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Zusammenfassung

Wir betrachten den einfachen Zufallslauf auf Galton-Watson Bäumen mit einer su-

perkritischen Nachkommensverteilung {pj}j∈N0 bedingt auf Nicht-Aussterben. Darüber

hinaus nehmen wir einen super-gauÿschen Abfall von {pj}j∈N0 an, also einen expo-

nentiellen Abfall in jk für einen Exponenten k > 2. Obwohl dies eines der klassischen

und bekanntesten Beispiele für Zufallsläufe in zufälligen Umgebungen darstellt, führt

die Existenz von Blättern zu einigen interessanten, noch ungelösten Problemen.

Zuerst betrachten wir die Zeit τ ′t im über die Bäume gemittelten (�annealed�)

Maÿ, die der Zufallslauf aus insgesamt t Schritten auf dem Rückgrat des Baumes

verbringt. Dies kann dazu verwendet werden, den Zufallslauf von Galton-Watson

Bäumen auf seine technisch einfachere Version auf dem Rückgrat zu reduzieren.

Durch ein Abschneideargument können wir ungeeignete Bäume bis auf einen ver-

nachlässigbaren Fehler ausschlieÿen und somit folgern, dass die gemittelte Wahr-

scheinlichkeit des Ereignisses τ ′t 6 t1−ϑ−ε für alle ϑ > 0 exponentiell klein in tϑ ist,

wobei ε > 2
k
und 2ϑ+ ε 6 1.

Der Hauptteil dieser Dissertation beschäftigt sich mit der gemittelten Rückkehr-

wahrscheinlichkeit zur Zeit t. Wir beginnen mit dem Beweis für die behauptete

untere Schranke, welche für gerade t exponentiell in t
1
3 abfällt. Dann zeigen wir für

Nachkommensverteilungen mit unbeschränktem Träger und super-gauÿschem Abfall

mit k > 8 eine obere Schranke an die gemittelte Rückkehrwahrscheinlichkeit, welche

mindestens exponentiell in t
1
3
− 8

3k abfällt. Des Weiteren beweisen wir für {pj}j∈N0

mit beschränktem Träger den exponentiellen Abfall mit optimalem Exponenten t
1
3 .

Dies verbessert das bislang beste Resultat von Piau [Ann. Probab. 26, 1016�1040

(1998)] und etabliert den exakten Skalierungsexponenten 1
3
für den Fall, in dem

{pj}j∈N0 für alle k ∈ N0 exponentiell in jk abfällt.
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Abstract

We consider the simple random walk on Galton-Watson trees with supercritical o�-

spring distribution {pj}j∈N0 conditioned on non-extinction. In addition, we require

a super-Gaussian decay of {pj}j∈N0 in the sense that it decays exponentially in jk

for some exponent k > 2. Despite being one of the most classical and most studied

examples of random walks in random environments, the existence of leaves generates

problems which yield several interesting questions that are still open.

First we study the time τ ′t the random walk spends on the backbone out of a total

of t steps under the annealed measure. This is relevant when reducing the random

walk on Galton-Watson trees to its technically simpler version on the backbone.

A cut-o� argument allows to exclude unfavourable trees at the cost of a negligible

error term and we conclude that the annealed probability of the event τ ′t 6 t1−ϑ−ε

is exponentially small in tϑ for any ϑ > 0, where ε > 2
k
and 2ϑ+ ε 6 1.

The main part of this dissertation investigates the annealed return probability

at time t. We start by giving a proof for the proclaimed lower bound decaying

exponentially in t
1
3 for t even. Next, we show an upper bound for the annealed return

probability which decays at least exponentially in t
1
3
− 8

3k , and holds for o�spring

distributions with unbounded support and super-Gaussian decay for k > 8. Further,

if {pj}j∈N0 has even bounded support we obtain an exponential decay in the optimal

power t
1
3 . This improves the best known results of Piau [Ann. Probab. 26, 1016�

1040 (1998)] and also establishes the exact scaling exponent 1
3
in the case where

{pj}j∈N0 decays exponentially in jk for any k ∈ N0.
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Chapter 1

Introduction

1.1 Background

1.1.1 Graphs

We start with the basic notions of graphs and focus on random graphs and on

Erd®s-Rényi random graph in particular, as can be found in the following books

[9, 23, 50, 51, 53].

Graph terminologies

First, we introduce some notations that will be used throughout this thesis. A graph

G = (V,E) consists of a countable set of vertices V , called the vertex set, and a

collection of edges E, called the edge set. The edge set is a subset of V × V . If

(x, y) ∈ E, we say that x is adjacent to y, and write x ∼ y. In this case the edge (x, y)

is called incident to x and y, and x, y are neighbours of each other. Similarly, two

edges which share a common vertex are also called adjacent. A graph G = (V,E)

is called undirected, if (x, y) = (y, x) for all (x, y) ∈ E. To stress this, we will

sometimes write {x, y} instead of (x, y) for (x, y) ∈ E. Otherwise if (x, y) 6= (y, x)

for some x and y, then the graph is directed. An edge (x, y) is called a self-loop,

if x = y, and a graph without any self-loops is called irre�exive. G is a complete

graph, if (x, y) ∈ E for all x 6= y. A subgraph G′ = (V ′, E ′) of G = (V,E) is a graph

such that V ′ ⊆ V and E ′ ⊆ E. In this case, we will write G′ ⊆ G for simplicity. For

S ⊆ V , the induced subgraph is the graph with vertex set S and edge set given by

{(x, y) ∈ E : x, y ∈ S}. Throughout this dissertation, unless speci�cally mentioned

otherwise, we always refer to undirected, but not necessarily irre�exive graphs.

The degree dx of a vertex x in the graph G = (V,E) is de�ned as the number of

2



3 Chapter 1. Introduction

edges incident to it, i.e.,

dx := #{y ∈ V : x ∼ y} =
∑
y∈V

1{x∼y}. (1.1)

A graph G = (V,E) is called locally �nite, if dx <∞ for all x ∈ V . If the degree of
every vertex is the same number d, the graph is called (d-)regular. Moreover, G has

maximal vertex degree d, if dx 6 d for every x ∈ V .
A path π in a graph G = (V,E) is a sequence of vertices (xi)i=0,1,...,n ⊆ V such

that (xi, xi+1) ∈ E for i = 0, 1, . . . , n − 1, and π is said to join x0 and xn. If the

path does not contain any vertex more than once or does not pass through any edge

more than once, it is called vertex simple, respectively, edge simple. S ⊆ V is called

connected, if the induced subgraph is connected, that is, if for every pair (x, y) with

x 6= y there exists a path joining x and y. A subgraph C of G is called a cluster,

if C is connected and is not connected to any other vertex that is not in C. The

graph distance dist(x, y) between x, y equals 1 plus the number, not counting x, y

themselves, of vertices of the shortest path joining x, y if x 6= y and 0 if x = y.

If such a path does not exist, i.e. x and y are in di�erent clusters, then we set

dist(x, y) =∞.

If there are weights c((x, y)) assigned to the edges (x, y) of a graph, the resulting

object is the weighted graph G = (V,w) which is sometimes also referred to as a

network. We have c : V × V → [0,∞) with c((x, y)) = 0 if and only if (x, y) /∈ E. If
not mentioned otherwise, we always consider the weighted graph obtained by setting

c((x, y)) ≡ 1 for all (x, y) ∈ E. We de�ne the weight of a vertex x as the sum of the

weights over all incident edges to x, i.e.,

w(x) :=
∑
x∼y

c((x, y)). (1.2)

So, in our standard setting we get w(x) = dx.

For a vertex set S ⊆ V , we de�ne the edge boundary ∂S to be the set of edges

connecting S to its complementary set of vertices in V , or short its complement. The

outer vertex boundary of S is the set of vertices not in S but with a neighbour in S

and the inner vertex boundary of S is the set of vertices in S with a neighbour not

in S. The number of vertices or edges in the set Σ will be denoted by #Σ whereas

the (w-weighted vertex) volume of the vertex set V1 is given by ‖V1‖w :=
∑

x∈V1 w(x)

and the (c-weighted edge) volume of the edge set E1 is ‖E1‖c :=
∑

(x,y)∈E1
c((x, y)).

We note that the volume always requires and depends on the weights c, compare

with (1.2) for the vertex volume.
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The Cheeger constant of a graph G = (V,E) is given by

Φ = Φ#(G) := inf
{#∂S

#S
: ∅ 6= S ⊆ V �nite

}
> 0. (1.3)

The same quantity can also be considered for weighted graphs G = (V,w) with the

volume of the sets instead of the number of their elements. This will be called the

volume Cheeger constant and be denoted by Φw, i.e.,

Φw = Φw(G) := inf
{‖∂S‖c
‖S‖w

: ∅ 6= S ⊆ V �nite
}
> 0. (1.4)

We say that G satis�es the strong isoperimetric inequality if Φ > 0 and that G

satis�es the strong volume isoperimetric inequality if Φw > 0. We note that Φw 6 1,

by the de�nition of the weight function in (1.2).

The anchored expansion constant of a graph G = (V,E) at the vertex x ∈ V is

given by

i(G) = i#(G) := lim
n→∞

inf
{#∂K

#K
: x ∈ K ⊆ V, K is connected, n 6 #K <∞

}
(1.5)

and was introduced explicitly in [37]. Again, the same quantity can be considered

for the volume of the sets instead of the number of their elements. This will then

be called the volume anchored expansion constant and be denoted by iw(G), i.e.,

iw(G) := lim
n→∞

inf
{‖∂K‖c
‖K‖w

: x ∈ K ⊆ V, K is connected, n 6 #K <∞
}
. (1.6)

We remark that the anchored expansion constant is independent of the chosen vertex

x [45, p. 214]. G satis�es the (volume) anchored expansion property if i(w)(G) > 0.

Random graphs

The concept �random graph� refers to a probability distribution with law G on a

family of graphs which will be denoted by G to distinguish from the deterministic

graph G. Typically, in a random graph the edges are randomly generated. Random

graphs were �rst introduced by Erd®s and Rényi [24, 25, 26, 27] with ample results

already given in [25]. Since then random graph theory was broadly extended and

varieties of random graph models have been proposed and analysed. Alon and

Spencer [3] as well as Bollobás [8] give more details about the early literature on

random graphs. However, the Erd®s-Rényi random graph is still one of the most
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instructive and investigated random graph models. Here we focus on this model

because of its interesting properties and consequences as can be seen in the following

subsection and Section 1.4.

Erd®s-Rényi random graph

The Erd®s-Rényi random graph model was �rst introduced by Erd®s and Rényi [25],

Gilbert [30], respectively Austin et al. [4] with slight di�erences. In this model one

considers [n] := {1, 2, . . . , n} as the vertex set V . For each pair of vertices i 6= j,

the undirected edge (i, j) between the two vertices exists with probability p, and

there are no self-loops. As a consequence we obtain a graph, which we denote by

ER(n, p), with a deterministic vertex set but a random edge set with probability

measure P and expectation E. Two examples of Erd®s-Rényi random graphs with

di�erent edge probability are illustrated in Figure 1.1.

(a) λ = 0.5. (b) λ = 1.5.

Figure 1.1: Two realizations of Erd®s-Rényi random graphs ER(n, λ/n) with n =
20, λ = 0.5 in (a) and n = 20, λ = 1.5 in (b) respectively.

We note that the degree of a vertex i in ER(n, p) follows a binomial distribution,

that is, for any k ∈ N0

P[di = k] =

(
n− 1

k

)
pk(1− p)n−1−k, (1.7)

since each vertex i ∈ [n] can have up to n− 1 neighbours. The typical degree Dn is

the random variable given by the degree of a vertex chosen uniformly at random, so

Dn = 1
n

∑
i∈[n] di. We obtain that E[Dn] = (n− 1)p. Since we are mainly interested

in limit theorems for ER(n, p) which will be discussed in subsection �Limits of Erd®s-

Rényi random graphs� of 1.1.2, we refer to [34] for more details about the degree

distribution or the connectivity of ER(n, p).
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Before discussing limits of ER(n, p), we �rst need to recall the following di�erent

notions of probabilistic convergence. Consider a general probability space (Ω,F ,P).

Let (Xn)n∈N be a sequence of real-valued random variables on (Ω,F ,P). Then,

Xn converges to the random variable X in distribution as n → ∞ if and only if

limn→∞
∫

Ω
f(Xn) dP =

∫
Ω
f(X) dP for every bounded, continuous function f : R→

C, and we write Xn
d−→ X as n→∞. Xn converges to X in probability as n→∞

if and only if limn→∞ P[|Xn − X| > ε] = 0 for all ε > 0, which will be denoted by

Xn
P−→ X as n → ∞. Further, we say Xn converges to the random variable X

almost surely as n→∞ if and only if P[limn→∞Xn = X] = 1 and write Xn
a.s.−→ X

as n→∞. We recall that almost sure convergence, by Fatou's lemma [28], implies

convergence in probability which, in turn, implies convergence in distribution.

With this at hand, we turn to the scaling limit of ER(n, p) as n→∞ which is

broadly discussed, for example in [11, 35]. In particular, we consider the adjacency

matrix A, which is given by setting the matrix element aij = 1 if the edge (i, j) is

present and zero otherwise, and the graph Laplacian L given by

L := D − A, (1.8)

where the degree matrix D has diagonal elements equal to the degrees di, i ∈ [n],

and o�-diagonal elements equal to zero.

For the last decades there has been a growing interest in the spectral properties

of the graph Laplacian which was analysed, among others, in [16, 17, 20, 41, 46]. The

spectral information on the Erd®s-Rényi random graph Laplacian in the scaling limit

n → ∞ shares similarities to the spectral theory of large random matrices, which

was originated by Wigner [54, 55], and is still to some extent an open question

[7, 39, 42, 43]. However, it is easy to see that this will largely depend on the choice

of the edge probability p.

We focus on the sparse case with p = λ
n
, λ > 0 a constant independent of n.

In general, for the sparse regime it is assumed that the expectation of the typical

degree stays �nite in the limes superior as n→∞, i.e.,

lim sup
n→∞

E
[

1

n

∑
i∈[n]

di

]
<∞. (1.9)

Now, the sparse case can be divided into the subcritical regime with λ ∈ ]0, 1[ , the

critical regime with λ = 1, and the supercritical regime with λ ∈ ]1,∞[. In the

supercritical regime, the spectral properties of the graph Laplacian in the scaling

limit are among the aforementioned open questions.
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To understand a basic structural di�erence of the subcritical and the supercritical

regime, we consider the size of the largest cluster of ER(n, λ
n
), with λ > 0 constant.

By C(i) we denote the cluster containing the vertex i and Cmax is the cluster such

that

#Cmax = max
i∈[n]

#C(i). (1.10)

However, this enables us only to identify the size of Cmax, but not Cmax itself uniquely.

If several clusters are of maximal size, we choose the one that contains the vertex

with smallest index as Cmax. Varying λ, the size of Cmax di�ers signi�cantly, and

thus exhibits a phase transition. In the subcritical phase, it was shown that

#Cmax

log n

P−→ 1

λ− 1− log λ
(1.11)

as n→∞, see for example [3, 13]. Further, the fraction of vertices which are either

isolated or belong to tree clusters tends to one as n → ∞ [8, 25]. On the other

hand in the supercritical phase, there is a positive constant ζ such that for every

ν ∈ (1
2
, 1) there exists δ = δ(ν, λ) > 0 with

P
[∣∣#Cmax − ζn

∣∣ > nν
]

= O
(
n−δ
)
, (1.12)

as n→∞, compare with [3]. Around the critical value λ = 1, Cmax is asymptotically

of size n
2
3 as n→∞ [38, 49]. Therefore, the Erd®s-Rényi random graph Laplacian

can be broken down into blocks of size log(n) in the subcritical case. This was used

in [41] to prove the Lifshitz tail behaviour of its integrated density of states at the

lower spectral edge E = 0. Unfortunately, the emerging giant cluster Cmax prevents

this approach in the supercritical case.

Back to the scaling limit n → ∞ of the vertex degree di, i ∈ [n], a short

calculation shows that in the sparse regime with p = λ
n
, λ > 0, the probability of

a vertex degree equal k ∈ N0 converges to the mass function of a Poisson random

variable with parameter λ, i.e.,

P[di = k] =

(
n− 1

k

)
λk

nk

(
1− λ

n

)n−1−k
→ e−λ

λk

k!
, (1.13)

as n → ∞, [34, Sect. 5.4]. This will be considered in subsection �Limits of Erd®s-

Rényi random graphs� of 1.1.2 in more detail.
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1.1.2 Trees

A graph with no cycles is called a forest and a connected forest is a tree. Historically,

the �rst random trees to be considered were a model of genealogical (family) trees.

In this thesis we focus on one of these, namely Galton-Watson trees which were

introduced in [29] by Henry W. Watson and Francis Galton.

Galton-Watson trees

Galton-Watson trees are locally �nite, rooted trees, meaning that some vertex is des-

ignated as the root, denoted o. We imagine the tree as growing (upward) away from

its root. Each vertex then has edges, called branches, leading to its children, which

are its neighbours that are one step farther from the root. Their number is distrib-

uted according to the o�spring distribution {pj}j∈N0 ∈ [0, 1]N0 with
∑

j∈N0
pj = 1.

To �x notation, we consider a Galton-Watson (family) tree T as the probability

space (T,F , G∗) of random tree graphs T ∈ T. T is sometimes called a realisation

of T. We do allow for the possibility of leaves, so there might be vertices without

children, i.e., p0 > 0. For T ∈ T and a vertex x ∈ T, the number of children of x

is denoted by Z(x). Here and throughout this thesis, we write x ∈ T for a vertex x

of (the vertex set V (T) of) the tree T and simply T for the vertex set of T. Upon

viewing T as a Galton-Watson branching process, Z(x) is an i.i.d.-copy of a random

variable Z with distribution G∗[Z = j] = pj for every j ∈ N0. Two examples of

Galton-Watson trees with the o�spring distribution p0 = 0.25, p1 = 0.25, p2 = 0.25,

and p3 = 0.25 are illustrated in Figure 1.2.

o

(a)

o

(b)

Figure 1.2: Two Galton-Watson trees with p0 = 0.25, p1 = 0.25, p2 = 0.25, p3 =
0.25 in (a) and (b) both, depicted up to generation 3.

For o 6= x ∈ T, its neighbour closer to the root is called ancestor of x. There is
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no ancestor of the root o. The ancestors of the vertex o 6= x ∈ T are the vertices

of the shortest path connecting x to the root without the vertex x itself, so the

ancestor of x and then its ancestor and so on till the root. The descendants of the

vertex x ∈ T are its children and then their children and so on, so every vertex is a

descendant of the root. Furthermore, for any x, y ∈ T with x 6= y there is a unique

neighbour of x in the shortest path joining x and y, the last vertex before x. Such a

path always exists since trees are connected and is unique since there are no cycles

in trees.

