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Zusammenfassung

Stark korrelierte Elektronen zeigen einige der exotischsten Verhaltensweisen, unter an-
derem die Fraktionalisierung der fundamentalen Bausteine — die Elektronen — in kleinere
sogenannte Partons. Diese Partons konnen entweder in einem deconfined Zustand vor-
liegen, wie in Quantenspinfliissigkeiten, oder confined als gebundene Zustdande existieren,
wie in dotierten antiferromagnetischen Mott Isolatoren.

In dieser Dissertation betrachten wir die mikroskopische, innere Struktur von gebun-
denen Partonzustinden in dotierten Quantenmagneten, was uns zu dem Phdnomen
einer emergenten Feshbach Resonanz fiihrt — ein bekanntes Konzept in Teilchen- und
Atomphysik. Fiir Fermi-Hubbard-artige Modelle finden wir starke attraktive Paarwech-
selwirkungen zwischen Ladungstrdgern mit robuster d,._ .-Wellen Symmetrie konsistent
mit der Phdnomenologie von Supraleitung in Cupraten. Der vorgeschlagene Feshbach
Paarungsmechanismus ist moglicherweise eine neue Erkldrung fiir den lang ersehnten
Paarungskleber in Hochtemperatursupraleitern aus Kupferverbindungen.

Dariiberhinaus etablieren wir effektive Partonmodelle fiir gemischt-dimensionale
doppelschichtige Hubbardmodelle, fiir welche wir bemerkenswert hohe Bindungsen-
ergien vorhersagen und exzellente Ubereinstimmung mit numerischen Simulationen
finden. Zusidtzlich diskutieren wir mogliche Signaturen von Feshbach Resonanzen
in gemischt-dimensionalen 1D Leitern sowie deren Relevanz fiir kiirzlich entdecke
Hochtemperatursupraleiter aus Nickelverbindungen.

Um die emergenten Partonphdnomene zu testen, schlagen wir neue Schemata fiir die
analoge Quantensimulation von dotieren Quantenmagneten vor. Insbesondere entwick-
eln wir ein Schema um antiferromagnetische t-J-V-W Modelle in drei internen Zustianden
von kalten Molekiilen oder Rydberg Atomen in Gittern aus optischen Fallen zu realisieren.
Der dipolare Ursprung der magnetischen Wechselwirkung erlaubt uns zuvor experimentell
unerreichbare Parameterbereiche zu studieren. Wir prasentieren vorldufige experimentelle
Resultate, welche in Rydberg tweezer arrays erzielt wurden.

Ein weiterer typischer Rahmen um Partonphdnomene zu beschreiben sind Gitter-
eichtheorien. Deren Quantensimulation wiirde uns nicht nur erlauben die effektiven
Niedrigenergie Theorien von stark korrelierten Elektronen zu untersuchen, sondern auch
Themen von Teilchenphysik bis hin zu Quanteninformation. Allerdings erweist sich die
grofiskalige Quantensimulation von Gittereichtheorien mit dynamischer Materie und
jenseits von (1+ 1)D als anspruchsvoll. In dieser Dissertation fokussieren wir uns auf
top-down Methoden um Gittereichtheorien zu simulieren, wobei die Eichstruktur aus
starken energetischen Blockaden hervorgeht.

Insbesondere entwickeln wir theoretische Methoden um abelsche Z, Gittereichtheo-
rien mit hard-core bosonischer Materie in (2 + 1)D mit experimentell realisierbaren
Zweiteilchen Ising Wechselwirkungen zu stabilisieren. Dies erlaubt uns ein realistisches,
grofiskaliges Schema fiir die analoge Quantensimulation von Z, Gittereichtheorien in
Rydberg tweezer arrays zu entwicklen. Auflerdem finden wir, dass antiferromagnetische
SU(N) Heisenberg Wechelswirkungen ausreichen um nicht-abelsche Eichstrukturen ener-
getisch zu stabilisieren. Dariiberhinaus schlagen wir ein experimentelles Schema fiir die
Implementierung von U(N) and SU(N) Gittereichtheorien (i) mit hard-core bosonischer
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Materie in ultrakalten polaren Molekiilen in optischen Gittern oder Rydberg tweezer arrays
sowie (ii) mit fermionischer Materie in ultrakalten Erdalkalimetallen vor.

Die vorgeschlagenen experimentellen Schemen fiir die Quantensimulation von
dotierten Quantenmagneten und Gittereichtheorien in optischen Fallen sowie die Ent-
wicklung analytischer Modelle fiir Paarung in Hochtemperatursupraleiter ebnen den Weg
um Partonphdnomene in stark korrelierter Quantenmaterie aus einer mikroskopischen
Perspektive zu untersuchen.



Abstract

Strongly correlated electrons exhibit some of the most exotic behaviors, including the frac-
tionalization of their fundamental constituents — the electrons — into smaller components
known as partons. The partons can either exists as deconfined particles, as in quantum
spin liquids, or become confined into bound states, as in doped antiferromagnetic Mott
insulators.

In this thesis, we take into account the microscopic internal structure of the parton
bound states in doped quantum magnets, which leads us to the picture of an emergent
Feshbach resonance — a concept well-known in particle and atomic physics. For Fermi-
Hubbard-type models, we find strong attractive pairing interactions between charge car-
riers with robust d,»_,,-wave symmetry, consistent with the phenomenology of cuprate
superconductors. This proposed Feshbach pairing mechanism provides a new possible ex-
planation for the long sought pairing glue in high-Tc cuprate compounds.

Furthermore, we establish effective parton models for mixed-dimensional bilayer Hub-
bard models, and we predict remarkably large binding energies in excellent agreement with
numerical simulations. In addition, we discuss potential signatures of emergent Feshbach
resonances in mixed-dimensional 1D ladders, and their relevance for the recently discov-
ered high-Tc nickelate compounds.

To probe the emergent parton phenomena, we propose novel schemes for the analog
quantum simulation of doped quantum magnets. In particular, we develop a scheme to re-
alize an antiferromagnetic, bosonic ¢-J-V-W model in three internal states of cold molecules
or Rydberg atoms in optical tweezer arrays. The dipolar origin of the magnetic interactions
allows us to explore previously experimentally inaccessible parameter regimes, for which
we present preliminary experimental results obtained in Rydberg tweezer arrays.

Another common framework to describe parton phenomena are lattice gauge theories
(LGTs). Their quantum simulation would not only enable us to directly study low-energy
effective theories of strongly correlated electrons, but also topics ranging from particle
physics to quantum information. However, achieving large-scale quantum simulations of
LGTs with dynamical matter and beyond (1 4 1)D remains elusive. In this thesis, we focus
on top-down approaches to simulate LGTs, where the gauge structure emerges from strong
energy penalties.

In particular, we theoretically develop a method to stabilize an Abelian Z, LGTs with
hard-core bosonic matter in (2 + 1)D, which only requires experimentally feasible two-body
Ising interactions. This allows us to propose a realistic analog quantum simulation scheme
for the large-scale implementation of Z; LGTs in Rydberg tweezer arrays. Moreover, we
find that antiferromagnetic SU(N) Heisenberg interactions suffice to energetically stabilize
non-Abelian gauge constraints. Additionally, we propose experimental schemes to imple-
ment U(N) and SU(N) LGTs (i) with hard-core bosonic matter in ultracold polar molecules
or Rydberg tweezers, and (ii) with fermionic matter in ultracold alkaline-earth atoms.

The proposed experimental schemes for the quantum simulation of doped quantum
magnets and lattice gauge theories in tweezer arrays as well as the development of an-
alytical models for pairing in high-Tc superconductors paves the way to explore parton
phenomena in strongly correlated quantum matter from a microscopic perspective.
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INTRODUCTION






“Whether it be the sweeping eagle in his flight, or the open apple-blossom, the
toiling work-horse, the blithe swan, the branching oak, the winding stream at its
base, the drifting clouds, over all the coursing sun, form ever follows function,
and this is the law. Where function does not change, form does not change.”

— Louis Sullivan (1856-1924)

Introduction

FORM FOLLOWS FUNCTION. This concept was coined by Louis Sullivan [1], an archi-
tect for skyscrapers in the 19th century, and later became the guiding principle of the
Bauhaus, a pioneering design school in Germany. It describes the notion that the form of
an object shall naturally follow from its intended function:

All things in nature have a shape, that is to say, a form, an outward semblance, that tells us what
they are, that distinguishes them from ourselves and from each other [1].

According to this principle, if we understand the apparent form of an object, this already
allows us deduce its characteristic features. This concept can be transferred to the way we
formulate theories and approach problems in natural sciences and will serve as the guiding
principle in this thesis. Simultaneously, it is accompanied by the idea of “coarse grain-
ing” from the perspective that details are neglected and that problems are reduced to their
bare phenomenology. Therefore, this thesis is more about qualitative and phenomenological
features of strongly correlated quantum matter, and less about — equally important — quan-
titative features relevant to understand details of specific materials or critical phenomena.
Specifically, the principle of form follows function will be applied bidirectionally. Firstly, we
propose simple experimental schemes, where properties such as symmetries are guiding us
to develop efficient minimal protocols for the quantum simulation of lattice gauge theories.
Secondly, we employ the perspective of quantum gas microscopes [2] to analyze the form
of microscopic correlations. This approach enables us to theoretically formulate models
capturing phenomena of pairing in cuprate superconductors and other strongly correlated
systems.

These systems play a central role in the research of condensed matter and quantum
many-body physics [3, 4]. When particles interact very strongly, the prevailing correlations
across the system can be so dominating that any theoretically or computationally tractable
method reaches its limit [5]. The classes of problems typically involve competing effects,
such as strong repulsion and kinetic energy, leading to exotic, sometimes hidden ordering
of the particles [6]. Unpacking such hidden structures [7, 8] can give insights into the un-
derlying mechanisms of the emergent phases and help us to comprehend the complexity
of strongly correlated quantum matter. From a foundational science perspective, these sys-
tems represent an entire class of models, for which no unified approach to treat them has
been put forward. At the same time, strongly correlated systems are common in nature
such as in materials [9], in the early universe or in neutron stars [10].



Other places, where strongly interacting quantum matter is realized, are quantum sim-
ulators. The hardware can be versatile: prominent platforms include cold atoms [11, 12],
trapped ions [13] or superconducting qubits [14]. In these experiments, microscopic models
are precisely engineered to emulate, e.g., the physics of condensed matter systems or gauge
theories [15] in a tunable fashion and with access to in-situ, site-resolved snapshots of the
many-body Fock state [P1].

The intimate connection between condensed matter systems and gauge theories can
be understood from a projective parton construction [3, 16-20]. One common parton
ansatz [21], among many others, fractionalizes the underlying electrons ¢;, such that

Cjo = I fio (1)

Le., the fermionic electron annihilation operator ¢;, at site j with spin-1/2 (o =/, 1) is split
into two partons: the fermionic, spinless chargon/holon h and the bosonic spinon f] o In
addition, the parton construction imposes the local part1c1e number constraint

Whi+Y flofie =1 )
g

So far, the original operators were just formally re-written. The power of the parton ansatz
manifests when the constraint (2) is lifted, as an approximation. This requires to glue to-
gether the partons by introducing a dynamical lattice gauge field [3]. Therefore, similar
constructions are also extensively used for mean-field descriptions of quantum spin liquids
due to their low-energy emergent gauge structure [22].

Historically, lattice gauge theories (LGTs) were introduced as an ultraviolet regulariza-
tion of continuum gauge theories in high-energy physics [26]. In parallel, it was discov-
ered by Wegner [27], Fradkin and Shenker [28] that even the simple, discreet gauge group
“Z," poses an interesting model for statistical physics with a paradigmatic phase diagram
featuring phases of matter that are crucial for our modern understanding of correlated sys-
tems [4], topological order [29] and non-Abelian gauge theories [26]. While theoretically
the Z, LGT is appealing to study, from an experimental side their direct implementation in
(24 1)D is a nightmare: strong four-body interactions.

Here, we arrive at our first example to apply the principle of form follows function. In
this thesis, we develop theoretical techniques to reduce the experimental complexity for
the implementation of a Z; LGT in (2 + 1)D with dynamical matter from four-body to
two-body interactions [P4, P5]. This yields an experimentally feasible scheme for Rydberg
tweezer arrays arranged in a honeycomb geometry, see Chapter 3. This allows to realize a
manifestly gauge-invariant effective Hamiltonian, whose exact form is determined by the
specific details of the scheme.

From this perspective, LGTs offer a rich playground of models to be explored in cur-
rent and next-generation quantum simulators [15], see Figure 1. In Part I of this thesis,
we cover a variety of quantum simulation applications for LGTs including experimen-
tal schemes for the large-scale implementation of Abelian Z; and non-Abelian U(N) and
SU(N) models [P4, P5, P9, P3]. From the theoretical side, we develop energetic gauge pro-
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Figure 1: Lattice gauge theories and their quantum simulation. Models of lattices gauge
theories (LGTs) can be versatile. The sites (links) of the lattice constitute the matter (gauge
and electric field) variables. The characteristic feature of LGTs is the local symmetry at
each vertex (yellow circle) governed by the Gauss’ law operator é]-. This gives rise to an
extensive number of conservation laws, e.g., in a Z, LGT the parity is locally conserved.
Because neighboring vertices overlap, this yields highly constrained Hilbert spaces. Mod-
els with the same local symmetry can have different representations of the gauge group
and can be coupled to different matter species, e.g., bosonic or fermionic matter [23-25]. In
this thesis, we propose realistic analog quantum simulation schemes to explore Abelian Z,
and non-Abelian U(N)/SU(N) gauge theories in state-of-the-art experiments with ultra-
cold quantum gases.

tection schemes, where the gauge structure emerges from two-body Ising or spin-exchange
interactions [P4, P5, P9, 30]. In emergent gauge theories, there are inevitable gauge break-
ing errors and thus the goal is to observe qualitative and phenomenological features of LGTs
that are believed to capture the physics of the ideal gauge theory, and strongly correlated
phases of matter [23].

In Part II of this thesis, we will encounter surprising analogies between LGTs and doped
quantum magnets: Parton bound states. While parton bound states, such as mesons, nat-
urally appear in LGTs, they have proven as a useful description of hole dopants in antifer-
romagnetic Mott insulators relevant in the strong-coupling regime of Fermi-Hubbard-type
models and cuprate superconductors [21, 31, 32], see Figure 2. Notably, recent state-of-the-
art experiments of ultracold atoms in optical lattices find striking signatures of the parton
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Figure 2: Parton bound states. Left: In the confined phase of LGTs, the charged matter
particles (blue circles) are bound into mesons by the tension of electric field lines (red lines),
familiar from particle physics. We conjecture that these charge-neutral mesons may form
a condensate [P5]. Right: We encounter mesonic parton bound states in the one- and two-
hole excitation spectrum of doped antiferromagnetic Mott insulators. In analogy to parti-
cle physics, we propose a Feshbach perspective on the origin of strong pairing in Fermi-
Hubbard-type models and high-Tc cuprate superconductors [P11, P7].

Parton bound states in Z, LGTs

character of magnetic polarons [7, 33].

This analogy to particle physics leads us to a Feshbach perspective of parton bound
states in underdoped cuprates [P11, P7]. We suggest that attractive scattering interactions
between fermionic spinon-chargon bound states can be induced by a low-lying resonant
chargon-chargon bound state [34-37]. We derive an effective parton description of the pro-
posed Feshbach scattering channels and find that the symmetry of the parton bound state
manifests as robust, magnetic pairing interactions in the d,._ .-wave channel, consistent
with the cuprate compounds [38, 39].

Therefore, we take inspiration from new probes in quantum gas microscopes, i.e.,
signatures of parton bound states in many-body correlations [33], and develop new
phenomenological, effective models for strongly correlated electron systems from high-Tc
cuprates [P11, P7] to nickelate superconductors [P2, P10, P6]. In this vein, we follow our
guiding principle and conclude from the form of the parton bound state to their function as
meson scattering channels.

Outline

This doctoral thesis is structured in two parts, namely in Part I we discuss the quantum sim-
ulation of LGTs and in Part II we focus on doped quantum magnets, effective parton models
and, one of the main results, the emergent Feshbach resonance in cuprate superconductors.

Each part is accompanied with an extended chapter on the theoretical background: In
Part I, Chapter 1-2 we briefly review the basics of cold atom and molecule quantum simula-
tion platforms relevant for this thesis and give an historical introduction into lattice gauge
theories and their quantum simulation. In Part II, Chapter 7-8 the broad phenomenology of
cuprate superconductors is reviewed with a focus on relevant aspects for this thesis, such
as the single-hole problem and proposed magnetic pairing mechanisms. Further, after a
block of content is concluded, we give short summaries and outlooks throughout the the-



sis. Lastly, we provide overarching Conclusions & Perspectives of the doctoral thesis.

Part I contains the following content. In Chapter 3, we develop the concept of local pseu-
dogenerators allowing us to propose an analog quantum simulation scheme for (2 +1)D
Z, LGTs with dynamical matter in Rydberg tweezer arrays (based on Refs. [P4, P5]). In
Chapter 4, we discuss experimental equilibrium and out-of-equilibrium probes for Z, LGTs
(based on Refs. [P5, P3, P12]). In Chapter 5, we derive a gauge protection scheme for non-
Abelian gauge theories utilizing spin-exchange interactions and we propose experimental
schemes for ultracold alkaline-earth atoms, as well as cold molecules and Rydberg atoms
in tweezer arrays (based on Ref. [P9]). In Chapter 6, we briefly conclude with a perspective
on the quantum simulation of LGTs.

Part II contains the following content. In Chapter 9, we present the Feshbach hypothesis
of high-Tc superconductivity in underdoped cuprate compounds (based on Ref. [P11, P7]).
This is followed by Chapter 10, which provides the analytical background of the Feshbach
scattering model (based on Ref. [P7]). In Chapter 11, we propose a quantum simulation
scheme to implement doped quantum magnets in tweezer arrays with cold molecules and
Rydberg tweezers (based on Ref. [P8]). Further we present preliminary experimental results
obtained in the Rydberg tweezer platform of Antoine Browaeys at the Institute d’Optique
in Palaiseau Cedex, France. In Chapter 12, we derive effective parton models for mixed-
dimensional bilayer Hubbard model and elaborate on their relation to high-Tc nickelate
superconductors (based on Refs. [P1, P2, P10, P6]).






PART I

QUANTUM SIMULATION OF
LATTICE GAUGE THEORIES






Summary and Overview

MERGENT PHENOMENA are deeply linked to gauge theories [3]. One of the most il-

lustrating examples can be found in particle physics. Special relativity enforces micro-
scopic theories to be local in order to comply with causality, i.e., Lagrangians or Hamilto-
nians are built from local operators. However, this contradicts our empirical observations:
two electrical charges interact via a long-ranged Coulomb potential « 1/7.

The mathematical framework of gauge theories elegantly unifies these pictures by the
introduction of additional degrees-of-freedom, namely the gauge bosons, which interact
locally with the charged matter particles. The gauge bosons ultimately induce long-range
interactions between charges. This construction necessitates local symmetries associated
with local conservation laws (Gauss’ law). For the example of two U(1) charges, the gauge
boson is the massless photon. By applying the construction of gauge theories to a class of
Abelian and non-Abelian symmetries, U(1) x SU(2) x SU(3), the quantum field theory for
the standard model of particle physics can be obtained [40]. In this framework the gauge-
invariance is assumed to be a fundamental law of nature.

In contrast, condensed matter systems provide an alternative perspective: emergent
gauge theories. Here, the gauge theory itself emerges at low energies from yet another
microscopic model, e.g., from strong interactions of electrons in a material [23]. Often, the
gauge theory inherits properties of the underlying lattice giving rise to lattice gauge theories
(LGTs) [27]. Hereby, the many-body ground state serves as the renormalized vacuum, from
which excitations can be created according to Gauss’ law [3]. The question about what
kind of gauge theory may arise from a given microscopic model, however, is extremely
challenging and in many cases far from conclusive.

This necessitates to have simple toy models at hand that can be studied both experi-
mentally and theoretically. The Bose-Hubbard model [41, 42] opened the door to explore
strongly correlated phases of matter from a microscopic perspective. Similarly, it would be
desirable to have an experimental platform that allows us to directly study plain-vanilla
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LGTs in a tunable, large-scale fashion in order to probe long-standing theoretical predic-
tions, such as the celebrated Fradkin-Shenker phase diagram [28] discussed in Section 2.2.2.

The relevance of LGTs is even more highlighted by their relation to a variety of fun-
damental problems in particle physics [26], condensed matter physics [3, 27, 43, 44], bio-
physics [45] and quantum information [29], to name a few. Notably, the framework of gauge
theories captures phenomena ranging from quark confinement to quantum spin liquids and
is commonly used in the description of high-Tc superconductors [23, 44]. Their quantum
simulation could open the door to a class of questions that are particularly hard to solve
numerically, ranging from thermalization dynamics of gauge theories [46] to ground-state
phase diagrams [24, 47, 48]. Especially, LGTs with dynamical matter at finite density are
proposed to have intimate connections to strongly correlated electrons and high-Tc super-
conductors [20, 23]. Throughout this thesis, we will encounter intriguing analogies between
LGTs and doped quantum magnets, such as meson-like charge excitations that are bound
by a fluctuation string object, see e.g. Part I Chapter 3 and Part II Chapter 9. Despite
the overarching relevance of strongly coupled gauge theories across various disciplines of
physics, experimental realizations beyond (1 + 1)D or non-Abelian gauge theories remain
challenging.

One particularly promising approach for the analog quantum simulation of LGTs is
built upon the idea of emergent gauge theories [15, 49], analogously to strongly correlated
electrons. Hereby, strong energy penalties are utilized to enforce local constraints, e.g., the
Rydberg blockade mechanism allows to engineer quantum dimer models on the Kagome
lattice [50, 51]. In the language of quantum information, this corresponds to the imple-
mentation of stabilizer terms on the level of the Hamiltonian, which energetically favor a
particular Gauss’ law sector [52, 53], outlined in Section 2.2.5. Thus far, this gauge protection
mechanism [30] is limited to specific geometries or gauge groups in experiments.

The focal point of this thesis is the development of novel schemes for the analog quan-
tum simulation of emergent lattice gauge theories in AMO platforms!. We start with a brief
overview about quantum simulators and introduce the concepts of LGTs in Chapter 2. In
the subsequent Chapters, we apply a combination of (i) theoretical tricks to simplify the in-
teractions required to implement emergent gauge theories and (ii) propose experimentally
feasible schemes for AMO platforms to realize both Abelian Z; LGTs in Chapter 3 and non-
Abelian U(N) and SU(N) LGTs in Chapter 5. Further, we discuss experimentally relevant
probes that can be obtained by single-site resolved snapshots in Chapter 4.

L AMO = atomic, molecular and optical physics



Theoretical Background

2.1 Quantum Simulators

DESPITE THE REMARKABLE INCREASE in classical computational power over the past
decades, obtaining exact solutions to almost all (interacting) quantum systems poses
an unprecedented challenge. Every additional particle comes with an exponential increase
in computational cost, which limits state-of-the-art numerical simulations to a few hundred
particles - already including clever techniques to reduce the complexity of the problem [54,
55]. At this point, it is convenient to follow the literature [56] and cite Richard Feynman'’s
famous words [57]:

Nature isn't classical, dammit, and if you want to make a simulation of Nature, you’d better make it
quantum mechanical, and by golly it’s a wonderful problem because it doesn’t look so easy.

The key message is to use systems governed by quantum mechanical laws of nature at
the level of the computing hardware, thereby allowing us to leverage ubiquitous quantum
phenomena, such as superposition and entanglement, as a resource to tackle classically
challenging problems in a hardware-efficient way.

Even though there have been many promising advances in the last years in the direction
of digital quantum computation, see Ref. [58] and references therein, the focus in this thesis
should be on a different route to simulate quantum systems: analog quantum simulation.
The key difference between the two approaches is that digital machines apply a set of log-
ical operations (gates) serving as building blocks for algorithms, whereas analog machines
directly implement (interacting) Hamiltonians [59].

Nowadays, Feynman’s visionary idea is becoming a real, useful tool for researchers
in the field of quantum sciences. We highlight that currently various platforms and ap-
proaches are coexisting offering a rich playground to test quantum many-body physics [11,
59]. While digital quantum computers — proposed by Richard Feynman — are making im-
pressive progress [58], they are not yet serving as a universal machine, e.g., to find the



14 Chapter 2. Theoretical Background

ground state of the Fermi-Hubbard model. In contrast, analog quantum simulation plat-
forms are optimized to compute a specific set of observables for a few specific models, e.g.,
Hubbard models [41, 60]. Another exciting route is provided by hybrid analog-digital ma-
chines, which may play a significant role in the study of fermionic problems in the near
future [61, 62].

In the following, we briefly review various features of state-of-the-art analog quantum
simulation platforms. It should be considered as an overview of available tools in the
toolbox of experimental AMO platforms. Subsets of tools can be compatible, for example
tweezer arrays can be combined with Rydberg atoms [12], cold molecules [63-65] or optical
lattices [66]. The purpose is to summarize and compare which models can be realized in
different platforms; for details we will refer to specialized reviews.

In this thesis, we focus on tools that can be found in (ultra)cold AMO experiments [11],
where vast technological developments in the past decade enable experimental physicists
to control and manipulate individual degrees-of-freedom on the single-particle level. The
microscopic Hamiltonians, that can be realized, are determined by the atomic or molecu-
lar species and its internal states (quantum statistics, spins, scattering, electric dipole mo-
ments). We note that there are many other promising quantum simulation platforms not
covered in this thesis, including superconducting qubits [14], optical nanofibers [67], Cav-
ity QED [68, 69], trapped ions [13] or hybrid combinations [70] of them.

2.1.1 Interactions

One of the key ingredients to realize strongly correlated phases of matter are controllable,
strong and coherent interactions. Inducing strong interactions, i.e., strong compared to other
energy scales such as the kinetic energy, between charge neutral objects is challenging but
a various methods are now established in the AMO toolbox.

Scattering interactions

One elegant technique to induce interactions between neutral atoms is based on the idea

of Fano-Feshbach resonances!

; an idea that was initially developed in the context of parti-
cle physics [71, 72]. Let us first give a phenomenological explanation. The Fano-Feshbach
resonance describes the consequence of a bound state that approaches a free particle con-
tinuum [73]. The bound state influences the scattering properties of the individual particles
and can lead to a divergent scattering length. This scattering length a can directly be related
to a point-like pseudo-potential at low energies [74].

The following situation can occur in an AMO setup [73]: two atoms can form a bound
state, i.e., a molecular state, with a magnetically tunable binding energy AE. In some cases,
an external magnetic field B can tune the molecular state into and out-of-resonance giving
rise to strong and tunable attractive or repulsive interactions, see Figure 2.1a. The existence
and the properties of such resonances are determined by the atomic species and isotopes.

If the closed channel can be integrated out, the scattering length is captured by a simple

1In the AMO context, it is often just called Feshbach resonance.
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Figure 2.1: Two-channel model of a Feshbach resonance. a We consider a model with con-
stituents in two different configurations: free particles in the open channel and molecules
in the closed channel. In cold atom experiments, the energy difference AE between the two
channels can be tuned via an external magnetic field B. b By integrating out the closed
channel, we obtain a Feshbach-induced scattering length a between open channel parti-
cles with the unitary 1/a = 0 at B = By. The vertical offset corresponds to a background
scattering length a¢ originating from the open channel potential shown in a. The attractive
(repulsive) side of the two-particle resonance is associated with the BCS (BEC) regime of
the many-particle ground state.

effective description given by

a(B) = ap (1 ~ 5 —ABO> (2.1)

with the background scattering length a, the resonance position By and resonance width A.
Conveniently, for low-energy scattering (or long-wavelength behaviour) the scattering
length is proportional to the strength ¢ o a of a contact interaction V(x) = gd(x) obtained
in Born approximation [74].

A simple description of the Feshbach resonance is derived from a two-channel model.
Hereby, the individual particles (or atoms) in the continuum form an open scattering chan-
nel with asymptotically free particle states at times t — £oo [75] described by 7:lopen. More-
over, we introduce a closed scattering channel (the molecule) described by Hq; it is called
closed because scattering into this channel in energetically forbidden. Further, we denote
states in the open (closed) channel as ]l/)open> € Hopen (|pa) € ), and we define a Hamil-
tonian Hoc coupling the open and closed channel.

Formally, one can solve the scattering problem of the simplified two-channel model [73];
here we want to provide an intuitive picture. Let us start by considering a pair of particles
in the open channel, that lies energetically below the closed channel. When the particles
start to spatially overlap, they can couple into the closed channel via H. In a simple two
level picture, the open channel states can lower their energy by this process leading to an
attractive interaction, see Figure 2.1b. In Born approximation, we can compute the Feshbach
scattering length by a second-order perturbative coupling

| (1| Floc|open) |
a(AE)cxl% 1 e 2.2)
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where AE describes the energy difference between the particle pair [()open) = [Popen(k1,k2))
in the open channel with momenta k1, k; and the closed channel molecular state. This il-
lustrates that the sign of the interaction can be inverted if the molecule becomes the two-
particle ground state, see Figure 2.1b. At AE = 0, the system reaches unitary under which
condition a strong-coupling description of the two-channel model is required [10]. Here, we
have neglected important details of Feshbach resonances, such as dispersion of the closed
channel states. Those can play a significant role for validity of the Born approximation.

We highlight that Feshbach resonances provided a game changer in the field of ultra-
cold atoms [76]. The mechanism allows to engineer strong, tunable interactions in neutral
atoms, and thus to realize a variety of strongly-interacting phases of matter from the Fermi-
Hubbard model to the BEC-BCS crossover [10, 73, 77]. In Part II, Chapter 9, we study an
emergent Feshbach resonance in the context of charge carriers in strongly correlated cuprate
superconductors and find a dominating d-wave scattering resonance.

Rydberg interactions

The electric and magnetic coupling dipole moments of neutral atoms in their ground state
configuration are small. They are so small that the resulting dipole-dipole interactions are
typically too weak to harness for many-body simulations?. To our advantage, atoms offer a
rich internal structure of electronic states, which can be used to dramatically increase their
interaction strength. Specifically, the Rydberg series [79, 80] describes a class of highly-
excited atomic states with large principle quantum number n > 1. If a single electron in
an atom is excited to a Rydberg state, its binding energy is well-described by hydrogen-like
atom

Eni=——= (2.3)

where {n, I} are a set of quantum numbers, Ry is the mass-renormalized Rydberg constant
and 7 is the effective principle quantum number, which depends on {n, I'}. Thus, the Ryd-
berg series can be explained by a single electron that binds to the screened charge (Z — 1)e
of the ionic core, where Z is the atomic number and e is the unit of electric charge. The cor-
rections to this simplified picture are captured by quantum defect theory [81] and absorbed
in the effective principle quantum number 7 =~ n — ,, 1, where 9, is the quantum defect.
An excellent overview can be found in Ref. [82].

The hydrogen-like wavefunctions of the Rydberg states allow us to easily obtain the
scaling behaviour of matrix elements known from the exact solution of the hydrogen
atoms [83]. Here, we use these scaling relations to review the most important, qualitative
properties of Rydberg states. We note that it requires more sophisticated methods to
calculate the necessary quantitative properties [84].

The first observation is that the energy spacing of nearby Rydberg states decreases
as AE « 7173, At the same time, the transition dipole moments d = (nI’|e|nl) « 71> be-
tween two electronic states |nI') and |nI) are enhanced for states in the Rydberg series [80];
here £ is the position operator.

2We highlight that with recent experimental advances, it was achieved to stabilize ordered phases of the
extended Bose-Hubbard model using magnetic Erbium atoms [78].
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The fundamental interaction between two dipoles d; and d; is given by the Hamiltonian

Haa o dode <CA|1;{'|3€R) (32 ' ER) / (2.4)

where R is the vector connecting the two atoms with unit vector eg = R/|R|. Now, we fo-
cus on the Rydberg-enabled models relevant for quantum simulation of many-body prob-
lems [12]. We distinguish two scenarios that can occur from the dipole-dipole interaction:

(1) Direct exchange. Two Rydberg states are connected by a non-vanishing dipole
matrix element leading to an exchange interaction between two atoms in dipole coupled
Rydberg states. Typically, two neighbouring Rydberg states [nS) = | |) and |nP) = | 1)
with n ~ 60 are identified with a spin-1/2 subspace. The direct dipolar coupling between a
pair of atoms [85-88] is given by

(nP;, nSj|Haa|nS;, nPj) = RE (1—3cos?0) (2.5)

with coupling strength C3, and can be written in operator form as

N 1
Hxy = % L5
i<j Tij

(sjs]f + h.c.) +OY 8+ Y A8 (2.6)
] ]

with the spin-1/2 operators §;" (0 = x,y,z) and %i = §;C + iSA]y for atoms at site j. Here the

transverse field () (longitudinal field A;) describes the ability to experimentally couple the

two Rydberg states with a microwave (apply local light shifts) [89, 90].

(2) Van-der-Waals interactions. The next leading order term enabled by dipolar ex-
change are second-order van-der-Waals interactions. Without loss of generality, we con-
sider a pair of atoms in the same Rydberg state |nS;,nS;). The dipole-dipole interactions
couples this state to all other Rydberg states [n'I;, n"];) allowed by dipole selection rules
giving rise to van-der-Waals-type interactions

[(n'L;, n" ] ;| HaalnSi, nS;)|?
AEn’l,n”]

;quW = 2

n'In"]

’1’151', TZS]'><1’lSZ', nS]| (2.7)

The Forster defect describes the energy difference between the pair states AE,;j ;v = 2E,;5 —
(Ew1 + Eyvj); for nearby Rydberg states with n ~ n’ ~ n” the Forster defect scales as
AE, 1, & n®, where we have used the energy scaling of hydrogen-like Rydberg states
Eq. (2.3). The sum over virtual Rydberg states is often summarized in the coupling con-
stant Cs/|R|® o n'1; in the last step we have combined the scaling relations discussed above.

By identifying the atomic ground state with |g) = |]) and the Rydberg state with [nS) =
| 1), the van-der-Waals interactions enables to quantum simulate the Ising model in trans-
verse and longitudinal fields. Using this mapping, the Hamiltonian of van-der-Waals inter-
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acting Rydberg state becomes [91, 92]

Hzz =) 165‘557 +QY SE+Y A5, (2.8)
i<i Tij j j
where the transverse field () is given by the Rabi drive between | |) and | ). The local
longitudinal field A; contains contributions from both the mapping of Eq. (2.7) to spins and
from local detunings of the Rabi drive.

Positional disorder in the experimental setups translates into strong disorder of the in-
teraction potential due to the power-law dependence of the interaction « R~°. Therefore,
an appealing regime is the so-called blockaded regime, which is insensitive to positional
disorder. This regime is determined by the interaction shift of the pair state |nS, nS) such
that only one atom within the blockade radius R; can be excited by the drive (); this radius
is given by C¢/RS = (). Formally, the blockade constraint can be enforced by a projec-
tor P, which removes the energetically forbidden multi-excited states within a blockade
radius [93]. In the blockaded Hilbert space, the Ising model (2.8) reduces to the so-called
PXP-model

Hexp = Q 27557575 + ZA;'SA]Z- + Hrails, 29)
j j

where 71,5 contains the long-range tails of the Rydberg interaction outside the blockade
radius.

The realization of the model has led to numerous studies of quantum magnets in both
the ground state, e.g., Refs. [92, 94], or quench dynamics, e.g., Refs. [91, 95]. In particular,
deep in the blockaded regime new phenomena such as quantum many-body scarring have
been discovered [96] or signatures of a Z; spin liquid have been reported [50, 51]. More-
over, the Rydberg blockade mechanism forms the basis of digital quantum computing with
neutral atoms [58, 97-100].

In Part II, Chapter 11 we will discuss a new model combining both types of interac-
tions, i.e., direct exchange and van-der-Waals interactions, to realize a bosonic t-] model in
Rydberg tweezer arrays.

Polar molecules

The dipole-dipole interaction (2.4) is only useful in the presence of non-vanishing dipole
moments |d|. To obtain sufficiently strong interactions (compared to the timescales of an
experiment), large dipole moments are required. In the previous section, we have discussed
how highly excited electronic states have large dipole moments. Another way to leverage
dipolar interactions in quantum simulators is to use particles, which naturally exhibit a
strong net dipole moment in the electronic ground state, e.g., polar molecules [101-104].
Here, we briefly review di-atomic, polar molecules. To understand the dipolar in-
teractions between two molecules, we first need to consider the degrees-of-freedom and
their hierarchy of energy scales [105]. A simple understanding about the level structure
of molecules can be obtained from a Born-Oppenheimer ansatz, where we factorize the
molecular wavefunction into the electronic and nuclear parts, |¥) = |¥)e ® [¥)nue. For
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two atoms at far distance, the electronic wavefunctions of the atoms are independent. By
moving the atoms closer together, the electronic wavefunctions start to overlap and the
ground-state energy E(R) will depend on the distance R between the two atoms in our
Born-Oppenheimer description. For orbitals in a binding configuration, this potential has
a minimum energy of E(R) at R = Ry and a Pauli blockade at very short distances. The
corresponding potential E(R) can be expanded around its minimum leading to harmonic
oscillator modes of the nuclei: the vibrational spectrum. In cold molecules, we assume that
individual molecules are in its electronic (~ 100 THz) and vibrational (~ 100 GHz) ground
state.

The next smaller energy scale are the rotational modes (~ 1GHz), which can be ap-
proximated by a rigid rotor [105] with an energy spectrum Ey « N(N + 1); here N is the
quantum number of rotational quanta. The rotational (sub)levels {N,m,} form the sub-
space relevant for quantum simulation. In the rotational frame, the dipole of the molecule
is steady. However in the lab frame, the dipoles are rotating and its the rotation of the
dipoles, which induces pair interactions between rotational levels of two molecules. If we
map the rotational states [N = 0,my = 0) = ||) and|N = 1,my = 0) = |1) on a qubit, the
resulting spin-1/2 interaction is given by

- 1
A= 3L

i<j ij

(s}*s‘?j— + h.c.) +0Y 8 (2.10)
]

Since the qubits are implemented in rotational levels of the molecules with energy spac-
ing in the microwave spectrum, their rate of spontaneous emission is very slow compared
to the interaction scale (~ 1kHz in the optical lattice [106]). Indeed, T, times of several
seconds have been reported [107]. Further, the Hamiltonian (2.10) includes coherent Rabi
oscillations o« () from a drive implemented with microwaves; note that the intrinsically
strong dipole moments between rotational states give rise to large Rabi frequencies of sev-
eral hundred kHz [106].

Altogether, the separation of energy scales in cold, polar molecules provide an ideal
platform for Floquet engineering of spin models [106, 108]. Moreover, while we have re-
stricted our discussion to two rotational levels, in principle an entire ladder of internal
rotational states are available suitable to implement synthetic dimensions [109] or ¢-] mod-
els [P8].

2.1.2 Optical lattices

One discipline in condensed matter physics deals with the description of electrons in a solid,
crystalline material [110]. Hereby, the ionic cores of atoms form a Bravais lattice structure,
which is experienced as a periodic potential for the underlying electrons. If the electrons
are tightly bound to the ionic cores, they are well described by localized Wannier functions,
such that the overlap between neighboring Wannier functions gives rise to kinetic delocal-
ization of the electrons across the lattice: the tight-binding model. Similarly, a retro reflected
optical laser beam (standing wave) can induce an optical potential landscape experienced
as a periodic cosine potential for atoms or molecules [11]. For deep optical lattices and at
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ultracold temperatures, the particles are well described by a tight-binding model.

It was proposed by Jaksch et al. [41] that bosonic atoms at sufficiently low temperatures
can occupy the lowest Bloch band of an optical lattice. By tuning the lattice parameters
the localized Wannier functions can be modified such that an interplay between kinetic
energy, i.e., overlap between neighbouring Wannier functions, and potential energy, i.e.,
localization of the on-site Wannier function, enables to drive the ground state from the Mott
insulating to superfluid regime®. Soon after, this was experimentally realized by Greiner et
al. [42] in Munich.

Thus, optical lattice experiments typically realize Hamiltonians of the form

H=-t)" (a,fa]- + h.c.) + %uzﬁj (Aj—1) =Y uh, (2.11)
(i) i j

+
j
on nearest-neighbour sites i and j on the lattice; the second term is the density-dependent

where the first term describes a tight-binding hopping ¢ of bosonic/fermionic particles 4

on-site Hubbard interaction U with 7; = ﬁ}rﬁj. Both parameters depend on the lattice
depth [41], where the tunneling t scales inversely exponential in the lattice depth. A local
chemical potential term o y; is introduced to model disorder and harmonic confinement
of the trap [55, 111]. The Hubbard interaction arises from low-energy two-particle scatter-
ing and is proportional to the scattering length U o a. If the atomic species used in an
experiment hosts a useful Feshbach resonance, the tunability of the Hubbard interaction is
dramatically increased and allows to switch from attractive to repulsive Hubbard interac-
tions [73].

We highlight that Hamiltonian (2.11) can be generalized to, e.g., spinful particles,
molecules [106] or magnetic atoms [78] by modifying the interaction term accordingly. In
the case of spin-1/2 fermions the model describes the paradigmatic Fermi-Hubbard model

A==t 3 (elotio+he) + UL Ay, (2.12)
(i j

where the operator cA]J-r,U (¢j,r) creates (annihilates) a fermion with spin ¢ =, 1 at site j, and

e = é;r +Cjc is the number operator. It was realized by Duan et al. [60] that in the limit
of strong Hubbard interactions U > t, the antiferromagnetic superexchange mechanism

allows to engineer spin model with interaction strength | = 4t2/U [112], see Chapter 7.

2.1.3 Tweezer arrays

Viruses and bacteria are macroscopic objects in the world of quantum physics. Yet, light-
mediated forces are strong enough to trap living organisms in individual optical tweezers
with a few milliwatts of laser power [113]. This demonstration lead to technological ad-
vancements and opened new research directions in the field of biology, for which Arthur
Ashkin was awarded the 2018 Nobel prize [114].

To use this application for quantum simulation purposes, such as simulating spin mod-

3Strictly speaking, the atoms in the lattice are in a metastable state and eventually decay into free space.
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els in Rydberg atoms or polar molecules, one needs to trap cold, individual particles in a
defect-free array. Hereby, each optical tweezer is constituted by a tightly focused, high-
power laser beam modelled by a harmonic, confining potential. Thus, a cold, defect-free
array refers to multiple optical tweezers each filled with a single atom close to the motional
ground state of the tweezer. Several technological developments over the past two decades
allows us to create such arrays with up to thousands of atoms [115, 116] with high fidelity.
Cold molecule platforms are demonstrating impressive progress [63, 65, 117] towards unity
filled arrays in the motional ground state.

Let us highlight a few key aspects of creating deterministic, defect-free arrays [118].
Probabilistic loading of atoms in tweezers, i.e., by adiabatically turning on the tweezer light
overlapped with a cloud of atoms, is only able to reach single-atom-per-tweezer fidelity of
less than 40% because the number of atoms in the tweezers follow Poisson’s distribution.
Exploiting light-assisted collision, where atoms are pairwise lost from the tweezers, enables
us to create tweezer arrays with 50% filling (“collisional blockade mechanmism™) [119].
While this probability can be drastically enhanced using different collision channels [120],
defect-free arrays are nowadays assembled using reconfigurable arrays pioneered by En-
dres et al. [121]. In this technique, atoms are first loaded using the collisional blockade
mechanism and then subsequently, non-destructively imaged and rearranged into deter-
ministically filled arrays.

The tweezer array platforms have revolutionized the quantum simulation of spin mod-
els [12], the field of neutral atom quantum computing [58, 122] and state preparation in
optical lattices [66] within less than 10 years. A few advantages include ability to gen-
erate almost arbitrary geometries [123], fast cycle times [115], and in-situ reconfigurable
arrays [122]. In the context of doped quantum magnets, new possibilities are emerging
including the implementation of physical tunneling between tweezers [124], e.g., to build
tunneling gates with fermionic statistics [61].

Using the resorting algorithm [121] to assemble defect-free arrays of cold molecules,
requires efficient non-destructive imaging and cooling techniques for molecules trapped
in tweezers. This may be enabled by novel promising techniques such as detection of
molecules via nearby Rydberg atoms [125]. In combination with Floquet engineering, this
would allows us to realize an entire new class of XYZ spin systems with high precision in
arbitrary 2D geometries [103, 106].

As we progress through this thesis, we make use of the toolbox introduced above. For
example, we will use Ising interactions between Rydberg atoms in combination with the
liberty to create arbitrary geometries with tweezer technology. This allows us to propose
a scheme for the implementation of an emergent Z, lattice gauge theory with dynamical
matter in (2 + 1)D [Chapter 3]. Moreover, we use the technique of Floquet engineering in
ultracold molecules in optical lattices to propose a realistic scheme for the implementation
of an emergent non-Abelian U(N) lattice gauge theory in (24 1)D. Further, we envisage
future digital-analog experiments with coherent control over fermionic degrees-of-freedom
in optical tweezers and lattices [62] to implement non-Abelian SU(N) lattice gauge theories



22 Chapter 2. Theoretical Background

with fermionic matter beyond (2 4 1)D [Chapter 5]. In Part II of this thesis, we present
preliminary experimental results extending the currently available toolbox to study doped
quantum magnets in Rydberg tweezer arrays utilizing their naturally strong dipolar inter-
actions.
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2.2 Lattice gauge theories

SELF-DUALITY is a powerful concept in the study of statistical physics. A few years before
Onsager provided an analytical solution to the 2D classical Ising model in 1944 [126],
Kramers and Wannier predicted the critical temperature T, = 2.23] (kg = 1) of the square
lattice Ising model by mapping the low- to the high temperature behaviour [127]; | is the
Ising coupling.

Intrigued by the simplicity of their argument [128], Franz Wegner studied similar map-
pings in higher dimensional Ising models in 1971 [27], and found that the 3D cubic lattice
Ising model is dual to a model, where the original global Z; symmetry is promoted to a lo-
cal Z, gauge symmetry: the Ising lattice gauge theory. Following the argument of duality,
Wegner predicted that the dual model must have a phase transition: the Ising* transition.
However, any local observable probing Z, symmetry breaking must vanish identically due
to the gauge symmetry. Therefore, it cannot be classified by the Ginzburg-Landau the-
ory of continuous phase transitions [129] — the paradigm of phase transitions at the time
— and Wegner anticipated to have discovered a “phase transitions without local order parame-
ters” [27]. From a modern physics perspectives, we have a clear understanding and classifi-
cation of the Ising™ transition in terms of topological order and condensation of topological
defects [4, 130]. In particular, the disordered phase of the Ising model corresponds to a
gapped, Z, quantum spin liquid in the dual model [3] motivating the topicality of LGTs in
modern quantum many-body physics.

Soon after Wegner’s discovery, LGTs have sparked interest in various different fields. In
1974, Wilson independently formulated a non-Abelian lattice gauge theory allowing for a
strong coupling analysis of lattice quantum chromodynamics (lattice QCD), where confined
quarks are found [26, 131]. This has opened an entire field in particle physics since the mod-
els provide a natural high-energy cutoff and allow us to apply established computational
methods, such as Monte Carlo algorithms.

Initiated by Wegner and Wilson, LGTs were soon realized to provide a rich class of
models interesting to be studied from the perspective of statistical and low-energy physics.
Notably, Kogut, Susskind and Fradkin derived a d-dimensional quantum Hamiltonian for-
mulation of the corresponding (d + 1)-dimensional classical LGT [132, 133]. By equipping
Wegner’s Ising LGT with Z; matter fields, they were able to establish self-duality in the
(24 1)D Ising LGT. In 1979, Fradkin and Shenker [28] proved analytically that the phase
diagram of this model is constituted by only two phases: a deconfined phase and a con-
fined /Higgs phase. In particular, from this result it follows that (1) simple, discrete gauge
groups contain the confinement phenomenon known from non-Abelian gauge theories and
(2) the spectrum of the Higgs phase is smoothly connected to the confined phase in Z, LGTs.

With the discovery of the fractional quantum Hall effect [134] and high-Tc superconduc-
tivity in copper oxide compounds [135] in the 1980s, strongly interacting electron systems
came to the fore. For most of these systems, the strong correlations resist to be efficiently
captured by any available theoretical and numerical method. This necessitated the devel-
opment of new theoretical tools, such as parton formulations [17, 136, 137] giving rise to
gauge degrees-of-freedom [3]. Since then intimate theoretical connections between LGTs
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and strongly correlated electrons, e.g., high-Tc superconductivity, have been reported [20,
23,138].

Today, LGTs provide a fundamental framework in many topics of modern quantum
many-body physics. Introduced by Alexei Kitaev [29], an exactly solvable model — the toric
code — with a Z, spin liquid ground state has been found, which nowadays serves as a
textbook example for Z, LGTs. The model plays a fundamental role in the context of fault-
tolerant quantum computation due to its topological protected ground state degeneracy
suitable to encode quantum information. Further, the model has gained noticeable atten-
tion in analog quantum simulation [50, 51, 139] since it is one of the few well-understood
examples to host a gapped quantum spin liquid phase.

One of the long-term goals in the field is the large-scale quantum simulation of non-
Abelian gauge theories with dynamical matter. This would allow us to probe gauge the-
ories from an entirely new perspective in a regime inaccessible for numerical studies. For
example, particle colliders are essentially restricted to probe the physics of gauge theo-
ries at infinity times after the collision. Observing the collision process in real-time adds
a new dimension to the study of particle physics [140-144]. Moreover, the direct observa-
tion of confinement of dynamical charges, in both Abelian and non-Abelian gauge theories,
would provide an experimental toy model to test suitable (non-local) order parameters pro-
posed to capture confinement. This goes hand in hand with questions in condensed-matter
physics, namely to understand the ground-state phase diagrams of a variety of LGTs. In
the context of quantum many-body physics and quantum information, the observation of
quasiparticles with non-Abelian statistics, that can be hosted in quantum spin liquids and
lattice gauge theories [52], would be a major achievement.

Despite the relevance of LGTs in many disciplines of theoretical physics, the large-scale
experimental realization in (2 + 1)D and with dynamical matter remains elusive. This is
attributed to the complicated structure of interactions and the challenge to impose gauge
invariance in an experimental setup, see Chapter 2.2.5. In the following, we use a historical
approach but modern formulation to introduce the framework of LGTs on the example of
the Ising Z, LGT.

2.21 The Ising lattice gauge theory

Now, we want to add formalism to LGTs and describe Kramers and Wannier’s, and Weg-
ner’s construction in terms of a Hamiltonian formulation, i.e., our starting point is a (d — 1)-
dimensional transverse field Ising model instead of a d-dimensional classical Ising model
used in their original works [27, 127].

Kramers-Wannier duality The 1D transverse field Ising model,

e = =] Y Tt - Ef]x, (2.13)
(i.f) j

describes Ising couplings of neighbouring spins 7% along the Pauli z-direction with (unit
less) coupling strength | > 0, in a transverse field T along the Pauli x-direction. At the crit-
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a Kramers-Wannier self-duality
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Figure 2.2: Ising dualities. a The Kramers-Wannier duality maps the strong to the weak
coupling behaviour of the 1D transverse field Ising model [127]. b The 2D transverse field
Ising model (gray) is dual to a Z; Ising LGT (red). The known phase transition in the Ising
model implies a phase transition with non-local order parameters in the LGT [27].

ical coupling J. = 1, the ground state of the model exhibits a quantum phase transition [145]
from a disordered paramagnetic phase at | < J. to an ordered ferromagnet at | > J.. The
ordered phase breaks the global Z, symmetry associated with the unitary, parity operator

T — AX
U= Hrj , (2.14)
]
i.e. [ftrmv, U] = 0. The magnetization (17) is the local order parameter distinguishing the

disordered (('i’f} = 0) from the symmetry broken phase (<7?]fZ ) #0).

The existence of the critical point can be derived from the self-duality of the 1D trans-
verse field Ising model, see Figure 2.2a. To this end, we introduce the dual operators as

oF = £, % (2.15a)
o7 =T (2.15b)
i<j

These operators satisfy the algebra of Pauli matrices, and re-writing Hamiltonian (2.13) in
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terms of Eq. (2.15), gives the self-dual model

(i) j

1
Hrrv = —J Z "fZ’IATZ — Z =] |: Z P = 7 Z@'ZZ@'JZ] . (2.16)
i {i.f)

We conclude that the spectra of the 1D transverse field Ising model must obey the scaling
relation E(J) = J- E(J~!) [43]. If the excitation gap vanishes at the critical point J. # 0,
it likewise must vanish for J.! assuming the critical point to be unique. Thus, self-duality
allows us to find the quantum phase transition at J, = 1.

Wegner duality Having reviewed the Kramers-Wannier self-duality, we continue with
Wegner's Ising lattice gauge theory. We start with the pure Z, LGT in (2 + 1) D, where spins
are defined only on the links (i, j) connecting sites i and j of a square lattice, see Figure 2.2b:

=1L T1 - 2 217)
L]

P (ij)ep

with the plaquette interaction summing over all plaquettes P. This is our first example of a
LGT: The Hamiltonian (2.17) commutes with the generators Cj of alocal Z, symmetry,

[(Hlz,,Gj] =0 forallj, (2.18)
with
Gi= I %y (2.19)
(i) e+;

where the symmetry generators are the product of Pauli T* operators over all links adjacent
to vertex j. The Z, structure refers to the group structure of the generators, i.e., (Gj)z =
1. The eigenvalues of Gj are ¢ = +1. Because the model (2.17) is only constituted by
link variables, it is called pure LGT; in Section 2.2.2 we add matter variables on the sites of
the lattice, and provide physical interpretation in terms of electric fields, gauge fields and
Gauss’ law.

The local symmetries give rise to an extensive set of local conservation laws, such that
g = (g1,..,gn) are a set of good quantum numbers often denoted as superselection sectors.
The physics of different superselection sectors can be very different, e.g., typical choices are
(i) the toric code, which is an even Z, LGT with g; = 1 for all j, or (ii) dimer models, which
is an odd Z, LGT with g; = —1 for all j.

Similar to the 1D case, we perform a duality transformation by mapping

oF = H Gy (2.20a)
(i,j)eP

i = 1 T (2.20b)
<ij>er

as illustrated in Figure 2.2b; the string ¥; labels all links to the left of dual site j. The map-
ping is not one-to-one due to the gauge invariance of the Z, LGT. In particular, the mapping
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uses the superselection sector ¢; = 1 to remove half of the degrees-of-freedom, see Refs. [4,
43] for a detailed discussion. Re-writing Hamiltonian (2.17) in terms of the dual operators
yields the 2D transverse field Ising model

Hrrm = — 2 ﬁ'iZA]'Z — ]Zﬁ}x (2.21)
(i) j

Phases of the pure Ising Z, LGT Since the transverse field Ising model (2.21) exhibits
a continuous phase transition, it was concluded by Wegner that the Ising LGT must have
two phases. But what is the order parameter of the Ising LGT? The transverse field Ising
model spontaneously breaks the global Z, symmetry giving rise to a local order parame-
ter <&f>. In contrast, the Ising LGT only has a local Z; symmetry, which cannot be broken.
In fact, Elitzur’s theorem [146] prevents any gauge-noninvariant operator, i.e., operators O
with [@, éj] # 0, to have a finite expectation value. To show this on the example of the lo-
cal magnetization, we consider the gauge-noninvariant operator (&f) with GA]-?T]:Z = —0f é]-.
Then, it follows from Eq. (2.18) that for any physical state |i), the expectation value is

($[0719) & (9|G; 107 Gl) = —(ploF|y), (2.22)

and thus (07) = 0.

If spontaneous symmetry breaking does not characterize the two phases, what order pa-
rameters could distinguish between the weak and strong coupling regime? By considering
the mapping in Egs. (2.20), we realize that the local magnetization in the transverse field
Ising model corresponds to a non-local string object, where the length of the string scales
with system size. This non-local string creates excitations of the plaquette operator at its
end, which can be interpreted as Z, magnetic monopoles; the ordered phase is therefore
a condensate of Z, monopoles. But can we nonetheless find a proxy to a local observable
distinguishing the two phases?

