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Surveillance of novel infectious diseases: from the development of diagnostic
methods to biological-based statistical and mathematical modelling of SARS-CoV-2

This habilitation project delineates the strategy employed by the Division of Infectious Diseases and
Tropical Medicine to monitor the emergence of the novel infectious disease, SARS-CoV-2. The project
encompasses the evolution of innovative diagnostic techniques and their utilization in antibody
surveillance within a prospective cohort representative of Munich. This endeavour has also led to the
establishment of a novel data analysis unit. Furthermore, an overview of ongoing projects and areas
of analysis currently being pursued within the data analysis unit will be provided in the outlook session.

1. Introduction

Starting point: the spread of the novel infectious disease SARS-CoV-2

The novel coronavirus disease (COVID-19) was initially identified in December 2019 in Wuhan, China.
Since then, it has rapidly spread across the globe and was declared a global emergency by the World
Health Organization (WHO) in early 2020 [1]. The first case of COVID-19 in Germany was confirmed in
January 2020 at our institute, the Division of Infectious Diseases and Tropical Medicine, LMU University
Hospital Munich [2, 3]. Despite implementing contact tracing and isolating affected individuals to break
the chain of transmission, the virus managed to spread to 13 out of 16 federal states within a month
due to German tourists returning from high-risk areas in northern Italy and a carnival celebration in
the district of Heinsberg (located 60 km west of Cologne) [4].

With concerns that healthcare systems would become overwhelmed and potentially collapse, and due
to the absence of vaccines and specific treatment options, the German government implemented
public health measures. These measures included isolating confirmed patients, placing their contacts
in quarantine, using personal protective equipment, practicing social distancing (which involved
closing schools), and closure of the country's borders [5, 6]. However, although these actions were
aimed at saving lives, it was anticipated that social distancing measures could have a severe impact on
both national and global economies, healthcare systems, individuals' and families' incomes (especially
those in precarious employment situations), education (particularly affecting disadvantaged groups),
and the overall psychological and social well-being of the population [7, 8].

In early 2020, when the pandemic began, we encountered a challenge regarding the accurate
determination of the number of confirmed cases. This was because it relied on factors such as access
to healthcare, availability of laboratory testing, and the criteria used to select individuals for testing.
As a result, estimating the basic and effective reproduction numbers became a rough approximation,
and confirming hospitalization and mortality rates remained pending. During that period, it was
already recognized that individuals infected with SARS-CoV-2, even if asymptomatic or with mild
symptoms, could transmit the disease. However, quantifying the magnitude of the infection was not
feasible [4, 9-11].

In order to monitor and manage the spread of the epidemic in Munich, our institute made the decision
to establish the prospective COVID-19 cohort Munich, called KoCo19. Community cohorts are more
effective in assessing the overall infection spread within the population. By doing so, we can obtain
more accurate estimates of the basic and effective reproduction numbers, evaluate the impact on the
healthcare system, and measure the effectiveness of public health interventions [11].



Outline of the habilitation project

The objective of this habilitation project is to provide a comprehensive overview of the analytical
process delineated at the Division of Infectious Diseases and Tropical Medicine in monitoring the
emergence and spread of the novel infectious disease, SARS-CoV-2. | joined the institute after the
conception of the analysed cohort, but became the principal statistician afterwards. In the materials
presented here, | was responsible for managing the entire data flow process, from the laboratory to
the data analysts. Furthermore, | performed the analysis of laboratory-related publications, and later
on also the conduction/coordination of epidemiological analyses. Given the substantial scope of the
project, it involved collaboration with multiple partners from the Helmholtz Center Munich, the
University of Bonn, and the University of Bielefeld. | coordinated both the formal and scientific
collaboration among these institutions. A visual representation of the project's activities is illustrated
in Figure 1.
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Figure 1: Outline of the habilitation project. First row: Introduction of the prospective COVID-19 cohort in Munich, known as
KoCo19 (left). We then proceed with an analysis and comparison of the diagnostic methods available at the start of the
pandemic for detecting antibodies post-SARS-CoV-2 infection (middle) and the development of innovative diagnostic methods
for detecting antibodies using dried blood spots (DBS) on filter papers (right). Second row: Application of the knowledge gained
in the process described in the first row to establish biological-based models for monitoring the pandemic within the
population. In the diagnostic approach (left), we measure RNA viral loads in wastewater to predict the current incidence of
infections. The statistical/epidemiological approach (middle) involves analysing infection prevalence and identifying risk
factors in the KoCo19 and therefore in the city of Munich. In the mathematical approach (right), we combine data on incidence
and hospitalization from the Robert Koch Institute (RKI) with information from the IVENA framework to create a
compartmental biological-based model that simulates the epidemic's spread in the population, enabling predictions of
potential future scenarios. Third row: Integration of all the aspects analysed in the previous sections. We fit reported cases
and KoCo19 seroprevalence data into a single comprehensive model, with parameters estimated using a Bayesian approach.
This approach provides a unified and coherent understanding of the pandemic's dynamics and the prevalence of antibodies in
the population.



Following the rapid and alarming transmission of SARS-CoV-2 in Germany, particularly in Munich, the
team recognized the urgent need to take action and improve the situation through social policy
changes. Consequently, the prospective COVID-19 cohort Munich (KoCo19) was established with the
primary objective to assess the prevalence and incidence of SARS-CoV-2 antibodies in the population
of the city [12]. To achieve this, the team swiftly examined existing diagnostic methods for detecting
SARS-CoV-2 antibodies in the blood following infection [13, 14]. Lab antibody results from the pre
pandemic times were also obtained to exclude cross-reactions with cold or flu. Additionally, we
focused on studying the T cell immune response after infection [15]. A specific subgroup of KoCo19,
comprised of healthcare workers, was visited on a weekly basis for over a year, allowing for the
longitudinal monitoring of serological values in their blood [16, 17].

Following the initial visit of KoCo19, it became evident that physically visiting all participants of the
entire cohort multiple times would be burden on limited medical resources available. Consequently,
new diagnostic methods were developed to measure SARS-CoV-2 antibodies using dried blood spots
(DBS) on filter cards, as an alternative to traditional blood samples. Participants receive DBS filter cards
by mail, can perform a self-prick procedure (refer to
https://www.youtube.com/watch?v=vpZUzuQV10E&feature=emb title), and subsequently send the
samples back to the laboratory via mail [18, 19].

Now that the KoCo19 cohort and the diagnostic methods used to track it are well-documented, an
evaluation of the disease's spread can be conducted by employing biological-based modelling
techniques that focus on various aspects:

e Diagnostic Approach: This involves measuring RNA viral loads in Munich's wastewater. By
comparing the reported incidence data provided by the municipality of Munich with the viral
loads detected in the water, conclusions can be drawn regarding the “real” infection numbers
in the city [20].

e Statistical Approach: Analysing data from KoCo19, we predict the actual seroprevalence in
Munich. This analysis often reveals a significant gap between the real infection numbers and
those reported officially. Furthermore, this approach allows for the identification and
quantification of risk factors and symptoms following SARS-CoV-2 infection [21-23].

e Mathematical Approach: This approach involves combining Robert Koch Institute (RKI) data on
incidence and hospitalization with data from the IVENA framework. These combined datasets
are then used in a compartmental biological-based model designed to mimic the epidemic's
spread within the population. The objective is to make predictions about the number of
infections and hospitalizations under different scenarios of public health interventions [24,
25].

It is essential to clarify that by using the term "mathematical approach," we specifically refer to
biological-based models described by stochastic or deterministic ordinary differential equations. While
statistical models also have mathematical foundations, they are distinct in their application within a
statistical context.

The statistical and mathematical approaches are two of the most crucial branches of modelling. The
statistical approach involves testing and quantifying dependencies between variables. On the other
hand, the mathematical approach aims to replicate real-world processes. Defining a mathematical
model, however, is more challenging, and statistical models are employed to support idea generation.
These distinct schools of thought are often competitive, each possessing its own strengths and
weaknesses. This discussion leads to the final part of this work: a mathematical model that simulates
the spread of SARS-CoV-2 in Munich, combining the reported cases from the municipality of Munich


https://www.youtube.com/watch?v=vpZUzuQV10E&feature=emb_title

and KoCo19 seroprevalence data. The data is integrated into a single model, and parameters are
estimated using the statistical Bayesian approach [26].

Among the key insights gained from this project, which has paved the way for my habilitation, is a deep
appreciation for the importance of diverse perspectives within the framework of modelling and
analysis. As a result, a productive research endeavour necessitates the harmonious integration of these
distinct schools of thought. This aspect holds utmost importance in achieving increasingly impactful
outcomes in the realm of medicine and biology as applied in my institute. This stands as my personal
research objective, one that | am committed to implementing within the data analysis group | have
established and | am presently overseeing.

2. The prospective COVID-19 cohort Munich: KoCo19

In this chapter, we present a concise summary of the KoCol9 cohort. More detailed and
comprehensive information regarding the study design, setting, and population can be found in the
previously published works by Radon et al. [12] and Pritsch et al. [21]. | assumed responsibility for
managing the dataflow, preparing the foundational serological data and contributed to the analysis
plan.

Between 5th April and 12th June 2020, we selected a random sample of 100 out of 755 Munich
constituencies (refer to Figure 2A) to accurately represent the Munich population. To achieve this,
fieldworkers utilized a "random walk" method [27] starting from the geographic centre of each
constituency, selecting approximately 30 households per constituency. Ultimately, we successfully
included 2994 households in 368 of the 755 constituencies, encompassing a total of 5325 household
members aged 14 years or older (as illustrated in Figure 2B and D). When dealing with multi-party
houses, we requested the inclusion of one household per floor to study the transmission dynamics
within buildings. The number of households recruited per house varied between 1 and 7 across
constituencies (as depicted in Figure 2C).

The primary questions that KoCo19 aims to address during the baseline visit were as follows [12]:

e What is the prevalence of SARS-CoV-2 antibodies in the Munich general population?

e How many of the individuals with positive antibody results have previously undergone PCR
testing (pharyngeal swab and nucleic acid amplification) with positive or negative outcomes,
and have they experienced symptoms suggestive of COVID-19?

e What is the distribution of symptom severity?

e What is the risk of infection for other members of the same household when one person is
infected, and can household risk factors be identified?

e What is the risk of infection for other residents of the same apartment building when one
person is infected?

e What are the risk factors associated with SARS-CoV-2 infections?

To address most of these questions, detailed information about the household and their members is
necessary. This information was collected through three types of web-based questionnaires [12]:

- Household questionnaire: This covers the living situation (type of housing, number of
bedrooms, apartment size), the number of inhabitants (including date of birth and sex), the
highest level of education, employment situation, household income, exposure to second-
hand smoke, the work of household members in potentially high-risk jobs for SARS-CoV-2
infections, and past pharyngeal swab testing for SARS-CoV-2 in household members, including
the test results.



- Individual baseline questionnaire: This includes date of birth, sex, level of education,
employment situation, smoking history, general health, pregnancy status, recent influenza
vaccination, pre-existing medical conditions, symptoms suggestive of COVID-19 in the 14 days
prior to the study, past PCR testing of nasopharyngeal samples for SARS-CoV-2, including test
results, use of respiratory masks, and work in potentially high-risk jobs for SARS-CoV-2
infection.

- Diary: This records symptoms suggestive of COVID-19, social contacts, whereabouts, and use
of public transport in the past 24 hours, as well as the psychosocial and economic situation
(perceived health status, behavioural aspects, employment, and income, which will be
collected periodically, e.g., once a week).
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Figure 2: Geospatial distribution of the KoCO19. (A) The districts of the municipality of Munich distinguished by colours. (B)
Distribution of the 2994 household in their respective 368 constituencies. (C) Average number of KoCo19-households per
building in their constituencies. (D) Average number of members per KoCo19 household in their constituencies. Reproduced
from [21].

To estimate seroprevalence and seroincidence over time, households were requested to provide new
blood sample every three to six months, with the frequency adjusted based on current requirements
of predicted models.

The primary topics to investigate during follow-up visits are as follows [12, 21]:

e Is there a change in antibody titres in individuals who initially tested positive, which might be
necessary to differentiate from cross-reactivity with other coronaviruses?
e How long are SARS-CoV-2-specific antibodies detectable after infections of varying severity?

6



e How does the spread of the disease develop, and what impact do public health measures have
on the incidence?

e Whatis the influence of individual behaviour on the incidence of infection?

e  Which risk factors are associated with SARS-CoV-2 incidence?

e What is the socio-economic impact of the pandemic and the measures taken to combat it,
especially on employment and psychosocial aspects?

Sampling was done at different times over the course of the pandemic (compare Figure 3):

1) May 2020 at the peak of the first infection wave in Germany,

2) December 2020, at the beginning of the second wave,

3) March 2021, at the peak of the third wave and at the beginning of the vaccination campaign
for the general population,

4) August 2021, at the end of the third wave with around 68% of the general population 14 years
or older being vaccinated against SARS-CoV-2,

5) November 2021, in the middle of the fourth wave and before the spread of the Omicron
variant started in Germany.

6) Mai 2022, the end of the fifth wave in spring, at the beginning of the sixth one.
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Figure 3: Epidemic evolution in Munich with description of the sample collection. Black: number of new daily SARS-CoV-2
cases officially reported by the Robert Koch Institute (RKI). Blue: number of blood/DBS samples of the KoCo19 collected daily.
Reproduced from [23].

To the best of our knowledge, KoCo19 is the SARS-CoV-2 cohort with the longest follow-up time in the
world. On December 1st, 2020, the KoCo19 cohort joined the ORCHESTRA (Connecting European
Cohorts to Increase Common and Effective Response to SARS-CoV-2 Pandemic) project. During the
whole pandemic, KoCo19 results were used to advise political decision making.

The KoCo19 baseline recruitment served as the foundation for all subsequent work. The laboratory
aspect involved investigating the potential of existing diagnostic methods to determine seroincidence
and prevalence from the collected blood samples. Additionally, the statistical and mathematical
aspects involved planning and developing various types of models, which will be elaborated on in the
following chapters.



Evaluation of the existing diagnostic methods

The baseline blood samples of KoCo19 were analysed using seven distinct diagnostic tests that were
already available on the market (refer to Table 1) [13]:

- Euroimmun Anti-S1- SARS-CoV-2-ELISA-IgA (EI-S1-IgA; Euroimmun, Liibeck, Germany)

- Euroimmun Anti-S1- SARS-CoV-2-ELISA-1gG (EI-S1-1gG; Euroimmun, Libeck, Germany)

- Elecsys Anti-SARSCoV-2 Roche N pan-Ig (Ro-Ig-N; Roche, Mannheim, Germany)

- Micro-virus neutralisation (NT)

- GeneScriptcPass (GS-cPass; GenScript, Piscataway, New Jersey, USA)

- Mikrogen-recomLine-RBD IgG line immunoassay (MG-S1, MG-N, MG-RBD; Mikrogen, Neuried,
Germany))

- VIRAMED-SARS-CoV-2 ViraChip microarray (VC-N-IgA/IgM/ IgG; VC-S1-1gA/1gM/IgG; VC-S2-
IgA/IgM/IgG; VIRAMED Biotech AG, Planegg, Germany).

Table 1: Evaluation of diagnostic accuracy of serological test. Optimised cut-off, sensitivity, specificity and overall accuracy
of primary tests (Euroimmun Anti-S1- SARS-CoV-2-ELISA-IgA and -1gG, EI-S1-IgA and —IgG in the following, and Elecsys Anti-
SARSCoV-2 Roche N pan-Ig, RO-N-Ig in the following) were conducted from 193 true-positive samples (samples of PCR positive
individuals) and 1073 true-negatives (samples of blood donors prior the COVID-10 era). Reproduced from [13].

Sample Test Manuf’s cut-off Optimised cut-off [CI] Sensitivity [%)] Specificity [%)] Overall accuracy [%]
composition (Manuf's / Optim. (Manufs / Optim. (Manufs / Optim.
True pos. / true cut-off) cut-off) cut-off)

neg.

193/1073 EI-S1-IgA L100 1.085 [0.855; 1.705] 64.77/64.77 93.29/92.64 88.94/88.39
193/1073 EI-S1-IgG L100 1.015 [0.850; 1.395] 77.20179.79 98.04/97.76 94.87/95.02
193/1073 Ro-N-Ig L.000 0.422 [0.295; 0.527] 85.49/88.60 99.81/99.72 97.63/98.03
107/106 NT - 5.0* -/73.83 - /100.00 -/ B6.85
108/106 GS-cPass 20.000 20.538 [13.768; 24.241]) 96.30/96.30 100.00/99.06 98.13/97.66
108/111 VC-N-IgG 100.000 18.500 [13.500; 23.000) 39.81/93.52 99.10/91.89 69.86/92.69
108/111 VC-51-1gG 100.000 10.000 [10.000; 10.000) 65.74/95.37 100.00/100.00 83.11/97.72
108/111 VC-82-1gG 100.000 10.000 [10.000; 10.000] 17.59/63.89 100.00/99.10 59.36/81.74
78/106 MG-N L.000 1.000 [1.000; 1.600] 94.87/94.87 98.11/98.11 96.74/96.74
78/106 MG-RBD L.000 1.000 [1.000; 1.000] 94.87/94.87 100.00/100.00 97.83/97.83
78/106 MG-81 1.000 1.000 [1.000; 1.000] 96.15/96.15 100.00/100.00 98.37/98.37
193/1073 Random Forest - - 88.601 99.811 98.101
193/1073 Support Vector Machine - - 84.461 99.911 97471

*For NT, dilutions starting at 1:5 were used; see Methods.
1The random forest and the support vector machine combine all three primary tests, the accuracy measures thus do not relate to specific cut-offs

The first three methods served as primary tests to screen samples for infection. The remaining tests
were used to confirm the results. Within our facility, we were able to conduct measurements for the
first five assays. Among these five tests, Ro-N-Ig and GS-cPass demonstrated the best performance
(refer to Table 1).