For n ∈ N0, generation n, denoted by gn, of the tree T are those vertices which

are at graph distance exactly n to the root o, i.e., gn := {x ∈ T : dist(x, o) = n}.
We denote the subtree up to generation n of the tree T by

T0n := {x ∈ T : dist(x, o) 6 n} (1.14)

and write T0n ⊆ T to clarify that it is a subtree. We consider a vertex v ∈ T

of generation n, n ∈ N0, as part of the backbone (of the tree T) if v possesses a

descendent in every generation m for m > n, and as part of the �nite subtrees

otherwise. Throughout we assume T to be supercritical, i.e.,

λ :=
∑
j∈N0

jpj > 1. (1.15)

Furthermore, we write

G := G∗[ ··· | #T =∞] (1.16)

for the conditional probability measure conditioned on non-extinction. The event

of extinction is given by {∃n ∈ N : #gn = 0} and its probability, denoted by

r, is the smallest root of s =
∑

j∈N0
pjs

j with s ∈ [0, 1]. Then, we recall that

0 < G∗[∃n ∈ N : #gn = 0] < 1 for any supercritical o�spring distribution with

p0 > 0 by [45, Prop. 5.4]. Further results about the o�spring distributions of Galton-

Watson trees after conditioning on non-extinction can be found in [1].

Next, we extend the de�nition of the anchored expansion constant from (determ-

inistic) graphs, in (1.5), to Galton-Watson family trees.

De�nition 1.1. For a supercritical Galton-Watson family tree T, conditioned on

non-extinction, we de�ne the anchored expansion constant by

i(T) := G-essinf
T∈T

lim
n→∞

inf
{#∂K

#K
: o ∈ K ⊂ T connected, n 6 #K <∞

}
. (1.17)

Chen and Peres [14, Cor. 1.3], see also [45, Thm. 6.52], proved strict positivity
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of the limit inside the G -essinf in (1.17) for G-a.e. T ∈ T without any further

assumptions on the o�spring distribution besides being supercritical. Assuming in

addition that T has leaves, i.e. p0 > 0, this can be strengthened.

Theorem 1.2. For a supercritical Galton-Watson family tree T, conditioned on

non-extinction, with an o�spring distribution satisfying p0 > 0 we have

i(T) > 0. (1.18)

Proof. We build upon the proof of [45, Thm. 6.52] for p0 > 0. It is shown there

that, given any h > 0 su�ciently small, the probability of the events

A(h, n) :=
{
T ∈ T : ∃K ⊂ T connected with o ∈ K,#K = n,#∂K 6 hn

}
(1.19)

decays exponentially

G∗[A(h, n)] 6 exp(−chn) (1.20)

for n ∈ N, where ch > 0 is a constant depending on h (but not on n). Hence, we

have
∑

n∈NG[A(h, n)] 6 1
1−r
∑

n∈NG
∗[A(h, n)] < ∞, and the Borel-Cantelli lemma

implies that the event A(h) := lim supn→∞A(h, n) is a G-null set. We conclude that

i(T) > inf
T∈T\A(h)

lim
n→∞

inf
{#∂K

#K
: o ∈ K ⊂ T ∈ T connected, n 6 #K <∞

}
> h > 0.

(1.21)

Galton-Watson trees and their spectral properties are extensively studied as one

of the classic examples of trees. We refer to [11, 12, 40] for results on their spectral

measure, its continuous part, and the adjacency matrix.

Limits of Erd®s-Rényi random graphs

In this subsection we will see that Galton-Watson trees also arise naturally as the

local weak limit of sparse Erd®s-Rényi random graphs ER(n, λ
n
), λ > 0. To this end,

we cite Thm. 2.11 of [35].

Theorem 1.3. ER(n, λ
n
), λ > 0, converges in probability in the local weak sense to

a Galton-Watson tree T with Poisson o�spring distribution with parameter λ, i.e.,

for every T ∈ T and every r ∈ N

1

n

∑
u∈[n]

1{
B

(ER(n, λn ))
r (u)'T

} P−→
∏

x∈T0r−1

e−λ
λZ(x)

Z(x)!
, as n→∞, (1.22)
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where Z(x) is the (deterministic) number of children of x ∈ T, B
(ER(n,λ

n
))

r (u) := {x ∈
[n] : dist(u, x) 6 r} for u ∈ [n], and B

(ER(n,λ
n

))
r (u) ' T if and only if B

(ER(n,λ
n

))
r (u)

can be viewed as subgraph of T with u = o.

The convergence in distribution follows. Therefore, sparse supercritical Erd®s-

Rényi random graphs ER(n, λ
n
), λ > 1, converge locally weakly in distribution and in

probability to Galton-Watson trees with a Poisson o�spring distribution with para-

meter λ, which are in turn supercritical according to (1.15), since
∑

j∈N0
je−λ λ

j

j!
=

λ > 1. We note that p0 > 0 for the Poisson o�spring distribution with parameter λ.

Furthermore, by [11, Prop. 1.14] the empirical distributions of the eigenvalues

of the adjacency matrices An of ER(n, λ
n
), λ > 0, converge weakly to the expected

spectral measure at the root of the Galton-Watson tree T with Poisson o�spring

distribution with parameter λ, as n→∞. For a more detailed analysis, we refer to

[11].

1.2 Random Walks in Random Environments

Random walks in random environments are considered either in the quenched regime

or the annealed regime. A quenched result for such a random walk is one that holds

almost surely with respect to the choice of the environment. Whereas an annealed

result is concerned with the random walk yielding this result in the expectation over

the environments. We note that in general neither one implies the other, since the

quenched result may depend on the environment.

1.2.1 Random Walks on Graphs

The (standard) discrete-time random walk (Xt)t∈N0 on the w-weighted graph G =

(V,w), with w de�ned in (1.2), is is a sequence of random variables on the probability

space (Ω,Σ, P ). It is characterized in terms of the transition probabilities p(x, y) :=
c((x,y))
w(x)

for every x, y ∈ V . The random walk is adapted to the natural �ltration

F := (Ft)t∈N0 , where Ft ⊆ Σ is the σ-algebra generated by the random variables

X0, X1, ..., Xt up to time t. Moreover, the stopping times are given as the random

variables τ : Ω → N0 ∪ {∞} such that {τ = t} ∈ Ft for every t ∈ N0. By [45,

Sect. 2.1] this Markov chain (Xt)t∈N0 satis�es the strong Markov property, i.e., for

every �nite stopping time τ and for every x ∈ V we know that

Dx[(Xτ+t)t∈N0|Fτ ] = DXτ [(Xt)t∈N0 ], (1.23)
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where Dy denotes the distribution of the Markov chain started at X0 = y ∈ V .

Further, the corresponding symmetric Markov kernel P on the weighted Hilbert

space l2(V,w) of square summable real-valued functions on V is given by (Pψ)(x) :=∑
y∈V p(x, y)ψ(y) for ψ ∈ l2(V,w) and x ∈ V . Here, the w-weighted inner product on

l2(V,w) is denoted by 〈·|·〉V,w, i.e., 〈ψ|ϕ〉V,w :=
∑

x∈V w(x)ψ(x)ϕ(x) for any ψ, ϕ ∈
l2(V,w). Then, the probability of the random walker to reach y from x in one

step is 〈1{x}|P1{y}〉V , where 1S is the indicator function of the set S ⊆ V and

〈·|·〉V is the (unweighted) l2-inner product, i.e., 〈ψ|ϕ〉V :=
∑

x∈V ψ(x)ϕ(x) for any

ψ, ϕ ∈ l2(V,w).

It is well known, see e.g. [22, 45, 56], that isoperimetric inequalities on a graph

imply bounds on the Markov kernel. We cite the following estimate on its operator

norm.

Theorem 1.4 ([45], Thm. 6.7). We consider the standard discrete-time random walk

on the connected, in�nite, weighted graph G = (V,w) with volume Cheeger constant

Φw > 0, de�ned as the w-weighted version of (1.3). Then, the Markov kernel P of

the random walk on G ful�ls

‖P‖BL(V,w) 6
√

1− Φ2
w 6 1− Φ2

w

2
, (1.24)

where ‖ · ‖BL(V,w) denotes the operator norm on the Banach space of bounded linear

operators on l2(V,w).

Random walks on graphs, in general, and their return probability Px[X2t =

x] to the vertex x, in particular, have been studied in countless works, see e.g.

[2, 10, 19, 6, 44]. However, none of these is su�cient to imply a sharp result on the

annealed average of the return probability Po[X2t = o] of the simple random walk

{Xt}t∈N0 , starting at the root o, on a supercritical Galton-Watson family tree T,
conditioned on non-extinction, which will be discuss in the next section.

1.2.2 Random Walks on Trees

Since every realisation T of the family tree T is an undirected, irre�exive, locally

�nite graph, the previous Section 1.23 also de�nes the random walk on a weighted

tree (T, w). Next, we focus on the simple random walk on the (deterministic) tree

T. First, we choose edge weights cSRW equal 1 for all existing edges of T and 0

otherwise. Then, the vertex weight wSRW (x), obtained in this manner, is equal to the

vertex degree of x ∈ T according to (1.2) and we get the symmetric weight function

wSRW . Considering the random walk on this weighted tree, and thereby weighted
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graph, (T, wSRW ) leads precisely to the transition probabilities of the simple random

walk on T. In this thesis, if not explicitly stated otherwise, we will always consider

the random walk started at the root o and, thus, write simply P for Po.

We start by presenting the following simple example.

Lemma 1.5. Let T = T = N0 be a Galton-Watson tree with o�spring distribution

p1 = 1, depicted in Figure 1.3. Then, for t ∈ N and k ∈ N0, with k 6 t, the number

of paths leading from the root to generation 2t− 2k after 2t steps is given by(
2t

k

)
−
(

2t

k − 1

)
, (1.25)

where we set
(

2t
−1

)
:= 0 for all t ∈ N. Here, each generation consists only of one

vertex. In particular, for t ∈ N the number of paths leading back to the root is(
2t

t

)
−
(

2t

t− 1

)
. (1.26)

The proof of this lemma is deferred to the appendix.

0

1

2

3

4

5

6

Figure 1.3: The Galton-Watson tree N0.

Now, we notice that after dividing by the total number of paths after 2t, t ∈ N,
steps this corresponds to the probability of the simple random walk (Xt)t∈N, starting

at the root 0, on this speci�c Galton-Watson tree N0 to end up in generation g2t−2k

for k ∈ N0 with k 6 t. In especially, since
∑t

k=0

[(
2t
k

)
−
(

2t
k−1

)]
=
(

2t
t

)
, we have for

every t ∈ N and every k ∈ N0 with k 6 t that

P [X2t ∈ g2t−2k] =

(
2t
k

)
−
(

2t
k−1

)(
2t
t

) . (1.27)

In particular, for k = t we obtain the return probability P [X2t = 0] = 1
t+1

. But, as
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can be seen from the proof of Lemma 1.5, even for this simplest example of a Galton-

Watson tree the direct computation of the return probability of the simple random

walk becomes quite complicated. This calls for more sophisticated approaches.

They are given in numerous works, see e.g. [5, 15, 31, 36, 44]. Furthermore, also

random walks on trees speci�cally, compared to graphs more generally, have been

investigated thoroughly. But despite these e�orts, there still exists no comprehens-

ive, sharp result on the annealed average of the return probability P [X2t = o] of

the simple random walk (Xt)t∈N0 , starting at the root o, on a supercritical Galton-

Watson family tree T, conditioned on non-extinction. Again, this is not only a

natural question, but also links to other interesting quantities like spectral proper-

ties of the random walk's generator. Now, we will, �rst, give the qualitative reasons

for this and, then, summarise the best known results.

The above results together with those by Piau and Virág in [48, 52] indicate the

behaviour of e−ct
1
3 for the annealed average of the return probability after t steps, c >

0 constant. However, to show the underlying upper bound all of these results require

either the absence of leaves, so p0 = 0, or a strong (volume) isoperimetric inequality,

as in (1.3). Unfortunately, neither one holds in the case of a supercritical Galton-

Watson tree with general o�spring distribution. Without these two assumptions

there is no upper bound on the number of leaves close to the root with the resulting

push-backs of the simple random walk, in turn, increasing its return probability

uncontrollably, compare with Figure 1.4.

o

Figure 1.4: A Galton-Watson tree with multiple leaves close to the root o.

We denote the annealed return probability of the simple random walk, starting

at the root o, by

Rt := GP [X2t = o] :=

∫
T
PT
o [X2t = o] dG(T), t ∈ N0, (1.28)

and summarise the known results depending on the o�spring distribution {pj}j∈N0
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of the supercritical Galton-Watson family tree in Figure 1.5. Here, c, c′ > 0 are

constants (independent of t), which may di�er from line to line, and the bounds

hold for all t ∈ N0.

(a) p0 = p1 = 0: exp(−c′t) 6 Rt 6 exp(−ct)
(b) p0 > 0 ∨ p1 > 0: exp(−c′t 13 ) 6 Rt

(c) p0 = 0: Rt 6 exp(−ct 13 )

(d) {pj}j∈N0 �nitely supported: Rt 6 exp(−ct 15 )

(e) general {pj}j∈N0 : Rt 6 exp(−ct 16 ).

Figure 1.5: Bounds on the annealed return probability.

Remark. 1. The statements (a) � (e) follow from [48, Thm. 2], who proves

corresponding results for the tail of the annealed distribution GP [τR > t] of

the �rst regeneration time τR. More precisely, concerning the upper bounds,

this is a direct consequence of {Xt = o} ⊂ {τR > t}. The lower bounds on

Rt follow from analogous ideas as used for the lower bounds on GP [τR > t] in

[48].

2. We refrained from introducing multiplicative constants in front of the exponen-

tials because they can be absorbed in the constants c and c′ in the exponent.

This is always possible because Rt < 1 for every t ∈ N, which follows, e.g.,

from the random walk having positive speed [45, p. 569] or being transient [18],

see also [33, Lemma 2] which was announced in [32].

3. Case (a) di�ers from the other cases and is quite well understood: The expo-

nential decay in time results from the random walk getting lost in a tree where

the number of vertices at least doubles in each generation and where there are

no deterministic push-backs due to the absence of leaves. Using the inclusion

of events

{X2t = 0} ⊆
{dist(o,X2t)

2t
∈ [0, ε[

}
(1.29)

for any ε > 0, the bound c′ > ln 9
8
for the constant in the lower bound of (a)

follows from large-deviation estimates of the speed in [21, Thm. 1.2].

4. The stretched-exponential behaviour exp(−c′t 13 ) in the lower bound of case (b)

is believed to capture the exact long-time asymptotics of the annealed return

probability in the entire parameter regime of (b), which is complementary to

(a). Unfortunately, corresponding upper bounds are not known in such gen-

erality but only in the absence of leaves as speci�ed in (c). In that case, the
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annealed return probability can be bound from above by the return probability

on the deterministic tree with p1 = 1, which is a su�cient simpli�cation to

yield the exponential decay in t
1
3 . However, in the case p0 > 0 this is not

possible and the best upper bound valid for all o�spring distributions allowed

in (b) - and also in (a) - exhibits the slower decay as exp(−ct 16 ).

5. Virág [52, Ex. 6.2] proved a quenched stretched-exponential upper bound for the

return probability with exponent 1
3
. It is valid for �nitely supported o�spring

distributions and times larger than some initial time. However, the initial time

depends on the realisation T ∈ T and, thus, the result does not translate to the

annealed regime.

1.3 Main Results

In this thesis we investigate the simple random walk in the annealed regime on

supercritical Galton-Watson trees conditioned on non-extinction. Since the case

p0 = 0 is already covered in [48, Thm. 2], cf. Remark 4, we will focus on fast-

decaying o�spring distributions with

p0 > 0 and pj 6 c1 exp(−c2j
k) for every j ∈ N0, (1.30)

where c1, c2 > 0 and k > 2 are constants (all independent of j).

In the second chapter we analyse the time τ ′t the simple random walk spends

on the backbone out of a total of t steps compared to the time spent in the �nite

subtrees. Expanding on the approach by Piau in [48] and using the fast decay of the

o�spring distribution, cf. (1.30), a cut-o� argument allows to exclude unfavourable

trees at the cost of a negligible error term and we obtain the following result.

Theorem 1.6. Let ϑ, ε > 0 with 2ϑ+ε 6 1. Consider a supercritical Galton-Watson

family tree, conditioned on non-extinction, with an o�spring distribution satisfying

(1.30) for some constants c1, c2 > 0 and k > 2. Further, assume that ε > 2
k
. Then,

there exist constants C, c > 0 such that for all t ∈ N

GP [τ ′t 6 t1−ϑ−ε] 6 C exp(−ctϑ). (1.31)

This is relevant when reducing the simple random walk on Galton-Watson trees

to its technically simpler version on the backbone, which is done in Corollary 2.13

for the annealed return probability. Thereby, it solves the di�culties posed by the
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leaves and enables us to instead deal with a modi�ed version of the random walk on

trees with p0 = 0.

In the third chapter we study the annealed return probability Rt at time t of the

simple random walk, de�ned in (1.28). We start by giving an explicit proof for its

proclaimed lower bound.

Theorem 1.7. Consider a supercritical Galton-Watson family tree, conditioned on

non-extinction, with an o�spring distribution satisfying p1 > 0. Then, there is a

constant c > 0 such that for all t ∈ N0 we have

Rt > exp(−ct
1
3 ). (1.32)

Next, we turn to the upper bounds. We expand on the strategy of Virág in [52],

with an approximation argument over the realisations of the Galton-Watson family

tree, to conclude the following for the annealed regime.

Theorem 1.8. Consider a supercritical Galton-Watson family tree, conditioned on

non-extinction, with an o�spring distribution of bounded support. Then, there exists

a constant c > 0 such that for all t ∈ N0 we have

Rt 6 exp(−ct
1
3 ). (1.33)

Moreover, we extend Theorem 1.8 to general o�spring distributions with a super-

Gaussian decay at the expense of weakening the decay exponent.

Theorem 1.9. Consider a supercritical Galton-Watson family tree, conditioned on

non-extinction, with an o�spring distribution satisfying (1.30) for some constants

c1, c2 > 0 and k > 8. Then, there exists a constant c > 0, independent of k, such

that for all t ∈ N0 we obtain

Rt 6 exp(−ct
1
3
− 8

3k ). (1.34)

For even faster decaying o�spring distributions, the annealed return probability

decays almost as fast as exp(−ct 13 ).

Corollary 1.10. Consider a supercritical Galton-Watson family tree, conditioned

on non-extinction, with an o�spring distribution decaying according to

pj 6 exp
(
− ξ(j)

)
for every j ∈ N0, (1.35)

where ξ : N0 → ]0,∞[ (independent of j) grows faster than any polynomial. Then,

for every ε > 0, the annealed return probability at time t decays at least exponentially
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in t
1
3
−ε, i.e., there is a constant c > 0 such that for all t ∈ N0 we have

Rt 6 exp(−ct
1
3
−ε). (1.36)

Proof. Fix ε > 0. Then, there is k > 8 such that ε > 8
3k
. Now, we choose c1, c2 > 0

such that pj 6 c1 exp(−c2j
k) for every j ∈ N0. This is possible, since ξ grows faster

than any polynomial. Then, we can apply Theorem 1.9 and obtain for all t ∈ N0

Rt 6 exp(−ct
1
3
− 8

3k ) 6 exp(−ct
1
3
−ε), (1.37)

with a constant c > 0.

