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Abstract

The homotopy sheaves in A1-homotopy theory, which was developed by Morel and Voevodsky
[54], are, similarly to the homotopy groups in topology, notoriously difficult to calculate explic-
itly. Here it seems that in contrast to the latter the base case of πA1

0 has a special quality, which
we can see from the fact that Morel was able to derive A1-invariance for the higher homotopy
sheaves [50], but not for πA1

0 . In special cases, Choudhury [12] and Elemanto, Kulkarni, and
Wendt [17] were able to prove A1-invariance, but counterexamples due to Ayoub show that the
general conjecture is not correct.

In the present work, we consider an abelian variant of the A1-homotopy theory, the A1-
derived category, which was likewise introduced by Morel (cf. [50]). Using the spectrum of a
field as a base scheme, it is already known that the zeroth homology is strictly A1-invariant and
it follows that HA1

0 has the quality of a free strictly A1-invariant functor. In the light of the
recently published results of Elmanto, Kulkarni and Wendt on the determination of πA1

0 (BétG),
for reductive algebraic groups G, as sheafified étale cohomology, we calculate the associated
zeroth A1-homology for classifying spaces of some algebraic groups. For this we first develop
tools, in particular we extend theorems about unramified sheaves, which were introduced by
Morel [50], and treat among others the cases of (special) orthogonal groups, unitary groups,
split groups of type G2, and spin groups of low dimension. The arguments used are based on the
well-elaborated theory of cohomological invariants of these groups dissemenated by Garibaldi,
Merkurjev and Serre (cf. [21] and [20]).
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Zusammenfassung

Die Homotopiegarben der A1-Homotopietheorie, welche von Morel und Voevodsky [54] entwickelt
wurde, sind, ähnlich wie die Homotopiegruppen in der Topologie, tendenziell schwer explizit zu
bestimmen. Hierbei wirkt es so, dass der Basisfall von πA1

0 eine besondere Qualität aufweist, was
wir daran festmachen, dass Morel für die höheren Homotopiegarben A1-Invarianz zeigen konnte
[50], jedoch nicht für πA1

0 . In Spezialfällen konnten Choudhury [12] und Elemanto, Kulkarni und
Wendt [17] die A1-Invarianz nachweisen, jedoch zeigen Gegenbeispiele von Ayoub (cf. [5]) auf,
dass die allgemeine Vermutung nicht korrekt ist.

In der vorliegenden Arbeit betrachten wir eine abelsche Variante der A1-Homotopietheorie,
die A1-derivierte Kategorie, welche ebenfalls durch Morel eingeführt wurde (cf. [50]). Über dem
Spektrum eines Körpers als Basisschema ist hier bereits bekannt, dass die nullte Homologie strikt
A1-invariant ist und daraus resultiert, dass HA1

0 die Qualität eines freien strikt A1-invarianten
Funktors aufweist. Im Lichte der kürzlich erschienenen Resultate von Elmanto, Kulkarni und
Wendt [17] zur Bestimmung von πA1

0 (BétG), für reduktive algebraische Gruppen, als garbifizier-
te Étalekohomologie, berechnen wir die zugehörige Basishomologie für klassifizierende Räume
ausgewählter algebraischer Gruppen. Hierzu entwickeln wir zunächst Hilfsmittel, insbesondere
erweitern wir Sätze über unverzweigte Garben, welche durch Morel eingeführt wurden [50], und
behandeln unter anderen die Fälle der (speziellen) orthogonalen Gruppen, unitären Gruppen,
zerfallenden Gruppen von Typ G2, und Spingruppen von niedriger Dimension. Die verwende-
ten Argumente basieren auf der wohl ausgearbeiteten Theorie der kohomologischen Invarianten
dieser Gruppen nach Garibaldi, Merkurjev und Serre (cf. [21] und [20]).
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Introduction

One of the simplest structures in topology are discrete spaces, for which every subset of some
underlying set M is considered to be open. In that way, any map from M into some topological
space X is continuous. Vice versa, any continuous map from X into M , factors through π0(X),
the set of path-components. By adding the assumption that X is a CW-complex, the canonical
surjection X ↠ π0(X) becomes continuous, where we equip π0(X) with the discrete topology,
and thus the continuous maps from X to M are in one-to-one correspondence with the mappings
π0(X) → M . Let us moreover identify the phenomenon that any homotopy X × [0, 1] → M is
constant, so that this bijection factors through taking homotopy classes of maps. If we assert
furthermore functoriality in both X and M , with the added amplification that the X-part factors
again through taking homotopy classes, we may state that the functor π0, from the homotopy
category on some convenient category of topological spaces1 to the category of sets, is left-adjoint
to the standard inclusion functor. A more combinatorially inclined reader may have started with
a set M , and some simplicial set X, and arrived at completely analogous results. We explained
this trivial example, since the subject of the present thesis is concerned with a variation of this
principle.

We would like to consider this paradigm in A1-algebraic topology. A1-algebraic topology is
a collective term that stands for a transfer of structures, notions, and theorems from algebraic
topology to the theory of schemes, by assigning the affine line A1 the role of the contractible
unit interval [0, 1]. The unstable version of a homotopy theory for schemes with this trait was
introduced first by Morel and Voevodsky in their seminal article [54]. Their construction starts
out by first enlarging the category of smooth schemes, to the category of sheaves with respect
to the Nisnevich topology, similarly as the category of topological spaces was replaced by some
convenient category. Here the Nisnevich topology is granted precedence over e.g. the Zariski,
or étale topologies, since it combines positive properties of both of them, among which there
are the cohomological dimension being bounded by the Krull dimension (Zariski), descent for
K-theory (Zariski), exactness of the direct image functor for finite morphisms (étale), and the
equivalence of smooth pairs to inclusions of affine spaces (étale). The aim of this replacement
is moreover to make the working category complete and co-complete, equipped with internal
hom-objects.

Next, a reasonable model category structure is built on top of that by considering the sim-
plicial sheaves, and by identifying the canonical morphisms as weak equivalences. Inverting the
latter leaves us with the simplicial homotopy category, and this is a good point to come back
to our initial example. Recall, that for the category of simplicial sets (or equivalently CGHaus)
the discrete objects were simply sets, and we will see below that one may analogously regard
the sheaves as discrete objects in the homotopy category of simplicial sheaves. In this scenario
the affine line plays no distinguished role, yet, which is changed by localizing with respect to
the inclusion of zero S ↪→ A1

S . So, carrying the paradigm further, one would like to consider
1E.g. the category of compactly generated Hausdorff spaces, see [70].
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1 Introduction

the A1-local sheaves, or equivalently the A1-invariant sheaves, as discrete. However, in the cases
we explained above the associated zeroth homotopy object was always of the discrete type, viz.
a set for the case of topological spaces, or a sheaf for the case of simplicial sheaves. It is a
long-standing conjecture due to Morel, that πA1

0 (X ) := πs0(LA1(X )) is an A1-invariant sheaf.
Evidence in this direction comes from work e.g. of Morel himself (cf. [50]), who showed that the
higher A1-homotopy sheaves fulfil (strong resp. strict) A1-invariance, or Choudhury [12], who
showed that πA1

0 ’s of H-spaces, in particular of algebraic groups, are A1-invariant. Another step
in this direction is the article by Elmanto, Kulkarni, and Wendt [17], who showed that in the
case that the étale cohomology over fields for some reductive algebraic group is A1-invariant,
that πA1

0 of the étale classifying space is isomorphic to the Nisnevich sheafification of the étale
cohomology set of G, and thus A1-invariant. However, a recent preprint due to Ayoub [5] gives
a counterexample to πA1

0 being A1-invariant, for all spaces.
The avid or knowing reader may have noticed that we added the qualifier “étale” in front

of classifying space, so let us first reassure that taking the fundamental homotopy sheaf πA1
1

still recovers the underlying sheaf of groups. The signifier for the situs comes from the following
construction: As one may reproduce the definition of the homotopy category for an arbitrary site,
and the comparison morphisms between sites induce functors between the associated homotopy
categories, we may thus restrict the classifying space over some sheaf of groups on the étale site
to a space with respect to the A1-homotopy category over the Nisnevich site. There are some
intricacies with this definition, though. In particular, the (étale) classifying spaces need not be
connected any longer, in fact recently it was shown by Elmanto, Kulkarni, and Wendt (cf. [17]),
that in reasonable cases πA1

0 (BétG) is given as sheafified étale cohomology aNis(H1
ét(−, G)).

Our aim below is to analyse the étale classifying space in an abelian variant of the A1-
homotopy category. Here we work in a homological setting, i.e. differentials of degree −1, and
thus replace homotopy sheaves by homology sheaves. The respective homotopy category, called
the A1-derived category, will be the localization of some derived category of sheaves, and due
to the presence of a homological t-structure, we may show that strictly A1-invariant sheaves are
discrete objects in that setting. Strict A1-invariance is a form of invariance for abelian sheaves
M , which entails that all presheaves H i

Nis(−,M) are A1-invariant. They appear in a famous
theorem by Voevodsky (cf. [45, Thm. 13.8]), asserting that over a perfect field A1-invariant
abelian sheaves with transfers fulfil this criterion. As above by stating that strictly A1-invariant
sheaves are discrete, we mean two assertions: On the one hand, we would like the homology
sheaves to be strictly A1-invariant, i.e. discrete, and secondly, we would like morphisms up to
homotopy into discrete objects to factor uniquely through the homology sheaves. Both of these
assertions hold, and we expose a proof of this fact due to Asok [4] in our exposition. If one
works consequently with transfers, i.e. considers Voevodsky’s triangulated category of motives
DM(k) (cf. [78]), then the homotopy invariant sheaves with transfers are the discrete objects,
and the homology involved is Suslin homology (cf. [71]). It is well-known that A1-homology and
Suslin-homology do not necessarily agree. An example computation close to our endavour is the
determination of the first two Suslin-homology sheaves of split simply connected semi-simple
groups by Gille [22].

Strictly A1-invariant sheaves have many nice traits, in particular it holds that for any open
subscheme U of a scheme X that contains all points of codimension < d, the restriction along
the inclusion induces an isomorphism for all n ≤ d− 2 (and a monomorphism for n = d− 1)

Hn
Nis(X,M) −→ Hn

Nis(U,M). (1.1)

Sheaves with this property, corresponding to values d = 1, 2, will be called unramified, and for
our purposes it suffices to restrict to unramified sheaves. This notion was first codified by Morel
[50], however its beginning can be traced back to Colliot-Thélène and Sansuc, who proved that
the étale cohomology of reductive groups is unramified, if one restricts themselves to schemes
of dimension 2 (cf. [14]). By rewriting (1.1) in a more diagrammatic form, one may agree
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with the sentiment that “[i]n some sense, being unramified is a weak properness statement.”
(cf. [17, Rem. 5.9]). When analysing unramified sheaves below, we will employ this picture,
and show, by taking arguments of Morel [50], and generalising arguments of Gille and Hirsch
[23], to find that over a perfect field, morphisms between (weakly) unramified sheaves are in
one-to-one correspondence with natural transformations over fields (see propositions 3.25 and
3.28). Unfortunately, we could not get rid of the perfectness assumption in our compatibility
statement.

So under this hypothesis, for any reductive algebraic group, morphisms

aNis(H1
ét(−, G)) −→M,

into some unramified sheaf M , reduce to cohomological invariants with values in M by the
compatibility statement. Tying this back to the initial paradigm, the calculation for HA1

0 (BétG)
comes down to finding some strictly A1-invariant sheaf, which factors morphisms from the co-
homology sheaves aNis(H1

ét(−, G)) to strictly A1-invariant sheaves uniquely. So, our upshot is
to find universal invariants, with values in strictly A1-invariant sheaves. Therefore we seek to
generalize and build upon the existing literature on cohomological invariants due to Garibaldi,
Serre, and Merkurjev (cf. [21] and [20]).

Cohomological invariants are a useful tool in many fields. Starting from their simple defini-
tion as natural transformations of functors on fields, they turn the problem of knowing equiv-
alence classes of torsors, into working with characteristic values living in well-known abelian
groups. They have been applied in determining the essential dimension of groups, which is a
measure for how many parameters are at least needed to describe torsors over that particular
group (cf. [64]), counterexamples to the Noether problem, where one determines whether the
field of invariants of a representation of some finite group is rational (cf. the exposition in [21,
Sec. 33]), or to analyse the shape of quadratic forms in the third power of the fundamental ideal
I3(k) (cf. originally [65], see also [20, Sec. 21]).

Moreover, the now standard arguments that are used to classify, e.g. the cohomological in-
variants of the orthogonal groups allow for generalization to the A1-topological situation. The
main reason hereby stems from the nature of the reasoning: By finding group homomorphisms
H → G that induce surjections on Galois cohomology for all fields, one may reduce the com-
putation of the G-invariants to determining those H-invariants that come from G. Apart from
these reduction steps, another ingredient is needed, and comes in the form of the analysis of
HA1

0 of the spheres G∧i
m by Morel, who determined them to be the unramified Milnor-Witt K-

theory (cf. [50, Thm. 3.37]). From this we first derive HA1
0 (Bétµ2), and via the splitting principle

HA1
0 (BétOn). This was already known to Morel (cf. [49, Rem. 5.4]), an explicit proof of this fact

did not appear in print, yet. So, we check that there is an isomorphism (see lemma 4.15)

HA1
0 (BétOn) −→ Z⊕KW

1 ⊕ · · · ⊕KW
n ,

which is induced by sending a diagonal quadratic form ⟨u1, . . . , un⟩ to the ith-elementary sym-
metric polynomial in the symbols [u1], . . . , [un]. This makes these maps clearly eligible for the
name refined Stiefel-Whitney classes. Next, we derive of this the case of HA1

0 (BétSOn), essen-
tially by doing some linear algebra. The result is, unsurprising to a reader knowledgeable in the
cohomological invariants of SOn (see proposition 4.27)

HA1
0 (BétSOn)

∼=−−→ Z⊕
n−1⊕
i=2
i even

KW
i ⊕

{
KW
n−1, n even, and

0, otherwise.

Note, that in the theory of cohomological invariants, there are no degree 1 invariants for con-
nected groups, and this difference can also be seen in the above two statements with the disap-
pearance of KW

1 . The case of the symmetric groups is also quite similar to the classical case, and

3



1 Introduction

the universal invariants one finds, may be described by sending a Sn-torsor, in the form of an
isomorphism class of an n-dimensional étale algebra, to the value of the refined Stiefel-Whitney
classes of its trace form (see theorem 4.33). This was also already announced in [49], and we
provide an explicit proof for that. Finally, we generalize several arguments due to Garibaldi (see
[20],and originally [66]) to determine HA1

0 (BétSpin′
n) for 7 ≤ n ≤ 12, where Spin′

n denotes the
spin group associated with a split quadratic space of dimension n. The arguments deviate not
much of what was done classically, and again analogously to the vanishing of degree 2 invariants
for connected semi-simple simply connected groups, the term of least “degree” that appears in
all our HA1

0 (BétSpin′
n) is KW

3 . This motivates three questions that we were not able to answer
generally:

Questions. Given a reductive group G, is it true that HA1
0 (BétG) is isomorphic to a sum of

unramified Milnor-Witt K-sheaves, modulo ideals that are generated entirely by elements defined
over the ground field? In the specific case that G is already defined over Z, are these ideals nec-
essarily generated by elements that are defined over Z? Moreover, does the type of connectedness
of the group reflect in the “degree” of the Milnor-Witt K-sheaves occurring?

In tackling these our proximity to the algebraic approach to cohomological invariants, in the
style advanced by Gariabaldi and Serre, could have been an Achilles’ heel, and a more geometric
approach, by means of the stratification method due to Vezossi (cf. [76]), which was already
employed in the context of cohomological invariants by Guillot (cf. [28]), might prove more
fruitful in the future.

Outline of the thesis

In chapter two we develop A1-algebraic topology insofar as it is needed to understand our results
and the motivation(s) behind it. Therefore we dive first into the construction of the A1-derived
category, where we give more details, as these are not readily available in the existing literature.
We also put an emphasis on connecting the A1-topological language to the general theory of
triangulated categories and their localizations. We follow that up with a short introduction into
the A1-homotopy theory defined by Morel and Voevodsky, and finish its discussion with a quick
glance at classifying spaces. After that we tie the A1-derived category and the A1-homotopy
category together by describing a correspondence, which is motivated by the classical Dold-
Kan correspondence. Finally, we put a tensor product on the category of strictly A1-invariant
sheaves, as it is a useful tool for the computation of HA1

0 .
The following chapter is devoted to more hands-on terms. With the general theory settled,

we first discuss the notion of essentially smooth schemes that we intend to use, and describe
the extension of sheaves onto this larger category. Next, we put this to work in the definition,
and discussion of first examples, of unramified sheaves. We conclude the chapter by analysing
morphisms between (weakly) unramified sheaves. In particular, we show the compatibility
statement, a proof of which is based on arguments of [23], and a generalization of a principle
due to Totaro, that determines cohomological invariants with values in unramified sheaves, as
values associated to some tangible geometric classifying space that is the quotient of a free group
action.

Lastly, we get to the computation of HA1
0 (BétG) for several (split) algebraic groups. There-

fore, we hand the reader a crash course in Milnor-Witt K-theory, which, by a theorem of Morel,
is HA1

0 of the spheres G∧i
m . Then we proceed to lay out the construction and identification of the

refined Stiefel-Whitney classes as the universal invariants for the orthogonal groups, a program
that was outlined in the ICM address [49]. Next we derive thereof the HA1

0 (Bét(−)) of the spe-
cial orthogonal groups, the symmetric groups, and the unitary groups, three cases in which the
Stiefel-Whitney classes take on a prominent role. After that we consider split groups of type
G2, which in contrast to the above features a refinement of the Arason invariant as universal

4



invariant. Via a small interlude, in which we lift some known invariants of the split groups of
type F4, we proceed to the case of split spin groups of small rank. Here we use arguments that
go back to Rost [66] and Garibaldi [20], and our earlier generalizations of the classical theory.

Conventions

In this work the natural numbers N include 0, and all rings are commutative and unital, except
if noted otherwise. In the same vein, all ring homomorphisms preserve the unit. Categories will
be denoted by a sans-serif italic font, e.g. Set, Set•, or Ab mean respectively the category of sets,
pointed sets, or abelian groups. Up to rare explicit exceptions the schemes in this work, and
their morphisms, will be based over some scheme S, that is noetherian and finite dimensional
for chapter two, the spectrum of a field starting with chapter three, and of a perfect field in
chapter four. If no additional modifier is given, a sheaf is defined with respect to the Nisnevich
topology (recalled in definition 2.1).
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2

A1-Algebraic Topology

In this chapter we begin by introducing the basics of the framework we will work in, namely
A1-algebraic topology. So we try to shed some light on the definition of two categories, which
distil the geometric information that we want to deal with. The first category we showcase will
be the A1-derived category, first defined by Morel in [50], as the localisation of some derived
category. It is moreover an abelian variant of the second category, the unstable A1-homotopy
category, defined by Morel and Voevodsky in their seminal work [54] in an effort to introduce
the methods of unstable homotopy theory into algebraic geometry. We chose this order, despite
being achronological, since we will later on focus more on the A1-derived category. By the name
A1-algebraic topology we mean both theories collectively, together with their Dold-Kan style
comparison functors, which will come in the latter part of this chapter. Since we present the
state of the art, we only give proofs to patch holes in the existing literature, or if it fits our
exposition.

2.1 The A1-Derived Category

Our starting point for both theories is some category of geometric objects, and a Grothdendieck
topos defined over it. To have some flexibility, we choose a noetherian, and finite dimensional
base scheme S. Denoting by SchS the category of all S-schemes, together with the S-morphisms,
we restrict ourselves to the full subcategory SmS of SchS that consists of smooth and finite type
S-schemes. Although the majority of our results are concerned with the case S = Spec(k), for k
being a perfect field, we feel it is more conceptual to introduce the theory in a general fashion.

2.1.1 Nisnevich Topology

The following gives a pretopology in the sense of [3, Déf. II.1.3].

Definition 2.1. Let X ∈ SmS be arbitrary. A finite family {Xi → X}i∈I of étale morphisms
is called a Nisnevich covering of X if and only if for every point x ∈ X there is an index i ∈ I,
and a point xi ∈ Xi such that the induced homomorphism on residue fields κ(x)→ κ(xi) is an
isomorphism.

Below we will refer to this topology as Nisnevich topology (or Nisnevich site), and denote the
associated sheaf topos by ShNis(SmS) and its corresponding abelian category by AbNis(SmS).
We recall some basic facts about the Nisnevich site:

2.2. The forgetful functor ShNis(SmS) ↪→ PSh(SmS) from sheaves to presheaves has a left adjoint
aNis : PSh(SmS) → ShNis(SmS) that preserves finite limits, and is called the sheafification. The
Nisnevich topology is finer than the Zariski topology, i.e. open covers are Nisnevich covers, and
is coarser than the étale topology, which handily implies that representable presheaves are in

7



2 A1-Algebraic Topology

fact sheaves. We denote the Yoneda embedding by h... : SmS → ShNis(SmS), but whenever
confusion cannot arise we will not write it explicitly. From [58, pp. 256–267] we learn how to
define stalk-functors for the Nisnevich topology: Fixing a point x on a scheme X ∈ SmS , one
may define a Nisnevich neighbourhood of x by an étale morphism U → X such that there is
a point y ∈ U with the induced homomorphism κ(x) → κ(y) being an isomorphism. One can
make the Nisnevich neighbourhoods of x a cofiltered category, and consider the functor

x∗ : ShNis(SmS) −→ Set
F 7−→ colim

U Nis. nbh. of x
F(U).

It turns out that the family of functors of this type is jointly conservative on ShNis(SmS), by
which we mean that a morphism of sheaves φ : F → G is an isomorphism if and only if the
induced morphism on all stalks is an isomorphism.1

Definition 2.3. We call a cartesian square

U ×X V V

U X

p

i

(2.1)

elementary distinguished if and only if i is an open immersion, p is étale, and the induced
morphism p−1(X∖U)red → (X∖U)red is an isomorphism.

2.4. We note first that {ι, p} as in the above definition is a Nisnevich cover of X. Moreover,
one can show that in order to check that a presheaf F on SmS is a sheaf, it is necessary and
sufficient to check that for every elementary distinguished square (2.1) the induced square

F(X) F(U)

F(V ) F(U ×X V )

F(i)

F(p)

is cartesian (cf. [54, Prop. 3.1.4]). Furthermore, if we apply the Yoneda embedding to (2.1), we
obtain a cocartesian diagram in ShNis(SmS) (cf. [54, Lem. 3.1.6]), which readily yields a long
exact sequence in Nisnevich cohomology of the Mayer-Vietoris type:

· · · → H i
Nis(X,F)→ H i

Nis(U,F)⊕H i
Nis(V,F)→ H i

Nis(U ×X V,F)→ H i+1
Nis (X,F)→ · · ·

2.5. We have already indicated that the Nisnevich topology lies between the étale and the
Zariski topology. So it shares some of the traits of both these, in particular the existence of a
vanishing proposition, so that the Nisnevich cohomology of a scheme with Krull dimension d,
vanishes in ranks > d (cf. [54, Prop. 3.1.8]). For more details on the Nisnevich topology we refer
the reader to the original source [58] by Nisnevich, the short note [32] by Hoyois and section 3.1
of [54] by Morel and Voevodsky.

Pointed Sheaves

We close this paragraph with some remarks on the case of pointed sheaves. We denote by
• ∈ ShNis(SmS) the sheaf that is represented by the base scheme S itself. The category of pointed
sheaves Sh•

Nis(SmS) is then the category of sheaves under •, and it may be seen equivalently
1We note in passing that our notation alludes to x∗ being the left adjoint part of a morphism of topoi

Set x−→ ShNis(SmS) in the sense of [3, Définition IV.6.1]. Thus x∗ preserves colimits and finite limits.
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2.1 The A1-Derived Category

as the category of contravariant functors from SmS to pointed sets which are sheaves after
forgetting basepoints.

The categories ShNis(SmS) resp. Sh•
Nis(SmS) are both closed symmetric monoidal (see [41,

VII.]), with respect to the product resp. smash product. We use this opportunity to recall the
definition of the latter:

Let (A, a0) and (B, b0) be two pointed sets. The smash product (A, a0) ∧ (B, b0) is defined
as A×B/ ∼, where the equivalence relation ∼ makes the following identification:

(a1, b1) ∼ (a2, b2) :⇐⇒ (a1 = a2 ∧ b1 = b2) ∨ ((a1, b1), (a2, b2) ∈ {a0} ×B ∪A× {b0}) .

If the basepoints are clear from the context, we will usually forget to write them. The equivalence
class of (a, b) ∈ A×B will commonly be denoted as a ∧ b. We regard A ∧B again as a pointed
set, with basepoint a0 ∧ b0. Now given two presheaves of pointed sets F , G, we may define the
smash product of presheaves via

X 7−→ F(X) ∧ G(X).

The smash product of sheaves is defined as the sheaf that is associated to this presheaf. The
operator ∧ defines a symmetric tensor product on Sh•

Nis(SmS), with unit • ⊔ •, and with the
usual coherence axioms in place. This structure is moreover closed, since we have the following
right adjoint: Given pointed sheaves F and G one may define

HomSh•
Nis(SmS)(F ,G)(X) := {φ : F × hX → G | φ morphism of sheaves, with φ(∗U , f) = ∗U ,

∀ U ∈ SmS , ∀ f ∈ HomSmS
(V,X)}

for every X ∈ SmS , where by ∗U we mean the basepoint in the set F(U) resp. G(U).

2.1.2 The Derived Category

We still fix a noetherian and finite dimensional scheme S and consider the category AbNis(SmS)
of abelian Nisnevich sheaves. Recall the following definition:

Definition 2.6. Let C be an abelian category. C is called a Grothendieck abelian category if
and only if the following axioms hold:

AB 3) C possesses arbitrary coproducts.

AB 5) Filtered colimits of exact sequences are exact (cf. [27, Prop. 1.8]).

G) C admits a family of generators (cf. [27, 1.9]).

The conditions AB 3) and AB 5) are clearly met by AbNis(SmS) (cf. Tags 03CN and 03CO in
[73]). To see the existence of a family of generators, we make the following point:

2.7. Consider the functor Z[−] : ShNis(SmS) → AbNis(SmS) that sends a sheaf F to the sheaf
associated to X 7→⊕

F(X) Z. We call this functor the free sheaf functor, and we note that it is
left adjoint to the forgetful functor AbNis(SmS) ↪→ ShNis(SmS). Before we proceed, we want to
remark that there is also a basepointed version of this adjunction:

HomAbNis(SmS)(Z(F),A) ∼= HomSh•
Nis(SmS)(F ,A),

where Z(−) : ShNis(SmS) → AbNis(SmS) sends a pointed sheaf F to the sheaf associated to
X 7→

⊕
F(X)∖{∗} Z, and A is pointed by 0. Now we may embed a scheme X into AbNis(SmS) by

concatenating the Yoneda embedding and the free sheaf functor:

SmS −→ AbNis(SmS)
X 7−→ Z[X].

9
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2 A1-Algebraic Topology

To finally see that AbNis(SmS) fulfils G), we may first remark that the category SmS is essentially
small, so that there is a small category Sm′

S that it is equivalent to. Thus in particular the objects
of Sm′

S form a set. Now, a generating family of AbNis(SmS) is given by (Z[X])X∈Sm′
S
.

2.8. The category AbNis(SmS) is equipped with a tensor product: Let F ,G be abelian sheaves,
then we define F ⊗G to be the sheaf associated to the presheaf X 7→ F(X)⊗Z G(X). One may
check that ⊗ equips AbNis(SmS) with the structure of a symmetric monoidal category. Moreover,
this monoidal structure is closed, i.e. one finds a right adjoint to every functor −⊗ G, which is
defined similarly to the internal Hom above. We denote it by HomAbNis(SmS)(G,−).

In order to be able to do homology we furthermore embed AbNis(SmS) into the category of
unbounded chain complexes2 Comp(AbNis(SmS)) by putting a given abelian sheaf in degree 0,
and setting the remaining degrees to 0. Our shorthand notation for this latter category is Spcab

S ,
and we refer to its objects simply as complexes.

2.9. The category Spcab
S is symmetric monoidal, with respect to the tensor product of complexes,

whose definition we recall here, for reference. Let C∗ = (Cn, dCn )n∈Z and D∗ = (Dn, d
D
n )n∈Z be

chain complexes, with differentials Cn
dC

n−−→ Cn−1, Dn
dD

n−−→ Dn−1, for n ∈ Z. The tensor product
C∗ ⊗D∗ is defined by

(C∗ ⊗D∗)n :=
⊕

p+q=n
Cp ⊗Dq,

with the differential induced by dCp ⊗ idDq +(−1)p idCp ⊗dDq . This monoidal structure is also
closed, as evidenced by the existence of the right adjoint internal Hom, given by:

HomSpcab
S

(C∗, D∗)n :=
∏

p+q=n
HomAbNis(SmS)(C−p, Dq),

with the differential induced by (dDq )∗ − (−1)n(dC−p+1)∗, where we used the abbreviations(
dDq

)
∗

:= HomAbNis(SmS)(C−p, d
D
q ) and

(
dC−p+1

)∗
:= HomAbNis(SmS)(dC−p+1, Dq).

2.10. The category Spcab
S is itself a Grothendieck category. Hereby the axioms AB 3) and AB

5) follow from the fact that colimits in Spcab
S can be computed degreewise. Denoting by (Gi)i∈I

a set of generators for AbNis(SmS), then we may give a set of generators of Spcab
S by the disks

(Dn(Gi))i∈I,n∈Z

Dn(Gi)m :=
{
Gi, if m = n− 1 ∨m = n,

0, otherwise, dD
n(Gi)

m :=
{

idGi , if m = n,
0, otherwise.

The fact that these generate can be deduced from the the adjunction

HomSpcab
S

(Dn(Gi), C∗) ∼= HomAbNis(SmS)(Gi, Cn).

2.11. As a closed symmetric monoidal category, Spcab
S is enriched in itself. However, sometimes

it might be useful to break statements down to a simpler case than to the case of complexes of
sheaves. Therefore we note that by

MapSpcab
S

(C∗, D∗)n :=
∏

p+q=n
HomAbNis(SmS)(C−p, Dq),

2The differential has degree −1.
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2.1 The A1-Derived Category

we also have the structure of a Comp(Ab)-enrichment on Spcab
S . There are the following com-

patibilities:

HomSpcab
S

(C∗, D∗)(S) = MapSpcab
S

(C∗, D∗),

Z0(MapSpcab
S

(C∗, D∗)) = HomSpcab(C∗, D∗), and

H0(MapSpcab
S

(C∗, D∗)) = HomK(S)(C∗, D∗),

where Z0 gives the zero cycles, and by K (S) we denote the homotopy category of chain complexes
(in the sense of homological algebra). We may map Comp(Ab) back into Spcab

S by taking constant
sheaves at each n ∈ Z.

Next we discuss a first model category structure on Spcab
S , which we will later localize, to

reflect the contractibility of A1
S . The fact, that the particular choice of cofibrations, fibrations,

and weak equivalences forms a model category structure on Spcab
S , was checked independently

by Hovey (cf. [30, Thm. 2.2]) and Beke (cf. [8, Prop. 3·13]). Later Cisinski and Déglise showed
that this model category is moreover cellular and proper (cf. [13, Thm. 2.1]). Recall that a
morphism of complexes is a quasi-isomorphism if and only if it induces isomorphisms on all
homology sheaves.
Proposition 2.12. The category Spcab

S admits the structure of a proper cellular model cate-
gory, with weak equivalences the quasi-isomorphisms of chain complexes, and cofibrations all
monomorphisms. This model category structure is called the injective model category struc-
ture on unbounded chain complexes.

Note that in the above proposition the fibrations are implicitly defined as those morphisms that
have the right lifting property with respect to all cofibrations that are also quasi-isomorphisms.
We fix special names for the latter:

• cofibration + weak equivalence = acyclic cofibration, and

• fibration + weak equivalence = acyclic fibration.
The homotopy category of this model category is the derived category D(S) of the abelian
category AbNis(SmS), which is clear from the usual characterisation of the derived category as
the category of chain complexes localized with respect to the quasi-isomorphisms.
The category D(S) is triangulated (see [56, Def. 1.3.13]), and admits a t-structure (see [7, Déf.
1.3.1]). For easier reference we recall the structure here: The (left) shifting functor on D(S) is
induced by the shifting of complexes

(−)[1] : Spcab
S → Spcab

S , (Cn, dn)n∈Z 7→ (Cn−1, dn−1)n∈Z,

which respects quasi-isomorphisms, as Hi(C∗[1]) = Hi−1(C∗), and thus descends to a functor on
D(S). The distinguished triangles in D(S) are those triangles that are isomorphic to triangles
of the form

C∗
f−→ D∗ → cone(f)→ C∗[1],

where cone(f) denotes the mapping cone of f , defined as

cone(f)n := Dn ⊕ Cn−1 and dcone(f)
n :=

(
dDn fn−1
0 −dCn−1

)
.

As for the t-structure, we have the strictly full subcategories

D(S)≥0 := {C∗ ∈ D(S) | Hi(C∗) = 0, ∀i < 0} and
D(S)≤0 := {C∗ ∈ D(S) | Hi(C∗) = 0, ∀i > 0} ,

which fulfil the axioms of a (homological) t-structure encompassing precisely the following ax-
ioms:

11



2 A1-Algebraic Topology

(t1) For all C∗ ∈ D(S)≥0 and D∗ ∈ D(S)≤−1 we have HomD(S)(C∗, D∗) = 0.

(t2) D(S)≥1 ⊆ D(S)≥0 and D(S)≤1 ⊇ D(S)≤0.

(t3) For every complex C∗ ∈ D(S), we may find (C∗)≥0 ∈ D(S)≥0 and (C∗)≤−1 ∈ D(S)≤−1
that fit into a triangle

(C∗)≥0 → C∗ → (C∗)≤−1 → (C∗)≥0[1].

We may define explicit truncation functors via:

τ≥0 : D(S) → D(S)≥0
C∗ 7→ (· · · → C2 → C1 → ker(d0)→ 0→ · · · ) and

τ≤0 : D(S) → D(S)≤0
C∗ 7→ (· · · → 0→ C1/ ker(d1)→ C0 → C−1 → · · · ).

By the homological version of [7, Prop. 1.3.3], we have that τ≥0 is right adjoint to the inclusion,
and τ≤0 is left adjoint to the inclusion. We also make the definitions D(S)≥n := D(S)≥0[n] and
D(S)≤n := D(S)≤0[n], and similarly for the truncation functors. This t-structure is called the
natural t-structure on D(S), and its heart D(S)♡ := D(S)≥0 ∩ D(S)≤0 is an abelian category
(cf. [7, Thm. 1.3.6]), which is moreover equivalent to AbNis(SmS) via taking zero homology, and
the canonical inclusion AbNis(SmS) ↪→ D(S)♡ putting an abelian sheaf in degree zero. As a
first application of the natural t-structure, we note the following lemma, which follows by the
argument in [4, Lem. 3.3].

Lemma 2.13. Let M be an abelian sheaf. Then we have a natural (in both entries) isomorphism

HomAbNis(SmS)(H0(C∗),M)
∼=−−→ HomD(S)(C∗,M [0]),

for every complex C∗.

The above lemma is analogous to the well-known statement in algebraic topology that homo-
topies with target a discrete topological space are constant and that maps into discrete spaces
are up to homotopy completely determined by the induced maps on path-components. So the
slogan to the lemma is: Sheaves are discrete in Spcab

S .
A complex C∗ such that the unique morphism to 0 is a fibration is called fibrant. From the

factorization axiom (cf. [29, Def. 7.1.3]) we obtain a functor Exab : Spcab
S → Spcab

S , together
with a natural transformation θ : id → Exab such that Exab(C∗) is fibrant, θ(C∗) is an acyclic
cofibration, and

C∗ → 0 = C∗
θ(C∗)−−−→ Exab(C∗)→ 0.

This justifies the name fibrant replacement functor for Exab. The following lemma goes under
the grandiose name fundamental lemma of homological algebra. It describes a deep connec-
tion between the model categorical viewpoint on D(S), and the classical approach via chain
homotopies.

Lemma 2.14. Let D∗ be a fibrant complex. Then for any complex C∗ the natural homomorphism

HomK(S)(C∗, D∗)→ HomD(S)(C∗, D∗)

is an isomorphism.

Remark 2.15. The above lemma seems to be well known to the experts. It follows from Quillen’s
homotopical algebra [62]. See also [50, Lem. 6.16] for more references.
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2.1 The A1-Derived Category

2.1.3 A1-Localization

The main point of A1-algebraic topology is the additional requirement that the affine line is con-
tractible, which in a sense identifies A1

S with the unit interval from algebraic topology. However,
such a relation, i.e. the triviality of the complex Z[A1

S ]/Z, is not present in D(S), so that one
has to add it via an additional step, which (again) takes the form of a localization of categories.

Definition 2.16. Let E∗ ∈ Spcab
S be a complex. E∗ is called A1-local if and only if the homo-

morphism

HomD(S)(C∗ ⊗ Z[A1
S ], E∗) −→ HomD(S)(C∗, E∗),

induced by the inclusion of zero S ↪→ A1
S , is bijective, for all complexes C∗. We denote the full

subcategory of the A1-local objects of D(S) by DA1-loc(S).

Let us remark first that this definition is well-defined: Indeed, since Z[A1
S ] is a torsion-free abelian

sheaf, tensoring with it preserves cofibrations, and acyclic cofibrations. As such (−)⊗ Z[A1
S ] is

a left Quillen functor, and induces a well-defined functor on D(S) (see [29, Def. 8.5.2]).

2.17. The subcategory DA1-loc(S) is a strictly full, saturated, triangulated subcategory of D(S),
indeed:

•Strictly full: Every complex that is isomorphic to an A1-local complex, is itself A1-local. By
definition DA1-loc(S) is a full subcategory.

•The subcategory DA1-loc(S) contains 0 and direct sums of A1-local complexes, and is thus an
additive subcategory.

•Shifts of A1-local complexes are again A1-local.

•Given a triangle E1
∗ → E2

∗ → E∗ → E1
∗ [1], with E1

∗ and E2
∗ being A1-local, we see that E∗ is

A1-local, by applying the homology functors (see [56, Lem. 1.1.10]) HomD(S)(C∗⊗Z[A1
S ],−) resp.

