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Abstract
We demonstrate the emergence of fluctuating hydrodynamics in chaotic quantum many-body systems
using quantum simulation experiments in large tunable ladders of hard-core bosons. Using a 133Cs quan-
tum gas microscope with single-site resolution, we examine the post-quench build-up of fluctuations
and density-density correlations, starting from a highly excited state. The ladder systems can be tuned
from integrable to fully chaotic, allowing to study the crossover between ballistic and diffusive transport.
We find a separation of equilibration timescales between the local expectation values and non-local
fluctuations, suggesting that systemsmay appear thermalized even though fluctuations continue to grow.
We show that, from a macroscopic point of view, the relaxation dynamics are described by fluctuating
hydrodynamics and entirely determined by the linear response coefficients. This profound insight allows
for the extraction of the equilibrium diffusion constant from non-equilibrium experiments, offering a
new approach for testing fluctuation-dissipation relations in far-from-equilibrium chaotic quantum
systems. Besides these main results about the relaxation of isolated quantum many-body systems, this
thesis reports on the current state of our 133Cs quantum gas microscope, describing and characterizing
the experimental setup, including optical superlattices and imaging techniques. Furthermore, it reports
on a new theoretical approach for understanding the bulk-boundary correspondence in higher-order
symmetry-protected topological phases, demonstrated using the 2d superlattice Bose-Hubbard model.

Zusammenfassung
Wir demonstrieren das Auftreten von fluktuierender Hydrodynamik in chaotischen Quantenvielteilchen-
systemen mittels Quantensimulationsexperimenten in großen einstellbaren Leitern mit Hard-Core-
Bosonen. Mit einem 133Cs-Quantengasmikroskop mit Einzelplatzauflösung untersuchen wir den
Aufbau von Fluktuationen und Dichte-Dichte-Korrelationen nach einem Quench, ausgehend von
einem hochangeregten Zustand. Die Leitersysteme können von integrierbar bis vollständig chao-
tisch eingestellt werden, was es uns ermöglicht, den Übergang zwischen ballistischem und diffusivem
Transport zu beobachten. Wir beobachten eine Separation der Zeitskalen für das Erreichen des Gle-
ichgewichtzustands zwischen den lokalen Erwartungswerten und den nicht-lokalen Fluktuationen, was
darauf hindeutet, dass Systeme thermisch erscheinen können, obwohl die Fluktuationenweiterwachsen.
Wir zeigen, dass aus makroskopischer Sicht die Relaxationsdynamik durch fluktuierende Hydrody-
namik beschrieben wird und vollständig durch die Linear-Response-Koeffizienten bestimmt ist. Dieses
weitreichende Ergebnis ermöglicht die Extraktion der Gleichgewichts-Diffusionskonstante aus Nicht-
gleichgewichtsexperimenten und bietet einen neuen Ansatz zum Testen von Fluktuations-Dissipations-
Beziehungen in weit vom Gleichgewicht entfernten chaotischen Quantensystemen. Neben diesen
Hauptergebnissen hinsichtlich der Relaxation von isolierten Quanten-Vielteilchensystemen berichtet
diese Arbeit auch über den aktuellen Stand unseres 133Cs-Quantengasmikroskops und beschreibt den ex-
perimentellen Aufbau, einschließlich der optischen Übergitter und Abbildungstechniken. Darüber hin-
aus wird über einen neuen theoretischen Ansatz zur Beschreibung der Bulk-Boundary-Korrespondenz
in symmetriegeschützten topologischen Phasen höherer Ordnung berichtet, demonstriert am 2d-
Übergitter-Bose-Hubbard-Modell.
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Introduction

Believing in science means, to some degree, believing in reductionism: the paradigm that every phe-
nomenon in the universe can in principle be traced back to the most fundamental laws of physics.
Whatever dictates the properties and behavior of the smallest constituents of matter, must also somehow
explain the complexity which emerges at larger scales, ranging from atoms, molecules and proteins
to life, meteorology and dark matter in the universe [1, 2]. However, even if there was complete
knowledge about the fundamental laws of physics, understanding the universe in its entirety would
probably still remain elusive. The relationship between emergent behavior and first principles can be
highly non-trivial [1] and evade any systematic description. For instance, while a two-body problem
in classical mechanics is exactly solvable, a three-body problem is generally not and the complexity
of a general 𝑛-body problem grows as 𝑂(𝑛2) [3]. For quantummany-body problems, the complexity
of the system scales exponentially with the particle number, limiting computational methods down
to a few particles [4]. This highlights the importance of finding simplifications and approximations
or giving up on the idea of reductionism altogether.

In many cases, a system can be described phenomenologically without any knowledge about the
underlying microscopic physics: Water flowing through a pipe is modelled by the Navier-Stokes equa-
tions which dictate the time evolution of fluids in the continuum limit based on locally conserved
quantities [5]. The fact that water is composed of ≫ 1023 water molecules is irrelevant: Instead, the
microscopic physics is simply absorbed into a few characteristic constants such as the viscosity. This ap-
proach is called hydrodynamics and generally applies to systems that are chaotic at the microscopic level,
usually due to interactions between the constituent particles and due to a large number of excitations at
high temperature. Hydrodynamics has been jokingly referred to as a theory of everything [6] due to its
widespread use in various fields, including high-energy physics [7], astrophysics and cosmology [8–10],
solid-state electron dynamics [11–13] and ultracold atoms [14–16]. It is a powerful tool for capturing the
essential macroscopic dynamics of microscopically highly complex systems, turning their microscopic
complexity into a feature: At its heart lies the assumption that whatever the dynamics are, randomness
will eventually take the system to the same thermal equilibrium state described by statistical physics.
Thus, as long as the perspective on the system is sufficiently coarse-grained, the system’s state can
be approximated as locally thermal, allowing to write down continuous differential equations that
define the time evolution of macroscopic continuous quantities. This makes hydrodynamics a theory
describing the late-time and long-wavelength dynamics of the system [17].

The framework of hydrodynamics has been widely extended to various scenarios which go beyond
simple chaotic systems and its macroscopic description using the diffusion equation: These include
integrable systems with infinitely many conserved quantities (generalized hydrodynamics or GHD
[18–20]) and chaotic systems in which not only the evolution of mean quantities but also the dynamics
of fluctuations play an important role (fluctuating hydrodynamics or FHD). It was originally proposed
by Landau and Lifshitz in the 1950s [21], but it can also be derived from kinetic theory [22–24]. In FHD,
the standard hydrodynamic equations are extended by a noise term, introducing random uncorrelated
fluctuations. Fluctuations provide a glimpse of the microscopic scale from a macroscopic point of view
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2 Introduction

because they are observable effects of the random, discrete events that occur at the microscopic level.
In particular, these are of importance in mesoscopic systems as well as systems near criticality [25]
Fluctuations are tied to dissipative currents through the fluctuation dissipation theorem (FDT) [26,
27] and (if they are not of thermal origin) can reveal phase transitions, both in classical and quantum
many-body systems [28, 29]. In out-of-equilibrium systems, fluctuations are expected to exhibit even
richer features [30] and provide new means for studying the relaxation of many-body systems [31]. For
instance, they can be used to characterize turbulent flow [32]. Besides in fluid dynamics, fluctuations
are important for modeling thermal noise in nano-electronics, structural changes of proteins, DNA
mutations [33], lipid membranes [34], molecular motors [35] and nucleation in metastable materials
[36–38]. Another example concerns the question how isolated quantum systems thermalize without
contact to a thermal bath: The answer is considered to be the maximization of local entanglement
entropy, leading to locally thermal states with maximum subsystem fluctuations [39, 40], as described
by the eigenstate thermalization hypothesis [41, 42].

Strikingly, FHD predicts that the macroscopic time evolution of a chaotic system is completely
determined by a few equilibrium transport coefficients such as, for instance, the diffusion constant.
This would imply that the well-known FDT has implications reaching far beyond the equilibrium case.
To what extent this hypothesis applies to all chaotic systems is an open question, particularly in light of
known exceptions such as dipole-conserving fluids [43]. Its applicability to chaotic quantummany-body
systems has been even less explored and only from a theoretical point of view [44, 45]. The microscopic
origins of fluctuations in quantum systems are of very different nature compared to a classical system and
root in spatial entanglement spreading during the thermalization process [39]. If a quantummany-body
system could bemacroscopically approximated using FHD,many predictions about the system’s behavior
would not require computationally expensive simulations of the full many-body problem. Due to a
large amount of entanglement building up during thermalization, even advanced numerical methods
like time-dependent variational principle (TDVP) algorithms [46–49] are limited to short evolution
times. In turn, testing the applicability of FHD in the quantum regime would amount to an equally
challenging task: It requires computing the time evolution of both mean quantities and fluctuations in
a many-body system and comparing it quantitatively with the predictions of an FHD model.

As foreseen by Yuri Manin and Richard Feynman [50, 51], one solution to this problem is not to use a
classical computer for these simulations, but, instead, a quantum computer. Such a device can naturally
capture quantum effects like entanglement without mapping them to classical bits, avoiding the need
for large amounts of storage and computational power. While universally programmable quantum
computers are in their infancy [52], so-called quantum simulators with restricted programmability
and highly-specialized capabilities have been producing remarkable results by probing ground states
and out-of-equilibrium dynamics [53]. In the last two decades a large variety of quantum simulation
platforms has emerged, including superconducting qubits, polar molecules, ions and ultracold atoms
[54, 55]. Ultracold atoms in optical lattices mimic electrons moving in the periodic electrostatic potential
of a real solid [54]. In contrast to the real solid, the artificial cold atom system is highly controllable,
easier to measure and manipulate (thanks to slower dynamics and larger lengthscales) and can be
imagedwith single-particle resolution [56–58]. This technique, called quantum gasmicroscopy, provides
access to novel observables like fluctuations and density-density correlations [59–62] and can reveal
intriguing details about the state of the quantummany-body system [55]. For instance, this platform has
provided powerful means for studying ground states in exotic phases of matter [54, 63], ranging from
antiferromagnets [64] to quantum Hall physics [65, 66]. However, the high degree of controllability
in the optical lattice also allows to conduct quench experiments and study relaxation dynamics, both
in presence or absence of thermalization [39, 40, 67–79]. So far, fluctuation dynamics have only been
studied in relatively small quantum systems, insufficient for extracting slow hydrodynamic timescales
and gaining a macroscopic point of view on the out-of-equilibrium quantum system [39, 40, 70, 80, 81].
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In this work we employ ultracold 133Cs atoms in optical lattices for analog quantum simulation ex-
periments with hard-core bosons in ladder systems. We construct and operate a quantum gasmicroscopy
setup with single-site resolution [82, 83] to study the relaxation of an isolated quantum system after a
quench. The dynamics of the system can be smoothly tuned from purely integrable to fully chaotic, al-
lowing to explore the onset of chaos and the crossover between ballistic and diffusive dynamics. We track
the equilibration of both local mean quantities and fluctuations in the system, obtaining a rich picture
of the timescales on which hydrodynamic modes relax. In doing so, we answer the following questions:

• How do the fluctuations of local subsystems relax in an isolated quantum system? How does the
growth speed depend on the size of the subsystem and how does it compare with the equilibration
timescales of local mean quantities like the local density?

• How does hydrodynamic behavior emerge as the dynamics of the system are tuned from integrable
to chaotic?

• Does the relaxation behavior agree with predictions from FHD? Can a chaotic quantum many-
body system indeed be described by a classical macroscopic continuum model? Are the entire
non-equilibrium dynamics, therefore, determined by a few equilibrium transport coefficients?

• Obtaining values of transport coefficients from mean quantities, such as the local density, is
typically a very challenging task and requires working in the linear-response regime close to
equilibrium. Can a quantum simulator be used to experimentally extract them from the far-from-
equilibrium fluctuations in the system?

In answering these questions, we extend the reach of FHD to a quantum regime which is, in
general, not only analytically intractable but also hard to access numerically: In conventional condensed
matter theory we usually assume near-equilibrium and low temperature conditions with a dilute gas of
excitations governing transport. In contrast, the experiment we are conducting is about the relaxation
from far-from-equilibrium initial states to maximally entangled final states. On the one hand, this
makes it difficult to benchmark the experimental results with numerical methods on classical computers
based on microscopic models. On the other hand, it sets the stage for quantum simulation to shine and
provide solutions for complex quantum many-body problems that otherwise would be hard to obtain.

Bulk-boundary correspondence in higher-order symmetry-protected topological
phases

Besides exploring fluctuations in quantum many-body systems, this thesis reports on a theoretical
contribution to the understanding of higher-order symmetry-protected topological (HOSPT) phases.
It is motivated by the capabilities of our apparatus to realize strongly-interacting topological matter
in optical superlattices, such as the bosonic equivalent of the Su–Schrieffer–Heeger (SSH) model. In
1d, this model features symmetry-protected topological (SPT) phases which can carry topologically
protected fractional boundary charges [84]. Intriguingly, in 2d, it features higher-order SPTs (of second
order) which can carry topologically protected corner charges [85]. Generally, the boundary states in
topologically non-trivial matter of order 𝑛 are 𝑛-dimensions lower than the bulk of the system [86, 87].
Such higher-order topological phases have been realized in solids and classical metamaterials [88–98]
with applications in electronics and photonics [99], e.g., for topological nanolasers [100–102].

In 1d, quantized edge states can be understood as the consequence of bulk polarization. Within the
framework of the modern theory of polarization (MTP), polarization is related to Berry phase of the
Bloch bands [103, 104] and the many-body position operator [105]. Similar to a dielectric material, a



4 Introduction

change of the bulk polarization leads to the buildup of charge at the boundary, as described by Thouless
pumps [106–108]. There have been attempts to generalize these concepts to the higher-order case [87,
98, 109–115] but understanding the bulk polarization in HOSPT phases has so far remained elusive.
In particular, the question how exactly topological invariants can be defined in systems with periodic
boundary conditions and how they can be used to track the charge transport in higher-order Thouless
pumps has been a subject of recent debates [109–111].

In this thesis (Chapter 7), we directly address this question and present a new approach for describing
HOSPT phases using the 2d superlattice Bose-Hubbard model (2d-SL-BHM) as a concrete example. We
define four Berry phases, which (combined) provide full information about the polarization of the bulk.
We use them to track the charge transport in different Thouless pumps. In doing so, we establish a clear
correspondence between the quantized fractional charge emerging at the corners and the quantized
change of the bulk polarization which can be either dipolar or quadrupolar, depending on the pump.
Our approach provides easily adaptable tools for describing HOSPT phenomena in a wide range of
matter and contributes to understanding higher-order topology from the point of the MTP.

Outline of this thesis

• In Chapter 1 we introduce the basic concepts underlying the thermalization of isolated quantum
systems both in the classical and in the quantum case. These include chaos, ergodicity and the
eigenstate thermalization hypothesis, shedding light on thermalization from a microscopic point
of view. We also highlight why ultracold atoms in optical lattices are an ideal platform for studying
the relaxation of a quantum many-body system to thermal equilibrium and explain the role of
quench experiments.

• Chapter 2 introduces fluctuating hydrodynamics which combines conventional hydrodynamics
with noise. This theory provides a (classical) coarse-grained description of chaotic many-body
systems, absorbing the details of the microscopic physics into a few macroscopic quantities.
Quantitatively testing the validity of this theory in the quantum regime is one of the main goals of
this thesis.

• Chapter 3 introduces the experimental apparatus and its construction, highlighting tools relevant
for the quantum simulation experiments in Chapter 5. In particular, we highlight technical details
concerning the optical superlattices and the imaging techniques behind achieving single-site
resolution.

• Chapter 4 is about the methods and techniques for calibrating the apparatus and characterizing its
performance. Further, we discuss the sequence used for preparing Mott insulating initial states.

• Chapter 5 is the key chapter of this thesis and discusses the quench experiments for studying
the growth of local mean densities, fluctuations and density-density correlations, both in the
integrable and the chaotic regime. In the chaotic case, we observe the emergence of fluctuating
hydrodynamics.

• Chapter 6 provides supplementary information about the experiments, including the bench-
marking of experimental imperfections like disorder, finite-size effects and other evaluation
details.

• In Chapter 7 we switch topics and present a theoretical framework for understanding the bulk-
boundary correspondence in higher-order symmetry protected topological phases, using the 2d
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superlattice Bose-Hubbard model as an example. This could pose an interesting future research
direction for our quantum gas microscope.

• Finally, we summarize the main results of this work, propose follow-up experiments and point
out further interesting directions to be studied in the future.
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correspondence in higher-order symmetry-protected topological phases”, Phys. Rev. Lett. (2022)
[116]
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[117]

• A. Impertro, J. F. Wienand, S. Häfele, H. v. Raven, S. Hubele, T. Klostermann, C. R. Cabrera, I.
Bloch, M. Aidelsburger, "An unsupervised deep learning algorithm for single-site reconstruction
in quantum gas microscopes", Nat. Comm. Phys. (2023) [83]

• T.Klostermann, C. R. Cabrera, H. v. Raven, J. F.Wienand , C. Schweizer, I. Bloch,M.Aidelsburger,
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CHAPTER 1

Quantum simulation of non-equilibrium
dynamics with ultracold atoms in optical lattices

In this Chapter we highlight fundamental concepts underlying out-of-equilibrium systems, includ-
ing chaos and ergodicity, both from a classical and a quantum point of view. Using the statistical
ensembles, we define what thermalization means and illustrate the mechanisms and conditions un-
derlying system reaching thermal equilibrium. We also elaborate on why ultracold atoms in optical
lattices pose an excellent platform for probing out-of-equilibrium dynamics and introduce the idea
of quantum quench experiments.

1.1 Ultracold atoms in optical lattices
Ultracold atoms in optical lattices are a key platform for the analog simulation of quantum many-body
systems [63]: Just like electrons in the electrostatic potential of the nuclei in a real solid, they act as
quantum particles in a periodic potential, naturally emulating condensed matter systems. Optical
lattices are realized by standing waves of monochromatic light generated from counter-propagating laser
beams at the same frequency [119, 120]. Due to the AC Stark shift, the time-independent light intensity
has a trapping or anti-trapping effect on the ultracold atoms (see Fig. 1.2a). In simplest terms, when
a ground state atom is exposed to a light field of intensity 𝐼(r) in vicinity of a transition of linewidth
𝛾 at frequency 𝜔0, it experiences a potential described by [121]:

𝑈(r) = 3𝜋𝑐2

2𝜔30

𝛾
∆ 𝐼(r), (1.1)

where 𝛾 is the linewidth of the transition and ∆ = 𝜔 − 𝜔0 is the detuning of the laser frequency 𝜔
with respect to the transition frequency 𝜔0. More generally, if the laser frequency is close to multiple
transitions, their contributions to the overall potential have to be added [121]. Importantly, the sign
of the detuning ∆ determines whether the potential is attractive (∆ < 0, red detuning) or repulsive
(∆ > 0, blue detuning). Thus, in a red (blue) detuned lattice, the atoms are trapped at the intensity
maxima (minima). In 1d, the lattice potential can be written as:

𝑉(𝑥) = 𝑉0 cos2(𝑘𝑥), (1.2)

where 𝑘 is the wavenumber (depending on the wavelength 𝜆) and 𝑉0 is the amplitude of the potential.
If two optical lattices of wavenumbers 𝑘1, 𝑘2 and amplitudes 𝑉1, 𝑉2 are combined, the result is called
a superlattice parametrized by:

7



8 Quantum simulation of non-equilibrium dynamics with ultracold atoms in optical lattices

𝑉(𝑥) = 𝑉1 cos2(𝑘1𝑥) + 𝑉2 cos2(𝑘2𝑥 + 𝜙∕2), (1.3)

where 𝜙 is the phase between the two lattices, see Sec. 3.3 for details.
In addition to experiencing a potential, the atoms scatter lattice light photons at a rate of

Γ(r)sc =
1
ℏ
𝛾
∆𝑈(r). (1.4)

While the scattering rate scales as Γsc ∼ 1∕∆2 with the detuning, the potential does so as 𝑈(r) ∼ 1∕∆.
Thus, in order to minimize heating of the atoms due to scattering while achieving deep potentials, one
usually chooses both high lattice light intensity and large detuning [121].

1.2 Quantum gas microscopy

300 600

Signal (arb. u.)

6
μm


Figure 1.1 | Quantum gas microscopy. High-resolution image of a fluorescing array of atoms in a 2d optical square

lattice (wavelength λ = 1534 nm, spacing a = λ∕2 = 767 nm). Quantum gas microscopy allows to study systems at

the single-particle level and obtain more (local) information about the many-body wavefunction.

The field of analog quantum simulation with ultracold atoms experienced a major revolution when
the technique of quantum gas microscopy was developed: It allows to image atoms trapped in an optical
lattices with single lattice site resolution [56, 122]. The concept is simple: First, the optical lattice is
abruptly ramped up to very large depth, pinning the atoms down in their respective lattice sites. Next
(usually as part of a cooling process) the atoms are illuminated with (near-)resonant light, leading to
the emission of fluorescence photons. Finally, the fluorescence light is collected by a high-NA objective
providing a resolution that is on the order of the lattice spacing (cf. Sec. 4.3).

Fig. 1.1 depicts a typical image produced using this technique, showing an array of 133Cs atoms in
a square optical lattice potential. This image is a snapshot of the many-body wavefunction realizing
an incompressible Mott insulator in a harmonic trap (cf. Sec. 1.3). By pinning the atoms in place,
the many-body wavefunction collapses into the (parity projected) local Fock basis of the individual
lattice sites [123]. Parity projection results from light-assisted collisions during the imaging process,
eliminating all local pairs of atoms. The snapshot shows a density distribution sample, drawn from the
superposition of a possibly large number of many-body eigenstates. Thanks to single-site resolution,
we gain access to novel observables, including:



1.3 The Bose-Hubbard model 9

• Full counting statistics: By taking many snapshots we can obtain the full counting statistics
(FCS) of local- and non-local observables [45, 64, 124–134]. As a simple example, consider the
total atom number in a certain region of the system. Interesting physics might not only be found
in the mean of this quantity but also in the fluctuations or in the higher moments of the FCS, as
discussed in Chapter 5.

• Multi-point correlation functions, exploring connections between the occupation (spin) of
one site and the occupation (spin) of other sites [59, 60, 62, 81].

• Second-order Renyi-entropy, measured by letting two identical systems interfere and realizing
the Hong-Ou-Mandel effect [39, 70, 135], see Ref. [136] for details and further applications.

• Local kinetic energy and current, measured using basis rotations in a superlattice potential
[117]. This novel technique goes beyond conventional density measurements and, further, also
allows to measure current-current, energy-energy correlations and entanglement [137].

Importantly, the high-NA microscopy setup does not only allow to read-out the many-body system but
also to manipulate it at the single particle level using programmable light patterns [138] (cf. Sec. 3.4).

1.3 The Bose-Hubbard model

J

U

J/U

µ/U

MI (n=1)

1

2

3

MI (n=2) n=2

n=1

n=3

SF

MI (n=3)

a b

Figure 1.2 | The Bose-Hubbard model. a, The Bose-Hubbard model is implemented by ultracold atoms placed in an

optical lattice. The atoms can tunnel to nearest-neighbor sites with a rate of J. The interaction energy U is the energetic

cost for placing pairs of particles on the same lattice site. b, Sketch of the phase diagram of the Bose-Hubbard model,

spanned by the ratio J∕U and the chemical potential µ∕U, exhibiting Mott insulator (MI) phases of integer filling n and

superfluid (SF) phases [139].

Placing ultracold bosonic atoms in an optical lattice (cf. Eq. 1.2) naturally implements the Bose-
Hubbard model [140] (see Fig. 1.2a). It is defined by the Hamiltonian

�̂�BHM = −𝐽
⎛
⎜
⎝

∑
⟨𝑖,𝑗⟩

�̂�†𝑖 �̂�𝑗 + h.c.
⎞
⎟
⎠
+ 𝑈

2
∑
𝑖
�̂�𝑖(�̂�𝑖 + 1), (1.5)

with ⟨𝑖, 𝑗⟩ denoting all nearest-neighbor pairs. Here, 𝐽 denotes the tunnel strength and 𝑈 is the on-site
interaction strength, as illustrated in Fig. 1.2. Originally proposed in the 1960s [141, 142], it was meant
to provide a simplified description of transition metal monoxides (like FeO, NiO, CoO), which were
found to be insulators but predicted to be metals [143]. As it turns out, the insulating properties of these
materials do not originate in their band structure but in the strong interactions between the electrons.
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Fig. 1.2b shows the ground state phase diagram of the Bose-Hubbard model, spanned by the ratio of
tunnel strength and interaction strength on the horizontal axis and the chemical potential (controlling
the density of particles in the system) on the vertical axis. In the limit of weak interactions (𝐽∕𝑈 ≫ 1)
the system is in a superfluid phase independent of the filling. However, if the on-site interactions are
sufficiently strong (𝐽∕𝑈 ≲ 1∕16 in 2d), a Mott insulator phase emerges for integer filling fractions. For
instance, consider the case of filling 𝑛 = 1 when every single site in the lattice is occupied by an atom.
In order to add a second atom to any of the sites, one would have to pay the on-site interaction energy𝑈.
Thus, over a wide range of chemical potentials, the filling remains constant until the chemical potential
is sufficiently high for overcoming the energy barrier (Mott gap) for creating doubly occupied sites.
While in the superfluid phase atoms can tunnel freely from site to site, in the Mott insulator phase
particle transport is completely suppressed and the state is incompressible.

The direct observation of the superfluid-to-Mott transition using ultracold bosonic atoms in optical
lattices [144] is considered one of the most important quantum simulation experiments in the history
of the field [53] and gained remarkable interdisciplinary attention [53, 54]. It beautifully illustrated
how interactions can give rise to insulating properties in an artificial quantum material, mimicking
the physics at play in a real solid. Later, the same experiment was conducted using a quantum gas
microscope [57] to showcase the advantages of single-site resolution (cf. Sec. 1.2).

1.4 Quantum quench experiments
In the previous Section we have discussed the ground state phase diagram of the Bose-Hubbard model
which has been extensively studied using quantum gas microscopy [145]. The atoms trapped in the
optical lattice constitute an isolated quantum many-body system in equilibrium. Intriguingly, quan-
tum simulators can also be used to measure the relaxation behavior of out-of-equilibrium quantum
systems [39, 40, 67–79].

Pre-quench

E

Post-quench

E

Figure 1.3 | Quantum quench. When the Hamiltonian of a system H0 is abruptly changed to a different Hamiltonian

H1, the energy eigenstates of H0 are projected onto the energy eigenstates of H1, generally producing a highly excited

state, followed by a relaxation process [39].

One way to achieve that is to take the system to a highly-excited initial state and, subsequently,
watch it relax back to equilibrium. This is called a quench experiment: The system is first prepared
in the ground state of a Hamiltonian 𝐻0, as depicted in Fig. 1.3a:

|𝜓⟩pre = |𝑔⟩𝐻0
(1.6)

Subsequently, the Hamiltonian is changed abruptly to become𝐻1. As a consequence, the ground state
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of𝐻0 (an eigenstate) is projected onto the eigenstate manifold of𝐻1. The post-quench state is then a
superposition of eigenstates of the new Hamiltonian 𝐻1 with each component given by the overlap of
the pre-quench ground state with the post-quench eigenstates (see Fig. 1.3b) [39, 146, 147]:

|𝜓⟩post =
∑
𝛼

𝐻1⟨𝛼|𝑔⟩𝐻0 |𝛼⟩𝐻1 . (1.7)

The mean energy of the post-quench state in 𝐻1 typically lies close to the middle of the many-body
spectrum. Thus, the effective temperature of the post-quench state can be considered infinite [148,
149]. After the quench, the relaxation behavior of the state will strongly depend on whether the system
is integrable or chaotic, as defined in the next Section.

1.5 Chaos vs integrability
As an intuition, the dynamics of integrable systems are constrained in phase space due to a large number
of conserved quantities. In contrast, non-integrable systems behave irregularly in some way, cannot
be exactly solved and have (at least partially) chaotic properties. A rigorous universally applicable
definition of integrability and chaos has so far remained elusive and these terms are often used as
notions rather than mathematical concepts [150].

In classical systems, it can generally be stated that chaotic behavior of a system is caused by a low
number of conserved quantities. Let us assume a classical system is described by the Hamiltonian
H(q,p)with generalized coordinates {𝑞𝑖} and {𝑝𝑖}with 𝑖 = 1,… , 𝑁. The system, therefore, has𝑁 degree
of freedoms and the phase space is 2𝑁-dimensional, spanned by {𝑞𝑖}, {𝑝𝑖}. Each conserved quantity
leads to a restriction of the system’s dynamics: For instance, if only the total energy is conserved, all
possible trajectories must lie on the (2𝑁−1)-dimensional equal-energy surface. If there are𝑀 conserved
quantities in the system, the dimensionality of the accessible phase space is reduced to 2𝑁 −𝑀. This
allows to classify systems as follows:

• A system is said to be chaotic if the number of conserved quantities is smaller than the number of
degrees of freedom [151]. In that case, the restrictions imposed on the phase space trajectories are
usually insufficient for preventing exponential sensitivity of the system’s time evolution to the
initial conditions, as discussed in Sec. 1.6. Thus, the system behaves chaotically and movement of
the particles due to repeated scattering resembles that of random walkers, leading to diffusive
transport [152]. Examples include Brownian motion (cf Sec. 2.3), heat transfer [153] and the
communication between neurons via diffusive neurotransmitters [154].

• In contrast, if the number of conserved quantities is equal to or exceeds the number of degrees
of freedom, the system is called integrable. This usually means that the dynamics of a system
are analytically tractable and that the trajectories in phase space are periodic. This often leads to
ballistic forms of transport [155], where the scattering length of (quasi)particles is comparable to
the system size. As an example, integrability is closely related to the theory of solitons [156] which
provides descriptions for nonlinear optics phenomena, tsunami waves and localized condensed
matter excitations [157]. Integrable systems can be analytically tractable, while chaotic systems
are generally not and are more likely to require computationally expensive numerical simulations
[158].

In quantum mechanics, the number of conserved quantities is also a good indicator for whether
a quantum system is integrable or chaotic [159]. For instance, the 1d Heisenberg model is integrable
due to an infinite set of conservation laws that can be expressed as the sum of polynomials of spin
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variables [160]. However, adding long range interactions to the model breaks integrability and results
in a chaotic Hamiltonian [161]. Note that the picture of phase space trajectories does not easily carry
over to the quantum case, as the Heisenberg uncertainty principle forbids simultaneous measurements
of both position and momentum. Instead, signatures for distinguishing quantum chaos and quantum
integrability are found in the distribution of energy level spacings: In case of chaotic models, this
distribution is found to be of a Wigner-Dyson type, as predicted by random matrix theory (RMT). For
integrable models, we find a Poisson distribution, instead, see Ref. [162] for details.

1.6 Classical thermalization
In general, chaotic dynamics are required for a system to thermalize. In the following we will define
what thermalization means and shed light on the role of chaos in this process.

Piercing an air-filled balloon inside a vacuum chamber will always lead to the same result: The
released gas particles will eventually become equally distributed in the chamber and their velocities
will follow a Maxwell-Boltzmann distribution. Surprisingly, we can expect this final state irrespective
of where the balloon was located, what shape the balloon had or at what point on its surface it was
pierced [163]. This simple observation hints at a universal principle underlying the time evolution
of chaotic systems in the universe: Governed by the interactions between particles and their physics,
they will relax to a final state corresponding to thermal equilibrium and lose all memory about their
initial state: It is impossible for any observer to reverse the time evolution and reconstruct the initial
state once thermal equilibrium is approached. The quantity that captures this loss of information is
called entropy and quantifies randomness in the system. In an isolated system, thermal equilibrium
corresponds to a maximum entropy state. It is maximally random in a sense that the particle and energy
density is homogeneously spread out across the entire system, as opposed to the initial state, when
all particles are confined to the volume of the balloon.

The most direct way one could think of for studying the thermalization and the thermal equilibrium
of this gas in the vacuum chamber would be to track both position and momentum of every particle over
time, as they collide with each other. Assuming that the system is described by a classical Hamiltonian
H(q,p), the generalized coordinates {𝑞𝑖} and {𝑝𝑖} would evolve as:

𝑑𝑞𝑖
𝑑𝑡 = {𝑞𝑖 ,H},

𝑑𝑝𝑖
𝑑𝑡 = {𝑝𝑖 ,H}, (1.8)

where { … } is the Poisson bracket. However, the sheer amount of particles (≫ 1023) and their interactions
with each other make this approach unfeasible, both from an analytical and a numerical point of view.
Fortunately, in many cases knowing the microscopic physics of the system is not necessary for making
predictions about its future behavior. Instead, one can focus on macroscopic descriptions of the system’s
bulk parameters: For instance, we canmeasure the pressure or temperature of a vaporwithoutmeasuring
the velocity of each individual particle. The theory which deals with the relationships between these
macroscopic properties of matter in equilibrium is called (classical) thermodynamics. It provides a
framework for understanding and predicting the behavior of systems in equilibrium in terms of energy
transformations and heat transfer [164]. On microscopic scales, describing the behavior of particles
means dealing with a complex many-body system that has a very large number of states. Kinetic theory
aims to derive the collective behavior of particles, starting from the fundamental laws that dictate their
trajectories and interactions. The field of statistical physics (or statistical thermodynamics) analyzes the
statistics of possible states and is concerned with the distribution of energy, velocity and positions of
particles in a system. Both aim to derive the thermodynamic properties from behavior of individual
particles, and, in doing so, bridge the gap between macroscopic and microscopic descriptions of matter
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Figure 1.4 | The microcanonical ensemble. Taking repeated snapshots of a system in phase space ultimately reveals

all possible microstates. If the system is completely isolated such that particle number, volume and energy are

conserved, all observed microstates will have the same energy E ∈]E − δE , E + δE[. The complete collection of

microstates in this energy class is called the microcanonical ensemble, a subset of the canonical ensemble which

includes all energies.

[165]. In the following, we employ the statistical approach and define thermal equilibrium using
the microcanonical ensemble.

The microcanonical ensemble
Even in thermal equilibrium, the particles collide randomly and their velocities and positions fluctuate.
Every time we take a snapshot of the system, we would find a different configuration of particle positions
and velocities. If we kept taking snapshots until we have seen all possible configurations, then we would
have generated an ensemble of microstates (see Fig. 1.4). Assuming that the vacuum chamber does
not allow any particle or energy transfer across its boundaries, all observable microstates will have the
same energy 𝐸 ∈ ]𝐸 − 𝛿𝐸, 𝐸 + 𝛿𝐸[ and the same particle number. The ensemble of microstates at
one particular energy is called themicrocanonical ensemble.If the system was not isolated and allowed
energy transfer across its boundaries, the entirety of observedmicrostates would constitute the canonical
ensemble. If additionally, particles could leave and enter the system, we would get the grand canonical
ensemble. These thermodynamic ensembles are also called Gibbs ensembles.

Since all microstates have the same energy, it is reasonable to assume that all microstates are equally
likely to be observed. This is expressed by the phase space probability

𝜌(𝑝, 𝑞) =
⎧

⎨
⎩

1
Γ(𝐸,𝑉,𝑁)

𝐸 − 𝛿𝐸 < 𝐻(𝑞, 𝑝) < 𝐸 + 𝛿𝐸

0 otherwise,
(1.9)

where Γ(𝐸,𝑉,𝑁) is the volume occupied by the microstates within the (infinitesimally small) energy
shell ]𝐸 − 𝛿𝐸, 𝐸 + 𝛿𝐸[ at constant volume 𝑉 and particle number 𝑁. In thermal equilibrium, the
(Boltzmann) entropy of the system is maximal and can be computed from the number of (equally
probable) microstates [166]:

𝑆(𝐸,𝑉,𝑁) = 𝑘𝐵ln Γ(𝐸,𝑉,𝑁). (1.10)
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The microcanonical ensemble average of any quantity 𝐴(𝑝, 𝑞) is given by [167]:

⟨𝐴⟩mc =
1

Γ(𝐸,𝑉,𝑁)

∫
𝑑𝑞

∫
𝑑𝑝 𝜌(𝑝, 𝑞)𝐴(𝑞, 𝑝) 𝛿(𝐸 −𝐻(𝑞, 𝑝)) (1.11)

and its variance is obtained from evaluating:

𝜎2𝐴 = ⟨𝐴2⟩mc − ⟨𝐴⟩2mc. (1.12)

Thus, in thermal equilibrium, we are able to compute any quantity in the system from statistics only,
without knowledge about the microscopic physics that govern the interactions between the particles.
This is a very powerful tool for predicting measurements in fully thermalized states. The ensemble,
however, does not provide any information about how the system relaxes toward thermal equilibrium
and how the measured quantity time-evolves during the thermalization process. Another open question
is: What mechanism underlies Eq. 1.11, leading to mean quantities that are in agreement with the
assumption that all microstates are equally likely (cf. Eq. 1.9)? What dynamics are necessary for a system
to reach thermal equilibrium, as defined by themicrocanonical ensemble? The answer is generally chaos.

Chaos and ergodicity
While a classical system is intrinsically deterministic, i.e. the time evolution is, in principle, predictable
using Eq. 1.8, it can be deterministically chaotic when its space trajectory at long times is infinitely
sensitive to the initial conditions. Let us assume that two initial states are separated by a small difference
vector 𝛿k0 in phase space. If the system is chaotic, this difference will grow exponentially over time
(the so-called butterfly effect), i.e.

|𝛿k(𝑡)| = |𝛿k0|𝑒𝜆𝑡. (1.13)

Here, 𝜆 > 0 is the Lyapunov exponent that quantifies the predictability of the system [168].
As an example, consider the dynamical billiard depicted in Fig. 1.5a: A single particle moves freely

inside the billiard and its direction of movement is only altered by elastic collisions with the elliptical
billiard wall. As illustrated by the two trajectories in black and red, any small difference in the initial
velocity vector of the particle will grow large over time, as expressed by Eq. 1.13. One can imagine that, if
there are no special initial state vectors that do not lead to divergence, the particle will always ultimately
explore every point of the billiard and every velocity vector of constant length, generating all possible
microstates. In that case averaging the position of the particle over time (from 𝑡 = 0 until 𝑡 →∞) will
yield the same result as taking the average of many snapshots at a constant late time 𝑡 = 𝑡∗ ≫ 1. In this
case the system is called ergodic. For comparison, consider the rectangular billiard depicted in Fig. 1.5b.
Here, the initial angle of the particle’s velocity vector is conserved. Thus, while the particle might still
visit every point of the billiard’s area it will do so only with certain velocity components. The dynamics
of the particle are, therefore, restricted to a subregion of the overall phase space and ergodicity is broken.