Whereas Theorem 1.8 improves the exponent 1
5
of (d) in Figure 1.5, displaying

the best previous results, to the optimal value 1
3
, Theorem 1.9 yields an improvement

to the exponent 1
6
of (e) in Figure 1.5 for k > 16. In the case of Corollary 1.10 we

get arbitrarily close to the optimal exponent.

1.4 Outlook on Lifshitz Tails for Spectra of Erd®s-

Rényi Random Graphs in the Supercritical Re-

gime

For a future endeavour it comes to mind to �nd the counterpart to [41], so proving

the Lifshitz tail behaviour of the integrated density of states at the lower spectral

edge E = 0 for the Erd®s-Rényi random graph Laplacian in the supercritical case.

In the subsection �Limits of Erd®s-Rényi random graphs� of 1.1.2, we have

already seen that supercritical Erd®s-Rényi random graphs ER(n, λ
n
), λ > 1, con-

verge in probability in the local weak sense to a Galton-Watson tree T with Poisson

o�spring distribution with parameter λ. Furthermore, by [11, Prop. 1.14] the empir-

ical distributions of the eigenvalues of the adjacency matrices An of ER(n, λ
n
), λ > 1,

converge weakly to the expected spectral measure at the root of this Galton-Watson

family tree T.
Therefore, it seems fruitful to analyse the annealed return probability of the

simple random walk, starting at the root, of such a Galton-Watson family tree with

Poisson o�spring distribution with parameter λ > 1. However, the results of this

thesis, presented in the Section 1.3, do not apply to this scenario. Despite being

supercritical according to (1.15), the Poisson o�spring distribution with parameter

λ > 1 is neither bounded nor of super-Gaussian decay nor does it satisfy p0 = 0.
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Hence, in this case further work is needed to show a matching upper bound for

the annealed return probability Rt 6 exp(−ct 13 ) for every t ∈ N with some (t-

independent) constant c > 0.



Chapter 2

Time Spent on the Backbone

For convenience we start by recalling the main result of this chapter from the Sec-

tion 1.3.

Theorem 2.1. Let ϑ, ε > 0 with 2ϑ+ε 6 1. Consider a supercritical Galton-Watson

family tree T, conditioned on non-extinction, with o�spring distribution {pj}j∈N0

satisfying (1.30) for some constants c1, c2 > 0 and k > 2. Further, assume that

ε > 2
k
. Then, the annealed probability of the event that at most t1−ϑ−ε steps, out of a

total of t steps, of the simple random walk are on the backbone is exponentially small

in tϑ, i.e., there exist (t-independent) constants C, c > 0 such that for all t ∈ N

GP [τ ′t 6 t1−ϑ−ε] 6 C exp(−ctϑ). (2.1)

Here, τ ′t ∈ N0 denotes the time (or number of steps) the simple random walk spends

on the backbone out of a total of t steps.

Remark. 1. Like mentioned in Remark 2 in Subsection 1.2.2, also here we can

refrain from the multiplicative constant C in front of the exponential function

in (2.1), because it can be absorbed in the constant c in the exponent. This is

possible because 1 > ϑ + ε > 0 by the initial assumption and, thus, GP [τ ′t 6

t1−ϑ−ε] 6 GP [τ ′t 6 t− 1] < 1 for every t ∈ N \ {1} large enough, depending on
ϑ and ε. Here, for t ∈ N \ {1} the inequality GP [τ ′t 6 t − 1] < 1 holds, since

we conditioned on non-extinction.

Therefore, under the same assumptions as in Theorem 2.1 we conclude that

there exists a constant c > 0 and an initial time t1 ∈ N \ {1} such that for all

t > t1

GP [τ ′t 6 t1−ϑ−ε] 6 exp(−ctϑ). (2.2)

2. Theorem 2.1 indicates that the time which the simple random walk stays on

20
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the backbone as well as the time which the simple random walk stays in the

�nite subtrees out of t steps total is in the annealed average of order t each,

up to logarithmic corrections.

o

Figure 2.1: A Galton-Watson tree with its �nite subtrees highlighted in green and
its backbone highlighted in blue.

2.1 Proof of Theorem 2.1

The general ideas of the proof are along the lines of [48].

Let T ∈ T. For x ∈ T, let Z ′(x) denote the number of children of x which are

part of the backbone and let Z ′′(x) denote the number of children of x which are

part of the �nite subtrees. Then, the number of children of x equals the sum of

those on the backbone and those in the �nite subtrees, i.e., Z(x) = Z ′(x) + Z ′′(x).

Furthermore, let T′ ⊆ T denote the connected subgraph containing all the vertices

of the backbone and let T′′ ⊆ T denote the, in general, not connected subgraph

containing all the vertices of the �nite subtrees. This at hand, we recall for the

simple random walk (Xt)t∈N0 on T

τ ′t = #{n ∈ N : Xn ∈ T′, n 6 t} (2.3)
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with t ∈ N. We also recall the de�nition of the subtree up to generation t, t ∈ N, in
(1.14) and extend it to subtrees up to height m, for m > 0, which we denote by

T0m := {x ∈ T : dist(x, o) 6 m}. (2.4)

First, we introduce classes of �bad� trees as subsets of T, which we want to

exclude and the G-probability of which is exponentially small in tϑ, t ∈ N. Their

negligence will result only in an in tϑ exponentially small error term in the annealed

regime.

De�nition 2.2. Let t ∈ N and let m > 0. Further, let c4 > lnλ, where λ is de�ned

in (1.15), c3 > 3 + c4
c2
, where c2 is speci�ed in (1.30), and c5 >

c42(2k)k−1

c2
+ 1 be

constants. We de�ne the events

Am := {#T0m > exp(c4m)},

Bt := {∃x ∈ T0t ∩T′′ : c3t
1
k 6 Z ′′(x)} \ At,

Cm = Cm,t := {∃x ∈ T0m ∩T′ : c5
t
1
k

ln t
Z ′(x) 6 Z(x)} \ Am,

Dt := At ∪Bt ∪ A
t1−

2
k
∪ C

t1−
2
k
.

(2.5)

Lemma 2.3. Let ϑ > 0 be as in the assumption of Theorem 2.1. Then there are

constants C ′1, c
′
1 > 0 such that for every t ∈ N with t > exp(4k2) we have

G[Dt] 6 C ′1 exp(−c′1tϑ). (2.6)

For the proof of this lemma, we need some auxiliary results. We start with the

following version of Chebychev's inequality.

Lemma 2.4. Let (Ω,Σ,P) be a probability space and E ∈ Σ an event. Let Y : Ω→
[0,∞] be measurable and % > 0 a parameter. Then,

P[{Y > %} ∩ E ] 6 exp(−%)

∫
E

exp(Y ) dP. (2.7)
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Proof. Denoting by 1M the indicator function of an eventM , the claim follows from

exp(%)P[{Y > %} ∩ E ] = exp(%)P[{exp(Y ) > exp(%)} ∩ E ]

=

∫
E

exp(%)1{exp(Y )>exp(%)} dP

6
∫
E

exp(Y )1{exp(Y )>exp(%)} dP

6
∫
E

exp(Y ) dP. (2.8)

Moreover, we will use the following three estimates on the real natural logarithm

ln.

Lemma 2.5. Let k > 2 be constant and n ∈ N with n > exp(4k2). Then, lnn
k
−

ln lnn > lnn
2k
.

Proof. We notice that 0 6 lnn
2k
−ln lnn = ln n

1
2k

lnn
is equivalent to 2k 6 n

1
2k

lnn
1
2k
. This fol-

lows from the monotonicity of the exponential function and logarithm, respectively.

Since x
lnx

is monotone increasing for every x > e, we get n
1
2k

lnn
1
2k

> exp(4k2)
1
2k

ln(exp(4k2)
1
2k )

=

exp(2k)
2k

> 2k.

Lemma 2.6. Let k > 2 be constant and n ∈ N with n > exp(4k3). Then, n
1
k

lnn
>

exp(2k2) + 5.

Proof. Since x
k lnx

is monotone increasing for x > e, we obtain n
1
k

lnn
> exp(4k2)

4k3
. But

now, since exp(x) > x2 for every x > 0, we see that exp(4k2)
4k3

> k exp(2k2). Finally,

since k > 2, we have k exp(2k2) > exp(2k2) + 5. This yields the claim.

Lemma 2.7. Let k > 2 be constant and x ∈ R with x > exp(2k2). Then, x >

(lnx)k−1.

Proof. Since x
(lnx)k−1 is monotone increasing for x > exp(k − 1), we get x

(lnx)k−1 >
exp(2k2)
(2k2)k−1 = exp(2k2)

exp((k−1)(2 ln k+ln 2))
> exp(2k2)

exp(3k ln k)
. Since k > 2 and thus 2k > 3 ln k, we

conclude that x
(lnx)k−1 > 1.

Proof of Lemma 2.3. Let t ∈ N with t > exp(4k3) be �xed. Then, t1−
2
k > 1 because

of the initial assumption k > 2.

Let m > 1. In the following arguments, bxc denotes the largest integer not

exceeding x ∈ R. As to the decay of the probability of Am, we notice that

G∗[#T0m] =

bmc∑
j=0

λj 6
λm+1 − 1

λ− 1
, (2.9)
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where G∗ denotes the expectation under the probability measure G∗ and we applied

[45, Prop. 5.5] for the equality. We obtain from the de�nition of Am, Chebyshev's

inequality (in the form of Lemma 2.4) and (2.9)

G[Am] 6
1

1− r
G∗[Am] 6

1

1− r
λm+1 − 1

λ− 1
exp(−c4m), (2.10)

where r denotes the extinction probability. Due to c4 > lnλ, the right-hand side of

(2.10) decays exponentially in m.

Next, we turn to the probability of Bt. For every T ∈ T and every x ∈ T we

have Z ′′(x) 6 Z(x) and, by the de�nition of Bt, we are in the complement of the

event At. Therefore, we obtain

G[Bt] 6
1

1− r
exp(c4t)

∞∑
j=bc3t

1
k c

G∗[Z = j]. (2.11)

Inserting the decay (1.30) of the o�spring distribution pj = G∗[Z = j] and estimating

the resulting sum by an integral, we obtain

G[Bt] 6
c1

c2(1− r)
exp(c4t) exp

(
− c2(c3 − 2)kt

)
6

c1

c2(1− r)
exp(−c2t). (2.12)

Here, c3 > 3 + c4
c2

yields the second inequality.

Now, we are left with estimating the probability of C
t1−

2
k
. Let x ∈ C

t1−
2
k
. We

notice that x ∈ C
t1−

2
k
⊆ T′ implies Z ′(x) > 1 and, further, yields c5

t
1
k

ln t
Z ′(x) 6 Z(x).

Hence, we conclude that

1 6
Z(x)

Z ′(x)

ln t

c5t
1
k

6
y ln t

t
1
k

, (2.13)

with y := Z(x)
Z′(x)

> 1. Here, for the second inequality we used that c5 > 1. By taking

(2.13) to the power k − 2 and inserting this back into (2.13), we obtain

1 6
(y ln t)k−1

c5t
1− 1

k

=
ρ(y ln t)k−1

ρc5t
1− 1

k

, (2.14)

with ρ > 0. Furthermore, by considering the logarithm of the de�ning equation of

C
t1−

2
k
, we have

ln
y

c5

> ln
t
1
k

ln t
=

ln t

k
− ln ln t. (2.15)

Here, we used the monotonicity of the natural logarithm to maintain the inequality.

By Lemma 2.5, the monotonicity of the logarithm, and since c5 > 1, t > exp(4k3) >
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exp(4k2), k > 2, we also get

ln y > ln
y

c5

>
ln t

k
− ln ln t >

ln t

2k
. (2.16)

Inserting (2.16) into (2.14), we obtain

1 6
ρ(2ky ln y)k−1

ρc5t
1− 1

k

=
ρ(2k Z(x)

Z′(x)
ln Z(x)

Z′(x)
)k−1

ρc5t
1− 1

k

. (2.17)

We note that this inequality holds for every x ∈ C
t1−

2
k
, since x was arbitrary.

By Lemma 2.6 and since t > exp(4k3), k > 2, x ∈ C
t1−

2
k
⊆ T′, we know that

Z(x) > c5
t
1
k

ln t
Z ′(x) > t

1
k

ln t
> ζ + 4 > 12 with ζ := dexp(2k2)e. Hence, we have

G∗
[
exp
(
ρ
( Z(x)

Z ′(x)
ln
Z(x)

Z ′(x)

)k−1)]
= G∗

[
exp
(
ρ
( Z(x)

Z ′(x)
ln
Z(x)

Z ′(x)

)k−1)∣∣∣Z(x) > ζ + 4
]
,

(2.18)

where we consider the expectation G∗ conditioned on the event {Z(x) > ζ + 4}
under the probability measure G∗. We conclude that

G∗
[
exp
(
ρ
( Z(x)

Z ′(x)
ln
Z(x)

Z ′(x)

)k−1)∣∣∣Z(x) > ζ + 4
]

6 G∗[exp(ρ(Z(x) lnZ(x))k−1)|Z(x) > ζ + 4]

6 G∗[exp(ρZ(x)k)|Z(x) > ζ + 4]

6
∞∑
j=12

exp(ρjk)G∗[Z = j]. (2.19)

Here, for the �rst inequality we used that x ∈ C
t1−

2
k
⊆ T′ and, thus, Z ′(x) > 1, for

the second inequality we applied Lemma 2.7, and the third inequality follows from

ζ > 8.

Now, choose ρ := c2
2
> 0. Then, inserting the decay (1.30) of the o�spring

distribution pj = G∗[Z = j] into (2.19) and estimating the resulting sum by an

integral, we obtain

G∗
[
exp
(c2

2

( Z(x)

Z ′(x)
ln
Z(x)

Z ′(x)

)k−1)]
6

2c1

c2

exp
(
−c2

2
11k
)
. (2.20)

Again, we note that this inequality holds for every x ∈ C
t1−

2
k
, since x was arbitrary.

By the de�nition of C
t1−

2
k
, we are in the complement of the event A

t1−
2
k
and,
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thus, by (2.17) we have

G
[
C
t1−

2
k

]
6

1

1− r
exp(c4t

1− 2
k )G∗

[ c2
2

(2k Z(x)
Z′(x)

ln Z(x)
Z′(x)

)k−1

c2
2
c5t

1− 1
k

> 1

]
, (2.21)

for some x ∈ C
t1−

2
k
. We obtain from Chebyshev's inequality (in the form of Lemma

2.4) and (2.20) that

G
[
C
t1−

2
k

]
6

1

1− r
exp(c4t

1− 2
k )

2c1

c2

exp
(
−c2

2
11k
)

exp
(
− c2c5t

1− 1
k

2(2k)k−1

)
. (2.22)

Due to c5 >
c42(2k)k−1

c2
+ 1 and 1 − 2

k
< 1 − 1

k
, the right-hand side of (2.22) decays

exponentially in t1−
1
k .

Since we assumed ϑ, ε > 0 with 2ϑ+ε 6 1, ε > 2
k
and, thus, ϑ < 1− 2

k
< 1− 1

k
< 1,

combining (2.10), (2.12), and (2.22), the claim follows.

Let T ∈ T be �xed. Next, we turn to the simple random walk (Xt)t∈N0 , starting

at the root o, on T. Let νi ∈ N0, i ∈ N, denote the number of excursions to the �nite
subtrees, so T′′, (Xt)t∈N0 takes at position i before taking a step on the backbone

T′, to reach the distinct position i + 1. So, position 1 is always the root o and ν1

is the number of excursions of (Xt)t∈N0 to T′′ before taking a �rst step on T′; after

this �rst step on T′ the walk reaches position 2 and undertakes ν2 excursions to T′′

before taking another step on T′, and so on. We note that, by this construction, it

is indeed possible that the position 3 is again the root. Further, let dl ∈ N \ {1},
l = 1, ...,

∑
i∈N νi, denote the time (or, more precisely, the number of steps) of the

l-th excursion, including the step into and out of T′′, respectively. We write

Ft :=

τ ′t∑
i=1

νi, (2.23)

for the number of excursions up to a total of t steps. There, we have exactly τ ′t

positions, since τ ′t was de�ned, in (2.3), as the number of steps on the backbone T′,

out of t steps total on T, and positions are de�ned as the vertex x ∈ T′ before the

i-th step on the backbone.

De�nition 2.8. Let T ∈ T, t ∈ N, and c6 > 2c5 ln 2. For T, we de�ne the events

Ht := {Ft > c6
t1−ϑ−

1
k

ln t
, τ ′t 6 t1−ϑ−

2
k },

Kt :=
{ Ft∑

l=1

dl > c6
t

ln t
, Ft 6 c6

t1−ϑ−
1
k

ln t

}
.

(2.24)
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Lemma 2.9. There are constants C ′2, C
′
3, c
′
2, c
′
3 > 0 such that for every t ∈ N with

t > exp(4k3) we have

1.

GP [Ht, D
c
t ] 6 C ′2 exp(−c′2tϑ), (2.25)

2.

GP [Kt, D
c
t ] 6 C ′3 exp(−c′3tϑ). (2.26)

Here, we write GP [ ··· , E ] := G[E ] GEP [ ··· ] for E ⊆ T, where GE [ ··· ] is the probability

measure conditioned on the event E.

For the proof of this lemma, we need some more auxiliary results and notations.

For T ∈ T and the indices i = 1, ..., τ ′t , let x
′
i ∈ T denote the vertex at position i,

where we add the prime to emphasize that x′i is on the backbone, i.e., x′i ∈ T′. For

τ ′t 6 t1−
2
k , we notice that x′i ∈ T

0t1−
2
k
∩T′ for every i ∈ [1, τ ′t ], since the graph distance

satis�es dist(o, x′i) 6 τ ′t 6 t1−
2
k , for every i ∈ [1, τ ′t ], by the de�nition of x′i and of the

i-th position respectively. Here, we recall the notation [m,n] = {j ∈ N : m 6 j 6 n}
for m,n ∈ N. Let T /∈ Dt and τ

′
t 6 t1−

2
k . Then, in particular, we know T /∈ C

t1−
2
k

and, thus, by De�nition 2.2 we have

Z ′(x′i)

Z(x′i)
>

ln t

c5t
1
k

, for every i ∈ [1, τ ′t ]. (2.27)

Here, 1 − Z′(x′i)

Z(x′i)
describes the probability of the simple random walk stepping into

T′′ at least once at position i.

Furthermore, we notice that 0 < ln t

c5t
1
k
< 1 for every t > exp(4k3) by Lemma 2.6

and since c5 > 1. Therefore, we can construct a sequence of i.i.d. random variables

(ν∗i )i∈N with geometric distribution and parameter ln t

c5t
1
k
.

