[int],[out]])

name is a safety pattern of ID id. This pattern consists of a list
of components (e.g., redundant components) cp. The last three
parameters inp, int, and out denote, respectively, the input and
the internal, and the output channels related to the pattern.

safetyIntent(name,[[fltp],
asil, fop,fsl,fsf])

name is a safety pattern suitable for avoiding failures of type
fltp, where fltp ∈ {err,loss}. The ASIL asil denotes to which
ASIL the pattern is suitable to be applied, where asil ∈ {a,b,c,d}.
Pattern name ensures the system to either fail operational
(fop), fail silent (fsl), or fail safe (fsf).

securityPattern(id,[name,
[cp],[inp],[out]])

name is a security pattern of ID id. This pattern consists of a
list of components cp. The last three parameters inp, int, and
out denote, respectively, the input, the internal, and the output
channels related to the pattern.

securityIntent(name,[[thtp]]) name is a security pattern suitable for mitigating threats of
type thtp, where thtp ∈ {con, int, avl}.

different design implementation in comparison to the components from the first pair. The compu-
tations from each pair are sent to their respective fault detector. While no failure is detected, the
actuator receives the computations from the first pair. The fault detector requires exact agreement
from the computations (i.e., identical output values). When there is no exact agreement between
the computations from the first pair, the fault detector of the first pair sends a take-over signal to
the fault detector of the second pair. This signal means that the computations from the second pair
will be considered, and they will be sent to the actuator if the components produce identical output
values. If a failure is also detected on the second pair, the fault detector transitions the system to a
safe state. This pattern fails operational always after the first failure of type erroneous (i.e., failure
on the first pair). It fails safe always after the second failure is detected (i.e., failure on the second
pair). This pattern never fails silent. The instantiation of the dual self-checking pair pattern with
fail safe is shown in Table 7.

We describe the specification of the dual self-checking pair pattern with fail safe in SafSecPat.
Consider the language for safety patterns described in Table 6 and the structure of the pattern
illustrated in Table 7. This pattern is instantiated as follows:

safetyPattern(idpat,[dualSelfCheckingPairFS,[pr1,se1,fd1,pr2,se2,fd2],
[inp1,inp2,inp3,inp4],[int1,int2,int3,int4,int5],[out1,out2,fs]]).

The safety intent of the dual self-checking pair pattern with fail safe is specified as follows:
safetyIntent(dualSelfCheckingPairFS,[[err],d,all1fail,never,all2fail]).

Consider the assumptions for the dual self-checking pair pattern from Table 7. SafSecPat cre-
ates these assumptions whenever the dual self-checking pair pattern is instantiated. The first as-
sumption in Table 7 is specified as follows in SafSecPat:
assumption(dualSelfCheckingPairFS,are_independent,[pr1,se1,pr2,se2])
:- safetyPattern(idpat,[dualSelfCheckingPairFS,[pr1,se1,_,pr2,se2,_],_,_,_]).

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

Automating Safety and Security Co-design 5:15

Table 7. Dual Self-checking Pair Pattern with Fail Safe

5.2 Monitor-actuator Pattern
The monitor-actuator pattern [1] consists of a primary component and a monitor. The monitor
consumes both the computations (i.e., outputs) from the primary component and the primary’s
original inputs such that the monitor can cross-check their computations to identify failures
of type erroneous. While no failure is detected by the monitor (e.g., through the use of plau-
sibility checks), the actuator receives the outputs from the primary component. If the monitor
detects a failure on the primary component, the monitor initiates a corrective action by send-
ing a shutdown signal to the primary component. That is, this pattern fails silent always after
most first failures of type erroneous have been detected on the primary component. It neither
fails operational nor fails safe. The instantiation of the monitor-actuator pattern is shown in
Table 8.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

5:16 Y. Gil Dantas and V. Nigam

Table 8. Monitor-actuator Pattern

We describe the specification of the monitor-actuator pattern in SafSecPat. Consider the lan-
guage for safety patterns described in Table 6 and the structure of the pattern illustrated in Table 8.
This pattern is instantiated as follows:
safetyPattern(idpat,[monitorActuator,[pr,mon],[inp1,inp2],[int1,shut],[out]]).

The safety intent of the monitor-actuator pattern is specified as follows:
safetyIntent(monitorActuator,[[err],b,never,most1fail,never]).

We specify the assumption for the monitor-actuator pattern from Table 8 as follows. SafSecPat
creates this assumption whenever the monitor-actuator pattern is instantiated.
assumption(monitorActuator,are_verified_wrt_correctness,[mon])
:- safetyPattern(idpat,[monitorActuator,[_,mon],_,_,_]).

6 SPECIFICATION OF SECURITY ARCHITECTURE PATTERNS
This section illustrates how we can use SafSecPat to provide semantically rich description of
security architecture patterns that will enable the automated reasoning described in Section 7.
We instantiate the pattern template described in Section 2 with two security patterns. For each
instantiation, we provide a high-level description of the pattern and its specification in SafSecPat.
The pattern template includes pattern assumptions and safety consequences from applying the
security pattern. The assumptions are not meant to be comprehensive.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

Automating Safety and Security Co-design 5:17

Table 9. Firewall Pattern

6.1 Firewall Pattern
The firewall pattern [33] is instantiated in Table 9. A firewall is placed between a bus (e.g., a CAN
bus) and a hardware unit (e.g., a gateway). The bus receives and sends messages from the external
and internal network, respectively. These messages are intercepted and analyzed by the firewall.
The firewall mitigates threats of type availability and integrity. That is, the firewall controls the
network access to the internal network according to predefined security policies (e.g., blacklisting
IP addresses consuming more bandwidth than a given threshold) and can also inspect message
content to detect intrusion attempts and anomalies [33].

We describe the specification of the firewall pattern in SafSecPat. Consider the language for
security patterns described in Table 6 and the structure of the pattern illustrated in Table 9. The
firewall pattern is instantiated as follows:

securityPattern(idpat,[firewall,[bus,pr,fw],[inp1,inp2],_,[out1,out2]]).

The security intent of the firewall pattern is specified as follows:
securityIntent(firewall,[[avl,int]]).

The first assumption for the firewall pattern from Table 9 is specified as follows:
assumption(firewall,are_verified_wrt_correctness,[fw])
:- securityPattern(idpat,[firewall,[_,_,fw],_,_,_]).

6.2 Security Monitor Pattern
The security monitor pattern is instantiated in Table 10. This pattern mitigates threats that violate
the integrity of the system. We consider security monitors that mitigate such threats by monitoring

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

5:18 Y. Gil Dantas and V. Nigam

Table 10. Security Monitor Pattern

incoming and outgoing messages from components and enforcing security policies in the applica-
tion layer. Whenever a security policy is violated, the monitor can initiate a corrective action by
sending a shutdown signal to the component [16].

We describe the specification of the security monitor pattern in SafSecPat. Consider the lan-
guage for security patterns described in Table 6 and the structure of the pattern illustrated in
Table 10. The security monitor pattern is instantiated as follows:

securityPattern(idpat,[securityMonitor,[pr,mon],[inp1,inp2],[int1,shut],[out]]).

The security intent of the security monitor pattern is specified as follows:
securityIntent(securityMonitor,[[int]]).

The second assumption for the security monitor described in Table 10 is specified as follows:
assumption(securityMonitor,have_policies,[mon])
:- securityPattern(idpat,[securityMonitor,[_,mon],_,_,_]).

7 SAFETY AND SECURITY REASONING PRINCIPLES
This section describes selected safety and security reasoning principles that can be automated by
using solvers, such as DLV [23].

7.1 Safety Reasoning
Building on top of [6], we specify as logic programs safety reasoning principles to determine when
(1) a failure can be avoided, (2) a minimal cut set can be avoided, (3) a fault can be tolerated,
(4) a hazard can be controlled, and (5) a safety goal can be satisfied. We introduce five new facts to

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

Automating Safety and Security Co-design 5:19

specify safety reasoning principles for (1), (2), (3), (4), and (5). Note that four of the new facts receive
attributes from the safety pattern intent as an argument in order to make explicit how they have
been addressed by the pattern. These attributes consist of ASIL values (e.g., a), fail-operational
values (e.g., all1fail), fail-silent values (e.g., all2fail), and fail-safe values (e.g., never).
• avoided(IDFL,ATTRSINTENT) denotes that failure IDFL is avoided with a safety pattern

intent ATTRSINTENT (e.g., avoided by a pattern that fails silent always after the first failure).
• avoidedMCS(IDMCS,ATTRSINTENT) denotes that minimal cut set IDMCS is avoided with a

safety pattern intent ATTRSINTENT.
• tol(IDFT,ATTRSINTENT) denotes that fault IDFT is tolerated with a safety pattern intent
ATTRSINTENT.
• ctl(IDHZ,ATTRSINTENT) denotes that hazard IDHZ is controlled with a safety pattern intent
ATTRSINTENT.
• satisfied(IDSG) denotes that safety goal IDSG is satisfied.

Specified by the next rule, a failure is avoided if a pattern is associated to the faulty component
TARGET, and the pattern is able to avoid failures of type TYPE checked by #member(TYPE,PATTYPE).
avoided(IDFL,[IDPAT | ATTRSINTENT]) :- fl(IDFL,[TYPE]),

ft(IDFT,[TARGET]), ft2fl(IDFT,IDFL), #member(TYPE,PATTYPE),
getSafPatTarget(IDPAT,TARGET),safetyIntent(PAT,[PATTYPE | ATTRSINTENT]),
safetyPattern(IDPAT,[PAT | ATTRSPAT]).

A minimal cut set IDMCS is avoided if at least one failure of its set has been avoided. A fault is tol-
erated if the failures triggered by that fault are avoided. The rules for both tol and for avoidedMCS
are omitted here. Next, we specify a rule for hazard controllability.
ctl(IDHZ,ATTRSINTENT) :- hz(IDHZ,ATTRSHZ),

lmcs2hz(LMCS,IDHZ), getMinIntent(LMCS,ATTRSINTENT).

A hazard is controlled if each MCS in the list of LMCS is avoided. This is checked by the fact
getMinIntent(LMCS,ATTRSINTENT). In addition, getMinIntent(LMCS,ATTRSINTENT) returns
the minimal attributes needed for controlling hazard IDHZ (see example below). This is relevant to
show the minimal attributes (taken from the pattern intent) required to control the hazard.

Example 7.1. Consider two failures FLA and FLB that lead to hazard HZA. Safety pattern SPA
avoids failure FLA with the intent attributes [c,all1fail,never,all2fail], and safety pat-
tern SPB avoids failure FLB with the intent attributes [d,all1fail,never,never]. The fact
getMinIntent(LMCS,ATTRSINTENT) will return the minimal attributes for controlling hazard HZA,
i.e., [c,all1fail,never,never].

The next rule denotes when a safety goal is satisfied. A safety goal IDSG is satisfied if hazard IDHZ
is controlled with higher or equal attributes than the ones required by the safety goal (similarly to
Example 7.1). These checks are done by the fact checkHigherOrEqual(IDHZ,IDSG).
satisfiedSG(IDSG) :- sg(IDSG,[IDHZ | ATTRSSG),

getHazardASIL(IDHZ,ASIL), ctl(IDHZ,ATTRSCTL), checkHigherOrEqual(IDHZ,IDSG).

7.1.1 Recommendation of Safety Architecture Patterns. We introduce our reasoning rule for rec-
ommending which safety patterns may be used at which place of the system architecture to avoid
failures provided as input information by the user. This is specified by the following rule:
xsafetyPattern([nuIDSAFPAT,PAT,CTR],[PAT,[TARGET,[nuRED,CTR],[nuCKR,CTR]],
[nuINP,CTR],[nuINT,CTR],[nuOUT,CTR]]) v
nxsafetyPattern([nuIDSAFPAT,PAT,CTR],[PAT,[TARGET,[nuRED,CTR],[nuCKR,CTR]],

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

5:20 Y. Gil Dantas and V. Nigam

[nuINP,CTR],[nuINT,CTR],[nuOUT,CTR]])
:- fl(IDFL,[FLTYPE]), ft(IDFT,[TARGET]), ft2fl(IDFT,IDFL),
exploreSafPat(PAT), safetyIntent(PAT,[PATFLTYPE | ATTRSINTENT]),
#member(FLTYPE,PATFLTYPE), getSafIntentASIL(PAT,PATASIL), mcs(IDMCS,FAILURES),
#member(IDFL,FAILURES), lmcs2hz(IDMCS,IDHZ), asil(IDHZ,HZASIL),
higherEqualThan(PATASIL,HZASIL), counterSafPat(CTR).

It specifies the recommendation (xsafetyPattern) or not (xnsafetyPattern) of a safety pat-
tern. Specifically, this rule specifies that a safety pattern is recommended to avoid a failure IDFL
of type FLTYPE triggered by fault IDFT associated to component TARGET that leads to hazard IDHZ
if the safety pattern is suitable for both avoiding FLTYPE as checked by #member(TYPE,PATTYPE)
and addressing the ASIL of IDHZ as checked by higherEqualThan(PATASIL,HZASIL). PATTYPE is
taken from the pattern intent.

Note that the prefix “x” in front of safetyPattern is to make explicit that the safety pattern
has been automatically recommend by SafSecPat. Omitted here, we have a rule for mapping
xsafetyPattern to safetyPattern. The fact exploreSafPat(PAT) denotes that SafSecPat shall
explore whether the safety pattern PAT is suitable to avoid a given failure. Which patterns shall
be considered by SafSecPat is provided by the user. The fact counterSafPat(CTR) denotes a
counter CTR to ensure that each safety pattern has a unique ID. The constants starting with nu do
not appear in the baseline architecture. Whenever a safety pattern is recommended, SafSecPat
ensures that both the components and channels related to the recommended pattern are created.
These components and channels are prefixed with nu so that one can easily identify the increments
in the architecture modified by SafSecPat.

As the system complexity grows and with it the number of failures and locations where a safety
pattern can be placed, the number of pattern recommendations may rapidly increase. To keep the
number of models manageable, we use DLV constraints to not consider models where, e.g., the
same instance of a pattern is recommended more than once and more than one suitable pattern
is recommended to avoid a given failure (i.e., to avoid that two distinct patterns avoid the same
failure).