The notion of ergodicity can be more rigorously defined as follows: When measuring an observable
𝐴, we expect to obtain the mean value predicted by the microcanonical ensemble according to Eq. 1.11.
However, a measurement typically takes a finite amount of time 𝜏 that is long compared to the average
interaction time of the particles. Thus, we can picture the measurement result as a finite time integral
over the time-evolution of the actual quantity:

�̄�𝜏 =
1
𝜏

∫ 𝜏

0
𝑑𝑡 𝐴(𝑞, 𝑝, 𝑡) (1.14)

Ergodicity means that Eq. 1.11 and Eq. 1.14 are equivalent in the limit of long measurements 𝜏 →∞.
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a b

Figure 1.5 | Ergodicity illustrated using dynamical billiards. a, Elliptical billiard (ergodic). The trajectories of two

particles with slightly different initial velocity vectors diverge quickly over time, indicating that, according to the

ergodic hypothesis, each individual trajectory will eventually explore the entire billiard surface with all possible

velocity vectors of constant length. b, Rectangular billiards restrict the velocity of the particle to certain vectors,

preventing a full exploration of the phase space and breaking ergodicity.

This assumption is known as the ergodic hypothesis [169]: A system is ergodic if the microcanonical
ensemble average ⟨𝐴⟩mc is identical to the infinite-time average �̄� over the evolution of 𝐴:

�̄� = lim
𝜏→∞

�̄�𝜏(𝑞, 𝑝) = ⟨𝐴⟩mc. (1.15)

The latter is independent of the initial conditions which only matter at short times. Intuitively, this
equivalence means that, as the system evolves over time, it eventually visits all microstates in the
microcanonical ensemble (which are all equally likely, as stated by Eq. 1.9), producing measurement
result in agreement with thermal equilibrium as defined by Eq. 1.11.

All systems require chaos to become ergodic. However, not all chaotic systems are necessarily
ergodic: It is possible for a system to exhibit both chaotic and regular regions in phase space, such that
trajectories launched in the chaotic region do not enter the regular zones. For instance, the Chirikov
standard map falls into this special category [170].

1.7 Thermalization of isolated quantum systems
In quantum systems the microscopic physics governing the microscopic motions of particles and their
interactions are fundamentally different compared to classical systems. Important concepts in quantum
mechanics like superpositions, unitarity and entanglement require us to understand relaxation and
thermalization of a system from the viewpoint of wavefunctions, operators and density matrices. Let
us consider an isolated quantum system in an initial state |𝜓⟩ (𝑡 = 0). This state will time-evolve
under the Hamiltonian �̂� as:

|𝜓⟩ (𝑡) = �̂� |𝜓⟩ (𝑡 = 0), (1.16)

where

�̂� = 𝑒−
𝑖
ℏ
�̂�𝑡 (1.17)

is the time-evolution operator that acts as a unitary transformation. This means that if the initial
state of the isolated quantum system is a pure state, it will remain a pure state for all eternity and
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Figure 1.6 | Thermalization of an isolated quantum system. The initial state of the quantum system |ψ⟩ (t = 0)
is a superposition of eigenstates, forming a product state. Each eigenstate is thermal according to the eigenstate

thermalization hypothesis (ETH). This means that the measured distribution of any local observable in any eigenstate

will match the prediction from statistical physics in the microcanonical ensemble. However, due to fixed phase

relations (coherence) between the eigenstates in the superposition, measuring the observable in the initial state

will not yield a thermal distribution. As the system time-evolves, the coherence between the eigenstates in the

superposition vanishes, such that not only the eigenstates individually but also the superposition |ψ⟩ (t → ∞)
appears thermal [163].

dynamical chaos as in the classical case cannot emerge. This suggests that the process of thermalization
unfolds in a fundamentally different way.

Let us write the initial state as a superposition of (energy) eigenstates of �̂�:

|𝜓⟩ (𝑡 = 0) =
∑
𝛼
𝐶𝛼 |𝜓𝛼⟩ , (1.18)

with 𝐶𝛼 = ⟨𝜓𝛼|𝜓⟩(𝑡 = 0) and
∑

𝛼 |𝐶𝛼|
2 = 1. The time-evolution can then be expressed as:

|𝜓⟩ (𝑡) =
∑
𝛼
𝐶𝛼𝑒

− 𝑖
ℏ
𝐸𝛼𝑡 |𝜓𝛼⟩ , (1.19)

where 𝐸𝛼 are the energy eigenvalues fulfilling the time-independent Schrödinger equation𝐻 |𝜓𝛼⟩ =
𝐸𝛼 |𝜓𝛼⟩. Let 𝐴 be an observable. Using the eigenstate decomposition in Eq. 1.19, the time evolu-
tion of 𝐴 is given by [171]:

⟨𝐴⟩(𝑡) = ⟨𝜓|𝐴|𝜓⟩(𝑡) =
∑
𝛼,𝛽

𝐶∗𝛼𝐶𝛽𝑒
− 𝑖
ℏ
(𝐸𝛼−𝐸𝛽)𝑡𝐴𝛼,𝛽 . (1.20)

Similar to Eq. 1.14, we can define the long-time average as:

�̄� = lim
𝜏→∞

1
𝜏

∫ 𝜏

0
⟨𝐴⟩(𝑡)𝑑𝑡. (1.21)
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The relaxation process of the system is called thermalization if the long-time average matches
the prediction from statistical physics in the microcanonical ensemble belonging to the energy shell
𝐼 = [𝐸 − 𝛿𝐸, 𝐸 + 𝛿𝐸]:

�̄� = ⟨𝐴⟩mc(𝐸 ∈ 𝐼), (1.22)

where

⟨𝐴⟩mc(𝐸 ∈ 𝐼) = 1∕𝑁𝐸∈𝐼
∑

𝛼∶𝐸𝛼∈𝐼
𝐴𝛼𝛼, (1.23)

in analogy with Eq. 1.11. Here, 𝑁𝐸∈𝐼 is the number of microstates in the energy shell 𝐼.

Eigenstate Thermalization Hypothesis

According to Eq. 1.20, off-diagonal elements of𝐴 (i.e. 𝐴𝛼,𝛽 with 𝛼 ≠ 𝛽 ) will oscillate at a frequency (𝐸𝛼−
𝐸𝛽)∕ℏ and dephase and, thus, average out to zero inEq. 1.21. Therefore, one could expect that𝐴 relaxes to

�̄� =
∑
𝛼
|𝐶𝛼|2𝐴𝛼𝛼. (1.24)

However, this is not generally true as, depending on the exact spectrum of �̂�, a high density of states
at a certain value of 𝐸𝛼 − 𝐸𝛽 might prevent dephasing. Further, the relaxation described by Eq. 1.24
does not necessarily mean thermalization in a sense that all initial states will reach the same thermal
equilibrium: In general, �̄� depends on details of the initial state through the coefficients 𝐶𝛼 (cf. Eq. 1.24).
This suggests that more information about the spectrum of �̂� is needed and that not all operators 𝐴
can relax or thermalize. Considering the unitarity of the time evolution and, as a consequence, the
inability of the global system to relax, we can assume that the thermalization only happens locally and
we need to restrict ourselves to local operators [171]: If the operator 𝐴 describes a local measurement in
a subsystemA, information about the remainder of the overall system is lost and the idea of different
initial states relaxing to the same local equilibrium (according to Eq. 1.24) seems possible.

Random matrix theory approaches [41, 42, 172] support the claim that the diagonal elements of A
are given by the average of the microcanonical ensemble of the corresponding eigenenergies:

𝐴𝛼𝛼 = ⟨𝐴⟩mc(𝐸𝛼), (1.25)

and 𝐴𝛼𝛼 is not expected to vary much between the eigenstates that are energetically similar. The
statement in Eq. 1.25 is called the eigenstate thermalization hypothesis (ETH) because it suggests that
thermalization occurs at the level of individual eigenstates and that each eigenstate already looks locally
thermal. It means that if the system is in an energy eigenstate of the Hamiltonian and we measure 𝐴
(e.g. in the density basis), we find a thermal distribution as expected from statistical physics. Then,
the question whether we would also measure a thermal distribution in a general quantum state 𝜓
(which is a superposition of energy eigenstates) must be answered by the phase relations 𝐶𝛼 between the
eigenstates (see Fig. 1.6). If we prepare a specific initial state, the coefficients 𝐶𝛼 are highly non-trivial
and coherently combine into a state in which 𝐴 is not thermal. However, as time passes and the system
evolves, coherence between the energy eigenstates is lost. Then, due to dephasing, ⟨𝐴⟩(𝑡) will yield a
thermal value, consistent with the prediction from statistical physics and the microcanonical ensemble.
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Figure 1.7 | Entanglement entropy. a If a subsystem A is not entangled with the remainder of the overall system

B, the subsystem’s state is pure and measurements of operators in the subsystem will generally have non-thermal

distributions. b, In presence of maximal entanglement between the subsystem and the remainder of the overall

system, the subsystem’s state becomes fully mixed. Then, repeated measurements of subsystem observables will

yield a thermal distribution.

Entanglement entropy
How thermal statistics emerge in isolated quantum systems from out-of-equilibrium dynamics is an
intricate question which has been answered only recently [39, 171, 173]. In the classical microcanonical
ensemble the entropy is defined as in Eq. 1.10 and maximized by the uniform distribution of microstate
probabilities, which corresponds to a thermal equilibrium state at late times. From an information
point of view, the knowledge about what microstate the system will be found in is minimal, indicating
that memory about the initial state is maximally lost.

For a state of an isolated quantum system which is described by the density matrix 𝜌, we can define
the von Neumann (entanglement) entropy [174]:

𝑆 = −Tr(𝜌 ln 𝜌). (1.26)

As stated by Eq. 1.19, a closed quantum system initialized in a pure state will undergo a unitary time
evolution and stay pure. If the system is pure, information about the state is maximal and we obtain
an entropy of zero at all times. Thus, Eq. 1.26 cannot be the maximized thermal entropy belonging
the the microcanonical ensemble from statistical physics, according to the ETH.

The solution to finding a thermodynamical entropy in a quantum system lies in the notion of locality,
similar to the restrictions applied to 𝐴 in the preceding paragraph: Instead of describing the entire
isolated system, we focus on a subsystemA (and calling the remainder of the overall system B) [173].
The reduced density matrix for subsystem A reads:

𝜌A = −TrB(𝜌 ln 𝜌) (1.27)

If there is no entanglement betweenA and B, measuringA will reveal a pure state with Tr(𝜌2A) = 1. If,
however, A and B are entangled, 𝜌A becomes mixed. The entanglement entropy is defined as:

𝑆𝐸(A,B) = −Tr(𝜌A ln 𝜌A), (1.28)

quantifying the amount of entanglement betweenA and B, or, from an information theory point of view,
the uncertainty about the quantum state ofA due to its entanglement with B, when onlyA is measured.

Recent analytical [175] and numerical studies [173] suggest that the thermodynamic entropy of the
subsystemA is equivalent to the entanglement entropy between this subsystem and its environment:

𝑆(A) = −Tr(𝜌A,mc ln 𝜌A,mc) = −Tr(𝜌A ln 𝜌A) = 𝑆𝐸(A,B). (1.29)

Further, in thermal equilibrium, the reduced density matrix 𝜌A of subsystem A is equivalent to the
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mixed density matrix expected from statistical physics in the microcanonical ensemble 𝜌A,mc. Eq. 1.29
essentially extends the ETH to entropy and explains how subsystems of an isolated quantum system can
appear thermal, even though the overall system remains in a pure state: through maximal entanglement
between the subsystem and its surroundings which acts as a thermal bath, as illustrated in Fig. 1.7.
Thus, from the perspective of the global system, the information about the initial state is not lost, but
scrambled in the form of many-body entanglement.

Thermalization through entanglement
In conclusion, in order for an isolated quantum system to reach thermal equilibriumdescribed byEq. 1.29
or Eq. 1.22 after a quench (cf. Sec. 1.4), the particles in the system build up entangled with each other
over growing distances, until the entanglement entropy is locally maximized. The maximum speed at
which entanglement (or quantum information) can spread is the speed of light in the system, also called
the Lieb-Robinson velocity [176]. In most systems (both integrable and chaotic, excluding localized
systems) entanglement spreads ballistically at constant speed [177–181]. An important consequence
of entanglement is the emergence of density-density correlations [59] and fluctuations as the system
relaxes. Quantum gas microscopes provide access to these observables and we will study them in
Chapter 5, looking out for signatures of fluctuating hydrodynamics (see next Chapter).
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CHAPTER 2

Fluctuating hydrodynamics

This Chapter introduces the framework of fluctuating hydrodynamics (FHD), a classical macroscopic
theory combining hydrodynamics with randomnoise. We start by introducing hydrodynamics in general
and discuss the implications of adding fluctuations. We illustrate the most important concepts of this
theory using two simple analytically solvable diffusive systems: Brownianmotion of a single particle and
the symmetric simple exclusion process (SSEP). The purpose of this Chapter is to provide the theoretical
context for Chapter 5 where the applicability of FHD (an effective classical description) to an isolated
chaotic out-of-equilibrium quantum system is experimentally tested.

2.1 Hydrodynamics
When we want to describe how water flows through a tube (cf. Fig. 2.1a), we do not have to know about
the chemistry and physics of water molecules. Instead, we can make use of a set of partial differential
equations, called the Navier-Stokes equations (NSE) [182], which dictate the time evolution of the fluid
flow velocity. The NSE are just one example of a much more universal theory, called hydrodynamics: It
treats a fluid as a continuous medium with locally well-defined macroscopic quantities, such as density
or pressure and locally averages the behavior of the constituent particles rather than attempting to
describe their individual trajectories [183] (see Introduction for more context).

Length- and timescales
Hydrodynamics is a theory which is exact but only in the late-time and long-wavelength limit of the
system [17]. This is visualized in Fig. 2.1b: At the microscopic scale (average particle-particle distance
𝑑), we encounter a many-body problem consisting of interacting particles colliding in complex ways
(i). This problem is generally analytically intractable and the complexity grows unfavorably with the
number of particles, making a microscopic description of the system unfeasible. In contrast, if we zoom
out by a lot (iii), the many-body character of the problem vanishes: we do not detect the presence of
individual particles anymore but, instead, measure continuous quantities, such as the density �̄�(𝑥, 𝑡),
which varies on a lengthscale 𝑙macro = �̄�(𝑥, 𝑡)∕𝜕𝑥�̄�(𝑥, 𝑡) (macroscopic scale). For a clear separation
of lengthscales we require:

𝑑 ≪ 𝑙meso ≪ 𝑙macro. (2.1)

This defines an intermediate lengthscale 𝑙meso on which the density is homogeneous and the system
appears to be in (local) thermal equilibrium (homogeneous density) [184]. In the following, we will
refer to the segments corresponding to this lengthscale as fluid cells and imagine that the overall system
(macroscopic process) is partitioned into a finite number of fluid cells (cf. Fig. 2.1b (iii)).

21
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Figure 2.1 | Hydrodynamics. a, Understanding and describing flow of a water through a pipe does not require

knowledge about the chemistry of water molecules. Instead, one can find a macroscopic continuum description in

the framework of hydrodynamics. b, Hydrodynamics provides equations for the coarse-grained (macroscopic) time

evolution of conserved quantities, assuming that local mesoscopic segments ("fluid cells") have already thermalized.

This allows to conveniently ignore the details of the microscopic physics and absorb them into few effective variables

of the macroscopic model [184].

The mesoscopic lengthscale is not static but grows in time as the system relaxes over larger and
larger distances and thermal equilibrium is reached in larger and larger segments (cf. Secs. 1.6 and 1.7).
Let 𝜏relax be the local relaxation time on the microscopic level. Then there is mesoscopic relaxation
time, defined as:

𝜏relax ≪ 𝑡meso ≪ �̄�(𝑥, 𝑡)∕𝜕𝑡�̄�(𝑥, 𝑡), (2.2)

where �̄�(𝑥, 𝑡)∕𝜕𝑡�̄�(𝑥, 𝑡) is the relaxation timescale on which the macroscopic density variations
vanish and global thermal equilibrium is reached. The local equilibrium in individual fluid cells is
reached within 𝑡meso. Importantly, if 𝑡meso has passed and a fluid cell has fully relaxed, the average
quantity �̄� representing a late-time measurement of the fluid cell is equivalent to that obtained from
the Gibbs ensemble average in statistical physics (cf. Eq. 1.15 and Eq. 1.22):

�̄� = ⟨𝑂⟩stat. (2.3)

Assuming that all fluid cells are in local thermal equilibrium means that we can simply work
with the mean quantities of the fluid cells directly rather than describing the microscopic physics
governing the thermalization process of each fluid cell. Moving to larger scales and increasing the
level of coarse-graining, the number of fluid cells approaches infinity and the local mean quantities
become a continuous field.

In the following we will assume that the system is 1d. However, the formalism can be easily
generalized to higher dimensions by substituting 𝑥 → r and 𝜕𝑥 → ∇r.

Conservation laws
As discussed in Sec. 1.5, a chaotic system is generally characterized by a small number of (locally)
conserved quantities 𝑄𝑖 (𝑖 = 1,… , 𝑁), such as particle number and energy. These can be expressed
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as integrals of local densities 𝑞𝑖(𝑥, 𝑡), such as particle density or energy density. For each conserved
quantity, we can write down a continuity equation:

𝜕𝑡𝑞𝑖(𝑥, 𝑡) + 𝜕𝑥𝑗𝑖 = 0, (2.4)

expressing the fact that any change of the local density must be accompanied by a corresponding
current 𝑗𝑖(𝑥, 𝑡) at the microscopic level. On a timescale 𝑡meso the system is expected to thermalize on
a lengthscale 𝑙meso, defining the fluid cells, as described earlier. As stated by Eq. 2.3, the local mean
density in a fluid cell (on the mesoscopic scale) is equal to the ensemble average [19]:

�̄�𝑖 = ⟨𝑞𝑖⟩stat, (2.5)

By zooming out even more (to the macroscopic scale), the density of fluid cells diverges and we can
generalize the continuity equation to:

𝜕𝑡�̄�𝑖(𝑥, 𝑡) + 𝜕𝑥 �̄�𝑖(𝑥, 𝑡) = 0, (2.6)

with initial conditions �̄�𝑖(𝑥, 𝑡meso) = ⟨𝑞𝑖⟩stat(𝑥) and �̄�𝑖(𝑥, 𝑡meso) = ⟨𝑗𝑖⟩stat(𝑥). Eq. 2.6 expresses that any
change of the density in a fluid cell must be accompanied by a current between adjacent fluid cells. Thus,
themicroscopic conservation laws have translated tomacroscopic conservation laws for a coarse-grained
density field �̄�𝑖(𝑥, 𝑡). In contrast, all information about other laws of physics driving the thermalization
of the fluid cells is lost. Yet, we can maintain an exact description on large time- and lengthscales, just
by assuming that the fluid cells are locally thermal, and, as discussed below, by absorbing the details
of the model into the definition of the coarse-grained density current �̄�𝑖(𝑥, 𝑡).

Density current
In general, the density current �̄�𝑖(𝑥, 𝑡) can be expressed as a function of the density �̄�𝑖(𝑥, 𝑡) and its
derivatives. This is because the state of the system is expected to be fully defined by the information
about all local densities in what is a bijection [19]. The equation defining the density current is
called the equation of state:

�̄�𝑖 = 𝐹(�̄�𝑖 , 𝜕𝑥�̄�𝑖 , 𝜕2𝑥�̄�𝑖 ,… ), (2.7)

and is, in general, highly model-dependent [184]. A common way of expanding the density current
is writing it out as a gradient expansion [185]:

�̄�𝑖(𝑥, 𝑡) =
∑
𝑗
𝐴𝑖𝑗({�̄�𝑖(𝑥, 𝑡)}) �̄�𝑗(𝑥, 𝑡) −

1
2
∑
𝑗
𝐷𝑖𝑗({�̄�𝑖(𝑥, 𝑡)}) 𝜕𝑥�̄�𝑗(𝑥, 𝑡) + … . (2.8)

If only the first order term is non-zero (𝐴𝑖𝑗 ≠ 0, 𝐷𝑖𝑗 = 0), we obtain Euler scale hydrodynamics. The
matrix 𝐴𝑖𝑗 is called the flux Jacobian and encodes the response of the system to spatial density gradients.
In general, Euler scale hydrodynamics describes ballistic transport of conserved quantities.

In many cases the current does not depend on the density but on the gradient of the density
(𝐴𝑖𝑗 = 0, 𝐷𝑖𝑗 ≠ 0). This is captured by the second term in Eq. 2.8, which gives rise to phenomena like dif-
fusion and can reproduceNavier-Stokes hydrodynamics. The entries of𝐷𝑖𝑗({�̄�𝑖(𝑥, 𝑡)}) are called diffusion
constants, heat conductivities or viscosity, depending on whether particle transport, energy transport or
momentum transport is considered, respectively [186]. In general, they depend on the density, just as
the laws of physics governing the interactions between the particles are density-dependent [187]. If the
particle number is the sole (locally) conserved quantity in the system, simple particle diffusion would be
described by Fick’s law. It states that the particle current is proportional to the gradient of the density:
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�̄�(𝑥, 𝑡) = −𝐷(�̄�(𝑥, 𝑡))𝜕�̄�(𝑥, 𝑡)𝜕𝑥 (2.9)

with a density-dependent linear-response diffusion constant 𝐷(�̄�). If only energy was conserved, we
could write down Fourier’s law of heat conduction stating that the heat current is proportional to
the temperature gradient:

�̄�(𝑥, 𝑡) = −𝑘𝜕�̄�(𝑥, 𝑡)𝜕𝑥 . (2.10)

Here, 𝑘 denotes the thermal conductivity. Eq. 2.9 and Eq. 2.10 are also called constitutive relations [188].
Note that, if there are multiple conserved quantities in the system, their transport, in general, is coupled,
as expressed by the sum in Eq. 2.8. This means, for instance, that the particle current can depend on
both the spatial density gradient (or an external field) and the spatial energy gradient, leading to a set
of coupled differential equations describing thermoelectric coupling [189].

Generalized hydrodynamics
Hydrodynamics applies to systems with very few conserved quantities and (infinitely) many fast decay-
ing modes, a situation which generally characterizes chaotic systems. In contrast, integrable systems
have (infinitely) many conserved quantities which prevent relaxation to a state described by the Gibbs
ensemble and conventional hydrodynamics breaks down (cf. Sec. 1.5). In order for the theory of hydrody-
namics to also describe integrable systems, an extended approach is necessary which takes into account
all infinitely many conservation laws resulting in an infinitely large system of continuity equations and
density currents. This framework is called generalized hydrodynamics (GHD) and, just like standard
hydrodynamics, can provide significant numerical advantages, see Refs. [18–20, 185] for more details.

2.2 Fluctuating hydrodynamics
At a macroscopic level, hydrodynamic fields emerge from the assumption of local thermal equilibrium.
However, in practice, the level of coarse-graining might still be small enough to be able to detect
the discretized nature of the microscopic particles in the form of fluctuations. Imagine a volume
homogeneously filled with a dense gas. If a bullet is shot into the volume, the bullet will slow down due
to countless collisions with gas molecules until it comes to a complete stop. So where did the kinetic
energy of the bullet go? It has dissipated into the gas, i.e. it transferred to the microscopic degrees of
freedom of the individual gas molecules, increasing the amplitude of fluctuations in the system. In this
sense, dissipative fluxes can be understood as the macroscopic consequence of fluctuating dynamics in
the system [190]. The extended hydrodynamics theory which takes such fluctuations into account is
called fluctuating hydrodynamics (see Introduction for more context and applications).

The key step establishing fluctuating hydrodynamics is to add a random noise term to the equa-
tion of state:

�̄� = 𝐹(�̄�, 𝜕𝑥�̄�, 𝜕2𝑥�̄�,… ) + 𝜉. (2.11)

As a consequence, the continuity equations (Eq. 2.6) become a system of stochastic differential equations.
The noise term 𝜉 takes the role of random statistical forces affecting the density currents. In a classical
system, these forces can be envisioned as the consequence of random collisions between the constituent
particles of the system. In a quantum system, fluctuations emerge due to measurement projection
noise in the presence of entanglement (cf. Sec. 1.7). Irrespective of what the microscopic origins
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of the random fluctuations exactly are, the term 𝜉 aims to universally capture them as white noise.
Generally, we assume that

⟨𝜉⟩ = 0
⟨𝜉(𝑥, 𝑡)𝜉(𝑥′, 𝑡′)⟩ = 𝜂 𝛿(𝑥 − 𝑥′) 𝛿(𝑡 − 𝑡′), (2.12)

with noise amplitude 𝜂 (see Sec. 2.4 for details). These expressions state that the noise is zero on
average and is completely uncorrelated, as expected from random collisions between the particles in
the system at the microscopic level [190].

With random fluctuations introduced in the model, a natural question to ask would be: How do
the fluctuations transfer to measurable observables? One way to answer this question is to use the
framework of macroscopic fluctuation theory (MFT) [31]. MFT provides methods for analyzing the
FCS in non-equilibrium systems, complementing FHD and its description of the dynamics. For more
information, see Appendix A. In the following, however, we will compute correlations and fluctuations
by solving the stochastic differential equations (SDEs) of FHD using standard methods.

2.3 Brownian motion
One of the simplest examples illustrating the macroscopic effects of microscopic fluctuations is Brow-
nian motion: the shaky random movement of a tracer particle in liquids or gases, e.g. pollen grains
immersed in water [191]. The grains have a typical size on the order of 10µm and weigh about ≈ 1 µg.
They are sufficiently small and light in order to experience significant velocity changes from colli-
sions with individual water molecules at room temperature, leading to visible erratic movements
(fluctuations) under the microscope [192]. If the tracer particle was too heavy, though, the fluctuation
amplitude would be undetectable.

Let us picture a single particle, initially located at position 𝑥0 = 0 at time 𝑡 = 0, performing a
discretized random walk (a chaotic process). At each time step ∆𝑡, the particle moves right or left with
a probability of 50% each. After 𝑇 steps the position of the particle is

𝑥𝑇 =
𝑇∑
𝑡=1

𝑑𝑡, (2.13)

where 𝐝 = (𝑑1, 𝑑2,… , 𝑑𝑇) is a sequence of random steps of length 𝑎 to the left (𝑑𝑡 = −𝑎) and to
the right (𝑑𝑡 = +𝑎).

Probabilistic description
As the process is random, we can only make probabilistic predictions about the position of the particle.
The mean position of the particle is:

⟨𝑥𝑇⟩ =
⟨ 𝑇∑
𝑡=1

𝑑𝑡
⟩
=

𝑇∑
𝑡=1

⟨𝑑𝑡⟩ = 0, (2.14)

independent of the number of time steps 𝑇, suggesting that on average the particle does not move.
However, for the variance of the particle position we find:
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⟨𝑥2𝑇⟩ =
⟨ 𝑇∑
𝑡=1

𝑑2𝑡 + 2
∑
𝑡≠𝑡′

𝑑𝑡𝑑𝑡′
⟩
=

𝑇∑
𝑡=1

⟨𝑑2𝑡 ⟩ =
𝑇∑
𝑡=1

𝑎2 = 𝑎2𝑇, (2.15)

i.e. the range of likely positions [−𝑙, 𝑙] continues to expand according to a square root law:

𝑙 =
√
𝑥2𝑇 =

√
𝑎2𝑇. (2.16)

Using 𝑇 = 𝑡∕∆𝑡, we can rewrite Eq. 2.15 as:

⟨𝑥2𝑡 ⟩ = 2𝐷𝑡, (2.17)

Here,
𝐷 = 𝑎2∕(2∆𝑡) (2.18)

denotes the diffusion constant which effectively quantifies the mobility of the particle (cf. Sec. 2.1). It
absorbs the randomness in the particle’s micromotion into a single number.

Langevin-type description
More generally, in continuous space and time we can describe Brownian motion by assuming that the
velocity of the tracer particle randomly fluctuates (due to the random collisions in the bath) [193]:

�̇�(𝑡) = 𝜉(𝑡), (2.19)

with white noise 𝜉(𝑡) of amplitude 𝜂 fulfilling (cf. Eq. 2.12):

⟨𝜉(𝑡)⟩ = 0; ⟨𝜉(𝑡)𝜉(𝑡′)⟩ = 𝜂 𝛿(𝑡 − 𝑡′). (2.20)

This is a very simple example for a Langevin-type equation [194] which describes a system that is subject
to fluctuating forces. The motion of the particle is parametrized by:

𝑥(𝑡) = 𝑥0 +
∫ 𝑡

𝑡0
𝑑𝜏 𝜉(𝜏), (2.21)

assuming the initial condition 𝑥(𝑡 = 0) = 𝑥0. Since 𝜉 is random, it averages out to zero and we find:

⟨𝑥(𝑡)⟩ = 𝑥0 +
⟨∫ 𝑡

𝑡0
𝑑𝜏𝜉(𝜏)

⟩
= 𝑥0 (2.22)

For the equal-time correlator we get:

⟨𝑥(𝑡1)𝑥(𝑡2)⟩ = 𝑥20 +
⟨∫ 𝑡1

𝑡0
𝑑𝜏1

∫ 𝑡2

𝑡0
𝑑𝜏2𝜉(𝜏1)𝜉(𝜏2)

⟩
= 𝑥20 +

∫ 𝑡1

𝑡0
𝑑𝜏1

∫ 𝑡2

𝑡0
𝑑𝜏2⟨𝜉(𝜏1)𝜉(𝜏2)⟩, (2.23)

and substituting Eq. 2.20 for 𝜉(𝜏), gives:

⟨𝑥(𝑡1)𝑥(𝑡2)⟩ = 𝑥20 +
∫ 𝑡1

𝑡0
𝑑𝜏1

∫ 𝑡2

𝑡0
𝑑𝜏2 𝜂 𝛿(𝜏1 − 𝜏2) = 𝑥20 + 𝜂min(𝑡1, 𝑡2). (2.24)

Thus, the variance of the particle position is:
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⟨𝑥(𝑡)2⟩ = 𝜂𝑡. (2.25)

Comparing this result with Eq. 2.17 yields that the noise amplitude and the diffusion constant are
related through:

𝜂 = 2𝐷. (2.26)

In this Langevin-type description, the randomness of the microscopic motion is taken into account by
the amplitude of the generic white noise. In contrast to the probabilistic description presented first, no
information about the details of the underlying stochastic process is included. Thus, we now have a
macroscopic theory of Brownian motion that goes beyond the picture of collisions experienced by the
tracer particles in the bath of surroundingmolecules. The diffusion constant is the onlymodel parameter
required for an exact description of the randomwalk in the limit of long time- and lengthscales compared
to the microscopic collisions. It depends on the amplitude of the noise in agreement with our intuition
that larger velocity fluctuations should lead to a faster spreading of the mean particle position.

2.4 Many-body random walks
Brownian motion describes the fluctuating behavior of a single tracer particle in a bath. However,
in general, we want to describe the many-body physics of a large volume of gas or liquid, containing
∼ 1023 particles. Switching from one to many random walkers will not change the fact that the system
is chaotic. Further, keeping up the spirit of the Langevin-type description, we do not want to tackle
the full many-body problem. Instead, we choose a macroscopic description, which does not require
us to know about the microscopic physics of the system, and employ FHD (cf. Sec. 2.2).

Assuming only particle number conservation, we can write down the continuity equation for the
density 𝑛(𝑥, 𝑡) and the associated current 𝑗(𝑥, 𝑡):

𝜕𝑡𝑛(𝑥, 𝑡) + 𝜕𝑥𝑗(𝑥, 𝑡) = 0. (2.27)

Any inhomogeneous density distribution is expected to lead to a diffusive particle current 𝑗(𝑥, 𝑡) ≠ 0,
as postulated by Fick’s law (cf. Eq. 2.9). This is due to the system’s natural tendency to maximize its
entropy in equilibrium. Additionally, we add a noise term in order to include fluctuations originating
in the random interactions between the particles:

𝑗 = −𝐷(𝑛) 𝜕𝑥𝑛 − 𝜉, (2.28)

where 𝐷(𝑛) is the (generally density-dependent) diffusion coefficient. Note that the noise term must be
in the expression for the current in order to ensure that the particle number is conserved. The noise is
assumed to be uncorrelated in both time and space as expressed by Eq. 2.12. Then, Eq. 2.28 combined
with the continuity equation (Eq. 2.27) yields a SDE, the fluctuating diffusion equation:

𝜕𝑡𝑛(𝑥, 𝑡) = 𝐷(𝑛) 𝜕2𝑥𝑛(𝑥, 𝑡) + 𝜕𝑥𝜉, (2.29)

which describes the time evolution of the macroscopic density field 𝑛(𝑥, 𝑡).

Fluctuation-dissipation relation
Fourier transforming Eq. 2.29 yields [195]:
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(𝑖𝜔 + 𝐷(𝑛)𝑞2)𝑛(𝑞, 𝜔) = 𝑖 𝑞 𝜉(𝑞, 𝜔) (2.30)

and allows to solve for 𝑛(𝑞, 𝜔):

𝑛(𝑞, 𝜔) =
−𝑖𝑞 𝜉(𝑞, 𝜔)
𝑖𝜔 + 𝐷(𝑛) 𝑞2

. (2.31)

We then can compute the disconnected density-density correlator �̃�(𝑥, 𝑥′, 𝑡, 𝑡′)eq in equilibrium by
applying the inverse Fourier transformation to ⟨𝑛(𝑞, 𝜔)𝑛(𝑞′, 𝜔′)⟩, yielding [195]:

�̃�(𝑥, 𝑥′, 𝑡, 𝑡′)eq = ⟨𝑛(𝑥, 𝑡)𝑛(𝑥,′ , 𝑡′)⟩ =
𝜂

2𝐷(𝑛)

exp (− |𝑥−𝑥′|2

8𝐷(𝑛)|𝑡−𝑡′|
)

√
4𝜋𝐷(𝑛) |𝑡 − 𝑡′|

. (2.32)

In the limit 𝑡 → 𝑡′ this expression becomes:

�̃�(𝑥, 𝑥′)eq =
𝜂

2𝐷(𝑛)
𝛿(𝑥 − 𝑥′). (2.33)

The (disconnected) density-density correlations in equilibrium are equivalent to the equilibrium
fluctuations. For a conserved quantity, they are generally expected to be related to the susceptibility
𝜒(𝑛) of the system and have the form [196]:

�̃�(𝑥, 𝑥′)eq = 𝜒(𝑛) 𝛿(𝑥 − 𝑥′). (2.34)

Comparing Eq. 2.33 and Eq. 2.34 yields that the amplitude of the fluctuations 𝜂 is related to the sus-
ceptibility as

𝜂 = 2𝐷(𝑛)𝜒(𝑛), (2.35)

a manifestation of the FDT [27, 197].

Out-of-equilibrium correlations and hydrodynamic tails
In order to solve the SDE and compute the out-of-equilibrium dynamics, we define the Green’s function
𝐺(𝑥, 𝑡) as the solution of Eq. 2.27 in response to a Delta-perturbation:

𝜕𝑡𝐺(𝑥, 𝑡) − 𝐷(𝑛) 𝜕2𝑥𝐺(𝑥, 𝑡) = 𝛿(𝑥) 𝛿(𝑡). (2.36)

Fourier-transforming this expression gives:

𝐺(𝑘, 𝜔) = 1
𝑖𝜔 + 𝐷(𝑛)𝑘2

. (2.37)

The Green’s function in real space, therefore, reads:

𝐺(𝑥, 𝑡) = Θ(𝑡)
exp (− 𝑥2

4𝐷(𝑛)𝑡
)

√
4𝜋𝐷(𝑛)𝑡

= Θ(𝑡) 𝑔(𝑥, 𝑡), (2.38)

where Θ(𝑡) is the Heaviside step function. Then, the time evolution of the density field 𝑛(𝑥, 𝑡) can
be expressed as [196]:

𝑛(𝑥, 𝑡) = Θ(𝑡)
∫
𝑑𝑥′𝑔(𝑥 − 𝑥′)𝑛0(𝑥′) +

∫
𝑑𝑥′

∫ 𝑡

0
𝑑𝑡′𝑔(𝑥 − 𝑥′, 𝑡 − 𝑡′) 𝜕𝑥′𝜉(𝑥′, 𝑡′), (2.39)
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with initial condition 𝑛0 = 𝑛(𝑥, 0). We assume that the initial state lacks any long-range correlations,
such that ⟨𝑛(𝑥, 𝑡 = 0)𝑛(𝑥′, 𝑡 = 0)⟩ = 𝐵(𝑛) 𝛿(𝑥, 𝑥′), where 𝐵(𝑛) is the (disconnected) autocorrelator
amplitude. One can show using Eq. 2.39 and Eq. 2.34 that the (disconnected) equal-time density-density
correlations away from equilibrium yield [196]:

�̃�(𝑥, 𝑥′, 𝑡)− �̃�(𝑥, 𝑥′)eq = ⟨𝑛(𝑥, 𝑡)𝑛(𝑥′, 𝑡)⟩− ⟨𝑛(𝑥, 𝑡)𝑛(𝑥′, 𝑡)⟩eq = (𝐵(𝑛) − 𝜒(𝑛))
exp (− |𝑥−𝑥′|2

8𝐷(𝑛)𝑡
)

√
8𝜋𝐷(𝑛)𝑡

. (2.40)

This expression corresponds to a Gaussian cone, indicating that the correlation front expands as a
square root function with a 𝜎-envelope of 𝜎(𝑡) =

√
4𝐷𝑡. Note that compared to the Green’s function in

Eq. 2.38 there is a factor of two in the denominator of the exponential. In the limit of large evolution
times 𝑡 ≫ |𝑥 − 𝑥′|2∕(8𝐷(𝑛)), Eq. 2.40 simplifies to:

�̃�(𝑥, 𝑥′, 𝑡)→
𝐵(𝑛) − 𝜒(𝑛)
√
8𝜋𝐷(𝑛)𝑡

. (2.41)

Thus, the correlations are expected to decay according to a square root law ∼ 𝑡−1∕2. This is a common
characteristic in hydrodynamic systems called a hydrodynamic tail [198–202]. It was originally discov-
ered in studies of molecular dynamics [203, 204]. Note that this is a feature captured only by FHD as
compared to standard hydrodynamics, going beyond simple diffusion.