Indeed, Wegner [27] and Wilson [26] have shown that the correlation length of loop
order parameters, so-called Wegner-Wilson loops, are suitable to probe the phase transition.
The Wegner-Wilson loops

A _ AZ

W(L) <i’j>1—€Ia£ ) (2.23)
are generalizations of the plaquette operator, Eq. (2.17), and characterized by their perime-
ter L, and the area A of the closed loop £. Thus, the operators W (L) are gauge invariant
by construction and can admit non-zero expectation values consistent with Elitzur’s theo-
rem. The characteristic behaviour of the Wegner-Wilson loop is an area law decay (W(£)) o
exp(—Ag) in regime | < ] and a perimeter law decay (W (L)) o exp(—L,) in regime | >
Je

2.2.2 Ising lattice gauge theory with matter

In the previous section, we have encountered a duality transformation that maps the (2 +
1)D transverse field Ising model onto the (2 4+ 1)D Ising lattice gauge theory — thus the
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a Ising lattice gauge theory with matter b Gauss' law
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Figure 2.3: Z, LGT with matter. a Self-duality of the (2 4 1)D Ising LGT is obtained by
including matter degrees-of-freedom on the site of the lattice. The minimal coupling «
pfffmﬁjz between matter p (blue) and gauge T (red) fields gives rise to local conservation
laws associated with the Z, Gauss’ law with matter illustrated in b. In the electric field T*
and matter occupation p* basis, Gauss’ law in the sector without static background charges
(right panel) implies that Z, electric field lines can only terminate at Z, charges.

model is not self-dual. As realized by Fradkin and Shenker in 1979 [28], self-duality can be
established by extending the model in Eq. (2.17) with matter degrees-of-freedom (7 on the
sites j of the lattice, where p* = +1 is the presence (0* = —1 is the absence) of a matter
excitation, see Figure 2.3a.

The Fradkin-Shenker Hamiltonian [28, 133] of the (2 4+ 1)D Z; Ising LGT with dynamical
matter is given by

Hes = —1 ) pitl05 — T TT %oy =1 Lty — 1w p), (224)
(i) P {ij)ep (i) j
with the dimensional couplings for the minimal coupling term ¢, the plaquette interaction J,

the string tension & and chemical potential y. The Hamiltonian (2.24) commutes with the
generalized local symmetry generators

5= 47 Tl @2
i:(i,j

and physical states are eigenstates G;|{p) = gj|y) of a specific superselection sector g =
(g1, .-, 8n)- Asillustrated in Figure 2.3b, the eigenstates can be represented in the fg‘i’ﬁ—basis
of the link variables (Z; electric field) and the p*-basis of the matter variables (Z, gauge
charge). Thus, the matter and electric fields of a physical state are related via the Z, Gauss’
law

H iy = —8ib} (2.26)
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which can be considered as a discretized version of Maxwell’s first equation, V - E = p,
relating the flux of the electric field E to the charge distribution p. In Eq. (2.26), the choice
of the superselection sector enters as a distribution of static background charges g;. For the
sector with no background charges (¢; = +1 for all j) Z; charges at site i and j are connected
by an electric string, which is a path of flipped strings T<xz',j> = —1 from site i to site j.

Then, the Z, gauge field f(zi,j> is the conjugate variable, i.e., [fé,ﬁ,f(xi,].)] = 2ii’<yi’j>, of
the electric field. Since the gauge field operator does not commute with the symmetry
generator, it is not an observable in the LGT. However, closed loops such as Wilson loop
or plaquette operator can admit expectation values, which we interpret as (divergent free)

Z, magnetic flux.

Phases of the Ising Z, LGT with matter The model (2.24) is dual to itself. To study the
ground state phase diagram [28], we consider the limiting cases t/u = 0 and J/h = oo, see
Figure 2.4. In the latter case, the gauge field dynamics is frozen (pure matter theory) and we
can fix the gauge Ty =L such that we obtain the transverse field model with continuous
phase transition. In fact, this reflects the Wegner duality and, likewise, we obtain the Ising*
transition for the pure gauge theory (t = 0). Thus, the transitions of the pure matter and
pure gauge theory are captured by the Ising magnetization and the Wegner-Wilson loops,
respectively.

To understand the effect of dynamical matter in the gauge theory, we start in the limit
of the pure gauge theory and deep in the plaquette phase (t = 0, J/h — o). Here, the

=1y IT %) —n by (2.27)
J

P (ij)ep

Hamiltonian reduces to
A

Let the state |0) describe a state without matter excitations. Then, by applying a non-local
string operator b! = (I Tj<x ’?f)ﬁi, we can create a Z, charged state |x) = b%|0) at finite
energy cost. Thus, the phase contains free Z, charge excitations. In Ref. [28] they show that
this deconfined phase is stable for small perturbations ¢, < J, u, see Figure 2.4, before the
string tension / confines Z, charges.

Similarly, in the limit #/] — oo we can construct a state with two static test charges at
position x and x’, i.e., we choose g, = g\ = —1 and g; = +1 elsewhere. Because of Gauss’
law, the two static charges have to be connected by an electric field line with an energy
cost V(¢) = h - £, where / is the length of the string. The linearly increasing potential V' (¢)
causes confinement of Z, charges. As ] is increased, the electric strings start to fluctuate
until infinitely large electric loops proliferate and charges become deconfined [4, P5, P12].

In fact, in the limit of two test charges, the perimeter and area law is suitable to distin-
guish between the different regimes, and the Wilson loops give direct access to the effective
potential between charges [4]. However, once we include finite matter density this order
parameters breaks down and Wilson loops obey perimeter law away from the axis in Fig-
ure 2.4. Since the Wilson loops are related to the effective potential, the perimeter law decay
in the presence of dynamical charges indicates screening of the Z, charge and string break-
ing.

In their seminal 1979 paper [28], Fradkin and Shenker were able to map out the full
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phase diagram of the Ising LGT with matter, which was later also confirmed in Monte Carlo
simulations [130]. Their most important finding is about the inside of the phase diagram
shown in Figure 2.4. By constructing a path (dotted line) between the confined phase and
the corresponding phase mirrored at the self-duality line (the Higgs phase), they concluded
that the two regions are smoothly connected without any discontinuity in the partition
function. This is surprising: in the Higgs phase the gauge charges “condense” and the
gauge field acquires a mass; in the confined phase no free charges can exist. Despite the
physically very different mechanisms, the spectrum of the confined and Higgs phase is
smoothly connected, similar to a BEC-BCS crossover scenario.

We highlight that a bulk of the results discussed above can be obtained using sym-
metries and self-duality. This allowed us to show the rich structure of models with local
symmetries, e.g., phases of matter with connections to charge (de)confinement. However,
these arguments are limited to very fine tuned systems and, in fact, phase diagrams for
general classes of gauge theories with dynamical matter remain elusive [23]. This has vari-
ous reasons: Numerical simulations in (2 + 1)D and beyond are limited to extremely small
systems. Further, the interplay between charge and gauge degrees-of-freedom can lead to
new emergent phenomena, such as condensation of confined charge pairs [P5] necessitat-
ing to develop new order parameters. Moreover, experimental toy models with access to
non-local observables, e.g., in quantum simulators, remain challenging to be implemented
for large system sizes, see Section 2.2.5.

2.2.3 Constructing LGTs

In the previous section, we covered a very explicit example of a LGT with the purpose of
introducing notation, terminology and lines of arguments typically used in the study of
LGTs. In the literature, a few models such as the Fradkin-Shenker model [28], Wilson's lat-
tice QCD [26], or the quantum link model [147], are considered. In contrast, for near-future
experimental applications it may be more important to focus on the defining features of
LGTs, which can be readily implemented, instead of exactly engineering the Hamiltonians
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of the above examples (we take what we can get).

For example, in optical lattice experiments the particle number is conserved and there-
fore the model will have an additional global U(1) symmetry that is present on top of the
local gauge symmetry. Therefore, the model may not be a LGT in the traditional sense of
gauging a global symmetry. Instead, the additional global symmetry can indeed be sponta-
neously broken with substantial consequences for the phase diagram [P5].

In this thesis, we define LGTs using the following ingredients:

Geometry — LGTs can be defined on arbitrary geometries, see Figure 1. Here, we focus
on Bravais lattices in d spatial dimension; for historical reasons, we write (d + 1)-
dimensional LGT.

Link variables — We define degrees-of-freedom on the links (i, j) between site i and j.
The links can be constituted by different microscopic objects, such as spins or
bosonic/fermionic particles, depending on the symmetry group and its representa-
tion. The electric and gauge fields are a set of conjugate operators acting on the link
Hilbert space, and they are charged under the gauge symmetry.

Matter sites — We define dynamical matter degrees-of-freedom on the sites j of the lattice,
which can be (hard core) bosons, fermions, spin-S, spin polarized, etc. The matter is
charged under the gauge field, e.g., in SU(3) the matter has a color charge.

Local symmetries — A set of local symmetry generators G}" (« = 1,.., M) are defined on
vertices of a lattice, which include the matter sites and its adjacent links. A set of
non-commuting generators give rise to a non-Abelian gauge symmetry, e.g., the Lie
group SU(N) is constituted by M = N? — 1 generators. Various local symmetries can
be combined, e.g., U(N) = SU(N) x U(1). The corresponding conservation laws are
the Gauss’ laws of the LGT.

Hamiltonian — We call a Hamiltonian X a LGT, if it obeys the above structure and com-
mutes with all local symmetry generators [#, G}"] = 0. The Hamiltonian should be

non-trivial in the sense that it is an interacting Hamiltonian®.

Global symmetries — The Hamiltonian 7/ may have additional global symmetries, such
as particle number conservation of matter excitations.

2.24 Non-Abelian gauge theories and the rishon construction

In the beginning of the Chapter, we have constructed a LGT with the discreet gauge
group Z,. For the purpose of numerical or quantum simulations, a discreet group structure
is advantageous because it comes with a finite dimensional link Hilbert space. In contrast,
continuous gauge groups, e.g., U(1) or SU(N), require an infinitely dimensional Hilbert
space at every link. For all practical purposes, the link Hilbert space has to be truncated,
for which efficient descriptions in terms of quantum link models were put forward by D.

40One can construct trivial Hamiltonians with local symmetries, e.g., N-independent spins in a field H =
Z]- ffl e Since they are non-interacting, local magnetization is trivially conserved.
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Figure 2.5: Non-Abelian quantum link models. a In the rishon construction, fermionic
particles are introduced carrying the color charges ¢ = red, blue, green. This formulation
provides a finite dimensional representation of the link Hilbert space useful for quantum
simulation [P9, 148, 149]. The Gauss’ law enforces physical states to be a total color singlet
on each vertex. Additionally, the rishon particle number per link N is strictly conserved;
here we show N = 3. Note that the notations ‘left’ and ‘right’ rishon are relative to a
vertex j, which the rishon site is adjacent to. b We show tunneling processes consistent with
the Gauss’ law and rishon number constraint. Understanding the formation and properties
of glueballs is one of the open questions in non-Abelian gauge theories: Indeed, proving the
mass gap of a glueball excitation is part of the Millennium prize problem on the quantum
Yang-Mills theory [150].

Horn [151], U. J. Wiese and co-workers [147, 148]. In the following, we provide a brief
overview of a non-Abelian quantum link formulation: the rishon construction [152].

In the quantum link formulation of SU(N) gauge theories, the link is constituted by two
sites with exactly \V color charges fermions (= rishons) per link, see Figure 2.5a. In (1+1)D,
we can label the two sites ‘left” and 'right” with respect to the vertex j and define fermionic
rishon creation operators é}t o, and é; - g With color ¢. The color charged electric fields EZ’J)
(gauge fields LAI‘ZZ‘;;) are defined as the imbalance (off-diagonal order) between the the two
rishon sites on link (i, j),

"
Eip =

N[ =

4 A 4 A
(c]"U,LC]',g—,L — Ci,(T,RCi,U',R> (228a)
/

70y = Cio Rl (2.28b)

which correctly satisfy (almost all) commutation relations of a SU(N) LGT [148, 152]. The
advantage of the rishon formulation is that the Hamiltonian of Wilson’s lattice QCD can be
used one-to-one, with the only difference that gauge fields on the same link become non-
commuting objects, [(I7', (I**] # 0. Moreover, different rishon numbers A/ = é{U’Réilg,R +
6;'{,0,LCA]}¢7,L correspond to a different truncation of the gauge group, where N' = 1 provides
the simplest case of one-rishon models and N' = N are multirishon models with richer
phenomenology [153].

On the sites of the lattice, we introduce the color charged matter excitations l/AJ]Jr - Which
are the quarks in a SU(3) LGT. The color spin is defined using Schwinger fermions with
S]- = 1/3]-+,UT”' ;o here T = (T?, .., TM) are the generators of the SU(N) Lie algebra. Analo-
gously, the color spin for the rishons is defined.

The non-Abelian gauge theory is characterized by multiple Gauss’ laws for each gener-
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Figure 2.6: Implementing Gauss’ law. a Gauge theories are highly constrained models with
an extensive number of local conservation laws (Gauss’ laws/superselection sectors) that
have to be simultaneously fulfilled across the entire system. States in the correct (incorrect)
Gauss’ law sector are called physical (unphysical) states. One of the major challenges for
the quantum simulation of LGTs is to enforce the Gauss’ law constraints. b-d Various ap-
proaches have successfully demonstrated the experimental realization of a LGT; in Table 2.1
the different methods are compared.

ator « = 1, ..., M, which mutually do not commute on the same vertex:

A ~ AUN A N
GE =P (T i+ Y &1 (T)77 8100 (2.29)
I=L,R
For rishon models without static background charges, the Gauss’ laws enforces that physi-
cal states |) are a total color singlet at each vertex, such that

Gt|p) = 0. (2.30)

Additionally, it may occur that the total number of particles (matter+rishon) is conserved
on each vertex. This gives rise to an extra local U(1) symmetry, which in combination with
the non-Abelian model yields a non-Abelian U(N) = SU(N) x U(1) LGT.

In summary, the rishon formulation of non-Abelian LGTs requires two constraints: (1)
The non-Abelian Gauss’ laws and (2) the rishon number constraint. In Figure 2.5b processes
consistent with these constraints are illustrated. The tunneling of an entire glueball is only
allowed in SU(N) LGTs but not in U(N) LGTs because it does not conserve particle number
locally.
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Avoiding gauge Integrating out Energetic gauge
breaking unphysical states protection
Hilbert space Hphys U 7phys Hphys Hphys U 7phys
accurate Experimental
Hamiltonian No gauge violation perime
. . feasibility
engineering
limited to building comphcatgd 1o a(.:curéte
many-particle Hamiltonian
— blocks
interactions engineering
scalable not yet yes yes
superselection accessible not accessible accessible
sectors
Experiments e.g. Ref. [154] e.g. Refs. [96, e.g. Refs. [51, 53,
155-158] 159]

Table 2.1: Strategies in the quantum simulation of LGTs. Various strategies to realize LGTs
in quantum simulation platforms have been developed and experimentally demonstrated.

2.2.,5 LGTs in quantum simulators

The phenomenology of gauge theories emerges from the highly constrained Hilbert space
Hngs = {19) | Gjl9) = gjl)} C A, see Figure 2.6a. Any coupling of physical, gauge-
invariant states |) € J#py to unphysical, gauge-variant states can cause thermalization of
the system with the unconstrained Hilbert space #. While in high-energy physics and in
most theoretical studies gauge violations are conjectured to be zero, these gauge violating
processes are crucial to understand and control in the context of quantum simulation, where
imperfections in the engineering of Hamiltonians cannot be avoided [46].

In the field, various approaches to realize LGTs have been put forward, which currently
all co-exist with their own advantages and disadvantages, summarized in Table 2.1 and
illustrated in Figure 2.6b-d. Broadly, they can be categorized in bottom-up and top-down
approaches:

Bottom-up Given a Hamiltonian of a LGT, the goal is to engineer this exact Hamiltonian in
a quantum simulator with high accuracy. Typically, digital simulators, where logical gates
enable to time evolve under any Hamiltonian, use bottom-up approaches, see e.g. Ref. [160,
161]. Further, perturbative schemes for analog quantum simulation were developed and led
to the first experimental demonstration of a Z, LGT building block in Munich in 2019 [154,
162], realizing the Hamiltonian

A=ty (al%,8+he) +h YT, (2.31)
(i (i)
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where ﬁ}L (4)) is the creation (annihilation) operator of hardcore bosonic matter on site j; see
also Ref. [139] for a superconducting qubit implementation scheme. In a LGT, the minimal
coupling term, which describes the gauge-invariant tunneling of matter, is already a three-
body interaction; since most natural interactions are between two bodies, see Section 2.1,
higher-order interactions only arise in perturbation theory. While the leading-order term
in the perturbative expansion may accurately be described by, e.g., Eq. (2.31), higher-order
terms and external error sources may not be gauge invariant.

An experimental sequence consists of preparing an initial state in the physical Hilbert
space with subsequent time evolution under the leading-order gauge-invariant Hamilto-
nian. Inevitably, the gauge breaking terms cause thermalization with the non-physical
states, see Figure 2.6b. Without additional protection mechanism, such as energetic protec-
tion of the physical subspace, a large-scale experimental realization is only possible under
highly controlled conditions.

Another approach is to integrate out the unphysical states of the Hilbert space, see Fig-
ure 2.6¢. In the Z, LGT with hardcore bosonic matter, this is easily achieved by using Gauss’
law to derive the operator identity in Eq. (2.26). While this completely removes the unphys-
ical states, and thus the undesired gauge breaking terms, it comes with other challenges.
The resulting new effective Hamiltonian is typically long-ranged [155] or at least contains
many-body interactions that have to be engineered. In specific circumstances, however,
the process of integrating out either matter or gauge degrees-of-freedom can be advanta-
geous [158]. For example, the dynamics of a chain of Rydberg atoms under the PXP model
can be directly mapped to a U(1) quantum link model [96, 156]. We note that eliminating
degrees-of-freedom can be non-trivial for gauge theories beyond Z, LGT, but procedures
for non-Abelian LGTs have been developed in the literature [163].

Top-down Another approach is motivated by condensed-matter physics, where gauge
constraints emerge at low energies. Given the Hamiltonian % gr and the symmetry gener-
ator Gj of a LGT, we add a stabilizer term Hy to the Hamiltonian given by

VA = -V (G-g), (2.32)
]

which acts as a Lagrange multiplier. We assume the symmetry generator has a discrete
spectrum, which is true for Z, LGTs or quantum link models. As illustrated in Figure 2.6¢,
the full Hamiltonian 7 = #; gt + V#v has a low-energy manifold with states in the physi-
cal subspace associated with the superselection sector g = (g1, ..., ¢ ); the protection term V
has to be larger than any other energy scale in the system. For the gauge-invariant Hamil-
tonian, the stabilizer term trivially divides the spectrum into manifolds of physical and
unphysical states. However, the stabilizer term becomes crucial when we include gauge-
noninvariant error terms 87:[5 with [éj, ﬂg] # 0, e.g., external error sources in experiments
or errors arising from the engineering of Hy gt [154]. It has been shown that for sufficiently
large V /e gauge breaking errors are efficiently suppressed up to exponentially long times
relevant for experiments [30, 164].

One interpretation of the energetic gauge protection can be obtained from the quantum
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Zeno effect [165, 166]. The strong stabilizer term acts as a projector into the eigenspace of Hy,
which can be seen, e.g., by trotterizing the time evolution under a Hamiltonian # + H,. If
the eigenspace of Hy is spanned by the superselection sectors, the system remains gauge-
invariant throughout the time evolution.

The top-down method to realize gauge theories is based on the following idea [167]: We
start with a LGT and its symmetry generators G]- and we define the unperturbed Hamilto-
nian Hy, which energetically singles out a specific superselection sector of physical states,
see Figure 2.6¢c. The unperturbed Hamiltonian has manifolds with exponentially large de-
generacy associated with the Gauss’ law constraints. Next, we add a (coherent) perturba-
tion e7l, with e < V, such that perturbative dynamics is induced [P5, P9, 51, 53]. Due to
the energetic protection of gauge-invariant subspaces, the induced effective dynamics
is — per construction — gauge-invariant in the target Hilbert space of physical states. The
effective, low-energy Hamiltonian H o can be obtained by the Schrieffer-Wolff transforma-
tion [168]

Hett = Ponyse” Fle™ Ponys, (2.33a)
H=VHy +eH,, (2.33b)

where ﬁphys is a projector onto the target Hilbert space and S is the generator of the trans-
formation defined by eH. + [S, VHy] = 0.

The top-down approach has the advantage that gauge-breaking errors are well con-
trolled by the strength of the perturbation ¢/V, which has to be chosen such that (i) gauge-
breaking errors are sufficiently small and (ii) effective dynamics is sufficiently large on ex-
perimental time scales. While this can be fulfilled for lowest order perturbative processes,
e.g., the minimal coupling term can arise in second or third-order perturbation theory [P5,
P9], the method does not solve the problem of generating strong, nonperturbative plaquette
terms [139].

Moreover, since the top-down approach does not integrate out degrees-of-freedom, one
has straightforward access to all superselection sectors important in the study of gauge
theories. In condensed-matter physics, gauge theories emerge at low-energies with the
ground state serving as a renormalized vacuum |0), e.g., the topological phase of the toric
code is characterized by fluctuating loops [3, 4]. Then, the charge and magnetic excitations
on top of the renormalized vacuum are characteristic of the underlying phase of matter. In
the topological phase, the excitations are anyons with mutual braiding statistics [29]; the
confined phase has no free charge excitations. Having direct access to all those degrees-of-
freedom is an advantage over schemes, where matter or link variables are integrated out.

The top-down method has enabled the first large-scale implementation of a (1+1)D
U(1) quantum link model with dynamical matter. The scheme starts from a Bose-Hubbard
model in a superlattice with a tilted chemical potential [53, 159]. The latter is a simple
scheme to energetically protect the target Gauss’ law sector, while on-site Hubbard inter-
actions U together with the superlattice structure and tunneling gives rise to second-order
gauge-invariant tunneling processes.

In this thesis, we discuss two top-down schemes for the implementation of Z, LGTs and
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for SU(N) LGTs with dynamical matter beyond (1 + 1)D. In particular, we develop new
methods that simplify the experimentally required interactions to two-body interactions
and we propose concrete experimental schemes for Rydberg tweezer arrays, cold molecules
and ultracold fermions.
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Large-scale implementation of
Z, lattice gauge theories with dynamical matter

THE LARGE-SCALE IMPLEMENTATION of LGTs necessitates to control gauge-violating
processes, which do not conserve Gauss’ law and break the local symmetries. Hereby,
Z, LGTs with dynamical matter pose a surprisingly difficult challenge because of the struc-
ture of Gauss’ law, which preserves local parity. Let us re-write Eq. (2.26) as

A

G = (—1)" 1<‘[> oy (3.1)
it(i,j

where 71; = ﬁ}rﬁ j is the number operator for hardcore bosonic matter ﬁ}r at site j. Therefore, a
top-down approach, see Chapter 1, where the stabilizer term is explicitly implement experi-
mentally requires strong (z + 1)-body terms; z is the coordination number of the underlying
lattice.

In this Chapter, we discuss a theoretical trick that enables us to reduce the experimental
complexity from (z + 1)-body to two-body terms for lattices with z < 3 by using so-called
local pseudogenerators (LPGs). Further, experimentally realistic schemes for Rydberg tweezer
arrays are presented including the resulting effective Z, gauge-invariant Hamiltonian. We
discuss the phase diagram and find intimate relations to the Fradkin-Shenker phase dia-
gram in Figure 2.4.

The following Chapter is based on publication [P4] and [P5]. The text and figures are
rearranged, adapted and supplemented. Moreover, preliminary results are presented in
Section 3.7 and 3.8. Those preliminary results are obtained from discussions with Johannes
Zeiher and his Strontium tweezer team as well as in collaboration with Andrea Pizzi, Fabian
Grusdt, Jad C. Halimeh and Hongzheng Zhao, respectively.
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Figure 3.1: Energetic gauge protection introduces an energy gap between a target sector of
physical states (yellow) and undesired unphysical states (gray). The full protection scheme
is able to protect gauge-invariance up to infinite times ¢, but requires experimentally chal-
lenging many-body interactions as the largest energy scale in the system. In contrast, the
novel local pseudogenerator (LPG) protection scheme replaces the ground-state protection
scheme by a metastable manifold of physical states. This reduces the experimental com-
plexity to two-body Ising interactions, while maintaining gauge invariance for all exper-
imentally relevant times teyp. In both cases, the perturbation . can be used to generate
manifestly gauge-invariant dynamics described by ¢ within the physical subsector.

3.1 Local pseudogenerators in (1 +1)D

The key idea of local pseudogenerators, see Figure 3.1, is as follows: The full protection
scheme has a low-energy sector associated with physical states fulfilling Gauss” law. If we
prepare a physical state in a quantum simulator, it will remain in the sector for infinite
times because it cannot decay into unphysical states. However, this requires to experimen-
tally implement the (z 4 1)-body stabilizer terms described above. In contrast, the local
pseudogenerator (LPG) has a metastable manifold, which is protected up to times relevant
for the experiment, and only requires two-body Ising interactions; eventually a physical
state will decay and thermalize with the unphysical states. Therefore, the LPG is ideally
suited for quantum simulation purposes: it is based on experimentally feasible interactions
and single-site control allows to prepare initial states in the physical subspace protected up
to all relevant times.

While the LPG method provides a conceptual idea, we need to show that LPGs can
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exists for Z, LGTs with dynamical matter. In (1 + 1)D, this can be easily shown using
algebraic transformations. In the physical subspace, the Gauss’ law becomes an operator
identity

A

Gj= (—1)”fi'<"j_1,].>f<lej+l> =gl (3.2)
For hardcore bosons/fermions, we use 71; < 1 to define the LPG as [P4]

A

1D _ . -
W™ = 1) i) + 8205 = 1), (3.3)

where we have neglected a constant energy offset. The spectrum of the LPG term consists

of three manifolds with eigenenergies w}D = —2,0,+42, which energetically separates the

Hilbert into physical and unphysical states, see Figure 3.1:

+2 | ¢unphys >

(3.4)
—2 | wunphys>

Vv]'lD | ¢phys > =0 ‘ T,Uphys > ’ Vv]lD | ¢unphys > =

To show that the LPG allows us to protect the Gauss’ law for experimentally relevant time
scales, we introduce a general protection scheme based on LPGs described by the Hamilto-

nian
H = Hricr + He + Hy (3.5)

with
ﬁLGT == ] 2 (ﬁj A<Zl’]>ﬁ] + hC) - h 2 A<xi/]->, (36a)

(i) (i)
He =AY HE, (3.6b)
j

HV = VZC]VV;D (36C)

]

Here, Higris a (14 1)DZ; LGT with dynamical, hardcore bosonic matter ﬁ; including the
minimal coupling o ] and confining term o h. The error term 7{, contains experimentally
relevant, local errors obtained from Ref. [154, 162] (see Ref. [P4] for an explicit expression).

The protection term o« V contains local coefficients ¢ € [—1,1], which are needed to
suppress remaining, undesired resonances between physical and unphysical states. Sup-
pose the system is initialized in a physical state, then states with Gauss’ law errors on two
vertices i and j may be on resonance if the vertex i (j) goes up (down) in energy, or vice
versa, according to Eq. (3.4). If the errors are local, which have assumed above, then those
undesired resonances can be efficiently suppressed by choosing a staggered sequence, e.g.,

¢j = [6(—1)/ +5]/11.

In Figure 3.2, we show results of an exact time-evolution study of the Hamiltonian (3.5)
in a small system with L = 6 sites. The system is initialized in the physical subspace
with ¢; = +1 for all j, in particular in a state [¢p) with staggered matter occupation, and
evolved up to times t - | for various protection strengths V' / J; the error term is kept constant
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Figure 3.2: LPG gauge protection in (1 + 1)D Z, LGT. We show the time evolution of an
initial gauge-invariant state under a (1 + 1)D Z; LGT with dynamical hardcore bosonic
matter in the presence of errors « A and protection terms o< V using exact diagonalization.
After an initial growth of the gauge breaking error ¢(t), Eq. (3.7), the error plateaus and
remains finite for all numerically accessible times. The ED simulations were performed by
Jad C. Halimeh.

with A/] = 0.01. We define a measure for the gauge violation &(t) with

() =1- 1 [ TG ), 67)

0

where ¢ (t) = e~H|y,) is the time evolved state. For local errors and a staggered sequence,
we find strong suppression of the gauge violation up to all accessible times in the small sys-
tem and for various initial states. For early times, the gauge violation grows polynomially
with e(t) o< A?t?, which can be obtained from time-dependent perturbation theory [P4, 30].
For later time, the error remains constant and settles to a plateau with a height o< A2/ V2,

While the LPG stabilizer in Eq. (3.6¢) is able to stabilize the gauge constraints with only
two-body interactions, it is not suitable as a starting point to perturbatively induce gauge-
invariant dynamics in a top-down approach, see Chapter 2.2.5. Instead, we have assumed
that a gauge-invariant Hamiltonian Gt can be engineered, see e.g. Refs. [139, 154, 162].
To perturbatively generate a Z, invariant Hamiltonian including a minimal coupling term,
we need to introduce some interaction between gauge and matter degrees-of-freedom; oth-
erwise those degrees-of-freedom are completely independent. In the next section, we find
that there exists a LPG for (2 + 1)D, where matter and gauge are fully coupled and which
cannot be derived as above. By cookie-cutting a (1 4 1)D chain, an alternative LPG term in
(14 1)Dis derived.

Lastly, we briefly discuss the validity of the LPG stabilizer. As we show in Figure 3.2, the
gauge errors are controlled and can be suppressed by increasing the protection strength V.
Nevertheless, there are remaining gauge breaking errors with — in principle — detrimental
consequences for the phenomenology of LGTs. Let us draw an analogy with numerical
methods: Using approximate numerical methods, such as tensor product states or Monte
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Carlo techniques, to determine the ground or thermal state of an interacting many-body
system is a challenging problem. In particular, the result can look converged by looking
at “simple” observables, e.g., the local density, whereas higher-order correlation function
may not be converged yet. Similarly, the suppressed gauge violation may suggest that the
dynamics is completely governed by the gauge-invariant Hamiltonian #;gr. Thus, we
emphasize the importance to compare the dynamics of various observables between the
ideal LGT and LPG protected model. For the LPG in (1 + 1)D, it was shown to be able
to stabilize ubiquitous phenomena of Z, LGTs such as quantum many-body scarring [169]
and disorder-free localization [30].

3.2 Local pseudogenerators in (24 1)D

We introduce a local pseudogenerator (LPG) method for a (2 4+ 1)D Z; gauge theory with
dynamical matter (Z, mLGT) on the honeycomb lattice [P5] with the Gauss’ law in Eq. (3.2).
For the honeycomb lattice with coordination number z = 3, one can find a LPG term consti-
tuted by only two-body Ising interactions and single-body chemical potential terms, which
enables to stabilize the Gauss’ law constraint in Rydberg tweezer quantum simulators on
timescales relevant to experiments. This allows us to propose a conceptually novel and
feasible scheme to engineer Z, gauge-invariant Hamiltonians, inherently protected from
gauge-symmetry breaking imperfections and including dynamical matter. We study the
phase diagrams of the derived effective models and suggest experimental probes to explore
their rich physics. Our scheme allows to explore physics beyond numerically accessible
regimes in state-of-the-art analog quantum simulators.

We propose to realize matter and link variables as qubits, implementable by the
ground |g) and Rydberg |r) states of atoms in optical tweezers [12, 51, 91, 92, 96, 170], see
Figure 3.3a and b. Thus, the product in Eq. (3.2) measures the parity of qubit excitations
of matter and links around vertex j. In the following we concentrate on g = +1, which
is called an even Z; LGT, but as shown in Ref. [P5] the sector ¢; = —1 can also be
experimentally realized. Within the sector ¢; = +1 and at full filling, ie., #; = +1Vj,
the matter is static and the system is equivalent to an odd Z, LGT without matter [44],
ie., ﬁ]- = 0but g = -1.

3.2.1 Local pseudogenerator on the honeycomb lattice

The main ingredient of the experimental scheme is the LPG interaction term VW]-. As shown
in Figure 3.3a, VW]- consists of equal-strength 2V interactions among all qubits (matter and
gauge) around vertex j, taking the form

VW, =

~l <

2 —1)+ 3} | - (3.8)
it(i,f)

We assume that V defines the largest energy scale in the problem, which separates the
Hilbert space into constrained subspaces. This overcomes the most challenging step, im-



44 Chapter 3. Large-scale implementation of Z, LGTs with dynamical matter

a) d) Local pseudogenerator (LPG)
2
z optical 2 V[ (oatn o
. — P VW; = y |: (2(1]-11]' = 1) ar Z T(Ji,j)
x tweezer N
. L i(5.d)
y ..
“5v E4 trivial
y . 4
X -+
b4 i 4V
link atom 77; matter atom @
Rydberg-Rydberg J
2V T
[r)=Ir*=+1) — I =In=1 Z,LGT
Jev N .
........ with matter
lo) =7 =—1) —— —L— g =l=0)
b) Z, LGT with matter <) Quantum Dimer4 VT /é\ *
+ 2 permutations + 2 permutations
Quantum Dimer Quantum Dimer;
Gauss's law ot
D s O A . s AR -—
& g =-1 g =0 Gi=0" T s o) =1 7 dimer
2 i= i:(i,5)
£ £ X o . )
° ry— > Cyl) = +1) r— < pp— permutations + 2 permutations

Figure 3.3: Constraint-based scheme. a) The Z, gauge structure emerges from the domi-
nant local-pseudogenerator (LPG) interaction on the honeycomb lattice. A vertex contains
matter 4; qubits (blue) and shares link ’i’é‘m qubits (red) with neighboring vertices. All qubits
connected to a vertex interact pairwise with strength 2V. In a Rydberg atom array exper-
iment the qubits are implemented by individual atoms in optical tweezers, which are as-
signed the role of matter or link depending on the position in the lattice. Here, the ground-
and Rydberg state of the atoms, |g) and |r), encode qubit states, which are coupled by an off-
resonant drive ) to induce effective interactions. To realize equal strength nearest neighbor,
two-body Rydberg-Rydberg interactions, the matter atoms can be elevated out of plane. b)
We introduce the notation for the QDM subspace with exactly one dimer per vertex and
for the Z, mLGT, for which the Hilbert space constraint is given by Gauss’s law éj = +1
¢) We show how the distinct subspaces are energetically separated by the LPG term VWj.
The two quantum dimer subspaces are disconnected when the matter is static, which can
be exactly realized by the absence of matter atoms in panel a) and setting (Zﬁ}ﬁj —-1)=+1

in VW]

posing different gauge constraints in the emerging subspaces, see Chapter 2.2.5 and Fig-
ure 3.1.

We obtain three distinct eigenspaces of the LPG term: 1) Two (distinct) quantum dimer
model (QDM) subspaces at low-energy, 2) physical states of a Z, mLGT at intermediate
energies, and 3) trivial, polarized states at high energy, see Figure 3.3b and c.

Experimentally, we propose to implement strong LPG terms in the Hamiltonian such

that quantum dynamics are constrained to remain in LPG eigenspaces by large energy bar-
riers enabling the large-scale quantum simulation of Z, mLGTs in (2+1)D. To introduce
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Figure 3.4: Disorder-based protection scheme. We calculate the spectrum of the mini-
mal model (inset) and plot all eigenstates of the LPG protection term, Eq. (3.8), around
energy E = 4V. Green (red) dots are states that fulfil (break) Gauss’ law as illustrated with
two examples in the inset of panel a). Without disorder, i.e. V; = V for all j, the physical and
unphysical states are on resonance. In panel b), we show the effect of disordered protection
terms V; = V + 6V}, which only shifts the unphysical states out of resonance and hence
fully stabilizes the gauge theory. We note that even without disorder, the emergent gauge
structure is remarkably robust.

constraint-preserving dynamics within the LPG subspaces, the latter are coupled by weak
on-site driving terms of strength (3 < V as discussed below. Through the constrained
dynamics, a Z, mLGT emerges in an intermediate-energy eigenspace of VWj, which is ac-
cessible in quantum simulation platforms and which distinguishes our work from previous
studies on emergent gauge symmetries, e.g. [171-173].

The LPG method is built upon stabilizing a high-energy sector of the spectrum, which
comes with the caveat that a few unphysical states are resonantly coupled when considering
the entire lattice. Let us first consider the spectrum of the LPG term

R R +4V unphys
Vg = pvige, v = { PR g
vajunphys>

which has eigenenergies w; = (0, V, 4V). If the interaction strength V is equally strong
at each vertex gauge-symmetry breaking can occur. Most notable are an important class
of unphysical states that violate Gauss’ law on four vertices with energy lowered on three
vertices and raised on one vertex; hence these states are on resonance with physical states.
For example, by exciting vertex jo and simultaneously de-exciting three vertices j;, j» and
j3- This process has a net energy difference of AE = +3V —3-V = 0 and the resonance
between the two states can lead to an instability towards unphysical states, hence gauge-
symmetry breaking. However, numerical simulations in small systems suggest that these
gauge-breaking terms only play a subdominant role and gauge-invariance remains intact.
Therefore, the LPG method without disorder cannot energetically protect against some
states that break Gauss’ law on four vertices. An efficient way to stabilize the gauge the-
ory even against such scenarios is to introduce disorder in the coupling strengths by W =
Y V]-W]- with V; = V +4V;. The couplings §V; are random and form a so-called com-
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pliant sequence [P4, 30]. In (1 + 1)D systems, this has been shown to faithfully protect
Z, LGTs also for extremely long times, see Section 3.1 and Ref. [P4] for a detailed discus-
sion of (non)compliant sequences. Moreover, we note that numerical simulations in small
systems suggest that these gauge-breaking terms only play a subdominant role and gauge-
invariance remains intact.

For our (2 4 1)D model, we illustrate the effect of disordered protection terms in Fig-
ure 3.4, which shows that only the gauge non-invariant states are shifted out of resonance.
In particular, we propose to use weak disorder such that the overall perturbative couplings
remain unchanged in leading order. We emphasize that the disorder scheme does not re-
quire any additional experimental capabilities but only arbitrary control over the geometry
as well as local detuning patterns. Even more, an experimental realization will always en-
counter slight disorder, i.e., the gauge non-invariant processes might already be sufficiently
suppressed in experiment.

We further note that the example above, where Gauss’s law is violated on four vertices,
yields gauge-breaking terms in third-order perturbation theory. Ensuring that none of the
protection terms V; have gauge-breaking resonances within such a nearest-neighbour clus-
ter, these terms can be suppressed. However, now it remains space for fifth-order break-
ing terms on next-nearest neighbour vertices. Hence, the non-resonance condition is now
desired on a larger cluster and so forth. Therefore, systematically choosing the disorder
potentials can suppress gauge-breaking terms to arbitrary finite order and stabilize gauge
invariance up to exponential times. Its fate in the thermodynamic limit, however, is an open
question and will be briefly discussed in a classical spin system in Section 3.8.

3.2.2 Experimental realization in Rydberg tweezer arrays

In the following, we introduce the microscopic model ™ which can be directly imple-
mented in state-of-the-art Rydberg atom arrays in optical tweezers, see Figure 3.3a. From
the microscopic model, effective Hamiltonians for the Z, mLGT and QDM subspaces
can be derived by a Schrieffer-Wolff transformation, see Sections 3.3 and 3.5. On realistic
timescales of experiments, the effective models are gauge-invariant by construction and
studied further below.

The constituents are qubits, which can be modeled by the ground |¢) and Rydberg |r)
states of individual atoms. As shown in Figure 3.3a, we label the atoms as matter atom or
link atom depending on their position on the lattice. The Z, gauge structure then emerges
from nearest-neighbor Ising interactions V realized by Rydberg-Rydberg interactions and
hence the real space geometric arrangement plays a key role. The dynamics is induced by
a weak transverse field ), (€2;), which corresponds to a homogeneous drive between the
ground and Rydberg states of the matter (link) atoms. Moreover, tunability of parameters
defining the phase diagram is achieved by a longitudinal field or detuning A,, (A;) of the
weak drive.

The interesting physics emerges in different energy subsectors of the LPG protection
term o VWj in Eq. (3.8); in particular the Z, mLGT is a sector in the middle of the spectrum
of H™¢. The suitability for Rydberg atom arrays comes from the flexibility in geometric
arrangement required for the LPG term as well as from the natural energy scales V >> Q) in
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the system, which we use to derive the effective models below, see Egs. (3.11) and (3.18).

Matter atoms 4; form the sites of a honeycomb lattice and we map the empty |n; = 0)
(occupied |n; = 1)) state on the ground state |g); (Rydberg state |r));) of the atoms. Link
atoms ’i’<x ;) are located on the links of the honeycomb lattice, i.e., a Kagome lattice, and
analogously we map the 7;; , = +1 (7, = —1) state on the atomic state 1€,y ()i =

i’]. | 8)j))- Moreover, we want the matter and link atoms to be in different layers and
those layers should be vertically slightly apart in real space to ensure equal two-body in-
teractions between matter and link atoms. Using the out-of-plane direction has the ad-
vantage that it only requires atoms of the same species and with the same internal states.
However, the equal strength interaction can also be achieved in-plane by using e.g. two
atomic species [174-176] or different (suitable) internal Rydberg states for the matter and
link atoms.

We first propose a non gauge-invariant microscopic Hamiltonian from which we later
derive an effective model with only gauge-invariant terms. To lowest order in perturbation
theory and on experimentally relevant timescales, the system evolves under an emergent
gauge-invariant Hamiltonian. The microscopic Hamiltonian is given by

r}:zmic — ;QLPG ﬁdetuning + f;qdrive, (3.10a)
FJLPG _ VZW' (3.10b)
. , Al ¢ .
4y detuning _ —Ay, En] > E (’2’]>, (3.100)
(i)
ﬁdrive =Q,, Z (ﬁ] + ﬁ;') + Q) <Z‘; (ﬁ<i,j> + ”Aﬂ(Lz,])) , (3.10d)
] L]

(t)

where bosonic operators i j

(t)

and 4 (i) annihilate (create) excitations on the matter and link
atoms, respectively; W; is the LPG term introduced in Eq. (3.8). The last two terms de-
scribe driving of matter (|g); <+ [r);) and link atoms (|g) (i jy <> [r) ;) in the rotating frame.
Rewriting (3.10) in the atomic basis yields Rydberg-Rydberg interactions of strength 2V and
renormalized, large detunings A,, = —3V + A, and A; = —3V + A;. In a Rydberg setup
the driving terms can be realized by an external laser, which couples |g) <> |r), while the
detunings A, A; of the laser relative to the resonance frequency controls the electric field A,
and chemical potential A;, in the rotating frame.

In the limit Q3,,,, () < V, the energy subspaces defined by the LPG term VW]-, Eq. (3.8),
are weakly coupled by the drive to induce effective interactions and it is convenient but
not required to choose (), = () = ). The Z; mLGT emerges as an intermediate-energy
eigenspace of the LPG term VW]-. The effective interactions in the constrained Z; mLGT
and QDM subspaces of W; can be derived by a Schrieffer-Wolff transformation yielding the
models discussed in the next sections.

In the experiment we propose, the Rydberg-Rydberg interactions are not only restricted
to nearest neighbours but are long ranged. We emphasize that beyond nearest neighbour
interactions are inherently gauge invariant and hence do neither influence the LPG gauge
protection scheme nor the Schrieffer-Wolff transformation. However, the long-range in-
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teractions can have strong influence on the Z, invariant dynamics. While the interac-
tion strength decreases as 1/ R®, where R is the distance between atoms, the interaction
is still comparable to the effective perturbative dynamics, see Supplementary Information
in Ref. [P5]. We note that the dynamics might be slowed down but the qualitative features
of the Z, mLGT remain intact.

3.3 Effective Z, mLGT model

A model is locally Z, invariant if its Hamiltonian 4 commutes with all symmetry genera-
tors é]-, ie., [H, éj] = 0 for all j. This ensures that all dynamics is constrained to the physical
subspace without leaking into unphysical states. In Eq. (3.8), the target sector is g; = +1 for
all j but our scheme can be easily adapted for any {g;};.

In the presence of strong LPG protection, the system is energetically enforced to remain
in a target gauge sector and unphysical states are only virtually occupied by the drive (),
see Figure 3.1. To be precise, resonant couplings to unphysical sectors are suppressed by the
(experimentally feasible) disorder protection scheme discussed above. Otherwise emergent
gauge-breaking terms appear in third-order perturbation theory. However, in small sys-
tems we have numerically confirmed that even without disorder in the LPG terms Gauss’s
law is well conserved, which in larger systems we expect to crossover to an approximate
gauge invariance. In the following we assume disorder protection or small systems, where
leading order gauge-breaking terms are absent or can be neglect, respectively.

For the proposed on-site driving terms discussed above and shown in Figure 3.3a,
we derive the following effective Hamiltonian from the microscopic model (3.10) in the
intermediate-energy LPG eigenspace:

At = Y (4125 0+ Ml a5 af + Modl e 2 At + Hee.)
(i)

-7 IT %) - hg Tijy — P‘;ﬁf”
L]

O (ij)eo

(3.11)

The first terms in Eq. (3.11) describe gauge-invariant hopping of matter excitations with am-
plitude f and (anomalous) pairing « Aj (< Ay). The term « | is the magnetic plaquette in-
teraction on the honeycomb lattice. The last two terms are referred to as electric field term h
and chemical potential y, respectively. Note that deriving Hamiltonian (3.11) from the mi-
croscopic model in Eq. (3.10) yields additional higher-order terms, see below, o< T*%, 11,
etc. In the effective model ﬁezfg we treat these higher-order terms on a mean-field level of
the electric field and matter density. Moreover, we emphasize that the effective model is
solely derived from the microscopic Hamiltonian, which only requires a simple set of one-
and two-body interactions between the constituents.

Schrieffer-Wolff transformation In this section, we explain the derivation of the effec-
tive Hamiltonian (3.11) in terms of a Schrieffer-Wolff transformation [168]. Starting point
is the experimentally motivated microscopic Hamiltonian (3.10), where identify the unper-
turbed, diagonal part (in the Fock basis) with Ho = HG + F{detuning and the off-diagonal
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perturbation with 7911Ve, Note that the perturbation is a gauge-symmetry breaking term,
[F{drive, C]] # 0Vj. However a state prepared in the physical subspace, g; = +1 Vj, will only
virtually occupy unphysical states under H™ because of the large energy gap V between
the sectors in the limit of weak driving, 0, (); < V.

Hamiltonian 7y is diagonal in the matter density and electric field basis and hence the
unperturbed eigenstates are product states |a) = ®;|1;) Qi |T<’§ j>>' Since HVe only
contains off-diagonal elements, there are no first-order contributions, (a|H91¢|a) = 0. The
derivation of the second- and third-order terms are explained in the following.

The second-order terms are given by

"y eff _ 1 "ydrive ydrive 1 1
(BlFstale) = 3 TSRS o) 0l (gt g ) 61

0

where |a) (|B)) are the initial (final) state and |5) are virtual states. Because H"V® has only
off-diagonal elements, it always couples to states outside the physical energy sector and
hence in second-order the initial and final state coincide, |x) = |B), in order to remain
within the same energy subspace.

In third-order perturbation theory, coupling between different states, |a) # |B), occurs,
which yields interesting dynamical hopping and pairing terms. The coupling elements in
the effective Hamiltonian can be calculated by evaluating

e 1 "ydrive ydrive "ydrive
(BIHSnle) = 2 Y (BIHY™C[6) (6| H™0[8") (8 | a)
3
6,0
. ) ) (3.13)
X + - 7
(Es —Ey)(Esy —Ex)  (Ep—Es)(Es —Egy)  (Ep— Es)(Es — E)

where the sum runs over two virtual states |J), |d').

Calculating the above matrix elements in the target energy subspace yield the effective
Hamiltonian (3.11). Note that the plaquette terms are not appearing directly in third-order
perturbation but would require to go to sixth-order perturbation theory; the plaquette terms
are discussed separately in Ref. [P5]. First, we want to give an explicit expression of the
effective Hamiltonian up to third-order perturbation theory and distinguish the cases with
and without global U(1) symmetry.

3.3.1 Global U(1) symmetry for matter

To enforce conservation of matter excitations, we introduce an additional energy gap be-
tween different particle number sectors by choosing |Ay| = V /2 > A;, Qy, Q. This strong
chemical potential term suppresses creation and annihilation of matter excitations induced

by f}f[drive‘
The effective model for U(1) matter coupled to a Z, gauge field in the sector g; = +1 Vj
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Table 3.1: Effective couplings derived from perturbation theory. The LPG term defines
energy subspaces, which can be weakly coupled by a drive, see Eq. (3.10). The effective
couplings are derived in terms of a Schrieffer-Wolff transformation, yielding Hamiltonians
Egs. (3.14) and (3.16).
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is given by

) mater =t 2 X T L —hZH VZ\ +M) )<
(i)

(i.j) ©

w0 T (<)
(i,j)

+x2 ), </‘\+\“/+\"\+/‘/>
(i.j)

+x3), () + -+ \—> + const.
j

(3.14)

The operator form and its corresponding coupling amplitudes for the second- and third
order processes can be found in the fourth column of Table 3.1. Note that Gauss’ law, Gj =
+1 has been used to simplify, collect and eliminate higher-order terms.

The terms &« M, < x1, « )2 and « x3 are (nearest neighbor density-density), (next-
nearest neighbor density-electric field), (next-nearest neighbor electric field-electric field)
and (nearest neighbor density-electric field) interactions, respectively. In the effective
Hamiltonian, Eq. (3.11), we treat these terms on mean-field level in the electric field f<xi,j>
and matter density 7 jr which is well-defined since both quantities are gauge invariant. To
be explicit, we perform for example a mean-field decoupling of MY ; iy i;ft; — M(#;) Y; 1,
which simplifies the effective Hamiltonian.

3.3.2 Quantum-Z, matter

Here, we discuss the derivation of the effective Hamiltonian (3.11) with quantum-Z, matter
coupled to a Z, gauge field. In contrast to the previous paragraph, we do not enforce a
global U(1) symmetry for the matter but otherwise the derivation is completely analogous.
This leads to the additional pairing terms A, A in Eq. (3.11). The effective model we find
is invariant under the local transformation

ﬁj — —0 j ) — T<

) Vit (i, ). (3.15)

(l] ij

However, the 2D quantum Hamiltonian cannot be mapped exactly on a classical 3D Ising
LGT in the sense of Ref. [28], which is origin of the term “quantum-Z, mLGT”.
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In the gauge sector g; = +1 V/j, the effective model reads

2

eff, (3
R N S R S M
L] L] L]

”(Zﬁ (‘VZ>—+M<Z>>—<
ij j ij

+X1;> <>_’\+>J+\_<+/’_<) (3.16)
ij

+x22<;—-\+\—/+\—\+;—/)

(i)

-I—)(:;E <> + /—+\—> + const.
j

The operator form and its corresponding second- and third-order coupling amplitudes can
be found in the fifth column of Table 3.1. Compared to (3.14), we now find pairing terms A4
and A, which also appear in Fradkin & Shenker’s Ising Z, mLGT in a similar fashion, see
Chapter 1. Again, the terms o< M, o x1, « X2 and « )3 can be treated on mean-field level
yielding the effective model (3.11).

In particular, the electric field term —h )., ; ’i’é‘i/ﬁ can be fine-tuned by changing the de-
tuning A;, which in the limit A; < V does not alter the results obtained from perturbation
theory. On mean-field level, this allows to tune the expectation value to (i’é‘i/ﬁ) = —1/2.
Then, the effective coupling renormalizes to A = A — <f<xz‘,j>>A2 = A —Ay/2 = t. At
this particular point, we retrieve the (2 + 1)D model studied by Fradkin & Shenker [28],
where it is known to map on a classical 3D Z, mLGT with continuous phase transitions
in the Ising universality class as discussed in Chapter 1. Note that our model is defined
on the honeycomb and not square lattice. For a detailed discussion of the duality between
a Z; mLGT on a honeycomb and triangular lattice, we refer to the Supplementary Infor-
mation of Ref. [173]. Because of this duality, the results obtained in Ref. [28] should be
still valid, however the phase diagram might not be symmetric across the diagonal as in
Figure 2.4.

3.4 Ground-state phase diagrams

We return to the effective model for the Z, mLGT in Eq. (3.11). For any site j, one can take
aj — —djand ffﬁ]’) — —’f@’ﬁ ; hence the effective Hamiltonian (3.11) has a local Z; symmetry,
[ﬁezfg,éj] = 0V}, qualifying it as Z, mLGT in (2 4+ 1)D. In particular, in our proposed
scheme we do not have to apply involved steps to engineer Z,-invariant interactions but
rather we exploit the intrinsic gauge protection by dominant LPG terms, which enforces
any weak perturbation to yield an effective Z, mLGT. This approach also inherently implies
robustness against gauge-symmetry breaking terms in experimental realizations.

In the following, we discuss the rich physics of the effective model (3.11). However,
due to the complexity of the system, it is challenging to conduct faithful numerical stud-
ies in extended systems. As a first step, we examine well-known limits of the model and
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conjecture T' = 0 phase diagrams of the effective Hamiltonian when the Z, gauge field is
coupled to U(1) or quantum-Z, dynamical matter, respectively. We note that the strength
of the plaquette interaction can only be estimated, see Ref. [P5] for a detailed discussion,
and competes with the long-range Rydberg interactions. Moreover, the disorder protection
scheme underlying the derivation of the effective Hamiltonian ensures gauge-invariance
of the leading order contributions but higher-order gauge breaking terms can in principle
appear and affect the physics at very long timescales.

Our effective model describes the physics of experimental system sizes and timescales;
the efficiency of the LPG gauge protection in the thermodynamic limit is a subtle but im-
portant open question, which we address in Section 3.8. Hence, in the following we discuss
phases of the effective model (3.11) that may (or may not) emerge from the microscopic
model (3.10).

3.4.1 Global U(1) symmetry for matter

By fixing the number of matter excitations in the system, i.e.,, Ay = A, = 0 in Hamilto-
nian (3.11), the model has a global U(1) symmetry of the matter (hard-core) bosons, which
can be achieved by choosing the detuning at the matter sites A,, comparable to V in our
proposed experimental scheme Eq. (3.10). Here, we consider the phase diagram when the
filling of matter excitations is controlled by the chemical potential p. To map out different
possible phases, we fix the hopping ¢ and study limiting cases.

First, we consider the pure gauge theory with no matter excitations (4 — —o0), see Fig-
ure 3.5 (bottom). The Hamiltonian then reduces to the Wegner’s pure Ising LGT [27] with
matter vacuum - an even Z; LGT. As discussed in Chapter 1, the dual of this model exhibits
a continuous (2+1)D Ising phase transition, corresponding to a confined (deconfined) phase
below (above) a critical (J/h),, respectively [27, 43]. At the toric code point (J/h = oo) the
system is exactly solvable [177] and the gapped ground state has topological order.

Because for |/h = oo the gauge field has no fluctuations, we can fix the gauge by set-
ting i’é,].) = +1 and map out the pure matter theory in Figure 3.5 (right). For finite y we
find a model with free hopping of hard-core bosons, for which the filling can be tuned
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by changing the chemical potential u. Hence, for increasing y and results based on the
square lattice [178, 179] we expect two continuous phase transitions: vacuum-to-superfluid
and superfluid-to-Mott insulator. The Mott insulator phase is an odd Z, LGT because the
matter is static and acts as background charge and thus can be treated as a pure gauge the-
ory with g; = —1 [44]. In the opposite limit J/h = 0, the same Mott state gives rise to a
hard-core quantum dimer constraint for the Z, electric field lines. On the square lattice,
the quantum dimer model and odd Z, LGT exhibit a phase transition from a confined to
deconfined phase [47]. The honeycomb lattice and next-nearest neighbor Rydberg-Rydberg
interactions might feature additional symmetry-broken phases. Hence it requires a sophis-
ticated analysis to map out the substructure of the Mott insulating phase in Figure 3.5.