HomD(S)(C∗,−) to the triangle, and using the five lemma. Thus DA1-loc(S) is a triangulated
subcategory.

•Saturated: For every two complexes E∗ and F∗ such that E∗ ⊕ F∗ is A1-local, E∗ and F∗ are
individually A1-local: We have the split triangle E∗ → E∗ ⊕ F∗ → F∗ → E∗[1], which induces
the following diagram with short exact rows

0→ Hom(C∗ ⊗ Z[A1
S ], E∗) Hom(C∗ ⊗ Z[A1

S ], E∗ ⊕ F∗) Hom(C∗ ⊗ Z[A1
S ], F∗)→ 0

0→ HomD(S)(C∗, E∗) HomD(S)(C∗, E∗ ⊕ F∗) HomD(S)(C∗, F∗)→ 0,

∼=

for any complex C∗. Since the inclusion Z ↪→ Z[A1
S ] has a section, we know that the left and

right vertical homomorphisms need to be surjective. By a diagram chase it follows that they
need to be isomorphisms as well. This checks the claim.

Next we introduce the morphisms that we would like to see inverted in a potential A1-derived
category:

Definition 2.18. A morphism f : C∗ → D∗ in Spcab
S is called an A1-quasi-isomorphism if and

only if for any A1-local complex E∗, the induced homomorphism

HomD(S)(D∗, E∗) −→ HomD(S)(C∗, E∗)

is an isomorphism.

13



2 A1-Algebraic Topology

So, we want to localize D(S) with respect to all A1-quasi-isomorphisms. Since D(S) is a triangu-
lated category, by the method of forming the quotient of triangulated categories, this is always
possible. Indeed, setting

TA1 := ⊥DA1-loc(S) =
{
Q∗ ∈ D(S)

∣∣∣ HomD(S)(Q∗, E∗) = 0, ∀E∗ ∈ DA1-loc(S)
}

defines a strictly full, saturated, triangulated subcategory of D(S) (cf. [73, Tag 0FXC]). By
[56, Thm. 2.1.8] (and [56, Prop. 2.1.24]) we obtain a (potentially not locally small) triangu-
lated category DA1(S) := D(S)/TA1 , together with a triangulated quotient functor υ : D(S) →
DA1(S) such that any functor F : D(S)→ C , into some category C , which inverts all A1-quasi-
isomorphisms factors through υ. The triangles in DA1(S) are all those triangles isomorphic to
triangles of the form

υ(C∗)→ υ(D∗)→ υ(E∗)→ υ(C∗)[1],

where C∗ → D∗ → E∗ → C∗[1] is a triangle in D(S). By [9, Prop. 1.6] we also have means to
check that DA1(S) is locally small: Assume that the inclusion of DA1-loc(S) ↪→ D(S) admits a
left-adjoint

Lab
A1 : D(S) −→ DA1-loc(S).

The functor Lab
A1 gives rise to an equivalence of triangulated categories DA1(S) → DA1-loc(S),

and the induced functor

DA1(S)→ DA1-loc(S) ⊆ D(S)

is left adjoint to the universal quotient functor υ. Thus Lab
A1 deserves the name A1-localization

functor. The following existence theorem is due to Morel3, in the context of stable A1-homotopy
theory, but, as he remarks, it is true in the A1-derived setting as well.

Theorem 2.19. The inclusion DA1-loc(S) ⊆ D(S) admits a left adjoint Lab
A1, which is exact as

a functor of triangulated categories.

Remark 2.20. By the above we obtain that the localization of D(S) with respect to all A1-
quasi-isomorphisms exists as a locally small category. Unfortunately, this gives a priori no
statement about a potential model category structure on Spcab

S , with the cofibrations being the
monomorphisms, and the weak equivalences being given by the A1-quasi-isomorphisms, whose
associated homotopy category would also be DA1(S). However, by either redoing the proof
of [54, Thm. 2.2.21], where Morel and Voevodsky constructed the unstable A1-model category
structure, in the derived setting, or by following [53, Rem. 4.2.5], one obtains the desired abelian
A1-model category structure on Spcab

S .

Remark 2.21. We also remark that by the factorization axiom (cf. [29, Def. 7.1.3]) there is a
model category analogue to the localization functor, namely a functor Exab

A1 : Spcab
S → Spcab

S ,
which maps every complex C∗ to one that factors the unique morphism C∗ → 0 into an A1-
acyclic cofibration C∗ → Exab

A1(C∗), and an A1-fibration Exab
A1(C∗)→ 0. In this context we also

record, that one may prove as in [54, Prop. 2.2.28], that a fibrant complex C∗ is A1-local if and
only if C∗ is A1-fibrant.

Corollary 2.22. The abelian A1-model category structure is proper.
3See [53], theorem 4.2.1 and remark 8. There is also a version for S being the spectrum of a perfect field k,

given in [50, Cor. 6.19].
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2.1 The A1-Derived Category

Proof. Since all objects in Spcab
S are cofibrant, left properness is formal (cf. [29, Cor. 13.1.3]).

We will show right properness as in [13, Prop. 4.3]. Therefore consider a cartesian square

C∗ E∗

D∗ F∗,

p′

f ′

p

f

where p is an A1-fibration, and f is an A1-quasi-isomorphism. First note that, since p has in
particular the right lifting property with respect to all acyclic cofibrations, that p is a fibration,
as well. Thus, by [29, Cor. 13.3.8], the above square is homotopy cartesian. In triangulated
category terms this means that

C∗

(
p′

−f ′

)
−−−−−→ D∗ ⊕ E∗

(
f p

)
−−−−−→ F∗ → C∗[1]

is a distinguished triangle for some morphism F∗ → C∗[1] (see [56, Def. 1.4.1]). Since the
quotient functor υ : D(S) → DA1(S) is triangulated, this is mapped to a distinguished triangle
in the A1-derived category. In DA1(S) we have that f is an isomorphism, which implies that f ′

is an isomorphism as well. Thus f ′ has to be an A1-quasi-isomorphism (cf. [29, Thm. 8.3.10]).
This completes the proof that the abelian A1-model category structure is proper.

Strictly A1-Invariant Sheaves

In the following we briefly discuss one of the most important examples of A1-local complexes to
us.

Definition 2.23. Let M ∈ AbNis(SmS) be a sheaf of abelian groups. We call M strictly A1-
invariant if and only if for all X ∈ SmS the homomorphism

H i
Nis(A1

X ,M) −→ H i
Nis(X,M)

induced by the embedding of zero X ↪→ A1
X is an isomorphism for all i ∈ N. We denote by

AbA1
Nis(SmS) the full subcategory of AbNis(SmS) consisting of the strictly A1-invariant sheaves.

Example 2.24. If M denotes an abelian group, by [53, Ex. 3.2.4] we know that, regarding M
as a constant Nisnevich sheaf,

H i
Nis(X,M) =

{
M(X), if i = 0,

0, otherwise,

holds. Since M(X) are the continuous maps from X into the discrete topological space M , we
see that M is strictly A1-invariant. An instance of this we use in abundance is Z.

Example 2.25. In [77, Thm. 5.6] Voevodsky has shown that any homotopy invariant pretheory
with transfers, over S = Spec(k), for k being a perfect field, is strictly A1-invariant. This
specializes to the fact that any Nisnevich sheaf with transfers is strictly A1-invariant.

Below we give more involved examples of strictly A1-invariant sheaves, but before we proceed
to those, let us sketch the reason for our interest in them. We start with the following lemma:

Lemma 2.26. Denote by Sm′
S ⊆ SmS a small equivalent subcategory. The set{

Z[U ]
∣∣ U ∈ Sm′

S

}
15



2 A1-Algebraic Topology

is a set of generators for the triangulated category D(S), i.e. an object C∗ ∈ D(S) is zero if and
only if

HomD(S)(Z[U ], C∗[n]) = 0,

for all n ∈ Z and U ∈ Sm′
S.

Proof. Suppose we have C∗ ∈ D(S) such that there is no nontrivial morphism from any Z[U ]
into any shift of C∗. We may replace C∗ by Exab(C∗), since they are related by an acyclic
cofibration. Thus we have

0 = HomD(S)(Z[U ], C∗[n]) = HomK(S)(Z[U ], C∗[n]) = H−n(C∗(U)), ∀U ∈ Sm′
S , n ∈ Z.

This means that the complex C∗(U) is exact. Since the points on the topos ShNis(SmS) are
given by filtered colimits over objects of Sm′

S , we obtain Hn(C∗) = 0, for all n ∈ Z. Thus C∗ is
exact.

Conversely, assume that C∗ is an exact complex, and we are given U ∈ Sm′
S and n ∈ Z

arbitrarily. Again we may assume that C∗ is fibrant. By [30, Prop. 2.12] we know that C∗
consists of injective sheaves, and is exact. Now set N := dim(U). N is finite by our assumptions
on S, and thus we may consider the following truncation of C∗:

0→ CN−n+2/ ker(dN−n+2)→ CN−n+1 → . . . .

We think of this as an injective resolution of the sheaf CN−n+2/ ker(dN−n+2). By the vanishing
theorem for Nisnevich cohomology, we see that

HomD(S)(Z[U ], C∗[n]) = H−n(C∗(U)) = HN+1
Nis (U,CN−n+2/ ker(dN−n+2)) = 0.

This yields our claim.

Proposition 2.27. Let M be an abelian sheaf. The following are equivalent:

(i) M , considered as a complex concentrated in degree 0, is A1-local.

(ii) M is strictly A1-invariant.

Proof. (i) =⇒ (ii): For every U ∈ SmS , and n ∈ Z, we have in particular that the homomorphism

HomD(S)(Z[U ]⊗ Z[A1
S ],M [n])→ HomD(S)(Z[U ],M [n]),

is an isomorphism. Note that we have a natural isomorphism Z[U ]⊗ Z[A1
S ] ∼= Z[A1

U ]. Let us fix
an injective resolution of the sheaf M via

0→M → I0 → I−1 → . . . ,

which we equivalently regard as an acyclic cofibration M → I∗. By [30, Proposition 2.12.] I∗ is
a fibrant complex. Thus we have the following natural chain of isomorphisms:

HomD(S)(Z[U ],M [n]) ∼= HomK(S)(Z[U ], I∗[n]) ∼= H−n(I∗(U)) = Hn
Nis(U,M).

By the above, we thus see that M is strictly A1-invariant.
(ii) =⇒ (i): Since Z[A1

S ] is a torsion-free sheaf, we have that ⊗Z[A1
S ] is exact. Thus we have

that the pair of adjoint functors

−⊗ Z[A1
S ] ⊣ HomSpcab

S
(Z[A1

S ],−)

16



2.1 The A1-Derived Category

forms a Quillen pair (see [29, Def. 8.5.2]). So they induce a pair of adjoint functors on D(S),
namely

−⊗L Z[A1
S ] ⊣ RHomSpcab

S
(Z[A1

S ],−).

Using this adjointness, the Yoneda lemma, and [29, Thm. 8.3.10], one sees that the condition
for M to be A1-local is equivalent to

h : RHomSpcab
S

(Z[A1
S ],M)→ RHomSpcab

S
(Z,M)

being an isomorphism in D(S). Equivalently, one may demand that the cone of h is zero. By
lemma 2.26 this is precisely the case if and only if

HomD(S)(Z[U ], cone(h)[n]) = 0, ∀ U ∈ SmS , n ∈ Z.

Since HomD(S)(Z[U ],−) is a homology functor, we see by using adjointness once more that this
is equivalent to

HomD(S)(Z[U ]⊗ Z[A1
S ],M [n])→ HomD(S)(Z[U ],M [n])

being an isomorphism. By the above, statement (i) follows.

2.1.4 A1-Connectivity and A1-Local t-Structure

In this section we are concerned with defining a t-structure on DA1(S) with nice geometric
properties. A helpful condition is the following, first given by Morel in the context of stable
A1-homotopy theory in [53].

Definition 2.28. We say that the abelian A1-connectivity property holds over S if and only if
for every C∗ ∈ D(S)≥0 we have that Lab

A1(C∗) also lies in D(S)≥0.

Morel has shown that the abelian A1-connectivity property holds for S being the spectrum
of a field (cf. [53, Rem. 8]). Since this is the case we are primarily interested in, we proceed to
discuss its consequences with respect to the above notions:

Lemma 2.29 ([53, Lem. 6.2.6]). Assume the abelian A1-connectivity holds over S, and let E∗
be an A1-local complex. Then the truncated complex τ≥0(E∗) is also A1-local.

Proof. We reproduce the proof here, because it is instructive: By functoriality we have a mor-
phism

Lab
A1(τ≥0(E∗)) −→ Lab

A1(E∗) ∼= E∗.

Since abelian A1-connectivity holds, we know that Lab
A1(τ≥0(E∗)) lies in D(S)≥0. Now, by right

adjointness of τ≥0 the above morphism induces a splitting of the unit of the localization functor
τ≥0(E∗)→ Lab

A1(τ≥0(E∗)). Since DA1-loc(S) is saturated, we win.

Lemma 2.30. Let C∗ be a complex, fix n, i ∈ Z, and let U ∈ SmS.

(a) As τ≥n is right adjoint to the inclusion of D(S)≥n, we have a natural morphism τ≥n(C∗)→
C∗. This morphism induces the homomorphism

HomD(S)(Z[U ][i], τ≥n(C∗)) −→ HomD(S)(Z[U ][i], C∗),

which is a monomorphism, whenever i+ 1 ≥ n, and an isomorphism, whenever i ≥ n.

17



2 A1-Algebraic Topology

(b) As τ≤n is left adjoint to the inclusion of D(S)≤n, we have a natural morphism C∗ →
τ≤n(C∗). This morphism induces the homomorphism

HomD(S)(Z[U ][i], C∗) −→ HomD(S)(Z[U ][i], τ≤n(C∗)),

which is an epimorphism, whenever n ≥ i+d, and an isomorphism, whenever n ≥ i+d+1,
where d := dim(U).

Proof. (a) The natural t-structure gives us the canonical triangle

τ≥n(C∗)→ C∗ → τ≤n−1(C∗)→ τ≥n(C∗)[1],

for every complex C∗ in D(S). Applying the homology functor HomD(S)(Z[U ],−) to this triangle,
we obtain an exact sequence

. . .→ HomD(S)(Z[U ][i], τ≤n−1(C∗)[−1])→ HomD(S)(Z[U ][i], τ≥n(C∗))→ . . .

. . .→ HomD(S)(Z[U ][i], C∗)→ . . .→ HomD(S)(Z[U ][i], τ≤n−1(C∗))→ . . .

Now the claim follows by axiom (t1).

(b) By the above triangle, we have to deduce the vanishing of the abelian groups

HomD(S)(Z[U ][i], τ≥n+1(C∗)) resp. HomD(S)(Z[U ][i− 1], τ≥n+1(C∗)).

In order to handle both cases at once, we set j = i resp. j = i− 1, and assume correspondingly
the inequality n ≥ j + d + 1. Let τ≥n+1(C∗) → I∗ be an acyclic cofibration, and I∗ a fibrant
complex. By [30, Prop. 2.12] we know that the complex I∗ consists of injective objects. Since
τ≥n+1(C∗) has no homology in degrees ≤ n, we see that for F := im(In+1 → In) we have the
exact sequence

0→ F → In → In−1 → . . . ,

which we regard as an injective resolution of F . Coming back to the sets of morphisms in
question, we have

HomD(S)(Z[U ][j], τ≥n+1(C∗)) = HomK(S)(Z[U ][j], I∗) ∼= HomK(S)(Z[U ], I∗[−j]) = Hj(I∗(U)).

As we always have n − j ≥ d + 1 > 0, Hj(I∗(U)) = Hn−j
Nis (U,F) follows, which is zero by the

vanishing theorem for Nisnevich cohomology. This yields the claim.

Theorem 2.31 ([53, Thm. 6.2.7]). Assume the abelian A1-connectivity holds over S, and let E∗
be a complex. The following are equivalent:

(i) E∗ is A1-local.

(ii) τ≥n(E∗) is A1-local, for all n ∈ Z.

(iii) The sheaves Hn(E∗) are strictly A1-invariant, for all n ∈ Z.

Proof. (i) =⇒ (ii): Consequence of Lemma 2.29. (ii) =⇒ (iii): From the diagram

. . . En+1 im(dn+1) 0 . . .

. . . En+1 ker(dn) 0 . . .

. . . 0 Hn(E∗) 0 . . . ,

dn+2 dn+1

id
dn+2 dn+1

18
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we obtain a short exact sequence 0 → F∗ ↪→ τ≥n(E∗) ↠ Hn(E∗)[n] → 0, which in turn induces
a triangle

τ≥n+1(E∗)→ τ≥n(E∗)→ Hn(E∗)[n]→ τ≥n+1(E∗)[1], (2.2)

since τ≥n+1(E∗) is quasi-isomorphic to F∗. Thus we see that the sheaves Hn(E∗) are A1-local.
By the characterization of A1-local sheaves in proposition 2.27, we see that Hn(E∗) is strictly
A1-invariant.

(iii) =⇒ (i): By (2.2) and the symmetric triangle

Hn(E∗)[n]→ τ≤n(E∗)→ τ≤n−1(E∗)→ Hn(E∗)[n+ 1],

we obtain by induction that for any choice m ≥ n in Z we have that

τ≥n(τ≤m(E∗)) and τ≤m(τ≥n(E∗))

are A1-local. By what we have used in the proof of proposition 2.27 to show that E∗ is A1-local,
it suffices to check that

HomD(S)(Z[A1
U ][i], E∗) −→ HomD(S)(Z[U ][i], E∗)

is an isomorphism for all U ∈ SmS and i ∈ Z. Now (i) follows with lemma 2.30. Indeed, by first
choosing n small enough, we see that τ≤m(E∗) is A1-local for all m ∈ Z. By part (b) of lemma
2.30, and choosing m large enough, we obtain from this that E∗ is A1-local.

The above theorem presents another justification for our attention to strictly A1-invariant
sheaves. The main consequence of the above is the possibility to introduce the following inter-
esting t-structure:

Definition 2.32. Assume that S has the abelian A1-connectivity property. For any complex
C∗ ∈ D(S) and integer n ∈ Z we define

HA1
n (C∗) := Hn(Lab

A1(C∗)) ∈ AbA1
Nis(SmS).

We also define the following strictly full subcategories of DA1(S):

DA1(S)≥0 :=
{
C∗ ∈ DA1(S)

∣∣∣ HA1
n (C∗) = 0, ∀n < 0

}
and

DA1(S)≤0 :=
{
C∗ ∈ DA1(S)

∣∣∣ HA1
n (C∗) = 0, ∀n > 0

}
.

(Note that the above is well-defined, since A1-quasi-isomorphic complexes have quasi-isomorphic
A1-localizations.)

The following can be derived from the properties of the natural t-structure:

Lemma 2.33 ([53, Lem. 6.2.11]). Assume that S satisfies the abelian A1-connectivity property.
Then (DA1(S)≥0,D(S)A1(S)≤0) defines a t-structure on DA1(S), which we call the homology
t-structure. Moreover, the abelian A1-localization functor Lab

A1 induces a functor

DA1(S)→ DA1-loc(S) ⊆ D(S)

that respects the corresponding t-structures (and is moreover exact).

The homology t-structure is not the only available t-structure on DA1(S). It is even possible to
define a t-structure without the abelian A1-connectivity property present (cf. [53, Rem. 6.2.12]),
however there is no obvious way to relate them to the natural t-structure on D(S). The existence
of the homology t-structure, implies in the same way as lemma 2.13:
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2 A1-Algebraic Topology

Lemma 2.34. Assume that S has the abelian A1-connectivity property. Let M be a strictly
A1-invariant sheaf. Then we have a natural (in both entries) isomorphism

HomAbA1
Nis(SmS)(H

A1
0 (C∗),M)

∼=−−→ HomDA1 (S)(C∗,M [0]),

for every complex C∗ ∈ DA1(S).

Recall that this states that strictly A1-invariant sheaves behave like discrete spaces in DA1(S).

2.35. Finally we analyse the heart of the homology t-structure, in the case that S has the abelian
A1-connectivity property. Recall from above that H0 and the inclusion (−)[0] : AbNis(SmS) ↪→
D(S), induce an equivalence of categories between D(S)♡ and AbNis(SmS). This readily implies
that

HA1
0 : DA1(S)→ AbA1

Nis(SmS) and (−)[0] : AbA1
Nis(SmS) ↪→ DA1(S)

induce an equivalence of categories between DA1(S)♡ and AbA1
Nis(SmS). Elaborating on that, we

even have the commutative diagram (up to natural isomorphism)

DA1(S)♡ D(S)♡

AbA1
Nis(SmS) AbNis(SmS),

HA1
0

∼=

Lab
A1

H0∼=

where the lower horizontal functor is the canonical inclusion, and where we took the liberty
of denoting the induced functors by the inducing functors. Now, since HA1

0 and H0 are exact
by virtue of [7, Thm. 1.3.6], and Lab

A1 is exact as well, we see that the inclusion AbA1
Nis(SmS) ⊆

AbNis(SmS) is exact as an inclusion of abelian categories.

Corollary 2.36. Assuming the abelian A1-connectivity property on S, kernels and cokernels
of morphisms between strictly A1-invariant sheaves, calculated in the category AbNis(SmS), are
strictly A1-invariant.

Applying lemma 2.34 in the case of C∗ being N [0], for N an abelian sheaf, we obtain the
following useful adjunction

HomAbA1
Nis(SmS)(H

A1
0 (N [0]),M)

∼=−−→ HomAbNis(SmS)(N,M),

which identifies HA1
0 (N [0]) as a universal strictly A1-invariant sheaf mapping into the strictly

A1-invariant sheaf M , given N .

2.1.5 Base Change

In this section we consider the base change of the above constructions along a fixed morphism
f : S′ → S between noetherian and finite dimensional schemes S and S′. On a first reading one
may skip this part, as its statements will mainly shine in the computation of HA1

0 (BétSn). Our
main reference is [53, 5.1]. Pulling back induces the following canonical functor on our geometric
categories:

f× : SmS → SmS′

X 7→ X ×S S′.
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2.1 The A1-Derived Category

We extend this to the category of abelian sheaves by pre-composing:

f∗ : AbNis(SmS′)→ AbNis(SmS)
F 7→ F ◦ f×.

The existence of a left adjoint f∗ : AbNis(SmS)→ AbNis(SmS′) to f∗ is a formal consequence of
constructing a left adjoint for presheaves via [38, Thm. 2.3.3], using that Ab is cocomplete, and
then sheafifying. This pair of adjoint functors f∗ and f∗ is also additive, which allows us to
extend them to complexes degreewise:(

f∗ : Spcab
S → Spcab

S′

(Cn, dn)n∈Z 7→ (f∗(Cn), f∗(dn))n∈Z

)
and

(
f∗ : Spcab

S′ → Spcab
S

(C ′
n, d

′
n)n∈Z 7→ (f∗(C ′

n), f∗(d′
n))n∈Z

)
.

We do not distinguish these extensions notationally, but note that they are again adjoint to one
another. We want to lift this adjointness relation to the homotopy categories D(S) and D(S′),
and even more so we want a comparison between the associated model category structures, for
which the notion of Quillen pairs (see [29, Def. 8.5.2]) is well suited. We record the following
obstruction to our endeavour, due to Hovey:

Proposition 2.37 ([30, Prop. 2.13]). Suppose F : A → B and G : B → A are functors between
Grothendieck abelian categories A and B that fulfil the adjointness F ⊣ G. Then (F,G) induces
a Quillen pair between the injective model categories on Comp(A) and Comp(B) if and only if
F is exact.

In the general case we consider right now, there is no obvious way to conclude that f∗ is
exact, so we specialize to the following case: Assume that f is smooth and of finite type. The
presheaf version of f∗ evaluates on a given X ′ ∈ SmS′ and presheaf F to a colimit running over
the opposite category of diagrams

X ′ X

S′ S.
f

With our assumption on f , we can see that the digram

X ′ X ′

S′ S
f

is final in the alluded category of diagrams. Thus we may conclude that f∗ is explicitly given
by: (

f∗ : AbNis(SmS) → AbNis(SmS′)
F 7→ F ◦ f̃

)
, where

(
f̃ : SmS′ → SmS

X ′ x′
−→ S′ 7→ f ◦ x′

)
.

Indeed, if F is an abelian sheaf on SmS , one may check that F◦f̃ fulfils again the sheaf condition,
and so the above identification follows.

Now we can repeat the technique from above: By left Kan extending any abelian sheaf on
SmS′ along f̃ , and then sheafifying, we obtain a left adjoint f♯ to f∗. So f∗ preserves limits and
colimits, i.e. is exact.

Lemma 2.38. The functor f∗ : Spcab
S → Spcab

S′ admits a left adjoint denoted by

f♯ : Spcab
S′ → Spcab

S ,
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which satisfies the following projection formula for all C ′
∗ ∈ Spcab

S′ and X ∈ SmS

f♯(C ′
∗ ⊗ Z[X ×S S′]) ∼= f♯(C ′

∗)⊗ Z[X].

Consequently, by adjunction we have that

f∗(HomAbNis(SmS′ )(Z[X], C ′
∗))→ HomAbNis(SmS)(Z[X ×S S′], f∗(C ′

∗))

is an isomorphism.

Proof. As for the case of f∗ and f∗, f♯ is extended degreewise, and the claimed adjointness is
derived from the case of abelian sheaves. The statement about the projection formula follows
by employing the corresponding sheaf of sets version (cf. [53, Lem. 5.1.1]), and by using

Z[fSet
♯ (F)] ∼= f♯(Z[F ]),

for any F ∈ ShNis(SmS′), and fSet
♯ being the canonical functor ShNis(SmS′) → ShNis(SmS) left

adjoint to f∗ : ShNis(SmS)→ ShNis(SmS′).

Now one may adapt a proof of Morel (cf. [53, Lem. 5.1.2]) to obtain:

Lemma 2.39. Let f : S′ → S be a morphism between noetherian schemes of finite dimension
such that f is a filtered colimit of smooth and finite type S-schemes with affine transition mor-
phisms. Then f∗ is exact, and we have an isomorphism

f∗(HomAbNis(SmS′ )(Z[X], C ′
∗))→ HomAbNis(SmS)(Z[X ×S S′], f∗(C ′

∗)), (2.3)

for all C ′
∗ ∈ Spcab

S′ and X ∈ SmS.

The following appears in [53, Lem. 5.2.1] and [53, Lem. 5.2.3].

Theorem 2.40. Let f be as in lemma 2.39. Then (f∗, f∗) forms a Quillen pair between Spcab
S

and Spcab
S′ equipped with the injective model category structures. In particular we have a pair of

adjoint functors

Lf∗ : D(S)→ D(S′) and Rf∗ : D(S′)→ D(S).

Moreover, considering the A1-localized model category structures, we find that Rf∗ maps A1-local
to A1-local complexes, and thus (f∗, f∗) forms a Quillen pair for the A1-localized model category
structures, and we denote the associated derived functors by

LA1
f∗ : DA1(S)→ DA1(S′) and RA1

f∗ : DA1(S′)→ DA1(S).

Proof. The statement about the derived category follows, since f∗ is exact by proposition 2.37.
Now given an A1-local complex C ′

∗ ∈ D(S′), we want to check that Rf∗(C ′
∗) is A1-local. For

this we use formula (2.3) in the derived setting. Therefore we first note that, since Z[A1
S ] resp.

Z[A1
S′ ] is torsion-free, (−) ⊗ Z[A1

S ] resp. (−) ⊗ Z[A1
S′ ] is exact. Thus we have an associated

Quillen pair

(−)⊗ Z[A1
S ] ⊣ HomAbNis(SmS)(Z[A1

S ],−).

Recall that the construction of a total right derived functor of the right adjoint of a Quillen
pair is fairly simple: One plugs the fibrant replacement instead of the original object into the
functor (see [29, Lem. 8.5.9]). Since right Quillen functors preserve fibrations, we may use the
isomorphism (2.3) in the case

f∗(HomAbNis(SmS′ )(Z[X],Exab(C ′
∗)))→ HomAbNis(SmS)(Z[X ×S S′], f∗(Exab(C ′

∗)))
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which induces an isomorphism in D(S)

Rf∗(RHomAbNis(SmS′ )(Z[X], C ′
∗))→ RHomAbNis(SmS)(Z[X ×S S′],Rf∗(C ′

∗))

Now, checking that Rf∗(C ′
∗) is A1-local follows by a quick calculation using adjunction, which

we omit. In order to proof that (f∗, f∗) is a Quillen pair for the A1-model category structures,
it suffices to check that Lf∗ preserves A1-quasi-isomorphisms (cf. [29, Prop. 8.5.3]). So take an
A1-quasi-isomorphism φ : C∗ → D∗ in D(S). For any A1-local complex E′

∗ in D(S′) we can now
see by the derived adjunction that

HomD(S′)(Lf∗(D∗), E′
∗) HomD(S′)(Lf∗(C∗), E′

∗)

HomD(S)(D∗,Rf∗(E′
∗)) HomD(S)(C∗,Rf∗(E′

∗))

Hom(Lf∗(φ),E′
∗)

∼= ∼=
Hom(φ,Rf∗(E′

∗))
∼=

commutes. In particular Lf∗(φ) is an A1-quasi-isomorphism, and by the above we are done.

If one is more careful and employs an analogous theory to Morel’s Brown-Gersten spectra,
one can exploit the adjunction f♯ ⊣ f∗ to obtain another Quillen pair (cf. [53, Lem. 5.2.6]). We
only record the following consequence of this here, since it suits our needs:

Corollary 2.41 ([53, Ex. 6.2.5]). Let f : S′ → S be as in lemma 2.39, and let M be a strictly
A1-invariant sheaf, then f∗(M) is strictly A1-invariant.

2.2 Unstable A1-Homotopy Theory

In the previous section we introduced the abelian variant of unstable A1-homotopy theory, since
it stands in the main focus of our work. However, we will also want to compare it to its unstable
predecessor, especially as in this theory the classifying spaces that we want to work with are
defined. Other than in the abelian case, there is a definitive source, namely [54] due to Morel
and Voevodsky, and this is the reason why this section is kept brief. We start by introducing a
basic category, the simplex category.

Definition 2.42. Denote by ∆ the category with objects [n] := {0, . . . , n} the finite totally
ordered sets, and with morphisms the order preserving maps. For any category C we denote the
category of functors from ∆op into C by ∆opC . The objects of this latter category are called
the simplicial objects over C .

As a first example of the above definition, one may consider ∆opSet. We call the representable
object ∆n := h[n] of this category the n-simplex. Given any simplicial object C... ∈ ∆opC , we
will write Cn instead of C[n] for the simplices of rank n. More details about simplicial sets in
particular, and more generally simplicial objects, can be found in [44], or [24]. Coming back to
the task at hand, we will consider the following category of spaces:

SpcS := ∆opShNis(SmS).

2.43. Let us record some facts about the category of spaces:

(a) Since SpcS is a functor category over ShNis(SmS), it is complete and cocomplete, and the
limits and colimits are calculated degreewise.

(b) For every point x on a scheme X ∈ SmS , we may extend the functor x∗ to a functor
x∗ : SpcS → ∆opSet that still preserves colimits and finite limits.
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2 A1-Algebraic Topology

(c) We have two sorts of embeddings: Given a sheaf F , we may consider the constant simplicial
sheaf, i.e. the simplicial sheaf

[n] 7→ F and ([n]→ [m]) 7→ idF ,

which we abusively denote by F as well. Similarly, we may regard any simplicial set
S ∈ ∆opSet as a simplicial sheaf, by mapping every [n] to the constant sheaf with values
Sn.

(d) The product of spaces defines a closed symmetric monoidal structure. Hereby, the required
right adjoint is given by

HomSpcS
(X ,Y)n(X) := HomSpcS

(X × hX ×∆n,Y),

with X ,Y ∈ SpcS , n ∈ N, X ∈ SmS , and we regard hX and ∆n as spaces by (c).

(e) The category of spaces is enriched in the category of simplicial sets via:

MapSpcS
(X ,Y)n := HomSpcS

(X ×∆n,Y),

where X ,Y denote spaces, and n lies in N.

After this preliminary discussion, we move on to the homotopy theoretic notions, we need
in SpcS :

Definition 2.44. Let φ : X → Y be a morphism of simplicial sheaves; φ will be called

• a cofibration if and only if φ is a monomorphism,

• a (simplicial) weak equivalence if and only if x∗(φ) for every point x on a scheme X ∈ SmS

is a weak equivalence of simplicial sets, and

• a (simplicial) fibration if and only φ admits a dashed diagonal for every commutative solid
arrow diagram

A X

B Y,

ι φ

where ι is a trivial cofibration, by which we mean that ι is both a cofibration and a weak
equivalence. Of course we demand that the diagram with the diagonal is commutative, as
well.

We denote the class of cofibrations by C , the class of (simplicial) fibrations by Fs, and the class
of (simplicial) weak equivalences by Ws.

The following statement is the starting point of [54]:

Theorem 2.45. The category SpcS is a proper, cofibrantly generated, simplicial model category,
with the above choice of enrichment Map(−,−), and (Ws,C ,Fs).

Proof. Jardine showed in [36, Cor. 2.7] that the SpcS together with (Ws,C ,FS) form a model
category. As a corollary to his proof, one can observe that the model category structure is
cofibrantly generated (cf. in particular lemma 2.4 and p. 68 in [36]). The fact that SpcS is
indeed a simplicial model category was observed in [54, Rem. 2.1.9]. Finally in [37, Prop. 1.4] it
is shown that the category of simplicial presheaves is proper, however, by using sheafification,
one may show that this transfers to simplicial sheaves.
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2.2 Unstable A1-Homotopy Theory

We denote the simplicial homotopy category, i.e. the category that is the localization of SpcS
with respect to all simplicial weak equivalences Ws, by Hs(S).

As we noted before the category SpcS is complete and cocomplete. As such we have an initial
object, that we denote by ∅, and a terminal object, which is •. Standard terminology in model
categories declares spaces X , whose unique morphism from the initial object is a cofibration,
as cofibrant, and dually those as fibrant, whose unique morphism to the terminal objects is a
fibration. Hence we see that every space is cofibrant. By the model category structure we also
obtain a pair of functors C,F : SpcS → Arr(SpcS) such that every space X is sent to a trivial
cofibration C(X ) = X → Ex(X ) and a fibration F (X ) = Ex(X )→ • with

X → • = F (X ) ◦ C(X ).

In the following we consider the functors C,F as implicit, and will usually only be concerned
with the fibrant replacement functor Ex: SpcS → SpcS . Note that such a name makes sense,
since the space Ex(X ) is always fibrant, and the comparison morphism C(X ) is an isomorphism
in the homotopy category.

Examples of fibrant objects include the constant spaces coming from a sheaf F . Since this is
instructive, we check it here. Therefore let ι : A ↪→ B be a trivial cofibration, and let φ : A → F
be given. So the situation is:

A F

B •

φ

ι

We consider the sheaf πs0(A) that is associated to the presheaf U 7→ π0(A(U)). πs0 is a functor,
and there is a natural transformation idSpc → πs0, which is always an epimorphism. Since taking
stalks is exact, we see that πs0(ι) needs to be an isomorphism, due to ι being a weak equivalence.
Thus we may check that the following definition is well-defined

ψ0 : B0 −→ F
on U ∈ SmS : b 7−→ πs0(φ)(ã), with πs0(ι)−1([b]) = ã ∈ πs0(A)(U),

which follows from the fact that all face maps of F are the identity, and hence πs0(F) = F . For
n ∈ N+, we may set

ψn : Bn −→ F
on U ∈ SmS : b 7−→ ψ0(Bσ(b)), with any σ : [0]→ [n],

and the family (ψn)[n]∈∆op gives a simplicial morphism extending φ. Thus we have shown that
F → • lifts against every trivial cofibration, and thus must be a fibration. The following lemma
is an amplification of the above:

Lemma 2.46. Let X ∈ SpcS be a space, and F a sheaf. We define πs0(X ) as the sheaf associated
to the presheaf U 7→ π0(X (U)). Then we have the following adjunction

HomShNis(πs0(X ),F)
∼=−−→ HomHs(S)(X ,F).

Proof. We will freely use the notation of [54, 2.1.11–2.1.14]. In particular for X (cofibrant), and
Y fibrant, we denote by π(X ,Y) the set of homotopy classes of morphisms between them. From
the theory of model categories, this is in bijection with HomHs(S)(X ,Y). Moreover we have the
natural bijection

colim
X ′→X ∈πTriv/X

π(X ′,F) −→ HomHs(S)(X ,F),
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2 A1-Algebraic Topology

since F is locally fibrant. Hereby πTriv/X denotes the category of trivial local fibrations to X ,
i.e. those morphisms which become trivial fibrations of simplicial sets after applying the stalk
functors. So we actually want to prove

colim
X ′→X ∈πTriv/X

π(X ′,F) −→ HomShNis(SmS)(πs0(X ),F) (2.4)

is a natural bijection. Since F is fibrant, we know by [29, Prop. 9.5.24] that every homotopy
identifying two elements of HomSpcS

(X ′,F) in π(X ′,F), comes from a morphism of spaces
X ′ × ∆1 → F . However, since the face maps in F are the identity, it follows that every
such homotopy factors through the projection X ′ × ∆1 → πs0(X ′). Thus we have π(X ′,F) ∼=
HomShNis(SmS)(πs0(X ′),F), and the bijectivity of (2.4) follows from the fact that a trivial local
fibration induces an isomorphism on πs0. Naturality in F is trivial, and naturality with respect
to a morphism of spaces X → Y follows by replacing Y fibrantly, and arguing on homotopy
classes of morphisms.

We have seen adjunctions of the above type in two places already, namely in lemmas 2.13
and 2.34. So the above statement has to be seen in their context, in particular we may phrase it
as sheaves are discrete in the category of spaces. Note that in comparing the above statement to
lemma 2.13, we see that πs0 takes the role of the zeroth homology functor H0. One may extend
this correspondence even further and define higher simplicial homotopy sheaves by choosing
basepoints. However, since we have no need for the higher homotopies in this work, we leave it
at that remark.
We come to A1-localizing the category Hs(S). The following is parallel to definitions 2.16 and
2.18.