Lemma 2.10. Let t ∈ N with t > exp(4k3), T ∈ T \Dt, and τ
′
t 6 t1−

2
k . Then, by

coupling we obtain νi 6 ν∗i for every i ∈ [1, τ ′t ].

Proof. We show this by constructing the coupling explicitly. Let i ∈ [1, τ ′t ]. First,

consider the random variable ξ on the probability space (Ω,F ,P) with

ξ : Ω→ {0, 1}, ω 7→ ξ(ω), (2.28)

where Ω = Ω0 ∪̇ Ω1 with ξ(Ω0) = 0, ξ(Ω1) = 1, P[Ω0] =
Z′(x′i)

Z(x′i)
. Here, we write

A ∪̇ B for the union of the disjoint sets A and B, so A ∩B = ∅.
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Now, νi is given by

νi : ΩN → N0, with {νi = j} ⇔ Ω1 × ...× Ω1︸ ︷︷ ︸
j

×Ω0 × Ω× ..., for every j ∈ N0.

(2.29)

Next, we consider the random variable ξ∗ on the same probability space (Ω,F ,P)

with

ξ∗ : Ω→ {0, 1}, ω 7→ ξ∗(ω). (2.30)

Here, Ω = Ω∗0 ∪̇ Ω∗1 with ξ∗(Ω∗0) = 0, ξ∗(Ω∗1) = 1, and P[Ω∗0] = ln t

c5t
1
k
.

Now, is given by

ν∗i : ΩN → N0, with {ν∗i = j} ⇔ Ω∗1 × ...× Ω∗1︸ ︷︷ ︸
j

×Ω∗0 × Ω× ..., for every j ∈ N0.

(2.31)

We notice {ν∗i > j} ⇔ Ω∗1 × ...× Ω∗1︸ ︷︷ ︸
j

×Ω× Ω× ..., for every j ∈ N0.

Since
Z′(x′i)

Z(x′i)
> ln t

c5t
1
k
according to (2.27), this can be constructed such that Ω0 ⊇ Ω∗0

and, thus, Ω∗1 = (Ω∗0)c ⊇ (Ω0)c = Ω1. Therefore, we obtain

Ω1 × ...× Ω1︸ ︷︷ ︸
j

×Ω0 × Ω× ... ⊆ Ω∗1 × ...× Ω∗1︸ ︷︷ ︸
j

×Ω× Ω× ..., for every j ∈ N0. (2.32)

This yields νi 6 ν∗i for all i ∈ [1, τ ′t ].

To prove Lemma 2.9, we also need the following estimate on the exponential

function.

Lemma 2.11. Let u > 0. Then, (1− 2u) exp(u) 6 1− u.

Proof. This is obviously true for u = 0. So now, assume that u > 0. Here, we

consider three cases separately.

First, assume that 1
2
> u > 0. Then, we consider the function f : [0, 1

2
] →

R, f(u) := 1−2u
1−u exp(u)−1 with derivative f ′(u) = exp(u)

(1−u)2
(2u2−3u). Since f ′(u) 6 0

for every u ∈ [0, 1
2
] and f(0) = 0, we have f(u) 6 0 for every u ∈ (0, 1

2
) and, thus,

the inequality holds true in this case.

Second, let 1 > u > 1
2
. Then, the inequality holds after comparing the signs of

both sides.

Third, we assume that u > 1. Then, u−1
2u−1

exp(−u) 6 (u − 1) exp(−u) 6

u exp(−u) < 1 and the inequality follows in this case as well.
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For T ∈ T, we recall the de�nition of generation gn = {x ∈ T : dist(x, o) = n},
n ∈ N0, and introduce

G′′ := G∗[ ··· | ∃n ∈ N : #gn = 0] (2.33)

for the conditional probability measure conditioned on extinction. Furthermore, for

b > 0 let

G′′b := G′′[ ··· | ∀x ∈ T : Z(x) 6 b] (2.34)

denote the conditional probability measure conditioned on at most b children. Fur-

ther, let G′′b denote the expectation of G′′b .

Let T ∈ T and let (X
(v)
t )t∈N0 denote the simple random walk on T, starting at

an arbitrary vertex v ∈ T. Further, let τ0 = τ
(v,u)
0 denote the �rst positive hitting

time of the vertex u ∈ T, i.e.,

τ0 :=

∞, if there does not exist n ∈ N such that X
(v)
n = u,

n, if X
(v)
n = u and ∀j ∈ [1, n− 1] : X

(v)
j 6= u.

(2.35)

Next, in Lemma 2.12 we recall a result by Piau [48, Lemma 3] and give a more

detailed proof. This will be used in the proof of Lemma 2.9 to estimate the time (or,

more precisely, the number of steps) the simple random walk spends in the �nite

subtree, after having stepped into it, which corresponds to dl − 1 for some l ∈ N.
Here, we notice that we need to consider a tree, conditioned on extinction, with

a stump added to the root, since the walk already entered the �nite subtree and,

thus, has to revert this step to exit the �nite subtree. Therefore, we introduce the

trees T−1 which are constructed by adding the vertex o− below the root o for every

T ∈ T. The probability measure of the simple random walk on T−1 ∈ T−1 will be

denoted by P−1 and its expectation by E−1.

Lemma 2.12. Let b > 1. Then, every constant
(1−G′′b [Z])2

16
> c7 > 0 satis�es

G′′bE−1

[
exp

(
c7τ

(o,o−)
0

b

)]
6 2. (2.36)

Here, we consider the expectation E−1 in the annealed average over G′′b .

Proof. Let T ∈ T be a supercritical Galton-Watson tree, which goes extinct and

satis�es Z(x) 6 b for every x ∈ T. Let T−1 be the corresponding tree with stump

o−. Further, let

λb := G′′b [Z] < 1 (2.37)
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by [45, Prop. 5.4], [1, Cor. 2.5]. First, we note that τ0 := τ
(o,o−)
0 will depend on

the number of generations gn, n ∈ N0 ∪ {−1}, the simple random walk (Xt)t∈N0 on

T−1, starting at the root o, explores before reaching o− for the �rst time. Here, we

introduced g−1 := {o−} and stick to gn = {x ∈ T : dist(x, o) = n}, n ∈ N0. Hence,

for n ∈ N0 let τn denote the �rst hitting time of o−, conditioned on that the simple

random walk never exceeds generation gn or, equivalently, graph distance n to the

root o, i.e., for all m ∈ N we have

P−1[τ0 = m | ∀j ∈ [1,m− 1] : dist(Xj, o) 6 n] = P−1[τn = m]. (2.38)

Here, we know τ0, τ
n < ∞ for every n ∈ N0, since we only consider the simple

random walk on trees conditioned on extinction, thus trees with a �nite vertex set.

Now, we note that P−1[τ 0 = 1] = 1, since, here, the simple random walk can not

exceed generation g0 = {o} and, thus, has to move to o− in the �rst step. Further,

let z := Z(o), where in the case z = 0 we have τ0 = τn = 1, for every n ∈ N0, and

the claim follows from c7 6 1
2
, cf. (2.37). Then, for n ∈ N0, P−1[τn+1 = 1] = 1

z+1

and P−1[τn+1 = 1 + τn∗ + τn+1
∗ ] = z

z+1
. Here, τn∗ denotes the the �rst recurrence time

to o of the simple random walk, starting at the root's child x1 = X1 6= o−, where the

walk never exceeds graph distance n to x1; and τ
n+1
∗ denotes an i.i.d.-copy of τn+1.

Let Px+1 denote the probability measure of the simple random walk, starting at the

vertex x1, on the subtree of T−1 given by x1 and its descendants with the root o as

stump. Furthermore, let the corresponding expectation be denoted by Ex+1 . Then,
for n ∈ N0 and ρ > 0, we obtain

E−1[exp(ρτn+1)] =
exp(ρ)

z + 1
+

exp(ρ)z

z + 1
E−1[exp(ρτn+1

∗ )] Ex+1 [exp(ρτn∗ )], (2.39)

which can be written as

exp(ρ) =
(
1− z(exp(ρ)Ex+1 [exp(ρτn∗ )]− 1)

)
E−1[exp(ρτn+1)]. (2.40)

Form now on, we will always consider

(1− λb)2

16bbc
> ρ > 0, (2.41)

where λb was de�ned in (2.37). Since Z(o) is an i.i.d.-copy of a random variable Z,

for z = 0, ..., bbc, we conclude from (2.40) that

exp(ρ) =
(
1− z(exp(ρ)G′′bE−1[exp(ρτn)]− 1)

)
G′′bE−1[exp(ρτn+1)|Z(o) = z]. (2.42)
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Now, for u > 1 with u exp(ρ) < 1 + (bbc)−1, we de�ne

g(u) := G′′b
[ exp(ρ)

1− Z(u exp(ρ)− 1)

]
. (2.43)

Moreover, for n ∈ N0, we introduce

tn := G′′bE−1[exp(ρτn)]. (2.44)

Then, we see that t0 = G′′bE−1[exp(ρτ 0)] = exp(ρ) and, by (2.42), that tn+1 =

G′′bE−1[exp(ρτn+1)] = g(G′′bE−1[exp(ρτn)]) = g(tn) for every n ∈ N0 with tn exp(ρ) <

1+(bbc)−1, so, in particular, for n = 0 and ρ < 1
2

ln(1+(bbc)−1) which is guaranteed

by (2.41).

Next, let

ε :=
1

2
(1− λb) > 0, (2.45)

where λb was de�ned in (2.37). Now, let u > 1 with u exp(ρ) < 1 + ε(bbc)−1. Then

u exp(ρ) < 1 + (bbc)−1, since ε < 1 by its de�nition (2.45). Further, the constant

c(ε) := (1− ε)−1 > 0 (2.46)

yields

(1− z(u exp(ρ)− 1))−1 6 1 + c(ε)z(u exp(ρ)− 1), (2.47)

for every z = 0, ..., bbc. Here, we estimated

(1− z(u exp(ρ)− 1))(1 + c(ε)z(u exp(ρ)− 1))

= 1− z(u exp(ρ)− 1) + c(ε)z(u exp(ρ)− 1)− c(ε)z2(u exp(ρ)− 1)2

> 1− z(u exp(ρ)− 1) + c(ε)z(u exp(ρ)− 1)− εc(ε)z(u exp(ρ)− 1)

= 1, (2.48)

where the inequality follows from u exp(ρ) < 1 + ε(bbc)−1 together with z 6 bbc, for
every z ∈ [0, bbc], and the last equality holds by the choice of c(ε) in (2.46).

Furthermore, for u > 1 with u exp(ρ) < 1 + ε(bbc)−1, we de�ne

gε(u) := exp(ρ) + exp(ρ)c(ε)(u exp(ρ)− 1)λb. (2.49)

Then, for every n ∈ N0, we obtain, by (2.47), that

tn exp(ρ) < 1 + ε(bbc)−1 =⇒ tn+1 = g(tn) 6 gε(tn). (2.50)
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We notice that gε is increasing and claim that, for every ρ satisfying (2.41), gε

has a �xed-point s = s(ρ) > exp(ρ) with

s exp(ρ) < 1 + ε(bbc)−1, (2.51)

which, by the de�nition of gε in (2.49), corresponds to the existence of s > exp(ρ)

with

s exp(ρ) < 1 + ε(bbc)−1 and s = exp(ρ) + exp(ρ)c(ε)(s exp(ρ)− 1)λb. (2.52)

To prove this, we �rst notice that

c(ε)λb < 1, (2.53)

by the choice of c(ε) in (2.46) and of ε in (2.45) together with the estimate (2.37).

Furthermore, all of our choices of ρ in (2.41) yield

exp(2ρ) <
ε+ bbc

c(ε)λbε+ bbc
. (2.54)

Here, we estimated as follows

2ρ <
(1− λb)2

8bbc
<

(1− λb)2

2(λb + 1)(bbc+ ε)
=
ε(1− c(ε)λb)

(bbc+ ε)
< 1, (2.55)

where we used (2.41) for the �rst inequality, ε < 1 6 bbc by (2.45) and by initial

assumption for the second inequality, εc(ε)λb = (1−λb)λb
1+λb

, thus, 2ε−2εc(ε)λb = (1−λb)2
1+λb

by (2.45) and (2.46) for the equality, and once more the choices of ε, c(ε) in (2.45),

respectively, (2.46) for the last inequality. Then, we apply the elementary inequality

ln(1 + x) 6 x, for x ∈ ] − 1, 1[ , in the form of x 6 ln( 1
1−x) to x = ε(1−c(ε)λb)

(bbc+ε) and

conclude from (2.55) that

2ρ < ln
( ε+ bbc
c(ε)λbε+ bbc

)
, (2.56)

which yields (2.54).

Now, considering the derivative g′ε of gε, which we de�ned in (2.49), we obtain,

by (2.54), that

g′ε ≡ exp(2ρ)c(ε)λb < c(ε)λb
ε+ bbc

c(ε)λbε+ bbc
. (2.57)

By (2.53) we conclude that 0 6 g′ε(u) < 1 for every u > 1 and gε(1) > exp(ρ) with
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strict inequality for λb > 0. Therefore, by the Banach �xed point theorem gε has a

�xed-point s = s(ρ) > exp(ρ) for every 0 < ρ < (1−λb)2
16bbc .

We are left to show that s satis�es (2.51). To this end, we assume, for contra-

diction, that s exp(ρ) > 1 + ε(bbc)−1. Since s is a �xed point of gε and, thus, in

particular satis�es the second equation of (2.52), we have

exp(2ρ) =
s exp(ρ)

1 + c(ε)λb(s exp(ρ)− 1)
. (2.58)

Now, we apply the elementary estimate d+a
d+ba

> d+f
d+bf

, for 0 < f 6 a and 0 6 b <

1 6 d, with a = s exp(ρ)− 1, b = c(ε)λb, d = 1, and f = ε(bbc)−1 and obtain, from

(2.58) by (2.53) and by the assumption s exp(ρ) > 1 + ε(bbc)−1, that

exp(2ρ) >
1 + ε(bbc)−1

1 + c(ε)λbε(bbc)−1
=

ε+ bbc
c(ε)λbε+ bbc

, (2.59)

which contradicts (2.54). Hence, we conclude that s indeed satis�es (2.51), i.e.,

s exp(ρ) < 1 + ε(bbc)−1.

Therefore, we have shown that, for every ρ satisfying (2.41), there exists s =

s(ρ) > exp(ρ) satisfying (2.52).

Finally, we recall that t0 = exp(ρ) 6 s according to (2.44) and, thus, by the

inequality in (2.52) we have t0 exp(ρ) < 1 + ε(bbc)−1. Since s is a �xed point of the

increasing function gε satisfying (2.52), (2.50) iteratively implies tn 6 s for every

n ∈ N0. Furthermore, for every tree T ∈ T, which goes extinct, there exists j ∈ N0

such that generation j + 1 satis�es #gj+1 = 0. Then, τ0 = τ j, i.e., for all m ∈ N we

have

P−1[τ0 = m] = P−1[τ j = m]. (2.60)

Hence, by (2.44), we notice, for every (1−λb)2
16bbc > ρ > 0, that

G′′bE−1[exp(ρτ0)] 6 s. (2.61)

We choose c7 := ρ bbc and the claim follows from s < 1 + ε(bbc)−1 6 2, where (2.52)

yields the �rst and ε < 1 6 bbc, by (2.45) and the initial assumption, yield the

second inequality.

Proof of Lemma 2.9. Let t ∈ N with t > exp(4k3).
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1. First, we notice, by De�nition 2.8 of Ht and the de�nition of Ft in (2.23), that

GP [Ht, D
c
t ] 6 G[Dc

t ] GDct
P

[bt1−ϑ− 2
k c∑

i=1

νi > c6
t1−ϑ−

1
k

ln t
, τ ′t 6 t1−ϑ−

2
k

]
, (2.62)

where we take i.i.d. copies of ν1 for i > τ ′t .

Now, we recall the de�nition of νi+1, i ∈ [1, τ ′t ], as the �rst successful forward

move at the position i. Furthermore, we recall the construction of (ν∗i )i∈N as

sequence of i.i.d. random variables with geometric distribution and parameter
ln t

c5t
1
k
. Further, let (Ω,F ,P) be their joint probability space with expectation E

from Lemma 2.10.

Let ι ∈ N be �xed. Then, we see that

E
[
exp
(ν∗ι ln t

2c5t
1
k

)]
=
∞∑
j=0

exp
( j ln t

2c5t
1
k

)(
1− ln t

c5t
1
k

)j ln t

c5t
1
k

=
∞∑
j=0

((
1− ln t

c5t
1
k

)
exp
( ln t

2c5t
1
k

))j ln t

c5t
1
k

6
∞∑
j=0

(
1− ln t

2c5t
1
k

)j ln t

c5t
1
k

= 2. (2.63)

Here, we applied Lemma 2.11 with u = ln t

2c5t
1
k
to show the inequality.

This at hand, we notice that τ ′t 6 t1−ϑ−
2
k implies τ ′t 6 t1−

2
k , since ϑ > 0 by the

initial assumption of Theorem 2.1. Therefore, we conclude, by Chebyshev's

inequality (in the form of Lemma 2.4), that

G[Dc
t ] GDct

P

[bt1−ϑ− 2
k c∑

i=1

νi > c6
t1−ϑ−

1
k

ln t
, τ ′t 6 t1−ϑ−

2
k

]

6 E
[
exp
( ln t

2c5t
1
k

bt1−ϑ−
2
k c∑

i=1

νi

)]
exp
(
−c6t

1−ϑ− 2
k

2c5

)
. (2.64)
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By Lemma 2.10 we have νi 6 ν∗i for every i ∈ [1, τ ′t ] and, thus,

G[Dc
t ] GDct

P

[bt1−ϑ− 2
k c∑

i=1

νi > c6
t1−ϑ−

1
k

ln t
, τ ′t 6 t1−ϑ−

2
k

]

6 E
[
exp
( ln t

2c5t
1
k

bt1−ϑ−
2
k c∑

i=1

ν∗i

)]
exp
(
−c6t

1−ϑ− 2
k

2c5

)
6 E

[
exp
(ν∗ι ln t

2c5t
1
k

)]t1−ϑ− 2
k

exp
(
−c6t

1−ϑ− 2
k

2c5

)
. (2.65)

Here, we used that (ν∗i )i∈N are i.i.d. random variables for the second inequality.

Finally, by (2.63) we have

G[Dc
t ] GDct

P

[bt1−ϑ− 2
k c∑

i=1

νi > c6
t1−ϑ−

1
k

ln t
, τ ′t 6 t1−ϑ−

2
k

]
6 2t

1−ϑ− 2
k exp

(
−c6t

1−ϑ− 2
k

2c5

)
.

(2.66)

Due to c6 > 2c5 ln 2, the right-hand side of (2.66) decays exponentially in

t1−ϑ−
2
k . Since ϑ 6 1−ϑ− 2

k
by the initial assumptions of Theorem 2.1, we also

have the exponentially decay in tϑ of the right-hand side of (2.66). Together

with (2.62), this yields the claim for Ht.