Additionally, we conducted measurements for two quantitative assays: the Euroimmun Anti-SARS-
CoV-2 QuantiVac enzyme-linked immunosorbent assay (EI-S1-1gG-quant) and the Roche Elecsys Anti-
SARS-CoV-2 S (Ro-RBD-Ig-quant). These assays were compared with each other and with confirmatory
tests [14]. Ro-RBD-Ig-quant effectively distinguished between true-positive and true-negative results,
exhibiting lower non-specific reactivity compared to EI-S1-1gG-quant.

A value above the specified thresholds in the Ro-N-Ig test indicates a previous infection, while the El
assays and Ro-RBD-Ig-quant may also suggest vaccination. These analyses have verified that both the



Roche Elecsys® serological assays are suitable for conducting sero-surveillance of KoCo19. We could
therefore proceed with the follow-ups.

| was responsible for managing the entire dataflow in the publications [13, 14]. This included preparing
the dataset, conducting initial analysis on the data, and planning and coordinating the analyses to be
performed by the other data analysts, as well as determining the appropriate types of graphical
presentation of the observed data and statistical estimates to be used.

3. Development of new diagnostic methods

After the initial baseline visit, we realized that the effort required to personally visit each household
would exceed our available resources. Therefore, in order to achieve a sufficient sample size, we
needed alternatives to venous blood sampling that did not rely on medical personnel or cold-chains.
While dried-blood-spots (DBS) on filter-cards have been used in various studies, they have not been
commonly used for serology. As a result, we developed a semi-automated protocol for SARS-CoV-2
serology using self-sampled DBS [18, 19]. At that time, as the principal statistician, | was closely
collaborating with the laboratory staff to comprehend the appropriate methods for measuring and
examining the paired samples of both blood and DBS. To begin with, we applied this protocol to
measure Ro-N-lg and validated it in a cohort consisting of both DBS and venous blood samples (n =
1710). The feasibility of the method was demonstrated in two large sero-surveys involving 10,247
company employees and 4,465 participants from a population cohort. The sensitivity and specificity of
the DBS method were 99.20% and 98.65%, respectively, compared to whole blood testing (Figure 4)
[18]. Subsequently, we further developed the DBS method to measure Ro-RBD-Ig-quant antibodies
and validated it in a cohort with matched DBS and venous blood samples (n = 825) [19]. The sensitivity
and specificity of this method were found to be 96.63% and 97.81%, respectively, compared to the
same test performed with paired venous blood samples.
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Figure 4: Frequency distribution of Ro-N-lg antibody titres detected in DBS. For this analysis, we used 1710 samples of the
KoCo19. The dashed vertical lines: the empirically determined cut-off value (bold) for result classification with its boundary
values (light). The insert at the bottom right represents a zoom-in on the y-axis to allow visualization of the lower frequency
positive values. Reproduced from [18].

The importance of the Ro-RBD-Ig-quant test was most pronounced during the onset of the vaccination
campaign. At that time, questions regarding the number of vaccinated individuals within the
population and the potential occurrence of breakthrough infections (infections that transpired after
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complete vaccination) became a major point of discussion. With the Ro-N-Ig and Ro-RBD-lg-quant
tests, we are capable of distinguishing between prior infections and immune responses induced by
vaccination (see Figure 5). This is achievable because the Ro-RBD-Ig test identifies antibodies after both
infection and vaccination, while the Ro-N-Ig test discerns between antibodies resulting from infection
(both anti-S and anti-N present) and those arising from vaccination (only anti-S present). The Ro-N-Ig
test can ascertain whether an individual had a previous infection but does not provide information
about the exact date of the infection.

We observed that at the onset of the vaccination campaign in early 2021 (Figure 5A left),
approximately 5.5% of the participants tested positive for anti-S but negative for anti-N, which aligns
with a vaccination response and roughly represents the proportion of people eligible for full
vaccinations at that time. Around 4.1% of the analysed samples exhibited the pattern expected in
infected individuals, with both values showing positive for anti-S and anti-N, while 0.4% only showed
positivity for anti-N. This last group could either be individuals who did not produce an anti-S response
after infection or may have false positive values for anti-N. Of note, most of these raw values are very
low as compared to the anti-N values seen in the double positive group, so it may as well be individuals
shortly after acute infection which are not yet positive in anti-S but already show a beginning low anti-
N reactivity. This is also supported by the fact that all but one of those individuals were found to be
anti-N and anti-S positive in the subsequent later sampling round. Approximately 90.0% of the
participants had not received either SARS-CoV-2 vaccination or contracted the infection.

A significant vertical upward shift of the data points was observed in follow-up three compared to the
results of follow-up two (Figure 5A right). Between July and September 2021, the vaccination
campaign had been ongoing for a considerable period in the Munich population. As a result, 88.9% of
the samples received during this round exhibited the expected pattern in vaccinated individuals (anti-
S positive, anti-N negative). During the summer, with low SARS-CoV-2 spread and minimal losses due
to titre drop after infections, the rate of double positives increased slightly to 4.9%. These increased
anti-S values were a result of a combination of vaccination and infection. Simultaneously, the
population that was anti-N positive but anti-S negative disappeared, moving into the double positive
fraction. This supports the notion that these subjects were at the early stage of their seroconversion
and developed their anti-S titre after follow-up two. The percentage of participants still unexposed to
both SARS-CoV-2 vaccination and infection decreased to 6.2%.

In follow-up four (Figure 5B right) after the summer of 2021, the proportion of vaccinated individuals
further increased to 91.6%. The number of infected subjects also slightly rose to 6.4%, with 50 out of
193 (25.9%) being newly infected. Among these 50 participants, 5 (10.0%) experienced breakthrough
infections, as they became infected after vaccination (transitioning from S+N- in follow-up three to
S+N+ in follow-up four, denoted in black). Only one participant was anti-N positive but had not yet
seroconverted to anti-S.

In the fifth follow-up (Figure 5C right), all participants except one completed anti-S seroconversion.
With the emergence of Omicron, the proportion of anti-N positives dramatically increased to 42.6%,
with 86.3% (1118/1295) representing newly positive cases (96.2% (1075/1118) of these were
breakthrough infections, indicated by pink dots). The one participant who was positive for anti-N but
negative for anti-S in follow-up four also converted to anti-N, suggesting an early infection with the
development of the anti-S titre after the follow-up.

With the effective performance of the DBS methods, it became feasible to continue the KoCo19
surveillance and acquire significant insights into the SARS-CoV-2 pandemic. Having established the
cohort and diagnostic methods, we are now able to move forward with outlining the techniques
employed for pandemic surveillance.
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Figure 5: Scatterplot of four follow-ups of the KoCo19 cohort for people that participated in all rounds (n=3040). The Ro-N-
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Samples above the nonlinear range of Ro-RBD-Ig-quant (solid black line at 9730.4 for back calculated plasma BAU/ml) were
not diluted. (A) Evolution from second to third follow-up. Left: Second follow-up sampled between March and April 2021; right:
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Reproduced from [19].
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4. Epidemic surveillance

The statistical approach

In conjunction with the laboratory samples, questionnaire data was also collected throughout the
various rounds of our study. The combination of these two datasets culminated in the publication of
three papers concerning the analysis of risk factors associated with SARS-CoV-2 and the assessment of
underreporting bias over time [21-23]. For the first two papers, | assumed responsibility for the
laboratory data and curated the final dataset utilized for the analysis. | also coordinated
communication among the different institutions involved in the research. As for the last paper, |
assumed the additional role of conducting the analysis, conceptualizing, and composing the core
sections of the paper. In this presentation, | present only the primary findings of our analyses. For a
comprehensive explanation of the technical aspects, please refer to the respective publications.

The baseline data analysis revealed limited evidence of a strong connection between anti-N
seropositivity and the various factors under investigation, as illustrated in Figure 4 of reference [21].
Notably, the loss of the sense of smell or taste during the study period was linked to the outcome.
However, it's important to note that this association was characterized by a wide confidence interval
(odds ratio (OR) 41.3; 95% ClI 6.7 — 231.0) when employing a conventional generalized linear mixed
model (GLMM). Furthermore, respiratory allergies (OR 3.3; 95% ClI 1.1 — 10.3) displayed a statistically
significant association with anti-N seropositivity. Factors such as occupation in a high-risk job,
household type, and residential area per inhabitant also exhibited a weak connection with the
likelihood of infection. It is worth noting that all these variables were incorporated into the final GLMM
analysis, even though the loss of the sense of smell or taste was considered a symptom of the outcome
rather than a true risk factor. However, none of these associations reached statistical significance.
Similar outcomes were obtained through sensitivity analyses, utilizing a Bayesian GLMM with imputed
missing values, as shown in Figure 6.
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Figure 6: Multivariate risk factor analysis for SARS-CoV-2 seropositivity in the KoCo19 baseline round. The multivariate risk
factor analysis is mutually adjusted for all variables in the figure. OR: odds ratio; 95% Cl: 95% credible interval (Bayesian
analyses)/95% confidence interval (frequentist GLMM). Reproduced from [21].

In the first follow-up, the seroprevalence, which had been weighted and adjusted for specificity and
sensitivity, exhibited an increase from 1.8% (95% Cl 1.3 — 3.4%) at the baseline to 3.6% (95% Cl 2.9 —
4.3%) during the follow-up period [22]. Notably, 91% of the participants who tested positive at the
outset retained their antibody-positive status during the follow-up. While cases tended to cluster
within households, there was no statistically significant evidence of geospatial clustering across the
city of Munich (see Figure 7). Groups at the highest risk were identified as men and participants aged
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between 20 and 34, taking baseline results and the duration to follow-up into consideration. To
elucidate these effects, a sensitivity analysis was conducted, revealing that differences could be
attributed to health-risk behaviours, the number of personal contacts, and leisure-time activities (refer

to Figure 8).
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Figure 7: Geospatial distribution of the prevalence in the Munich constituencies. (A) The Munich population density (taken
from https://simple. wikipedia.org/wiki/Boroughs_of Munich, as background colour) and number of participants in each
constituency (yellow dots). (B) Weighted seroprevalence. (C) Lower 95% confidence bounds of the weighted seroprevalence.
(D) Upper 95% confidence bounds of the weighted seroprevalence. The seropositivity varied slightly across constituencies,
however, not reaching statistical significance. Reproduced from [22].

The final analysis presented in this section focuses on the follow-ups two to four. The blue estimate in
Figure 9A shows the calibrated seroprevalence (adjusted for sensitivity and specificity) in private
households for the Munich population aged 14 years and older:

- Baseline: 1.6% (1.1 -2.1%)

- Follow-up 1: 4.1% (3.3 — 4.9%), and after adjustment for vaccination status
- Follow-up 2: 7.3% (6.1 — 8.5%),

- Follow-up 3:12.4% (10.7 — 14.1%),

- Follow-up 4: 14.5% (12.7 — 16.2%).

As expected, the seroprevalence is increasing over time. The official number of positive cases is
reported in pink for the general population of Munich, which includes institutions like nursing homes
and potential reinfections. Given that the KoCo19 cohort is limited to private households and the
estimated seroprevalence does not account for multiple infections, comparing this estimate with the
official number over time allows us to estimate a lower bound for the underreporting factor. The
estimated underreporting factor varies across the rounds:

- Baseline: 3.4 (2.4-4.4),
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- Follow-up 1: 1.3 (1.0-1.6),
- Follow-up 2: 1.8 (1.5-2.1),
- Follow-up 3: 2.3 (2.0-2.6) and
- Follow-up 4:2.2 (2.0-2.5).

To gain a better understanding of the impact of the vaccination campaign, the calibrated cumulative
seroprevalence was analysed separately for vaccinated and non-vaccinated individuals (Figure 9C):

- Follow-up 2: 3.1% (0.5 — 5.6%) versus 7.8% (6.6 — 9.1%),
- Follow-up 3:8.5% (6.6 — 10.4%) versus 20.6% (16.2 — 25.0%) and
- Follow-up 4:11.8% (9.8 — 13.8%) versus 22.9% (18.5 — 27.4%).
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Figure 8: Seroincidence between baseline and follow-up. (A) From the participant self-estimated health-related risk-taking
behaviour. (B) Sum of contacts. (C) Leisure time activities in summer 2020 stratified for sex and age group. Reproduced from
[22].

The seroprevalence of the vaccinated group is lower compared to the non-vaccinated group. In Figure
9D, we compare the adjusted (for sensitivity and specificity) incidence rates for breakthrough
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infections (BTIs, infections occurring after complete vaccination coverage) versus infections in naive
subjects (INS) over the rounds:

- Follow-up 3: 1.3% (0 — 3.7%) versus 3.3% (2.6 —4%) and
- Follow-up 4:1.8% (0.6 — 2.9%) versus 4.1% (2.3 — 5.9%).

In August and November 2021, the incidence rates of INS were greater than the ones of BTI. Despite
the cumulative seroprevalence appearing higher among the non-vaccinated population compared to
the vaccinated population (Figure 9C and D), BTIs relevantly contributed to community spread,
considering that the population of vaccinated individuals was much larger than the non-vaccinated
one during the last rounds of investigation (Figure 9E). Figure 9F provides a more detailed illustration
of this effect, showing that the proportion of vaccinated and infected individuals increased over time,

becoming significantly greater than the proportion of infected and non-vaccinated individuals by
follow-up four.
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Figure 9: (A) Cumulative anti-N seroprevalence, both weighted and unweighted, in private households compared to official
cases reports by the authorities for the Munich population aged 13 and older. (B) Anti-N sero-incidence, both weighted and
unweighted. (C) Estimates of Seroprevalence for Anti-N Antibodies, Adjusted Based on the Number of Vaccinated Individuals,
Segmented by Their Vaccination Status in the Same Round. (D) Calibrated estimates for infections of naive subjects and
breakthrough infections. (E) Prevalence and incidence of vaccination in Munich (official numbers). (F) Relative frequencies
based on infection and vaccination status.

15



Sex : Male —_—t—
Age : <20 g
Age: 21-34 —]—

Age : 35-49
Age : 50-64
Age : 65-79

Age : >80

Sex : Male, Age : <20

Sex : Male, Age : 21-34

Sex : Male, Age : 35-49

Sex : Male, Age : 50-64

Sex : Male, Age : 65-79

Sex : Male, Age : >80

Country of birth : Others

Education level : Pursuing school

Education level : <12 years of school

Education level : >12 years of school

Employment status : Employed

Employment status : Self Employed

Empl ogmenl status : Unemployed

mployment status : Others

Employment Risk Job : Yes

Smoking : Non Smoker

Smokin%: Past Smoker

Smoking : Current Smoker

Net Monthly Income : <2500

Net Monthly Income : 2501-4000

Net Monthly Income : 4000-6000

Net Monthly Income : >6000

Household Size : 1

Household Size : 2

Household Size : 3-4

Household Size : 5+

Housing Type : Buildings with 1-2 apartments

Housing Type : Buildings with 3-4 apartments —_—j—
Housin? yge : Buildings with >5 a(rartments

Livin Area per [nhabitant : < 30 sqm/individual (<Q1
Livin Area per Inhabitant : 30-40 sgm/individual (Q1-Q2
Livin Area per Inhabitant : 40-55 sqm/individual (Q2-Q3
Livin Area per Inhabitant : >55 sqm/individual (Q-Q21

Overall Health : Excellent

Overall Health : Verygood

Overall Health : Good

Overall Health : Not good

Respiratory allergies : Yes

Skin allergies : Yes

Autoimmune disease : Yes

Cancer : Yes

Cardiovascular disease : Yes

Diabetes : Yes

Lung disease: Yes

Obesity : Yes

Drug intake - Immunosuppressant : Yes

Drug intake - Costisone : Yes

rug intake - Blood : Yes

otttk sl

—e——
]
F————
| o —
R -
-o—

——

—

|

1

o——
_.—.

—.—
>
————
le——————
FHo——
lo———
Fo——

»Munf L,

—
| —o——

. #I

2
Estimate (95% ClI)

Figure 10: Association between potential risk factors and SARS-CoV-2 sero-positivity while accounting for the time gap
between baseline assessment and Follow-up four. The data is this right-censored, and the results are generated using multiple
imputation.

The results of the risk factor analysis can be found in Figure 10. The extended Cox regression model
indicated certain factors being associated with an increased risk of SARS-CoV-2 sero-positivity.
Specifically, being born outside Germany (hazard ratio (HR) 1.36, 95% ClI 1.01 — 1.85) and holding a job
with a high potential for contact with COVID-19 cases (HR 1.31, 95% Cl 1.00 — 1.70) were identified as
risk factors. Additionally, residing in an area with 30 — 40 square meters per inhabitant slightly elevated
the risk of infection (HR 1.27, 95% CI 1.01 — 1.59), while for areas with 40 — 55 square meters per
inhabitant, the risk decreased (HR 0.74, 95% C1 0.57 —0.97), in comparison to the average hazard across
all living area categories. Notably, none of the other socio-demographic variables (such as sex, age,
level of education, employment status, building type, household income) or health-related factors
(including smoking status, general health status, various diseases, and medication intake) were
identified as risk factors for infection.