Definition 2.47. Let X be a space. X is called A1-local if and only if

HomHs(S)(Y × A1
S ,X )→ HomHs(S)(Y,X ),

induced by the inclusion of the zero section S ↪→ A1
S is a bijection for all spaces Y ∈ Spc. We

denote the full subcategory of Hs(S) that is spanned by the A1-local spaces by Hs,A1-loc(S).
Any morphism f : Y → Z such that HomHs(S)(f,X ) is a bijection for all X A1-local, is called
an A1-weak equivalence.

As we have already hinted at, the construction of the abelian A1-homotopy category is
modelled in parallel to the construction of the unstable A1-homotopy category. Since we gave
more details above, we rush through the most important statements:4

Theorem 2.48. There is a cofibrantly generated, proper model category structure on SpcS,
where the cofibrations are the monomorphisms, and the weak equivalences are the A1-weak equiv-
alences. Moreover, the A1-fibrant spaces are those spaces that are simultaneously A1-local and
simplicially fibrant. The A1-localization functor LA1 : Hs(S) → Hs,A1-loc(S) induces an equiva-
lence of categories between the A1-homotopy category HA1(S) and Hs,A1-loc(S). The correspond-
ing natural transformation θ : idHs(S) → LA1 induces an epimorphism on πs0.

Let us add more context to the last statement of the theorem: Recall that with the introduc-
tion of the abelian A1-localization functor we defined A1-homology functors out of the ordinary
homology functors. A similar definition is possible in the unstable case: Let X be a space, then
we define the A1-path components by

πA
1

0 (X ) := πs0(LA1(X )).

With this definition the above statement implies the following unstable A1-connectivity property:

Corollary 2.49. Any simplicially connected space (= trivial πs0), is A1-connected (= trivial
πA

1
0 ).

4For reference, see theorem 2.3.2 and corollary 2.3.22 in [54].
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2.2 Unstable A1-Homotopy Theory

Base Change

In [54] Morel and Voevodsky introduce the simplicial homotopy category and its A1-counter-
part in much more generality. In particular, they provide a proof that their constructions are
valid not only over the Nisnevich topology, but also over the étale topology. Considering the
continuous morphism of sites α : (SmS)ét → (SmS)Nis, together with its left and right adjoints

α∗ : ShNis(SmS)→ Shét(SmS) and α∗ : Shét(SmS)→ ShNis(SmS),

one obtains the following result:

Proposition 2.50 ([54, Prop. 2.1.47]). The pair (α∗, α∗) is a Quillen pair for the simplicial
model category structures on SpcS,ét and SpcS.

Proof. This follows from the fact that α∗ is the étale sheafification, and thus exact.

The following proposition is again parallel to the abelian case.

Proposition 2.51 ([54, Prop. 3.2.8]). For any morphism f : S′ → S between noetherian schemes
of finite dimension, we have a pair of adjoint functors on the associated A1-homotopy categories

LA1
f∗ : HA1(S)→ HA1(S′) and RA1

f∗ : HA1(S′)→ HA1(S).

2.2.1 Example: Classifying Spaces

In this subsection we define principal homogeneous bundles in the category of spaces with respect
to sheaves of groups. We recall a construction due to Morel and Voevodsky that yields a space
such that homotopy classes of morphisms into that space classify torsors. This situation is
analogous to the classifying spaces of algebraic topology. We quote from [54, Section 4].

Let us fix a group object G in the category of Nisnevich sheaves ShNis(SmS). As before we
regard G a constant space. A (right) action of G on a space X is a morphism ν : X × G → X
such that the diagrams

X ×G×G X ×G

X ×G X

ν×idG

idX ×µ

ν

ν

and
X × • X ×G

X ,

idX ×e

prX

∼= ν

are commuting, where µ : G×G→ G, and e : • → G are part of the group structure. The action
ν is called free if and only if the diagonal of the action

X ×G→ X ×X
on U ∈ SmS : (x, g) 7→ (ν(x, g), x)

is a monomorphism. On the other hand, we call an action ν trivial if and only if ν = prX . If we
consider two spaces X1,X2 with corresponding G-actions ν1, ν2, and a morphism φ : X1 → X2,
we call φ G-equivariant if and only if

X1 ×G X2 ×G

X1 X2

φ×idG

ν1 ν2

φ

is commuting. We denote by SpcGS the category of G-spaces, with objects the spaces, equipped
with a (right) G-action, and morphisms the G-equivariant morphisms. Note that equipping a
space with the trivial G-action yields a faithful embedding SpcS → SpcGS .
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2 A1-Algebraic Topology

The orbit space X/G of a G-action ν on a space X is defined as the coequaliser of ν and the
trivial action, i.e. the following diagram is exact:

X ×G X X/G.
ν

prX

ρ

With the notation introduced above, we see that ρ is a G-equivariant morphism with trivial
G-action on X/G, and ρ is even the universal one with that property, i.e. we obtain a natural
isomorphism

HomSpcS
(X/G,Y) ∼= HomSpcG

S
(X ,Y),

for every space Y from it. We also note another adjunction, which comes from the existence of
the internal Hom on spaces: Using the standard isomorphism

HomSpcS
(G,HomSpcS

(G,X )) ∼= HomSpcS
(G×G,X ),

and adjunction, one sees that µ induces a G-action

HomSpcS
(G,X )×G→ HomSpcS

(G,X )

on HomSpcS
(G,X ). For this wreath product, we have the following adjunction relation involving

the forgetful functor:

HomSpcS
(X ,Y) ∼= HomSpcG

S
(X ,HomSpcS

(G,Y)),

where X is a G-space, and Y is any space.

Definition 2.52. Let G be a sheaf of groups in the Nisnevich topology on SmS , and let X
be a space. A G-torsor5 is a free G-space Y over the trivial G-space X such that the induced
morphism Y/G→ X is an isomorphism. We denote the set of isomorphism classes of G-torsors
over X by P(X , G).

We remark that the set P(X , G) is canonically pointed: Indeed, consider the space X × G,
equipped with the G-action induced by right multiplication on the G-entry. This action is
obviously free, and has orbit space X . The next lemma also follows by standard calculation.

Lemma 2.53. Let G be a sheaf of groups in the Nisnevich topology, and let φ : X ′ → X be
a morphism of spaces. For every G-torsor Y ξ−→ X , the pullback X ′ ×X Y admits a canonical
structure of a G-bundle over X ′. This makes P(−, G) a contravariant functor from the category
of spaces to Set•.

Remark 2.54. Recall from [47, Prop. III.4.6] that, for U ∈ SmS , the elements in P(U,G) are
in one-to-one correspondence with the C̆ech cohomology classes, with respect to the Nisnevich
topology. As those coincide with the cohomology classes, whenever G is commutative (cf. [47,
Cor. III.2.10]), we will write H1

Nis(U,G) instead of Ȟ1
Nis(U,G) and P(U,G).

Note that aside from that discussion, one could also ask, in case G is representable, whether
all G-torsors must be representable, too. In that generality this question is quite hard, but there
are some known conditions of interest to us, for example, if G is a smooth linear algebraic group,
all étale G-torsors will be represented by smooth and affine S-schemes (cf. [47, Rem. III.4.8]).

We will now define a canonical G-torsor, which will classify all other G-torsors. Therefore
we introduce first, a canonical covering space E(F) with respect to any sheaf of sets F . Let us

5Equivalent names: Principal G-bundle, G-bundle.
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2.2 Unstable A1-Homotopy Theory

set E(F)n to the sheaf Fn+1, and equip the family (E(F)n)n∈N with a simplicial structure by
defining

E(F)n −→ E(F)m
on U ∈ SmS : (f0, . . . , fn) 7−→ (fϑ(0), . . . , fϑ(m))

for some order-preserving map [m] ϑ−→ [n]. We run through some trivial properties of the functor
E(−):

(a) Given sheaves F ,G, we have a canonical isomorphism E(F × G) ∼= E(F)× E(G).

(b) If G is a sheaf of groups, then E(G) is a group object in the category of spaces, where
the multiplication is defined entry-wise. There is a free (right) G-action on E(G), which
is defined entry-wise, as well.

(c) For any space X ∈ SpcS we have the adjointness relation

HomSpcS
(X ,E(F)) ∼= HomShNis(SmS)(X0,F).

(d) E(G) is contractible, for G any sheaf of groups, or even more generally a sheaf of pointed
sets.

Next we define the classifying space B(G). Therefore recall first the definition of the nerve B(C)
of a small category C : For any n ∈ N, regard the partially ordered finite set [n] as a category.
Then let B(C)n be the set of all functors [n] → C , and the face and degeneracy maps shall be
given by precomposition. Now viewing any group G(U) as a category with one object, whose
morphisms are given by G(U), and where composition of morphisms is defined by the group law,
we obtain a simplicial set B(G(U)). Since for any n ∈ N one essentially has B(G(U))n ∼= G(U)n,
we see that U 7→ B(G(U)) defines a space B(G). Let us call B(G) the classifying space of G.

There is a morphism of spaces πG : E(G)→ B(G) given by

on U ∈ SmS , n ∈ N : (g0, . . . , gn) 7−→ (g0g
−1
1 , g1g

−1
2 , . . . , gn−1g

−1
n ),

where we identify the latter n-tuple with the canonical functor [n] → G(U) that sends each
i ∈ [n] to the canonical object, and each i ≤ j in [n] to

j−1∏
t=i

(gtg−1
t+1) = gig

−1
j .

It is clear that πG is G-equivariant, when we equip E(G) with the standard G-action by entrywise
multiplication from the right, and B(G) with the trivial G-action. One may check that πG
induces an isomorphism E(G)/G ∼= B(G). We call the resulting G-torsor πG : E(G)→ B(G) the
universal G-torosr over B(G). The following result by Morel and Voevodsky justifies this name:

Proposition 2.55 ([54, Prop. 4.1.15]). Let G be a sheaf of groups, and X be a space. Then we
have a natural bijection

P(X , G)→ HomHs(S)(X ,BG).

In [54] the above result is formulated site-agnostic, i.e. it does not depend on the Nisnevich
topology. In particular, one could perform the above construction with respect to the étale
topology. If we set (see proposition 2.50)

Bét(G) := Rα∗Lα∗ B(G),

we obtain the following corollary:
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2 A1-Algebraic Topology

Corollary 2.56. Let G be a group object in ShNis(SmS), and let us denote by H1
ét(G) the

Nisnevich sheaf associated to U 7→ H1
ét(U,G). Then we have a natural bijection

πs0(BétG) ∼= H1
ét(G).

Note that the corresponding statement for B(G) yields πs0(BG) = •, since G-torsors in the
Nisnevich topology are Nisnevich-locally trivial.

2.3 The A1-Dold-Kan Correspondence

In this section we want to relate the A1-derived category to the unstable A1-homotopy category
via an adjunction. We extend this from the usual Dold-Kan-correspondence, therefore let us be-
gin by recalling what is known: We have a functor N : ∆opAbNis(SmS)→ Comp≥0(AbNis(SmS))
that sends a simplicial abelian group A to the non-negative chain complex, with sheaf

N(A)n :=
n−1⋂
i=0

ker(dA
i ) ⊆ An,

in degree n ∈ N, and 0 in negative degrees, with the differential set to the restriction of (−1)ndA
n ,

where we denoted the face homomorphisms by dA
i : An → An−1 for n ∈ N+ and i ∈ {0, . . . , n}.

Note that hereby N(A)0 := A0. N is called the normalized chain complex functor (cf. [24, Sec.
III.2]), and is quasi-inverse to the Eilenberg-MacLane space functor

K≥0 : Comp≥0(AbNis(Smk))→ ∆opAbNis(Smk),

whose definition we will not recall here (see e.g. [24, p. 149]). We have to make two modifications
to the above equivalence, that will eventually lead us to considering an adjunction rather than
an equivalence.

First, we replace simplicial abelian sheaves, by spaces, and in order to do that, we use the
free sheaf functor Z[−], which is left adjoint to the inclusion

∆opAbNis(SmS) ↪→ ∆opShNis(SmS),

that we will forget to write. Secondly, we need to consider unbounded chain complexes instead of
non-negative ones. In the derived category, we handled this sort of business with the truncation
functor τ≥0, and as a quick check shows, we may use the same formula to obtain an adjunction:

ι≥0 : Comp≥0(AbNis(SmS)) ⇄ Comp(AbNis(SmS)) : τ≥0.

By again omitting the canonical inclusion functor ι≥0, we thus get an adjunction

C : SpcS ⇄ Spcab
S : K,

with C := N ◦ Z[−], and K := K≥0 ◦ τ≥0.

Proposition 2.57. The pair of functors (C,K) is a Quillen pair for the choice of

(a) the injective model category structure on Spcab
S and the simplicial one on SpcS, and

(b) the A1-derived model category structure on Spcab
S and the A1-local structure on SpcS.

Proof. To show (a) it suffices by [29, Prop. 8.5.3] to show that C preserves monomorphisms, and
maps weak equivalences to quasi-isomorphisms. However, this is already true for N and Z[−]
individually by the classical case, see theorem III.2.5 and proposition III.2.16 in [24].
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2.3 The A1-Dold-Kan Correspondence

In order for (b) to hold true, it suffices to check that C sends A1-weak equivalences to A1-
quasi-isomorphisms. This in turn will follow at once by adjointness of LC and RK, as soon as
we check that RK preserves A1-local objects. Therefore, it suffices to remark that there is a
natural (in X ∈ SpcS) isomorphism

C(X × A1
S)∗ ∼= C(X )∗ ⊗ Z[A1

S ].

By the above reductions, the claim follows.

By means of the above proposition we established a way to obtain complexes from spaces,
namely by applying LC. To not make the notation more overbearing, and since it is usually
clear from the context whether we are dealing with complexes, or with spaces, we will omit the
functor LC. The next proposition will be used throughout chapter 4, as it helps us to determine
HA1

0 (BétG):

Proposition 2.58. Assume that S has the abelian A1-connectivity property, and let X be any
space. Then we have a natural isomorphism

HomAbA1
Nis(SmS)(H

A1
0 (X ),M) ∼= HomShNis(SmS)(πs0(X ),M),

where M is any strictly A1-invariant sheaf. In the case X = BétG, for some group object G in
ShNis(SmS), we have in particular the natural isomorphism

HomAbA1
Nis(SmS)(H

A1
0 (BétG),M) ∼= HomShNis(SmS)(H1

ét(G),M).

Proof. In this proposition we need to combine several of the above statements. Let us start with
the left-hand side:

HomAbA1
Nis(SmS)(H

A1
0 (X ),M)

2.34∼= HomDA1 (S)(LC(X ))∗,M [0]) ∼= . . .

. . .
2.27∼= HomD(S)(LC(X )∗,M [0]) ∼= . . .

. . .
2.57∼= HomHs(S)(X ,RK(M [0])),

where for the second bijection we have used that morphisms in DA1(S) into an A1-local object
agree with morphisms in D(S). Let us analyse RK(M [0]): By construction (recalled e.g. in [29,
Prop. 8.4.4]), we have that RK(M [0]) is given by the image in Hs(S) of K applied to a fibrant
replacement of M [0]. As a fibrant replacement of M [0], we may take an injective resolution I∗
of M starting in degree 0. The truncation τ≥0(I∗) is again M [0], and K≥0(M [0]) is the constant
simplicial sheaf M . So we are left with

HomHs(S)(X ,M)
2.46∼= HomShNis(SmS)(πs0(X ),M),

and the particular case follows with corollary 2.56.

Using the Yoneda lemma in the category AbA1
Nis(SmS), one reduces the task of determining

HA1
0 (BétG) to finding a strictly A1-invariant sheaf that corepresents H1

ét(G).
Remark 2.59. Consider a pointed space X , with pointing morphism • → X , which clearly is
a section to the unique morphism from X to the terminal object •. Thus, by applying the
functor C to this situation, we obtain a split monomorphism Z ↪→ C(X )∗. Applying moreover
the functor HA1

0 to this monomorphism, we obtain a split exact sequence

0→ Z ↪→ HA1
0 (X ) ↠ H̃A1

0 (X )→ 0.
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2 A1-Algebraic Topology

Bearing the situation of algebraic topology in mind, we call the quotient H̃A1
0 (X ) the reduced

(zeroth) A1-homology sheaf of X . Applying the functor HomAbA1
Nis(SmS)(−,M) to this split exact

sequence, and using proposition 2.58, we see that HomAbA1
Nis(SmS)(H̃

A1
0 (X ),M) is given by the

kernel of

HomShNis(SmS)(πs0(X ),M) −→M(S),

which is the evaluation at the basepoint. From this we deduce that there is a natural isomorphism

HomAbA1
Nis(SmS)(H̃

A1
0 (X ),M) ∼= HomSh•

Nis(SmS)(πs0(X ),M).

Note that B(G), and thus Bét(G), are canonically pointed, as B(G)0 = •, so that the above
applies.

2.3.1 The A1-Tensor Product

In this section we define a closed symmetric monoidal structure on the category AbA1
Nis(Smk).

We use the notation in [41, Ch. VII], and briefly recall the relevant parts of the definition.
Given any category C , a symmetric monoidal structure consists of the datum of a bifunctor

⊗ : C × C → C , a unit object 1 ∈ C , and four natural isomorphisms

αc1,c2,c3 : c1 ⊗ (c2 ⊗ c3) −→ (c1 ⊗ c2)⊗ c3,

λc : 1⊗ c −→ c,

ρc : c⊗ 1 −→ c, and
γc1,c2 : c1 ⊗ c2 −→ c2 ⊗ c1,

respectively called the associator, the left unitor, the right unitor, and the braiding. These are
then subject to a list of coherence axioms. The aim is to mimic the structure that comes with
a tensor product. The symmetric monoidal structure is moreover called closed, if there is an
internal hom-functor HomC (c,−) that is right adjoint to c ⊗ (−) for every object c ∈ C . We
will utilize the following lemma, to descend the closed symmetric monoidal structure given on
AbNis(Smk) by the tensor product down to AbA1

Nis(Smk):

Lemma 2.60. Let C be a closed symmetric monoidal category, and suppose ι : D ↪→ C is a full
subcategory. Assume moreover that ι admits a left-adjoint a : C → D, that the unit 1 lies in
the essential image of ι, and that there is a bifunctor HomD : D × D → D such that there is a
natural isomorphism

ι(HomD(d1, d2)) ∼= HomC (ι(d1), ι(d2)).

Then D is a closed symmetric monoidal category with tensor product given by

d1 ⊗D d2 := a (ι(d1)⊗ ι(d2)) .

Proof. Let us briefly demonstrate how to construct the necessary datum for a closed symmetric
monoidal structure on D: We begin by defining the braiding morphism γD

d1,d2
as a(γι(d1),ι(d2)).

Then we fix a lifting 1D ∈ D of the unit element 1 ∈ C , together with a witnessing isomorphism
φ : ι(1D)→ 1. The left resp. right unitor may then be defined via

λD
d : 1D ⊗D d = a(ι(1D)⊗ ι(d))

a(φ⊗idι(d))
−−−−−−−→ a(1⊗ ι(d))

a(λι(d))
−−−−−→ a(ι(d)) ϵd−→ d, resp.

ρD
d : d⊗D 1D = a(ι(d)⊗ ι(1D))

a(idι(d) ⊗φ)
−−−−−−−→ a(ι(d)⊗ 1)

a(ρι(d))
−−−−→ a(ι(d)) ϵd−→ d,
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2.3 The A1-Dold-Kan Correspondence

where ϵ : a ◦ ι→ idD is the counit of the adjunction a ⊣ ι, which is a natural isomorphism, as ι
is full and faithful. So, we come to the definition of the associator αD. Here we would like to
have

a(ι(d1)⊗ ι(a(ι(d2)⊗ ι(d3)))) a(ι(a(ι(d1)⊗ ι(d2))⊗ ι(d3))

a(ι(d1)⊗ (ι(d2)⊗ ι(d3))) a((ι(d1)⊗ ι(d2))⊗ ι(d3)),

αD
d1,d2,d3

a(idι(d1) ⊗ηι(d2)⊗ι(d3))

a(αι(d1),ι(d2),ι(d3))

a(ηι(d1)⊗ι(d2)⊗idι(d3))

and the obstruction therefore is to show that the vertical morphisms are isomorphisms. We
address this by deriving that

a(ι(d1)⊗ c)
a(idι(d1) ⊗ηc)
−−−−−−−−→ a(ι(d1)⊗ ι(a(c))) (2.5)

is a natural isomorphism for all d1 ∈ D and c ∈ C . Note first that by the adjunction a ⊣ ι and
Yoneda’s lemma, it suffices to check that there is a natural isomorphism

HomC (ι(d1)⊗ ι(a(c)), ι(d)) ∼= HomC (ι(d1)⊗ c, ι(d))

for all d ∈ D, induced by the unit ηc : c → ι(a(c)). Let us now fix a name ψ for the natural
isomorphism

ψd1,d2 : ι(HomD(d1, d2)) −→ HomC (ι(d1), ι(d2)),

then we obtain the following chain of natural isomorphisms

HomC (ι(d1)⊗ c, ι(d)) ∼= . . .

. . . ∼=HomC (c,HomC (ι(d1), ι(d))) ∼= . . . [ι(d1)⊗ (−) ⊣ HomC (ι(d1),−)]

. . . ∼=HomC (c, ι(HomD(d1, d))) ∼= . . .
[
HomC (c, ψ−1

d1,d
)
]

. . . ∼=HomD(a(c),HomD(d1, d)) ∼= . . . [a ⊣ ι]

. . . ∼=HomC (ι(a(c)), ι(HomD(d1, d))) ∼= . . . [ι fully faithful]

. . . ∼=HomC (ι(a(c)),HomC (ι(d1), ι(d))) ∼= . . . [HomC (ι(a(c)), ψd1,d)]

. . . ∼=HomC (ι(d1)⊗ ι(a(c)), ι(d)), [ι(d1)⊗ (−) ⊣ HomC (ι(d1),−)],

where we have given a reason on the right side in grey. It is an easy exercise to show that this is
the morphism induced by ηc, and that the coherence axioms hold. The functor HomD(d,−) can
then be shown to be a right adjoint to d⊗D (−). This concludes the proof of the lemma.

After this technical excursion, we only need to check that the lemma applies. Suppose that
the abelian A1-connectivity property holds for S. Above we have seen that AbA1

Nis(SmS) is an
exact and full subcategory of AbNis(SmS), and that HA1

0 may be regarded as a left adjoint
to the embedding functor (cf. lemma 2.34)6. The tensor product on AbNis(SmS) gives it a
structure of a closed symmetric monoidal category, and by the lemma it remains to check that
HomAbNis(SmS)(M,N) is a strictly A1-invariant sheaf, whenever M and N are themselves strictly
A1-invariant. In fact, we are going to prove the following:

Lemma 2.61. Assuming the abelian A1-connectivity property on S, then for all abelian sheaves
M , and strictly A1-invariant sheaves N , we find that HomAbNis(SmS)(M,N) is strictly A1-
invariant.

6With our convention HA1
0 is the composition H0 ◦ Lab

A1 on abelian sheaves and H0 ◦ Lab
A1 ◦ Z[−] on sheaves of

sets.
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Proof. Before we addressed the definedness of (−) ⊗L (−) and RHomSpcab
S

in the case of some
flat complex via the general theory of model categories. In the situation of the derived category
however, it is possible to define the derived tensor product and internal hom more generally. As
a convenience to the reader, we try to trace the construction by references to the stacks project
[73].

For any two complexes C∗, D∗ it is known that there exists a resolution by K-injective (cf.
[73, Tag 070H]) objects (cf. [73, Tag 079P]), and that the definition

RHomSpcab
S

(C∗, D∗) := HomD(S)(C∗, I∗),

is well-defined (cf. [73, Tag 0A95]), where D∗ → I∗ is a quasi-isomorphism, and I∗ is a K-
injective complex. Similarly, it is possible to define the derived tensor product as (see above [73,
Tag 06YU])

C∗ ⊗L D∗ := C∗ ⊗ J∗,

where J∗ → D∗ is a quasi-isomorphism, and J∗ is a K-flat complex (cf. [73, Tag 06YN]). For
any third complex E∗, we have the desired adjointness relation (cf. [73, Tag 08J9])

HomD(C∗,RHomSpcab
S

(D∗, E∗)) ∼= HomD(C∗ ⊗L D∗, E∗).

Since by [73, Tag 06YQ] the complex Z[A1
S ] is K-flat, we see that C∗ ⊗ Z[A1

S ] agrees with
C∗ ⊗L Z[A1

S ], and thus for any A1-local complex E∗ and any complex D∗ the internal hom
RHomSpcab

S
(D∗, E∗) is A1-local. Now by [73, Tag 0BKV] we know that

aNis
(
U 7→ H0(RΓ(U,RHomSpcab

S
(M [0], N [0])))

)
agrees with the sheaf homologyH0(RHomSpcab

S
(C∗, D∗)), and that by theorem 2.31 this is strictly

A1-invariant. For any U ∈ SmS , we have (cf. [73, Tag 08JA])

H0(RΓ(U,RHomSpcab
S

(M [0], N [0]))) = HomD(AbNis(SmS,U ))(M [0]↾U , N [0]↾U ),

and from lemma 2.13 we learn, that this agrees with HomAbNis(SmS,U )(M↾U , N↾U ), which is pre-
cisely HomAbNis(SmS)(M,N)(U). This completes the proof of the lemma.

2.62. As a consequence of the above two lemmas we note that that there is a closed symmetric
monoidal structure on the category of strictly A1-invariant sheaves, given by

M ⊗A1 N := H0(Lab
A1(M ⊗N)).

We bring this into relation with zeroth A1-homology:

Proposition 2.63. Assume that S has the abelian A1-connectivity property, and let F1 and F2
be sheaves of sets. Then there is a natural isomorphism of strictly A1-invariant sheaves

HA1
0 (F1 ×F2) ∼= HA1

0 (F1)⊗A1 HA1
0 (F2).

Proof. Starting with lemma 2.34, the property of the free abelian sheaf, and the fact that
ShNis(SmS) is cartesian closed, we obtain a natural isomorphism

HomAbA1
Nis(SmS)(H

A1
0 (F1 ×F2),M) ∼=HomShNis(SmS)(F1 ×F2,M) ∼= . . .

. . . ∼=HomShNis(SmS)(F1,HomShNis(SmS)(F2,M)),

for any strictly A1-invariant sheaf M . Furthermore, it is well-known that the abelian sheaves
HomShNis(SmS)(F2,M) and HomAbNis(SmS)(Z[F2],M) agree, with the latter one being strictly
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2.3 The A1-Dold-Kan Correspondence

A1-invariant by the above lemma. So, we may continue by using the adjunction of HA1
0 and

the inclusion of strictly A1-invariant sheaves in the abelian sheaves to see that this is naturally
isomorphic to

HomAbA1
Nis(SmS)(H

A1
0 (F1),HomAbNis(Z[F2],M)) ∼= . . .

. . . ∼=HomAbNis(SmS)(HA1
0 (F1),HomAbNis(SmS)(Z[F2],M)),

as this embedding is full and faithful. Using the closed symmetric monoidal structure on the
category of abelian sheaves, we find moreover that this is naturally isomorphic to

HomAbNis(SmS)(Z[F2],HomAbNis(SmS)(HA1
0 (F1),M)).

Now we may conclude with

HomAbA1
Nis(SmS)(H

A1
0 (F2),HomAbNis(SmS)(HA1

0 (F1),M)) ∼= . . .

. . . ∼=HomAbA1
Nis(SmS)(H

A1
0 (F1)⊗A1 HA1

0 (F2),M),

which comes from lemma 2.34, and the closed symmetric monoidal structure that was found
above.

Remark 2.64. Using reduced A1-homology we have an analogous statement for sheaves of pointed
sets F1 and F2, still assuming abelian A1-connectivity on the base scheme:

H̃A1
0 (F1 ∧ F2) ∼= H̃A1

0 (F1)⊗A1 H̃A1
0 (F2).
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3

Unramified Sheaves

This chapter is concerned with introducing the concept of unramified sheaves, which are a
special kind of sheaves subject to a rationality condition. Examples of unramified sheaves
include strictly A1-invariant sheaves, and our interest stems from the fact that these sheaves
may be defined on fields and discrete valuation rings only. But before we go into their definition,
their most important properties, and characterise morphisms between unramified sheaves, we
discuss extending sheaves to essentially smooth schemes. To that end we set our base scheme S
to be the spectrum of a field k, which transfers right away into our notation by changing SmS

to Smk.

3.1 Essentially Smooth Schemes

The sheaf category that sits at the core of the A1-model category structure is ShNis(Smk).
However, for most of our purposes the datum of a Nisnevich sheaf on Smk carries a lot of
overhead, which is why we would like to boil it down a bit. For example: Instead of working
with sections on an irreducible scheme X ∈ Smk we might want rational sections, i.e. sections
over its function field k(X). In order to achieve such a reduction, we replicate the construction
of the stalks, and form the colimit

colim
∅̸=U⊆X

F(U), (3.1)

which we call F̌(Spec(k(X))), or F̌(k(X)) for short. In formalizing this approach we first seek
to enlarge the category of values that we are allowed to plug into F . This is done via a (left)
Kan extension (cf. [38, Def. 2.3.1.(ii)]).

3.1.1 Definition and First Properties

Before concerning ourselves with the process of extending, we need to give some details about
the category C we intend to extend towards. By our motivating example (3.1), the category C
needs to contain Fk, i.e. the finitely generated (separable) extension fields of k. Moreover, we
would like to include at least the following relevant types of local rings on smooth schemes, i.e.
for some X ∈ Smk, and x ∈ X, we would like our category C to admit the spectra of the rings

OX,x := colim
x∈U⊆X

U open nbh.

OX(U), OhX,x = colim
U→X

U Nis. nbh. of x

OX(U) and OshX,x = colim
U→X

U ét. nbh. of x

OX(U),

where a superscript h resp. sh denotes the henselization resp. strict henselization of a local
ring. This motivates the following definition (recall that noetherianity of X transfers to the
localization resp. the henselizations [73, Tag 06LJ]):

37

https://stacks.math.columbia.edu/tag/06LJ


3 Unramified Sheaves

Definition 3.1. A noetherian scheme X over k is called essentially smooth if and only if there
is a small cofiltered category I, and a functor Y... : I → Smk, with Yi → Yj being affine and étale
for every i→ j in I, such that

X ∼= lim
i∈I

Yi

holds. Denote by EssSmk the full subcategory of the category of k-schemes, whose objects are
the essentially smooth schemes.

From the above presentations, it can be seen that Spec(OX,x), Spec(OhX,x), and Spec(OshX,x)
are examples of essentially smooth schemes (for X ∈ Smk, and x ∈ X).
Remark 3.2. The above notion of an essentially smooth scheme is far from being universal.
Depending on the use case, one may add or omit some hypotheses. Examples include:

• In [15, App. B] the noetherianity assumption is omitted.

• In [31, App. A] noetherianity is also dropped, and the transition morphisms are assumed
to be affine and dominant.

The above definition is aligned with the one Morel gives in [50], which is our source for developing
A1-algebraic topology.

Let us continue with a brief discussion of essentially smooth schemes:

Lemma 3.3. Let F/k be a field extension such that Spec(F ) → Spec(k) is essentially smooth,
and let X be an essentially smooth F -scheme. Then X may be regarded as an essentially smooth
k-scheme.

Proof. As X is noetherian, this follows from the general discussion in [15, Prop. B.4].

Example 3.4. Due to the noetherian hypothesis the base change of an essentially smooth
k-scheme X might not be essentially smooth, even if we base change through an essentially
smooth morphism. As an example, consider k = Q. The strict henselization of Q is its algebraic
closure Q, whose spectrum is essentially smooth over Q by the above. However, Q⊗Q Q is not
noetherian, e.g. by [75, Thm. 11], and the fact that Q is not finitely generated over Q.

If we restrict ourselves to finitely generated field extensions, stability under base change
holds:

Lemma 3.5. Let F/k be a finitely generated field extension, and let X be an essentially smooth
k-scheme. Then XF := X ×k Spec(F ) is an essentially smooth F -scheme.

Proof. By the discussion in [15, Prop. B.4] we only have to check that XF is noetherian. Since
X is quasi-compact, the same is true for XF , and by [73, Tag 038R] we see that XF is also
noetherian.

Proposition 3.6. Let X be an essentially smooth k-scheme. Then X is regular.

Proof. We need to check that for every x ∈ X, the noetherian local ring OX,x is regular. Let I be
a filtered category, and let X... : Iop → Smk a functor, whose transition morphisms fij : Xi → Xj

are affine and etale, for j → i in I, such that limi∈Iop Xi
∼= X. By [73, Tag 0032], we may assume

that I is a directed set, with order ≤. Denote the canonical projection morphisms X → Xi by
pri, for i ∈ I. Setting xi := pri, we have

OX,x ∼= colim
i∈I
OXi,xi . (3.2)
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3.1 Essentially Smooth Schemes

This follows from the way in which the limit X is constructed (cf. [73, Tag 01YX]): We may
choose any 0 ∈ I, and obtain limi∈(I≥0)op Xi

∼= X. So, for x ∈ X we may choose an affine open
neighbourhood U0 of x0 in X0, and fix the preimages Ui := f−1

i0 (U0), for i ≥ 0. Then by [73,
Tag 01YX] we have that pr−1

0 (U0) ∼= limi∈(I≥0)op Ui is an affine open neighbourhood of x. Now
(3.2) follows from

OX(pr−1
0 (U0)) ∼= colim

i∈I≥0
OXi(Ui),

which in turn is a consequence of [73, Tag 01YX]. We conclude with [72, Lem. 1.4], which states
that a noetherian, filtered colimit of regular local rings is again regular.

As an easy corollary of the above proposition, we may note that all essentially smooth k-
schemes are reduced and normal. The following proposition deals with the question, what kind
of extension fields of k are essentially smooth. To that end, we recall the following two notions
of separability:

Definition 3.7. Let F/k be a field extension.

(i) F/k is separably generated if and only if there is a transcendence basis Γ ⊆ F such that
F/k(Γ) is separably algebraic.

(ii) F/k is separable if and only if F ⊗k K is reduced, for all field extensions K/k.

We also remind the reader that any separably generated field extension F/k is separable (cf.
[43, Thm. 26.1]), but that the converse only holds in the case that F is finitely generated over
k ([43, Thm. 26.2]). A counterexample may be provided by the perfect closure F of Fp(t) over
k := Fp.

Proposition 3.8. Let F/k be an extension field of k. Spec(F ) lies in EssSmk if and only if F
is separably generated over k, and of finite transcendence degree.

Proof. Suppose first that F is separably generated over k, and of finite transcendence degree
over k. Thus, we can find algebraically independent transcendental variables t1, . . . , tn ∈ F , such
that F/k(t1, . . . , tn) is separably algebraic. As k(t1, . . . , tn) is the function field of the smooth
scheme Ank , we see that k(t1, . . . , tn) is essentially smooth over k. Moreover, since F/k(t1, . . . , tn)
is separable algebraic, we may write F as a filtered colimit of the finitely generated intermediary
fields of F/k(t1, . . . , tn). Now by lemma 3.3, we see that Spec(F ) is essentially smooth over k.

Conversely, assume that there is a filtered category I, and a functor X... : Iop → Smk such
that Spec(F ) ∼= limi∈Iop Xi. As in the proof of Proposition 3.6, we may assume that I is a
directed set with minimal element, and that all Xi are affine. Assume that Xi

∼= Spec(Ai),
where Ai is a smooth and finitely generated k-algebra. So we have

F ∼= colim
i∈I

Ai,

and let us denote the étale transition homomorphisms by φij : Ai → Aj , for i ≤ j, and the
canonical embeddings by ini : Ai → F , for every i ∈ I. The kernels pi := ker(ini) are prime
ideals, and as F is a field, we have induced embeddings

ini : κ(pi) −→ F.

One may check by hand that the induced homomorphism colimi∈I κ(pi)→ F is an isomorphism.
Since Ai → Aj is étale, for i→ j in I, we know by [73, Tag 00U4] that κ(pj)/κ(pi) is finite and
separable. Thus F/κ(p0) is separably algebraic. We may also deduce that F/k is separable (viz.
geometrically reduced): Indeed, let K/k be any field extension, then we have

F ⊗k K ∼= colim
i∈I

(Ai ⊗k K) ,
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3 Unramified Sheaves

and since smoothness is stable under base-change, the right-hand side is a filtered colimit of
reduced K-algebras, and thus reduced. Therefore F is separable. This implies in particular that
the intermediate extension κ(p0)/k is separable. Since κ(p0) is finitely generated over k, it is
also separably generated (cf. [43, Thm. 26.2]). So it follows that F/k is separably generated.
The statement about the transcendence degree follows, since κ(p0)/k has finite transcendence
degree, and F/κ(p0) is separably algebraic.

In the following we will often be concerned with essentially smooth discrete valuation rings,
i.e. with with a discrete valuation ring whose spectrum is essentially smooth. The fraction fields
of such rings are naturally also essentially smooth, however their residue fields might not be
essentially smooth, as one learns from the case of A := k[T ](T p−t), with k = Fp(t). In the case
of a perfect ground field k such an example cannot happen: Indeed, for k perfect, all extension
fields of k are separable (cf. [43, Thm. 26.3]), and thus, if they are finitely generated, they will
also be separably generated. As it will be sufficient to confine ourselves to the finitely generated
case, we make the following definition, with the case k being perfect in mind:

Definition 3.9. Denote by Fk the full subcategory of the category of all field extensions of k (so
that the morphisms are k-homomorphisms) which are finitely generated, and whose spectrum
appears in EssSmk.

We note in closing that the objects of Fk are exactly the function fields of irreducible smooth
k-schemes.