2. We �rst notice, by De�nition 2.8 of Kt, that

GP [Kt, D
c
t ] 6 G[Dc

t ] GDct
P

[bc6 t1−ϑ− 1
k

ln t
c∑

l=1

dl > c6
t

ln t

]
, (2.67)

where we take i.i.d. copies of d1 for l > Ft.

Now, we recall the de�nition of dl ∈ N \ {1}, l = 1, ...,
∑

i∈N νi, as the time

(or, more precisely, the number of steps) of the simple random walk's ex-

cursions, including the step into and out of the �nite subtree. Furthermore,

we recall the de�nition of the �rst recurrence time τ0 in (2.35). Further, let

j ∈
[
1, bc6

t1−ϑ−
1
k

ln t
c
]
and choose b := c3t

1
k . Then, we see that

GDct
P
[
dj > tϑ+ 1

k

]
6

1

G[Dc
t ]
G′′bP−1

[
2τ

(o,o−)
0 > tϑ+ 1

k

]
. (2.68)

Here, every �nite subtree is part of T′′ and, thus, on the r.h.s. of (2.68) we

condition on extinction. Moreover, by De�nition 2.2 we haveDc
t ⊆ {∀x ∈ T0t∩

T′′ : c3t
1
k > Z ′′(x)} and since we consider the times in (2.68) only up to a total
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of t steps, we know that the simple random walk has to stay in T0t. Therefore,

we also condition the r.h.s. of (2.68) on the event {∀x ∈ T : Z(x) 6 b}.

Next, let c7 :=
(1−G′′b [Z])2

32
. Then, by Chebyshev's inequality (in the form of

Lemma 2.4) and by the choice of b = c3t
1
k , we conclude that

G[Dc
t ] GDct

P
[
dj > tϑ+ 1

k

]
6 G′′bE−1

[
exp

(
c7τ

(o,o−)
0

b

)]
exp
(
−c7t

ϑ

2c3

)
. (2.69)

Since we chose c3 > 3, see De�nition 2.2, we have b > 1. Applying Lemma 2.12

yields

G[Dc
t ] GDct

P
[
dj > tϑ+ 1

k

]
6 2 exp

(
−c7t

ϑ

2c3

)
. (2.70)

Since
{∑bc6 t1−ϑ− 1

k
ln t

c
l=1 dl > c6

t
ln t

}
⊆
{
∃ j ∈

[
1, bc6

t1−ϑ−
1
k

ln t
c
]

: dj > tϑ+ 1
k

}
, we

conclude, by (2.70), that

G[Dc
t ] GDct

P

[bc6 t1−ϑ− 1
k

ln t
c∑

l=1

dl > c6
t

ln t

]
6 c6

t1−ϑ−
1
k

ln t
2 exp

(
−c7t

ϑ

2c3

)
, (2.71)

where the r.h.s. decays exponentially in tϑ. Together with (2.67), this yields

the claim for Kt.

Finally, we are ready to proof Theorem 2.1.

Proof of Theorem 2.1. Let T ∈ T and let N := max(exp(4k3), exp(c6 +1)). We �rst

note for the simple random walk on T starting at the root that, for t ∈ N with

t > N ,

{τ ′t 6 t1−ϑ−ε} ⊆ Ht ∪Kt. (2.72)

Here, we recall the de�nitions of Ht and Kt from De�nition 2.8.

To this end, let t > N . Then, we conclude, by the initial assumption ε > 2
k
, that

{τ ′t 6 t1−ϑ−ε} ⊆
{
τ ′t 6 t1−ϑ−

2
k

}
⊆
({

τ ′t 6 t1−ϑ−
2
k

}
∩
{
Ft > c6

t1−ϑ−
1
k

ln t

})
∪
({

τ ′t 6 t1−ϑ−
2
k

}
∩
{
Ft 6 c6

t1−ϑ−
1
k

ln t

})
. (2.73)
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Furthermore, we know that τ ′t = t − τ ′′t , where τ ′′t denotes the time (or number of

steps) the simple random walk spends in the �nite subtrees T′′ out of a total of t

steps, i.e.,

τ ′′t := #{n ∈ N : Xn ∈ T′′, n 6 t}. (2.74)

Therefore, we obtain, by the de�nition of Ht, that

{τ ′t 6 t1−ϑ−ε} ⊆ Ht ∪
({

τ ′′t > t− t1−ϑ−
2
k

}
∩
{
Ft 6 c6

t1−ϑ−
1
k

ln t

})
. (2.75)

Since t > N , we have, by Lemma 2.6, that ln(t)

tϑ+
2
k
6 1 and, thus, t − t1−ϑ− 2

k > c6
t

ln t
.

Hence, we get

{τ ′t 6 t1−ϑ−ε} ⊆ Ht ∪
({

τ ′′t > c6
t

ln t

}
∩
{
Ft 6 c6

t1−ϑ−
1
k

ln t

})
. (2.76)

Now, we recall the de�nition of Ft in (2.23) and of dl, l = 1, ..., Ft, as the time

(or, more precisely, the number of steps) of the simple random walk's excursions to

the �nite subtrees, respectively. Then, by the de�nition of τ ′′t , see (2.74), we have

τ ′′t 6
∑Ft

l=1 dl, since each dl also accounts for the step out of the �nite subtree which

is not included in τ ′′t . Together with the de�nition of Kt we conclude that

{τ ′t 6 t1−ϑ−ε} ⊆ Ht ∪
({ Ft∑

l=1

dl > c6
t

ln t

}
∩
{
Ft 6 c6

t1−ϑ−
1
k

ln t

})
= Ht ∪Kt, (2.77)

which proves (2.72).

Next, by (2.72) we obtain, for t > N ,

GP [τ ′t 6 t1−ϑ−ε] 6 G[Dt] +GP [Ht, D
c
t ] +GP [Kt, D

c
t ]. (2.78)

Hence, by Lemma 2.3 and Lemma 2.9 we conclude from (2.78) that, for t > N ,

GP [τ ′t 6 t1−ϑ−ε] 6 C ′1 exp(−c′1tϑ) + C ′2 exp(−c′2tϑ) + C ′3 exp(−c′3tϑ), (2.79)

with constants C ′1, c
′
1, C

′
2, c
′
2, C

′
3, c
′
3 > 0.

Now, let C ′ := 3 max(C ′1, C
′
2, C

′
3, 1) > 0 and let c′ := min(c′1, c

′
2, c
′
3) > 0. By

(2.79) we have, for t > N ,

GP [τ ′t 6 t1−ϑ−ε] 6 C ′ exp(−c′tϑ). (2.80)
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Finally, let t ∈ N be arbitrary. Since C ′ > 1 by its de�nition, we obtain

GP [τ ′t 6 t1−ϑ−ε] 6 exp(c′Nϑ) C ′ exp(−c′tϑ). (2.81)

Choosing C := exp(c′Nϑ) C ′ > 0 and c := c′ > 0 yields the claim.

2.2 Application to the Annealed Return Probability

In this section we give one possible application of Theorem 2.1. By reducing the

simple random walk on a Galton-Watson family tree with general o�spring distri-

bution to the steps taken on the backbone, we obtain an estimate for the annealed

return probability by its version restricted to the backbone, so, in particular, for a

random walk on trees with p0 = 0. To this end, we �rst need to discuss how we

reduce the simple random walk to the backbone.

Let T be a supercritical Galton-Watson family tree conditioned on non-extinction.

Let T ∈ T and let T′ denote its backbone and T′′ its �nite subtrees. Next, consider

the simple random walk (Xt)t∈N0 on T starting at the root o. Now, we introduce the

simple random walk reduced to the backbone T′ which we will denote by (X ′m)m∈N0 .

This is a subsequence of the simple random walk on T, i.e., for every m ∈ N0 we

have X ′m = Xtm with some tm ∈ N0. Here, we set t0 := 0, thus X ′0 = X0 = o,

and iteratively de�ne tm+1 := inf{n ∈ N : Xn ∈ T′, n > tm} for every m ∈ N0.

Then, this is well de�ned, since T is conditioned on non-extinction, and we have

X ′m ∈ T′ for every m ∈ N0. We note that, by this de�nition, X ′m = X ′m+1 whenever

X1+tm ∈ T′′, m ∈ N0. The G
∗-probability of {X ′m = X ′m+1} can be bounded by the

extinction probability r, compare with [1].
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o

(a)

o

(b)

Figure 2.2: The realisation of a Galton-Watson tree in (a) and its backbone with
loops at the positions, highlighted in green, which previously led to �nite subtrees
in (b). Then we can visualise (X ′m)m∈N0 as the random walk on a weighted version
of the graph in (b).

Furthermore, we recall the de�nition of the annealed return probability Rt =

GP [X2t = o], t ∈ N0, in (1.28). We introduce the annealed return probability on

the backbone

R′m := GP [X ′m = o], m ∈ N0. (2.82)

Again, this is well de�ned, since T is conditioned on non-extinction, so, in particular,

o ∈ T′.

The following corollary of Theorem 2.1 enables us to quantify the error of redu-

cing the simple random walk (Xt)t∈N0 to the backbone with respect to the annealed

return probability.

Corollary 2.13. Let ϑ, ε > 0 with 2ϑ + ε 6 1. Consider a supercritical Galton-

Watson family tree T, conditioned on non-extinction, with o�spring distribution

{pj}j∈N0 satisfying (1.30) for some constants c1, c2 > 0 and k > 2. Further, assume

that ε > 2
k
. Then, there exist constants C, c > 0 such that for all t ∈ N

Rt 6
2t∑

m=d(2t)1−ϑ−εe

R′m + C exp(−ctϑ). (2.83)

Here, we recall that dxe = inf{n ∈ N : n > x} for x ∈ R.

Remark. If the decay of R′m can be bounded by a monotone decreasing function in

m, we can always estimate the sum in (2.83) by 2t times R′d(2t)1−ϑ−εe and obtain, the
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more aesthetic,

Rt 6 2tR′d(2t)1−ϑ−εe + C exp(−ctϑ). (2.84)

Proof. Let T ∈ T and let (Xt)t∈N0 denote the simple random walk on T, starting

at the root o, and let (X ′m)m∈N0 denote its version reduced to the backbone, i.e., for

every m ∈ N0 we have X ′m = Xtm with some tm ∈ N0. Now, let t ∈ N be �xed.

We recall the de�nition of τ ′′2t, in (2.74), as the time (or number of steps) the

simple random walk spends in the �nite subtrees T′′ out of a total of 2t steps.

Contrarily, τ ′2t, de�ned in (2.3), denotes the time (or number of steps) the simple

random walk spends on the backbone T′ out of a total of 2t steps. Then, we have

τ ′′2t + τ ′2t = 2t.

This at hand, we notice that

{X2t = o} =
2t⋃
m=1

(
{X ′m = o} ∩ {τ ′′2t = 2t−m}

)

⊆
d(2t)1−ϑ−εe−1⋃

m=1

{τ ′′2t = 2t−m} ∪
2t⋃

m=d(2t)1−ϑ−εe

{X ′m = o}

⊆ {τ ′′2t > 2t− (2t)1−ϑ−ε} ∪
2t⋃

m=d(2t)1−ϑ−εe

{X ′m = o}

= {τ ′2t 6 (2t)1−ϑ−ε} ∪
2t⋃

m=d(2t)1−ϑ−εe

{X ′m = o}. (2.85)

Now, considering the annealed probability of the events in (2.85), we conclude

that

GP [X2t = o] 6 GP [τ ′2t 6 (2t)1−ϑ−ε] +
2t∑

m=d(2t)1−ϑ−εe

GP [X ′m = o]. (2.86)

After recalling the de�nition of the annealed return probability Rt in (1.28) and of

the annealed return probability on the backbone R′m in (2.82), we have

Rt 6 GP [τ ′2t 6 (2t)1−ϑ−ε] +
2t∑

m=d(2t)1−ϑ−εe

R′m. (2.87)

Finally, applying Theorem 2.1 to the �rst term in (2.87) yields the claim.

Remark. It is easy to see from the proof of Corollary 2.13 that the error of reducing

the simple random walk to the backbone can always be estimated in this way, and
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not only for the annealed return probability to the root, as long as the walk starts at

a vertex v ∈ T′. Thus, the (annealed) cost of reducing the simple random walk to

the backbone can be bounded from above by an error term decaying exponentially in

tϑ.



Chapter 3

Annealed Return Probability

3.1 Lower Bound for the Annealed Return Probab-

ility

In this section, we �rst consider the simple random walk (Xt)t∈N0 , starting at the root

o, on the Galton-Watson tree with o�spring distribution p1 = 1, see also Lemma 1.5.

Let τm, m > 0, denote the �rst time (Xt)t∈N0 hits height m, i.e.,

τm := inf{t ∈ N0 : dist(o,Xt) > m}. (3.1)

Then we recall the following well-known result for the random walk on N0, starting

at 0, with up and down step probability 1
2
each, re�ected at 0, which corresponds to

the simple random walk on a Galton-Watson tree with o�spring distribution p1 = 1;

see, for instance, [48, Lemma 9].

Lemma 3.1. Let (Xt)t∈N0 denote the simple random walk on N0, starting at 0.

Then, there is a constant c0 such that for all t ∈ N

P
[
τ
t
1
3
> t
]
> exp(−c0t

1
3 ). (3.2)

With this in mind, we state the following lower bound for the annealed return

probability Rt, de�ned in (1.28), of the simple random walk (Xt)t∈N0 , starting at the

root o, on a supercritical Galton-Watson family tree, conditioned on non-extinction,

with an o�spring distribution satisfying p1 > 0, which was, among others, already

suggested by Piau. In [48, Thm. 2] Piau states for any n ∈ N that GP [τR >

n] > exp(−cn 1
3 ), c > 0, where τR denotes the �rst regeneration time. However, a

lower bound on the annealed probability of the event {τR > n} does not imply a

lower bound for the annealed return probability. On that matter, an upper bound

42
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would transfer to an upper bound for the annealed return probability because of the

inclusion {Xn = o} ⊂ {τR > n} for every n ∈ N. Next, we follow the ideas outlined

in [48] for the lower bound on GP [τR > t] to obtain a lower bound on Rt.

Theorem 3.2. Consider a supercritical Galton-Watson family tree, conditioned on

non-extinction, with an o�spring distribution satisfying p1 > 0. Then, there is a

constant c > 0 such that for all t ∈ N0 we have

Rt > exp(−ct
1
3 ). (3.3)

Proof of Theorem 3.2. Let n ∈ N and set t := 2n.

We start by restricting ourselves to a certain class of trees, namely trees with

exactly one child at each vertex up to height m, with m > 0. To this end, we de�ne

T1
m := {∀x ∈ T0(m+1) : Z(x) = 1}, (3.4)

where the subtree T0(m+1) up to height m+ 1, for m > 0, was de�ned in (2.4).

We notice that G[T1
m] = p

bmc+1
1 > pm+1

1 according to [1] and that

GP [Xt = 0] > GP [Xt = 0,T1
m] = GT1

m
P [Xt = 0]G[T1

m]. (3.5)

Here as before, we have GP [ ··· , E ] = G[E ] GEP [ ··· ] for E ⊆ T, where GE [ ··· ] is the

probability measure conditioned on the event E .
Next, we are interested in a certain class of simple random walks on these trees,

namely walks which never exceed the height m+ 1. We de�ne

Bm
t := {dist(o,Xs) 6 m+ 1 for every 0 6 s 6 t} (3.6)

and obtain that

GT1
m
P [Xt = 0] > GT1

m
P [Xt = 0, Bm

t ] > GT1
m
PBmt [Xt = 0]GT1

m
P [Bm

t ]. (3.7)

Here, we write GT1
m
P [Xt = 0, Bm

t ] =
∫
T1
m
PT[Xt = 0, Bm

t ] dGT1
m

(T) and apply the

reverse Hölder inequality to see∫
T1
m

PT[Xt = 0, Bm
t ] dGT1

m
(T)

>

(∫
T1
m

(
PT
Bmt

[Xt = 0]
) 1

2 dGT1
m

(T)

)2(∫
T1
m

(
PT[Bm

t ]
)−1

dGT1
m

(T)

)−1

. (3.8)
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Since both probabilities on the r.h.s. are independent of T ∈ T1
m, the last inequality

of (3.7) follows.

From now on, we set m := t
1
3 . Then by Lemma 3.1, we have

GT1
m
P [Bm

t ] > exp(−c0(t+ 1)
1
3 ), (3.9)

with some constant c0 > 0.

To summarize so far, we have seen that the annealed return probability at time

t can be bounded from below by the simple random walk on trees with exactly one

child at each vertex up to height t
1
3 + 1 which also never exceeds the height t

1
3 + 1,

namely GT1
m
PBmt [Xt = 0] with m = t

1
3 .

Next, we notice that for these random walks on this set of trees the return

probability to the root at time t is bounded from below by one half the probability

to be at another vertex, i.e.,

GT1
m
PBmt [Xt = 0] >

1

2
GT1

m
PBmt [dist(o,Xt) = 2l] GT1

m
P [Bm

t ], (3.10)

with l = 1, ..., bm+1
2
c. Here, we �rst notice that this particular setting equals the

simple random walk on N0, which never exceeds m + 1. By mirroring, it can be

identi�ed with the simple random walk on Z which never exceeds the distance m+1

to 0; where we identify each level i ∈ N0 with the levels ι ∈ Z such that |ι| = i. The

return probability at time t of the simple random walk on Z which never exceeds

the distance m+ 1 to 0 will be denoted by GZPBmt [Xt = 0] and we compute

GZPBmt [Xt = 0] > GZP [Xt = 0] =
1

2t

(
t
t
2

)
=

1

2t

(
t

t
2
± l

) l−1∏
j=0

t
2

+ 1 + j
t
2
− j

= GZP [Xt = ±2l]
l−1∏
j=0

t
2

+ 1 + j
t
2
− j

> GZP [Xt = ±2l], (3.11)

with l = 1, ..., bm+1
2
c. Thereby, we conclude that (3.10).

By (3.10), we now see that

GT1
m
PBmt [Xt = 0] = 1−GT1

m
PBmt [Xt 6= 0] = 1−

bm+1
2
c∑

l=1

GT1
m
PBmt [Xt = 2l]

> 1−
bm+1

2
c∑

l=1

2

GT1
m
P [Bm

t ]
GT1

m
PBmt [Xt = 0] = 1− bm+ 1c

GT1
m
P [Bm

t ]
GT1

m
PBmt [Xt = 0],

(3.12)
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and thus,

GT1
m
PBmt [Xt = 0] >

1

1 + bm+1c
GT1m

P [Bmt ]

>
GT1

m
P [Bm

t ]

m+ 2
. (3.13)

Finally, combining (3.5), (3.7), and (3.9) with (3.13) and setting m := t
1
3 yields

GP [Xt = 0] >
1

t
1
3 + 2

exp(−2c0(t+ 1)
1
3 )pt

1
3 +1

1 > exp(−ct
1
3 ), (3.14)

with some constant c > 0. Here, the last inequality holds for all large t.