Particle number fluctuations
As shown in Appendix D, the density-density correlations are closely related to the particle number
fluctuations. In a discrete 1d system, the fluctuations are quantified by the variance of the total particle
number in a subsystem of length 𝐿 sites (cf. Eq. D.3):

Var𝐿(𝑡) = 𝐿𝐶0(𝑡) + 2 (𝐿 − 1)𝐶1(𝑡) + 2 (𝐿 − 2)𝐶2(𝑡) +⋯ + 2𝐶𝐿−1(𝑡), (2.42)

where 𝐶(𝑡) are the connected density-density correlators belonging distance 𝑑, as defined in Eq. 2.47.
The sum can be rewritten as:

Var𝐿(𝑡) = 𝐿𝐶0(𝑡) + 2𝐿
𝐿−1∑
𝑑=1

𝐶𝑑(𝑡) − 2
𝐿−1∑
𝑑=1

𝑑 𝐶𝑑(𝑡). (2.43)

In the continuum limit (𝑑 = 𝑖𝑎, 𝑖 ∈ ℕ0, 𝑎 → 0, 𝐿 → ∞ with 𝐿∕𝑎 = const.) we get:

Var𝐿(𝑡) = 𝐿𝐶0(𝑡) + 2𝐿
∫ ∞

0
𝑑𝑥 𝐶𝑥(𝑡) − 2

∫ ∞

0
𝑑𝑥 𝑥 𝐶𝑥(𝑡). (2.44)

Next, assuming a homogeneous mean density, we have 𝐶𝑑 = �̃�𝑑 + const. and we can substitute
Eq. 2.40 for 𝐶𝑥 and solve the integrals. In the limit of short times 𝑡 ≪ 𝐿2∕𝐷, but long enough for the
autocorrelator 𝐶0(𝑡) to saturate to 𝐶0(∞) the variance yields:

Var𝐿(𝑡) = 2𝐶0(∞)
√

2𝐷𝑡
𝜋 + const. ≈

√
2𝐷𝑡
𝜋 (2.45)

The last step assumes that the fluctuations in the initial state are negligibly small, i.e. Var𝐿(𝑡 = 0) ≈ 0.
Thus, the variance growth for all subsystems of different sizes 𝐿 is the same (at times significantly
smaller than the saturation timescale of a respective subsystem). This is due to the presence of a fixed
number of bonds through which the particles can move in and out of the subsystem, independent of the
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subsystem size L. Although Eq. 2.45 does not depend on 𝐿, the saturation timescale 𝑡sat still does. This
is because Varsat𝐿 = Var𝐿(𝑡 → ∞) ≈

√
(2𝐷 𝑡sat)∕𝜋 and Varsat𝐿 ∝ 𝐿 and therefore 𝐿 ∝

√
𝑡sat.

Importantly, Eq. 2.40 and Eq. 2.45 suggest that the out-of-equilibrium dynamics of both the density
and the fluctuations are completely determined by the diffusion constant. As shown later in Section 5.7,
we can use either a generalized form of Eq. 2.45 or the expression for the density-density correlations in
Eq. 2.40 to extract the diffusion constant from experimental data. In the following, we will first apply
these concepts to a simple classical chaotic model called the symmetric simple exclusion process (SSEP).

2.5 The symmetric simple exclusion process (SSEP)
Consider particles in a one-dimensional lattice, as shown in Fig. 2.2a. In every timestep, each particle
attempts to hop to the right and to the left with a probability of 50% each. However, the movement only
happens if the target site is not already occupied by another particle (exclusion). This chaotic classical
hard-core model is called the symmetric simple exclusion process (SSEP).

The SSEP is a special case of the asymmetric simple exclusion process (ASEP) [205], where the
probabilities of the particle moving left or right are generally not equal. The ASEP has applications in, for
instance, traffic flow models [206], protein synthesis [207] and electrophoresis [208]. It is considered a
testbed for studying the non-equilibrium dynamics of classical many-body systems, particularly because,
at least in 1d, it can be solved analytically [209, 210]. Methods for that include the Bethe ansatz [211,
212], matrix formulations [213] and MFT [210].
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Figure 2.2 | The symmetric simple exclusion process in 1d. a, In every time step each particle attempts to move

forth or back by one site with equal probability, but the movement succeeds only if the target site is not occupied

by another particle. b, The initial state is a density wave at half filling with particles occupying every second site. c,

Single simulation run showing how the initial occupation quickly randomizes within a few timesteps.

Macroscopic description using FHD
In the following, we opt for coarse-grained description of the SSEP in the hydrodynamic limit with
the particle number as the only conserved quantity. The SSEP is essentially a many-body random
walk: Even though exclusion restricts the movement of the particles at the microscopic level, the
randomness of the dynamics is expected to carry over to the macroscopic scale. Thus, using FHD,
we can assume that the system is described by the SDE introduced in Eq. 2.28 and Eq. 2.27. The
susceptibility (cf. Eq. 2.35) is given by [45]:

𝜒(�̄�) = �̄�(1 − �̄�), (2.46)

where �̄� is the mean filling of the system. The susceptibility corresponds to the variance of the particle
number of a single randomly occupied site. It must be zero both in the limit of zero and unity filling
(no fluctuations in empty or completely filled systems) and symmetric around �̄� = 1∕2.
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Simulation
We simulate the dynamics of the SSEP in a system containing 800 sites with open boundary conditions.
As an initial state, we choose a far-from-equilibrium density wave at half filling where every second site
of the lattice is occupied and every other site is empty (see Fig. 2.2b). In each time step, the position of
every particle is updated exactly once and the order in which particles are moved is random. In order
to enable a robust statistical analysis of the stochastic dynamics, we run more than 1000 simulations
with 2000 time steps. Fig. 2.2c shows the occupation dynamics of a single run. While the initial state is
characterized by a regular arrangement of equally spaced particles, the particle distribution quickly
randomizes within a few timesteps and and relaxes to an average value of 1∕2. Fig. 2.3a shows the time
evolution of the local mean density ⟨𝑛𝑖(𝑡)⟩measured on a particular site located in the center of the
system. It can be seen oscillating first before equilibrating quickly within 𝑡 < 10 timesteps.

At first sight this could suggest that the system thermalizes very quickly and loses memory of the
initial state on the same timescale as the local mean density decays. However, if we do not focus on the
mean density alone but also take into account the particle fluctuations in the system, a very different
picture emerges. The important role of fluctuations can already be surmised from the late-time behavior
in Fig. 2.2c, which shows that particles appear to be more likely to bunch up at later times. This means
that, if we consider a certain section of the system of length 𝐿 (cf. Fig. 2.2a), the variance of the particle
number (or the fluctuation amplitude) in this section is expected to grow.

Fig. 2.3a also shows the variance of the total particle numberVar𝐿(𝑡) in subsystems of sizes 𝐿 = 2, 4, 6
sites in the center of the overall system. Intriguingly, while the local mean density equilibrates quickly,
the particle number fluctuations relax on much longer timescales. Thus, there is a separation of
equilibration timescales between local mean densities and fluctuations which is particularly pronounced
in large subsystems. This is due to the finite speed at which density-density correlations can spread
through the system, as discussed below. As a consequence, large subsystems take longer to become
fully correlated with the environment. The variance is expected to saturate at the value corresponding
the maximum possible fluctuations. This coincides with the scenario that the occupation of each of
the 𝐿 sites in the subsystem is random, leading to a saturation variance of 𝐿𝜒(�̄�) = 𝐿∕4.

The slow fluctuation growth can be thought of as a manifestation of the hydrodynamical tail in the
density-density correlations discussed in Sec. 2.4. In fact, as shown in Appendix D, the density-density
correlations can be calculated from the particle number fluctuations and vice versa. Fig. 2.3b depicts
the connected density-density correlations

𝐶𝑑(𝑡) = ⟨𝑛𝑖(𝑡)𝑛𝑗(𝑡)⟩ − ⟨𝑛𝑖(𝑡)⟩⟨𝑛𝑗(𝑡)⟩, (2.47)

for distance 𝑑 = |𝑖− 𝑗| = 2 as a function of time. Here, 𝑛𝑖(𝑡) is the occupation of site 𝑖. The solid line is a
fit to the simulation result using the function 𝐶2(𝑡) = 𝛼 𝑥−𝛿 + 𝛾. It yields 𝛿 = 0.4972(95) and, therefore,
reveals a correlation decay consistent with 𝑡−1∕2 and the hydrodynamic tail paradigm.

Extracting the diffusion constant
Fig. 2.3c shows the time-evolution of connected density-density correlations 𝐶𝑑 for distances up to
𝑑 = 55. The plot reveals a cone with a square-root envelope, suggesting fast equilibration spreading at
short times, followed by slower spreading at later times. This is in agreement with our expectation that,
due to chaos in the SSEP, the correlation spreading is diffusive, as discussed in Sec. 2.4. The correlations
have negative sign (for 0 < 𝑑 ≲ 2𝜎(𝑡)), such that finding an atom on a site implies a reduced probability
for finding a second particle at any other distance from that site within the cone. By fitting the cone
using Eq. 2.40 we can obtain a value for the diffusion constant. The fit yields 𝐷 = 0.722(8), consistent
with the value 𝐷 = 0.724 obtained from Bethe ansatz calculations [213].

As suggested by Eq. 2.45, we can extract the diffusion constant also from the early time evolution of
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Figure 2.3 | Fluctuating hydrodynamics in the symmetric simple exclusion process. a, While the local mean density

on some particular site equilibrates quickly (blue trace), the variance of the total number of particles in a subsystem

of length L = 6 continues to grow on much longer timescales (red trace). b, Density-density correlations at distance

d = 2 as a function of evolution time. The dashed line is fit to the simulated data, yielding a polynomial decay

coefficient of approximately 0.5, indicating a hydrodynamic tail. c, The density-density correlations as a function of

time and distance d = |i− j| form a diffusive cone with a square-root envelope. The dashed line is the 2σ-envelope of

the Gaussian fit (Eq. 2.40) with σ(t) =
√

4Dt. d, Time-evolution of the particle number variance in a L = 70 subsystem.

The dashed line is a fit of short-time regime (t < 100) using Eq. 2.45.

the particle number variance in a large subsystem. Fig. 2.3d depicts Var𝐿=70(𝑡) for 𝑡 < 100, revealing
a square-root fluctuation growth. Fitting the trace using Eq. 2.45 yields 𝐷 = 0.711(2), in very good
agreement with the value obtained from the density-density correlations.

The diffusion constant (a linear-response transport coefficient) is the only information we need in
order to fully describe our system macroscopically using FHD, even in out-of-equilibrium situations.
No further knowledge about the details of the SSEP is required as all the microscopic laws are absorbed
by the diffusion constant 𝐷 and the noise term 𝜉 (cf. Eq. 2.29). As discussed in Sec. 2.1, the diffusion
constant is generally density-dependent. However, due to the small-spaced density variations in the
initial state, the mean density quickly equilibrates to 1∕2 and all fluctuation dynamics unfold on a
homogeneous density background.

In this Section, we have invoked the SSEP to illustrate the concepts behind FHD and the capabilities
it provides for describing and analyzing chaotic many-body systems. In Chapter 5 we will apply these
concepts to a real quantummany-body system and investigate whether the FHD description holds even
though the microscopic physics are fundamentally different (cf. Sec. 1.7).



CHAPTER 3

Experimental setup

Our experimental apparatus is a novel quantum gas microscope for neutral (bosonic) 133Cs atoms. In
this Chapter, we show the characteristics of this element and present the experimental setup. We discuss
the tools recently added for studying quantum thermalization in large systems, including a high-NA
objective, optical superlattices and a digital micromirror device (DMD).

3.1 Analog quantum simulation using 133Cs
All elements used in utracold atom experiments come with an individual set of states, scattering
characteristics and magnetic and optical properties. The question which element is the best choice
can only be answered in light of the scientific goals that a particular experiment aims to achieve. Our
quantum gas microscope experiment in Munich utilizes bosonic 133Cs, the only stable isotope of cesium.
Cesium is an Alkali metal with a single electron in the outer shell, weighs 133 atomic units and its
nucleus counts 55 protons. Its long-lived hyperfine ground states are used to define the second in the
International System of Units (SI) [214]. It features a large magnetic moment which allows to introduce
large Zeeman shifts with relatively small magnetic fields [215].

Choosing 133Cs is motivated by our goal to study the physics of strongly-interacting topological
quantum many body systems. When it comes to topology, it is the competition between strong interac-
tions and the filling of topologically non-trivial bandstructures which gives rise to new exotic phases
of matter, including fractional Chern insulators (FCIs) [216], topological Kondo insulators [217] and
bosonic HOSPT phases [218]. Cesium is believed to be an excellent candidate for quantum simulating
these phases: It stands out as the only stable element which combines two important characteristics
that are expected to benefit the realization of artificial strongly-interacting topological matter:

• The ability to control the scattering length bymeans of an externalmagnetic field, taking advantage
of a broad Feshbach resonance at low field. In an optical lattice, this allows to tune the on-site
interaction strength 𝑈 in the Bose-Hubbard model [219].

• The possibility to engineer robust state-dependent lattices that are less prone to heating due to
the large hyper-fine splitting in the energetic structure of 133Cs [220]. These state-dependent
lattices are expected to allow for engineering robust artificial gauge fields which set the stage for
topologically non-trivial quantum Hall physics. [221, 222]

The relatively large mass of 133Cs compared to other popular elements such as lithium or rubidium
comes with both advantages and disadvantages. In the following, we will discuss these properties and
their implications for quantum simulation experiments in more detail.

33
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Feshbach resonance
Feshbach resonances provide a means to tune the interactions between ultracold atoms. In general,
the interaction strength of two cesium atoms depends on the background scattering length 𝑎𝑏𝑔, which
is set by the s-wave molecular potential depth, a property of the energetic structure of two scattering
atoms. In presence of an external magnetic field, the energetic structure is altered due to Zeeman shifts.
Whenever, as a consequence of that, the energy of the colliding particles (open channel) gets close to
the energy of a bound molecular state (closed channel), the scattering length diverges as described
by 𝑎(𝐵) = 𝑎𝑏𝑔(1 − ∆∕(𝐵 − 𝐵0)), where 𝐵 denotes the magnetic field strength. This phenomenon is
called a Feshbach resonance at 𝐵0 of width ∆.

Fig. 3.1a shows the scattering length 𝑎(𝐵) as a function of the magnetic field strength for the absolute
ground state |𝐹 = 3, 𝑚𝐹 = 3⟩ of 133Cs as well as for |𝐹 = 3, 𝑚𝐹 = 2⟩ and mixed pairs thereof [223, 224].
These states are important candidates for realizing two-component systems with tunable interspecies
interactions which, for instance, allow to implement the Heisenberg XXZ model [225]. The behavior
of the scattering length in the low-field regime (between 0G and 100G) is dominated by a very broad
Feshbach resonance at −11.7G [226] with a zero-crossing of the scattering length at 17.12G [227].
At this field the atoms become non-interacting. Additional (narrow) resonances are located at, for
instance, 19.84G and 47.97G [228]. While, in principle, the Feshbach resonance allows us to tune the
scattering length within a large range exceeding [−1000 𝑎0, 1000 𝑎0], care must be taken as three-body
collisions can occur and, as a consequence, the lifetime of the system is diminished. Inelastic two-body
processes are forbidden in |𝐹 = 3, 𝑚𝐹 = 3⟩. In contrast, the three-body loss rate scales with 𝑎4 and
is affected by so-called Efimov resonances [229], leading to an overall three-body-loss minimum at
around 21G [230]. For instance, tuning the field close to this minimum is important for producing
a 133Cs Bose-Einstein condensate [82].

Besides harnessing the |𝐹,𝑚𝐹⟩ = |3, 3⟩ and |3, 2⟩ states as spin states for two-component systems,
other more common choices are |3, 3⟩ and |4, 3⟩ [231, 232] or |3, 3⟩ and |4, 4⟩ [233]. Here, however, the
tunability of interactions is more restricted, as the scattering lengths for |4, 4⟩↔ |4, 4⟩, |4, 3⟩↔ |4, 3⟩
and |3, 3⟩ ↔ |4, 4⟩ are roughly constant with values 2860 𝑎0, ≈ 1300 𝑎0 (weak dependence on the
magnetic field below 40G) [223] and, 2500 𝑎0 [234] respectively.

Energetic structure and large hyperfine splitting
The most important transitions in the energetic structure of 133Cs are depicted in the inset of Fig. 3.1b.
TheD1 line connects the ground state 6𝑠1∕2with the 6𝑝1∕2 state at 𝜆D1 = 894nm and theD2 line connects
the ground state with the 6𝑝3∕2 state at 𝜆D2 = 852nm [215]. The only transitions featuring a shorter
visible wavelength are 6𝑠1∕2 ↔ 7𝑝1∕2 and 6𝑠1∕2 ↔ 7𝑝3∕2 at 459nm and 456nm (blue) , respectively
[235]. The most common transition used for imaging is the (closed) D2 line at 𝜆 = 852nm. In principle,
using the (open) blue transitions would mean a better resolution in diffraction-limited imaging setups.
However, efforts in this direction have so far been unsuccessful, probably due to the presence of multiple
decay paths via intermediate states and the enhanced heating resulting from that [236].

One of the main features of 133Cs is the large hyperfine-splitting of 42nm, particularly in comparison
with lighter Alkali atoms such as lithium, sodium and rubidium [237–239]. This characteristic is useful
for engineering state-dependent lattices, which emerge, e.g., when the lattice light is circularly polarized
and if its wavelength matches the so-called antimagic wavelength 𝜆AM located between the D1 line
and the D2 line. Here, atoms in two different𝑚𝐹-states (denoted |↑⟩ and |↓⟩, respectively) experience
the lattice potential with equal amplitude but opposite sign (see Fig. 3.1b). The exact value of 𝜆𝐴𝑀
depends on the chirality of the light and the magnetic moment of the state. Importantly, due to the
large hyper-fine splitting in 133Cs, the off-resonant scattering rate Γsc ∼ ∆−1 remains low. Thus, heating
is suppressed, increasing the accessible timescales of quantum simulation experiments.
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Figure 3.1 | 133
Cs for quantum simulation experiments. a, A broad low-field Feshbach resonance allows to

widely tune the scattering rate using a magnetic field, here shown for pairs of atoms in the absolute ground state

|F = 3,mF = 3⟩, in |F = 3,mF = 2⟩ and for mixed pairs of these two states (data taken from Refs. [223, 224]). b,

Illustration of a state-dependent lattice potential realized at the anti-magic wavelength λAM (located between the D1

and the D2 line). The inset depicts an energy level diagram of
133

Cs, highlighting the most important transitions in

the visible and near-infrared range as well as the anti-magic wavelength.

Aligned with the original goal of our experiment, state-dependent lattices are expected to facilitate
the realization of artificial gauge fields in a way that is more robust to heating [220] compared to
previously implemented schemes [65, 240]. The main ingredient for realizing artificial gauge fields is
restoring the tunnelling between adjacent lattice sites of opposite spin (suppressed by the necessity to
flip the spin) using a two-photon Raman process (Raman assisted tunnelling). The detuning of the
two Raman beams must match the energy offset between the |↑⟩-lattice and the |↓⟩-lattice which is
given by the Zeeman shift. This shift is on the order of MHz and, thus, very different from the other
energy scales of the lattice potential in the kHz regime. I is the decoupling of these energy scales that
mitigates parametric heating in presence of the artificial gauge field and is expected to pose a significant
advantage compared to earlier schemes [65, 240].

Large mass

The relatively large mass of 133Cs compared to other Alkali atoms like potassium or rubidium has
ambiguous consequences: On the one hand, it allows to achieve larger trap depths with less laser power.
This can prove advantageous, e.g., during fluorescence imaging when the atoms need to be pinned in
place by a deep three-dimensional lattice potential. It facilitates the collection of more fluorescence
photons in a shorter time and makes it easier to achieve a high signal-to-noise ratio. On the other
hand, a large mass means smaller tunnel coupling between adjacent sites in an optical lattice. As a
consequence, smaller lattice spacings are required to keep the timescale of the quantum dynamics in an
experimentally feasible regime. This can pose challenges to single-site resolved imaging, particularly
in case of 133Cs where the standard imaging transition (D2 line) has a comparably long wavelength
of 852nm (see Sec. 3.4 for details).
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3.2 Setup overview
The construction of this experiment started in 2017. For a detailed documentation of the overall vacuum
system, the basic laser cooling techniques, transport schemes and BEC production steps, see Refs. [82,
118]. The timing software and hardware in use for controlling the machine as well as magnetic field
stabilization methods are described in Ref. [224]. The following Sections will focus on the science
chamber and all new ingredients which have been added to prepare large high-quality quantum many-
body systems and to perform the thermalization experiments presented in Chapter 5.

Science chamber and objective – The science chamber is a glass cell of a dodecagonal shape
(manufactured by Precision Glassblowing with nanostructure coating by TelAztec). It has eleven small
side windowswith a diameter of 12mm and two larger windowswith a diameter of 30mm, one at the top
and one at the bottom. Our high-resolution objective (manufactured by Special Optics) is characterized
by a numerical aperture (NA) of 0.8 and a working distance of 25mm. It is directly positioned beneath
the glass cell and optical access to the atoms is provided by the bottom window, as depicted in Fig. 3.2a.
We use the objective both to collect fluorescence photons produced during imaging at the end of the
sequence and to project green light (𝜆DMD) onto the atoms to create programmable potentials with a
DMD. The optical setups for imaging and programmable potentials are discussed in Sec. 3.4.

Dipole traps – There are three dipole traps providing harmonic confinement in all directions. The
𝑥′- and 𝑦′-dipole traps have waist radii measuring 100 µm× 100 µm and 370 µm× 110 µm, respectively.
They are arranged orthogonally in the horizontal plane, creating a crossed dipole trap at the center of
the glass chamber, where the atoms are situated. The 𝑧-dipole trap enters the glass cell under a steep
angle of 60◦ through the top window and closely passes by the objective lens, as shown in Fig. 3.2a.
Its waist radius (110 µm × 53 µm) is chosen such that the confinement it provides, when projected
into the horizontal plane, is round.

Lattices – In the 𝑧-direction we have shallow-angle vertical lattice created by two 1064nm beams
which enter the glass cell from the side in 𝑦′-direction and interfere under a small half-angle of 4◦.
The resulting vertical planes are spaced by 8 µm, only one of which is loaded for creating an effectively
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two-dimensional quantum system. In the horizontal direction we use two perpendicular retro-reflected
superlattices, created by overlapped retro-reflected beams of wavelengths 𝜆short = 767nm (short lat-
tice)and 𝜆long = 1534nm (long lattice). For more details about the superlattices, see Sec. 3.3.

Molasses for fluorescence imaging – The imaging fluorescence photons are produced as a side
product ofmolasses cooling on theD2-line (𝜆D2 = 852nm). Themolasses cooling is realized by two retro-
reflected near-resonant cooler beams (waist diameter 2mm) as well as a repumper beam. The first cooler
beam enters the glass cell from the same side as the 𝑧 dipole trap but propagates in the horizontal plane.
The second cooler beam enters the glass cell out-of-plane under an angle of 60◦, similar to the 𝑧 dipole
trap but from a direction perpendicular to the first cooler beam. The two cooler beams together create a
polarization gradient lattice in which Sisyphus cooling takes place. In order to ensure similar scattering
rates on all sites in the two-dimensional horizontal lattice, it is crucial to modulate the retro-mirrors
and spatially wash out the polarization gradient lattice [241]. More details can be found in Sec. 3.4.

Coils for gradient and offset fields – The glass cell is surrounded by two pairs of 𝑥 coils, two pairs
of 𝑦 coils and one pair of 𝑧 coils, each of which can be operated in either Helmholtz or anti-Helmholtz-
configuration for generating offset and gradient fields at the position of the atoms. In addition, the
experimental table is located inside a coil cage that is used for compensating environmental magnetic
field fluctuations. The coil setup and the active magnetic field stabilization are not discussed in this
thesis but more information can be found in Ref. [224].

Microwave – We have a microwave horn pointing at the glass cell for driving transitions between
the 𝐹 = 3 and 𝐹 = 4 ground state manifolds at ≈ 9.192GHz. The electronics built for generating and
controlling the microwave radiation are described in Ref. [224].

3.3 Optical superlattices
Superlattices realize a periodic potential with two frequency components (called long and short) that
differ by a factor of two, as depicted in the inset of Fig. 3.3. This leads to a periodic double well
structure featuring two tunnel couplings 𝐽dw and 𝐽long that occur in alternation. Further, there can
be an energy offset ∆ between the left and the right side of each double well. The three parameters
𝐽dw , 𝐽long, ∆ depend on the depths of the short and the long lattices as well as the relative phase 𝜙
between the two lattice potentials.

Our superlattice is created by overlapping a 𝜆short = 767nm lattice beam with a 𝜆long = 1534nm
lattice beam and retro-reflecting both. The choice of these wavelengths is, on the one hand, motivated by
the good availability of lasers. On the other hand, choosing a small wavelength of 𝜆short = 767nmmakes
sense keeping in mind that 133Cs is a relatively heavy element and a lower tunnelling rate. However,
in order be able to observe system dynamics on long timescales, large tunnel couplings are required
to lower the system’s susceptibility to heating and disorder. Thus, small lattice spacings are generally
preferable as long as they can still be resolved by the imaging setup.

The superlattice setup in vicinity of the science chamber is shown in Fig. 3.3. In each of the two
perpendicular lattice axes in 𝑥- and 𝑦-direction, the light for the long and the short lattice is supplied by
separate fibers from the preparation table (see Sec. 3.4) and is intensity-stabilized independently. Shortly
before entering the science chamber the two beams are overlapped using a dichroic mirror. Lenses
before and after the glass cell (in front of the common retro-mirror) ensure that the vertical beam waist
radius of both the incoming beams and the retro-reflected beams at the position of the atoms is 140µm.

Initial alignment of the short lattice beams is achieved by first coarse-aligning the beam through
the science chamber by eye. Subsequently, we block the retro-mirror and load the atoms into the
compressed 𝑦-dipole trap after BEC production and subject them to a brief pulse. Scanning the pointing
of the lattice beam then allows to observe how the cloud is pushed away from the dipole trap center.
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Figure 3.3 | Optics setup for realizing superlattice potentials. Each of the two perpendicular superlattices is

generated by overlapping two beams of wavelengths differing by a factor of 2 (λshort = 767 nm and λlong = 1534 nm).

The common beam bath starts at a dichroic before science chamber and is retro-reflected by a multi-wavelength

mirror on the opposite site. The setup includes lenses (blue), waveplates (green), mirrors and polarizing beam

splitters (grey), dichroic mirrors (D), beam samplers (BS), optical isolators (OI), photo diodes for monitoring (MPD)

and stabilizing the intensity of the lattice light (IPD). The focal lengths of all lenses are given in millimeters. Glass

cylinders (GC) in the long lattice beam paths allow to tune the angle between the short and the long lattice at the

position of the atoms in the science chamber. Inset: Resulting superlattice potential characterized by a double

well structure with two tunnelling strengths Jdw, Jlong. The tilt of the double well ∆ can be adjusted by tuning the

superlattice phase φ.

Using this signal, we can center the beam on the atomic cloud. Next, we unblock the retro and try to
observe a Bragg diffraction signal which is used to optimize the alignment of the retro-mirror. After
that, we perform a parametric heating scan to confirm that the alignment is good (cf. Sec. 4.8). Once
the short lattices are aligned, we overlap the long lattice beams with the short lattice beams at two
points after the dichroic. We usually place a temporary mirror somewhere between the dichroic and the
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last lens before the glass cell and reflect both lattice beams out. This way we can let them propagate
for several meters and pick two points very far away from each other for the overlapping procedure.
In order to overlap the beams as precisely as possible, we use aWincam beam profiling camera that
is sensitive to both 767nm and 1534nm light. After multiple iterations of optimizing the overlap at
the first and the second point in alternation, the long lattice should be aligned. We confirm that with
a parametric heating scan (cf. Sec 4.8).

In order to achieve an excellent superlattice potential quality it is crucial to ensure good overlapping
along the entire common beam bath after the dichroic. Initial alignment can lead to a situation where
the beams are well overlapped at the position of the atoms but cross there under a small non-zero angle.
This leads to a tilt gradient of the double wells perpendicular to the direction of the lattice [242]. In
order to correct for that, a rotatable glass cylinder is placed before the dichroic in the beam path of the
long lattice. By rotating this glass cylinder in the horizontal plane we can adjust the angle under which
the long and short lattice cross at the position of the atom and tune it to zero (see Sec. 4.9 for details).

Note that the short lattice is used for both physics and pinning during fluorescence imaging, while
the long lattice is used for physics only. The maximum power delivered to the atoms is about 3W
in the short lattice and 300mW in the long lattice, leading to maximum depths of 400µK and 4µK,
respectively. Thus, only the short lattice is deep enough to keep the atoms in place during thefluorescence
imaging process (cf. Sec. 3.4).

Stabilizing the superlattice phase
The superlattice phase is geometrically fixed by the position of the retro-mirror. Thus, the most feasible
way of controlling the superlattice phase is changing the frequency of either the short or the long lattice
light. We choose to adjust the long lattice frequency, as this leaves the position of the sites in the short
lattice (which acts as the pinning lattice during fluorescence imaging) untouched and does not further
complicate reconstruction efforts (cf. Sec. 4.3). Let ∆𝜈 = 𝜈long − 0.5𝜈short be the difference between
the frequency of the long lattice and half the frequency of the short lattice. Then, the superlattice
phase at distance 𝐿 from the retro-mirror reads:

𝜙 = 2𝜋𝐿
𝑐 ∆𝜈 (3.1)

The further the retro-mirror is placed away from the atoms, the more sensitive the superlattice phase
is to the frequency of the lattice light. In our case 𝐿𝑥 = 200nm and 𝐿𝑦 = 300nm in the two lattice
axes, such that a superlattice phase rotation of 𝜋 corresponds to a frequency change of approximately
750MHz and 500MHz in 𝜈long, respectively.

The short lattice light is generated by two 8W TiSa laser (Sirah Matisse + Spectra Physics Millenia
eV), one for each axis. The long lattice light (𝜆short = 1534nm) comes from a NKT Boostik + Adjustik
system in one axis and from a Nufern Amplifier + Rio Seed combination in the other axis. The setup for
preparing the lattice light is shown in Fig. 3.4. In order to control and stabilize the superlattice phase
we employ a frequency-offset-lock: A portion of the short lattice light (𝜆short = 767nm) is combined
with a small amount of frequency-doubled long lattice light (𝜆short = 1534nm). The resulting beat note
is detected by an ultrafast photodiode (Thorlabs DX12CF), amplified twice (Kuhne KU0180A) and
delivered to a servo (Vescent D2-135). The servo compares the beat note frequency to a reference signal
from a DDS board and computes a feedback voltage. The feedback controls the piezo of the laser
seeding the 1534nm-amplifier, modulating the frequency of the long lattice light. The superlattice
phase is, therefore, stabilized to the reference and can be controlled by the DDS board. The DDS board
is programmed to output a frequency that is proportional to an analog voltage signal with a conversion
factor of 1.6GHz∕V after a frequency multiplier. The inset in Fig. 3.4 shows a typical beat note spectrum
when the superlattice phase is stabilized by the lock. From the FWHM of the beat note (170(3) kHz)
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fraction of the short lattice light with a small amount of frequency-doubled long lattice light. The frequency doubling

is realized using second harmonic generation (SHG) in a nonlinear crystal. The beat note is amplified twice and

supplied to a PID controller which compares the beat note to a reference signal and computes a response voltage. The

latter modulates the frequency of the long lattice laser which alters the phase of the superlattice. Optical elements are

labelled as in Fig. 3.3. Inset: Typical beat note spectrum (black) fitted using a Gaussian (red). The FWHM is 170(3) kHz,

corresponding to a phase noise amplitude of approximately 1mrad.

and Eq. 3.1 we can conclude that the superlattice phase fluctuations are on the order of 1mrad. That is
about one order of magnitude smaller compared to the situation when the lock is not engaged.

The maximum rate ∆𝜙∕∆𝑡 at which the superlattice phase adapts in response to controlled ramps of
the reference frequency is about 𝜋∕500ms, limited by the PID. We can accelerate that to about 𝜋∕6ms
taking advantage of the feed forward input of the servo lock, which allows to directly modulate the
piezo. If the voltage applied to the feed forward input is chosen such that the superlattice phase is
already very close to its target value (the lock point), the lock stabilizes within a few milliseconds and
does not have to slowly adjust the servo output until the lock point is reached.

3.4 Fluorescence imaging and potential shaping
Fluorescence imaging in optical lattices usually requires to pin the atoms in place while producing
fluorescence photons. Pinning is achieved by ramping up the depths of the optical lattices in all spatial
directions to the highest possible values. This ensures that when the atoms heat up during the imaging
process, they do not hop to other lattice sites, as this would compromise the image. Fluorescence
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photons are usually produced as a side product of a laser cooling process (either Raman sideband
cooling or molasses cooling) which aims to counteract the heating during imaging [58].
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Figure 3.5 | Setups for fluorescence imaging and programmable potentials.. a, Molasses cooling setup. The

fluorescence photons are generated as a side product of molasses cooling on the D2 line, turned on while the atoms

are pinned in the short optical lattice. Two roughly perpendicular retro-reflected molasses beams enter the science

chamber through the horizontal and vertical viewports. The light originates from the D2 cooling laser in the basic laser

setup (see [82] for details). All optical elements are labelled as in Fig. 3.3. b The fluorescence photons are collected by

the high-NA objective located underneath the science chamber and focused on a CMOS camera. The objective is also

used to project green 525 nm light controlled by a DMD into the atom plane for realizing programmable potentials.

Imaging setup
The imaging setup is located underneath the science chamber, as shown in Fig. 3.5b. Its purpose is to
focus the fluorescence photons collected by the high-resolution objective onto a CMOS camera (Teledyne
Photometrics Kinetix). This is achieved by a 𝑓 = 1000mm tube lens (Thorlabs ACT508-1000-B, 2 in
diameter) which, together with the working distance of the objective (25mm), leads to a magnification
of about 40. This means that the actual area of a lattice site (383.5nm × 383.5nm) in the atom plane
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corresponds to an area of (15.3 µm× 15.3 µm) on the camera chip. The camera has a pixel size of 6.5µm,
i.e. each lattice site is mapped onto 5.5 camera pixels. The alignment procedure for the objective is
described in detail in [82, 243]. It makes use of a reference beam that is aligned with the atoms and
perpendicular to the vertical windows of the science chamber.

DMD
Besides for collecting fluorescence photons coming from the atoms, we also use the objective for pro-
jecting green light (𝜆DMD = 525nm) into the atom plane. This light is overlapped with the fluorescence
imaging path via a custom dichroic (manufactured by Optoman) in the Fourier plane between the
objective and the tube lens. One of the mirrors in this path is a DMD (model Texas Instruments DLP6500,
interfaced by bbs Bild- und Lichtsysteme GmbH). The mask displayed on the chip is demagnified by a
factor of 160 and imaged into the atom plane. This allows us to shape the green beam and create custom
potentials for the atoms. In order to minimize wavefront errors due to deformation of the optics, all
mirrors have been glued to their mounts. The last lens in the DMD path before the dichroic is mounted
on a picomotor-controlled stage for convenient focusing. Initial alignment of the DMD is achieved by
overlapping the green light in the DMD path with the reference beam (set up for aligning the objective,
see Ref. [82]) along the entire distance between the dichroic mirror and the DMD. Assuming that
the distance between the optics in DMD setup is correct according to the specified focal lengths, this
pre-alignment is sufficient for observing a push-away movement of the atoms when projecting a large
illuminated box with ca. 200mW of green light. For focusing we ask the DMD to project a distinct shape
onto the atoms, e.g. a box of reasonable size. We choose a large dense atom cloud, such as the BEC after
single plane loading, so that we can observe the interaction between the atoms and the DMD potential
over a large area. Next, we adjust the position of the last lens in the DMD setup before the dichroic to
move the focus into the atom plane. The closer we are to the focus, the sharper the features of the mask
in the atom density become (e.g. the edges of the box). For fine-alignment of the DMD, see Sec. 4.6.

For smooth custom potentials in the atom plane it is important to reduce the spatial coherence of
the green light as much as possible in order to prevent potential corrugations due to speckles [244].
A common way to achieve that is to use superluminescent laser diodess (SLDs) a light source which
feature a broad spectral width. However, these diodes have not been available for wavelengths< 670nm.
Shorter wavelengths are preferred for this application as they provide a better resolution and maximize
the sharpness of the potential’s features in the atom plane. Thus, instead of an SLD, we use a multi-
mode laser outputting 5W of 𝜆 = 525nm light (WavespectrumWSLX- 525-005-400M-H). This laser not
only has a broad spectrum (15nm width) but also provides a large amount of power, eliminating the
need for further amplification stages. The temporal incoherence of this light is converted into spatial
incoherence by means of a square core fiber (150µm core size) [245] which guides the light from the
laser to the experiment table depicted in Fig. 3.5. Using a square core fiber (as compared to using no
fiber) improves the speckle contrast from 15 % to 7 %. For further reduction of the speckle contrast the
setup includes a two-dimensional acusto-optic deflector (AOD) after which only the (1, 1)-order passes
through a beam block and propagates to the DMD. It allows us to wiggle the pointing of the beam at
very large frequencies up to 1MHz, much faster than any relevant atomic energy scales. This washes
out any remaining speckles and reduces the speckle contrast to < 1 %. For more details about the DMD
including calibration and alignment techniques, see Sec. 4.6 or Ref. [246].