The mathematical approach

The mathematical models presented in this chapter aim to replicate the stages of the COVID-19
outbreak in Germany and Munich, considering the potential effects of both existing and hypothetical
non-pharmaceutical interventions [24, 25]. These models simulate the transmission of the SARS-CoV-

2 virus among various population groups by utilizing systems of differential equations to describe
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interactions between individuals. In the first publication, | was responsible for curating the data,
contributed to the conceptualization of the analysis, and coordinated collaboration with external
groups. In the second publication | conceived the project, obtained various datasets, conducted data
cleaning, and supervised the work of a master’s student. Additionally, | authored a substantial portion
of the paper.

The proposed approaches extend the known S-E-I-R (susceptible-exposed-infected-recovered) model
for disease dynamics. In particular a distinction is made between individuals who have been exposed
to the virus but are not yet infectious, asymptomatic infectives, infectives with mild or influenza-like
symptoms (not reported as SARS-CoV-2 infections) and reported SARS-CoV-2 infectives. Infected
individuals without SARS-CoV-2 diagnosis are assumed to unlikely die of the virus-induced disease.
These models cannot take into account the number of unreported and unknown cases.

The work presented in Barbarossa et al. [24] was among the initial models introduced at the beginning
of the pandemic, focusing on different strategies to mitigate the current outbreak. The results suggest
that a partial and gradual easing of control measures could become feasible if accompanied by
increased testing, strict isolation of detected cases, and reduced contact with at-risk groups (Figure
11).
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Figure 11: Differences between the baseline model output scenario (BSL) and the considered possible alternatives. (A) Peak
shifting (in days) compared to BSL. (B) Differences in reported cases (factor) at the day of the peak. (C) Differences in total
detected cases (factor); (D) Differences in total deaths (factor). For all rollback scenarios, results refer to the second peak of
the outbreak in Germany. Reproduced from [24].

Fuderer et al. [25] considered in their analysis not only the reported incidence numbers but also
hospitalizations. The models are similar, but the focus now shifts to hospital occupancy, which became
more crucial after successful vaccination campaigns. The model encompasses data from the
pandemic's early days to mid-October 2021. Predictions for the second half of the fourth wave are
presented based on data from the first months of the fourth wave until October 15, 2021, to fit the
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model's parameters and predict the number of new COVID-19 cases. Various scenarios were
considered for predicting future developments:
- Optimal: Vaccination rate and contact rate remain constant from October 15, 2021.
- Severe: Vaccination continues from October 15, 2021, but at lower rates while contact rate
continues to increase.
- Extreme: Vaccination is entirely stopped from October 15, 2021, and the number of contacts
continues to increase rapidly.
The results, shown in Figure 12, indicate that even with a significant portion of the population already
vaccinated, the number of new COVID-19 cases will increase with rising contact rates and decreasing
willingness to vaccinate. A rapid reopening combined with a stop in vaccination could lead to an
extreme fourth wave, with a significantly higher incidence than the previous waves. However, despite
the higher incidence during the fourth wave in the extreme scenario compared to the second wave,
the number of COVID-19 patients in regular hospital wards is considerably lower. This suggests that an
increasing number of fully vaccinated individuals is associated with a decrease in the hospitalization
rate.
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Figure 12: Data description and model results. Detected COVID-19 cases in Munich reported by the RKI (A) daily and (B)
cumulative. Hospitalized COVID-19 cases in Munich for the normal ward stations (c) and intensive care units (d). The solid
black lines denote the results of (A)-(B) the preferred model and (C)-(D) the hospitalization model. For first and second wave
no vaccination compartments were needed. Reproduced from [25].

Comparing the model predictions with Figure 3 we can observe that the detected infection cases
indeed increased exponentially. The rise, however, can be attributed not only to the lower-than-
expected vaccination rate or to the relaxation of social distances measures, but also to the emergence
of a new variant of the virus. It is imperative to adjust mathematical models in response to any
alterations in the biological circumstances. Fortunately, these adjustments are relatively
straightforward to implement, as demonstrated in this analysis.
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5. Merging biological-based mathematical models and statistical approaches

The statistical models presented in the preceding chapters do not mimic or explain the underlying
biological mechanisms driving the infection. However, they do offer improved quantification of the
"true" number of infections and different risk factors associated with infection. On the other hand,
mathematical models can simulate the process and make predictions under specific conditions.
However, these models have weaker parameter estimates and fail to account for the impact of
unreported and unknown cases.

To address this limitation, we combined all the information into a mechanistic model [26]. For this
analysis | oversaw delineating the underlining mathematical model, describing the equations, and
delivering the KoCo19 and hospital data. As many studies rely solely on officially reported case
numbers (as demonstrated in the previous chapter), we first assessed the reliability of such an
approach. We evaluated the predictive accuracy by comparing the predicted seroprevalence derived
from the posterior samples with the independent KoCo19 data, which were not used for fitting the
model. The model's predictions for the total number of cases exhibit wide confidence intervals (Figure
13), indicating that relying solely on officially reported case numbers, even with prior knowledge, does
not adequately predict the actual number of COVID-19 infections during an epidemic with sufficient
confidence. By incorporating representative data, the model's uncertainties are reduced. To measure
the added value of the KoCol9 prevalence data, we expanded the dataset with time-dependent
prevalence reported by KoCol9 and repeated the Bayesian parameter estimation process. The
inclusion of seroprevalence data substantially reduces the uncertainty related to the hidden states of
the model, particularly for the total number of cases (which is closely linked to seroprevalence levels)
and for the number of asymptomatic cases. This demonstrates the effectiveness of seroprevalence
data in reducing uncertainty. Additionally, it becomes evident that the actual number of infections is
significantly higher than the number of reported cases, underscoring the limitations of publicly
reported case counts.

6. Outlook

In this habilitation thesis, | presented a strategy for monitoring pandemics. | commenced by
introducing the prospective COVID-19 cohort, KoCo19, which is representative of the Munich
population. To analyse the spread of the pandemic, a serological approach was adopted, focusing on
detecting antibodies produced either due to infection with SARS-CoV-2 or vaccination against it.
Consequently, various commercially available plasma tests were scrutinized and compared. The
findings revealed that the Roche Elecsys® Anti-SARS-CoV-2 anti-N and anti-S assays outperformed
others. Subsequently, it became logistically challenging to collect in-person samples from all
participants. To overcome this, a method to measure these antibodies using DBS filter papers was
devised. This innovation enabled to conduct six follow-up assessments of the cohort. Concurrently,
several statistical and mathematical analyses related to infection risk factors, vaccination campaign,
underreporting, and the population-wide dynamics of the pandemic are conducted. Notably, the
KoCo19 cohort remains the longest standing and the only ongoing COVID-related cohort. The KoCo19
cohort remains the longest standing COVID-related cohort. This work, alongside collaboration with the
laboratory, is a unique contribution to the literature and has facilitated a comprehensive
understanding of the dark number and of the trajectory of the pandemic in the Munich population.

Building on this foundation, | established a biometrics research group. A key insight from this
multidisciplinary project is the recognition of the vital role that diverse perspectives by multiple
stakeholders played such as laboratory, medical expertise, biological knowledge, and data analysis to
name a major few. In my view, fruitful research endeavours demand the seamless integration of these
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distinct disciplines. This principle underpins my personal research objective, which | am committed to
implement within the biometrics group that | am currently leading.
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Figure 13: The dynamics of the epidemic. Model fits taking into account the KoCo19 seroprevalence data are plotted in green.
Model fits without cohort information in blue. In the bottom-right panel the cumulative number of cases detected by the
healthcare authorities is also plotted for reference. The bands correspond to 90% posterior credible intervals, while the solid
line denotes the median value. Reproduced from [26].

To end, the group comprises experts in various domains, such as development of lab techniques,
epidemiology, statistical and mathematical modelling, and machine learning. Collaborative
engagement with other groups within the institute is essential to our success. Our ongoing projects
encompass Tuberculosis research, where we are exploring improved diagnostic methods for both
children and adults and investigating long-term sequelae following infection in multi-centre cohorts in
Africa. We are also engaged in HIV-related projects, focusing on understanding of mother to newborn-
child infection transmission and prevention. Additionally, we concentrate on the development of rapid
detection methods for emerging infectious diseases.

The essence of the group is collaboration, working closely with medical doctors and biologists to co-
create projects. This ensures that analysis is not merely an endpoint but intersects with the initial
project ideas, generating new concepts from the outset. While we have experts in specific areas, our
greatest strength lies in the versatility of potential analyses we can undertake.

The publications presented previously, and this entire habilitation project represents my approach to
research and leadership within an analytical role, set within a robust medical and biological context.
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Figure 1: Outline of the habilitation project. First row: Introduction of the prospective COVID-19
cohort in Munich, known as KoCo19 (left). We then proceed with an analysis and comparison of the
diagnostic methods available at the start of the pandemic for detecting antibodies post-SARS-CoV-2
infection (middle). However, obtaining fresh blood or serum samples from approximately 3000
households recruited in KoCo19 required substantial equipment and personnel. To address this
challenge, we developed innovative diagnostic methods for detecting antibodies using dried blood
spots on filter papers (right). Second row: Application of the knowledge gained in the first row to
establish biological-based models for monitoring the pandemic within the population. In the
diagnostic approach (left), we measure RNA viral loads in wastewater to predict the current
incidence of infections. The statistical/epidemiological approach (middle) involves analysing infection
prevalence and identifying risk factors in the KoCo19 and therefore in the city of Munich. In the
mathematical approach (right), we combine data on incidence and hospitalization from the Robert
Koch Institute (RKI) with information from the IVENA framework to create a compartmental
biological-based model that simulates the epidemic's spread in the population, enabling predictions
of potential future scenarios. Third row: Integration of all the aspects analysed in the previous
sections. We fit reported cases and KoCo19 seroprevalence data into a single comprehensive model,
with parameters estimated using a Bayesian approach. This approach provides a unified and
coherent understanding of the pandemic's dynamics and the prevalence of antibodies in the
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Figure 2: Geospatial distribution of the KoC0O19. (A) The districts of the municipality of Munich
distinguished by colours. (B) Distribution of the 2994 household in their respective 368
constituencies. (C) Average number of KoCo19-households per building in their constituencies. (D)
Average number of members per KoCo19 household in their constituencies. Reproduced from [21]. 6
Figure 3: Epidemic evolution in Munich with description of the sample collection. Black: number of
new daily SARS-CoV-2 cases officially reported by the Robert Koch Institute (RKI). Blue: number of
blood/DBS samples of the KoCo19 collected daily. Reproduced from [23]......cccovveeeeierieeceeeeieeereeenne, 7
Figure 4: Frequency distribution of Ro-N-Ig antibody titres detected in DBS. For this analysis, we
used 1710 samples of the KoCo19. The dashed vertical lines: the empirically determined cut-off value
(bold) for result classification with its boundary values (light). The insert at the bottom right
represents a zoom-in on the y-axis to allow visualization of the lower frequency positive values.
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Figure 5: Scatterplot of four follow-ups of the KoCo19 cohort for people that participated in all
rounds (n=3040). The Ro-N-Ig measurement from DBS is abbreviated with “N”, Ro-RBD-lg-quant
from the same DBS is abbreviated “S”. Positivity is represented with “+”, negative, below cut-off with
“"_The colour code is defined by the status of the respective subject in the (A) second, (B) third and
(C) fourth follow-up respectively (represented by “FU”). Blue dots represent N-S-, orange dots
represent N+S+, grey spots are N+S- and pink dots are N-S+, considering the left column as reference
for colour-coding. Samples above the nonlinear range of Ro-RBD-Ig-quant (solid black line at 9730.4
for back calculated plasma BAU/ml) were not diluted. (A) Evolution from second to third follow-up.
Left: Second follow-up sampled between March and April 2021; right: Third follow-up sampled
between July and September 2021. (B) Evolution from third to fourth follow-up, sampled between
October and December 2021 and (C) evolution from the fourth to the fifth follow-up, sampled
between May and July 2022. Reproduced from [19].......coeiiiiiiiiciiiie e 11
Figure 6: Multivariate risk factor analysis for SARS-CoV-2 seropositivity in the KoCo19 baseline
round. The multivariate risk factor analysis is mutually adjusted for all variables in the figure. OR:
odds ratio; 95% Cl: 95% credible interval (Bayesian analyses)/95% confidence interval (frequentist
GLMM). Reproduced from [21]. ..eei ettt ettt e et e e tee e e e ete e e e e ate e e e earee e e eareeesennaeaeennnes 12
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Figure 7: Geospatial distribution of the prevalence in the Munich constituencies. (A) The Munich
population density (taken from https://simple. wikipedia.org/wiki/Boroughs_of Munich, as
background colour) and number of participants in each constituency (yellow dots). (B) Weighted
seroprevalence. (C) Lower 95% confidence bounds of the weighted seroprevalence. (D) Upper 95%
confidence bounds of the weighted seroprevalence. The seropositivity varied slightly across
constituencies, however, not reaching statistical significance. Reproduced from [22]. ........cc.cc......e. 13
Figure 8: Seroincidence between baseline and follow-up. (A) From the participant self-estimated
health-related risk-taking behaviour. (B) Sum of contacts. (C) Leisure time activities in summer 2020
stratified for sex and age group. Reproduced from [22]......cceeeiicciiiiiee e 14
Figure 9: (A) Cumulative anti-N seroprevalence, both weighted and unweighted, in private
households compared to official cases reports by the authorities for the Munich population aged 13
and older. (B) Anti-N sero-incidence, both weighted and unweighted. (C) Estimates of Seroprevalence
for Anti-N Antibodies, Adjusted Based on the Number of Vaccinated Individuals, Segmented by Their
Vaccination Status in the Same Round. (D) Calibrated estimates for infections of naive subjects and
breakthrough infections. (E) Prevalence and incidence of vaccination in Munich (official numbers). (F)
Relative frequencies based on infection and vaccination status. .......c.ccceeeeciieeeeciiee e, 15
Figure 10: Association between potential risk factors and SARS-CoV-2 sero-positivity while
accounting for the time gap between baseline assessment and Follow-up 4. The data is this right-
censored, and the results are generated using multiple imputation..........cccoecveeeiiciiie e 16
Figure 11: Differences between the baseline model output scenario (BSL) and the considered
possible alternatives. (A) Peak shifting (in days) compared to BSL. (B) Differences in reported cases
(factor) at the day of the peak. (C) Differences in total detected cases (factor); (D) Differences in total
deaths (factor). For all rollback scenarios, results refer to the second peak of the outbreak.
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Figure 12: Data description and model results. Detected COVID-19 cases in Munich reported by the
RKI (A) daily and (B) cumulative. Hospitalized COVID-19 cases in Munich for the normal ward stations
(c) and intensive care units (d). The solid black lines denote the results of (A)-(B) the preferred model
and (C)-(D) the hospitalization model. For first and second wave no vaccination compartments were
needed. Reproduced from [25]. ...ttt et e et e et e e e e e e s e e e e aba e e e earaees 18
Figure 13: The dynamics of the epidemic. Model fits taking into account the KoCo19 seroprevalence
data are plotted in green. Model fits without cohort information in blue. In the bottom-right panel
the cumulative number of cases detected by the healthcare authorities is also plotted for reference.
The bands correspond to 90% posterior credible intervals, while the solid line denotes the median
value. Reproduced from [26]. .....uiiiiiiieie ettt et e e e e e st e e e et e e e esaba e e e eeabae e e sentaeeeearreeeens 20

Table 1: Evaluation of diagnostic accuracy of serological test. Optimised cut-off, sensitivity,
specificity and overall accuracy of primary tests (Euroimmun Anti-S1- SARS-CoV-2-ELISA-IgA and -IgG,
El-S1-IgA and —IgG in the following, and Elecsys Anti-SARSCoV-2 Roche N pan-Ig, RO-N-Ig in the
following) were conducted from 193 true-positive samples (samples of PCR positive individuals) and
1073 true-negatives (samples of blood donors prior the COVID-10 era). Reproduced from [13].......... 8
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of commercial SARS-CoV-2 assays reveals
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Abstract

Background Measuring specific anti-SARS-CoV-2 antibodies has become one of the main epidemiological tools

to survey the ongoing SARS-CoV-2 pandemic, but also vaccination response. The WHO made available a set of well-
characterized samples derived from recovered individuals to allow normalization between different quantitative anti-
Spike assays to defined Binding Antibody Units (BAU).

Methods To assess sero-responses longitudinally, a cohort of ninety-nine SARS-CoV-2 RT-PCR positive subjects

was followed up together with forty-five vaccinees without previous infection but with two vaccinations. Sero-
responses were evaluated using a total of six different assays: four measuring anti-Spike proteins (converted to BAU),
one measuring anti-Nucleocapsid proteins and one SARS-CoV-2 surrogate virus neutralization. Both cohorts were
evaluated using the Euroimmun Anti-SARS-CoV-2-ELISA anti-S1 IgG and the Roche Elecsys Anti-SARS-CoV-2 anti-S1
assay.