But since GP [Xt = 0] > 0 for every t ∈ N even, there also is a constant c > 0

such that GP [X2t = 0] > exp(−ct 13 ) for all t ∈ N. This completes the proof.

Remark. 1. By (3.11), the probability of the simple random walk on N0 starting

at 0 to be at 0 after t steps, for large, even t, is one half the probability to

be at any other point, since
∏l−1

j=0

t
2

+1+j
t
2
−j → 1 as t → ∞, for every l ∈ N. In

especially, GN0P [Xt = 0] = 1
2
GN0P [Xt = 2l]

∏l−1
j=0

t
2

+1+j
t
2
−j for every l ∈ N.

2. Theorem 3.2 holds true for an o�spring distribution with p0 > 0∧p1 = 0. This

can be seen by considering linear pieces similar to T1
m in the proof of The-

orem 3.2 and proceeding in the same way. Here, we notice that a supercritical

o�spring distribution with p0 > 0 ∧ p1 = 0 implies that there is at least one

k ∈ N \ {1} such that pk > 0. Now, we can construct the 'linear' pieces of

length bm+ 2c from the root, Tkm, as the set of trees with exactly k children at

each vertex of which k − 1 die out immediately, i.e. have no children of their

own, up to height m+ 1, with m > 0.
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o

Figure 3.1: For an o�spring with p0, p3 > 0 ∧ p1 = 0, this illustrates a realisation
T ∈ T3

1, so a tree with a 'linear' pieces of length 3 which is highlighted in green.

3.2 Upper Bound for the Annealed Return Probab-

ility

The majority of this section coincides both in content and writing with [47], which

was written in collaboration with P. Müller.

We start this section by recalling our main results on the upper bound for the

annealed return probability to the root o at time t, which is denoted by Rt and

de�ned in (1.28), from the Section 1.3.

Theorem 3.3. Consider a supercritical Galton-Watson family tree, conditioned on

non-extinction, with an o�spring distribution of bounded support. Then, there exists

a constant c > 0 such that for all t ∈ N0 we have

Rt 6 exp(−ct
1
3 ). (3.15)

Theorem 3.4. Consider a supercritical Galton-Watson family tree, conditioned on

non-extinction, with an o�spring distribution satisfying (1.30) for some constants

c1, c2 > 0 and k > 8. Then, there exists a constant c > 0 such that for all t ∈ N0 we

obtain

Rt 6 exp(−ct
1
3
− 8

3k ). (3.16)

The remainder of this section is devoted to the proofs of Theorem 3.3 and The-

orem 3.4.
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Let T be a supercritical Galton-Watson family tree, conditioned on non-extinction,

with an o�spring distribution satisfying (1.30) for some constants c1, c2 > 0 and

k > 8. Then, T ful�ls the initial assumption of both theorems. Furthermore, we

always consider t ∈ N, even if not explicitly mentioned.

As in the proof of Theorem 2.1, we �rst introduce the following events of �bad�

trees as subsets of T, which we later want to exclude. Their negligence will result

only in an error term exponentially small in t
1
3 in the annealed regime.

We start by recalling the de�nition of At from De�nition 2.2. So, let c4 > lnλ

be a constant, where λ is de�ned in (1.15), then,

At = {#T0t > exp(c4t)}, (3.17)

where T0t denotes the subtree of T ∈ T up to generation t, see (1.14). Furthermore,

let c3 > 3 + c4
c2

be a constant, where c2 is speci�ed in (1.30). We de�ne the new sets

of trees

It := {∃x ∈ T0t : c3t
1
k 6 Z(x)} \ At,

Ft := At ∪ It.
(3.18)

In the proof of Lemma 2.3 we have already seen for every t ∈ N that G[At] 6
1

1−r
λt+1−1
λ−1

exp(−c4t), where r denotes the extinction probability. Since c4 > lnλ,

G[At] decays exponentially in t. Moreover, exactly as for the event Bt in the the

proof of Lemma 2.3, we conclude that

G[It] 6
1

1− r
exp(c4t)

∞∑
j=bc3t

1
k c

G∗[Z = j] (3.19)

and, thus, inserting the decay (1.30) of the o�spring distribution pj = G∗[Z = j]

and estimating the resulting sum by an integral, we obtain

G[It] 6
c1

c2(1− r)
exp(c4t) exp

(
− c2(c3 − 2)kt

)
6

c1

c2(1− r)
exp(−c2t). (3.20)

Here, again c3 > 3 + c4
c2

yields the second inequality. Therefore, combining the

exponential decay of At and of It, there are constants C, c5 > 0 such that, for every

t ∈ N, we have
G[Ft] 6 C exp(−c5t). (3.21)
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Furthermore, we also need to de�ne

Dt :=
{
T ∈ T : ∃o ∈ K ⊂ T connected, t 6 #K <∞, ∂K

#K
6 h

}
(3.22)

for t ∈ N and h > 0. Then, by [45, Proof of Thm. 6.52], we know that

Lemma 3.5. There exists a constant c6 > 0 such that for all h ∈ ]0, hmax[ and every

t ∈ N
G[Dt] 6 exp(−c6t), (3.23)

with hmax ∈ ]0, i(T)].

W.l.o.g. we will choose the constant h ∈ ]0,min{1, hmax}[ in the sequel.

Next, we will introduce some basic notions as in [52, Sect. 3] to exploit the

consequences of a positive anchored expansion constant. But whereas Virág works

with weighted volumes, ours refer to the cardinality of the sets in accordance with

our previous de�nitions. For this next de�nition, let T be any �xed graph with

locally bounded vertex degrees. In particular, it does not need to be a realisation of

a Galton-Watson tree here.

De�nition 3.6. Let q > 0 and let T be any in�nite, connected, locally �nite graph.

(a) The q-isolation of a (possibly empty) �nite vertex subset S ⊆ T is given by

∆qS := ∆T
q S := q#S −#∂S. (3.24)

We will omit the superscript T when there is no danger of confusion.

(b) We say that a �nite vertex subset S ⊆ T is q-isolated whenever

∆qS > 0. (3.25)

(c) A (possibly empty) �nite vertex set S ⊆ T is called a q-isolated core of T

whenever

∆qS > ∆qA for every A & S. (3.26)

(d) We write Aq := Aq(T) for the union of all q-isolated cores of T and call any

connected component of Aq a (q-)island. The complement T \Aq is called the

(q-)oceans.

Remark. 1. A non-empty q-isolated core is itself q-isolated because in this case

the subset A can be chosen as the empty set with q-isolation ∆q∅ = 0.
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2. Every connected component of a non-connected q-isolated core is itself a q-

isolated core. This follows from the additivity of the q-isolation w.r.t. the con-

nected components and by choosing the subset A to be the union of a proper

subset of one connected component together with all other connected compon-

ents.

3. It will turn out the q-islands act as traps for the random walk and thus pre-

vent us from obtaining suitable heat-kernel bounds. Restricting the random

walk to the q-oceans will allow us to bene�t from non-anchored, i.e. global,

isoperimetric constants.

The de�nition (1.17) of the anchored expansion constant for Galton-Watson trees

i(T) and Lemma A.3 directly imply

Corollary 3.7. Let q ∈ ]0, i(T)[ . Then, for G-almost every T ∈ T, every q-island
of T has only �nitely many vertices and thus is itself a q-isolated core of T.

Let T ∈ T and q > 0 be �xed. A bridge structure interconnecting a vertex set

S ⊂ T is a set of vertices B ⊂ T such that B ∪ S is a connected set. A bridge

connecting two vertex sets S1, S2 ⊂ T is a vertex set B ⊂ T such that B ∪ S1 ∪ S2

has a connected component intersecting both S1 and S2. We de�ne the q-length of

a bridge B ⊂ T by

q-length(B) := #(B \ Aq), (3.27)

that is, the number of vertices of B belonging to the q-oceans of T. Given a vertex

set S ⊂ T and a vertex v ∈ T, we de�ne their q-distance by

distq(v, S) :=

 0 , v ∈ S,

1 + min
bridges B⊂T

connecting {v} and S

{
q-length(B)

}
, v 6∈ S.

(3.28)

As noted before, q-islands pose a problem for obtaining heat-kernel bounds.

Given t ∈ N, the event

H0
q,t :=

{
T ∈ T : ∃ a �nite union of q-islands Uq,t = Uq,t(T) ⊆ T with

2
5
6 t

1
3 6 q#Uq,t <∞ and ∃ a bridge structure Bq,t

interconnecting {o} ∪ Uq,t with max
v∈Bq,t

dist(o, v) 6 t
}

(3.29)

describes trees where these islands are too dominant and situated too close to the

root, that is, reachable for the random walk in t steps. The next lemma allows to
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exclude the particularly bad situation, where these islands are too close together

and too close to the root with respect to the q-length. However, such control is only

possible with a restriction on the growth in the relevant part of the tree.

Lemma 3.8. For t ∈ N and zt ∈ N \ {1} let

Mzt :=
{
T ∈ T : ZT(x) 6 zt − 1 ∀x ∈ T0t

}
(3.30)

be the event of trees whose numbers of o�springs are bounded by the same constant

zt − 1 for every vertex up to generation t. Furthermore, we set

q :=
2

3
h, (3.31)

where h is given in Lemma 3.5, and de�ne the subset

Ht :=
{
T ∈ H0

q,t : zt
#
(
(Bq,t ∪ {o}) \ Aq

)
#Uq,t

6
h

3

}
(3.32)

of trees from H0
q,t, for which there exists a small (w.r.t. the q-length) bridge structure

connecting the bad q-islands with the root and among each other. Then, we have

G[Mzt ∩Ht] 6 exp(−c6t
1
3 ), (3.33)

where c6 > 0 is the constant from Lemma 3.5.

Proof. We �x t ∈ N and q := 2
3
h < 2

3
. Let T ∈Mzt ∩Ht ⊆Mzt ∩H0

q,t. Let A be the

union of all q-islands of T intersecting {o} ∪Bq,t ∪Uq,t. Thus, Uq,t ⊆ A ⊆ Aq and A

is itself a q-isolated core so that #∂A
#A

< q. We de�ne the part

S := ({o} ∪Bq,t) \ Aq = ({o} ∪Bq,t ∪ Uq,t) \ Aq = ({o} ∪Bq,t ∪ Uq,t) \ A (3.34)

of the bridge structure and the root not belonging to any q-island.

Since we assume T ∈ Ht, the de�nition (3.32) implies that

zt
#S

#A
6 zt

#S

#Uq,t
6
h

3
. (3.35)

Furthermore, we conclude from A ∩ S = ∅ that

#∂(A ∪ S)

#(A ∪ S)
6

#∂A+ #∂S

#A+ #S
6
q + zt

#S
#A

1 + #S
#A

. (3.36)
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For the last inequality we used #∂A < q#A and #∂S 6 zt#S, which follows from

T ∈Mzt and that the bridge structure has maximal graph distance t to the root.

For 0 < q < 1 < zt, the elementary estimate

q + zta

1 + a
6
q + ztb

1 + b
(3.37)

holds for any 0 6 a 6 b. The inequality (3.35) allows to apply (3.37) to (3.36) with

a = #S
#A

and b = h
3zt

, yielding

#∂(A ∪ S)

#(A ∪ S)
6

q + h
3

1 + h
3zt

< h (3.38)

by the de�nition (3.31) of q. To summarise we note that

K := A ∪ S = A ∪ {o} ∪Bq,t ∪ Uq,t (3.39)

contains the root o, is connected, has �nite volume #K > #Uq,t > 2
5
6 t

1
3/q and satis-

�es (3.38). Hence, T ∈ D
b2

5
6 t

1
3 /qc

and the claim follows from (3.23) and b2 5
6 t

1
3/qc >

t
1
3 for t ∈ N.

Next, we consider a undirected, locally �nite, connected, in�nite graph (V,E)

with vertex set V and edge set E. Let G = (V,w) denote its w-weighted version.

Here, the weights w are given by (1.2) with edge weights c : V × V → [0,∞), where

c({x, y}) = 0 if and only if {x, y} /∈ E. To stress the symmetry, since (V,E) is

undirected, we write {x, y} instead of (x, y). From now on, this will be interpreted

by the symmetric weight function c : V ×V → [0,∞), i.e., c(x, y) = c(y, x) for every

x, y ∈ V .
We recall the de�nition of the volume Cheeger constant of the weighted graph

(V,w), compare with (1.3), and write

Qw := inf

{
‖∂S‖c
‖S‖w

: ∅ 6= S ⊂ V �nite

}
6 1. (3.40)

Here, we recall that ‖S‖w :=
∑

x∈S w(x) and ‖∂S‖c :=
∑
{x,y}∈∂S c(x, y).

Remark. The volume Cheeger constant (3.40) is also called an edge-isoperimetric

constant. It resembles the de�nition of the anchored expansion constant (1.5) but

for weighted graphs, without the anchor, and without the connectivity. However, in

the absence of the anchor, the edge-isoperimetric constant is typically zero for the

realisations of a Galton-Watson tree.
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From now on, we consider an in�nite rooted tree T for which every vertex x ∈ T

has a �nite vertex degree dx. We compare with Subsection 1.2.1 and see that the

simple random walk {Xt}t∈N0 on T coincides with the standard random walk on the

weighted graph (T, wsrw) with edge weights equal to

csrw(x, y) :=

 1, if {x, y} is an edge of T,

0, otherwise.
(3.41)

Thus, the vertex weight is given by wsrw(x) := dx for every x ∈ T according to (1.2).

We write P := PT for the associated Markov operator on l2(T), which is symmetric

on l2(T, wsrw). Furthermore, we will sometimes add the superscript T to stress the

speci�c graph T which we consider, e.g. for the probability measure this leads to

PT.

In Lemma 3.10 we will establish that the q-oceans exhibit an isoperimetric in-

equality. Therefore we would like to apply Theorem 1.4 to the standard random

walk on the weighted graph (T \ Aq, wsrw). But this requires a connected graph.

Therefore we will construct a connected weighted graph (Tq, wq) whose vertex set

coincides with that of T \ Aq and such that the standard random walk {Wt}t∈N0

on (Tq, wq) behaves like the simple random walk {Xt}t∈N0 on T if the latter is only

observed on the q-oceans T\Aq. This standard random walk {Wt}t∈N0 on (Tq, wq) is

often referred to as the induced Markov chain of {Xt}t∈N0 on T \Aq and is speci�ed

in the following de�nition.

De�nition 3.9. Let q > 0.

1. We write

τS := inf
{
t ∈ N : Xt ∈ S

}
∈ N ∪ {∞} (3.42)

for the �rst hitting time after zero of a vertex subset S ⊆ T by the simple

random walk {Xt}t∈N0 on T. We also introduce the abbreviation τoc := τT\Aq

for the �rst hitting time of the q-oceans.

2. The edge weights of the weighted graph (Tq, wq) with vertex set T \ Aq are

given by

cq(x, y) := wsrw(x)PT
x [Xτoc = y] (3.43)

for all vertices x, y ∈ Tq. Accordingly, PT
x [Xτoc = y] is the probability that

the simple random walk on T ends up at y when it �rst returns to the oceans

T \ Aq after having left its starting point x.
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3. We write P
Tq
x for the probability measure of the standard random walk {Wt}t∈N0

on (Tq, wq), which starts at x ∈ Tq. We use the symbol Pq := PTq for the

associated Markov operator on l2(Tq), which is symmetric on l2(Tq, wq).

o

(a)

o

(b)

Figure 3.2: The realisation of a Galton-Watson tree T ∈ T with the vertices in Aq
highlighted in green in (a) and Tq in (b).

The following properties hold.

Remark. 1. For every x, y ∈ Tq we have

cq(x, y) = cq(y, x), (3.44)

that is, cq is symmetric and, hence, it is indeed an edge-weight function. This

follows from time reversibility of the simple random walk on T: Consider a

path X0 = x,X1 = x1, . . . , Xn = xn, Xn+1 = y, where n ∈ N and xj ∈ T

for j = 1, . . . , n, which contributes to the probability PT
x [Xτoc = y]. This path

has probability 1
wsrw(x)

∏n
j=1

1
wsrw(xj)

. It corresponds uniquely to a time-reversed

path X0 = y,X1 = xn, . . . , Xn = x1, Xn+1 = x contributing to PT
y [Xτoc = x]

with probability 1
wsrw(y)

∏n
j=1

1
wsrw(xn−j+1)

. The same holds vice versa and proves

(3.44).

2. For every x, y ∈ Tq we have

cq(x, y) > csrw(x, y), (3.45)

where strict inequality can only occur if both x and y belong to the outer vertex

boundary ∂outC := {x̃ ∈ T : dist(x̃, C) = 1} of the same q-island C ∈ Aq.
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Indeed, if there is no edge between x and y, then wsrw(x, y) = 0, and the

inequality is trivial. If there is an edge between x and y then there exists a

one-step path from x to y with τoc = 1 and wsrw(x)PT
x [X1 = y] = 1. If both

x, y ∈ ∂outC there may exist a path from x to y lying entirely in the q-island

C except for the two endpoints x and y. In this case, PT
x [Xτoc = y and τoc >

1] > 0 gives rise to an additional contribution to cq(x, y) beyond csrw(x, y).

3. Let C ∈ Aq be a q-island and assume that x ∈ ∂outC. Then

cq(x, x) > 0. (3.46)

If x ∈ T\Aq is not adjacent to any q-island, then cq(x, x) = 0, as follows from

(3.43). In other words, (Tq, wq) is not a simple graph, but one with loops at

the outer vertex boundaries of all q-islands.

4. For every x ∈ T \ Aq we have
∑

y∈T\Aq P
T
x [Xτoc = y] = 1 and thus

wq(x) :=
∑
y∈Tq

cq(x, y) = wsrw(x). (3.47)

5. We claim that the probability for two arbitrary vertices x, y ∈ T \ Aq to be

connected by a path of the simple random walk {Xt}t∈N0 on T is the same as

for the standard random walk {Wt}t∈N0 on (Tq, wq), that is,

PT
x [∃ t ∈ N : Xt = y] = PTq

x [∃ t ∈ N : Wt = y]. (3.48)

Before we prove (3.48) we note that it immediately implies

PT
x [∃ t ∈ N0 : Xt = y] = PTq

x [∃ t ∈ N0 : Wt = y]. (3.49)

To prove (3.48) let {σn}n∈N0 be the strictly increasing sequence of stopping

times which are uniquely de�ned by σ0 := 0, σn := σn−1 + 1 if both Xσn−1,

Xσn−1+1 ∈ T \ Aq for n ∈ N and the property that Xt ∈ Aq if and only if
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σn−1 < t < σn for some n ∈ N. We infer that

PT
x

[
∃ t ∈ N : Xt = y

]
= PT

x

[
∃ t ∈ N : Xσt = y

]
=
∑
t∈N

PT
x

[
Xσt = y and Xσn ∈ T \ (Aq ∪ {y}) ∀n = 1, . . . , t− 1

]
=
∑
t∈N

∑
y1,...,yt−1

∈T\(Aq∪{y})

t∏
n=1

PT
yn−1

[
Xσ1 = yn

]
, (3.50)

where y0 := x, yt := y and we used the strong Markov property for the last

equality. Now σ1 = τoc and the probability in the last line of (3.50) is equal to

PT
yn−1

[Xτoc = yn] =
cq(yn−1, yn)

wq(yn−1)
= PTq

yn−1
[W1 = yn], (3.51)

where the �rst equality follows from (3.43) and (3.47), and the second equality

from the de�nition of the standard random walk. Inserting (3.51) into (3.50)

and using the Markov property for {Wt}t∈N0, we infer

PT
x

[
∃ t ∈ N : Xt = y

]
=
∑
t∈N

PTq
x

[
Wt = y and Wn ∈ Tq\{y} ∀n = 1, . . . , t−1

]
(3.52)

so that (3.48) follows.