7.1.2 Safety Architecture Pattern Recommendation for the Headlamp System. We apply SafSec-
Pat to the headlamp system described in Section 3 to automate the recommendation of which
safety architecture patterns could be used to avoid the identified failures. We run our recommen-
dation machinery explained in the section above for a number of safety patterns, including the
dual self-checking pair pattern, the heterogeneous duplex pattern [1], the monitor-actuator pat-
tern, and the watchdog pattern [1].

We consider the defined safety goals SG1 and SG2 to address hazards HZ1 and HZ2, respectively.
The goal is to provide safety patterns suitable for (1) avoiding the failures leading to hazards HZ1
and HZ2 and (2) satisfying the safety goals. Figure 3 illustrates one architecture solution provided
by SafSecPat that achieves this goal. Note that Figure 3 omits the external components from the
headlamp system due to the lack of space.

SafSecPat recommended the dual self-checking pair pattern for avoiding erroneous failures
(i.e., failure FL1) on the Body Control. This pattern satisfies the safety goal SG1, as it fails oper-
ational always after the first failure, and it fails safe always after the second failures. SafSecPat
recommended the monitor-actuator pattern for avoiding erroneous failures (i.e., failure FL3) on
the Camera. This pattern satisfies the safety goal SG2, as it fails silent always after the first failure.
The pattern assumptions generated by SafSecPat can help engineers to deploy the pattern-related
components into the platform architecture.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

Automating Safety and Security Co-design 5:21

Fig. 3. Headlamp system with patterns.

Fig. 4. Illustration of the intruder reachability.

7.2 Security Reasoning
This article proposes the use of KRR for security with architecture patterns. The goal is to provide
automated methods for automating the recommendation of security architecture patterns to miti-
gate threats. As a basis to achieve this goal, we specify security reasoning principles to determine
when (1) a potential threat becomes a threat and (2) a threat can be mitigated by a security pattern.

We introduce our intruder model before introducing these reasoning principles.

7.2.1 Threat Model. We assume a threat model inspired by the traditional Dolev-Yao intruder
model [12] widely used for security protocol verification. Intuitively, the DY intruder is the most
powerful symbolic intruder. She can have access and manipulate any information to which she
has access, i.e., information that appears in a channel reachable from a public interface that is not
encrypted or encrypted with a key that possesses the decryption key.

More precisely, our intruder model has the following capabilities inspired by the Dolev-Yao
model for CAN bus communication channels:
• Base Case: The intruder can reach any public hardware/interface.
• Inductive Case 1: If the intruder can reach hardware HW and there is a component CP de-

ployed in HW that writes on a CAN bus CAN, then the intruder can also reach CAN.
• Inductive Case 2: If the intruder can reach the CAN Bus CAN and there is a component CP

deployed in a hardware HW that reads from the CAN, then the intruder can reach HW.
For example, consider the topology depicted in Figure 4. Assume that the hardware unit HW1

is public; e.g., it has a wireless interface. Therefore, the intruder can reach to HW1. Furthermore,
assume that a component, CP1, deployed in HW1 writes to CAN bus CAN Bus 1; then from the
inductive case 1, the intruder can reach CAN Bus 1; i.e., she can (in principle) write into CAN Bus 1.
Furthermore, assume that a component CP2 deployed in hardware HW2 reads from CAN Bus 2; then
from inductive case 2, the intruder can also reach HW2. Similarly, since there is a component in HW2

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

5:22 Y. Gil Dantas and V. Nigam

that writes into CAN Bus 2 and a component in HW3 that reads from CAN Bus 2, the intruder can
reach CAN Bus 3 and HW3. However, since there is no component in HW4 that reads from CAN Bus
2 but possibly only writes into CAN Bus 2, the intruder cannot reach HW4.

We can program/customize this intruder model as logic programming. For example, the intruder
model described above is specified by a number of rules in SafSecPat; the rules for the Base Case
and Inductive Case 1 are, respectively, shown below, while the case for Inductive Case 2 follows
similarly and is elided:
reachI(CP,HWCP,[HWCP]) :- public(CP), dep(CP,HWCP). % Base Case
reachI(CH,CAN,[CAN|PATH]) :- writesToCan(CP,CAN), dep(CH,CAN),

dep(CP,HWCP), reachI(CP,HWCP,PATH), not #member(CAN,PATH). % Inductive Case 1

Remarks: Notice that while we are inspired by the Dolev-Yao intruder model, there is a key differ-
ence. Since we are not taking into account the contents of the exchanged messages, the intruder
model shown above does not take into account the fact whether the messages are encrypted nor
does it take into account how the exchanged messages are actually used. This means that the reach-
ability to components and communication channels is an over-approximation, which may lead to
false positives. To make the analysis more precise, one could include more information about the
messages exchanged, e.g., whether a message is encrypted. This is, however, left out of the scope
of this article as it deals with different phases of development.

We also notice that the threat model could be further refined by considering vulnerabilities
as done in [28]. This would mean the extension of our DSL with vulnerabilities and would, in
principle, enable a more refined analysis of the possible attacks. Indeed, we believe that it is possible
to specify logic programs encoding the rules described in [28]. We leave this exercise to future
work.

7.2.2 Security for Safety. To demonstrate the safety of the system, security engineers shall en-
sure that intruders cannot trigger identified failures. Hence, we specified security reasoning prin-
ciples for deriving potential threats from identified failures.

Inspired by [13, 14, 20], we derive a potential threat from a failure based on the type and severity
of the hazard led by the failure. A failure of type err that leads to a hazard of severity S3 is mapped
to a potential threat (pThreat) of type int (integrity) and of severity sev. A failure of type loss
that leads to a hazard of severity S2 is mapped to a pThreat of type avl (availability) and of
severity maj. A failure of type err that leads to a hazard of severity S1 is mapped to a pThreat of
type int and of severity mod. Currently, we are not considering a mapping from a failure type to
confidentiality. The mapping from failure to potential threat is specified by the next rule:
pThreat(IDFL,[TARGET,HWTARGET,SECTYPE,SECSEV]) :- fl(IDFL,[SAFTYPE]), ft(IDFT,[TARGET]),
ft2fl(IDFT,IDFL), dep(TARGET,HWTARGET), typeMap(SAFTYPE,SECTYPE),
hz(IDHZ,[_,SAFSEV,_,_]), mcs(IDMCS,FLISTFAIL), #member(IDFL,FLISTFAIL),
lmcs2hz(LIDMCS,IDHZ), #member(IDMCS,LIDMCS), severityMap(SAFSEV,SECSEV).

Specified by the following rule, a potential threat becomes a threat if the hardware unit HW-
TARGET can be reached through a path PATH (as described in the threat model).
threat([IDPT,PATH],[TARGET,HWTARGET,SECTYPE,SECSEV]) :-
pThreat(IDPT,[TARGET,HWTARGET,SECTYPE,SECSEV]), reachI(TARGET,HWTARGET,PATH).

Example 7.2. Consider the failure fl1 and hazard hz1 identified in Section 3. Failure fl1 that
leads to hazard hz1 is mapped to the potential threat pt1. The potential threats become a threat as
ecu2 can be reached by three paths, including the path from the Bluetooth (deployed into interface
int3) to the Body Control (deployed into ECU ecu2):

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

Automating Safety and Security Co-design 5:23

pThreat(pt1,[bdCtl,ecu2,err,sev]).
threat([pt1,[ecu2,can2,ecu3,can1,ecu4,int3],[bdCtl,ecu2,err,sev]).

The intruder path [ecu2,can2,ecu3,can1,ecu4,int3] can be read from right to left.

We introduce one new fact, namely mit(IDTH), for when a threat IDTH is mitigated. We omit
the rule for mit here. In a nutshell, a threat IDTH is mitigated if a suitable security pattern is placed
in the architecture for mitigating the type of threat violated by IDTH.

7.2.3 Recommendation of Security Architecture Patterns. We introduce our reasoning rule for
recommending which security patterns may be used at which place of the system architecture
to mitigate threats provided as input information by the user or derived by safety artifacts. Our
rules for recommending security patterns are tailored to the pattern. For example, the firewall and
the security monitor patterns are applied to distinct places in the system architecture. That is, the
firewall is placed between a CAN bus and a hardware unit, and the security monitor is placed to
an individual hardware unit.8 The next rule specifies the placement (xsecurityPattern) or not
(nxsecurityPattern) of the firewall pattern:
xsecurityPattern([nuIDSECPAT,firewall,CTR],[firewall,[HWUNIT,COMM,[nuCKR,CTR]],
[nuINP,CTR],[nuINT,CTR],[nuOUT,CTR]]) v
xnsecurityPattern([nuIDSECPAT,firewall,CTR],[firewall,[HWUNIT,COMM,[nuCKR,CTR]],
[nuINP,CTR],[nuINT,CTR],[nuOUT,CTR]])

:- threat(IDTR,ATTRSTR), getThreatType(IDTR,TRTYPE), getThreatTarget(IDTR,TARGET),
getThreatPath(IDTR,PATH), can(COMM), hw(HWUNIT),#subList([HWUNIT,COMM],PATH),
exploreSecPat(firewall), securityIntent(firewall,ATTRSINTENT),counterSecPat(CTR),
getSecIntentThreatType(firewall,PATTRTYPE), #member(TRTYPE,PATTRTYPE).

This rule specifies that the firewall pattern is recommended to mitigate a threat IDTR ex-
ploited through path PATH if a firewall is placed between a can COMM and a hardware unit
HWUNIT, where both COMM and HWUNIT are in PATH as checked by #subList([HWUNIT,COMM],PATH).
The firewall shall be able to mitigate the type of threat violated by IDT as checked by
#member(TRTYPE,PATTRTYPE). We leave to future work the use of severity of threats as a con-
dition to recommend security patterns.

7.2.4 Security Architecture Pattern Recommendation for the Headlamp System. We now apply
SafSecPat to the headlamp system described in Section 3 to automate the recommendation of
which security architecture patterns could be used to mitigate the identified threats. We run our
recommendation machinery for the firewall pattern and the security monitor pattern.

We consider the six threats derived from the identified failures on the headlamp system. These
threats target either the ECU ecu2 (i.e., Body Control) or the CAN can2 (i.e., logical communication
between the Body Control and the Power Switch) from the public elements, that is, int1 (i.e., OBD-
II C.), int2 (i.e., Cellular), int3 (i.e., Bluetooth). Two of these threats are shown below:
threat([pt1,[ecu2,can2,ecu3,can1,ecu4,int3]],[bdCtl,ecu2,int,sev]).
threat([pt2,[can2,ecu3,can3,int1]],[bcps,can2,avl,sev]).

Our goal is to provide security patterns suitable for mitigating these threats that violate the
availability (avl) and the integrity (int) of the headlamp system. Figure 5 illustrates one architec-
ture solution provided by SafSecPat that achieves this goal. SafSecPat recommended the firewall

8Security patterns for automotive is an ongoing research topic [5]. In principle, we can also specify reasoning principles for
security patterns that ensure confidentiality such as the symmetric encryption pattern. For patterns that require encryption
SafSecPat would not make any visible changes in the system architecture. Instead, SafSecPat would provide security
requirements such as “Channel X shall be encrypted.”

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

5:24 Y. Gil Dantas and V. Nigam

Fig. 5. Headlamp system with security architecture pattern (Firewall).

pattern for mitigating all derived threats. The firewall is placed between ecu3 and can2 so that it
can intercept, filter, and block incoming messages (possibly malicious) from public elements.

7.3 Safety and Security Co-analysis Reasoning
This article proposes the use of KRR for safety and security co-analysis with architecture patterns.
The goal is to provide automated methods to reason about the consequences of safety architecture
patterns to security, and of security architecture patterns to safety.

7.3.1 Security Consequences Caused by Safety Architecture Patterns. We specified reasoning
principles for determining when a security pattern can cause consequences to security. The de-
ployment of a safety pattern may lead to a new (potential) threat to the system, as an intruder may
perform malicious actions to prevent the deployed safety pattern from properly functioning (e.g.,
not avoiding failures). The following reasoning rule specifies this consequence:
pThreat(IDPAT,[CP,CHECKER,SECTYPE,SECSEV]) :- safetyPattern(IDPAT,ATTRSPAT),

getSafPatChecker(IDPAT,CHECKER), getSafPatTarget(IDPAT,TARGET), ft(IDFT,[TARGET]),
fl(IDFL,[FAILTYPE]), ft2fl(IDFT,IDFL), dep(CP,CHECKER), lmcs2hz(LIDMCS,IDHZ),
typeMap(FAILTYPE,SECTYPE), hz(IDHZ,[_,SAFSEV,_,_]), mcs(IDMCS,FLISTFAIL),
#member(IDFL,FLISTFAIL), #member(IDMCS,LIDMCS), severityMap(SAFSEV,SECSEV).

There is a new potential threat IDPAT (same id of the safety pattern) associated with the CHECKER
of the safety pattern (e.g., a fault detector) if CHECKER is monitoring a faulty component TARGET.
This potential threat becomes an actual threat if CHECKER can be reached by an intruder.

7.3.2 Security Consequences on the Headlamp System. Consider the headlamp system with
safety patterns illustrated in Figure 3. The deployment of a monitor-actuator to tolerate faults
on the Camera leads to a new potential threat. This potential threat, however, does not lead to
a threat since an intruder cannot reach the monitor from a public element. The deployment of
the dual self-checking pair pattern to tolerate faults on the Body Control leads to a new threat
since the ECU ecu2 (i.e., Body Control) reads from the CAN can2. This threat can be, in principle,
mitigated by the same firewall (illustrated in Figure 5) deployed between ecu3 and can2.

7.3.3 Safety Consequences Caused by Security Architecture Patterns. We specified reasoning
principles for determining when a security pattern can cause consequences to safety. The deploy-
ment of a security pattern may lead to new faults and failures, as the deployed security pattern can
be faulty; e.g., a firewall might erroneously block messages. The following reasoning rules specify
the consequences of deploying the firewall pattern. There is a new fault IDPAT (same ID of the
pattern) associated with the firewall FW. This fault triggers a failure IDFL of type erroneous:
ft(IDPAT,[FW]) :- securityPattern(IDPAT,[firewall,[_,_,FW],_,_,_]).
fl(IDFL,[err]) :- securityPattern(IDPAT,[firewall,[_,_,FW],_,_,_]),

ft(IDPAT,[FW]), createID(IDPAT,firewall,IDFL).