Results In SARS-CoV-2-convalesce subjects, the BAU-sero-responses of Euroimmun Anti-SARS-CoV-2-ELISA anti-S1
IgG and Roche Elecsys Anti-SARS-CoV-2 anti-S1 peaked both at 47 (43-51) days, the first assay followed by a slow
decay thereafter (> 208 days), while the second assay not presenting any decay within one year. Both assay values

in BAUs are only equivalent a few months after infection, elsewhere correction factors up to 10 are necessary. In con-
trast, in infection-naive vaccinees the assays perform similarly.

Conclusion The results of our study suggest that the establishment of a protective correlate or vaccination
booster recommendation based on different assays, although BAU-standardised, is still challenging. At the moment
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the characteristics of the available assays used are not related, and the BAU-standardisation is unable to correct

for that.

Keywords Antibody, COVID-19, Nucleocapsid, RBD, SARS-CoV-2, Serology, Spike, Binding antibody units

Background

Since the surge of the SARS Corona Virus 2 (SARS-
CoV-2) pandemic, considerable progress has been
made regarding diagnosis, treatment and prevention of
COVID-19. Although by mid-2022, more than 545 mil-
lion people have been infected and more than 6 million
died, serological responses following infection or vac-
cination are still not fully understood and a correlate of
protection has not been identified yet [1, 2].

Describing the natural course of the disease in detail
may be key to understanding the immune mechanisms
and subsequent protection, either through previous
infection or vaccination, or both. Natural infection with
SARS-CoV-2 reduces the risk of subsequent infections
with the wild-type virus by 82—89% for at least 6 months
[3, 4]. In addition, SARS-CoV-2 vaccines protection
against symptomatic COVID-19 disease was reported
to be 95% for BNT162b2, 94% for mRNA 1273, 70% for
ChAdOx1 and 50% for Sinovac [5-9]. The difference in
the estimated protective effect of the vaccines correlates
with the elicited immune responses, which have been
considerably higher in the mRNA vaccines compared to
vector-based products [10]. The longevity of this protec-
tive effect however, is a matter of debate.

In addition, viral variants of SARS-CoV-2 have
emerged since and acquired immune protection was
found to be reduced [11]. Large studies have now demon-
strated breakthrough infections in vaccinated individuals
even during the peak of the antibody response, i.e., weeks
or months after completion of the vaccination course
[12-15]. A waning of the immune response against SARS
CoV-2 was suggested by Mizrahi et al. [14], demonstrat-
ing a 1.5 times increased risk for breakthrough infections
with the Delta-variant 6 month after vaccination with
BioNTech/Pfizer, compared to a 3 month time lag. In an
in-house study in early 2022 we observed many break-
through infections with the Omicron variant regardless
of vaccination status or previous infections, including
recent infection with the Delta-variant.

Several serological studies have tried to estimate the
duration and dynamics of antibody responses follow-
ing SARS-CoV-2 infection, yielding ambiguous results.
Long et al. [16] reported rapid waning of nucleocapsid
antibodies in the first 3 months after infection [16, 17].
Similarly, Ibarrondo et al. [18] described a half-life of
antibodies against the receptor binding domain (RBD)

of 36 days. In contrast, Dan et al. [19], Flehmig et al.
[20] and Ripperger et al. [21] reported that immunity
against RBD and the anti-Spike domain persisted for at
least 7 months. The reasons for these different reports
may be e.g. heterogeneity of population, assays used
etc.

Several studies highlighted considerable differences
in the readout of serological assays, indicating a ham-
pered cross-comparison. In a report by Harris et al.
[22], anti-nucleocapsid antibodies measured with the
SARS-CoV-2 IgG Assay from Abbott (Abbott Diag-
nostic, IL, USA), or anti S1 antibodies measured with
the Euroimmun Anti-SARS- CoV-2 ELISA IgG (Euro-
immun, Lubeck, Germany) were declining within
few months. Similarly, plasma from the same subjects
measured for anti-nucleocapsid or anti RBD antibodies
respectively using the Elecsys Anti-SARS-CoV-2 Roche
assays (Roche, Mannheim, Germany), demonstrated
stable values over the same time [22, 23].

To improve standardization of serological anti-spike
measurements, the WHO made available a set of well-
characterized samples deriving from SARS-CoV-2-re-
covered individuals and shipped by late 2020/early
2021 to laboratories requesting it [24]. These samples
were subsequently used to normalize results of differ-
ent quantitative anti-Spike test systems to standardized
units termed “BAU” (Binding Antibody Units) [25].
Many different manufacturers have since published
correction factors or formulas to calculate BAU values
from their quantitative anti-Spike assays [26]. In addi-
tion, laboratories have provided SARS-CoV-2 serology
results in BAU to patients and physicians in routine
care [27, 28]. Of note, the use of this WHO standard
was encouraged to cross validate internal standards,
effectively generating a chain of standards [29].

Following the suggested approach, we compared
anti-spike antibody titres quantitatively at defined and
standardized time points spanning over 18 months after
infection using different commercially available test
kits. Therefore, we used samples derived from ninety-
nine SARS-CoV-2-infected individuals and from forty-
five participants with no history of previous infection
but with two vaccinations. The anti-spike quantitative
responses were calculated to BAU units as suggested by
the manufacturers and compared. Two assays reacting
only to infection were added to the analysis.
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Methods

Cohort members: patients and vaccinees

From April to December 2020, 66 households were
included in the study with all household members,
irrespective of a SARS-CoV-2 infection (Fig. 1A). A
total of 145 non-vaccinated participants were enrolled,
including 102 members infected with SARS CoV-2.
For the three children below the age of 14, no venous
blood draw was performed, for the remaining ninety-
nine patients venous blood was drawn as soon as possi-
ble after the first positive RT-PCR and at multiple time
points thereafter.

Additionally, it was possible to recruit forty-five
participants with no history of previous infection but
with two vaccinations (Fig. 1B). A possible previous
infection was excluded with all the following crite-
ria: (i) no past positive RT-PCR for SARS-CoV-2, (ii)
past COVID-19 like symptoms had to be followed by a
negative RT-PCR, (iii) negative serology deriving from
infection (Roche Elecsys Anti-SARS-CoV-2 anti-N, see
next paragraph for details), and (iv) negative SARS-
CoV-2 surrogate virus neutralization test (GenScript®,
see next paragraph for details). The latest performed

A
KUM-Index study:
Recruitment April 2020
81 subjects with household members

|

POSITIVE RT-PCR: n=42
Symptomaticinfected household
members: n=9
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only at recruitment, end of follow-up and at sporadic
time-points.

Sample collection was performed as previously pre-
sented [30].

On December 1st 2020, this cohort joined the
ORCHESTRA (Connecting European Cohorts to
Increase Common and Effective Response to SARS-
CoV-2 Pandemic) project but was not previously
published.

Laboratory analysis

Serologic assays were performed using EDTA-plasma
samples and were conducted as previously published
[23, 30, 31]. The serological assays used were chosen if:
available in large quantities, performable with semi-auto-
mated workup, acceptable pricing, licensed for the use
in Europe, and well-described in performance [23]. The
manufacturer’s instructions were followed for all assays.
For sample time-points of PCR-positive participants
the following assays were performed: Euroimmun Anti-
SARS-CoV-2-ELISA anti-S1 IgA/IgG (hereafter called
EI-S1-IgA/EI-S1-IgG; Euroimmun, Liibeck, Germany),
Quantitative ~ Euroimmun  Anti-SARS-CoV-2-Quan-
tiVac ELISA (IgG) (hereafter called EI-S1-IgG-quant;

KoCo-Immu study:
Recruitment: 21st May— 10th December 2020
64 subjects with household members

}

POSITIVE RT-PCR: n=51

'

Adultsincluded: n=99
Children <14 years excluded:

n=3

|

99 participants with antibody
analysis

Vaccinees study:
Recruitment February 2021

45 subjects with no history of infection but with vaccinations

Fig. 1 Cohort flow chart. A Cohort of non-vaccinated SARS-CoV-2 RT-PCR positive subjects. Two recruitment strategies were used: fifty-one
participants, who had a SARS CoV-2 infection in February/March 2020 were recruited in April 2020 together with their household members
(KUM-Index-study). Forty-two of them had a positive PCR and additional 9 household members developed SARS CoV-2 specific antibodies. From
21 May till 10 December 2020 another fifty-one SARS-CoV-2 infected individuals were recruited as early as possible after their first positive RT-PCR
(Koco19-Immu-Study). B Cohort of vaccinees. Forty-five participants with no history of infection but with two vaccinations were recruited



Kroidl et al. Virology Journal (2023) 20:200

Euroimmun, Liibeck, Germany), Roche Elecsys Anti-
SARS-CoV-2 anti-N and Elecsys Anti-SARS-CoV-2 S
anti-S1 (hereafter called Ro-N-Ig and Ro-RBD-Ig-quant,
respectively; Roche, Mannheim, Germany) and Gen-
Script® (hereafter called GS-cPass, Piscataway, New
Jersey, USA). For sample time-points of vaccinees two
assays were performed: Ro-RBD-Ig-quant and Quanti-
tative Euroimmun Anti-SARS-CoV-2-QuantiVac ELISA
(IgG) (hereafter called EI-S1-IgG-quant; Euroimmun,
Liibeck, Germany). Values of EI-S1-IgG-quant and Ro-
RBD-Ig-quant could be obtained in BAUs.

Multiple measurements of the same sample (opera-
tional replicates) were performed on different days with
different operators and lots to control the intra-varia-
bility of all the assays. The very good intra-variability of
EI-S1-IgG and Ro-N-Ig was already published [23]. For
GS-cPass and Ro-RBD-Ig-quant evaluation was per-
formed with in house samples and similar results as for
the published assays were obtained (data now shown
here).The World Health Organization (WHO) reference
sera (National Institute for Biological Standards and Con-
trol [NIBSC] code 20/268) were measured on the assays
EI-S1-IgG, EI-S1-IgG-quant, Ro-N-Ig and Ro-RBD-Ig-
quant in replicates (n=3) to standardize the results [31].
In this analysis we present only the mean value.

Data analysis

Prior to analysis, the data was cleaned and locked, so
that no new measurements can be included after review.
For operational replicates, the first measurement of EI-
S1-IgG was used, since small losses compared to fresh
samples were found. In the case of Ro-N-Ig and GS-cPass
the latest measurement was included, while for Ro-RBD-
Ig-quant the most diluted value still within the linear
range was selected to calculate the true unit count. The
software R, 4.0.5 (https://cloud.r-project.org/) was used
to perform statistical analysis and visualisation. Longi-
tudinal serological dynamics were analysed applying the
LOESS (locally estimated scatterplot smoothing or local
regression) method with the 95% CI.

Results

Cohort description

After recruitment of 190 individuals, a total of 144 par-
ticipants were included in the analysis, 69% (99/144) of
which were oligo-symptomatic non-vaccinated SARS-
CoV-2 RT-PCR positives and the remaining were sub-
jects with no history of previous infection but with two
vaccinations (hereafter called vaccinees).

For the non-vaccinated RT-PCR positive individuals a
total of 438 study visits were conducted, between 1 and
8 per participant. The median age at enrollment was 37.8
years; 61% (60/99) of the participants were females. For
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the vaccinees (29/45, 64.4% females) 250 blood sam-
ples were collected, 92 (36.8%) before and 158 (63.2%)
after the second vaccination. The time of collection after
the second vaccination varied between 1 and 236 days
(mean=43.57 days and median=6 days). In the first vac-
cination the vaccines used were Biontech Pfizer (27/45,
60.0%), AstraZeneca (11/45, 24.4%) and Johnson & John-
son (6/45, 13.3%), while for the second vaccine dose,
it changed to Biontech Pfizer (37/45, 82.2%), Moderna
(5/45, 11.1%) and AstraZeneca (1/45, 2.2%).

Premedical history and symptoms during infection

A small percentage of the non-vaccinated PCR-positive
participants reported chronic medical conditions (diabe-
tes mellitus, heart disease or hypertension, 13%) and an
additional 5% reported known allergies. During the ini-
tial phase of the SARS CoV-2 infection, symptoms were
recorded and classified according to the WHO classifica-
tion (Additional file 1: Fig. S1) [29, 30]. In total, 7% (7/99)
of the participants were classified as WHO-category
1, 44% (43/99) as WHO-category 2 and 48% (47/99) as
WHO-category 3. One third (14/43) of the WHO-cate-
gory 2 patients reported clinically significant involvement
of the lower respiratory tract, while for WHO-category 3
patients the proportion rose to two thirds (30/47). Addi-
tionally, two participants had to be hospitalized due to
the severity of the symptoms. For further analysis, we
divided the participants in two groups, WHO 1-2 and
WHO > 3. Analysis of WHO-classification can be found
in the Additional file 1.

Sero-positivity at baseline measurements after SARS-CoV-2
infection

The longitudinal serological dynamics of non-vaccinated
SARS-CoV-2 RT-PCR positive individuals was followed
using five assays for head-to-head comparison (Fig. 2).
The baseline measurements yielded positive sero-
responses in 57% (56/99) of the samples for EI-S1-IgA,
44% (43/99) for EI-S1-IgG, 33% (32/99) for Ro-RBD-Ig-
quant, 53% (52/99) for Ro-N-Ig, and 83% (81/99) for GS-
cPass. 31% (30/99) of the cohort was seroconverted in all
assays, while negative results in all assays were recorded
in 16% (16/99). Over time, 79% (78/99) of participants
seroconverted as detected by all assays while 9% (9/99)
did not develop any or solely very low antibody titres
(GS-cPass or GS-cPass and Ro-N-Ig/EI-S1-IgA/G posi-
tive). For three subjects, a potentially false positive RT-
PCR test result was discussed due to complete lack of
any clinical symptoms or other signs for SARS-CoV-2
infection. The remaining 12% (12/99) of participants had
a measurable sero-response in at least three of the five
assays used.
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Fig. 2 Longitudinal serological dynamics of SARS-CoV-2 RT-PCR positive cohort. Solid black horizontals line denote the cut-off for positivity. Blue
lines represent the WHO reference panel for anti-SARS-CoV-2 immunoglobulin (NIBSC code 20/268). Each line represents one subject, the dots
represent the individual samples. All assays were performed from the same sample in a head-to-head comparison. Top left: Euroimmun Anti
Spike IgA; top right: Euroimmun Anti-Spike IgG; middle left: Roche Anti-Nucleocapsid; middle right: Roche Anti Spike/RBD; bottom: GenScript

neutralization surrogate test

Time to seroconversion was determined in those par-
ticipants with initial negative readouts. Here, mean EI-
S1-IgA positivity was detected 20 days (min=8 days,
max =69 days) after symptom onset, EI-S1-IgG positivity
after 31 days (min=14 days, max=118 days), Ro-RBD-
Ig-quant positivity after 20 days (min=7 days, max=133
days), positive Ro-N-Ig reaction after 30 days (min=10
days, max=118 days), and GS-cPass-positivity after 16
days (min=11 days, max=31 days).

Longitudinal serological dynamics after SARS-CoV-2
infection

Subsequently, we compared the quantitative reac-
tivity of the test systems over time (Fig. 2). For the

anti-S1/anti-RBD tests, the EI-S1-IgA peaked fastest (35,
31-39 days) and declined rapidly at first, followed by a
phase of slower decay at > 86 days. Using the same antigen
but measuring IgG, we saw the peak/slope change much
later (47, 43-51 days) and a subsequent slower decay
(>208 days). Values obtained by the Ro-RBD-Ig-quant
test rose similarly fast (47, 43-51 days), however, with-
out any decline over time as observed in both EI-S1-IgG
and IgA assays. Comparing the results with GS-cPass
we observed an initial peak reached after 43 (39-47)
days which was similar to the dynamics measured by EI-
S1-IgG and Ro-RBD-Ig-quant. Afterwards, the inhibition
declines and plateaus at a level of about 55.5% (55-56%).
The sero-response of the Ro-N-Ig assay peaks later (75,
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71-78 days) compared to EI-S1-IgG and subsequently
declined almost linearly (122, 118—126 days).

In a second step, we aimed to compare the non-quanti-
tative readouts of EI-S1-Ig with the quantitative readouts
of Ro-RBD-Ig-quant. For this purpose non-quantitative
EI-S1-Ig values were transformed into quantitative EI-
S1-Ig-quant (called EI-S1-Ig-quant-trafo). Details on the
procedure are outlined in the Additional file 1 and the
longitudinal analysis is presented in Fig. 3A. After stand-
ardization for BAU, the paired values of EI-S1-IgG-quant-
trafo and Ro-RBD-Ig-quant were compared (Fig. 3B). The
EI-S1-IgG-quant-trafo peaked at day 43 (40-47) with a
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mean value of 147.04 (116.88-184.98) BAU, while Ro-
RBD-Ig-quant reached its maximum at day 47 (43-51)
with a mean value of 100.20 (65.09-154.26) BAU.