Molasses cooling
The atoms are imaged by performing molasses cooling with circularly polarized light on the D2 line at
𝜆D2 = 852nm, similar to [241], and collecting the fluorescence photons using the high-NA objective
which is positioned underneath the class cell. The molasses light is generated by the basic laser setup
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discussed in Ref. [82]. The cooler beams are red detuned by 78MHzwith respect to the (𝐹 = 4↔ 𝐹′ = 5)-
transition and the repumper beam is resonant with the (𝐹 = 3 ↔ 𝐹′ = 4)-transition. As shown in
Fig. 4.3a, the cooler light is split up in two paths for the two retro-reflected cooler beams that are
approximately perpendicular to each other. One lies in the horizontal plane and enters the glass cell
under an angle of 30◦ with respect to the 𝑥′ transport axis (cf. Sec. 3.2). The other is 60◦ out-of-plane
and passes through the top and bottom windows of the glass cell. There used to be a third molasses
beam propagating like the second one but entering through the top window from the opposite side.
However, it was removed after we found that the fluorescence signal is more homogeneous without
it. The repumper beam (not shown) co-propagates with the 𝑥′-dipole trap (cf. Sec. 3.2).

The polarization of the cooler light is controlled by the 𝜆∕4-plates before and after the glass cell.
In theory, the polarization of the incoming beam and the retro-beam should be right-handed and
left-handed circular, respectively. Further, the cooling scheme requires zero magnetic field, such that all
environmental fields need to be compensated within a range of approximately 200mG. The interference
of the two cooler beams creates a polarization gradient lattice which drives a Sisyphus cooling process.
However, since this lattice is not commensurate with the pinning lattice, the scattering rate is spatially
modulated, leading to visible fringes in the fluorescence image [241] (see Sec. 4.4). In order to wash
these fringes out, the retro-mirrors of the two cooler beams are mounted on piezos with a travel range
of about 3µm. Their position is modulated at prime number frequencies around 100Hz, typically 97Hz
and 149Hz which is fast compared to the typical exposure time of 300ms. In addition to the piezo
modulation, the frequency of the cooler beams is also modulated, typically with an amplitude of 14% of
the detuning and with a frequency of 50Hz. For more details and optimization procedures, see Sec. 4.4.
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CHAPTER 4

Calibration, preparation and measurement
techniques

This Chapter summarizes all preparatory steps for the thermalization measurements presented in
Chapter 5. It includes calibration and optimization procedures concerning the superlattices, the pro-
grammable DMD potential and the imaging. The corresponding setups and basic alignment procedures
are introduced in Chapter 3. Here, we focus on fine-alignment techniques and characterizationmethods
and, further, discuss the initial state preparation.

4.1 Initial state preparation
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Figure 4.1 | Experimental sequence for preparing initial product states. Starting from a BEC in a dipole trap

(not discussed here), we load the atoms into a single plane of the shallow vertical lattice. Next, we perform radial

evaporation using a gradient field and load a box potential with wall height U∕2, generated by a DMD. Finally, the

Mott insulator is prepared by adiabatically ramping up the horizontal lattices.

Starting point for the quantum simulation experiments in this work is a two-dimensional Mott
insulator product state in a box potential. This Section is about the experimental sequence that takes
us from the BEC to this initial state (see Fig. 4.1). The steps explained below can be grouped in three
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stages: (I-III) loading the BEC into a single plane of the vertical lattice, (IV-VIII) performing evaporation
cooling to obtain a superfluid in a box, and (IX-XI) converting the superfluid into a high-quality Mott
insulator. Preceding parts of the overall sequence responsible for the BEC production are not discussed
here, see [82, 118, 224] for details.

The BEC is confined in the crossed dipole trap (created by two 1064nm beams in 𝑥′ and 𝑦′ direction,
see Fig. 3.2). The first step towards preparing a Mott insulator is to load the BEC into a single plane
of the vertical lattice and create a quasi-2d system. We start by compressing the atoms vertically by
ramping up the 𝑦′ dipole trap power (I), followed by a ramp-up of the vertical lattice (II), see Fig. 4.1.
The 𝑦′-trap compression is necessary in order to ensure that the vertical size of the atom cloud becomes
sufficiently small such that only one plane of the vertical lattice is loaded (efficiency > 95%). Next, the
𝑧 dipole trap is turned on while the crossed dipole trap is turned off, switching to roughly isotropic
harmonic confinement in the horizontal plane. This is important in order to perform efficient radial
evaporation cooling using a magnetic gradient in the next step.

In preparation for applying a gradient force in the 𝑥-𝑦-plane, we rotate the quantization axis from
vertical to horizontal (IV) and further ramp up the z dipole trap and the vertical lattice (V). Just like
during BEC production, the magnetic field strength is kept constant at 22.6G which is the three-body-
loss minimum of 133Cs (cf. Sec. 3.1). We found that the best cooling results are achieved by first ramping
up the gradient field to a value that just falls short of pulling atoms out of the trap (VI), followed by
a long exponentially decreasing ramp of the 𝑧 dipole trap power (VII) which allows only the hottest
atoms to escape. The evaporation process is ended by ramping the gradient back down to zero and
reducing the 𝑧 dipole trap depth to a lower value (VIII). We now have a cold superfluid in the 𝑧 dipole
trap. Provided that most atoms have been loaded into a single plane in step (II), any small fraction
of atoms in other planes will be cooled less efficiently and escape the trap during evaporation. This
is due to a reduced thermalization rate in low density clouds.

As a last step, we turn the two-dimensional superfluid into a Mott insulator state: We first replace
the horizontal harmonic confinement of the z dipole trap with a box potential provided by the DMD
(IX). Typically, the region inside the box is 50 × 50 sites large and fully surrounded by a wall of 10
sites thickness. The wall height is 𝑈∕2 at the inner edge of the box and decreases outwards with a
typical slope of 𝑈∕24 µm. Here, 𝑈 is the on-site interaction strength in the 2d lattice potential that is
activated in the next step. The lattice depths are ramped up in two segments, such that 𝑈∕𝐽 = 16 after
the first ramp (X) and 𝑈∕𝐽 > 50 after the second ramp (IX), where 𝐽 is the nearest-neighbor tunnelling
strength in the lattice. This ensures that the SF-to-MI phase transition is crossed slowly, avoiding heating.
Since the maximum wall height of the box potential was chosen to match 𝑈∕2, the interactions force
any excessive atoms to spill out of the box, making the Mott insulator more robust to atom number
fluctuations (cf Sec. 4.5) [15]. Simultaneously with the first ramp (IX), we also increase the scattering
length from 280𝑎0 to 580𝑎0 by ramping up the offset field to 33.1G. In doing so, we increase 𝑈 and
become less sensitive to temperature and residual harmonic confinement.

The result of this sequence is a Mott insulator in the 2d short horizontal square lattice as shown
in Fig. 4.2a. The total cycle time of the experiment up to this point is ca. 18 s. We typically achieve a
size of up to 60 × 60 sites and an average filling of 98%. Note that instead of ramping up the two short
lattices, we can also produce Mott insulating states in either the long lattices only (Fig. 4.2c, filling up
to ∼ 85%) or in a rectangular lattice potential with one axis being short and the other one being long
(Fig. 4.2b, filling up to ∼ 90%). The latter configuration means that, from the perspective of the short
lattice, only every second row is occupied, corresponding to a charge density wave (CDW) with a period
of two sites. This state will play an important role in the thermalization measurements in Chapter 5.
Further, using the DMD in combination with stripe potentials that are projected into the atom plane
during Mott insulator preparation, we can prepare CDWs of larger period and in arbitrary directions.
For instance, Fig. 4.2b shows a 11001100-CDW aligned with the 𝑥 axis (filling up to ∼ 85%). Note that
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Figure 4.2 | Initial product states. a, Mott insulator in a short-short lattice configuration with a spacing of 383.5 nm
in both x and y direction. b, Mott insulator in a long-short lattice configuration, consisting of a tilted superlattice in

x direction and a simple lattice in y direction. We also refer to this state as a 101010 charge density wave (CDW). c,

Mott insulator in a long-long configuration with 767 nm spacing in both x an y direction. d A 11001100 charge density

wave (CDW) created using simple lattices with spacing 383.5 nm in x and y direction, combined with a stripy DMD

potential which prevents the occupation of every second pair of columns.

in lattices involving larger spacings than 𝜆short = 383.5nm, the on-site interactions are generally weaker.
This can lower the efficiency of the spilling process and the Mott insulator becomes more susceptible
to atom number fluctuations and temperature. Further, the target density in Mott insulators in long
lattices can be very different from the initial density distribution before loading the box, requiring more
mass transport and possibly causing more heating.

4.2 Fluorescence imaging characterization

Experimental sequence

In order to read out the final state of the quantum simulation experiment we quench the horizontal
short lattices to the highest possible powers, typically close to 3W in each lattice. Simultaneously, the
vertical lattice power is quenched to approximately 13W, such that the potential depth in all directions
reaches ≈ 400 µK. This pins the atoms in place and projects the many-body wave function into the
local Fock basis of each individual lattice site. About 10ms after pinning, we turn on compensation
fields in all spatial directions in order to ensure that the overall field strength of the atoms is zero within
typically 50mG, a condition required for molasses cooling. Due to the vicinity of an ion pump to the
glass cell, the compensation field strengths are typically on the order of 100mG. The cooling process
and the production of fluorescence photons is then initiated by turning on the cooler beam and the
repumper beam at the same time. A brief moment after that (typically a few milliseconds) we begin
exposing the camera chip to the fluorescence light, taking the actual image. The piezos shifting the
molasses retro-mirrors and washing out the polarization gradient lattice for better signal homogeneity
are always on. In addition, the detuning of the cooler beam is modulated (cf. Sec. 4.4). The optimal
cooler detuning typically lies between 70MHz and 80MHz with about 3mW of power in each beam.
The repumper power typically does not exceed 500µW. The exposure time is 300ms. Following the
exposure, the lattices and the molasses beams are turned off. The sequence is completed, the machine
is reset and a new run can be started.
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Point spread function (PSF)

In order to characterize the resolution of our imaging system, we take several hundred images of very
dilute clouds, such that the probability of finding two atoms close to each other is very low (see Fig. 4.3).
We cut quadratic crops with exactly one atom in the center (orange region in Fig. 4.3a). By averaging
over these crops, we obtain the mean signal of an individual atom which corresponds to the PSF of the
imaging system (see Fig. 4.3b). We then fit the radial profile of the PSF using an Airy disk profile and
obtain 𝑟 ≈ 850nm for the resolution of our imaging system, according to the Rayleigh criterion. This
is almost 30% larger than the diffraction limit 𝑟 = 1.22 𝜆D2∕(2NA) ≈ 650nm that we expect from our
high-resolution objective (NA=0.8) and our imaging wavelength of 𝜆D2 = 852nm. One possible reason
could be insufficient confinement in the vertical direction during imaging, leading to a significant part
of the atomic wave function getting imaged out-of-focus. We are planning to improve the resolution
in the near future, as mentioned in the Outlook.
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Figure 4.3 | Fluorescence imaging characterization. a, Fluorescence image of a dilute cloud of atoms. Each atom

appears as the PSF of the imaging system. We cut quadratic crops containing exactly one atom in the center (orange)

and crops containing no atoms (violet) for obtaining an averaged PSF and performing signal count statistics. b, Mean

fluorescence signal of a single atom averaged over ca. 2000 crops. The intensity has been normalized with respect

to the maximum signal at the symmetry point of the PSF. The white dots mark the lattice sites in the short lattice

with a spacing of 383.5 nm. c, Histogram of total fluorescence signal counts in empty background crops (violet) and

crops containing exactly one atom (orange). By fitting both peaks with a Gaussian and obtaining the mean and the

variance of the background counts and the atom counts, we can compute the signal-to-noise ratio (SNR) as defined

in Eq. 4.1. Negative counts occur since we first subtract the mean background signal from all fluorescence images. d,

Probability that an atom hops to a different site or is lost entirely, as a function of the fluorescence imaging exposure

time. Dashed lines are linear fits to the experimental data for extracting the hopping rate and the loss rate.
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Signal-to-noise ratio (SNR)

Dilute clouds as shown in Fig. 4.3a are also suitable for extracting the signal-to-noise ratio (SNR) in
our images. The SNR is defined as

SNR =
𝑐atom − 𝑐bg
𝜎atom + 𝜎bg

, (4.1)

where 𝑐atom and 𝜎atom are the mean and the variance of the fluorescence signal counts of a single
atom, respectively. Analogously, 𝑐bg and 𝜎bg denote the mean and the variance of the background
counts. Experimentally, the fluorescence signal of the atoms is influenced by the exposure time, the
molasses parameters (which affect the rate of scattered photons) as well as the NA and the optics in the
imaging setup (cf. Sec. 3.4). Due to residual fringes in the intensity of the molasses light, the strength
of the fluorescence signal will spatially vary, increasing 𝜎atom. Further, the noise characteristics of the
camera chip as well as stray light from the molasses beams can increase 𝑐bg and 𝜎bg.

In addition to cutting crops containing single atoms which we have used to characterize the PSF
(Fig. 4.3b), we also cut crops containing no atoms (violet region in Fig. 4.3a) to characterize the back-
ground. Fig. 3.4c shows the histogram of signal counts detected in both the background and the single
atom crops. Fitting the peaks using a Gaussian yields 𝑐atom, 𝜎atom, 𝑐bg and 𝜎bg and, using Eq. 4.1, allows
to determine the SNR. For an exposure time of 300mswe get a SNR of 5.2. As pointed out in Sec. 4.3, we
rely on a comparatively high SNR in order for the reconstruction algorithm to work with high fidelity.

Loss and hopping rate

During imaging, the atoms heat up and acquire an equilibrium temperature on the order of several
10µK, depending on the efficiency of the molasses cooling process. At the same time, the depth of our
pinning lattice is approximately 400µK. Thus, we expect a small but non-zero probability that an atom
performs thermal hopping during the exposure time, decreasing the integrity of the fluorescence image.
The rate of this process is described by the Arrhenius law Γh = Γaerfc (

√
𝑉latt∕𝑘𝐵𝑇), where Γ𝑎 is an

experimentally or theoretically obtained constant, 𝑉latt is the depth of the pinning lattice and 𝑇 is the
equilibrium temperature of the atoms during molasses cooling [247, 248]. In order to keep Γh low, it is
important to either cool efficiently to smaller𝑇 or to increase the depth of the pinning lattice and suppress
the hopping process. In case a very weak signal and a small SNR can be tolerated, another option would
be to reduce the exposure time to values much smaller than 1∕Γh. In addition to hopping processes,
atoms can also get lost entirely due to collision events with residual gas particles in the vacuum.

In order to measure the hopping and loss rates in our setup, we take four images of the same dilute
cloud (as shown in Fig. 4.3a) in quick succession and track the movement of the atoms from image to
image. Fig. 4.3d showswhat fraction of atoms in the first image hasmoved away from its original position
in the later images (but is still detected somewhere on the image) andwhat fraction of atoms has vanished
entirely, as a function of exposure time. Here, the first image (reference) corresponds to zero exposure
time. Fitting the slope of the linear probability growth yields a hopping rate of 𝛾hopp = 2.1(1.2) mHz
and a loss rate of 𝛾loss = 13(1)mHz, comparable to other state-of-the-art experiments [147]. This means
that during our typical exposure time of 300ms, about 0.5% of atoms either hop or get lost. Note that
atoms which undergo hopping over distances larger than the region of interest (ROI) or in out-of-plane
direction of the vertical lattice are also counted as loss events. This might explain why the measured
loss rate is more than seven times larger than the measured hopping rate.
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4.3 Machine-learning based reconstruction algorithm
As pointed out in Sec. 3.3, achieving large tunnel couplings with a heavy element like 133Cs requires
short-spaced optical lattices. The spacing of the short lattices (which also serve as pinning lattices
during imaging) is just 𝑎short = 𝜆short∕2 = 383.5nm. This is more than a factor of two smaller than the
resolution of our imaging system 𝑟 ≈ 850nm, as described by the ratio 𝛽 = 𝑟∕𝑎short ≈ 2.2, and puts us in
a challenging resolution regime: The ratio 𝛽 in other quantum gas experiments typically does not exceed
1.6 [241]. Existing reconstruction algorithms, such as threshold reconstruction or Richardson-Lucy
deconvolution, fail to provide us with a state-of-the-art imaging fidelity that is necessary for obtaining
high-quality data within a reasonable amount of time. Thus, we have developed a new reconstruction
method, opting for a machine-learning driven approach. In the following, we will briefly discuss the
main ideas of this novel algorithm. For more details, see Refs. [83, 249].

Idea and implementation
The algorithm is based on a convolutional neural network embedded in an autoencoder architecture, as
visualized in Fig. 4.4a. The input consists of a 16 × 16 sites snippet of an experimental fluorescence
image which has been rescaled to match the exact size of 256 × 256 pixels. The image is first processed
by the encoder part of the network consisting of three convolutional layers: Each layer down-samples
the image and reduces the number of pixels by a factor of 4 down to a size of just 16 × 16 pixels, exactly
as many pixels as there are lattice sites in the image. The step-wise reduction of pixels is implemented
using learnable kernels that sweep across the image and serve as a blueprint for how pixel values in
the previous image combine into the fewer number of pixels in the next image. The encoder part is
followed by the bottleneck: Here, a binarization step is carried out, i.e. all pixel values above a threshold
are set to 1 and all other pixel values are set to 0. Finally, the image gets upsampled again by the decoder
part of the network which inversely mirrors the encoder. It reverses the down-sampling until the image
has acquired its original size of 256 × 256 pixels (output image).

During training, the network is asked to minimize the difference between the output image and the
input image. This means that the kernels in the convolutional and deconvolutional layers are adjusted
until the output side of the network reproduces the original image. Because of the special structure
of the network all image information is forced through the bottleneck between the encoder and the
decoder part. The idea here is that the 16× 16 binary matrix at the bottleneckmust contain the minimal
information required to recover the original image on the output side; and this minimal information
can only be the occupation of the 16 × 16 lattice sites.

Importantly, training is unsupervised, i.e. it does not require any simulated fluorescence images
for which the true occupation is known. This avoids the necessity to include more sophisticated
imaging phenomena, including density-dependent effects like superradiance, in the simulation. Instead,
the training data consist of experimental fluorescence images which depict random homogeneous
lattice fillings ranging from zero to one. They are created by first preparing an 𝑛 = 1 Mott insulator
(cf. Sec. 4.1), followed by the random removal of a variable fraction of atoms in the Mott plateau using
microwave and blowout pulses.

After training, only the encoder part and the bottleneck are needed for reconstructing new images
that were not part of the training data. The occupation, i.e. the result of the reconstruction algorithm,
is then read off from the binary bottleneck matrix. To get insight into decision-making process of
the network, we can plot the histogram of deconvoluted counts just before the binarization step, as
depicted in Fig. 4.4b, showing two peaks. The left (right) peak corresponds to the unoccupied (occupied)
sites which get assigned negative (positive) deconvoluted pixel values by the trained network. The
threshold should be adjusted to the value that separates the two peaks best. Any overlap region of the
two peaks means that even for the best threshold choice the overall fidelity of the algorithm is reduced.
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The reconstruction is carried our for all remaining 16 × 16-sites snippets, until all lattice sites in the
fluorescence image have been reconstructed, as shown in Fig. 4.4c.
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Figure 4.4 | Autoencoder-type convolutional neural network for high-fidelity reconstruction in challenging reso-
lution regimes. a, Network structure consisting of an encoder part, a bottleneck and a decoder part. The encoder

part downsamples the input image (showing 16 × 16 lattice sites) to a small image of just 16 × 16 pixels. The decoder

part upsamples it back to the original size at the output. The network is trained to make the output image replicate

the input image, forcing all image information through the low-dimensional bottle neck, which, consequently, must

store direct information about the occupation of the lattice sites. b, Threshold binarization in the bottleneck. The

downsampled pixel values are set to zero and one, based on a carefully chosen threshold that aims at separating

the two peaks in the bimodal distribution of the pixel count histogram before the binarization. c, Combining the

reconstruction results of all 16 × 16 lattice sites snippets, we obtain th reconstruction result of an entire fluorescence

image.

Reconstruction fidelity estimation
The reconstruction fidelity is defined as the fraction of correctly determined site occupations. Its is
limited by the finite SNR of the fluorescence image (noise). In addition, there are systematic errors
resulting from a spatially varying signal strength in the image (molasses fringes, large number of atoms
in other planes of the vertical lattice showing up as a blurry background). Also, the reconstruction
algorithm could be internally biased due ro reasons rooted in its structure and its way of functioning.
Lastly, while not a matter of the reconstruction algorithm itself, the integrity of the reconstruction result
also relies on low thermal hopping and atom loss rates during imaging.

In general, the true occupation of the lattice sites in the fluorescence images is unknown. Thus,
there is no direct way of assessing the reconstruction performance. Testing the algorithmwith simulated
images can be an option but might lead to conclusions that do not translate to real images. That is
because it is challenging to write a simulation which takes all imaging effects into account, such as
density-dependent superradiance which is particularly relevant in our 𝛽-regime. Instead, we rely on
two indirect methods for estimating the reconstruction fidelity from the reconstruction result:

• Histogram of deconvoluted counts: We can estimate the fidelity from the histogram of de-
convoluted pixel counts obtained from the bottleneck before binarization (Fig. 4.4b). Here, the
presence of a bimodal distribution indicates distinguishability between empty and occupied sites,
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Figure 4.5 | Reconstruction fidelity estimated from comparative multi-imaging. Fidelity as a function of the mean

filling in the fluorescence image, showing near-optimal performance for dilute clouds and Mott insulator states and

at least 96% fidelity in all other filling ranges. Dark markers assume that there is no hopping and loss during imaging,

while the bright markers take these effects into account via a calibrated probability p
δ
(n) (cf. Eq. 4.2).

and the level of distinguishability (and, therefore, the fidelity) is related to the overlap area of the
two peaks: The fidelity can be defined as F = 1 − (𝐴0

⋂
𝐴1)∕(𝐴0

⋃
𝐴1), where 𝐴0 and 𝐴1 are

the areas of the left (unoccupied sites) and right (occupied sites) peak, respectively. In practice,
the reconstruction process is highly non-linear and the shape of the peaks in the histogram is not
known. This complicates efforts to quantify the peak areas and determine the fidelity. Assuming
that the peaks are Gaussian, however, we obtain a filling-depending fidelity of F ≳ 99% with the
smallest value at half filling.

• Comparative multi-imaging: Another way to estimate the reconstruction fidelity is to take
two images of the same atom distribution and compare the reconstruction results. Under perfect
conditions (infinite SNR, no thermal hopping), sites which are classified as empty or occupied in
the first image should also be classified as empty and occupied in the second image. However, due
to different random noise and due to hopping and loss events during or in between the exposures,
different reconstruction results can emerge. Let 𝛿 denote the measurable probability that a site
is classified differently in the second image compared to the first one. Then the reconstruction
fidelity can be estimated from

F = 1
2
⎛
⎜
⎝
1 +

√
1 − 2𝛿

1 − 2𝑝𝛿(𝑛)
⎞
⎟
⎠
. (4.2)

Here, 𝑝𝛿(𝑛) is the filling-dependent probability that occupation differences emerge due to non-zero
hopping and loss rates (seeAppendix B for a derivation). The latter can be calibrated independently,
as shown in Sec. 4.2. Fig. 4.5 shows the estimated reconstruction fidelity as a function of the mean
filling in the fluorescence image, both with (𝑝𝛿(𝑛) ≠ 0) and without (𝑝𝛿(𝑛) = 0) the correction
for hopping and loss events. We find that the reconstruction algorithm performs the worst at
intermediate fillings (�̄� ≈ 0.7) with a fidelity of about 96%. In contrast, for near-unity filling or
dilute clouds the fidelity approaches 1.

In conclusion, we have estimated a reconstruction fidelity exceeding 96% at all fillings, indicating that
the performance of our imaging setup is comparable to that of other experiments in the field [83]
and sufficient for performing state-of-the-art quantum simulation experiments. Both methods are
expected to be mostly sensitive to random noise and the SNR rather than systematic errors. We are
aware that some of the errors in the reconstruction result (≲ 1 − F) are of a systematic kind, showing
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up as unphysical density-density correlations in the data. This small artefact and the question how
it can be corrected is addressed in Sec. 6.4.

4.4 Molasses optimization
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Figure 4.6 | Molasses optimization. a-e, Raw fluorescence images of an n = 1 Mott insulator, taken for different

combinations and strengths of molasses modulation: spatially via piezo (PM) and in frequency (FM). If either modu-

lation type is turned off, undesirable fringes appear in the image. f-h, Normalized difference between the first and

and the second image of the same atom distribution (as defined in Eq. 4.3), taken ca. 600ms apart, as a function of

important molasses parameters: the compensation field (molasses power and detuning fixed at 0.13 and 78MHz,

respectively), the molasses beam power (offset field and detuning fixed at 50mG and 78MHz, respectively) and the

cooler detuning (offset field and molasses beam power fixed at 50mG and 0.13, respectively).

Piezo and frequency modulation
The cooling process relies on a polarization gradient lattice created by the molasses beams. This
lattice is not commensurate with the pinning lattice, leading to a spatial variation of the scattering
rate which appear as fringes in the imaging signal (Fig. 4.6d). In order to remove these fringes, we
modulate the phase of the polarization gradient lattice using both the position of the retro-mirrors
which are mounted on piezos (piezo modulation or PM) and the frequency of the molasses beams
(FM). The peak-to-peak amplitude of the frequency modulation is usually set to 14% of the cooler
detuning (typically between 70MHz and 80MHz), a value that has been found to be a good compromise
between removing most of the fringes effectively without compromising the cooling by altering the
detuning to much (Fig. 4.6b). The modulation frequency is 50Hz. However, in order to remove the
fringes entirely, frequency modulation needs to be combined with piezo modulation (Fig. 4.6a). The PM
amplitude is chosen such that the retro-mirrors move by several microns, more than the wavelength
of the polarization gradient lattice. Both molasses beams are piezo modulated and the modulation
frequencies are prime numbers in the 100Hz − 200Hz range, faster than the exposure time during
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fluorescence imaging. Note that in our two-molasses-beam configuration both modulation types need
to be turned on at the same time in order to effectively remove the fringes. In an earlier version of the
molasses setup with three beams, piezo modulation alone was sufficient.

Optimization of the cooling parameters

In order to optimize the molasses parameters (i.e. compensation field strength, polarization, cooler
detuning, cooler power and repumper power), we prepare an n=1 Mott insulator (cf. Sec. 4.1) and
minimize the number of defects in the density plateau after long imaging times. Here, we assume
that these defects are predominantly caused by hopping during the image process as a consequence of
suboptimal molasses settings. In particular, we compare multiple images of the same atom number
distribution, taken in succession. The same method is used to quantitatively determine the hopping
and loss rates in our system, see Sec. 4.3 for more details.

Fig. 4.6(f-h) shows typical optimization scans for the most important molasses parameters: the offset
field, cooler beampower and the cooler detuning. Here, we take two images of the same atomdistribution
about 600ms apart, each of which has an exposure time of 300ms. Between the two images the pinning
lattices and cooler beams are kept on. Let 𝑆1 and 𝑆2 be the total fluorescence signal in the first and the
second image, respectively. Then, we can define the normalized difference between the two images as:

Dif f =
𝑆1 − 𝑆2
𝑆1

. (4.3)

The idea is that for optimal molasses parameters the difference between the two images is minimal,
leading to similar fluorescence signals, as loss and hopping events are suppressed. Fig. 4.6f shows
the image difference as a function of the 𝑥 compensation field strength with a clear minimum at ca.
10mG. The data was taken with the detuning value and the cooler power value indicated by dashed
lines in Fig. 4.6(g-h). The minimum is a broad plateau with a width of ca. 200mG, meaning that
the molasses cooling process can tolerate environmental field changes up to an absolute strength of
ca. 100mG. Scans of the compensation fields in other directions look very similar (not shown). The
optimization of the cooler power (Fig. 4.6g) and the detuning (Fig. 4.6h) is closely coupled as a larger
detuning can, to some extent, be traded in for a higher cooler power and vice versa. In general, for a
fixed detuning we find an optimum cooler power. In contrast, for a fixed cooler power, the optimal
detuning seems to be outside the measurement range, suggesting that very large detunings are the best
choice (Fig. 4.6h). However, larger detunings reduce the fluorescence signal and, as a consequence, the
SNR. Thus, as a compromise between optimal cooling and a decent SNR obtained within a reasonable
exposure time, we typically settle at a moderate detuning of 78MHz. Increasing the power to very
large values at very large detuning or reducing the power to small values at small detunings was not
found to improve the overall cooling performance.

The same optimization technique was also used to optimize the repumper power as well as the
polarization of the molasses beams which is controlled by the 𝜆∕4-plates in the beam path (cf. Fig.. 4.3).
The cooling efficiency appears to be very insensitive to the repumper power as long as the power
is sufficiently large, typically on the order of a few 100µW. Optimizing the rotation angles of the
waveplates empirically using the image difference signal did not lead to a configuration consistent with
the theoretically ideal circular polarization. Instead, we operate with an uncharacterized elliptical
polarization that has proven to work best.
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4.5 Mott insulator optimization
Sequence considerations
Obtaining a high-quality Mott insulator plateau requires careful optimization of the field, gradient
and lattice ramps that make up the sequence discussed in Sec. 4.1. The list below provides the most
important optimization knobs which are most likely to make a difference. Note these clues apply to
all Mott insulator initial states that can be prepared in the final part of the sequence (cf. Sec. 4.1 and
Fig. 4.2), not only to the short-short Mott insulator with unity filling in the short lattice.

• BEC quality: The larger the BEC is, the more cold atoms remain after radial evaporation and the
more (colder) atoms are available for filling the box and forming a Mott insulator. We typically
work with a BEC of at least 10000 atoms (ideally 20000) visible after 75ms time-of-flight (with
levitation on). Atom number below this threshold can lead to unstable conditions dominated by
atom number fluctuations which translate to filling fluctuations in the Mott insulator plateau.

• Single plane loading: If the atoms are distributed among multiple planes, the atom density
in the central plane can be insufficient for efficient thermalization during evaporation, leading
to atom loss. Further, too many atoms in adjacent planes appear as background artefacts on
the fluorescence images, rendering reconstruction impossible. In order to make sure that only
a single plane is loaded, we either use matter-wave-focussing techniques [82, 250, 251] in the
vertical direction with absorption imaging or optimize on the absence of background artefacts in
the fluorescence images directly.

• Offset field: Success of both the BEC production and the radial evaporation is very sensitive
to the strength of the offset field. On the one hand, the field strength needs to be close to the
three-body-loss minimum (cf. Sec. 3.1) at ca. 21G [230]. On the other hand, larger offset fields
increase the interaction strength and, therefore, the thermalization speed during evaporation.
Thus, for best results, a compromise between these two opposing trends needs to be found. For
the Mott insulator preparation, i.e. at a point during the lattice ramps when the probability of
findingmore than two atoms on the same site is already very low, we increase the scattering length
to a value far higher than the three-body-loss minimum, leading to a larger on-site interaction
strength 𝑈. This makes the Mott insulator more robust against finite temperature and potential
corrugations.

• Gradient strength and z dipole trap depth: We found that a better Mott insulator quality
is achieved when performing radial evaporation with an initially deep z dipole trap (providing
strong harmonic confinement) and a large horizontal gradient rather than a weak gradient in
combination with a shallow z dipole trap.

• Rampdurations: We have carefully optimized all ramp durations in the sequence using themean
filling of the 𝑛 = 1 Mott insulator plateau as an observable. Besides the exponential evaporation
ramp of the 𝑧 dipole trap, the ramp durations in steps (III), (IX) and (XI) (see Fig. 4.1) have the
highest impact on the final Mott insulator quality, as they implement the transfer of atoms from
one trap to another. In general, the ramp durations are chosen as short as possible in order to avoid
heating and as long as necessary to ensure the adiabaticity of the transfer and loading operations.

• Trap overlapping: The quality of the Mott insulator is affected by how well the box potential is
aligned horizontally with the trap center of the vertical lattice. Further, the 𝑧 dipole trap needs
to be aligned with the DMD box and all horizontal lattices need to be horizontally aligned with
the position of the compressed cloud in the 𝑦′ dipole trap at the end of step (I) in Fig. 4.1. When
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Figure 4.7 | Calibrating the box potential height for spilling. a, Filling inside the box potential versus height of

the box wall averaged over five fluorescence images. If the box potential is too low, too many atoms escape. If the

box potential is too high, excessive atoms cannot escape and form doublons which become holes during imaging.

At the optimal point in between, where the wall height roughly matches U∕2, spilling occurs in such a way that

only excessive atoms leave the box, leading to a high-quality n = 1 Mott insulator. Error bars denote the standard

deviation. b Filling inside the box potential as function of the final z trap power controlling the amount of atoms left

after evaporation, averaged over five fluorescence images. If spilling is not working (because the DMD walls are too

high, e.g. 3U∕2), the atom number needs to be just right in order to achieve a high-quality Mott insulator plateau.

If, however, spilling is working (wall height U∕2), variable (but not too high) amounts of excessive atoms leave the

box without creating doublons, making the Mott insulator very robust against atom number fluctuations. Error bars

denote the standard deviation.

pre-aligning the lattices using push sequences, one should work with the cloud in the compressed
𝑦′-dipole trap, as emphasized in Sec. 3.3.

• Thermal hopping during imaging: Even a perfect Mott insulator with near-unity filling can
appear suboptimal due to detection issues. Hopping and loss events during fluorescence imaging
cause holes in the 𝑛 = 1 plateau and doublons which appear as empty sites due to parity projection.
In order to check whether the hopping and loss rates during imaging are sufficiently low, we use
the multi-imaging method outlined in Sec. 3.4.

• Spilling: For excessive atoms to spill out during Mott insulator preparation, the wall height of the
box potential needs to be set to roughly 𝑈∕2. This trick is crucial for making the Mott insulator
robust against atom number fluctuations, as detailed below.

Spilling
One of the most helpful tricks for obtaining large robust high-quality 𝑛 = 1 density plateaus is preparing
a Mott insulator in a box potential and choosing the wall height of the box to match 𝑈∕2 [15]. This
allows excessive atoms to spill out of the box due to the on-site interaction energy, while only those
required to form the 𝑛 = 1 Mott insulator phase remain. In order to find the optimal wall height, we
prepare a Mott insulator in a box but use the final power of the z dipole trap to set the chemical potential
to a high value leading to more atoms in the box than there are available lattice sites (ca. 50 × 50 sites).
Then, we observe the Mott insulator density plateau filling as a function of the DMD light intensity
which controls the wall height of the box potential, as shown in Fig. 4.7a. We find that, on the one hand,
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Figure 4.8 | Siemens star for fine-aligning the DMD. Average of 10 fluorescence images of a BEC in a single plane

of the vertical lattice in presence of the Siemens star mask projected onto the atoms using the DMD. a, After initial

alignment of the DMD imaging system with aberrations. b, After fine-alignment (walking the DMD imaging path)

leading to reduced aberrations. c, Out-of-focus.

if the wall height is too low, too many atoms leave the box and the number of atoms is insufficient to fill
all lattice sites. On the other hand, if the box wall is too high, too many atoms are trapped in the box
leading to doubly occupied sites which, due to parity projection, appear as holes in the fluorescence
image. If, however, the wall height is just right, the atoms that spill out of the box are those which do
not find any remaining free lattice sites. This is because it is energetically more favorable to leave the
box rather than paying interaction energy 𝑈 by occupying an already occupied site.

The robustness resulting from spilling is demonstrated in Fig. 4.7b: Here, we show the filling inside
the box as a function of the evaporation parameter that controls the atom number loaded into the box.
One finds that if the wall height is too large, the filling is very sensitive to the atom number and one
needs to carefully optimize the final power of the z dipole trap in order to achieve a high quality Mott
insulator. However, if the box potential is set to 𝑈∕2 (corresponding to the maximum in Fig. 4.7a), the
mean filling of the box is always excellent, provided that the number of loaded atoms is sufficiently high.
This makes the initial state preparation robust to atom number fluctuations caused by fluctuations
in earlier parts of the sequence and leads to better data quality.

4.6 Potential flattening for large system sizes
DMD alignment optimization
After pre-aligning the DMD (see Sec. 3.4), fine-adjustments are necessary to ensure that the projection
of the DMDmask on the atoms is free of aberrations. If a bright box is projected onto the atoms and not
all four edges of the box appear sharp simultaneously, the DMD image in the atom plane is probably
aberrated by astigmatism. This means that the DMD light is not perfectly aligned with the optical
axis of the objective or that there are aberrations caused by the DMD imaging optics. For sensing the
direction and the strength of the aberrations we project a Siemens star mask on the atoms. It consists
of radially symmetric stripes that narrow down to zero in the center. The idea is that, depending on
the resolution of the DMD imaging system, the stripes are only visible up to a certain distance away
from the center, which decreases with better resolution. The presence of non-isotropic aberrations like
astigmatism leads to certain stripes extending closer to the center than others, indicating an angular
dependence of the resolution.
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Fig. 4.8 shows mean fluorescence signals of a Siemens star projected into the atom plane (BEC in
a single plane of the vertical lattice), averaged over ten images. After initial alignment of the DMD,
we typically measure an atom distribution as shown in Fig. 4.8a which clearly suggests that there is a
resolution gradient in the horizontal direction. In order to optimize the alignment of the DMD imaging
system with respect to the optical axis of the objective, we walk the DMD light in the direction of this
gradient using the last two mirrors before the dichroic mirror in the DMD setup (cf. Fig. 4.3). The
last mirror is adjusted, such that the projected Siemens star moves in the direction of the aberrations
and the second-last mirror is adjusted to move the Siemens star back to the trap center of the single
plane in the vertical lattice. After each walking iteration we take a new averaged image of the projected
Siemens star and eventually find a much more symmetric density pattern, as shown in Fig. 4.8b. Note
that the intensity of individual stripes can also be influenced by the location of the Siemens star pattern
with respect to the trap center where the atom bulk is located. This is why one should always move
the Siemens star roughly back to the horizontal center of the single plane potential such that averaged
images after individual iterations are comparable. The Siemens target can also be used to focus the
DMD imaging system: If not focused properly, the projection of the star in the atom plane appears
fragmented, as shown in Fig. 4.8c.