In the limit of low fillings and small but finite |/h < 1, the matter excitations form
two-body mesonic bound states [47], which are Z,-charge neutral and can be considered as
point-like particles. Below, we derive an effective meson model yielding hard-core bosons
on the sites of a Kagome lattice.

At T = 0 and sufficiently low densities, the mesons can condense and spontaneously
break the emergent global U(1) symmetry associated with meson number conservation.
To determine the phase boundary of the meson condensate, we consider a single pair of
matter excitations doped into the vacuum. This pair cannot alter the pure gauge phases
and thus the two charges can be considered as probes for the (de)confined regime. For the
latter, the matter excitations are bound into mesons, in contrast to free excitations above the
deconfined regime. Hence, the effective description of bound mesonic pairs breaks down at
the phase transition of the pure gauge theory indicating the phase boundary of the meson
condensate phase at small filling.

At higher densities, dimer-dimer interactions and fluctuations of the gauge field play
a role, requiring a more sophisticated analysis to predict the ground state. We emphasize
that the rich physics in this model emerges from the gauge constraint generated by the LPG
terms. Moreover, we note that by lifting the hard-core boson constraint, which is beyond
our experimental scheme, the model maps onto a classical XY model coupled to a Z, gauge
field [44]. This model has been studied on the square lattice in the context of topological
phases of matter [44] and high-Tc superconductivity [20, 180, 181], to name a few.

3.4.2 Effective meson model

As discussed above, deep in the confined regime and at low-density we expect a meson
condensate phase. Here, we want to derive an effective meson model, which captures the
condensate phase.

In the limit J/h,t/h — 0 and dilute U(1) matter in the ground state, electric field
strings are minimized under the constraints imposed by Gauss’s law, i.e., number of links
with T<xi, j) = —1 is minimized. To fulfill Gauss’ law g; = +1 Vj matter excitations are
bound into pairs connected by an electric field string, see Fig. 3.6a. Gauge-invariant hop-
ping of matter excitations prolongs the string and thus kinetic energy t competes with the
string tension h. Since h > t it is unfavourable for single matter excitations to be mobile,
which justifies to describe the constituents as tightly bound mesons.
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Figure 3.6: Effective meson model. a) For J/h,t/h — 0, the matter excitations are tightly
bound into mesonic pairs b on the honeycomb lattice. These mesons are again hard-core
bosons and Z, charge neutral. In b) and ¢), we describe the leading order second-order
processes derived from the Z, mLGT, which gives rise to hopping f.¢ of mesons as well as
repulsive interactions |deg| due to the absence of dispersive shifts for next-nearest neighbor
mesons. Moreover, the plaquette interaction of the Z, mLGT yields to fluctuating mesons
for plaquettes with exactly three mesons as depicted in panel d). Panel e) summarizes the
effective meson model. The model is described by hopping o teg of hard-core bosons b
(black circles) on a Kagome lattice with infinitely strong nearest-neighbor repulsion (from
the hard-core constraint on the honeycomb lattice), finite NNN repulsive interactions «
|0est| and plaquette interactions o J.

Nevertheless, the mesons can gain kinetic energy in two distinct processes: 1) a second-
order hopping process tof = —12/2h, in which the entire pair moves from one link to a
neighboring link as shown in Figure 3.6b and 2) plaquette interactions o | induce fluc-
tuations between the two different meson configurations on a plaquette as illustrated in
Figure 3.6d. Additionally, the mesons gain dispersive energy shifts e = —t2/2h if the
matter excitation hops back and forth on neighboring sites, see Figure 3.6c. However, this
process is only allowed for an empty neighboring site and therefore the dispersive energy
shift leads to repulsive interactions between mesons. To summarize, we find an effective
model of Z, neutral, hard-core bosonic mesons b, hopping on the sites of a Kagome lattice,
with infinitely strong nearest neighbor (NN) repulsion, finite next-nearest neighbor (NNN)
repulsion and plaquette interactions, see Figure 3.6e. The infinite repulsive term comes
from the hard-core boson constraint of single matter excitations. Therefore, the effective
meson model is given by

Fmeson = et Y, P (B +Hee) B = T Y- B (|€IXED] + Hee) B
{r,m) P
3.17
+ ‘5eff’ Z ZA)ZB”BLB"Z ( )
(fn.m)
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where 1, m denote sites of the Kagome lattice as shown in Figure 3.6e and the projector Pxy
ensures the constraint that no nearest neighbor mesons can exist. Here, the notation (-, -)
({(-,-))) describes (next-)nearest neighbors on the Kagome lattice.

For experimentally relevant parameters, we can choose |/t < t/h and J/h < 1 and
thus neglect the plaquette interaction term. In the limit of dilute mesons (h*h) ~ 0, we can
treat Pyn on a mean-field level yielding free hard-core bosons on the Kagome lattice. In the
ground state the mesons b condense as conjectured in Figure 3.5.

Taking the plaquette interactions into account, i.e., ]/t ~ t/h, phase separation by clus-
tering of mesons has been discussed in Ref. [47] for spinless fermions on the square lattice.
However, the NNN repulsive interaction should suppress clustering and hence a more so-
phisticated analysis is required.

Away from the above discussed limit /i < 1, the meson pairs have some finite ex-
tend ¢2, which alters the effective model (3.17). However, for a sufficiently dilute gas of
matter excitations, i.e., /2 < 1/(b*h), we expect the description of free hard-core bosons
to be still valid which we indicate by the finite extend of the meson condensate phase in
Figure 3.5. We note that the phase boundary is expected to end at the deconfinement-
confinement transition of the vacuum since in the deconfined phase the picture of bound
mesonic pairs breaks down.

3.4.3 Quantum Z, mLGT

Now, we consider the full effective Hamiltonian (3.11), where hopping and pairing are
anisotropic t # A; and the pairing strength can depend on the electric field configura-
tion Ay # 0, and relate it to the phenomenology of the Fradkin and Shenker model de-
scribed in Chapter 1 and Figure 2.4. In our model, the pure matter theory can no longer be
mapped on the classical 3D Ising model. Hence, we introduce the term quantum-Z, mat-
ter, which emphasizes the matter’s Z, symmetry group but points out that a mapping to a
known classical model is lacking.

We note that close to the toric code point (J/h = coand t/u = 0) in Figure 2.4, the expec-
tation value of the electric field vanishes, <f'<xi’].>> = 0, and thus in mean-field approximation
the anomalous terms should be negligible and renormalize the pairing A; — A;. For the
pure gauge theory it has been shown in Ref. [182] that the expectation value <%<xi,j>> con-
tinuously changes by tuning the electric field term k. Hence, by performing a mean-field
approximation in the electric field, the quantum-Z,; mLGT maps onto the classical Ising
Z, mLGT, see Section 3.3.

Due to its proximity to the Ising Z, mLGT and its common symmetries generated by
the proposed LPG term, we anticipate that the phase diagram of the quantum-Z, mLGT
shares all essential features of the Ising Z> mLGT as shown in Figure 2.4.

3.5 Quantum dimer model (QDM)

Rokhsar and Kivelson introduced the QDM in the context of high-T. superconductivity,
which has the constraint that exactly one dimer is attached to each vertex [138, 183]. The
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QDM is an odd Z; LGT, i.e., a pure gauge theory with ¢; = +1 replaced by ¢; = —1 V],
with h — oo, and its fundamental monomer excitations are gapped and can only be created
in pairs.

Our proposed scheme allows to directly implement the gauge constraint of the QDM
experimentally by preparing the system in the ground-state manifold of the LPG term as
shown in Fig. 3.3b and d. Note that the LPG term splits the ground-state manifold into
two distinct subspaces, QDM; and QDM,, which can be seen by entirely removing the
matter atoms and setting 71; = 0,1 in Eq. (3.8), such that only the link atom Kagome lattice
remains; hence it can be implemented in-plane. A dimer then corresponds to either T(xi,j> =
—1 (QDM;y) or T< i) = +1 (QDMy). Due to the LPG protection the QDM subspaces are
energetically protected and monomer excitations cost a finite energy 2V.

By weakly driving the system, the motion of virtual, gapped monomer pairs perturba-
tively induces plaquette terms of strength Jopm, and we can derive an effective model (see
below) given by

A =—TJoom Y T % ot K 2 (3.18)

O (ij)e0

Here, the NNN link-link interaction K can be tuned by the blockade radius of the Rydberg-
Rydberg interactions.

Experimental [51] and theoretical [50, 173, 184, 185] studies of QDMs in Rydberg atom
arrays for different geometries and parameters regimes have shown to be an interesting
playground to probe Z; spin liquids. Our proposed setup is a promising candidate to
further study QDMs due to its versatility and its inherent protection by the LPG term and
the phase diagram of Hamiltonian (3.18) remains to be explored.

Here, we examine two limiting cases of Hamiltonian (3.18). For Jopm/K > 1, the sys-
tem is in the so-called plaquette phase [186], which is characterized by a maximal number of
flippable plaquettes and resonating dimers. On the other hand, for Jopm/K < 1 we find a
classical Ising antiferromagnet on the Kagome lattice with NN and NNN interactions from
the hard-core dimer constraint and K-term, respectively.

Derivation of effective quantum dimer model Since the derivation of the effective
model (3.18) is distinctly different from the perturbation theory used for Rydberg
blockaded models, see e.g., Refs. [50, 187], we will elaborate in more detail in the following.

For the QDM, the physical subspace is given by the QDM; low-energy subspace of the
LPG term, see Figure 3.3; analogously we could consider the QDM subspace. Hence, for
strong protection V > (),,, () states in the non-physical sectors are only virtually occupied
and we can derive the effective model perturbatively, which yields the plaquette terms «
Jopwm-

Let us first consider the simpler terms « K. These terms are introduced to drive po-
tential quantum phase transitions in J/K. In our proposed scheme, the strong LPG terms
arise from nearest-neighbor interactions. However, the Rydberg-Rydberg interactions de-
cay as R~ where R is the distance between two atoms in optical tweezers. Hence, there are
small but finite next-nearest neighbor interactions between links of the honeycomb lattice
(next-nearest neighbors on the Kagome lattice), which give rise to the term « K in Eq. (3.18).
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Figure 3.7: Derivation of plaquette terms for the QDM. We show the spectrum of the
microscopic model (3.10) on one plaquette for different driving strengths in the flippable
plaquette subspace. The blue dashes show the unperturbed system. The two low-energy
states are the two flippable plaquette configurations in the QDM sector. The first (second)
excited manifold has two (four) monomers and the two high-energy states contain a maxi-
mum number of six monomers. To perform perturbation theory, we first need to diagonal-
ize the degenerate subspaces because the drive couples within the two and four monomer
excitation blocks, i.e. the drive can move around the monomer excitations without energy
cost, thus making them mobile. The orange and green dots show the spectrum for different
driving strength, where the blocks are diagonalized. However, there are still off-diagonal
couplings between the blocks. These couplings are the starting point for the second step,
which is the actual Schrieffer-Wolff perturbation theory. The inset illustrates the smallest
energy gap and its renormalized coupling after the first step. This allows to compare the
effective driving strength to the energy gap in order to determine a regime of validity for
the perturbation theory.

Now, we want to elaborate on the degenerate perturbation theory to derive the plaque-
tte terms in sixth order. In the QDM subspace there are only two resonating (“flippable”)
configurations that can be coupled by plaquette terms and hence we can rewrite the inter-

—Jom Y TT # By - ; (|Q><Q| + H.c.) , (3.19)

QO (ij)eo

action by

where we have used the electric field string <+ dimer mapping shown in Figure 3.3b. The
two configurations shown in (3.19) now span the low-energy manifold and are the starting
point for our perturbation theory. Above the low-energy manifold, we have three high-
energy subspaces with energies 2V, 4V and 6V since excitations (=monomers) can only be
created in pairs. The unperturbed subspaces are shown as blue dashes in Figure 3.7.

We perturb the system by a weak drive H9¢, Eq. (3.10), coupling not only states be-
tween subsectors but also within the highly-degenerate manifolds with energy 2V and 4V.
Since these processes at the same time break and restore Gauss’s law at different vertices,
they are all degenerate and the denominators of the perturbative expansion vanish. To
circumvent this non-physical divergence, we first need to diagonalize the degenerate sub-
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spaces, which renormalizes all couplings and energy gaps.

Diagonalization of the degenerate subspaces, with respect to the perturbation, yields the
transformed Hamiltonian F/™i¢ = (Tt A™i{] that is diagonal within the energy blocks but
couples states from different blocks in a non-trivial way. The off-diagonal terms in A™ic now
become the perturbation H9ive i the new basis. Note that the states have also transformed
and should be denoted by |&) = U|a) in the new basis.

Since we have access to the full one-plaquette spectrum, we can now explicitly construct
the unitary operator S of the Schrieffer-Wolff transformation by calculating the matrix ele-

ments
A <B|Ifldrive|5£>
(BIS|&) = ~——F—, (3.20)
E;—Es
where Hdrive — {Jtfdrive(T and E;, E 5 are the unperturbed energies in the transformed

basis. Because we completely diagonalized the degenerate subspace, divergences of the
denominator only appear for uncoupled states, i.e., the nominator vanishes, for which we
define the matrix element of $ to be zero. In the Schrieffer-Wolff formalism we can now
write down a well-defined expansion in (3/V:

7'Al%f,fu(l) =y A (321a)
7:‘[(0) _ IfImic _ If]drive (3.21b)
HY =0
(3.21¢)
7 (n n—11sra 5 frdriv
A = |5 [$, ..., 1S, Adrive]..] (3.21d)

(n—1)-commutators

Note that in the transformed basis the energy denominator in Eq. (3.20) can depend on V'
and ). Since we require () < V, we can expand the expressions and find in leading order
sixth-order contributions for any 2 < n < 6.

In Figure 3.7, we show the full spectrum for different driving strengths QO/V (Q),, =
O = Q). In general, the validity of a perturbation theory is determined by the coupling
strength divided by the energy gap in the unperturbed system. In degenerate perturba-
tion theory, this quantity has to be evaluated after the transformation U. As shown in the
inset of Figure 3.7, the gap between the low-energy manifold and the first excited states
becomes V = 2V — 24/3Q) and the matrix element between the two states is Q = Q/+/2.
Hence, we find

= 22V — 2760 (3.22)

and, e.g., Q/V = 1/4 for Q/V = 1/3, which allows to have relatively strong driving

o 0
Z

strength in the lab frame.

From IfImiC, we can now calculate the Schrieffer-Wolff transformation, see Egs. (3.21a)-
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(3.21d). To summarize, by evaluating (3.21a) we can derive the leading-order contribution
of the plaquette interaction in the quantum dimer subspace and find

917 O°

Jopm = 0V (3.23)

which yields Jopm/V =~ 0.01 for O/ V = 1/3. The effective coupling is surprisingly strong
despite the small prefactor 1/144 in the perturbative expansion, Eq. (3.21d). Intuitively, we
can understand these strong many-body interactions to be induced by the highly mobile
and gapped monomer excitations. While this observation is interesting in the context of
interacting spins in solids, the plaquette interaction is too small ofr current Rydberg tweezer
platforms.

3.6 Experimental challenges and perspectives

The experimental LPG scheme to realize the Z, LGT with dynamical matter in (2 + 1)D is
founded on equal strength interactions between the atoms in one vertex and works for coor-
dination numbers z < 3. Thus, in (2 + 1)D the coordination number z = 3 is in our favour,
because it naturally realizes the equal strength interaction between links, see Figure 3.3a. To
engineer equal strength interactions between link and matter atoms, we propose to elevate
the matter atoms out-of-plane to form a tetrahedron structure at each vertex [123]. Further,
to minimize matter-matter interactions of strength Vinatter—matter = 0.43V, we suggest to ar-
range the tetrahedrons in a staggered configuration with matter atoms on sublattice A (B)
above (below) the plane of link atoms. Additionally, our scheme requires strong local de-
tuning of strength A,, = 3V (A; = 6V) for matter (link) atoms; the factor of 2 arises because
a matter (link) atom is member of one vertex (two vertices). Those detunings arise from the
mapping of Ising interactions to Rydberg density-density interactions, see Section 3.2.1.

We have performed careful analysis with actual parameters of state-of-the-art platforms,
see Section 4.2.1, and find that even in the presence of experimental imperfections the
Gauss’ law is well-conserved and dynamics appears on experimentally realistic time scales.
Currently, we recognize the greatest challenge in the experimental development of efficient
tweezer resorting schemes for 3D structures, which can presumably be solved in the near
future.

Nevertheless, any scheme implementing equal strength density-density interactions is
suitable to engineer the LPG terms in (2 + 1)D. To this end, we propose to use inter-
nal degrees-of-freedom accessible in novel Rydberg tweezer platforms based on alkaline-
earth(-like) atoms [98, 100, 188] or two atomic species [174-176]. In the former case, two
different Rydberg states |r1) and |r2) have to be addressed on matter and link atoms, re-
spectively, with mutual interactions yielding the equal strength interactions for in-plane
atoms. For the latter case, different atomic species, and thus Rydberg states, are used for
matter and link atoms.

Moreover, there follows an immediate corollary of our (2 + 1)D scheme: A (1 +1)D
zig-zag chain! Here, a one-dimensional chain is cookie cut from the tetrahedron structure

1We note that the LPG term introduced in Section 3.1 is not sufficient to perturbatively generate Z; invariant
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avy

Figure 3.8: (14 1)D Zig-Zag ladder. a We illustrate the geometry of atoms in a Rydberg
tweezer experiment: A combination of Rydberg interactions, local detunings and global
drive yields an emergent Z, LGT with dynamical matter in (14 1)D. b We show an av-
eraged image of Strontium atoms in optical tweezers arranged in the zig-zag geometry
with nearest-neighbour distance a = 3.5 ym, obtained from the Strontium tweezer lab of
Johannes Zeiher and Immanuel Bloch at the Max-Planck Institute for Quantum Optics in
Garching.

followed by a tilt such that all atoms (matter and link) are located in the x-y plane.

3.7 Effective Z, LGT in a Zig-Zag chain

In the following section, we derive the effective Z, LGT Hamiltonian for the (1 4 1)D zig-
zag ladder and fully include the van-der-Waals Rydberg tails; the (1 + 1)D zig-zag ladder
is illustrated in Figure 3.8. By cutting the chain from the (2 + 1)D geometry, we have the
liberty to choose a boundary condition, i.e., we pick a frozen configuration T<xl./j> of the links
perpendicular to the chain. Here, we consider the superselection sector with g; = +1 Vj

and set the (physically absent) boundary links to TZ‘Z. iy = +1; if the chain start and ends with

a matter site, we also assume the (physically absent) boundary link to be T<xi o= +1. This
reduces the LPG term to
A 14 ~ AX AX 2
VW, = 2 | (28— 1) + 8y + 2 + 1 (3.24a)

:V[”(J‘*Lj>”j+”j”<j,j+1>+”<J‘714‘>”<J)J’+1>} _j[”<j*1,j>+”j+”<jlj+l> + const. (3.24b)

In comparison to Eq. (3.8), we have changed the pre-factor of the LPG term such that V'
directly corresponds to the Rydberg density-density interaction; however the smallest gap
between physical and unphysical states is now V /2. In the second line, we have used the

dynamics, and we refer to the discussion in the corresponding section.



62 Chapter 3. Large-scale implementation of Z, LGTs with dynamical matter

identity % = 271 — 1.

The microscopic Hamiltonian including Rydberg tails, see Section 2.1, is given by

~ Co . . 1% R . Q R
’Hmiczzgnm]— <2+Am> Y = (V+a) Y] n]—i—EZ(a]—i—a}r), (3.25)
I<] rI] JEmatter J€link J

where the indices I and | label sites on the tweezer array, and the link (matter) sites are the
red (blue) sites shown in Figure 3.8. The coefficient C¢ describes the van-der-Waals interac-
tion between two Rydberg states generating the required « 71 interaction of Eq. (3.24). In
the following, we define the protection strength to be V = C¢/a, where a is the the nearest-
neighbour distance on the zig-zag array, and include the tails as small diagonal terms. We
highlight, once again, that the diagonal basis is the basis of electric field strings and matter
occupation, see Figure 3.3, and thus the Rydberg tails are inherently Z, gauge invariant.

We follow the derivation of the effective Schrieffer-Wolff Hamiltonian in Section 3.3,
and find the effective model for the (1 + 1)D zig-zag chain with fixed boundaries in the
sector g; = 1:

ﬁeff,zigzag =+t Z <ﬁj A<ZZ,]>ﬁ] + hC)

(3.26)

—1—j 1
— T
46 (i+1) “(jtdj+1+d)

Here, the two terms o €}, €, are dispersive shifts on the boundary of a chain of length L
starting and ending with a matter site at j = 1, L. The last line describes the tails of the
Rydberg interactions leading to a shift of the string tension givenby & ; y = 4 Y|i—k|>2 ﬁ
In the thermodynamic limit, we find ¢/; ;y = ¥[2(6) — 1] ~ 433V - 1073, where {(x) is the
Riemann zeta function. The perturbative couplings are summarized in the following table:

t M Ay h U M= —vy €m = 2€;
208 | 100 | 808 10 A _1Q+A 10? 10?
3vZ | 9VvZ |92 3V " 2 6V m 37V iV

In the next Chapter 4, we will compare the dynamics between the microscopic and ef-
fective model, and show the excellent agreement between the two models. We refer the
reader to Section 4.2.1 for more details.
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3.8 Stability of gauge structure in classical spin systems

In the following Section, we present preliminary results that are obtained in collaboration
with Andrea Pizzi, Fabian Grusdt, Jad C. Halimeh and Hongzheng Zhao.

The advantage of the LPG method is its experimental feasibility, i.e., the Z, Gauss’ law
constraints are stabilized by two-body Ising interactions. The cost of reducing the experi-
mental complexity is that the emergent gauge structure is only metastable. In Section 3.1,
we present exact numerical simulations in (1 + 1)D suggesting that gauge invariance re-
main intact even up to infinite times using LPG protection terms. In Section 3.2, we argue
that the LPG method is sufficient to stabilize the gauge constraints up to times relevant for
experiments. This has been confirmed in small exact numerical simulations in Ref. [P5].

Here, we address the efficiency of the LPG gauge protection scheme in (2 + 1)D using
large-scale simulations of classical spins [189, 190]. In particular, we simulate the dynam-
ics of a system of rotors (classical spins) under a classical Z, LGT Hamiltonian introduced
below. This allows us to study much larger system sizes and times exceeding any simula-
tion possible for the quantum system. While the model cannot capture the correct gauge-
invariant physics of the Z, LGT, it is sensitive to gauge breaking errors and can describe

the breakdown of the emergent gauge structure.

Let us consider a 2D honeycomb lattice with spins i = (0’]?‘, ij Y

ol = (‘Tf(i,jy (7<yi’].> , ‘T(Zi,j>) on the links (i, /), where each spin is a vector of unit length pointing

07) on sites j and spins

on a 3D sphere. The U]-Z component describes the excitation of a matter field and (TZ‘Z. i ((7<Zl.].>)
is the electric field (gauge field). We can define a Z; Gauss’ law as the functional

Gj = —0f ](‘[> e (3.27)
1:(1,]

Now, this functional can take any value G;[{c;}] € [~1,1] for all j. In the following, we
target for a Gauss’ law value of G;[{c;}] = +1 and take its deviation as a measure for the
emergent gauge structure.

The dynamics is governed by the classical Hamiltonian H = Hy + Hy + H) with

Hy=] Z 070 07 (3.28)
(i)
%4 2
Hy = 1 ch ((7]?‘ + Z af) (3.29)
j i:(i,f)
Hy=A) 0o} (3.30)

]

The first term describes the dynamical propagation of matter and gauge fields and is a clas-
sical variant of the kinetic term in the Fradkin-Shenker model, see Chapter 2. The second
term corresponds to the LPG stabilizer term, which energetically favours the spins to point
in a direction such that G; ~ 1 for all j, see Eq. (3.8) in Section 3.2. Further, we introduce a
disorder coefficient ¢; in the protection term. The last term describes local gauge violation of
strength A. As we have discussed in Section 3.2, the LPG term energetically allows for spe-
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cial resonant configurations, where G; = —1 on four vertices. While we can construct such
gauge breaking configurations and simultaneously conserve energy, it is unclear if there is a
classical trajectory connecting the gauge-invariant and gauge-noninvariant configurations.

In the classical spin model the dynamics is strictly restricted to energy conserving tra-
jectories. In contrast, quantum fluctuations allow to tunnel through the energy barrier im-
posed by the LPG term, which are increasingly suppress for increasing V /A. Moreover,
the classical model provides a much larger phase space and thus is believed to be an upper
boundary for gauge breaking dynamics, in the sense that e.g. the LPG term is not quantized
but can admit continuous values.

The equations of motion for classical spins are related to the Poisson bracket [189, 191,
192],

do']'(t)
Fra {o;(t), H} (3.31)
with
{(Ti“/%ﬁ} = bij€ap 07 - (3.32)

For the Hamiltonian in Eq. (3.28), this defines a set of coupled non-linear differential equa-
tions, which can be solved numerically. Here we apply a trotterization procedure [189] and
set the time steps sufficiently short. We ensure proper convergence by comparing the trot-
terized dynamics to exact solutions obtained from an ordinary differential equation solver
at short times and for small systems.

To measure the efficiency of gauge protection in the classical system of spins, we define
an observable for the Gauss’ law errors €(T) at time T as

T L
e(T) = vlzr/o dt]; [1-Gi(t)], (3.33)

where V denotes the number of vertices and the quantity €(T) can admit the values € = 0
(e = 2) corresponding to minimal (maximal) violation of the Gauss’ law constraints; here
we evaluate the Z; Gauss’ law with the time evolved spin configurations according to
Eq. (3.31). Note that at infinite temperature, the error is given by € = 1 and hence we
have chosen a meaningful normalization of €(T).

For the numerical simulations, we initialize the spins in a configuration pointing along
the x-direction such that G;(t = 0) = +1 for all j. Further, we average over an ensem-
ble of Nens = 200 random initial states. The system has 10 x 10 honeycomb plaquettes
corresponding to a total of N = 500 spins (matter and link spins). As discussed around
Figure 3.4, we expect the efficiency of the LPG protection to be enhanced by introducing
disorder in the local protection terms in order to suppress undesired resonances. This is
incorporated in the coefficients ¢; in Eq. (3.28) and we choose coefficients drawn from a
normal distribution with mean y = 1 and standard deviation ¢ = 0.1; hence the local
protection term V¢; is centered around V. To be precise about our numerical simulation,
we start with a random initial state and random coefficients Cj, and then time evolve with
various protection strengths V. This is repeated for Nens = 200 realizations.

In the following, we set the coupling strength ] = A = 1 and vary the protection
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Figure 3.9: Dynamical gauge protection in classical spins. We numerically solve the equa-
tion of motion of classical spins for a honeycomb Z, LGT with N = 500 spins, i.e., a system
with 10 x 10 plaquettes. a We plot the dynamics of the Gauss’ law violation for various
protection strengths V' /A; here A is the gauge violation. We find a metastable plateau with
(i) a height that is controlled by (A/V)? [bottom] and (ii) a duration that scales exponen-
tially in V' /A [right]. b The results in panel a show the average (blue line) over an ensemble
of Nens = 200 realizations each with a random gauge-invariant initial state. The grey lines
are the individual trajectories. For each realization a random sequence ¢; is drawn from a
normal distribution.

strength V/A. In Figure 3.9a, we show the Gauss’ law errors €(t) obtained from the se-
quence described above. In Figure 3.9b, we further show the individual trajectories of the
Nens = 200 realizations, which average to the blue curves shown in Figure 3.9a.

We observe four different regimes: (i) At short times, the error grows polynomially with
e(t) « t? showing the universal behavior of dynamical gauge protection schemes [30]. In
the quantum regime, this can be understood from time-dependent perturbation theory. The
error grows until (i) it enters a plateau with a height that scales with (A/V)? [P4, 30], see
Figure 3.9a (bottom left). The time the system remains in the plateau grows exponentially
with o exp V/A; a signature of a prethermal phase with Z, gauge structure. This plateau
demonstrates the efficiency of the LPG scheme in large-scale 2D systems of classical spins.
(iii) Afterwards, the Gauss’ law violations grows again polynomially with €(t) o #2. (iv) At
late times, the system reaches an equilibrium with infinite-temperature Gauss’ law viola-
tion.

The prethermal phase (iii) is of significant importance for the experimental realization
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Figure 3.10: Spreading of Gauss’ law violations. We time evolve a representative random
initial state with V /A = 20 and plot the local Gauss’ laws [1 — G;(t)] at times ¢ (in units
of ] = A = 1). The grid lines correspond to the honeycomb lattice illustrated in a brick
wall geometry. At the end of the plateau phase (t = 100), see Figure 3.9a, local nucleation
regions appear. These regions start to proliferate and eventually percolate across the entire
system.

of the LPG scheme. It allows to maintain gauge invariance despite the presence of experi-
mental errors. Further, gauge violation errors and the accessible timescale can be controlled
by the LPG protection strength V allowing for exponentially long Z, gauge-invariant sim-
ulations.

Now, we examine the thermalization dynamics in phase (iv) more closely. In particular,
we consider a representative trajectory of a random initial state evolved under the Hamil-
tonian (3.28) with V/A = 20. In Figure 3.10, we plot the Gauss’ law violation for times
starting at the end of the plateau phase and onwards. We observe that the vertices with
Gauss’ law values different from G; = +1 begin to form a local nucleation region, from
which the Gauss’ law violation proliferates across the system. Therefore, the thermaliza-
tion dynamics seems to happen in a correlated way throughout the system. The pattern
formation shown in Figure 3.10 further shares great similarities with critical, scale invariant
behavior and percolation pattern [P12]. Further, we note that even at late time, we observe
substantial local fluctuations of the Gauss’ law violation.

Therefore, we find a non-trivial thermalization behavior, which by itself is an interest-
ing future topic to study. Further, we recognize the universal shape of the thermalization
dynamics, see Figure 3.9a. The investigation of the scaling relation, and the potential col-
lapse of the curves, may give additional insights into the universality of the thermalization
dynamics discovered in this classical spin system and into the thermalization of gauge the-
ories [15]. Studying the quantum version of Hamiltonian (3.28) for large systems and long
times is impossible with current numerical techniques. Eventually, the realization of our
proposed experiment in a quantum simulation device could explore the thermalization of
the quantum Z, LGT in (24 1)D.



Equilibrium and Out-of-Equilibrium probes of
Z, lattice gauge theories with matter

WHAT CAN WE LEARN from the quantum simulation of lattice gauge theories? And,
how do we test the faithful implementation of a gauge theory in experiment? In this
Chapter, we discuss experimental probes that give insight into the ubiquitous behaviour of
gauge theories. Therein, we briefly elaborate on ground-state properties, however, the focal
point are experimentally accessible out-of-equilibrium probes.

In particular, we consider quench experiments with the following protocol:

(1) State preparation: At time = 0 an initial product state |¢) = ®j\n;7> in the Fock basis
is prepared. Here, we assume that at site j a state with n}’ particles of spin ¢ can be
prepared. The spin is measured in an arbitrary basis.

(2) Time evolution: The system is exposed to the microscopic Hamiltonian #py;. for
a time t > 0, such that the system evolves under the unitary transformation
lp(t)) = exp (—iHmict)|o); we set i = 1 throughout. Entanglement is built up
during the time evolution and, in general, |i()) is not a product state anymore.

(3) Readout: We measure the system instantaneously at time ¢ in the spin-resolved Fock
state basis [193].

We emphasize that experimentally the most feasible protocols only require to prepare and
to readout all spins in the same basis; however local control techniques become increasingly
accessible, see e.g. Refs. [90, 194].

The following Chapter is based on publication [P3], [P5] and [P12]. The text and figures
are rearranged, adapted and supplemented. Moreover, preliminary results are presented in
Section 4.2.1.
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4.1 Gauss’ law conservation

The most direct signature in the quantum simulation of a LGT is the measurement of Gauss’
law constraints. The Gauss’ law expectation values, or conversely the gauge breaking errors
[Eq. (3.7)], quantifies whether gauge constraints emerge from an underlying microscopic
model. Emergent gauge theories always contain inevitable gauge breaking errors: by in-
creasing the protection strength V the errors are suppressed and it is in the limit of V' — oo
to retrieve the ideal gauge theory. Therefore, for top-down methods, see Section 2.2.5, the
Gauss’ law constraints have to be monitored and it has to be checked whether the system
is well within the limit of a controlled emergent gauge theory, i.e., whether perturbation
theory is valid. In Chapter 3, Sections 3.1 and 3.8 the Gauss’ law errors are discussed from
a theoretical and numerical perspective.

Depending on the experimental scheme, the Gauss’ law may or may not be directly ac-
cessible. The experimental proposal presented in Chapter 3 implements the electric field
and matter occupation in the ground and Rydberg state and thus a projective measurement
in this basis allows to directly evaluate the Gauss’ law (3.1) in each snapshot. In contrast,
non-Abelian gauge theories with their separate Gauss’ laws for each generator, see Sec-
tion 2.2.4, do not allow to extract the Gauss’ law conservation in an individual snapshot but
only on average.

We conclude that monitoring Gauss’ law constraints constitutes one of the necessary
probes for emergent gauge theories. It directly indicates the amount of gauge violation
and it can be used to test if a system is a controlled, gauge protected regime by varying
the small perturbative parameters ()/V. There are well-known scaling laws « Q?/V? for
gauge breaking error at infinite time [30].

4.2 Schwinger effect

The Schwinger effect [195] is a non-perturbative result obtained from quantum electrody-
namics (QED), which describes the rate under which electron-positron pairs are created.
Due to its weak coupling constant « = 1/137, extremely high electric field strengths are
required to observe the Schwinger pair production in QED. In contrast, the goal of the
quantum simulation of LGTs is to explicitly probe models with strong coupling between
matter and gauge fields.

Here, we discuss a Schwinger-like phenomenon for strongly coupled Z, LGTs with dy-
namical matter in the presence of global U(1) symmetry breaking terms (“pairing terms”).
First, we explain the conceptual idea by considering a simple (1 + 1)D toy model, similar
to Eq. (3.26), in a weak coupling limit:

Hioy = +t Y (8125 +he ) + A Y (185 a0 +he) +h Lt —p Yty (1)
(i) (i,j)

(i.j) j

We start from an initial state close to Schwinger’s model, i.e., a vacuum and an electric field
configuration with high energy density. In the (1 + 1)D setup, we choose an initial product
state |¢p) with matter sites in [n; = 0) and the links in ]TZ; iy = —1); hence the Gauss’ law
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Figure 4.1: Schwinger effect in (1 + 1)D Z; LGT. We propose to initialize a product state
with all atoms in their atomic ground state. In our Z; LGT mapping, see Figure 3.3, this
maps onto a matter vacuum with an electric field line penetrating the entire system. After
time evolution under the Rydberg Hamiltonian (3.25), snapshots in the ground or Ryd-
berg basis are taken (top: empty and full circles). The Schwinger effect is characterized by
Z, charge pairs created from the electric string. In the late time dynamics, those charges
start to fluctuate and correlations between Z, charges and strings may contain information
about a finite temperature phase of a Z, LGT at high densities.

sector is g; = +1 for all j.

In the unperturbed limit of ¢, A = 0, the energy Ein; of the initial state is fully determined
by the string tension i < 0 with Ejnt = —h - (L — 1); we assume a chain with L matter
sites sharing L — 1 links. By applying the Hamiltonian (4.1) to the initial state, we find
a degenerate subspace of states {|n)} that have non-zero matrix elements of amplitude A
and that contain exactly one pair of neighbouring Z, charges at sites j and j + 1 with a
reversed electric field line ’l’<x.

jij+1)
by E, = —h - (L —3) — 2u. This yields the resonance condition Einit = E, < h = —y, for

= +1, see Figure 4.1. The energy of states |n) is given

which we expect an enhanced rate of pair production.

Away from the resonance and in the perturbative limit, i.e., A < 6E = |E, — Einit],
we use time-dependent perturbation theory to estimate the Z, charge production at short
times t with 6E -t < 1. In this limit, the matter density n(t) = N(t)/L at time f for
model (4.1) is then given by

AP,
n(t) :z‘h—y sin” [(h—p) - t], (4.2)

where we have neglected boundary terms of order O(1/L). We comment that this time-
dependent perturbation theory gives an easy insight into the phenomenology of the Z, toy
model. In Schwinger’s original work, infinitely many terms were summed up leading to a
non-perturbative result.

421 (1+1)D Zig-Zag chain

Next, we probe the above described dynamics in the microscopic model (3.25) and compare
it to the effective dynamics (3.26). Thus, we want to study the emergent Z, gauge theory,
which contains additional terms not included in the toy model above. Nevertheless, the



70 Chapter 4. Equilibrium and Out-of-Equilibrium probes of Z, LGTs with matter

phenomenology of Schwinger pair production remains the same.

Here, we use a set of experimentally relevant parameters for the example of Stron-
tium [98, 115, 188, 196] tweezer arrays to demonstrate the feasibility of our scheme. To
be precise, we consider Strontium-88 and implement the qubit in |g) = [5s5p 3Py) and
[r) = |5s61s 3Sp,m; = 0) with van-der-Waals coefficient C, = 27t - 254 GHz X um® [196].
We set the Rabi frequency () = 27 - 3MHz between the two states using the definition in
Eq. (3.25). Thus, we vary the distance a between neighbour atoms to tune the ratio V /().
In the following, we set V/Q) = 6 or a = 4.92 ym, which is a typical distance used in
Rydberg tweezer array platforms. Note that we want to avoid to operate at too short dis-
tances because the system becomes more sensitive to distance fluctuations of atoms in the
tweezers. Moreover, we choose the detunings on matter sites A,, = —27 - 72kHz and link
sites A; = 277 - 252kHz.

Using the parameters above, we predicted the following effective couplings for the
Z, LGT in Eq. (3.26):

t A/t | Do/t | R/t | Gap/t | w/t| M/t= em/t= | Vann/t
-/t 2¢)/t
2mw-4444kHz | 1.7 1.3 —5.27 2.81 0.2 3 —2.25 5.06

Here, VNN is the repulsive matter-matter interaction due to the long-range Rydberg
tails. We emphasize that the detunings A, and A; allows us to freely tune the string ten-
sion and chemical potential. In this setting, we choose a regime where the Schwinger pair
production is slightly off-resonant.

We propose to initialize all atoms in the ground state |¢p) = ®|g) and quench the sys-
tem with Hamiltonian (3.25) at time ¢ = 0; the initial state is gauge invariant with G]-|1[J0> =
+|o). After time t > 0, we measure the expectation value of atoms in the Rydberg state |r)
(or ground state |g)). In this basis, we can locally extract the Z, matter occupation (7;); and
Z; electric string ('ﬁg‘i,].>>t, which are manifestly gauge-invariant observables. The expecta-
tion value (-); is evaluated with respect to |¢(¢)). This allows us to evaluate the following
quantities, see Figure 4.1:

1. Matter density n(t) = %Zj<ﬁj>t
2. Gauss’ law errors e(t) = 1 ¥ (1 — (Gj)¢)
3. Projected matter density n(t) = + Zj<75gﬁj(t)75c>t with Pg =271 [T;(1+ G))

In our theoretical analysis, we assume perfect state preparation, unitary dynamics, and
perfect readout. Further, we assume atoms in the motional ground state of a tweezer with
infinitely large trap frequency.

We use exact diagonalization techniques to simulate the above protocol in a small sys-
tem of length L = 9 (9 matter sites and 8 links). The parameter regime provides an ex-
cellent trade-off between gauge protection and accessible gauge-invariant dynamics, see
Figure 4.2. Importantly, the Gauss’ law error €(t) remains stable at approximately 15%.
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Figure 4.2: Quench dynamics. We use exact diagonalization to simulate the quench pro-
tocol with experimentally realistic parameters described in the main text for a chain of
length L = 9 (9 matter sites and 8 links). The initial state is shown in Figure 4.1 (left) and
we time evolve under the microscopic Hamiltonian (3.25) (solid blue) and effective Hamil-
tonian (3.26) (dashed blue). In the top panel, we show the matter density and predict the
short time Schwinger pair production from time-dependent perturbation theory without
any fit parameters (dashed gray). At late times the system equilibrates to a finite density
state. In the lower panel, we demonstrate that the LPG term allows us to control Gauss’
law error (here about 15% for V /() = 6); ultimately the LPG term is responsible for the dy-
namically emerging gauge constraints. By post selecting on snapshots consistent with the
target Gauss’ law sector, G]- = +1 for all j, we obtain the projected matter density (dashed
orange), which shows that the observed features are governed by the Z, gauge invariant
processes.

Moreover, we find evidence for Schwinger pair production on experimentally accessible
time scales based on the following observations shown in Figure 4.2 (top). First, the matter
density n(t) shows the production of Z; charges, which thermalizes to a high-density soup
with about 40% filling. Second, we post select on configurations consistent with Gauss’
law to demonstrate that the dynamics is governed by Z, gauge-invariant processes. Third,
we compare the microscopic dynamics to the effective Schrieffer-Wolff model, Eq. (3.26),
showing excellent between the microscopic model and the emergent Z, gauge theory at all
accessible time scales. Last, we apply time-dependent perturbation theory to the effective
Z, model to describe the rate of Schwinger pair production, see Section 4.2, at early times.
Our calculation predicts the creation of pairs from a decaying electric field line without any
tit parameters. In this context, we point out that the Schwinger pair resonance is determined
by the constructively interfering pairing terms A = A1 + A;. In contrast, if we would start
from the opposite electric string state |T*) = +1, the two terms destructively interfere.

We conclude that the numerical simulation demonstrates emergent Z, gauge dynamics
obtained from our experimentally realistic proposed model. The early time dynamics can
be described by the Schwinger effect. At intermediate to late times, the system equilibrates
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to a strongly correlated finite density regime of Z, pairs. A comprehensive study of those
correlations is subject of future studies [197]. We emphasize that accessing this regime, i.e.,
long times and large systems, is becoming increasingly challenging for numerical simula-
tion; especially starting from the microscopic model with the energy scale o< V.

4.2.2 (2+ 1)D minimal toy model

In the full (2 4+ 1)D model introduced in Section 3.2, numerical time evolution methods are
limited to small system sizes and short times. Additionally our model (3.10) describes an
emergent gauge theory and therefore the energy scale is determined by the large protec-
tion V while the dynamics emerges on a time scale & 3/ V2, which poses a challenge to
simulate long times up to a few hundred interaction times t in units of 1/V.

Therefore, we will focus on small-scale exact numerical simulations and artificial ge-
ometries with coordination number z = 3: the Mercedes star geometry shown in the inset
of Figure 4.3. While this geometry cannot be implemented in Rydberg tweezer platforms,
since the distances do not give the correct interaction strength, it provides a conceptually
interesting model because it gives rise to stronger plaquette interactions « )3/ V? emerging
from the LPG method.

Here, we numerically probe similar Schwinger dynamics as describes in the beginning
of Section 4.2. However, in this study we consider the opposite vacuum, i.e., an initial
product state [ipp) with matter sites in [7; = 0) and the links in ‘T<xi,j> = +1); the Gauss’
law sector is g; = +1 for all j. The goal is to probe the resonant features of Schwinger pair
production discussed for the (1 + 1)D toy model.

To this end, we simulate the microscopic model (3.10) for QO,,/V = ;/V = 1/8
(V = 27 - 40MHz) and vary the detunings A; and A, which effectively tunes the string
tension /1 and chemical potential y, see Eq. (3.3). We calculate the time evolution staring
from the initial state |¢p) and calculate the expectation value of the total number of matter
excitations Niot(f). Then, we extract the point of maximum Z, matter defined as Npmax =
max;¢,6000/v] Niot (t). In Figure 4.3, we plot Nimax for the various detunings A, A; and find
strong resonant features associated with resonances described in Section 4.2. The exact po-
sition of these resonant features remains challenging to predict due to finite-size effects and
strong gauge field fluctuations.

Moreover, we have carefully evaluated that the observed matter production is inher-
ently Z, gauge invariant. In particular, we have projected the time evolved state |(t))
onto the target superselection subspace given by Gj = 1, which allows us to distinguish
between gauge invariant and gauge-noninvariant dynamics, see Ref. [P5].

4.3 Disorder-free localization

The thermalization of quantum systems in the presence of interactions is an active field
of research and one of the many promising applications of quantum simulators [198]. The
thermalization dynamics of LGTs, which is dominated by both strong interactions and local
constraints, poses theoretical and numerical challenges and remains mostly elusive [159,
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Figure 4.3: Schwinger pair resonances.
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tally relevant parameters: matter detun-
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199]. At the same time, thermalization of LGTs may be relevant to understand the dynamics
of the early universe.

Here, we discuss a non-thermalization behaviour of LGTs, which can be understood
from disorder in the internal, superselection sectors but without spatial disorder. This phe-
nomenon was first described by Smith et al. [200, 201] under the name disorder-free local-
ization. The idea is as follows: Each superselection sector {g;}; corresponds to a distribu-
tion of static Z, charges. Suppose we prepare an initial state in an equal superposition
between all superselection sectors, i.e., a gauge noninvariant state, and time evolve un-
der gauge-invariant Hamiltonian #z,. Then, each sector evolves independently since we
have [Hz,, Gj] = Ofor all j. After time #, we perform a measurement projecting the system
into one superselection sector; hence we randomly sample system with different distribu-
tion of background charges. It is the averaging over random distribution of charges, which
induces disorder despite starting from an underlying translationally invariant Hamiltonian.
It has been shown in Refs. [200-203] that in Z; LGTs and U(1) quantum link models suffi-
ciently strong mixture between superselection sectors can lead to a new type of localization
ubiquitous to gauge theories.

Let us highlight that the phenomenon of disorder-free localization necessitates to have ac-
cess to all Gauss’ law sectors and thus it cannot be experimentally realized in models, where
either gauge or matter degrees-of-freedom are integrated out [96, 155-158], see Section 2.2.5.
While this suggests to use schemes based on gauge protection mechanism, it is a priori not
clear if the localization survives under experimental errors. Here, we want to address the
questions whether disorder-free localization (DFL) may exist in emergent gauge theories
and in the presence of small but finite Gauss’ law errors [P5, P3, 204].

Here, we study the (2 4+ 1)D gauge theory in the minimal “Mercedes star” setup, see
Section 4.2.2. We use the microscopic model (3.10) and show DFL behaviour in a small-
scale exact diagonalization simulation for the case of U(1) matter using the parameters
shown in the inset of Figure 4.4. In particular, the observation of DFL would be an accessi-
ble experimental probe since it only requires to prepare the system in two different initial
product states and time-evolve them under the microscopic Hamiltonian.
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L0 V=27 x30MHz Figure 4.4: Disorder-free localization.
o nor?;ljg:;nt Q,=Q=2r X 5MHz We show numerical results obtained
£ A= 27 X 15MHz from exact diagonalization of the time-
7§ (?@ Aj=2rx X 1.5MHz evolution of the microscopic model (3.10)
_Z'_ v i with experimentally realistic parameters
gauge . . . .

= invariant in a system with coordination num-
= ber z = 3 (see inset). We observe
= disorder-free localization by initializing
| the system in a gauge-(non)invariant ini-
\3// 0.14r tial product state with two matter excita-
0.0F tions localized in subsystem A and calcu-
0 : ) : g lating the time-averaged imbalance be-

time [us] tween subsystem A and B as shown.

Consider a system with two subsytems A and B and an initial state, where all mat-
ter sites in subsystem A (B) are occupied (empty). We time evolve the initial state for a
time t and probe whether the matter excitations stay localized in subsystem A or delocal-
ize equally across subsystem A and B. Hence, the quantity of interest is the time-averaged
imbalance Z(t) of matter excitations at time f between the subsytems given by

() = % /0 t [(#a(0)) — (5(x))] v, 43)

where (71 4(p)(T)) is the expectation value of total matter excitations in subsystem A (B) at
time T and L denotes the system size.

The eigenstate thermalization hypothesis (ETH) claims that Z(t) eventually approaches
its thermal equilibrium value. In DFL, this hypothesis is believed to be broken for gauge-
noninvariant initial states |¢™"V) as discussed above.

Now, we numerically examine this behaviour on the example of “Mercedes star” geom-
etry with coordination number z = 3. To this end, we consider the gauge-invariant initial
state |p™"V) with Gj]lpinv> = +|¢p'") and matter excitations being distributed as described
above. The Mercedes star model with four matter sites and six links is illustrated in the
inset of Figure 4.4. For this initial state, we can compute the imbalance from the thermal
ensemble as predicted by ETH (see also Ref. [P3]) and find that the system indeed fully de-
localizes (Z)hermal = 0. Comparing this to the numerical results in Figure 4.4, we find that
the time-averaged imbalance quickly vanishes as expected.

The situation changes for the gauge-noninvariant initial state [¢""V). For this state the
matter excitations are again initially located only in subsystem A but now the links are
in 771, j) = +1 as indicated in Figure 4.4. Therefore, |¢""V) is an equal superposition of all
possible gauge sectors g; = £1. While still (Z)hermal = 0, as we have verified numerically,
we find that the state does not thermalize under time-evolution with H i as shown in
Figure 4.4.

In our proposed scheme, where the gauge invariance emerges due to energetic con-
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straints, we inevitability have Gauss’ law errors induced by the weak drive Q. Thus, in the
long time limit, the weak drive eventually leads to thermalization of the system discussed
in Ref. [P5]. However, at experimentally relevant timescales we find a clear pre-thermal
plateau indicating DFL as shown in Figure 4.4.

4.4 Signature of phase transition in a ladder

Our proposed scheme introduced in Chapter 3 is suitable for any geometry with coordina-
tion number z = 3; hence one can experimentally study square ladders of coupled (1+1)D
chains. Here, we have examined the ground state of a Z, LGT with U(1) matter using the
density matrix renormalization group (DMRG) technique [54] on a ladder and we find sig-
natures of a quantum phase transition. Details on the numerical simulation are presented
in Ref. [P5].

For our numerical simulations, we use Hamiltonian (3.11) with A1 = Ay = 0, i.e.,, we
enforce a global U(1) symmetry for the matter, and we tune the electric field # and chemical
potential y for fixed tunneling and plaquette interactions t = 1 and | = —1. Using the
DMRG technique, we calculate the ground state of the above described Hamiltonian on a
ladder with L = 19 plaquettes.

From the ground state calculated in DMRG, we obtain the average matter excitation
density — an experimentally directly accessible quantity, e.g. by taking snapshots in the
atomic ground state and Rydberg basis. As shown in Figure 4.5, the system is in a matter
vacuum for large h/] similar to the (2 4+ 1)D case. For decreasing 11/], we find a abrupt
increase of matter excitations indicating a phase transition. At the same critical electric field
value, the plaquette term shows a sharp feature; note that | < 0 and thus the plaquette
expectation value is negative indicated by the reversed sign on the plot label in Figure 4.5.

As shown in Figure 4.5, both the average density of matter excitations and the plaque-
tte terms, which are experimentally directly accessible by projective measurements, change
abruptly by tuning the electric field & indicating a transition into the vacuum phase. We em-
phasize that the ladder geometry is different from the (2 4+ 1)D honeycomb model studied

n the top-down approach, the weak drive also enables us to generate Z; invariant dynamics.
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in Figure 3.5, however numerical simulations suggest the presence of a phase transition. To
characterize the different phases and its phase transitions requires more elaborate studies of
our effective model on the ladder. We emphasize that due to its numerical accessibility and
experimental feasibility, the ladder model is an interesting playground to probe Z, lattice
gauge theories coupled to dynamical matter beyond (1 + 1)D.

4.5 Percolation order parameter

Defining order parameters for confinement is a challenging task, since it is a statement
about the entire spectrum of a model instead of a symmetry breaking order parameter. In
Chapter 2, we have seen that the scaling of Wilson loops can be used to distinguish the con-
fined from the deconfined phase, but this is restricted to strictly zero matter density. Alter-
natively, the Fredenhagen-Marcu order parameter [205, 206], which measures open versus
closed loops, was successfully applied in the context of frustrated dimer models [50, 51].
However, the Fredenhagen-Marcu order parameter is not capable of efficiently mapping
out the entire Fradkin-Shenker phase diagram [P12, 207]. For finite temperature numerical
simulations, Wilson loops in imaginary time — the Polyakov loops [206, 208] — are used to
probe confinement. However, the Polyakov loops are numerically extremely challenging to
probe and experimentally not accessible.

With the possibly to implement (2 + 1)D LGTs in state-of-the-art cold atoms experi-
ments, new type of order parameters have to be developed that are easily accessible and
are applicable at finite temperature. Even more, quantum simulators give access to new
observables and thus it triggers the search for novel probes.

Here, we propose a non-local order parameter for (de)confinement in Z, LGTs with
dynamical matter using percolating clusters of electric field lines; hence the order parameter
is manifestly gauge invariant. First, this order parameter was explored in a classical variant
of the Z, LGT in Ref. [P5]. Later, the order parameter was generalized to the quantum
domain by Linsel et al. [P12]. In the following, we discuss the classical model.

In particular, we examine a temperature-induced deconfinement transition [209] in a
classical limit of our effective model (3.16), which neglects charge and gauge dynamics t =
A1p = ] = 0. Hence, the resulting matter-excitation conserving Hamiltonian is purely
classical and a configuration is fully determined by the distribution of matter and electric
field lines under the Gauss’s law constraint, i.e. {(;, T<xi,j>) | (=1)" = giITiuj) T<xz.,].> Vj} and
we consider the sector with g; = +1 Vj.

To study thermal deconfinement, we consider exactly two matter excitations which, due
to Gauss’s law, have to be connected by a string X of electric field lines; i.e. X is a path of
links with electric fields T{i,ﬁ = —1 for (i,j) € X. This setting can be used as a probe of a
deconfined (confined) phase, in which the Z, matter is free (bound) [210].

To determine the classical equilibrium state, we note the following: 1) Due to the elec-
tric field term & in the Hamiltonian, a string of flipped electric fields T<xz.,].> = —1 costs an
energy 2h - £, where [ is the length of the string. 2) Gauss’s law enforces that at least one
string is connected to each matter excitation.

Hence, in the classical ground state the two matter excitations form a mesonic bound
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state on nearest neighbor lattice sites, see e.g. Section 3.4.2. Therefore, the matter excitations
are confined by a linear string potential. In the co-moving frame of one matter excitation,
this model can approximately be described as a particle in a linear confining potential.

At non-zero temperature T > 0, the entropy contribution to the free energy F = E — TS
must also be considered. Even though the electric field term / yields an approximately lin-
ear string tension, the two charges can separate infinitely in thermal equilibrium provided
that E(¢) < Tlog(Ny) for ¢ — oo, where log(N;) = S denotes the entropy S of all the string
states N with length ¢ (setting kg = 1) and E(¥) is their typical energy [210]. This happens
beyond a critical temperature T > T, when a percolating net of Z, electric strings forms.

At the critical temperature T, we anticipate a thermal deconfinement transition, where
matter excitations become free Z, charges (bound mesons) for T > T, (T < T¢). To study
this transition we use the percolation strength — a measure for the spatial extend of a global
string net — as an order parameter for the deconfined phase. The percolation strength is
defined as the number of strings in the largest percolating cluster of Z, electric strings, nor-
malized to the system size. Furthermore, we consider the Euclidean distance between two
matter excitation and show that an abrupt change of behaviour in this quantity indicates
the disappearance of the bound state.