3.1.2 Extending to EssSmk

Let us consider a (pre-)sheaf F on Smk, i.e. a functor (Smk)op → Set. Denote by ι the functor
Smk → EssSmk that embeds smooth schemes into essentially smooth schemes, and which, by
definition, is full and faithful. A left Kan extension of F along ι is a functor F̌ : (EssSmk)op →
Set, together with a natural transformation η : F → F̌ ◦ ι, such that the following diagram
commutes:

EssSmop
k

Smop
k Set

F̌ι

F

η

Moreover, one demands the following universal property: For every functor G : (EssSmk)op →
Set, and natural transformation φ : F → G◦ι, one finds a unique natural transformation σ : F̌ →
G such that the diagram of functors

F̌ ◦ ι

F G ◦ ι

σ◦ιη

φ

commutes. One might express this more concisely by stating

HomPSh(EssSmk)(F̌ ,G) ∼= HomPSh(Smk)(F ,G ◦ ι),

or that ˇ(−) is left adjoiont to (−)◦ι, i.e. that extending is left-adjoint to restricting. In particular,
η is the unit of the adjunction ˇ(−) ⊣ (−)◦ι. By [38, Thm. 2.3.3.(i)], the existence of small colimits
in Set (cf. [38, Thm. 2.4.1]), and the fact that the category Smk is essentially small, we see that
for any F ∈ PSh(Smk) the extension F̌ exists and for X ∈ EssSmk is given by the formula

F̌(X) = colim
X→ι(Y )
Y ∈Smk

F(Y ).
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This agrees with our intuition (3.1). Indeed, let X be an essentially smooth k-scheme. We may
fix a cofiltered category I, and a functor X(−) : I → Smk, whose transition morphisms are affine
and étale. Thus we have a canonical comparison functor

λ : I −→ (X ↓ Smk)

i 7−→
(
X

pri−−→ Xi

)
,

where X ↓ Smk denotes the comma category of k-morphisms from X to smooth k-schemes. Any
Y ∈ Smk is finitely presented over Spec(k), and thus, by our assumptions on I and the functor
X(−), we have that

colim
i∈Iop

HomSmk
(Xi, Y )

∼=−−→ HomSchk
(lim
i∈I

Xi, Y ) = HomSchk
(X,Y )

is bijective (cf. [73, Tag 01ZC]). This, together with the fact that Iop is filtered, implies that λ
is cofinal (see [73, Tag 04E6]). Thus we have

F̌(X) = colim
i∈Iop

F(Xi),

agreeing with our intuition coming from (3.1).
Remark 3.10. Let G be a sheaf of abelian groups on Smk. By replacing the category Set with Ab
in the above, we may construct an essentially smooth extension Ǧ of G, with values in abelian
groups. Since the defining colimits may be chosen to be over filtered categories, this does not
differ from our first definition, and we only need to keep one symbol for the essentially smooth
extension.

Later on, the following mixed situation will also occur: Given a morphism φ : F → G
of sheaves of sets, we ought to determine the essentially smooth extension, by also keeping
the group structure in the codomain. This is possible, since there is always a natural map
(X ∈ EssSmk)

F̌(X) = colim
X→ι(Y )
Y ∈Smk

F(Y ) −→ colim
X→ι(Y )
Y ∈Smk

G(Y ) = Ǧ(X),

where the colimit on the left-hand side is taken in Set and the colimit on the right-hand side
is taken in Ab. Another view on that matter could be, that the forgetful functor Ab → Set
preserves and reflects filtered colimits, reducing this mixed case to the one where we consider
all sheaves as sheaves of sets.

3.1.3 Cocontinuity

In this subsection we discuss situations in which cofiltered limits are preserved by presheaves on
Smk resp. by their essentially smooth extensions. Therefore we first note:

Lemma 3.11. Let F be a presheaf of sets on Smk, let I be a filtered category, and X(−) : Iop →
Smk be a functor with affine transition morphisms such that its limit1 limi∈I Xi lies in Smk.
Then we have that the canonical map

colim
i∈I
F(Xi) −→ F

(
lim
i∈Iop

Xi

)
(3.3)

is bijective.
1The limit exists as a scheme by [73, Tag 01YX].
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3 Unramified Sheaves

Proof. As above we may assume that I is a directed set, and that the transition morphisms
are fij : Xi → Xj , for j ≤ i. Moreover, we fix the names X := limi∈Iop Xi for the limit, and
pri : X → Xi for the canonical projections. For every Y ∈ Smk we know by [73, Tag 01ZC] that

colim
i∈I

HomSmk
(Xi, Y ) −→ HomSmk

(X,Y ) (3.4)

[i, fi : Xi → Y ] 7−→ fi ◦ pri

is bijective. Let us apply (3.4) in the case Y = X: Since I is filtered, we can thus find some
i0 ∈ I such that for all i ≥ i0, there is a morphism fi : Xi → X with fi ◦ pri = idX . Applying
(3.4) once more in the case Y = Xi (for i ≥ i0), we find

pri ◦fi ◦ fj(i),i = fj(i),i (3.5)

for some j(i) ≥ i. Armed with this, we may check bijectivity of (3.3). Since all F(pri) admit a
section, for i ≥ i0, we see the surjectivity of (3.3). To check injectivity fix two elements [i1, σ1],
[i2, σ2], with σ1 ∈ F(Xi1) and σ2 ∈ F(Xi2), such that

F(pri1)(σ1) = F(pri2)(σ2)

holds. We may assume that i1, i2 are ≥ i0. Moreover, by (3.5) and the assumption that I is
directed, we may find some i3 ≥ i1, i2 such that

F(fi3,i1)(σ1) = F(fi1 ◦ fi3,i1)
(
F(pri1)(σ1)

)
= F(fi2 ◦ fi3,i2)

(
F(pri2)(σ2)

)
= F(fi3,i2)(σ2)

holds. Thus we have [i1, σ1] = [i2, σ2] in colimi∈I F(Xi).

We expect to generalize this result to the essentially smooth extension. Therefore we note
the following lemma about (left) Kan extensions, which we learned from John Bourke2:

Lemma 3.12. Let C , C̃ , and D be categories, with C being essentially small, and D cocomplete.
Let ι : C → C̃ and F : C → D be functors, and denote by Lanι(F ) the left Kan extension of F
along ι. Let C(−) : I → C̃ be a functor, whose colimit exists in C̃ . If for all C ∈ C the canonical
map

colim
i∈I

HomC̃ (ι(C), Ci) −→ HomC̃ (ι(C), colim
i∈I

Ci)

is a bijection, then the canonical morphism

colim
i∈I

Lanι(F )(Ci) −→ Lanι(F )
(

colim
i∈I

Ci

)
is an isomorphism in D.

Proof. Since C is essentially small, we have the following formula for the left Kan extension
using coends (cf. [41, Thm. X.4.1])

Lanι(F )(X) =
∫ C∈C

πF (C)
(
HomC̃(ι(C), X)

)
,

where the functor πD : Set → D is the copower functor with respect to some D ∈ D and S ∈ Set

πD(S) :=
⊔
S

D.

2See https://mathoverflow.net/questions/112137.
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For the copower functor, we have the following adjunction

HomD(πD(S), D′) ∼= HomSet(S,HomD(D,D′)), i.e. πD ⊣ HomD(D,−),

guaranteeing us that πD commutes with colimits for all D ∈ D. This fact, together with our
assumption, implies that the canonical morphism

colim
i∈I

πF (C′)
(
HomC̃ (ι(C), Ci)

)
−→ πF (C′)

(
HomC̃ (ι(C), colim

i∈I
Ci)
)

is an isomorphism in D, for all C,C ′ ∈ C . Now, consider the functor

G : Iop × I × Cop × C → D
(i1, i2, C, C ′) 7→ πF (C′)

(
HomC̃ (ι(C), Ci2)

)
.

[41, Prop. IX.5.3], together with Fubini’s theorem (cf. [41, Prop. IX.8]), imply:

colim
i∈I

∫ C∈C
πF (C) (HomC (ι(C), Ci)) =

∫ i∈I ∫ C∈C
G(i, i, C, C) = . . .

=
∫ C∈C ∫ i∈I

G(i, i, C, C) = . . .

=
∫ C∈C

colim
i∈I

πF (C)
(
HomC̃ (ι(C), Ci)

)
= . . .

=
∫ C∈C

πF (C)

(
HomC̃ (ι(C), colim

i∈I
Ci)
)
.

By using the formula for the left Kan extension this calculation yields the claim.

Corollary 3.13. Let F : Smk → Set be a presheaf, let I be a filtered category, and let X(−) : I →
EssSmk be a functor with affine transition morphisms, whose limit exists in EssSmk. Then we
know that the canonical map

colim
i∈I
F̌(Xi) −→ F̌

(
lim
i∈Iop

Xi

)
is bijective.

Proof. The statement follows from Lemma 3.12 and [73, Tag 01ZC].

The above gives a justification for restricting ourselves to finitely generated fields in the
definition of Fk, since any essentially smooth field may be written as a filtered colimit of its
finitely generated subfields. Moreover, on the category Fk itself colimits are not doing much.
Indeed, any functor from a filtered category into Fk such that its colimit lies again in Fk, needs
to be constant up to restriction to a cofinal subcategory.

3.2 Unramified Sheaves

In this section we introduce unramified sheaves, and discuss how to reduce the structure that is
needed to define one. Therefore passing to the essentially smooth extension will be crucial.

3.2.1 Definition and Examples

We start by defining unramifiedness for presheaves:

Definition 3.14. Let F be a presheaf (of sets, pointed sets, abelian groups, etc.) on Smk. F
is called unramified if and only if the following conditions are met:
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(0) Let X ∈ Smk be arbitrary, and denote by X1, . . . , Xn the distinct irreducible components
of X.3 The natural map

F(X) −→
n∏
i=1
F(Xi)

is bijective.

(1) Let X ∈ Smk be arbitrary, and U ⊆ X an open and dense subscheme. The restriction
map

F(X) ↪−→ F(U)

is injective.

(2) F is a sheaf with respect to the Zariski site on Smk, and for every X ∈ Smk and U ⊆ X
open, with X(1) ⊆ U , we have that the restriction map

F(X) −→ F(U)

is bijective.

If F only fulfils axioms (0) and (1), we call F weakly unramified.

Remark 3.15. The notion of unramified presheaves is due to Morel (cf. [50, Def. 2.1]), namely
let F be a weakly unramified presheaf in our sense, then F is unramified if and only if for all
irreducible X ∈ Smk, with function field F , the induced map

F(X)→
⋂

x∈X(1)

F̌(Spec(OX,x)) ⊆ F̌(Spec(F )) (2’)

is bijective. Morel notes in [50, Rem. 2.4] that this is equivalent to our definition, and a proof
of this fact may be found in [33, Lem. 4.15]. One motivation of this notion comes from initial
research in this direction by Colliot-Thélène and Sansuc (cf. [14, §6]).

We start by listing several easy

Examples 3.16. (a) Let Y be a separated k-scheme. The irreducible components X1, . . . , Xn

of a scheme X ∈ Smk are disjoint and open, and hence there is a canonical bijection

HomSchk

(
n⊔
i=1

Xi, Y

)
∼=

n∏
i=1

HomSchk
(Xi, Y ).

Moreover, for any dense U ⊆ X, and k-morphisms f, g : X → Y agreeing on U , we have that
f↾Xred = g↾Xred by [25, Cor. 9.9]. Since X is smooth, and thus reduced, one even finds f = g. So
we have shown that the presheaf

HomSchk
(−, Y ) : Smk → Set

is weakly unramified, for any separated k-scheme Y . We remark that HomSchk
(−, Y ) is even a

sheaf with respect to the Nisnevich site.
3As X is noetherian, there are only finitely many irreducible components. As X is moreover smooth, and thus

locally integral, the (Xi)1≤i≤n are pairwise disjoint. This implies that the Xi are also open.
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(b) Let Y = Spec(A) be an affine k-scheme. We claim that HomSchk
(−, Y ) is an unramified

presheaf. So let X ∈ Smk be a scheme, and let U ⊆ X be an open subset that contains all
points of codimension 1 in X. To check (2), we have to extend any k-morphism U → Y to a
k-morphism X → Y . Uniqueness of such an extension follows by the arguments in (a) above.
Since X is noetherian, and the codimension of X∖U in X is ≥ 2, we know, by the algebraic
Hartog’s theorem [25, Thm. 6.45], that the restriction homomorphism OX(X) → OX(U) is an
isomorphism. By the adjunction of the global section functor and the Spec-functor, we have:

HomSchk
(X,Y ) ∼= HomAlgk

(A,OX(X)) ∼= HomAlgk
(A,OX(U)) ∼= HomSchk

(U, Y ).

(c) Any finite limit of unramified presheaves will be a unramified. Note first that limits in the
presheaf category PSh(Smk) can be computed locally for each X ∈ Smk (and even so in the
sheaf category ShNis(Smk)). Using this and the fact that limits commute with each other (cf.
[38, Prop. 2.1.7]), gives (0) and (2). The commutativity of limits also helps with axiom (1),
since a map of sets S1

f−→ S2 is injective if and only if the diagram

S1 S1

S1 S2

idS1

idS1 f

f

is cartesian.

(d) In [50, Ex. 2.3] Morel remarks that Rost cycle modules and the sheaf associated to the Witt
presheaf X 7→W (X) is unramified, for k a perfect field.

The above examples all had in common that the underlying (weakly) unramified presheaf fulfilled
the sheaf condition. Since this situation will occur more often below we make the following

Definition 3.17. If F is a sheaf (of sets, pointed sets, abelian groups, etc.) on Smk with respect
to the Nisnevich site, and unramified as a presheaf, we say F is an unramified sheaf (of sets,
pointed sets, abelian groups, etc.).

Let us study the relation of unramified presheaves of pointed sets and the smash product in
the category of presheaves of pointed sets:

Lemma 3.18. Let F1, . . . ,Fn be unramified presheaves of pointed sets. Denote by F the presheaf
(X ∈ Smk)

X 7→ F1(X) ∧ · · · ∧ Fn(X).

Then aZar(F) is an unramified presheaf of pointed sets, and moreover we have

aZar(F)(X) =
n∏
i=1
F(Xi),

where X ∈ Smk and X1, . . . , Xn denote the distinct irreducible components of X.

Proof. Since major parts of this proof are rather trivial checks, we will only give a sketch. Firstly,
one starts out by verifying the moreover part of the lemma. And to do that, one proves first
that the presheaf G given by

X 7→
r∏
i=1
F(Xi),
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where the X1, . . . , Xr are the distinct irreducible components of X, is a Zariski sheaf. This will
follow from axioms (0), (1), and (2), which are available for all F1, . . . ,Fn. Next one notices
that there is a canonical morphism φ : F → G, sending a section σ ∈ F(X) to the product of
its restrictions to the irreducible components. Moreover, every other morphism F → H, for H
a Zariski sheaf, factors uniquely through φ. Thus aZar(F) has the particular form we claimed.
Since G is a Zariski sheaf axiom (0) follows. To check axiom (1) (resp. (2)) one may reduce
to the case of X ∈ Smk being irreducible, and U ⊆ X being a nonempty open subset (resp.
containing X(1)). Thus every restriction map Fj(X)→ Fj(U) is injective (resp. bijective), which
implies that F(X)→ F(U) is injective (resp. bijective), as well. This yields the claim.

Since we will need it later on, we note the following special case:

Corollary 3.19. If we have F1 = · · · = Fn = Gm, then, with the notation of lemma 3.18,
aZar(F) is an unramified sheaf of pointed sets.

Proof. Again, we will only sketch the arguments. Let X ∈ Smk be given, and suppose (fs : Us →
X)s∈S is a Nisnevich cover. We may assume, since for smooth schemes irreducible components
are open, that the Us are irreducible. Moreover, since fs is étale (thus open), and fs(Us) is
irreducible, we may also assume that X is irreducible. Now, since fs is open, hence dominant,
Gm is separated, and X is reduced, we have that

Gm(X)→ Gm(Us)

is injective, by [25, Cor. 9.9]. Thus F(X)→ F(Us) is injective, i.e. aZar(F) is a separated sheaf.
Suppose we are given sections σ(s)

1 ∧ · · · ∧σ
(s)
n ∈ F(Us) which are compatible with restricting

to the intersections Us ×X Ut on aZar(F). This means that

σ
(s)
1 ∧ · · · ∧ σ

(s)
n↾(Us×XUt)h

= σ
(t)
1 ∧ · · · ∧ σ

(t)
n↾(Us×XUt)h

holds, where h runs over all irreducible components of Us×X Ut, and s, t ∈ S. If σ(s)
1 ∧ · · · ∧ σ

(s)
n

is the basepoint for one s ∈ S, we may choose the basepoint as glued section. Conversely, if that
is not the case, we may use the injectivity of

Gm(Us)→ Gm ((Us ×X Ut)h) ,

and the sheaf property of Gm to obtain a glued section.

Note that, contrary to what is claimed in [50, Lem. 3.36], the presheaf

X 7−→
(
OX(X)×)∧n

is not a sheaf in the Zariski topology, and thus is not unramified. To see this one may look at
X = Spec(k × k). Here the canonical map OX(X)× ∧ OX(X)× →

∏2
i=1OXi(Xi)× ∧ OXi(Xi)×

is given by

(k × k)× ∧ (k × k)× −→ (k× ∧ k×)× (k× ∧ k×)
(λ1, µ1) ∧ (λ2, µ2) 7−→ (λ1 ∧ λ2, µ1 ∧ µ2),

which is not injective, since (λ, 1) ∧ (1, λ) is sent to the basepoint for λ ∈ k∖{0, 1}. This
violates axiom (0). However, since by the above, the Zariski sheafification of this presheaf is an
unramified sheaf of pointed sets, there is no real change to be made in [50, Sec. 3.3]. The spaces
G∧n
m are interesting to us, as they form one type of spheres in A1-algebraic topology.

From here onwards we will denote by F1 ∧ · · · ∧ Fn the Nisnevich sheaf associated to X 7→
F1(X) ∧ · · · ∧ Fn(X), for presheaves F1, . . . ,Fn on Smk.
The following proposition provides many examples, which become central to our analysis below.
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Proposition 3.20. Let G be a smooth algebraic group over k.

(a) If G has the strong Grothendieck-Serre property, i.e. if for any essentially smooth local
k-algebra A the map

H1
ét(Spec(A), G) −→ H1

ét(Spec(Frac(A)), G)

is injective, then H1
ét(G) is weakly unramified.4

(b) If G is reductive and satisfies purity for henselization, i.e. if for all X ∈ Smk and x ∈ X
the map

im
(
H1

ét(Y,G)→ H1
ét(Spec(k(Y )), G)

)
−→ . . .

· · · −→
⋂

y∈Y (1)

im
(
H1

ét(Spec(OY,y), G)→ H1
ét(Spec(k(Y )), G)

)
is surjective, where Y := Spec(OhX,x), then H1

ét(G) is unramified.

(c) If G is semi-simple and simply-connected, then H1
ét(G) is A1-invariant.

Proof. (a) Axiom (0) follows from the fact that every Nisnevich sheaf is also a Zariski sheaf,
and that the irreducible components in some X ∈ Smk are finite, disjoint and open. To address
axiom (1), we first reduce to the case of an irreducible X ∈ Smk and some nonempty open
U ⊆ X. Next, we would like to apply [17, Prop. 3.1] to the presheaf F : EssSmk → Set•, with
X 7→ H1

ét(X,G). To that end, one has to check that F sends cofiltered limits to filtered colimits,
which is a consequence of [42, Thm. 2.1], and use the strong Grothendieck-Serre property. We
thus obtain a commuting diagram

H1
ét(G)(X) H1

ét(G)(U)

H1
ét(Spec(K), G),

resX
U

in which the downward arrows are injective. Thus resXU is injective.

(b) This is [17, Lem. 4.7].

(c) This statement is an amplification of the result [17, Prop. 3.7] in characteristic 0 by Elmanto-
Kulkarni-Wendt, due to Balwe-Hogadi-Sawant [6, Thm. 3.9].

Remark 3.21. For all groups we consider in chapter 4, it is known that the strong Grothendieck-
Serre property holds: For the subgroups µℓ of Gm, with ℓ being prime to the characteristic, this
follows from a quick calculation using that regular (see proposition 3.6) local rings are integrally
closed. Similarly, one may handle the case of constant finite groups, of which we especially
consider the symmetric groups Sn, and the reader can find an explicit proof in Moser’s diploma
thesis (cf. [55, Satz 2.4.2]). The orthogonal and unitary groups posses the strong Grothendieck-
Serre property by theorems of Ojanguren and Panin (cf. 5.1 and 9.2 in [59]), and a standard
twisting argument.

Moreover, we may include all smooth reductive algebraic groups G in our considerations.
Indeed, as any essentially smooth local k-algebra is regular, we may use [19, Cor. 1] in the case
that k is infinite, and [60, Cor. 1.2] for k finite.

As an example for part (b) one may consider G2. Indeed, we already know that H1
ét(G2) is

weakly unramified, and adding to that the results of Panin and Pimenov (specifically [61, Rem.
3.2]), and Chernousov and Panin (cf. [11, Thm. 1]), we find that H1

ét(G2) is unramified, if the
ground field k is additionally infinite.

4This sheaf was defined in corollary 2.56.
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Lastly, we come to a more general kind of examples of unramified sheaves, namely strictly
A1-invariant sheaves. Their importance to us comes from the central proposition 2.58. Although
the statement is given in [50, Ex. 2.3], we recall part of its proof, to sketch in which way being
a strictly A1-invariant sheaf is a stronger property than being unramified.
Proposition 3.22. Let M be a strictly A1-invariant sheaf. Then M is unramified.
Proof. Axiom (0) follows, since any Nisnevich sheaf is also a Zariski sheaf, and the irreducible
components in a smooth k-scheme are disjoint and open. The axioms (1) and (2) can then be
deduced from the following lemma due to Morel.

Lemma ([53, Lem. 6.4.4]). Let U ⊆ X be an open subscheme of a smooth k-scheme X such
that the codimension of the closed complement X∖U in X is at least d. Then for any strictly
A1-invariant sheaf on Smk the morphism

Hn
Nis(X,M) −→ Hn

Nis(U,M)
is an isomorphism for n ≤ d− 2 and a monomorphism for n = d− 1.

3.2.2 Reconstructing Unramified Sheaves from dim ≤ 1-Data

In [50, Sec. 2.1] Morel introduced the notion of unramified presheaves as a technical device, since
they can be reconstructed by significantly less data, than one put in. Specifically, it is sufficient
to define unramified (pre-)sheaves on fields and discrete valuation rings. Since we will use this
to some extent, we provide some insight to how these reductions are derived.

As noted above, any F ∈ Fk may be realized as the function field of an irreducible smooth
scheme. For any such F ∈ Fk, a geometric discrete valuation ring will be a discrete valuation
ring A, which is isomorphic to OX,x for some irreducible X ∈ Smk and x ∈ X(1), with k(X) ∼= F .
If k were perfect, the residue field of such an A would lie again in Fk.
Proposition 3.23. Let F be an unramified sheaf. Then F gives rise to the following data:
(D1) A functor F̌ : Fk → Set;

(D2) for any geometric discrete valuation ring A, a subset F̌(A) ⊆ F̌(Frac(A)); and

(D3) for any geometric discrete valuation ring A, with separable (over k) residue field κ, a
specialization map

sA : F̌(A) −→ F̌(κ),

which fulfil the following properties:
(A1) Let ι : E → F be an extension in Fk, and let there be a geometric discrete valuation

ring B, with fraction field F , residue field λ, and valuation w, such that w restricts to a
valuation v on E, with geometric discrete valuation ring A, and residue field κ.5 Then
we have

F̌(ι)
(
F̌(A)

)
⊆ F̌(B).

If moreover F/E is separably algebraic, the ramification index of w/v is 1, and the ex-
tension of residue fields ι : κ→ λ is an isomorphism, then

F̌(A) F̌(B)

F̌(E) F̌(F )

F̌(ι)↾F̌(A)⋂ ⋂
F̌(ι)

(3.6)

is cartesian.
5This is the situation of (A1) in the following.
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(A2) Let X ∈ Smk be irreducible, and let f ∈ F̌(k(X)). Then f lies in all but finitely many
F̌(OX,x), for x ∈ X(1).

(A3) (i) In the situation of (A1) with κ and λ separable, we have the following commuting
diagram:

F̌(A) F̌(B)

F̌(κ) F̌(λ).

F̌(ι)↾F̌(A)

sA sB

F̌(ι)

(ii) In the situation of (A1), with the added assumptions that the valuation v is trivial
and λ is separable, we have an induced extension of residue fields ι : E → λ, and the
following diagram commutes:

F̌(E) F̌(B)

F̌(λ)

F̌(ι)

F̌(ι)

sB

Proof. (D1) As already suggested by the notation we set F̌ to be the restriction of the essentially
smooth extension of F , where we suppress the functor Spec.

(D2) Let F ∈ Fk be given, and let A := OX,x be a geometric discrete valuation ring on
F , with X ∈ Smk irreducible, and x ∈ X(1). From the construction of the essentially smooth
extension, we have a map

F̌(A) := colim
x∈U⊆X
U open

F(U) −→ colim
∅̸=U⊆X
U open

= F̌(F ).

Axiom (1) implies that this map is injective: Indeed, let [U1, f1], [U2, f2] be elements in F̌(A),
given by open neighbourhoods U1, U2 ⊆ X of x, and sections f1 ∈ F(U1) resp. f2 ∈ F(U2), such
that these agree in F̌(F ). Hence there is some ∅ ̸= V ⊆ U1 ∩ U2 open, such that

f1↾V = f2↾V

holds. This implies, since U1∩U2 is irreducible and F(U1∩U2)→ F(V ) injective, that f1↾U1∩U2 =
f2↾U1∩U2 holds, but that implies that [U1, f1] = [U2, f2] holds in F̌(A). So we have found a subset
F̌(A) ⊆ F̌(F ) up to the choice of a witnessing k-scheme X.

(D3) The specialization map can again be derived from the essentially smooth extension.
(A1) The commutativity of the diagram follows from the functoriality of the essentially

smooth extension, and the corresponding diagram of essentially smooth schemes. So we need
to address the “moreover”-part. Assume that we are given affine irreducible smooth schemes
X = Spec(B′) and Y = Spec(A′) of finite type over k such that A = A′

p and B = B′
q hold, for

suitable prime ideals p ⊆ A′ and q ⊆ B′. By restricting X to a principal open subscheme if
necessary, the extension of valued fields E/F induces an étale homomorphism φ : A′ → B′ such
that q lies over p, φ(p)B′ = q, and the induced homomorphism of residue fields κ(p) → κ(q) is
an isomorphism. We denote the corresponding morphism of schemes by ϕ : X → Y . It remains
to check that (3.6) is cartesian. Since F̌(A) ↪→ F̌(E) is injective, we only have to show that
given elements [UE , fE ] ∈ F̌(E) and [UB, fB] ∈ F̌(B), with q ∈ UB ⊆ X, ∅ ̸= UE ⊆ Y and
fB ∈ F(UB), fE ∈ F(UE), agreeing in F̌(F ), that there is an element in F̌(A) mapping to both.
If UE were to contain p, we already would have [UE , fE ] ∈ F̌(A), so we may assume that p does
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not lie in UE . We intend to use that F is a sheaf with respect to the Nisnevich topology, and
thus we want to modify the cartesian square

ϕ−1(UE) ∩ UB UE

UB ϕ(UB) ∪ UE
ϕ↾UB

into an elementary distinguished one (see definition 2.3). As tools in such a construction, one may
use axiom (2) to extend fE and enlarge UE , or restrict UB to a possibly smaller neighbourhood
of q in X. To find that the resulting diagram is completely decomposed, one could translate the
isomorphism on residue fields to a birational map V (q) 99K V (p). The precise details are left to
the reader.

(A2) This follows with the usual argument: Any f ∈ F̌(k(X)) is given as an equivalence
class [U, f ′], with U ⊆ X open and nonempty and f ′ ∈ F(U). Thus f will already lie in all
F̌(OX,x), with x ∈ U ∩X(1), since [U, f ′] appears in that set as well. We conclude because X∖U
contains only finitely many points of X(1), as X is noetherian.

(A3) The diagrams under this axiom are implied by the functoriality of the essentially
smooth extension, and corresponding commutative diagrams of essentially smooth schemes.

Finally we remark, since we will refer to this later, that everything, except the cartesianess
of (3.6), can already be deduced for a weakly unramified presheaf F .

Remark 3.24. In [50, p. 18] it is shown, that one can derive an extra axiom (A4). Moreover,
the condition that F̌(ι) maps F̌(A) to F̌(B) is split over (A1) and (A3)(i), to obtain the
intermediary notion of F̃k-data. Here we adapted Morel’s axioms to our specific needs.

Under the assumption that k is a perfect field, Morel proved in [50, Thm. 2.11] that to each
Fk-datum, consisting of (D1)-(D3), and fulfilling (A1)-(A4), one can assign an unramified
sheaf, and even stronger that the full subcategory of unramified sheaves (of the category of all
sheaves) is equivalent to a category of Fk-data.

The notion of an Fk-datum can also be extended to pointed sets (resp. abelian groups), so
that the above characterisation of unramified sheaves of pointed sets (resp. abelian groups) still
holds (cf. [50, Rem. 2.14]).

3.3 Morphisms of Unramified Sheaves

Above we recalled a statement of Morel about reconstructing unramified sheaves from data on
fields and discrete valuation rings. In order to use this in the context of proposition 2.58, we
need to analyse how morphisms behave with respect to this construction.

3.3.1 Morphisms of Sheaves in Terms of Morphisms of Data

In [50, Rem. 2.15] Morel left the proof of the following proposition to the reader. Since we intend
to use this statement, we give a proof here:

Proposition 3.25. Let E be a weakly unramified presheaf, and F an unramified presheaf. Any
morphism of presheaves φ : E → F is uniquely determined by a natural transformation

ϕ : Ě↾Fk
→ F̌↾Fk

(MD)

such that the following two conditions are met, in which A denotes a geometric discrete valuation
ring, with fraction field F and residue field κ:

(MA1) ϕF maps Ě(A) to F̌(A).

50



3.3 Morphisms of Unramified Sheaves

(MA2) If κ is separable, the following square commutes:

Ě(A) F̌(A)

Ě(κ) F̌(κ).

(ϕF )↾Ě(A)

sA sA

ϕκ

Any such ϕ will be called a morphism of Fk-data.

Proof. As suggested by the notation, the correspondence that sends a morphism of presheaves
φ : E → F to a morphism of Fk-data, is given as a restriction of the morphism φ̌ : Ě → F̌ of
the essentially smooth extension. We have to check that the axioms (MA1) and (MA2) hold.
From the proof of proposition 3.23 we know that Ě(A) ⊆ Ě(Frac(A)) holds for every geometric
discrete valuation ring A. Since φ̌ is a natural transformation, we have the commuting diagram

Ě(A) F̌(A)

Ě(F ) F̌(F ),

⋂
φ̌Spec(A) ⋂
φ̌Spec(F )

implying (MA1). The remaining axiom follows by a similar argument, which we omit.
In order to prove the claim, we need to check that this correspondence is a bijection. There-

fore, let there be morphisms of presheaves φ1, φ2 : E → F such that the corresponding mor-
phisms of Fk-data agree, and let us denote this morphism of Fk-data by ϕ. We need to show
that φ1,X = φ2,X holds for all X ∈ Smk. By axiom (0), we may assume that X is irreducible.
Note that by construction of the essentially smooth extension, we have the commuting diagram
(with i = 1, 2)

E(X) F(X)

Ě(k(X)) F̌(k(X)).

φi,X

ϕk(X)

We can conclude that the vertical maps in this diagram are injective, by employing an argument
(and thereby using (1)), similar to the one we used to obtain (D2). This yields φ1 = φ2.

So let there be a morphism of Fk-data ϕ : Ě↾Fk
→ F̌↾Fk

. We construct a morphism of
presheaves φ : E → F that induces ϕ. Hence fix X ∈ Smk. By axiom (0), one may assume
that X is irreducible. We note that by (MA1) the following diagram commutes:

⋂
x∈X(1) Ě(OX,x) ⋂

x∈X(1) F̌(OX,x)

Ě(k(X)) F̌(k(X)),

⋂ ⋂
ϕk(X)

i.e. the upper horizontal map is a restriction of the lower one. By using (2’) we may define a
map φX such that

E(X) F(X)

⋂
x∈X(1) Ě(OX,x) ⋂

x∈X(1) F̌(OX,x)

φX

∼=
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commutes. The hard part is to check the naturality of this definition. In a first step, we
restrict ourselves to the wide subcategory S̃mk with only flat morphisms. Given a flat morphism
f : X → Y between irreducible (use (0)) schemes X,Y ∈ Smk, we know by the going-down
property, that f(x), for x ∈ X(1), is either of codimension 1 or the generic point of Y . Hence
we see that

F(Y ) ⋂
y∈Y (1) F̌(OY,y) F̌(k(Y ))

F(X) ⋂
x∈X(1) F̌(OX,x) F̌(k(X)).

F(f)

=
ϕk(X)/k(Y )

=

commutes. Here we have used the first part of (A1) to obtain the dashed map, and (2’) to
obtain the equalities on the left-hand side. Since we have only used the first part of (A1), we
see that there is a similar diagram for E , when we replace the equalities by injective maps. This
latter injectivity is a consequence of (1). Thus we see that axiom (MA1) implies commutativity
of the following diagram.

E(Y ) ⋂
y∈Y (1) Ě(OY,y)

⋂
y∈Y (1) F̌(OY,y) F(Y )

E(X) ⋂
x∈X(1) Ě(OX,x) ⋂

x∈X(1) F̌(OX,x) F(X).

E(f)

=

F(f)

=

This yields the naturality of φ on S̃mk.
So we proceed to the case of Smk. Let f : X → Y be a morphism of irreducible (use (0))

k-schemes. First we note that f may be factored as p◦ ι, where ι : X → Z is a closed immersion,
p : Z → Y is flat, and Z is an irreducible smooth k-scheme. To obtain such a decomposition,
one factors f via its graph morphism, i.e. as

X
Γf−→ X ×k Y

p2−→ Y.

Γf is always an immersion (cf. [73, Tag 01KJ]), so it may be factored as j ◦ ι′, with ι′ : X → Z ′

being a closed immersion, and j : Z ′ → X ×k Y being an open immersion. Denote by Z the
irreducible component of Z ′, in which the image of X lies in. Then we find ι : X → Z, a closed
immersion, and setting p := p2 ◦ j↾Z does the trick, with p being even smooth.

Next we use a trick of Morel (cf. [50, pp. 19–21]), to handle the case of showing naturality
of φ with respect to a closed immersion ι : X → Z of irreducible smooth schemes. Recall firstly,
that a closed immersion between smooth k-schemes is a regular immersion (cf. [73, Tag 0E9J]),
which implies that (Zariski-)locally it can be factored as a composition of codimension 1 closed
immersions. This comes from the fact that for the associated quasi-coherent ideal, (Zariski-
)locally regular sequences exist (cf. [73, Tag 063D]). However, [26, Cor. (17.12.2)] provides
an even stronger assertion: We find a cover (Ui)i∈I , consisting of open subsets of Z, with the
property ι(X) ⊆ ⋃i∈I Ui, and such that for all i ∈ I we have a cartesian diagram

ι−1(Ui) Ui

An−d
k Ank ,

ι

ξi

where d is the codimension of X in Z, ξi is étale, and An−d
k → Ank is the canonical closed

immersion of the first few coordinates. Fixing an index i0 ∈ I, we may find, by pulling the
canonical closed immersions An−d

k → An−d+1
k → · · · → Ank back along ξi0 , a flag

Z0︸︷︷︸
ι−1(Ui0 )=

ι1−→ Z1
ι2−→ Z2

ι3−→ . . .
ιd−→ Zd︸︷︷︸

Ui0 =

,
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where the ιj are closed immersions of codimension 1, and the Zj are smooth over k. So we
analyse the case of such a closed immersion of codimension 1 first. Therefore let j ∈ {1, . . . , d}
be fixed, and assume moreover that Zj−1 and Zj are irreducible (by usage of (0)). If ηj−1
denotes the generic point of Zj−1 in Zj , we find the following commuting diagram of essentially
smooth schemes:

Spec(κ(ηj−1)) Zj−1

Spec(OZj ,ηj−1) Zj .

ιj

Using axiom (1) and the definition of the specialization map, this induces the commuting dia-
gram:

E(Zj) Ě(OZj ,ηj−1)

E(Zj−1) Ě(κ(ηj−1)).

⊆

E(ιj) sηj−1

⊆

From this we deduce that the restriction map that is induced by ιj , is just a particular restriction
of sηj−1 . The naturality of φ in the case of ιj , follows from the following commuting diagram,
where the inner square commutes by axiom (MA2), the inclusions are consequences of (1), and
the outer commuting parts follow from commuting diagrams of essentially smooth schemes:

Ě(k(Zj)) F̌(k(Zj))

E(Zj) Ě(OZj ,ηj−1) F̌(OZj ,ηj−1) F(Zj)

E(Zj−1) Ě(κ(ηj−1)) F̌(κ(ηj−1)) F(Zj−1).

ϕk(Zj )

⊆

E(ιj)

⋃

sηj−1 sηj−1

⋃
⊇

F(ιj)

⊆
ϕκ(ηj−1)

⊇

By composing these results, we obtain the naturality of φ for ι↾ι−1(Ui0 ). Since i0 ∈ I was chosen
arbitrarily, we may conclude the naturality of φ with respect to ι from the property that F is a
sheaf on the Zariski site (cf. (2)). So we have shown that φ is indeed a morphism of presheaves
on Smk. The fact that one obtains ϕ back by restricting the essentially smooth extension of φ,
follows by construction.

Remark 3.26. Analogously to the proposition, one can give a characterization of the homomor-
phisms between a weakly unramified presheaf of abelian groups E , and some unramified sheaf
of abelian groups F , in terms of natural homomorphisms

Ě↾Fk
−→ F̌↾Fk

,

and axioms (MA1), (MA2).
We record the following corollary, of which we later give an amplification.

Corollary 3.27. Let G be a smooth algebraic group over k, fulfilling the strong Grothendieck-
Serre property, and let F be an unramified sheaf. Any morphism of sheaves H1

ét(G) → F is
uniquely determined by a natural transformation

ϕ : H1
ét(Spec(−), G) −→ F̌↾Fk

such that the following two conditions are met, in which A denotes a geometric discrete valuation
ring, with fraction field F and residue field κ:

53



3 Unramified Sheaves

• ϕF (H1
ét(Spec(A), G)) ⊆ F̌(A).