EI-S1-IgG-quant-trafo and Ro-RBD-lg-quant assays

after SARS-CoV-2 infection

In order to examine in more depth the differences
between the assays EI-S1-IgG-quant-trafo and Ro-RBD-
Ig-quant, three time bands for time since symptom onset
were defined: (i) short time (0-20 days, increase phase of
antibody titres), (ii) intermediate time (70-150 days, pla-
teaued antibody titers) and (iii) long time (170-250 days,

WHO standard - 20/140 -- 20/142 -- 20/144 — 20/148 -- — EI-S1-IgG-quant-trafo — Ro-RBD-Ig-quant
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Fig. 3 Comparison of quantitative serology of individual patients (PCR-positive cohort) over time for EI-S1-lgG-quant-trafo and Ro-RBD-Ig-quant.
When assays are compared, the EI-S1-IgG-quant-trafo is represented in blue while Ro-RBD-Ig-quant in yellow. Blue lines represent the WHO
reference panel for anti-SARS-CoV-2 immunoglobulin (NIBSC code 20/268). Solid horizontal lines represent the cut-off for positivity. A
Longitudinal EI-S1-lgG-quant-trafo serology data over time. Each line represents one subject, the dots represent the individual samples. The red
solid line shows the LOESS (locally estimated scatterplot smoothing or local regression) estimations with Cl in translucent red. B Aggregated
BAU value curves of the subjects over time for the two tests. EI-S1-IgG-quant-trafo rises faster, reaches similar values than Ro-RBD-Ig-quant
between days 70 and 150 after infection and then drops to about 1/10th of the value observed in Ro-RBD-Ig-quant after one year (please note
that here almost half of the samples measured in EI-S1-IgG-quant-trafo are already below the positivity threshold). C Parallel coordinate plot
dividing the time from symptom onset into three intervals: short (0-20 days), intermediate (70-150 days) and long (170-250 days). El denotes
the EI-S1-IgG-quant-trafo assay while Ro represents the Ro-RBD-Ig-quant assay. D The Quotient of the two BAU values depicted in log10 scale
over time (Ro-RBD-Ig-quant/El-S1-IgG-quant-trafo). At the Factor Value of 1, the BAU values are identical. This occurs only in a short timeframe

about 80 days post symptom onset
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decrease phase of antibody titres). Time intervals are not
equally long and there are gaps in the timeline to better
define the three phases of the serological dynamic.

The parallel coordinate plot (Fig. 3C) demonstrates
that the two assays yielded differing results and were only
similar in the intermediate time band. Subsequently, the
quotient between the measured BAU values was calcu-
lated in an effort to quantify the differences observed,
whereby a factor of 1 implied the same readout in both
tests. This, however, was only observed at day 80 after
symptom onset with values differing greatly before and
after (Fig. 3D). Shortly after infection, multiplication
by factor 0.1 was necessary to obtain similar values of
EI-S1-IgG-quant-trafo compared to Ro-RBD-Ig-quant,
whereas after 250 days the factor was 5. In addition, the
differences are likely to be underestimated, as a correc-
tion was no longer possible if one test dropped below
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detection limit. This occurred in almost half (48.65%;
18/37) of the EI-S1-IgG-quant-trafo values and only
in less than 5% (2/41) in the Ro-RBD-Ig-quant at the
250 day mark. The WHO reference panel for anti-SARS-
CoV-2 immunoglobulin (NIBSC code 20/268) resulted to
have higher values in EI-S1-IgG-quant-trafo compared
to Ro-RBD-Ig-quant in all samples (Fig. 3D, quotient
smaller than 1).

EI-S1-IgG-quant-trafo and Ro-RBD-lg-quant assays

after twice vaccination against SARS-CoV-2

Serological dynamics, assay readouts, and BAU val-
ues from the non-vaccinated SARS-CoV-2 infected
cohort were compared to healthy controls vaccinated
twice against SARS-CoV-2. Therefore, EI-S1-IgG-quant
and Ro-RBD-Ig-quant assays were measured in blood
samples before and after second vaccination (Fig. 4A).

A = EI-S1-Ig-quant == Ro-RBD-Ig-quant
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Fig.4 Comparison of individual Anti-S1 BAU values of vaccinees over time for EI-51-IgG-quant and Ro-RBD-Ig-quant, respectively. The time
zero denotes the day of the second vaccination. The EI-S1-IgG-quant is represented in blue while Ro-RBD-Ig-quant in yellow. Solid horizontal
lines represent the cut-off for positivity. A Longitudinal serology data of subjects over time. Each line represents one subject, the dots
represent the individual samples. The solid lines show the LOESSs (locally estimated scatterplot smoothing or local regressions) estimations
with Cl as a shadowed region. The dashed black lines denotes 250 BUS/mL. B Parallel coordinate plot dividing the time from symptom onset
into three intervals: short (0-20 days), intermediate (70-150 days) and long (170-250 days). El denotes the EI-S1-IgG-quant assay while RO
the Ro-RBD-Ig-quant assay. C Quotient of the two BAU values depicted in log10 scale over time (Ro-RBD-lg-quant/EI-S1-IgG-quant-trafo); at 1,
the BAU values are identical. Blue lines represent the WHO reference panel for anti-SARS-CoV-2 immunoglobulin (NIBSC code 20/268)
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Serological dynamics and temporal evolution of the titers
measured by EI-S1-IgG-quant and Ro-RBD-Ig-quant dif-
fered considerably in naturally infected individuals, this
was not the case for vaccinated individuals. As Fig. 4B
and C demonstrate, parallel coordinate plots were less
divergent and the ratio of the two assays showed to be
closer to 1. After a first increase phase (from day 0 to day
34 (30-37) for EI-S1-IgG-quant and to day 31 (28-34) for
Ro-RBD-Ig-quant), the median peak was reached with a
level of 8069.21 (1912.37-34,047.96) BAU for EI-S1-I1gG-
quant and 23,988.33 (4073.80-144,543.98) BAU for Ro-
RBD-Ig-quant. Both serological dynamics then decrease
rapidly until day 63 (60-66) or 62 (59-65) for EI-S1-IgG-
quant or Ro-RBD-Ig-quant, respectively. Thereafter, the
slopes of the decrease reduce greatly.

Natural infection versus double SARS-CoV-2 vaccination

In our study, antibody-titers in fully vaccinated (i.e.,
twice) non-infected individuals were considerably higher
compared to the naturally infected participants. For EI-
S1-IgG-quant, the difference between the maximum
value for vaccinated vs. naturally infected was 7.92217
BAU, while for Ro-RBD-Ig-quant the difference increased
to 13.96833. In total, 93.75% of the vaccinees reached a
maximum value over 1000 BAU, while only 69.7% of the
vaccination naive infected subjects reached a value over
100 BAU.

In contrast to natural infections, vaccinated individu-
als exhibited a sharp decline in antibody titers as deter-
mined by Ro-RBD-Ig-quant, limited to approximately 60
days after the second vaccination followed by a plateau of
titer (Fig. 3B compared to Fig. 4A). EI-S1-IgG-quant pre-
sented a similar profile, but in this assay a sharp decrease
was also observed after natural infection. After vaccina-
tion however, the observed velocity of decrease seems to
reduce. In mean, both assays yield positive readouts over
the period analyzed, with values of the EI-S1-IgG-quant
assay being closer to the positivity threshold compared to
the ones as determined by Ro-RBD-Ig-quant.

Discussion

In this study, we compared serological dynamics using
samples from ninety-nine non-vaccinated PCR-positive
participants and from forty-five participants with no
history of previous infection but with two vaccinations
against SARS-CoV-2. Serum samples were analyzed with
a total of six different assays. To follow infection, assay
readouts of Ro-N-Ig and GS-cPass were performed from
the same sample in a head-to-head comparison. Partici-
pants showed positive antibodies against these assays
for at least 400 days. The remaining four assays detect
responses to both infection and vaccination. In previous
studies the EI-S1-IgA showed to be less reliable [23] and
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was therefore performed only for samples of the PCR-
positive participants. The EI-S1-IgG assay is per manu-
facturer’s definition non-quantitative and its quantitative
version is defined by the EI-S1-IgG-quant assay [31]. It
was possible to measure samples of the PCR-positive par-
ticipants only with the non-quantitative version. Meas-
urements were hence transformed to quantitative values
using paired samples presented in [31]. A comparison
with the vaccinees was possible thereafter, together with
direct readouts of the Ro-RBD-Ig-quant for both cohorts.
As a results, the longitudinal dynamics of EI-S1-IgG-
quant and Ro-RBD-Ig-quant in the PCR-positive cohort
present completely different trends, while for vaccinees
the trends a very similar.

Duration and magnitude of serological responses in
relation to different testing systems and antigen-target
has been subject to dissent. Harris et al. [22] demon-
strated a rapid decline of anti-N antibodies using the
ELISA from Abbot, with only 51% of SARS-CoV-2
infected individuals having a sero-response after 6
months. In contrast, Favresse et al. [32] showed a posi-
tivity rate of 94% after 10 months but using the Ro-N-Ig
test. Muecksch et al. [33] compared four different assays:
the Ro-N-Ig and the Abbott SARS-CoV-2 immunoglob-
ulin (Ig) G assay for anti-N detection, and the DiaSorin
SARS-CoV-2 IgG together with the Siemens SARS-
CoV-2 RBD assay for anti-S comparisons. Similarly to our
analysis, the shapes of the curves strongly differ between
assays. Dan et al. [19] described a half-life of binding anti-
S antibodies of 103 days. In contrast Ibarrondo et al. [18]
described a rapid decay of anti-RBD antibodies with a
half-life of only 36 days.

In our cohort of non-vaccinated SARS-CoV-2 RT-PCR-
positive individuals direct readout values are coherent to
previous published literature, comparing the same testing
platform [33]. If compared to other assays, same discrep-
ancies as in the rest of the literature appear. In addition,
clinical characteristics of the underlying cohorts differed
greatly. Several authors described a correlation between
magnitude of antibody responses and degree of clinical
symptoms in SARS-CoV-2 infected individuals [16, 17,
32, 34-38]. This was replicated in our cohort, where we
could observe a trend towards higher antibodies titers
in individuals with more severe symptoms. As we solely
enrolled oligo-symptomatic participants, these findings
did not reach statistical significance. Of importance,
exactly that group of oligo-symptomatic patients is the
overwhelming majority of the population which might be
subject to serological testing for different reasons.

A correlate of protection of SARS-CoV-2 has not been
established yet and it is still debated whether the protec-
tion after natural infection is different or perhaps even
superior to vaccination [39]. Natural infection is likely
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to elicit a broader response against more epitopes of the
virus [40]. However, several studies describe the immune
response after vaccination to be characterized by higher
antibody levels compared to natural infections, espe-
cially following vaccination with mRNA- based vaccines
[5, 7, 9, 33, 41]. Recent reports describe waning protec-
tion already shortly after the second dose and the decay
seems more pronounced than after a natural infection
[42-45]. Similarly, when comparing naturally infected
to vaccinated participants, we observed pronouncedly
higher antibody levels in the latter compared to the for-
mer. Antibody levels remained positive for at least seven
months after vaccination.

Initial reports on SARS-CoV-2 infected cohorts
declared a high level of protection of 82—89% for approxi-
mately 6 months against the wild type virus [3]. Similarly,
data from Israel suggested a high level of protection after
vaccinating with Pfizer-BioNTech [46]. Since the surge of
new virus variants protection against Delta and Omicron
variants was reduced [14]. Mizrahi et al. [14] described
a 1.5 times increased risk for breakthrough infections
with Delta variant for subjects 6 months after vaccination
with Pfizer-BioNTech compared to subjects 3 months
after vaccination. Shrotri et al. [42] compared protec-
tion of vaccinated individuals with anti-RBD antibodies
above and below 500 BAU (ELYSYS Ro-Ig) and found
significantly more infected participants with antibodies
below 500 BAU. However, our data suggests that an anti-
body lever of 500 BAU is usually not reached after natu-
ral infection. Our SARS-CoV-2 RT-PCR-positive cohort
only included participants infected with the original wild
type strain. A comparison between variants is therefore
not possible, but would also only generate data unclear
to compare, as the vaccines and the antigens used in the
tests are all also wild type.

Modelling the temporal evolution of the antibody lev-
els, the serological dynamics of the vaccinated cohort is
completely different than that of the PCR-positive vac-
cine naive infected participants. After vaccination, we
observed a short initial peak phase, followed by a very
slow decline of antibody levels in both quantitative tests
EI-S1-Ig-quant and Ro-RBD-Ig. All measurements were
above the positivity threshold even seven months after
the second dose. The curves representing the antibody
dynamics of both quantitative tests were very similar. This
is in contrast to our observations in the SARS-CoV-2 RT-
PCR-positive cohort described here. The ELISA-based
Euroimmun test suggested a rapid decline of antibodies
with more than 50% of the samples dropping below the
threshold for positivity within less than one year while
the Ro-RBD-Ig assay yielded positive readouts after 200
days almost without declining. An explanation for the
slow EI-S1-Ig-quant antibody decrease in vaccinated
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versus the steady state suggested by Ro-RBD-Ig readout
in the RT-PCR-positive cohort could be the rise in avidity
as also described by Scheiblauer et al. [47]. The authors
hypothesized that two vaccine doses lead to an antibody
response dominated by highly specific and highly avid
IgG directed against the S-protein. Thus, the antibody-
signal dynamics over time reflect the overall amount of
antibodies in both tests. In contrast, natural infection will
likely elicit a much broader response which maturates
over time [47], including detection of the RBD-domain
which in turn might lead to an increase in avidity, while
the overall antibody amount is dropping [47]. Those two
opposing effects may compensate each other at differ-
ent rates depending on the assay format. The Ro-RBD-Ig
assay reportedly detects the binding of few antibodies but
favors high avidity [47], potentially resulting in a persis-
tently high assay readout, while the ELISA-based Euro-
immun assay values are biased towards whole antibody
binding and thus decline. Persisting non-declining Roche
RBD-antibodies detectable for more than 300 days after
natural infection have been repetitively described with a
level of ~100 BAU [32, 47].

Summarising, we present the results of a well-char-
acterized cohort to investigate dynamics in serologi-
cal responses to non-vaccinated SARS-CoV-2 infected
individuals compared to vaccinated healthy controls.
For quantitative anti-Spike assays, we used BAU stand-
ardization which is provided by the manufacturer.

However, we observe distinct differences both in the
magnitude and dynamics of the measured antibody
response, although BAU standardization for anti-S1/
RBD tests was used. Interestingly, these differences
were negligible for samples taken two months after
symptom onset. The standardization however is less
accurate before and after this time period, resulting
in differences of up to one order of magnitude in sup-
posedly standardized and comparable values. These
differences disappeared in the vaccinated cohort.
One potential explanation could be the fact that the
assays measure different targets. While the EI-S1-IgG
detects the overall amount of binding antibodies in an
ELISA-format, Ro-RBD-Ig-quant is an ELECSYS based
double-antigen sandwich-test, detecting highly avid
antibodies [47]. Importantly, the BAU-standard pro-
vided by the WHO is derived from a group of donors
relatively shortly after the infection. Subsequently,
standardization performed for an assay will likely be
accurate for tests with a similar profile of antibodies,
regarding both subclass as well as avidity, hence only
in individuals few months after natural infection [25].
Therefore, it is not be the best standard for clinical
cohorts, including samples from individuals very early
or late after the infection, or after vaccination.
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Conclusion

The data presented here suggest that the establishment
of a protective correlate or vaccination booster recom-
mendation based on BAU might be hampered. Also,
comparisons of individual patient values between dif-
ferent laboratories will be unreliable even if reported in
BAU. The characteristics of the individual test systems
employed need to be considered and should be corrected
for, as the differences are likely to be high especially in
subjects with small amounts of highly avid antibodies.
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Abstract: Antibody studies analyze immune responses to SARS-CoV-2 vaccination and infection,

which is crucial for selecting vaccination strategies. In the KoCo-Impf study, conducted between
16 June and 16 December 2021, 6088 participants aged 18 and above from Munich were recruited
to monitor antibodies, particularly in healthcare workers (HCWs) at higher risk of infection. Roche

Elecsys® Anti-SARS-CoV-2 assays on dried blood spots were used to detect prior infections (anti-

Nucleocapsid antibodies) and to indicate combinations of vaccinations/infections (anti-Spike an-

tibodies). The anti-Spike seroprevalence was 94.7%, whereas, for anti-Nucleocapsid, it was only
6.9%. HCW status and contact with SARS-CoV-2-positive individuals were identified as infection
risk factors, while vaccination and current smoking were associated with reduced risk. Older age
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correlated with higher anti-Nucleocapsid antibody levels, while vaccination and current smoking de-
creased the response. Vaccination alone or combined with infection led to higher anti-Spike antibody
levels. Increasing time since the second vaccination, advancing age, and current smoking reduced
the anti-Spike response. The cumulative number of cases in Munich affected the anti-Spike response
over time but had no impact on anti-Nucleocapsid antibody development/seropositivity. Due to the
significantly higher infection risk faced by HCWs and the limited number of significant risk factors,
it is suggested that all HCWs require protection regardless of individual traits.

Keywords: COVID-19; SARS-CoV-2; health care workers; vaccination; immunologic response;
antibodies; seroprevalence; breakthrough infections; ORCHESTRA

1. Introduction

The first report of the severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2)
causing COVID-19 was on 31 December 2019 in the city of Wuhan (Hubei province,
China) [1]. The World Health Organization (WHO) declared COVID-19 as a pandemic on
11 March 2020, after more than 118,000 cases in 114 countries and 4291 deaths occurred [2].
Since then, there have been outbreaks worldwide, with approximately 767 million con-
firmed cases and more than 6.9 million deaths as of June 2023 [3]. The first COVID-19 cases
in Germany were observed in the municipality of Munich in late January 2020 [4]. Several
vaccines were promptly developed and have been available in Germany since 27 December
2020 [5]. The first individuals to receive vaccinations were healthcare workers (HCW:
people engaged in work actions whose primary intent is to improve health [6]) (HCWs), the
elderly, and those who were at a high risk of severe illness to prevent the healthcare system
from collapsing from overwhelming case numbers or lack of personnel [6-9]. HCWs are of
particular interest and require careful investigation regarding SARS-CoV-2 infections. As
vaccine protection diminishes over time, receiving an early vaccination reduces the risk of
early infection but may increase the risk of later infection. This has been noted in several
studies [9-11].