The next lemma requires a growth condition on the tree that must hold through-

out the entire oceans in order to obtain the desired lower bound on the edge-

isoperimetric constant. Later on, when applying this lemma to bound the return

probability to the root, this growth condition can be satis�ed at no additional cost

for trees in the event Mzt from (3.30) because the random walk cannot explore the

parts of the tree at distance larger than t to the root.

Lemma 3.10. Let q > 0 and let T be a rooted tree for which there exists z ∈ N\{1}
such that dx 6 z for every x ∈ T \ Aq. Then the weighted graph (Tq, wq) has edge-

isoperimetric constant

Qwq >
q

z
. (3.53)

Proof. Let ∅ 6= S ⊆ Tq = T \ Aq be a �nite vertex subset. First, we infer from

(3.47) and the growth assumption that ‖S‖wq = ‖S‖wsrw 6 z#S. The inequality

(3.45) implies that ‖∂TqS‖cq > ‖∂TqS‖csrw = #∂T\AqS. Let C be a (possibly empty)

q-isolated core containing all vertices in Aq which are adjacent to S. When Aq is
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removed from T, the number of edges #∂S := #∂TS of the edge boundary of S

in T decreases by the number of edges connecting S with C. Hence, we obtain

#∂T\AqS = #∂S −#(∂S ∩ ∂C). Altogether, we arrive at the estimate

q

z
‖S‖wq−‖∂TqS‖cq 6 ∆qS+#(∂S∩∂C) = ∆q(S∪C)−∆qC−#(∂S∩∂C), (3.54)

where the equality results from an application of (A.6).

Since S ⊆ T \ Aq, the vertex subset S ∪ C cannot be a q-isolated core. By

de�nition, there must exist a (possibly empty) vertex subset B & S ∪ C with

∆q(S ∪ C) 6 ∆qB. (3.55)

W.l.o.g. we choose this vertex subset B to be minimal in the sense that no proper

subset of B has the property (3.55). In other words, for every B̃ & B, we must have

∆q(S ∪ C) > ∆qB̃. Together with (3.55), this means that B is a q-isolated core,

whence B ⊆ C. Applying Lemma A.1 with A = B and the q-isolated core S = C,

yields ∆q(B) 6 ∆q(B ∪ C) = ∆q(C). Combining this inequality with (3.55), yields

∆q(S ∪ C) 6 ∆qC. (3.56)

Now, (3.56) and (3.54) imply

q

z
‖S‖wq − ‖∂TqS‖cq 6 0, (3.57)

and the claim follows.

Switching between the graphs (T, wsrw) and (Tq, wq) will not only be done with

the help of (3.48) but also on the level of the Hilbert spaces.

De�nition 3.11. Let q > 0 and let T be an in�nite rooted tree with dx < ∞ for

every x ∈ T. We introduce the restriction map

ρT :
l2(T, wsrw) → l2(Tq, wq)

(ψx)x∈T 7→ (ψx)x∈T\Aq

(3.58)

and its adjoint, the embedding

ρ∗T :
l2(Tq, wq) → l2(T, wsrw)

(ϕx)x∈T\Aq 7→ (ϕ̃x)x∈T
, where ϕ̃x :=

ϕx, if x ∈ T \ Aq,

0, if x ∈ Aq.
(3.59)
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We drop the index T in our notation for both maps, if the underlying tree is clear.

Both ρ and ρ∗ have operator norm 1 due to (3.47).

The next lemma estimates the probability for the random walk to enter a bad

geometric region consisting of several q-islands. Since we are on a tree we are able

to obtain an estimate which scales with the square root of the number of involved

q-islands. Without the tree property, one would get a scaling with the square root

of the volume of the edge boundaries of the involved q-islands as in [52]. The

improved scaling for trees will be crucial when applying the lemma in the proof of

Theorem 3.13.

Lemma 3.12. Let q ∈ ]0, 1[ and let T be an in�nite rooted tree with in�nite q-oceans

#(T \ Aq) = ∞. Furthermore, we assume a maximal vertex degree on T \ Aq, i.e.
the existence of z ∈ N \ {1} such that dx′ 6 z holds for every x′ ∈ T \ Aq. Let

C :=
⋃J
j=1Cj ⊆ T be a union of J ∈ N q-islands Cj ∈ Aq, j ∈ {1, ..., J}. We also

�x a vertex x ∈ T with distq(x, C) > n for some n ∈ N. Then, the simple random

walk (Xt)t∈N0 on T satis�es

Px[τC <∞] 6 2
(

1− q2

z2

)n
2
−1 z

5
2

q2
J

1
2 . (3.60)

Proof. To begin with we will argue that we may conduct the proof assuming w.l.o.g.

that x ∈ T \ Aq. Indeed, since distq(x, C) > n, we have x /∈ C. So suppose that

x ∈ Aq \ C. Then there exists a q-island C ′ ⊆ Aq \ C such that x ∈ C ′ and we must

have distq(x, C) > max{n, 2}. In order to reach C, the simple random walk (Xt)t∈N0

on T has to hit the outer vertex boundary ∂outC
′ before hitting C. Therefore the

strong Markov property of (Xt)t∈N0 at the hitting time of ∂outC
′ implies

Px[τC <∞] = Ex

[
PXτ∂outC′

[τC <∞]
]
6 sup

y∈∂outC′
Py[τC <∞], (3.61)

where Ex :=
∫

dPx is the expectation associated with Px. Because of (3.61), ∂outC
′ ⊆

T\Aq and distq(y, C) > distq(x, C)−1 for all y ∈ ∂outC
′, which holds due to C ′ ⊆ Aq,

it is su�cient to consider x ∈ T \Aq with distq(x, C) > max{n− 1, 1} in the rest of

this proof.

So, let us �x x ∈ T \ Aq with distq(x, C) > max{n − 1, 1}. Since T is a tree

and C consists of J connected components there exists a subset V ⊆ ∂outC ⊆ T \Aq
of the outer vertex boundary of C with #V 6 J and such that the simple random

walk (Xt)t∈N0 has to pass a vertex from V in the last step on his way from x before
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hitting C for the �rst time. Thus, we infer that

Px[τC <∞] 6
∑
y∈V

Px
[
∃ t ∈ N0 : Xt = y

]
. (3.62)

Applying (3.49) and the union bound to the probability on the right-hand side of

(3.62), rewriting it in terms of the Markov operator Pq and then switching �rst from

the unweighted Hilbert space l2(Tq) to the weighted Hilbert space l2(Tq, wq) and

�nally to l2(T, wsrw) with the embedding ρ∗ and using (3.47), we obtain

Px
[
∃ t ∈ N0 : Xt = y

]
6

1

wsrw(x)

∑
t∈N0

〈1{x}|ρ∗P t
qρ1{y}〉T,wsrw . (3.63)

We deduce from (3.62) and (3.63) that

Px[τC <∞] 6
1

wsrw(x)

∑
t∈N0

〈1{x}|ρ∗P t
qρ1V 〉T,wsrw . (3.64)

Since distq(x, C) > max{n−1, 1}, the random walk needs at least ν := max{n−2, 0}
steps on the in�nite connected weighted graph (Tq, wq) to reach V ⊆ ∂outC from

x and every term in the t-series in (3.64) with t < ν vanishes. We note that∑∞
t=ν P

t
q = Pν

qKq, where the Green kernel Kq :=
∑

t∈N0
P t
q exists in operator norm

in the space of bounded operators on l2(Tq, wq) and satis�es the norm estimate

‖Kq‖BL(Tq ,wq) 6
1

1− ‖Pq‖BL(Tq ,wq)

6
2z2

q2
(3.65)

because ‖Pq‖BL(Tq ,wq) 6 (1 − q2/z2)1/2 6 1 − q2/(2z2) due to Theorem 1.4 and

Lemma 3.10. Accordingly, the t-series in (3.64) can be written as

〈1{x}|ρ∗Pν
qKqρ1V 〉T,wsrw 6 ‖1{x}‖T,wsrw‖Pq‖νBL(Tq ,wq)‖Kq‖BL(Tq ,wq)‖1V ‖T,wsrw

6 wsrw(x)
1
2

(
1− q2

z2

) ν
2 2z2

q2
J

1
2 z

1
2 , (3.66)

where the �rst inequality relies on the Cauchy-Schwarz inequality and the fact that

the operator norms of ρ and ρ∗ equal 1. Now, the lemma follows from (3.64) and

(3.66).

The next theorem is the main technical result used for the proofs of Theorem 3.3

and Theorem 3.4.

Theorem 3.13. Let (zt)t∈N ⊆ N \ {1, 2} be a sequence of constants with zt = O(t
1
8 )
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as t→∞. Then, there exists an initial time t0 ∈ N such that

PT
o [Xt = o] 6 exp

[
− h2

16

( t
z8
t

) 1
3

]
(3.67)

for every T ∈ (Mzt ∩Hc
t ) \N and every t > t0. Here, h > 0 is given by Lemma 3.5,

and the G-null set N is the union of the G-null set where |T| = ∞ fails with the

G-null set where Corollary 3.7 fails. We note that the initial time t0 ∈ N depends

only on the given sequence (zt)t∈N and on h.

Before we can prove Theorem 3.13, we have to to deal with the possibly unboun-

ded o�springs in the oceans of the tree T ∈Mzt beyond the height t.

De�nition 3.14. Let q ∈ ]0, 1[ , t ∈ N, zt ∈ N \ {1} and consider a tree T ∈Mzt.

1. We construct recursively, starting from the root, an associated q-regularised

tree Tq � not to be confused with Tq from De�nition 3.9 � by

ZTq

(x) :=


ZT(x), if x ∈ T0t or if x ∈ C

for some q-island C ⊆ Aq(T) with dist(o, C) 6 t,

zt − 1, otherwise.

(3.68)

This means that T0t = Tq
0t and that the regularised tree Tq is homogenous

from height t+ 1 onwards except at the vertices of those q-islands of T which

have non-trivial intersection with T0t and extend also beyond the height t.

2. We write {X(q)
t }t∈N0 for the simple random walk on Tq. The regularised

weighted graph (Tq
q , w

(q)
q ) is given as in De�nition 3.9 but with every reference

to T there replaced by Tq, that is,

c(q)
q (x, y) := w(q)

srw
(x)PTq

x [X(q)
τTq\Aq(Tq)

= y] (3.69)

for every x, y ∈ Tq
q := Tq \ Aq(Tq) with w

(q)
srw(x) := dT

q

x being the vertex

degree of x in Tq. The standard random walk on (Tq
q , w

(q)
q ) will be denoted by

{W (q)
t }t∈N0.

Lemma 3.15. Let 0 < q′ 6 q < min{i(T), 1}, let zt ∈ N \ {1, 2} and consider an

in�nite tree T ∈Mzt \ N , with N being the null set from Theorem 3.13. Then

1. ZTq
(x) 6 zt − 1 for all x ∈ Tq \ Aq(Tq).
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2. The representation

Aq′(T
q) =

⋃
q′-islands C⊆Aq′ (T): dist(o,C)6t

(3.70)

holds, and we have #(Tq \ Aq′(Tq)) =∞.

3. c
(q)
q (x, y) = cq(x, y) for every x, y ∈ T0t \ Aq(T) = Tq

0t \ Aq(Tq).

Proof. Part 1 holds by construction of Tq and because T ∈Mzt .

As to Part 2 we de�ne

Ã :=
⋃

q′-islands C⊆Aq′ (T): dist(o,C)6t

C (3.71)

and show the two inclusions to obtain equality of the sets Ã and Aq′(T
q). But �rst,

we notice that the vertices of T0t ∪ Ã also belong to Tq and have the same degree

in Tq as in T. Therefore and since dist(o, C) 6 t for every q′-island C ⊆ Ã, we infer

that

∆T
q′S = ∆Tq

q′ S (3.72)

for every �nite vertex subset S ⊆ T0t ∪ Ã.
�Ã ⊆ Aq′(T

q)� As each q′-island C ⊆ Ã is �nite by Corollary 3.7 and thus a

q′-isolated core in T, the identity (3.72) implies that C is also a q′-isolated core in

Tq and, hence, C ⊆ Aq′(T
q).

�Aq′(T
q) ⊆ Ã� Let ∅ 6= C ′ ⊆ Aq′(T

q) be a q′-isolated core in Tq. In particular,

C ′ is �nite. First, we consider the case where C ′ ⊆ Tq
0t∪Ã. In this case, the identity

(3.72) implies that C ′ is also a q′-isolated core in T, i.e. C ′ ⊆ Aq′(T) and, hence,

C ′ ⊆ Ã. We now show that the complementary case in which there exists a vertex

x ∈ C ′ ∩ [Tq \ (Tq
0t ∪ Ã)] cannot occur. Indeed, since Tq is a tree and C ′ is �nite,

it follows that there exists x′ ∈ C ′ ∩ [Tq \ (Tq
0t ∪ Ã)] with dT

q

x′ = zt and d
C′

x′ = 1. By

the de�nition of C ′ being a q′-isolated core of Tq we have

0 < ∆Tq

q′ C
′ −∆Tq

q′ (C ′ \ {x′}) = q′ −
(
dT

q

x′ − 2dC
′

x′

)
= q′ − zt + 2. (3.73)

But this is a contradiction, because q′ < 1 and zt > 3. This �nishes the proof

of (3.70). The equality (3.70) implies in particular that #Aq′(T
q) < ∞, because

Corollary 3.7 applied to T /∈ N guarantees the �niteness of each q′-island C ⊆
Aq′(T). Moreover, #T =∞ because T /∈ N so that T\Ã 6= ∅, and the construction
of Tq implies that #Tq =∞. This �nishes the proof of Part 2.
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Finally, we prove Part 3. We recall that by the construction of Tq and (3.70), the

tree T0t∪Aq(Tq) is an identical subtree of both T and Tq. Let x, y ∈ T0t \Aq(T) =

Tq
0t \ Aq(Tq). In particular, we have

w(q)
srw

(x) = dT
q

x = dTx = wsrw(x). (3.74)

Moreover, the simple random walk {Xs}s∈N0 on T when restricted to T0t∪Aq(Tq) ⊆
T coincides with the simple random walk {X(q)

s }s∈N0 on Tq when restricted to

T0t ∪ Aq(Tq) ⊆ Tq. This implies

PTq

x [X(q)
τTq\Aq(Tq)

= y] = PT
x [XτT\Aq(T)

= y] (3.75)

and the assertion follows from (3.74) and (3.75).

Proof of Theorem 3.13. We �x t ∈ N, T ∈ (Mzt ∩Hc
t ) \ N , q := 2

3
h, and

qt :=
h

2
√

2 (tzt)
1
3

(3.76)

so that qt < q and, hence,

Aqt(T) ⊆ Aq(T) (3.77)

by Lemma A.4.

We decompose the return probability of the simple random walk on T according

to

PT
o [Xt = o] = PT

o

[
Xt = o ∧ ∀s ∈ {1, ..., t} : Xs ∈ T0t \ Aqt(T)

]
+ PT

o

[
Xt = o ∧ ∃ s ∈ {1, ..., t} : Xs ∈ T0t ∩ Aqt(T)

]
= PTqt

o

[
X

(qt)
t = o ∧ ∀s ∈ {1, ..., t} : X(qt)

s ∈ Tqt
0t \ Aqt(Tqt)

]
+ PTq

o

[
X

(q)
t = o ∧ ∃ s ∈ {1, ..., t} : X(q)

s ∈ Tq
0t ∩ Aqt(Tq)

]
. (3.78)

As for the second equality, we note that the regularised trees satisfy T0t = Tq′

0t and

T0t∩Aqt(T) = Tq′

0t∩Aqt(Tq′), which follows from (3.70), for both q′ = qt and q
′ = q.

Next, we estimate the probability in the third line of (3.78). The fact that Tqt is

a tree implies that the simple random walk in this probability jumps only between

vertices in Tqt \Aqt(Tqt) and such that no two consecutive vertices x, y in any path

belong to the outer vertex boundary of the same qt-island of Tqt . This means that

for each jump, we have the equality c
(qt)
srw (x, y) = c

(qt)
qt (x, y), cf. (3.45). Therefore, the
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estimate

PTqt

o

[
X

(qt)
t = o ∧ ∀s ∈ {1, ..., t} : X(qt)

s ∈ Tqt
0t \Aqt(Tqt)

]
6 P

T
qt
qt

o [W
(qt)
t = o] (3.79)

holds, where the inequality arises because the requirements that {W (qt)
s }s∈{1,...,t}

must not jump over qt-islands or is forbidden to stay at a vertex have been dropped.

Rewriting the right-hand side in terms of the associated Markov operator PT
qt
qt

on

the weighted Hilbert space l2(Tqt
qt , w

(qt)
qt ), we obtain

PTqt

o

[
X

(qt)
t = o ∧ ∀s ∈ {1, ..., t} : X(qt)

s ∈ Tqt
0t \ Aqt(Tqt)

]
6

1

w
(qt)
qt (o)

〈1{o}|P t
T
qt
qt

1{o}〉Tqt
qt , w

(qt)
qt

6 ‖PT
qt
qt
‖t
T
qt
qt , w

(qt)
qt

6
(

1− q2
t

z2
t

) t
2

6 exp

[
− q2

t t

2z2
t

]
= exp

[
− h2

16

( t
z8
t

) 1
3

]
, (3.80)

where the last inequality in the second line follows from an application of The-

orem 1.4 and Lemma 3.10 to the weighted graph (Tqt
qt , w

(qt)
qt ). This is justi�ed be-

cause of Lemma 3.15 Part 1 and because #Tqt
qt =∞, see Lemma 3.15 Part 2. The

inequality in the last line follows from ln(1 + u) 6 u, |u| < 1, which is applicable by

the de�nitions of qt and zt and due to h < 1.