Pixel mapping
By default, any mask on the DMD chip will show up distorted in the atom plane. This is due to the fact
that, in order to reflect the light in the right direction, the surface of the DMD chip is both rotated and
tilted with respect to the optical axis of the DMD imaging system. Thus, precise controlling of custom
repulsive potentials in the atom plane requires mapping the pixels of the DMD to the coordinates in
the atom plane. This mapping can be approximately described by a linear transformation:

(𝑥𝑦)
cam

= (𝐴𝑥𝑥 𝐴𝑥𝑦
𝐴𝑦𝑦 𝐴𝑦𝑦

) (𝑥𝑦)
DMD

+ (𝐶𝑥𝐶𝑦
) , (4.4)

where (𝑥, 𝑦)cam and (𝑥, 𝑦)DMD are the coordinates in the atom plane and on the DMD chip, respectively.
The diagonal elements of the matrix A induce scaling and the off-diagonal elements control shearing,
while (𝐶𝑥, 𝐶𝑦) describes translation in the 𝑥 and 𝑦 direction.

In order to obtain A and C, which define the linear transformation, we project a mask containing a
deformed grid of 36 dark points on a bright background into the atom plane, as shown in Fig. 4.9a. If
we choose a large cloud that is distributed over an area comparable to the DMD chip size in the atom
plane (e.g. in the single plane of the vertical lattice before radial evaporation), atoms are trapped by
the potential wells created by the dark points. An averaged fluorescence showing that is depicted in
Fig.4.9b. Thanks to the deformation, we can easily identify the points in the fluorescence image with
those in the original mask and, using peak fitting, obtain DMD-to-camera coordinate pairs for all 36
points. These are then used for determining the coefficients of the linear transformation in Eq. 4.4
using a least-squares fit. After this calibration, whenever a custom potential needs to be projected onto
the atoms, the mask to be sent to the DMD is first inversely-transformed according to Eq. 4.4, such
that the image in the atom plane is distortion-free.

Potential compensation
A key application of the DMD is to create large homogeneous systems for quantum simulation ex-
periments. In particular, we use the DMD to correct for large-scale potential corrugations as well as
for the horizontal harmonic confinement of the vertical lattice beams. In order to find the box mask
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Figure 4.9 | DMD-to-camera mapping. a, A DMD mask containing a distorted grid of 36 dark points. b, Mean

fluorescence image (ca. 20 images) of a BEC in a single plane of the vertical lattice, loaded into the potential wells

created by the grid points. The positions of the atoms in the wells are fitted and mapped onto the grid points on the

DMD mask. This defines an affine transformation which is used to transform a mask from the camera coordinate

system into the DMD coordinate system and ensure that its projection in the atom plane is distortion-free.

that – if projected by the DMD imaging system – leads to a flat potential inside the box in the atom
plane, we follow this procedure:

1. We define two quadratic regions: A box 𝐵ex with a length of 𝑑ex = 60 short lattice sites, delimited
by walls (solid lines in Fig. 4.10, top panel), and an inner box 𝐵in with a length of 𝑑in = 50 short
lattice sites, indicating the area that we aim to flatten.

2. We prepare the first DMDmask𝑀0: a box of width 𝑑ex with maximumwall height of considerable
thickness (e.g., 5 short lattice sites). The floor of the box mask is flat and set to a brightness of 25%.
This value needs to be chosen carefully considering the maximum available DMD light power as
well as the amplitude of the potentials to be corrected. For instance, in our case the maximum
DMD light intensity corresponding to 100% reflectivity creates a repulsive potential of ca. 2𝑈,
meaning that a box floor of 25% allows to correct for harmonic confinement or corrugations with
a maximum amplitude of 0.5𝑈. Outside the box the mask is dark.

3. We load a dilute superfluid (�̄� ≈ 0.05) into the box created by𝑀0 and wait more than 100ms for
the superfluid density to equilibrate. Then, we take at least 10 images (Fig. 4.10, top panel) and
compute the mean fluorescence signal 𝐼𝑖 . We also apply a Gaussian filter to 𝐼𝑖 with a window size
of three sites, smoothening the averaged image, so that random short-scale fluctuations of the
local density are ignored.

4. We predict the next mask𝑀𝑖+1 which (when projected into the atom plane) should lead to a flatter
density distribution inside the box. Let 𝜇 be the mean of 𝐼𝑖 inside 𝐵in, then the next mask (only
inside 𝐵in) is computed from:

𝑀𝑖+1|𝐵in = (
𝐼𝑖
𝜇 )

𝑘𝐼
𝑀𝑖|𝐵in , (4.5)

where 𝑘𝐼 = 0.15 is a feedback parameter. All other regions outside 𝐵in in the new mask remain
unchanged.

5. The new mask𝑀𝑖+1 is projected into the atom plane for the next iteration. We repeat steps 3-5
until the mean fluorescence signal inside 𝐵in has flattened out.
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Figure 4.10 | Potential flattening using the DMD. A low-density superfluid (n̄ ≈ 0.05) is used to probe the inside

of the box for potential inhomogeneities. In a series of iterations (left to right, typically 10) the floor of the box

potential (bottom panel) is adjusted according to Eq. 4.5, such that the mean superfluid density (top panel) becomes

homogeneous inside the box. In order to mitigate edge effects, only the region Bin inside the actual box Bex is stabilized,

delimited by the dashed line. The location of the walls of the box is indicated by the solid white lines. Once the

compensation mask has been found, it is applied as the floor of a new box potential with the same size as Bin.

Fig. 4.10 shows how themean fluorescence signal 𝐼𝑖 evolves as the number of iterations increases (top
panel) and how the compensating mask𝑀𝑖 gradually adapts to the initial density distribution (bottom
panel). Once this procedure is completed (typically after 𝑁 = 10 iterations), we use the compensating
mask 𝑀𝑁|𝐵in inside 𝐵in as the floor of a new box of width 𝑑in. We found that giving the superfluid
some extra space during the compensation procedure (𝐵ex) while compensating only inside a smaller
region of the box (𝐵in), leads to better results, possibly due to imperfect alignment of the DMD imaging
system and the resulting blurriness of certain box edges.

Note that here our compensation mask is generated in absence of any horizontal lattices. However,
the horizontal lattices can contribute a small additional harmonic confinement, depending on their
depth. If necessary, they can be turned on during the procedure as long as the tunnelling strength remains
large enough for the atoms to move in the box. Nevertheless, we found the potential compensation
without horizontal lattices to work very well for the experiments presented in Chapter 5. While other
methods are primarily designed for removing harmonic potentials [81], our method is additionally able
to eliminate potential corrugations (such as fringes created by the vertical lattice beams).
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Figure 4.11 | Calibration of the superlattice phase. Imbalance versus the analog output voltage controlling the

reference frequency of the frequency-offset-lock and, therefore, the superlattice phase. Goal of this calibration

measurement is to find the phase voltage for which the double wells are symmetric and the imbalance is zero. The

dashed line is a fit to the experimental data using a sigmoid function in order to obtain the symmetric phase. Each

data point is the mean of six measurements, error bars denote the standard deviation.

4.7 Superlattice phase calibration

Imbalance traces
When working with phase-tunable superlattices, we can distinguish between two important configura-
tions that differ by a phase shift of 𝜋∕2 and occur periodically for 𝜙 = 𝜙0+𝑛𝜋, 𝑛 ∈ Z : symmetric double
wells with ∆ = 0 (no tilt) and maximally tilted double wells with ∆ = ∆max . As described in Sec. 3.3,
the phase is tuned by adjusting the laser frequency of the long lattice. In order to find a laser frequency
corresponding to a symmetric configuration, we load a rectangular Mott insulator with short spacing in
one axis and long spacing in the other axis, as depicted in Fig. 4.2b. Next, we adiabatically ramp up the
short lattice belonging to the axis with the long lattice, therefore splitting the long lattice sites and turning
them into double wells. Depending on the superlattice phase, the double well is either tilted or not tilted.
Hence, the single atom in that double well will either become localized on one side (right |𝑅⟩ or left |𝐿⟩)
or stay delocalized in a superposition of left and right 1∕

√
2 (|𝐿⟩+ |𝑅⟩). This is captured by the imbalance

𝐼 =
𝑛even − 𝑛odd
𝑛even + 𝑛odd

, (4.6)

which compares the filling of even and odd sites (𝑛even and 𝑛odd, respectively) along the superlattice
axis [67, 68]. In the symmetric configuration we expect the imbalance to be zero, otherwise it should
approach +1 (all atoms in even sites) or −1 (all atoms in odd sites).

Fig. 4.11 shows the imbalance (averaged over the entire cloud in a box containing 40×40 lattice sites)
as a function of the superlattice phase that is controlled by an analog voltage signal (cf. Sec. 3.3). There is
a clear transition fromnegative to positive imbalance corresponding to a change of the tilt direction of the
double wells. We obtain the symmetric superlattice phase by fitting the imbalance trace using a sigmoid
function, yielding a phase control voltage of 0.203 41(16) V. The uncertainty of 160 µV corresponds to
about 1mradwhich matches the width of the beatnote of the phase lock, presented in Sec. 3.3. Note that
a finite slope of the imbalance close to the symmetric point can also be caused by inhomogeneities in the
superlattice potentials, leading to different parts of the cloud becoming symmetric for different control
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Figure 4.12 | Long-term drifts of the superlattice phase. Calibrated superlattice phase as a function of time (top

panel) in 2023, showing strong correlations with the ambient air pressure (bottom panel). Error bars denote the

standard error of the fit.

voltage values. In our experiment, this is usually a strong indicator for a significant angle between the
short and the long lattice at the positions of the atoms, as discussed in Sec. 4.9.

Long-term phase drift
The relative phase of the short and the long lattice is expected to drift in response to changes in
environmental conditions like temperature and air pressure. This is because the lattice beams propagate
through air between the retro-mirror and the atoms in the center of the glass cell, and the wavelength
of the light 𝜆 = 𝑐(𝑛𝑎)∕𝜈 depends on the refractive index 𝑛𝑎 of the traversed medium. In our experiment,
temperature fluctuations are reduced to about 0.2◦ by the air conditioning system. However, the ambient
air pressure is dictated by the weather. Fig. 4.12 shows the long-term evolution of the superlattice phase
(upper panel) over a period of 12 days. For comparison, the lower panel shows the air pressure as
recorded by meteorological sensors in our lab. One finds a clear correlation between superlattice phase
and air pressure, revealing air pressure variations as the primary source of superlattice phase drifts with
a sensitivity of about 0.4mrad∕mbar. For the experiments presented in Chapter 5, it is crucial that the
superlattice stays in the symmetric configuration within < 1mrad. In order to ensure phase stability
over days and correct for long-term drifts, we have an automatic script running which takes and fits
imbalance traces (as the one shown in Fig. 4.11) at least once every 45min.

4.8 Calibration of on-site interactions and tunnel couplings
This section describes methods for calibrating the parameters of the (superlattice) Bose-Hubbard model
implemented by the horizontal lattices (cf. Sec. 1.3). These include the on-site interaction strength
𝑈, the tunnelling strength 𝐽 between short lattice sites and the double well tunnelling strength 𝐽dw
inside long lattice sites split by the short lattice (cf. Sec. 3.3).
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On-site interactions
The most convenient knob for controlling the scattering rate 𝑎(𝐵) and the interaction strength𝑈 ∼ 𝑎(𝐵)
is the offset field, thanks to a low-field Feshbach resonance (cf. Sec 3.1). We can spectroscopically
measure 𝑈 in the short lattice by first preparing a deep 𝑛 = 1 Mott insulator (short lattice depth ca.
60𝐸r, vertical lattice depth 3.5 µK), as described in Sec. 4.1. Then, after setting the offset field to the
desired strength, we perform a sinemodulation of the two-dimensional lattice depth (10% amplitude) for
300ms. If the modulation frequency matches |𝑈|, resonant tunnelling to already occupied sites occurs,
doublon excitations are created and the measured filling of the Mott plateau decreases as a consequence
of parity projection. The inset of Fig. 4.13 shows the mean fluorescence signal of the Mott insulator
plateau as a function of the modulation frequency at an offset field of 11G in the attractive regime
(meaning negative 𝑈). There is a clearly visible |𝑈|-resonance at a fitted offset field of 1405(12)Hz.

We repeat this measurement for offset fields in a range from 9G in the attractive regime to 34G in
the repulsive regime and plot the fitted on-site interaction strength as a function of the offset field (see
Fig. 4.13). The solid line is a fit to the experimental data using a hyperbolic function [252]:

𝑈(𝐵) = 𝑈0 (1 −
𝛿

𝐵 − 𝐵0
) , (4.7)

where 𝐵0 and 𝛿 denote the position and the width of the Feshbach resonance and 𝑈0 is the
background value of the on-site interaction strength far away from the resonance. The fit yields
𝑈0 = 1333(45)Hz, 𝛿 = 10.28(48) G and 𝐵0 = 5.97(34) G and the interaction strength zeros out at
an offset field of approximately 16.25G. These results differ significantly from the values reported in
the literature (𝛿 = 28.7G and 𝐵0 = −11.7G) [228]. One possible reason for that could be an incorrect
calibration of the offset field. In addition, the experimental scattering length in the repulsive regime
is limited by confinement-induced resonances due to the large trap anisotropy caused by the large
spacing of the vertical lattice [253]. Generally, the on-site interaction strength 𝑈(𝐵) is proportional to
the scattering length 𝑎(𝐵), as depicted in Fig. 3.1. However, In our case, he vertical lattice provides us
with a typical confinement of just 𝑓𝑧 ∼ 1 kHz. As a consequence, even though the scattering length
continues to increase when ramping up the offset field beyond 30G, the on-site interaction strength
does not. We can increase the vertical lattice power by up to a factor of two in order to increase U
by up to 40% at large field strengths of 𝐵 ≈ 40G. However, this also amplifies potential corrugations
introduced by the vertical lattice.

Tunnel coupling in simple lattices
Similar to the calibration of 𝑈, we can also measure 𝐽 in the short lattice spectroscopically by sine-
modulating the corresponding lattice depth. Fig. 4.14 shows the average filling of an 𝑛 = 1 Mott
insulator as a function of the modulation frequency (lattice power is 30mW, modulation amplitude
is 3% with 400ms duration). If the modulation frequency equals the parametric heating resonance
between the first and the third lattice band, atoms can be promoted to higher bands which leads to
strong heating. As a consequence, atom loss occurs and the fluorescence signal drops. We obtain the
position 𝑓∗ = 40.32(17) kHz of this peak using a Lorentzian fit (an empirical choice) and compare it to
numerical exact diagonalization (ED) calculations. These relate 𝑓∗ to the lattice depth from which we
can estimate 𝐽. Typically, the measured lattice depth is about 30% lower than the value expected for the
applied power, considering the size of the lattice laser beam at the position of the atoms. Possible reasons
for this discrepancy include beam shaping uncertainties, beam reflections on the glass cell windows
and an imperfect alignment of the retro-beam. Note that an alternative way to calibrate 𝐽 is observing
the relaxation of a CDW and extract the frequency of the imbalance oscillations, see Sec. 5.3 for details.
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Figure 4.13 | Calibrating the on-site interaction strength U. On-site interaction strength U as function of the offset

field strength, measured using modulation spectroscopy. The solid line is a hyperbolic fit of the Feshbach resonance

(see Eq. 4.7). Error bars (fit errors) are smaller than the marker size. The inset shows an individual modulation

spectroscopy scan for B = 11G with attractive interactions (no repetitions). The mean fluorescence signal of an

n = 1 Mott insulator plateau is measured as a function of the modulation frequency. When the resonance condition

fmod = |U| is fulfilled, atom loss occurs and the fluorescence signal drops. The resonance is fitted using a Lorentzian

function (solid line) to obtain U.

Tunnel coupling in superlattices

In a superlattice potential the tunnelling strength alternates between 𝐽long and 𝐽dw , where 𝐽long is the
tunnelling strength between adjacent double wells and 𝐽dw denotes the tunnelling strength between
the right and the left side of each double well (cf. inset in Fig.3.3). In order to calibrate 𝐽dw , we perform
tunnel oscillation experiments: We start by loading a rectangular Mott insulator with an asymmetric
double well configuration, such that only the even (or odd) rows of the short lattice are occupied
(cf. Sec. 4.1). The long lattice is deep enough (𝑉long > 40𝐸𝑟) so that we can assume that all double wells
are isolated from each other. Next, we also ramp up the short lattice to a large depth (to freeze out
all dynamics) and adiabatically ramp the superlattice phase to the symmetric configuration. We then
abruptly turn on the dynamics by quenching down the short lattice power to a variable value. As a
consequence, the asymmetric initial state, an eigenstate of the tilted double well, starts to time-evolve
in the symmetric double well potential, leading to density oscillations between the right and the left
side of the double well at a frequency of 𝑓 = 2 𝐽dw . These oscillations are captured by the imbalance
(cf. Eq. 4.6), as shown in Fig. 4.15 as a function of evolution time after the quench. The tunnelling
strength 𝐽dw = 𝑓∕2 = 484.3(5)Hz is then obtained using a sine fit. In practice, we measure 𝐽dw for
at least three pairs of (𝑉short, 𝑉long) and fit this data using an exact-diagonalization-based numerical
function 𝐽dw(𝑉short, 𝑉long). The free parameters are 𝑉short, 𝑉long which denote the short and long lattice
depths, respectively. By establishing a relationship between the double well tunnelling strength and
the depths of both the long and the short lattice, 𝐽dw is calibrated.
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Figure 4.14 | Parametric heating scan. Mean filling of the Mott insulator plateau as a function of the frequency at

which the short lattice depth is modulated. The modulation takes 400ms and has an amplitude of 3%. The mean

lattice power is 30mW. When the parametric resonance between the first and the third lattice band is hit, atom loss

occurs. This allows to relate the lattice depth to the experimental beam power and calibrate J. The solid line is a fit to

the experimental data using a Lorentzian. Error bars denote the standard deviation.

4.9 Superlattice angle optimization
The superlattice angle 𝜃 is the angle between the short lattice and the long lattice at the position of
the atoms. As shown in Fig. 4.16a, this leads to a superlattice phase gradient perpendicular to the
superlattice axis which is, to first order [242], described by:

𝜙(𝑥) = 𝜙0 + 4𝜋𝜃𝑥∕𝜆long. (4.8)

Even a small superlattice angle of 𝜃 = 1mrad leads to a superlattice phase change of ∆𝜙 = 126mrad
across a typical ROI spanning over 20 long or 40 short lattice sites. While this inhomogeneity can be use-
ful for certain experiments [242], it is undesirable when aiming for identical conditions in the entire ROI.

After initial alignment of the superlattice by overlapping the short and the long lattice beams at
two points in the beam path (cf. Sec. 3.3), we check the inhomogeneity of the superlattice potential
by measuring spatially resolved tunnel oscillations. Fig. 4.16b shows the imbalance (cf. Eq. 4.6) as
a function of time and position perpendicular to the superlattice axis. We find that the oscillation
frequency is the slowest in the center of the ROI and increases toward its edges. For each position, we
obtain 𝐽dw by fitting the time evolution of the imbalance using a sine function (just as in the previous
Section) and plot 𝐽dw(𝑥) in Fig. 4.16e (red markers). The quadratic spatial variation of 𝐽dw(𝑥) (see red
solid line) is consistent with a linear tilt gradient of 14(1)Hz∕𝜆short (cf. Eq. 6.4) which corresponds to
a phase gradient of 0.4mrad∕𝜆short for the superlattice depths used in this experiment. Using Eq. 4.8,
we are then able to estimate a superlattice angle of 𝜃 = 0.005◦ or 0.1mrad.

For the experiments presented in Chapter 5 we aim for a homogeneous superlattice potential without
phase gradients in any direction and, thus, would like to minimize the superlattice angle 𝜃. For this
purpose, the 1534nm beampath of our superlattice setup contains a glass cylinder platewhich introduces
an adjustable parallel shift in the horizontal plane (cf. Fig. 3.3). The last lens before the science chamber
which focusses the lattice beam onto the atoms translates this parallel shift into a change of the angle
under which the long lattice beam hits the atoms. Hence, by adjusting the orientation of the glass
cylinder, we can minimize the superlattice angle 𝜃 and remove the phase gradient.

As a first step of this procedure, we prepare a rectangularMott insulator (cf. Sec. 4.1) and adiabatically
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Figure 4.15 | Tunnel oscillation in isolated double wells. Mean imbalance as a function of evolution time after

quenching on the tunnel coupling inside symmetric double wells, starting with an asymmetric occupation (imbal-

ance 1). The solid line is a sine fit to the experimental data for obtaining the oscillation frequency f and calibrating

Jdw = f∕2.

split the double wells by slowly ramping up the short lattice in the symmetric configuration. If the
superlattice angle is non-zero, only part of the ROI will show zero imbalance (symmetric region), flanked
on either side by regions where the imbalance approaches +1 and −1, as depicted in Fig. 4.16a. Next,
we start rotating the glass cylinder, trying to increase the size of the symmetric region and, therefore,
lowering the phase gradient across the cloud. Fig. 4.16c demonstrates how the spatial imbalance profile
changes when the glass cylinder is rotated in the right direction, showing a growth of the symmetric
region toward later shots. Since the long lattice beam is not perfectly focused on the atoms, the glass
cylinder rotation not only makes the symmetric region broader but also shifts it, such that the symmetric
superlattice phase needs to be occasionally adjusted (cf. Sec. 4.7).

After several iterations of glass cylinder rotation and phase recalibration, the superlattice angle is
minimized and the spatial tunnel oscillations acquire a spatial profile as depicted in Fig. 4.16d. We
find that the superlattice potential is now much more homogeneous with a residual 𝐽dw gradient that
is on the order of the error bars (cf. Fig. 4.16e, blue markers).
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Figure 4.16 | Superlattice angle optimization. a If the long and the short lattice cross under a non-zero angle θ at the

position of the atoms, the superlattice potential will exhibit a tilt gradient perpendicular to the lattice axis. Thus, only

a part of the cloud can be in the symmetric configuration and the regions on either side will exhibit tilts of opposite

sign. b, Spatially resolved tunnelling oscillations before optimization, averaged along the superlattice axis. Due to

the tilt gradient, the tunnelling oscillation frequency varies spatially. c, Using a glass cylinder in the long lattice beam

path, the superlattice angle θ can be systematically tuned to zero. We repeatedly measure the spatially resolved

imbalance profile, averaged along the superlattice axis, and gradually turn the glass cylinder to increase the width

of the zero-imbalance region (white). Since turning the glass cylinder also alters the superlattice phase, the white

region will occasionally move out of the ROI and a phase recalibration becomes necessary. d, After optimization, the

tilt gradient is removed and the tunnelling oscillations are spatially homogeneous. e, Fitted tunnelling oscillation

frequency from (b) and (d) (using a sine function) as a function of position perpendicular to the superlattice axis,

comparing the profiles before and after optimization. The red solid line is a parabolic fit to the frequency profile

before optimization, revealing a superlattice phase gradient of 0.4mrad∕λshort.
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CHAPTER 5

Emergence of fluctuating hydrodynamics in a
chaotic quantum ladder

In this Chapter we present the main experimental results of this thesis and observe the emergence of
FHD in a chaotic quantum system. We shed light on the role that fluctuations play in the thermalization
process after a quench and study the timescales on which they grow and equilibrate. We do so in a
ladder system of hard-core bosons that can be tuned from fully integrable to chaotic, allowing to realize
a crossover from ballistic to diffusive dynamics. Using single-site resolution, we find evidence that the
large-scale fluctuation growth in chaotic, far-from equilibrium systems can be described by the simple
macroscopic classical theory of FHD (cf. Chapter 2). This suggests that the entire non-equilibrium
dynamics of an intractable chaotic quantum systems are effectively governed by a single quantity, the
linear-response diffusion constant, extending the idea of fluctuation-dissipation relations to far-from-
equilibrium situations. We show that the diffusion constant, which, in general, is hard to obtain using
computational methods, can be extracted from the fluctuation and correlation dynamics.

5.1 The model
Ladder BHM
The model of interest in this work is the Bose-Hubbard model (BHM) in a ladder geometry. Similar to
the fully two-dimensional BHM introduced in Eq. 1.5, it is defined by the Hamiltonian:

�̂� = −𝐽
⎛
⎜
⎝

∑
𝛼,𝑖

�̂�†𝛼,𝑖�̂�𝛼,𝑖+1 + h.c.
⎞
⎟
⎠
− 𝐽⊥

⎛
⎜
⎝

∑
𝑖
�̂�†1,𝑖�̂�2,𝑖 + h.c.

⎞
⎟
⎠
+ 𝑈

2
∑
𝛼,𝑖

�̂�𝛼,𝑖(�̂�𝛼,𝑖 + 1). (5.1)

Here, �̂�𝛼,𝑖 , �̂�
†
𝛼,𝑖 are the bosonic annihilation and creation operators, respectively, and �̂�𝑖 = �̂�†𝛼,𝑖�̂�𝛼,𝑖 is the

particle number operator for site 𝑖 in leg 𝛼 ∈ {1, 2} of the ladder [254, 255]. The tunnelling strength
along (perpendicular to) the ladder is denoted by 𝐽 (𝐽⊥) and 𝑈 is the on-site interaction strength. We
work at half filling, i.e. �̄� = 1∕2, and we assume that the particles occupying the lattice are hardcore
bosons, i.e. 𝑈∕𝐽(⊥) >> 1. This means that it is energetically unfavorable for a lattice site to be occupied
by more than one atom. Similarly to the purely one- or fully two-dimensional BHM, the hard-core BHM
on a ladder possesses Mott insulator phases and superfluid phases, depending on the ratio 𝐽⊥∕𝐽 and the
mean filling. At half filling, the ground state is a superfluid for 𝐽⊥∕𝐽 ≤ 1 and crosses over to a rung-MI
for 𝐽⊥∕𝐽 > 1, where each rung of the ladder is occupied by one delocalized particle [255–257].

The relevance of this model for studying quantum thermalization roots in its tunability: The kind of
dynamics governing the system in out-of-equilibrium situations depends on the tunnelling strength
between the legs of the ladders (see also Sec. 1.5):
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Figure 5.1 | Quench experiment. An optical superlattice in the y-direction in combination with simple lattice in the

x-direction realizes multiple adjacent copies of large homogeneous ladder systems with a length of up to 50 sites.

The edges of the system are provided by the walls of a DMD box potential which is also used to make the system as

homogeneous as possible by removing harmonic confinement and large-scale corrugations. In order to mitigate

edge effects, only the innermost 40 × 40 sites are used in the data analysis and define the ROI. By adjusting J⊥∕J we

can tune the ladder systems from decoupled and integrable (J⊥∕J = 0) to fully coupled and chaotic (J⊥∕J = 1). a, As

an initial state for the quench thermalization experiment, we prepare a CDW with a period of two lattice sites using a

superlattice potential in the x-direction. b, After quenching on the dynamics in the system, the CDW decays and a

time-evolved state with uniform mean filling and slowly growing fluctuation emerges. The insets show the mean

reconstructed occupation in the initial and evolved state, averaged over 32 images. c, Thanks to single-site resolving

quantum gas microscopy, we can study the FCS of the total particle number in subsystems of various sizes and track

the relaxation dynamics triggered by the quench.

• If 𝐽⊥∕𝐽 = 0 the legs of the ladder are fully decoupled. As a consequence, the motion of the
hard-core bosons is restricted to 1d and the many-body problem can be mapped to the integrable
free-fermion limit, as shown inAppendix C, effectively reducing it to a single particle problem [255,
258]. In 1d neither hard-core bosons nor fermions can exchange themselves and the fundamental
difference in their statistics can usually be neglected [255]. This dynamics of the system are then
generally ballistic and, in principle, analytically solvable.

• If 𝐽⊥∕𝐽 ≠ 0, there are non-zero interactions between the two legs of the ladder. Since the system
is not purely one-dimensional anymore, particle exchange is now allowed and the physics of
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free-fermions and hard-core bosons becomes very different. As a consequence, the free-fermion
mapping is not possible anymore [255, 259]. Integrability is broken and the system is expected to
behave chaotically with diffusive dynamics. This configuration is much harder to simulate on
classical computers, particularly for larger system sizes (> 20 lattice sites) and long evolution
times (> 4 tunnelling times).

Note that a small but non-zero tunnelling strength 𝐽⊥ between the legs of the ladder means that it
will take a finite amount of time for the system to probe its dimensionality. So while the system’s
dynamics may seem integrable and ballistic at short times, they eventually will become diffusive on
longer timescales ∼ 1∕𝐽⊥ [260–263], as observed in Sec. 5.5. Typically we consider 𝐽⊥∕𝐽 = 1 to be
the fully diffusive case where hydrodynamic behavior plays out in its clearest and simplest form. Note
that increasing 𝐽⊥∕𝐽 to values beyond 1 can (for specific initial states) result in ballistic dynamics
driven by correlated hopping processes [264]. However, this is part of ongoing investigations and
might be addressed in future work.

Experimental implementation
We realize the ladder Hamiltonian in Eq. 5.1 using optical superlattices (cf. Sec. 3.3 for more information
on the setup). As depicted in Fig. 5.1a, a deep long lattice (𝜆𝑦,long = 1534nm) in 𝑦 direction cuts the
ROI into about 20 decoupled ladder systems. The short lattice depth in 𝑦 direction (𝜆𝑦,short = 767nm)
sets the tunnelling strength 𝐽⊥ between the legs of the ladder. In the 𝑥 direction we use a simple optical
lattice (𝜆𝑥,short = 767nm), the depth of which sets the tunnelling strength 𝐽 along the ladder. The
tunnelling strengths 𝐽 and 𝐽⊥ are calibrated using the methods introduced in Sec. 4.8. The maximum
length of each ladder is about 50 sites with both ends provided by the walls of the DMD box potential
(cf. Section 4.5). However, in order to mitigate finite-size effects arising from the presence of the edges
we typically only evaluate the 40 most central sites which define the ROI.

5.2 The experiment
A common way to study the non-equilibrium dynamics of a system is to prepare it in a far-from-
equilibrium state and then watch it relax. This is implemented by a quench experiment (see Sec. 1.4),
where the Hamiltonian is changed so abruptly, that the ground state wavefunction in the pre-quench
Hamiltonian becomes a highly-excited state in the post-quench Hamiltonian [39, 67, 147]. The time-
evolution of this post-quench excited state is then subject to observation and measurements.

As discussed in Sec. 1.7, we expect entanglement entropy to build up after the quench, leading
to a steady grow of fluctuations. In order to conduct a clean measurement of the fluctuation growth,
unperturbed by large-scale particle currents, it is feasible to start with an initial state of small-scale
density variations, such that local equilibrium of the mean density is achieved as quickly as possible.
This idea is sketched in Fig. 5.2a using a short-wavelength charge density wave: While the density
equilibrates very quickly, the spreading of entanglement and, therefore, the growth of fluctuations occurs
on much longer hydrodynamic timescales (Fig. 5.2b). In this case we expect the later-time dynamics
to play out on a constant density background and to be governed by a single spatially homogeneous
diffusion constant, which simplifies the evaluation of the experimental data and the benchmarking of
FHD. This setting is particularly advantageous in comparison to domain wall experiments [15], where
the diffusion constant spatially depends on the local mean density which changes as the system evolves.
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a quantum system, any small-spaced initial density modulation will decay quickly and the local mean-density

equilibrates fast. However, on longer timescales, entanglement starts to build up over longer and longer distances. As

a consequence of entanglement, repeated measurements of quantities (like the number of particles) in a subsystem

reveal fluctuations due to measurement projection noise. b These fluctuations grow on slow hydrodynamic timescales

before eventually reaching their saturation value predicted by the ETH.

Initial state
The quench (cf. Sec. 1.4) is performed from a frozen product state (a short-spaced CDW) to a superfluid
state. Following the sequence described in Sec. 4.1, we prepare a Mott insulator in a tilted 𝑥-superlattice
configuration such that every second 𝑦-row is occupied and every other 𝑦-row is empty, producing a
CDW as depicted in Fig. 5.1a. Both long and short lattice depths exceed 50𝐸𝑟 so that all dynamics are
frozen, i.e. 𝐽⊥ = 𝐽 ≈ 0. This is the pre-quench state, lacking any coherence between the individual
lattice sites. Choosing a CDW with a period of two sites is motivated by the following ideas:

1. It is an initial state with short-range density variations and we can expect the local mean density to
decay quickly (see Section 5.3). Thus, as mentioned above, the growth of fluctuations will mostly
occur on a homogeneous half-filling background (see Section 5.4) and is easier to compare with
the predictions of FHD without adding further correction terms to this theory (cf. Chapter 2).

2. The CDW product state can be considered an infinite-temperature state in the post-quench ladder
Hamiltonian [263]. As a consequence, the non-equilibrium chaotic system is expected to relax to
a maximum-entropy (maximally entangled) state as predicted by the ETH [265, 266], see Sec. 1.7.
This allows to compare the expected saturation values of observables with values measured at
long times after the quench.

Quench preparation
So far, we have used a superlattice potential in 𝑥-direction and a simple lattice in 𝑦-direction, to prepare
the CDW. However, for realizing the ladder system, we need a superlattice in 𝑦-direction and simple
lattice in 𝑥-direction. Thus, while the dynamics are still frozen we adapt the 2d superlattice potential
to realize the ladder Hamiltonian introduced in Sec. 5.1, as shown in Fig. 5.3: We first remove the
long lattice along 𝑥 and, at the same time, increase the long lattice depth in the 𝑦-direction to 17𝐸(l)r
(𝐸(l,s)r = ℎ2∕(2𝑚𝜆2(l,s)) is the recoil energy in the short and long horizontal lattice, respectively). The
long lattice depth is sufficiently large for suppressing any significant coupling between adjacent ladder
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to prepare a CDW as the pre-quench initial state, the dynamics are frozen and the ladder geometry is realized by the

superlattice in y direction. For the quench, the short lattice powers are abruptly lowered to set J and J⊥,according to

the desired post-quench dynamics.

systems (𝐽y,long∕𝐽 < 1%). We also ramp up the height of the DMD walls to ∼ 5𝑈 to prevent further
spilling out of the box (cf. Section 4.5). Moreover, we increase the vertical lattice depth to about
𝑉𝑧∕ℎ = 120 kHz to increase the on-site interaction strength and to ensure that we work sufficiently
deep in the hard-core limit at all times (𝑈∕𝐽 > 7). For all values of 𝐽⊥∕𝐽 investigated in this work, the
doublon fraction does not exceed 3% (fraction of doubly-occupied sites), see Sec. 6.1 for details.

The quench

Finally, we abruptly turn on the dynamics in the system by quenching down the short lattice depths in
both 𝑥- and 𝑦-direction, such that 𝐽∕ℎ = 96(3)Hz and 𝐽⊥∕𝐽 = 0.0029(3), 0.55(2), 1.04(3), depending on
the desired dynamics. This is the moment when the pre-quench MI product state is projected onto the
eigenstate manifold of the post-quench Hamiltonian which is the ladder BHM as defined in Eq. 5.1.
As the initial state is not an eigenstate of the new ladder Hamiltonian after the quench, what follows
is a non-trivial time evolution. In the case of the chaotic ladder (𝐽⊥∕𝐽 > 0), we expect a diffusive
hydrodynamic equilibration process, eventually relaxing to a thermal equilibrium (thermalization). In
the case of ballistic dynamics (𝐽⊥∕𝐽 = 0), the relaxation of the system is expected to unfold in agreement
with free fermion predictions (cf. Appendix C)without reaching thermal equilibrium. After the quantum
system has evolved for a controllable time (up to 17.4ℏ∕𝐽, see Fig. 5.1b), we instantly stop the evolution
by ramping up the short lattice powers and image the atoms, as detailed in Sec. 3.4 and Sec. 4.3.

From the single-site resolved occupation data we are not only able to track the decay of the CDW
(see Section 5.3) but have direct access to the FCS in the system. As shown in Fig. 5.1c, we can
measure the particle number distribution in subsystems of variable size 𝐿. In particular, we will be
interested in the particle number fluctuation growth (see Section 5.4) which corresponds to the variance
of the FCS. Similarly, we can measure the spreading of density-density correlations following the
quench (cf. Section 5.5).
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40 × 40 sites ROI in about 35 fluorescence images. The solid lines are fits to the data using an exponentially damped

Bessel function (Eq. 5.4) and the dotted curve is the free fermion prediction, taking into account defects in the initial

state (but not disorder in the lattice potential). The inset shows the fitted decay constant τ as a function of J⊥∕J.

Error bars denote the standard deviation or the fit standard error (inset).

5.3 Local mean density decay
In the moment of the quench, the initial CDW becomes a highly excited state in the post-quench
ladder Hamiltonian (Eq. 5.1) and will immediately start to decay. The perhaps simplest quantity for
tracking the decay of the CDW is the imbalance which compares the mean occupation of even and
odd rungs. It is defined as [67, 68]:

I = (⟨�̂�even⟩ − ⟨�̂�odd⟩)∕(⟨�̂�even⟩ + ⟨�̂�odd⟩) (5.2)

Here, ⟨�̂�even⟩ = ⟨�̂�2𝑖⟩𝑖 and ⟨�̂�odd⟩ = ⟨�̂�2𝑖+1⟩𝑖 denote the average filling of even and odd sites in the ROI,
respectively. For the ideal initial CDW state with all atoms occupying either only the even or only the
odd rungs, |I| = 1, corresponding to a maximum contrast. In turn, when the CDW has decayed and
the atoms are equally distributed among even and odd ladder rungs, we expect I = 0 (zero contrast).
Since computing the imbalance, in principle, only requires information about the mean occupation of a
single lattice site (ideally, ⟨�̂�even⟩ = 1 − ⟨�̂�odd⟩), it can be regarded a localmean observable.

For the integrable configuration (𝐽⊥∕𝐽 = 0), the analytical prediction for the time evolution of
the imbalance is (cf. Appendix C):

I(𝑡) = J0(4 𝑡∕𝑇), (5.3)

where J0 is the zeroth Bessel function of the first kind [267] and 𝑇 = ℏ∕𝐽 is the tunnelling time along
the ladder. Thus, the imbalance is expected to oscillate with an amplitude that decays polynomially. In
contrast to the chaotic case, the dynamics are governed by infinitely many conserved quantities like
the occupation numbers of each single-particle eigenstate, in analogy with Newton’s cradle [258]. The
relaxation of the system will lead to a state locally described by a generalized Gibbs ensemble (GGE)
[268, 269] and can be further understood using the framework of generalized hydrodynamics (GHD)



5.4 Particle number fluctuations 75

(cf. Sec. 2.1 [270, 271]). In contrast, for chaotic configurations (𝐽⊥∕𝐽 > 0) the number of conserved
quantities is sharply reduced (to energy and particle number). Relaxation of the density variations is
expected to occur on short timescales, faster than suggested by a simple Bessel function in the integrable
case. The integrability-breaking interactions between the legs of the ladder dephase the oscillations that
occur in the free-fermion limit and lead to further damping of the imbalance oscillation.