Many cohort studies have been set up since the beginning of the pandemic to analyze
risk factors for infection before and after vaccination in both the general population [12-16]
and HCWs [17,18].

Considering the role of antibody levels in protection against infection, most studies
also analyze antibody titers over time. Anti-nucleocapsid (anti-N) antibodies develop only
after natural infection (or vaccination with nucleocapsid-containing vaccines not commonly
used in the Western world), while anti-spike (anti-S) antibodies develop after natural
infection or/and vaccination [19].

Collatuzzo et al. [17] analyzed the predictors for a longer duration of the anti-S immune
response at 9 months after the first COVID-19 vaccination in a multicentric European
cohort of HCWs. A part of these data was fed into their analysis following the European-
wide Consortium ORCHESTRA (Connecting European Cohorts to Increase Common and
Effective Response to SARS-CoV-2 Pandemic). Female gender, young age, a previous
infection, two vaccine doses, and mRNA and heterologous vaccination were found to
determine higher anti-S antibody levels.

Moncunill et al. [20] analyzed determinants of antibody responses to COVID-19 mRNA
vaccines in a cohort of exposed and naive HCWs. Comparing previously SARS-CoV-2
infected versus uninfected individuals, the first ones were found to have higher anti-S IgA,
IgG, and IgM levels, independently of the brand of the vaccine. At the same time, non-
infected individuals developed significantly higher antibodies, depending on the brand
of the vaccine. Interestingly, despite the clear impact of SARS-CoV-2 exposure on vaccine
response, time since infection did not have a major effect on antibody response. Moreover,
age and sex were not significantly associated with anti-S IgG levels in multivariable models.
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Notarte et al. [21,22] analyzed determinants of antibody responses after COVID-19
mRNA vaccines in different populations. Regardless of the vaccine brand used, older age,
male sex, seronegative status prior to vaccination, and presence of major comorbidities
were associated with lower antibody titers (total antibodies, IgG, and/or IgA), supporting
the findings of Yang [23].

Other factors leading to lower anti-S antibody titers were smoking [20,24] and homol-
ogous vaccination schemes [25-27].

In April 2020, the prospective Munich COVID-19 cohort (KoCo019) began to better
evaluate the true case numbers [12,28,29]. Latest results show that vaccination prevents
infection: anti-N seroprevalence was greater in the non-vaccinated population compared
to the vaccinated one. At the same time, anti-N seroconversion rates (incidence) among
vaccinated subjects did not show any statistical difference compared to the non-vaccinated
group. Breakthrough infections (BTIs) may thus contribute relevantly to community
spread, also considering the fact that the vaccinated population is much larger than the
non-vaccinated population. The sub-cohort with jobs having a high contact risk with
COVID-19 cases (e.g., HCWs) was found to have an increased risk for infection [30].

In May 2021, a new longitudinal cohort named KoCo-Impf (Prospective COVID-19
post-immunization Serological Cohort in Munich—Determination of immune response
in vaccinated subjects) was established at the Division of Infectious Diseases and Tropical
Medicine, comprising mostly HCWs with high contact risk with the SARS-CoV-2 virus. The
analysis presented here aimed to identify risk factors for infection among HCWs, factors
that influence the immune response following infection or vaccination, and differences
between HCWs and the general population. The analysis utilized multivariable logistic
regression analysis to identify risk factors for infection based on qualitative anti-N antibody
results. Additionally, multivariable generalized linear models (GLM) were employed to
determine the factors that raise antibody titers following infection and/or vaccination,
using quantitative anti-N and anti-S antibody values.

The KoCo-Impf study was recruited concurrently with the third and fourth follow-
ups of KoCo19 in Munich. This allowed for a comparison of the general population of
Munich (KoCo19) with their HCWs. Although the crude rates for anti-N seroprevalence
were similar, a direct comparison was challenging. However, it was confirmed in both the
KoCo19 and the KoCo-Impf that HCWs had a higher risk of infection. Sex, age, household
size, and intake of immune-suppressing drugs were not found to be significant risk factors
for infection in either cohort, but being a current smoker was.

2. Materials and Methods
2.1. The KoCo-Impf Cohort: Cohort Design, Inclusion Criteria, and Setting

The objective of KoCo-Impf is to investigate the short-, medium- and long-term im-
mune response to SARS-CoV-2 vaccination. This study is funded by the European Union’s
Horizon 2020 research and innovation program, as part of ORCHESTRA (Connecting
European Cohorts to increase common and Effective SARS-CoV-2 Response), and also by
the Division of Infectious Diseases and Tropical Medicine’s own resources [31].

Between 16 June and 16 December 2021, a total of 6467 participants aged 18 years or
older, who had received at least one COVID-19 vaccination, were recruited for this study
from the Munich municipality and surrounding areas. The recruitment campaign was
carried out through three different paths (Figure 1, top):
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* 18 years and older

Inclusion criteria

*  From Munich municipality and counties in the vicinity
*  Having received at least one COVID-19 vaccination
*  Without conditions or language barriers that impede an informed consent

J

4

¢

Path 1 ettt L i” Path 3
Local vaccination center after PSt'tﬁ'gg’p';falgt fIsk: General population
COVID-19 vaccination *  Nursing homes
= Vaccination center
= Other institutions at risk
Advertisement through Advertisement through flyers Advertisement through flyers

personnel onsite

or personnel onsite

or webpage

Informed consent forms and questionnaire were shared before visit

Informed consent, DBS and
questionnaire data acquired

Informed consent, DBS and
guestionnaire data acquired at

Informed consent, DBS and
guestionnaire data acquired at

ansite

the respective institution the Tropic institute

U U U

_ ‘{ From June 16, 2021 to December 16, 2021, 6467 ]

Complete antibodies measurements 13 due to missing values for the presence of Anti-N (and
N=6454 partially also Anti-5) antibodies
Females and males of 18 years I 303 due to missing or implausible year of birth ]
and older N=6151
27 from institutional subgroup “Curevac” and “Marienstift™
Eligible participants 13 from vaccination scheme “Sinovac”, “CureVac®, and SputnikVm
N=6103 8 due to missing or diverse gender

3 due to the implausible date of the last vaccination (67 days after taken
e | blood sample, already in 2020)

12 due to unknown vaccination scheme

Complete information on all the independent variables (age, sex, sub-
cohorts, patient contacts, contacts with a positive case, smoking status,
combination of different vaccines, size of the household, consumption
of immunosuppressive medications and the cumulative number of
Covid-19 cases) to include in the statistical analyses

Figure 1. Recruitment paths and criteria for inclusion into the analysis. Gray boxes: inclusion criteria
and places of recruitment. Orange boxes: information on advertisement modalities for recruiting
participants; modalities of the acquisition of informed consent, questionnaire data, and capillary
blood samples (acquired in person by study personnel). A triangle diagram describing the exclusion
criteria and the final information of the analyzed participants.

Path 1: At the local vaccination center Riem, where individuals were approached with
this study’s information after their vaccination,

Path 2: At hospitals and nursing homes in the Munich area, targeting particularly
exposed or vulnerable individuals (HCWs), and

Path 3: Via brochures and on the website of the Division of Infectious Diseases and
Tropical Medicine for the general population.
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Participants with language barriers (insufficient knowledge of the German language)
or inability to provide informed consent were excluded.

Recruitment strategy, acquisition of informed consent, capillary blood samples, and
questionnaire data occurred in different ways depending on the recruitment pathway:

Path 1: Directly after vaccination,

Path 2: By study teams making appointments on specific days to visit the sites, catching
participants in the building during their working time, and

Path 3: Posting advertisements on the webpage of the Division of Infectious Diseases
and Tropical Medicine, Klinikum der Universitdt Miinchen; participants could make an
appointment for a personal visit via a hotline.

After data cleaning, 6088 participants were included in the analysis (Figure 1, bottom).
Capillary blood samples were taken from participants to determine their antibody status,
and questionnaire data were collected to obtain information on participants’ characteris-
tics. The recruitment of employees from the University Hospital of Munich (LMU) was
conducted simultaneously with the RisCoin HCWs cohort study, which studies risk factors
for COVID-19 vaccine failure among HCWs [32].

2.2. Specimen Collection and Laboratory Analyses

Teams of trained field workers collected capillary blood samples (also known as a
dry blood spot or DBS) following proper infectious disease control and blood sampling
procedures to conduct laboratory analysis. The process for analyzing a DBS is explained in
detail [33]. Two types of assays were used: the Roche Elecsys® Anti-SARS-CoV-2 assay anti-
Spike (anti-S) test, referred to as Ro-RBD-Ig, and the Roche Elecsys® Anti-SARS-CoV-2 anti-
Nucleocapsid (anti-N) test, referred to as Ro-N-Ig. The Ro-RBD-Ig detects antibodies after
infection and vaccination, while the Ro-N-Ig test is used to differentiate between antibodies
resulting from infection (both anti-S and anti-N present) and those due to vaccination
(only anti-S present). The Ro-N-Ig test determines if an individual has previously had an
infection but cannot provide information on the infection date. The Ro-RBD-Ig test has a
cut-off value of 0.115 for DBS-seropositivity, while the Ro-N-Ig test has a cut-off value of
0.105. For both assays, a cross-reaction with viral infections predating the COVID-19 era
could be excluded. This was achieved by analyzing samples obtained from blood donors
prior to the emergence of COVID-19 [34,35].

2.3. Questionnaire Data

This study used questionnaires to gather information from participants about

recruitment (institutional subgroup; recruitment date);

demographic (date/year of birth; sex; level of education; household size);
health-related behavior (smoking status; pre-existing medical conditions; medication
scheme (intake of immunosuppressive drugs; others));

employment-related behavior (occupational status; working conditions);
COVID-19-related health status (vaccination status such as the date and type of first,
second, and third vaccination if applicable; infection status, only Polymerase chain re-
action (PCR)-confirmed COVID-19-diagnosis; diagnosis period; diagnosis date, month,
and year; diagnosis in relation to vaccination and immunization status; diagnosis date
after first vaccination; diagnosis date after full immunization (Two doses of Comirnaty,
Spikevax or Vaxzevria or one dose of Jcovden at the time of data collection); severity
of SARS-CoV-2-infection; previous contact with SARS-CoV-2 infected person; testing
frequency; symptoms suggestive for COVID-19).

In the course of this study, three different versions of the questionnaire were used:
Questionnaire 1 was provided on paper and used at the beginning of this study. Question-
naire 2 (used after 15 October 2021) was also provided on paper and included questions
about the possibility of a third COVID-19 vaccination, as well as additional information that
had emerged as potentially relevant during the course of this study (e.g., educational at-
tainment, occupation, the presence of pre-existing conditions, and the course of COVID-19
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disease). Questionnaire 3 was completed online by LMU employee hospital participants
and requested the same information as Questionnaires 1 and 2.

Participants in Path 1 received Questionnaire 1 on the day of recruitment and filled it
out during the recruitment procedures. Participants in Paths 2 and 3 were given the option
to fill out Questionnaires 1 and 2 beforehand and bring them to the recruitment session or
to fill them out on the day of recruitment. Participants in Path 2 also received Questionnaire
3 on the day of recruitment and were asked to fill it out during the recruitment procedures
or as soon as possible thereafter.

Paper-based questionnaires were digitized using the software FormPro (version 3.1,
OCR System GmbH, Leipzig, Germany, 2021).

2.4. Variables Definition

The variables that were used for the analysis are described in Table 1 and were selected
following medical relevance. While most of the variables were obtained directly from the
questionnaire, some of them were derived from other variables. The latter includes the
vaccination scheme, time since the second vaccination, the occurrence of BTIs, time since
infection, and the combination of the vaccination scheme and former infection, which is
referred to as “immunity” hereafter. The recruitment process for KoCo-Impf was unique as
it took place at various institutions over a period of seven months during the pandemic.
Since a positive anti-N antibody level indicates a past infection, which could have occurred
a long time ago, it is essential to take the different waves of the pandemic into account and
correct for the different times at risk. Therefore, the cumulative number of new COVID-19
cases from the beginning of the pandemic to each date of recruitment was added as a
covariate based on a weekly rolling window. A time lag of two weeks was applied, as
anti-N and anti-S antibodies often need two weeks to develop after infection. [36,37].

Unlike most studies, we defined a SARS-CoV-2 infection by looking at anti-N an-
tibody positivity instead of just considering PCR-positive tests. This approach ensures
that asymptomatic and previously undiagnosed infections are more likely to be detected.
Infection and vaccination by those vaccines used in our cohorts can be differentiated by
serology, detecting both anti-S and anti-N antibodies. This analysis neglects information on
symptoms. This choice was made due to the fact that many infections resulted in being
asymptomatic, and the severity of symptoms does not necessarily indicate a different
change in the antibody response.

2.5. Statistical Analyses

Before conducting statistical analysis, data were cleaned and secured. Categorical
variables are presented as frequencies and percentages, while continuous variables are
presented as mean values and standard deviations (SD). Mean values, SDs, and crude
associations were calculated for all quantities and are presented in Table 2.
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Table 1. Variables description with color-coded allocation to the three statistical models used in the analysis. Covariables of: all three models, green; only anti-N

qualitative model, pink; only anti-S quantitative model, gray; anti-N quantitative model and anti-S quantitative model, blue; anti-N qualitative model; anti-N

quantitative model, gold.

Variable Name

Definition (Type of Variable)

Quantitative anti-N/S

The detected amount of Ro-N-Ig/Ro-RBD-Ig from DBS (continuous)

Qualitative anti-N /S

A positive anti-N/S result is defined when the amount of Ro-N-Ig/Ro-RBD-Ig is >0.105/0.115 (positive /negative)

Age Et ol

Age of participants in years (continuous)

Cumulative cases

Cumulative number of COVID-19 cases from the beginning of the pandemic till the recruitment date (continuous)

Intake of immunosuppressive drugs ****

Current intake of medications that may suppress the immune system (yes, no)

Sex bt

Sex of the participant (male, female)

Smoking status ****

Current smoking status (never smoker, current smoker, past smoker)

Contact with patients ****

Direct contact with patients (yes, no)

Contact with positives ****

Previous contact with COVID-19 affected /SARS-CoV-2 infected person (yes, no, or unwittingly)

Household size ****

Number of household members including participant (1, 2, 3, 4, 5, >5)

Institutional subgroup

Categorization according to the institution of recruitment (Hospitals *: Medical center of LMU, Tropical Institute **, MK
Bogenhausen, MK Harlaching, MK Neuperlach, MK Schwabing, MK Thalkirchner Strafle, Barmherzige Briider, Seefeld, Institutions
of long-term care: Eichenau, MS Heilig Geist, MS Riimannstrafie, Obersendling

Others: Vaccination center Riem, Friedenheimer Briicke, General population ***)

Breakthrough Infection (BTI) ****

An infection happened at least 2 weeks after the second dose (yes, no, not applicable)

Time since infection ****

Time between the sampling date and the positive PCR (infected in less than 3 months, infected between 3 and 6 months, infected
between 6 and 12 months, infected after 12 months, no infection)

Combination of vaccination scheme and former infection
(immunity)

A composite variable containing information on the previous infection (based on anti-N result) and the undergone vaccination
scheme (infection yes, not vaccinated, infection yes + one vaccination, infection yes + two vaccinations, infection yes + three
vaccinations, infection no + one vaccination, infection no + two vaccinations, infection no + three vaccinations)

Time since second vaccination ****

Time between the second vaccination and the sampling date (continuous)

Vaccination scheme ****

A combination of types of vaccination and number of vaccinations, including BioNTech/Pfizer, Moderna, AstraZeneca, Johnson &
Johnson /Janssen (no vaccination, one vaccination, two vaccinations, three vaccinations)

* Includes study participants from Path 2. ** Division of Infectious Diseases and Tropical Medicine of LMU. *** Includes study participants from Path 1 and Path 3. **** Based on

self-reported questionnaire data.
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Table 2. Cohort description with data before imputation.