• If κ is separable over k, one has the following commuting diagram:

H1
ét(Spec(A), G) F̌(A)

H1
ét(Spec(κ), G) F̌(κ).

sA

ϕ
F ↾H1

ét(Spec(A),G)

sA

ϕκ

Proof. By proposition 3.20 we may apply the above proposition 3.25. Since H1
ét(G) is a sheaf in

the Nisnevich topology, and fields are points on the Nisnevich site, we have

H1
ét(G)(F ) = H1

ét(Spec(F ), G)

for every field F ∈ Fk. Moreover, one has H1
ét(Spec(A), G) ⊆ H1

ét(Spec(F ), G) by the strong
Grothendieck-Serre property, for every geometric discrete valuation ring A, with fraction field
F . The essential simplifications of the axioms (MA1) and (MA2) now stem from the fact that

H1
ét(Spec(A), G) −↠ H1

ét(G)(A)

is surjective, which follows from [17, Prop. 3.3] once we check that for every Nisnevich distin-
guished square

W U

Z X,

ι

p

where ι is an open immersion, p is étale, the diagram is cartesian, and (Z∖W )red
(p↾Z∖W )red−−−−−−→

(X∖U)red is an isomorphism, we have that

H1
ét(X,G) −→ H1

ét(Z,G)×H1
ét(W,G) H

1
ét(U,G)

is surjective. This will follow from descent with respect to the étale (or Nisnevich) topology:
Indeed, pick TZ → Z and TU → U étale G-torsors that agree on W . Since G is affine, these
morphisms are affine, and using that they are isomorphic on W , we obtain a W -isomorphism

φ : TZ ×X U︸ ︷︷ ︸
TZ×ZU∼=

−→ Z ×X TU︸ ︷︷ ︸
W×UTU

∼=

.

Thus (TU , TV , φ) forms a descent datum with respect to the covering {p, ι} in the sense of [73,
Tag 023W], which is effective by [73, Tag 0245]. So we obtain an affine morphism T → X, and
we omit the verification that it is indeed a G-torsor in the étale topology.

With the conclusion of this subsection we will stop writing the check
to signalise the transition from an unramified sheaf to an unramified
Fk-datum.

3.3.2 A Compatibility Statement

In this subsection we show that the compatibility conditions (MA1) and (MA2) are already
fulfilled, in the case that the residue field of the geometric discrete valuation ring is separable.
So, if the ground field k is perfect, which is the case that we consider in chapter 4, these two
conditions are obsolete.
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Proposition 3.28. Let X ∈ Smk be irreducible, with function field K := k(X), let N be a
weakly unramified presheaf and M be an unramified sheaf, and let a : N↾Fk

→M↾Fk
be a natural

transformation. Fix an element T ∈ N(X), then we have for every point x ∈ X(1) with separable
κ(x)/k:

aK(TK) ∈M(OX,x) and sx(aK(TK)) = aκ(x)(Tκ(x)).

Proof. We follow the proof [23, Thm. 3.2.1] closely, however we reproduce it here for the con-
venience of the reader. Set A := OX,x, κ to be its residue field, and q : A → κ the canonical
projection. In the following, we will denote the restriction of T to some essentially smooth affine
scheme by an index, e.g. TA or Tκ.

We need to work with the henselization Ah of A. By the theory in [63, Ch. VIII] there is
a set Λ (consisting of isomorphism classes of local-étale A-algebras with residue field κ) that
is partially ordered and filtered, together with an inductive system of local-étale A-algebras
(Aλ)λ∈Λ with residue field κ and local transition homomorphisms,6 such that

colim
λ∈Λ

Aλ = Ah

holds. Since A is a (geometric) discrete valuation ring (with valuation v), we know by [73, Tag
0AH0] and [73, Tag 00TV] that each Aλ is a (geometric) discrete valuation ring as well (with
valuation vλ). So, the involved rings are all essentially smooth, and corollary 3.13 is applicable.
Let us fix some abbreviations and names for homomorphisms via the following diagram:

Q(A)=:︷︸︸︷
K

Q(Aλ)=:︷︸︸︷
Kλ

Q(Ah)=:︷︸︸︷
Kh

A Aλ Ah

κ

φ′
λ ψ′

λ

η

q

φλ

ηλ

qλ

ψλ

ηh

qh

Since Kh/K is separable algebraic (e.g. by [73, Tag 07QQ]), φλ is unramified at the maximal
ideal, and since the residue fields of A and Aλ are isomorphic, we know by (A1) that the
following diagram is cartesian, for all λ ∈ Λ:

M(A) M(K)

M(Aλ) M(Kλ).

(φλ)M

(η)M

(φ′
λ)M

(ηλ)M

So, since a is natural, we have the commutative diagram

N(K) M(K)

N(Kλ) M(Kλ),

aK

(φ′
λ)N (φ′

λ)M

aKλ

and it suffices to find a single λ ∈ Λ such that aKλ
(TKλ

) lies in M(Aλ).
Before we begin to find such a λ, we want to obtain a splitting jh : κ→ Ah to the projection

qh : Ah ↠ κ. By [43, Thm. 28.3] we obtain a splitting ĵ : κ → Â for the completion q̂ : Â ↠ κ,
6Local-étale A-algebras are localizations of étale A-algebras at a prime ideal over the maximal ideal of A.
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3 Unramified Sheaves

which, since κ is separable over k, can even be chosen to be a k-homomorphism. We intend to
lift this to a splitting for Ah by use of the approximation property for excellent henselian discrete
valuation rings [10, Cor. 9 in 3.6], with which we can obtain a dashed morphism in the diagram

Spec(Â) Spec(κ)

Spec(κ) Spec(Ah)

Spec(Ah).

ĵ

q̂∗

(qh)∗

(qh)∗

(jh)∗

=

Since Ah is excellent, if A is excellent [26, Cor. (18.7.6)], the excellence of A remains to be
checked. But this can be concluded, as A is the localization of a finite type k-algebra (cf. [73]
Tags 07QU and 07QW). Thus we obtained a k-section jh : κ→ Ah for qh : Ah → κ.

For all λ ∈ Λ set κλ to be the preimage of jh(κ) ⊆ Ah under the homomorphism ψλ. The κλ
are subfields of the discrete valuation rings Aλ: Indeed, since the transition morphisms Aλ → Aµ
are local, the ψλ are local homomorphisms as well. Hence κλ consists of units of Aλ and thus
must be a subfield. As it is also a subfield of κ, it even lies in Fk. Moreover, we have

colim
λ∈Λ

κλ = κ,

with induced canonical injections ψλ : κλ ↪→ κ. Since κ is finitely generated as a field and Λ is
filtered, we have

colim
λ∈Λ

N(κλ) ∼= N(κ).

From this we see that we may find some λ0 ∈ Λ such that

ψλ0N (Tκλ0
) = Tκ (3.7)

holds in N(κ). The commutative diagram

κλ0 Aλ0

κ Ah

jλ0

ψλ0
ψλ0

jh

implies

ψλ0N (jλ0N (Tκλ0
)) = jhN (ψλ0N (Tκλ0

)) = jhN (Tκ) = jhN (qhN (TAh)) = TAh = ψN (TA) = ψλ0N (TAλ0
).

Again, since Λ is filtered we have colimλ∈ΛN(Aλ) = N(Ah), by corollary 3.13, and thus we may
find some λ1 ∈ Λ, with λ0 ≤ λ1 such that

jλ1N (Tκλ1
) = TAλ1

(3.8)

holds on the nose. We will now check that λ1 is the element in Λ we were looking for. Note
first, that the following diagram is commuting, since a is natural and the participating fields lie
in Fk:

N(κλ1) M(κλ1)

N(Kλ1) M(Kλ1)

(ηλ1 ◦jλ1 )N

aκλ1

(ηλ1 ◦jλ1 )M

aKλ1
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So we may deduce

aKλ1
(TKλ1

) = aKλ1
(ηλ1N (TAλ1

)) = aKλ1
((ηλ1 ◦ jλ1)N (Tκλ1

)) = (ηλ1 ◦ jλ1)M (aκλ1
(Tκλ1

)),

by using the definition of TKλ1
, (3.8) and the fact that a is natural. By the above reduction

using axiom (A1) aK(TK) lies in M(A). This completes the proof of the first part.
Since sv is a map M(A) → M(κ), we know by the above that the expression sv(aK(TK))

is well-defined and lies in M(κ). Note that we have dubbed the valuation corresponding to the
point x in codimension one v. The outstanding claim follows by the following small calculation:

sv(aK(TK)) = svλ1
((φ′

λ1)M (aK(TK))) (A3)(i)
= svλ1

(aKλ1
(φ′

λ1N (TK))) a is natural
= svλ1

(aKλ1
(φ′

λ1N (ηN (TA))))
= svλ1

(aKλ1
(ηλ1N (φλ1N (TA)))) ηλ ◦ φλ = φ′

λ ◦ η
= svλ1

(aKλ1
(ηλ1N (TAλ1

)))
= svλ1

(aKλ1
((ηλ1 ◦ jλ1)N (Tκλ1

)))) (3.8)
= svλ1

((ηλ1 ◦ jλ1)M (aκλ1
(Tκλ1

))) a is natural
= (ψλ1)M (aκλ1

(Tκλ1
)) (A3)(ii)

= aκ(ψλ1N (Tκλ1
)) a is natural

= aκ(Tκ) (3.7).

This concludes the proof of the compatibility statement.

3.3.3 Totaro’s Geometric Description

There is the following recognition principle generalising [21, Thm. 12.3]7 and [23, Thm. 3.2.3].

Lemma 3.29. Let G be a smooth linear algebraic group over k, and let P be a versal torsor
(cf. [21, Def. 5.1]), defined over the field K ∈ Fk. Let M be an umramified presheaf such that
M(F )→M(F (t)) is injective for all F ∈ Fk and t transcendental over F . Then we have

∀φ,ψ ∈ HomShNis(Smk)(H1
ét(G),M), with φ([P ]) = ψ([P ]) =⇒ φ = ψ.

Proof. We adapt the arguments of the above cited sources, and start by remarking that by
proposition 3.25 it is sufficient to check that (the essentially smooth extensions of) φ and ψ
agree on Fk. So, let F ∈ Fk be given. We briefly check that our assumption on M allows us
to assume that F is an infinite field. Indeed, for any variable t transcendental over F , and
χ ∈ {φ,ψ} we have a commuting diagram

H1
ét(Spec(F ), G) H1

ét(G)(F ) M(F )

H1
ét(Spec(F (t)), G) H1

ét(G)(F (t)) M(F (t)),

χ

χ

in which the right-hand vertical map is injective. Let us proceed by unpacking the definition of
a versal G-torsor, which also gives a reason for reducing to the case of an infinite field: Namely,
one finds a smooth, irreducible scheme X over k with function field K and a G-torsor Q → X
such that the following axioms hold:

7Whenever we cite [21] like this, we refer to its first part due to Garibaldi and Serre. If we point to some
statement from Merkurjev’s part, we preface its number by an “M”.
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(Ve1) The generic fibre of Q→ X is P .

(Ve2) For every extension field F of k with F infinite, every G-torsor T over F , and every
nonempty open subscheme U of X, there exists an F -rational point x ∈ U(F ) whose
fibre Qx is isomorphic to T .

So, let us fix a G-torsor T over F , and by (Ve2) a corresponding F -rational point x in X, such
that we have a cartesian diagram

T Q

Spec(F ) X.x

Since M is unramified, we have M(X) ⊆M(K). Using this and the assumption φ([P ]) = ψ([P ]),
we obtain φ([Q]) = ψ([Q]), where we regard the G-torsor Q as an element of H1

ét(G)(X). Now
plugging [Q] into the commuting diagram (with χ ∈ {φ,ψ})

H1
ét(G)(X) M(X)

H1
ét(G)(F ) M(F )

χ

χ

leads to φ([T ]) = ψ([T ]), and with the above reductions we arrive at the claim.

We will now consider unramified sheaves M that are also A1-invariant. This entails that for
all X ∈ Smk we have that the map induced by the zero section M(A1

X)→M(X) is a bijection.
We record the following characterisation yielding in particular the hypothesis of lemma 3.29.

Proposition 3.30 ([50, Lem. 2.16]). Let M be an unramified sheaf. The following statements
are equivalent:

(i) M is A1-invariant.

(ii) For all F ∈ Fk, the canonical map M(Spec(F ))→M(A1
F ) is bijective.

From the above proposition we gather in particular that any A1-invariant unramified sheaf
fulfils the hypothesis of lemma 3.29. We will use this in the following proposition which elaborates
on a principle of Totaro in the setting of cohomological invariants (cf. [21, App. C]). We recall
the proof as a convenience to the reader.

Proposition 3.31 (Totaro). Let M be an A1-invariant umramified sheaf, and let G be a smooth
linear algebraic group over k. Let G → GL(V ) be a representation of G over k, such that V
admits a G-invariant Zariski-open subset U , with V ∖U of codimension ≥ 2, such that U is a
G-torsor. Then we have that the following map is bijective:

ϕ : HomShNis(Smk)(H1
ét(G),M) −→M(U/G)

φ 7−→ φ([U → U/G]).

If M is an abelian sheaf, then ϕ is also a homomorphism of abelian groups.

Proof. From [21, Ex. 5.4] we see that the generic fibre of U → U/G forms a versal torsor. Thus
by lemma 3.29 we see that ϕ is injective. The fact that ϕ is a homomorphism of abelian groups
if M is an abelian sheaf, can be deduced quickly, since the group structures on both sides will
be induced by the one on M .
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So, we check that ϕ is also surjective: Let m ∈M(U/G) be given arbitrarily, and our aim is
to construct a morphism φ′ : H1

ét(−, G)→M of presheaves such that the induced morphism of
sheaves φ : H1

ét(G)→M is mapped to M via ϕ. Therefore fix some X ∈ Smk and a G-torsor T
over X. We consider the diagonal (right) action of G on T ×k U resp. T ×k V

T ×k U ×k G −→ T ×k U
(t, u, g) 7−→ (t.g, g−1.u).

An argument using faithfully flat descent of quasi-affine morphisms (cf. [73, Tag 0247]) along
T → X demonstrates the existence of the smooth k-schemes (T ×k U)/G and (T ×k V )/G.

We first notice that (T ×k U)/G is an open subset of (T ×k V )/G that already contains all
points that are of codimension 1. Thus we have a bijection

M(T ×k V/G)→M(T ×k U/G),

by axiom (2).
Moreover by the same axiom, M is a Zariski sheaf, and since the first projection induces the

structure of a vector bundle p1 : (T ×k V )/G→ T/G ∼= X, we have another bijection

M(X)→M(T ×k V/G)

by A1-invariance of M . Composing these results, we obtain a map

M(U/G) p2−→M(T ×k U/G)←−∼= M(T ×k V/G) p1←−∼= M(X),

where p2 : T ×k U/G→ U/G denotes the morphism that is induced by the second projection. If
we consider a morphism X ′ → X, with X ′ ∈ Smk, pull the G-torsor T back to X ′, and repeat
the above construction, we see that this process is natural. To obtain a morphism of presheaves
φ′ : H1

ét(−, G)→ M , we simply plug m in. Now, since M is unramified, fields are points in the
Nisnevich topology, and U/G is an integral scheme, we may check that φ′ induces a preimage
of m along ϕ by checking that

M(U/G) p2−→M(U ×k U/G)←−∼= M(U ×k V/G) p1←−∼= M(U/G)

is the identity. This will follow, once we verify that the two projections

(U ×k U)/G U/G
p1

p2

agree, after applying M , but this can be done as in the original [21, App. C].

Remark 3.32. A similar statement may be obtained by using an embedding of G into SLn
instead of a representation, when additionally assuming that H1

ét(G) is weakly unramified: Note
first that the generic fibre of SLn → SLn/G is a versal torsor (cf. [21, 5.3]), and thus by the
recognition principle we have an injection:

HomShNis(Smk)(H1
ét(G),M) ↪→M(SLn/G).

We address surjectivity by using corollary 3.27. Therefore, fix a field F ∈ Fk and consider the
exact sequence in étale cohomology:

SLn(F )→ (SLn/G) (F ) ↠ H1
ét(F,G)→ H1

ét(F,SLn)︸ ︷︷ ︸
=∗

.
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By standard Galois cohomology theory (cf. [68, Cor. 1, Prop. 36]) we know that the elements in
H1

ét(F,G) may be identified with the orbits in (SLn/G) (F ) by the action of SLn(F ). We would
like to map a torsor T to

Spec(F ) x−→ SLn/G→M,

where x ∈ (SLn/G) (F ) is an F -point corresponding to the cohomology class [T ] ∈ H1
ét(F,G).

To handle well-definedness, assume we are given x1, x2 ∈ (SLn/G) (F ) that are related by a
matrix A ∈ SLn(F ). Since A may be written as a product of elementary matrices, one may
write down a chain of naïve A1-homotopies relating

Spec(F ) x1−→ SLn/G→M and Spec(F ) x2−→ SLn/G→M.

Since M is A1-invariant these homotopies need to be constant, and thus well-definedness follows.
To check the compatibility as demanded by corollary 3.27, we remark that the above argument
still works, if we replace F by a geometric discrete valuation ring.
Remark 3.33. Inspired by Totaro’s work on the Chow ring of a classifying space of a linear
algebraic group G (cf. [74]), Morel and Voevodsky defined an ind-scheme BgmG (cf. [54, Sec.
4.2]), that is A1-weakly equivalent to BétG. In the context of this geometric model, proposition
3.31 tells us, that for the computation of HA1

0 only the first two non-trivial terms are relevant.

Example 3.34. Let us finish this chapter with an example that demonstrates, why the com-
plement of the G-invariant open subset has to be of codimension ≥ 2, and not merely ≥ 1 in
Totaro’s geometric description 3.31. A reader unfamiliar with parts of the notation, may skip
it in a first reading and go back to it, after checking chapter 4 out.

Assume char(k) ̸= 2 and set G = µ2. Let M be a strictly A1-invariant sheaf. Consider
the diagonal action of G on the affine space Ank . For n = 1 the group G acts freely on Gm,
and the quotient Gm/G is again given by Gm. By Morel’s theorem [50, Thm. 3.37], we have
H̃A1

0 (Gm) = KMW
1 . Note that the codimension of V (T ) ⊆ A1

k is one.
For n = 2, we have that G acts freely on the space A2

k∖{0} and V (T1, T2) is of codimension 2
in A2

k. The quotient of A2
k∖{0} by G is given by the cone of the image of the Veronese embedding

P1
k ↪→ P2

k in A3
k∖{0}, and its HA1

0 is given by Z⊕KW
1 . Indeed the quotient A2

k∖{0}/G may be
written as a pushout

Gm ×Gm A1
k ×Gm

Gm × A1
k

(x,y)7→(x,xy)

(x,y)7→(xy−1,x) ,

and thus the H̃A1
0 of it will be a pushout

KMW
1 ⊕KMW

1 ⊕KMW
2 KMW

1

KMW
1

(
1 1 η

)
(

1 ϵ η

)
.

It is an easy check that this pushout comes out as KW
1 . Later we derive this by another reasoning.
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On HA1
0 (Bét G) for some affine algebraic groups G

In the present chapter we want to deduce the zeroth A1-homology for a few smooth linear alge-
braic groups. Therefore we base our case on the strongest of the above introduced assumptions,
and henceforth demand that k is a perfect field.

The vantage point of our method forms proposition 2.58, which characterises HA1
0 (BétG), for

some smooth linear algebraic groupG, as the universal strictly A1-invariant sheaf to which sheafi-
fied étale cohomology H1

ét(G) maps to. For the second important reduction step we leverage our
analysis of morphisms between (weakly) unramified sheaves above (cf. proposition 3.25 and re-
mark 3.21), together with the compatibility statement 3.28, to see that morphisms H1

ét(G)→M
are precisely determined as natural transformations of functors Fk → Set, i.e. as cohomological
invariants in the sense of Serre.

Hence, in order to determine the zeroth A1-homology for the orthogonal, special orthogonal,
and symmetric groups, we may resort to the classical theory developed by Garibaldi, Merkurjev,
and Serre (cf. [21]). What we find in particular is, that the universal morphisms H1

ét(G) →
HA1

0 (BétG) for those groups, are essentially generalizations of the well-known Stiefel-Whitney
classes. We proceed from those examples to the cases of the unitary groups, and the exceptional
group G2. As a highlight in the end, we lift some arguments due to Garibaldi (cf. [20]), to
determine HA1

0 (Bét(−)) for spin groups associated with quadratic spaces of dimensions ≤ 12.
However, before we begin, we need to recall the form of the zeroth A1-homology of spheres

of the form G∧n
m , which is due to Morel, to get us off the ground.

Background: Milnor-Witt K-theory

We recall the definition of the following generalization of Milnor K-theory, which was first
introduced by Morel, and subsequently simplified together with Hopkins.1 The motivation for
its introduction was its relation to the motivic π0 of the sphere spectrum (cf. [51]).

Definition 4.1. Let F be a field. Denote by KMW
∗ (F ) the (not necessarily) commutative, Z-

graded, associative, and unital ring that is freely generated by the symbols [u], for all u ∈ F×,
in degree 1, and by η in degree −1, subject to the relations:

(MW1) [u][1− u] = 0, for all u ∈ F∖{0, 1} (Steinberg relation).

(MW2) [uv] = [u] + [v] + η[u][v], for all u, v ∈ F×.

(MW3) [u]η = η[u], for all u ∈ F×.

(MW4) η2[−1] + 2η = 0, or equivalently ηh = 0, with h := 2 + η[−1].
1Although already appearing earlier, we mainly reference [50, Ch. 3], since it contains a variety of introductory

information about Milnor-Witt K-theory.
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The graded ring KMW
∗ (F ) is called the Milnor-Witt K-theory over F . Important quotients of

Milnor-Witt K-theory can be obtained by forming the quotients with respect to the graded
ideals (h), (η), and (h, η):

KMW
∗ (F )/(h) =: KW

∗ (F ), KMW
∗ (F )/(η) = KM

∗ (F ), and KMW
∗ (F ) = kM

∗ (F ),

where KW
∗ (F ) is called the Witt K-theory over F , and KM

∗ (F ) resp. kM
∗ (F ) denote Milnor

K-theory resp. Milnor K-theory modulo 2.

Since a considerable part of this chapter is involved with calculations in and around Milnor-
Witt K-theory, we would like to bring the reader up to speed with some consequences of the
above abstract definition. First we start with some computational results:

Lemma 4.2 ([50, 3.5–3.8]). Let F be a field. Then one finds for all units u ∈ F× the identities

[u][−u] = 0, [u][u] = [u][−1] = [−1][u], and [1] = 0. (4.1)

Setting ⟨u⟩ := 1 + η[u] ∈ KMW
0 (F ), one obtains moreover for all u, v ∈ F×

⟨uv⟩ = ⟨u⟩⟨v⟩, ⟨u⟩+ ⟨−u⟩ = ⟨1⟩+ ⟨−1⟩ = h, and ⟨1⟩ = 1.

Let there be α ∈ KMW
m (F ) and β ∈ KMW

n (F ), then we have the graded commutativity relation

αβ = (−⟨−1⟩︸ ︷︷ ︸
ϵ:=

)mnβα.

Finally, given u ∈ F× and n ∈ Z, one finds [un] = nϵ[u], where (cf. [50, Lem. 3.14])

nϵ :=
{ ∑n

i=1⟨(−1)i−1⟩, if n ≥ 0,
ϵ(−n)ϵ, if n < 0.

Although we introduced the abbreviations ⟨−⟩, h = 2ϵ, ϵ, and nϵ only in passing, we want
to stress the importance of these symbols and keep them fixed below. Next we proceed to recall
several statements regarding the presentation of Milnor-Witt K-theory:

Lemma 4.3 ([50, 3.6–3.13]). Let there be n ∈ Z. The group KMW
n (F ) is (additively) generated

by terms of the form{
ηn⟨u⟩, with u ∈ F×, if n ≤ 0, and

[u1] · · · [un], with u1, . . . , un ∈ F×, if n ≥ 1.

More specifically, denoting by GW (F ) the Grothendieck-Witt ring of isomorphism classes of
symmetric bilinear forms, and setting ⟨u⟩B to be the symmetric bilinear form F 2 → F, (x, y) 7→
xuy, there is a (natural in F ) induced isomorphism of rings

ϕ : KMW
0 (F ) −→ GW (F )
⟨u⟩ 7−→ ⟨u⟩B.

The annihilator of η in KMW
0 (F ) is (h). Moreover, for any r ∈ N+, we find a (natural) isomor-

phism ϕ−r such that the following diagram commutes

KMW
0 (F ) KMW

−r (F )

GW (F ) W (F ).

ηr·(−)

ϕ ϕ−r

mod (h)
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In the seminal article [48] Milnor defined his flavour of K-theory, and showed the existence
of a split exact sequence that in the case of algebraic K-theory was derived by Tate. Hence, in
order to conclude our statements about Milnor-Witt K-theory, we add Morel’s account of such
a sequence for Milnor-Witt K-theory (cf. theorems 3.15+3.24 in [50]):

Proposition 4.4. Let F be a field, with discrete valuation v, valuation ring Ov, uniformizer
π ∈ Ov, and residue field κ(v). Then there is only one homomorphism of graded abelian groups

∂πv : KMW
∗ (F ) −→ KMW

∗−1 (κ(v)),

which commutes with multiplication by η, and satisfies the formulae

∂πv ([π][u1] . . . [un]) = [u1] . . . [un] and ∂πv ([u1] . . . [un]) = 0,

with u1, . . . , un ∈ O×
v ⊆ F×. Moreover, one finds the following (split) short exact sequence of

KMW
∗ (F )-modules:

0→ KMW
∗ (F ) ↪→ KMW

∗ (F (T ))
∑

P
∂P

(P )−−−−−→
⊕
P

KMW
∗−1 (F [T ]/(P ))→ 0,

where P runs over the irreducible and monic polynomials in F [T ].

One may also introduce specialization homomorphisms sπv : KMW
∗ (F )→ KMW

∗ (κ(v)), which
are indeed homomorphisms of rings, and which fulfil sπv (α) = ⟨−1⟩∂πv ([−π]α). We follow Morel
to obtain a sheaf version of Milnor-Witt K-theory, by using the theory highlighted in remark
3.24: First note, that for any discrete valuation v on a field F the kernel of ∂πv does not depend
on the choice of a particular uniformizer π so that the notation ker(∂?

v) makes sense. Now for
any irreducible X ∈ Smk (k is a perfect field), we set

KMW
∗ (X) :=

⋂
x∈X(1)

ker(∂?
vx

) ⊆ KMW
∗ (k(X)),

where vx denotes the valuation defined by a codimension 1 point x ∈ X, and extend this to any
non-irreducible X by taking the product of the above applied to each irreducible component.
The following is due to Morel (cf. [50, Sec. 3.2]), and uses in particular the above Bass-Tate
sequence:

Theorem 4.5. KMW
∗ is a Z-graded Nisnevich sheaf of rings on Smk, with restriction homo-

morphisms induced by injections of fields and specialiaztion maps. Moreover, KMW
n is strictly

A1-invariant, for all n ∈ Z.

Remark 4.6. On a field F ∈ Fk the sheaf KMW
∗ evaluates to the graded ring KMW

∗ (F ), and
Morel’s arguments show moreover (cf. [50, Lem. 3.32]), that for any graded ideal R ⊆ KMW

∗ (k),
one obtains a sheaf of graded rings KR

∗ that evaluates to KMW
∗ (F )/Re on F , where we extended

the ideal R along KMW
∗ (k)→ KMW

∗ (F ). In this way we obtain the strictly A1-invariant sheaves
of (unramified)2 Witt K-theory and Milnor K-theory,

KW
∗ , for R = (h), and KM

∗ , for R = (η).

We link the above to what we have learned in chapter 3: By proposition 3.22 the sheaf KMW
∗ ,

and its descendants KW
∗ and KM

∗ , is unramified. From corollary 3.19 we learn similarly that G∧n
m

is unramified, and thus by the characterisation of morphisms between unramified sheaves 3.25
2In [50] the sheaves KMW

∗ , KW
∗ , etc. are decorated with the prefix unramified, which we omit here, because it

is unlikely to cause confusion.
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and the compatibility statement 3.28 (using that k is perfect), a morphism σn : G∧n
m → KMW

n ,
for all n ∈ N+, is induced by the natural transformation

on F ∈ Fk : u1 ∧ · · · ∧ un 7−→ [u1] · · · [un],

with u1, . . . , un ∈ F×. With this definition, we can finally add an account of Morel’s character-
ization of the homology of the spheres G∧n

m in terms of Milnor-Witt K-theory.

Theorem 4.7 ([50, Thm. 3.37]). Let k be a perfect field. Then for all n ∈ N+, there is an
isomorphism of strictly A1-invariant sheaves H̃A1

0 (G∧n
m ) ∼= KMW

n induced by σn : G∧n
m → KMW

n .

The following is an immediate consequence of the theorem and the symmetric monoidal
structure on AbA1

Nis(Smk) (see 2.62).

Corollary 4.8. Let there be m,n ∈ N+, and R1, R2 ⊆ KMW
∗ (k) graded ideals. Then we have

an isomorphism of strictly A1-invariant sheaves

KR1
m ⊗A1 KR2

n
∼= KR1+R2

m+n ,

that is induced by the product on KMW
∗ .

Proof. It suffices to check the claim in the special case R1 = R2 = (0), since the general one
will follow from the closed symmetric monoidal structure provided by (−)⊗A1 (−). We start by
considering the following chain of natural isomorphisms:

HomAbA1
Nis(Smk)(K

MW
m ⊗A1 KMW

n ,M) ∼= . . .

HomAbA1
Nis(Smk)(K

MW
m ,HomAbNis(Smk)(KMW

n ,M)) ∼= . . .

HomSh•
Nis(Smk)(G∧m

m ,HomAbNis(Smk)(KMW
n ,M)) ∼= . . .

HomAbNis(Smk)(Z(G∧m
m ),HomAbNis(Smk)(KMW

n ,M)) ∼= . . .

HomAbA1
Nis(Smk)(K

MW
n ,HomAbNis(Smk)(Z(G∧m

m ),M)) ∼= . . .

HomSh•
Nis(Smk)(G∧n

m ,HomAbNis(Smk)(Z(G∧m
m ),M)) ∼= . . .

HomSh•
Nis(Smk)(G∧n

m ,HomSh•
Nis(Smk)(G∧m

m ,M)) ∼= . . .

HomSh•
Nis(Smk)(G∧(m+n)

m ,M) ∼= . . .

HomAbA1
Nis(Smk)(K

MW
m+n,M).

Here we used in particular that the internal hom-functor for strictly A1-invariant sheaves agrees
with the internal hom-functor on abelian sheaves (see lemmas 2.60 and 2.61), theorem 4.7, and
the fact that there is a natural isomorphism

HomAbNis(Smk)(Z(F),M) ∼= HomSh•
Nis(Smk)(F ,M),

for all sheaves of pointed sets F . As the above chain of isomorphisms is also natural in M , and
induced by the product on KMW

∗ , the corollary follows.

4.1 Orthogonal Groups

In this section we expose the proof of a fact that has been stated by Morel in [49, Rem. 5.4],
namely that HA1

0 (BétOn) is determined by generalizations of the Stiefel-Whitney classes to Witt
K-theory. Before we get to those, however, we will introduce a set of lemmas analysing products,
as we will have to look at µn

2 ⊆ On.
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4.1 Orthogonal Groups

Lemma 4.9. Let F1, . . . ,Fn be pointed sheaves. Then we have a natural isomorphism

H̃A1
0 (F1 × · · · × Fn) ∼=

n⊕
i=1

⊕
1≤j1<···<ji≤n

H̃A1
0 (Fj1 ∧ · · · ∧ Fji),

and the universal morphism θij1,...,ji : F1 × · · · × Fn → H̃A1
0 (Fj1 ∧ · · · ∧ Fji) is induced by the

projection to Fj1 ∧ · · · ∧ Fji and the universal morphism

Fj1 ∧ · · · ∧ Fji −→ H̃A1
0 (Fj1 ∧ · · · ∧ Fji).

Proof. We only give the proof for n = 2, since it is instructive, and leave the rest to the reader:
First, note that we have a cofiber sequence

F1 ∨ F2 → F1 ×F2 ↠ F1 ∧ F2

in Sh•
Nis(Smk), where F1 ∨ F2 is the pushout (in ShNis(Smk)) of the diagram

• F2

F1

,

with canonical basepoint • → F1 ∨ F2. Since H̃A1
0 is left adjoint, it preserves colimits, from

which we deduce that

H̃A1
0 (F1 ∨ F2)→ H̃A1

0 (F1 ×F2) ↠ H̃A1
0 (F1 ∧ F2)→ 0 (4.2)

is exact. We intend to construct a splitting to the left-hand side homomorphism, for which we
first need to bring H̃A1

0 (F1 ∨ F2) into a more useful form. Therefore we use a similar line of
reasoning: We may regard F1 ∨F2 as the sum of F1 and F2 in the category Sh•

Nis(Smk). Again,
since H̃A1

0 preserves colimits, we learn that H̃A1
0 (F1) ⊕ H̃A1

0 (F2) is isomorphic to H̃A1
0 (F1 ∨ F2).

From this, we see that the projections

pr1 : F1 ×F2 → F1 and pr2 : F1 ×F2 → F2

induce a splitting of the left-hand homomorphism in (4.2). This concludes the proof of the
lemma in the case n = 2, and as hinted above, the higher cases can be deduced inductively by
using similar ideas.

We may apply this lemma in the case F1 = · · · = Fn = F , for some pointed sheaf of sets
F ∈ Sh•

Nis(SmS), to obtain the natural (in F) isomorphism:

H̃A1
0 (Fn) ∼=

n⊕
i=1

H̃A1
0 (F∧i)

⊕(n
i)

Let us analyse this situation further. We keep n ∈ N+ fixed, and may consider the action of
the nth symmetric group Sn on product sheaf Fn resp. the smash product F∧n. So, for any
permutation σ ∈ Sn, we have morphisms

Fn → Fn and F∧n → F∧n,

that permute the entries via σ, and which we denote again by σ for simplicity. When we apply
the functor H̃A1

0 (−) to the diagram of pointed sheaves that is induced by this action, we may
form its colimit H̃A1

0 (Fn)Sn resp. H̃A1
0 (F∧n)Sn , i.e. we want diagrams like

H̃A1
0 (Fn) H̃A1

0 (Fn) H̃A1
0 (Fn)Sn

σ

τ

id
...
...
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to be exact. Note that this implies, since HomAbA1
Nis(Smk)(−,M) maps colimits to limits, that we

have a natural isomorphism (in F and M)

HomAbA1
Nis(Smk)(H̃

A1
0 (Fn)Sn ,M) ∼= HomSh•

Nis(Smk)(Fn,M)Sn ,

where on the right-hand side we consider Sn-invariant morphisms. Now for every i ∈ {1, . . . , n},
and 1 ≤ j1 < · · · < ji ≤ n, we have a canonical morphism

Fn
θi

j1,...,ji−−−−−→ H̃A1
0 (F∧i) ↠ H̃A1

0 (F∧i)Si ,

where the second morphism is just the canonical projection to the quotient. We sum all
those morphisms to a single one θi : Fn → H̃A1

0 (F∧i)Si , and immediately see that those are
Sn-invariant. The following lemma states that they are also universal.

Lemma 4.10. Let F be a pointed sheaf. Then we have a natural (in F) isomorphism

H̃A1
0 (F × · · · × F)Sn

∼=−−−→
n⊕
i=1

H̃A1
0 (F ∧ · · · ∧ F︸ ︷︷ ︸

i−fold

)Si ,

which is induced by the (θi)1≤i≤n.

Proof. A proof may be found by defining a suitable inverse. We omit the details.

We proceed to calculate the base A1-homology of the geometric classifying space of µn
2 for

any positive natural number n ∈ N+. The motivation for this is classical: In order to determine
the cohomological invariants of On, one first determines the invariants of µn

2 , and then employs
Serre’s splitting principle (cf. [21, Thm. 17.3]). So we start with:

Lemma 4.11. Let k be a perfect field ,with p := char(k), and fix a natural number ℓ > 1 prime
to p. Then we have:

H̃A1
0 (Bétµℓ) ∼= KMW

1 /(ℓϵ) ∼=
{

KM
1 /(ℓ), if ℓ is odd,

KMW
1 /( ℓ2h), if ℓ is even.

Proof. Let us start with the Kummer exact sequence

0→ µℓ → Gm
(−)ℓ

−−−→ Gm → 0,

which is an exact sequence of étale sheaves. Now, for any U ∈ Smk, we have a long exact
sequence of cohomology groups, of which the following part is important to us:

Gm(U) (−)ℓ

−−−→ Gm(U)→ H1
ét(U,µℓ)→ H1

ét(U,Gm).

By varying U , we may think of the above sequence as an exact sequence of presheaves, so
sheafifying (with respect to the Nisnevich topology) yields an exact sequence of sheaves:

Gm
(−)ℓ

−−−→ Gm → H1
ét(µℓ)→ H1

ét(Gm).

Note that by Hilbert’s theorem 90, we have H1
ét(Gm) = 0, and thus H1

ét(µℓ) is the cokernel of
the ℓ-power map in the category of abelian sheaves. We may translate this into a coequaliser
diagram in the category of pointed sheaves of the following morphisms:

Gm ×Gm
pr2−−→ Gm and

(
φℓ : Gm ×Gm → Gm

on U ∈ Smk : (u, v) 7→ uℓv

)
.
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Since H̃A1
0 is a left adjoint, it preserves colimits, and thus in particular coequaliser diagrams.

From this we see that

H̃A1
0 (Gm ×Gm)

H̃A1
0 (φℓ)−H̃A1

0 (pr2)
−−−−−−−−−−−−→ H̃A1

0 (Gm) ↠ H̃A1
0 (H1

ét(µℓ))

is exact. We use theorem 4.7 in conjunction with lemma 4.9 to obtain

H̃A1
0 (Gm ×Gm) ∼= KMW

1 ⊕KMW
1 ⊕KMW

2 and H̃A1
0 (Gm) ∼= KMW

1 ,

and we focus on determining the induced homomorphisms between those. It is clear that
H̃A1

0 (pr2) is given by the matrix (
0 1 0

)
,

and to obtain H̃A1
0 (φℓ), we express the symbol [uℓv] in terms of [u], [v], and [u][v]. This can be

achieved by using (MW2), and lemma 4.2:

[uℓv] = ℓϵ[u] + [v] + ηℓϵ[u][v].

Thus we find the matrix (
ℓϵ 1 ηℓϵ

)
for the homomorphism H̃A1

0 (φℓ). Note that the homomorphism KMW
1 → KMW

1 defined by ℓϵ is
given by multiplication with ℓϵ. So we find that the cokernel of H̃A1

0 (φℓ)− H̃A1
0 (pr2) is given by

KMW
1 /(ℓϵ).

From this, the statement of the lemma can be seen quickly, as we have

ℓϵ =
{

l−1
2 h+ 1, if ℓ is odd, and

l
2h, if ℓ is even.