Fig. 5.4 shows the mean imbalance (averaged over the entire ROI) as a function of evolution time
after the quench (in units of tunnelling times 𝑇 = 𝐽∕ℏ). For all three configurations 𝐽⊥∕𝐽 it can be
seen decaying on a timescale comparable to the tunnelling time. Notably, the decay is enhanced for the
chaotic system (𝐽⊥∕𝐽 ≈ 1.0) compared to the integrable configuration (𝐽⊥∕𝐽 ≈ 0.0), in agreement with
the expectation for a reduced number of conserved quantities. Motivated by the Bessel-type decay in
the integrable limit, we fit the experimental data using an exponentially decaying Bessel function:

I(𝑡) = 𝐴 J0(4 𝑡∕𝑇) 𝑒−𝑡∕𝜏, (5.4)

where 𝐴 is the amplitude and 𝜏 is the decay constant. This empirically chosen function aims to capture
enhanced decay behavior beyondwhat the Bessel function describes. The inset in Fig. 5.4 shows the fitted
decay constant 𝜏 as a function of 𝐽⊥∕𝐽, indicating a decrease of 𝜏 toward the chaotic case for 𝐽⊥∕𝐽 > 0.

Note that, for the integrable case we, in theory, expect to find 𝐴 = 1 and 𝜏 = ∞ (a pure Bessel-
type decay according to the free fermion prediction). However, due to defects in the initial state, the
measured amplitude is reduced to about 𝐴 = 0.9, consistent with our measured initial state quality.
The measured finite decay constant 𝜏 < ∞ is probably caused by disorder and inhomogeneities in
our lattice potential. In Section 6.2 we run free-fermion simulations to show the connection between
a reduced imbalance contrast and the presence of residual disorder in the system, and are able to
estimate a disorder amplitude of ∆ ≈ 𝐽.

5.4 Particle number fluctuations
If we want to probe FHD in the quantum regime we need to measure the particle number fluctuations
in the system. The fluctuation amplitude is defined as the variance of the particle number distribution,
i.e. the second moment of the FCS. For a subsystem of length 𝐿 we define:

Var𝐿 ≡ Var
⎛
⎜
⎝

𝐿∑
𝑖
�̂�𝑖
⎞
⎟
⎠
. (5.5)

Here, �̂�𝑖 = �̂�1,𝑖 + �̂�2,𝑖 is the total particle number in the 𝑖-th rung of the ladder. Note that the subsystem
contains 2 𝐿 sites. The time evolution of fluctuations are a key indicator of how relaxation (thermaliza-
tion) of the system unfolds beyond local observables. In a quantum system, the build-up of fluctuations
is a consequence of many-body entanglement spreading (cf. Sec. 1.7).

Expected behavior
Under perfect conditions, the pre-quenchCDW initial state is a defect-free product state of single particles
that are localized and not entangled with each other. Repeated measurements of the particle number
in any subsystem of this state would, therefore, always yield the same result and the particle number
fluctuationswould be zero. In practice, however, we expect tomeasure non-zero fluctuations even for the
initial product state: They originate from defects which show up at random positions in every shot and,
as a consequence, broaden the distribution of the total particle number measured in a fixed subsystem.

At long times after the quench the overall isolated chaotic quantum system is expected to ulti-
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mately approach a maximally entangled state. Thus, due to density-density correlations resulting
from entanglement, the measurement result for the particle number in any subsystem will depend
on the measurement results in the remainder of the overall system and appear thermal in agreement
with the ETH. As the subsystem is maximally entangled with its environment, the particle number
fluctuation amplitude in the infinite-temperature post-quench system after long times is expected to
take the maximum possible value. If just a single site is measured individually, one will find that it
is occupied with a probability �̄� and unoccupied with a probability 1 − �̄�, where �̄� ≈ 0.5 is the mean
filling of the system, yielding a variance of

𝜒(�̄�) = �̄� (1 − �̄�). (5.6)

This expression defines the susceptibility 𝜒. It quantifies the strength of the system’s response to external
fields. It is zero for �̄� = 0 (no particles) and �̄� = 1 (no mobility) and becomes maximal for �̄� = 0.5.
Assuming that all site occupations are random, the maximum particle number variance for a subsystem
of length 𝐿 containing 2𝐿 sites reads:

max(Var𝐿) = 2𝐿 𝜒(�̄�) = Var𝐿(𝑡 →∞), (5.7)

which is expected to be the late-time saturation value of Var𝐿(𝑡). How fast the fluctuations grow,
depends on how fast and through which channels entanglement spreads in the system following
the quench, as discussed in Sec. 1.7. For the integrable case (𝐽⊥∕𝐽 ≈ 0), we expect the fluctuations
to grow ballistically, while for the chaotic system (𝐽⊥∕𝐽 ≈ 1) the fluctuation growth is generally a
diffusive hydrodynamic process.
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Figure 5.5 | Time evolution of particle number fluctuations sorted by subsystem size. Measured atom number

variance in subsystems of various lengths L = 2, 3, 4, 6, 8 and 10 as a function of the evolution time after the quench

(normalized to the tunnelling time T = h̄∕J) for J⊥∕J ≈ 0.0, 0.5, 1.0. The solid lines are fits to the data using the

empirical fit function introduced in Eq. 5.9. The dashed line is the infinite-temperature saturation value expected

from ETH (Eq. 5.7). The discrepancy between the experimental and expected saturation levels can be predominantly

attributed to disorder, as discussed in Sec. 6.2.
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Measured fluctuation growth
Fig. 5.5 shows the particle number variance in different subsystem sizes ranging from 𝐿 = 2 to 𝐿 = 10 for
𝐽⊥∕𝐽 = 0.0, 0.5, 1.0, comparing integrable and chaotic configurations. The dashed black line indicates
the infinite-temperature limit of the fluctuations given by Eq. 5.7. All traces start at a non-zero value at
𝑡 = 0, which can be attributed to defects in the initial state, as discussed above. The fluctuations grow
fast at the beginning and are then seen saturating at a value clearly below the infinite-temperature limit.
This can be explained by experimental imperfections, such as imperfect initial state filling (cf. Eq. 5.7),
disorder and finite size effects, and raises the question to what extent the (chaotic) system actually
fully thermalizes, as discussed in Sec. 6.2 and Sec. 6.3.

Importantly, one finds that for larger subsystem sizes the fluctuation growth is slower. This is due to
the fact that larger subsystems take longer to become correlated with their environment because of the
finite speed at which entanglement and correlations can spread in the system. The fluctuation growth
speed difference between the integrable and the chaotic case is particularly enhanced in large subsystems
such as 𝐿 = 10, consistent with the spreading of density-density correlations discussed in Sec. 5.5.

Fig. 5.6 provides an alternative perspective on the data shown in Fig. 5.5 and presents the time
evolution of the variance sorted by 𝐽⊥∕𝐽 instead of subsystem size 𝐿. Here, the variance

Var𝐿(𝑡) = [Var𝐿(𝑡) − Var𝐿(0)]∕[Var𝐿(∞) − Var𝐿(0)], (5.8)

has been normalized with respect to the saturation value (red) and the initial state value (blue), directing
particular attention to how the fluctuation growth speed scales with subsystem size and highlighting
the slow fluctuation growth in large chaotic subsystems (right panel). In the following, we will quantify
the fluctuation growth and discuss Fig. 5.6 in more detail.
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Figure 5.6 | Time evolution of particle number fluctuations sorted by J⊥∕J. Measured atom number variance in

subsystems of various sizes for J⊥∕J ≈ 0.0, 0.5, 1.0, normalized to the initial state value (blue) and the late time

saturation value (red), as defined in Eq. 5.8. The data points show the saturation time tsat of the fluctuations after

which the variance has reached 80% of its saturation value. The solid lines are fits to these data points to obtain the

scaling exponent z in L ∼ t
1∕z

sat
as shown in Fig. 5.7. Error bars denote the uncertainty of the fit. The grey area in the

right panel indicates the parameter regime where the fluctuation growth is too slow to reliably extract the saturation

value by fitting the data.

Scaling
As a measure for the fluctuation growth speed, we define a saturation time 𝑡sat: It is the time after
which the particle number variance has reached 80% of its saturation value. We obtain 𝑡sat from the
experimental data by fitting the fluctuation growth traces in Fig. 5.5. The fit function is empirical and
has a form which is reminiscent of the Fermi-Dirac distribution:
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J⊥∕J z
≈ 0.0 1.07(6)
≈ 0.5 1.4(2)
≈ 1.0 2.2(4)

Table 5.1 | Fluctuation growth scaling exponents. Scaling exponents z in Eq. 5.10 extracted from the data shown in

Fig. 5.7 using the fit function in Eq. 5.9.

Var(𝑡,Var∞, 𝑘, 𝑑) = (Var∞ − Var0) (
2

1 + 𝑒−𝑘 𝑡𝑑
− 1) + Var0. (5.9)

Here, Var0 = Var(𝑡 = 0) and Var∞ = Var(𝑡 → ∞). The free fit parameters are Var∞, 𝑑 and 𝑘, while
Var0 is fixed to the measured variance at 𝑡 = 0. We then determine the intersection of the fit result
with the 80% threshold of the fitted saturation value, which defines the saturation time 𝑡sat (i.e., 0%
corresponds to Var0 and 100% is corresponds to Var∞). Both Fig. 5.6 and Fig. 5.7 show 𝑡sat as a function
of subsystem size for 𝐽⊥∕𝐽 ≈ 0.1, 0.5, 1.0, with linear and logarithmic axes, respectively. The logarithmic
plot reveals that there is a polynomial scaling between 𝑡sat and 𝐿, as expressed by:

𝐿 ∼ 𝑡1∕𝑧sat , (5.10)

with scaling exponent 𝑧 [15, 272, 273]. Using a linear fit (solid lines in Fig. 5.7)we obtain the values shown
in Tab. 5.1. These values agree with the expectation that, on the one hand, the dynamics in the decoupled
chains (𝐽⊥∕𝐽 ≈ 0.0) are integrable (𝑧 = 1), such that the speed at which a subsystem becomes correlated
with the environment scales linearly with its size. On the other hand, the dynamics in the system with
fully coupled legs (𝐽⊥∕𝐽 ≈ 1.0) are diffusive (𝑧 = 2), such that the scaling is quadratic. For 𝐽⊥∕𝐽 ≈ 0.5,
we find a scaling exponent that lies between the ballistic and the diffusive limit and can be interpreted
as a crossover situation between ballistic and diffusive dynamics. This special case is discussed in more
detail in the following Section which focusses on the spreading of density-density correlations.
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Figure 5.7 | Scaling of fluctuation growth timescales. Fluctuation saturation time tsat as a function of subsystem size

for J⊥∕J ≈ 0.0, 0.5, 1.0. The solid lines are linear fits for extracting the scaling exponent z in L ∼ t
1∕z

sat
. The dashed lines

are guide to the eyes, corresponding to ballistic dynamics (z = 1, dark red) and diffusive (z = 2, light red) dynamics.
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5.5 Density-density correlations
While partitioning the overall systems in larger and larger subsystems is a form of coarse-graining
toward a hydrodynamic point of view, the dynamics of the system eventually root in the microscopic
laws that govern the interactions between the particles and how they become entangled with each
other. An important consequence of spatial entanglement are density-density correlations. Thanks
to our ability to resolve individual lattice sites, we can directly access them at equal times [59, 62, 73]
(unequal time correlators are out of reach as taking a fluorescence image destroys the quantum state).
The density-density correlations are closely related to the number fluctuations discussed in the previous
Section. In fact, the particle number variance for a certain subsystem of length 𝐿 can be expressed as a
sum of density-density correlators involving distances up to 𝑑 = 𝐿 (see Appendix D).

Definitions
The connected density-density correlator for two sites at position 𝑖 and 𝑗 in leg 𝛼 = 1, 2 and 𝛽 = 1, 2,
respectively, is defined as:

𝐶𝛼,𝛽𝑑 =
⟨
�̂�𝛼,𝑖�̂�𝛽,𝑗

⟩
−
⟨
�̂�𝛼,𝑖

⟩ ⟨
�̂�𝛽,𝑗

⟩
, (5.11)

where 𝛼, 𝛽 = 1, 2 denote the legs of the ladder and 𝑖, 𝑗 label sites with distance 𝑑 = 𝑖 − 𝑗 along the
ladder. Positive (negative) values mean that if there is an atom on site 𝑖 in leg 𝛼 the probability to find
an atom (a hole) at position 𝑗 in leg 𝛽 is enhanced compared to what one would expect from the mean
filling in the system. The average ⟨…⟩ in Eq. 5.11 is taken, firstly, over all ladders in all fluorescence
images (index 𝑘) in the ROI and then, secondly, over all possible pairs of site indices corresponding
to the same distance 𝑑 = 𝑖 − 𝑗, i.e. ⟨…⟩ = ⟨⟨…⟩𝑘⟩𝑑.

In the following, we will focus on three different types of connected correlators in the ladder system:

• The density-density correlations within the same leg (𝛼 = 𝛽), averaged over both legs:

𝐶𝐼𝑑 =
1
2
(
𝐶1,1𝑑 + 𝐶2,2𝑑

)
. (5.12)

• The density-density correlations between sites in different legs (𝛼 ≠ 𝛽):

𝐶𝐼𝐼𝑑 = 1
2
(
𝐶2,1𝑑 + 𝐶1,2𝑑

)
. (5.13)

• The density-density correlations of the rungs of the ladder:

𝐶𝐼𝐼𝐼𝑑 = ⟨�̂�𝑖�̂�𝑗⟩ − ⟨�̂�𝑖⟩⟨�̂�𝑗⟩. (5.14)

Here, �̂�𝑖 = �̂�1,𝑖 + �̂�2,𝑖 , the total atom number in the rung at position 𝑖. One can show that

𝐶𝐼𝐼𝐼𝑑 = 2
(
𝐶𝐼𝑑 + 𝐶𝐼𝐼𝑑

)
. (5.15)

The third correlator 𝐶𝐼𝐼𝐼𝑑 effectively treats the ladder system as one-dimensional and is the most
natural choice when investigating the crossover from an integrable truly one-dimensional system (where
it should match 𝐶𝐼𝑑) to a chaotic quasi-one dimensional ladder. Further, as 𝐶

𝐼𝐼𝐼
𝑑 combines more two-site

correlation terms, it is expected to have the highest signal-to-noise ratio. The autocorrelator 𝐶𝐼𝐼𝐼0 is
equal to the particle number variance in a ladder subsystem of length 𝐿 = 1. The second correlator
𝐶𝐼𝐼𝑑 is interesting for studying how the two legs of the ladder become correlated over time due to the
coupling between the legs of the ladder for 𝐽⊥∕𝐽 > 0.
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Measured correlation spreading
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Figure 5.8 | Time-evolution of the density-density correlations. Density-density correlation profiles C
I

d
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1d chains), C
II

d
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III

d
(rung correlations) as a function of evolution time after the quench for

J⊥∕J ≈ 0.0, 0.5, 1.0, obtained from 35 fluorescence images. The dashed lines indicate the maximum speed at which

correlations can spread according to the Lieb-Robinson velocity (4Ja∕̄h).

Fig. 5.8 shows all three measured correlators as a function of distance 𝑑 = 𝑖 − 𝑗 and evolution time
after the quench for 𝐽⊥∕𝐽 = 0.0, 0.5, 1.0. The emerging cones paint a clear picture of how correlations
spread in the system depending on what kind of dynamics are at play: In the integrable case (𝐽⊥∕𝐽 ≈ 0.0,
top row in Fig. 5.8), we find a correlation cone with a linear envelope, suggesting that the density-density
correlation front spreads ballistically at constant speed. The slope of the cone’s envelope is consistent
with 4𝐽𝑎∕ℏ (dashed lines), where 𝑎 = 𝑎short = 383.5nm is the lattice spacing in the short lattice. This is
the Lieb-Robinson-velocity predicted by free fermion dynamics [176] (cf. Appendix C). It equals twice
the group velocity of free fermions and corresponds to the maximum velocity that two fermions can
have relative to each other [274, 275]. Also note the stripy inner structure of the cone, resulting from
coherent quantum dynamics, similar to a single-particle quantum random walk.

In the chaotic case (𝐽⊥∕𝐽 ≈ 1.0, bottom row in Fig. 5.8), we find a cone with an inward-bending
envelope that suggests faster correlation spreading at short times and slower spreading at late times.
This is consistent with diffusive fluctuation growth which, as we have seen in Section 5.4, leads to a
quadratic scaling between saturation time and subsystem size. If we take the scaling exponent obtained
in the preceding Section (𝑧 ≈ 2) and use the relationship between particle number fluctuations and
density-density correlations (cf. Appendix D), we find that the envelope of the diffusive cone is described
by a square-root function 𝜎env =

√
𝐵𝑡, where 𝜎env is the Gaussian 𝜎-width of the correlation cone and

𝐵 is a scaling parameter that can be predicted using FHD (see Section 2.4). As shown in Sec. 5.7, we
can use this property to obtain the diffusion constant.

In the crossover case of 𝐽⊥∕𝐽 ≈ 0.5 (middle row in Fig. 5.8), the density-density correlations provide
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intuition for what happens in a system where integrability is weakly broken [270]. We find a mixed
cone with a ballistic onset at short times (𝑡 < 2𝑇), followed by an inwards turning envelope at later
times (𝑡 > 2𝑇), which looks more similar to the diffusive cone observed for 𝐽⊥∕𝐽 ≈ 1.0. The crossover,
thus, turns out to be a crossover in time from ballistic to diffusive dynamics [276–278]. The timescale
separating short-time ballistic and long-time diffusive behavior is set by ℏ∕𝐽⊥ which determines how
long it takes for the ladder system to realize that its two legs are coupled and to probe its dimensionality –
and it is the coupling of the legs that leads to a break-down of the free fermionmapping and, therefore, to
a breakdown of integrability. To our knowledge, ourmeasurement constitutes the first direct observation
of such a crossover situation using microscopic observables. It beautifully illustrates how the timescales
on which hydrodynamics emerge depend on the level of integrability breaking and how long it takes
for partially conserved modes with ballistic spreading to die out. Notably, the cone observed in the
chaotic case (𝐽⊥∕𝐽 ≈ 1.0) also appears ballistic in the limit of very short evolution times, consistent
with a square root envelope.

In comparison with 𝐶𝐼𝐼𝐼𝑑 , the 𝐶𝐼𝑑 correlator exhibits qualitatively the same behavior but has a worse
signal-to-noise ratio for 𝐽⊥∕𝐽 > 0, as it only contains information from individual ladder legs. If there is a
non-zero coupling between the two legs of the ladder, density-density correlations not only emerge along
but also perpendicular to the chain. The density-density correlations between the two legs are captured
by 𝐶𝐼𝐼𝑑 (middle column), which is zero for 𝐽⊥∕𝐽 ≈ 0 and grows in amplitude as 𝐽⊥∕𝐽 approaches 1.
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Figure 5.9 | Hydrodynamic tail. Magnitude of the rung density-density correlator C
III

2
for distance d = 2 in the chaotic

case (J⊥∕J ≈ 1.0) as a function of the evolution time after the quench. The solid line is a fit to the experimental

data to extract the exponent of the polynomial decay |CIII

2
(t)| ∼ t

−ξ
, yielding ξ = 0.519(41). This suggests that global

equilibrium is approached slowly in what is known as a hydrodynamic tail. Error bars denote the standard deviation.

In a hydrodynamic system, the density-density correlations are expected to approach their equi-
librium value algebraically as ∼ 𝑡−0.5, as discussed in Sec. 2.4. To check to what extent our quantum
system follows this expectation, Fig. 5.9 plots the magnitude of the rung density-density correlator
|𝐶𝐼𝐼𝐼2 (𝑡)| for distance 𝑑 = 2 as a function of the evolution time 𝑡 > 0.5𝑇 after the quench. Early times
𝑡 < 0.5𝑇 are excluded from this analysis due to the finite time it takes for correlations to spread to
non-zero distances. We fit the data using a polynomial decay function:

|𝐶𝐼𝐼𝐼2 (𝑡)| = 𝐴 𝑡−𝜉 , (5.16)
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where 𝜉 is the decay exponent. The fit yields 𝜉 = 0.52(4), in excellent agreement with the expectation
𝜉 = 0.5. This indicates the presence of a hydrodynamic long-time tail, a symptom of the system’s slow
diffusive path toward global equilibrium [195]. The hydrodynamic tail should appear in density-density
correlators belonging to all distances. However, care must be taken when choosing larger distances
as only the late-time behavior after local thermalization is hydrodynamic.

5.6 Separation of equilibration timescales
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In Sec. 5.3 we have fitted the decay constant of the imbalance decay, which is the relaxation time
of a mean local observable. In Sec. 5.4 we have obtained the fluctuation saturation timescales of the
total particle number in subsystems of various sizes, which are relaxation times of coarse-grained
quantities. Fig. 5.6 presents and compares all these measured equilibration timescales at a glance and,
in doing so, visualizes an important feature of emerging FHD: As we tune the system from integrable
(𝐽⊥∕𝐽 ≈ 0.0) to chaotic (𝐽⊥∕𝐽 ≈ 1.0), the imbalance decay is enhanced, while fluctuation growth is
slowed down. Particularly in the chaotic case for large system sizes, there is a strong separation of
equilibration timescales: While the local mean density decays quickly on the order of a single tunnelling
time, the fluctuations in a subsystem of length 𝐿 = 8 saturate on a timescale that is more than 10
times longer – and, as shown in Sec. 5.4, there is a quadratic scaling between the fluctuation saturation
time and the subsystem size. As a consequence, while the system might look locally like it has already
thermalized because the mean density has flattened out, it actually has not since the fluctuations are
still growing. This underlines the importance of studying not only the mean but also higher moments
of the FCS in order to obtain a complete picture of the non-equilibrium dynamics at play. In this work,
we focus only on the mean and the fluctuations, limited by the the amount of data we are able to take
and the quality of our data in light of experimental imperfections and initial state quality. However,
measuring higher moments is in the scope of future experiments, as pointed out in the Outlook.

Note that both in the integrable and in the chaotic case the imbalance and the subsystem fluctuation
will eventually reach the same saturation values, even though the integrable system does not thermalize.
Thus, the FCS of the particle number (a real space observable) alone are generally insufficient for telling
whether a late-time state is thermal or not – especially if the infinite number of conservation laws in
the integrable case concern momentum space.
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5.7 Extracting the diffusion coefficient
Experimental evidence for FHD
How fluctuations grow and particle density variations time-evolve in out-of-equilibrium systems are
important questions that FHD tries to answer. FHD is a classical macroscopic theory which does not
require knowledge about the microscopic physics of the system. Instead, FHD equations describe the
time evolution of few coarse-grained conserved quantities in presence of random noise. Even though
the ladder system under investigation in this Chapter is governed by the laws of quantum mechanics
on a microscopic scale, we have found strong evidence for hydrodynamic behavior in agreement with
the predictions from FHD:

• In Sec. 5.4, we have seen that, in the chaotic case (𝐽⊥∕𝐽 ≈ 1.0), the saturation timescale of the
particle number fluctuations scales quadratically with system size, as expected in hydrodynamic
systems.

• In Sec. 5.5, we have directly observed the diffusive spreading of correlations as a light cone shaped
by a square root envelope.

• Also in Sec. 5.5, we have found that, in the chaotic case, the density-density correlations decay
polynomially as ∼ 𝑡−0.5 in what is known as a hydrodynamic tail.

• In Sec. 5.6, comparing the saturation timescales of local mean densities and fluctuations has
revealed a strong separation of equilibration timescales in large subsystems, typical for systems
governed by hydrodynamic processes.

These observations suggest that FHD could provide not only a qualitative but also a quantitative
description of out-of-equilibrium quantum systems. Strikingly, this would mean that not only the
equilibrium dynamics but also the non-equilibrium dynamics after a quench (which we measure)
must be fully determined by a single quantity – the linear-response diffusion constant. The strategy
for quantitatively testing the predictions of FHD will be to extract this diffusion constant from our
experimental data and compare it to computed values from the literature. Crucially, while we can
obtain the diffusion constant from a far-from-equilibrium measurement, the reference values from the
literature were computed in an equilibrium setting. Hence, by showing quantitative agreement between
experimental and theoretical values, we build on an intriguing relationship between the equilibrium
properties (the diffusion constant) of the system and its non-equilibrium fluctuations. This extends
the notion of fluctuation-dissipation relations to far-from-equilibrium scenarios.

Extracting the diffusion constant from fluctuation growth
One way to obtain the diffusion constant 𝐷 is to fit the chaotic fluctuation growth using an FHD
prediction with 𝐷 as a free fit parameter. In Sec. 2.4 we have discussed a simple derivation of the
time evolution of the particle number variance in large subsystems at short times (cf. Eq. 2.45). This
result can be further refined and adapted to a ladder geometry through a hydrodynamic description
of quantum operator evolution [279]. As detailed in the supplementary information of Ref. [16], the
final fit function for the variance at short times (𝑡 ≪ (𝐿𝑎)2∕𝐷) reads:

Var(N𝐿(𝑡))CDW = 𝐴
√

2𝐷𝑡
𝜋 𝑎2

+ 𝑐. (5.17)

Here, 𝐴 is a scaling factor and 𝑐 is an offset parameter. They take account for the fact that due to defects
in the pre-quench CDW, the fluctuations at 𝑡 = 0 are non-zero and the overall growth amplitude is
diminished. The prefactor 𝐴 is given by the difference between the susceptibility 𝜒 (or the variance of
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a randomly occupied single site, cf. Eq. 5.6) and the measured variance of single site 𝑡 = 0, averaged
over all sites in the system:

𝐴 = 4 (𝜒 − ⟨Var(�̂�𝛼,𝑖)⟩𝛼,𝑖). (5.18)

The factor 4 normalizes the expression to 1. Under ideal conditions with a perfect initial state, the
experimental variance should vanish and, since 𝜒(�̄� = 0.5) = 0.25 (Eq. 5.6), we get 𝐴 = 1.

Fig. 5.11 shows the time evolution of the particle number variance for a subsystem of size 𝐿 = 16.
Because of its large size this subsystem thermalizes on timescales far beyond what we can observe
in our experiment and we do not see the fluctuations saturate. However, it is the growth on short
timescales before saturation where the prediction from FHD is expected to hold. Fitting the variance
data in Fig. 5.11 using Eq. 5.17 with free fit parameters 𝐷 and 𝑐 yields 𝐷 = 1.11(25) 𝐽𝑎2∕ℏ.
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Figure 5.11 | Extracting the diffusion constant from the variance time evolution. Atom number variance for

a subsystem of size L = 16 as a function of the evolution time after the quench. The solid line is a fit to the

experimental data using the FHD prediction for the time evolution of the atom number variance (Eq. 5.17) and

yields D = 1.11(25) Ja
2∕̄h. Error bars denote the standard deviation.

Extracting the diffusion constant from density-density correlation spreading
Another way to obtain the diffusion constant 𝐷 is to fit the measured density-density correlations in
the chaotic case (cf. Fig. 5.8 and Fig. 5.12a) using the FHD prediction with 𝐷 as a free fit parameter.
Disregarding the autocorrelator (𝑑 = 0), the fit function is given by Eq. 2.40 with an added offset 𝑐
and a generic amplitude 𝐴:

𝐶𝐼𝐼𝐼𝑑 = 𝐴 𝑎 𝑒
− 𝑑2𝑎2

8𝐷𝑡

2
√
8𝜋𝐷𝑡

+ 𝑐. (5.19)

It describes a Gaussian profile with an envelope that grows polynomially according to:

𝜎env(𝑡) =
√
4𝐷𝑡∕𝑎2. (5.20)

The free fit parameters are 𝑐, 𝐴 and the diffusion constant 𝐷. The fitted date includes only (non-local)
correlations belonging to distances 1 ≤ 𝑑 ≤ 20, excluding the autocorrelator. The latter is a local quantity
with different dynamics, approaching a value related to the susceptibility of the system instead of decay-
ing to zero as an hydrodynamic tail (cf. Sec. 2.4). We obtain a diffusion constant of 𝐷 = 0.88(5) 𝐽𝑎2∕ℏ
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Source D (Ja
2∕̄h)

from VarL=16(t) (measured, Fig. 5.11) 1.11(25)
from C

III

d
(t) (measured, Fig. 5.12) 0.88(5)

from [280] (theory) 0.95

from [281] (theory) ≈ 0.97

Table 5.2 | Comparison of measured diffusion constants with theory. The measured linear-response diffusion

constants are in very good agreement with theory values taken from linear-response studies in the literature. Re-

markably, we extract D (an equilibrium property) from observing the fluctuation dynamics after a quench in a

far-from-equilibrium setting. The good agreement suggests that FHD provides not only a qualitative but also a

quantitative description of our closed chaotic quantum system.

Fig. 5.12 juxtaposes the experimentally measured density-density correlations and the fit applied to
the data. Note that the uncertainty of the fitted diffusion constant is smaller compared to that of the
value obtained from the variance time evolution fit. This is because, if we use the entire correlation cone
for fitting (rather than the variance which combines many correlators into a single quantity, see Eq. D.1),
the number of individual correlators and, thus, the amount of information available to the fit is larger.
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Figure 5.12 | Extracting the diffusion constant from the density-density correlations. a, Rung density-density

correlations as a function of evolution time after the quench for the chaotic case with J⊥∕J ≈ 1 b, Fit to the

experimental data in (a) (distances 1 ≤ d ≤ 20) using the prediction from FHD, yielding a diffusion constant of

D = 0.88(5) Ja
2∕̄h. The dashed curves indicates the 2 σenv-envelope of the Gaussian fit function (Eq. 5.20).

Discussion
Both values for the linear-response diffusion constant fitted above from non-equilibrium data are in
good agreement with computed values reported in the literature in the context of linear-response theory
(𝐷 = 0.95 𝐽𝑎2∕ℏ [280], 𝐷 ≈ 0.97 𝐽𝑎2∕ℏ [281]), see Tab. 5.2 for a summary. This is strong evidence that
the classical FHD description indeed applies to our chaotic quantum system and is able to describe its
far-from-equilibrium behavior starting from an infinite-temperature state. This means that the non-
equilibrium dynamics are determined by a single quantity – the equilibrium diffusion constant of the
system. Diffusion constants describing quantum many-body systems are hard to compute numerically.
In our experiment we obtain this quantity with high precision within a few hours of data taking.

Most generally, the diffusion constant depends on the density and the temperature 𝑇 of the initial
state. Further, the dynamics of the density can be coupled to the dynamics of the energy 𝜖 in the system
through thermoelectric coupling, such that 𝐷 = 𝐷(𝑛, 𝜖, 𝑇). The setting of this experiment is a ladder
system at half filling in which an infinite-temperature initial state time-evolves after a quench. At half
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filling, linear thermoelectric coupling can be ruled out due to particle-hole symmetry and must enter
non-linearily through the transport coefficients. However, at infinite temperature, a 𝜖 ↔ −𝜖 symmetry
holds, such that 𝐷(𝜀, 𝑛) ∼ 𝐷(𝑛) + O(𝜀2) and any hydrodynamic corrections resulting from that are
expected to be subleading [16]. Since the initial density variation is short-spaced, the average filling in
the entire system approaches ≈ 0.5 very quickly. Thus, the diffusion constant we measure is the infinite-
temperature half-filling constant. Repeating the measurements for initial states of finite temperature in
systems of different fillings requires additional corrections to the simple FHD model describing this
system. Observing and characterizing these quantitatively, however, is beyond the scope of this work.



CHAPTER 6

Characterization of experimental imperfections

This Chapter mainly presents benchmark measurements characterizing the experimental conditions
under which the results in Chapter 5 were obtained. We identify potential sources of systematic
errors, including atom loss, disorder in the lattice potentials and finite-size effects and assess how
these imperfections affect the experimental data. In addition, we show that the challenging imaging
resolution leads to correlated reconstruction errors and describe a method for correcting them in the
density-density correlations.

6.1 Atom loss

Atom loss occurs due to parametric heating in the optical lattice or the dipole traps due to scattering
events involving the trapping light [282]. Atoms are also lost due to collisions with residual gas particles
in the imperfect vacuum [283]. Further, if we are insufficiently deep in the hard-core limit, doublons can
form [284]. These are then lost due to light-assisted collisions during imaging and, therefore, contribute
to a decrease of the visible atom number. While atom loss due to the vacuum lifetime is independent
of the lattice parameters, heating and doublon generation tend to be enhanced in shallower lattice
potentials when the parametric resonances are smaller, the particles can move and interact and the on-
site interaction energy 𝑈 is reduced due to weaker confinement. In our experiment, the lifetime of the
atoms deep in the MI regime is typically on the order of seconds, while in post-quench conditions with
𝐽, 𝐽⊥∕ℎ ≈ 100Hz (cf. Sec. 5.2) it is reduced to just hundreds of milliseconds. Atom loss due to thermal
hopping during the exposure time of the imaging process is not considered here, see Sec. 3.4 for details.

Fig. 6.1 shows the atom number𝑁atom (normalized to the initial state) as a function of the evolution
time after the quench for 𝐽⊥∕𝐽 ≈ 0.0, 0.5, 1.0. We use an exponential fit to extract the lifetime 𝜏 (only
including data points with 𝑡 > 𝑇). The fit yields 𝜏 = 650(120), 420(50) and 330(44)ms for 𝐽⊥∕𝐽 ≈
0.0, 0.5, 1.0, respectively, suggesting that atoms in the coupled ladder (shallower lattice potentials)
are more susceptible to heating. Another important observation is the sharp drop immediately after
𝑡 = 0 in the 𝐽⊥∕𝐽 ≈ 1 data. It is most likely caused by the non-zero doublon fraction which emerges
shortly after the lattice depth is quenched down, taking us further away from the hard-core limit
to 𝑈∕𝐽 ≈ 7. For all values of 𝐽⊥∕𝐽 considered in this work, we made sure that the total atom loss
after the quench does not exceed 10%. This limits our experiments to a maximum evolution time of
approximately 18 tunnelling times.

87
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Figure 6.1 | Atom loss during the time evolution after the quench. Fraction of remaining atoms in the ROI as a

function of evolution time. The solid lines are exponential fits for obtaining lifetimes. The sudden drop of the atom

number directly after the quench (particularly visible for the fully coupled ladder with J⊥∕J ≈ 1) is attributed to an

enhanced doublon fraction which is lost due to parity projection and results in apparent atom loss. Error bars denote

the standard error.

6.2 Disorder

Free fermion simulations
The potential landscape realizing the quantum ladder systems in not perfectly homogeneous. On the
one hand, imperfect overlapping of the lattice beams with their retro-counterparts as well as the shallow
vertical lattice light introduce harmonic confinement that bend the ladders away from the center of
the ROI. As described in Section 4.6, we can remove this harmonic confinement using a DMD. On the
other hand, wavefront errors in the lattice beams as well as uncontrolled back-reflections on optical
surfaces can cause small-scale disorder of a more random kind that cannot be easily compensated
with programmable potentials, especially given our short-spaced optical lattices. In order to study the
impact of potential disorder and better characterize its presence in our system, we perform benchmark
simulations for the integrable case (𝐽⊥∕𝐽 = 0). Here, we can take advantage of the fact that the hard-core
Bose-Hubbard Hamiltonian in Eq. 5.1 can be mapped onto free-fermions (see Appendix C for details),
allowing to efficiently compute the time evolution of local observables and non-local correlators. The
simulation is performed in one dimension with𝑁 = 50 sites and open boundary conditions. Mimicking
the evaluation of the actual experimental data, we consider the innermost 40 sites as our ROI, leaving a
buffer zone of five sites on either side. If not stated otherwise, the simulation results shown below are
averaged over 600 runs with initial states randomly sampled from the experimental filling probabilities
in even and odd rows of the CDW initial state (cf. Sec. 4.5).

The exact type of the small-scale disorder in our system is not known. Thus, we consider both
white noise (random and uncorrelated) and Aubry-André-type disorder (deterministic). White noise
is modelled by introducing on-site energy shifts 𝑉𝑖 (cf. Eq. C.10) that are randomly sampled from an
interval [−∆,∆], where ∆ quantifies the disorder strength. In contrast, Aubry-André disorder [285]
consists of a periodic sine potential (wavelength 𝜆AA, phase 𝜙) modelled by:

𝑉𝑖 = ∆ sin (2𝜋𝑖∕𝜆AA + 𝜙) . (6.1)

The phase 𝜙 is randomly sampled from an interval [0, 2𝜋] and ∆ is the disorder amplitude.
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Mean imbalance. – In presence of local small-scale disorder the local tunneling behavior will vary
from site to site. As a consequence, imbalance oscillations in the ROI (cf. Section 5.3) are expected
to dephase and the mean imbalance (averaged over the ROI) will decay faster. We simulate the time
evolution of the mean imbalance and fit the traces using Eq. 5.4 to obtain the decay constant 𝜏. In
Fig. 6.2a we plot 𝜏 as a function of disorder strength ∆ for white noise and Aubry-André-type disorder.
For reference, the horizontal line indicates the experimentally measured decay constant (cf. Sec. 5.3).
From the intersection of the simulated decay constants with the experimental reference value we find
that the measured imbalance decay is consistent with a disorder strength of about ∆ ≈ 𝐽, irrespective
of what type of disorder is present. In the following, we will assume white noise for simplicity. The
effect of white noise of strength ∆ = 𝐽 is shown in Fig. 6.2b which compares the experimental time
evolution of the imbalance with simulated traces, both with and without disorder. One can see that the
presence of white noise disorder enhances the damping of the mean imbalance in the ROI and that
the experimental data is consistent with a disorder strength of ∆ = 𝐽.
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Figure 6.2 | Estimation of the disorder strength in the experiment. A free-fermion approach is used to simulate the

decay of a CDW initial state in presence of different disorder types and strengths (J⊥∕J = 0). a, Decay constant of the

imbalance time evolution as a function of disorder strength for white noise disorder as well as for Aubry-André-type

disorder of various wavelengths λAA (in units of lattice sites). The black horizontal line and shaded region show

the experimentally measured decay constant (cf. Fig. 5.4) and its uncertainty. Error bars denote the fit error. The

intersection of the experimental value with the simulated traces allows to estimate that the disorder strength in the

experiment is about ∆ ≈ J. b, Simulated time evolution of the imbalance for white noise disorder (∆ = J) and no

disorder (∆ = 0) in comparison with the experimental imbalance data for J⊥∕J = 0.