We perform Monte Carlo simulations on a 35 x 35 honeycomb lattice (in units of lattice
spacing) using classical Metropolis-Hastings sampling, see Ref. [P5] for details. To be pre-
cise, we consider a classical model that is motivated by the microscopic Hamiltonian (3.10)
- in particular we used the precise effective model as derived in Eq. (3.16) of Section 3.3 for
experimentally realistic parameters (2/V =1/8, A, = V/2and A;/V ~ 0.044.

We find a sharp transition for both the percolation strength and Euclidean distance be-
tween two matter excitations around (T/h). ~ 2 as shown in Figure 4.6: At a critical tem-
perature (T/h). ~ 2, the percolation strength abruptly increases, i.e. the string net perco-
lates. Moreover, at the same critical temperature (T/h). ~ 2 the Euclidean distance shows a
drastic change of behavior and saturates at about 30 for high temperatures. This saturation
can be explained by the finite system size.

For a finite density of matter excitations in the system, the Euclidean distance is not
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a reasonable measure anymore. However, the percolation transition can be related to
(de)confinement at finite densities as has been numerically confirmed in Ref. [P12]. Indeed,
the percolation order parameter is able to capture the Fradkin-Shenker phase diagram,
see Figure 2.4, and thus provides a suitable observable to probe confinement in quantum
simulators.



Large-scale implementation of
non-Abelian quantum link models

THE LONG-SOUGHT GOAL in the quantum simulation of LGTs is the realization of non-
Abelian gauge theories beyond (1 + 1)D, and ultimately simulate Wilson’s lattice QCD,
which is believed to capture quark confinement [26]. This would allow us to probe gauge
theories and the consequence of non-Abelian symmetries from an entirely new perspec-
tive enabled by the tunability of parameters, by the access to non-local quantities and by
observing real-time dynamics.

There are various different approached toward realizing non-Abelian gauge theories
even at the level of the constituents of the theory. In particular, there exist different trunca-
tion methods of the infinite dimensional link Hilbert space. Here, we will present a method
based on a rishon formulation of LGTs, see Section 2.2.4: In this formulation the link is
represented as a double well with exactly N particle carrying N colors, the so-called ris-
hons [147, 148, 152]. In the simplest model, the link consists of a single spin-1/2 particle
tunneling back and forth on a link. As we will show below, the rishons can be enforced to
fulfill SU(N) Gauss’ law constraints by using readily available Hubbard or dipolar inter-
actions. We propose concrete schemes and architectures to realize SU(N) and U(N) LGTs
with hardcore bosonic or fermionic matter in (2 + 1)D in cold molecule tweezer arrays or
optical lattices, respectively. The following Chapter is based on publication [P9]. The text
and figures are rearranged, adapted and supplemented.

5.1 Non-Abelian gauge protection

Until now, almost all quantum-simulation experiments of gauge theories have been per-
formed in one spatial dimension, have been restricted to a small number of degrees of free-
dom, or focused on Abelian gauge groups, with most non-Abelian proposals restricted to
building blocks [154, 157, 159, 211-221]. Partly, this is due to current technical limitations,
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Figure 5.1: SU(N) gauge protection. a The rishon formulation of non-Abelian LGTs con-
tains (i) matter on lattice sites and (ii) rishons on links connecting two sites. The links are
composed of two separate rishon sites and in the simplest description we enforce to have
exactly one rishon per link. The matter particles and rishons have N colors; here we illus-
trate N = 2. Gauge-invariant configurations in a SU(2) LGT have to cover the lattice with
spin singlets while fulfilling the rishon number constraint. b Gauss’s law enforces that the
sites around a vertex have to form a total color singlet, with the physical allowed states on
a vertex depicted on the right. The Gauss’s law constraint can be energetically enforced
by antiferromagnetic SU(N) gauge-invariant Heisenberg interactions between all sites ad-
jacent to a vertex, as depicted on the left. We propose to implement the SU(2) LGT using
ultracold atoms or molecules (blue dots). The honeycomb lattice is an appealing geometry
to realize the required interaction strengths.

but more importantly, extended systems are intrinsically vulnerable to gauge-breaking er-
rors unless explicit gauge protection schemes are implemented, see Section 2.2.5. Indeed,
the only large-scale experiments so far have relied either on the complete elimination of
gauge-noninvariant subspaces [96, 155, 156], or on linear Stark gauge protection [53, 159].
Likewise, the recent realization of a Z, topological spin liquid in Rydberg atom arrays [51]
have relied on an energetically protected emergent gauge structure.

In particular, gauge protection schemes for non-Abelian gauge theories have been few
and with limited experimental feasibility [222-224]. Experimental proposals have mostly
adopted a bottom-up approach focusing on the realization of an exact non-Abelian target
gauge theory in some perturbative regime of a mapped model [149, 221, 225, 226], without
an explicit gauge protection scheme in place. In order to further advance the quantum
simulation of gauge theories, it is crucial to propose experimentally feasible realizations
of large-scale non-Abelian gauge theories where gauge invariance is directly stabilized by
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an explicit gauge protection term that should appear naturally in experimentally relevant
settings.

Here, we propose realistic implementations of non-Abelian SU(N) LGTs using a
top-down approach in which the focus is on realizing the gauge protection terms locally,
with the gauge-invariant dynamics induced perturbatively. We demonstrate how non-
Abelian gauge constraints can be energetically enforced in current and near-term quantum
simulation setups based on ultracold atoms and polar molecules in optical lattices or
optical tweezer arrays. Provided that these gauge protection terms define the largest
energy scale in the system, the low-energy subspace is guaranteed to be described by an
effective (or emergent) non-Abelian LGT. By tuning the strength or form of subdominant
gauge-noninvariant terms—e.g., through tunneling or simple local spin-flip processes—the
terms in the effective low-energy Hamiltonian can be conveniently controlled. Therefore,
our scheme offers a realistic pathway towards large-scale implementations of non-Abelian
SU(N) and U(N) lattice gauge theories, including dynamical matter and plaquette terms,
and with an inherent robustness of the emergent gauge symmetry.

In our proposal, we use the rishon construction [147, 148, 152] of non-Abelian LGTs
introduced in Section 2.5. We propose to directly implement rishon and matter sites, and
energetically enforce SU(N) [or U(N)] gauge invariance by a proper choice of intra-vertex
interactions, where in the following we shall define a vertex. Consider a lattice with matter
sites denoted by indices r and links (r, ') between nearest-neighbor sites r and r’. Each link
hosts two rishon sites; see Figure 5.1a. A vertex represented by the index r is then comprised
of the matter site r and the nearest rishon sites on the links connecting to it, as illustrated in
Figure 5.1b.

The generators of the SU(N) symmetry can be written in vector form as [152]

z N
Q _ At 0B A
S(rrﬂ) - Z Z C(r,u),sz ﬁc(r,ﬂ),,@/ 6.1)

where T = (T3,..., Ty2_;) are the N2 — 1 elements of the SU(N) Lie algebra, each of which
isan N x N matrix [152], &, € {1,..., N} are indices representing the N colors, {(; ), is a
rishon (a # 0) or matter (a# = 0) annihilation operator on vertex r; the index a € {0,...,z}
indicates a matter site when a = 0, and a “nearest” rishon site whena = 1, ...,z with lattice
coordination number z; see Figure 5.1b. Note that the hallmark of a non-Abelian gauge
symmetry is that the N2 — 1 components of G, generally do not commute with each other.
This significantly contributes to the difficulty in realizing large-scale non-Abelian gauge
theories on quantum simulators using a bottom-up approach.

For a faithful gauge-theory quantum simulation, it is necessary to work in the target
or physical gauge superselection sector G,|¢y) = 0, Vr. Any dynamics initialized in this
sector can be restricted to remain in this sector by employing the gauge protection term
A = %Zr G2, which for ] > 0 enforces a color singlet as the ground state at each vertex
as discussed in Section 2.2.5, see Figure 5.1. The essence of our approach is to rewrite this
gauge protection term in a convenient form that contains Heisenberg and Hubbard inter-
actions, which usually naturally occur in experimental setups, thereby making it amenable
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for experimental implementation using ultracold molecules and atoms in an optical lattice,
as we will demonstrate through concrete experimental proposals below.

In this vein, we utilize Eq. (5.1) in order to rewrite the gauge protection term as

N A~ o 1 o
H=7Y) [ <Zb> Stea) - Seep) + 5 ;s%m)] . (5.2)

r

The first term on the right-hand side is a Heisenberg-interaction term, while the second the
second term enforces on-site spin singlets. We reformulate the latter as a two-body on-site
Hubbard term using identities of the SU(N) algebra [227] yielding (we suppress the site
index here)

(5.3)

with 7 = Y, A1,. Further, we have used the hard-core constraint of fermions (¢ = —1) or
hard-core bosons (¢ = +1), i.e. i2 = A,. We find that the on-site spin singlets are enforced
by an (unimportant) chemical potential and Hubbard interactions with U = —% J. The
sign of the interaction for fermions with N > 1 is negative and thus attractive.

In summary, the gauge protection term (5.2) can be reformulated as

Hy =) 1]} Sta) Sty TU Y Ara)allisa p (5.4)

1,0 b>a B>u

with all-to-all antiferromagnetic Heisenberg interactions | and on-site Hubbard interac-
tions U.

Next, we place the emphasis on experimentally realizing the protection term (5.4), along
with the required rishon-number conservation per link. In its general form, such a gauge
protection term has been shown analytically and numerically to enable large-scale quantum
simulations of (non-)Abelian lattice gauge theories [164, 222, 223]. Dynamics can then be
induced perturbatively by a term H;, in part gauge-invariant and in part not, but the gauge
protection term (5.2) will ensure the reliable suppression of gauge-breaking errors up to
times exponential in | [164], see Section 2.2.5 and Section 3.1.

5.2 Effective lattice gauge theory

Similar to the Z, LGT discussed in Chapter 3, the effective (gauge-invariant) Hamiltonian
emerges from the microscopic Hamiltonian H = H; + H;, which we will further discuss
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Figure 5.2: Effective lattice gauge theory. We illustrate the terms contained in the effec-
tive Hamiltonian for a one-rishon-per-link model on the honeycomb lattice, which can be
realized in our proposed scheme. (a) U(N) and SU(N) LGTs are generated by terms that re-
arrange color singlets within a vertex (intra-vertex) or between neighbouring vertices (inter-
vertex) involving both matter and rishon particles. The former additionally conserves a lo-
cal U(1) symmetry. (b) The terms in the effective model contain the minimal gauge-matter
and plaquette couplings, i.e., the kinetic and magnetic interactions of lattice gauge models.

below in experimentally relevant settings. To recap, our method is based on a separation
of energy scales with (i) strong protection terms (5.2) of strength | and (ii) weak tunnel-
ing perturbation ¢, allowing us to treat the latter perturbatively and to derive the effective
gauge-invariant model, see Appendix in Ref. [P9]. The perturbation describes the tunneling
of rishons within links as well as tunneling of matter between vertices.

For sufficiently weak perturbations, |t| < |]J|, the system approaches a controlled-
violation regime, where the occupation of gauge-noninvariant sectors is strongly sup-
pressed. Hence, the low-energy effective theory is inherently gauge-invariant, which
we confirm by numerical simulations of small systems, see Appendix in Ref. [P9]. This
allows us to determine the dominant terms of the effective Hamiltonian, which are
gauge-invariant and conserve the rishon number constraint. In our model, we identify two
types of processes:

Firstly, the simultaneous rearrangement of color singlets within a vertex (intra-vertex)
while maintaining the rishon and matter number constraint is manifestly gauge-invariant,
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see Figure 5.2a. Since the total number of particles around a given vertex is maintained, the
terms generated by intra-vertex processes host an additional local U(1) symmetry, which
yields an effective U(N) = U(1) x SU(N) LGT [152].

Secondly, our method induces terms that are SU(N) gauge-invariant but break the lo-
cal U(1) symmetry. Thus, the local symmetry structure is reduced to SU(N). The rele-
vant SU(N) gauge-invariant terms involve inter-vertex tunneling of matter and rishons, in
which whole color singlets tunnel between vertices; see Figure 5.2a.

By constructing the effective model as described above, we can in principle obtain the
form of the effective Hamiltonian with the typical minimal gauge-matter couplings and
magnetic plaquette interactions. The amplitudes of these terms can have a functional de-
pendence on the matter and rishon distribution, as well as on the particle statistics and can
be computed perturbatively. The leading minimal coupling and rishon-matter tunneling
terms occur in second-order processes with strength « #2/]; hence our proposal enables a
feasible implementation of non-Abelian LGT with sizable effective interactions as we will
show numerically below.

In general, the leading-order contributions are generated by perturbatively coupling
the energetically-resonant gauge-invariant states. The protection term (5.2) enforces the
color singlet constraint on each vertex, and in its simplest form in Eq. (5.2), all singlets are
energetically equally favoured. On the other hand, by introducing disordered protection
strengths, | — ], transporting color singlets between vertices is energetically costly, which
efficiently suppresses inter-vertex processes, see Figure 5.2a. Therefore an additional lo-
cal U(1) symmetry is protected for a proper choice of J;. We emphasize, however, that in
multi-rishon models, the SU(N) gauge-invariant model further contains terms that trans-
port glueballs, i.e., bound states of rishon color singlets [148], see Section 2.2.4.

5.3 One-rishon models: ultracold molecules.

In order to demonstrate our approach, we shall first focus on the case of large-scale (2+1)D
SU(2) LGTs. For the purpose of most realistic and immediate experimental relevance, we
further employ a hard-core constraint on the matter and rishon sites, while fixing the rishon
number per link to unity, N/ = 1. This allows us to drop the second term in Eq. (5.4),
and only focus on proposing an experimentally feasible scheme for the realization of the
Heisenberg term. The latter involves equal-strength magnetic interactions at magnitude |
around a vertex, and a rishon per link that can tunnel between the two sites on any given
rishon link. This tunneling, along with a similar term for the matter, does not commute
with H; and will take the role of the gauge-breaking perturbation with strength [¢| < |]|.

For models with exactly one rishon per site, the statistics of the rishon has no effect as
long as we assume that rishons cannot tunnel between different rishon links. In this case,
we can replace the fermionic rishons by bosons.

Ultracold polar molecules are a new powerful tool [65, 101, 107, 117, 228-232] to im-
plement and control SU(2)-invariant Heisenberg interactions by Floquet-driving the intrin-
sic dipole-dipole interactions [106]. So far, coherent tunneling of molecules has not been
demonstrated, but it should be experimentally feasible. Therefore, we suggest two different
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Figure 5.3: Implementation with ultracold polar molecules. (a) Pure SU(2) LGT (without
dynamical matter): Ultracold molecules in optical lattices directly implement the desired
microscopic Hamiltonian with gauge protection terms of strength | and weak (perturba-
tive) tunneling . We propose to imprint a potential landscape on a triangular lattice that
enables molecule tunneling only within double wells (solid black); hence the rishon num-
ber constraint is exactly fulfilled. Moreover, by using an isolated qubit subspace of inter-
nal rotational states, the dipole-dipole interaction can be used to Floquet engineer Heisen-
berg interactions between molecules by repeatedly applying a sequence of rotations in the
qubit subspace combined with time evolution of the microscopic molecular Hamiltonian
(bottom). (b) SU(2) LGT with dynamical matter: Alternatively, we propose a scheme for
molecules in tweezers arrays, where the tunneling is implemented by flip-flop processes
and which allows to include dynamical matter. Each link is built from two molecules and
the molecule on the matter site is located in a second plane such that the interaction strength
around molecules adjacent to a vertex have equal strength J. We encode the states |@), | 1),
and | 1) in each molecule’s internal rotational states |R = 0), |R = 1), and |R = 2), respec-
tively. By applying a Floquet sequence which rotates within the molecular rotational states,
both rishon tunneling as well as the Heisenberg interactions can be realized efficiently. To
avoid tunneling between different rishon links or between matter and rishon sites, we re-
quire local detunings A for the |R = 0) states by local AC stark shifts.

schemes below: with and without physical tunneling of molecules. Furthermore, we note
that molecules currently face problems to reach high fillings of tweezers/optical lattices,
and deterministic filling is not (yet) possible, but we expect that such technical challenges
can soon be overcome.

5.3.1 Optical lattice: Tunneling scheme

Let us first consider an SU(2) LGT without dynamical matter, and with one rishon per link.
The use of ultracold molecules in optical lattices has the advantage that the local Hilbert
space structure and hence the rishon-number constraint can be exactly fulfilled by simply
suppressing tunneling outside the links for all experimentally relevant times. To this end,
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we propose to implement an optical landscape with double-well potentials on links be-
tween vertices either by a superlattice or by removing lattice sites from an optical lattice
using a digital mirror device (“cookie-cutting method”), see Figure 5.3a. Each double well
should be loaded with exactly one molecule, and we restrict the molecular internal states to
a qubit subspace to encode the two colors | and 1.

Thus, the microscopic Hamiltonian we suggest to implement is given by H = H; + H;
with the (weak) rishon-tunneling perturbation

A==t Y Y |&hmaliwna+hel, (5.5)
(rr') a=],1

where the indices a,b defining the rishon link are uniquely determined by the link (r,r’).
The geometry has to be chosen such that the sites around a vertex are pairwise equally
distanced. A chain in (1 + 1)D trivially fulfills this constraint; in (2 + 1)D, this can be
achieved in, e.g., a honeycomb lattice as shown in Figure 5.1a, i.e., the rishon links form a
kagome lattice. Other lattices would be feasible by either exploiting out-of-plane geometries
or anisotropic interactions.

In our proposed setup in (2 + 1)D, the Gauss’s law constraint yields a covering of sin-
glets on the kagome lattice, which is a highly degenerate ground-state manifold. In the
ground-state, this particular model can be re-written in terms of a quantum dimer model
on a non-bipartite lattice [153] hosting a Z; spin liquid phase in the deconfined regime [50,
51]. We emphasize, however, that our model features distinctly different vertex excitations
associated with the stabilizer term H; if we allow individual gauge-breaking excitations
that carry well-defined SU(2) charges.

The gauge protection (5.4) can be implemented by using strong nearest-neighbor dipole-
dipole interactions as follows: molecules located around the same vertex interact with res-
onant dipole-dipole interactions of strength x between two rotational states of molecules
giving rise to XY spin interactions. In order to engineer the SU(2) gauge-invariant Heisen-
berg interactions, which energetically enforce the low-energy manifold to fulfill the Gauss’s
law constraint, see Figure 5.1b, we propose to use Floquet-driving of the system [86, 87,
106]: Consecutive 7r/2-rotations around the Pauli (x, —y, y, x)-direction yield an effective
isotropic Heisenberg Hamiltonian in the limit of high frequencies 1/T >> x, where T is the
Floquet cycle time, see Figure 5.3a.

To induce dynamics within the gauge-invariant subspace, we propose to weakly perturb
the system with gauge-breaking terms. Due to the energetic constraints, the system evolves
under an SU(2) gauge-invariant Hamiltonian and undesired gauge sectors remain only
virtually occupied [30]. In our scheme, the tunneling |¢| < |J| between neighboring rishon
sites is a sufficient perturbation to induce the desired dynamics, which we numerically
benchmark below.

We remark that the dipolar interactions decay with the cube of the distance between
two molecules giving rise to long-range interactions. Thus, beyond nearest-neighbor, inter-
actions can be treated as another gauge-breaking perturbation with a strength much smaller
than |]|; in the presence of Floquet driving the perturbation is long-range Heisenberg-type.
In our proposed scheme with built-in gauge protection, the extra perturbation yields an
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additional source to induce dynamics within the gauge-invariant subspace.

Dynamical matter can be included in principle by introducing an additional lattice, e.g.,
in a bilayer geometry, on which matter molecules of the same species interact with rishon
molecules around a vertex with Heisenberg interactions at strength J. Tunneling || < |]|
allows the molecules to move between matter sites. While the tunneling scheme is concep-
tually the simplest model, realizing it with dynamical matter in current setups is challeng-
ing.

5.3.2 Tweezer arrays: Bosonic tunneling scheme

We propose a second scheme that implements tunneling through flip-flop processes of
bosonic (spin-flip) excitations by including a third rotational molecular state to encode an
empty site. Here, we assume a fully filled lattice with one molecule on each matter/rishon
site. To engineer both tunneling and magnetic interactions, we adapt a Floquet driving
scheme that is based on resonant dipole-dipole interactions combined with rotations within
the subspace of three internal states, see also Chapter 11.

For concreteness, we also assume that the matter sites form a honeycomb lattice with
adjacent rishon links. Since we do not require physical tunneling between any sites on
the lattice, the geometry can be realized with optical tweezers. The link building block,
i.e., two sites occupied by one bosonic rishon, is constructed from two molecules: For the
left and right molecule, we identify the internal rotational molecular states |R) with: an
empty site |@) (R = 0), a J-rishon (R = 1), and a f-rishon (R = 2). We will describe
below how the effective dynamics can be restricted to a subspace that fulfills the rishon
number constraint; see Figure 5.2b. Additionally, we place molecules on matter sites and
identify the internal states with bosonic matter fields as in the rishon case. To obtain equal-
strength interactions around a vertex on, e.g., the honeycomb lattice, we propose to elevate
the molecules on matter sites adequately out-of-plane [123].

Using this mapping, the Heisenberg interaction term | required for gauge protection is
engineered with the same Floquet driving sequence as proposed for the optical lattice im-
plementation. Additionally, the tunneling within a rishon link corresponds to an exchange
processes R =0R =1) < [ R=1,R =0 (R =0R=2) < |R=2R =0)) for
tunneling of a |-rishon ({-rishon). The |-rishon tunneling is conveniently implemented by
the resonant dipole-dipole interaction. In order to obtain the same tunneling strength for
the t-rishon, an extra rotation within the Floquet sequence has to be included. We refer to
Chapter 11 for details.

To suppress hopping of rishon excitations between different links or onto matter sites,
local AC stark shifts [A;| > 1/T can be applied to the |[R = 0) states, such that resonant
tunneling ¢ only occurs if A; = Aj, where i and j are indices distinguishing between the
different links or matter sites. In the effective Floquet model, the coupling ratio t/] can
be tuned by adjusting the distance between molecules around a vertex and between the
two rishon sites. Hence, the tunneling rate between matter sites t,, and between rishon
sites t is determined by the geometry, see Ref. [P9] for details. Concretely, the microscopic



88 Chapter 5. Large-scale implementation of non-Abelian quantum link models

[V

Pure gauge theory b Galuge theory with dynamical matter

@ clectric field
e staggered occupation

electric field
[a)
electric field
staggered occupation

—_

-1
1

€error

o

error

r

0 time [2r/J] 30 0 time [27/J] 30

NS A N A A
0 v AN/ ot /

Figure 5.4: Exact diagonalization study. (a) Quench dynamics of the electric field in the
SU(2) pure LGT without dynamical matter on a Mercedes star geometry for t/] = 0.075.
The initial state is illustrated in the inset. Throughout the entire dynamics, the gauge vio-
lation is always below 22% of the infinite-temperature violation (which corresponds to an
error of 1 in our plot), settling into a stable plateau o #2/]?, see Figure 5.5. (b) Quench
dynamics of the electric field in the SU(2) LGT with dynamical matter on a double-triangle
geometry with four matter sites at the corners for t = 4t,, = 0.15]. The initial state is
illustrated in the inset. Throughout the entire dynamics, the gauge violation is always be-
low 20% of the infinite-temperature violation, settling into a stable plateau o #2/]?, see
Figure 5.5. Shaded lines in (a) and (b) correspond to dynamics of the corresponding gauge-
invariant effective Hamiltonian, which agree well with our exact prediction for the micro-
scopic model. In both cases, the microscopic model exhibits rich gauge-invariant dynamics
in a controlled-violation regime. The ED simulations were performed by Jad C. Halimeh.

Hamiltonian is now H = H 7+ H + I:Itm, where

Hy, = —tw ), ), [ézrr,o),aé(f’/o)"" +h"°] (5:6)
(60) a=T1

5.3.3 Numerical benchmarks.

We now validate our scheme by considering the two aforementioned SU(2) LGTs (the one
with dynamical matter and the one without) on geometries amenable for exact diagonal-
ization. The quench dynamics of the electric field, defined as the local staggered rishon
occupation on links, is shown in Figure 5.4 for the SU(2) LGT without matter on a Mer-
cedes star geometry with t = 0.075] and for the SU(2) LGT with dynamical matter on a
double-triangle geometry with four matter sites at the corners and with t = 4t,, = 0.15]. In
both cases, the initial state is shown as an inset. For the case with dynamical matter in Fig-
ure 5.3.3b, we additionally show the difference in matter occupation between matter sites
on the long diagonal and those on the short diagonal, with only one matter site on the long
diagonal initially occupied. For all local observables, we find rich fast dynamics within ex-
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Figure 5.5: Controlled gauge violation regime. Using the same initial states as in Figure 5.4,
we repeat the corresponding quenches for (a) the Mercedes star geometry at t = 0.075 x
27kT and (b) the double-triangle geometry at t = 4t,, = 0.15 x 27k with k = 0,1,...,5
(dark to bright blue). In all cases, we find that the gauge violation settles into a plateau
of value « 2/ J? for all investigated evolution times, a hallmark of the controlled-violation
regime [164]. In the insets, we show the “infinite”-time gauge violation as a function of
t/]. In exact diagonalization, we chose various times t > 10*/] to extract this quantity. For
sufficiently small t/], stabilized gauge invariance is guaranteed. The ED simulations were
performed by Jad C. Halimeh.

perimentally realistic evolution times. Crucially, the parameters used for the tunneling are
in a controlled-violation regime, guaranteeing faithful gauge-theory dynamics up to times
exponential in | [164]. We define the gauge violation error as

Y (GH/ Y (G, (5.7)
r T

where (-)e denotes the infinite-temperature state. Indeed, for both models we find the
gauge violation to be suppressed into a plateau o« #2/ ]2 for all investigated late times, see
Figure 5.5, and is always below 22% for the parameters employed in Figure 5.4.

The dynamics from the microscopic model H for the parameters employed in Fig-
ure 5.4 is faithfully reproduced by an effective gauge-invariant Hamiltonian Hg. The
latter is extracted numerically by projecting the time-evolution unitary propagated by
H, for some evolution interval 61, onto the gauge-invariant color-singlet subspace,
Poe TP, ~ ¢ iHeidT where P is the corresponding projector. An optimal value for
7 is then found in the range 1/] < 07 < ]/t at which the dynamics of both models
show very good quantitative agreement, which allows constructing the matrix elements
of Hy¢. We find that H.g contains minimal coupling and plaquette terms, see Ref. [P9] for
details, which is a very significant result given that the implementation of plaquette terms
in proposals of large-scale quantum simulators of gauge theories face severe experimental
limitations [233, 234].
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Figure 5.6: Multi-rishon model. (a) An arbitrary number of rishons encoded in fermionic
alkaline-earth atoms are placed on rishon links formed by double-well potentials; here we
illustrate an SU(3) case with colors red, blue and green, and three rishons per link. (b)
The atoms can tunnel between neighboring sites with amplitude t and interact with on-site
attractive Hubbard interactions U < 0. An optical superlattice prevents direct tunneling
of rishons between different links by applying a potential offset |§| > |t|, |U|. Each rishon
link is connected to an auxiliary site with large potential offset |A| > |t|,|U|. (c¢) Fourth-
order processes, in which atoms of neighboring links virtually occupy the auxiliary site
and interact with Hubbard interactions, yield the desired equal-strength antiferromagnetic
interaction between all sites connected to a vertex r. Together with the on-site Hubbard
interactions, the effective model includes all required building blocks to gauge-stabilize
a multi-rishon-per-link SU(N) LGT, in which the dynamics is perturbatively induced by
tunneling t within rishon links.

5.4 Multi-rishon-per-link models: SU(N) with alkaline-earth
atoms.

The long-sought goal is the realization of SU(N) LGTs beyond one rishon per link and
with fermionic matter. Now, we propose a possible scheme to implement the required
gauge protection, which in principle enables the large-scale simulation of lattice QCD. In
the multi-rishon regime, we cannot neglect the second term in Eq. (5.4) nor the fermionic
statistics on rishon links. Hence, gauge protection requires a combination of on-site attrac-
tive Hubbard interactions U < 0 and antiferromagnetic interactions | > 0 around all sites
adjacent to a vertex.

(i) We envision a scheme based on an SU(N) Fermi-Hubbard model of alkaline-earth
atoms [235, 236] in an optical superlattice combined with tweezer arrays. As illustrated in
Figure 5.6a, the rishon links are built from double-well potentials attached to an auxiliary
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central site with potential offset A. The potential landscape with additional offsets ¢ be-
tween rishon links shown in Figure 5.6b, ensures the conservation of rishon number per
link.

A fourth-order superexchange mechanism, where atoms can virtually occupy the auxil-
iary site, yields the desired SU(N)-invariant antiferromagnetic interactions around a vertex
mediated by Hubbard interactions, see Figure 5.6c. Moreover, attractive Hubbard interac-
tions U < 0 accommodate for the required on-site term in Eq. (5.4) and their strength is
tunable via a Feshbach resonance. We note that the detuning A between the rishon and
auxiliary sites allows to tune the sign of the superexchange | to obtain antiferromagnetic
couplings.

To be precise, for the setup shown in Figure 5.6b we find effective fourth-order vertex
terms given by

Héﬁ) = Harm + Han, (5.8)
with
HAFM_ZZ [ﬁru ﬁrb}g ‘Sr,b/ (5.9)
ra b<a
- Z Z 4 [ﬁ(r,a)/ﬁ(r,b)} 7 (5,0) 1 (,0)- (5.10)
ra hb<a

The amplitudes | and V are weakly density-dependent because the energy difference to the
virtual states depends on the number of rishons at a given rishon site through the interac-
tion U. Nevertheless, all terms in Eq. (5.9) are SU(N) invariant.

The amplitudes are related by

N N 1 7. . 1
1% [ﬂ(r,a)/n(r,b)} = §] [n(m),n(r,b)} (N — 1> , (5.11)
which gives the well-known V = —]/4 density-density term of the t—] model for N =

2 [112]. The strength J scales as « t*/A3, and we require that
J]=—-2NU/(1+N) (5.12)

for the on-site Hubbard interaction, Eq. (5.4). Therefore, we require the Hubbard interaction
to be small |U| < [4], |A|. In this limit, we can expand the AFM interaction | [ﬁ(m), ﬁ(r,b)}
in the small |U| and obtain the density-independent coupling strength

_16t* (36A% — 507)
(82 — 4A2)?

u+o (u?. (5.13)

The desired gauge protection term can be constructed by choosing a set of parame-
ters (t,U, ) and finding A such that Eq. (5.12) is fulfilled.

Therefore, the gauge protection term (5.4) can be engineered using a fourth-order su-
perexchange mechanism. Additionally, the gauge invariant dynamics is again induced by
weak perturbations given by the tunneling between rishon and matter sites in the optical
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lattice. We emphasize that the proposed scheme is independent of the coordination number
or geometry since the interactions are mediated through the on-site Hubbard interaction on
the auxiliary site in contrast to the long-range dipole-dipole interactions described above.
Moreover, SU(N) color charges can be conceptually easily included in this scheme by intro-
ducing a second layer, where atoms are located on matter sites connected to the auxiliary
site of its corresponding vertex.

(if) Another approach to realize multi-rishon models are hybrid analog-digital fermionic
quantum processors [61, 62, 237], which potentially allow for much stronger interaction
scales than the superexchange-based scheme [238]. In these platforms, fermionic atoms are
trapped in optical tweezers that are spatially rearranged throughout the quantum simula-
tion. A combination of interaction and tunneling gates can then realize the desired Hamil-
tonian we propose here with protection and perturbation terms, respectively. The arbitrary
connectivity enables to include fermionic, dynamical matter or implement models beyond
(2+1)D.
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Perspectives for quantum simulation of LGTs

Phase diagrams of strongly correlated gauge theories remain elusive. With experimental
large-scale implementations of LGTs in (2 + 1)D coming into reach, there is a need for new
theoretical and numerical tools. This includes to rigorously map out ground-state phase di-
agrams, to develop phenomenological models of bound states and their excitations, and to
propose new experimentally accessible observables. It is worth highlighting that the phases
of gauge theories typically refuse to be described through local order parameters. Instead,
to distinguish the phases tools such as Wilson loops [26], string order parameters [51, 197]
or percolation [P12] are used. Consequently, the utilization of single-site resolved quantum
simulators is anticipated to be of particular advantage in this context.

The advent of tuneable realizations of LGTs with dynamical matter holds promise to
address long-standing questions, such as confinement of gauge charges in Abelian and non-
Abelian settings. Most likely, first experimental realizations will focus on the application of
quench protocols [15] necessitating to develop dynamical observables capable of capturing
phenomena such as charge confinement. In addition, in a high-energy quench the entire
spectrum is accessed, which may contain useful information yet to be harnessed.

For the bigger picture, it is important to understand whether one specific approach
to simulate gauge theories proves to be more feasible than others, see Section 2.2.5. This
knowledge is crucial for the development of experimental schemes with fermionic matter
and in (3 4+ 1)D. In particular, it remains challenging to engineer strong plaquette interac-
tion terms in a non-perturbative fashion. One promising route is to induce strong plaquette
terms by the motion of dynamical matter, which has been shown to give rise to plaquette
interactions on the scale of tunneling ¢ in a specific setting [139]. The strong plaquette terms
are necessary to stabilize exotic, quantum spin liquid phases with technological relevance
in the field of topological quantum computation [29, 239].

In conclusion, the quantum simulation of LGTs is significant for both foundational sci-
ence as well as for technological applications, ranging from particle physics [26] to high-
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Tc superconductivity [20]. The forthcoming exploration of LGT building blocks, and the
subsequent scaling to larger systems, opens up a new frontier in both experimental and
theoretical quantum many-body physics. This effort promises to bridge the gap to other
cutting-edge technologies, including particle colliders.



PART I1

EMERGENT PAIRING MECHANISMS IN
FERMI-HUBBARD MODELS






Summary and Overview

THE OBSERVATION of high-temperature (high-Tc) superconductivity by Georg Bednorz
and Karl Miiller in 1986 [135] was the discovery of a class of materials — the cuprates
compounds — which resisted and still resist any type of conventional modelling in many
ways until today [39]. The cuprates exhibit a sequence of strongly correlated phases as the
chemical composition of the material is changed, which modifies the electron density in
the two-dimensional copper-oxide layers. At half filling a well-understood antiferromag-
netic (AFM) Mott insulator with one electron per lattice site is realized [31], see Figure 7.1.
As the system is doped away from the Mott insulator, experiments have revealed uncom-
mon signatures, whose microscopic origin is still controversially discussed in the theoretical
community [31, 39, 44, 240].

The paradigmatic phase diagram of these materials has a dome-like region of supercon-
ductivity across a doping range of about 20%, as shown in Figure 7.1; here doping § > 0
(6 < 0) refers to additional holes (electrons) relative to half filling. Remarkably, cuprate
compounds with critical Tc’s well-above the boiling point of liquid nitrogen have been syn-
thesized [39]. Measurements of the Knight shift [241] and on the flux quantization [242]
corroborate the picture of Cooper pair (charge 2e) condensation familiar from the Bardeen-
Cooper-Schrieffer (BCS) theory of superconductivity [243]. In contrast to conventional
electron-phonon BCS superconductors, however, measurements on phase sensitive super-
conducting quantum interference devices (SQUID) observe a superconducting order pa-
rameter with nodal d,>_,» symmetry [38] resulting in a vanishing superconducting gap at
the nodal points k = (£7/2,+7/2) [244]. These experimental facts suggest an uncon-
ventional pairing symmetry with a condensation of Cooper pairs in the d,>_,» spin singlet
channel [245].

The electron-phonon interaction is believed to be too weak to explain the high criti-
cal Tc’s [251]. Approaching the dome from the overdoped side, see Figure 7.1 (right),
weak-coupling BCS mean-field descriptions are able to explain the d-wave attractive in-
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Figure 7.1: Sketch of the cuprate phase diagram. By changing the chemical composition
of the material, the number of hole dopants ¢ is varied. At optimal doping, a nodal d-
wave superconductor with remarkably large critical Tc’s is experimentally observed. One
of the many controversies in the cuprate community is about the nature of the parent state
under which superconductivity emerges in the underdoped regime, i.e., its interplay with
the pseudogap and antiferromagnetism (there are more phases such as a charge-density
wave or a stripe phase not illustrated here [31, 39, 246]). In the underdoped regime, the
Fermi surface is distinctly different from the electron-like Fermi surface in the overdoped
regime (gray dots). At very low doping (blue dots), small hole pockets with volume « §
are observed in ARPES experiments [247, 248]. Further, quantum oscillation [249] and Hall
coefficient [250] measurements suggest a Fermi surface of holes between half filling and
optimal doping. In this thesis we develop a phenomenological model for Cooper pairing
starting from magnetic polarons consistent with the hole-like constituents [P11, P7].

teractions [245, 252-254], where the AFM spin interactions give rise to pairing between the
underlying electrons. This establishes the picture that magnetic pairing is responsible for
nodal d 2 p-wave superconductivity in the limit of weak interactions [245, 252, 255-258].

In contrast, the underdoped side remains considerably less understood [31], yet it is
widely believed that magnetic interactions similarly play a central role [259], see Figure 7.1
(left). In underdoped cuprates, we recognize strong deviations to BCS mean-field theory,
e.g., in measurements of the specific heat [260]. Most notably, finding an explanation for the
absence of a conventional Fermi Liquid (FL) above the critical Tc — known as the pseudogap
phase with its apparent violation of Luttinger’s theorem — is likely to be one of the key
missing pieces [244, 247, 261-265].

It was observed by Uemura [266], Emery and Kivelson [267] that preformed pairs may
exist above Tc suggesting a phase ordering transition of those pairs. While this scenario is
appealing because it is consistent with the phenomenology of the BEC-BCS crossover [10,
77, 268-272], the question about the microscopic origin of strong attractive interactions,
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causing the preformed pairs to begin with, remains unanswered as Philip Anderson noted
in his late years [251]:

Is there a glue in cuprate superconductors?

The difficulty to find a concise model for the origin of strong pairing is rooted in the
controversy about the normal state. Therefore, the main focus of research is on the
properties of the normal state, from which superconductivity emerges in the underdoped
regime. Strong-couplings descriptions are needed with impressive contributions over the
past decades. These contributions include fascinating and creative theoretical ideas that
have not only opened entirely new fields of physics [262] but also established potential
connections to emergent gauge theories [20, 44, 138, 273].

Quantum oscillation and Hall coefficient measurements shed light on the enigmatic
dichotomy between under- and overdoped cuprates [249, 250]: the volume of the Fermi
surface undergoes an abrupt change around optimal doping 6 ~ 18%. This change in
Fermi surface volume indicates a metamorphosis in the nature of charge carriers from
an electron-like Fermi surface Vs o« 1+ 6 (overdoped regime) to a hole-like Fermi sur-
face Vps o« § (underdoped regime) [247-250]. This suggests a picture of emergent hole-like
charge carriers — the magnetic/spin polaron — in the low-doping regime, where the polaron
is described by the properties of a single mobile hole impurity in the AFM Mott insulator.
In Section 8.3, we briefly review the properties and formulations of the single-hole problem.
One of the major achievements of this thesis is the proposal of a novel pairing mechanism
based on emergent Feshbach resonances between polaron-type charge carriers, i.e., we
propose a genuine strong-coupling pairing mechanism for underdoped cuprates. In our
Feshbach model, we find robust d,._,» pairing mediated by AFM magnetic interactions
and next-nearest neighbour tunneling #'. Our study includes the analytical development
of a two-channel formulation including the full structure of emergent meson-like parton
bound states, see Chapter 9-10, consistent with a small Fermi surface volume.

The paradigmatic model, which is the starting point of many theoretical studies of
strongly correlated electrons including the studies in this thesis, is the single-band Fermi-
Hubbard model [112, 274] with nearest-neighbour tunneling ¢ and on-site Hubbard inter-
actions U. In the strong-coupling description, U >> t, the model reduces to the ¢-] model
described by a quantum Heisenberg antiferromagnet doped with mobile charge carriers,
see Sections 8.1-8.2. The relevance of the Hubbard model in the description of cuprates was
highlighted one year after the discovery of high-Tc superconductivity in the cuprate com-
pounds, when Philip Anderson suggested his celebrated resonating valence bound (RVB)
picture of superconductivity [31, 275]: Anderson argued that doping a quantum Heisen-
berg AFM gives rise to a quantum spin liquid [276] with deconfined spinon and chargon
excitations naturally explaining the d-wave superconductivity. While numerical and exper-
imental evidences for this picture are lacking ! [279], it has been an inspiring perspective to
study high-Tc superconductivity starting from doped quantum magnets [P1, P11, P7, 264].

n the 1D system, spin-charge separation with deconfined excitations of mass « t1 (chargon) and « !
(spinon) does exist [277, 278].
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Indeed, countless studies on the Fermi-Hubbard model and its strong-coupling limit,
the -] model, have revealed to capture much of the phenomenology of the cuprate phase
diagram [5, 280], see Figure 7.1, such as the antiferromagnetism [281, 282] or the weak-
coupling nodal d-wave superconductor [245, 253, 254]. Recent state-of-the-art numerical
studies, however, give valuable new insights into the plain-vanilla Hubbard model [283]:
At parameters relevant for cuprate compounds, the ground state has charge-density wave
order and superconductivity at commensurate fillings is found to be absent. This is chal-
lenged by a follow-up study [284] showing d-wave superconducting order by slight modi-
fications of the band structure upon including next-nearest tunneling #'.

These findings not only demonstrate the sensitivity of the ground state with respect to
model parameters, but suggest that the plain-vanilla single-band Hubbard model may not
be sufficient as a theoretical model to describe the cuprates [285]. From a microscopic per-
spective, these materials are assembled by (weakly coupled) two-dimensional Cu-O layers
with a three site unit cell and copper (oxygen) atoms on sites (links) of a Lieb lattice. It was
argued by Zhang and Rice [286], that the electrons form local spin singlets effectively reduc-
ing the three-band to a single-band Hubbard model, further corroborating the approach by
Anderson [275]. The extent to which additional terms, such as density-assisted or next-
nearest neighbor tunneling, contribute is currently under active investigation [287]. De-
spite open controversies about the correct description of the cuprate superconductors, the
fact that the Hubbard model captures the broad phenomenology of many strongly corre-
lated phases of matter cannot be overstated. Because of its importance in condensed matter
physics, the Hubbard model is often called the “Ising model of interacting electrons” [285].

Soon after the first optical lattice experiments with ultracold bosons [41, 42], the rel-
evance of analog quantum simulation of the Fermi-Hubbard model was pointed out by
Duan, Demler and Lukin [60]. Impressive experimental advances in the field of ultra-
cold atoms achieved to prepare systems at temperatures below the magnetic interaction
scale ] = 4t>/U allowing to enter the antiferromagnetic regime [288, 289] and opening
the door to explore doped quantum magnets [P1]. Especially, the technique of quantum
gas microscopy [290, 291] offers access to single-site and spin-resolved snapshots [2] of the
many-body wavefunction in the Fock state basis. Over the past decade, analog quantum
simulators have made unaccountable, significant contributions to our modern understand-
ing of the Hubbard model.

It is this quantum simulation perspective that is the guiding principle of the studies un-
derlying this thesis. (1) The two-channel model of Feshbach-induced pairing is motivated
by the internal structure of charge carriers in the very low-doping regime. This internal
meson-like structure of parton bound states was directly imaged by quantum gas micro-
scopes for the first time [33]. In Chapter 9 and 10, we formulate the Feshbach hypothe-
sis for high-Tc in cuprate superconductors [P5] and develop the theoretical framework for
meson scattering [P7]. (2) In order to enhance the pair binding energy, we have proposed
cold-atom motivated schemes based on mixed-dimensional settings [P2] and analyzed their
finite doping mean-field phase diagram [P1]. The developed, theoretical formalism now
appears to potentially play a significant role for recently discovered pressurized nickelate
superconductors [P10, P6], summarized in Chapter 12. (3) Lastly, we extend the exploration
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of doped quantum magnetism to a new platform [P8]: tweezer arrays. By leveraging three
internal levels, it allows us to propose schemes to implement antiferromagnetic, bosonic
t-] models in either cold molecules or Rydberg atoms. Preliminary experimental results of
our proposed scheme realized in Rydberg tweezer arrays are presented in Chapter 11.
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Theoretical Background

8.1 The Fermi-Hubbard model

With the experimental discovery of high-temperature superconductivity in cuprates [135],
theoretical physicists needed to find a suitable model that would capture the observed
phases of electrons. The paradigmatic model, which is believed to contain the phenomenol-
ogy of a variety of strongly correlated electron systems, is the Fermi-Hubbard model [274].
The Hubbard model is a tight-binding description of electrons in a lattice with “narrow
bands” [274]. If the electronic wavefunction is strongly localized in the orbitals of the crys-
tal atoms, as it appears to occur in d- and f-orbital systems, the Coulomb repulsion o« U
plays a dominant role with respect to the kinetic energy « t. While this Coulomb inter-
action is long-ranged o r~!, the screening of the electromagnetic potential due to mobile
charge carriers leads to an exponential decay in the Coulomb potential, and thus Coulomb
interactions are typically neglected beyond the on-site term. This results in a seemingly
innocent mathematical description of the Hubbard model given by

HFH = —t Z <6ZU€]',0 —|—hC) + UZﬁmﬁj&, (81)
(i) j

where 6;0 (¢ o) creates (annihilates) a fermion with spin ¢ =], 1 at site j. The kinetic
energy o t is described by a tight-binding model with tunneling on nearest-neighbour
sites (7, j). The Hubbard interaction « U describes the on-site repulsive (attractive) interac-
tionU > 0 (U < 0) and 71, = é}r/géjla is the number operator. Extensions of the Hubbard
model include modifications of the band structure, e.g., next-nearest neighbour (NNN) tun-
nelings ' [284], or beyond on-site Hubbard interactions (extended Hubbard models) [78].
In the strong-coupling limit U >> t relevant for cuprate superconductors, the Hubbard
interaction cannot be treated perturbatively. A plethora of studies is dedicated to deter-
mine the ground state of the 2D square lattice Fermi-Hubbard model for different hole
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dopings d [240, 292], see Figure 7.1. In general, the ground-state phase diagram for a typical
coupling strength U/t = 8 and away from half filling remains debated [240].

The Hubbard model features various symmetries, such as a U(1) symmetry for each
spin species, a SU(2) symmetry generated by the Pauli spin-1/2 algebra and a particle-hole
symmetry, among other symmetries. The success of the Hubbard model is due to the many
physical phenomena it contains including the interplay between charge order and quantum
magnetism, relevant for a variety of condensed matter systems. A few examples are the
following: (i) A weak-coupling Random Phase Approximation (RPA) captures the charge
and AFM spin ordering of fermions [282] observed in experiments [289]. (ii) In the limit
of U — oo, Nagaoka proved that the ground state close to half filling is ferromagnetic [293-
295]. (iii) Lieb’s theorem states that the ground state of the repulsive Hubbard model at
half filling is a total spin singlet [296]. (iv) Ultracold atom emulators of the Fermi-Hubbard
model observe unconventional transport properties at relatively high temperatures [297].

Notably, many of the qualitative aspects of the phase diagram of cuprates, such as the
AFM Mott insulator close to half filling, is captured by the Fermi-Hubbard model. Even
more, at large doping or weak coupling a BCS mean-field analysis finds a d,._,> nodal su-
perconductor [254], and numerical simulations at commensurate low filling and strong cou-
pling report a competition between stripe phases and d-wave superconducting order [283,
284]. Nevertheless, the region of small but finite doping remains a controversy in the strong-
coupling limit U > t. In this limit, the effective low-energy properties are described by the
t-] model introduced in the next section.

8.2 Strong-coupling description: t-] model

Let us consider the classical energy landscape of the Hubbard model for t = 0. The lowest
energy manifold is given by the configurations, which fulfill }, 7;, < 1 for all j. Above
this energy E = 0 manifold, we find an extensive number of so-called Hubbard bands
separated by the Hubbard energy U corresponding to the number of doublons (= doubly
occupied sites) in the system. At strong coupling U > t, it is convenient to derive an
effective low-energy theory in the subspace with no doublons. To this end, we define the
Gutzwiller projector P¢ to be the projector onto the subspace constituted by states with
Yo, < 1forallj.

The goal is to derive a low-energy effective theory by treating the tunneling ¢ pertur-
batively and by applying a Schrieffer-Wolff transformation [168]. This unitary transfor-
mation ¢ rotates the basis into a new “dressed” basis, in which all first order couplings
between manifolds are removed, allowing for a controlled approximation in ¢/U. In the
dressed basis, the interacting Hamiltonian is given by

b= (Hy + H,) e’ (8.2)

15,18, 2] + ..., (8.3)

where we have separated the Hubbard model (8.1) into its kinetic A, and interacting Ay
part. In the second line, we have used the Baker-Campbell-Hausdorff identity. The re-
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quirement that first order couplings between manifolds have to vanish, yields an defining
equation for S of the form
; (6] H]7)

b} = 4

018 = 8.4)
with states «,d in different energy subspaces. Importantly, the generator S scales as t/U
making it suitable as a perturbative expansion coefficient in Eq. (8.3). Here, we want
to derive the effective Hamiltonian in the low-energy subspace including terms of or-
der O(#?/U?). To this end, we truncate the expansion as in Eq. (8.3) and use the Gutzwiller
projectors Pg, such that

H|5) (5| Hy 4

A P 1 A
Htfj - PGHtPG + E ZPG
B
The first term describes tunneling of particles, if and only if the tunneling does not create
doublons. The second term has to be evaluated [112] in second-order perturbation theory

and contains information about the low-energy effective spin interactions. In particular, we
find

Ht,] = Ht -+ H] + H3_S (8.6)
A==t Y P (6,60 + ) Po (8.7)
(i.f)o
. O
H] = ]Z <Sz . S] — 41’11'11]') (88)
(i.f)
Ay o=ty Y (A},ﬂﬁiﬁy,‘, e} &l atiotio + h.c.) 8.9)
(i) (i,f")
j#i o

with the SU(2) symmetric AFM superexchange | = 4t*/U and the 3-site tunneling
term t3; = t2/U [112, 298].

Therefore, we have derived a low-energy effective theory that captures the antiferro-
magnetism in the Fermi-Hubbard model. Intuitively, we can understand this by compar-
ing configurations with aligned and anti-aligned spins. If two spins on adjacent sites are
aligned, the Pauli blocking of fermions quenches the kinetic energy. In contrast, if two spins
on adjacent sites are anti-aligned, the system can gain kinetic energy by virtual tunneling
processes into doublons.

The 3-site term introduces density- and spin-exchange-assisted tunneling between
NNN sites. However, it is often neglected in the study of the t-] model and its effect on
the ground state is unclear and receives little attention [5]. Previous studies have indicated
tendency for nematic s + id superconducting order in the presence of the 3-site term [299].
With recent numerical studies indicating the importance of NNN tunneling terms [283, 284]
for superconducting correlations in the Fermi-Hubbard model, the study of the three-site
term may experience a renaissance.

For the purpose of theoretical and numerical studies of doped quantum magnets, the
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t-] model serves as a useful effective model with a reduced local Hilbert space dimension
because the doublons have been integrated out. In the strong-coupling limit (U/t > 1),
the perturbative expansion gives rise to a separation of coupling strengths with £ > ], t3;.
For cuprate compounds, a representative set of parameters is given by ¢t ~ 3] [300, 301].
Beyond that, the t-] model is often used as one of the paradigmatic models in the study of
strongly correlated electrons and couplings are often arbitrarily modified. For example, in
the regime [/t > 1 there is conclusive numerical evidence of phase separation between
holes and spins [302]. Further, it can be useful to study the t-XXZ model, where the Heisen-
berg interaction Hj is replaced by an AFM XXZ Hamiltonian, in order to investigate the
role of spin fluctuations [21, 303]. Very recently, the realization of a tunable fermionic ¢-
] model in ultracold molecules trapped in an optical lattices was reported in Ref. [304]. In
Chapter 11, we propose a scheme for the analog quantum simulation of an antiferromag-
netic, bosonic t-] model in three-internal levels of cold molecules or Rydberg tweezers with
tunable interactions [P8].

8.3 Single-hole problem

Superconductivity in the cuprate compounds arises upon doping the AFM Mott insula-
tor away from half filling [31] with either holes or electrons!. On the hole doped side, it
was observed that approximately 4% of dopants are sufficient to open a superconducting
gap [248]. The critical Tc follows a dome shaped curve as doping is increased with an
optimal doping at about 15 — 20% [39]. It is therefore of fundamental importance to un-
derstand the properties of charge carriers (dopants) and their interplay with AFM order
in the strong-coupling regime [31]. At very low doping, the quasi particle associated with
the mobile charge carrier in the AFM background is called a magnetic polaron [21, 35, 36,
305-308]. The spin correlations play a crucial role for the properties of the polaron: for a
ferromagnetic background, the dopant can move freely without disturbing the spin order,
while for the antiferromagnetic background the motion of holes disturbs and frustrates the
AFM order, see Figure 8.1.

However, a microscopic theoretical and numerical study of this question at finite dop-
ing is yet too challenging. Therefore, microscopic studies have almost exclusively focused
on the single-hole problem and its phenomenological extension to finite doping, but it re-
mains hard to conclude at which level of doping the single-hole description of the mag-
netic polaron breaks down [309]. This is further obstructed by the difficulty to make clean
samples of cuprates in the ultra low doping regime, but with recent progress in layered
BayCasCusO12(F, O), precise measurements in this regime are coming within reach [248].
Moreover, a new perspective emerges with the advances in ultracold atom experiments, see
Chapter 2.1. These experiments can directly probe a single hole doped into a Mott insulator
with single site resolution [7, 33]. Studies of the Fermi-Hubbard model across the dop-
ing regime have reported that the magnetic polaron description may be valid over a larger
range of dopings than previously anticipated [309] by evaluating higher-order correlators

n the plain vanilla square lattice Hubbard model, it follows from particle-hole symmetry that electron and
hole doping is equivalent.
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Ferromagnet

Antiferromagnet

Figure 8.1: Doped quantum magnets. The interplay between mobile hole dopants and
spin interactions is a highly complex problem. Here, we sketch the effect of introducing a
single hole into a quantum magnet. In the ferromagnetic background (top), the hole motion
is described by a quantum walk and it propagates ballistically. This is in stark contrast
to the antiferromagnet (bottom): The properties of the motion of a single hole is highly
correlated with the spin background. The hole’s motion rearranges the spin background
and introduces frustration, as studied first by Bulaevskii et al. [305].

characteristic of the magnetic polaron [21, 310].

Numerous analytical and numerical studies have contributed to our today’s under-
standing of a single hole doped in an AFM Mott insulator [31]. Here, we want to give a
crisp overview and highlight a few out of many excellent studies on the topic. The single-
hole problem was studied as early as 1968 by Bulaevskii et al. [305]:

As the electron moves away from the center, flipped spins appear on its trajectory, and the exchange
energy increased with lengthening of the trajectory. This can be interpreted as the existence of a
quasi-elastic force that tends to return the extra electron to the center.

From our modern perspective, this phenomenology had already correctly described the
core of problem. The dopant’s motion leaves behind a trajectory of flipped spins and thus a
history of its path is encoded in the disturbed spin background, see Figure 8.1 (bottom). The
AFM spin interactions, responsible for the spin order to begin with, induce a quasi-elastic
force between both ends of the trajectory. The object associated with the trajectory shall be
called a string in consensus with modern literature. Around the same time, Brinkman and
Rice likewise formulated an effective model based on string states on a Bethe lattice [306]
leading to the picture of localized holes due to the confining string. In their picture, the
hole retrieves mobility by a Brownian motion induced by scattering off the background
electrons. An approximate evaluation of the single-particle Green’s function showed the
reduced bandwidth of the hole.