To precisely arrive at the claim in the odd case, we note, using also ηh = 0 (MW4), that the
principal ideal (ℓϵ) ⊆ KMW

∗ (k) contains the principal ideal (η), and that ℓϵ ≡ ℓ mod η. Recall
that KMW

∗ /(η) yields unramified Milnor K-theory.
In closing, we note that the universal morphism inducing H̃A1

0 (Bétµℓ) ∼= KMW
1 /(ℓϵ) may be

defined by

σ(ℓ) : H1
ét(µℓ) −→ KMW

1 /(ℓϵ)
u(F×)ℓ 7−→ [u] + (ℓϵ).

Remark 4.12. If k is of characteristic p, and we consider pr, for some r ∈ N+, we obtain that
H̃A1

0 (BétZ/(pr)) is trivial, since by [54, Prop. 4.3.3] BétZ/(pr) is A1-weakly equivalent to the
point.

Note that this allows us to derive the case of Z/(n): Let ℓ ∈ N+ be such that (ℓ, p) = 1,
and that we have a primitive ℓth root of unity in k. We consider the abelian group Z/(prℓ).
By the Chinese remainder theorem, we have Z/(prℓ) ∼= Z/(pr) × Z/(ℓ), and this leads to an
isomorphism (in Hs(k))

BétZ/(prℓ) ∼= BétZ/(pr)× BétZ/(ℓ).

Indeed, on the level of the model category Spck, the étale classifying space is given by applying
the functors B, α∗, Ex, and Rα∗, which all preserve finite products (cf. [54, Thm. 2.1.66]). Now,
one only has to use that the BétZ/(pr)-factor is weakly A1-contractible, and that this extends
suitably to the product (cf. [54, Lem. 2.2.15]), so that we have an isomorphism (in HA1(k))

BétZ/(prℓ) ∼= BétZ/(ℓ) ∼= Bétµℓ,

and the above lemma gives H̃A1
0 .
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A similar approach as above would also yield the following generalization. However, we will
use the opportunity to demonstrate the strength of the A1-tensor product in this context.

Lemma 4.13. Let k be a perfect field of characteristic ̸= 2, and fix n ∈ N+. Then there is an
isomorphism

H̃A1
0 (Bétµ

n
2 ) ∼=

n⊕
i=1

(
KW
i

)⊕(n
i) ,

that is induced by all possible ways to form products of n symbols.

Proof. By lemma 4.11 HA1
0 (Bétµ2) is given by Z ⊕KW

1 . Using this, together with proposition
2.63 and the fact that H1

ét(µn
2 ) ∼= H1

ét(µ2)n, we see that there is an isomorphism

HA1
0 (Bétµ

n
2 ) ∼=

(
Z⊕KW

1

)⊗A1n
.

The claim then follows with corollary 4.8, by expanding the A1-tensor product on the right. For
ease of reference, we remark that the universal morphism H1

ét(µn
2 ) → KW

i , for i ∈ {1, . . . , n},
that is associated to a choice of indices 1 ≤ j1 < · · · < ji ≤ n is hence induced by the following
natural map on fields F ∈ Fk:

H1
ét(µn

2 )(F ) −→ KW
i (F )

(u1(F×)2, . . . , un(F×)2) 7−→ [uj1 ] · · · [uji ].

We would like to combine this statement about H̃A1
0 (Bétµ

n
2 ) with lemma 4.10, in the case

F = H1
ét(µ2). Again this is possible, as we have in particular H1

ét(µn
2 ) ∼= Fn. However, before

we are able to proceed, we have to calculate H̃A1
0 of the smash products F∧i. Here we may again

employ the A1-tensor product by referring to remark 2.64 instead of proposition 2.63. Thus
we arrive at KW

i for H̃A1
0 (F∧i). Furthermore, since KW

∗ is commutative, with respect to the
product of symbols, one obtains the identity:

H̃A1
0 (F∧i)Si = (KW

i )Si = KW
i , ∀i ∈ {1, . . . , n}.

Now, lemma 4.10 implies:

H̃A1
0 (Bétµ

n
2 )Sn

∼=
n⊕
i=1

KW
i .

Hereby the universal morphisms H1
ét(µn

2 )→ KW
i are given on fields F ∈ Fk by

H1
ét(µn

2 )(F ) −→ KW
i (F )

(u1(F×)2, . . . , un(F×)2) 7−→ ei([u1], . . . , [un]),

where ei ∈ Z[T1, . . . , Tn] is the ith-elementary symmetric polynomial in n variables.

Remark 4.14. If we consider the cofiber sequence Gm
(−)2
−−−→ Gm → F in Sh•

Nis(Smk), under the
assumption char(k) ̸= 2, and calculate H̃A1

0 (F), we obtain KW
1 . However, due to the formula

hn = 2n−1h = (2n)ϵ, we obtain

H̃A1
0 (Fn) ∼=

n⊕
i=1

(
KMW
i /(2i−1h)

)⊕(n
i) ,

for Fn fitting into the cofiber sequence Gn
m

(−)2
−−−→ Gn

m → Fn. So, we see that for n > 1 these
cofibers do not yield the correct H̃A1

0 .
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In the following we are concerned with the euclidean quadratic form qn = n · ⟨1⟩, and its
associated orthogonal group On = O(kn, qn), in characteristic ̸= 2. In this particular case, there
is an embedding

ιn : µn
2 ↪−→ On

(ϵ1, . . . , ϵn) 7−→

ϵ1 . . .
ϵn

 ,
which induces a surjection on torsors over any field F ∈ Fk:

H1
ét(F,µn

2 ) −→ H1
ét(F,On)

(u1(F×)2, . . . , un(F×)2) 7−→ ⟨u1, . . . , un⟩.

To see this, one may use that, for char(k) ̸= 2, the On-torsors over F are given by the isometry
classes of n-dimensional nonsingular quadratic forms (cf. [39, (29.28)]). Using this, in combina-
tion with corollary 3.27 and proposition 3.28, we obtain a monomorphism

HomSh•
Nis(Smk)(H1

ét(On),M) ↪→ HomSh•
Nis(Smk)(H1

ét(µn
2 ),M),

for all strictly A1-invariant sheaves M , which in turn, by remark 2.59, implies that the induced
homomorphism

H̃A1
0 (Bétµ

n
2 ) −↠ H̃A1

0 (BétOn), (4.3)

is an epimorphism.
Now, since On is associated to the euclidean quadratic form, one sees that the permutation

matrices are k-rational points on On. Thus by conjugating with these permutation matrices,
one obtains an action of Sn on On. The actions of Sn on µn

2 and on On are compatible under
the homomorphism ιn, as conjugating a diagonal matrix by a permutation matrix permutes the
diagonal entries, effectively. Moreover, the induced action of Sn on H1

ét(F,On) is trivial, as one
may see by using the 1-cocycle representation of the cohomology set H1

ét(F,On). So, by taking
Sn-coinvariants on both sides of (4.3), we obtain an epimorphism

H̃A1
0 (ιn)Sn : H̃A1

0 (Bétµ
n
2 )Sn −↠ H̃A1

0 (BétOn)

We intend to show that the above homomorphism is an isomorphism by finding a suitable left
inverse, which, as H̃A1

0 (ιn)Sn is an epimorphism, will also be an inverse. So, the goal is to
demonstrate the following, which was announced in [49, Rem. 5.4].

Lemma 4.15. Let k be a perfect field of characteristic ̸= 2, and n ∈ N+. Then there is an
isomorphism

H̃A1
0 (BétOn) ∼=

n⊕
i=1

KW
i ,

which is induced by the refined Stiefel-Whitney classes Wi : H1
ét(On)→ KW

i .

Definition of the Refined Stiefel-Whitney Classes

In this paragraph we mimic the construction of the Stiefel-Whitney classes as presented in [48],
with the aim to introduce their corresponding refined versions. This kind of generalization was
outlined in [49, §5], and we provide the details explicitly. We assume that the base field k is
perfect and of characteristic ̸= 2.

69



4 On HA1
0 (BétG) for some affine algebraic groups G

Recall that the argument in [48] amounted to the following: To the N-graded ring kM
∗ (F ),

of Milnor K-theory modulo 2, one associates the ring kM
Π (F ) of formal series, with coefficients

in kM
∗ (F ), where F ∈ Fk. Then a homomorphism

Z[F×] −→ kM
Π (F )×

is defined, which sends a unit u ∈ F× to the unit 1 + {u}. Finally the relations of the
Grothendieck-Witt ring are checked, to obtain a homomorphism

w : GW (F ) −→ kΠ(F )×.

The Stiefel-Whitney classes wi : GW (F )∩H1
ét(F,On)→ ki(F ) can then be peeled of for n ∈ N+

and 1 ≤ i ≤ n. We intend to reproduce this construction, where we exchange kM
∗ (F ) for KW

≥0(F ),
i.e. we will construct a natural (in F ∈ Fk) homomorphism

W : GW (F ) −→ KW
Π (F )×

that yields w, after composition with the canonical projection KW
Π (F ) ↠ KW

Π (F )/(η) ∼= kM
Π (F ).

Therefore, let us briefly recall the following presentation of the Grothendieck-Witt ring of
quadratic forms GW (F ).

Proposition 4.16 ([50, Lem. 3.9]). The group GW (F ) is generated by elements ⟨u⟩, for u ∈ F×,
subject to the following exhausting relations:

∀(u, v) ∈
(
F×)2 : ⟨u(v2)⟩ = ⟨u⟩ and (4.4)

∀(u, v) ∈
(
F×)2 , u+ v ∈ F× : ⟨u⟩+ ⟨v⟩ = ⟨u+ v⟩+ ⟨uv(u+ v)⟩. (4.5)

Remark 4.17. The assumption char(k) ̸= 2 is crucial in the above. Indeed, if we assume char(k) =
2, one obtains a presentation of the Grothendieck-Witt ring of symmetric bilinear forms, by
adding the additional relation

∀u ∈ F× : ⟨u⟩+ ⟨−u⟩ = ⟨1⟩+ ⟨−1⟩. (4.6)

However, the generators and relations for the Grotendieck-Witt ring of quadratic forms in char-
acteristic 2 are different, as evidenced for example by the way that quadratic forms in character-
istic 2 decompose (cf. [16, Proposition 7.31]). Note that for char(k) ̸= 2, (4.4) and (4.5) imply
(4.6), and the Grothendieck-Witt rings of symmetric bilinear forms, and quadratic forms are
isomorphic.

Now we are in a position to construct the refined Stiefel-Whitney classes. As we explained
above, we first write down a homomorphism of abelian groups

Z[F×] −→ KW
Π (F )×

⟨u⟩ 7−→ (1 + [u]).

Let us check the relations (4.4) and (4.5). To that end we will only use the axioms (MW1)-
(MW4), and their immediate consequences (cf. lemma 4.2). To check relation (4.4) holds, we
calculate first:

[v2] (MW2)= [v] + [v] + η[v][v] (4.1)= 2[v] + η[v][−1] = h[v] = 0.

Above we used implicitly that KW
∗ (F ) is commutative, which follows easily from KMW

∗ (F ) being
ϵ-graded commutative. So we have [uv2] = [u] in KW

1 (F ), for another unit u ∈ F×, by axiom
(MW2). Hence it only remains to check (4.5). For (u, v) ∈ (F×)2 with u + v ̸= 0 this means,
that we have to obtain the equality

(1 + [u])(1 + [v]) = (1 + [u+ v])(1 + [uv(u+ v)]) ∈ KW
Π (F ),
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or equivalently the equations

[u] + [v] = [u+ v] + [uv(u+ v)] ∈ KW
1 (F ) and (4.7)

[u][v] = [u+ v][uv(u+ v)] ∈ KW
2 (F ). (4.8)

Actually, both equations imply each other. Let us show (4.8) =⇒ (4.7) first. We start by using
the independence of symbols of squares:

[uv] = [uv(u+ v)2] (MW2)= [uv(u+ v)] + [u+ v] + η[uv(u+ v)][u+ v].

Expanding [uv] according to axiom (MW2) yields

[u] + [v] + η[u][v] = [uv].

If we subtract η times (4.8) on their respective sides we obtain (4.7). Let us now show that (4.7)
implies (4.8). The Steinberg relation (MW1) implies[

u

u+ v

] [
v

u+ v

]
= 0,

which we may rewrite as [u(u+ v)][v(u+ v)] = 0 in KW
2 (F ) by the independence of squares. A

trivial application of (MW2) lets us expand this expression to

([u] + [u+ v] + η[u][u+ v]) ([v] + [u+ v] + η[v][u+ v]) = 0.

Next we employ the following two side calculations

2η[u][v][u+ v] (MW4)= −η2.[−1][u][v][u+ v] (4.1)= −η2[u][v][u+ v]2, and
η[x][u+ v]2 (4.1)= η[x][u+ v][−1] h=0= −2[x][u+ v] = −2[u+ v][x],

for x ∈ {u, v}, to obtain

[u][v]− [u][u+ v]− [v][u+ v] + [u+ v]2 = 0

or equivalently

[u][v] = [u+ v]([u] + [v]− [u+ v]).

By using (4.7) now, we immediately obtain (4.8). So, let us focus on showing equation (4.7),
and let us start by addressing the special case u+ v = 1. By [1] = 0, this simplifies the task to
checking:

[u] + [1− u] = [u(1− u)], ∀ u ∈ F×.

However, we know that this is always true by using (MW2), and the Steinberg relation (MW1).
Coming back to the case of u, v ∈ F×, with u+ v ̸= 0, we have

⟨u+ v⟩
([

u

u+ v

]
+
[

v

u+ v

]
−
[

uv

(u+ v)2

])
= 0,

from our special case. Using axiom (MW2), and the independence of symbols in KW
∗ (F ) of

squares, we immediately expand this to (4.7). Thus we obtain a homomorphism of abelian
groups

W : GW (F )→ KW
Π (F ),

and the projections to the individual terms Wi : GW (F )→ KW
i (F ) constitute the refined Stiefel-

Whitney classes.
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Remark 4.18. If we think of GW (F ) as the Grothendieck-Witt ring of symmetric bilinear forms,
we may extend the above definition to characteristic 2: Indeed, from the above, we only have
to check the additional relation (derived of (4.6))

(1 + [u])(1 + [u]) = 1 ∈ KW
Π (F ),

which is equivalent to [u][u] = 0 and 2[u] = 0. The former follows from (4.1), since [−1] = [1] = 0,
and the latter is a consequence of the independence of squares, axiom (MW2), and the former:

0 = [1] = [u2] = 2[u] + η[u][u] = 2[u].

However, we will have not much use for this.
To come back to the proof of lemma 4.15, we note first that the above construction is

functorial in the field F . Thus by propositions 3.28 and corollary 3.27, we obtain sheaf morphisms
Wi : H1

ét(On) → KW
i , for 1 ≤ i ≤ n. These induce a homomorphism Ωn : H̃A1

0 (BétOn) →⊕n
i=1 KW

i , and it remains to check that
n⊕
i=1

KW
i

H̃A1
0 (ιn)Sn−−−−−−→ H̃A1

0 (BétOn) Ωn−−→
n⊕
i=1

KW
i

is the identity. To see this, we may first precompose with the canonical epimorphism

H̃A1
0 (Bétµ

n
2 ) ↠ H̃A1

0 (Bétµ
n
2 )Sn

∼=
n⊕
i=1

KW
i ,

and then in turn with the universal morphism H1
ét(µn

2 )→ H̃A1
0 (Bétµ

n
2 ). The resulting composite

is nothing else than the universal morphism

H1
ét(µn

2 ) −→ H̃A1
0 (Bétµ

n
2 )Sn ,

that we derived earlier by use of lemma 4.10, and this completes the proof of the lemma.
Remark 4.19. From proposition 2.58, together with proposition 3.28, we know that the abelian
group HomAbA1

Nis(Smk)(H
A1
0 (BétOn),M), for any strictly A1-invariant sheaf M , is given by the

natural transformations between functors Fk → Set

a : H1
ét(On) −→M,

i.e. by cohomological invariants in the sense of [21, Def. 1.1]. Using moreover [39, (29.28)], we
see that HA1

0 (BétOn) only depends on the functor

Quadn : Fk −→ Set

F 7−→
{

isometry classes of non-deg.
quadratic forms of rank n over F

}
.

As such we have, again by [39, (29.28)], that HA1
0 (BétO(V, q)) ∼= HA1

0 (BétOn), where (V, q) is
another non-degenerate quadratic space of rank n, however the basepoint is shifted to q. We
note that such an isomorphism is more generally always present, when one considers an inner
form of a smooth algebraic group.
Remark 4.20 (Embedding of πA1

0 ). Before we analyse the interdependence of the Stiefel-Whitney
classes, we would like use the opportunity to address the following homotopy-theoretic situation:
Given a topological space X, recall that H0(X) is a free abelian group, for which the path
components π0(X) describe an explicit generating set. A similar set-up can be found for A1-
algebraic topology. Using proposition 2.58, we may consider the functor HA1

0 from sheaves of
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sets to strictly A1-invariant sheaves as a free strictly A1-invariant functor. Moreover, employing
the canonical isomorphism HA1

0 (X ) ∼= HA1
0 (πA1

0 (X )) (cf. [4, Prop. 3.5]), one may construct a
canonical morphism ρ

X

πA
1

0 (X ) HA1
0 (X ),

HA1
0 (πA1

0 (X ))

ρ

∼=

given some space X ∈ Spck. As in the classical case the path components not only generate,
but also embed, this raises the question whether ρ is a monomorphism. We will address this
problem throughout chapter 4 anecdotally and start with the case of X = BétOn.

Since ρ is a morphism from an unramified sheaf πA1
0 (BétOn) ∼= H1

ét(On) (cf. [17, Prop. 6.1])
to an unramified sheaf, it suffices to check that for all fields F ∈ Fk the Stiefel-Whitney classes
determine the Galois cohomology classes H1

ét(F,On), in order to see that ρ is a monomorphism.
Now, given two quadratic forms q1 = ⟨u1, . . . , un⟩ and q2 = ⟨v1, . . . , vn⟩ over F , with W1(q1) =
W1(q2), we obtain the equality

⟨⟨u1⟩⟩+ · · ·+ ⟨⟨un⟩⟩ = ⟨⟨v1⟩⟩+ · · ·+ ⟨⟨vn⟩⟩

in I(F ) by using the isomorphism KW
1 (F ) ∼= I(F ) (cf. [50, Cor. 3.47]). The desired isometry of

q1 and q2 can then be deduced by Witt’s cancellation theorem.

4.1.1 Some Combinatorial Identities

The refined Stiefel-Whitney classes are not completely independent of each other. There are
several combinatorial identities that relate them, most of which were also known classically.
Here we prove some of those that are useful for our later calculations. Therefore we will keep
a positive natural number n ≥ 1 fixed, as well as our assumption that k is a perfect field of
characteristic ̸= 2. We start with a simple statement that describes what happens, when we
plug padded quadratic forms into the refined Stiefel-Whitney classes.

Lemma 4.21. Let F ∈ Fk, q ∈ H1
ét(F,On), and δ ∈ F× be arbitrary. Setting W0 = 1, and

Wm = 0, for all m > n, then we find for all i ∈ {0, . . . , n+ n′} and n′ ∈ N

Wi(q ⊕ n′ · ⟨δ⟩) =
i∑

j=max{0,i−n′}

(
n′

i− j

)
[δ]i−jWj(q),

where on the left-hand side we have rank n+ n′ SW-classes, and on the right-hand side rank n
SW-classes. Moreover, we also have the following identity for all i ∈ {0, . . . , n}

Wi(q · ⟨δ⟩) =
i∑

j=0

(
n− j
i− j

)
[δ]i−j⟨δ⟩jWj(q).

Proof. We may assume that q is given in diagonal form by ⟨u1, . . . , un⟩. From this the identities
follow quickly by corresponding identities of elementary symmetric polynomials.

The next formula is useful, whenever we encounter a product of SW-classes. It allows us to
expand the product into a sum of SW-classes with combinatorial coefficients. These formulae
are not new, since they also hold in the classical case (cf. [48, pp. 330f.]).
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Lemma 4.22. Let F ∈ Fk, and q ∈ H1
ét(F,On) be arbitrary. Then we have for all 0 ≤ i ≤ j ≤ n:

Wi(q)Wj(q) =
i∑
l=0

(
i+ j − l

l, i− l, j − l

)
[−1]lWi+j−l(q),

where we have used the trinomial coefficient, which is defined for a natural number m ∈ N,
and indices a, b, c ∈ {0, . . . ,m} summing to m, via:(

m

a, b, c

)
= m!
a!b!c! .

Proof. We proceed as before, and assume q to be the diagonal form ⟨u1, . . . , un⟩. Define a
homomorphism of rings ψ : Z[X1, . . . , Xn, t] → KW

∗ (F ) that sends Xi to [ui], and t to [−1].
From lemma 4.2 we know that the ideal

a :=
(
X2
i −Xit

∣∣∣ i = 1, . . . , n
)

lies in the kernel of ψ. To establish the claim, it will be sufficient to check that

eiej ≡
i∑
l=0

(
i+ j − l

l, i− l, j − l

)
tlei+j−l mod a

holds for all 0 ≤ i ≤ j ≤ n, where e0, . . . , en ∈ Z[X1, . . . , Xn] are the elementary symmetric
polynomials in n variables, with ei being homogeneous of degree i, and where we set em = 0,
for all m > n. We omit giving more details.

We observe, that in the case that −1 is a square the refined SW-classes become multiplicative.
The next formula we state is rather complicated, so we first provide some motivation. Note

that there are several ways to embed On into On+1 (for n ≥ 1), with the obvious embedding
being given by

On → On+1, A 7→
(
A 0
0 1

)
.

Below, our aim will be to determine HA1
0 for the special orthogonal groups, so we will have

particular use for the embedding

On → On+1, A 7→
(
A 0
0 det(A)

)
,

as it factors through SOn+1. On Galois cohomology this later embedding sends a quadratic
form q to q ⊕ ⟨det(q)⟩. We analyse this situation with an additional parameter in the following
Lemma 4.23. Let F ∈ Fk, q ∈ H1

ét(F,On), and δ ∈ F× be arbitrary. Then we have for all
1 ≤ i ≤ n:

Wi(q ⊕ ⟨det(q)δ⟩) =
(

[δ] + ⟨δ⟩[−1]1 + (−1)i
2

)
Wi−1(q) +

(
1 + (−1)i−1i⟨δ⟩

)
Wi(q) + . . .

. . .+ (−1)i−1⟨δ⟩
n∑

j=i+1

(
j

i− 1

)
ηj−iWj(q).

Proof. We proceed by employing lemma 4.21, together with axiom (MW2):
Wi(q ⊕ ⟨det(q)δ⟩) = Wi−1(q)[det(q)δ] +Wi(q) = Wi−1(q)([δ] + ⟨δ⟩[det(q)]) +Wi(q).

Since symbols in KW
1 (F ) are independent of squares, we may assume, when expanding [det(q)],

that q is in diagonal form. Then we find inductively, using lemmas 4.21 and (MW2),

[det(q)] =
n∑
j=1

ηj−1Wj(q).

One concludes by lemma 4.22 and a lengthy (but straightforward) calculation.
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4.2 Special Orthogonal Groups

We continue assuming k to be perfect and of char(k) ̸= 2. The special orthogonal group with
respect to a quadratic space (V, q), where V is a finite dimensional k-vector space, and q is
a non-singular quadratic form on V over k is defined as the group of isometries of (V, q) of
determinant one:

SO(V, q) := ker
(
O(V, q) det−−→ µ2

)
.

Again we set SOn := SO(kn, qn), where qn is the rank n euclidean quadratic form. From the ar-
guments in [39, (29.29)], one obtains that on the category Fk the cohomology sheafH1

ét(SO(V, q))
is given by the functor

Quadn,δ : Fk −→ Set

F 7−→


isometry classes of

non-deg. quadratic spaces (V ′, q′), with
dimF (V ′) = n and det(q′) = δ

 ,
where δ := det(q). So, in order to determine HA1

0 (BétSO(V, q)) for all non-degenerated quadratic
spaces (V, q), it suffices to determine the cohomological invariants of Quadn,δ in any strictly A1-
invariant sheaf M , for all n > 1 and δ ∈ k×. Our approach is motivated by the discussion in
[21, Ch. VI].

We postpone the case n = 2, and fix n > 2 and δ ∈ k×. In addition to the euclidean form
qn = n · ⟨1⟩, we also define the form qn,δ := (n − 1)⟨1⟩ ⊕ ⟨δ⟩ and associated groups On,δ resp.
SOn,δ. By setting ιn,δ : On−1 → SOn,δ to be the homomorphism

A 7−→
(
A 0
0 det(A)

)
of algebraic groups, we obtain a commutative diagram

On−1 SOn,δ

On,δ,

ιn,δ

leading to the induced diagram of Fk → Set functors

Quadn−1 Quadn,δ

Quadn.

Hereby the horizontal arrow sends a non-degenerate quadratic form q of rank n− 1 to the form
q⊕ ⟨det(q)δ⟩. As such, this transformation is surjective on all F ∈ Fk, since any quadratic form
q′ ∈ Quadn,δ can be diagonalised, so we may assume q′ ≃ ⟨u1, . . . , un⟩. As we have det(q′) = δ,
we find in particular un ≡ u1 · · ·un−1δ modulo (F×)2, from which surjectivity is evident. This
leads to an induced injection

HomShNis(Smk)(H1
ét(SOn,δ),M)︸ ︷︷ ︸

∼=Invk(Quadn,δ,M)

↪−→ HomShNis(Smk)(H1
ét(On−1),M)︸ ︷︷ ︸

∼=Invk(Quadn−1,M)

.

So, we would like to determine those invariants in Invk(Quadn−1,M) that actually come from
invariants on Quadn,δ. Moreover, by restricting invariants from Quadn, we also have a method
of generating new invariants on Quadn,δ.
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Example 4.24. Set n = 5, and δ = 1. Let q′ be a quadratic form of dimension four. When we
evaluate the SW-classes defined on H1

ét(O5) on the form q := q′⊕⟨det(q′)⟩, we obtain by lemma
4.23, where on the right-hand side we have SW-classes on H1

ét(O4):

W1(q) = 2W1(q′) +ηW2(q′) +η2W3(q′) +η3W4(q′),
W2(q) = [−1]W1(q′) −W2(q′) −3ηW3(q′) −4η2W4(q′),
W3(q) = 4W3(q′) +6ηW4(q′),
W4(q) = [−1]W3(q′) −3W4(q′), and W5(q) = 0.

From this, we immediately see that the SW-classes on H1
ét(O5) restricted to Quad5,1 are not

independent, as we have at least the following relations:

W1(q) = −ηW2(q) + η3W4(q), W3(q) = −2ηW4(q), and W5(q) = 0.

In particular, we see that the odd SW-classes are KW
∗ (k)-dependent on the even ones. We

would like to use this opportunity to introduce another perspective. Any normed3 invariant
a ∈ Invnorm.

k (Quad5,M) may be given by finding λi ∈ HomAbNis(Smk)(KW
i ,M), for all i = 1, . . . , 5

such that

a = λ1 ◦W1 + · · ·+ λ5 ◦W5

holds. In the following we omit denoting the composition explicitly by ◦. Now restricting along
ι5,1, we obtain another invariant, which we may write as

λ′
1W1 + . . . λ′

4W4,

with SW-classes of rank 4, and where the λ′
i lie in HomAbNis(Smk)(KW

i ,M). Any element x ∈
KW
i (k) induces a homomorphism x · (−) : KW

∗ → KW
∗+i, by proposition 3.28, which we abusively

denote by x as well. By precomposing, this gives an action of KW
∗ (k) on the graded abelian

group HomAbNis(Smk)(KW
∗ ,M). We use this to describe the λ′

i:

λ′
1 = 2λ1 + λ2[−1], (4.9)
λ′

2 = λ1η − λ2,

λ′
3 = λ1η

2 − 3λ2η + 4λ3 + λ4[−1], and
λ′

4 = λ1η
3 − 4λ2η

2 + 6λ3η − 3λ4.

Moreover, we see that with respect to this action, the λ′
i are not independent, as we have the

relations

λ′
1 + λ′

2[−1] = 0, and λ′
1η

2 − 3λ′
2η + 3λ′

3 + λ′
4[−1] = 0. (4.10)

We briefly show the converse, namely, that any invariant λ′
1W1+· · ·+λ′

4W4 in Invnorm.
k (Quad4,M)

comes from an invariant of Quad5,1, when the relations (4.10) hold. In order to do that, we have
to construct an invariant of Quad5,1, which we do by restricting a suitable invariant of Quad5.
Since we already know that the odd SW-classes are dependent, we start with an ansatz in which
λ1, λ3 and λ5 are zero (cf. (4.9)). This allows us to derive λ2 = −λ′

2 and

λ′
3η − λ′

4 = λ4 + λ2η
2,

3The functor Quad5 maps canonically to Set•, by taking q5 as the distinguished point. As such, being a normed
invariant means sending q5 to zero. In the morphism of sheaves point of view, the normed invariants correspond
to morphisms of pointed sheaves.
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or equivalently λ4 = λ′
2η

2 +λ′
3η−λ′

4. With this choice of λ2 and λ4, together with the relations
(4.10), we obtain λ′

1, . . . , λ
′
4 back from (4.9). In particular the map{

(λ′
1, . . . , λ

′
4)
∣∣ fulfilling (4.10)

}
−→ HomAbNis(Smk)(KW

2 ,M)⊕HomAbNis(Smk)(KW
4 ,M)

(λ′
1, . . . , λ

′
4) 7−→ (−λ′

2, λ
′
2η

2 + λ′
3η − λ′

4)

is bijective, with inverse induced by (4.9). In this way, we obtain a twofold description of the
normed invariants of Quad5,1: Namely, as those Quad4-invariants that are subject to the relations
(4.10), or equivalently as those invariants of Quad5 that are spanned by W2 and W4. The latter
point of view immediately yields an isomorphism

H̃A1
0 (BétSO5) ∼= KW

2 ⊕KW
4 ,

induced by W2 and W4.

The above example is the blueprint for our discussion of HA1
0 (BétSO(V, q)), for (V, q) a non-

degenerate quadratic space. Therefore we first note the following corollary readily employing
the notation introduced in the example:

Corollary 4.25. Let n ≥ 1, and δ ∈ k× be arbitrary. Given an invariant a of Quadn, defined
by λi ∈ HomAbNis(Smk)(KW

i ,M), for i = 1, . . . , n, and λ0 ∈M(k) such that

a = λ0 + λ1W1 + · · ·+ λnWn

holds, then its restriction along ιn,δ is given as a combination λ′
0 +λ′

1W1 + · · ·+λ′
n−1Wn−1, with

λ′
i =

i−1∑
l=1

(−1)l−1
(

i

l − 1

)
λl⟨δ⟩ηi−l + λi

(
1 + (−1)i−1⟨δ⟩i

)
+ λi+1

(
[δ] + ⟨δ⟩[−1]1 + (−1)i+1

2

)
,

for all i ∈ {0, . . . , n− 1}, where λj with j outside {0, . . . , n} is set to zero.

Proof. Follows from lemma 4.23 by elementary sum transformations.

An important feature we would like to highlight about the preceding statement is, that the
λ′
i are independent of n, a fact which allows us to employ inductive arguments later on. Let us

derive some relations in the style of example 4.24. Later we will see that these are all necessary
relations. As an “a priori” motivation of those, we stress that in the classical case Garibaldi and
Serre (cf. [21, Sec. 19]) proceed similarly.

Let n > 2, and δ ∈ k× be arbitrary. We also fix a strictly A1-invariant sheaf M , and some
field F ∈ Fk. Now given an invariant a ∈ Invk(Quadn−1,M), which we assume comes from an
invariant a′ ∈ Invk(Quadn,δ,M), then for any choice u1, . . . , un−1 ∈ F×, we have

a′(⟨u1, . . . , un−1, δu1 · · ·un−1⟩) = a′(⟨u1, . . . , un−2, δu1 · · ·un−1, un−1⟩).

Since a is the restriction of a′, the above equality implies

a(⟨u1, . . . , un−1⟩) = a(⟨u1, . . . , un−2, δu1 · · ·un−2⟩).

In order to derive conditions on a, we want to read the latter equality as an equality of invari-
ants on Quadn−2, so assume we are given some quadratic form q ≃ ⟨u1, . . . , un−2⟩, and take a
parameter un−1 ∈ k×, then we consider the homomorphism

∆(n)
un−1,δ

: Invk(Quadn−1,M) −→ Invk(Quadn−2,M)

a 7−→
(

Quadn−2 →M
on F : q 7→ a(q ⊕ ⟨un−1δ det(q)⟩)− a(q ⊕ ⟨un−1⟩)

)
.
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Any Quadn,δ-invariant is mapped to zero, so we proceed by analysing conditions for an invariant
a ∈ Invk(Quadn−1,M) to be in the kernel of ∆(n)

un−1,δ
. Assume that a is given by λ0 ∈ M(k),

and λi ∈ HomAbNis(Smk)(KW
i ,M). Our aim is to derive conditions that are expressions in the

coefficients λi. By lemma 4.21, we have

a(q ⊕ ⟨un−1⟩) = λ0 + λ1[un−1] +
n−2∑
i=1

(λi+1[un−1] + λi)Wi(q).

If we write ∆(n)
un−1,δ

(a) in the form λ′
0 + ∑n−2

i=1 λ
′
iWi, with λ′

0 ∈ M(k) and the λ′
i lying in

HomAbNis(Smk)(KW
i ,M), then the above, together with corollary 4.25, yields

λ′
i =

i∑
l=1

(−1)l−1
(

i

l − 1

)
λlη

i−l⟨un−1δ⟩+ λi+1

(
[δ] + ⟨δ⟩[−1]1 + (−1)i+1

2

)
⟨un−1⟩,

for all i = 0, . . . , n − 2. Since ⟨un−1⟩ squares to one in KMW
∗ (k) (cf. lemma 4.2), we see that

being in the kernel of ∆(n)
un−1,δ

is independent of a particular choice of un−1. By multiplying with
⟨δ⟩, we obtain the following set of relations

i∑
l=1

(−1)l−1
(

i

l − 1

)
λlη

i−l + 1 + (−1)i+1

2 λi+1[−1] = λi+1[δ], (R)

numbered by i ∈ {0, . . . , n−2}, holding in HomAbNis(Smk)(KW
i ,M) resp. M(k). The form of these

conditions has the striking advantage that they strictly contain each other, i.e. by increasing n,
one only has to add relations, keeping earlier ones. Hence, let us give a list of the first four,
among which we may recognize some of the relations that we found in example 4.24:

0 = λ1[δ],
λ1 + λ2[−1] = λ2[δ],
λ1η − 2λ2 = λ3[δ],

λ1η
2 − 3λ2η + 3λ3 + λ4[−1] = λ4[δ], and so forth.

We see explicitly that these relations are far from being independent of each other, since e.g.
(R)(1) implies (R)(0) and (R)(2). However, they turn out to contain all the necessary ones. In
particular, when we fix the name RMn,δ for the kernel of ∆(n)

x,δ , with x ∈ k× arbitrary, we obtain

Proposition 4.26. The restriction along ιn,δ : Quadn−1 ↠ Quadn,δ induces a (natural in M)
isomorphism

Invk(Quadn,δ,M)
∼=−−→ RMn,δ ⊆ Invk(Quadn−1,M).

Proof. Clearly, by construction of RMn,δ, and the surjectivity of ιn,δ, we obtain an injective ho-
momorphism

r : Invk(Quadn,δ,M) −→ RMn,δ,

as claimed. So, it remains to check the surjectivity of r. To that end, fix an invariant a ∈ RMn,δ,
and our aim is to check that it comes from an invariant on Quadn,δ. Therefore we define, for
every F ∈ Fk and diagonal quadratic form ⟨u1, . . . , un⟩ ∈ Quadn,δ(F ),

a′(⟨u1, . . . , un⟩) = a(⟨u1, . . . , un−1⟩).

We have to check that this is well-defined. So, given an isometry ⟨u1, . . . , un⟩ ≃ ⟨v1, . . . , vn⟩ of
diagonal forms having determinant δ, we know by Witt’s chain equivalence theorem [40, Thm.
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I.5.2] that there is a chain equivalence between those two presentations, which we may assume
to be simple. Thus we find two distinct indices i, j ∈ {1, . . . , n}, with i < j, such that

⟨ui, uj⟩ ≃ ⟨vi, vj⟩,

holds, as well as ui′ = vi′ for the remaining indices i′ ∈ {1, . . . , n}∖{i, j}. When we have i, j < n,
we immediately obtain the desired equality

a(⟨u1, . . . , un−1⟩) = a(⟨v1, . . . , vn−1⟩),

by Witt’s extension theorem (cf. [40, Exc. I.11]). For the remaining cases, it suffices without
loss of generality to consider i < n− 1 and j = n. Note that we may derive

a(⟨u1, . . . , un−2, δu1 · · ·un−2un⟩) = a(⟨u1, . . . , un−2, un⟩),

by using the above combinatorial identities 4.21 and 4.23, and employing the relations (R). Now
we conclude well-definedness by the following calculation:

a(⟨u1, . . . , un−1⟩) = a(⟨u1, . . . , un−2, δu1 · · ·un−2un⟩) = a(⟨u1, . . . , un−2, un⟩) =
= a(⟨v1, . . . , vn−2, vn⟩) = a(⟨v1, . . . , vn−1⟩).

From this it is clear that a′ defines an invariant that restricts to a on Quadn−1.

The above proposition determines the invariants of Quadn,δ completely, however, in order
to obtain a neat formula for HA1

0 (BétSOn,δ), we need to find a strictly A1-invariant sheaf that
corepresents R(−)

n,δ . We reduce the problem to linear algebra, in the following way:
The homomorphism ∆(n)

1,δ induces a homomorphism on normed invariants, which we denote by
the same name. We may represent ∆(n)

1,δ by the matrix

(A(n, δ))1≤i≤n−2
1≤j≤n−1

:=


(−1)j−1( i

j−1
)
ηi−j , if j ≤ i,

1+(−1)i+1

2 [−1]− [δ], if j = i+ 1, and
0, else ,

in such a way that a normed invariant λ1W1 + · · · + λn−1Wn−1 in Invnorm.
k (Quadn−1,M), with

λi ∈ HomAbNis(Smk)(KW
i ,M) for i = 1, . . . , n, is sent to the normed invariant

n−2∑
i=1

n−1∑
j=1

λjA(n, δ)i,j

Wi.