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

Automating Safety and Security Co-design 5:25

Fig. 6. Illustration of a cascading failure due to the deployment of a firewall.

ft2fl(IDPAT,IDFL) :- securityPattern(IDPAT,[firewall,[_,_,FW],_,_,_]),
ft(IDPAT,[FW]), fl(IDFL,[err]), createID(IDPAT,firewall,IDFL).

We also specify rules to check whether there is any cascading failure due to the deployment of
a security pattern, i.e., to check whether the fault associated to a pattern component triggers an
identified hazard. Figure 6 illustrates a cascading failure caused by the deployment of a firewall.

The functionality of component CP2 depends on the signals sent by component CP1. We assume
a fault in CP2 that triggers failures leading to an identified hazard HZ. Assume that the deployed
Firewall erroneously blocks messages from CP1. As a result, the failures from Firewall might
lead to hazard HZ.

7.3.4 Safety Consequences on the Headlamp System. Consider the headlamp system with the
firewall pattern illustrated in Figure 5. The deployment of the firewall pattern leads to a new fault
(triggering erroneous failures) on the firewall. These failures might lead to a cascading failure
affecting the Body Control (e.g., when a user attempts to perform a software update via the OBD-II
Connector). However, since the functionality of the headlamp system is independent of its external
components, this cascading failure might not cause any harm.

7.3.5 Safety and Security Consequences. An integration activity is required to harmonize the
safety and security consequences. This activity requires a manual analysis by safety and security
engineers to assess the impact of the new faults and threats caused by the deployment of architec-
ture patterns.

The manual analysis may include the assessment of whether (1) the new faults may lead to
high criticality hazards and (2) the new threats are associated with components placed at com-
munication channels with safety-relevant information. In case scenario (1) or (2) is found, safety
and security engineers may either use measures like testing, simulation, or formal verification
techniques to minimize the risks of these faults and threats or run SafSecPat to recommend fur-
ther architecture patterns. For example, SafSecPat may recommend the Heterogeneous Duplex
pattern associated with a faulty firewall, where the second instance of the firewall shall be imple-
mented by a different security team, and the fault detector shall check whether the outputs from
both firewalls match. Notice, however, that when using SafSecPat, new safety and security con-
sequences will be found (e.g., new potential threats related to the Heterogeneous Duplex pattern).
As a result, another manual analysis shall be carried out until a consensus is found between safety
and security engineers. We leave to future work the investigation on how to improve SafSecPat
to find optional design solutions between safety and security consequences.

8 RELATED WORK
Similar to our approach, [11] proposes a methodology to harden system architectures by automat-
ing the choice of safety patterns to avoid failures. They provide a hardening strategy that consists
of (1) component selection, which selects a component of the architecture that a safety pattern shall
be added; (2) pattern selection, which selects a pattern from a pre-defined library of patterns, and
(3) component substitution, which replaces the selected component by its hardened version with a
safety pattern. This strategy is automated by the SAT4J solver [4]. The key difference to our work is
that we provide means to harden system architectures with security patterns, in addition to safety
patterns. We also provide means to automate the consequences of applying security patterns to

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

5:26 Y. Gil Dantas and V. Nigam

safety and vice versa. Safety-wise, our reasoning principles enable a more precise recommendation
of safety patterns as we specify a detailed intent for each safety pattern.

Once a safety pattern is selected, there shall be assumptions to ensure that the selected pat-
tern is correctly applied to the system. Recently, [33] proposed a methodology for ensuring the
application of safety and security patterns using contracts. By contract, they refer to a pair of as-
sumptions and properties such that the properties only hold if the assumptions hold. Relying on
the instantiation of a pattern template that includes both assumptions and properties (similar to
the template used by this article), they proposed a safety case argument pattern to guide the assur-
ance of systems using patterns. The specification of architecture pattern contracts are, however,
done using informal descriptions only. We provide a specification of architecture patterns that
enables automation, including the generation of assumptions for each architecture pattern. As fu-
ture work, we plan to investigate how to extend SafSecPat to support an architecture pattern with
contracts.

Safety and security co-analysis using patterns has been addressed by some previous work [24,
29]. We have been greatly inspired by [24], which proposed a pattern-based approach for safety
and security co-analysis, and by [29], with security analysis of safety patterns. A key difference
to our work is that we propose automated reasoning methods with safety and security patterns,
whereas previous activities were done manually.

Model-based models and methods have been proposed for safety and security co-analysis, using
languages such as GSN and Attack Trees and their combination [22, 26, 29, 30]. The key purpose
of these approaches is to elucidate and document arguments demonstrating safety and security.
Therefore, the artifacts produced often lie in high levels of abstraction, e.g., expressing high-level
safety and security goals or not addressing the fact that safety and security have different semantics
and different risk assessment methods. Our work complements these approaches by providing
means to automate reasoning based on declarative semantics provided by answer-set programs.
Indeed, we have developed a plugin that integrates the safety-related parts of SafSecPat into the
model-based system engineering tool AutoFOCUS3 [15] to provide automated safety reasoning in
a model-based engineering development [7].

Some previous works proposed the use of security guide-words to identify information that is
relevant for safety [13, 14]. For example, [14] provided a mapping involving SGM guide-words,
CIA triad, and STRIDE nomenclature. Using threat categories (e.g., STRIDE) enables a systematic
identification of threat scenarios, possibly easing the recommendation of security patterns. We
believe that finer reasoning principles can be obtained by using more specific guide-words such
as those proposed by [13, 14]. This is left for future work.

Finally, we have recently demonstrated in a white paper [9] that SafSecPat can also perform
security analysis following the ISO 21434 risk assessment.

9 CONCLUSION
We have proposed the use of semantically rich safety and security patterns for enabling automated
support for safety and security co-design. We have proposed a DSL that enables the specification
of safety and security concepts. We demonstrated its use in the description of several well-known
patterns. By using KRR methods, we demonstrate how one can specify reasoning principles as
answer-set programs. As a result, it can automate several activities, e.g., when a potential threat
can be derived from identified failures, and when a potential threat becomes a threat (including the
attack path). Moreover, our machinery (SafSecPat) can automatically recommend which pattern
can be used at which place of the system architecture to address failures or threats, as well as make
explicit consequences of deploying such patterns.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

Automating Safety and Security Co-design 5:27

We are investigating how to extend our plugin [7] to integrate the security-related parts of
SafSecPat into the model-based engineering tool AutoFOCUS3 [15]. The scalability of SafSecPat
shall also be investigated. SafSecPat currently provides all possible architecture solutions to the
user. In our recent article [7], we have defined four criteria to help the user in selecting the most
suitable architecture for the system. We have carried out some initial experiments regarding the
computation time of SafSecPat. We believe that the computation time of SafSecPat increases
depending on the number of safety or security artifacts (e.g., on the number of faults). We have
applied SafSecPat to an industrial use case taken from the automotive domain [7], where eight
faults have been identified. SafSecPat took around 10 minutes to compute all solutions. Given that
the focus of SafSecPat is on design time and not runtime, SafSecPat’s performance requirements
may range on hours or even days. In the future, a dedicated study shall be carried out to determine
exactly the scalability of SafSecPat.

REFERENCES
[1] Ashraf Armoush. 2010. Design Patterns for Safety-critical Embedded Systems. Ph.D. Dissertation. RWTH Aachen Uni-

versity.
[2] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr. 2004. Basic concepts and taxonomy of

dependable and secure computing. IEEE Trans. Dependable Secur. Comput. 1, 1 (2004), 11–33.
[3] Chitta Baral. 2010. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press.
[4] Daniel Le Berre and Anne Parrain. 2010. The sat4j library, release 2.2. J. Satisf. Boolean Model. Comput. 7, 2–3 (2010),

59–64.
[5] Betty H. C. Cheng, Bradley Doherty, Nick Polanco, and Matthew Pasco. 2019. Security patterns for automotive systems.

In 22nd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS
Companion’19). IEEE, 54–63. https://doi.org/10.1109/MODELS-C.2019.00014

[6] Yuri Gil Dantas, Antoaneta Kondeva, and Vivek Nigam. 2020. Less manual work for safety engineers: Towards an
automated safety reasoning with safety patterns. In ICLP.

[7] Yuri Gil Dantas, Tiziano Munaro, Carmen Cârlan, Vivek Nigam, Simon Barner, Shiqing Fan, Alexander Pretschner,
Ulrich Schöpp, and Sergey Tverdyshev. 2022. A model-based system engineering plugin for safety architecture pat-
tern synthesis. In Proceedings of the 10th International Conference on Model-Driven Engineering and Software Devel-
opment (MODELSWARD’22), Online Streaming, Luís Ferreira Pires, Slimane Hammoudi, and Edwin Seidewitz (Eds.).
SCITEPRESS, 36–47. https://doi.org/10.5220/0010831700003119

[8] Yuri Gil Dantas and Vivek Nigam. 2021. https://github.com/ygdantas/safsecpat.
[9] Yuri Gil Dantas, Vivek Nigam, and Harald Ruess. 2020. Security engineering for ISO 21434. CoRR abs/2012.15080

(2020). arXiv:2012.15080
[10] Yuri Gil Dantas, Vivek Nigam, and Carolyn Talcott. 2020. A formal security assessment framework for cooperative

adaptive cruise control. In IEEE Vehicular Networking Conference (VNC’20).
[11] Kevin Delmas, Rémi Delmas, and Claire Pagetti. 2015. Automatic architecture hardening using safety patterns. In

SAFECOMP (Lecture Notes in Computer Science, Vol. 9337). Springer, 283–296.
[12] Danny Dolev and Andrew Chi-Chih Yao. 1983. On the security of public key protocols. IEEE Trans. Inf. Theory 29,

2 (1983), 198–207. https://doi.org/10.1109/TIT.1983.1056650
[13] Juergen Duerrwang, Kristian Beckers, and Reiner Kriesten. 2017. A lightweight threat analysis approach intertwining

safety and security for the automotive domain. In SAFECOMP.
[14] J. Duerrwang, M. Braun, , R. Kriesten, and A. Pretschner. 2018. Enhancement of automotive penetration testing with

threat analyses results. SAE Intl. J. of Transportation Cybersecurity and Privacy 1, 2 (2018), 91–112.
[15] fortiss GmbH. 2020. AutoFOCUS 2.19. https://www.fortiss.org/en/publications/software/autofocus-3.
[16] Richard Gay, Heiko Mantel, and Barbara Sprick. 2011. Service automata. In FAST (Lecture Notes in Computer Science,

Vol. 7140), Gilles Barthe, Anupam Datta, and Sandro Etalle (Eds.). Springer, 148–163.
[17] Michael Gelfond and Vladimir Lifschitz. 1990. Logic programs with classical negation. In ICLP.
[18] R. Hammett. 2001. Design by extrapolation: An evaluation of fault-tolerant avionics. In 20th Digital Avionics Systems

Conference (DASC’01) (Cat. No.01CH37219), Vol. 1. 1C5/1–1C5/12 vol.1. https://doi.org/10.1109/DASC.2001.963314
[19] ISO26262. 2018. ISO 26262, road vehicles - functional safety - Part 6: Product development: Software level. Available

at https://www.iso.org/standard/43464.html.
[20] ISO/SAE AWI 21434. 2020. Road vehicles - cybersecurity engineering.

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

5:28 Y. Gil Dantas and V. Nigam

[21] John C. Knight. 2002. Safety critical systems: Challenges and directions. In Proceedings of the 24th International Con-
ference on Software Engineering, ICSE 2002, 19–25 May 2002, Orlando, Florida, USA, Will Tracz, Michal Young, and Jeff
Magee (Eds.). ACM, 547–550. https://doi.org/10.1145/581339.581406

[22] Antoaneta Kondeva, Carmen Carlan, Harald Ruess, and Vivek Nigam. 2019. On computer-aided techniques for sup-
porting safety and security co-engineering. In WoSoCer.

[23] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona Perri, and Francesco Scarcello.
2006. The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7 (2006), 64 pages.

[24] Helmut Martin, Zhendong Ma, Christoph Schmittner, Bernhard Winkler, Martin Krammer, Daniel Schneider, Tiago
Amorim, Georg Macher, and Christian Kreiner. 2020. Combined automotive safety and security pattern engineering
approach. Reliab. Eng. Syst. Saf. 198 (2020), 106773.

[25] MIL-STD-2165. 1985. Military Standard Testability Program for Electronic Systems and Equipments.
[26] Gabriel Pedroza. 2018. Towards safety and security co-engineering - Challenging aspects for a consistent intertwining.

In ESORICS.
[27] Ludovic Pietre-Cambacedes and Marc Bouissou. 2013. Cross-fertilization between safety and security engineering.

Reliab. Eng. Syst. Saf. (2013).
[28] Nikolaos Polatidis, Michalis Pavlidis, and Haralambos Mouratidis. 2018. Cyber-attack path discovery in a dynamic

supply chain maritime risk management system. Computer Standards & Interfaces 56 (2018), 74–82.
[29] Christopher Preschern, Nermin Kajtazovic, and Christian Kreiner. 2013. Security analysis of safety patterns. In PLoP.
[30] Magdy El Sadany, Christoph Schmittner, and Wolfgang Kastner. 2019. Assuring compliance with protection profiles

with threatget. In SAFECOMP 2019 Workshops.
[31] Adam Shostack. 2014. Threat Modeling: Designing for Security. Wiley.
[32] Martin A. Skoglund, Fredrik Warg, and Behrooz Sangchoolie. 2018. In search of synergies in a multi-concern devel-

opment lifecycle: Safety and cybersecurity. In SAFECOMP 2018 Workshops. Springer.
[33] Irfan Sljivo, Garazi Juez Uriagereka, Stefano Puri, and Barbara Gallina. 2020. Guiding assurance of architectural design

patterns for critical applications. J. Syst. Archit. 110 (2020), 101765. https://doi.org/10.1016/j.sysarc.2020.101765
[34] Wired. 2015. Hackers Remotely Kill a Jeep on the Highway-With Me in It. https://www.wired.com/2015/07/hackers-

remotely-kill-jeep-highway/.