Trugman then generalized the string picture and included previously neglected loop ef-
fects [311, 312]. When the hole traverses the AFM background one and a half times around
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a square plaquette, the spin background is restored but the hole has moved along the diag-
onal of the lattice restoring its mobility in a higher order process. This is in contrast to the
localization effect due to the string’s tension. Therefore, in his conclusions he states that con-
trary to expectations, a hole in an antiferromagnet is not bound by a string [311]. Nevertheless, in
later studies Trugman identifies the excitation spectrum of the single hole with excitations
of the string [312].

Simultaneously, theoretical and numerical studies on the single-hole problem were
performed starting from a spin-wave analysis, where the hole’s motion is coupled to
the spin waves. Thus, this ansatz is unbiased with respect to the string picture. Kane,
Lee, Read [313] and Sachdev [314] find that the single hole has a dispersion minimum
atk = (7t/2,7/2), which is an important results in the context of solid state experiments.
The minimum of the dispersion is consistent with the later detected hole pockets observed
in ARPES measurements on the cuprates [247, 248]. Theoretical studies further find the
bandwidth of the hole to scale with the magnetic spin interaction, | < t, suggesting the
picture of a spin polaron. Within this thesis, we use the dispersion relation obtained by
Martinez and Horsch,

E1hote (k) = Alcos (2kx) + cos (2ky)] + B[cos (ky + k;) + cos (kx — k)], (8.10)

where k = (k,, ky) is the momentum of the hole and A, B are fit parameters; for real-
istic parameters in cuprates compounds ¢t/] = 10/3, the fit parameters are A = 0.31]
and B = 0.44] [315].

In addition, in the limit ], — 0 the spin-wave ansatz predicts long-lived spectral ex-
citation peaks gapped by t(t/],)%/3, which is consistently reported in the study of the sin-
gle hole [313]. These findings have been confirmed by numerous numerical studies in the
1990s and we refer to Refs. [21, P11, 316] for more detailed discussions. The relation be-
tween the excitation spectrum and the string picture was formally established by Liu and
Manousakis [317, 318]. By describing the hole as a particle confined by a linear string po-
tential, they find bound states with energy

E./t = =2V3 +a,(],/t)*3 (8.11)

in the t-J, model; a,, is a geometry dependent constant. Therefore the string picture correctly
captures the scaling relation of the energy spacing between quasiparticle excitation peaks
reported in numerical studies [313], and interprets the excitations as vibrational excitations
in the linear confining potential.

It was Béran, Poilblanc and Laughlin who recognized and resolved an apparent di-
chotomy [32]: while some properties scale with | — e.g. the dispersion relation — others
scale with t — e.g. the Drude conductivity. This is not consistent with the spin polaron
picture, where the hole is completely described by its dressing with the spin waves. This
led them to the parton picture of the single hole. In this scenario, the hole with quantum
numbers spin and charge decays into its fractional constituents, the spinon (s) and chargon
(c), which form a bound state as a consequence of the confining string potential. Thus, the
composite (sc) particle maintains both characteristic energy scales of the chargon tunnel-
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ing « t and spinon motion « J. Even more, they interpreted the string excitation spectrum
as excitation of the bound state in analogy to meson excitations.

The string picture of bound partons [32] is challenged by Anderson’s RVB paper [275].
In stark contrast, Anderson proposed a scenario of deconfined spinons and chargons. He
argued that upon doping the Heisenberg AFM the system’s ground state evolves into a
quantum spin liquid of resonating singlets with the deconfined, fractionalized excitations.
Further, he derived that the Gutzwiller projected wavefunction gives rise to a BCS wave-
function of the chargons. Can these two extreme pictures of either spin-charge separation
or spin-charge bound states be brought together? In fact, it is the parton picture, which
naturally draws the intriguing connection between doped quantum magnets and gauge
theories with their confined and deconfined phases [32], see Part I Chapter 1.

A phenomenological model with predictive power — combining both the parton and
string picture — was developed by Grusdt and Demler and co-workers [21, 36, 303, 319]. In
this picture the two partons, i.e., spinons (s) and chargons (c), are connected to the two ends
of a geometric string, which encodes the history of the chargon’s path through the AFM.
In the limit of ¢+ > ], the confining string potential gives rise to a bound state between a
light chargon and heavy spinon. In the ¢-J, model, the string description becomes exact and
the motion of the bound state is only determined by the Trugman loops [311]. When spin
flip-flop interactions ], are increased [303], the composite object disperses with the spinon
motion o« ], and numerical simulation of the the t-] model confirmed the validity of the
(sc) bound state, or magnetic polaron [316].

Further striking evidence of the parton theory of the magnetic polaron has been reported
in quantum gas microscope experiments of ultracold fermions in optical lattices emulating
the Fermi-Hubbard model [33]. Koepsell et al. measured the spin correlations in the vicin-
ity of a mobile dopant at relatively high temperatures kgT = 0.45t and compared their data
to theoretical predictions obtained from the geometric string model finding good agree-
ment. In addition, signatures of the magnetic polarons are found up to about 30% hole
doping [309].

Beyond ground-state correlations, the geometric string framework allows to predict the
excitation spectrum of the (sc) bound state, i.e., the magnetic polaron acquires an internal
structure. In the co-moving frame with the heavy spinon, the chargon’s motion is described
by a particle hopping on a Bethe lattice with corresponding C4 symmetry of the underly-
ing square lattice and emergent C3 symmetries of the string description. These angular
symmetries manifest in the bound state’s wavefunction facilitating the calculation of the
ro-vibrational meson excitation spectrum [21] envisaged by Beran et al [32]. Significantly,
angular momentum-resolved ARPES spectra obtained from time-dependent DMRG studies
of the t-] model have revealed the presence of Regge-like trajectories [320] as predicted from
the meson spectrum. Notably, the ARPES spectra within the parton framework is equiva-
lent to the spectra of the underlying "c" electrons [316]. We emphasize that it is within the
parton picture that properties such as rotational spectra find a particularly natural descrip-
tion. We refer to Section 10.1.2 for a formal semi-analytical description of the parton string
theory.

Lastly, we emphasize that after the discovery of high-Tc superconductivity in the
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cuprates, Trugman [311] and Manousakis [35] have studied a potential pairing mechanism
of holes in the string picture, where two holes are connected by a confining string of flipped
spins. In the d-wave pairing channel this leads to a tightly-bound, bosonic bi-polaron [36,
37]. In Chapter 9, we argue that the cuprate’s fermionic ground state does not suggest
tightly-bound BEC pairs to constitute the superconducting state. Instead, we propose
the tightly-bound pairs to exist as a long-lived, low-lying resonant state. We find that
the internal, mesonic structure of different parton bound states gives rise to an emergent
Feshbach resonance with pairing of charge carriers in the d,._,» channel. We propose the
emergent Feshbach resonance as a scenario for strong pairing in cuprates [P11].

8.4 Pairing mechanisms in underdoped cuprates

The mechanism behind text book BCS-type superconductors is the electron-phonon interac-
tion causing an instability of the Fermi surface [243]. Frohlich derived a model for electron-
electron interaction mediated by exchange bosons, i.e., the phonon, which can lead to an
attraction of electrons [321]. However, it was not apparent how this attraction could over-
come the repulsive Coulomb interactions. It was Bardeen and Pines who treated both the
screened Coulomb and the electron-phonon interaction on equal footing [322]. The result-
ing Bardeen-Pines effective electron-electron interaction [254],

)0‘—21 2
q-+x

V(q,v

w
1+ — T ] (8.12)
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is frequency v and momentum § dependent. The Coulomb interactions are screened on

the scale of the Thomas-Fermi length x~1.

The electron-phonon interaction is highly re-
tarded and, in fact, at low energies v < wg the Coulomb repulsion is overscreened and
the interaction V(7,v) becomes attractive; the energy scale is determined by the phonon
dispersion w;. Ultimately, Bardeen, Cooper and Schrieffer (BCS) formulated a theory of
superconductivity, which describes the consequence of attraction at low energies leading to
pairing of electrons at the Fermi surface [243]. They received the 1971 Nobel prize for the
development of their theory.

The theory of superconductivity heralded in a paradigm shift by unifying well-
established facts into a phenomenological model and by putting forward a variational
wavefunction of Cooper pairs. Morel and Anderson even predicted that all metals should
be superconductors, although those not observed to do so would have remarkably low transition
temperatures [323]. Importantly, the BCS mechanism is not dependent on the type of
interaction; instead any attractive interaction can cause a BCS instability of the Fermi
surface. For example, Kohn and Luttinger formulated a theory of unconventional super-
conductivity, where Friedel oscillations induce attractive interactions between electrons in
purely repulsive models [324], however the expected critical temperatures from this effect
do not explain the high critical Tc’s observed in cuprates.

For models with strong repulsive interactions, such as the Hubbard model at strong cou-
pling U > t, the situation is different to conventional BCS superconductors. The repulsive
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core U for electrons at the same site cannot be screened, and electron-phonon interactions
are believed to be too weak to overscreen the Coulomb repulsion [251]. Rather, the d-wave
symmetry of the superconducting state suggests a different type of mechanism: The node
in the relative wavefunction between charge carriers is another effective way to suppress
repulsive Hubbard interactions U without dynamical screening.

The cuprate problem addresses the origin of the attractive interactions in the under-
doped cuprate compounds [39], see Chapter 7. Hereby, a fundamental challenge is to
formulate a genuine strong-coupling description of the normal state in the underdoped
cuprates, and to complement it with a strong pairing mechanism of magnetic origin [259].
One such strong-coupling description starts by doping the AFM Mott insulator [31] and
studying the properties of the single hole, see Section 8.3. Other strong coupling treatments
include Anderson’s RVB picture [275] or fractionalized Fermi Liquids (FL*) [44, 262-264].
Here, we give a very brief overview of magnetic pairing mechanisms, that we believe are
most relevant to compare to our proposed two-channel Feshbach model, see Chapter 9.

Before the discovery of the cuprates, Scalapino et al. have suggested an exchange mech-
anism of paramagnons for the three-dimensional Hubbard model using a diagrammatic
random phase approximation (RPA) at U/t = 4 [252, 255]. In the vicinity of an antiferro-
magnetic instability, the coupling to the paramagnon diverges leading to a strong pairing
interaction in the d,>_,» channel rooted in the perfect nesting property of the square lattice
Hubbard model. Simultaneously, the RPA approach shows the sensitivity of paramagnon
exchange towards modifications in the band structure and away from half filling. Mon-
thoux, Balatsky and Pines described the paramagnon exchange from a more phenomeno-
logical perspective of experimentally accessible spin fluctuations to describe superconduc-
tivity in the 2D square lattice. Similarly, they find attractive magnetic pairing interactions
with dxz_yz symmetry [256].

Alternatively, a more microscopic picture of “spin bags” was developed by Schrieffer,
Wen and Zhang [325]. In this model, the single dopant is argued to deplete the AFM order
parameter locally creating a “bag” in which the hole is self-trapped. While the spin bag is
advantageous for the energy of the hole, it has to be balanced to the energy cost of reducing
the AFM order. Thus, it can be energetically favorable for two holes to populate the same
spin bag leading to an effective attractive interaction that overcomes Coulomb repulsion.
In Ref. [326] the pairing interaction with respect to the Fermi surface topology is studied,
which can result in both nodal and nodeless d-wave superconductors.

Starting from the SU(2) symmetry broken phase, U. J. Wiese and collaborators con-
structed a systematic low-energy effective theory for holes and magnons [327]. Their ef-
fective theory correctly describes the location of hole pockets centered around the nodal
points k = (17/2,7/2) giving rise to two pockets in the magnetic Brillouin zone. For the
case of two hole dopants, the effective potential mediated by one-magnon exchange is de-
rived [328]. For intra-pocket bound states, i.e., zero center-of-mass pairs, the pairing inter-
action is found to have dy, symmetry, while for inter-pocket magnon exchange d,>_,>-wave
pairing is found.

Despite numerous proposals for magnetic pairing in cuprate superconductors, the ori-
gin of strong pairing of charge carriers remains debated. The difficulty to find a phe-
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nomenological model of pairing, similar to the Bardeen-Pines interaction (8.12) in conven-
tional BCS superconductors, is rooted in the controversy about the enigmatic normal state
above Tc in underdoped cuprates. In the following, we present a novel pairing mecha-
nism for magnetic polarons by including the internal structure of meson-like parton bound
states, see Section 8.3. The existence of a long-lived low-energy meson excitation found in
numerical simulations of the -] model [36, 37] leads us to the picture of emergent Feshbach
resonances of parton bound states [P11, P7].



Feshbach hypothesis of high-Tc
superconductivity in cuprates

THE ORIGIN OF STRONG PAIRING of charge carriers and the enigmatic relation between
the various phases observed in underdoped cuprate superconductors remains highly
debated [31, 39], see Chapters 7 and 8. While the electron-phonon mediated attraction
alone is too weak to explain the high critical Tc’s [251], there is a consensus about the mag-
netic origin of pairing confirmed by numerous theoretical and numerical studies [245, 255-
258, 325, 328-330]. Recent scanning tunneling microscopy experiments further confirm the
picture of magnetic pairing [259].

Nevertheless, a microscopic theory for pairing in underdoped cuprates is missing.
Promising candidates for such a microscopic theory are demanded to be consistent with
the common phenomenology of underdoped cuprates, such as the well-established d,»_,»
pairing symmetry [38] or the pseudogap [244]. It is believed that the attractive interactions
are strong compared to typical energy scales in conventional BCS superconductors. Not
only the high critical Tc’s indicate strong pairing, but rather the existence of two distinct
energy gaps [331, 332] associate with two temperature scales T* and T, suggests that
pairing of charge carriers appears above the critical temperature T* > T,. This is further
corroborated by Uemura’s [266], Emery’s and Kivelson’s [267] observation that incoherent
pairs may form above T;, which become phase coherent as the temperature is decreased.
At the same time, this is familiar from the phenomenology in the BEC-BCS crossover [10,
77,268-270]: As the attractive scattering length between fermionic constituents approaches
the unitary regime, pre-formed pairs exist above the critical Tc. However, the scattering
length is introduced as a phenomenological parameter to model the crossover from weak
to strong pairing.

In this Chapter, we propose a novel microscopic mechanism for the origin of the strong
attractive scattering length between charge carriers in Hubbard-type models at strong cou-
pling: emergent Feshbach resonance. We start from the AFM Mott insulating state with
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correlation length apv >> a, where a = 1 is the lattice spacing. In the limit of very low-
doping, it was found in theoretical [21, 35, 36, 303, 311], numerical [32, 34, 37, 320, 333]
and experimental [33, 334] studies that the fundamental one- and two-hole excitations can
be described as extended meson-like excitations with rich internal structure, see Chapter 7.
The parton constituents, i.e., the chargon (c) and spinon (s), give rise to fermionic (sc) [mag-
netic polaron] and bosonic (cc) meson bound states. Eventually, the existence of such meson
bound states leads us to the description of a Feshbach resonance between the an open chan-
nel (sc)” and a tightly-bound (cc) meson.

A Fano-Feshbach resonance [71-73, 76], see Chapter 2.1, was introduced in the context
of particle physics and describes the consequence of a bound state embedded in a particle
continuum. A characteristic quantity, which determines whether the induced two-particle
effective interaction is attractive (BCS side) or repulsive (BEC side), is the energy differ-
ence AE between the open and closed scattering channels. From the two particle perspec-
tive, a low-lying tightly-bound (cc) meson above the scattering threshold AE > 0 gives rise
to attractive interaction between a pair of magnetic polarons (sc)z. We argue that cuprate
superconductors are clearly located on the BCS side of the Feshbach resonance but in the
vicinity of a d,>_,» scattering resonance: The ground state of the underdoped cuprates is
characterized by Fermi surface excitations [247], even in the very low-doping regime [248,
335]. Further, a Fermi surface of volume « 4, is observed in quantum oscillations mea-
surements [249, 250] consistent with our picture of fermionic, magnetic polarons (sc) in
the ground state. It is the existence of the low-lying tightly-bound (cc) meson above but
in the vicinity of the Fermi surface, which induces the strong pairing between fermionic
constituents as discussed in the remained of this Chapter.

We highlight that Feshbach resonances, beyond particle and atomic physics, have
sparked great attention over the past decade. In solid state materials a Feshbach resonance
between excitons and trions was observed [336, 337] with recent proposals to utilize such
Feshbach resonances for quantum simulation [338, 339]. Likewise, Feshbach resonances
have been proposed to underlie the pairing mechanism in a broader class of strongly
correlated materials [340, 341], including the recently discovered pressurized nickelate
superconductors [P10, P6, 342]. In this vein, the goal of this chapter is to identify potential
Feshbach scattering channels in underdoped cuprates, starting from a microscopic theory
of the charge carriers. Using a semi-analytical description of the open and closed scattering
channels, we derive selection rules for the scattering processes and find that the dominant
scattering channel has d,._» symmetry. Importantly, we suggest experimental probes for
solid state materials to search for the low-lying closed scattering channel, constituted by
the charge 2e boson, in cuprate compounds.

The Chapter is based on publications [P11, P7]. The text and figures are rearranged,
adapted and supplemented. While this Chapter introduces the Feshbach hypothesis and
puts it in the perspective of cuprate superconductors, the subsequent Chapter 10 elaborates
on the mathematical formulation of a two-particle, multichannel description of Feshbach
resonances between magnetic polarons.
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9.1 Single-hole and two-hole excitations

Our starting point is a weakly hole-doped parent state with strong local antiferromagnetism
and a sufficiently large AFM correlation length {apv >> a. In cuprates, this regime is be-
lieved to be realized below the pseudogap temperature, T < T* [330]. Charge carriers in
this regime correspond to mobile holes and give rise to hole pockets, smoothly develop-
ing into Fermi-arcs [247], observed around the nodal points, k = (+7/2, £7/2), in angle-
resolved photoemission spectroscopy (ARPES) [248] and by quantum oscillations [248, 250].
At low doping in the square lattice Hubbard model with large on-site interaction U > t,
the individual holes are well described by magnetic polarons, as revealed by analytical [305,
306, 311, 313, 314, 343] and numerical studies [312, 317, 344-349], as well as experiments in
solids [334] and recently in ultracold atoms [33], see Chapter 8.

In contrast, the two-hole excitation spectrum of the doped AFM is much harder to ac-
cess experimentally and less understood theoretically. On the one hand, weak attraction be-
tween magnetic polarons, such as phonon- or magnon-exchange would suggest, could give
rise to loosely bound Cooper-like pairs and would naturally lead to a BCS-type instability.
On the other hand, numerical studies based on Hubbard and ¢-] models have indicated the
existence of much more tightly bound pairs of holes [34, 307, 311, 350-352] with only small
energy differences between different pairing channels [37, 308, 351]. Moreover, recent den-
sity matrix renormalization group (DMRG) studies of the -] model reported the existence
of long-lived two-hole resonances with distinct dispersion relations associated with differ-
ent pairing symmetries [37]. The observed spectral features in that study can be explained
by models of tightly bound holes connected with a string of displaced spins [36, 307] (light
bi-polarons).

9.2 Feshbach hypothesis

To formulate our idea of Feshbach resonances, we need to describe in a common theoretical
framework the individual fermionic charge carriers, which we model as magnetic polarons,
and the tightly bound bosonic pairs. To this end, the parton picture provides a powerful
construction, in which the fundamental constituents are decomposed into spinons (s) and
chargons (c) [137, 354-356], see Figure 9.1a. Within this picture, magnetic polarons con-
stitute a mesonic spinon-chargon bound state (sc) [32, 316] with a rich set of internal ro-
vibrational excitations. Similarly, the tightly-bound two-hole states are viewed as mesonic
chargon-chargon bound states (cc). Their internal rotational quantum numbers correspond
to different pairing symmetries [36, 37, 307]. Among the evidence for the parton picture
are numerical studies at low doping which have confirmed the predicted internal excita-
tions [35, 279, 316, 320, 333] and effective masses of the mesons [32, 37].

Next, we discuss how the (sc) pairs (magnetic polarons) constituting the normal state
in our model interact upon including a coupling to (cc) states. To this end, we consider an
individual scattering event between two (sc) mesons with opposite spin. When they start
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Figure 9.1: Emergent Feshbach resonance. a In the presence of strong AFM correlations, the
emergent charge carriers can be described by partons, the spinon (s) and chargon (c), which
form the meson bound states: fermionic (sc)’s and bosonic (cc)’s. If low-energy excitations
in the ground state retain their fermionic character — as observed experimentally [247-249,
353] — the bosonic two-hole pairs must correspond to meta-stable excited states. This situ-
ation is familiar from the case of Feshbach resonances and in the context of two particles:
on the BCS side, the tightly bound bosonic state is replaced by a low energy two-particle
resonance. b In the low-energy scattering process between two (sc)’s with opposite spin,
the mesons virtually recombine into an excited, light and tightly-bound (cc) bound state.
Due to the mesons’ internal structure, this process is dominated by d,»_,.-wave scattering.
c If the formation of a (cc) state is a resonant process, the scattering length diverges and
yields strong effective interactions between the underlying (sc) mesons. In the Feshbach
hypothesis we conjecture that the normal state of underdoped cuprates is constituted by
fermionic (sc)’s, located on the BCS side and in the vicinity of the scattering resonance.

to overlap spatially, they can recombine into a virtual (cc) state, realizing the sequence
(sc)y + (sc); — (cc) = (sc); + (sc),. (9.1)

This naturally leads us to a two-channel description of the emergent (mesonic) Feshbach
resonance, with (sc)? defining the open- and (cc) defining the closed channel, respectively,
see Figure 9.1b. As we will argue below, the scattering process is dominated by a resonant
d-wave (cc) state in the doped Hubbard model.

This leads us to formulate the following hypothesis:

(i) Cuprates, as well as commonly used models of the latter, i.e., Fermi-Hubbard or
t-] models at strong coupling, have a low-doping ground state close to a d-wave (sc)?-
(cc) scattering resonance.

(ii) More specifically, underdoped cuprates are on the BCS side of the conjectured d-wave
resonance, but sufficiently close for the induced attraction to overcome the intrinsic
repulsion of two charge carriers in the (sc) channel.

This situation is illustrated in Figure 9.1c, where we took the liberty to include an effective
microscopic parameter tuning the relative energy of (sc) and (cc) channels independently. In
reality, changing microscopic model parameters always affects the structure of both (sc) and
(cc) mesons. On the level of theoretical models, a nearest-neighbor (NN) Hubbard interac-
tion V is a promising candidate to tune across the resonance [P10, 357-362].
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Such tuning of the interactions may find a realization in solids when the screening of
Coulomb interactions becomes increasingly poor in the low-doping regime [363]: Hence,
at extremely low dopings, strong Coulomb repulsion is expected to lead to highly excited
(cc) states and a normal state well in the BCS regime. Here, the attraction induced by cou-
plings to (cc) states is expected to be unable to overcome the intrinsic repulsion between
the individual dopants, caused e.g. by kinetic (Pauli repulsion) or Coulomb effects. As the
Coulomb repulsion becomes screened, the emergent Feshbach resonance is approached.
Once the induced attraction among (sc)’s is sufficiently large, a weak-coupling d-wave
BCS state of magnetic polarons is expected to form. This is consistent with recent ob-
servations of BCS quasiparticle peaks in ARPES studies of strongly underdoped layered
BayCasCusO12(F, O)2 compounds [248] at 4.3 % hole doping. At higher doping, screening
effects become even more effective. Here, the weak coupling BCS description can break
down if near-resonant induced interactions are realized, which can lead to high critical
temperatures T, as in BCS-BEC cross-over scenarios [10, 77] and may explain the observed
non-BCS nature of the superconducting transition [260].

How close a given cuprate compound, or state in a given Hubbard model, is to the
conjectured resonance can depend sensitively on details. On the one hand, this may re-
quire some fine-tuning in order to reach the largest values of T, by reaching parameters
closest to resonant interactions. On the other hand, as explained below, we expect rela-
tively strong coupling between the open and closed channels, set by the super-exchange
energy | or the next-nearest neighbor (NNN) tunneling #'. This can lead to a broad Fesh-
bach resonance, realizing strong attraction between (sc)’s even well before the resonance
is reached [364]. Overall this scenario is broadly consistent with the considerable range of
maximally achievable critical temperatures T, in different compounds.

9.3 Effective string model

To support our hypothesis, we directly calculate the two-hole scattering interactions using a
truncated basis approach in which we treat both the (sc) and (cc) channels on equal footing.
To be concrete, we consider the t-'-] model [112], see Chapter 8,

Avg ==t L P (oo +hc) Pt Y Y P (&80 +he ) P
(ij) @ (@ o

TEY (ss] - iﬁiﬁj> + Ly (5767 +ne),
(i.j)

(9.2)

with spin-1/2 fermions é)*

| » residing on sites j with spin ¢ =], 1, and number (spin) opera-
tor Al = ;| + A1 (S;). We denote the links between NN and NNN sites as (i, j) and ({i, j)),
respectively. The Gutzwiller projector P removes energetically costly double occupancies
such that 71; < 1 for all j is enforced. The ground state |0) at half-filling is AFM Néel ordered.

Next, we describe the (sc) and (cc) bound states, which arise in the sectors of the Hilbert
space with one and two holes, respectively, upon doping the vacuum |0). We employ the

semi-analytic geometric string theory, in which (sc) [(cc)] meson eigenstates are expanded
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Figure 9.2: Geometric string theory of the two-channel model. a Magnetic polarons, i.e.,
(sc) mesons, are fermionic quasiparticles of single holes doped into an AFM Mott insula-
tor. In contrast, tightly bound (cc) mesons exist as long-lived s- and d-wave resonances
in the spectrum. The two types of mesons constitute open and closed scattering channels,
and can be described in a truncated string basis defined in a classical Néel background (see
insets); they are composed of chargons (white circles) connected to a spinon (bottom) or
another chargon (top) at the opposite end of the string. We plot the (cc) excitation spec-
trum at Q = 0 obtained from the string model [36] (left) and from DMRG studies in the
t-] model [37] (right), which shows the large energy separation between the s-wave and
d-wave (cc) resonances. b Two spinons, each bound to a single chargon, can recombine
into a longer string connecting the two chargons. Thereby spin exchange |, and NNN
tunneling ' processes couple the open and closed channel states and mediate an effective
scattering interaction between the former.

in a truncated basis of orthonormal string states |jo, ) [|xc, Zcc)]. Here j, [xc] denotes the
spinon [first chargon] position and ¥ [X.] is a sequence of non-retracing string segments
connecting to the other parton, providing a confining force. These states can be constructed
explicitly for one and two holes in a classical Néel state by displacing spins along the
string ¥, see Figure 9.2a and Chapter 10, and have been shown to provide an accurate,
yet analytically tractable, approximation of the mesons’ ground and excited states [21, 35,
36, 305-308].

The open channel (sc) states constitute the starting point of the analysis. The gap to
their internal excitations is sufficiently large O(]) such that at low energies only s-wave (sc)
mesons 7y, exist [320]. Therefore, in the low-doping limit, we describe the open channel
by the following free-fermion Hamiltonian,

Hopen = Y [esc(k) — p] 7l , i (9.3)

k,o

The dispersion relation . (k) has its minimum at the nodal points k = (£7/2, £7/2) [313,
314], around which two Fermi pockets form upon increasing the chemical potential y [248].
Since we assume the AFM correlation length ¢ to be sufficiently larger than the size of a
(sc) meson, we can analyze the case of an AFM ordered state. Thus, all excitations are
defined with momenta k in the magnetic Brillouin zone (MBZ), which is rotated by 77/4
and reduced with respect to the original crystal Brillouin zone (CBZ).

The closed channel states are constituted by (cc) mesons Bé wm, With momentum Q
and band index « [36, 37]. As in the case of (sc) mesons we ignore vibrational excitations;
it is however important to include their rotational structure described by the C4 angular
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momentum my = 0,..,3. The resulting free (cc) Hamiltonian is

A

Helosed = Z grcrzc4 (Q)gara,;«m‘ EQ,a,my (9.4)

Q,a,my

with the dispersion ¢ié(Q) = —3J(cos(Qx) + cos(Qy) — 2) + AE,, of the tightly bound
pair [37]; here AE,, denotes the energy above the scattering threshold. In the truncated
string basis, the (cc) states do not distinguish between the two magnetic sublattices and can
be defined in the CBZ. In order to describe their coupling to the open channel in the next
step, we fold the CBZ into the MBZ by restricting ourselves to Q € MBZ and introducing
the band index &« = 0,1. Because the (cc) wavefunction of the two fermionic holes can
be (anti)symmetric in the band index, any value of my4 can be realized at the C4-invariant
momenta; in particular at Q = 0 shown below to be relevant for low-energy scattering.

Now we turn to a description of the coupling between the open and closed channels. In
the effective string basis, we recognize microscopic processes « [ ,t' leading to recombi-
nation processes from a (sc)? into a (cc) configuration, see Figure 9.2b. In order to describe
the corresponding low-energy two-particle scattering problem, we consider two (sc)’s in a
spin-singlet state and with momenta £k from opposite sides of the Fermi surface. Note
that we focus here on intra-pocket recombinations: two (sc)’s from the same hole pocket
recombine into a (cc) pair with total momentum Q = 7, which leads to zero-momentum
Cooper pairs in the MBZ. Hence the allowed pairing symmetries are of d- or s-wave nature.

To understand into which (cc) states the (sc)? can recombine, we formulate the relevant
selection rules associated with the translational and Cy-rotational symmetries of the system.
The former ensures that total momentum is conserved, i.e., only couplings to (cc) mesons
with C4-invariant momenta Q = 0 or 7t are allowed. At these momenta, the latter symmetry
further ensures conservation of total C4 angular momentum 4. Since the individual (sc)’s
have s-wave (internal) character, only the orbital angular momentum associated with their
relative motion contributes to my, as defined by the corresponding zero-momentum Cooper
pair operator,

A 1
to_ L At st At ot
Am4 = \/E ;frm (k) (ﬂ_k,TT[k’i 7T_k,¢7Tk’T> . (9.5)

Here, the function fy,, (k) transforms as f,,, (k) — e~"#/2f, (k) under C, rotations. Since
only my = 0 (s-wave) and my = 2 (d-wave) lead to non-vanishing A*m ,» we conclude from
the derived selection rules that only couplings to closed channel (cc) states with d- or s-wave
symmetry are allowed. In principle, our formalism allows us to include finite momentum
Cooper pairs relevant for inter-pocket scattering and potentially relevant for going beyond
BCS mean-field theory.

In the next step, we integrate out the closed (cc) channels, which yields mediated inter-
actions that we can describe by the effective Hamiltonian

A

Hine = Y_ View A 1 A w17, (9.6)
oK/
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with scattering matrix elements Vy ) of the form

L

AE, M () Mo, (K. 9.7)

1
Vi = 2 Z
I’H4:0,2

Here we sum over the two allowed closed channels, m4 = 0,2. The form factors M,,, (k)
will be calculated below from matrix elements coupling open and closed channels that we
obtain within the effective string model. L? denotes the two-dimensional volume.

An emergent Feshbach resonance with divergent attractive interactions is realized when
the closed channel approaches the scattering threshold from above, i.e., AE — 0*. At
the considered (cc) momentum Q = 0, only the d-wave (cc) state has low energy AEj; in
contrast, the s-wave (cc) state has energy AEy = O(t) owing to its strong center-of-mass
dispersion. This follows from string model calculations [36, 307] and has been confirmed
by large-scale exact-diagonalization [34] and DMRG studies [37] in the ¢-] model. We show
the corresponding energy distribution curves of the pair-spectral functions at Q = 0 in
Figure 9.2a (right column), where the large splitting is clearly visible.

This leads to the important conclusion that low-energy scattering of magnetic polarons
is dominated by couplings to the d-wave (cc) channel; namely, since AEy =~ t, couplings to
the s-wave channel can be safely neglected in Vi s, Eq. (9.7). This justifies the simplified
two-channel model underlying the Feshbach hypothesis formulated earlier in our article.
Accurate numerical calculations of the (cc) gap AE; are extremely challenging: since it is
defined as the distance of the bare (cc) energy from the two-particle scattering threshold,
it constitutes a small difference of two much larger quantities and becomes sensitive to
details. Nevertheless we note that numerous studies have concluded that tightly-bound d-
wave pairs, i.e., with (cc) character, exist at low energies close to the scattering threshold, see
e.g. [34, 36, 37, 308]. This justifies our conjecture that strongly interacting doped Hubbard
models at low doping are close to an emergent d-wave Feshbach resonance.

9.4 Scattering interaction

Now we use the truncated string basis to calculate the form factors M;(k) characterizing
the open-closed channel coupling. From the underlying ¢-t-] model we find (see Chap-
ter 10) two contributions corresponding to the different recombination processes illustrated
in Figure 9.2b,

Ma(k) = [ ME(K) — sgn(6)|# | M5 (K). (9.8)

This result assumes perturbative |#'| < t, such that the effective string model remains valid.
In Chapter 10 Section 10.10, we use a more elaborate method allowing us to including non-
perturbative effects of . Moreover we generalized our description to include hole and
electron doping J, characterized by sgn(é) = +1 (holes) and sgn(d) = —1 (electrons) re-
spectively; in deriving Eq. (9.8) we further assumed ' < 0in Eq. (9.2). A typical value used
to model cuprates is t'/[t| = —0.2 [300, 301]. In the following, we extend the two-body
scattering description to a many-body problem of weakly interacting magnetic polarons
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Figure 9.3: Symmetry of the pairing interaction. We plot the dimensionless open-closed
channel form factors M+ (k) from spin-flip processes a, and M" (k) from NNN tunneling
processes b, as calculated within the two-channel model of the emergent Feshbach reso-
nance. They directly reflect the sign structure of the resulting superconducting order pa-
rameter A(k), and show a strong momentum dependence. Outside the MBZ we used re-
duced opacity for clarity. Upon doping, charge carriers fill up the two hole pockets I and
II, realizing scattering of total momentum Q = 0 pairs on the Fermi surfaces (bottom). The
mediated interactions, and hence the pairing gap, vanish along the white nodal lines, fea-
turing a dominant d,>_,» nodal structure in the CBZ.

and discuss implications of the effective model at finite doping.

We show the two contributions to the form factor separately in Figure 9.3a and b and
find a rich momentum dependence with a sign structure reflecting the underlying d-wave
symmetry of (cc) mesons. Notably, within a weak coupling BCS description of the (sc)
Fermi sea, the superconducting order parameter A(k) o« My (k) follows directly from the
BCS gap equation for Eq. (9.6), see Chapter 10 Section 10.2.4. Therefore, Figure 9.3 reveals
the structure of the pairing gap. In particular, we find for both recombination processes that
the form factor (and hence the pairing gap) is dominated by the ubiquitous d,>_,» nodal
structure observed in hole doped cuprate compounds.

Beyond the d,2_,» structure dominating around the hole pockets we find additional
nodal lines in the CBZ, see Figure 9.3a, originating from a superimposed extended
s-wave structure of the interactions, see Chapter 10 Section 10.2.4. This rich momentum-
dependence of the induced interactions reflects the extended spatial structure of the
closed-channel (cc) state mediating the attractive interaction. Nevertheless, within our
theory, combining ], and # processes, pairing is dominated by d,._,» structure in the
entire low hole doping regime 6 < 15%, with only small deviations from the ideal
Ayo_p(k) =~ |cos(ky) — cos(ky)| structure; therefore the additional nodal lines are outside
the immediately relevant experimental regime.

The superimposed extended s-wave structure occurs from beyond point-like interac-
tions, i.e., from the finite extend of the meson wavefunctions. In the following Chapter, we
provide the function form of the extended s-wave channel in Egs. (10.41)-(10.42) obtained
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Figure 9.4: Gap anisotropy. The form factor Mj(k) is directly related to the pairing
gap A(k). We assume an elliptical Fermi surface of magnetic polarons, i.e. hole pockets,
at 6 = 10% doping. The Fermi surface is parameterized by the angle ¢y (inset). The blue
circles show the pairing gap, calculated from our two channel model, along the Fermi sur-
face for exemplary values |t'/] | = 0.05,0.2. We fit the pairing gap using a plain vanilla
dy2_,» gap symmetry (dashed gray) and a refined gap function including cos 6¢ terms
(solid gray). The latter is an excellent fit function for an entire range of parameters |t'/ ] |.

from the phenomenological string description.

Similarly, precise measurements of the superconducting gap in underdoped Bi-2212 in-
dicate an anisotropy in momentum space that cannot be explained by the plain vanilla
dy2_,» symmetry as argued by Mesot et al [365]. Instead, it was found that the function

A(¢x) o< Bcos(2¢y) + (1 — B) cos(6¢x) 9.9)

captures the gap structure in underdoped samples, where B is used as a fit parameter. In
ARPES measurements the pairing gap is determined along the Fermi surface, conveniently
parameterized by the angle ¢y, see Figure 9.4b (inset) for definition. To model the cuprates
in our calculations, we assume a Fermi surface of magnetic polarons for ' = 0 [315] as
shown in Figure 9.4 (inset). Next, we calculate the BCS pairing gap A(k) o« Mj(k) for
different parameters |t /]| | = 0.05,0.2 and extract its features along the magnetic polaron’s
Fermi surface. To this end, we fit to (i) cos(2¢x) (i.e. B = 1) and (ii) to the refined gap
function Eq. (9.9) with B € [0, 1]. The fitted curves are shown by the dashed and solid gray
lines in Figure 9.4. We find excellent agreement of our calculations to the fit for the second
case (ii), consistent with ARPES measurements [365]

9.5 Experimental signatures
Now we turn to possible experimental signatures of the Feshbach hypothesis. The key in-

gredient of the proposed pairing mechanism is the existence of a tightly bound (cc) channel
at low excitation energies above the Fermi energy. At this point it is important to con-



9.5 Experimental signatures 123

a Coincidence ARPES b Pump-probe scheme
w, k

SE g
< — = - "‘{
L e ST e

Figure 9.5: Experimental signatures of the closed channel (cc) state. a Two photons with
energy and momentum (w, k) remove two adjacent electrons from the system, which can
be detected in the correlations of the photoelectrons (coincidence ARPES). This gives direct
access to the dispersion relation of the (cc) meson as shown for Q = 0 in Figure 9.2a (right).
b We propose a pump-probe protocol, in which a Raman active phonon-mode is driven at
frequency w (purple). This modulates the microscopic couplings and drives a transition

between the open channel (sc:)2 and closed channel (cc) states such that the energy differ-
ence AE,,, in the proposed Feshbach model can be overcome, potentially allowing to reach
a transient state with resonant interactions.

trast the (cc) mesons to pre-formed Cooper pairs expected above the superconducting criti-
cal T, where phase-coherence rather than pairing disappears at low doping [266, 267]. From
our perspective, pre-formed Cooper pairs should be of (sc)z-type and exist just above T,
whereas (cc) pairs can exist separately at higher energies and potentially well above T..

While the (cc) channel gives rise to a doping-dependent ARPES feature in single-particle
spectroscopy, we find the signal to be very weak as discussed in Chapter 10 Section 10.11.
Therefore, we turn our attention to two-hole (correlation) spectroscopy, where numerical
studies [34, 37] found the pronounced (cc) peaks shown in Figure 9.2a (right column). A
direct measurement of such two-hole spectra requires removal of a tightly-bound pair, with
or without well-defined C; angular momentum, at a well-defined energy w and momen-
tum k. Theoretical proposals have been made how this can be achieved in coincidence
ARPES spectroscopy, in a one-photon-in-two-electron-out [366, 367] or a two-photon-in-
two-electron-out [368] configuration. While the former needs high-energy photons, the lat-
ter requires low-intensity light in order to distinguish the coincidence signal from the one-
particle ARPES background [369], making both challenging. In Figure 9.5a we illustrate the
correlated ARPES process, which removes adjacent electrons and creates a hole pair having
overlap with all angular momentum 4 channels of the (cc) bound state if k # 0, as we will
argue using the string picture.

The two in-coming photons have momentum k; and k; (out-going photonelectrons
have momentum ks and ky). Here, we consider the special case with k; = k, = k, and
k3 = k + dk and kg = k — k. In this sector, there is no momentum transfer to the sample
and thus we probe (cc) states with Q = 0, 7t in the MBZ. We argue that for dk # 0 the cou-
pling matrix elements or spectral weight of coincidence ARPES is non-zero for any angular
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momentum 4. To show this, we consider the matrix elements R (Jk) for removing two
adjacent electrons at distance r,, given by four individual processes on the square lattice:

3
R(6k) o Y elzmmigmndk, (9.10)
n=0
The matrix elements are momentum dependent (6k) and admit the rotational symmetry 4
of the (cc) channel. Since the low-energy channel has d-wave symmetry (my = 2), the
matrix elements vanish along the nodal directions, and in particular at /k = 0. However,
for 6k # 0 we find non-zero matrix elements to the (cc) bound state.

Thus, we predict a signal from the (cc) meson in cARPES measurement. Hereby, the en-
ergy onset of the signal relative to the Fermi energy Er and at Q = 0 would directly measure
the detuning AE,,;, from the (cc) resonance in our proposed Feshbach scenario. More de-
tailed analysis of the resulting two-hole spectrum for arbitrary k may reveal characteristic,
smoking gun signatures ubiquitous to the two-channel model.

Further, we suggest two potential experiments based on the coherent tunneling of pairs.
First, if a sample with T > T is brought in contact with a superconductor, the Cooper pairs
from the latter can tunnel through the junction into the (cc) channel, similar to Anderson-
Goldman pair tunneling [370]. Such experiments have already revealed some signatures of
enhanced pairing fluctuations above T. [371]. By adding an in-plane magnetic field and a
voltage across the junction, the pair spectra could be directly probed with combined energy
and momentum resolution [37, 372]. Second, scanning tunneling noise spectroscopy can
directly probe local pairs by analyzing autocorrelations of the current fluctuations [373,
374]. We expect an onset of enhanced pairing fluctuations at an energy AE,,, above Er as a
direct signature of the near-resonant (cc) state, which should be present even above T > T..
This is in line with recent noise-spectroscopy experiments performed on LSCO [375] which
reported an onset of enhanced pairing fluctuations around an energy scale of 10 meV.

Finally, we propose to verify the existence of the tightly-bound (cc) state in pump-probe
experiments, in which the properties of the transient state are modified, see Figure 9.5b.
By off-resonantly driving a Raman-active phonon mode, the microscopic parameters t, '
and | can be modulated in time by the pump pulse, with frequency w. From our micro-
scopic model we predict that this can drive the transition between the open (sc:)2 and closed
channel (cc), achieving tunable interactions in the transient state which become resonant for
w = AE,,. On resonance we can expect creating a large population of long lived metastable
(cc) pairs. This transient state can exhibit optical properties similar to systems with strong
superconducting correlations. This scenario is potentially relevant for understanding light-
induced superconductivity [376].

9.6 Summary and Perspectives
To summarize, we propose a new perspective on the pairing mechanism potentially un-

derlying high-temperature superconductivity as observed in the cuprate compounds. It is
based on the idea that an emergent Feshbach resonance between magnetic polaron like con-
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stituents, with spinon-chargon character, of the low-doping normal state may arise when
a near-resonant tightly bound bi-polaronic state of two holes exists at low excitation en-
ergies AE,. Using a truncated string basis we derive robust d,>_,» attractive interactions
between the fermionic charge carriers in the open channel, inherited from the structure
of the light bi-polaronic chargon-chargon state constituting the closed channel. Compari-
son to experiments in cuprate compounds [240, 244] as well as DMRG simulations of the
t-] model [37] lead us to the Feshbach hypothesis: We conjecture that cuprates remain on
the BCS side of an emergent Feshbach resonance, but realize near-resonant interactions,
ie. AE; ST

The Feshbach pairing mechanism we introduce here for cuprates, or the square lattice
Hubbard model, is distinct from other proposed scenarios. In contrast to the spin-bag mech-
anism [325, 329], we assume a pronounced internal structure of the emergent charge carri-
ers sustaining a long-lived chargon-chargon resonance that mediates attractive interactions.
Our proposal is also different from glue-based mechanisms as in conventional phonon-
based superconductors where weak retarded attraction appears, or exchange-based mech-
anisms where collective excitations — such as (para-) magnons — realize attractive interac-
tions. For example, field-theoretic work [328] suggests intra-pocket d,, pairing, whereas
we find intra-pocket d,>_,» pairing (notably Ref. [328] found inter-pocket d,»_,» pairing,
however). Nevertheless, we also conclude that magnetic interactions, in conjunction with
kinetic effects, are ultimately responsible for pairing, in agreement with a large body of
analytical and numerical work [245, 257, 258, 330] and experiments [259].

The Feshbach scenario [377, 378] we suggest may provide a long-sought common per-
spective on pairing in a whole range of strongly correlated systems, ranging from two-
dimensional semiconductors [340, 379] to bilayer nickelate superconductors [P1, P10, P6,
342]. We expect that our microscopic considerations will also provide a valuable perspective
on pairing in a broader class of doped antiferromagnets, such as infinite-layer nickelates or
heavy fermion superconductors. A direct application of our theory is to analyze electron-
doped cuprates, where the topology of the magnetic polaron Fermi surface changes [380]
and the realized pairing symmetry remains subject of debate. Although in our calculations
we assumed a long-range ordered AFM, our ideas directly extend to disordered normal
states such as fractionalized Fermi liquids [262-264, 381, 382].

In addition to the possible experimental signature discussed above, numerical studies
as well as quantum simulation experiments [P1] provide further possibilities to test our
hypothesis. On one hand, advances in calculating one- and two-particle spectral functions
numerically [383] will allow to search for more direct signatures of the emergent Feshbach
resonance. On the other hand, ultracold atoms in optical lattices [P1] or tweezer arrays [P8]
allow to study clean systems with widely tunable parameters, in and out-of equilibrium,
and including higher-order correlation functions [310]. A possible application of the latter
would be to look for direct signatures of the strings defining the structure of spinon-chargon
and chargon-chargon pairs, in a wide range of dopings.

To reveal direct signatures of the Feshbach pairing mechanism in cuprates, we propose
to use spectroscopic probes for pairs, such as coincidence ARPES. These will allow to look
for spectral features ubiquitous to the chargon-chargon excitations which we argue to be
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responsible for the appearance of strong attractive interactions. Additionally, we suggest
pump-probe experiments, which may enable to bring the system closer to resonance, po-

tentially resulting in higher transition temperatures.
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Multichannel perspective
and Feshbach resonance

AN EXCEPTIONAL EFFORT has been put forward to explain the origin of the strong pair-
ing in cuprates, starting from various proposed parent states including the magnetic
polarons; hereby numerous studies have shown the importance of magnetic fluctuations
for pairing [245, 252, 255-258, 325, 328-330, 384-386], see Chapter 8. However, the charge
carrier’s strong coupling nature, i.e., their emergence from the underlying correlated back-
ground, prohibits to develop a simple interacting theory at finite doping. In particular,
developing a unifying description that includes the rich microscopic structure of the emer-
gent charge carriers, i.e., the string and its fluctuations, has remained challenging. The goal
of the Chapter formulate a low but finite doping description of these charge carriers fully
including their internal structure.

Moreover, we collect further evidence for the Feshbach scattering scenario for cuprate
superconductors [P11] discussed in the previous Chapter 9. In our Feshbach hypothesis, we
take into account the internal structure of charge carriers in the strong-coupling low-doping
regime of Fermi-Hubbard-type models [21, 33, 35, 305, 311, 366]; in particular we consider
parton bound states constituted by spinons (s) and chargons (c). Based on numerical, ana-
lytical and experimental signatures [7, 21, 32-34, 36, 37, 320, 387], we recognize two distinct
types of bound states, see Figure 10.1a: (i) a fermionic (sc) bound state and (ii) a bosonic
resonant (cc) bipolaronic state. This picture is further corroborated by experimental facts
in underdoped cuprates, where are sharp pocket-like hole Fermi surface is observed in the
very low-doping regime [248]. In our hypothesis, the internal mesonic structure of the par-
ton bound states gives rise to an emergent Feshbach resonance between open channel states
constituted by (sc) mesons and closed channel states constituted by (cc) mesons.

In Chapter 9, we have developed a two-channel perspective of the Feshbach resonance.
From selection rules and energetic arguments, we concluded that the d-wave symmetric
(cc) meson is the dominant scattering channel. After integrating out the closed channel, the
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Figure 10.1: Mesons in doped antiferromagnets. Understanding the properties of charge
carriers in underdoped cuprates is essential to build microscopic, strong coupling theo-
ries of the various observed phases including the d-wave superconductor. Our starting
point is the very low doping regime, i.e., one or two dopants in a strongly correlated
AFM Mott insulator, which feature quasiparticles with rich internal structure. a The con-
fined nature of partons, i.e., the spinon (s) and chargon (c), gives rise to mesonic (sc) and
(cc) bound states. The mesons carry quantum numbers associated with their internal ro-
vibration structure. b The Feshbach scattering scenario proposed in Ref. [P11] describes two
fermionic (sc) mesons, which scatter via recombination processes into the bosonic, tightly-
bound (cc) state. The internal structure of the charge carriers leads to various scattering
channels. If one channel approaches the scattering threshold, however, the scattering length
diverges and dominates the low-energy physics. The Feshbach hypothesis of high-Tc su-
perconductivity conjectures that cuprates remain on the BCS-side but are in close proximity
to a d-wave resonant (cc) state.

Feshbach scattering induces an attractive d,._2-wave interaction between the fermionic
charge carriers. Here, we want to take into account the rich internal structure of mesons,
i.e., their ro-vibrational excitation spectrum [21, 32, 34, 36, 37, 303, 320], and develop a
multichannel scattering perspective, see Figure 10.1b.

To this end, we develop a truncated basis method to obtain the mesons by confining
strings, and apply it to describe a multichannel model of magnetic polarons (sc)? in the
open channel and tightly-bound (cc) states in the closed channel, see Section 10.1. In Sec-
tion 10.2, we calculate the matrix elements of the resonant interactions by performing a
controlled approximation in the length of strings and by considering open-closed chan-
nel recombination processes induced by spin-flip || and weak next-nearest neighbouring
(NNN) tunneling t' events. We compare our results in Section 10.3 to a more quantitative
and refined truncated basis method, that cures the overcompletness of the strings states and
allows us to systematically include non-perturbative effects associated with larger values
of t.

Large parts of this Chapter are based on publication [P7]. The text and figures are rear-
ranged, adapted and supplemented.

10.1 Open and closed channel description

The starting point to describe one and two dopants (holes or electrons) in the AFM Mott
insulator is a 2D square lattice t-t’-] model, introduced in Chapter 7. The Hamiltonian of
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Figure 10.2: Truncated basis of geometric strings. a We describe the single dopant (mag-
netic polaron) in a parton framework giving rise to a spinon-chargon bound state (sc).
For t > ], the chargon moves through a frozen spin background, i.e. the latter adapts
on much slower time scales, 75 & ]Il, then the former, 7. o t~!. The chargon’s motion rear-
ranges the spin background leaving a memory, which we encode in the geometric string ©
(gray curly line). The displacement of spins leads to parton confinement akin to a linear
string tension o« J,. Analogously, the parton construction is applicable to the two dopant
problem, leading to a tightly-bound, bi-polaronic chargon-chargon (cc) bound state con-
nected by a string Y. (bottom). b We map the string states on the sites of a Bethe lattice.
Here, we illustrate the hopping events of the chargon as in a (top). The rotational symme-
tries of the Bethe lattice allow us to assign well-defined rotational quantum numbers to the
magnetic polaron for C4-invariant momenta. We associate an angle A(N) between string
elements of length / = N and ¢ = N + 1, where / is the length of the string.

—C

D EEed

the model is given by

1 (10.1)
+J: ) sizs;—ﬁiﬁj)

where ¢, describes the underlying electrons with spin ¢ =|, 1 at site j; the spin-1/2 op-
erator Si = %é;‘/ai'w/ ¢;,o is constructed from Pauli matrices 7. Furthermore, the Gutzwiller
projector ensures that the particle number, ; = #; | + 71, is constrained to 72; < 1 for all
sites j akin to strong Hubbard repulsion in the parent model. The first two terms in Hamil-
tonian (10.1) describe NN and NNN tunneling with amplitude t and #, respectively. The
last two terms are the effective AFM interaction with superexchange strength J, = || =
+4t2/U. In the strong-coupling limit — typically /] ~ 3 is assumed in cuprate materials —
the undoped (72; = 1 for all j) ground state |0) is AFM Néel ordered.

In the following, we recap the geometric string formalism in order to describe mobile
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Figure 10.3: Crystal and magnetic lattice. a The long-range magnetic spin order breaks
translational symmetry of the underlying crystal lattice. The magnetic lattice has a two site
unit cell with basis vectors j; = (¥, ]94) b We illustrate the corresponding Brillouin zones
of the crystal (CBZ) and magnetic (MBZ) Brillouin zone. The scattering calculations are

performed in the MBZ with momenta kM = (k}, k).

single dopant (sc) and two dopant (cc) impurities immersed into an AFM Mott insulator |0);
we closely follow Refs. [21, 36]. We review the basic concepts and introduce the notation
required for the calculation of the Feshbach scattering length.

The geometric strings originate from the dopant’s displacement of the AFM ordered
spin background, see Figure 10.2, and was pointed out in early theoretical studies of the
Hubbard or t-] model by Brinkman and Rice [306], Trugman [311] and Beran et al. [32],
among others. The rigid string-like object naturally gives rise to a rich internal structure
of the dopant’s quasiparticle, explaining the long-lived vibrational excitations revealed in
numerical [32, 35, 279, 320, 333] and analytical studies [21, 303, 305, 313, 317]. The string
picture does not only provide a phenomenological explanation of the spectral features, but
it can also be put in a stringent quantitative formalism, i.e., the geometric string theory,
based on a semi-analytical truncated basis approach. In this approach, a variational wave-
function for the (sc) and (cc) bound states in the string basis is obtained. The truncated basis
we introduce below is an exact description for the (sc) and (cc) bound states in the ¢-J, limit
(JL =t/ = 0). However, numerical simulations indicate that the qualitative features of the
string description remain valid in the -] model (J, = J, t' = 0) [37, 303, 310, 312, 316, 317,
320, 333, 344-349], and experiments of the Fermi-Hubbard model in ultracold atoms show
direct [33] and indirect [7, 8] signatures of string correlations.

10.1.1 Spinon-chargon (sc) bound state: Magnetic polarons

In the following, we consider a (classical) Néel state |0) with long-range AFM order and
a single mobile dopant, i.e., the magnetic polaron or (sc) bound state. The perfect Néel
background should be a justified approximation when the correlation length ¢ >> a exceeds
several lattice constants. To describe the (sc) bound state, we construct a Krylov basis by
applying the hopping terms t in the Hamiltonian to the state ¢j7|0) leading to string states
discussed below. Thus, the truncated basis for the (sc) bound state is spanned by {|j, X) }
with spinon position j, and string X that connects the spinon to a spinless chargon, see
Figure 10.2a.
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Let us describe the physical origin of the string X. In the strong-coupling limit, t > ],
the time scales of the dopant’s motion, 7. o t~1 and magnetic background, 75 « | j_l, decou-
ple and we can treat the problem in Born-Oppenheimer approximation, i.e., we choose a
product state ansatz for the (sc) bound state |isc) =~ |¢s) @ |¢pc) by decomposing the wave-
function into its spinon |¢s) and chargon |¢) contribution, see e.g. Ref. [21].

To this end, we consider a single hole ¢;; (electron CA;U) doped into a Néel back-
ground |0), creating a spinon at position j,. The fast motion o« t of the chargon distorts
the magnetic order before the magnetic background can adapt on its intrinsic time
scale 75 > 7.. Thus, in the so-called frozen spin approximation, we consider the motion of
the chargon through a static background of spins, where the chargon’s motion rearranges
the spins; this gives rise to states that we label by |js, X).