We now define transformations of Invnorm.
k (Quadn−1,M), and Invnorm.

k (Quadn−2,M), again in
matrix notation, so that the kernel of ∆(n)

1,δ can easily be read off. We begin by defining an
invertible (n− 1)× (n− 1)-matrix T (n, δ) with entries in KW

∗ (k) via

(T (n, δ))1≤i,j≤n−1 :=



[δ]− [−1], if j is even ∧ i = j − 1,
1 + i−2

2 η([δ]− [−1]), if j is even ∧ i = j,

ηi−j
((i−1
j−2
)
−
(i−1
j−1
) j−2

2

)
, if j is even ∧ i > j,

1, if j is odd ∧ i = j,

j−1
2 η, if j is odd ∧ i = j + 1, and

0, else.
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It is a straightforward exercise to show that the product A(n, δ)T (n, δ) fulfils

(A(n, δ)T (n, δ))1≤i≤n−2
1≤j≤n−1

:=



−[δ], if j is odd ∧ i = j − 1,
1− i−1

2 η[δ], if j is odd ∧ i = j,

ηi−j
(( i
j−1
)
−
(i
j

) j−1
2

)
, if j is odd ∧ i > j,

0, else,

,

so that by multiplying on the left with a product of elementary matrices, one obtains a matrix

(D(n, δ))1≤i≤n−2
1≤j≤n−1

:=


−[δ], if j is odd ∧ i = j − 1,

1, if j is odd ∧ i = j, and
0, else.

From this, the following is an easy corollary:

Proposition 4.27. Let k be a perfect field of characteristic ̸= 2, n ≥ 3, and δ ∈ k×. If n is
odd, then there is an isomorphism

HA1
0 (BétSOn,δ) ∼= Z⊕

n−1⊕
i=2
i even

KW
i .

In the case that n is even, we consider the graded ideal R := ([δ], h) ⊆ KMW
∗ (k), so that by

remark 4.6 the sheaf KR
n−1 is strictly A1-invariant. Then there is an isomorphism

HA1
0 (BétSOn,δ) ∼= Z⊕

n−2⊕
i=2
i even

KW
i ⊕KR

n−1.

Proof. We only treat the case of n being even and ≥ 4, since the complementary case is simpler
and can be handled analogously. For any M strictly A1-invariant, the above constructed simi-
larity transform of A(n, δ) comes with two isomorphisms, one of Invnorm.

k (Quadn−1,M), and one
of Invnorm.

k (Quadn−2,M), such that the kernel RMn,δ of ∆(n)
1,δ is isomorphic to

M ⊕HomAbNis(Smk)(KW
2 ,M)⊕ · · · ⊕HomAbNis(Smk)(KW

n−2,M)⊕ UMn,δ,

where UMn,δ is the subgroup of HomAbNis(Smk)(KW
n−1,M) given by homomorphisms annihilating

the subgroup [δ]KW
n−2(F ), for all F ∈ Fk. Note that from the construction of the similarity

transform it is clear, that this isomorphism is natural with respect to M .
Using the theory of [50, Lem. 3.32], we see that KR

n−1 yields a strictly A1-invariant sheaf, that
evaluates to the abelian group KW

n−1(F )/[δ]KW
n−2(F ), for every F ∈ Fk. By propositions 3.25

and 3.28 we get that KR
n−1 corepresents U (−)

n,δ , concluding the proof of the proposition.

Remark 4.28. From the above proposition, we may deduce the form of HA1
0 (BétSO(V, q)), for

any non-degenerate quadratic space (V, q) of dimension n ≥ 3 and determinant δ, by considering
SO(V, q) an inner form of SOn,δ, with δ := det(q), similarly as in remark 4.19.
Remark 4.29 (Embedding of πA1

0 ). The invariants of proposition 4.27 determine the elements
of the Galois cohomology set H1

ét(−,SOn,δ) completely. Indeed, for quadratic forms of rank n
and determinant δ with agreeing SOn,δ-invariants, one may derive that all their On-invariants
agree as well, by restricting the On-invariants and rewriting them in terms of the universal
SOn,δ-invariants.4 One then finishes by employing remark 4.20.

4The explicit formulae relating On- and SOn,δ-invariants are rather lengthy, and since they bring little addi-
tional benefit, we omit them here.
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4.3 The Symmetric Groups

In this section our aim is to determine HA1
0 (BétSn), where Sn denotes the symmetric group in

n symbols. We proceed, as laid out by Morel in his ICM address (cf. [49, Thm. 5.3]), and thus,
since we intend to use the case of the orthogonal groups above, we still assume k to be perfect
and of characteristic ̸= 2. One may also compare our course of action with the classical case
of [21, Thm. 24.11], i.e. the determination of the invariants of Sn, with values in the Galois
cohomology of Z/(2), in light of the characterisation of morphisms of unramified sheaves.

Let us first define the functor Etn : Fk → Set, which maps a field F ∈ Fk to the set of F -
isomorphism classes of rank n étale F -algebras. By [39, (29.9)] we have a natural (in F ∈ Fk)
bijection

Etn(F ) ∼= H1
ét(F, Sn),

that works in the following way: Given such an étale F -algebra, postcomposition by elements
of the Galois group Gal(Fsep/F ) defines an action on the set

HomAlgF
(E,Fsep)

containing precisely n elements, effectively defining a 1-cocycle. Conversely, any continuous
homomorphism γ : Gal(Fsep/F )→ Sn determines the étale F -algebra of rank n{

(x1, . . . , xn) ∈ (Fsep)n
∣∣∣ σ(xi) = xγ(σ)(i), ∀σ ∈ Gal(Fsep/F )

}
.

We also recall the following piece of notation: Any étale F -algebra E is called multiquadratic
if and only if it is isomorphic to a product of étale F -algebras of rank 1 or 2. In the following
proposition we relax the assumption that k is perfect, in order to salvage an inductive argument
(cf. [21, Thm. 24.9]) due to Garibaldi and Serre over to our setting.

Proposition 4.30 (Splitting principle). Let M be a strictly A1-invariant sheaf, and let us fix a
morphism

a ∈ HomShNis(Smk)(H1
ét(Sn),M)

such that its restriction to Fk vanishes for all multiquadratic étale algebras. Then a is trivial as
a morphism of pointed sheaves.

Proof. We proceed by induction over n ∈ N+. The cases of n = 1 or n = 2 are trivial by
assumption, using the fact that morphisms from a weakly unramified sheaf to an unramified
sheaf are determined on fields (cf. proposition 3.25 and remark 3.21).

So assume n ≥ 3. We first derive from the inductive hypothesis, that given an étale F -
algebra E of rank n that decomposes as E′ × E′′, where E′ resp. E′′ are étale F -algebras of
rank i resp. n − i, with i ∈ {1, 2}, we have a(E) = 0.5 Let us denote the structural morphism
Spec(F )→ Spec(k) by f , and consider the morphism f∗(a). To be precise, we apply the pullback
functor f∗ on sheaves of sets, and as Smk has fiber products f∗(M) agrees with the pullback
on sheaves of abelian groups (cf. [47, Prop. II.2.3]). By corollary 2.41 we thus have that f∗(M)
is again strictly A1-invariant. Moreover, connecting the definition of f∗ (e.g. [47, Prop. II.2.2])
and of the essentially smooth extension, we see that

f∗(M) ∼= aNis
(
M̌↾SmF

)
5Note that we refrain from distinguishing étale algebras and their associated isomorphism classes, in an effort

increase readability.
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holds. Applying a similar reasoning to the sheaf H1
ét(Sn) and using the continuity of H1

ét(−, Sn)
(cf. [42, Thm. 2.1]), we obtain

f∗(H1
ét(Sn)) ∼= H1

ét(Sn)

as sheaves of sets over SmF . Thus the restrictions of f∗(a) and a to FF agree. So we may
construct, using the product induced by the homomorphism Si × Sn−i → Sn, a morphism

a′ : H1
ét(Sn−i) −→ f∗(M)

on X ∈ SmF : T 7−→ f∗(a)
(
E′
X · T

)
.

By the above arguments the morphism a′ inherits the property of a to vanish on multiquadratic
étale algebras, and thus by the inductive hypothesis, a′ needs to be trivial. Hence we obtain our
claim a(E) = 0, of which we intend to make use of below.

To proceed, we recall the definition of a versal torsor (cf. 5.1 and 24.6 in [21]) associated to
Sn in order to apply the recognition principle 3.29: Denote by Affx and Affe the affine spaces

Spec(k[x1, . . . , xn]) and Spec(k[e1, . . . , en]),

where the x1, . . . , xn resp. e1, . . . , en are variables. Sending the variable ei to the elementary
symmetric polynomial of degree i ∈ {1, . . . , n} in the variables x1, . . . , xn, we obtain a ring
homomorphism

k[e1, . . . , en] −→ k[x1, . . . , xn],

which induces a morphism φ : Affx → Affe. By the fundamental theorem for symmetric poly-
nomials we may identify the ring k[e1, . . . , en] with the ring of invariants k[x1, . . . , xn]Sn , where
the action of Sn works by permuting the xi. This action is free outside of⋃

1≤i<j≤n
V (xi − xj),

which is the preimage (under φ) of the divisor6 V (δ) ⊆ Affe, where δ denotes the discriminant
of the polynomial

n∏
i=1

(T − xi) = Tn − e1T
n−1 + e2T

n−2 − · · · ± en,

and thus is given as ∏
1≤i<j≤n

(xi − xj)2,

or by some irreducible polynomial in the e1, . . . , en, as char(k) ̸= 2. With the notation of [21,
Def. 5.1] in mind, we set X := D(δ), and Q its preimage under φ, so that Q φ−→ X becomes an
étale Sn-torsor over X. The generic fibre of φ, yields the field extension

Ẽgen := k(x1, . . . , xn) over F := k(e1, . . . , en),

which is a Galois extension, with Galois group Sn, i.e. a Sn-torsor over F . An associated étale
F -algebra of rank n may be given by

F (x1), . . . , F (xn), or Egen := F [T ]/(Tn − e1T
n−1 + e2T

n−2 − · · · ± en).
6Here we are using char(k) ̸= 2, since otherwise δ would not be irreducible.
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The possible choice F (xi) is in Galois correspondence to the embedding of Sn−1 into Sn fixing
i = 1, . . . , n, and all of these options are conjugate.

We want to check that a(Egen) lies in the image of M(k) in M(F ). Therefore we note first,
that by the construction of Ẽgen as the generic fibre of Q→ X, we have

a(Egen) ∈M(X) =
⋂

x∈X(1)

M(OX,x).

We check that it also resides in M(A), with A := OAffe,(δ), associated to the remaining codimen-
sion 1 point in Affe. In order to proceed, consider the decomposition field of Ẽgen/F (cf. [57,
I.9]): So, we fix a prime ideal (of k[x1, . . . , xn]p) lying over p := (δ) ⊆ A, and out of convenience
we choose P := (x1 − x2). The associated decomposition group is given by

S2 × Sn−2 ⊆ Sn,

and the corresponding subfield of Ẽgen will be denoted by D. It is well known that D/F is an
immediate extension, i.e. of ramification index 1, and with trivial extension of residue fields.
Moreover, from the explicit description of the decomposition group, we see that the polynomial
defining Egen splits over D, at least as:

n∏
i=1

(T − xi) = (T − T (x1 + x2) + x1x2) ·
n∏
i=3

(T − xi).

This implies that Egen ⊗F D is the product of a quadratic field extension, and some rest. So,
from the case treated earlier, we derive:

a(Egen)D = 0.

As D/F is immediate, we may apply (A1) to obtain a cartesian diagram7

M(A) M(B)

M(F ) M(D)

⋂ ⋂ ,

where B denotes the integral closure of A in D, localized with respect to (x1 − x2). As M(B)
is a subgroup of M(D), we find that a(Egen) lies in M(A), and since M is an unramified sheaf,
we conclude

a(Egen) ∈
⋂

x∈Aff(1)
e

M(OAffe,x) ∼= M(Affe).

Even more so, since M is A1-invariant, we have M(Affe) ∼= M(k). This checks the above claim.
By the recognition principle 3.29, we see that a and the constant morphism with value

a(Egen) ∈ M(k) agree. So we find that a is constant. Moreover, since a evaluates, at least
on multiquadratic étale algebras, to zero, it must be zero. This concludes the proof of the
proposition.

Remark 4.31. In [23] Gille and Hirsch provide a splitting principle for Weyl groups, with values
in cycle modules. It seems likely that their arguments generalize to the case of strictly A1-
invariant sheaves, however, since we were unable to obtain more HA1

0 by using their splitting
principle, we did not explore this direction further.

7Here we use (A1) in the case of abelian groups, not merely of sets.
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Let n ∈ N+ be a positive integer, and denote by m =
⌊
n
2
⌋

the smallest integer less or equal
to n

2 . Then we have an injection

cn : µm
2 −→ Sn

(ϵ1, . . . , ϵm) 7−→ (1 2)
1−ϵ1

2 · · · (2m− 1 2m)
1−ϵm

2 .

As in [21, Thm. 24.11], one deduces from the splitting principle that the restriction of invariants
along cn is injective. Let us reformulate this in the language of A1-algebraic topology:

Corollary 4.32. The homomorphism of groups cn induces an epimorphism

H̃A1
0 (Bétµ

m
2 ) −↠ H̃A1

0 (BétSn)

of strictly A1-invariant sheaves.

Consider Sm as the subgroup of Sn that permutes the pairs {(1, 2), (3, 4), . . . , (2m− 1, 2m)},
which nets an action of Sm on Sn by conjugation. This action is compatible, via the homomor-
phism cn, with the action that permutes the entries in µm

2 . Considering the induced action on
H1

ét, we see by using the 1-cocycle definition of cohomology, as in the case of On above, that
the induced action of Sm on H1

ét(F, Sn) is trivial, for all F ∈ Fk. Thus we have an induced
epimorphism of coinvariants

H̃A1
0 (Bétµ

m
2 )Sm ↠ H̃A1

0 (BétSn)Sm
∼= H̃A1

0 (BétSn).

By defining a suitable left inverse, we will obtain that H̃A1
0 (Bét(cn))Sm is actually an isomorphism.

Therefore we use the explicit description of the left-hand side as

KW
1 ⊕ · · · ⊕KW

m , (4.11)

available by lemma 4.9. We compose cn with the embedding of Sn into On via the permu-
tation matrices, and consider the induced situation on H̃A1

0 (Bét(−)) and their associated Sm-
coinvariants:

H̃A1
0 (Bétµ

m
2 ) H̃A1

0 (BétSn) H̃A1
0 (BétOn)

H̃A1
0 (Bétµ

m
2 )Sm H̃A1

0 (BétSn)Sm H̃A1
0 (BétOn)Sm .

H̃A1
0 (Bétcn)

∼= ∼=

By means of the refined Stiefel-Whitney classes, the first row leads to a homomorphism to (4.11),
and we shall focus on unwrapping how it is defined: Fix a field F ∈ Fk, and a tuple of units
up to squares (u1(F×)2, . . . , um(F×)2) representing a 1-cocycle in H1

ét(F,µm
2 ), then by running

through the definitions, we arrive at

(W1(q), . . . ,Wn(q)), with q = m · ⟨2⟩ ⊕ ⟨2⟩ · ⟨u1, . . . , um⟩ {⊕⟨1⟩, if n is odd.

We remark that the form q is the trace form of the multiquadratic étale F -algebra

F [T ]/(T 2 − u1)⊕ · · · ⊕ F [T ]/(T 2 − um) {⊕F, if n is odd.

Using lemma 4.21, we obtain

Wi(q) = (i− 1)[2]Wi−1(q′) + ⟨2⟩iWi(q′), ∀i = 0, . . . ,m, (4.12)

where q′ = ⟨u1, . . . , um⟩. Here we have used that, by lemma 4.2 and the Steinberg relation
(MW1), we have

[2]i = [2][−1][2]i−2 = 0,
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for all i ≥ 2, and resulting from that 2[2] = [4] = 0 by (MW2), and the independence of squares
in Witt K-theory. It is easy to see that formula (4.12) may be inverted, i.e. we obtain:

Wi(q′) = (i− 1)[2]Wi−1(q) + ⟨2⟩iWi(q), ∀i = 0, . . . ,m. (4.13)

This formula motivates the following definition of a left-inverse: For any F ∈ Fk, and E étale
F -algebra of rank n, representing an element of the cohomology set H1

ét(F, Sn), we define the
ith refined Galois-Stiefel-Whitney class by (1 ≤ i ≤ m)

W gal
i ([E]) := (i− 1)[2]Wi−1(qE) + ⟨2⟩iWi(qE),

where qE is a quadratic form representing the element to which E is mapped under the homo-
morphism induced by Sn ↪→ On.8 From (4.13) we obtain the following

Theorem 4.33 ([49, Thm. 5.3]). Let k be a perfect field of characteristic ̸= 2. Then we have
an isomorphism

H̃A1
0 (BétSn)

∼=−−→
m⊕
i=1

KW
i ,

which is induced by the refined Galois-Stiefel-Whitney classes W gal
i : H1

ét(Sn)→ KW
i .

Remark 4.34 (Embedding of πA1
0 ). The above invariants do not determine the étale algebras

completely, and let us briefly describe a counterexample for k = Q and n = 3. By a result of
Epkenhans and Krüskemper, one finds a cubic field extension E/Q with its trace form isometric
to the trace form of the split étale Q-algebra Q3 (cf. [18, Thm. 1]). Naturally, the Galois-Stiefel-
Whitney classes of E and Q3 agree, however these Q-algebras cannot be isomorphic.

Interlude: Small Tori

As a respite leading up to the case of the unitary groups, we treat the afore omitted special
orthogonal groups with respect to non-degenerate quadratic spaces (V, q) of rank 2. As above we
assume our field k to be perfect and of characteristic ̸= 2. When considering SO(V, q), similar
quadratic spaces lead to isomorphic groups, so that in the case of dimension 2, it suffices to
consider (k2, ⟨⟨δ⟩⟩). It is well-known that SO2,−δ = SO(k2, ⟨⟨δ⟩⟩) is isomorphic to the unitary
group U1,δ, with respect to the hermitian form ⟨1⟩H , and the étale extension k[X]/(X2 − δ)/k,
therefore linking this paragraph to the following section.

By using [39, (29.29)] as above, we see that the Galois cohomology group of SO2,−δ can be
represented as the isometry classes of rank 2 quadratic spaces, having determinant −δ. As noted
previously, we have a surjection Quad1 ↠ Quad2,−δ, so that we may identify the M -invariants
of SO2,−δ with a certain subgroup of

Invk(Quad1,M) ∼= M(k)⊕HomAbNis(Smk)(KW
1 ,M),

where M denotes some strictly A1-invariant sheaf. Given an invariant a = λ0 + λ1W1 of Quad1,
we may derive the condition for a to be an invariant of Quad2,−δ. For the subsequent arguments
we fix a field F ∈ Fk. Suppose we are given a quadratic form q, having determinant −δ,
and being represented by ⟨u1, u2⟩ and ⟨v1, v2⟩, where u1, u2 and v1, v2 are units in F . By [40,
Prop. I.5.1] we know that v1 is represented by ⟨u1, u2⟩, and since ⟨u1, u2⟩ ≃ ⟨u1,−δu1⟩, we find
(x, y) ∈ F 2∖{0} such that

u1x
2 − δu1y

2 = v1

8Note that we may take qE to be the trace form x 7→ TrE/F (x2) of E/F .
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holds. From this we read off, that equivalently u := v1
u1

is represented by the Pfister form ⟨⟨δ⟩⟩.
Now, for

λ1([v1]) (MW2)= λ1([u1] + [u]⟨u1⟩)

to agree with λ1([u1]), we have to demand that λ1([u]⟨u1⟩) = 0. So, in total the condition that
the invariant a defines an invariant for Quad2,−δ is that λ1 annihilates the KW

0 (F )-submodule
A(F ) of KW

1 (F ) generated by the symbols [u], with u ∈ DF (⟨⟨δ⟩⟩), and does so for all choices
F ∈ Fk.

We claim that A(F ) is given by the annihilator of [δ], i.e. by the kernel of the homomorphism

KW
1 (F ) [δ]·(−)−−−−→ KW

2 (F ).

It is a theorem due to Morel (cf. [52, Thm. 3.4.]) that [u] 7→ −⟨⟨u⟩⟩ induces an isomorphism of
graded rings from KW

∗ (F ) to I∗(F ), i.e. the powers of the fundamental ideal in W (F ). So we
transfer the problem to I∗(F ). By work of Witt and Pfister (exposed in [67, 2.10.13]) and its
generalization due to Arason and Elman (cf. [2, Thm. 2.3]), it is known that the annihilator of
⟨⟨δ⟩⟩ in In(F ) is composed of elements of the form ⟨⟨u⟩⟩q′, with u ∈ DF (⟨⟨δ⟩⟩) and q′ ∈ In−1(F ).
Transferring this back to Witt K-theory, we obtain our claim.

Now since A(F ) is the kernel of the product with the symbol [δ], we see that KW
1 (F )/A(F )

is the “principal ideal” generated by [δ] in KW
2 (F ). Hence we have that

Z⊕ [δ]KW
1 (4.14)

corepresents the invariants of SO2,−δ. Since [δ]KW
1 is the image of a homomorphism between the

strictly A1-invariant sheaves KW
1 and KW

2 , we see that (4.14) is isomorphic to HA1
0 (BétSO2,−δ).

If we carefully run through the above arguments and identifications, we obtain that

H1
ét(SO2,−δ)→ [δ]KW

1

on F ∈ Fk : ⟨u1, u2⟩ 7→ [δ][u1]

is the universal morphism of pointed sheaves inducing this isomorphism. We are going to
generalize the statements of this section in proposition 4.36.

4.4 Unitary Groups

In this section we handle the case of unitary groups, still in the case that the perfect base field k
is of characteristic ̸= 2. The definition of the unitary groups is analogous to the definition of the
orthogonal groups: For any n ∈ N+ we consider the standard hermitian form qn,H := n⟨1⟩H with
respect to the étale extension k1/k, where k1 := k[X]/(X2 − δ), and set the group of associated
isometries to be Un,δ (cf. [39, p. 346]). By [39, Ex. (29.19)] we know that the Galois cohomology
set of Un,δ can be functorially presented by

Hermn,δ : Fk −→ Set

F 7−→
{

F -isometry classes of
hermitian forms w.r.t. F ⊗k k1/k

}
.

Since every hermitian form is diagonalizable, and the map on Galois cohomology induced by the
standard embedding On ↪→ Un,δ is given by

H1
ét(F,On) −→ H1

ét(F,Un,δ)
⟨u1, . . . , un⟩ 7−→ ⟨u1, . . . , un⟩H ,
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4.4 Unitary Groups

we see that this map needs to be surjective. Moreover, by embedding Un,δ into the orthogonal
group O(n⟨⟨δ⟩⟩), one obtains an induced injection on Galois cohomology

H1
ét(F,Un,δ) ↪−→ H1

ét(F,O(n⟨⟨δ⟩⟩)) (4.15)
⟨u1, . . . , un⟩H 7−→ ⟨⟨δ⟩⟩ · ⟨u1, . . . , un⟩.

We define invariants of Hermn,δ analogous to [21, Lem. 21.4]:
Lemma 4.35. For every 1 ≤ i ≤ n we have well-defined invariants

WH
i : Hermn,δ −→ [δ]KW

i

on F ∈ Fk : ⟨u1, . . . , un⟩H 7−→ [δ]Wi(⟨u1, . . . , un⟩).

Proof. The case of n = 1 has been checked in the above interluding section. We come to n = 2:
Suppose we are given a field F ∈ Fk and an hermitian form h with respect to F ⊗k k1/k that
may be presented in diagonal form by ⟨u1, u2⟩H and ⟨v1, v2⟩H . Thus we have an F -isometry

⟨u1, u2,−δu1,−δu2⟩ ≃ ⟨⟨δ⟩⟩ ⊗ ⟨u1, u2⟩ ≃ ⟨⟨δ⟩⟩ ⊗ ⟨v1, v2⟩ ≃ ⟨v1, v2,−δv1,−δv2⟩

of quadratic forms, which are of determinant 1. So, we may apply the SO4 invariant W3 to it,
to obtain the equality

[u1][u2][u1(−δ)] = [v1][v2][v1(−δ)]

in KW
3 (F ). Using [u1][−u1] = 0 from lemma 4.2, together with axiom (MW2), we arrive at

[u1][u2][δ] = [v1][v2][δ],

checking the well-definedness of WH
2 in the case n = 2. So we consider WH

1 in n = 2 next. Note
therefore that the determinant of the hermitian form h is given by u1u2, and is determined up
to a factor from DF (⟨⟨δ⟩⟩) (cf. [39, p. 114]). Hence by the case of small tori considered earlier,
we have

[δ][u1u2] = [δ][v1v2].

Expanding both sides according to (MW2), and using the case of WH
2 , we obtain

[δ]([u1] + [u2]) = [δ]([v1] + [v2]).

This checks well-definedness in the cases n = 1, 2. For all higher n, we appeal to Witt’s chain
equivalence for hermitian forms (cf. [79, p. 36]).

We call the maps WH
i the refined hermitian Stiefel-Whitney classes. The following is com-

pletely in parallel to [21, Thm. 21.6].
Proposition 4.36. Let k be a perfect field of char(k) ̸= 2, and let δ ∈ k× be any unit. Then we
have an isomorphism

H̃A1
0 (BétUn,δ) ∼= [δ]KW

1 ⊕ · · · ⊕ [δ]KW
n ,

which is induced by the refined hermitian Stiefel-Whitney classes.
Proof. Let a : H1

ét(Un,δ)→M be a morphism of pointed sheaves, where M denotes a strictly A1-
invariant sheaf. We think of a as an invariant of Hermn,δ. From the surjection Quadn ↠ Hermn,δ,
we obtain a unique normed invariant of On, that we know is given as

λ1W1 + · · ·+ λnWn,

where λi ∈ HomAbNis(Smk)(KW
i ,M). One checks inductively over i = 1, . . . , n that each λi

annihilates the subgroup DF (⟨⟨δ⟩⟩)KW
i−1(F ), for every F ∈ Fk. Thus, by [2, Thm. 2.3], we

know that each λi vanishes on the annihilator of [δ]. As above, this allows us to regard λi as
a homomorphism [δ]KW

i → M , and replace the Wi by WH
i . Then one concludes by remark

2.59.
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Note that the above statement is trivial in the case that δ is a square, as Un,δ is then isomorphic
to the special group GLn.
Remark 4.37 (Embedding of πA1

0 ). We argue as in remark 4.20 to see that the refined hermitian
Stiefel-Whitney classes determine the elements of H1

ét(F,Un,δ), for all fields F ∈ Fk: To that
end, fix two diagonal hermitian forms ⟨u1, . . . , un⟩H and ⟨v1, . . . , vn⟩H with agreeing WH

1 over
F . Using the isomorphism KW

2 (F ) ∼= I2(F ), we obtain the equality

⟨⟨δ⟩⟩ (⟨⟨u1⟩⟩+ · · ·+ ⟨⟨un⟩⟩) = ⟨⟨δ⟩⟩ (⟨⟨v1⟩⟩+ · · ·+ ⟨⟨vn⟩⟩) ∈ I2(F ).

Then employing Witt’s cancellation theorem, we arrive at the isometry ⟨⟨δ⟩⟩⟨u1, . . . , un⟩ ∼=
⟨⟨δ⟩⟩⟨v1, . . . , vn⟩, from which we conclude by the injectivity of (4.15).

4.5 The Split Group of Type G2

We still assume our ground field k to be perfect and of characteristic ̸= 2, and turn our attention
towards Pfister forms, first in the form of a functor:

Definition 4.38. Let n ∈ N+ be a positive natural number. We define a functor Pfistern : Fk →
Set that is given by

Pfistern(F ) := {isomorphism classes of n-fold Pfister forms over F} ,

for every choice of a field F ∈ Fk. The isomorphism class of the isotropic n-fold Pfister form
will be our basepoint, in any situation where one is needed.

There are some cases, in which this functor can be realized as the Galois cohomology of
some algebraic group, and we may realize that the two initial ones have already been dealt with:
Setting n = 1, then we have a natural (in F ∈ Fk) bijection

H1
ét(F,µ2) −→ Pfister1(F )
u(F×)2 7−→ ⟨1,−u⟩ = ⟨⟨u⟩⟩,

and H̃A1
0 (Bétµ2) ∼= KW

1 (cf. lemma 4.11). The universal invariant E1 : Pfister1 → KW
1 can thus

be codified as ⟨⟨u⟩⟩ 7→ [u]. Proceeding to n = 2, we denote by SO′
3 the special orthogonal group

with respect to the split quadratic form h⊕ ⟨1⟩. Then one has a functorial map

H1
ét(F,SO′

3) −→ Pfister2(F )
q 7−→ ⟨1⟩ ⊕ ⟨−1⟩ · q,

which is injective by Witt cancellation (cf. [40, I.4.2]), and whose surjectivity may be checked
by regarding H1

ét(F,SO′
3) as the isometry classes of rank 3 quadratic forms with determinant

−1. The universal invariant E2 : Pfister2 → KW
2 can then be identified with W2 (for SO′

3 cf.
proposition 4.26) which maps ⟨⟨u, v⟩⟩ 7→ [u][v].

There is also an interpretation of the case n = 3 in terms of Galois cohomology: Recall first
that the iterated Cayley-Dickson construction introduces a one-to-one correspondence between
the isometry classes of 3-fold Pfister forms and the isomorphism classes of Cayley algebras9 (cf.
[39, Thm. (33.19)]). Fixing some Cayley algebra Cs over k, whose norm form is isotropic, one
finds that its automorphism group G2 := Aut(Cs) is a split simple algebraic group of type G2
(cf. [39, Thm. (25.14)]), whose Galois cohomology set (pointed by Cs) can be classified by the

9A Cayley algebra is an eight-dimensional unital composition algebra, i.e. an algebra whose multiplication is
compatible with a quadratic form, called the norm form of the algebra.

88



4.5 The Split Group of Type G2

Cayley algebras (cf. [39, Prop. (33.24)]). So in summary, we have a bijective and functorial map
(in F ∈ Fk)

H1
ét(F,G2) −→ Pfister3

C 7−→ qC,

where qC denotes the norm form (and by abuse of notation, its equivalence class) of the Cayley
algebra C. For the case n > 3, we remark that it is known that the functors Pfistern are not
representable as the Galois cohomology of an algebraic group over k (cf. [21, p. 10]).

We keep mimicking the procedures of [21, VI.18], so our aim is to define invariants of Pfistern
with values in KW

n . This is done in the following

Lemma 4.39. We have a well-defined and natural (in F ∈ Fk) map

En : Pfistern(F ) −→ KW
n (F )

⟨⟨u1, . . . , un⟩⟩ 7−→ [u1] · · · [un].

Proof. We check that in the case we are given F -isometric n-fold Pfister forms ⟨⟨u1, . . . , un⟩⟩ and
⟨⟨v1, . . . , vn⟩⟩, that

[u1] · · · [un] = [v1] · · · [vn]

holds. Therefore we use that two isometric Pfister forms are chain P -equivalent (cf. [40, Thm.
X.1.12]), and thus by induction we only have to check that if ⟨⟨u1, . . . , un⟩⟩ and ⟨⟨v1, . . . , vn⟩⟩ are
simply P -equivalent, En yields the same value in KW

n (F ). By commutativity of KW
n (F ), we

immediately reduce to the case that ⟨⟨u1, u2⟩⟩ and ⟨⟨v1, v2⟩⟩ are isometric, and ui = vi holds for
all i = 3, . . . , n. We ought to check that [u1][u2] = [v1][v2] holds. However, this is the case of
n = 2 above, concluding the proof of the lemma.

Remark 4.40 (Embedding of πA1
0 ). The map En is injective on all fields F ∈ F : Indeed, the

composition of En and the refined Milnor epimorphism

Sn : KW
n (F ) ↠ In(F )

[u1] · · · [un] 7→ (−1)n⟨⟨u1, . . . , un⟩⟩,

defined10 for example in [50, Rem. 3.12], maps a Pfister form ⟨⟨u1, . . . , un⟩⟩ to its image in In(F )
times a unit. By [40, Prop. II.1.4] this mapping has to be injective, and thus En is injective as
well. Note that this statement does not use the Milnor conjecture.

On the other hand by using the Milnor conjecture, Morel showed in [52, Thm. 2.4] that Sn(F )
is an isomorphism for char(F ) ̸= 2, which implies that the invariants En may be extended to
natural homomorphisms (in F ∈ Fk)

In(−) −→ KW
n ,

that we denote by En as well. Comparing with [1, Satz 5.7], where it is shown that the classi-
cal invariant e3 extends to a natural homomorphism (the Arason invariant), it seems at least
plausible that Arason’s arguments can be transferred to the case of Witt K-theory in degree 3.

As before with the refined Stiefel-Whitney classes, we denote the invariant Pfister3 → KW
3 ,

and its induced morphism H1
ét(G2) → KW

3 , by the same symbol E3 (cf. the notation in [21,
VI.18]). The following proposition checks that E3 is the universal pointed morphism from
H1

ét(G2) into a strictly A1-invariant sheaf:
10The epimorphism is defined in accordance with the original [48, Thm. 4.1] and with respect to the usual

definition of Pfister forms as ⟨⟨u1, . . . , un⟩⟩ = ⟨1, −u1⟩ ⊗ · · · ⊗ ⟨1, −un⟩ (cf. [40, Def. X.1.1] or [16] pp. 24, 53).

89



4 On HA1
0 (BétG) for some affine algebraic groups G

Proposition 4.41. Let k be a perfect field of characteristic ̸= 2. Then there is an isomorphism

H̃A1
0 (BétG2)

∼=−−→ KW
3 ,

induced by the refined Arason invariant E3.

Proof. We check the universal property of H̃A1
0 (BétG2): Suppose we are given a map of pointed

sheaves a : H1
ét(G2)→M , where M is any strictly A1-invariant sheaf, then we need to construct

a homomorphism λ3 : KW
3 → M factoring a via E3 uniquely. To that end, let us consider the

natural transformation

σ̃3 : G∧3
m↾Fk

−→ H1
ét(G2)↾Fk

on F ∈ Fk : u1 ∧ u2 ∧ u3 7−→ ⟨⟨u1, u2, u3⟩⟩,

which is surjective and well-defined. Moreover, if any of u1, u2 or u3 happens to be a square, the
image of u1∧u2∧u3 will be the isometry class of the isotropic 3-fold Pfister form. The composition
a↾Fk
◦ σ̃3 maps from G∧3

m to M , and as the latter sheaf is unramified, this defines a morphism
of pointed sheaves G∧3

m → M by propositions 3.25 and 3.28, and considering corollary 3.19.
By theorem 4.7 this morphism induces a homomorphism λ′

3 : KMW
3 → M . Since σ̃3 annihilates

squares, we have that λ′
3 factors moreover through the canonical epimorphism KMW

3 ↠ KW
3

setting (h) to zero, so that we have an induced homomorphism λ3 : KW
3 → M . We display the

situation in the following diagram

G∧3
m KMW

3

H1
ét(G2) KW

3

M

σ̃3

σ3

λ′
3

E3

a
λ3

,

where σ3 is notation coming from 4.7. The square in the diagram commutes on Fk, and this is
clear by the definitions of the morphisms at play. Moreover, the triangle spanned by G∧3

m , KMW
3

and M commutes as morphisms of pointed sheaves, and thus also on Fk. As σ̃3 is surjective,
and morphisms from weakly unramified sheaves into unramified ones are determined on fields,
we see that a = λ3 ◦ E3 holds. The homomorphism λ3 is uniquely determined, since for every
F ∈ Fk the image of E3 generates KW

3 (F ) (cf. lemma 4.3), and λ3 is already determined on
Fk.

4.6 The Split Group of Type F4

We still keep the assumption that our base field k is perfect, and of characteristic ̸= 2. Let
us recall first, how to define a split group of type F4, as the automorphism group of an Albert
algebra, which is a simple exceptional Jordan algebra of dimension 27. We begin by defining
such an algebra explicitly: Let us reuse the split k-Cayley algebra Cs from G2, and fix two
parameters α, β ∈ k×. It turns out that the choice of the latter parameters is immaterial to
the isomorphism class of the resulting group (cf. [39, Cor. (37.18)]), and hence whenever we
get hands on, we set α = β = 1. The underlying set H3(Cs, α, β) of the algebra will be the
3× 3-matrices with values in Cs that are invariant under the involution−α 0 0

0 −β 0
0 0 αβ


c11 c12 c13
c21 c22 c23
c31 c32 c33


†−α 0 0

0 −β 0
0 0 αβ


−1

90



4.7 Spin Groups

where † transposes the matrix and conjugates its entries cij ∈ Cs. Explicitly, the elements of
H3(Cs, α, β) are given by c11 c12 c13

α−1βc12 c22 c23
−βc13 −αc23 c33

 ,with c11, c22, c33 ∈ k×, c12, c13 , c23 ∈ Cs,

with the overline referring to the conjugation in Cs. By defining a product via c⋄d := 1
2(cd+dc),

where on the right-hand side the matrix product is used, H3(Cs, α, β) admits the structure of a
split Albert algebra over k, and we set F4 := Aut(H3(Cs, 1, 1)).

Let us recall that F4 is a split simple algebraic group over k (cf. [39, Thm. (25.13)]), and that
torsors over F4 are classified by Albert algebras (cf. [39, Prop. (37.11)]). For more information
on Jordan and Albert algebras we refer the reader to [39, IX.37] and [69]. As in the case of G2,
we give a name to the functor represented by H1

ét(−,F4).

Definition 4.42. For every field F ∈ Fk, we define

Alb(F ) := {isomorphism classes of Albert algebras over F} ,

which we consider to be pointed by the class of H3(Cs, 1, 1).

Unfortunately, we have found no way to deduce the structure of the invariants of F4 with
values in an arbitrary strictly A1-invariant sheaf from the arguments in [21, Thm. 22.5]. However,
we can at least lift some of the known invariants:

Proposition 4.43. There are well-defined and natural (in F ∈ Fk) maps

F3 : H1
ét(F,F4)→ KW

3 (F ) and F5 : H1
ét(F,F4)→ KW

5 (F )

lifting the well-known invariants f3 : H1
ét(F4)→ kM

3 and f5 : H1
ét(F4)→ kM

5 (cf. [21, VI.22]).