Density-density correlations. – Fig. 6.3a shows the density-density correlations obtained from
the free fermion simulations as a function of distance and time, in analogy with the experimental data
depicted in Fig. 5.12. In presence of randomwhite noise disorder of strength∆ ≈ 𝐽, the internal structure
of the cone is washed out, particularly after longer evolution times (𝑡 > 3𝑇). While the maximum speed
of correlation spreading (the envelope of the cone) is unaffected, the density-density correlations seem to
partially concentrate at shorter distances, indicating a higher degree of Anderson localization [286–288].

Anderson localization length. – The amount of Anderson localization present in the system
is quantified by the Anderson localization length 𝜉1d which corresponds to the typical distance over
which density-density correlations can spread. We can relate 𝜉1d and the disorder amplitude ∆ using
additional free fermion simulations as follows: Instead of a CDW, we choose an initial state 𝜓(𝑡 = 0)
representing a single particle placed in the center of the overall system. In order to mitigate finite-size
effects, the overall system size is set to 𝐿tot = 151. When released from its starting position the particle
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will delocalize over time. The amount of single-particle delocalization in 𝜓(𝑡) can be quantified using
the inverse participation ratio (IPR):

IPR =
⎛
⎜
⎝

𝐿tot∑
𝑖
⟨𝑛𝑖⟩2

⎞
⎟
⎠

−1

, (6.2)

where ⟨𝑛𝑖⟩ is the mean occupation of site 𝑖. The IPR is related to 𝜉1d via [289]:

IPR = coth(1∕𝜉1d) tanh(𝐿tot∕𝜉1d), (6.3)

allowing to obtain 𝜉1d. For a white-noise disorder of strength ∆ = 𝐽 we find 𝜉1d = 18 lattice sites. It
is the lengthscale over which we expect the inner structure of the correlation cone to wash out and
the correlations to concentrate at short distances (cf. Fig. 6.2a).

Fluctuations. – Following Section 5.4, we also compute the particle number fluctuations in
subsystems of different length 𝐿, as shown in Fig. 6.3b. Again, assuming white noise disorder of strength
∆ ≈ 𝐽, we find excellent agreement between the simulated traces (solid lines) and the experimental data
(markers). For comparison, Fig. 6.3b also shows the simulated variance evolution in absence of disorder
(dashed lines), revealing how disorder decreases the saturation value of the fluctuation amplitude,
particularly in large subsystems. This illustrates how Anderson localization due to disorder prevents
the system from fully reaching global equilibrium (in an ETH sense) and suppresses the thermalization
of non-local observables. The simulation also takes into account defects in the initial state, which have
a small impact on the saturation value of the variance but mainly lead to an offset at 𝑡 = 0. This is
important for finding agreement between the simulated and experimental traces at short evolution times.
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Spatial imbalance decay profile
In Sec. 5.3 we discuss the time evolution of the mean imbalance averaged over the entire ROI. However,
due to disorder or, more generally, due to inhomogeneities in the potential landscape, the damping
of the imbalance oscillations will vary spatially. We can get an idea of how disorder is distributed in
the system by splitting the ROI into small tiles of 2 × 2 sites and, for each tile, fit the decay constant of
the mean imbalance averaged over the tile, similar to the fitting procedure in Sec. 5.3. Fig. 6.4a shows
the fitted decay constants as a function of the two-dimensional position of the tile in the ROI (here,
𝐽⊥∕𝐽 = 0.5). It reveals a stripy pattern, suggesting that there are regions in the short lattice with more
disorder and others with less disorder. As seen in the histogram in Fig. 6.4b, the decay constants are
spread over large range between 1 and 5 tunnelling times. We suspect that the disorder causing these
spatial variations originates primarily from the vertical lattice.
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Spatial tunnel oscillations profile
Inhomogeneities can tilt the double wells in the superlattice potential. We can characterize the double
well tilts by performing tunnel oscillations in isolated double wells. For that purpose, we prepare a
CDW initial state (cf. Fig. 4.2b) in a tilted superlattice, such that all atoms are on the same side of the
double wells. Subsequently, we remove the tilt, quench on the dynamics by abruptly setting 𝐽dw∕ℎ to
about 90Hz and observe the tunnel oscillations. Any tilt introducing an energy difference ∆dw between
the two sites will lead to an increase of the tunnel oscillation frequency, according to [83]:

𝑓 = 1
ℎ

√
𝑓2 + ∆2dw , (6.4)

where 𝑓 = 2𝐽dw is the unperturbed frequency for ∆dw = 0. Thus, by measuring the spatial profile of
the oscillation frequency inside the ROI, we obtain a map of the double well tilts in the superlattice
potential, similar to what is shown in Fig. 4.16. However, in order to become sensitive to our disorder
energy scale, 𝐽dw should be on the order of ∆. We perform this experiment along both lattice axes,
starting with a CDW in the corresponding direction and setting 𝐽dw∕ℎ ≈ 90Hz. Fig. 6.5 shows the
measured imbalance as a function of both time and position along the lattice axes, averaged along the
respective perpendicular direction. We find that while the average frequency is 𝑓 = 179(11)Hz, it varies
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on the order of 10%, indicating double well tilts of up to ∆dw∕ℎ = 80Hz, according to Eq. 6.4. This
result is consistent with the disorder strength estimated in Sec. 6.2.
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6.3 Finite-size effects
Experimental data
The overall length of each of the 20 ladders is about 50 sites with the box potential wall as the boundary
on either side. In order to mitigate effects arising from the finite size of the system, we restrict the
analysis to the 40 innermost sites, our ROI. We check whether this restriction is sufficient by performing
the same data analysis for various ROIs of different sizes and comparing the results. Fig. 6.6 shows
the measured time evolution of the particle number variance for three different ROI sizes, taking only
the central 14, 24 and 40 sites into account, respectively. Importantly, irrespective of what type of
dynamics are at play (𝐽⊥∕𝐽 ≈ 0.0, 1.0), the variance is independent of the chosen ROI size within the
error bars. This suggests that restricting the ROI to the 40 innermost sites of each ladder is sufficient
for mitigating finite-size effects.

Free fermion simulations (decoupled ladders)
The conclusion above appears surprising, particularly in the integrable configuration (𝐽⊥∕𝐽 = 0) where
correlations spread ballistically at the Lieb-Robinson velocity 4𝐽𝑎short∕ℏ. It would take the correlations
barely more than a single tunnelling time to propagate through the 5-sites wide buffer zone between
the ROI and the edge. Yet, the impact of edge effects on the mean of the particle number variance
in subsystems averaged over the entire ROI is not visible in the data. In the chaotic case (𝐽⊥∕𝐽 = 1)
correlations spread diffusively and the variance is expected to be even less susceptible to finite-site effects.

In order to understand this observation in more detail, we perform additional free fermion sim-
ulations (for 𝐽⊥∕𝐽 = 0). Following the methods in the preceding Section, we choose overall system
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Figure 6.6 | Finite-size effects. Atom number variance as a function of time for J⊥∕J = 0.0 (a) and J⊥∕J = 1.0 (b),

evaluated for different ROI sizes 12× 40, 20× 40 and 40× 40 sites. The solid lines in (a) are the free-fermion prediction

assuming white noise disorder of strength ∆ = J. We find that all traces from evaluations involving different ROI

sizes agree with each other within the error bars. This indicates that our data analysis is not significantly affected by

finite-size effects.

sizes of 50 and 250 sites while keeping the ROI restricted to the innermost 40 sites. The overall system
size of 250 sites guarantees that even in the integrable case with ballistic correlation spreading the
ROI should remain unaffected by finite-size effects within the measured time evolution range. Fig. 6.7
shows the resulting variance traces for subsystem size 𝐿 = 14, both in presence and absence of white
noise disorder of amplitude ∆ = 𝐽. Interestingly, without disorder, the overall system size appears to
have a clear effect on the saturation value, illustrating how finite-size effects can affect the relaxation
of the system. However, with disorder present, the dependence on the the overall system size almost
entirely vanishes. This means that as soon as potential inhomogeneities induce Anderson localization
in 1d, the impact of edge effects is diminished and the disorder strength ∆ remains the dominant
parameter suppressing the saturation value of the fluctuations. Note that the simulation of the particle
number variance combining a finite overall system size of 50 sites and disorder of amplitude ∆ = 𝐽
yields excellent agreement with the experimental data (see Fig. 6.7). In contrast to the fluctuations,
the imbalance is not notably affected by finite-size effects (not shown).

TDVP simulations (fully coupled ladders)
The free fermion simulations are only possible in the integrable limit where 𝐽⊥∕𝐽 = 0.0. However,
localization and finite-size effects are expected to play out very differently when the legs of the ladders
are coupled and the system is not purely 1d anymore. For instance, since density-density correlations
spread diffusively, the effects of the edges could become relevant only after quadratically long times
compared to the integrable configuration.

For a better intuition of how experimental imperfections affect fully coupled ladder dynamics, we
run matrix product state (MPS) TDVP simulations using the open-source package TeNPy [290], both
with and without white noise disorder of amplitude ∆ = 𝐽. Due to large computational costs, the
simulations are restricted to fairly small system sizes, at most 𝐿sys = 11 containing 22 sites. Thus,
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Figure 6.7 | Interplay of disorder and finite-size effects. Time evolution of the atom number variance in a subsystem
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(data points) is matched best by the simulations that include disorder. Notably, in presence of disorder the impact of

finite-size effects is reduced.

instead of directly simulating experimental system sizes (𝐿sys ≳ 40), we need to derive conclusions from
how finite-size effects scale in the numerically accessible 𝐿sys-regime and extrapolate to 𝐿sys > 11.

Fig. 6.8a shows the saturation value of the atom number variance in a subsystem of size 𝐿 =
⌊
𝑁sys∕2

⌋

as a function of the overall system size 𝐿sys. The dashed lines indicate the infinite-temperature saturation
value Var∞𝐿 expected from ETH. We find that the saturation value of the variance is strongly suppressed
compared to the infinite temperature value Var∞𝐿 , even in the absence of disorder (∆ = 0). This
might suggest that thermalization of the fluctuations is partially inhibited. The out-of-equilibrium
dynamics in finite-size systems is an ongoing research topic and it is not well understood how ETH
applies to subsystems which constitute a significant part of the overall system [291–293]. Exploring this
phenomenon in more detail could be an interesting direction for future experimental efforts.

Besides finite-size effects, the saturation values in Fig. 6.8 are also decreased by disorder. In 2d, the
free fermion mapping fails and the hard-core dynamics cannot be mapped to single-particle physics
anymore. Thus, instead of Anderson localization, many-body-localization (MBL) needs to be considered
as the mechanism behind the system’s failure to reach global equilibrium in presence of disorder.
However, the stability ofMBL in higher dimensions has been fiercely debated [294–296]. If the subsystem
size is fixed to 𝐿 = 3 and only the overall system size is increased (𝐿sys∕𝐿 → 0) we see the variance
saturation value approaching the thermal value, as shown in Fig. 6.8b. Both with and without disorder,
extrapolating 𝐿sys →∞ suggests that the system would thermalize if not limited by finite-site effects,
consistent with our expectation that the ladder dynamics should be less affected by disorder.

In the experiment, the size of the largest subsystem inwhich the saturation of fluctuations is observed
(𝐿 = 10) makes up about 𝐿∕𝐿sys = 1∕5 of the overall system size with 𝐿sys = 50. In the simulations,
the ratio 𝐿∕𝐿sys = 1∕5 is fulfilled for 𝐿 ≈ 3 (see Fig. 6.8b). In presence of disorder, the simulated
saturation value obtained for 𝐿 = 3 is approximately 25% reduced compared to the infinite-temperature
value. This roughly matches the 20% suppression found in the experimental data for a subsystem
size 𝐿 = 10, indicating that finite-size effects are a likely cause for the reduced variance saturation
values measured for 𝐽⊥∕𝐽 ≈ 1.0.
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6.4 Correcting for reconstruction errors
When reconstructing the fluorescence images using machine learning techniques (cf. Sec. 4.3), we work
in an extreme resolution regime where the spacing which we want to resolve is more than a factor of
two smaller compared to the resolution provided by our high-NA objective. Yet, we have shown that we
achieve a reconstruction fidelity of at least F ≳ 96%. In general, the errors made by the network could
be of a systematic rather than a random kind, leading to artificial spatial correlations: For instance,
if an atom is detected on a particular site, there might be an enhanced probability that an atoms is
wrongly detected on adjacent sites, even though it is unoccupied. Measurement artefacts like this are
highly undesirable and their magnitude (probably on the order of 1 − F) easily interferes with the
true correlations of the physics that we aim to observe.

We can detect the presence of reconstruction-caused unphysical correlations by probing product
states which are not expected to exhibit any true correlations (for |𝑑| > 0) emerging from the physics
of the state. Examples include:

• the CDW initial state (as described in Sec. 4.2) which we obtain by loading the atoms into a
tilted superlattice configuration, ideally leading to unity filling in every second row and zero
filling in every other row. The experimental mean filling is �̄�initial = 0.44(2) with an imbalance of
Iinitial = 0.91(7).

• a random state with filling of approximately 0.5, prepared by loading a near-unity filling Mott
insulator (in |𝐹 = 3, 𝑚𝐹 = 3⟩), followed by a microwave pulse which flips about half of the atoms
from |𝐹 = 3, 𝑚𝐹 = 3⟩ to |𝐹 = 4, 𝑚𝐹 = 4⟩. Finally, a blowout pulse on the |6𝑠1∕2 𝐹 = 4, 𝑚𝐹 = 4⟩↔
|6𝑝3∕2⟩ transition is applied and only the atoms in |𝐹 = 3, 𝑚𝐹 = 3⟩ remain. The average filling is
�̄�random = 0.48(2) and the imbalance becomes Irandom = 0.00(13).

By taking many snapshots of these states we can compute the connected density-density correlations
as a function of distance 𝑑 = |𝑖 − 𝑗|, as shown in Fig. 6.9 (cf. Eq. 2.23). Against all expectations
for product states, we do find non-zero correlation amplitudes for 𝑑 > 0, particularly for 𝑑 = 1 and
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𝑑 = 2. Therefore, we can attribute these correlations to systematic errors in the machine-learning
based reconstruction process. This appears credible in light of the fact that the point spread function
(PSF) is so large compared to the lattice spacing that the fluorescence signal of an individual atom
leaks into the area belonging to neighboring sites of both first and second order. The measured values
for 𝑑 = 1 in Fig. 6.9 suggest that, for the CDW state, the detection of an atom on a site increases the
chance that adjacent sites are incorrectly classified as unoccupied. In turn, for the random half filling
state, finding an atom on a site increases the chance that an adjacent unoccupied site is incorrectly
classified as occupied. Hence, the systematic errors made by the reconstruction algorithm appear to
depend on the particular occupation pattern of the state.
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Figure 6.9 | Density-density correlations caused by the reconstruction algorithm. Spatial correlation profile C
I

d

of the CDW initial state (high imbalance∼ 0.9) and a random state with near-zero imbalance, obtained from ca. 40

and 70 fluorescence images, respectively. Error bars denote the standard deviation. Both states are not expected to

possess any density-density correlations for |d| > 0. Thus, any measured correlations can be attributed to systematic

errors in the reconstruction process.

In order to remove the unphysical correlations from the measured density-density correlations,
we assume that their profile only depends on the imbalance of the visible occupation pattern, such
that we can write:

𝐶corrected = 𝐶measured − 𝐶correction(I). (6.5)

Here, the components of the vectors contain the density-density correlation amplitudes {𝐶𝑑} belonging
to the distances 𝑑 = 0,… , |𝑖 − 𝑗|. Importantly, the imbalance itself is not affected by the unphysi-
cal correlations.

Let 𝐶initial and 𝐶random be the correlation profiles we find for the CDW initial product state with
𝐼initial = 0.91(7) and for the random state with Irandom = 0.00(13), respectively. Then we can use them
as corrections 𝐶correction(𝐼initial) = 𝐶initial and 𝐶correction(𝐼random) = 𝐶random. For all other imbalance
values, we obtain corrections by linearly interpolating between the two measured ones. The imbalance-
dependent correction profile in Eq. 6.5 can then be expressed as:

𝐶correction(I) = 𝐶random + I
Iinitial

(
𝐶initial − 𝐶random

)
. (6.6)

Similarly, we can derive corrections for 𝐶𝐼𝐼𝑑 and 𝐶𝐼𝐼𝐼𝑑 .
We apply Eq. 6.5 only for |𝑑| = 1, 2. For 𝐶𝐼𝐼𝑑 we, additionally, correct 𝑑 = 0. This is because 𝐶𝐼𝐼𝑑=0 is

the density-density correlation between two adjacent sites in different legs of the ladder, corresponding
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to a real-space distance of one. Fig. 6.10 shows the density-density correlation cones before applying the
correction. In comparison with the corrected density-density correlations in Fig. 5.8, one can see how
the stripe-like artefact, particularly present in the 𝑑 = 1 correlations, vanishes resulting in a cleaner
cone. This correction then also benefits the variance time evolution data which is calculated from the
density-density correlations, as noted in Appendix D.
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the reconstruction correction (see Eq. 6.5) is applied. The corrected density-density correlations are shown in Fig. 5.8.
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CHAPTER 7

Thouless pumps and bulk-boundary
correspondence in higher-order

symmetry-protected topological phases

The previous two Chapters have focused on quench experiments for studying the emergence of hy-
drodynamics in chaotic quantum systems. In particular, Sec. 5.1 has shown how we employ optical
superlattices for (a) realizing a tunable ladder Hamiltonian with dynamics adjustable from integrable to
chaotic; and (b) for preparing a short-spaced charge density wave as an initial state. In this Chapter
we move away from infinite temperature physics after a quench and, instead, turn our attention to the
ground state properties of a half-filled superlattice potential: This simple setting can realize the bosonic
analog of the Su-Schrieffer-Heeger (SSH)model [297] with highly interesting topological properties. The
final chapter of this thesis is about theoretical work which sheds light on the bulk-edge-correspondence
in higher-order symmetry-protected topological phases [116]. These are in reach of current quantum
simulation capabilities and might even pose an interesting research direction for our own experiment.

In the following, we will explore the relationship between quantized edge states and bulk topological
invariants in topological phases of matter, particularly focusing on HOSPT phases. We will, for the first
time, present a solid theoretical framework which addresses the elusive connection between quantized
charge transport and bulk-boundary correspondence in HOSPT phases. We demonstrate that Thouless
pumps, which are cyclic adiabatic processes that result in quantized charge transport, can be described
by a set of four Chern numbers. These Chern numbers measure quantized bulk charge transport
in a direction-dependent manner and can predict the sign and value of fractional corner charges in
HOSPT phases. Our results show that the topologically nontrivial phase can be characterized by both
quadrupole and dipole configurations, contributing to recent debates about the multipole nature of
the HOSPT bulk. As a particular example, we will focus on the 2d superlattice Bose-Hubbard model
(2d-SL-BHM) which is naturally realized by placing atoms in a 2d optical superlattice potential.

7.1 Modern theory of polarization
When a dielectric material is placed in an electric field it becomes polarized due to charge displacement
inside thematerial in response to the field. As a consequence, opposite surfaces of thematerial are subject
to charge accumulation and depletion, such that measuring the surface allows to obtain information
about the state of the bulk. This principle underlies many important applications and phenomena
including piezoelectricity, dielectric capacitors, liquid crystal displays (LCD) and communication
systems [298]. While seemingly simple, understanding bulk polarization in solids was not possible

99
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using simple dipole moments. Instead, a powerful theory was developed in the 90s which relates the
macroscopic polarization of a solid to properties of the underlying bloch bands: It is known as the
modern theory of polarization (MTP) [104, 299].

For a discrete set of charges (like atoms forming a molecule), the dipole moment can be defined
as [300]:

d =
∑
𝑖
𝑞𝑖r𝑖 , (7.1)

where {𝑞𝑖} are the charges at positions {r𝑖}. For a continuous charge distribution 𝑛(r) we can write:

d =
∫
𝑒 𝑛(r) r𝑑r, (7.2)

where 𝑒 is the elementary charge.
Using the dipole moment as a definition for polarization becomes problematic as soon as not an

isolated charge distribution but a solid is considered. In a periodic system the polarization will generally
depend on the choice of the unit cell, causing the polarization to be multi-valued, and only polarization
difference has a meaning [300]. Using a quantum mechanical description, King-Smith and Vanderbilt
provided a more rigorous definition and showed that the bulk polarization is directly related to the
Berry phase 𝛾𝐿 of the bloch bands, i.e. [104]:

𝑃el = lim
𝐿→∞

𝑒
2𝜋𝛾𝐿, (7.3)

in the thermodynamic limit where L is the system size.
In the case of interacting many-body systems, Resta later related this polarization to the expectation

value of the many-body position operator �̂� in a periodic system [299]:

𝑃𝑒𝑙 = lim
𝐿→∞

𝑒
2𝜋 Im log ⟨𝜓0|𝑒

2𝜋𝑖
𝐿
�̂�|𝜓0⟩ , (7.4)

where |𝜓0⟩ is the many-body ground state wavefunction. Eq. 7.4 is in line with the intuition that any
change of polarization requires a physical displacement of charge, as suggested by the definition of the
dipolar moment in Eq. 7.2. While MTP is a general theory meant to describe polarizable materials, in
the following we will focus on insulators with non-trivial topology. A hallmark of topological matter
is the emergence of quantized boundary states which are a consequence of the topological difference
between the bulk and the outside. Using MTP these quantized states can be related to quantized
polarization in the bulk.

7.2 Topological order
Much of our understanding of electron many-body phases roots in two notions of the so-called Landau
paradigm: First, the integrity of electrons as quasiparticles above the quantum many-body ground state
is preserved. Second, the different phases of matter are distinguished by a local-order parameter, which
quantifies the amount of local symmetry breaking [301]. An example for such an order parameter
is the net magnetization in a ferromagnet, which becomes non-zero below a critical temperature,
indicating the appearance of order.

Over the past four decades, this concept of phase transitions has been challenged by experimental
and theoretical work on strongly-correlated states of matter with non-trivial topology. A prominent
example that lacked a consistent description by the Landau paradigm is the fractional quantum Hall
effect [302]. For instance, the excitations above the Laughlin ground state are actually described by
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quasiparticles with fractional charge and fundamentally different braiding statistics. Further, such
topological phases exhibit long-range entanglement that cannot be captured by a local-order parameter.
Instead, the order is a global property of the many-body ground state wave function and described
by a robust quantity, called the topological invariant.

The concept of topological phases is defined as follows [303]: If two gapped states 𝜓1 and 𝜓2 (ground
states of a Hamiltonian 𝐻(𝜆) for 𝜆 = 𝜆1, 𝜆2, respectively) cannot be transformed into each other
adiabatically [304] without closing the gap, they must belong to different topological phases, described
by a different values of a topological invariant. This is called intrinsic topological order and illustrated
in Fig. 7.1a, showing disconnected gapped regions in the parameter space of a model Hamiltonian.
For instance, quantum Hall states fall into this category and crossing from one state to another is
impossible without closing the many-body gap [305].

Hamiltonians

Gapped 
Hamiltonians

𝐻(𝜆1)

𝐻(𝜆2)

Hamiltonians
Gapped 
Hamiltonians

Gapped 
symmetric 
Hamilt.
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Figure 7.1 | Topological phases and symmetry-protected topological phases. a, Two gapped ground states of an

Hamiltonian H belong to the same topological phase if they can be adiabatically transformed into each other without

closing the many-body gap. b Two gapped ground states of an Hamiltonian H belong to the same symmetry-protected

topological phase if they can be adiabatically transformed into each other without closing the many-body gap or

breaking the protecting symmetry (or both).

The boundary between two different topological phases (like the system and the vacuum surrounding
it) is where the gap closes, leading to zero-energy states that are one dimension lower than the bulk of the
system. Recently, higher-order topological insulators were discovered [86, 87] featuring electric multi-
pole moments [86, 87, 109–111, 113–115]. With open boundary conditions, 𝑛-dimensional materials of
this kind with topology of order𝑚 will possess (𝑛 −𝑚) dimensional boundary states, as demonstrated
on many platforms including real solids and classical metamaterials [88–98].

Symmetry-protected topological phases
The classification of topological phases becomes even richer if symmetries are taken into account,
prompting the definition of so-called SPT phases. Important examples include time-reversal symmetry,
particle-hole symmetry and crystal-group symmetries [306]. Restricting ourselves to classes of symmetric
Hamiltonians and adiabatic transformations which fulfill a symmetry, we can adapt the definition of
topological phases above as follows: If two gapped states 𝜓1 and 𝜓2 (ground states of an Hamiltonian
𝐻(𝜆) for 𝜆 = 𝜆1, 𝜆2, respectively) cannot be transformed into each other adiabatically without closing
the gap or breaking the symmetry (or both), they must belong to different SPT phases, described by a
different values of a topological invariant. This definition is illustrated in Fig. 7.1b. The higher-order
variants of SPT phases are called HOSPT phases.

In the following section, we will discuss a simple model exhibiting SPT phases protected by inversion
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symmetry: first the 1d bosonic superlattice Bose-Hubbard model to illustrate important concepts such
as the Berry phase which serves as a topological invariant as well as Thouless pumps inducing quantized
charge transport. Then, we will move on with the 2d bosonic superlattice Bose-Hubbard model and
generalize these concepts to HOSPT phases. This is the main contribution of this Chapter.

7.3 SPT phases in the 1d superlattice Bose-Hubbard model
One of the perhaps simplest models exhibiting non-trivial topological phases is the famous Su-Schrieffer-
Heeger (SSH) model [297], originally developed to describe the conductivity in polymer chains. In
1d, it describes a chain of lattice sites coupled by alternating couplings 𝑡 and 1 − 𝑡 with 𝑡 ∈ [0, 1], as
depicted in Fig. 7.2a. In the context of quantum simulation with ultracold atoms, this model can be
realized by placing fermions in a 1d optical superlattice potential (at half filling), which naturally comes
with two different tunnel strengths. Instead of fermionic atoms, one can also use bosonic atoms if
the hard-core condition is fulfilled (𝑈 → ∞) [306]. The Hamiltonian describing the 1d superlattice
Bose-Hubbard model (1d-SL-BHM) reads:

�̂� = −
∑
𝑗 odd

(
𝑡 �̂�†𝑗 �̂�𝑗+1 + h.c.

)
−

∑
𝑗 even

(
(1 − 𝑡) �̂�†𝑗 �̂�𝑗+1 + h.c.

)
+ 𝑈

2
∑
𝑗
𝑛𝑗(𝑛𝑗 − 1) +𝐻∆ (7.5)

with operators and symbols as defined below Eq. 5.1. The last term �̂�∆ is given by:

�̂�∆ = −
∑
𝑗 odd

�̂�𝑗 ∆ +
∑
𝑗 even

�̂�𝑗 ∆, (7.6)

and describes additional energy shifts of amplitude ∆ of opposite sign on odd and even sites. These
shifts emergence if the phase of the optical superlattice is tuned away from the symmetric configuration.

Phase diagram
The topological phase diagram of the 1d-SL-BHM is shown in Fig. 7.2b (at half filling in the hard-core
limit). Let us first consider the special case of ∆ = 0 and 𝑡 = 0.5, such that both tunnel strengths are
equal. In this case the Hamiltonian describes an ordinary 1d lattice half-filled with hard-core bosons,
i.e. a gapless superfluid phase. At any other point in the phase diagram, the Hamiltonian is gapped. As
long as ∆ = 0, the model is inversion symmetric [307], giving rise to two SPT phases. For 𝑡 < 0.5 and
𝑡 > 0.5 the inversion symmetry axis is in the middle of either the even or the odd bonds, respectively
(Fig. 7.2b). In order to get from one to the other configuration it is necessary to either cross the gapless
region around 𝑡 = 0.5 (by adjusting t) or to circumvent the gapless region by tuning ∆ away from zero.
However, by doing the latter, one breaks inversion symmetry. Hence, the (green) lines corresponding to
∆ = 0, 𝑡 < 0.5 and ∆ = 0, 𝑡 > 0.5 can be considered two SPT phases protected by inversion symmetry,
called the trivial (SPT 1) and the topological phase (SPT 2), respectively.

While the two phases are topologically different, which one deserves to be called the trivial one
only matters in finite systems as visualized in Fig. 7.2b: If (in SPT 1) the coupling is such that each
site in the chain is strongly coupled to an adjacent site, the number of atoms matches the number of
dimers and each dimer will be occupied by one delocalized atom. However, if (in SPT 2) the two edge
sites of the chain are not part of a dimer, then the number of atoms in the finite system exceeds the
number of dimers by one. As a consequence, the excessive atom will either occupy the left or the right
edge instead of being localized in a dimer. This constitutes a zero-energy edge state, a smoking gun of
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non-trivial topology. The mean occupation of the edge site will differ by either 1∕2 or −1∕2 from the
average filling of the system �̄� = 1∕2. Thus, the edge charge is called fractional [84].
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Figure 7.2 | The 1d superlattice Bose-Hubbard model. a, The 1d superlattice Bose-Hubbard model (1d-SL-BHM) as

realized by an optical superlattice with two tunnel strengths t and 1 − t in alternation and local energy shifts ∆ of

opposite sine on even and odd sites. b Topological phase diagram of the 1d-SL-BHM revealing two distinct topological

phases protected by inversion symmetry. The blue orbitals indicate the position and delocalization of the atoms in

the two SPT phases.

Thouless pumps
A Thouless pump is an adiabatic process along a closed path in the parameter space of the Hamiltonian,
transporting charge [107, 108]. In a topologically non-trivial system charge transport is quantized and
illustrates a key concept of topology known as bulk-boundary correspondence.

Consider a pump cycle in the 1d-SL-BHM defined by:

𝑡(𝜆) = 1
2 (1 − cos(𝜆))

∆(𝜆) = sin(𝜆), (7.7)

where 𝜆 ∈ [0, 2𝜋) controls the progress of the pump. In the phase diagram, the path of the pump
is a circle around the gapless region in the center (𝑡 = 0.5,∆ = 0), starting in SPT 1, crossing SPT 2
after the first half (𝜆 = 𝜋) and, finally, returning to the starting point in SPT 1 (𝜆 = 2𝜋), as visualized
in Fig. 7.3. The blue orbitals indicate how the position of the atoms and their spatial delocalization
changes as the pump progresses. At 𝜆 = 0, the initial density distribution is the ground state of SPT 1
with exactly one atom per dimer. Notably, after the first half of the pump is completed (𝜆 = 𝜋) and the
the state has been transferred from SPT 1 to SPT 2, the number of dimers is reduced by one, leading to
one fully occupied and one empty edge state. Charge has been displaced to the right in the chain and
starts to pile up on one side, manifesting as a topological edge state with fractional charge |𝑐| = 1∕2.
This edge charge can be considered as the consequence of polarization in bulk which has built up due
to the Thouless pump. In the second half of the pump (𝜆 > 𝜋) the charge accumulation continues
until, when the cycle is completed, exactly one charge has moved to the next dimer. Thus, the charge
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transfer is quantized, reflecting the quantized nature of the topological invariant which characterizes
the topology of the bulk, as detailed below [106, 308].
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Figure 7.3 | Thouless pump in the 1D-SL-BHM. Adiabatically transforming the Hamiltonian along a closed path

(dashed line) around the gapless region (red area) leads to quantized charge transport which characterizes the

topology of the bulk. The blue orbitals indicate the delocalization and position of individual atoms.

Topological invariants and bulk-boundary correspondence
The Thouless pump above demonstrates how switching from one topological phase to another is
accompanied by a quantized change of the polarization in the bulk, leading to quantized charge
accumulation (or depletion) at the edge. This suggests that the tools provided by MTP [104] could
be useful for defining a topological invariant to distinguish between different phases – much like the
order parameter in the Landau-Ginzburg theory. One of the most important results of MTP is that the
bulk polarization is a manifestation of the Berry phase, a geometric phase picked up by the ground
state wavefunction during an adiabatic cycle due to the curvature of the band structure [103, 299, 309].
In fact, a change of the Berry phase indicates a change of the bulk polarization (cf. Eq. 7.3). For the
1d-SL-BHM with periodic boundary conditions (PBC) the Berry phase can be defined by [84]:

𝛾 =
∫ 2𝜋

0
𝑑𝜙 ⟨𝜓(𝜙)|𝑖𝜕𝜙|𝜓(𝜙)⟩, (7.8)

where |𝜓⟩ is the (ground state) many-body wavefunction and 𝜙 is a complex tunnelling phase attached
to one of the bonds, as depicted in Fig. 7.4a. Adding a phase 𝜙 to one of the bonds (local twist) is
equivalent to piercing a flux of 𝜙 through the ring formed by the periodic system. Intuitively, the flux
change during the integral in Eq. 7.8 then induces to an effective electric field along the ring which
probes charge transport. Evaluating Eq. 7.8 for the trivial and topological SPT, for instance, yields
𝛾0 = 0 and 𝛾1 = 𝜋, respectively. While the exact values depend on the details of the path chosen
in Eq. 7.8, the phase difference

∆𝛾 = 𝛾1 − 𝛾0 = 𝜋 (7.9)

is gauge invariant and quantized due to the inversion symmetry of the system. Thus, the Berry phase
is able to distinguish between the two topological phases of the 1d-SL-BHM, serving as a topological
invariant. Following Eq. 7.3, the Berry phase difference in Eq. 7.9 suggests that the bulk polarization
difference is ∆𝑃𝑒𝑙 = 𝑒∕2. This is precisely the absolute amount of charge that accumulates as an edge
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states on both sides with OBC (relative to the mean filling of �̄� = 0.5) when a Thouless pump takes
the system from SPT 1 to SPT 2.

ϕ ϕ

C = +1 C = −1

Half pump Half pump

1-t
a

t

b c

Figure 7.4 | Berry phase and Chern number. a, The Berry phase is obtained by inserting a flux through the 1d

system with periodic boundary conditions, adiabatically ramp the flux up to 2π and measuring the geometric phase

picked up by the ground state wavefunction. b, The Chern number integrates the Berry phase up along the path of

the Thouless pump, indicating the total transported charge. For a clockwise pump we obtain C = +1 and c , for a

counter-clockwise pump we obtain C = −1.

Generally, the total amount of transported charge within one full pump cycle is measured by
the Chern number [310]:

𝐶 = ∮
2𝜋

0

𝑑𝜆
2𝜋𝜕𝜆𝛾(𝜆), (7.10)

which integrates the change of the Berry phase along the closed path of the Thouless pump, parametrized
by 𝜆 ∈ [0, 2𝜋). For the Thouless pump defined by Eq. 7.7, we obtain 𝐶 = +1 when 𝜆 runs from 0
to 2𝜋 and 𝐶 = −1 when 𝜆 runs from 2𝜋 to 0, indicating quantized charge transport along the chain
(cf. Fig. 7.4b,c). The charge transported by half a Thouless pump is then given by 𝐶∕2 [311]. Thus, the
Berry phase and the Chern number establishes a connection between the polarization of the bulk and
the zero-energy edge states which, in 1d, is called the bulk-edge correspondence.

7.4 HOSPT phases in the 2d superlattice Bose-Hubbard model
Starting from the 1d-SL-BHM, the simplest way to get a system featuring higher-order topology is to
generalize the model to 2d, yielding the 2d-SL-BHM, as depicted in Fig. 7.5a. In a square geometry
with open boundary conditions (OBC) the Hamiltonian reads [116]:

�̂�OBC = −
[ 𝐷−1∑
𝑥=−𝐷

𝐷∑
𝑦=−𝐷

(
𝑡(𝑥) �̂�†𝑥,𝑦�̂�𝑥+1,𝑦 + h.c.

)
+ 𝑥 ↔ 𝑦

]
+ 𝑈

2

𝐷∑
𝑥,𝑦=−𝐷

�̂�𝑥,𝑦(�̂�𝑥,𝑦 − 1), (7.11)

where 𝐷 = (𝐿 − 1)∕2 and �̂�†𝑥,𝑦 (�̂�𝑥,𝑦) are the creation (annihilation) operators for site (𝑥, 𝑦). The other
symbols are defined below Eq. 5.1. Like in 1d, the hard-core limit ensures equivalence to the 2d SSH
model. While in the 1d-SL-BHM sites either belong to the 1d bulk or the 0d edges, the 2d-SL-BHM
has sites in three different categories: those in the 2d bulk (part in strongly coupled plaquettes), those
along the edges (organized in strongly coupled 1d dimers) and those in the 0d corners. The staggered
tunnel couplings 𝑡(𝜁), 𝜁 ∈ {𝑥, 𝑦} are defined by
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𝑡(𝜁) =
⎧

⎨
⎩

1 − 𝑡 for 𝜁 ∈ {−𝐷,−𝐷 + 2,… , 𝐷 − 1}
𝑡 for 𝜁 ∈ {−𝐷 + 1,−𝐷 + 3,… , 𝐷 − 2}

(7.12)

where, just like in the 1d-SL-BHM, 𝑡 ∈ [0, 1] controls the transition from a trivial phase (𝑡 = 0) to
a topological phase (𝑡 = 1). As seen in Fig. 7.5b The phase diagram looks identical to that of the
1d-SL-BHM with the notable difference that the SPT phases are now of second order, making them
HOSPT phases. Instead of a bulk-edge correspondence, the non-trivial phase will feature a bulk-corner
correspondence with a corner state indicating a multi-pole-like polarization of the bulk.