Received 16 July 2021; revised 27 February 2022; accepted 14 September 2022

ACM Transactions on Cyber-Physical Systems, Vol. 7, No. 1, Article 5. Publication date: February 2023.

Chapter 10

A Framework for Assessing the Safety
and Security of CACC Systems

Chapter 10 proposes a formal framework for the safety and security verification of CACC
platoons. The proposed framework consists of CACC platoon model, an intruder model, and
security mechanism specifications aimed at mitigating attacks based on the intruder model.
The specification of the security mechanisms may be derived from pattern requirements
often defined during security activities performed on the left side of the V-model. The
proposed framework has been validated with a number of attacks taken from the literature
and novel attacks discovered by using our formal machinery.

Contributing article: Yuri Gil Dantas, Vivek Nigam, and Carolyn L. Talcott: A Formal
Security Assessment Framework for Cooperative Adaptive Cruise Control. VNC 2020: 1-8

Copyright information: © [2020] IEEE. Reprinted, with permission, from Yuri Gil
Dantas; Vivek Nigam; Carolyn Talcott, A Formal Security Assessment Framework for
Cooperative Adaptive Cruise Control, 2020 IEEE Vehicular Networking Conference (VNC),
December 2020.

Author contributions: The concept for the publication was jointly developed by Yuri
Gil Dantas, Vivek Nigam, and Carolyn Talcott. Together, they discussed the expansion of
Carolyn Talcott’s framework [38] to incorporate the assessment of CACC system security.
This article proposes a formal framework for assessing the security of CACC systems, with
Vivek Nigam focusing on formalizing the vehicle platoon behavior and Yuri Gil Dantas
formalizing the intruder models, attacks, and countermeasures. The simulations were
conducted by Yuri Gil Dantas, while the initial draft of the article was jointly written by
Yuri Gil Dantas and Vivek Nigam. Carolyn Talcott provided valuable input in enhancing
the article, and Yuri Gil Dantas handled subsequent revisions and corrections.

A Formal Security Assessment Framework for
Cooperative Adaptive Cruise Control
Yuri Gil Dantas

fortiss GmbH
München, Germany
dantas@fortiss.org

Vivek Nigam
fortiss GmbH

München, Germany
nigam@fortiss.org

Carolyn Talcott
SRI International
Melno Park, USA

clt@csl.sri.com

Abstract—For increased safety and fuel-efficiency, vehicle pla-
toons use Cooperative Adaptive Cruise Control (CACC) where
vehicles adapt their state, incl. speed and position, based on
information exchanged between vehicles. Intruders, however,
may carry out attacks against CACC platoons by exploiting
the communication channels used to cause harm, e.g., a vehicle
crash. Therefore, during design-phase, engineers should provide
evidence supporting platoon security. This paper proposes a
formal framework for the security verification of CACC platoons
to provide such evidence based on precise mathematical models.
Our vehicle platoon models support the specification of both
cyber, e.g., communication protocols, and physical, e.g., speeds,
position, vehicle behaviors. Moreover, we propose intruder mod-
els that are parametric on his capabilities of manipulating com-
munication channels, i.e., message injection and blocking. Our
model is implemented enabling the automated formal verification
involving both platoon and intruder models. We validate our
machinery with a number of attacks taken from the literature
and novel attacks discovered by using our formal machinery.

Index Terms—attacks, formal verification, platoon, security

I. INTRODUCTION

Cooperative Adaptive Cruise Control (CACC) increases
fuel-efficiency [21] and safety of vehicle platoons [2], typically
heavy-weight cargo vehicles (e.g., trucks). This is accom-
plished by reducing vehicle reaction times by relying on
information, such as speed, direction and position, exchanged
between vehicles in addition to the vehicles’ sensors.

The use of CACC also greatly increases a platoon’s attack
surface as communication channels may be exploited by
intruders. For example, as pointed out by [22], intruders may
inject messages with false information into the CACC com-
munication channels leading to vehicle crashes, thus causing
harm and financial losses. Intruders can carry out such attacks
for financial motivations to, e.g., steal the transported cargo.

Designing secure systems is challenging as intruders may
carry out attacks by exploiting corner-cases or implicit re-
quirements overseen by developers. For example, a number of
communication protocols have been shown to be vulnerable
to attacks, some of which have been discovered decades after
they have been developed [13]. The safety and security of
vehicle platooning have the additional complexities of cyber-
physical systems, including speed, time to react, and position.
Engineers have to ensure that intruders cannot exploit these
aspects, as in the injection attacks described by [22].

This paper proposes the use of formal verification as a
means to provide further evidence about the security of
platoons using CACC. An advantage of formal verification
over, e.g., simulation analysis, lies on the fact that its methods
are based on precise mathematical models that specify the
behavior of the analyzed system. By using formal verification,
implicit requirements are made explicit thus exposing exist-
ing vulnerabilities. Moreover, from such models, automated
tools can determine whether undesired events are possible by
traversing all behaviors including corner-cases.

Existing formal frameworks for platooning [8], [10] and
other agent-based cyber-physical systems [19], [20] have
successfully been used to verify the safety of agent-based
cyber-physical systems, such as platoon joining maneuvers
and strategies used by Unmanned Aerial Vehicles [15]. These
frameworks, however, do not take into account security as-
pects. They do not include intruders and therefore, it is not
possible to verify in such frameworks whether an intruder may
attack a system and cause harm, e.g., a vehicle crash.

To the best of our knowledge, this paper proposes the first
formal framework to consider platooning, CACC and security.
Our main contributions are three-fold:
• Vehicle Platoon Behavior Specification: Our first con-

tribution is a platoon model that includes specifications
of both cyber aspects, e.g., specifications for the com-
munication protocols, and physical aspects, e.g., speed,
acceleration, positions of vehicles. Our model enables the
specification of a wide range of vehicle strategies for ex-
ecuting platooning based on soft-constraints [4], a general
algebraic framework for specifying optimization problems.
That is, our model can accommodate a number of strategies
including those expressed as classical, fuzzy and probabil-
ity theories and their combination. For example, strategies
for maintaining distances between vehicles that are both
safe and fuel-efficient can be reduced to an optimization
problem based on soft-constraints.

• Intruder Models: Our second contribution consists of for-
mal intruder models that subvert communication channels
to carry out attacks. These intruder models are parametric
on the intruder capabilities, i.e., the capability of either
blocking messages from a communication channel or in-
jecting messages into communication channels.

• Automated Verification: Our third contribution is the

2020 IEEE Vehicular Networking Conference (VNC)

978-1-7281-9221-5/20/$31.00 ©2020 IEEE

20
20

 IE
EE

 V
eh

ic
ul

ar
 N

et
w

or
ki

ng
 C

on
fe

re
nc

e
(V

N
C)

 |
 9

78
-1

-7
28

1-
92

21
-5

/2
0/

$3
1.

00
 ©

20
20

 IE
EE

 |
 D

O
I:

10
.1

10
9/

VN
C5

13
78

.2
02

0.
93

18
33

4

Authorized licensed use limited to: University of Canberra. Downloaded on May 20,2021 at 04:17:15 UTC from IEEE Xplore. Restrictions apply.

implementation of our models, both platoon and intruder
models, in Maude [5], an efficient formal verification tool
based on Rewriting Logic. Our specification are executable.
That is, users can automatically invoke Maude’s search
mechanisms to formally verify their platooning specifi-
cations for the verification of safety, e.g., vehicles not
crashing, by taking into account security, e.g., in scenarios
where an intruder may block or inject messages.

We validate our machinery in realistic scenarios, some taken
from the literature [9], [22], and some new attacks that have
been discovered by using our formal framework.

II. ATTACKS

This section describes both the threat model and a set of
possible attacks scenarios against a CACC platoon. To the
best of our knowledge, some of the attack scenarios, namely,
those described in Sections II-D, II-E and II-F, are new. They
have been discovered using formal verification, as potential
breaches became clearer after formalizing the platoon model,
in particular its communication protocols and the modes (or
roles) in which a vehicle can operate.

A. Threat Model

We consider a CACC platoon, with one leader and n
followers, where new vehicles may join the platoon after a ne-
gotiation phase. We assume that the platoon vehicles navigate
on a straight road, and that vehicles can communicate using
peer-to-peer connections or by broadcasting messages [23]. We
also assume that all messages are signed using vehicles secret
keys that cannot be guessed by intruders, and contain adequate
measures to ensure freshness, such as using timestamps or
nonces, to avoid replay attacks.

The goal of our intruder is to cause a crash between
two legitimate vehicles. To this end, the intruder either in-
jects false messages into the CACC communication channels
or jams (i.e., blocks) legitimate messages from the CACC
communication channels. The actual capability used by the
intruder depends on the attack scenario. We consider scenarios
where the intruder (1) injects false messages only, (2) blocks
messages only, and (3) both injects and blocks messages. To
ensure that injected messages are valid, we assume that the
intruder is able to obtain encryption keys from any vehicle in
the platoon. The same assumption is considered by previous
related work like, e.g., [22] and [9]. For simplicity, we assume
that the intruder has obtained the leader’s encryption key.

Given the leader’s encryption key, the intruder makes valid
connections with a target vehicle (i.e., a follower or a joining
vehicle). For example, assume an attack scenario where both
capabilities (i.e., injecting and blocking) are required. The
intruder blocks all messages originated from the leader and
injects (impersonating the leader) false messages to either
followers or vehicles joining the platoon.

B. Injection of False Msgs against Follower

In this attack, an intruder sends false position and speed
values to a vehicle in order to cause a crash with the preceding

vehicle. This attack works because CACC algorithms ensure
that a vehicle maintains a desired distance from the preceding
vehicle based on the received messages from other vehicles in
the platoon (especially from the leader). This attack has been
previously demonstrated through simulations by e.g., [22].

The attack scenario is illustrated in Figure 1a. This scenario
is composed of two vehicles: a leader (ldr) and a follower
(flw1). Illustrated by the green arrows, such vehicles exchange
information to ensure that flw1 keeps a safe distance from ldr.
The red cross illustrates that the legitimate messages from
the leader are blocked by the intruder while the attack is
in progress. Next, the intruder impersonates ldr to send high
position and speed values to flw1. The follower flw1 adapts its
distance based on the high false values sent by the intruder. As
a result, a crash between flw1 and ldr is expected, as illustrated
by the right-hand side of Figure 1a.

C. Slow-Injection of False Msgs

The goal of the previous attack (Section II-B) is a quick
crash between two vehicles. To this end, the intruder injects
extreme false position and speed values into the CACC com-
munication channels. As discussed by [22] and [9], however,
existing countermeasures (a.k.a plausibility checks) are able
to detect such extreme values, and thus mitigate the attack.

Recently, [9] proposed a smarter variation of the previous
attack in order to bypass existing countermeasures that checks
whether incoming values highly deviates from the previous
received ones. To this end, the intruder injects messages with
false information into the CACC communication channels
modifying the values of speed and position with a small
increase rate after each message. This attack has been demon-
strated through simulations by [9].

D. Injection of False Msgs against Joining Vehicle

A new vehicle may join a platoon after a negotiation
phase with the leader of the platoon. During this negotiation
phase, the leader sends the platoon information to this vehicle,
including the position and speed of the last vehicle, so that the
joining vehicle can adapt itself to catch up to the platoon.

An intruder may impersonate the leader to send false infor-
mation during this negotiation phase. For example, assume an
attack scenario composed of two vehicles: the leader (ldr) of
the platoon and a vehicle (veh) that wishes to join the platoon.
The intruder may inject (as ldr) high position and speed
values to veh during the negotiation phase, while blocking all
messages originated from ldr. Eventually, veh crashes into ldr,
as veh adapts its acceleration based on the received values.

Countermeasures against injection attacks usually check on
messages exchanged between platoon members (e.g., follow-
ers). The attack scenario presented above targets a vehicle that
has not yet joined the platoon. Hence, this attack would be
successfully carried out against such countermeasures. To the
best of our knowledge, this is the first attack scenario targeting
a vehicle before joining the platoon.

2020 IEEE Vehicular Networking Conference (VNC)

Authorized licensed use limited to: University of Canberra. Downloaded on May 20,2021 at 04:17:15 UTC from IEEE Xplore. Restrictions apply.

(a) Injecting false msgs to follower and blocking legitimate msgs from leader

(b) Injecting false emergency brake to follower

(c) Blocking legitimate emergency brake from leader

Fig. 1: Illustration of three attacks (before and after the attacks have been) carried out by the intruder

E. Injection of False Emergency Brake Msgs
Emergency brake is a safety-type message that may be

triggered by any vehicle in the platoon to avoid crashes. For
example, the leader may trigger an emergency brake if an
obstacle is detected in its path. Then each follower receives
an emergency brake message from the leader, and immediately
actuates it by stopping the vehicle.

An intruder, however, might take advantage of this situation
to carry out attacks. Figure 1b illustrates an attack scenario
using emergency brake messages. This scenario is composed
of three vehicles: a leader (ldr) and two followers (flw1 and
flw2). The goal of this attack is a crash between flw1 and
flw2. To this end, the intruder injects a false emergency brake
message to flw1 only. This message results in a crash as flw1

immediately stops and flw2 keeps driving, yet following the
previously received information (e.g., position and speed). The
crash is illustrated by the right-hand side of Figure 1b. Our
hypothesis is that the intruder does not need to block messages
from the leader in order to successfully carry out this attack.

F. Blocking Legitimate Emergency Brake Msgs
Instead of injecting false emergency brake messages, the

intruder may block legitimate emergency brake messages from
the CACC communication channels in order to cause a crash.
An attack scenario with this purpose is illustrated in Figure 1c.