Proof. For any field F ∈ Fk and Albert algebra J ∈ Alb(F ), one finds by [21, Thm. 22.4] a 3-fold
resp. 5-fold Pfister form p3 resp. p5, which are unique up to isomorphism, such that

qJ ⊕ p3 ≃ ⟨2, 2, 2⟩ ⊕ p5

holds, where qJ(c) := 1
2 Tr(c⋄c) is the trace form on J halved. The claimed invariants can hence

be defined as F3(J) = E3(p3) and F5(J) = E5(p5).

4.7 Spin Groups

We continue to assume that k is perfect, and of characteristic ̸= 2. The purpose of this section is
to generalize some arguments due to Garibaldi [20] and Rost [66] concerning the cohomological
invariants of spin groups, in order to determine HA1

0 (BétSpin′
n), for 7 ≤ n ≤ 12. By Spin′

n we
mean here the split spin group asscoiated to a non-degenerate quadratic space of dimension n,
and maximal Witt index.

In its essence, Garibaldi’s method boils down to the following: Given some algebraic group
G with unknown structure of cohomological invariants, find a homomorphism H → G, from
a group H with known invariants, that induces a surjection H1

ét(F,H) → H1
ét(F,G), for all

F ∈ Fk. This implies that the G-invariants form a subset of the H-invariants. As usually
one knows a generating set for the H-invariants, one is then tasked to construct corresponding
G-invariants or disprove that such lifts exist. We mimic this procedure for G = Spin′

n, in our
setting, meaning that we replace Z/(2)-Galois cohomology as values for the invariants by some
strictly A1-invariant sheaf M , and conclude the corresponding HA1

0 (Bét(−)) from that.
Before we start with the individual cases, we first give a generalization of the Rost invariant,

which is present for all spin groups, and describe a method of constructing new invariants.
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4.7.1 Establishing a Basic Invariant

In the classical theory of cohomological invariants, the group of invariants of degree 3 of some
absolutely almost simple simply connected algebraic group G with values in the Galois coho-
mology of Q/Z is finite cyclic (cf. [21, Thm. M.9.11]), and a canonical generator is given by
the Rost invariant. In the case of spin groups, the Rost invariant has an accessible description,
which allows for a generalization to Witt K-theory (cf. [39, p. 436f]):

Let (V, q) be a quadratic space, with q being non-degenerate. Since the characteristic of k is
not 2, we may start with the short exact sequence of algebraic groups

0→ µ2 → Spin(V, q) χ(0)
−−→ SO(V, q)→ 0,

where the homomorphism χ(0) is the vector representation of the spin group. From the associated
long exact sequence in Galois cohomology, one may deduce that the image of χ(0)

∗ (γ)− q in the
Witt ring, for some cohomology class γ ∈ H1

ét(F,Spin(V, q)) and F ∈ Fk, has even dimension,
trivial discriminant and trivial Hasse-Witt invariant. By a theorem of Merkurjev (cf. [16, Thm.
44.1]) it thus has to lie in I3(F ). So, we may define an invariant by

H1
ét(F,Spin(V, q)) −→ KW

3 (F )

γ 7−→ E3(χ(0)
∗ (γ)− q),

for which we write Ẽ3, and which we will call the refined Rost invariant. Note that in the above
formula, we omitted the projection to the Witt ring. In all the cases we see below, the refined
Rost invariant Ẽ3 will be the nonconstant invariant of least degree.

4.7.2 Extending Invariants by a Method due to M. Rost

Suppose G is a smooth algebraic k-group, and that there is some representation G → GL(V ).
A nonzero element in the d-part of the symmetric space Sd(V ∗) will be called a d-form. Given
any 1-cocycle γ ∈ Z1(F,G), for F ∈ Fk, we may find some g ∈ GL(V )(Fsep) such that

γσ = g−1σ(g)

holds for all σ ∈ Gal(Fsep/F ), by Hilbert’s theorem 90. For any d-form q ∈ Sd(V ∗) that is
invariant under the action of G, one may show that

q(g−1 · (−))

is a Gal(Fsep/F )-invariant d-form, and thus defines some twisted form qγ over F . One may check
that a cohomologous cocycle yields an isometric d-form, and thus by abuse of notation we will
also twist by cohomology classes.

Recall also the following construction of a natural KMW
∗ -structure on the contracted sheaves

M−∗ due to Morel [50, Lem. 3.48]. To that end, we first remind the reader about their definition
in terms of the exact sequence (X ∈ Smk)

0 M(X) M(Gm ×k X) M−1(X) 0.
pr∗

2

ev∗
1

So given φ ∈ Gm(X) and λ ∈ M−1(X) = ker(M(Gm,X) → M(X)), one defines the action of φ
on λ as the composition

X
(φ,idX)−−−−→ Gm ×k X

λ−→M.

Starting from this, Morel checked that the relations of KMW
1 are met.
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Compatibility of the KMW
1 -Action and the Residue Homomorphism

Consider a geometric discrete valuation ring Ov ⊆ F , for some F ∈ Fk. We remind the reader of
a statement that we derived in the proof of 3.28, namely that for Ov henselian, we may assume
that there is a subfield in Ov, isomorphic to κ(v). Hence in the following arguments we assume
Ov to be henselian, and give pointers on how to handle the general case. Let us also fix a
uniformizing element π ∈ Ov. As in [50, p. 36] we define the residue homomorphism ∂πv to be
the projection

M(F ) ↠M(F )/M(Ov) ∼= M−1(κ(v)),

where the latter identification is derived from the elementary distinguished square (consisting
of essentially smooth schemes)

Spec(F ) Spec(Ov)

Gm,κ(v) A1
κ(v)

,

with the vertical morphisms being induced by κ(v)[T ]→ Ov, T 7→ π. Indeed, the diagram leads
to a monomorphism M−1(κ(v)) ↪→M(F )/M(Ov), and Morel showed that it is an isomorphism
(cf. [50, Lem. 2.24]). With the notion of a residue homomorphism defined, we can also extend
the specialization maps, via

sπv : M(F ) −→M(κ(v))
m 7−→ sv (m− [π].∂πv (m)F ) .

Here we again used crucially that κ(v) has an embedding into Ov. In the non-henselian case, we
may still construct specialization maps, by going to the henselization, and using the cartesian
diagram (cf. (A1))

M(Ov) M(Ohv )

M(F ) M(F h).

⌟

With this background, we may obtain the following compatibility between the action of KMW
1

on M−1, and the residue homomorphism (α ∈ KMW
1 (F ), m ∈M−1(F )):

∂πv (α.m) = ∂πv (α).sπv (m) + (ϵsπv (α)) .∂πv (m) + ([−1]∂πv (α)) .∂πv (m). (4.16)

Note that we care about the residue homomorphism ∂πv , since M(Ov) is its kernel, and thus it
gives us a computational method of checking membership. The statement (and proof) of this
compatibility statement is similar to the one given in [21, Ex. 7.12]. More specifically, one first
checks that in the henselian case, the homomorphism

M−1(κ(v))→M−1(F ) [π].(−)−−−−→M(F )

is a splitting to the residue homomorphism ∂πv . Thus every m ∈M(F ) can be written uniquely
as

m = uF + [π].rF ,
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where u lies in M(Ov), and r lies in M−1(κ(v)). Then the identity (4.16) follows from the
uniqueness statement after some quick expansion. In the general (non-henselian) case the state-
ment follows from comparison with the henselization, since it suffices to calculate the value of
the residue homomorphism after henselization to already know its value in the general case:

0 M(Ov) M(F ) M−1(κ(v)) 0

0 M(Ohv ) M(F h) M−1(κ(v)) 0.

⌟

∂π
v

∂π
vh

[π].(−)
F h

The following proposition is originally due to Rost [66, Prop. 5.2], but in form closer to its
generalization due to Garibaldi [20, Prop. 10.2].

Proposition 4.44. Let G be a smooth algebraic k-group, admitting a representation G →
GL(V ), and some G-invariant d-form q ∈ Sd(V ∗). Let M be some strictly A1-invariant sheaf
such that the natural action of KMW

1 on the contracted sheaf M−1 factors through KMW
1 /(dϵ),

and let an invariant a : H1
ét(−, G) → M−1 be given. Assume that a evaluates to zero, for every

class γ ∈ H1
ét(F,G) such that qγ is isotropic. Then the following defines an invariant for G in

M :

H1
ét(−, G) −→M

on F ∈ Fk : γ 7−→ [qγ(v)].a(γ),

where v ∈ V ⊗k F is any vector such that qγ evaluates to a unit.

Proof. Using (4.16), Garibaldi’s proof [20, Prop. 10.2] goes through verbatim.

In the remaining part of this section we determine HA1
0 (BétSpin′

n), for 7 ≤ n ≤ 12, by
integrating the arguments of Garibaldi [20, Part III] about Galois cohomology with A1-algebraic
topology. In the interest of not reproducing Garibaldi’s work entirely, we refrain from being self-
contained but suggest the reader to check the classical theory out.

4.7.3 Spin7 and Spin8

As we explained before, the method is to use homomorphisms in : Hn → Spin′
n with a known

structure of invariants on Hn, and such that in induces a surjection on Galois cohomology. Hence
we begin by grazing over their construction due to Garibaldi, and then add a few arguments to
arrive at HA1

0 (BétSpin′
n).

We start with the case of Spin′
8, which we shall identify explicitly with Spin(Cs, qCs), i.e.

the spin group over the quadratic space given by a split Cayley algebra Cs and its norm form
qCs . Recall that it is part of the triality phenomenon on Spin′

8 that there is an embedding

i8↾G2 : G2 −→ Spin′
8,

which, when composed with the vector representation χ
(0)
8 : Spin′

8 → SO′
8, or any spin repre-

sentation χ
(+)
8 , χ

(−)
8 : Spin′

8 → SO′
8, yields precisely the standard representation of G2 in SO′

8,
which regards an automorphism of Cs as a norm preserving automorphism of the underlying
vector space. On the topic of these representations, we note that one may choose them in such
a way that they induce homomorphisms of the centers (which we denote by the same name)

χ
(♯)
8 : Z(Spin′

8) −→ Z(SO′
8), with ♯ ∈ {0,+,−},
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and such that these run through all three possible quotient homomorphisms. To fix notation,
we regard χ

(+)
8 as the projection on the first factor, χ(0)

8 as the projection on the second factor,
and χ

(−)
8 as the multiplication of both factors, where we use the identification

χ
(♯)
8 : µ2 × µ2 −→ µ2, with ♯ ∈ {0,+,−}.

In [20, 18.1] Garibaldi deduced that the product of the inclusion of G2 and Z(Spin′
8) in Spin′

8
yields an embedding

i8 : G2 × Z(Spin′
8) −→ Spin′

8,

which induces surjections on Galois cohomology. This surjection in turn leads to an injection on
cohomological invariants, and by an application of the characterisation of morphisms 3.25 and
the compatibility statement 3.28, we thus obtain an injection

HomShNis(Smk)(H1
ét(Spin′

8),M) HomShNis(Smk)(H1
ét(G2 × Z(Spin′

8)),M)

HomAbA1
Nis(Smk)(H

A1
0 (Bét Spin′

8),M) HomAbA1
Nis(Smk)(H

A1
0 (Bét(G2 × Z(Spin′

8))),M),

i∗8

i∗8

∼= ∼=

where the comparison on the lower line comes from proposition 2.58, and where M denotes some
strictly A1-invariant sheaf. We may use the A1-tensor product to analyse the lower right corner
of this diagram, which leads to an isomorphism

HA1
0 (Bét(G2 × Z(Spin′

8))) −→ Z⊕KW
1 ⊕KW

1 ⊕KW
2 ⊕KW

3 ⊕KW
4 ⊕KW

4 ⊕KW
5 ,

that is induced by the morphisms

χ
(+)
8 , χ

(0)
8 , χ

(+)
8 ⊗A1 χ

(0)
8 ,

E3, E3 ⊗A1 χ
(+)
8 , E3 ⊗A1 χ

(0)
8 , and E3 ⊗A1 χ

(+)
8 ⊗A1 χ

(0)
8 .

Here we abused the notation in such a way that we identify a homomorphism χ
(♯)
8 : Z(Spin′

8)→
Z(SO′

8) ∼= µ2 with its induced map on Galois cohomology composed with σ(2) : H1
ét(µ2)→ KW

1
(cf. 4.11).

So, to determine HA1
0 (Bét Spin′

8) we would like to find those combinations of the above invari-
ants that are restrictions of Spin′

8-invariants. To start out, we remark that by the construction
of i8 the group Z(Spin′

8) is the center of a semisimple split group, and thus its embedding factors
through some split torus G8

m (cf. [46, Prop. 21.7]). By Hilbert’s theorem 90, it follows thus that

H1
ét(F,Z(Spin′

8)) −→ H1
ét(F,Spin′

8)

is trivial, for all F ∈ Fk, or dually that all Spin′
8-invariants are trivial, when restricted to

Z(Spin′
8). Thus certainly, given a normed Spin′

8-invariant a with values in some strictly A1-
invariant M , we can find homomorphisms

λ3 ∈ HomAbA1
Nis(Smk)(K

W
3 ,M)

λ4,1 ∈ HomAbA1
Nis(Smk)(K

W
4 ,M)

λ4,2 ∈ HomAbA1
Nis(Smk)(K

W
4 ,M)

λ5 ∈ HomAbA1
Nis(Smk)(K

W
5 ,M), such that a↾G2×Z(Spin′

8) = . . .

. . . = λ3 ◦ E3 + λ4,1 ◦ (E3 ⊗A1 χ
(+)
8 ) + λ4,2 ◦ (E3 ◦A1 χ

(0)
8 ) + λ5 ◦ (E3 ⊗A1 χ

(+)
8 ⊗A1 χ

(0)
8 ).
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From this we may conclude at once that H̃A1
0 (Bét Spin′

8) is given by KW
3 ⊕KW

4 ⊕KW
4 ⊕KW

5 ,
as soon as we find lifts for the remaining G2 × Z(Spin′

8)-invariants. In order to have a better
understanding of the situation, we note that together with the above remark about the relation
of the embedding of G2 and the triality phenomenon, we may derive explicitly (♯ ∈ {+, 0,−})

H1
ét(F,G2)×H1

ét(F,Z(Spin′
8)) H1

ét(F,Spin′
8) H1

ét(F,SO′
8)

(C, z) ⟨χ(♯)
8,∗(z)⟩qC.

i8,∗ χ
(♯)
8,∗

From this we see that the refined Rost invariant Ẽ3 restricted to G2 × Z(Spin′
8) maps (C, z)

to the quadratic form ⟨χ(0)
8,∗(z)⟩qC. Unfortunately, this does not agree right away with the value

obtained from the invariant E3 on G2 × Z(Spin′
8). However, we may employ the extension

lemma 4.44 to the invariant Ẽ3, the representation χ(0)
8 , and the quadratic form qCs , to see that

the invariant

H1
ét(F,G2)×H1

ét(F,Z(Spin′
8)) −→ KW

4 (F )

(C, z) 7−→ ⟨χ(0)
8,∗(z)⟩[χ(0)

8,∗(z)]E3(qC) (4.1)= −[χ(0)
8,∗(z)]E3(qC)

admits a lift as a Spin′
8-invariant that we will call −A(0)

4 . Indeed, we only have to check that,
whenever the twist ⟨χ(0)

8,∗(z)⟩qC is isotropic, then ⟨χ(0)
8,∗(z)⟩E3(qC) vanishes, which is a standard

application of the Arason-Pfister Hauptsatz (cf. [40, Thm. X.5.1]). This yields firstly a lift of
the invariant E3 ⊗A1 χ

(0)
8 , and secondly by a bit of puzzling, namely

Ẽ3 − ηA(0)
4 ,

also a lift of E3. Hence we may apply the extension lemma to this invariant (the lift of E3), the
representation χ(+)

8 , and the quadratic form qCs , to obtain an invariant A(+)
4 that lifts E3⊗A1χ

(+)
8 .

Again the necessary condition is easy to check. Using the extension lemma one last time, we
can extend A

(0)
4 (resp. A(+)

4 ) along the representation χ
(+)
8 (resp. χ(0)

8 ) to obtain an invariant
that lifts E3 ⊗A1 χ

(+)
8 ⊗A1 χ

(0)
8 , and which we will call A5. Hence we have shown the following

Proposition 4.45. Let k be a perfect field of characteristic ̸= 2. Then we have an isomorphism

H̃A1
0 (Bét Spin′

8) ∼= KW
3 ⊕KW

4 ⊕KW
4 ⊕KW

5 ,

that is induced by the refined Rost invariant, A(+)
4 , A(0)

4 and A5 constructed above.

Next we address the case of Spin′
7, which we regard as being associated to the orthogonal

complement of 1 ∈ Cs, and accordingly embedded into Spin′
8. We may immediately notice

that i8↾G2 factors through Spin′
7, and Garibaldi showed that this induces a homomorphism

i7 : G2 × µ2 → Spin′
7, where µ2 ↪→ Spin′

7 is the embedding of the center of Spin′
7, and that

i7 induces a surjection on Galois cohomology H1
ét(F,−) for every F ∈ Fk (cf. [20, Ex. 17.5]).

As above, we may deduce from this surjection, that the normed Spin′
7-invariants form a subset

of the normed invariants of G2 × µ2, which are spanned by the Arason invariant E3 and the
invariant E3 ⊗A1 σ(2). By restricting the Spin′

8-invariants Ẽ3 and A
(+)
4 to Spin′

7, we see that
lifts for these G2×µ2-invariants exist. Note that Ẽ3↾Spin′

7
is the refined Rost invariant of Spin′

7.
We thus have:

Proposition 4.46. Let k be a perfect field of characteristic ̸= 2. Then we have an isomorphism

H̃A1
0 (BétSpin′

7) ∼= KW
3 ⊕KW

4 ,

induced by the refined Rost invariant, and the restriction of A(+)
4 .
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4.7.4 Spin9 and Spin10

Before we begin outlining the definition of the embeddings i9 and i10, we recall from [20, Ex.
17.1] that for all n ≥ 4 the embedding

Spin′
2n−1 × Z(Spin′

2n) −→ Spin′
2n

induced by the product, with the embedding Spin′
2n−1 ↪→ Spin′

2n realizing Spin′
2n−1 as the

stabilizer of some anisotropic vector, yields a surjection on Galois cohomology. This is deduced
by considering the spin representation of an encompassing group Spin′

2n+2.
One may apply this to our current situation, for which we fix the identification

Spin′
8 Spin′

9 Spin′
10

Spin(Cs, qCs) Spin(k ⊕ Cs, ⟨1⟩ ⊕ qCs) Spin(k2 ⊕ Cs, h⊕ qCs),

and our explicit choice for Spin′
9 is in alignment with Igusa (see [34, p. 1014]). So, we start with

i9, and see for i10 afterwards. For the first case, Garibaldi combined explicit calculations by Igusa
[34] about stabilizers of spinors, together with his machinery concerning Galois cohomology and
projective spin representations, to deduce that (cf. [20, Ex. 17.7])

i9 : G2 × Z(Spin′
8) −→ Spin′

9

induced by the embedding of G2 ⊆ Spin′
8 in Spin′

9 and then taking the product, leads to a
surjection on Galois cohomology for all fields F ∈ Fk. Going further by using the above alluded
comparison of spin groups with odd and even ranks, Garibaldi was able to show that (cf. [20,
Ex. 17.8])

i10 : G2 × Z(Spin′
10)︸ ︷︷ ︸

∼=µ4

−→ Spin′
10

induces surjective maps on Galois cohomology. This concludes our preparation, and we move
on to determine the cohomological invariants and HA1

0 (Bét(−)). In that we will reuse the names
A4, and A5.

Let us start with the case of Spin′
10. By using the A1-tensor product, especially bilinearity

and corollary 4.8, HA1
0 (BétG2) ∼= Z ⊕ KW

3 (cf. 4.41), and HA1
0 (Bétµ4) ∼= Z ⊕ KMW

1 /(2h) (cf.
lemma 4.11), we obtain

HA1
0 (Bét(G2 × µ4)) ∼= Z⊕KMW

1 /(2h)⊕KW
3 ⊕KW

4 ,

which is induced by the universal morphisms

σ(4) : H1
ét(G2 × µ4) −→ H1

ét(µ4) −→ KMW
1 /(2h),

E3 : H1
ét(G2 × µ4) −→ H1

ét(G2) −→ KW
3 , and

E3 ⊗A1 σ(4) : H1
ét(G2 × µ4) −→ KW

4 .

As before, since the factor µ4 is central, we cannot have a contribution of σ(4) for any restriction
of an Spin′

10-invariant. This leaves us with constructing lifts of E3 and E3 ⊗A1 σ(4).
Composing the homomorphism i10 with the vector representation χ(0)

10 : Spin′
10 → SO′

10 one
finds the induced map on Galois cohomology to be given by (F ∈ Fk)

(χ(0)
10 ◦ i10)∗ : H1

ét(F,G2)×H1
ét(F,µ4) −→ H1

ét(F,SO′
10)

(C, u(F×)4) 7−→ ⟨1,−1⟩ ⊕ ⟨u⟩qC.
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Armed with this knowledge, we may construct the desired lifts quite explicitly: Suppose we are
given an element in H1

ét(F,Spin′
10) admitting two lifts to H1

ét(F,G2×µ4) denoted by (C, u(F×)4)
and (C′, v(F×)4). Applying Witt cancellation (cf. [40, Thm. I.4.2]) to (χ(0)

10 ◦ i10)∗(C, u(F×)4)
and (χ(0)

10 ◦ i10)∗(C′, v(F×)4), we obtain an isometry

⟨u⟩qC ∼= ⟨v⟩qC′ .

Using [39, Thm. (33.19)] we obtain from this similarity relation that the F -algebras C and C′

are isomorphic, thus allowing us to lift E3. Moreover, we can see that u
v is a similarity factor

for qC, and, since qC is a 3-fold Pfister form, it is also represented by it (cf. [40, Thm. X.1.8]).
Transferring the statement of [67, Thm. 2.10.13] to Witt K-theory, we see that[

u

v

]
E3(C) = 0

holds. We remark in passing that we may check this latter identity also elementarily, using the
pure subform theorem (cf. [16, Lemma I.6.11]). Utilizing axiom (MW2), as well as ⟨u⟩[u] = −[u]
(cf. (4.1)), we may convert this into

[u]E3(C) = [v]E3(C) = [v]E3(C′),

netting us the well-definedness of a lift A4 of E3⊗A1σ(4). Similarly to the situation in the previous
section, we see that the refined Rost invariant Ẽ3 may be viewed as a lift of E3 + ηE3 ⊗A1 σ(4).
Moreover, one may show that the restriction of A4 to Spin′

8 is the invariant A(0)
4 . We summarize

our findings:

Proposition 4.47. Let k be a perfect field of characteristic ̸= 2. Then there is an isomorphism

H̃A1
0 (BétSpin′

10) ∼= KW
3 ⊕KW

4 ,

which is induced by the refined Rost invariant, and A4.

We shift our focus towards Spin′
9, and base our discussion on [20, III.18.9]. The usual

argument using the A1-tensor product yields that the nonconstant G2 ×µ2 ×µ2-invariants are
spanned by

σ
(2)
1 , σ

(2)
2 , σ

(2)
1 ⊗A1 σ

(2)
2 ,

E3, E3 ⊗A1 σ
(2)
1 , E3 ⊗A1 σ

(2)
2 , and E3 ⊗A1 σ

(2)
1 ⊗A1 σ

(2)
2 ,

where the index at σ(2)
i indicates which projectionH1

ét(µ2×µ2)→ H1
ét(µ2) precedes the universal

morphism σ(2) : H1
ét(µ2)→ KW

1 . We note that, since µ2×µ2 factors through Spin′
8 and is central

there, there are no contributions from the first row.
Restricting the invariants of Spin′

10, we readily obtain lifts for the invariants E3 and E3⊗A1

σ
(2)
2 . In order to see that the invariant E3 ⊗A1 σ

(2)
1 ⊗A1 σ

(2)
2 can also be lifted, we take a detour

to F4. Note that there is a well-known embedding of Spin′
9 into F4 (cf. [35, Sec. XI.3]), and

by going through our definitions, we find that computing the trace form of the induced Albert
algebra, we get

H1
ét(F,G2 × µ2 × µ2) H1

ét(F,Spin′
9) H1

ét(F,F4) H1
ét(F,SO(Js, qJs))

(C, u1, u2) ⟨2, 2, 2⟩ ⊕ ⟨−u1,−u2, u1u2⟩qC,

where Js denotes the split Albert algebra H3(Cs, 1, 1) and qJs its trace form halved.11 Hence we
see that the restriction of the F4-invariant F5 (cf. proposition 4.43) yields a lifting of E3 ⊗A1

σ
(2)
1 ⊗A1 σ

(2)
2 .

11By the particular way, in which we set up the groups G2, F4, and Spin′
9, we are able to lift the cosmetic

assumption that −1 is a square in [20, III.18.9].

98
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Finally, we conclude that E3⊗A1 σ
(2)
1 cannot contribute: Suppose we were given some homo-

morphism λ ∈ HomAbNis(Smk)(KW
4 ,M) such that λ ◦ (E3 ⊗A1 σ

(2)
1 ) is the restriction of a Spin′

9-
invariant. We check that λ evaluates to zero, on all possible choices of symbols [u1] · · · [u4], with
u1, . . . , u4 ∈ F×. By lemma 4.3 and proposition 3.25, we know that this implies λ = 0. So,
suppose that C is a Cayley algebra with norm form ⟨⟨u1, u2, u3⟩⟩, then we may construct a spin
torsor, precisely as in [20, p. 55], to which both G2 × Z(Spin′

8)-torsors

(C, u4(F×)2, (F×)2) and (C, (F×)2, (F×)2)

map to. From this we see λ([u1] · · · [u4]) = 0. Hence we have checked the following

Proposition 4.48. Let k be a perfect field of characteristic ̸= 2. Then we have an isomorphism

H̃A1
0 (BétSpin′

9) ∼= KW
3 ⊕KW

4 ⊕KW
5 ,

which is induced by the refined Rost invariant, the restriction of A4, and the restriction of F5.

4.7.5 Spin11 and Spin12

In this section, we add to the assumption that k is a perfect field of characteristic ̸= 2 that −1
is square. This further hypothesis greatly simplifies the formulas that occur.

Let us start with the case of Spin′
12, which we shall think of as being associated to the

quadratic space (k12, q′
12), with

q′
12(x) := 1

2x
t

(
0 6ϵ
6ϵ 0

)
x, with 6ϵ := ((−1)iδij)1≤i,j≤6,

to align ourselves with the conventions that Garibaldi [20], and Igusa [34] use, whose explicit
calculations form the basis of the argument. For future reference, we add that e1, . . . , e12 denotes
the standard basis of k12.

In [20, Ex. 17.12], Garibaldi has shown that there is an inclusion i12 : SO′
6 × µ4 → Spin′

12
which is surjective on Galois cohomology, and whose concatenation with the vector representa-
tion induces the natural map (in F ∈ Fk)

H1
ét(F,SO′

6 × µ4) −→ H1
ét(F,SO′

12)
(q, u(F×)4) 7−→ ⟨−1⟩⟨⟨u⟩⟩q ≃ ⟨⟨u⟩⟩q.

This is shown by finding a suitable element of the spin representation of Spin′
12, with stabilizer

SL6, in which the group SO′
6 resides in. The embedding of µ4 on the other hand corresponds

to the element

i(e1 + e7) · · · (e6 + e12) ∈ Spin′
12(k),

where i denotes some square root of −1 in k.
We now repeat the definition of some of the Spin′

12-invariants. The construction goes back to
a preprint of Rost [66], and has been expanded by Garibaldi in [20, III.20]: Under the assumption
that −1 is a square, one may define natural divided power operations (F ∈ Fk)

Pn : In(F ) −→ I2n(F )∑
i

⟨ui⟩pi 7−→
∑
i<j

⟨uiuj⟩pipj ,

where ui ∈ F×, and pi are n-fold Pfister forms. Given some cohomology class γ ∈ H1
ét(F,Spin′

12),
we know by [20, Thm. 17.13] that its image under map induced by the vector representation is
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of the form ⟨⟨u⟩⟩q, for some u ∈ F× and six dimensional form q ∈ I2(F ). Using [20, Cor. 20.7],
we may conclude that the map γ 7→ ⟨⟨u⟩⟩P2(q) ∈ I5(F ) is well-defined, and thus so is

γ 7−→ E5(⟨⟨u⟩⟩P2(q)) ∈ KW
5 (F ).

We denote the resulting invariant by A5 : H1
ét(Spin′

12) → KW
5 .12 By applying the extension

proposition 4.44 to the vector representation of Spin′
12, the quadratic form q′

12 and the invariant
A5, we obtain an invariant A6 : H1

ét(Spin′
12) → KW

6 . Therefore we only have to check the
hypothesis that, whenever ⟨⟨u⟩⟩q as image of some class γ ∈ H1(F,Spin′

12) is isotropic, the value
A5(γ) vanishes, for which we reuse the argument of [20, Lemma 20.12]: Namely, whenever ⟨⟨u⟩⟩q
is isotropic, one may show (cf. [20, Ex. 17.8]) that q is of the form ⟨v⟩(p − 2h), when regarded
as an element of I2(F ), with v ∈ F× and p some 2-fold Pfister form, and thus

A5(γ) = E5(⟨⟨u⟩⟩P2(⟨v⟩p+ ⟨−v⟩⟨⟨1, 1⟩⟩)) = E5(⟨−1⟩⟨⟨u⟩⟩p⟨⟨1, 1⟩⟩) = 0.

This finishes the preparation for

Proposition 4.49. Let k be a perfect field of characteristic ̸= 2, and admitting a primitive 4th

root of unity. Then there is an isomorphism

H̃A1
0 (BétSpin′

12) ∼= KW
3 ⊕KW

5 ⊕KW
6

that is induced by the refined Rost invariant Ẽ3, A5, and A6.

Proof. Let M be a strictly A1-invariant sheaf. From the surjectivity of the map that is induced
by i12 on Galois cohomology, we obtain, as in the cases above, an injection

Invnorm.
k (Spin′

12,M) ↪→ Invnorm.
k (SO′

6 × µ4,M)

of groups of normed invariants. So, before we proceed, we take a detour and determine a nice
form for the invariants of SO′

6 under the additional assumption that −1 is a square. From
proposition 4.26 we know that any SO′

6-invariant with values in M may be written as

λ′
0 + λ′

1W1 + λ′
2W2 + λ′

3W3 + λ′
4W4 + λ′

5W5,

where the W1, . . . ,W5 are O5-invariants, and λ′
i ∈ HomAbNis(Smk)(KW

i ,M) resp. λ′
0 ∈ M(k) are

subject to the relations

0 = λ′
1 and 0 = λ′

1η
2 + λ′

2η + λ′
3.

Hence any SO′
6-invariant in this case may be written as λ′

0+λ′
2(W2+ηW3)+λ′

4W4+λ′
5W5, where

the refined Stiefel-Whitney classes are the ones for 5-dimensional quadratic forms. However, in
the present case we are able to obtain a description, at least partially, in terms of O6-invariants
that is also closer to the classical result [21, Thm. 20.6]. Therefore, we note first that the usual
argument using chain equivalences of diagonalizations allows us to define an invariant

B : H1
ét(SO′

6) −→ KW
5

q︸︷︷︸
≃⟨u1,...,u6⟩

7−→W5(⟨u1, . . . , u5⟩).

Now starting with an ansatz invariant λ0 + λ2W2 + λ4W4 + λ̃B, where the Stiefel-Whitney
classes are the ones for 6-dimensional forms, we find using the formulae of corollary 4.25 that
its restriction is given by

λ′
0 = λ0, λ′

1 = 0, λ′
2 = λ2,

λ′
3 = λ2η, λ′

4 = λ4, and λ′
5 = λ2η

3 + λ̃.

12Since we will not try to compare the Spin′
12-invariants to any of the invariants that came before, we hope

that this abuse of notation does not confuse the reader.
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From this we see that W2, W4 and B are universal SO′
6-invariants, at least in the case that −1

is a square. Now an argument using the A1-tensor product yields, that the group of invariants
Invnorm.

k (SO′
6 × µ4,M) is spanned by

W2, W4, B,

σ(4), W2 ⊗A1 σ(4), W4 ⊗A1 σ(4), and B ⊗A1 σ(4),

where σ(4) : H1
ét(µ4)→ KMW

1 /(2h) denotes the universal invariant of µ4 of lemma 4.11. Of this
list, we may immediately cross out the first line, since the embedding of SO′

6 factors through a
copy of SL6. Next we try to identify lifts of the remaining invariants, except in the case of σ(4).

To get a better understanding of the situation we derive a few identities, and to explain those,
we fix a cohomology class γ ∈ H1(F,Spin′

12) and a particular lift (q, u(F×)4) ∈ H1
ét(F,SO′

6×µ4).
Using the classification of the SO′

6-torsors as quadratic forms of the kind ⟨v⟩(p′
1 ⊕ ⟨−1⟩p′

2) (cf.
[40, Cor. XII.2.13]), where v ∈ F×, and p1, p2 are 2-fold Pfister forms, with the primed versions
denoting the pure subforms, we may explicitly show the following (recall that the image of q in
the Witt ring lies in I2(F )):

W2(q) = E2(q) + η2W4(q), (4.17)
W4(q) = E2(p1)E2(p2) = E4(P2(q)), and (4.18)
B(q) = [v]W4(q), (4.19)

similarly as [20, p. 58]. If we apply the invariant A5 to γ, we get the value

A5(γ) = E5(⟨⟨u⟩⟩P2(q)) = [u]E4(P2(q)) = (W4 ⊗A1 σ(4))(q, u(F×)4),

allowing us to see A5 as a lift of W4 ⊗A1 σ(4). Similarly, we see that W2 ⊗A1 σ(4) can be lifted
by forming a combination of the refined Rost invariant and A5:

(W2 ⊗A1 σ(4))(q, u(F×)4) = [u]E2(q) + η2[u]W4(q) = Ẽ3(γ) + η2A5(γ),

because χ(0)
12,∗(γ) = ⟨⟨u⟩⟩q. Finally, (4.19) implies that we may lift B ⊗ σ(4) as well, since we get

(B ⊗ σ(4))(q, u(F×)4) = [u][v]W4(q) = [u][v]E4(P2(q)) = [v]A5(γ),

which is A6 evaluated on γ. Lastly, we check that for every λ ∈ HomAbNis(Smk)(KW
1 ,M) the

only invariant of the form λ ◦ σ(4) coming from an invariant of Spin′
12 is the trivial one. Since

KW
1 (F ) is additively generated by symbols of the form [u], with u ∈ F× (cf. lemma 4.3), it

remains to show λ([u]) = 0. The 12-dimensional form ⟨⟨u⟩⟩(3h) ≃ ⟨⟨1⟩⟩(3h) is isotropic, and thus
both (3h, u(F×)4) and (3h, (F×)4) map to the same Spin′

12-torsor under i12,∗, from which we
see that

λ([u]) = (λ ◦ σ(4))(3h, u(F×)4) = (λ ◦ σ(4))(3h, (F×)4) = 0,

as long as λ ◦ σ(4) comes from some Spin′
12-invariant. This finishes the proof.

So, we turn our attention towards Spin′
11 which we consider to be the subgroup of Spin′

12
stabilizing e6 − e12. Garibaldi shows that the standard embedding

SO′
5 ↪−→ SO′

6

g 7−→
(
g 0
0 1

)
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gives rise to a commutative diagram

H1
ét(F,SO′

5)×H1
ét(F,µ4) H1

ét(F,SO′
6)×H1

ét(F,µ4)

H1
ét(F,Spin′

11) H1
ét(F,Spin′

12),

in which the vertical arrows are surjective, for all F ∈ Fk (cf. [20, Ex. 17.14]). Using this diagram,
we deduce the case of Spin′

11 by restricting the one of Spin′
12. So, denote the restriction of the

Spin′
12-invariant A5 to Spin′

11 by the same name. Note that the restriction of A6 to Spin′
11 is

trivial, as one sees classically.

Proposition 4.50. Let k be a perfect field of characteristic ̸= 2, and admitting a primitive 4th

root of unity. Then there is an isomorphism

HA1
0 (BétSpin′

11) ∼= Z⊕KW
3 ⊕KW

5

that is induced by E3 and (the restriction of) A5.

Proof. Under the assumption that −1 is a square, we see from example 4.24 that the universal
invariants of the split SO′

5 are given by the Stiefel-Whitney classes W2 and W4 on 5-dimensional
forms. By the usual argument involving the A1-tensor product we have to consider the invariants

W2, W4,

σ(4), W2 ⊗A1 σ(4), and W4 ⊗A1 σ(4).

The first line may be handled, again as above, by noting that the embedding SO′
5 ↪→ Spin′

11
factors through SL5. The composition of the homomorphism SO′

5 × µ4 → Spin′
11 with the

vector representation induces on Galois cohomology the map

H1
ét(F,SO′

5)×H1
ét(F,µ4) −→ H1

ét(F,SO′
11)

(q, u(F×)4) 7−→ ⟨u,−1⟩q ⊕ ⟨u⟩ ≃ ⟨⟨u⟩⟩q ⊕ ⟨u⟩,

which implies that the restriction of the Spin′
12 refined Rost invariant is precisely the Spin′

11 re-
fined Rost invariant. Now suppose that γ ∈ H1

ét(F,Spin′
11) is any torsor, with a lift (q, u(F×)4).

Then we see

(W2 ⊗A1 σ(4))(q, u(F×)4) = (W2 ⊗A1 σ(4))(q ⊕ ⟨1⟩, u(F×)4) = Ẽ3(γ) + η2A5(γ),

from (4.17). Moreover, (4.18) implies that a lift of W4⊗A1 σ(4) is given by the Spin′
11-version of

A5. The fact that for any λ ∈ HomAbN is(Smk)(KW
1 ,M) the invariant λ◦σ(4) does not come from

a Spin′
11-invariant can be checked as in the case of Spin′

12 above. From this the proposition
readily follows.

Remark 4.51 (Embedding of πA1
0 ). In the cases of Spin′

8 and Spin′
10 Garibaldi has shown that

the classical versions of the above invariants completely determine the corresponding Galois
cohomology sets (see 18.5 and 18.8.(2) in [20]), and thus one obtains monomorphisms

ρ : πA1
0 (BétSpin′

n) −→ HA1
0 (BétSpin′

n),

for n = 8, 10. The remaining cases are open (or trivial).
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