Formally, we define the string states as

ljo, 2 = 0) = ¢,#|0) = §,5h7|0) (10.2a)
jo, X =2 41) = (DI 6, 1m0€] v olie, Z) = (DR 5 f(8)(0),  (10.2b)
(2

where |X] is the length of string X, and r = *e,, +e, is a unit step along the crystal lattice.
In the last step, we have defined the operator fy/(8)|0) that displaces the bosonic spinon
background according to the string £. Now, we evaluate the hopping term 7{; between
connected string states |j,, £1) and |jy, Xo) with |Zp| — [£1| =1

(o Zol Pl Tn) = +t - (=1)F =01 Ry e B Lo [f, (9] fy (9, ox i 5, 0) = —t.
(10.3)

Therefore, the (sc) wavefunction amplitudes ¢s.(|X|) are positive and real for all |X| in
this convention. Note that we have neglected loop effects, which could lead to additional
braiding of fermions.

In the string basis, the spinon and chargon position above are not sufficient to describe
the state but one needs to take into account the chargon’s path, i.e., the string ¥, which
begins at the spinon position j, and ends at the chargon’s position, see Figure 10.2a. Even in
a perfect Néel background the string states {|j,, )} have an overcompleteness originating
from so-called Trugman loops [311], where some spin configurations can be described by
multiple string states. The effect of Trugman loops has been shown to be subdominant [21]
to capture the chargon wavefunction |¢.) but is important to describe the fine features with
precision of a fraction of | in the magnetic polaron’s dispersion [319]. In Section 10.3 we
will treat loop effects systematically in this model; for now we follow Ref. [21] and assume
{ljo,X)} to form an orthonormal basis set, for which |¢.) can be determined by solving a
single-particle problem on the Bethe lattice, as we describe next.

In the orthonormal basis set, the string states can be uniquely characterized by (i) their
length ¢, which is the depth on the Bethe lattice, and (ii) the angle AN) between the N-th
and (N + 1)-th string element, see Figure 10.2b. This allows us to re-label the string states

lios Z) = ljo, 6, A0, A0, Y, (10.4)
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where A0 = 0, 7/2, 7, 37/2 and A(N) = —27/3,0,27/3 for N > 0. Note, however,
that the translational invariance as well as the C4-invariance of the square lattice model can
only be simultaneously exploited at C4-invariant momenta, i.e. at momenta k™ = (0,0)
and kM = (rt/ V2, 7/ ﬁ) in the magnetic Brillouin zone (MBZ).

The MBZ is defined as follows. Since the Néel AFM breaks the sublattice symmetry, the
spinon position j, is defined in the doubled, AFM unit cell. As a consequence, momenta kM
are formally defined in the MBZ with band index ¢ =/, 1, which is obtained by reducing
the volume of the crystal Brillouin zone (CBZ) by 1/2 and by rotating the CBZ by /4, see
Figure 10.3. To be precise, the unit vectors in the MBZ are given by

1 1
such that momentum vectors in the first MBZ are given by kM = kY'e}! + k}e}! with

kM, ki,w € [— %, %} . The MBZ momenta k™ can always be obtained by folding momenta k
from the CBZ into the MBZ; hence we only use the superscript if needed.

Next, we evaluate the -] Hamiltonian in the string basis, where the hopping term con-
nects different string states, the Ising term J, corresponds to a confining potential « ¢, and
the flip-flop terms |, give rise to spinon dispersion. At C4-invariant momenta, the total
momentum k and rotational eigenvalues {my, mél), méz), ..y withmy =0,...,3 (s-, p-, d- and
f-wave) and méN) = 0,..,2 form a set of quantum numbers for the magnetic polaron, see

Figure 10.1, and the wavefunction of the n-th eigenstate can be written as [21]

-1/2 1 ,
’k, o,Nn, My, {m3}> = <L22) Zefz‘kj(, Z Z Z Z e_l{)\(0>m4+zﬁl/f:1/\(N)mgN)] "
jo A(M)

M
X\}E <\%> 98 (e, £, ma, {m5™}) fjo, €, {AMD}).

The spinon’s spin quantum number ¢ defines the sublattice of the magnetic polaron and L?
is the volume of the underlying crystal lattice. Moreover, gbé? ) (k, £, my, {m:_gN) 1) € R=0 are
the amplitudes of the normalized wavefunction, which depend on the total momentum k
and the internal degrees-of-freedom; note that we have made a choice of gauge for the
string states {|jo, X)} in order to obtain positive and real wavefunction amplitudes. Away
from the C4-invariant momenta, the angular momentum is not a good quantum number
anymore and the different sectors {my, mén, méz), ...} hybridize.

This variational approach agrees with full numerical calculations [279, 316, 333], cap-
tures the scaling of the ground-state energy « t!/3]%/3, and explains the (gapped) excitation
spectrum in terms of ro-vibrational string excitations [320, 388]. The magnetic polaron has
minimal energy at the nodal points k = (£71/2, £71/2) (CBZ), which are not C4-invariant
momenta. However, the wavefunction retains its s-wave character [319, 320]; thus to good
approximation we can assume that the ground state of the magnetic polaron has no internal
excitations and admits a set of ro-vibrational quantum numbers, i.e. n = my = méN) = 0.
Therefore we assume the low-energy physics of the doped Mott insulator to only contain

magnetic polarons in their internal ground state denoted by 7{ ; hence we only consider a
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single open channel.

So far, we have solved for the chargon (string) wavefunction |¢.), which describes a
light chargon bound to an infinitely heavy spinon. However, the spinon can become dis-
persive via (i) Trugman loops and (ii) spin flip-flop processes. Taking these processes into
account, a dispersion relation &4 (k) for the magnetic polaron can be calculated accurately.
For the case of hole doping, this gives rise to the observed hole pockets centered around the
nodal points k = (£7/2, £7/2).

This dispersion relation &g (k) can be obtained within our truncated basis approach by
taking into account Trugman loops and spin flip-flop ], processes [319]. Moreover, pre-
vious studies have derived the dispersion using several methods, including 1/S expan-
sion [313-315] and semi-classical theories [389], which find the following approximate ex-
pression:

gsc(k) = Alcos (2ky) + cos (2ky)] + B[cos (kx + ky) + cos (kx — ky)]. (10.7)

Here, the parameters A and B are used as fit parameters; from numerical studies of the
single hole problem using a self-consistent Born approximation [315] we extract A = 0.31
and B = 0.44 for realistic cuprate material parameters, t/] = 10/3. This corresponds to
elliptical hole pockets with mass ratio 6 : 1 at low doping.

In the low-doping regime, the hole pocket-like Fermi surface [313, 314] has been
observed in angle-resolved photoemission spectroscopy (ARPES) studies of hole-doped
cuprate compounds [248, 335] consistent with quantum oscillation measurements [249].
As argued in Ref. [P11], we assume that at finite but low doping, magnetic polarons can be
treated as free fermions forming a Fermi liquid, described by the Hamiltonian

Hopen = Y [ese (k) — 1] 7t} At (10.8)
k,o

Upon increasing the chemical potential y the two hole pockets are filled up. Thus, the
free fermion description of the magnetic polarons resembles the normal state of the open
channel in the Feshbach hypothesis [P11].

10.1.2 Interacting magnetic polarons: Open channel

For the Feshbach scattering scenario we need to formally define the scattering channels
composed of two magnetic polarons (sc)? (open channel) and the tightly-bound bosonic
(cc) mesons (closed channels). The low-energy scattering in the open channel is described
by two magnetic polarons 7%;2’0 in their internal ground state, see Eq. (10.8). Our main goal
is to calculate their scattering length, characterizing their interaction, in the vicinity of a
meson Feshbach resonance [P11]. As we discuss later, we only consider low-energy, intra-
pocket scattering of two fermions located on the same Fermi surface, i.e. with opposite
momenta ky = —k|, total momentum Q = 0 and well-defined C4-angular momentum.
Nevertheless, our formalism — in principle — allows us to describe inter-pocket scattering
leading to (sc)? pairs with non-zero total momentum Q # 0.

We consider an arbitrary open-channel state with two magnetic polarons, one on each
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sublattice:
ki, 15k, L) = ﬁltTlerkl, 110) € Hpen, (10.9)

where %pen is the open channel Hilbert space. Using the expression in Eq. (10.6) and
assuming no internal ro-vibrational excitations, the pair wavefunction reads

2 b-
ki, 1k, ) = 75 | e Ml eller, 09) i, £, AT
[k, Tiky, 4) LZZe [ZZ:ZU: \/—¢(TT)IJTT{T}>

_>

® ZE*ZRWZ Z Y- Z F%c(ku&)!u/%@ 1,

£, M=0,0)

(10.10)

Where we have omitted the ro-vibrational quantum numbers of the amplitudes . (ky, £r) =
ll’sc (kg, by,my =0, mé ) = = 0). The two spinons, j; and j, reside on different sublattices
that are dislocated by a displacement vector r = (a,0) with lattice spacing a; in the
following we set a = 1. In our gauge choice, we assume that the |-spinons reside on lattice
sites j and the 1-spinons are displaced by r, see Figure 10.3a (right).

Since we want to describe the low-energy properties of the charge carriers, ie.,
magnetic polarons, the relevant scattering predominantly happens at the Fermi surface
between a pair of (sc)’s with total (quasi)momentum QmodGM =0, where the total
(quasi)momentum is only defined up to reciprocal lattice vectors GM = (£7/v/2, +7/+/2)
in the MBZ. We expect that the pairs of magnetic polarons we consider in the scattering
problem will form Cooper pairs after integrating out the closed channel. Therefore, we
restrict our following calculations to scattering, or Cooper pairs, in the spin singlet channel.

Now, we define the zero-momentum singlet pairing field operator, which we expand in
angular momentum eigenfunctions

" 1
+ _ _ ~t At At At
Ay (Q=0) = VA Ek:fm (k) (n—k,Tnk,i 7T—1<,¢7Tk,T) (10.11)

with the relative momentum k, which creates two magnetic polarons in the open channel
from vacuum. The function f,, (k) is an eigenfunction of the C4-rotation operator, i.e. it
transforms as f,,, (k) — e~ ™7/2f,, (k) under 7r/2 rotations; otherwise the exact functional
form of f,, (k) is arbitrary. We note that the angular momentum 1y refers to the orbital
angular momentum of the pair, not to the magnetic polaron’s internal degrees-of-freedom.
By using the fermionic anticommutation relations of the magnetic polarons ﬁlt - we find

Af.(Q=0) \[Z (1+e7"7) i, (K) AT 41 AL |, (10.12)

which is only non-zero for even parity s-wave (m4 = 0) and d-wave (m4 = 2) open channel
states. In summary, the low-energy scattering of spin singlet and zero momentum pairs
restricts the open channel states to have s-wave or d-wave spatial angular momentum.
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10.1.3 Chargon-chargon (cc) bound state: Closed channel

Next, we discuss the properties, and evidence for, tightly-bound bosonic mesons formed by
chargon-chargon (cc) bound states. These are the constituents of the closed channel in the
Feshbach model proposed in Ref. [P11]. We closely follow the derivation in Ref. [36].

As for the (sc) bound states, the light chargons displace the frozen spin background due
to their fast motion o t, see Figure 10.2a (bottom). However, one chargon can retrace the
path of the other giving rise to bound states. Because the chargons are indistinguishable,
spinless fermions, the particle statistics plays a crucial role. Alternatively, one may treat
chargons as bosons, but in this case the fermionic statistics of the underlying spins in the
Hubbard or t-] model lead to an additional statistical phase associated with the geometric
string of displaced spins connecting the two chargons. This ultimately leads to an equiva-
lent description [36]. The chargon-chargon bound state is of bosonic nature.

Again, we apply the frozen spin approximation, i.e., we consider two holes or doublons
created on opposite sublattices in a Néel ordered state, and consider their correlated mo-
tion through the background. In particular, we first assume two distinguishable chargons
labeled A and B, and perform an antisymmetrization procedure afterwards.

In contrast to the (sc) bound states, where the spinon was considered heavy and thus
frozen, now both constituents A and B are mobile. Hence, we perform a Lee-Low-Pines
transformation [390] into the co-moving frame of chargon A, which yields a model of a
single chargon at one end of a string, in an effective string potential and with an effective
tunneling amplitude that depends on the total momentum Q.

Analogously to the (sc) case, we can introduce a set of orthonormal basis states |xc, )
with the position x. of chargon A and the string X.. connecting the two chargons. Again,
these states are defined on a Bethe lattice, see Figure 10.2b, but with chargon A in the center.
Thus, we can likewise use basis states with fixed string length £ and angles {A(M)} as above,

Xe, Zee) = [Xe, £, {/\ }> (10.13)

Formally, we define the (cc) basis states as

X, Z —r> Cx. cxc+zg|0>—sxcgsxc+>;gh hx +x|0) (10.14a)
X, X =Z41) = ()Y 6 ot o lxe Z) = (1)L R L e (8)]0).
(%
(10.14b)

In a tunneling process, the string length changes by |%,| — |£;| = 1 leading to amplitudes,

(xe, Zo|Htlxe, Z1) =

11+ [Z20+2 /01 5 (10.15)
=+t (_1) ! 2 <O|hxc+zzhxchxc+22[f22( )] le( ) Xc+21 x Zl|0>
and

Xe + 1, Zo | Hilxe, 1) =
x : |tz‘ |C+|zl|>+2 7 pat N1 p i Rt o (10.16)
=+t (=)= Ly ] e, (9] fr (8) A R 5 |0) =
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We perform the Fourier transformation to obtain momentum states

= \/1?2 Y e % |x, £, {A(N)}). (10.17)

Note that the momentum Q is now defined in the CBZ because, at the level of our ap-

Q.4 {A™})

proximations so far, the chargons are not restricted to a sublattice. Further, at C4-invariant
momenta, we can define rotational eigenstates

-1

1 1 —i[/\<0)m4+ZM, A(N)m(N)] (N)

1Q, ¢, my, {m{N}) = ———c N Q0 {AMN ). (10.18)
° MZZO V4 +/3M

To accommodate for the particle statistics, the states in Eq. (10.18) have to be (anti)symmetrized.

The resulting antisymmetric states then span the closed channel Hilbert space J#jogeq-

At the two C4-invariant momenta, Q = 0 and Q = 7, the chargon-chargon bound states
have well-defined rotational quantum numbers with p- and f-wave (Q = 0) as well as s-
and d-wave (Q = 7r) symmetry in the fermionic sector.

The translational and C4-rotational invariance of the underlying model, Eq. (10.1), allow
us to derive selection rules for the matrix elements, which couple between open and closed
channel states. As discussed above, we only consider couplings to states with Q modGM =
0; thus the channels have well-defined angular momentum quantum numbers. Since the
open channel has even parity, Eq. (10.12), we conclude that only even parity channels
contribute to the scattering of magnetic polarons; hence non-zero matrix elements arise
only between s-wave (d-wave) open channel and s-wave (d-wave) closed channel states
at QmodGM = rmodGM = 0.

A Feshbach resonance describes the scattering within an open channel in the presence
of a near-resonant closed channel that can be virtually occupied. In addition to the coupling
matrix elements, the bare energy difference AE,,, between the (uncoupled) channels deter-
mines the strength o< 1/AE,,, of the scattering length. Here, we distinguish the two possible
couplings to closed channels with s-wave (m4 = 0) and d-wave (m4 = 2) symmetry; hence
we further reduce the multichannel description using selection rules. Numerical simula-
tions of the t-] model [34, 37] have calculated the angular-momentum resolved two-hole
spectra at Q modGM = 0. At the relevant momenta, they clearly indicate a large energy dif-
ference between the s-wave, AE,,,—o = O(t), and d-wave, AE,,,—» = O(]), channels; hence
only the d-wave (cc) state gives rise to near-resonant scattering. Therefore, we conclude
that the effective scattering length is dominated by the d-wave channel, which allows us to
consider an effective two-channel model in the following [P11]. Likewise, we recognize that
other scenarios are possible such as triplet pairing or inter-valley scattering, which could be
described analogously within our formalism.

Now, we define the basis states |Q = 7, ¢,my = 2) to be the fermionic states in the
relevant two-channel model. This allows us to express the closed-channel wavefunction of
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a Spin-flip processes J; b NNN tunneling processes #'
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Figure 10.4: Recombination processes: sc + sc — cc. The open and closed channel are
coupled via processes that annihilate and create pairwise spinons. a Spin-flip processes
couple magnetic polarons at Manhattan distance ||Ar,||m = [[j+ — (jy +1)|[m = 3. In
the co-moving frame of one spinon, the other spinon has to be located on sites indicated
by the yellow box. The spin flip-flop J, annihilates the magnetic polarons and creates a
chargon-chargon pair with string length ¢ = ¢ + ¢4 + 3 (besides one special case with { =
¢, + ¢4 — 1). For the shortest string length approximation (SSLA) we consider £| = /; = 0.
b Similarly, next-nearest neighbour tunneling ' couples the open and closed channel.

the tightly-bound (cc) state without vibrational excitations,

Q= 7T> = b},(Q = m)|0) =

10.19
Z ’ZQ"CZ@C =m,0)|Q =, {,my =2). ( )

Here, we have defined the bosonic creation operator for the (cc) state B;u:z (Q) with angular
momentum my = 2 and total momentum Q = 7. Further, we can expand the wavefunction
in the angular basis of string states, Eq. (10.18),

Q= 7T> =
Z e ey Z Z Yy e (10.20)

{ M=0)(0) A\M)
X(PCC( :n,K)Pf|xC,€,{/\ }>,

where Pf projects onto the fermionic states.

In the next section, we will describe the coupling between the open and closed channels.
To this end, we need to describe the open and closed channel on an equal footing. In the
geometric string picture, the (cc) bound state does not distinguish between the sublattices
and therefore, in this formulation, the momenta can be defined in the CBZ; in contrast to the
magnetic polarons, which have a well-defined sublattice/spin quantum number. Therefore,
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we fold the momentum from the larger CBZ into the smaller MBZ, see Figure 10.3b, by
introducing a band index & = 0, 1, such that

- 2 i1 1 arlO% )
bhi—24(Q) = \/; Ze GuranQpt (1), (10.21)
]l

where j; now labels the two site unit cells and « is a band index describing the position
within the unit cell. In particular, we can consider the (cc) creation operator in the larger
CBZ and relate it to the MBZ by considering

A 1

b:;i4=2(Q) ZeimQ [Ejm:z,o(jL) + efirQB;Fz,l (]'\L)} =

vied

i
% [6f,,—20(Q) + b, 1 (Q)] for Q € MBZ (10.22)

i [5;4:2,0 (QmodGM) + ¢G"jt

7 ma=21(Q modGM)]  for Q ¢ MBZ

Therefore, we find that the momentum Q = 0 (Q = ) corresponds to triplet (singlet)
combinations in the band index sector; hence the band index equips the (cc) bound state
with a pseudospin. This ultimately allows us to couple an open channel pair, see Eq. (10.12),
with s- and d-wave angular momentum to a closed channel state despite their constituents
being spinful (open channel) and spinless (closed channel).

Note that throughout Section 10.1, we considered a classical Néel background, i.e. || =
0, to derive the open and closed channel states. However the two channels still exist in
the presence of spin fluctuations |, and only microscopic details are affected [32, 37, 303,
313]. Further, cold atom experiments in the Fermi-Hubbard model have shown signatures
of strings [7, 8, 33] indicating that the geometric picture is valid beyond the ¢-] model and at
finite temperature. While in the following we will assume a perfect product Néel state |0),
we emphasize that strong local AFM correlations with coherence length of {apm/a 2 10
should lead to qualitatively similar result.

10.2 Meson scattering interaction

In the proposed Feshbach scenario [P11], it is suggested that a magnetic polaron pair (sc)2
and a (cc) meson can spatially overlap leading to a coupling of the two channels. Here,
we explicitly calculate the coupling matrix elements (or form factors) originating from the
microscopic Hamiltonian (10.1) by applying the open and closed channel string description
introduced in Secs 10.1.2 and 10.1.3. The possible coupling processes between the two chan-
nels are associated with 1) spin-flip processes (], ) and 2) NNN tunneling (¢'), as illustrated
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(=0 (=1 (=2 (=3 (=4 (=5
Pee(k, 0) V025 V0.38/4 V022/(4-3) | \/0.09/(4-3%) | /0.05/(4-3%) | \/0.01/(4-3%)
Prese(£) 0.25 038 0.22 0.09 0.05 0.01
$ec(Q =17, 0) - V0.09/4 V026/8 V0.32/20 v022/48 V/0.09/148
Po—rcc(£) - 0.09 0.26 0.32 0.22 0.09

Table 10.1: String length amplitudes. The wavefunction amplitudes for the spinon-
chargon ¢ are extracted from Ref. [303] for t/] = 3. The wavefunction amplitudes for
the chargon-chargon ¢ are extracted from Ref. [36] for t/] = 3. The renormalization fac-
tor for the latter includes the normalization after projection onto fermionic states at Q = 7.
The string length distribution can be obtained from ps.(k, £) = N&|s(k, £)|?, where N
are the number of string states of length ¢, and further around the dispersion minimum the
momentum dependency is negligible ps.(k, £) = ps.(¢). The string length distribution for
the (cc) case is obtained analogously.

in Figure 10.4 and defined by the open-closed channel coupling Hamiltonian
S - AN A (10.23)

projected to our truncated two-channel basis. The resulting scattering interaction Vi de-
scribing the Feshbach resonance is then given by

M (K ) Moy, (K)
Vi = 4 4 10.24
kk' = 13 Z A, ( )

with the form factors/matrix elements M, (k). In the following, we focus on the relevant
d-wave scattering channel (my = 2), i.e. we want to evaluate

Mo(k) = JL ME (k) + ¢ MY (k) (10.25a)

K T » A A
ﬁ/\/{g(k) = (0], —2(Q = ) H, Ty 1 7L 1[0), (10.25b)
where x = ], and k' (k) is the in-coming (out-going) momentum. From Eq. (10.25), we
find that it is sufficient to calculate the matrix elements for spin-flip and NNN tunneling
processes individually.

10.2.1 Spin-flip processes

First, we focus on the spin-flip recombination processes, i.e. we calculate the form fac-
tor %M} (k). To evaluate Eq. (10.25b), we expand the states in real space according to
Egs. (10.10) and (10.20). In real space, it is straightforward to determine how the spin flip-
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flop interactions |, couple between the open and closed channel states, see Figure 10.4a.
To be precise, they annihilate opposite spinons at sites j| and j; that are Manhattan dis-
tance ||Ar,||pm = ||(j+ +1) —j,||m = 3 apart. The recombination processes thus couple mag-
netic polarons of length /| and /; to (cc) states of length / = /| + {4 + Al with Al = —1,3.

For realistic parameters /] ~ 2,3, the magnetic polaron (sc) string length is peaked
around ¢, = 0 and the (cc) string length distribution has its maximum at ¢ = 3, see
Table 10.1. Therefore, the largest contribution to the form factors (10.25b) occurs for the
peaked string lengths, which justifies a short string length approximation (SSLA). The lat-
ter includes only ¢4 = /| = 0 and ¢ = 3. Later, we will systematically include longer strings
based on numerical calculations of the matrix elements. In SSLA the matrix elements can
be written as

J1 ] 2 z‘[Qx —k(jr+1)+kj ] iA(0) "
=Myt (k) = = ) el eN Mgk (Q, 0 = 3)x
\/ﬁ ? L2 XerjlAdt A0 A1) A (2) «
X el £y = e~k £ = 0){xe, £ = 3, (AN By, (1, £, = 0) @ [y, £ = 0)).

(10.26)

In real space the coupling elements are given by

(xe, € =3, {A\N} A, (\iu by =0)® iy, b = 0>) = J10x.j, AZ5Arn,jT+r—u { (Z)} 5A<N>,A;N>/
In AN

(10.27)
where the last term ensures that only fermionic string states A}N) contribute and Ar, denotes
all real space configurations that can annihilate spinons, see Figure 10.4a. The non-zero
matrix elements can be read off from the open and closed channel wavefunctions illustrated
in Figure 10.5.

Therefore, the expression becomes

Ll 1) = 2L ¥ 61095 (Q, € = 3)paclle, €, = 0)puc( K £ = 0)x
il

Vi 7
% Ze—ikmn Z’ E’ Z ToirOmy (10.28)

Ary, A0) A1) 2@

=x'L (k)

The restricted sum runs over the fermionic string states with strings starting at j; and
ending at j| + Ar,. To simplify the expression, we use the following identity

2
%WQN - %5 [Q modGM} , (10.29)

which gives the expression for the form factors.

We further define the functions

Q(Q, k) = ¢(Q, £ = 3)phsc(k, £y, = 0)ipsc(—k, £ = 0) (10.30)
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Figure 10.5: Shortest string length approximation (SSLA) — Spin flip. a We show the con-
tributions to the wavefunction of the open channel, where the two chargons are Manhattan
distance ||Ar,||m = 3 apart and the string length is /4 = ¢ = 0. These states couple to the
closed channel with substantial overlap to the (cc) wavefunction illustrated in b, where the
string length is £ = 3. The overlaps have to be weighted by momentum-dependent phase
factors (here with momenta k1, kﬁ/l measured in the 7t /4-rotated MBZ basis, see Eq. (10.5))
and symmetry properties of the d-wave closed channel have to be taken into account. The
shown contributions constitute all twelve terms in the SSLA.

Kr(k) = Y emikan Yy YAl (10.31)
A0) A A@)

Ary,

where we have set my = 2 for the d-wave channel. In the vicinity of the dispersion mini-
mum, k = (£71/2, £71/2) + ok with |0k| < 7, the wavefunction amplitudes are assumed
to be k-independent for s-wave magnetic polarons; in Section 10.3 we account for the full
momentum dependence.

Instead, the function x/* (k) is highly k-dependent and determines the structure of the
form factor Eq. (10.25). In particular, in SSLA we can evaluate the form factors for spin-flip
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Figure 10.6: Testing the shortest string length approximation (SSLA). We compute the
matrix element relevant for the scattering processes numerically, and cut off at different
maximal string length /.« of the involved (cc) states for a spin-flip processes and b NNN
tunneling. We compare the ¢max = 5 calculations to calculations with shorter strings. We
note that the relative difference between /. = 5 and fax = 3 is relatively small, which
justifies the analytically tractable SSLA approximation.

recombination processes analytically. We carefully treat the momentum kM and real space
vectors Ar, in the MBZ, see Figure 10.3 and Eq. (10.5). In Figure 10.5, we show the corre-
sponding phase factors )(] (k) for momenta in the MBZ. We sum up the matrix element,

kY — 3k 3ky! — 3k
cos| ———— | tcos| ————
( V2 V2

. <3kxM — k! 3ky! + 3k} (1032)
COSs| —— | —Ccos| ————— .
V2 V2

3k + ky! k!t + 3ky!
—cos| —— | —cos | ——— | |,
V2 V2

which has d,._,» nodal structure in the CBZ (or equivalently dyy nodal structure in the
7t/ 4-rotated MBZ).

It is important to confirm the validity of the SSLA by systematically including longer

and obtain

X (M) =2
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strings. We automatize the formalism described above and perform exact numerical cal-
culations in the string picture. Each string length realization now has to be weighted by
wavefunction amplitudes ¢..(Q = 7,¢) and s (k, £;), which we extract from previous
studies, see Refs. [36, 303] and Table 10.1.

We calculate the matrix element and plot ./\/l£L (k), see Eq. (10.25b), for different maximal
(cc) string length cut-offs fmax up to fmax = 5. Then, we compare the calculation of {max = 5
with short strings as shown in Figure 10.6a. Note that for /ma.x = 5, the string lengths of the
magnetic polarons are bounded to max(¢, £+) = 2, which has the advantage that we do not
have to consider Trugman loops or crossings of strings.

We find that already the SSLA gives qualitatively the correct behaviour, while the quan-
titative results are only slightly renormalized by including longer string lengths. We em-
phasize the robustness of the proposed Feshbach mechanism [P11] with respect to the 4 2y
nodal structure, which is caused by the symmetry properties of the closed channel but not
by the details of the geometric string wavefunctions.

10.2.2 Next-nearest neighbour tunnelings

Next, we perform the calculations for the NNN tunneling terms ', Eq. (10.23), which we can
include perturbatively in our description. Le., for now we do not assume that the properties
of the (sc) and (cc) bound states are affected by NNN tunneling but we only include the
terms in small perturbation in |#/| < ] ; in Section 10.3 we will consider the case where the
open and closed channel are renormalized by t'. In cuprate materials, the NN and NNN
tunneling ratio t/t' < 0 [391] is negative, and throughout this study we apply a gauge that
fixest > 0.

In the following, we evaluate the form factor M} (k). To gain intuition about the pro-
cesses contributing to NNN tunneling, we illustrate an example in Figure 10.4b. We find
that two (sc)’s with strings of length /| = 0 and /; (¢4 = 0 and /) can combine to (cc) bound
states of length £ = ¢ +1 (¢ = £| +1). Again, we apply SSLA to calculate the contributions
to M (k) for short strings, similar to the procedure described in Section 10.2.1, and we find

M — 3M 3kM M
(kM) =2 cos | 21 +cos| 2 YV
x (k) [ 7 7

Bky! + k! k! + 3k}
—cos| ——— | —cos| ———— | |,
V2 V2

where x! (kM) takes the role of x/- (kM) as in Eq. (10.28). The contributing processes are

(10.33)

illustrated in Figure 10.7.

To account for long strings, we numerically evaluate the dimensionless form fac-
tor MY (k), which we show in Figure 10.6b together with convergence plots for SSLA.
From the above considerations, we conclude that a (cc) bound state with string length
fmax = 5, can only couple to magnetic polarons with string length (/| = 0,¢; < 4) and
(¢, < 4,44 =0). Hence, we again do not encounter Trugman loops or crossings of magnetic
polaron strings.
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Figure 10.7: Shortest string length approximation (SSLA) — NNN tunneling. a We show
the contributions to the wavefunction of the open channel relevant for NNN tunneling
processes, that couple to the closed channel state with £ = 1 in b. The overlaps have to be
weighted by momentum-dependent phase factors (here with momenta k, ky measured in
the 77/4-rotated MBZ basis, see Eq.(10.5)) and symmetry properties of the d-wave closed
channel have to be taken into account. The shown contributions constitute all eight terms
in the SSLA.

As for the previous case, we find robust a dxz,yz nodal structure, which is caused by
the symmetry properties of the closed channel (cc) bound state. Further, we note that in
our geometric string calculations, the magnitude of the NNN tunneling form factor is large
compared to the coupling caused by spin-flip recombinations as can be seen from the scale
in Figure 10.6. Hence, we predict notable competition between the two processes even in the
perturbative regime || < ], which we discuss in the following. Importantly, including
both spin-flip processes as well as NNN tunneling terms in our model, allows us to analyze
the trend of the scattering for doublon (i.e. electron) versus hole doping.
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10.2.3 Competition between spin-flip and NNN tunneling processes

The microscopic Hamiltonian (10.1) is formulated in terms of the fermionic operators 6{0
describing the underlying electrons in the Fermi-Hubbard model. However, the magnetic
polarons are described in a parton formulation, which requires to introduce the following
chargon flj and spinon $; , operators:

fz]*sA]* ,  forholes

G = ) (10.34)

fzjéj,g for doublons

where we distinguish between hole and doublon doping. Therefore, the underlying micro-
scopic model becomes

for the hole (+) and doublon (—) doped case. In particular, we measure the doping &
relative to the half-filled case, 6 = 0, such that the sign is positive (negative) sgn [é] =
+1 (sgn[6] = —1) for hole (doublon) doping. From the above Hamiltonian, the parton
bound state wavefunction can be derived (for #' = 0), and we choose a gauge such that all
wavefunction amplitudes are real and have a sign structure as follows,

sgn [hsc(£)] = sgn[¢ec(¢)] = sgn [5]€~ (10.36)

This choice of gauge is meaningful since we have shown that the tunneling matrix elements
have equal signs in the string basis, see Egs. (10.3) and (10.15).

Next, we consider the doping dependence of the form factors, in which the wavefunc-
tion amplitudes enter as products 1sc(€]) X Psc(1) X ¢pi(¢), see Eq. (10.30). Since ¢ =
U+ + Al with Al = —1,3 (Al = 1) for ], (t') processes, we find

Jo-(+1)M =T, foré >0
JL ML (K) (10.37a)
Ji-(=1)M=—J, for6 <0
- (+1)2 =+t fors >0
' M (k) (10.37b)
—t (=1 =+t  fors<0

Therefore, we conclude that in cuprate materials with +'/t < 0 the individual form fac-
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Figure 10.8: Combined ], and ¢’ scattering. We plot the form facts, Eq. (10.25), combining
spin-flip and NNN tunneling recombination processes, which enter quadratically in the
scattering interaction. a For hole dopants in cuprate compounds, the form factors obtained
for spin-flip and NNN tunneling processes are subtracted leading to a constructive inter-
ference of the matrix elements around the nodal point k = (£7/2, £71/2). Here we show
the resulting scattering interaction for various parameters |t' /], |. b For doublon doping,
the relative sign between the form factors is equal. ¢ We plot 1D cuts along the edge of the
Brillouin zone (purple lines in a and b). For low doping, the form factors — and hence scat-
tering amplitude — gets enhanced (reduced) for hole (doublon) doping. Here, we assume
scattering on an elliptical Fermi surface of magnetic polarons with ellipticity 5.89 [315].

tors for spin-flip and NNN tunneling recombination processes interfere with a positive (a
negative) sign, i.e. the overall form factor is given by (] ,t > 0)

M) — [P IME (k) ford >0
Mt (K) = (10.38)
—JAME ) = |[FIME (k) ford <0

The form factors are strongly k-dependent and thus, to meaningful compare the interfer-



10.2 Meson scattering interaction 147

ence effects in the low-doping regime, we need to consider the form factor in the vicinity of
the hole pocket’s Fermi surface, where M} and Méi have opposite signs, see Figure 10.8.
As an important result, we find that scattering is enhanced (suppressed) for small hole (dou-
blon) doping. The form factor determines the strength of the scattering between (sc) charge
carriers after integrating out the closed (cc) channel, see Eq. (10.24); hence we qualitatively
predict that hole doping leads to stronger pairing interactions than doublon doping.

We use the results obtained in geometric string theory, and evaluate the form fac-
tor M®t(k), for various |#' /] | in the hole and doublon doped regime, see Figure 10.8a and
b. The hole pockets are strongly elliptical and thus we expect the scattering of magnetic
polarons to occur along the ky axis. In Figure 10.8c, we take a 1D cut along the direction
in the MBZ and we find that for small doping values, the scattering interaction is strongly
enhanced (suppressed) for hole (doublon) doping. These findings have direct implications
for cold atom quantum simulators that can tune NNN tunneling #' and systematically
study hole and doublon doped systems [392].

10.2.4 Analytical expression of the form factors

The numerically obtained form factors Mél and M} give insight into the magnitude and
nodal structure of the effective interactions. In the next step, we fit the form factors the
analytically obtained functions from SSLA, which allows us to more carefully study the
symmetry structure of the pairing interaction, and further enables future (analytical) studies
of the effective model, e.g. a BCS mean-field analysis. In the following, the fitted form
factors are denoted by M g and M}, respectively.

We use the results of the numerical calculations including (cc) states with strings up to
length /max = 5 and fit with the momentum dependent functions I'g(k) and T'; (k) defined
below in Egs. (10.41) and (10.42). Using this parametrization, we find that the spin-flip form
factor is given by

M (k) = 1T (k) + /Ty (k) (10.39)

with (a/t, /1) = (8.7-1072,6.0 - 10~2). Analogously, the NNN tunneling form factor be-
comes

M () = a'To (k) (10.40)
with af = 0.55. We measure the validity of the fit by evaluating err® = ||M® —
M?[2/||M?|]2 in the 2-norm. We find err/- = 3.9-107% and err’ = 4.7-1072.

Now, we consider the properties of the functions I'g(k) and I'; (k), which are defined as
follows:

dyy

Io(k) = sin (’\‘2) sin (%) : { — 2\f2+4f2[cos2 (%) + cos? (’%)] } (10.41)

50
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Figure 10.9: Scattering form factors obtained from the refined truncated basis method. The
form factors, Eq. (10.25), include the full momentum dependence of the (sc) and (cc) wave-
functions. a We plot the form factors M5 for x = J, (left) and x = #' (right) without
including non-perturbative t' corrections of the meson wavefunctions. b We include the
NNN tunneling #' in the derivation of the (sc) and (cc) wavefunctions using the parame-
terst/] = 3and t'/t = —0.2. The calculations for the refined truncated basis method were
performed by Pit Bermes.

dyy

kM

Ty (K) = sin <\%> sin <I\%> : [2 +4cos (x/ikxM)] [2 +4cos (\fzky)] (10.42)

51

The functions have dxy nodal structure in the 7t /4-rotated MBZ basis ey, which translates
to a dxz,yz nodal structure in the natural basis e, of the CBZ. Additionally, we conclude
that the form factors functions have dependencies on extended s-wave channels sy and

s1. Further the functions T',(k) with p = 1,2 fulfill the following useful orthonormality

relations:
_ 1 2
1= 52 /MBZ I'p(k)Tp(k)dk, (10.43a)
_ 1 Ry
0= 52 /MBZ I'p(k)Ip(k)d k. (10.43b)

10.3 Refined truncated basis approach

So far, we have applied a simple Bethe lattice description of the meson bound states, see
Figure 10.2, and we have neglected the momentum dependence of the wavefunction am-
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plitudes. While this had the advantage to obtain analytical expressions for the form fac-
tor My(k), Eq. (10.28), predicting quantitative features requires more sophisticate meth-
ods. In the following, we employ a refined truncated basis method, which systematically
treats the overcompleteness of the basis states and which allows us to fully take into ac-
count the momentum dependencies of the open and closed channel. We find qualitatively
excellent agreement with the previous calculations. This demonstrates the robustness of the
Feshbach scattering description: the scattering symmetry properties are inherited from the
resonant (cc) channel which we capture correctly in the simplified model.

When using the geometric string formalism to describe magnetic polarons (sc), we have
so far assumed that the string states {|jo, X)} form an orthonormal basis. As mentioned
in 10.1.1, this is not entirely true since every two trajectories differing by only by a Trugman
loop are equivalent and give identical spin configurations (up to global translations) so
that the string states form an overcomplete basis set. The same holds true for the string
states of the (cc) {|xc, Xcc) }, where similar loop effects lead to identical configurations. In
addition, the definition of these strings on a Bethe lattice neglects that some trajectories
lead to unphysical double occupancies of the chargons and thus overestimates the size of
the Hilbert space.

In this section, we will follow [319] and use a more quantitative, refined truncated basis
method avoiding the overcompleteness as well as unphysical states, and rigorously includ-
ing loop effects. To describe the (sc) meson, we start again from a single hole ¢ (or elec-
tron 6;: ,») doped into a perfect Néel background |0) and perform a Lee-Low-Pines trans-
formation [390] into the co-moving frame of the chargon. This transformation leads to a
block-diagonal form in the chargon-momentum basis so that we can compute the wave-
functions for any momentum k state. Similar to before, we then consider the chargon mo-
tion through a static spin background and construct a truncated basis by applying the NN
hopping term H; along sets of bonds consisting of up to #max segments. In contrast to the
above, we now do not label the states by the string X but by the spin configuration and
thus include every physical configuration only once. Since the Ising term J, gives a confin-
ing potential proportional to the number of frustrated bonds, the truncated basis presents a
controlled expansion of the Hilbert space relevant for low energy physics.

In order to describe the (cc) meson, we employ a similar expansion scheme but start
from two holes or two doublons doped into a Néel background at neighboring sites. Here
we assume the dopants to be distinguishable at first and again perform a Lee-Low-Pines
transformation into the co-moving frame of the first dopant. As before, we now apply the
hopping terms for either of the dopants up to ¢max and build a basis of all distinct and
physical configurations. Next, we antisymmetrize the states to account for the fermionic
statistics of the indistinguishable chargons.

Having constructed the truncated bases for open channel states #pen and closed chan-
nel states J%jscq, We can compute all the matrix elements of the Hamiltonian which do not
leave the subspace spanned by the truncated bases. This includes transverse spin fluctua-
tions J; and NNN hopping ¢ which do not break up the geometric strings. Note that we
still only include a subset of all ]| and t’ processes in the system, but we include all the pro-
cesses which strongly affect the (sc) and (cc) wavefunction. The truncated basis description
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Figure 10.10: Combined ], and #' scattering obtained from the refined truncated basis
method. We plot the total scattering form factor for hole dopants and realisitc parameters
in cuprates, i.e. t'/t = —0.2 and t/] = 3. The calculations for the refined truncated basis
method were performed by Pit Bermes.

allows us to go beyond the simple Bethe lattice description and to capture non-perturbative
t" and J, processes; in particular we include the modifications of the open channel states
in the presence of non-zero J |, t'. This leads to a significant momentum dependence of the
wavefunction and mixing of the rotational eigensectors away from the C4-invariant mo-
menta. Nevertheless, the dominant contributions to the (sc) wavefunction near the nodal
point still have s-wave symmetry and at the considered momenta Q modGM = 0, the (cc)
ground state retains its well-defined d-wave rotational quantum number.

In order to correctly describe the open (sc)* and closed (cc) scattering channels, we
have to again take care of the overcompleteness of our parton description. In fact every
spin and hole (spin and doublon) configuration contributing to the (cc) bound state could
be written as two individual magnetic polarons (sc)®>. Therefore we adapt the convention,
that every spin configuration where the flipped spins form a string connecting the chargons
contributes to the (cc) but not to the (sc)? state.

With this convention we obtain the scattering form factors M5 (k) [Eq. (10.25)] shown in
Figure 10.9. Here, we truncate the (sc) and (cc) Hilbert spaces at string lengths of {max = 8
and /g

max

used all (sc) states with a string length ¢/ < 5. The form factors qualitatively agree with

= 10 to determine the meson wavefunctions. To compute the overlaps M5, we

the Bethe lattice calculations shown in Figure 10.6 but have slightly larger values. This is
due to the fact, that the truncated basis method includes more possibilities for two individ-
ual polarons (sc)? to recombine into a bound (cc) pair (cc). Furthermore, in the truncated
basis method we find that the nodal ring in the form factor of the spin-flip recombination
processes || moves away from the hole pockets and towards the center of the Brillouin
zone.

We compare our calculations by (i) not including the ], and #' terms in the meson’s
wavefunctions, see Figure 10.9a, and (ii) fully including the t/], = 3 and ¢/t = —0.2
dependencies of the open and closed channels, see Figure 10.9b, using typical parameters
of hole doped cuprate superconductors [391]. We find that the non-perturbative correc-
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tions of the meson wavefunction leads to very minor differences justifying the perturbative
treatment of t'-processes. Note that including the || processes is crucial to obtain the hole
pockets of the magnetic polarons; a comparison between the geometric string model to
numerical DMRG studies of the -] model is discussed in Ref. [303].

In Figure 10.10, we show the combined scattering form factor Mt = MJ- — |% | MY for
hole dopants, see Eq. (10.38), including NNN tunneling ¢’ non-perturbatively. In the vicinity
of the hole pocket’s Fermi surface, the NNN tunneling and spin-flip processes interfere
constructively leading to sizable scattering form factors.

10.4 Effective Hamiltonian

So far, we have derived scattering interactions Vi jr o« M* (k)M (k') of two magnetic po-
larons in terms of the form factors and for zero-momentum pairs. Next, we want to take
another significant step by promoting our two-body problem to a many-body theory. Our
effective theory leads us to an effective model to describe d-wave superconductivity in the
low-doping and strong-coupling regime arising from a Fermi sea of magnetic polarons.

The effective model derived below is valid in a regime, when (i) the antiferromagnetic
background has sufficiently long-ranged correlations, {apm >> 4, and (ii) the density of
magnetic polarons, i.e. charge carriers, is low, and (iii) the system can be described by low-
energy scattering, i.e. at low temperatures kgT < ] ,t'. The requirement (ii) ensures that
the internal structure of the meson-like bound state does not have to be adjusted due to
substantial overlaps of the (sc) or (cc) wavefunctions; for the former this is expected to play
a role at doping ¢ 2 20% [7, 309].

The coupling matrix elements (or form factors) between the open and closed chan-
nel, see Section 10.2, allow us to integrate out the closed channel and derive an effective
Hamiltonian for the magnetic polarons with pairwise scattering in momentum space given

by [P11]

/Heff = /Hopen + /ﬂint/ (10.44)
Fint = Y Vi Ayt AL Aow 1700, (10.45)
kK

with the open channel Hamiltonian describing weakly interacting magnetic polarons, see
Eq. (10.8). For low doping, the Fermi surface forms two hole pockets around the dispersion
minima kmin = (£7/2,£7/2). Further, the effective interaction matrix elements Vj 1,
Eq. (10.25), arise from the emergent d-wave Feshbach resonance between (sc)? and (cc)
mesons with total momentum Q = 0.

The above derived analytical expressions of the form factors allow us to give a closed
form of the attractive two particle scattering interaction,

Vi = )1) [80(#)To (k') + g1T1(K')] [go(t)To(k) + g1T1(K)], (10.46)

where V = L2/2 is the volume of the magnetic lattice. Further, we have defined the cou-
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pling constants

(t') = L ot + t—/at, (10.47)
SOV =\oAE i ‘
. ]i JL
81 =\|5:F B, (10.48)

where AE denotes the bare energy splitting between the open and closed channels, see
Section 10.1.3. This energy splitting strongly determines the couplings strength between the
two channels. While we introduce AE as a free tuning parameters in the meson scattering
model, microscopic couplings such as extended Hubbard interactions eventually determine
the proximity to the Feshbach resonance of a given model [P11, P10, P6] and may allow
to tune the effective interaction strength between charge carriers in solids or cold atom
experiments.
In the following, we normalize the factors of the scattering interactions,

T'(k) =N "2 [go(t)To(K') + g1T1(K)] (10.49)

such that (27%)~1/2 [\ o T?(k)d?k = 1. Using Egs. (10.43), this gives N = g3(t') + ¢2. This
yields the final expression for the scattering interaction

Viw = ST(K)T(K), (10.50a)
g:=g(t) +gi (10.50b)
such that we arrive at a BCS Hamiltonian with highly anisotropic pairing interactions,
which can lead to an instability of the Fermi surface of magnetic polarons, i.e. around
the small, elliptical hole pockets at the nodal point.
10.4.1 BCS mean-field analysis

We treat the Hamiltonian (10.44) using a standard BCS mean-field ansatz in order to analyze
the symmetries of the BCS pairing gap A(k). We define the d-wave BCS mean-field order
parameter

Y T)T(K) (i1 7tre,), (10.51)
k/

which is the gap equation that has to be fulfilled self-consistently in accordance with the
BCS mean-field Hamiltonian,

Fnr = ) [ese(k) — ] ALy Ao + 8 Y A(K) [Ty 1AL | + Hee . (10.52)
K K
From an ansatz for the pairing gap, A(k) = AT'(k), it immediately follows that the pairing

gap has the same symmetry and nodal structure as the form factors shown in Figure 10.8,
ie A(k) o< ML



10.5 ARPES signatures 153

The magnitude of the gap and hence the mean-field transition temperature has to be
determined self-consistently and strongly depends on (i) the interaction strength g & AE, !
as well as (ii) the Fermi energy Er. In particular, in the low-doping regime these two energy
scales are competing, which may lead to a non-mean field character of the phase transi-
tion as the temperature is lowered going beyond the scope of this study. We conclude that
in the proposed Feshbach scenario [P11] a d-wave superconductor can be established and
is the leading order instability of a magnetic polaron metallic state recently observed in
Ref. [248]. However, the details of the BCS state, e.g. the magnitude of the pairing gap,
strongly depends on the bare energy splitting between the open channel and closed d-wave
channel AE;?, which requires future numerical and experimental studies, such as spec-
troscopy of the (cc) meson.

Before we discuss direct spectroscopic signatures of the tightly-bound (cc) state
in Section 10.5, we emphasize that the Bogoliubov quasiparticle dispersion, E(k) =

\/ [esc (k) — u]* + A2(k), is an indirect probe of our scenario accessible in single particle
spectroscopy, e.g., ARPES. The Bogoliubov dispersion is linked to the form factors derived
in Section 10.2, for which we find characteristic features such as an nodal ring-like structure,
see Figure 10.8. More directly, the momentum dependence of the superconducting pairing
gap A(k) « I'(k) o« M (k) can be analyzed as we discuss next.

10.5 ARPES signatures

An established experimental technique to probe the electronic structure of materials is
ARPES [369]. The (sc)2 Feshbach scattering channels described in this article rely on the
existence of the tightly-bound bosonic (cc) pair [P11]. The properties of the (sc) mesons,
or magnetic polaron, are directly accessible in conventional ARPES experiments, where a
one-photon-in-one-electron-out process is considered. This process corresponds to the cre-
ation of a single hole excitation in the material and thus strongly couples to the individual
(sc) channel.

Probing the (cc) bound state, however, is much more challenging because it involves
two correlated holes. In ARPES, the (cc) bound state can be probed by (i) a process, in
which an additional single hole couples to an already existing (sc) meson and forms a (cc)
meson, and by (ii) correlated two-photon-in-two-electron-out processes (cARPES). In the
following, we calculate the matrix elements for both processes and we find that the process
described in (i) only couples very weakly to the (cc) channel.

10.5.1 Single hole ARPES

In the low but finite doping regime, we describe the fermionic charge carriers as magnetic
polarons with dispersion relation &g (k) in a Fermi sea, see Eq. (10.7). In a photoemission
process, a hole with momentum k and energy w can be created. If this additional hole
is in the vicinity of an already existing spinon (s) with momentum p, which is bound to
a chargon (c), they can recombine into a (cc) bound state with momentum k + p and en-
ergy ¢« (k + p) while leaving behind a hole-like (5¢) excitation. The (cc) dispersion for the
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Figure 10.11: Single-hole ARPES. a In single-hole ARPES, a rare but possible process de-
scribes the removal of an electron close an existing (sc) meson. The matrix elements are
calculated by expanding in string length states; we include strings up to length ¢, < 1, as
shown for two examples. We show the spectral signal b in the nodal direction, i.e. k, at
the Fermi surface of the hole pocket and on the diagonal of the CBZ, and c at the antin-
odal point kan = (0, 7). Top panels: The two-body processes, involving the removal of
a (sc) and the addition of a (cc) meson, requires to convolve the (sc) dispersion &g at the
hole pocket around p = (+7/2, £71/2) (dotted region) with the shifted (cc) dispersion ¢
at K(;)n + p (red region). The gradient of the (cc) dispersion in the red regions, together
with the matrix elements R (k, p) determines the width of the spectral signal. Bottom pan-
els: We plot the spectral signal for | = 130meV, T = 1.3K, AE; = 20meV and various hole
dopings 6 = 5%,10%, 15 %. The large peaks corresponds to the quasiparticle peak of the
(sc) mesons. We find a weak and broad feature below the Fermi surface associated with the
(cc) bound state and with an energy onset at AE; (note the logarithmic scale, however).

d-wave channel in the ¢-] model cannot be calculated in the simple geometric string picture
but has been extracted from DMRG calculations [37],

ecc(p) = —J(cos(px) + cos(py) — 2] + AE,, (10.53)

showing the relatively light mass o« 1/] of the bi-polaronic state.

The corresponding ARPES signal is determined by a convolution of the matrix elements
with the Fermi sea of magnetic polarons given by

2
Aciacllow) = [ 5B nf(ewctp) =) Rlde )

X O(w +esc(p) — ¢ — ecc(k+p)).

(10.54)

Here, % (¢) is the Fermi-Dirac distribution at temperature T and we assume sufficiently low
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temperature such that the thermal occupation of the (cc) channel can be neglected; further
R(k,p) are coupling matrix elements, see Figure 10.11a. Note that the single-hole APRES
process gives rise to a two-particle continuum and therefore a broad spectral feature.

The matrix elements R(k, p) are evaluated by expanding the (cc) and (sc) wavefunc-
tions in the string length basis analogously to the calculation of the scattering form factor
in Section 10.2. Moreover, we approximate the meson wavefunction to be momentum in-
dependent and assume the ground state wavefunctions in the respective channel. Since the
meson wavefunctions only extend across a few lattice sites, we only consider (sc) strings up
to length ¢, = 1, which couple to (cc) contributions of length ¢ = 1,2. Using our approxi-
mation, we find

R(K,p) = V2se (K, by = 0)pec(p, £ = 1) [ cos(ky) — cos(ky) — cos(px) + cos(py)]
+ \@llec(k, by =1)pec(p,l =1) [Cos(kx + px) — cos (ky + py)}
+ ﬁlpsc(k, by = 1)¢ec(p, £ = 2)[ cos(kx + ky + px) — cos(kx +ky, + py)

(

+ cos(kx — ky + px) — cos(—kx + ky + px) — 2cos(px) + 2 cos(py)]

(10.55)

with momenta defined in the CBZ. Moreover, the matrix element (10.55) only contains con-
tributions from s-wave (sc) states and d-wave (cc) states, despite small mixing with p-wave
(sc) state at the nodal point. Nevertheless, we expect the approximation to be valid in the
very low doping regime, as we confirmed using the systematic truncated basis approach
from Section 10.3. For finite doping, the (sc) and (cc) wavfunctions will be adapted even fur-
ther due to interactions and reduced AFM correlations; we neglect such effects to R (k, p)
in the following.

We use the matrix element (10.55) to calculate the spectral weight in different regions k
of the Brillouin zone. In particular, the two-body origin of the spectral feature leads to a
contribution of the (cc) state at k + p, where p are the occupied momenta of (sc)’s in the hole
pocket, see Figure 10.11b and c (top). The confined meson bound states are assumed to exist
in the low-doping regime, where sufficient AFM correlation are present. Since the density
of (sc) mesons is low in this regime and the matrix elements are small, we predict only very
weak spectroscopic signatures with a maximum peak height of about 1073 relative to the
quasiparticle peak of the (sc)’s.

In Figure 10.11b and c (bottom), we analyze the ARPES signal for typical cuprate pa-
rameters, various hole dopings ¢ and for two common momenta in the Brillouin zone, i.e.
at the Fermi surface in the nodal direction k, and at the antinodal point k.. We assume a
bare open-closed channel energy difference of AE, = 20meV. Along the nodal direction,
see Figure 10.11b, we find a pronounced peak with a full-width-half-max (FWHM) around
15meV. While the onset of the signal, at AE, below Er, is a fit parameter the FWHM only
depends on the value of | without further fit parameters. Along the antinodal direction,
see Fig. 10.11c, we find a much broader hump followed by a dip between 15 to 25meV.
The onset of this feature, defined by the dip, remains at an energy scale AE; ~ 20meV as
observed in nodal direction.

In underdoped cuprates other, more pronounced peak-dip-hump features have previ-
ously been observed [393], dimming the prospect of detecting the weak signal we find in
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Fig. 10.11.

10.5.2 Coincidence ARPES

Alternatively, it was proposed in Refs. [P11, 37] to use correlated two-hole spectroscopy,
which is highly sensitive to the existence of the (cc) channel, and can be realized by
cARPES [366-368, 394], see Chapter 9. We consider processes with two in-coming photons
with momentum K and two out-going photoelectrons with momentum K + k, and we
discuss the matrix elements C(k) for the shortest string length ¢/ = 1. For the specific
momenta we consider, the process has no momentum transfer to the sample and allows
us to probe the (cc) channel at Q = 0, 7tr. The cARPES matrix elements for short strings is
calculated to be

C(k) o |Psc(k, o = O)|2¢CC(Q/ lee =1) [COS(kx) + COS(ky)] (10.56)

for momenta in the CBZ and the s-wave (4) and d-wave (—) channel. Therefore, we find a
sizable lower bound for matrix elements of the (cc) channel in cARPES with distinct sym-
metry features such as a nodal structure of the d-wave pair inherited from its m4 eigenvalue.