In the definition of the model (Eq. 7.11), the origin of the coordinate system lies in the center
of the system and is the symmetry point of a 𝐶4 symmetry. This rotational symmetry takes the role
that inversion symmetry played in the 1d-SL-BHM. In addition to 𝐶4-symmetry, the hard-core limit
𝑈 → ∞ leads to an additional Z2 symmetry �̂�†𝑥,𝑦 ↔ �̂�𝑥,𝑦, which can be used to proof that the Berry
phase can serve as a quantized topological invariant (see Sec. 7.6). In the following Sections, we
will generalize the concepts of Berry phases, Thouless pumps and Chern numbers (introduced in
Sec. 7.3) to the higher-order case of the 2d-BHM-SL. Goal of this Chapter is to find a description of the
bulk polarization in HOSPT phases and understand the higher-order bulk-boundary correspondence,
relating bulk properties to the corner charges.

t

1-t

t
0 0.5 1

Δ

HOSPT 1 HOSPT 2

a b

Figure 7.5 | The 2d superlattice Bose-Hubbard model. a, The 2d-SL-BHM on a square lattice is characterized by

alternating tunnel strengths t and 1− t in both directions, leading to strongly coupled plaquettes in the bulk, strongly

coupled dimers along the edges and zero dimensional corners. It is naturally implemented by ultracold atoms in a 2d

superlattice potential at half filling. b, Phase diagram of the 2d-SL-BHM showing two HOSPT phases separated by a

gapless region, similar to the phase diagram of the 1d-SL-BHM.

7.5 Higher-order Thouless pumps
In the 1d-SL-BHM, the effects of a Thouless pump are limited by the simple geometry of the system:
After all, charge can be transported only to the left or to the right side of the chain, creating one particle
edge state and one hole edge state on opposite ends. As we will see in this Section, the 2d case is more
complex as there are four corners capable of carrying four corner states in total. Which of these end up
carrying a positive (negative) corner charge depends on the particular Thouless pump applied.

In order to define Thouless pumps in the 2d-SL-BHM, we add on-site energy shifts of amplitude ∆
to each site in the system, similar to the 1d case. In particular, we choose the two patterns shown in the
left panels of Fig. 7.6: One where each plaquette in the system receives shifts with the same sign on
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Figure 7.6 | Higher-order Thouless pumps in the 2d-SL-BHM. Time evolution of the mean density in a 4 × 4 sys-

tem during a diagonal (upper panel) and a non-diagonal (lower panel) half-Thouless pump calculated using exact

diagonalization. After completing half of the cycle, the non-trivial HOSPT exhibits a quadrupole and a dipole corner

charge configuration, respectively. The drawings on the left show the arrangement of additional on-site potentials in

each plaquette: The diagonal Thouless pump requires shifts of equal sign on diagonally opposite sites, while the

non-diagonal Thouless pump requires shifts of the same sign on the same side.

opposite corners (diagonal), and one where each plaquette receives shifts with the same sign on the
same side of the plaquette (non-diagonal). The corresponding Hamiltonian reads:

�̂�diag. = �̂�OBC + ∆
𝐷∑

𝑥,𝑦=−𝐷
�̂�𝑥,𝑦(−1)(𝑥+𝐷)+(𝑦+𝐷)

�̂�non−diag. = �̂�OBC − ∆
𝐷∑

𝑥,𝑦=−𝐷
�̂�𝑥,𝑦(−1)(𝑥+𝐷).

(7.13)

The pump progress is parametrized by 𝜆 ∈ [0, 2𝜋) which controls 𝑡 and ∆ as expressed by Eq. 7.7. Both
the diagonal and the non-diagonal pump take the system around the gapless region in the center of the
phase diagram (𝑡 = 0.5,∆ = 0), starting in HOSPT 1, crossing HOSPT 2 and eventually arriving back
at HOSPT 1 (cf. Fig. 7.5b). In the course of that, 𝐶4-symmetry is broken (as ∆ ≠ 0), except at the two
points where HOSPT 1 and HOSPT 2 are passed which happens at 𝜆 = 0 and 𝜆 = 𝜋, respectively.

The right panels in Fig. 7.6 show the density evolution during the first half of both the diagonal and
the non-diagonal pump, calculated using exact diagonalization in a 𝐿 × 𝐿 = 4 × 4 system at half filling
(total atom number 𝑁 = 𝐿2∕2) with OBC. The initial state ( ∆ = 0 and 𝑡 = 0 at 𝜆 = 0) is the ground
state of the Hamiltonian in the trivial phase (HOSPT 1) with two delocalized particles per plaquette. At
the beginning of the pump the charge accumulates in the sites which are subject to an on-site energy
shift of −∆. Once the first quarter of the pump cycle is complete (𝜆 = 𝜋∕2), the density starts to even
out in the bulk and along the edges of the system. Only at the corner sites the density continues to
increase or decrease to 1 and 0, respectively, until HOSPT 2 is reached at 𝜆 = 𝜋∕2. These are the corner
states that emerge as the consequence of charge transport in the bulk. Both pumps have in common
that they produce two particle corner state with fractional charge +1∕2 and two hole corner states
with fractional charge −1∕2. However, their arrangement differs and depends on the type of the pump:
For the diagonal pump we obtain corner states in a quadrupole configuration, while the non-diagonal
pump produces corner states in a dipole configuration.
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7.6 Higher-order Berry phase
In order to analytically describe the relationship between the fractional corner charge and the po-
larization of the bulk, we first define topological invariants for HOSPT phases by generalizing the
Berry phase approach introduced in Sec. 7.3. Then, as a next step, we use these Berry phases to con-
struct Chern numbers and track the amount of charge transported during the Thouless pumps in a
direction-dependent fashion.

Corner periodic boundary conditions
As in the 1d case, we want to define the Berry phase by locally twisting the system, i.e. by adding
complex tunnelling phases which are adiabatically increased from 0 to 2𝜋 (cf. Sec. 7.3). Recently, one
way to do that was shown by Araki et al. [312] who defined a unitary transformation acting on a single
plaquette in the center of the system and adding complex phases to the four bonds. However, while
the transformation was chosen such that no flux is pierced through the central plaquette, adjacent
plaquettes do receive non-zero flux. This turns out to be problematic in infinite systems (𝐿 →∞), as in
the thermodynamic limit flux in the bulk can lead to gap closings [311]. In order to avoid this problem
we need to find a way to define the Berry phase without introducing flux anywhere in the bulk. In
the following, we show how the idea of Araki et al. [312] can be moved to the outside away from the
bulk by introducing corner periodic boundary conditions (CPBC).

For CPBC we require additional couplings between the corners of the system as defined by:

�̂�C = −𝑡
(
�̂�†𝑐1 �̂�𝑐2 + �̂�†𝑐2 �̂�𝑐3 + �̂�†𝑐3 �̂�𝑐4 + �̂�†𝑐4 �̂�𝑐1

)
, (7.14)

with 𝑐𝑖 denoting the coordinates of the 𝑖-th corner, i.e. 𝑐1 = (−𝐷,𝐷), 𝑐2 = (−𝐷,−𝐷), 𝑐3 = (𝐷,−𝐷) and
𝑐4 = (𝐷,𝐷) with 𝐷 = 𝐿∕2 − 1∕2. The total Hamiltonian with CPBC is:

�̂�CPBC = �̂�OBC + �̂�C. (7.15)

As a consequence of the additional couplings in Eq. 7.14, the four corner sites form an additional
plaquettes and the couplings between the corners form super-cells delimited by the edges of the bulk
and the corner-corner bonds, as depicted in Fig. 7.7a.

Definition of the Berry phase
For defining Berry phases, we introduce flux in the super-cells outside the bulk of the system as follows:
For each corner we can write down a unitary transformation which applies only to �̂�𝐶 (see Eq. 7.14):

�̂�C
𝑖 (𝜃) = �̂�†

𝑖 (𝜃) �̂�
C �̂�𝑖(𝜃), (7.16)

adding a complex tunnel phase 𝜃 to the two corner-to-corner bonds meeting at the corner 𝑖. Here,
�̂�𝑖(𝜃) = 𝑒𝑖 �̂�𝑖(𝜃), �̂�𝑖(𝜃) = 𝜃 �̂�𝑐𝑖 and �̂�𝑐𝑖 is the particle number operator for the 𝑖-th corner site. As a
consequence, the corresponding super-cells (delimited by the corner-to-corner couplings and the edge of
the bulk) are threaded by a fluxΦ = 𝜃, as visualized in Fig 7.7. Since there are four corners in the system
𝑖 = 1, 2, 3, 4, we can define four unitary transformations �̂�1, �̂�2, �̂�3, �̂�4, leading to four (transformed)
Hamiltonians �̂�𝑖(𝜃) = �̂�C

𝑖 (𝜃) + �̂�OBC with 𝑖 = 1, 2, 3, 4, see Fig 7.7b. Note that these transformations
are related to each other through the same 𝐶4-symmetry that also gives rise to the HOSPT phases, i.e.

𝐶−14 �̂�𝑖(𝜃) 𝐶4 = �̂�𝑖+1(𝜃). (7.17)

The Berry phases 𝛾𝑖 (𝑖 = 1, 2, 3, 4) corresponding to the four gauge transformations are then defined by
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Figure 7.7 | Definition of the higher-order Berry phases. 2d-SL-BHM with CPBC for defining Berry phases while

avoiding flux in the bulk. For each corner we can define unitary transformations Ûi (i = 1, 2, 3, 4) adding complex

tunnelling phases θ to the adjacent corner-to-corner couplings and threading fluxΦ = θ through the corresponding

super-cells. The resulting Hamiltonians are Hi (i = 1, 2, 3, 4). The Berry phases effectively act as charge flow sensors,

sensitive to the direction of the electric field induced when the flux is varied (blue arrows).

the integral in Eq. 7.8, just like in the 1d case. Fig. 7.8 shows 𝛾1 as a function of the tunnel strength 𝑡
in the 2d-SL-BHM, as calculated from exact diagonalization in a 𝐿 × 𝐿 = 4 × 4 system at half filling
with CPBC. One finds that 𝛾1 is zero in the trivial phase (HOSPT 1) and instantly jumps to 𝜋 when
𝑡 > 0.5 in HOSPT 2, showing clear quantization. The same is observed for the other three Berry phases
𝛾1, 𝛾2 and 𝛾3 (not shown). One can use the ℤ2-symmetry of the system (cf. Eq. 7.18) to prove that
the Berry phases must be quantized as:

𝛾𝑖 ∈ 𝜋 ℤ, (7.18)

see [16] for details. The insets in Fig. 7.8 show the site-resolved density expectation values in HOSPT 1
and HOSPT 2 with CPBC and at half filling plus two additional particles. In the topological phase
(HOSPT 2) these additional particles prefer to occupy the plaquettes rather than the edge dimers,
leading to an inhomogeneous density distribution that is distinguishable from the homogeneous
distribution in HOSPT 1.

7.7 Chern number tuples
We can now use the Berry phases defined in Sec. 7.6 to understand and quantify the charge transport
driven by the higher-order Thouless pumps introduced in Sec. 7.5. Here we take advantage of the fact
that the adiabatic flux insertion carried out by the unitary transformation �̂�𝑖 in Eq. 7.16 relates to the
current flowing diagonally through the corner 𝑖 (see [116] for a proof):

𝐽𝑖 = 𝜕𝜃�̂�𝑖(𝜃)|𝜃=0, (7.19)

Thus, integrating up the Berry phases 𝛾𝑖 up an adiabatic path means integrating up the corner current
and is expected to yield the total change of the corner charges ∆𝑞𝑐𝑖 :

∆𝑞𝑐𝑖 = −
∆𝛾𝑖
2𝜋 . (7.20)
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Figure 7.8 | Higher-order Zak (Berry) phase. One of the four Berry phases γ1 as a function of the tunneling parameter

t in a system with CPBC (L = 4) at half-filling (N = L
2∕2). Insets: density expectation values in the trivial and the

non-trivial HOSPT for N = L
2∕2 + 2.

This establishes a connection between the properties of the bulk (captured by the topological invariant)
and the boundary states of the system (the corner charge). As the Berry phases are quantized by
𝐶4 × ℤ2-symmetry, the corner charges must be quantized, too.

As a concrete example, we apply this formalism to the two Thouless pumps introduced in Sec. 7.5
and track the charge transport both in the diagonal and the non-diagonal configuration (cf. Sec. 7.5).
For each Berry phase 𝛾𝑖 (𝑖 = 1, 2, 3, 4) we can define a Chern number C𝑖 according to Eq. 7.10, which,
following Eq. 7.20 is the total charge transported toward (C𝑖 < 0) or away from (C𝑖 > 0) corner 𝑖.

Fig. 7.9 shows all four Berry phases 𝛾𝑖 (𝑖 = 1, 2, 3, 4) as a function of 𝜆 ∈ [0, 2𝜋) which controls
the progress of the diagonal (a) and non-diagonal (b) pump. Integrating up the Berry phase evolution
yields the a tuple of four Chern numbers (C1, C2, C3, C4) as illustrated in the left panels. We get
Cdiag. = (−1, 1,−1, 1) for the diagonal and Cnon-diag. = (−1,−1,+1,+1) for the non-diagonal pump. The
charge transport directions suggested by the Chern numbers is consistent with time evolution of the
density discussed in (cf. Sec. 7.5): Whenever charge flows toward (away from) a corner a particle (hole)
corner state with positive (negative) fractional charge emerges. Since the Berry phases are quantized,
the Chern numbers must be, too, and take integer values for a full pump cycle. Thus, for a half pump
which takes the system from one HOSPT to the other, the charge accumulated is ∆𝑞𝑐𝑖 = −C𝑖∕2, yielding
fractional corner charges of +1∕2 or −1∕2 in HOSPT 2, depending on the sign of C𝑖 .

Importantly, the Chern number tuples fully characterize the polarization of the bulk and are able to
describe both quadrupole and dipole configurations in the non-trivial HOSPT, distinguishing between
these two configurations. This sheds new light on previous attempts to describe the bulk of HOSPT
phases using a pure quadrupole operator [110]. In general, one requires three out of four Chern numbers
for a full characterization of the bulk as the fourth Chern number can be deduced from symmetry.
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a

b

Figure 7.9 | Chern numbers for tracking charge transport in higher-order Thouless pumps. a, Diagonal pump. b,

Non-diagonal pump. Right panels: Evolution of the higher-order Berry phases as a function of λ ∈ [0, 2π) which

controls the progress of the pump, calculated using exact diagonalization in a L × L = 4 × 4 system at half filling with

OBC. Left panels: Chern numbers Ci calculated from integrating the change of the Berry phases according to Eq. 7.10.

Each Chern number Ci is related to the the current Ĵi (cf. Eq. 7.19) that is flowing toward (Ci < 0) or away (Ci > 0) from

corner i.
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Conclusion & Outlook

Emergence of fluctuating hydrodynamics in chaotic quantum systems
This thesis has presented quantum quench experiments for testing the qualitative and quantitative
predictions of FHD in chaotic quantum many-body systems. Bosonic ultracold 133Cs atoms in optical
superlattices have served as a quantum simulation platform, realizing the Bose-Hubbard model at
half filling in large ladder geometries (2 × 50 sites). Ladders allow to tune the dynamics from inte-
grable to chaotic by adjusting the ratio of tunnelling strengths perpendicular to and along the ladder
𝐽⊥∕𝐽. By measuring the post-quench relaxation of the system with single-site resolution, we have
arrived at the following results:

• For the first time, we have directly observed a crossover from integrable to chaotic dynamics,
demonstrating the breakdown of ballistic correlations when the legs of the ladder are coupled.

• As the dynamics are tuned from integrable to chaotic, the local mean density relaxes faster, while
fluctuation growth slows down. Thus, there is a separation of equilibration timescales between
local expectation values and large-scale fluctuations. The growth speed as a function of subsystem
size in the integrable (chaotic) case is consistent with ballistic (diffusive) dynamics, as is the
spreading of density-density correlations.

• In the chaotic case, the post-quench time-evolution of the fluctuations ismacroscopically described
by FHD. This indicates that a single coefficient, the linear-response diffusion constant, determines
the entire out-of-equilibrium behavior and that the non-equilibrium fluctuation dynamics of a
chaotic quantum system is intimately connected to the equilibrium diffusion constant via a noisy
diffusion equation.

• We have shown that the time evolution of the subsystem fluctuations and the density-density
correlations can be used to obtain the diffusion constant. This demonstrates that an important
and difficult-to-obtain equilibrium property of the system can be extracted by observing far-from-
equilibrium dynamics. This is a new paradigm, evading expensive numerical approaches or
difficult experiments in the near-equilibrium regime. Our finding that the measured values are in
agreement with linear-response calculations from the literature underlines that FHD describes
our system not only qualitatively but also quantitatively.

Importantly, the pre-quench initial state was chosen to be a small-spaced CDW. This ensures that the
initial density quickly becomes homogeneous and the dynamics are governed by the diffusion constant at
uniform density (half filling) and the hydrodynamic spreading of fluctuations. In general, the diffusion
constant is density-dependent. Thus, using an initial state with large-scale density variations like a
domain wall would lead to more complicated dynamics (requiring corrections to the hydrodynamic
model) and render the extraction of the diffusion constant more difficult. Our main finding that the
macroscopic description provided by FHD applies to chaotic quantum many-body systems has far-
reaching consequences: It means that despite the complexity unfolding at the microscopic level, the
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coarse-grained dynamics are simple. Intriguingly, from a macroscopic perspective, the consequences of
many-body entanglement are sufficiently random that a generic random noise term in the diffusion
equation is sufficient to account for them. While our experiment has studied FHD in a specific setting
(hard-core ladder systems at half filling), FHD is expected to provide a universal description for all
chaotic quantum systems. Although we cannot rigorously prove this claim (just as ETH is a hypothesis,
too), we provide important arguments and derivations in favor of it in the supplementary information of
Ref. [16]. In particular, we provide additional numerical evidence based on studying a noisy staggered-
anisotropy XXZ model in different chaotic configurations.

Our experimental results (cf. Chapter 5) provide first strong evidence that far-from-equilibrium
fluctuation growth is a quantitative probe of equilibrium transport in the context of FHD – a relationship
to be further studied in future experiments. We have established new tools for exploring the transport
properties of quantum systems which are out of reach for current numerical capabilities. For instance,
while we have populated ladder systems with hard-core bosons [254, 255, 257], future work could study
the dynamics with finite interactions and explore how integrability is broken in 1d systems as a conse-
quence of that [258, 261, 271]. The chaotic ladder thermalizes in line with the eigenstate thermalization
hypothesis: However, the tools presented in this work in combination with the large system sizes might
also be useful for studying systems where thermalization fails. These include prethermalization effects
[72, 313, 314] as well as many-body localization (MBL) in 1d and 2d, building on earlier experiments
[70, 315]. Further, the ability to prepare specific initial product states allows to observe dynamics
possibly restricted to certain sectors of the Hilbert space. This benefits the experimental realization
of constrained dynamics like Hilbert space fragmentation and many-body scars [75, 77, 78, 316, 317].
Also the emergence of generalized hydrodynamics in integrable systems has recently attracted more
interest [318, 319]. In this work we have focused on the mean local density and the fluctuations in
subsystems of various sizes. However, in principle, our quantum gas microscope allows to measure
the FCS [320] (cf. Sec. 1.2). Higher moments beyond fluctuations and their equilibration timescales
could yield information about further corrections to the hydrodynamic model which provides the
macroscopic description of our quantum many-body system [321]. Finally, the role of finite-size effects
on thermalization of these moments in finite quantum systems is not well understood and could pose
another interesting direction for further experimental and theoretical studies [292].

Bulk-boundary correspondence in higher-order symmetry-protected topological
phases
In Chapter 7 we have theoretically studied the quantized charge transport in HOSPT phases, using the
2d superlattice Bose-Hubbard model (2d-SL-BHM) as an example. We have shown how the (multi-pole)
bulk polarization can be understood using a tuple of four Berry phases, each of which is associated
with the current flowing through a different corner. These can be defined using CPBC, a necessary
step in order to ensure that no flux is introduced in the bulk and that the gap does not close in the
thermodynamic limit. The Berry phases can then be used to define Chern numbers and track the charge
transport during higher-order Thouless pumps which produce quantized fractional corner charges in
either dipole or quadrupole configuration, depending on the details of the pump. This establishes a bulk-
boundary correspondence in HOSPT phases and provides an intuitive understanding of topologically
non-trivial matter from the point of the modern theory of polarization.

The analytical methods developed in this study are expected to be applicable to a large variety of
systems protected by other crystalline symmetries [98, 322], or systems that generally differ in terms of
filling or geometry [323]. For instance, in the 2d-SL-BHM at quarter filling we expect the emergence of
corner stateswith fractional charges ofmore exotic values. Another interesting direction concerns higher-
order topology in quasicrystals [324, 325] which feature forbidden rotational symmetries like 𝐶5 or 𝐶8.
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Experimental upgrades
As discussed in Chapter 6, the quality of our data is limited by disorder in the superlattice potential as
well as by the challenging resolution regime that we are working in. In order to minimize or eliminate
these shortcomings for future experiments, we are working on various hardware upgrades:

• For maximizing the on-site interaction strength 𝑈 and being able to increase the tunnelling
strength 𝐽 while keeping 𝑈∕𝐽 large, we are setting up a new vertical lattice. In the new version,
the two beams creating the lattice will interfere under a steeper angle, providing more vertical
confinement while keeping the horizontal confinement low. A larger on-site interaction strength
means less sensitivity to disorder and temperature and is expected to extend the observation time
after the quench.

• In order to improve the resolution of our imaging system we are planning to replace the objective
and the imaging setup with a more carefully tested objective, hoping to decrease the resolution-
to-spacing ratio 𝛽 from 2.2 to 1.8. This should reduce the amount of systematic reconstruction
errors (cf. Sec. 6.4) and improve the overall data quality.

• In order to not only detect but also manipulate the system at the level of individual atoms with
single-site resolution, we will add a blue 𝜆 = 455nm addressing beam through the bottom
objective [138]. This requires excellent magnetic field stability, which is ensured by an active
stabilization setup [224].

• Finally, for the purpose of achieving higher initial state quality, particularly concerning Mott
insulators and CDWs, we are planning to implement an immersion cooling scheme proposed in
Ref. [74].

With these changes, we are looking forward to novel state-of-the-art quantum simulation experiments
and to further exploring the intriguing physics of quantum thermalization and interacting topolog-
ical matter.

∗∗∗
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Appendices

Appendix A Macroscopic fluctuation theory
In equilibrium systems, fluctuations of observables are given by the Boltzmann-Gibbs canonical dis-
tribution. In near-equilibrium (in the context of linear response theory) they are described by the
Onsager-Machlup functional [326, 327]. In far-from-equilibrium systems, it is believed that large devia-
tion functions can provide a useful description [328]. In this context, MFT was developed to describe
large deviations in a variety of diffusive systems and solve the system for quantities relevant in FHD [210].

Just as in the previous section, imagine a systemwith amacroscopic density profile �̄�(𝑥, 𝑡) is supposed
to go from an initial state �̄�0(𝑥) = �̄�(𝑥, 𝑡 = 0) at to a final state �̄�(𝑥, 𝑡 = 𝑡𝑓). A central statement of MFT
is that the probability of the system doing precisely that by taking a certain path �̄�(𝑥, 𝑡) is given by:

𝐼[𝑡0,𝑡𝑓][�̄�(𝑥, 𝑡)] ∼ exp (−𝜖−1
∫ 𝑡𝑓

𝑡0
𝑑𝑡

∫
𝑑𝑥

�̄�(𝑥, 𝑡) + 𝐹
2𝐴 ), (A.1)

called large deviation function. Here, 𝐹 is the equation of state and 𝜖 is a constant introducing an
Euclidean metric, playing the role of the Planck constant. Eq. A.1 can be considered a generalization
of the Einstein relation describing density fluctuation in equilibrium: Since the expression describes
a transition probability it also applies to any non-equilibrium situation [329]. In order determine the
probability to find the system in �̄�𝑓(𝑥, 𝑡 = 𝑡𝑓) considering that it was in �̄�𝑖(𝑥, 𝑡 = 𝑡𝑖) it is necessary
to integrate Eq. A.1 over all intermediate configurations allowed by the continuity equation. This
corresponds to the minimization of an action:

𝑆 =
∫
𝑑𝑡𝑑𝑥 [

�̄�(𝑥, 𝑡) + 𝐹
2𝐴 + 𝑝( ̇̄𝑛(𝑥, 𝑡) + 𝜕𝑥𝑗(𝑥, 𝑡))] . (A.2)

Here, 𝑝 is a Lagrange multiplier field ensuring that the integral fulfills the continuity equation. Solving
this optimization problem yields the optimal path �̄�(𝑥, 𝑡) and Eq. A.1 allows to obtain the full statistics
of �̄�(𝑥, 𝑡) or any other quantity, if adapted. The distribution of an observable can provide deeper insights
into the thermalization of chaotic systems [15, 210] beyond simple diffusion and possibly point at
additional terms to be included in the equation of state (cf. Eq. 2.7).

Appendix B Fidelity estimation from double imaging
In order to estimate the reconstruction fidelity F , we take two fluorescence images of the same cloud
in succession and compare the reconstruction results. For modelling this process, let us think of an
arbitrary site in the image: The events (along with their probabilities) leading to a change of the true
occupation between the two images and the measured occupation in each of the two images can be
summarized in a three-step model [83]:
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True occupation: unoccupied / occupied
Reconstructed occupation:  unoccupied / occupied
First / second image

Reconstruction
of 1st image

Hopping and loss
between images

Reconstr.
of 2nd image

Figure B.1 | Double imaging as a three-step Bernoulli trial. Probability tree for calculating the measured occupation

difference between the first and the second fluorescence image, taking reconstruction errors (probability 1 − F )

as well as hopping and loss events (combined probability p
δ

) into account. The tree describes how the true and

detected occupation of an arbitrary site is altered by imaging and reconstruction. The round and square markers

indicate the true and reconstructed occupation, respectively. Red and white stand for occupied and unoccupied. The

probabilities p
1
,… , p

8
belong to the eight ends of the probability tree.

1. Taking the first image and reconstructing it with a fidelity F , i.e. there is a chance of F that the
true occupation is detected correctly and a chance of 1 − F that the wrong occupation is detected.

2. Hopping and loss occurring during and between the two images and leading to changes of the
true occupation with probability 𝑝𝛿.

3. Taking the first image and reconstructing it with a fidelity F , i.e. there is a chance of F that the
true occupation is detected correctly and a chance of 1 − F that the wrong occupation is detected.

Concatenating these steps leads to the probability tree shown in Fig. B.1 which reduces the double
imaging process to a Bernoulli trial. It holds under the assumption that 𝑝𝛿 is not too large. In step 2,
𝑝𝛿 is the probability that the true occupation of a site in the second image is different from the true
occupation in the first image due to hopping or loss events (probabilities 𝑝hop and 𝑝loss within the
exposure time, respectively). It is proportional to the mean density in the system 𝑛:.

𝑝𝛿(𝑛) = 𝑛 (𝑝loss + 2𝑝hop) (B.1)

Since hopping events always leads to an occupation change of two sites, the associated probability
needs to be weighted with a factor of two.

The probability tree in Fig. B.1 has eight outcomes corresponding to the probabilities 𝑝1,… , 𝑝8. For
instance, the probability 𝑝1 = F 𝑝𝛿 F corresponds to the case where both images are reconstructed
correctly but the two occupations are differ due to a hopping or loss event. The probability 𝑝2 =
F 𝑝𝛿 (1 − F) corresponds to the case where the two reconstructed occupations match even though
there was a hopping or loss event, as the reconstruction of the second image is incorrect.

In the experiment we can measure the probability 𝛿 for a different occupation in the second image
compared to the first image. Of the eight ends of the probability tree, only four (𝑝1, 𝑝4, 𝑝6 and 𝑝7)
contribute to this scenario. Thus, we can write:
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𝛿 = 𝑝1 + 𝑝4 + 𝑝6 + 𝑝7
= F2 𝑝𝛿(𝑛) + F (1 − F) (1 − 𝑝𝛿(𝑛)) + (1 − F)2 𝑝𝛿(𝑛) + (1 − F)F (1 − 𝑝𝛿(𝑛)). (B.2)

We are interested in computing the reconstruction fidelity F . Solving for this variable yields:

F = 1
2
⎛
⎜
⎝
1 +

√
1 − 2𝛿

1 − 2𝑝𝛿(𝑛)
⎞
⎟
⎠
. (B.3)

In the limit of vanishing hopping and loss rate (𝑝𝛿 = 0), Eq. B.3 can be simplified to:

F = 1
2
(
1 +

√
1 − 2𝛿

)
. (B.4)

This result suggest that if there no occupation difference between the first and the second image is
measured (𝛿 = 0), the reconstruction fidelity is perfect (F = 1), neglecting hopping and loss events. In
turn, if the reconstruction result of the second image is so different that effectively two random images
are being compared 𝛿 = 0.5, Eq. B.4 would yield F = 0.5 (the worst possible value). In presence of
hopping and loss events, the measured occupation difference 𝛿 would lead to an underestimation the re-
construction fidelity. Eq. B.3 takes that into account and corrects the reconstruction fidelity accordingly.

Appendix C Free fermion approach
Decoupled ladders (𝐽⊥∕𝐽 = 0) occupied by hard-core bosons are an integrable quantum system. This
is because the many-body problem of hard-core bosons can be mapped to a single-body problem of
spinless fermions. We take advantage of this mapping to carefully study the impact of disorder aas
well as finite-size effects and benchmark the experiment.

Jordan-Wigner transformation
On a discrete lattice, the bosonic field operators generally satisfy the commutation relations:

[�̂�𝑖 , �̂�𝑗] = 0, [�̂�†𝑖 , �̂�
†
𝑗 ] = 0, [�̂�𝑖 , �̂�

†
𝑗 ] = 𝛿𝑖𝑗 (C.1)

For hard-core bosons (the on-site interaction energy 𝑈 → ∞) one can adapt these relations to take
account for the fact the the same lattice site cannot be occupied by more than one particle, leading
to mixed commutation relations [255]:

[�̂�𝑖 , �̂�𝑗] = 0, [�̂�†𝑖 , �̂�
†
𝑗 ] = 0, [�̂�𝑖 , �̂�

†
𝑗 ] = 𝛿𝑖𝑗 for 𝑖 ≠ 𝑗, (C.2)

{�̂�𝑖 , �̂�𝑖} = 0, {�̂�†𝑖 , �̂�
†
𝑖 } = 0, {�̂�𝑖 , �̂�

†
𝑖 } = 1 (C.3)

Substituting the bosonic field operators in the Bose-Hubbard Hamiltonian (Eq. 1.5 or Eq. 5.1 with
𝐽⊥∕𝐽 = 0) with the hard-core versions eliminates the interaction term that scales with 𝑈:

�̂�BHM,hardcore = −𝐽
⎛
⎜
⎝

∑
𝑖
�̂�†𝑖 �̂�𝑖+1 + h.c.

⎞
⎟
⎠
. (C.4)
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The hard-core boson problem can now be mapped onto a spinless fermion problem using the
Jordan-Wigner transformation [330]:

𝑐†𝑖 =
∏

𝑗<𝑖
(1 − 2�̂�†𝑗 �̂�𝑗)�̂�

†
𝑖 (C.5)

The operator (1−2�̂�†𝑗 �̂�𝑗) only takes the values+1 and−1, depending on whether the site 𝑖 is unoccupied
or occupied, respectively. Thus, the product

∏
𝑗<𝑖(1− 2𝑎

†
𝑗 �̂�𝑗) yields ±1, depending howmany sites with

index 𝑗 < 𝑖 (to the left of site 𝑖) are occupied. If the number of occupied sites is even, we get 𝑐†𝑖 = �̂�†𝑖 ,
otherwise 𝑐†𝑖 = −�̂�†𝑖 . This ensures that 𝑐

†
𝑖 and 𝑐𝑖 obey the fermionic anticommutation relations:

{𝑐𝑖 , 𝑐𝑗} = 0, {𝑐†𝑖 , 𝑐
†
𝑗 } = 0, {𝑐𝑖 , 𝑐

†
𝑗 } = 𝛿𝑖𝑗 . (C.6)

Applying this Jordan-Wigner transformation to the one-dimensional bosonic Hamiltonian (cf. Eq. C.4)
yields:

�̂�f f = −𝐽
⎛
⎜
⎝

∑
𝑖
𝑐†𝑖 𝑐𝑖+1 + h.c.

⎞
⎟
⎠
. (C.7)

Analytical predictions without disorder
The free fermion Hamiltonian can be diagonalized using a Fourier transform, as detailed in [267]. For a
CDW initial state state of the form 𝜓0 = |… 10101010…⟩ the imbalance (cf. 4.6) will time-evolve as:

I(𝑡) = J0 (4𝑡𝐽∕ℏ) . (C.8)

Here, J0 is the zeroth Bessel function of the first kind [267] which decays polynomially as I(𝑡) ∼ 𝑡−
1
2 .

For the equal-time density-density correlations between sites with indices 𝑗 and 𝑘 one finds:

⟨
�̂�𝑗(𝑡)�̂�𝑘(𝑡)

⟩
−
⟨
�̂�𝑗(𝑡)

⟩
⟨�̂�𝑘(𝑡)⟩ =

1
4𝛿𝑗,𝑘 −

1
4J𝑗−𝑘(4𝑡𝐽∕ℏ)

2, (C.9)

where 𝛿𝑗,𝑘 is the Kronecker delta [267]. This expression suggests that the correlations are spreading
ballistically with a maximum velocity of 4𝐽∕ℏ, also known as the Lieb-Robinson velocity [176]. This
corresponds to twice the group velocity 2𝐽∕ℏ of the free fermions [176, 274, 275]. Eq. C.8 is plotted
in Fig. 6.2b (dashed lines),Eq. C.9 in Fig. 6.3a (left panel).

Numerics for benchmarking disorder
For the purpose of benchmarking the impact of disorder, we extend Eq. C.7 by introducing energy
shifts 𝑉𝑖 at site 𝑖 = 1, ⋅, 𝐿 as follows:

�̂�f f = −𝐽
⎛
⎜
⎝

∑
𝑖
𝑐†𝑖 𝑐𝑖+1 + h.c.

⎞
⎟
⎠
+
∑
𝑖
𝑉𝑖�̂�𝑖 . (C.10)

In order to compute the time evolution of the CDW initial state under Eq. C.10, we first compute
the unitary time evolution operator

�̂�(𝑡) = 𝑒−𝑖�̂�f f 𝑡∕ℏ. (C.11)

Note that, in contrast to the original Hamiltonian in Eq. C.4 which, in the Fock basis, has 𝑑 × 𝑑 entries
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(where 𝑑 is the number of Hilbert space dimensions), �̂�f f has just 𝐿sys × 𝐿sys with 𝐿sys being the overall
system size. It can be shown that the local occupation at site 𝑖 is then given by [267]:

⟨𝑛𝑖(𝑡)⟩ =
∑
{𝑛𝑞}

�̂�𝑖𝑛𝑞 �̂�
†
𝑛𝑞 𝑖

(C.12)

,
where 𝑛𝑞 denotes the indices of all initially occupied sites. Similarly,

⟨�̂�𝑗(𝑡)�̂�𝑘(𝑡)⟩ =
∑

{𝑛𝑞},{𝑛𝑝}
(�̂�𝑗𝑛𝑞 �̂�

†
𝑛𝑞𝑗
�̂�𝑘𝑛𝑝�̂�

†
𝑛𝑝𝑘

− �̂�𝑗𝑛𝑞 �̂�
†
𝑛𝑞𝑘

�̂�𝑘𝑛𝑝�̂�
†
𝑛𝑝𝑗

) . (C.13)

Combining Eq. C.12 and Eq. C.13 then allows to compute the connected density-density correlator

𝐶𝑑(𝑡) = ⟨�̂�𝑖(𝑡)�̂�𝑗(𝑡)⟩ − ⟨𝑛𝑖(𝑡)⟩⟨𝑛𝑗(𝑡)⟩. (C.14)

We typically run several hundred simulations with randomly sampled disorder potentials and ran-
domly sampled initial states (taking into account the experimental preparation fidelity), compute the
disconnected density-density correlator in Eq. C.13 for each run separately and then average over all
correlator values to get the mean disconnected correlator. This yields the first term in Eq. C.13. For
the second term we average the densities directly over all simulation runs. Both terms together yield
the connected density-density correlator in Eq. C.14.

Appendix D Relationship between subsystem fluctuations and density-
density correlations

In Chapter 5 we discuss the measured time evolution of particle number fluctuations in subsystems
of length 𝐿 (Sec. 5.4) and of the density density correlations (Sec. 5.5). One can find expressions that
convert these two observables into each other.

The variance of the total atom number in a subsystem of length 𝐿 is defined as:

Var𝐿(𝑡) =
⟨
(�̂�1,1 + �̂�2,1 +⋯ + �̂�1,𝐿 + �̂�2,𝐿)2

⟩
−
⟨
�̂�1,1 + �̂�2,1 +⋯ + �̂�1,𝐿 + �̂�2,𝐿

⟩2 (D.1)

Expanding this expression and using the definition of the connected density-density-correlator:

𝐶𝛼,𝛽𝑖,𝑗 =
⟨
�̂�𝛼,𝑖�̂�𝛽,𝑗

⟩
−
⟨
�̂�𝛼,𝑖

⟩ ⟨
�̂�𝛽,𝑗

⟩
, (D.2)

for two sites 𝑖, 𝑗 in legs 𝛼, 𝛽 = 1, 2, yields:

Var𝐿(𝑡) =
𝐿∑

𝑖,𝑗=1

(
𝐶1,1𝑖,𝑗 + 𝐶1,2𝑖,𝑗 + 𝐶2,1𝑖,𝑗 + 𝐶2,2𝑖,𝑗

)
. (D.3)

This expression related the particle number variance of a subsystem with length 𝐿 to a sum of
density-density correlators up to distance 𝑑 = |𝑖 − 𝑗| = 𝐿.

The correlators in Eq. D.3 can be further expanded and sorted by distance, yielding:

𝐿∑
𝑖,𝑗=1

𝐶1,1𝑖,𝑗 = 𝐿 𝐶1,10 + 2 (𝐿 − 1)𝐶1,11 + 2 (𝐿 − 2)𝐶1,12 +⋯ + 2𝐶1,1𝐿−1, (D.4)

with 𝐶𝛼,𝛽𝑑 defined as in Eq. 5.11. Eq. D.4 allows to compute the subsystem variances directly from
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the density-density correlation cone. In fact, this is what we do since the density-density correlation
data can be corrected more easily for systematic reconstruction errors (cf. Sec. 6.4).
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