Qualitative Anti-N

Qualitative Anti-S

Quantitative Anti-N

Quantitative Anti-S

Number of . 2
Covariate Category Participants N (%) N (%) Mean Value (SD) Mean Value (SD)
N (%) Positive Negative Positive Negative Positive Negative Positive Negative
Overall cohort 6088 (100.0) 424 (6.9) 5664 (93.1) 5767 (94.8) 321 (5.2) 0.94 (1.52) 0.06 (0.01) 83.54(200.35)  0.03 (0.02)
Female 4379 (72.0) 296 (6.7) 4083 (93.3) 4199 (95.9) 180 (4.1) 0.88 (1.33) 0.06 (0.01) 82.39(199.08)  0.03 (0.02)
S
X Male 1709 (28.0) 128 (7.4) 1581 (92.6) 1568 (91.8) 141 (8.2) 1.10 (1.86) 0.06 (0.01) 86.68 (204.17)  0.03 (0.02)
gj;?ehremge 188 (3.0) 40 (21.2) 148 (78.8) 187 (99.5) 1(0.5) 0.98 (1.04) 0.07 (0.008) 55.02 (106.23)  0.06 (NA)
Eichenau 34 (0.5) 5 (14.7) 29 (85.3) 34 (100.0) 0(0.0) 1.59 (2.00) 0.07 (0.004) 44720 (427.47) -+
g;fflfe“helmer 34 (0.5) 1(2.9) 33(97.1) 34 (100.0) 0(0.0) 0.88 (NA) 0.08 (0.006) 82.45(122.71) -
General 671 (11.0) 50 (7.5) 621 (92.5) 366 (54.6) 306 (45.4) 1.33 (2.25) 0.07 (0.02) 43.84 (121.03)  0.03 (0.02)
population . : . . . 33 (2. .07 (0. . . .03 (0.
Medical
Center of 3689 (60.6) 213 (5.7) 3476 (94.3) 3680 (99.8) 9(0.2) 0.86 (1.53) 0.06 (0.01) 85.62 (205.49)  0.04 (0.04)
LMU
Institutional MK, 238 (3.9) 23 (9.6) 215 (90.4) 238 (100.0) 0(0.0) 1.42 (1.78) 0.07 (0.01) 62.67 (172.21) -
subgroup Bogenhausen
MK,
Harlaching 154 (2.5) 14 (9.1) 140 (90.9) 154 (100.0) 0(0.0) 0.87 (1.19) 0.07 (0.006) 4320 (60.97) -
MK,
Nevperlach 112 (1.8) 5 (4.4) 107 (95.6) 112 (100.0) 0(0.0) 0.45 (0.38) 0.07 (0.005) 3344 (3295) -
MK,
Schwabing 281 (4.6) 13 (4.7) 268 (95.3) 281 (100.0) 0(0.0) 0.36 (0.35) 0.07 (0.009) 48.08 (128.11) -
MK,
Thalkirchner 67 (1.1) 4(5.9) 63 (94.1) 67 (100.0) 0(0.0) 2.15 (2.27) 0.07 (0.006) 40.60 (46.19) -
Strafle
MS, Heilig
60 (0.9) 14 (23.3) 46 (76.7) 60 (100.0) 0(0.0) 0.61 (0.69) 0.06 (0.02) 140.81 (380.16) -

Geist




Viruses 2023, 15, 1574

9 of 25

Table 2. Cont.

Qualitative Anti-N

Qualitative Anti-S

Quantitative Anti-N

Quantitative Anti-S

Number of . 2
Covariate Category Participants N (%) N (%) Mean Value (SD) Mean Value (SD)
N (%) Positive Negative Positive Negative Positive Negative Positive Negative
MS, Rii-
mnnstatie 36 (0.5) 2(5.5) 34 (94.5) 36 (100.0) 0 (0.0) 0.58 (0.67) 0.06 (0.005) 531.93 (574.09) -
Obersendling 27 (0.4) 4(14.8) 23 (85.2) 27 (100.0) 0 (0.0) 0.88 (0.66) 0.08 (0.004) 5403 (113.73) -
Seefeld 83 (1.3) 5 (6.1) 78 (93.9) 83 (100.0) 0 (0.0) 1.26 (0.52) 0.06 (0.01) 138.71 (285.03) -
?ﬁ:ﬁﬁi 48 (0.8) 2(4.1) 46 (95.9) 46 (95.9) 2(4.1) 0.16 (0.05) 0.07 (0.01) 78.37 (115.27)  0.05 (0.02)
Vaccination
conter Riem 366 (6.0) 29 (7.9) 337 (92.1) 363 (99.2) 3(0.8) 0.76 (0.85) 0.07 (0.007) 101.04 (148.18)  0.06 (0.04)
Yes 3505 (57.5) 261 (7.4) 3244 (92.6) 3493 (99.7) 12 (0.3) 0.90 (1.42) 0.06 (0.01) 94.39 (227.33)  0.03 (0.03)
g;rl‘;‘; with "N 1833 (30.2) 111 (6.1) 1722 (93.9) 1647 (89.9) 186 (10.1) 0.89 (1.39) 0.06 (0.02) 65.44 (140.44)  0.03 (0.02)
Unknown ** 750 (12.3) 52 (6.8) 698 (93.2) 627 (83.8) 123 (16.2) 1.26 (2.09) 0.07 (0.02) 70.64 (167.82)  0.03 (0.02)
Yes 2804 (45.9) 278 (9.9) 2526 (90.1) 2747 (97.9) 57 (2.1) 1.00 (1.62) 0.06 (0.01) 89.99 (215.54)  0.03 (0.02)
Contact with N
ositives 0 or
p anwittingly 3284 (54.1) 146 (4.4) 3138 (95.6) 3020 (91.9) 264 (8.1) 0.84 (1.28) 0.06 (0.01) 77.70 (185.37)  0.03 (0.02)
Never smoker 4177 (68.5) 315 (7.5) 3862 (92.5) 3967 (94.9) 210 (5.1) 0.96 (1.57) 0.06 (0.02) 86.29 (205.12)  0.03 (0.02)
Smoking fﬁﬂféf 1062 (17.5) 49 (4.6) 1013 (95.4) 1009 (95.1) 53 (4.9) 0.52 (0.61) 0.06 (0.01) 73.95 (188.65)  0.03 (0.02)
status
Past smoker 798 (13.1) 56 (7.1) 742 (92.9) 740 (92.8) 58 (7.2) 1.20 (1.71) 0.07 (0.01) 82.21(190.29)  0.03 (0.02)
Unknown 51 (0.9) 4(7.8) 47 (92.2) 51 (100.0) 0(0.0) 0.91 (0.65) 0.06 (0.007) 80.02 (201.80) -
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Table 2. Cont.

Qualitative Anti-N

Qualitative Anti-S

Quantitative Anti-N

Quantitative Anti-S

Number of . 2
Covariate Category Participants N (%) N (%) Mean Value (SD) Mean Value (SD)
N (%) Positive Negative Positive Negative Positive Negative Positive Negative
Novacc. ** 353 (5.7) 40 (11.3) 313 (88.7) 53 (15.0) 300 (85.0) 1.65 (2.64) 0.07 (0.02) 13.25(50.72)  0.03 (0.02)
One p 380 (6.1) 123 (32.5) 257 (67.5) 367 (96.6) 13 (3.4) 1.15 (1.53) 0.07 (0.01) 98.05 (226.56)  0.04 (0.04)
Vaccination vacciation
scheme Two
e ations 5001 (822) 245 (4.9) 4756 (95.1) 4997 (99.9) 4(0.1) 0.75 (1.23) 0.06 (0.01) 55.40 (136.23)  0.06 (0.03)
Three
e tons | 394(58) 16 (4.4) 338 (95.6) 350 (98.9) 4(1.1) 0.79 (1.07) 0.06 (0.01) 480.65 (416.65)  0.04 (0.04)
One person 1586 (25.9) 117 (7.3) 1469 (92.7) 1477 (93.2) 109 (6.8) 1.01 (1.57) 0.06 (0.01) 80.86 (197.26)  0.03 (0.02)
2 people 2219 (36.5) 140 (6.3) 2079 (93.7) 2107 (94.9) 112 (5.1) 1.08 (1.65) 0.06 (0.01) 8491 (209.09)  0.03 (0.02)
Household 3 people 969 (15.8) 68 (7.1) 901 (92.9) 924 (95.4) 45 (4.6) 0.89 (1.53) 0.06 (0.01) 82.79 (172.72)  0.04 (0.03)
ouseno.
size 4 people 890 (14.8) 67 (7.6) 823 (92.4) 859 (96.6) 31 (3.4) 0.70 (1.13) 0.06 (0.01) 83.94 (213.37)  0.02(0.02)
iﬂigple or 331 (5.4) 23 (6.9) 308 (93.1) 314 (94.9) 17 (5.1) 0.50 (0.67) 0.06 (0.01) 92.08 (205.55)  0.04 (0.03)
Unknown 93 (1.5) 9 (8.8) 84 (91.2) 86 (93.2) 7 (6.8) 1.15 (2.29) 0.07 (0.01) 68.55 (163.15)  0.04 (0.03)
Intake of Yes 178 (2.9) 11(6.1) 167 (93.9) 166 (93.3) 12 (6.7) 1.09 (1.21) 0.06 (0.02) 103.35 (234.73)  0.03 (0.02)
;Ter:;:;’sup' No 5855 (96.0) 406 (6.9) 5449 (93.1) 5550 (94.8) 305 (5.2) 0.94 (1.53) 0.06 (0.01) 82.39 (199.94)  0.03 (0.02)
drugs Unknown 55 (1.1) 7 (10.9) 48 (89.1) 51 (93.8) 4(6.2) 0.81 (0.64) 0.06 (0.008) 144.25 (233.67)  0.01 (0.01)
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Table 2. Cont.

Qualitative Anti-N

Qualitative Anti-S

Quantitative Anti-N

Quantitative Anti-S

Number of . 2
Covariate Category Participants N (%) N (%) Mean Value (SD) Mean Value (SD)
N (%) Positive Negative Positive Negative Positive Negative Positive Negative
Less than
three 11 (0.1) 7 (63.6) 4 (36.4) 10 (90.9) 1(9.1) 0.74 (1.53) 0.03 (0.03) 835.43 (653.70)  0.04 (NA)
months ago
Three to less
than six 10 (0.1) 3 (30.0) 7 (70.0) 10 (100.0) 0 (0.0) 0.74 (1.00) 0.05 (0.03) 184.22 (387.26) -
months ago
Time since Six to twelve
infection months ago 81 (1.3) 57 (70.3) 24 (29.7) 81 (100.0) 0 (0.0) 1.04 (1.75) 0.06 (0.03) 357.00 (500.08) -
More than
twelve months 118 (1.9) 71 (59.6) 47 (40.4) 116 (98.4) 2 (1.6) 0.76 (1.10) 0.06 (0.02) 221.56 (301.96)  0.05 (0.05)
ago
No infection 5582 (91.8) 0 (0.0) 5582 (100.0) 5268 (94.4) 314 (5.6) - 0.06 (0.01) 67.39 (166.41) 0.03 (0.02)
Unknown 286 (4.8) 286 (100.0) 0(0.0) 282 (98.7) 4 (1.3) 0.98 (1.56) - 220.78 (323.30)  0.05 (0.03)
Yes 63 (1.1) 28 (46.4) 35 (53.6) 62 (98.6) 1(1.4) 0.58 (0.85) 0.05 (0.03) 546.24 (532.41) 0.09 (NA)
Breakthrough
Infection (BTT) No 6018 (98.8) 396 (6.5) 5622 (93.5) 5698 (94.8) 320 (5.2) 0.97 (1.55) 0.06 (0.01) 78.58 (187.13) 0.03 (0.02)
Not applicable 7 (0.1) 0 (0.0) 7 (100.0) 7 (100.0) 0 (0.0) - 0.07 (0.02) 21.87 (19.57) -
Infection yes,
not vaccinated 40 (0.7) 40 (100.0) 0(0.0) 36 (90.0) 4 (10.0) 1.65 (2.64) - 18.30 (60.95) 0.05 (0.03)
Infection
Vaccination yes + one 123 (2.0) 123 (100.0) 0(0.0) 123 (100.0) 0 (0.0) 1.15 (1.53) - 238.20 (341.43) -
vaccination
scheme and
infection Infection
(immunity) yes + two 245 (4.0) 245 (100.0) 0(0.0) 245 (100.0) 0 (0.0) 0.75 (1.23) - 294.99 (398.29) -
vaccinations
Infection
yes + three 16 (0.3) 16 (100.0) 0(0.0) 16 (100.0) 0 (0.0) 0.79 (1.07) - 437.20 (462.30) -

vaccinations
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Table 2. Cont.

Number of Qualitative Anti-N Qualitative Anti-S Quantitative Anti-N Quantitative Anti-S
Covariate Category Participants N (%) N (%) Mean Value (SD) Mean Value (SD)

N (%) Positive Negative Positive Negative Positive Negative Positive Negative
Infection no,
not vaccinated 313 (5.1) 0 (0.0) 313 (100.0) 17 (5.5) 296 (94.5) - 0.06 (0.02) 2.56 (7.37) 0.03 (0.02)
Infection
no + one 257 (4.1) 0 (0.0) 257 (100.0) 244 (94.9) 13 (5.1) - 0.07 (0.01) 27.40 (62.10) 0.04 (0.03)
vaccination
Infection
no + two 4756 (78.3) 0 (0.0) 4756 (100.0) 4752 (99.9) 4(0.1) - 0.06 (0.01) 43.06 (90.88) 0.06 (0.02)
vaccinations
Infection
no + three 338 (5.5) 0 (0.0) 338 (100.0) 334 (98.9) 4(1.1) - 0.06 (0.01) 482.71 (414.94)  0.03 (0.04)
vaccinations

* (-) indicates NA(NA); ** The values for the “unknown” category of the corresponding variables have been imputed for the modeling process; *** These participants were vaccinated on
the day of blood sampling and thus considered as “not vaccinated”.
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To evaluate the risk of infection (anti-N seropositivity) based on qualitative binary
anti-N results, a multivariable logistic regression model was used. Odds ratios (OR), 95%
confidence intervals (CI), and p-values were computed. For the quantitative analyses, only
participants with positive anti-N /S antibody values were included since the negative region
is just affected by noise measurement and has no biological meaning. Two multivariable
generalized linear models (GLM) with gamma distribution were fitted, with exponentiated
coefficients representing the expected multiplicative changes in anti-N/S antibodies, 95%
ClIs, and p-values as output. To stabilize the anti-N model, fitting values greater than 10
were set to 10 (5 participants).

The covariate representing the cumulative number of COVID-19 cases detected in
Munich (log-transformed to address the skewed distribution) was incorporated into all
three models. This adjustment considered the different durations of potential exposure
during the recruitment period. The covariables used in the three models are listed in
Table 1, color-coded by model affiliation, and selected based on medical relevance. The
missingness in the covariables was corrected by multiple imputations with m = 5 iterations.
The response variables were also used in the multiple imputation procedure to obtain
unbiased regression coefficients [38]. The total variance of the coefficient estimates over
the repeated analyses was computed using Rubin’s rules [39]. The model evaluation was
performed using (i) the area under the receiver operating characteristic curve (AUC) value
obtained from a ten-fold cross-validation for the qualitative analysis of binary anti-N and
(ii) diagnostics plots for the quantitative analyses (Supplemental Figure S1).

All statistical analyses and visualization were performed using the R software (version
4.1.1, R Development Core Team, 2021). The models were estimated using the R package
mgcv [40], and the visualization was conducted using the package APCtools [41].

3. Results
3.1. Cohort Description

Of a total of 6467 participants who were recruited for this study, 379 had to be excluded
because of

missing or incomplete antibody measurements (1 = 13);

missing or implausible self-reported year of birth (1 = 303);

participation in clinical vaccination trials or recruitment after 16 December 2021 n = 27);
vaccination with brands not authorized in Germany (n = 13);

missing or diverse information on sex (n = 8);

implausible vaccination dates (1 = 3)

unknown vaccination scheme (n = 12).

The final dataset that was analyzed included 6088 participants who were enrolled in
16 different institutional subgroups. All of these participants had complete measurements of
anti-5/anti-N antibodies and self-reported questionnaire data (as shown in Figure 1). In to-
tal, 6088 participants were included in the qualitative binary anti-N model, 424 participants
in the quantitative anti-N model, and 5750 participants in the quantitative anti-S model.

A description of the final cohort can be found in Table 2. Participants were aged from
18 to 96 years, with a mean/median age of 41.8/41.0. Thereof, 72.0% (4379/6088) were
female, and 28.0% (1709/6088) male. The majority of study participants were HCWs in
hospitals (79.8%, 4860/6088) or of other HC institutions (9.1%, 557/6088), while 11.0%
(671/6088) were non-HCWs but from the general population. A total of 94.8% (5676/6088)
of the participants were anti-S positive, while only 6.9% (424 /6088) were anti-N positive.
When the analysis was limited to HCWs, 6.9% (374/5417) were found to be anti-N positive.
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3.2. Risk Factor Analysis for Anti-N Seropositivity

To determine the risk factors for contracting SARS-CoV-2, the qualitative anti-N serol-
ogy test was used in conjunction with different covariables in a multivariable logistic
regression model. The variables were selected following medical relevance and are de-
scribed in Table 1. The results are presented in both Figure 2, where they are displayed as
ORs, and in Supplemental Table S1, where they are displayed as logarithms of the ORs.
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3 people
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yes
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MK, Bogenhausen

MK, Harlaching

MK, Neuperlach

MK, Schwabing

MK, Thalkirchner Stralle
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Figure 2. Risk factor analysis for SARS-CoV-2 infection, based on positive anti-N serology. Results are
based on a logistic regression model and are given as ORs with a 95% CI. The obtained value of model
evaluation using pooled AUC was 0.7398. (A) Estimates for categorical variables. (B) Estimates for
continuous variables with 95% CI represented by the grey shadowed region.
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The results indicate that compared to the general population, there is a statistically
significant positive association between being an HCW employed in a hospital and an
increased risk of contracting the virus (Barmherzige Briider 46.8 [22.1, 99.1], LMU Klinikum
8.6 [4.2, 17.6], MK Bogenhausen 10.0 [4.4, 22.2], MK Harlaching 9.7 [3.9, 23.8], MK Neu-
perlach 5.2 [1.6, 16.6], MK Schwabing 5.8 [2.4, 14.1], MK Thalkirchner Strafe 7.8 [2.1, 28.3],
MS Riimannstrafie (6.3 [1.0, 40.9] and Seefeld 10.4 [3.0, 35.8]). This was also the case for
HCWs employed in institutions of long-term care (Eichenau 46.6 [12.9, 168.3], MS Heilig
Geist 29.9 [10.9, 82.1] and Obersendling 15.4 [3.5, 67.9]) and for HCWs employed in the
vaccination center Riem (11.4 [5.4, 24.2]). Interestingly, two centers did not show a statis-
tically significant association between being an HCW and an increased risk of infection
(Tropical Institute (3.8 [0.7, 20.2]) and Friedenheimer Briicke (5.8 [0.6, 50.5]). The vaccination
scheme analysis revealed a strong negative association for individuals vaccinated with
two (0.03 [0.01, 0.05]) or three (0.02 [0.008, 0.04]) doses compared to unvaccinated individu-
als. Compared to non-vaccinated participants (353 individuals), no significant effect for
a vaccination with one dose (380 individuals) could be found (0.6 [0.3, 1.1]). Participants
reporting a past known contact with SARS-CoV-2-positives demonstrated a strong positive
association with anti-N antibody seropositivity (2.2 [1.7, 2.8]) compared to those having
none or unwitting contact. Interestingly, compared to non-smokers, a strong negative
association could be detected only for current smokers (0.5 [0.3, 0.7]) (former smokers not
significant 0.8 [0.5, 1.1]). Age (1.0[0.9, 1.0]), sex (male 1.0 [0.8, 1.3]), household size (2 people
0.8 [0.6, 1.0], 3 people 0.9 [0.6, 1.3], 4 people 0.9 [0.6, 1.3], 5 people or more 0.9 [0.5, 1.5],
intake of immunosuppressive drugs (yes 0.7 [0.3, 1.4]) and having had contact with patients
(yes 1.1 [0.8, 1.5]) were not statistically significant associated with anti-N seropositivity. The
cumulative cases in the Munich municipality, indicating the development of the pandemic,
were also shown to be non-significant (2.5 [0.8, 7.5]).