Bosonic, antiferromagnetic {-] models

ONE GOAL OF ANALOG QUANTUM SIMULATORS is to develop our understanding of
the microscopic mechanisms underlying strong correlated quantum matter. Combin-
ing spin models with physical tunneling t of particles [124] yields doped quantum magnets,
where mobile dopants frustrate magnetic order [112] and the statistics of the particles plays
a crucial role, see Chapter 7. Due to its intimate connection to strongly correlated elec-
trons, much effort has been invested in the exploration and quantum gas microscopy of the
Fermi-Hubbard model [P1, 39] with on-site interaction U, using ultracold atoms in optical
lattices [33, 289, 392, 395, 396]. The underlying superexchange mechanism naturally leads
to AFM interactions | = 4t>/U in fermionic systems, while bosonic models have effective
ferromagnetic interactions [60, 112], see Figure 11.1.

The behaviour of bosonic holes doped into an AFM background raises several inter-
esting questions, but has so far remained elusive due to the ferromagnetic interactions in
spin-1/2 Bose-Hubbard models, see Figure 11.1 For example, the microscopic mechanism
of hole pairing might not be specific to the Fermi-Hubbard model but instead a universal
feature of a broad class of related systems with strong spin-charge correlations.

In this Chapter, we propose an experimentally realistic scheme to realize AFM spin
models with (hardcore) bosonic mobile hole dopants in tweezer arrays of cold molecules or
Rydberg atoms. Using the density-matrix renormalization group technique, we study a -
J model with two bosonic and fermionic holes, respectively, comparing the role of statistics
in a minimal instance. Lastly, we present preliminary experimental results of our proposed
scheme implemented in one-dimensional Rydberg tweezer arrays.

We highlight that the exploration of doped quantum magnets with tweezer arrays offers
a variety of new tuning knobs and advantages, and thus opens the door to explore previ-
ously inaccessible parameter regimes. From the technical side, Rydberg tweezer arrays
operate with sub-second cycle times increasing the statistics of measurements compared to
typical optical lattice experiments. Further, tweezer arrays can be rearrange into arbitrary
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Figure 11.1: Doped quantum magnets. a) The interplay between mobile hole dopants and
antiferromagnetism leads to frustration [31]. b) In the strong coupling regime U >> t, the
superexchange mechanism in the plain-vanilla Bose- (Fermi-) Hubbard model yield effec-
tive (anti)ferromagnetic interactions. Using potential offsets or spin-dependent Feshbach
resonances, antiferromagentic interactions between bosons can be engineered [397, 398] in
optical lattices. In this Chapter, we propose a scheme to realize bosonic, antiferromagnetic
t-] models in three internal states of ultracold polar molecules or Rydberg atoms.

two-dimensional lattices of up to thousands of sites [115, 116] allowing to study, e.g., trans-
port of holes across a junction of different lattice geometries. In addition, because the mag-
netic interactions | are not generated via the superexchange mechanism [304], our proposal
offers a wide tunability of the coupling t/] and gives access to regimes that are not accessi-
ble in optical lattice experiments, such as the phase separating regime at t/] < 1 [302].

The first part of the Chapter is based on publication [P8]. The text and figures are re-
arranged, adapted and supplemented. The scheme for Rydberg atoms, presented in the
second part, was developed in collaboration with Simon Hollerith, Sebastian Geier [399]
and Neng-Chun Chiu. The experiments are performed in the group of Antoine Browaeys
at the Institute d’Optique in Palaiseau Cedex, France.

11.1 Bosonic t-] model as spin model

The main ingredient to realize doped spin models, such as the -] model shown in Fig-
ure 11.2a, is a mapping from the original model onto a new model described by Schwinger
bosons. The new spin model is then suitable for implementations in established experi-
mental platforms and the desired interactions can be engineered using the Floquet driving
technique.

The t—] model describes (hardcore) mobile spin-1/2 particles on a d-dimensional lat-
tice with magnetic interactions; hence the local Hilbert space is spanned by the hole and
one particle states {|h),| }),| T)}. Here, we investigate bosonic particles o) = ﬁ;’0|vac>,
where we express spins in the Schwinger representation S i = I ﬁ;-f,a‘ra/a/ aj with Pauli
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Figure 11.2: Schwinger boson mapping. a) The ¢-] model describes hopping of spin-1/2
particles on a lattice with tunneling amplitude ¢ together with magnetic interactions J. For
AFM interactions, the motion of holes (1)) or particles (| |),| 1)) frustrates the spin or-
der yielding rich physics for both fermionic and bosonic particles. b) The latter can be
implemented in the internal states of ultracold molecules or Rydberg atoms spatially lo-
calized in optical lattices or on an arbitrary graph of tweezer arrays. ¢) The local Hilbert
space {|h),| }),| 1)} can be encoded in the internal rotational states of molecules and we
define the three Schwinger spins S, I; and I}, which allows us to exactly represent the
t—] Hamiltonian as a spin model. d) In the isolated three level subspace of rotational
states |[N) with N = 0,1,2, the molecular Hamiltonian we consider has XY interactions
between N = 0,1. By performing periodic rotations on the S- and I,-Bloch spheres, the
effective Floquet Hamiltonian in spin representation can be engineered. The duration 7, of
individual Floquet evolution steps determines the effective coupling strengths of the target
Hamiltonian (11.4) (here with V = 0).

matrices T = (7%, 7Y,7%) and ¢ =, 1. Further, we introduce the (hardcore) bosonic hole
operator |h) = a7, vac).

To obtain the correct Hilbert space, the Schwinger bosons have to fulfill the local con-
straint

Al A+ al =1, (11.1)

NS P Aho_ At oA . . .
where 77 = & ,4j, and i} = a;,4;), are the local spin and hole densities, respectively, see

Figure 11.2c.
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The bosonic ¢-] Hamiltonian is given by

Aoy == Yty 1 (Alodindlydie +he ) + LY JES558+ Y vyilal,  (112)

i<j (% i<j & i<j

with « = x,y,z and the couplings can have arbitrary connectivity and range. The first
term o t describes tunneling of particles, the second term o J* describes magnetic XXZ
interactions with J* = J¥ = |1, and the last term o V is a hole-hole interaction.

The model (11.2) gains its importance because it captures the low-energy effec-
tive theory of the repulsive Fermi- or Bose-Hubbard models in the strong coupling
regime U >t [112]. However, the perturbative derivation exactly determines the
couplings, which for nearest-neighbour (NN) hopping are given by J* = =44#2/U
and V = —J(£2 — 1) /4 for the fermionic (+) or bosonic (—) models, respectively.

Our proposed scheme for realizing the model (11.2) in experiment enables broad tun-
ability [400, 401] of the Hamiltonian parameters. In particular, the ability to tune the ratio
between the hole-hole interaction V' and magnetic interactions | in our model facilitates
exploration of potentially interesting pairing regimes, which we study numerically in the
second part of this paper.

First, we perform an exact mapping of Hamiltonian (11.2) onto a new XXZ spin model
comprised of the three spin-1/2 Schwinger spins Sj, ij, ; and im with

A 1 T J/ A
z __ AT & + _ 5t 5.
S] =5 (n]. n]) S]. = 4;,4j,| (119
2, 1 F-3 ’
z AT _ sh + _ At 5.
lie=3 ("1’ ”]’) lio = 8ie0im
from which we obtain (up to a constant energy shift)
ﬁf*] = _Zztfﬂzﬁaﬁo"’_zzgu Sasa (11.4)

i<j o i<j a

We neglect a chemical potential term for the holes since we assume the total number of
particles is conserved. The form of Eq. (11.4) is very useful for our proposed implemen-

tation below, but we emphasize that the Schwinger spins are not mutually independent,
ie. [S]Z, ]ia] # 0.
The hole-hole interaction renormalizes the XXZ models and we find the following cou-
plings related to Eq. (11.2) and (11.4):
1 8
— 1y _ . Z — _ V..
i c Etl] i 9VZ] (11.5)
4 .
g;; = g‘:/] = LJ]_ gl] = ]1] Z]

So far, we have performed exact transformations and re-written the ¢-J] model in terms
of Schwinger bosons. The Schwinger spins have to fulfill the the number constraint (11.1),
which induces highly non-trivial spin-charge correlations and thus is beyond a simple spin-
1/2 chain. Likewise, the construction can be formulated in terms of mutually hard-core
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a) Bosons b) Fermions

Figure 11.3: Bosonic vs. fermionic two-hole states. We show ground-state correlation func-
tions for a t-] model with two a) bosonic and b) fermionic holes obtained from DMRG calcu-
lations on 20 x 6 cylinders. We find distinctly different behaviour for bosons and fermions
by evaluating the hole-hole (top) and spin-spin correlation functions (bottom). a) The hole-
hole correlator, centered around its reference site, ip = (xo = 10,9 = 3), shows a charge-
density wave pattern around the short direction of the cylinder. Additionally, we find a do-
main wall in the spin-spin correlation function with reference site ip = (xo = 1,0 = 3), on
the boundary (white dot); hence the bosons form a stripe. b) The fermions are tightly bound
into an isotropic pair embedded in a homogeneous AFM background. For both statistics,
we plot the hole density averaged around the short direction of the cylinder, which also
serves as a marker for convergence of our results. The DMRG simulations were performed
by Tim J. Harris and Tizian Blatz.

bosonic statistics, i.e., ﬁ;zﬁzz, =0forX =], 1, h

The constraint can be elegantly implemented in a spin-1 manifold in, e.g., ultracold
molecule or Rydberg tweezer arrays. To this end, we propose two schemes, which either
utilize dipolar spin exchange interactions to engineer the desired dynamics by Floquet driv-
ing, or directly enables the realization of Hamiltonian (11.4) in three isolated Rydberg states.
The former is discussed in Section 11.3, and the latter proposal is described in Section 11.6
with preliminary experimental results summarized in Section 11.7.

In the following, we elaborate on numerical density-matrix renormalization group
(DMRG) studies, in which we compare the ground-state of the fermionic and bosonic
t-] model.

11.2 Spin-charge order in the bosonic -] model

Understanding the nature of mobile dopants in strongly correlated phases of matter has
a long history, motivated by high-T, superconductors and more recently by layered 2D
materials [402]. The fate of the AFM Mott insulator under doping is still debated; however,
experiments in cuprates have revealed that even a few percent of fermionic dopants can
lead to a robust d-wave superconducting ground state [39, 284]. Hence, strong pairing of
charge carriers — the hole dopants — mediated by magnetic interactions [259] likely plays a



162 Chapter 11. Bosonic, antiferromagnetic -] models

key role.

Here, we perform a first numerical study of hole dopants in the ground state of the
2D bosonic AFM t-] model, comparing our results to an equivalent calculation using the
standard fermionic -] model. Let us emphasize that previous studies of the bosonic ¢-
] model have considered either lower dimensions, high temperature expansions or partial
AFM couplings (J* > 0, ] L < 0) [397, 398, 403-407]. In contrast, our model takes a further
step towards strongly correlated materials by studying fully antiferromagnetic interactions
in the spin sector (J%, J* > 0) with the cost of introducing a sign problem at low tempera-
tures; there our model is intractable for large-scale quantum Monte Carlo simulations.

To this end, the ground state with two holes in the zero-magnetization sector, §Z =0, of
the SU(2)-invariant version of Eq. (11.2), J* = ], was obtained from DMRG calculations on
along cylinder [54, 408—410]; the interactions are restricted to NN and have strength t /] = 2
and V/] = —1/4. We refer to the Supplementary Material of Ref. [P8] for more details. To
analyze the structure of the obtained pair wavefunctions, we extract (i) the reduced hole-
hole correlation (ﬁ?ﬁ?) / (Al <ﬁ;1> and (ii) the spin-spin correlation (57 §f> functions shown
in Figure 11.3.

The well-known case of fermionic holes [283, 284, 411] indicates the formation of a
tightly bound pair state, which can be seen from the C4-symmetric hole-hole correlations
(Figure 11.3b, top) and the absence of a spin domain wall across the hole-rich region (Fig-
ure 11.3b, bottom). While the intuitive picture for bosons suggests the holes to condense
and similarly bunch together, we find a surprising situation: the bosons have a tendency
towards stripe formation. At finite density of holes, such stripes form in e.g. cuprate ma-
terials, describing periodic charge modulations bound to 7t-phase shifts of the spin-spin
correlations (domain walls) across the hole-rich regions.

In our small system simulation, the two bosonic holes show strong tendency to pair
along the short, periodic direction of the cylinder, as evident from the hole-hole correla-
tions (Figure 11.3a, top). In contrast to the fermionic case, we observe a spin domain wall
across the hole-rich region (Figure 11.3a, bottom), a hallmark of stripe formation. Addition-
ally, the charge correlations show short-range repulsion along the short direction, distinctly
different from the structure of the C4-invariant pair of the fermionic holes but resembling
the situation in a stripe. Both scenarios, tightly bound pairs and stripe correlations, are
marking phases observed in strongly correlated electrons [246, 284].

This minimal instance — comparing two-hole fermionic and bosonic states — already
shows rich phenomenology and demonstrates an intriguing first experimental application
of our proposal. Future experimental and numerical studies of the bosonic AFM ¢-] model
can be expected to provide a fresh perspective from which to advance our current under-
standing of the physics of doped Mott insulators.

11.3 Experimental proposal: Ultracold molecules

Experimental setups with ultracold polar molecules have the capability to coherently ad-
dress N-level systems [105], which interact via long-ranged flip-flop spin interactions be-
tween rotational states with AN = £1 and Ampy = 0, £1, see Section 2.1. Further, because
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the dipole moment enables short Rabi pulse times between different N-levels with frequen-
cies in the microwave regime, they are highly suitable for Floquet engineering. There,
the system consecutively time evolves under the resonant dipole-dipole interactions fol-
lowed by fast qubit rotations, i.e., driving microwave transitions between rotational states.
Recently, the realization of an anisotropic XXZ model in a qubit subspace of rotational
states [106] using Floquet engineering has been demonstrated.

Here, we extend the scheme by using three states in the rotational manifold IN)
with N = 0,1,2 and we identify the molecular states {|0), |1), |2)} with the local Hilbert
space {|h),| |),| 1)} of the t—] model. The molecular Hamiltonian expressed in terms of
the Schwinger spins (11.3) is given by

Hmol = Y_ Xij (flﬁf]ﬁ —I—h.c.) , (11.6)

i<j

with xjj = x(1 —3cos?6;;)/|r;j|*. Here, 1;; is the vector connecting lattice sites i and j, and
0;; is the angle between the quantization axis and r;;. In the following, we choose 6;; = 7t/2
and set the NN distance to r;; = 1. The XY coupling strength x, is determined by the
resonant dipole moments of the molecule [101, 109], and here we only consider interactions
between N = 0, 1 [412], while the state N = 2 is non-interacting, see Figure 11.4a. This can
be achieved by using the selection rules Amy = 0,£1 of the dipole interactions, e.g. we
propose to use [N = 0,my =0), [N =1,my = 0) and |[N =2, my = —2).

Next, we describe a scheme to realize a t-] model with tunable XXZ magnetic inter-
actions. To this end, we consider the molecular Hamiltonian (11.6) with flip-flop interac-
tions x;j. By comparing this model to the ¢-] Hamiltonian (11.4), we find that the micro-
scopic model corresponds to a ¢-] model with tunneling of | |)-particles only. Hence, we
propose to perform consecutive, fast rotations between all pairs of states, i.e., on the 1,-
and S-Bloch spheres, to obtain a time-averaged Hamiltonian with equal strength | 1)- and
| 1)-particle tunneling.

We emphasize that the long-range interactions directly transfer to the effective model
and hence a t-] model with =3 tails is realized in cold molecules. Enriching the Floquet
protocol by spatial rearrangements [122], pure NN interactions or even models with ar-
bitrary connectivity can be implemented in principle. Depending on the stability of DC
electric fields, the fidelity of microwave transitions and coherence times across multiple ro-
tational levels [413, 414], effective Floquet Hamiltonians [415] of differing complexity can
be realized. One specific sequence of Floquet rotations is shown in Figure 11.2d: Tuning
the times 7, of Floquet steps allows for the implementation of models with tunable ra-
tios —t/J* >0and J*/J* > 0(J, > 0)and V = 0.

To show this, we start from the molecular Hamiltonian H,;, Eq. (11.6), and derive the
effective Floquet Hamiltonian to first order, i.e., we neglect terms O(7?/T2), where T is
duration of a single step within the Floquet cycle of length Tr. We simulate the dynamics of
a building block with three sites to confirm excellent agreement between the exact and the
Floquet averaged dynamics.

In our molecular Hamiltonian, we assume that only two levels interact, e.g., by choosing
appropriate sublevels with corresponding selection rules, see Figure 11.4. This has the ad-
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Figure 11.4: Molecular scheme and Floquet sequence. a) We propose to Floquet engi-
neer a t-J-V model starting from a molecular Hamiltonian with two interacting levels (e.g.
IN = 0,my = 0) < |[N = 1,my = 0)) and an auxiliary non-interacting level (e.g.
IN = 2,my = —1))). Using one- and two-photon microwaves with Rabi frequency () one
can rotate between all pairs of levels. To obtain a target {-J-V model, we propose to con-
tinuously time evolve the three level system under the application of periodic Rabi pulses.
b) The sequence of microwave pulses gives rise to a t-] model (V = 0) with times T, deter-
mined by Egs. (11.11)a-e. The time evolution under the shown sequence is demonstrated
in Figure 11.5. ¢) Similarly, we propose a Floquet sequence to realize a t — ] -V model with
times 7, determined by Egs. (11.13)a-f.

vantage that the Floquet sequence enables the realization of a highly tunable ¢-J-V model.
In particular, we show how to realize target models with any

—t
el = 8 > 0, (11.7)
and
1L
1) et ::?>O and € =0
(11.8)
L vV 9
(II) GL::F>1/2 and 0<€V:ﬁ<i
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For the case of antiferromagentic spin interactions, we choose |, > 0, which results in
models with an overall positive sign for the kinetic energy term o t. Below, we propose two
different Floquet sequences to realize models with V' = 0 and V # 0, respectively. Note
that more elaborate Floquet sequences, including interactions between all three levels, can
be derived but lead to restricted tunability. Moreover, we can achieve parameter regimes
with negative couplings by combining the Floquet scheme with spatial rearrangement and
anisotropic dipolar interactions.

Our Floquet sequence requires rotations between all three Schwinger spins S, I, and
I, see Eq. (11.3). The non-interacting levels have, by construction, a vanishing transition
dipole matrix element but two-photon transitions can be efficiently implemented; therefore
one and two-photon microwave transitions can fully rotate within the three level system.

To derive the Floquet sequence, we find it convenient to re-write the target ¢-J-V Hamil-
tonian as

iy = £ = o [+ Bl 40 [815+519]
i<j

o
+Z§V.. [(2_€)fz IF 4 Er? fz_] + ]?—év--u—g) 5262
~ 9 1 1,0%],0 i,0%7,0 ij 9 1 i (r

where we have introduced the parameter ¢ € R and for ¢ = 0 we retrieve Eq. (11.4). Here,
we neglect the chemical potential terms; hence we assume that the driving frequency is low
compared to the internal molecular energy scales w to suppress driving induced excitations,
i.e.1/Tr < w. On the other hand, we require the driving frequency to be much faster than
flip-flop interactions, 1/Tr > x. Since, w ~ 1 GHz and x ~ 1 kHz the limits can be
achieved without concern of heating at this stage, or higher-order processes.

The above Hamiltonian can be derived as the effective Floquet model engineered from
the underlying molecular Hamiltonian, see Eq. (11.6), as we now demonstrate. To obtain
the effective Hamiltonian, we define global rotations on the S-Bloch sphere by unitary op-
erators (% (¢), where & = x,y, z is the rotation axis and ¢ the angle of rotation. To first order
in 7/Tr and assuming instantaneous rotations, the effective Hamiltonian is given by

Tlegt = Y 7, (11.10a)
n F
Hy = U Ay, (11.10b)

where T, is the evolution time of the n-th Floquet step, see Figure 11.2d, and Tr =}, 7, is
the total time of one Floquet cycle. Moreover, we have defined U, to be the product of all
rotations preceding the n-th Floquet step.

11.4 Floquet sequence for -] model

We propose a sequence of microwave rotations that average to an effective Floquet time
evolution under a t-] model without hole-hole interaction V' = 0, see Figure 11.4b. The form
and coupling strengths of Hamiltonian (11.10a) are summarized in Table 11.1. Enforcing
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Figure 11.5: Floquet time evolution. a) We perform exact time evolution of a system of
three molecules by quenching the initial state. b) The system evolves under the molecular
Hamiltonian and under a sequence of finite width Rabi pulses. The sequence gives rise
to a t-] model with t/] = 1 (t = 2/11y) in first-order Floquet theory. ¢) We compare the
stroboscopic (dots) to exact target ¢-] (solid) time evolution the hole occupation (blue) and
magnetization (orange) on site 1. We vary the Floquet cycle time Tr as well as the Rabi
frequency ). For QO/x = 50 and Trx = 1, the Rabi pulses overlap such that the Floquet
prediction is invalid. For all other parameter regimes, we find very robust prediction of the
dynamics.

the constraints that hopping of |- and {-particles should have equal amplitudes as well as
equal magnetic XX and YY interactions constrains the time steps in the Floquet evolution.
Therefore, we obtain the following set of equations:

% — <6eL 1 24¢t + 3) B (11.11a)
T =41 (11.11b)
=121 (11.11c)
=T (11.11d)

=37 (11.11e)
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time- T T T T T3 T4 3 T4 T3 T
S 0 0 0 X 0 X X X 0
SAE/ SA;/ 0 0 0 X X X X 0
5; 8 0 0 0 X X 0
Iy ; X 0 X 0 0 0 0 0 X
mr ; X 0 X 0 0 0 0 0 X
Gy 0 0 0 0 0 0 0 0 0
Iy, 0 X 0 0 0 0 0 0 0
0L, 0 X 0 0 0 0 0 0 0
LL 0 0 0 0 0 0 0 0 0

Table 11.1: Effective Floquet couplings with V' = 0. Global rotations of the molecular
Hamiltonian (11.6) generate the terms listed in the first column. The rotations and evolution
steps T, correspond to the sequence shown in Figure 11.2d and Figure 11.4c. The coupling
strength arise in the summands of Eq. (11.10a) and have to be multiplied by 7,/ T. Here we
have suppressed site indices.

X 2

To justify the first-order Floquet expansion, we perform exact diagonalization studies in-
cluding long-ranged dipolar interactions and finite pulse width, i.e. finite Rabi frequency (;
for simplicity we assume the same Rabi frequency for all three transitions shown in Fig-
ure 11.4a. We compare the time evolution under the Floquet time evolution with the theo-
retically predicted target model fort = [+ = J* =1and V = 0.

In our numerical calculations, we initialize a system of three molecules in a product state
lp(t =0)) = | 1)1 @ |!)2 ® |h)3, see Figure 11.5a. We continuously time evolve the system
under Hamiltonian (11.6) (nearest-neighbour interaction strength x) and apply periodic ro-
tations between the three levels according to the sequence shown in Figure 11.5b with vari-
ous realistic Rabi frequencies 2/ x = 50,100, 200. Moreover, we vary the time Tr of a single
Floquet cycle. Finally, we stroboscopically measure at times ty; = MTr with M € IN and
compare observables to the time evolution of an exact t-] model shown in Figure 11.5¢c. We
find excellent agreement over the entire range of parameters demonstrating the robustness
of the Floquet scheme. Note that for very short times Tr and slow Rabi frequencies (), the
Floquet prediction breaks down due to overlapping microwave pulses. As soon as the indi-
vidual pulses are separated, the time evolution is well described by the first-order Floquet
Hamiltonian with increasing fidelity for shorter Tr and faster Q2.
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Figure 11.6: Long time evolution. As a consistency check, we perform the same calcu-
lation as in Figure 11.5 and show the long time behaviour. For faster Rabi frequencies the
fidelity of the Floquet approximation increases demonstrating the robustness of our scheme
at times exceeding current experimental capabilities.

To analyze the long time behavior of the Floquet sequence, i.e., going way beyond exper-
imentally realistic time scales, we provide additional numerical simulations in Figure 11.6.
As expected, we find that short Floquet cycle times Tr and a fast Rabi frequency () lead to
more robust Floquet dynamics. This demonstrates that - in principle - our scheme enables
to accurately explore t-] models for up to times T >> |t| =1, |J| L.

11.5 Floquet sequence for ¢-/-V model

The nearest-neighbour hole-hole repulsion V' can tune properties of tightly-bound hole-
hole states and drive a crossover from a BEC- to BCS-scenrio in mixed-dimensional ¢-] lad-
ders [P10, P6]. Moreover, as we argue in Chapter 9, the hole-hole repulsion V' can model the
inefficient screening deep in the insulating phase of cuprate superconductors [P11]. Here,
we derive a Floquet sequence, which includes a hole-hole repulsion V' terms in our pro-
posed scheme for polar molecules. The Floquet sequence is shown in Figure 11.4c. We
target a t-J-V model as written in Eq. (11.9) with { = 0. From Table 11.2, we can read-off
the required Floquet times for models with 0 < €V < 9/4 and et > 1/2:

-1

% _ [(eL 426t + z) % +2(2ef €t - 1} (11.13a)
T = [Ti(efﬂ) + et] T (11.13b)
5
n=>1 (11.13¢)
8
T3 9/ —4 T (11.13d)
o 1 1 T3
u=3 [ (2+ T) 1} T (11.13¢)
S (11.13)
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Table 11.2: Effective Floquet couplings with V. Global rotations of the molecular Hamilto-
nian (11.6) generate the terms listed in the first column. The rotations and evolution steps T,
correspond to the sequence shown in Figure 11.4c. The coupling strength arise in the sum-
mands of Eq. (11.10a) and have to be multiplied by 7,,/T. Here we have suppressed site
indices.

with the effective coupling strength

Z
2
F_2tts (11.14)

=
Dﬂ

11.6 Experimental proposal: Rydberg atoms

Rydberg atoms in optical lattices [416] and tweezer arrays have become an established plat-
form in the quantum simulation of magnetism [51, 85, 89, 91, 92, 96]. In particular, tunable
spin-1/2 XXZ models have previously been realized via Rydberg dressing [95], Floquet
engineering [86, 87] and precise selection of Rydberg states [88].

The model (11.4) we suggest to study requires control over interactions within a three-
level system. Here, we propose a direct implementation within highly excited |nS), |n'P)
and |n"'S) states [88]. As we will calculate explicitly in Section 11.7, this is natural within
existing setups and constitutes a promising route because the strong resonant dipole in-
teractions combined with van-der-Waals Ising interactions yield experimentally appealing
timescales.

In our Rydberg mapping, we identify the states as follows, see Figure 11.7,

nS)=11) [n'P) =) |n"S)=1). (11.15)
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The dipole-dipole interaction between states of different parity, see Chapter 2.1, leads to an
exchange of excitations between the pair states

A csP
(n'P,nS|Hrya|nS,n'P) = (1 — 3 cos” ;) —>— (11.16a)
T

R CS'P
(n"S,n'P|Hrya|n'P,n"S) = (1 — 3 cos® 0;;) —— (11.16b)
r
corresponding to tunneling of |-particles and f-particles, respectively. The interaction
strength depends on the distance r;; = |r;;| between two sites i and j and the angle 6;;

between r;; and quantization axis B.

Next, we consider the exchange interaction between pairs of spins, i.e., between two
atoms in |nS,n”S) = |],1). This state is not directly dipole coupled to the state with
exchanged spins |n”’S,nS) = | 1,]). As proposed by Whitlock et al. [417] and as experi-
mentally demonstrated by Franz and Geier et al. [88], van-der-Waals exchange interactions
between a pair of S states can be implemented. Importantly, the interaction strengths of
the van-der-Waals interactions and direct exchange (tunneling ) become comparable by
choosing a suitable pair of states close to a Forster resonance, see Chapter 2.1. The induced
exchange corresponds to spin flip-flop (] ) interaction and the Forster resonance can be
tuned by the magnitude and angle of the magnetic field, since the energy differences to vir-
tual pair states experience Zeeman shifts'. A detailed derivation can be found in the PhD
thesis by Sebastian Geier [399] demonstrating that non-zero coupling matrix elements

ss'
(n"S,nS|Hrya|nS,n"S) = M

7o,

ol

(11.17)

can be found in Rb. The van-der-Waals coefficient Cgi’(@,-]-) has a non-trivial angular
dependence, which for the case discussed below can be approximated by the fit func-
tion Cgi’(@ij) = a + bcos? 0; +c cos? 0;; with fit parameters a, b and c.

Last, we consider the van-der-Waals-type diagonal interactions between pair states
of strength o ri;G. Those interactions give rise to spin-spin (J,), hole-hole (V) and
hole-spin (W) interactions as we derive below. Likewise, the pair interactions have
a non-trivial and strong angular dependence that is well described by the fit func-

tion Cgf"' (6ij) = a + bcos? 6;j + c cos* 6;; as above.

Exact mapping of the Rydberg model to a ¢-]/-V-W model. We show that the above in-
teraction between three Rydberg states {|nS), |n'P), |n"S)} give rise to the t-J-V-W model
with Hamiltonian

Fiogvow = Fe+ Hy+ Ay + Hw + Hp + Ay, (11.18)

INote that we still assume a perturbative, van-der-Waals regime.
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Figure 11.7: Implementation of t-] model in three Rydberg state. We map three internal
Rydberg states of an atom to the local Hilbert space spanned by {|h), |]), |1)}. By choosing
a specific set of states, see Section 11.7, pair interaction corresponding to tunneling f, and
spin interactions J,, /| can be induced. Additional hole-hole (spin-hole) interactions V' (W)
appear in the exact mapping from the Rydberg Hamiltonian to a ¢-J-V-W model.

where the interaction terms are given by

= =) to(ry) (ﬁ;r,aa;r,hﬁi,hﬁj,a + h.c.) (11.19a)
i<j o

Ay =Y (PSS + h(z 1) (578 +he)] (11.19b)
i<j

Hy =Y V(ry)nja} (11.19¢)
i<

Hw =Y W(ry) (ﬁfﬁ? + ﬁ?ﬁf) (11.19d)
i<j

Hy, = Zh]%(rij)ﬁj. (11.20a)
]

=~ Zyj(rij)ﬁ;'z- (11.20b)
j

The operators are defined in Section 11.1, i.e., the hardcore bosonic operators 4, are asso-
ciated with Schwinger spins.

Let us derive the t-]J-V-W model step-by-step. First, we consider the off-diagonal
terms « t;,J;. From Egs. (11.16) and (11.17), we can directly read-off the exchange
processes of the tunneling Hamiltonian o t, and the in-plane spin XY interaction o< |, . The
coupling strength expressed in terms of the Rydberg pair exchange interactions « C37, Cglp
and Cgi are summarized in Table 11.6.

Next, we want to obtain the diagonal part of Hamiltonian (11.18). To this end, we con-
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t-J-V-W Rydberg
ty(rij) r?] —C5P(1 — 3 cos? b))
ty(rif) r?] —C5'P(1—3cos?6;;)
J(rij) - 1%, C35(8;7) + C3''(637) — 2C5% (65)
Jilrip) 7§ 2-Cg5 (6y)
V(rij) 15 i [CES(%) +Cg(0;) + chsl(ei]’)} — C3P () — C3'"(63)) + CEP (65)
W(ry) -1, : [C‘gs(sz) - Cg/sl(f’ij)}
I (ry) 3 (G5 (0y) — € (6|
wi(rij) oy % [Cés(f?ij) +CF%(8;)) +2C55 (0;) — 2CEP (0) — ZCS/P(Qi/)}

Table 11.3: Mapping of interaction strengths. We show the interaction coefficients of the
t-J-V-W model, Eq. (11.18), expressed in terms of the C3 and Cg coefficients of the Rydberg
pair interactions.

sider the Rydberg density-density interactions given by

rydiag CAB B
g = Y. Y ———-nf'af, (11.21)
(A,B)EZ i<j ij

where the coefficients Cg‘B(GZ-j) describe the diagonal van-der-Waals pair interaction be-
tween Rydberg states A and B with the angle 6;; as defined above, and Z = {S,5,P} x
{S,S’, P}. We use the hardcore constraint of the occupation number operators,

Az ad Al =1 Vj, (11.22)
. AZ . ,\h
to express the number operators by the spin-1/2 operator 5; and hole occupation 71 as
101

~S z AP
7 = =5/ + - — -#;

! ! 22 ! (11.23)
1Y = 4824+ - — —pP
j i T 9%

Inserting Egs. (11.23) into the diagonal Hamiltonian Eq. (11.21) yields
~ di PUNPN Ao n ~PA A
s = 3 [J= ) S35+ V (rig Al + W ry) (S70] +0S7) + ¥ (rig) 8 — p(riy)af +const.|.
i<j
(11.24)
This exact mapping allows us to identify the coupling strengths of the diagonal terms in
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the t-J-V-W model [Eq. (11.18)] with the Cs van-der-Waals pair interactions. The coupling
strength are summarized in Table 11.6. Importantly, we highlight that the dipolar « 73 scal-
ing for tunneling and van-der-Waals « r~° scaling for the remaining interactions offers an
additional tuning knob, particularly useful for application in 2D arrays, see Section 11.7.4.

We note that the re-writing from the occupation number basis in terms of spin oper-

; z _ 17 _ 141
ators, i.e., Sj = 3fi; — af},

field o if and chemical potential o< j1;. The strength of the field is obtained by summing

introduces linear shift corresponding to a local longitudinal

over neighbouring atoms, see Table 11.6, weighted by their distance with rif originating
from the van-der-Waals interactions. Since the weights fall off very quickly, we can as-
sume the local fields to be constant within the bulk. However, the boundary atoms experi-
ence smaller fields. For example, if we assume that the field in the bulk is constant and of
strength h* = ( - h, where ( is the coordination number, then the field at the boundary is to
a good approximation of strength h* = ({ — 1) - h.

11.7 Experimental realization in % Rb

In the following, we consider an explicit implementation of our proposed scheme in three
Rydberg states of % Rb, and discuss preliminary experimental results obtained by the group
of Antoine Browaeys. The presented pair interaction strengths were calculated by the ex-
perimental collaborators using the package from Ref. [84].

11.7.1 Pair interactions

For the commonly used atomic species # Rb, we find an experimentally feasible set of Ryd-
berg states, see Figure 11.8a, to be given by

|60S1/2,mj =1/2) = |])  [60P3/5,m;j=—1/2) = [h)  [61S1,,m; =1/2) =[1).

(11.25)
The choice of the m; sublevels allows to change the sign of the tunnelings ¢,; for the above
choice we obtain t, > 0 (f, < 0) at § > 54.7° (6 < 54.7°). An additional tuning knob, espe-
cially for interactions between the 60S and 61S state, is the magnitude |B| of the magnetic
field, which we set to |B| = 45G. To exploit the angular tunability, we consider a 1D chain
of L = 12 atoms, see Figure 11.8b, and the magnetic field shall be pointing in the plane of
atoms. Thus, the angle 6 can be tuned by rearranging the location of tweezers in the plane.

In Figure 11.8¢c, we show the angular dependence of the coupling in the ¢-]J-V-W model
using the mapping summarized in Table 11.6. For the spin-spin interaction, we find a weak
angular dependence and we note that (i) /; > 0 is antiferromagnetic, (ii) J; < 0 is ferro-
magnetic and (iii) we have |J| | > |];| for all angles 6. Therefore, for sizable t/] the ground
state of the model features AFM in-plane spin-spin correlations allowing us to explore the
interplay between mobile hole dopants in an AFM spin background, see Figure 11.1a.
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Figure 11.8: Implementation in Rb. a) As proposed in Section 11.6, we identify three
atomic Rydberg states in 8 Rb with the hole and spin states at a site. b) The image shows
averaged fluorescence images of atoms in a tweezer array obtained by the experimental
team in the Browaeys group. The magnetic field B points in the x-y plane of atoms and
determines the quantization axis. The picture shows 1D chains of length L = 12 with
different angle 6 between the direction of the chain and the quantization axis. Within a
single experiment, only one chain with angle 6 is chosen. ¢) The pair interactions between
Rydberg atom exactly map onto a t-J-V-W model, Eq. (11.18). We show the corresponding
interaction strengths for the set of states in a) at |B| = 45G; here the hole tunneling has
amplitude ¢ (0) = 1.06 - t4(6) = (1 — 3 cos® ) - 0.88 GHz x ym®. The calculations of the Cs
and Cg coefficients were performed by Sebastian Geier and the Browaeys lab.

11.7.2 Experimental sequence and benchmarks

The experimental sequence developed by the Browaeys group [89, 90] allows them to pre-
pare initial products states |p(t = 0)) = ®]-L:1|oc> jat time t = 0 with « = h, ], 7. Subse-
quently, the system is time evolved under the Rydberg Hamiltonian, which is equivalent
to the t-J-V-W model in Eq. (11.18), for a time t > 0. At the end of the protocol, one of
the Rydberg states is globally transferred to the non-interacting atomic ground state and
followed by imaging. Repeatedly executing the sequence collects snapshots of the many-
body state |i(t)) in one specific Fock basis at discreet times t.

Let us consider absolute numbers in order to estimate available energy scales and ex-
perimental regimes. In the following, the distance between neighbouring atoms is set
tod = 9.9 um. This distance provides a trade-off between sufficiently strong interaction,
while initial state preparation is still possible with the available Rabi frequencies.

In Table 11.4, we show the coupling amplitudes for a variety of different angles 6, and
we find the overall energy scale sizable to observe a few tunnelings and flip-flop events
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' angle | o yse | g_a97° | 9=547° | 6=597° | 0=090°
couplings

J./2m 0.64MHz | 0.67MHz | 0.69MHz | 0.72MHz | 0.81 MHz
I./]. —0.62 —0.63 —0.64 —0.65 —0.68
t /] —0.69 —0.33 0 0.31 1.11
t/]1 —0.65 —0.31 0 0.29 1.05
V/]L 1.11 1.20 1.17 1.02 —0.07
W/ 0.04 0.05 0.04 0.03 —0.02

Table 11.4: Coupling strength in 1D chain. We calculate the coupling strength for the
Rydberg states as in Figure 11.8a-c and for different angles 6 at d = 9.9 ym.

within experimentally realistic times of up to tmax ~ 5 us [89]. In the 1D chain, the angle 0
can be picked closed to the magic angle Omagic = 54.7° [85] to realize a parameter regime
with t/] < 1. In contrast to optical lattice experiments, where the spin interaction is in-
duced by the superexchange mechanism with | = 4t2/U, the Rydberg implementation is
not restricted to t > J. While Hubbard-type models are in the strong coupling regime,
t > ], there are numerous theoretical prediction for t/] < 1. These predictions include the
dynamics of single holes? at weak coupling [418] or phase separation [302], which remain
to be confirmed experimentally.

To numerically benchmark the above described experimental protocol, we focus on the
set of parameters obtained for 6 = 45°. In the experiment, an initial state Néel state with a
hole domain wall in the middle, given by

[p(t=0)) = | It hhhh [11T), (11.26)

is prepared and time evolved. After time t, the local occupation in the hole- and |-basis is
measured and plotted in Figure 11.9 (top). Here, the maximal experimental time is tmax =
2.1 ys or tmax =~ 5/t|. In Figure 11.9, we compare the experimental data to exact numerical
simulations using the parameters from Table 11.4 without any fit parameter. We remark that
we simulate the Rydberg Hamiltonian, however the Rydberg model and t-J-V-W model are
equivalent as shown above®.

Notably, we find coherence times up to all experimentally measured times, see Fig-
ure 11.9 (top right), which can be seen from the flip-flop oscillations of the Néel background.
We highlight the excellent agreement to the numerical simulations obtained from ab initio
calculations. In the charge sector, we see an interplay between hole motion and the strong
hole-hole interactions V. Instead of ballistic spreading of the holes with tunneling ¢, we
observe a reduced hole mobility and a bunching of holes at the center. In the numerical
simulations, see Figure 11.9 (bottom left), the holes eventually reach the boundary followed
by a reflection of the wavefront. In the experimental data, see Figure 11.9 (top left), we rec-

2We note that the single-hole problem is independent of the particle statistics.
3 As a consistency check, we have compared the full spectrum of the two models in a small system.
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Figure 11.9: Comparison of experimental data and numerical simulation. We plot the lo-
cal occupation of atoms in hole (down) in the left (right) column after time evolving the
initial product state state | |T]1 hhhh |1]T). Top: We show preliminary experimental
data of a chain of length L = 12 and at angle § = 45° obtained in the 8 Rb Rydberg tweezer
experiment in the Browaey’s group. The Rydberg state and parameters are chosen as in
Figure 11.8 yielding t| /]| = —0.69. Bottom: We use the theoretically predicted pair inter-
action strength and numerically simulate the experiment without any fit parameter.

ognize a faint signal of holes at the boundary and a revival of hole probability in the center
at late times.

Experimental errors. The main sources of experimental imperfections are threefold. (1)
The largest error source is attributed to imperfect initial state preparation. Hereby, the
strong pair interactions between Rydberg states shift the single-particle resonances mak-
ing it challenging to experimentally prepare high-fidelity initial states. (2) Much smaller
errors arise from the spatial fluctuations of the atoms. While the atoms are almost cooled
to the ground state of the tweezer trap, the finite trap frequency leads to a spatial extend
of the atomic wavefunction in the sub-micrometer range with relative positional errors of
around 1%. (3) The decay of Rydberg atoms can be neglected on the time scale of the exper-
iment. The single particle decay rate is around 1% per atom and ys.

We have benchmarked all three error sources using the numerical quantum trajectory
method [419] and we compared various observables. By including the experimental errors
into our numerical simulations, the experimental data can be reproduced well. As expected,
the errors play a more important role in the evaluation of correlation functions. Thus far,
the main source of error is purely a technical limitation and can — in principle — be overcome
with either larger Rabi frequency or by working at larger distances. However, the latter will
require to access longer experimental times, for which Rydberg decay may start to become
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the main limitation.

11.7.3 Experimental probes for the 1D ¢-]-V-W model

Next, we discuss probes for the 1D t-]J-V-W model that are accessible with the newly es-
tablished tweezer platform and go beyond experiments in optical lattices. Particularly, we
focus on the regime |t| < |]| |, |Jz|, which is realized for angles 6 = Omagic = 5° and where
hole-hole repulsion V is the dominant energy scale, see Table 11.6; we set W = 0 in the
following.

Strong repulsive interactions can lead to the formation of a bound state [420]. In the
Bose-Hubbard model with two particles this can be understood by a bound state that sep-
arates from the scattering continuum from above and thus remains stable. Intuitively, an
isolated quantum system cannot dissipate energy and thus by initializing a high-energy
state with energy V >> ¢, it must remain stable because there are no degrees-of-freedom to
decay into. Similarly, we propose to prepare an initial product state with

[p(t=0)) = (Za;,hﬁ;hail,gaiz,a> ®f1 |oy) (11.27)
[

where 0; =, 1 is some spin configuration with a total magnetization of Sg,; = (¥ SA}Z>, and
we have replaced the spins at sites 7; and i with holes. The energy of the initial state is
determined by the repulsive V and the spin interactions scaling extensively with system
size.

Let us first consider the special case where the spins {c;}; form a ferromagnetic
background, i.e., we set the total magnetization to S, = 0.5(L — 2). In this limit, the
model t-]-V-W model reduces to hard-core bosons with strong repulsive V and long-range
tunnelings ¢. For sufficiently large V /t and in the limit of NN tunnelings, the repulsive
bound state lies well-above the scattering continuum [420] and thus we find a heavy pair
of mass (2te) ! = 2V/t?. Interestingly, the perturbative tunneling process of the pair
can constructive (destructive) interfere with the NNN tunneling processes t' = t/8 below
(above) the magic angle, see Figure 11.10. Therefore, in the perturbative regime we predict
an effective tunneling of the pair given by

(11.28)
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Figure 11.11: Repulsively bound state in AFM background. We initialize a Néel state with
two holes in the center of a chain of length L = 12, and time evolve numerically under
Hamiltonian (11.18). We plot the unconnected (connected) hole-hole correlation map on
the top (bottom) for different times. The spreading of correlations along the diagonal is a
signature of the repulsively bound hole pair. Left: Below the magic angle, t/V = 0.30, we
find fast spreading of the hole pair. Right: Above the magic angle, t/V = —0.28, the NNN
tunneling destructively interferes with the perturbative pair tunneling and thus the pair’s
effective mass is enhanced.

below (+) and above (-) the magic angle.

The situation becomes more subtle once we start to decrease the total magnetization to
zero. Then, the problem cannot be reduced to a two-particle problem but instead a much
larger Hilbert space is introduced by the spin background. In this scenario, it is not obvious
that a repulsively bound state can exists unless the repulsive energy exceeds the extensive
energy of the spin background. Experimentally, we can probe the stability of a repulsive
pair by initializing the product state | [T} 1) hh 1] 1/1) followed by time evolution.

To analyze the dynamics of holes and their bound state, we measure the hole-hole cor-
relations

Cij(t) = ()|t [y (t)) (11.29)

and its connected part

Cii(t) = (w(®)] [ — 7] [ — 7] 19 (1)), (11.30)

with ; = ((t)|7;|¢(t)). In the presence of a bound state, i.e., correlated pair motion, we
expect to observe a spreading of correlations along the diagonal of the correlation map.
In Figure 11.11, we plot the correlation map obtained from numerical simulations for an-
gles above (t/V = 0.30) and below (t/V = —0.28) the magic angle. As predicted from
Eq. (11.28), we find a heavy and light pair for the two different cases, which we attribute to
interference effects with long-range dipolar tunneling.

In Figure 11.12, we show preliminary experimental data of the spreading of holes at
times t = 2.76/t (left) and t = 2.79/t (right). We find a difference in the hole spreading as
predicted from the constructive and destructive interference. To understand the difference
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Figure 11.12: Preliminary experimental observation of bound state. We show preliminary
experimental results obtained by the Browaeys lab. Similarly to Figure 11.11, we plot the
unconnected hole-hole correlations at time t = 2.76/t| (left) and t = 2.79/t (right). We
recognize a visible difference between the constructive and destructive pair tunneling.

between the numerical prediction and the experimental data, we have simulated various
sources of errors, see Section 11.7.2. Currently, the signal is mostly limited by infidelities in
the state preparation, which becomes particularly challenging for the AFM background.

In conclusion, we find numerical evidence and experimental signatures for the existence
of a (metastable) repulsively bound state by quenching a hole pair in the AFM spin back-
ground. The magnetic degrees-of-freedom are in principle able to absorb the large repulsive
energy between the two holes. Thus, we expect that the bound state eventually decays in
the limit of long times and large systems.

11.7.4 Extension to 2D tweezer arrays

The experimental implementation of {-] models in tweezer arrays opens up a promising
new route to explore strongly-correlated quantum matter. Especially, the access to arbitrary
two dimensional geometries, the tunability of parameters and the long-range tunnelings
are new features in the toolbox for quantum simulation of doped magnets.

In this Section, we want to elaborate on experimentally relevant details for the realiza-
tion of the t-J-V-W model in the Rubidium setup discussed above. We focus an spatial
isotropic interaction, i.e., we set the angle § = 90°. Nevertheless, the different algebraic
decay coefficients allows us to tune the ratio of tunneling couplings t to all other interac-
tions. In Figure 11.13, we plot the interaction strength as the distance between neighbouring
atoms is changed. Notably, the ratio of /], can be tuned from /], < 1 to the regime rel-
evant for cuprates, where t/], ~ 3. For the given magnetic field strength of B = 45G,
the Ising interaction J, is ferromagnetic and the in-plane |, is antiferromagnetic. Since the
in-plane magnetism dominates J,/J; = —0.68, the spin background is in the easy-plane
regime. In Appendix A, we summarize the interaction strength in the t-J-V-W model for
different P-states in the |60P;, 72;) manifold.

The 2D implementation enables us to experimentally explore a variety of interesting
regimes, such as ground states of the bosonic t-J-V-W model or thermalization dynamics.
Here, we want to focus on the role of long-range tunnelings. On the square lattice, the
dipolar interactions give rise to NNN tunnelings of strength t' ~ 0.35¢, where ¢ is the NN
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Figure 11.13: Tunability of interaction in 2D. We plot the interaction strength for the same
Rydberg states as in Figure 11.8 for the angle § = 90°. Bottom: By increasing the distance
between NN atoms, the overall energy scale J; drops as r°. Top: Since the tunneling
arises from dipolar interactions, the ratio between t/], can be tuned via the distance. For
the given set of states and parameters, we find an easy-plane AFM with [,/]; = —0.68.
The calculations of the C3 and Cg coefficients were performed by Sebastian Geier and the
Browaeys lab.

tunneling amplitude. Hence, it introduces sizable NNN tunneling terms, which recently
have raised much attention because they are believed to be relevant for the understand-
ing of superconductivity in Fermi-Hubbard models [283, 284], see also Chapters 9 and 10.
Moreover, the implementation of ' terms with |t'| < |t| in optical lattice experiments have
so far remained elusive.

As an interesting first experimental test in 2D, we propose to study the single-hole dy-
namics in the presence of NNN tunnelings t' [7]. We emphasize that for single holes, the
quantum statistics of the hole does not play a role and thus it directly allows us to study the
single-hole problem, see Chapter 8, which has been studied extensively since the discov-
ery of high-Tc in cuprates [21, 32, 35, 305, 311, 313, 314, 320, 333, 349]. In the experimental
protocol, we suggest to prepare an initial Néel state with a hole in the center. In the sub-
sequent evolution, we expect a rich dynamics: (i) The spin background will thermalize to
a finite temperature state, which we believe to be in the range of current optical lattice ex-
periments [P1]. (ii) The hole’s motion disturbs the spin background while associated string
tension dynamically changes as the background thermalizes. (iii) At long times, we expect
the hole to spread with a velocity o | .

11.8 Further experimental probes and perspectives

To summarize, we have introduced novel schemes to quantum simulate doped antiferro-
magnets in three-internal states of cold molecules or Rydberg tweezers. First experimen-
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tal results show excellent agreement with numerical simulations in 1D with promising
prospects for future experiments in 2D. The implementation in tweezer arrays allows to
realize new types of experimental protocols: For example, one can prepare a superposition
between different particle numbers sector, such that the many-body Green’s function in the
charge sector can be measured in real time and real space, see. Ref. [421]. Further, the
access to non-trivial geometries is a novel tuning knob to effectively engineer new classes
of strongly correlated Hamiltonians, such as non-Abelian lattice gauge theories [P9], see
Chapter 5.

Notably, our scheme for cold molecules is based on Floquet engineering of dipolar inter-
acting three-level systems, which can be found in abundance in the context of quantum sim-
ulation. Thus, other platforms such as trapped ions [13] or nitrogen vacancy centers [422]
can be used to implement our scheme. In combination with previously established proto-
cols, e.g., variational quantum eigensolvers [423], our scheme provides a powerful tool in
the study of doped antiferromagnets.
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Mixed-dimensional t-] models
and nickelate superconductors

THE EMULATION of an actual strongly correlated electron system in a quantum simulator
would be a striking validation of its applicability beyond foundational science and for
models that resist numerical simulation. For example, the simulation of the Fermi-Hubbard
model at temperatures kT < | could provide valuable insight or bring us one step closer
to the solution of the pairing problem in cuprates, see Chapter 8. Alternatively, the search
for artificially engineered and readily implementable Hamiltonians, in which the energy
scales for ubiquitous phenomena such as pairing is enhanced, is another useful path. Par-
ticularly, it necessitates to develop new probes and data evaluation tools [7, 8] to analyze
those phenomena, hence pushing the theoretical frontier of exploring strongly correlated
systems with quantum simulators.

Here, we report on recent developments in a class of mixed-dimensional bilayer Hub-
bard models. In these models, the tunneling of charges is restricted to within the planes
while the spin interactions are both intra-layer and inter-layer, see Figure 12.1. Intuitively,
this allows two holes to occupy the same rung of the bilayer model overcoming both the
strong repulsion and Pauli pressure in the 2D single-layer Hubbard model. In Ref. [P2],
we show that the associated binding energy of two holes is remarkably large and within
reach for ultracold atoms experiments [424]. Further, we develop a phenomenological par-
ton model for the magnetic binding mechanism between holes based on confining strings,
see Chapter 9. In addition, we performed a BCS mean-field analysis of the model indicating
both s- and d-wave superconductivity with inter-layer Cooper pairing in the finite doping
regime [P1].

The most relevant application of our mixed-dimensional scheme, however, became ap-
parent with the recent discovery of high-Tc superconductivity in the pressurized nickelate
compound LazNi,O7 (LNO) [425]. Because of its similarity in orbital structure to cuprates,
the nickelate compounds have been a hot candidate in the search for superconductors
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Figure 12.1: Mixed-dimensional f-]-V model. a We study a model, where charge motion is
restricted to intra-layer tunneling f, whereas AFM exchange interactions are allowed both
in the plane ]| and on the rungs ], . For strong inter-layer coupling J; > ] the undoped
ground-state is determined by a valence bond solid of rung singlets [P1, P2]. In this Chapter,
we examine the effect of doping the mixed-dimensional system, and find strong evidence
for parton bound states with spinon-chargon and chargon-chargon character [P2] shown
in panel b. In addition, the repulsive interaction V allows to tune an emergent Feshbach
resonance mediating strong attractive interactions [P11, P7, P10, P6, 342]. Here, we illustrate
the 1D mixed-dimensional ladder, but the generalization to 2D models is straight forward.

with high critical temperatures, but the critical Tc’s in previous studies have not exceeded
31K [426]. The LNO compound have a bilayered structure and change their crystal struc-
ture under the application of high pressure on the order of tens of GPa [425]. The theo-
retical modelling of the pressurized LNO compounds suggests that the materials may be
described by a mixed-dimensional bilayer Hubbard model [411, 427-429], which for strong
coupling U > t can be described by a mixed-dimensional ¢-] model of the form

N L N N LN 1
At A ~ ~
H=— tH 2 P <Ci,0,yc]',¢7,]4 —+ H.C.) P+ ]H 2 <Sirﬂ . S]ﬁ‘ — 1 Eni,a,yn]-,ﬁ,y>
(i), (i) B
o (12.1)
N a5 1, . A
+ ]L Z (Sj,l . S]',Q — 41’1]',17’1]',2) + Vanllnjlz,
j

]

At
where ¢!
101

operator is given by #;, = },7;,, Here, we have included extended Hubbard interac-

creates a fermion with spin ¢ =], 1 on site j and in layer 4 = 0,1. The number

tions V on the rungs. As illustrated in Figure 12.1a, the tunneling ¢ of particles is one
dimensional, whereas the AFM spin exchange interaction can be within (J;; > 0) and be-
tween layers (J; > 0).

Therefore, our previous studies [P1, P2] find direct application in the pressurized nick-
elates and allow us to propose a magnetically induced, microscopic pairing mechanism for
this material. In collaboration with Hannah Lange, we extensively studied the 1D ladder
showing a pairing dome as the system is doped away from the VBS. Remarkably, the pair-
ing dome remains present even for strong repulsion V [P10, P6]. We explain the doping
induced pairing by an emergent Feshbach resonance of the parton bound states [P10, 342],
see Figure 12.1b. In addition, we provide an extension of the experimental scheme for ul-
tracold atoms in Ref. [P2] and propose to dope the bottom and top layer with holes and
doublons, respectively. This allows to both realize the extended Hubbard interaction V via
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a superexchange mechanism, and to probe the finite doping without actually changing the
number of particles in the system [P6].

In the following, we start with a discussion of the effective spinon-chargon and
chargon-chargon parton models in Section 12.1, and their experimental relevance for
ultracold atoms in Section 12.2. We present results of a BCS mean-field analysis of the
2D mixed-dimensional model at finite doping in Section 12.3. Lastly, we discuss the
numerical signatures for Feshbach mediated pairing in Section 12.4. This Chapter is based
on publications [P1, P2, P10, P6], and has textual overlap with Refs. [P1, P2]. The text and
tigures are rearranged, adapted and supplemented.