The intruder monitors the channels till a legitimate emer-
gency brake message is triggered by the leader (ldr). At
this point, ldr stops the vehicle and the intruder blocks the
message to avoid that any follower (flw1) can receive and
trigger emergency brake as well. As a result, flw1 keeps driving
the vehicle till crashing into ldr. This crash is illustrated on the
right-hand side of Figure 1c. This attack scenario is another
result from our formal verification.

III. SOFT-AGENTS MODEL FOR PLATOONING

Soft-Agents [19] is a rewriting logic framework for the
specification and verification of (autonomous) cyber-physical
agents. The framework can be found at [19], [20]. The
framework is implemented in the rewriting logic language
Maude [5]. It provides the general machinery (data-structures,
functions, sorts) for the specification of the behavior of agents,
e.g., agent capabilities and effects of actions. The semantics
of how the system evolves is specified by a small number of
rewrite rules defined in term of the general machinery.

Figure 2 depicts the general architecture of a soft-agent,
or simply agent. An agent has its own local knowledge base
that contains, e.g., its current perceived speed, position, and
direction of the other agents. Further data may be obtained
by sensing the environment or by sharing of information
between agents through communication channels. Using its

2020 IEEE Vehicular Networking Conference (VNC)

Authorized licensed use limited to: University of Canberra. Downloaded on May 20,2021 at 04:17:15 UTC from IEEE Xplore. Restrictions apply.

Safety

Security

Agent
Knowledge

Base

Concerns

Soft Agent

Environment

⊕
〈A,�〉

Sensor Failures

α

Sensing

Quality Parameters
Number of Safety Hazards Triggered

Average Distance between Vehicles

Time to reach destination

Agent 1

Environment
Knowledge Base

S
el
ec
t
on

e
of

th
e
B
es
t
R
an

ke
d

A
ct
io
n
s

Fuel-
Consumption

Env. Knowlege
Base Agent 2

Communication

Fig. 2: Soft-Agent Architecture

local knowledge base, the agent decides which action (α)
to perform according to its different concerns specified as
a soft constraint (optimization) problem [4]. For example,
if the distance to the vehicle in front is too great, the fuel
consumption concern kicks in and attempts to reduce it by
accelerating. Similarly, if the distance is dangerously short,
then the safety concern kicks in and attempts to increase it
by decelerating. As soft constraints subsume other constraint
systems, e.g., classical, fuzzy and probabilistic, it is possible
to formally specify a wide range of decision algorithms.

A. Platooning Model

We instantiated the general framework (data structures,
sorts, types, soft constraints) provided by the Soft Agents
framework for specifying platoon scenarios, enabling their
formal verification. While the complete implementation can
be found at [6], we describe some of this machinery below.

Knowledge Base: Vehicles have a local knowledge base
(lkb). It represents the vehicle’s view of the world, e.g., the
speed and position of itself and of the other vehicles. Formally,
a vehicle knowledge base is composed by a set of grounded
facts, p, i.e., facts not containing variable symbols, of the form
p, or associated with a timestamp, p@t, where t is natural
number. We list the main facts below. We assume that each
vehicle has a unique identifier written id.
• clock(t) denotes that the current time is t;
• atloc(id,pos) @ t denotes that the vehicle id has

at time t the position of value pos. We assume that
vehicles navigate on a straight road as it is enough for the
verification of the attacks described in Section II. Therefore,
pos is a value representing the position on this road.

• speed(id,spd) @ t denotes that the vehicle id has
at time t the speed of value spd;

• maxAcc(id,acc) denotes that the vehicle id can accel-
erate (and for simplicity also decelerate) at any time with
value acc.

• platoon(idL,[id1,...,idn]) @ t denotes that
at time t, the platoon led by idL has the sequence of
follower vehicles id1,...,idn;

• mode(id,md) @ t denotes that the vehicle id at time
t is in mode md which include: nonplatoon when all
the vehicle’s platooning functionalities are not active, i.e.,
the vehicle is driven by a human driver; leading() when

the vehicle leads a platoon; following(idL) when id
is following the platoon led by idL; emergency when
id is in emergency brake mode; fuseRear(idL,idB)
when id is in the process of joining platoon led by idL
and shall join be behind vehicle idB.

• safe(id,min,max) denotes that the distance to the
preceding vehicle of id is considered safe if it is between
the values min and max;

• fuel(id,min,max) denotes that the distance to the
preceding vehicle of id is considered to be fuel efficient
if it is between the values min and max;

• histSpd(id,id1,spd1;...;spdn) @ t
denotes that vehicle id has the n last speed values,
spd1;...;spdn, of vehicle id1. This fact is used to
build plausibility checks as detailed in Section V.

• histGap(id,gap1;...;gapn) @ t denotes
that vehicle id has the n last gap measurements,
gap1;...;gapn, to the following vehicle.

Example 3.1: The following local knowledge base of vehicle
v(1) specifies that he is following vehicle v(0). The vehicle
v(1) has speed 20 and position 945 distance units. He
believes to be immediately behind vehicle v(0) with a gap
of 55 distance units. The vehicle v(1) has a maximum
acceleration of 3 acceleration units. Moreover, he keeps track
of the three last speed values, 25, of v(0).
lkb : (clock(3) (atloc(v(1),loc(945)) @ 3)
(mode(v(1),following(v(0))) @ 3)
(speed(v(1),20) @ 3) (gapNext(v(1),55) @ 3)
(idNext(v(1),v(0)) @ 3) maxAcc(v(1),3)
(histSpd(v(1),v(0),25 @ 3; 25 @ 2; 25 @ 1) @ 3)
(histGap(v(1),55 @ 3; 55 @ 2; 55 @ 1) @ 3)
fuel(v(1),1,3) safe(v(1),2,4))

Sensors: A vehicle is equipped with three sensors locS,
speedS and gapS. They measure, respectively, the vehicle’s
location, speed and the gap to the vehicle immediately ahead.
As we illustrate below, at each tick, vehicles use these sensors
to query the environment knowledge base and update the
vehicle’s local knowledge base. While it is not the focus of
this work, it is possible to evaluate the robustness of agents
with respect to sensor faults as described in [15].

Communication Channels and Protocols: We assume
that vehicles may communicate using peer-to-peer connections
or by broadcasting messages. Based on this assumption, we
implement a number of protocols for platooning including:
• Heartbeat from Follower to Leader (HFL): A follower

vehicle sends periodically a (time-stamped) message to the
leader with information such as its current speed, position.

• Heartbeat from Leader to Follower (HLF): The platoon
leader sends periodically a message to each follower with
information of all vehicles in the platoon such as their
speeds and positions.

• Emergency Brake: Any vehicle in the platoon may broad-
cast an emergency brake message informing that it is
activating its emergency brakes.

• Heartbeat from Joining Vehicle to Leader (HJL): A vehicle
that wants to join a platoon sends a heartbeat to the platoon
leader, such as its current position and speed.

2020 IEEE Vehicular Networking Conference (VNC)

Authorized licensed use limited to: University of Canberra. Downloaded on May 20,2021 at 04:17:15 UTC from IEEE Xplore. Restrictions apply.

• Heartbeat from Leader to Joining Vehicle (HLJ): The
platoon leader sends to the vehicle that is joining the
platoon information, such as the position and speed of the
last vehicle in the platoon.
Actions: Vehicles decide to accelerate or decelerate. Since

there may be infinitely many possibilities of acceptable speeds
(for safety and fuel efficiency), we abstract actions by using
facts of the form act(id,vmin,vmax) denoting a set of
actions of changing id’s speed to values between vmin and
vmax. Actions are evaluated with a value that is the result of
a soft constraint problem specification described next.

Soft Constraints: The evaluation of possible actions is done
by taking account the vehicle’s concerns specified as a soft
constraint problem. To evaluate our verification machinery, we
implemented a strategy that depends on the vehicle’s mode.

When in following mode, a vehicle has two main concerns:
Fuel-Saving and Safety. The former attempts to close the gap
to the vehicle immediately in front, while the latter attempts
to keep a safe distance to the vehicle immediately in front.
These are specified by the knowledge items safe and fuel.

Our machinery uses these two parameters to determine
which (set of) actions are the most highly ranked. This is ac-
complished by attempting to satisfy both concerns, safety and
fuel-saving. If this is not possible, then safety is given priority
over fuel-saving. When in emergency mode, the vehicle has
only the concern of stopping the vehicle.

Example 3.2: Assume the knowledge-base of vehicle v(1)
in Example 3.1. Since its maximum acceleration is 3 and its
current speed is 20, it may choose any speed between 17 and
23. From the safety concern, it attempts to keep a distance (in
terms of time) between 2 and 4. From the current gap of 55
units and speed of the vehicle in front of 25, all speeds between
17 and 23 are acceptable. However, the fuel-saving concern
attempts to keep a distance (in terms of time) between 1 and
3. Since the gap is too great and the vehicle in front is faster,
only speeds between 75/4 and 23 are acceptable. The vehicle
picks the average speed of 20.75, i.e., v(1) accelerates.

Vehicle Configuration and System Configuration: A
vehicle configuration contains its local knowledge base (lkb),
sensors (sensors), and the events (evs) that are to be pro-
cessed. The events are used to define the execution semantics
described in Section III-B.

Example 3.3: The following is an example of a vehicle
configuration for v(1), where LKB is the local knowledge
base in Example 3.1. Finally, it has a single event tick @
0 that specifies that this vehicle is ready to observe the state
and schedule new actions.
[v(1) : veh | lkb : LKB

sensors : (locS speedS gapS),
evs : (tick @ 0)]

Finally, a system configuration is composed of a collection
of vehicle configurations, vconfi, for 0 ≤ i ≤ n, and an en-
vironment [eId | kb]: { [eId | kb] vconf1 ...
vconfn }. The environment knowledge base, kb, contains
the true state of the world which may be different to the
information of the local knowledge bases of vehicles.

B. Executable Semantics

The execution semantics of our platooning model follows
the general semantics described in [19], [20]. Formally, an
execution is a finite sequence of system configurations, written
S0 −→ S1 −→ · · · −→ Sn, where each transition Si −→
Si+1 follows the executable semantics described below. In
practice, an execution can be constructed in an automated
fashion using the rewriting tool Maude [5]. We illustrate the
semantics by using the platooning model described above.

The execution semantics follows an event-based approach.
Vehicles have events of form ev @ t denoting an event ev
that should be executed after t time units. If t is zero, then it
is executed immediately. There are two types of events: tasks
and actions. All events of the form task @ 0 are executed,
typically producing actions to be executed and new tasks for
later execution. Suppose the smallest non-zero task delay is
d. Then d time units pass as follows: execute all actions with
zero delay; update the configuration to pass one unit of time;
repeat until d units of time have passed.

Consider as an example the initial system configuration
with two vehicles v(0) and v(1), where LKB is as
in Example 3.1 and LKB1 is similar, just that the facts
for the platoon, location and speed of v(0) are as
specified, respectively, by (platoon(v(0),v(1))
@ 0) (atloc(v(0),loc(1000)) @ 0)
(speed(v(0),25) @ 0):

{ [eId] | kb]
[v(0) : veh | lkb : LKB1,
sensors : (locS speedS gapS),
evs : (tick @ 0)]

[v(1) : veh | lkb : LKB,
sensors : (locS speedS gapS),
evs : (tick @ 0)] }

At this point, the system checks for tasks of each vehicle,
namely the following tasks:
1) Update their local knowledge base with the information

extracted by the sensors, location, speed and gaps to
vehicles in the front.

2) Executes their soft constraint machinery to determine which
range of actions they shall perform. Since v(0) is the
leader, it decides to maintain its speed at 25. This is spec-
ified by the event {u(1),actSpeed(v(0),22,28)}
@ 0) specifying that any speed between 22 and 28
is ranked as maximum denoted by u(1). Thus the
vehicle picks the average 25. On the other hand, as
described in Example 3.2, v(1) computes the event
{u(1),actSpeed(v(1),75/4,23)} @ 0), choos-
ing to accelerate to speed 20.75.

3) Finally, the vehicles follow the communication protocols
described in Section III-A. For this example, the leader
vehicle v(0) creates an event to send a heartbeat to v(1):
(actSnd(v(0),msg(v(0),v(1),

hbl2f(v(0),25,loc(1000),kb) @ 0) @ 0)
denoting the action to send a message from v(0) to v(1)
containing as payload a heartbeat from leader to follower

2020 IEEE Vehicular Networking Conference (VNC)

Authorized licensed use limited to: University of Canberra. Downloaded on May 20,2021 at 04:17:15 UTC from IEEE Xplore. Restrictions apply.

(hbl2f) with v(0)’s current speed and location, and kb
that is a collection of facts which is elided.
Similarly, the following vehicle v(1) creates an event to
send a heartbeat to the leader v(0) containing v(1)’s
speed and position.

The following step in the execution semantics is to advance
time and carry out all these events. This results in updating the
speed of the vehicles, and sending both heartbeat messages.
The contents of speed and location in these messages are then
processed, updating the vehicle’s local knowledge bases.

C. Safety Verification (w/o Intruders)

We illustrate next how we can use the machinery described
above to reason about the behavior of platoons and demon-
strate properties. In particular, we are interested in determining
whether two vehicles can crash with each other.

A vehicle crash may happen if the control measures are not
adequately set or its assumptions are not met. Example 3.4
illustrates how our machinery can be used to demonstrate
this. Moreover, an intruder may exploit the communication
channels to cause an accident, as shown in Section IV.

Example 3.4: Consider the system configuration, S0, from
the previous section with two vehicles v(0) leading the pla-
toon, and v(1) following v(0). Assume the same parameters
for the concerns safe and fuel as in Example 3.1.

Formally, an execution leads to a crash if it leads to a system
configuration such that the location of v(0) is less or equal to
the location of v(1). Let crash(S) return true if S consist
of system configuration with a crash and false otherwise.

We can use the following command in Maude:
search[1] S0 => S1 such that crash(S1) .
to search for an execution starting at S0 and ending at a
configuration S1 such that crash(S1) returns true, i.e., a
configuration where the vehicles v(0) and v(1) crash.

Running this command, Maude does not find any such S’,
thus providing evidence that the parameters for safe and
fuel are correctly set.