3.3. Determinants of Antibody Response after SARS-CoV-2 Infection

To identify the factors that influence antibody responses following infection with
SARS-CoV-2, the quantitative anti-N serology was associated with different covariables
in a multivariable GLM with gamma distribution. The variables were selected following
medical relevance and are described in Table 1. The findings of this analysis are presented
in Figure 3 as the expected multiplicative changes in anti-N/S antibodies (exponentiated
coefficients) and in Supplemental Table S2 as coefficients of the model. The vaccination
scheme analysis revealed that individuals with two (0.4 [0.2, 0.9]) and three vaccination
doses (0.3 [0.1, 0.9]) had lower anti-N antibody levels compared to unvaccinated ones. No
significant effect was found for participants with one vaccination dose (0.6 [0.3, 1.2]). A
negative association could be detected for current smokers (0.6 [0.4, 1.0]), compared to
non-smokers (former smokers not significant 1.1 [0.7, 1.7]). Age as a continuous variable
was found to be a significant determinant, with older participants demonstrating higher
anti-N antibody levels compared to younger ones (1.0 [1.003, 1.02]). Sex (male 1.2 [0.9, 1.6]),
intake of immunosuppressive drugs (yes 1.1 [0.4, 2.8]), time since infection (three to less
than six months ago 1.9 [0.1, 36.2], six to twelve months ago 1.3 [0.5, 3.2], more than twelve
months ago 0.9 [0.3, 2.5]), BTI (yes 0.9 [0.4, 1.9]) and cumulative cases (1.9 [0.5, 6.9]) were
not significant.
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Figure 3. Anti-N antibody level after infection. Association between quantitative anti-N serology
and determinants of antibody response. Results are based on a GLM with gamma distribution and
are given as the expected multiplicative changes in anti-N/S antibodies (exponentiated coefficients)
with a 95% CI. (A) Estimates for categorical variables. (B) Estimates for continuous variables with
95% CI represented by the grey shadowed region.

3.4. Determinants of Antibody Response after SARS-CoV-2 Vaccination and/or Infection

To ascertain the determinants that impact the antibody response after SARS-CoV-2
vaccination and infection, the quantitative anti-S serology was associated with different
covariables in a multivariable GLM with gamma distribution. The results are presented
in Figure 4 as the expected multiplicative changes in anti-N/S antibodies (exponentiated
coefficients) and Supplemental Table S3 as coefficients of the model. Compared to unvacci-
nated but infected individuals, a strong positive association could be found for participants
who were vaccinated one (4.4 [1.6, 12.2]), two (23.4 [8.4, 64.8]), or three (469.5 [162.9, 1352.8])
times but did not undergo an infection. An even stronger positive association was found
for participants who were vaccinated one (15.9 [6.3, 40.0]) or two (51.0 [20.9, 124.8]) times
and underwent an infection. The group that received three vaccinations in addition to a
past infection had a lower estimate (81.9 [20.6, 325.0]) compared to the group with three
vaccinations but no previous infection. However, the estimate was still higher than the
group that had received two vaccinations and had a history of infection. Moreover, days
since the second vaccination and thus completion of the primary vaccination schedule
revealed a high negative association (0.994 [0.993, 0.995]). Participants with BTI (infection
occurring two weeks after the second vaccination) demonstrated a positive association
compared to non-BTI infections (infection prior to or within two weeks after the second
vaccination) (4.0 [2.2, 7.4]). Interestingly, the cumulative cases in the Munich municipality,
indicating the development of the pandemic, were also shown to be significant (2.5 [1.6, 3.8]).
Age was found to be a significant determinant, with older participants demonstrating a
negative association with anti-S antibody quantity compared to younger participants (0.987
[0.983, 0.992]). Compared to non-smokers, a negative association could be detected for
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current smokers (0.8 [0.6, 0.9]) (former smokers not significant 1.0 [0.8, 1.1]). Time since
infection (three to less than six months ago 0.7 [0.2, 2.6], six to twelve months ago 1.5 [0.6,
3.8], more than twelve months ago 1.3 [0.5, 3.4], no infection 0.4 [0.1, 1.2]), as well as sex
(male 0.9 [0.8, 1.0]) and intake of immunosuppressive drugs (yes 1.1 [0.8, 1.5]) were not
statistically significantly associated with quantitative anti-S serology.
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Figure 4. Anti-S antibody level after infection and vaccination. Association between quantitative
anti-S serology and determinants of antibody response. Results are based on a GLM with gamma
distribution and are given as the expected multiplicative changes in anti-N/S antibodies (exponenti-
ated coefficients) with a 95% CI. (A) Estimates for categorical variables. (B) Estimates for continuous
variables with 95% CI represented by the grey shadowed region.

4. Discussion

In this study, we explore the factors contributing to COVID-19 infections in a cohort
comprising both the general population and HCWs, who face an increased risk of exposure
to the SARS-CoV-2 virus. We utilized capillary blood samples to detect the presence
of SARS-CoV-2 antibodies, which are indicative of previous infections, including both
symptomatic and asymptomatic cases, as well as vaccination history. Moreover, our
analysis aimed to identify factors that influence the immune response following infection
or vaccination.

The recruitment process for KoCo-Impf took place over a period of seven months
during the waves of the pandemic. To consider the changing time under risk, we included
the overall cumulative number of cases in Munich at the respective recruitment time as a
continuous covariate in our analysis. Our analysis showed that this variable has a positive
though not significant, effect on anti-N seropositivity, indicating that HCWs were only
weakly affected by the infection waves of the general population. One possible explanation
is that since most of the reported infections occurred between six and twelve months
prior to blood sampling, they mostly occurred in the first half of 2021. As a result, any
association between the cumulative number of cases and anti-N seropositivity in the second
half of 2021 may not be evident. Another reason could be that localized outbreaks within
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specific institutions strongly influence the observed differences. This could potentially
overshadow the effects of broader waves occurring within the general population. Other
reasons could be that there was increasing availability of personal protective equipment
(PPE) [42] and changes in risk behavior in 2021 [43]. In Bavaria, wearing protective
FFP2 masks became mandatory in January 2021. Additionally, restrictions on access to
public life were introduced in August 2021, based on vaccination, infection, and testing
status, to reduce transmission rates [43]. As PPE has been shown to reduce the risk of
infection [44], the increasing use of PPE may have compensated for any emerging outbreaks
in 2021. In contrast, we found that the cumulative cases had an impact on anti-S antibody
response, which could be explained by the different immune solicitations during the
different waves. The dominant virus variant in Germany changed from alpha to delta in
June 2021 [45], and a heterologous vaccination scheme was recommended from July 2021
onward [25-27,46,47]. Vaccination with Comirnaty rather than Spikevax was recommended
for individuals younger than 30 years in November 2021 [48].

Age was found to be a statistically significant factor in anti-N immune response, with
older participants showing higher levels after infection compared to younger ones. This
is consistent with previous research that found a correlation between higher levels of the
anti-N antibody and older age, male gender, ethnicity, and prior symptom history [49-51].
This suggests that infections in elderly individuals could lead to a more severe course of the
disease and higher production of antibodies. In contrast to the anti-N immune response,
our study showed that older age results in a decreased anti-S immune response, which is
consistent with previous studies [21,22,52,53]. This suggests that the stimulation caused by
vaccinations is more effective in younger individuals when compared to older ones.

Another aspect to consider when examining the pattern of higher anti-N levels after
infection but generally lower anti-S levels in non-infected individuals of higher age is the
longitudinal development of the immune response in relation to the time since vaccination.
Since older individuals are considered a “high-risk” group, they were vaccinated earlier
than younger individuals [6-8]. Considering that anti-S antibodies follow a pattern of rising,
peaking, falling, and eventually reaching a plateau [53], the earlier timing of vaccination
could have led to a decrease in the anti-S antibody titer at the time of blood collection,
resulting in a lower overall level. Consequently, the protection against a second infection is
considered to be lower in this group, posing an increased risk of SARS-CoV-2 infection and
a stronger immune response against the N protein compared to younger individuals who
were recently vaccinated and had a higher anti-S antibody titer shortly after vaccination.

However, it is worth noting that a systematic review and meta-analysis conducted
by Cheng et al. (2022) focused on prime-boost immunization with the COVID-19 vaccine
but only analyzed studies with non-infected participants [27]. Subgroup analyses by age
did not find a significant difference in antibody concentrations between young and old
populations. Nevertheless, this finding may be attributed to the selection bias of only
analyzing non-infected individuals. Young and elderly people who were most affected
by the pandemic were excluded, and the definition of non-infected might vary between
studies (RT-PCR and serology).

Our analysis has shown that individuals who currently smoke have a lower prevalence
of anti-N SARS-CoV-2 antibodies compared to those who never smoked. It is important
to note that the current smoker group in our cohort had significantly fewer participants
compared to the non-smoker group (1 to 4 ratio). This discrepancy in sample size raises
concerns about the comparability of the two groups, as the underrepresentation of current
smokers may introduce bias to the results. However, the lower risk of infection among
current smokers aligns with similar findings from the analysis of the KoCo19 cohort [30].
Additionally, a recent study by Giinther et al. (2022) supports these findings, as it demon-
strated that current smokers were nearly half as likely to test positive for SARS-CoV-2
antibodies compared to non-smokers [54]. That study did not observe any differences
in antibody levels between smokers and non-smokers who had been infected with or
vaccinated against SARS-CoV-2, suggesting that the lower prevalence of antibodies in
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smokers may be attributed to lower infection rates rather than reduced antibody response.
In contrast, our results show a significantly reduced response to both the anti-S and anti-N
antibodies in current smokers compared to non-smokers, consistent with previous studies
by Reusch (2023), Ferrara (2022), and Moncunill (2022) [20,24,52]. Smoking may induce
an immunosuppressive effect, as reported by Haddad (2021) and Sopori (2002) [55,56].
The lower anti-N antibody levels in current smokers compared to never-smokers may
indicate not only a reduced development of antibodies but also a faster seroconversion to
negative levels. Therefore, the anti-N seropositivity in current smokers may not be directly
comparable to the never-smoker group, assuming a similar decrease and subsequent non-
detection of past cases. It is also worth considering that smoking has been identified and
communicated through the media as a risk factor for severe COVID-19 infections, leading
to increased morbidity and mortality. Hence, it cannot be excluded that current smokers
may have taken more precautions to avoid contact compared to non-smokers. The effect of
current smoking on the risk of infection remains controversial and should be interpreted
with caution [57].

The risk factor analysis showed that HCWs had an increased risk of infection compared
to the general population, which is interestingly consistent with previous research on
the KoCo19 cohort and other studies that have identified HCWs as a vulnerable group
for infection [30,44,54]. However, the use of PPE has been shown to reduce the risk of
infection [44], possibly leading to a change in the risk of infection in HCW5s over time. Since
our definition of infection is based only on positive anti-N, which remains positive for a
long period of time [58], this baseline analysis of our study is not designed to detect this
aspect. Recent research by Vivaldi et al. (2022) identified a change in the risk of infection
due to time and vaccination status, with HCWs being at a higher risk of infection before
vaccination but a reduced risk of breakthrough infection after primary vaccination [14].
Since the inclusion criteria for the KoCo-Impf study required at least one vaccination, it is
impossible to correct this effect here. However, a follow-up analysis with the KoCo19 and
the KoCo-Impf cohort may provide more insight into this aspect.

Another approach to determining whether HCWs have an increased risk of SARS-CoV-2
infection than the general population is by comparing anti-N seropositivities. In November
2021, the KoCo19 cohort, which represents the general Munich population, conducted
its fourth follow-up in parallel with the KoCo-Impf recruitment. To compare the anti-N
seroprevalence of both cohorts, we focused on the estimates for vaccinated persons in
the KoCo19 cohort. The seropositivity was estimated to be 11.8% (9.8-13.8%) [30]. When
we restricted the KoCo-Impf analysis to only HCWs, we observed a seroprevalence of
6.9% (6.2-7.6%), which is considerably lower than the seroprevalence of the vaccinated
KoCo19 participants at the same time point. However, it is important to note that while
the KoCo19 cohort is population-based and representative of the Munich population
after statistical weighting, the KoCo-Impf cohort can be considered a convenience sample
since it was not randomly selected. Therefore, it might be very complicated to compare
both seroprevalences. This further emphasizes the importance of representative study
designs. As the risk factor analysis for both KoCo19 and KoCo-Impf indicated a statistically
significant higher risk of infections among HCWs, the lower seroprevalence in KoCo-
Impf could be attributed to variations in infection and vaccination timing compared to
the general population. Due to their higher risk, it is possible that HCWs were infected
more frequently during the period when the general population was receiving their first
two vaccinations. As HCWs, they had better access to testing facilities, which allowed
them to become aware of their infection and receive vaccinations later in accordance with
vaccination policies. On the other hand, in the general population, it is likely that more
individuals were unknowingly infected and still received vaccinations despite their recent
infection. The relatively lower underreporting probability among HCWs likely resulted
in fewer cases where individuals were vaccinated despite having been recently infected,
leading to lower seroprevalence among HCWs.
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The risk of SARS-CoV-2 anti-N seropositivity was found to be higher among all HCWs
except for those working in two specific institutions: Friedenheimer Briicke and Tropical
Institute. While HCWs at Friedenheimer Briicke and the Tropical Institute have regular
patient interactions, their work environment differs from that of HCWs in hospitals and
long-term care facilities. Friedenheimer Briicke specializes in prenatal diagnostics, while the
Tropical Institute primarily focuses on travel counseling and vaccinations. As a result, both
facilities have a smaller patient population, and if symptomatic, these patients can choose to
stay at home, thereby reducing the risk of infection for the personnel. The analysis did not
find a significant effect of patient contact on SARS-CoV-2 anti-N seropositivity, suggesting
that the increased risk of infection may be due to occupational activities and the working
environment. This is consistent with recent research identifying occupational activities
(tracheal intubation) as a risk factor for HCWs [44]. In addition, differences in infection
frequency and spread between institutions can lead to variations in seropositivity rates.

As the institutional subgroup was found to have the strongest effect as a covariate,
a sensitivity analysis was performed to evaluate how it impacted the overall risk factor
analysis (Supplemental Table S4). However, no remarkable difference was observed.

Upon studying the kinetics of the anti-S antibody response, we found that the level
increases with the number of COVID-19 vaccinations but decreases after days since
the second vaccination. These results are consistent with previously published stud-
ies [52]. When individuals with one or two doses of vaccination were additionally in-
fected, our analysis showed that they presented significantly higher anti-S values com-
pared to only vaccinated individuals. Interestingly, with three vaccinations, the effect
was reversed. While other studies with one or two vaccinations have shown similar be-
havior, we could not find comparable studies in the literature on the analysis of three
vaccinations [21,22,52,53]. The combination of three vaccinations and one infection sug-
gests that either the infection occurred in the early phases of the pandemic or recently (an
infection between the vaccination scheme can be excluded in the time before Omicron),
but the effect might be smaller due to the passage of time or ongoing immune response.
This can be confirmed by the similarities with the estimate of two vaccinations with or
without infection.

Our findings also indicate that the sequence of the triggers is important, with BTIs
showing higher anti-S antibody titers but a non-significant tendency towards lower anti-N.
This is in line with the other literature where the interpretation is that the immune system
is solicited with vaccination (higher anti-S) so that a severe disease can be prevented (lower
anti-N, since less reaction is needed) [59-61].

It is interesting to note that even though SARS-CoV-2 infection clearly affects the anti-S
immune response, the duration since infection did not have a significant effect in any of
our models. This 