12.1 Effective parton models: (sc) and (cc) bound states

Let us consider the limiting cases of the Hamiltonian (12.1) for V.= ] = 0and J, > 0. The
undoped ground state is given by a product state of rung singlets

0) =272 TT(14); = 141)), (122)
]

where L9 is the volume of the d-dimensional system. Upon doping the ground state with
one or two holes (or doublons), the hopping of the hole tilts the singlets on the rungs, see
Figure 12.1b. This results in an energy cost E; o ]| - £, where ¢ are the number of tilted
singlets. This picture shares great similarities to the string picture used in Chapter 9. There
we found that spinons and chargons can form parton bound states in the presence of an
attractive string tension E,. In the following, we will construct a string model for spinon-
chargon (sc) and chargon-chargon (cc) mesonic bound states, and compare it to numerical
DMRG simulations.

The starting point is the parton description of the -] model. To this end, we express the
underlying electrons as slave fermions, by writing

A T
Cipor = hj,ya],y,lf (12.3)
and imposing the constraint

AT A % )
Zaj,u,oaf/%lf + hj,yhj,y =1 (12.4)
[

with fermionic chargons flw and with Schwinger bosons 4; , . By expressing the tunneling
part of Hamiltonian (12.1) with slave fermions yields

7:[1} = t“ Z Z (az;t,aﬁjlﬂﬁfl;,yﬁilﬂ + hC) (12.5)
(i,j) wo

with an overall amplitude +¢|. The spin-exchange terms ], and ] have the usual
Schwinger boson representations [112], see Chapter 11.

We use the following construction to obtain a set of string basis states. First, we remove
one or two holes, respectively, from the VBS ground state (12.2) and define the length X = 0
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string states

i 1,0, 5 = O)se =hiv/28;5|0), (12.6)
. R
7,5 = O)ee = il ity T ¢ \fz> B11,0010,7]0). (12.7)
o

Note that the spinon-chargon (sc) state carries the quantum numbers of the spinon o, the
layer yu and charge, whereas the chargon-chargon (cc) object is a spin singlet of charge 2e.

The geometric strings are obtained by applying the tunneling operator to the initial
states in Eq. (12.6). We label the states by the chargon’s path Ly, consisting of a series of
links (7, j) defining the string, and displacing spins along the path. The string operator is

GAZ/V = H (i/\l;,yi’\li,]i ZaZy,aﬁj,;l,U'> 7 (128)
[

(ij)eLs

where the order of the product is important. The corresponding states are

U’ K, T, Z‘>SC = ézrﬁ’]” W, Y= 0>sc; (12.9)
s Z)ee = Gulf, Z = 0)cc. (12.10)

The geometric strings, obtained by displacing spins, correspond to tilted singlets between
the two layers y = 0, 1, as depicted in Figure 12.1b.

In d = 1, the (cc) string states form an orthonormal basis (ONB) with
el Z'jus B = 85150j,. 1 (12.11)

because states with different chargon positions have a vanishing overlap, and the string
state is uniquely defined by the chargons. In d = 2, different paths %, ¥’ can lead to states
with the same chargon position but non-zero overlap due to the overlaps of the underlying
singlets. Nevertheless, we approximate the (cc) string state as an overcomplete ONB with
oo ];l, 2ju, L)ee = (52/,25]”!/4 ; for example, two strings %, X/ whose difference defines a loop
around a single plaquette in a square lattice lead to an overlap squared |(X|X) ]2 =1/16.If
the difference of the two strings defines larger loops, the overlap decays exponentially with
the loop size [112].

The (sc) string states, however, do not form an orthonormal basis set. While the states
are orthonormal with respect to the chargon position, the (tilted) rung singlets have non-
zero overlap in both d = 1 and d = 2 and appear for any string length. In general, the
overlaps of these (sc) states are

sc <]¢,;/ ]/l// U,z Z/ Uc; H,o, Z>SC = ‘Sjc,jééy,y’ oo 8%, 5! (1212)
where we defined a metric tensor ¢ with matrix elements

gy =27 (12.13)
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This necessitates to perform a Gram-Schmidt orthonormalization procedure to construct
the (sc) bound states.

In the following, we first apply a simple linear string theory to a model with an ONB for
both (sc) and (cc) string states. We use the model to obtain the ground-state energy of two
bound holes E., which we compare to the ground-state energy of two single holes 2Ej.
This will allow us to extract the binding energy Ep = 2E;c — E.

In a second step, we apply a Gram-Schmidt method to the (sc) string Hilbert space in
order to derive a more accurate model of the (sc) parton bound state, which we will call
Gram-Schmidt parton model (GSP model). We compare the model to energies obtained
from DMRG simulations and find excellent agreement between the numerical simulations
and the binding energies calculated in the GSP model.

12.1.1 Orthonormal basis: Estimating the binding energy

In the effective parton basis, the underlying ¢-] Hamiltonian for two distinguishable partons
connected by a string X becomes

’Fl2p:+KZZ(|x1+(SK,Z—(SK>(x1,Z]+Hc>+tH Y (!XL <x1,Z|—|—Hc)
b X (Z5) *

+ZZV |X1, X1,2|.

(12.14)

Note that the string connects two partons at site x; and x, = x; + 2. Thus, the first (sec-
ond) term describes tunneling of the first (second) parton. If the parton is a chargon, its
(fast) motion arises from tunneling x = #| and the position is shifted to a nearest-neighbor
site 0, = *1. If the parton is a spinon, its (slow) motion arises from a spin exchange x = Ji
and the position is shifted to a next-nearest-neighbor site J, = £2. In the following, we
assume f| > ]| and therefore we neglect the spinon motion, whereas the chargon motion
is of significant importance. Moreover, the last term gives rise to a linear string potential,
which we will approximate in the following by a linear potential V(X) ~ V({5 ), where /5
is the length of a string X [21].

To solve Eq. (12.14), we apply a Lee-Low-Pines (LLP) transformation [390] into the co-
moving frame of the parton at site x1, using

Urrp = exp[—i%ipa], (12.15)
where p; is the momentum of the second chargon. The resulting Hamiltonian

aIJSLP?'lZPHLLP =Y k)1 (k| @ Hap(k) (12.16)
2

is block-diagonal in the eigenbasis of p1, where each block can be labeled by the total con-
served system momentum k € [—7t, 77) in the original basis. The individual blocks take the
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form

Hop(k) =ty L[ [Z+1)(E] (1+xe™) +he + 1 V(L) D). (12.17)
3 3
Le. in the co-moving frame the effective chargon tunneling is given by
k) = ) (1+ e (12.18)

and depends strongly on k.

Next, we consider the lowest-energy eigenstate with momentum k = 0 [P2]. For the
spinon-chargon bound state, the kinetic energy is determined by the original chargon tun-
neling f = t, where we have used t; > J,. For the chargon-chargon bound state, the
kinetic energy is enhanced and given by f = 2t|. The ground-state energy of Hamilto-
nian (12.17) in a linear confining string potential V (¢) = op¢ with string tension oy is known
to have the universal scaling form [21, 317]

Eyp = -2z —1+a P8 52/3. (12.19)

The constant &« > 0 is a non-universal, geometry dependent constant and z is the coordina-
tion number.

Therefore, we can estimate the binding energy Eg = 2E;. — E as

Ep =2 |—2t)vVz—1+at]®] - |-avz—1+u (24| (12.20)

= —a (2-273) tﬁ/?’ag/?’. (12.21)
N
=0.740...

This leads to our main result: our effective parton model predicts a remarkably large bind-
ing energy depending on the sting tension 0y o ], and the tunneling f|. Let us try to de-
velop an intuitive understanding of the large binding energies compared to the 2D Hubbard
model. The mixed-dimensionality circumvents the Pauli exclusion of fermionic holes on
same site because they are distinguishable particles with layer index p = 0, 1. This reduces
the Pauli pressure present in the chargon-chargon bound states of the 2D ¢-] model [35, 36],
see Chapter 10.1.3, and therefore the kinetic energy can be fully exploited resulting in a light
chargon-chargon pair of mass m_! 2t

As discussed above, the string states do not form an ONB in the spinon-chargon case
and hence the above calculation is only approximate. The finite overlap of string states
will effectively reduces the string tension and induces spinon motion. In the next section,
we apply a Gram-Schmidt orthogonalization procedure to derive a more accurate effective
parton model.

12.1.2 Gram-Schmidt parton model

Now we go beyond the dimer parton model and describe the effects of non-orthogonal
string states in the mixed-dimensional bilayer t — | model, Eq. (12.1), using the Gram-
Schmidt method. This leads us to a microscopic description of spinon-chargon bound states
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1
2

Figure 12.2: Non-orthogonal string states. The two parton string states with the common
chargon position j. have non-zero overlap due to the non-zero overlap of singlets. In the
above example, the overlap is given by the difference in the string length 2~

in the system. We show that taking into account the following two corrections to the ONB
parton model gives a significant quantitative improvement and leads to excellent agree-
ment with numerical DMRG calculations ind = 1:

(1) non-orthogonality between different parton and string states (not relevant for the
chargon-chargon bound state in the ladder), and

(2) fluctuations of the string due to magnetic interactions ], between the layers and J;
within one layer.

Moreover, we will work in the co-moving frame of the chargon to describe the parton
dynamics of the spinon-chargon (chargon-chargon) pairs, see LLP transformation in
Eq. (12.17).

Spinon-chargon bound state in 1D

First, we note that chargon-chargon string states |j,, L)< in a ladder fulfill the orthogonal-
ity condition cc(jy, Z'[ju, Z)cc = Jj05,5 and thus Hamiltonian Eq. (12.14) in the co-moving
frame does not need to be modified due to non-ONB effects. Further, magnetic interac-
tions /| within the layer only yield a constant energy shift but do not add additional disper-
sion to neither the chargon motion nor parton dispersion in the approximate string basis.
Next, we consider the spinon-chargon (sc) string states |jc, 4, 0, £)s; here j. denotes the
location of the chargon, and the string >~ € Z points from the chargon to the spinon. This
convention is different from the notation in Eq. (12.9), but it is advantageous since two states
with chargons at different positions j. # j. are orthogonal. In general, the overlaps of these
sc states are
sc <]é, ]/l/, 0'/, Z/ ’jc, u,o, Z>sc = 5jc,jé5]4,M' o0 8L, 5! (12.22)

where we defined a metric tensor ¢ = gsy» = 271 | as in Eq. (12.13). To deal with
the non-orthonormality, we first project the Hamiltonian onto a subspace of the full
Hilbertspace spanned by the string states |j.,2). In particular, we derive the matrix ele-
ments of the projected Hamiltonian through a variational ansatz [¥(") (k)) defined below.
We then perform a basis transformation to an ONB by means of a Gram-Schmidt procedure.
We thus obtain an ONB Hamiltonian that can be treated by exact diagonalization methods.
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We start with a translationally-invariant variational ansatz of strings fluctuating around
the chargon,

¥y = L2y e Y i, 5, (12.23)
PR

which is the most general ansatz respecting the total momentum conservation. Fur-
thermore, without loss of generality, we have chosen to work in the sector |j.,X) =
ljie 4,0, X)sc = |joo = +1,0 =1,X). This is justified because we consider no tunneling
between the layers, t; = 0, and the Hamiltonian conserves total g = ZJ}H SAJZV The
variational kinetic energy, derived from the underlying ¢-] model, yields

N t Dy _
(Ri(k)) = 1 L) Y- g (i, 2| (ch FLE-1) 4 fe—LE+ 1>>. (12.24)
Jeddé Ly

By shifting the summation indices j. and j. and using Egs. (12.22), (12.13) we find

(k) =ty ¥ 98 9 (gwzo1e7% + guxiae™) (12.25)

)32

and define matrix elements 45, y (k) in the non-ONB basis as

Zgz/,z//h%/z(k) = t” (gz/,zflefik + gz/,2+1eik). (1226)
ZH

The metric tensor § is involved when evaluating the scalar product (¥ (") |#;|¥(") and thus
appears in the expression for the variational energy. Later, we want to extract the matrix
h 5 in order to derive an effective Hamiltonian. In particular, the kinetic part of the Hamil-
tonian yields all-to-all interactions in the non-ONB with exponentially decaying, complex
hopping amplitudes, see Eq. (12.22).

Now, we introduce the basis transformation G that maps from the non-ONB into a
Gram-Schmidt orthonormalized basis |j, £) with

e 2) = 3 Gsxlic Z) (12.27)
2
e, = = 0) = |jo, 5 = 0). (12.28)
Since the variational kinetic energy (H;(k)) must be invariant under basis transformations,

we can deduce an effective hopping Hamiltonian HE" = Gh'G~! in the Gram-Schmidt
ONB which takes the particular form

(A e s =t Y Gopr(8 Doy (gws-1e ™ + 8w 51€") (G Vg (12.29)
IIPVY

The advantage of having expressions for the matrix elements in an ONB is that standard
exact diagonalization techniques and algorithms can be applied; the resulting spectrum can
be directly compared to the DMRG calculations shown below.

Similar as for the kinetic term, we can derive the magnetic interactions of the Gram-
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Figure 12.3: String-based pairing in 1D mixed-D bilayer model. a We compare the bind-
ing energy Ep obtained from DMRG simulations and the effective parton GSP model.
We find excellent agreement throughout the entire parameter regime. The scaling be-
havior o (t/].)!/3 is characteristic of the string-based pairing mechanism [317]. In the
limit f; <], a simple tight-binding description is in agreement with our model. We high-
light the remarkably large binding energy increasing with f/],. b To furher corroborate
the string picture, we calculate one- and two-hole spectral functions in time-dependent
DMRG simulations and compare it to the eigenenergies from the GSP model. The discreet
excitation spectrum is typical for meson-like parton bound states [21, 32, 320]. The DMRG
simulations were performed by Annabelle Bohrdt.

Schmidt parton model, i.e. ﬁisp and QIGHSP. Here, it is convenient to re-write the near-

5

est neighbour spin-spin interaction by §W Sjp =1/ 215(1'#),(]-,”/) — 1/4, where lﬁ(ily),(]-’y/)
permutes the spins on sites (i, ) and (j, #'). Applying the spin-spin interaction on the
variational wavefunction Eq. (12.23), i.e., [¢(") = H;[¥(")), maps onto states that are not
included in the subspace spanned by {|jc, X) } jiezrez- Hence, the evaluation of the varia-
tional energy requires to calculate overlaps that arise from the projection (¥ |p(") back
onto the subspace of interest.

Carefully calculating the variational energies by taking the appropriate overlaps into
account yields the following matrix elements in the non-ONB basis:

2
hg,x =—JL <L o ’2‘) + % Z fg’z
0<é<|y|
L for (|| >¢) A (sgn[] = sgn[Z))

—1, else

(12.30)
¢
fZ’,Z -
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and
Wy = AL 3 (k= 0) = (L — 3 +b50)
b i 2t e K= I %,0
4
+J) Z Fs s
0<g<ty—1
+ Y B+l Y FEis
0, 5+1 0,51
ngf Z>0+ J Xégf x<0 J (12.31)
- 3 for (|Z']>¢) A (sgn[X'] = sgn[z)])
o 2, else.
P 2, for (|J¥'| > ¢) A (sgn[Z'] = sgn[X])
o 1 else
2 .

Note that after transforming into the ONB basis, the operators acquire a hermitian form.
Moreover, the complete effective ONB Hamiltonian

HOSP = (' +ns + WG (12.32)

can be exactly diagonalized, where the string basis Hilbertspace is truncated at some max-
imum string length /7. Since in the d = 1 ladder the Hilbertspace dimension only grows
linearly with system size, we can essentially fully exactly solve the GSP model.

Next, we compare the exact diagonalization results of the GSP model to numerical
DMRG calculations [P2]. In Ref. [P2], we performed DMRG calculations of the mixed-
dimensional ¢-] model with weak J;/J1 = 0.01 on a 40 x 2 ladder. Particularly, (i) the
ground-state energy of the one- and two-hole states were calculated as well as (ii) the one-
and two-hole spectral functions are extracted from time-dependent DMRG and give access
to momentum resolved spectra, see Ref. [P2] for more details on the numerical simulations.
To meaningfully compare the ED results with the spectral function obtained by DMRG cal-
culations, we need to subtract the zero-hole energy E, given by

Eop=—J. L — ]2|(L ~1). (12.33)

In Figure 12.3a, we plot the binding energy of the 1D mixed-dimensional #-] model
showing the remarkably large binding energies on the scale of the magnetic exchange | .
Characteristic for string-based parton bound states is the universal scaling relation of the
bound state energies E o« (t)/] 1)1/3[21, 317] leading to an increasing binding energy in
the strong-coupling limit. The GSP model gives is in excellent agreement with the DMRG
simulations across the entire parameter regime. At weak-coupling, f;/]1 < 1, we can
further derive a simple tight-binding description of the parton bound states.

Another confirmation of the string-based pairing mechanism are the discreet excitation
peaks, interpreted as ro-vibrational string excitations, see Chapter 8.3. In Figure 12.3b, we
consider the momentum-resolved spectral function. The DMRG calculations indeed reveal
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an excitation spectrum familiar from string-based parton bound states. The comparison to
the GSP model, which is a manifestly string-based effective description, shows remarkable
agreement for all momenta and energies. Note that in Figure 12.3b, we have plotted ev-
ery second energy eigenstate of Hamiltonian H%5" (k), see Eq. (12.32), because the ARPES
spectrum calculated in DMRG only couples to the even parity string states.

The momentum-resolved spectrum allows us to extract the dispersion relation of the
spinon-chargon (top) and chargon-chargon (bottom) bound state in Figure 12.3b. As de-
rived from the ONB parton model, the effective tunneling of the parton bound state is
enhanced for the chargon-chargon case, see Eq. (12.18). This manifests in a light chargon-
chargon pair and a heavy spinon-chargon pair responsible for the strong binding energy of
two chargons.

Spinon-chargon bound state in 2D

In d = 2 the number of string basis states |jc, 4,0, X)sc and | Jus Z)ce, TESpectively, grows
exponentially with the length of the string /s and thus becomes intractable to be solved
using exact diagonalization. In the scope of this paper, we are only interested in the binding
energy and hence in the ground-state energy of the spinon-chargon and chargon-chargon
case, which are at the rotationally-invariant momenta k = (0,0), (7t, 7r). Hence, working in
the co-moving frame of the chargon, we can make an ansatz in the string length basis |¢) of
the form

10 =N;2 Y D), (12.34)
Yily =/
which assumes a symmetric superposition of all strings with equal given length ¢. The
ansatz cannot capture any rotational excitation but assumes a state with no angular mo-
mentum, i.e. s-wave. Here, N is a normalization factor and counts the number of string
state per given length /.

Ignoring loop effect, the chargon-chargon string basis form an ONB. Hence, we only
need consider non-linear string effects in the following, but otherwise the chargon-chargon
energy is straight forward to evaluate in the ONB string basis.

The more involved problem is the spinon-chargon case, for which we want to find the
ground-state energy for |t|[,|J.| > 0and J; = 0. We want to work in the string length
basis | /), see Eq. (12.34), however different string states are now not mutually orthogonal
but

)0 = NN Y Y (o o B = 852 (12.35)
Z’:(Z/:W Zié)j‘:f

Here, we have chosen to work in the sector |jo, X)sc = |jo, 4 = +1,0 =1, Z)s. Further we
have calculated the metric tensor, for which we find rather hideous matrix elements that
can be found in the Supplementary Information of Ref. [P2].

Note that the states |¢)sc are not normalized. The variational ansatz for the spinon-
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chargon wavefunction has the form,

W) =LY ™Y g, ¥ Jjo D)ee, (12.36)
Je /=0 2

b=t

where we sum over the position of the chargon j.. Again, we define ¢, = ./\f}/ 21h and write
the wavefunction in the string length basis:

[Foelk)) = L7y e i Dol )sc- (12.37)
T (=0

Since we are working in a non-ONB, the normalization condition requires ), » ¢, i =
1.

To derive the Gram-Schmidt parton model in d = 2, we define a new set of orthonormal
basis states |£)s. with s (?|0)sc = 6 7 by

1) s Zggjzybsc (12.38)

7
[0 =0)sc = [l = 0)s, (12.39)

see also Eq. (12.28) ford = 1.

The expression for the variational energy of the hopping Hamiltonian (¥ (k) \’Ht |Fsc(k))
implicitly gives us the operator in matrix form hfm in the string length basis |{)s.. The
GSP hopping Hamiltonian HESF for d = 2 can then be derived by a basis transforma-
tion HEP = G4=271*(G9=2)~1 analogously to d = 1.

For the hopping Hamiltonian at k = (0,0), (77, 7r), we find

Y ge et (k) = tye™ (Te_180-1 + Tger 1) (12.40)
K//

with
. for =0
7, = {\/‘E or (12.41)

vz—1, for £ >1.

The enhancement in the factor 1 arises from retracing |X)s. on the Bethe lattice, where the
origin, |X = 0)s., connects to z longer string states instead of z — 1 for all other states. In or-
der to exactly diagonalize the GSP Hamiltonian, we need to introduce a cut-off in the string
length basis at £max. The cut-off in the non-ONB yields non-hermitian contributions for the
boundary states after Gram-Schmidt orthogonormalization, i.e. (HS'),,  # (HST),

max A

Therefore, we project the GSP model onto the subspace with {|#)sc}7_o 7 _; to receive a

//// ema

well-defined hermitian Hamiltonian.

The derivation of the magnetic interaction ], involves the evaluation of overlaps that
arise when first applying 7{;, on the variational wavefunction and then projecting back
onto the subspace spanned by {|{)sc}sen,- The matrix form in the string length basis is
then given by
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Figure 12.4: String-based pairing in 2D mixed-D bilayer model. We find large binding
energies on the scale of the magnetic interaction ]| for the 2D system. In the tight-binding
limit, all three methods agree well. Atlarger il /], the GSP model deviates from the DMRG
calculations, which could be explained by the neglected loop effects in the chargon-chargon
parton model. The DMRG simulations were performed by Annabelle Bohrdt.

Y gl = NeN? —NM%TVM,I + ) <f£§,e + m,ﬁ)] (12.42)
14 1<x<¢
([1-30(c —¢)]27 10171, for £> ¢
with f}, = (12.43)
[ (z — 1)/ 21011 else
i[:(z —2)(z—=DM1=30(c + A — ¢)] 27101221 for ¢ > ('
Fég,é ={
igl(z —2)(z = DMHO[1 =30 (0 + A — )] 271117221 elge.
) (12.44)

Here, ©(x) is the Heaviside step function and we define ®(0) = 0.

The full GSP model in d = 2 and for k = (0,0), (77, 7r) can be calculated by transforming
into the Gram-Schmidt basis

HOSP (k) = G=2[h! (k) + W] (GF=2) ! (12.45)

and for which we can calculate the ground-state energy by ED after projecting out the
boundary at {max as discussed above. In the following, we will call /. the maximum
string length after removing the boundary state. Moreover, we subtract the zero-hole en-
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ergy, which for the d = 2 mixed-dimensional bilayer model is given by

émax

Epw=—J1 Y z(z—1)""". (12.46)
/=0

We find, as expected for the spinon-chargon case, the minimum to be at k = (7, 7r) due to
the positive sign of the hopping amplitude +£|.

In Figure 12.4, we compare the binding energy obtained from the GSP model and from
numerical DMRG calculations. In 2D, the numerical simulations of the bilayer ¢-] model
become increasingly challenging. Here, we present results from a 12 x 4 x 2 system
(lengthxwidth xlayer). We find good agreement of the binding energy for small /], ;
however at larger /], the DMRG simulation predicts tighter binding than the GSP
model. This discrepancies could have various reasons: One the one side, we assumed the
chargon-chargon string basis to be orthogonal, which is only valid when we neglect loop
effect. On the other hand, the effective parton model is a full 2D description, while the
DMRG simulation are obtained on 4-leg cylinders, and thus quantities such as the binding
energy, where two large numbers are subtracted, may be affected by finite size effects.

12.2 Experimental realization

The large binding energies we find are encouraging for ultracold atom experiments [P1]. To
realize the mixed-dimensional Hamiltonian (12.1), we propose to implement a plain-vanilla
bilayer Hubbard model with tunnelings |, £, in the presence of a strong chemical potential
offset A > t, between the two layers. This potential offset leads to a localization of the
atoms within the layer on experimental timescales. Nevertheless, inter-layer superexchange
mechanism is possible leading to enhanced spin-exchange interactions with amplitude

_ 212 N 212
U+A U-A

I (12.47)

where U is the on-site Hubbard interaction. In Ref. [424], our proposed model has been
implemented in ultracold lithium atoms in a 1D mixed-dimensional ladder. In a ladder of
size 7 x 2, they report the observation of hole-hole correlations indicating binding of holes
at temperatures of about kgT = 0.77] | .

As mentioned in the beginning of this Chapter, it has further been proposed that the re-
cently discovered high-Tc superconductor LNO may be described by a mixed-dimensional
bilayer t-] model [411, 427-429], as in Eq. (12.1). Our model, therefore, provides a micro-
scopic magnetically mediated pairing mechanism for pressurized nickelates. In Ref. [P1],
we have proposed a BEC-BCS crossover scenario for the mixed-dimensional model, driven
by the weakly and tightly bound chargon-chargon pairs, which have further numerically
corroborated in Ref. [P6]. Additionally, we have analyzed a mean-field phase diagram of
the mixed-dimensional bilayer in 2D, which predicts inter-layer s-wave superconductivity
in the parameter regime relevant for the nickelates, as discussed in the following section.
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Figure 12.5: BCS mean-field phase diagram. We show the mean-field BCS phase diagrams
of the mixed-dimensional ¢-] bilayer model at weak coupling, t| > ], ] and for high
dopings, with intra-layer (inter-layer) interactions J (/1) and intra-layer (inter-layer) hop-
pings f| (. = 0) at T = 0. In a we completely neglect any effect of Gutzwiller projections
on the hopping term. In b we approximate the effect of the Gutzwiller projector by working
with an effective hopping t‘ﬁff =01

12.3 BCS mean-field analysis

We consider the situation where f| dominates, and both ]| and ] can be treated as weak
perturbations in the two-dimensional mixed-dimensional bilayer. In this section we per-
form a BCS mean-field analysis of this situation, which, in the limit of ], — 0, includes the
BCS analysis of the decoupled single-plane t — ] model where d,>_,» pairing is found [254].
Before starting, we discuss under which conditions the weak-coupling BCS ansatz is valid.

Firstly, for f| to dominate we require sizable doping values 6 > 0, since f|| is suppressed
when the system forms a Mott insulator around § = 0. Secondly, in two dimensions an
arbitrarily weak attractive interaction leads to the formation of a two-body bound state.
Since |, still favors the formation of inter-layer singlets, it mediates an effective attraction
between fermions from the top and bottom layers. Hence, for 1 —J < 1 the system is
always in a BEC regime, namely when the typical inter-particle distance (1 — &) ~1/2 is larger
than the extend of the two-body bound state.

The following fully self-consistent BCS mean-field analysis is thus constrained to the
regime 6 S 1. In practise we only consider the high-doping regime beyond ¢ > 20%;
we note that superconductivity in the LNO nickelate compounds is observed around § =
50% [430]. We take into account all interaction terms from Hamiltonian (12.1) and also
include the 3-site term arising to lowest order in tﬁ /U o ] in the effective Hamiltonian
obtained from the Hubbard model [112], see Section 8.2. The latter is shown in the middle
line of Table 12.1, and is often neglected in the t-] model.

By applying an unrestricted Hartree-Fock approximation, we determine the different
magnetic interaction channels with competing pairing symmetries, which are summarized
in Table 12.1 (see also Appendix B). The antiferromagnetic |, interaction prefers singlet
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Hint pairing symmetry spin layer
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Table 12.1: Pairing channels in the BCS analysis. Magnetic interactions within and be-
tween the layers have competing pairing symmetries order parameters defined in the Ap-
pendix B, which can be derived by taking all possible pairwise contractions of the fermionic
operators. The combination of angular momentum, spin and layer exchange symmetry
have to obey the Pauli principle, which is confirmed for all four interaction channels listed
in the Table.

bonds between the layers manifested in isotropic point-like attractive interactions with s*-
wave order parameter. On the other hand, the intra-layer ] interaction can lead to pairing

[ I
x2+y2’ px:l:iy

defined in Appendix B. By allowing the order parameters to be non-zero simultaneously,

in the anisotropic s and d! »_.» channels. The corresponding order parameters are
-y

the mean-field approach can capture nematic or time-reversal symmetry broken phases

within the layer, or co-existing phases between s and (s!, p/l, d!l)-wave.

At low dopings, our mean-field theory formulated in terms of the bare fermions can be
replaced by a slave-boson mean-field theory with bosonic chargons and fermionic spinons
[31, 137]. In this case, a well-defined trial wavefunction can be obtained by applying a
Gutzwiller projection to ensure that only one fermion can occupy each site. At high dop-
ings, the Gutzwiller projection should not play a dominant role and we completely neglect
it in the first version of our mean-field theory. In addition, we perform a second calcu-
lation with an effective, free fermion hopping term tﬁff for comparison. We take into ac-
count the suppressed hopping of the fermionic spinons due to occupied sites and approxi-
mate tﬁff = & - )| [16], which interpolates between the exact limits for § = 0 and § = 1. The
goal of this calculation is to understand on a qualitative, not a quantitative, level how the
Gutzwiller projection may affect the results.

In our mean-field analysis, we consider T = 0 and find a phase transition from s to
dEZ—yZ ordering for increasing interactions J /], see Figure 12.5. This reflects the different
dominant magnetic ordering — into local singlets and a long-range ordered state, respec-
tively — at half-filling. Interestingly, for the renormalized fermion hopping, tﬁff =0 e
the system favours sl-wave superconductivity in an intermediate regime at moderate dop-
ings and comparable interactions J| ~ ], see Figure 12.5b. Additionally, for large enough
intra-plane interactions ]|, the systems shows nematic (sl + dll)-wave order for low dop-
ings, whereas pure dll-wave order is obtained again for high dopings, again if the reduced

hopping t'ﬁff is used, see Figure 12.5b. Moreover, by solving the self-consistency equations

while minimizing the ground-state energy, we find throughout that pl-wave order is not



12.4 Feshbach resonance in mixD ladders 199

Figure 12.6: Feshbach resonance in mixD ladder. We show the binding energy of two holes
in a mixed-dimensional ladder, see Eq. (12.1), in the presence of strong repulsion V/J; =5
and for finite doping of holes 6 away from half filling. The results are obtained by Hannah
Lange from DMRG calculations of Eq. (12.1) in ladders of length L, = 100 (dashed lines)
and L, = 200 (solid lines), see Ref. [P10].

favored.

As in the case of half-filling, where tuning the ratio of couplings J| /], can drive a phase
transition, we expect interesting physics to arise in the high-doping limit. Since the system
becomes d/l-wave superconducting at values | |/J1 2 1, the mixed-dimensional bilayer sys-
tem is appealing to study cuprate physics from a new perspective and it could give insights
and impulses into the pairing mechanisms of high-Tc superconductivity when approaching
the superconducting dome by decreasing | .

12.4 Feshbach resonance in mixD ladders

The goal of this Section is to put Refs. [P10, P6] into perspective with the proposed Feshbach
scenario in cuprates, see Chapter 9. There, we found that the internal structure of parton
bound states gives rise to Feshbach resonance between fermionic (sc) mesons and a reso-
nant, bi-polaronic (cc) meson in square lattice Hubbard-type models. This Section builds
upon our derived string picture of (sc) and (cc) parton bound states in mixed-dimensional
bilayer Hubbard models, and goes beyond by studying the finite doping regime. The pre-
sented results were predominantly obtained by Hannah Lange, including the numerical
DMRG simulations.

As we have shown in Section 12.1, we can understand the origin of the spinon-
chargon (sc) and chargon-chargon (cc) parton bound states by the confining strings of tilted
singlets. We find large binding energies Ep = 2Esc — E.c > 0 on the order of the magnetic
interaction J;. Hence, in the limit of two holes the tightly-bound bosonic (cc) meson
constitutes the ground state. This naturally brings us to the question whether we can also
find pairing for the fermionic (sc) mesons.

To this end, we introduce a strong repulsive on-rung interaction V, see Figure 12.1, to
energetically penalize the tightly-bound (cc) boson and restore the fermionic constituents
in the ground state. Surprisingly large repulsion is needed to destroy the (cc) meson, but
as expected it ceases to exist in the ground state at around V /], ~ 3 — 5 for typical values
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of t/], = 3. In this case, the ground state can be described by the (sc) fermions [P10]. As we
introduce more dopants into system, however, binding of two holes is restored and forms
a pairing dome with remarkably high binding energies, see Figure 12.6.

We explain this recurrence of the binding energy via an emergent Feshbach resonance
between two (sc)? fermions in the open scattering channel and (cc) bosons in the closed
scattering channel [P10, 342]. Thus, the resonant (cc) state induces attractive interactions
between the fermionic constituents in the ground state. Familiar from Feshbach resonances,
the energy difference AE between the two channels controls the scattering length. In our
case, we have the on-rung repulsion V as a direct tuning knob for AE. In addition, as the
Fermi sea of (sc) mesons is filled up, they approach the resonance from below potentially
explaining the dome-like feature as doping is increased.

This two-channel physics naturally leads to the scenario of a BEC-BCS crossover, that
we discuss in Ref. [P6]. For strong repulsive interactions the character of the ground-state
changes from extended (sc) fermions to more tightly-bound (cc) bosons as the system is
doped. Therefore, our proposed mixed-dimensional bilayer model provides a platform
to study ubiquitous phenomena known from strongly interacting Fermi gases in a lattice
model with strong repulsive electron interactions. Notably, it has been proposed that the
pressurized LNO nickelate compound [425] may be described by a mixed-dimensional bi-
layer model [411, 427-429]. Hence, our results find direct application in condensed matter
physics and provide a magnetically mediated pairing mechanism for nickelates and cold
atoms, as we lay out in Ref. [P10, P6]. Additionally, we have studied pair-pair correlations
featuring quasi-long range order in the 1D ladder, consistent with the superconductivity in
2D bilayer nickelates. These results have been further corroborated in DMRG simulations
of larger systems [431].



CONCLUSIONS & PERSPECTIVES






“Technology has often played a vital
role in the emergence of new sciences.”

— Thomas S. Kuhn (1922-1996)

Conclusions & Perspectives

The parton picture can be a useful and natural description for phenomena in strongly cor-
related quantum matter, as we have argued in this thesis. This picture may become increas-
ingly important as the focus of research shifts towards microscopic models enabled by the
experimental progress in quantum simulation platforms, for which we have theoretically
developed novel protocols. A central role in our description of parton phenomena is the
emergent Feshbach resonance between parton bound states in high-Tc cuprate supercon-
ductors [P11, P7].

From a historical perspective, Fano-Feshbach resonances are familiar from particle and
atomic physics [71, 72]. In the field of cold atom quantum simulators, Feshbach resonances
have been the game changer because they allow us to induce strong point-like pair interac-
tions between otherwise neutral objects. Recently, there has been a “re-discovery” of Fesh-
bach resonances in solid state materials: (i) Experiments in transition metal dichalcogenide
(TMD) report the observation of a resonance explained by the open- and closed-channel
scattering between excitonic quasi particles in a semiconductor [336, 337]. This opens a
path towards building solid state quantum simulators with tunable interactions [338, 432].
(ii) Feshbach resonances have been proposed to play a role for unconventional pairing in
strongly correlated electron systems such as Moiré materials [338, 340, 379, 433] or bilayer
nickelates [P10, P6, 342] [Chapter 12], and are considered as a way to induce topological su-
perconductivity in semiconductors [339, 434]. Therefore, resonant interactions are gaining
attention in the solid state community and are proposed as new ways to engineer quantum
matter or to build effective models of strongly interacting systems.

Eventually, all these concerted efforts rely on recognizing open and closed scattering
channels. Hence, they are intimately related to the task of identifying the universal con-
stituents in strongly correlated electrons, which famously remains a controversy for the
underdoped cuprates [240]. In this vein, in our Feshbach hypothesis of high-Tc in cuprates
we have not “invented” Feshbach resonances, but rather we have identified potential two-
channel physics in doped quantum antiferromagnets starting from a genuine microscopic
strong-coupling description. From our finding a number of phenomena in cuprate super-
conductors are explained naturally such as the d,._ .-wave pairing symmetry or the ori-
gin of strong pairing interactions through a low-lying resonant bi-polaronic state [Chap-
ter 9 and 10]. Our formalism provides a foundation to revisit previously suggested and
debated scenarios, such as BEC-BCS crossover [269-271, 353, 364] or phase ordering of pre-
formed pairs [267], from a microscopic perspective. The Feshbach mechanism provides
a new building block for the theoretical modelling of underdoped cuprates and further
extensions of our proposed pairing mechanism to more exotic normal states, such as frac-
tionalized Fermi liquids (FL*) [262-264, 381], are possible and likely needed to construct a



204

theory consistent with the enigmatic Fermi arcs observed in ARPES experiments of cuprate
compounds [244, 247].

The development of this new Feshbach perspective has been enabled by technological
advancements: the research of strongly correlated systems experiences an increasing fo-
cus on microscopic models, driven by the experimental advances of quantum simulators
and their theoretical modelling [P1]. For example, the quantum gas microscopy of doped
antiferromagnetic Mott insulators has revealed signatures of the internal parton structure
of charge carries at low doping [33, 387]. In the bigger picture, it was the physicist and
philosopher Thomas S. Kuhn who noted in his seminal book on The Structure of Scientific
Revolutions that technology has often played a vital role in the emergence of new sciences [435].
Quantum simulators certainly provide such a technological advancement for fundamental
science and potentially beyond. To which extent the microscopic structure plays a role for
collective phenomena yet has to be determined. Currently, we are just at the beginning
of this scientific and technological revolution, which provides us with new tools to study
strongly correlated quantum matter.

In this endeavor to explore microscopic correlations in systems with strong interactions,
we have theoretically pushed the frontier of tweezer arrays [104]. From the experimental
side, these platforms combine a toolkit of tunable geometries with dipolar interactions,
generally speaking. From the theoretical side, we have used and extended this toolkit to
propose protocols for the emulation of lattice gauge theories [P5, P9] [Chapter 3 and 5], and
doped quantum magnets [P8] [Chapter 11], respectively.

Rydberg tweezer experiments have achieved truly remarkable advancements in the
past decade. The platform kick-started in 2016 with the ability to generate deterministi-
cally filled tweezer arrays [121]. Today, experimentalists report arrays of a few thousand
atoms [115, 116] and coherent control over many-body states constituted of hundreds of
qubits [51, 89, 92, 94]. Most notably the platform has become a promising candidate to
realize large-scale fault tolerant quantum computers [58].

As an analog quantum simulator, tweezer arrays of Rydberg atoms or cold polar
molecules are ideally suited to explore the domain of two-dimensional XY or Ising
quantum magnets [104]. In this thesis, we have extended this domain to doped quantum
antiferromagnets with hard-core bosonic holes [P8]. The realization in tweezer arrays and
the dipolar origin of the interactions [304] does not only allow us to study new geometries
or parameter regimes beyond implementations in optical lattices [P1], but also to develop
conceptually new probes, e.g., one can prepare a superposition of particle number sectors
relevant to energy- and momentum-resolved spectroscopy [421]. Notably, the long-range
dipolar interactions in our model enable us to realize next-nearest neighbor tunneling,
which is believed to play a significant role in the understanding of high-Tc supercon-
ductivity in cuprates [284]. Hence, the proposed scheme and the presented preliminary
experimental results provide a novel promising perspective to explore microscopic
correlations in systems intimately related to strongly correlated electrons [Chapter 11].

Yet another route for next-generation quantum simulators is the study of lattice gauge
theories, which are believed to be a genuinely useful application of quantum simulators [15,
49, 160]. Gauge theories with dynamical matter are a ubiquitous framework across various
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disciplines of modern many-body physics, ranging from particle physics [40] to condensed
matter physics [23] and from quantum information [29] to biophysics [45]. The parton
formulation of doped quantum magnets reveals the intimate relation between lattice gauge
theories and strongly correlated electrons [3]; hereby both Abelian [20] and non-Abelian [17,
18] gauge theories have been suggested to play a role for the low-energy physics of high-Tc
superconductivity in cuprates. Thus, the direct implementation of lattice gauge theories
in quantum simulators would enable to probe the phases of such effective theories, which
remain mostly elusive in (2 + 1)D [24, 28, 44, 47].

In analogy to low-energy effective theories, we propose experimentally feasible
schemes, where the gauge structure emerges from energetic constraints. Based on an-
tiferromagnetic Ising and Heisenberg interactions in tunable geometries, we can show
that Abelian Z, and non-Abelian SU(N)/U(N) gauge constraints can be stabilized in a
quantum simulator [P4, P5, P9, P3]. The schemes are specifically tailored for Rydberg
atoms or cold molecules in tweezer array, but likewise we envisage applications in
SU(N) Hubbard models [436] or future hybrid digital-analog experiments with fermionic
tunneling gates [61, 62] [Chapter 3, 4 and 5].

In conclusion, our guiding principle of form follows function introduced in the beginning
of this thesis, see Introduction, has led us to propose minimal schemes for the large-scale
implementation of lattice gauge theories in quantum simulators. Simultaneously, the quan-
tum simulation perspective has inspired us to revisit the form of microscopic correlations in
doped quantum magnets, providing a foundation for developing effective parton models
and for formulating novel pairing mechanisms for high-Tc superconductivity in nickelate
and cuprate compounds.
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Implementation of ¢-J-V-W model in 2D
Rydberg tweezer arrays

In Chapter 11, Section 11.7.4 we have proposed to implement the antiferromagnetic, bosonic
t-J-V-W model in 2D tweezer arrays of Rydberg atoms. For #Rb, the particular set of Ryd-
berg states

’6051/2,7]’1]’ = 1/2> = H,> |60P],m]> = ’]’l> ‘6151/2,1’}’[]' = 1/2> = |T> (Al)

yields suitable interaction strengths and AFM in-plane magnetic interactions with |], | >
|]z|]. Here, we discuss the dependencies of the interactions on the sublevel ], m; of
the P-state. In Figure 11.13, we have already presented the interaction strength for
J=3/2,m;=~1/2.

For simplicity, we consider two-dimensional implementations with spatially isotropic
interactions. Thus, we choose the magnetic field to point perpendicular to the plane of
atoms, such that the angle § = 90°. Since the tunnelings and spin interactions scale as r~>
and r~® with the distance between atoms, respectively, we are left with the geometry as a
tuning knob for ¢/]. Note that there is a window of feasible distances, for which (i) the van-
der-Waals interactions are not too strong such that high-fidelity state preparation is possible
and (ii) not too weak for the realistic experimental coherence times of about t = 5 us.

From calculations of the pair interactions [84], performed by Sebastian Geier and the
Browaeys lab, we find that the | = 3/2 manifold yields an almost perfect SU(2)-invariant
model with ¢ ! / ty ~ 1.06. For the | = 1/2 manifold, there is a slight anisotropy with ¢ 1 / ty ~
1.13. In addition, the sign of tunneling t, for fixed angles & = 90° is adjustable by the
relative Am; between the S- and P-states. For Am; = 0 (Am; = +1), the sign of the dipolar
interaction is positive Cz3 > 0 (negative C3 < 0) leading to negative tunnelings t, < 0
(positive tunnelings ¢, < 0) at § = 90° and using our convention from the main text, see
Table 11.6. We emphasize that the sign of tunnelings plays a significant role due to its long-
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Figure A.1: Tunability of interactions for |60P; 5, m; = —1/2) (top left), |60P; /5, m; =
1/2) (bottom left), |60P5/,, m; = 1/2) (top right), and |60P;,5,m; = 3/2) (bottom right).
The calculations of the C3 and Cg coefficients were performed by Sebastian Geier and the
Browaeys lab.

range properties, see Section 11.7.2.
In this Appendix, we plot the couplings ||, J;,V,W and tunnelings ¢, t; for the an-
gle 0 = 90° at realistic distances for tweezer arrays r = 8.5 — 13 ym in Figure A.1. To imple-

ment a typical set of parameters for cuprates, we suggest to use the state [60P; 5, m; = 3/2)
with

t=29], (A.2)
J. = —0.68], (A.3)
V=-08], (A.4)
W = —0.03], (A.5)

at distance r = 10 ym.



BCS mean-field analysis of mixed-dimensional
bilayer ¢-] model

Here we derive a BCS mean-field Hamiltonian from the mixed-dimensional bilayer t — |
model in Eq. (12.1) and solve it self-consistently by using a Bogoliubov transformation.
There are three magnetic interaction terms to consider: inter-layer J; AFM interactions,
intra-layer ] AFM interactions, and the intra-layer ]| 3-site term, see Table 12.1. In the fol-
lowing, we will use a Schwinger fermion representation of the spins, S = %6]* 0,1 0uBC) B s
where 7 = (0*,0Y,0%) are the Pauli matrices, a, p =1, | is the spin and p = 1,2 is the layer
index.

The inter-layer coupling can be exactly written in terms of singlet pair operators on
lattice site f

N N A 1 . . A N
Hy o =J1), < 1% T g Z”ﬁa,lnﬁﬁz) = —JL 8= LINY &S (B

with

1
N - /\i At o At At
5= ﬁ (Cmcm lecj,mz) (B2)

st ot st

%= N\f Z( q+kT1 —MZ q+z,¢,1"—m,z) ¢ (B.3)
where N = L, x L, denotes the system size in 2D with lattice size Ly (L,) in the x- (y-
)direction, respectively. Further, the fermion creation operators written in momentum space

are c = N1/2 Zﬂ =i kA]tXH with k = (kx,ky) and kj = —m/Lj, ..., w/L;. By defining the
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st-wave mean-field order parameter
At = Li<: <) _ L Y {Ci 126 a1 — Caral i) (B.4)
- \ﬁ k=0/ " o - g2t =g 11 g12b—ql1/s .

we can derive the mean-field Hamiltonian
. 2
MF 1L At ot 12
Hp = Z[A (kmC_ku ku kT2>+hC] E’A I~ (B.5)
[

The order parameter has st -wave symmetry, is anti-symmetric under the exchange of spins
(spin singlets) and must be — due to Pauli’s principle — symmetric under layer exchange.

Next, we consider the intra-layer ]| AFM couplings, which can be written in momentum
space as

ﬁ—ﬁ,a,yﬁﬁ,ﬁ,y) (B.6)

with V() = 2 [cos (qx) + cos (g,)]. Normal ordering and collecting all terms, taking into
account the fermionic exchange statistics, yields

= 7) (¢t ot et P O
H]” 4N Z Z V(@) ( kﬁqw kz 7.8 klﬁ# kzw +Ck1+:7,a,;4Ckz—q,ﬁ,yckz,ﬁ,uckl,a,y) ’
(B.7)

This exact Hamiltonian can now be used to apply mean-field theory and further we only
consider Cooper pairs with net momentum zero. With these approximations, the Hamilto-

nian becomes
M
MF At N N
]H ZZ{ [ + V(k/ + k)] < T ]/lC*P,\L,]l>C_%/~L/VCF/T/V
kk'
+[V(K —k) + V(K +k)] (e wTyé+?n4)éfﬁTw€E%#
+[VK -k +V(E +k)] (e W“ik, W> C il H.c.} + const.,

(B.8)

where the constant term will be specified later. We can see that the coupling amplitude is
symmetric under K < —k and thus the triplet terms must vanish under summation since
they have odd angular momentum. In particular, the interaction can be decomposed into
an sl-wave and dll-wave contribution

Vep = Vig + Vi = VIF =) + V(K +K) (B.9)
=2 [cos (kx) + cos (ky)] [COS (K}.) + cos (k’y)} (B.10)
Vﬁ, = 2 [cos (k) — cos (k)] [cos (K\.) — cos (k’y)} . (B.11)
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Taking the symmetry in Eq. (B.8) into account, the mean-field Hamiltonian can be written

as
IME_ Y Al gt gt 2 (1al P 4 A% 2
AN = kz [A & _kw+H.C.} +5 (\A 2 4 | A4l ) (B.12)
M
where we have defined the momentum dependent order parameter AH = AS A4 eba Ad A
with phase B, as
Al = A ]” Z o) (B.13)
k k(n=1,2) Bl ol '

where we drop the layer index y because A%y does not depend on u due to the symmetry
between p = 1 <+ y = 2 in the system, which we will justify more rigorously below. More-
over, the order parameter written without momentum subscript k [Eq. (B.12)] describes
only the amplitude, e.g. A;’H = A%l (cosky — cosky). Note that we have introduced the
superscripts, | and ||, in the order parameters as well as in the spatial symmetry (s*-, sll-,
dll-wave) to point out whether the Cooper pair is a bound state between the layers () or
within the layer (||).

The last term to consider is the often neglected 3-site term, which arises in the derivation
of the t — ] model in second-order perturbation theory from the Hubbard model. A poste-
riori, we find that the 3-site term indeed does not lead to p”—wave order in the mean-field
calculation. The term is given by

. Jj A st At A a
Fa= =3 L T auanbion+ Ganllantiontion) (514

In momentum space, it can be written

T — fu Ly ¥ W@

‘X M kl kz k3
x [Altl au AZZ au k1+k2 Ka, @, ks o T é%hl"r%‘é%ﬂ"?‘é%ler%"x’y CA&'&'V
(B.15)
with
W (K1, ks) = 4 [cos (k3) cos (K}) + cos (k%) cos (kf)] (B.16)

+2 [cos (ki 4+ k3) + cos (K + K3)] .

Again, when we only consider Cooper pairs with net momentum zero, we find

J = 2 = 2] At A .
R = I ZZ[ Wk, k) — W, _k')} (6 i 8 Gy FeOMSE (B7)
(X}lkk/
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Since the interaction strength W(k, k') — W(k, —k') is anti-symmetric under momentum ex-
change and the equation is symmetric under layer exchange, we can conclude that the order
parameter describes symmetric coupling in the triplet channel to fulfill Pauli’s principle.
Furthermore, the interaction potential can be re-written in terms of a pll-wave interaction

Vi, = WER) - W(E —F) =2 [sm (ky) sin (K,) + sin (k, ) sin (k;)] (B.18)
= 2(1—1) [ R F) + YT @O YIE) | +200+i) [ @Y E) + 7 @)y (7))
(B.19)

with Y71 (k) = 1 [sin (ky) % isin (k,)]. The mean-field Hamiltonian then reads

YMF __ pllat ot 2 anlp
FNF — kZ[AkV & +He +]”|A 2, (B.20)
g

All together, the mean-field Hamiltonian becomes

A 2
4BCS _ Zek Fan kw Z{Ai(k“ﬁ T k“ +Hc)}+H\AL‘2
Rk ¢ (B.21)

2
_Z[AH é\f 6+~ +HC]—|— Z ‘A/«/H‘ZI
okt =k ]Hf s,p.d

with the dispersion e; = —2t¢[ cos (kx) 4 cos (k)| — i including the chemical potential .
The effective hopping t.¢ = t in the first case (see Figure 12.5a), or to = J - t depends on
the hole doping ¢ to approximate the effect of the Gutzwiller projectors (see Figure 12.5b).
Note also that we have summarized the intra-layer couplings into a single term with A% =
H + ¢iPa Ad I
Channels

+ etPr Ag’“ with complex phases between the different angular momentum

In the following, we argue that we can express any self-consistent solution of the
intra-layer and inter-layer order parameters in terms of (AL,e"XAg) with Al,AQ € R.
Let us consider the most general case and assume that the set of order parameters is
(ei“3Al,ei"‘lAQ,l,ei“ZA%’z), where we distinguish the order parameters Ag,y:m of the two
layers. Now, we want to exploit the model’s symmetries and consider the transformation of
Hamiltonian (B.21) under unitary transformations. The system inherits a U(1) symmetry
for each layer individually, which we can decompose into a global U(1) and relative

layer U(1) symmetry.

1. Global U(1) symmetry:

a;agﬂ Vagl = e’ﬁglc;w (B.22)
2. Relative U(1) symmetry:
ut elcka yarel = ¢lPra(-1)a ZW (B.23)
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Applying the two unitary transformations on Hamiltonian (B.21) yields

A

+ 7yt YBCS [ ias AL icg Al igo Al 177 1
UgH (AT e Am,e AE,z] Ug Uyl

7 BCS [ei(!xa*ﬁgl) AL, ol (@1—Bg1—Prer) Ag,l’ ol (@2—PBgi+Pret) AI‘?‘,Z] (B.24)
H

Cs [AL, eiXA‘_k‘, . eixAgz] )

where we have chosen Bg = a3 and B = (a1 — #2)/2 in the second equality. Hence, we
conclude that it is justified to take e'X A% = eiXAEZ = elX Ag.

The BCS mean-field Hamiltonian (B.21), which we want to solve self-consistently, is
fully quadratic and can thus be solved exactly by first performing a rotation to decouple
the two layers and then applying a Bogoliubov transformation. The Hamiltonian in terms
of the free fermionic Bogoliubov modes Vi and dispersions Eé’A is given by

~ 2N 5 7
RS = ¥ (BR L i B0 iaa) + 7 84+ 20 X AME = 1 [B o+ Ef (R
fa I t=s,p,d 3
(B.25)
EEA _ eZ(E) + ]AEP (B.26)
E = /) + 6, (B27)

with Az = [A+ + AQ! and 6y = |A+ — Ag |. The mean-field energy at T = 0 in the considered
parameter regime is given by

2N
EBCS ] ’AL,Z ] Z ‘AZ,H |2
L I r=s ,p.d

_ N 27 2(% L 2 \/2“ LAl 7
47‘[2./Bzdk<\/€ (k) + A+ + A2+ fe2 (k) + [AF = A2 —e(k)

in the thermodynamic limit and integrating over the Brillouin zone (BZ).

(B.28)

Hamiltonian (B.25) is solved by the Fermi-Dirac distribution and for T = 0, we can
write down a set of self-consistency equations given a fixed particle number (hole den-
sity J), which can be tuned via the chemical potential #. W.l.o.g. we fix the gauge such
that AL, Ag € R with relative phase (AL, e'x A%) as discussed above:

1 — €7 €~
0= 7/ P B.29
872 Jpz 2E¢ * 2E2 (B.29)
il I 1L Al
Iy s (B.30)
1612 EA E0 .
k K
At Al At —al
o _ i 27 v ol o

A _W/ d°k ka/ BT with?¢ =s,p,d, (B.31)
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Let us now consider the possibility of solutions with simultaneously broken symmetries.

o st4edl (0 =, p,d) co-existence: The Lh.s. of Eq. (B.30) is always purely real.
Thus from requiring the imaginary part of the rh.s. to vanish, it follows that y =
0, x£7t/2, t. However, we do not find evidence for a co-existing intra- and inter-layer
superconducting phase in the numerical calculations.

o U+l (¢,0 = s, p,d) time-reversal symmetry broken phase: The symmetries in the
model allow us to choose /I € R. Inserting ¢!l + i¢'ll into Eq. (B.31) gives separate
equations for each coupling sector ¢, /'. However, the Lh.s. of the equation for Ag’f is
purely real whereas the r.h.s. is complex by construction. Thus, the order parameters
must be strictly zero prohibiting a time-reversal symmetry broken phase.

o (£ /¢l (¢, = s5,p,d) nematic phase: The self-consistency equations allow for
the co-existence of two intra-plane order parameters. To have a time-reversal
broken/nematic phase, we additionally require the ground states ¢I + ¢l to be
degenerate. We can see the degeneracy from Eq. (B.28) by considering the trans-
formation under C4 rotational symmetry, Eg’A(E T+l — E%A(é I— 1. Since the
integration measure is invariant under C4 rotation, the two configurations ¢!l + /'l
yield equal mean-field energies and are thus degenerate. By numerically solving the
self-consistency equations, we indeed find a nematic regime in the case te;f = 0 - t as
shown in Figure 12.5b for low dopings.

The self-consistency Egs. (B.29)-(B.31) define recursive equations, which can be solved
numerically, to find the mean-field solution of the ground state. Thus, the superconducting
order for a fixed set of parameters (¢, I J1,0) can be determined. The solutions are plotted
in Chapter 12, Section 12.3 in Figure 12.5.
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