However, if we use S0’, where the speed of v(1) is 40
instead of 20, and run the command
search[1] S0’ => S1 such that crash(S1) .
then Maude finds in 52ms a configuration S1 where a crash
happened. This result means that the chosen parameters do
not work w.r.t. safety. Indeed, one could expect a crash when
the speed of a vehicle is much greater than the speed of its
preceding vehicle.

By using this type of reasoning, engineers can verify
whether the specified behavior of platoon is safe according to
the assumptions used, recalibrating concerns whenever needed.
In the example above, one should make sure that the vehicle
v(1) is not much greater that the speed of v(0).

IV. INTRUDER MODEL

This section introduces an intruder model, formalizing the
threat model discussed in Section II. The intruder is capable
of impersonating an honest vehicle, injecting messages, and

blocking message from communication channels. These ca-
pabilities enable us to carry out similar verification done for
safety, but now considering a malicious intruder. For example,
it is possible to analyze whether platoons are vulnerable to the
attacks enumerated in Section II.

Our intruder model is similar to [17], for the security
verification of Industry 4.0 applications, in that the intruder
model is parametrized by its capabilities. Here we consider two
capabilities: injecting messages signed by honest participants
and blocking specific messages from communication channels.

An intruder model (intSpec) is integrated to a system
configuration system, forming an intruder configuration:
{ system ; intSpec }, where intSpec has the fol-

lowing shape:

[iid : intruder | (v2vMsgsL : msgList)
(blockActSnd : ids) caps]

It contains the intruder id iid; the sequence of messages,
msgList, that the intruder may inject; and the vehicles, ids,
whose output communications are blocked by the intruder.

The execution semantics described above is extended to
accommodate the intruder:
• Message Injection (INJ): The intruder may choose at any

moment of a system execution to inject the first message,
msg, in its list of messages msgList. This results in
the injection of msg to its destination in the system
configuration system, and the list msgList is updated
by deleting msg.

• Blocking (BLK): The vehicles in ids are jammed during
the whole attack execution. This means that all outgoing
messages of a vehicle in ids are blocked.

Our model is parametric w.r.t. the intruder capabilities.
It requires little effort to include other capabilities to the
intruder model in caps. For example, it is possible add
capabilities where the intruder tampers, i.e., modifies messages
sent by vehicles; or periodically sends messages from a set of
messages, instead of in a list; or only starts blocking a message
after some particular time has elapsed.

As we describe in Section V, however, the intruder can
carry out all the attacks described in Section II using the two
capabilities specified above. The following example illustrates
how one of the attacks can be modeled using our machinery:

Example 4.1: Consider the system described in Section III-A
with two vehicles v(0) and v(1), with, respectively, speeds
20 and 25, and locations, 1000 and 945. Moreover, consider
the intruder with a single message:
msg(v(0),v(1),hbl2f(v(0),70,loc(1070), none))

The intruder impersonates v(0) informing v(1) that his
speed is 70 and location is 1070. Since v(1) does not double
check the contents of this message, it will start accelerating.
This will lead to a crash as the actual speed of v(0) is 20.

This can be determined in an automated fashion using the
following Maude’s search command, where isys0 is the
intruder configuration described above:
search isys0 =>* isys1 such that crash(isys1) .

2020 IEEE Vehicular Networking Conference (VNC)

Authorized licensed use limited to: University of Canberra. Downloaded on May 20,2021 at 04:17:15 UTC from IEEE Xplore. Restrictions apply.

Attack Scenario Capability Countermeasure # States Execution Time (min) Attack Successful

II-B Injection of False Msgs against Follower INJ + BLK N 15351 0.034 Y
Injection of False Msgs against Follower INJ + BLK COMM - 120 -
Injection of False Msgs against Follower INJ + BLK SNSR - 120 -
Injection of False Msgs against Follower INJ N - 120 -

II-C Slow-Injection of False Msgs against Follower INJ + BLK N 3315284 52.764 Y
Slow-Injection of False Msgs against Follower INJ + BLK COMM 3286681 53.251 Y
Slow-Injection of False Msgs against Follower INJ + BLK SNSR - 120 -
Slow-Injection of False Msgs against Follower INJ N - 120 -

II-D Injection of False Msgs against Joining Vehicle INJ + BLK N 9408 0.023 Y
Injection of False Msgs against Joining Vehicle INJ + BLK COMM 9408 0.027 Y
Injection of False Msgs against Joining Vehicle INJ + BLK SNSR 9407 0.023 Y
Injection of False Msgs against Joining Vehicle INJ N - 120 -

II-E Injection of False Emergency Brake Msgs INJ + BLK N 593 0.002 Y
Injection of False Emergency Brake Msgs INJ N 2218 0.011 Y

II-F Blocking Legitimate Emergency Brake Msgs BLK N 6539 0.013 Y

TABLE I: Evaluation of the attack scenarios described in Section II. Some experiments were aborted after 120 minutes.

Maude finds an instance of the intruder configuration
isys1 in which v(0) and v(1) crash.

V. VERIFICATION RESULTS

Our goal is to evaluate our machinery on a number of attack
scenarios, including the ones described in Section II. To this
end, we formalized such attack scenarios using the intruder
model presented in Section IV. We run the search command
in Maude to automatically check whether two vehicles crash
under the presence of the intruder. We run all experiments on
a 1.90GHz Intel Core i7-8665U with 16GB of RAM running
Ubuntu 18.04 LTS with kernel 5.4.0-47-generic and Maude 3.

Table I summarizes our main results. It contains each attack
scenario described in Section II, the capability used by the
intruder, i.e., either injection (INJ) or blocking (BLK), whether
a countermeasure has been used against the attack, the number
of states explored, the execution time of each search command,
and whether the intruder was able to bypass any counter-
measure and successfully cause a crash between two vehicles.

For the attacks described in Sections II-B, II-C, and II-D we
evaluate their effectiveness with and without a countermeasure.
We formalized two types of countermeasures, abbreviated in
Table I as COMM (communication-based) and SNSR (sensor-
based) based on similar countermeasures proposed by [9]. The
COMM countermeasure works as follows. Whenever a vehicle
receives a message with the speed of the preceding vehicle,
the countermeasure checks it against the local histSpd.
The countermeasure is triggered if the incoming speed value
deviates from 30% w.r.t. the average of the last n speed values
received by the vehicle. The SNSR countermeasure estimates
the speed of the preceding vehicle based on the information
obtained from the gap sensor. That is, we estimate the speed
of the preceding vehicle by computing (spd + (gap2 -
gap1)), spd as the speed of the vehicle and gap2 and gap1
as the last two gap distance measurements (taken from the
local histGap). The SNSR countermeasure is triggered if the
incoming speed value deviates from 30% w.r.t. the estimated
speed of the preceding vehicle.

Our intruder using both capabilities has successfully carried
out the attacks II-B, II-C, and II-D against a platoon without
countermeasure. Attack II-B, however, has not led to a crash
when the countermeasures were deployed. This result was
expected as attack II-B sends high speed values to a target ve-
hicle. We run the search command to look for a crash between
two vehicles without the countermeasure being triggered. We
could not find any crash in 120 minutes.

The attack II-C bypassed the communication-based counter-
measure, but not the sensor-based countermeasure. This result
confirms the findings of [9] that feeding countermeasures with
information from local sensors can be effective against slow-
injection attacks. Next, the attack II-D led to a crash even when
the countermeasures were deployed. The attack II-D is carried
against a vehicle during the negotiation phase. This attack is
effective as the considered countermeasures are only valid for
platoon members (using their local histSpd or histGap).

Interestingly, neither of those three attacks led to a crash
using the injection capability only (i.e., no blocking at the
same time). This happens because the target vehicle receives
legit and false messages during the attack, and dynamically
adapts its acceleration based on the received messages. That is,
the target vehicle accelerates when receiving a false message
from the intruder, e.g., with high speed values, and decelerate
when receiving legit messages from the leader. Therefore,
we speculate that anti-jamming countermeasures, e.g., UFH-
UDSSS [18], could serve as an additional layer of defense
against injection attacks for CACC platoons.

Finally, both the attacks using emergency brake messages
led to a crash. In particular, the attack II-E is effective even
without blocking messages from the communication channels.
This is due to the fact that vehicles immediately stop driving
upon receiving an emergency brake message regardless of any
message (usually blocked by the intruder) sent by the leader.

VI. RELATED WORK

We have been inspired by [3], [22], [9] that investigated
the attacks described in Sections II-B and II-C. This paper

2020 IEEE Vehicular Networking Conference (VNC)

Authorized licensed use limited to: University of Canberra. Downloaded on May 20,2021 at 04:17:15 UTC from IEEE Xplore. Restrictions apply.

advances these previous work by proposing a formal frame-
work enabling engineers to formalize platoon and intruder
behaviors, and formally verify these models in an automated
fashion. Our framework provides evidence for the security of
platooning based on precise mathematical models, thus com-
plementing the evidence obtained with the use of simulation
based methods as in [3], [22], [9]. Further, we also propose
three new attacks that have not been considered before.

A number of formal frameworks have been proposed for
the specification and verification of cyber-physical agents [8],
[10], [14], [15], [19], [20] including for vehicle platooning [8],
[10], [14]. A key difference is that our work also considers how
intruders may cause harm, whereas these existing frameworks
focused on the safety of systems without considering security
and intruder models. For example, [8] uses Statistical Model
Checking to evaluate the impact of sensor and network faults
to the safety of systems. We have in our previous work [15]
also used Statistical Model Checking together with the Soft
Agents framework for the verification of UAV strategies in
the presence of sensor faults. We find it intriguing and leave
it to future work the combination of intruder and fault models
and their verification techniques for vehicle platooning.

A countermeasure against false position values has been
proposed by [12]. It employs low-power beaconing messages
to check whether incoming messages indeed comes from phys-
ically close vehicles, thus mitigating remote attacks from in-
truders not located near to platoon members. It seems possible
to extend our model to accommodate such aspects following
our previous work on Cyber-Physical Security Protocols [16].
We leave this investigation to future work.

VII. CONCLUSION

This paper proposes to the best of our knowledge the
first formal security framework for the specification and
verification of vehicle platoon using CAAC. Our model can
express communication protocols used by vehicles to exchange
information about their physical states, such as speed and
position, and can express vehicle behavior including how
information exchanged is used to make decision about speed
and position. Finally, our framework has an intruder model that
is parametric to capabilities, i.e., message injection and block-
ing. We demonstrated the effectiveness of our framework by
formalizing existing attacks and proposing three new attacks.

We are considering a number of future work directions. We
are considering other physical features, e.g., the use of Cyber-
Physical Security Protocols [16] to enable verification with
proximity-based countermeasures [12]. We are implementing
further intruder capabilities that reflect the capabilities of
the Dolev-Yao model [7], but taking care not to fall into
undecidable verification problems. We are also considering
abstract models, such as those considered in [11], to enable
completeness of our automated verification. We are planning to
extend our framework to also support reasoning with multi-
lane highway scenarios and reasoning with fault models as
in [15]. Finally, we are integrating our machinery into an
existing MBS tool, namely AutoFOCUS 3 [1].

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 830892. Nigam is partially sup-
ported by NRL grant N0017317-1-G002, and CNPq grant
303909/2018-8. Talcott was partially supported by ONR grants
N00014-15-1-2202 and N00014-20-1-2644, and NRL grant
N0017317-1-G002.

REFERENCES

[1] AF3 – AutoFOCUS 3. More information at https://af3.fortiss.org/.
[2] White paper: Automated driving and platooning issues and opportunities.

Available at https://tinyurl.com/yxzepft3, 2015.
[3] M. Amoozadeh, A. Raghuramu, C. Chuah, D. Ghosal, H. M. Zhang,

J. Rowe, and K. N. Levitt. Security vulnerabilities of connected vehicle
streams and their impact on cooperative driving. IEEE Commun. Mag.,
53(6):126–132, 2015.

[4] S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint
satisfaction and optimization. J. ACM, 44(2):201–236, 1997.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and
C. Talcott. All About Maude: A High-Performance Logical Framework,
volume 4350 of LNCS. Springer, 2007.

[6] Y. G. Dantas, V. Nigam, and C. Talcott. https://github.com/ygdantas/
SoftAgents-Platoon.git. 2020.

[7] D. Dolev and A. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[8] S. Hyun, J. Song, S. Shin, and D. Bae. Statistical verification framework
for platooning system of systems with uncertainty. In APSEC, 2019.

[9] M. Iorio, F. Risso, R. Sisto, A. Buttiglieri, and M. Reineri. Detecting
Injection Attacks on Cooperative Adaptive Cruise Control. In 2019 IEEE
Vehicular Networking Conference, VNC, pages 1–8, 2019.

[10] M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and S. M. Veres.
Formal verification of autonomous vehicle platooning. Sci. Comput.
Program., 148:88–106, 2017.

[11] M. I. Kanovich, T. B. Kirigin, V. Nigam, A. Scedrov, and C. L. Talcott.
Time, computational complexity, and probability in the analysis of
distance-bounding protocols. Journal of Computer Security, 25(6), 2017.

[12] H. Kim and T. Kim. Vehicle-to-vehicle (V2V) message content
plausibility check for platoons through low-power beaconing. Sensors,
19(24):5493, 2019.

[13] G. Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using FDR. In TACAS, pages 147–166, 1996.

[14] P. Mallozzi, M. Sciancalepore, and P. Pelliccione. Formal verification
of the on-the-fly vehicle platooning protocol. In SERENE, 2016.

[15] I. Mason, V. Nigam, C. L. Talcott, and A. V. D. Brito. A framework
for analyzing adaptive autonomous aerial vehicles. In SEFM, pages
406–422, 2017.

[16] V. Nigam, C. Talcott, and A. A. Urquiza. Towards the automated
verification of cyber-physical security protocols: Bounding the number
of timed intruders. In ESORICS, 2016.

[17] V. Nigam and C. L. Talcott. Formal security verification of industry 4.0
applications. In ETFA, pages 1043–1050, 2019.

[18] C. Pöpper, M. Strasser, and S. Capkun. Anti-jamming broadcast
communication using uncoordinated spread spectrum techniques. IEEE
J. Sel. Areas Commun., 28(5):703–715, 2010.