Before we estimate the probability in the last line of (3.78), we need to introduce

one more notion. Let

Aq,t :=
⋃

q-islands C⊆Aq(Tq) with #C> 1
qt

C ⊆ Aq(T
q) (3.81)

be the union of all q-islands C in Tq with volume #C > 1
qt
. We remark that by

construction of Tq, all such q-islands C obey dist(o, C) 6 t. Applying Lemma A.5

with q′ = qt to any of the remaining q-islands S ⊆ Aq(T
q) \ Aq,t, gives S ⊆ Tq \

Aqt(T
q) so that (3.77) with T replaced by Tq can be sharpened to

Aqt(T
q) ⊆ Aq,t. (3.82)

Thus, the probability in the last line of (3.78) can be estimated as

PTq

o

[
X

(q)
t = o ∧ ∃ s ∈ {1, ..., t} : X(q)

s ∈ Tq
0t ∩ Aqt(Tq)

]
6 PTq

o

[
∃ s ∈ {1, ..., t} : X(q)

s ∈ Aq,t]. (3.83)
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In order to proceed further, we de�ne the q-territory of a q-island C ⊆ Aq,t by

DC :=
{
x ∈ Tq : distq(x,C) 6

q

4qtzt

}
(3.84)

and assert two claims.

Claim 1: o /∈ DC for any q-island C ⊆ Aq,t.

In view of (3.70), Claim 1 will be obtained from the following argument: We assume

that o ∈ DC for some q-island C ⊆ Aq(T) with dist(o, C) 6 t and #C > 1
qt

and

strive for a contradiction. In fact, given these assumptions we conclude T ∈ H0
q,t

because C quali�es as Uq,t in the de�nition (3.29). Indeed, since zt > 2 we have

q#C > q
qt

> 2
5
6 t

1
3 . Furthermore, since T /∈ N we have #C < ∞ by Corollary 3.7

and, �nally, since dist(o, C) 6 t, there exists a bridge Bq,t connecting the root o

with C and satisfying maxv∈Bq,t dist(o, v) 6 t. Without loss of generality we assume

that Bq,t is the bridge with the shortest q-length among all such bridges. Then,

zt
#((Bq,t ∪ {o}) \ Aq)

#C
= zt

distq(o, C)

#C
6 zt

qqt
4qtzt

<
h

3
(3.85)

where we used o ∈ DC and #C > 1
qt
for the �rst inequality. It follows that T ∈ Ht

according to the de�nition (3.32). This contradicts the initial assumption T ∈ Hc
t

and completes the proof of Claim 1.

Claim 2. There exist at most t-many (distinct) q-islands Cj ⊆ Aq,t, j ∈ {1, . . . , t},
such that their territories form a connected set

⋃t
j=1DCj of vertices.

We prove Claim 2 by contradiction and assume, again in view of (3.70), that there

exists a union Uq,t :=
⋃t
j=0Cj of (t + 1)-many q-islands in T with dist(o, C) 6 t

and #C > 1
qt
. Then, there is a bridge structure Bq,t interconnecting Uq,t ∪ {o} with

q#Uq,t > (t+ 1) q
qt
> q

qt
> 2

5
6 t

1
3 , maxv∈Bq,t dist(o, v) 6 t, for which we used that T is

a tree, and

#((Bq,t ∪ {o}) \ Aq) 6 t+ t
( q

2qtzt
− 1
)
. (3.86)

The bound (3.86) holds because the bridge structure Bq,t requires at most t vertices

to connect the root o with one of the islands, and in order to connect this island

with the remaining t islands it requires t further bridges Bj, j ∈ {1, ..., t}, between
two islands. Each such bridge Bj will be chosen to pass through a common vertex

vj of the territories of the two islands C
(j)
1 and C

(j)
2 which it connects so that

#(Bj \ Aq) 6 distq(vj, C
(j)
1 ) + distq(vj, C

(j)
2 )− 1 6

q

2qtzt
− 1. (3.87)

Here we used (3.84) for the second bound. This justi�es (3.86). Finally, we infer
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from (3.86) that

zt
#((Bq,t ∪ {o}) \ Aq)

#Uq,t
6 t

q

2qt#Uq,t
6

tq

2(t+ 1)
6
h

3
. (3.88)

It follows from (3.32) that T ∈ Ht which again contradicts the initial assumption

T ∈ Hc
t . The proof of Claim 2 is complete.

Now, there are �nitely many �groups�

Cr :=
Jr⋃
j=1

C
(r)
j , (3.89)

of q-islands in Tq, where r ∈ {1, . . . , R} for some R ∈ N, each group � according to

Claim 2 � consisting of at most t-many q-islands C
(r)
j ⊆ Aq,t with j ∈ {1, . . . , Jr},

Jr ∈ {1, . . . , t}, and such that the territories of q-islands from di�erent groups

are disjoint. Moreover, for every r ∈ {1, . . . , R}, the union of territories DCr :=⋃Jr
j=1DC

(r)
j

within each group is connected and possesses a unique vertex yr ∈ DCr
which is closest to the root because Tq is a tree. It follows from Claim 1 that yr

belongs to the inner vertex boundary of DCr and therefore

distq(yr, Cr) = b q

4qtzt
c. (3.90)

Hence, the probability on the right-hand side of (3.83) can be estimated as

PTq

o

[
∃ s ∈ {1, ..., t} : X(q)

s ∈ Aq,t
]

6 PTq

o

[
∃ r ∈ {1, . . . , R} ∃ s0 ∈ {1, ..., t} ∃ s ∈ {s0 + 1, . . . , t}

: X(q)
s0

= yr and X
(q)
s ∈ Cr

]
6

t∑
s0=1

R∑
r=1

PTq

o

[
∃ s ∈ N \ {1, . . . , s0} : X(q)

s0
= yr and X

(q)
s ∈ Cr

]
=

t∑
s0=1

R∑
r=1

ETq

o

[
1{yr}(X

(q)
s0

)PTq

yr [τCr <∞]
]
, (3.91)

where the equality rests on the Markov property and ETq

o is the expectation cor-

responding to PTq

o . Abbreviating Sq := supr∈{1,...,R} P
Tq

yr [τCr < ∞] and noting that

the yr's are pairwise distinct, we conclude from (3.91)

PTq

o

[
∃ s ∈ {1, ..., t} : X(q)

s ∈ Aq,t
]
6 Sq

t∑
s0=1

PTq

o

[
X(q)
s0
∈

R⋃
r=1

{yr}
]
6 tSq. (3.92)
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The supremum Sq can be estimated with Lemma 3.12, choosing T there as the

regularised tree Tq. This is possible because of Lemma 3.15 and gives

Sq 6 2
(

1− q2

z2
t

) q
8qtzt

− 3
2 z

5
2
t

q2
t
1
2 . (3.93)

Combining (3.92) and (3.93), we infer that there exists t0 ∈ N, which depends only

on h and on the sequence (zt)t∈N, such that

PTq

o

[
∃ s ∈ {1, ..., t} : X(q)

s ∈ Aq,t
]
6 exp

[
− h2

10

( t
z8
t

) 1
3

]
(3.94)

holds, provided t > t0. Thus, the theorem follows from (3.78), (3.80), (3.83) and

(3.94).

Finally, we will prove Theorems 3.3 and 3.4.

Proof of Theorem 3.3. The o�spring distribution has bounded support by hypo-

thesis of the theorem. Thus, there is z ∈ N such that pj = 0 for all j > z, and

we choose zt := max{3, z} for every t ∈ N. Moreover, T \Mzt is a G-null set for

every t ∈ N so that Theorem 3.13 and Lemma 3.8 imply

GP [Xt = o] 6
∫
Mzt∩Hc

t

PT
o [Xt = o] dG(T) +G[Mzt ∩Ht]

6 exp

[
− h2

16z
8
3

t
1
3

]
+ exp

[
− c6t

1
3

]
(3.95)

for all t > t0, where t0 depends only on h and z, and the constant c6 > 0 is de�ned

in Lemma 3.5. By the same argument as in Subsection 1.2.2 Remark 2 we obtain

the claim of the theorem.

Proof of Theorem 3.4. We consider a fast-decaying o�spring distribution as in (1.30)

for some constants c1, c2 > 0 and k > 8. Let zt := 3 + c3t
1
k for every t ∈ N with

c3 > 0 as required in (3.18). In particular, we then have zt ∈ O(t
1
8 ) as t → ∞

and F c
t ⊆ Mzt , where the former is de�ned in (3.18) and the latter in (3.30). We

conclude

GP [Xt = o] 6
∫
F ct ∩Hc

t

PT
o [Xt = o] dG(T) +G[Ft] +G[Mzt ∩Ht]

6 exp

[
− h2

16(3 + c3)
8
3

t
1
3
− 8

3k

]
+ C exp

[
− c5t

]
+ exp

[
− c6t

1
3

]
, (3.96)
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where the second inequality follows from Theorem 3.13, (3.21), and Lemma 3.8 and

holds for all t > t0 which arises from Theorem 3.13. By the same argument as in

Subsection 1.2.2 Remark 2 we infer the claim of the theorem.



Appendix A

The majority of this chapter, excluding the proof of Lemma 1.5, coincides both in

content and writing with [47], which was written in collaboration with P. Müller.

Proof of Lemma 1.5. This can be seen by induction over t and k.

First, we assume that t = 1. Then, there are two cases for k. We start with

k = 0. In this case, (
2

0

)
−
(

2

−1

)
= 1− 0 = 1, (A.1)

which equals the number of paths leading from the root to generation 2 after 2 steps,

namely the path consisting of two consecutive steps away from the root. Next, there

is k = 1. In this case, (
2

1

)
−
(

2

0

)
= 2− 1 = 1, (A.2)

which equals the number of paths leading from the root to generation 0, so back to

the root, after 2 steps, namely the path consisting of one step away followed by one

step back to the root.

Now, we assume that the claim holds for some t ∈ N and every k ∈ N0 with

k 6 t.

Next, we aim to verify it for t+ 1 and every k ∈ N0 with k 6 t+ 1. We do so by

considering three cases for k. First, we assume that k = 0. In this case,(
2(t+ 1)

0

)
−
(

2(t+ 1)

−1

)
= 1− 0 = 1, (A.3)

which exactly equals the number of paths leading from the root to generation 2(t+1)

after 2(t + 1) steps, namely the path consisting of 2(t + 1) consecutive steps away

from the root. Second, we assume that 0 < k < t + 1. In this case, the number of

paths leading from the root to generation 2(t+ 1)− 2(k+ 1) = 2t− 2k after 2(t+ 1)

steps is given by twice the number of paths leading from the root to generation

2t− 2k after 2t steps plus the number of paths leading from the root to generation

67
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2t − 2(k − 1) after 2t steps plus the number of paths leading from the root to

generation 2t − 2(k + 1) after 2t steps, since these are exactly the paths after 2t

steps which can reach the generation 2(t+ 1)− 2(k+ 1) after 2(t+ 1) steps. For the

�rst term this can be achieved from generation 2t − 2k by either a step away from

the root followed by a step back to the root, or a step back to the root followed by

a step away from the root, thus the factor two. The second term originates from

generation 2t− 2(k − 1) by two steps back to the root. For the third and last term

this can be achieved by two consecutive steps away from the root from generation

2t− 2(k + 1). Therefore, by the induction assumption we obtain

2
[(2t

k

)
−
(

2t

k − 1

)]
+
[( 2t

k − 1

)
−
(

2t

k − 2

)]
+
[( 2t

k + 1

)
−
(

2t

k

)]
=
[(2t

k

)
+

(
2t

k + 1

)]
−
[( 2t

k − 1

)
+

(
2t

k − 2

)]
=

(
2t+ 1

k + 1

)
−
(

2t+ 1

k − 1

)
+
[(2t+ 1

k

)
−
(

2t+ 1

k

)]
=

(
2(t+ 1)

k + 1

)
−
(

2(t+ 1)

k

)
,

(A.4)

which was claimed for the number of paths leading from the root to generation

2(t + 1) − 2(k + 1) after 2(t + 1) steps. Here, for the second and third equality we

used that
(
n
j

)
+
(
n
j+1

)
=
(
n+1
j+1

)
for every n ∈ N and j ∈ N0 with j 6 n − 1. Third,

we assume that k = t + 1. In this case, the number of paths leading from the root

to generation 2(t + 1) − 2(t + 1) = 0, so back to the root, after 2(t + 1) steps is

given by the number of paths at the root after 2t steps plus the number of paths

at generation 2 after 2t steps, since these are the only paths to reach the root after

2(t+ 1) steps. For the �rst term this can be achieved, exactly, by a step away from

the root followed by a step back to the root and for the second term, exactly, by

two consecutive steps back to the root. Therefore, by the induction assumption we

obtain[(2t

t

)
−
(

2t

t− 1

)]
+
[( 2t

t− 1

)
−
(

2t

t− 2

)]
=
[(2t

t

)
+

(
2t

t− 1

)]
−
[( 2t

t− 1

)
+

(
2t

t− 2

)]
=

(
2t+ 1

t

)
−
(

2t+ 1

t− 1

)
+
[(2t+ 1

t+ 1

)
−
(

2t+ 1

t

)]
=

(
2(t+ 1)

t+ 1

)
−
(

2(t+ 1)

t

)
,

(A.5)

which was claimed for the number of paths leading from the root back to the root

after 2(t+1) steps. Here, we for the second equality we used that
(

2t+1
t+1

)
=
(

2t+1
t

)
, for
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every t ∈ N, by the symmetry of the binomial coe�cients. Further, for the second

and third equality we used that
(
n
j

)
+
(
n
j+1

)
=
(
n+1
j+1

)
for every n ∈ N and j ∈ N0

with j 6 n− 1.

Hence, we conclude the claim by induction.

Next, for the Section 3.2 we recall some basic properties of q-islands and q-oceans,

which are, up to some minor modi�cations, taken from [52, Sect. 3]. Throughout,

T can be any in�nite, connected and locally �nite graph. It does not need to be a

realisation of a Galton-Watson tree here.

Lemma A.1. Let q > 0, let A ⊆ T be a �nite vertex subset and let S ⊆ T be a

q-isolated core. Then, we have ∆qA 6 ∆q(A∪S) with equality if and only if S ⊆ A.

Proof. If S ⊆ A, then the claim trivially holds with equality. So let us now suppose

that S is not a subset of A.

We note that if B and C are �nite disjoint vertex subsets of T, then

∆q(B ∪ C) = ∆qB + ∆qC + 2#(∂B ∩ ∂C). (A.6)

The factor 2 in the above expression appears since common boundary edges of B

and C are not boundary edges of their union, i.e., 2#(∂B∩∂C) = #(∂B)+#(∂C)−
#(∂B ∪ ∂C).

We conclude from (A.6) that ∆q(A∪S) = ∆q(A\S)+∆qS+2#(∂(A\S)∩∂S).

Since we assumed that S is a q-isolated core, we have ∆qS > ∆q(A∩S) by de�nition

because A ∩ S & S due to S not being a subset of A. Also, ∂(A \ S) ∩ ∂S ⊇
∂(A \ S) ∩ ∂(A ∩ S), since every edge in the intersection of sets has to connect S

with its complement and is thus in ∂S. Therefore, another application of (A.6)

yields

∆q(A ∪ S) > ∆q(A \ S) + ∆q(A ∩ S) + 2#(∂(A \ S) ∩ ∂(A ∩ S)) = ∆qA. (A.7)

Corollary A.2. Let q > 0. Then, the union of �nitely many q-isolated cores of T

is a q-isolated core of T.

Proof. It su�ces to prove the claim for two q-isolated cores S and S ′ of T. Let

A & S ∪ S ′ be arbitrary. Then, at least one of the sets S and S ′ must not be a

subset of A. W.l.o.g. suppose that S is not a subset of A. Then, applying Lemma A.1

with A and S, followed by another application with A ∪ S and A ∪ S ∪ S ′, yields
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∆qA < ∆q(A ∪ S) 6 ∆q(A ∪ S ∪ S ′) = ∆q(S ∪ S ′). The last equality holds because

of A ⊂ S ∪ S ′, and the claim follows.

The following lemma relates to a statement in [52, Sect. 3] which is given there

without proof.

Lemma A.3. Let q ∈ ]0, i(T)[ . Then, every q-island of T has only �nitely many

vertices and thus is itself a q-isolated core of T.

Proof. Suppose that there exists a q-island S ⊆ T with #S =∞. Thus, S must be

formed by a countably in�nite union S =
⋃
j∈N Sj of q-isolated cores Sj of T. Then,

An :=
⋃n
j=1 Sj is a q-isolated core for every n ∈ N by Corollary A.2. Hence, we have

#∂An
#An

< q (A.8)

for every n ∈ N by Remark 1. W.l.o.g. it can be assumed that each Sj is not

empty and, due to Remark 2, connected. Since S is connected by hypothesis a

suitable renumbering of the Sj's will guarantee that An is connected for every n ∈ N.
Furthermore, we can assume w.l.o.g. that Sj+1 \ Aj 6= ∅ for every j ∈ N. Thus,

#An > n for every n ∈ N. Finally, we connect An with the root o for every

n ∈ N by attaching a suitable linear path Pn ⊂ T to it. If o ∈ An already, we set

Pn = ∅. Since An ⊆ An+1, we have Pn ⊇ Pn+1, and because of the linear structure

of Pn this implies #∂Pn > #∂Pn+1 for every n ∈ N. De�ning Kn := Pn ∪ An
for n ∈ N, we conclude that o ∈ Kn ⊆ T is connected, #Kn > #An > n and

#∂Kn 6 #∂An + #∂Pn 6 #∂An + #∂P1 for every n ∈ N. We thus infer a

contradiction in that

i(T) 6 lim
n→∞

#∂Kn

#Kn

6 q, (A.9)

where we used (A.8) for the last estimate. Hence, every q-island of T is �nite,

therefore a �nite union of q-isolated cores and therefore itself a q-isolated core by

Corollary A.2.

Next, we argue that decreasing q raises the sea level of the oceans.

Lemma A.4. Let 0 < q′ < q. Then, Aq′ ⊆ Aq.

Proof. We have ∆qS = (q−q′)#S+∆q′S > ∆q′S for any �nite vertex subset S ⊆ T.

So any q′-isolated sets are also q-isolated. Moreover, if A & S with ∆q′A < ∆q′S,

then also ∆qA < ∆qS. Therefore, q
′-isolated cores are q-isolated cores as well, giving

Aq′ ⊆ Aq.
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In the next lemma, we quantify the preceding statement in that too small q-

islands sink into the oceans when lowering q.

Lemma A.5. Let 0 < q′ < q and S ⊆ T be a union of q-islands with #S 6 1
q′
.

Then, S ⊆ T \ Aq′.

Proof. We argue by contradiction and assume that there exists ∅ 6= S ′ ⊆ S with

S ′ ⊆ Aq′ . Since S is a �nite union of q-islands and Aq′ ⊆ Aq by Lemma A.4, it follows

that S ′ is a �nite union of q′-islands and, thus, a q′-isolated core, i.e. ∆q′S
′ > 0. On

the other hand,

∆q′S
′ 6 q′#S −#∂S ′ 6 1−#∂S ′ 6 0, (A.10)

where we used the volume assumption for S in the second inequality and #∂S ′ > 1

in the last inequality. This holds because T is in�nite and connected.
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