[19] C. Talcott, V. Nigam, F. Arbab, and T. Kappé. Formal specification
and analysis of robust adaptive distributed cyber-physical systems. In
M. Bernardo, R. D. Nicola, and J. Hillston, editors, SFM. 2016.

[20] C. L. Talcott, F. Arbab, and M. Yadav. Soft agents: Exploring soft
constraints to model robust adaptive distributed cyber-physical agent
systems. In Software, Services, and Systems - Essays Dedicated to
Martin Wirsing, pages 273–290, 2015.

[21] S. van de Hoef, K. H. Johansson, and D. V. Dimarogonas. Fuel-efficient
en route formation of truck platoons. IEEE Trans. Intell. Transp. Syst.,
19(1):102–112, 2018.

[22] R. W. van der Heijden, T. Lukaseder, and F. Kargl. Analyzing attacks
on cooperative adaptive cruise control (CACC). In 2017 IEEE Vehicular
Networking Conference, VNC, pages 45–52. IEEE, 2017.

[23] T. L. Willke, P. Tientrakool, and N. F. Maxemchuk. A survey of
inter-vehicle communication protocols and their applications. IEEE
Communications Surveys Tutorials, 11(2):3–20, 2009.

2020 IEEE Vehicular Networking Conference (VNC)

Authorized licensed use limited to: University of Canberra. Downloaded on May 20,2021 at 04:17:15 UTC from IEEE Xplore. Restrictions apply.

Chapter 11

Conclusion

The goal of this thesis has been to propose methods to enable the automation of safety
and security co-analysis activities in the design phase of safety-critical systems (left side
of the V-model). The motivation behind this goal is that many of such activities are
performed manually by experts. This manual approach is required due to the lack of explicit
semantics associated with key artifacts computed by safety and security activities performed
throughout the design of safety-critical systems. We hypothesize that the introduction
of lightweight semantics to key artifacts advances the state-of-the-art by enabling the
automation of several safety and security activities. The proposed lightweight semantics
provide a defined vocabulary, along with its semantics, with uniformly understood meanings
in the corresponding domain. Towards achieving the goal of the thesis and validating our
hypothesis, we list below some of the research activities that have been carried out:

1. Investigation of which artifacts are key to enable the automation of safety and security
co-analysis activities so that we can provide lightweight semantics to those artifacts.

2. Introduction of lightweight semantics to the identified key artifacts.

3. Development of a language enabling the specification of the identified key artifacts.

4. Development of reasoning principles to reason, query, and infer new information based
on the developed language.

By incorporating lightweight semantics into key artifacts, i.e., system architecture artifacts,
safety and security artifacts, and safety and security architecture patterns, we have proposed
a Domain-Specific Language (DSL) to enable the precise specification of such artifacts.
Knowledge Representation and Reasoning (KRR) [48] plays a crucial role in automation by
providing languages to specify semantics and formalize knowledge representation, along with
reasoning rules to enable automation. Our DSL has been developed in a logic programming
solver implemented based on KRR. The DSL has been developed following a Model-Based
Systems Engineering (MBSE) approach [47] commonly used in the automotive industry.

From a safety perspective, the methods developed in this thesis have successfully
automated the recommendation of safety architecture patterns to address safety artifacts,

181

such as hazards, faults, and failures. Pattern requirements are also automatically computed
for each recommended safety architecture pattern. From a security perspective, this
thesis adopted the safety-informed security approach [34], where security analysis focuses
on the safety artifacts identified in the safety analysis. This thesis aimed to automate
Threat Analysis and Risk Assessment (TARA) activities by taking as input safety artifacts
identified in the safety analysis. Based on the safety-informed security approach, the
methods developed in this thesis have successfully enable the automation of the following
TARA activities, namely asset identification (including damage scenarios), impact rating,
and threat scenarios. These results highlight the synergies resulting from the combination of
safety and security analysis. This thesis has proposed the formalization of an intruder model,
which served as the basis to enable the automation of the attack path analysis activity.
This thesis has successfully enabled the automated recommendation of security architecture
patterns (including pattern requirements) to address threat scenarios. Additionally, the
thesis proposes methods to enable the automated computation of consequences arising from
safety or security architecture patterns. That is, our methods derive safety artifacts caused
by the instantiation of security architecture patterns, and security artifacts caused by the
instantiation of safety architecture patterns.

As a result of the developed DSL and reasoning rules, we have developed MBSE plugins
for reasoning about the safety and security of system architectures. We demonstrated
that the DSL, in conjunction with the reasoning rules, has the potential to act as a
backend solution within a MBSE framework. That is, it showcases the viability of using
the developed DSL and reasoning rules as integral components of an MBSE framework,
providing capabilities for reasoning about the safety and security of system architectures.

The thesis also investigated the benefits of connecting the introduced lightweight
semantics with formal verification. Formal verification activities are performed on the right
side of the V-model to verify whether requirements specified on the left side of the V-model
are met by the developed system [23]. We developed a formal framework to assess the
safety and security of Cooperative Adaptive Cruise Control (CACC) systems. We showcase
that the pattern requirements, automated by the developed DSL, in conjunction with the
reasoning rules, may assist formal verification experts in formalizing security mechanisms.
Once security mechanisms have been formalized, formal verification experts are able to
verify the system’s properties. That is, these experts may rigorously assess and verify the
effectiveness of these security mechanisms in ensuring the system’s properties.

In conclusion, the proposed lightweight semantics, coupled with the adoption of KRR
and MBSE approach, has validated our hypothesis. That is, the introduction of lightweight
semantics has paved the way for automated safety and security co-analysis activities
performed during the design of safety-critical systems. This research contributes to the
field of safety and security co-analysis by providing a foundation for precise specification,
interpretation, and decision-making based on the meaning of key artifacts. The integration
of the proposed DSL and reasoning rules into MBSE plugins holds promise for reducing the
burden on safety and security engineers, ultimately enhancing the efficiency and effectiveness
of system development in terms of safety and security.

Supplementary References

[1] John C. Knight. Safety critical systems: Challenges and Directions. In Proceedings of
the 24th International Conference on Software Engineering, ICSE 2002, 19-25 May
2002, Orlando, Florida, USA, pages 547–550. ACM, 2002.

[2] Christian Schlehuber and Dominik Renkel. Merging Worlds - Aligning Safety and
Security. In Reliability, Safety, and Security of Railway Systems. Modelling, Analysis,
Verification, and Certification - Third International Conference, RSSRail 2019, Lille,
France, June 4-6, 2019, Proceedings, volume 11495 of Lecture Notes in Computer
Science, pages 284–295. Springer, 2019.

[3] Xiaobo Qu, Lingshu Zhong, Ziling Zeng, Huizhao Tu, and Xiaopeng Li. Automation
and connectivity of electric vehicles: Energy boon or bane? Cell Reports Physical
Science, 3(8):101002, 2022.

[4] Paul Rook. Controlling software projects. Softw. Eng. J., 1(1), 1986.

[5] Tiago Amorim, Helmut Martin, Zhendong Ma, Christoph Schmittner, Daniel Schneider,
Georg Macher, Bernhard Winkler, Martin Krammer, and Christian Kreiner. System-
atic Pattern Approach for Safety and Security Co-engineering in the Automotive
Domain. In Computer Safety, Reliability, and Security - 36th International Conference,
SAFECOMP 2017, Trento, Italy, September 13-15, 2017, Proceedings, volume 10488
of Lecture Notes in Computer Science, pages 329–342. Springer, 2017.

[6] Martin A. Skoglund, Fredrik Warg, and Behrooz Sangchoolie. In Search of Synergies in
a Multi-concern Development Lifecycle: Safety and Cybersecurity. In Barbara Gallina,
Amund Skavhaug, Erwin Schoitsch, and Friedemann Bitsch, editors, Computer Safety,
Reliability, and Security - SAFECOMP 2018 Workshops, ASSURE, DECSoS, SASSUR,
STRIVE, and WAISE, Västerås, Sweden, September 18, 2018, Proceedings, volume
11094 of Lecture Notes in Computer Science, pages 302–313. Springer, 2018.

[7] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Gottlob, Simona
Perri, and Francesco Scarcello. The DLV system for knowledge representation and
reasoning. ACM Trans. Comput. Log., 7, 2006.

[8] Nuno Silva and Rui Lopes. Electronic Reliability Estimation: How Reliable Are the
Results? In Computer Safety, Reliability, and Security - SAFECOMP 2012 Workshops:

SUPPLEMENTARY REFERENCES 183

Sassur, ASCoMS, DESEC4LCCI, ERCIM/EWICS, IWDE, Magdeburg, Germany,
September 25-28, 2012. Proceedings, volume 7613 of Lecture Notes in Computer Science,
pages 319–327. Springer, 2012.

[9] ISO. ISO 26262: Road vehicles — Functional safety — Part 1: Vocabulary, 2018.
Available at https://www.iso.org/standard/43464.html.

[10] ISO. ISO 26262: Road vehicles — Functional safety — Part 3: Concept phase, 2018.
Available at https://www.iso.org/standard/43464.html.

[11] Nancy G. Leveson and John P. Thomas. STPA Handbook. 2018. Available at
https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf.

[12] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr. Ba-
sic Concepts and Taxonomy of Dependable and Secure Computing. IEEE Trans.
Dependable Secur. Comput., 1(1):11–33, 2004.

[13] Ashraf Armoush. Design Patterns for Safety-Critical Embedded Systems. PhD thesis,
RWTH Aachen University, 2010.

[14] Christopher Preschern, Nermin Kajtazovic, and Christian Kreiner. Safety Architecture
Pattern System with Security Aspects. Trans. Pattern Lang. Program., 4:22–75, 2019.

[15] Vard Antinyan. Revealing the Complexity of Automotive Software. In ESEC/FSE
’20: 28th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, Virtual Event, USA, November 8-13, 2020,
pages 1525–1528. ACM, 2020.

[16] Samo Vodopivec, Melita Hajdinjak, Janez Bester, and Andrej Kos. Vehicle intercon-
nection metric and clustering protocol for improved connectivity in vehicular ad hoc
networks. EURASIP J. Wirel. Commun. Netw., 2014:170, 2014.

[17] Stephen D. Gantz Daniel R. Philpott. FISMA and the Risk Management Framework:
The New Practice of Federal Cyber Security. 2012.

[18] Mani Amoozadeh, Hui Deng, Chen-Nee Chuah, H. Michael Zhang, and Dipak Ghosal.
Platoon management with cooperative adaptive cruise control enabled by VANET.
Veh. Commun., 2(2):110–123, 2015.

[19] Apollo. An Open Autonomous Driving Platform. Available at https://github.com/
ApolloAuto/apollo.

[20] Abdullahi Chowdhury, Gour C. Karmakar, Joarder Kamruzzaman, Alireza Jolfaei, and
Rajkumar Das. Attacks on Self-Driving Cars and Their Countermeasures: A Survey.
IEEE Access, 8:207308–207342, 2020.

https://www.iso.org/standard/43464.html
https://www.iso.org/standard/43464.html
https://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://github.com/ApolloAuto/apollo
https://github.com/ApolloAuto/apollo

184 SUPPLEMENTARY REFERENCES

[21] WIRED. Hackers remotely kill a jeep on the highway-with me in it, 2015. Available at
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/.

[22] Daniel Zelle, Timm Lauser, Dustin Kern, and Christoph Krauß. Analyzing and Securing
SOME/IP Automotive Services with Formal and Practical Methods. In ARES 2021:
The 16th International Conference on Availability, Reliability and Security, Vienna,
Austria, August 17-20, 2021, pages 8:1–8:20. ACM, 2021.

[23] ISO/SAE. ISO/SAE 21434: Road vehicles — Cybersecurity engineering, 2021. Available
at https://www.iso.org/standard/70918.html.

[24] Betty H. C. Cheng, Bradley Doherty, Nick Polanco, and Matthew Pasco. Security
Patterns for Automotive Systems. In 22nd ACM/IEEE International Conference on
Model Driven Engineering Languages and Systems Companion, MODELS Companion
2019, Munich, Germany, September 15-20, 2019, pages 54–63. IEEE, 2019.

[25] Alexander van den Berghe and Koen Yskout. Security Pattern Catalog. Available at
https://securitypatterns.distrinet-research.be/.

[26] Adam Shostack. Threat Modeling: Designing for Security. Wiley, 2014.

[27] Betty H. C. Cheng, Bradley Doherty, Nicholas Polanco, and Matthew Pasco. Security
Patterns for Connected and Automated Automotive Systems. Journal of Automotive
Software Engineering, 1:51–77, 2020.

[28] Christian Plappert, Florian Fenzl, Roland Rieke, Ilaria Matteucci, Gianpiero
Costantino, and Marco De Vincenzi. SECPAT: Security Patterns for Resilient Auto-
motive E / E Architectures. In 30th Euromicro International Conference on Parallel,
Distributed and Network-based Processing, PDP 2022, Valladolid, Spain, March 9-11,
2022, pages 255–264. IEEE, 2022.

[29] Alexander van Den Berghe, Koen Yskout, and Wouter Joosen. A reimagined catalogue
of software security patterns. In Proceedings of the 3rd International Workshop
on Engineering and Cybersecurity of Critical Systems, EnCyCriS 2022, Pittsburgh,
Pennsylvania, 16 May 2022, pages 25–32. ACM, 2022.

[30] ED 202A. Airworthiness security process specification. 2014.

[31] SAE J3061. Cybersecurity guidebook for cyber-physical vehicle systems. 2016.

[32] Elena Lisova, Irfan Šljivo, and Aida Čaušević. Safety and Security Co-Analyses: A
Systematic Literature Review. IEEE Systems Journal, 13(3):2189–2200, 2019.

[33] Antoaneta Kondeva, Vivek Nigam, Harald Ruess, and Carmen Cârlan. On Computer-
Aided Techniques for Supporting Safety and Security Co-Engineering. In IEEE Inter-
national Symposium on Software Reliability Engineering Workshops, ISSRE Workshops
2019, Berlin, Germany, October 27-30, 2019, pages 346–353. IEEE, 2019.

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.iso.org/standard/70918.html
https://securitypatterns.distrinet-research.be/

SUPPLEMENTARY REFERENCES 185

[34] Raj Gautam Dutta, Feng Yu, Teng Zhang, Yaodan Hu, and Yier Jin. Security for
Safety: A Path Toward Building Trusted Autonomous Vehicles. In Proceedings of the
International Conference on Computer-Aided Design, ICCAD 2018, San Diego, CA,
USA, November 05-08, 2018, page 92. ACM, 2018.

[35] Stéphane Paul. On the Meaning of Security for Safety (S4S). WIT Transactions on
The Built Environment, 151:379 – 389, 2015.

[36] Sebastian van de Hoef, Karl Henrik Johansson, and Dimos V. Dimarogonas. Fuel-
Efficient En Route Formation of Truck Platoons. CoRR, abs/1704.08836, 2017.

[37] Alessandro Tempia Calvino and Ludovic Apvrille. Direct model-checking of sysml
models. In Proceedings of the 9th International Conference on Model-Driven Engineer-
ing and Software Development, MODELSWARD 2021, Online Streaming, February
8-10, 2021, pages 216–223. SCITEPRESS, 2021.

[38] Carolyn L. Talcott, Vivek Nigam, Farhad Arbab, and Tobias Kappé. Formal Specifica-
tion and Analysis of Robust Adaptive Distributed Cyber-Physical Systems. In Formal
Methods for the Quantitative Evaluation of Collective Adaptive Systems - 16th Inter-
national School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM 2016, Bertinoro, Italy, June 20-24, 2016, Advanced Lectures,
volume 9700 of Lecture Notes in Computer Science, pages 1–35. Springer, 2016.

[39] Yuri Gil Dantas, Antoaneta Kondeva, and Vivek Nigam. Less Manual Work for Safety
Engineers: Towards an Automated Safety Reasoning with Safety Patterns. In Proceed-
ings 36th International Conference on Logic Programming (Technical Communications),
ICLP Technical Communications 2020, (Technical Communications) UNICAL, Rende
(CS), Italy, 18-24th September 2020, volume 325 of EPTCS, pages 244–257, 2020.

[40] Yuri Gil Dantas, Tiziano Munaro, Carmen Carlan, Vivek Nigam, Simon Barner,
Shiqing Fan, Alexander Pretschner., Ulrich Schoepp, and Sergey Tverdyshev. A
Model-based System Engineering Plugin for Safety Architecture Pattern Synthesis. In
Proceedings of the 10th International Conference on Model-Driven Engineering and
Software Development - MODELSWARD,, pages 36–47. INSTICC, SciTePress, 2022.

[41] Yuri Gil Dantas, Tiziano Munaro, Carmen Cârlan, Vivek Nigam, Simon Barner, Shiqing
Fan, Alexander Pretschner, Ulrich Schöpp, and Sergey Tverdyshev. A Toolchain for
Synthesizing and Validating Safety Architectures. SN Comput. Sci., 4(4):335, 2023.

[42] Yuri Gil Dantas, Simon Barner, Pei Ke, Vivek Nigam, and Ulrich Schöpp. Automating
Vehicle SOA Threat Analysis Using a Model-Based Methodology. In Proceedings of the
9th International Conference on Information Systems Security and Privacy, Lisbon,
Portugal, February 22-24, 2023, pages 180–191. SciTePress, 2023.

[43] Yuri Gil Dantas and Ulrich Schöpp. SeCloud: Computer-Aided Support for Selecting
Security Measures for Cloud Architectures. In Proceedings of the 9th International

186 SUPPLEMENTARY REFERENCES

Conference on Information Systems Security and Privacy, Lisbon, Portugal, February
22-24, 2023, pages 264–275. SciTePress, 2023.

[44] Yuri Gil Dantas, Vivek Nigam, and Ulrich Schöpp. A Model-Based Systems Engineering
Plugin for Cloud Security Architecture Design. SN Comput. Sci., 5(5):553, 2024.

[45] Yuri Gil Dantas and Vivek Nigam. Automating Safety and Security Co-design through
Semantically Rich Architecture Patterns. ACM Trans. Cyber Phys. Syst., 7(1):5:1–5:28,
2023.

[46] Yuri Gil Dantas, Vivek Nigam, and Carolyn Talcott. A Formal Security Assessment
Framework for Cooperative Adaptive Cruise Control. In IEEE Vehicular Networking
Conference (VNC), 2020.

[47] INCOSE. Systems engineering vision 2020, 2007. Available at http://www.ccose.
org/media/upload/SEVision2020_20071003_v2_03.pdf.

[48] Ronald Brachman and Hector Levesque. Knowledge Representation and Reasoning.
Elsevier, 2004.

[49] fortiss GmbH. AutoFOCUS 2.21, 2022. Available at https://www.fortiss.org/en/
publications/software/autofocus-3.

[50] Michael Gelfond and Vladimir Lifschitz. Logic Programs with Classical Negation. In
Logic Programming, Proceedings of the Seventh International Conference, Jerusalem,
Israel, June 18-20, 1990, pages 579–597. MIT Press, 1990.

[51] Potassco project. Clingo: A grounder and solver for logic programs https://github.
com/potassco/clingo.

[52] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in Description Logics
with a Concrete Domain in the Framework of Resolution. In Proceedings of the 16th
Eureopean Conference on Artificial Intelligence, ECAI’2004, including Prestigious
Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004,
pages 353–357. IOS Press, 2004.

[53] Stephan Grimm. Knowledge Representation and Ontologies. In Scientific Data Mining
and Knowledge Discovery - Principles and Foundations, pages 111–137. Springer, 2010.

[54] Jeannette M. Wing. A Specifier’s Introduction to Formal Methods. Computer, 23(9):8–
24, 1990.

[55] Edmund M. Clarke, Orna Grumberg, Doron Peled, and Doron A. Peled. Model
Checking. MIT Press, 1999.

[56] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Martí-Oliet,
José Meseguer, and Carolyn Talcott. All About Maude: A High-Performance Logical
Framework. LNCS. Springer, 2007.

http://www.ccose.org/media/upload/SEVision2020_20071003_v2_03.pdf
http://www.ccose.org/media/upload/SEVision2020_20071003_v2_03.pdf
https://www.fortiss.org/en/publications/software/autofocus-3
https://www.fortiss.org/en/publications/software/autofocus-3
https://github.com/potassco/clingo
https://github.com/potassco/clingo

SUPPLEMENTARY REFERENCES 187

[57] Peter Csaba Ölveczky. Teaching formal methods to undergraduate students using
maude. In Rewriting Logic and Its Applications - 14th International Workshop,
WRLA@ETAPS 2022, Munich, Germany, April 2-3, 2022, Revised Selected Papers,
volume 13252 of Lecture Notes in Computer Science, pages 85–110. Springer, 2022.

[58] Emmanuel Clement and Antoine Rauzy. A Fault Tree Assessment Software Fully
Compliant with Open-PSA and using XFTA Fault Tree Engine. Available at https:
//www.arbre-analyste.fr/en.html, 2014.

[59] Asim Abdulkhaleq. XSTAMPP (eXtensible STAMP Platform). Available at https:
//github.com/SE-Stuttgart/XSTAMPP, 2018.

[60] Yuri Gil Dantas, Vivek Nigam, and Harald Ruess. Security Engineering for ISO 21434.
CoRR, abs/2012.15080, 2020.

[61] Christopher Preschern, Nermin Kajtazovic, and Christian Kreiner. Security Analysis
of Safety Patterns. In Proceedings of the 20th Conference on Pattern Languages of
Programs, PLoP ’13, USA, 2013. The Hillside Group.

[62] United Nations. UN Regulation No. 155 - Cyber security and cyber security manage-
ment system. 2021.

[63] Giedre Sabaliauskaite, Lin Shen Liew, and Jin CuiJin Cui. Integrating Autonomous
Vehicle Safety and Security Analysis using STPA Method and the Six-Step Model. In
International Journal of Information Security, pages 160–169, 2018.

[64] Giedre Sabaliauskaite, Sridhar Adepu, and Aditya Mathur. A Six-Step Model for
Safety and Security Analysis of Cyber-Physical Systems. In Critical Information
Infrastructures Security - 11th International Conference, CRITIS 2016, Paris, France,
October 10-12, 2016, Revised Selected Papers, volume 10242 of Lecture Notes in
Computer Science, pages 189–200. Springer, 2016.

[65] Georg Macher, Harald Sporer, Reinhard Berlach, Eric Armengaud, and Christian
Kreiner. SAHARA: a security-aware hazard and risk analysis method. In Proceedings
of the 2015 Design, Automation & Test in Europe Conference & Exhibition, DATE
2015, Grenoble, France, March 9-13, 2015, pages 621–624. ACM, 2015.

[66] David Förster, Claudia Loderhose, Thomas Bruckschlögl, and Franziska Wiemer.
Safety goals in vehicle security analyses: a method to assess malicious attacks with
safety impact. In the 17th escar Europe - Embedded Security in Cars, 2019.

[67] Junjie Shen, Ningfei Wang, Ziwen Wan, Yunpeng Luo, Takami Sato, Zhisheng Hu,
Xinyang Zhang, Shengjian Guo, Zhenyu Zhong, Kang Li, Ziming Zhao, Chunming
Qiao, and Qi Alfred Chen. SoK: On the Semantic AI Security in Autonomous Driving.
CoRR, abs/2203.05314, 2022.

https://www.arbre-analyste.fr/en.html
https://www.arbre-analyste.fr/en.html
https://github.com/SE-Stuttgart/XSTAMPP
https://github.com/SE-Stuttgart/XSTAMPP

188 SUPPLEMENTARY REFERENCES

[68] Junjie Shen, Jun Yeon Won, Zeyuan Chen, and Qi Alfred Chen. Drift with Devil:
Security of Multi-Sensor Fusion based Localization in High-Level Autonomous Driving
under GPS Spoofing. In 29th USENIX Security Symposium, USENIX Security 2020,
August 12-14, 2020, pages 931–948. USENIX Association, 2020.

[69] Zhongyuan Hau, Kenneth T. Co, Soteris Demetriou, and Emil C. Lupu. Object removal
attacks on lidar-based 3d object detectors. CoRR, abs/2102.03722, 2021.

[70] Daniel Rezvani. Hacking Automotive Ethernet Cameras. Avail-
able at https://argus-sec.com/blog/cyber-security-blog/
hacking-automotive-ethernet-cameras/.

[71] Saurabh Jha, Shengkun Cui, Subho S. Banerjee, James Cyriac, Timothy Tsai, Zbigniew
Kalbarczyk, and Ravishankar K. Iyer. ML-Driven Malware that Targets AV Safety.
In 50th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, DSN 2020, Valencia, Spain, June 29 - July 2, 2020, pages 113–124. IEEE,
2020.

[72] Rony Komissarov and Avishai Wool. Spoofing Attacks Against Vehicular FMCW
Radar. In ASHES@CCS 2021: Proceedings of the 5th Workshop on Attacks and
Solutions in Hardware Security, Virtual Event, Republic of Korea, 19 November 2021,
pages 91–97. ACM, 2021.

[73] David Ke Hong, John Kloosterman, Yuqi Jin, Yulong Cao, Qi Alfred Chen, Scott A.
Mahlke, and Z. Morley Mao. AVGuardian: Detecting and Mitigating Publish-Subscribe
Overprivilege for Autonomous Vehicle Systems. In IEEE European Symposium on
Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020, pages
445–459. IEEE, 2020.

[74] R. Hammett. Design by extrapolation: an evaluation of fault-tolerant avionics. In 20th
DASC. 20th Digital Avionics Systems Conference (Cat. No.01CH37219), volume 1,
pages 1C5/1–1C5/12 vol.1, 2001.

[75] Massimo Baleani, Alberto Ferrari, Leonardo Mangeruca, Alberto L. Sangiovanni-
Vincentelli, Maurizio Peri, and Saverio Pezzini. Fault-tolerant platforms for automotive
safety-critical applications. In Proceedings of the International Conference on Compilers,
Architectures and Synthesis for Embedded Systems, CASES 2003, San Jose, California,
USA, October 30 - November 1, 2003, pages 170–177. ACM, 2003.

[76] Paul Hampton. Survey of Safety Architectural Patterns. In Achieving Systems Safety -
Proceedings of the Twentieth Safety-Critical Systems Symposium, SSS 2012, Bristol,
UK, February 7-9, 2012, pages 137–158. Springer, 2012.

[77] Eduardo B. Fernandez. Security Patterns in Practice: Designing Secure Architectures
Using Software Patterns. John Wiley & Sons, 2013.

https://argus-sec.com/blog/cyber-security-blog/hacking-automotive-ethernet-cameras/
https://argus-sec.com/blog/cyber-security-blog/hacking-automotive-ethernet-cameras/

189

[78] Alexander van Den Berghe, Koen Yskout, and Wouter Joosen. Security patterns
2.0: towards security patterns based on security building blocks. In Proceedings of
the 1st International Workshop on Security Awareness from Design to Deployment,
SEAD@ICSE 2018, Gothenburg, Sweden, May 27, 2018, pages 45–48. ACM, 2018.

	Abstract
	Acknowledgements
	Publications
	Introduction and Background
	Safety Activities
	Security Activities
	Safety and Security Interactions

	Methodology and Highlights of Research Outcomes
	Lightweight Semantics for Architecture Artifacts
	Lightweight Semantics for Safety and Security Artifacts
	Lightweight Semantics for Safety and Security Architecture Patterns
	Safety and Security Reasoning
	Safety Reasoning
	Security Reasoning
	Reasoning on Safety and Security Consequences

	Connecting Lightweight Semantics with Formal Verification
	Discussion

	Supplementary Related Work
	Knowledge Representation and Reasoning for Safety System Architectures
	Integrating Safety Architecture Patterns into MBSE: A Plugin for Automated Pattern Synthesis
	An Intruder Model for Automotive Service-Oriented Architectures
	Knowledge Representation and Reasoning for Security System Architectures
	Integrating Security Knowledge in MBSE: A Plugin for Automated Synthesis
	Knowledge Representation and Reasoning for Safety and Security Co-Analysis
	A Framework for Assessing the Safety and Security of CACC Systems
	Conclusion

