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Summary

Heatwaves and droughts are increasingly impacting our ecosystem, infrastructure and society

through their rising intensity and frequency due to the present effect of global warming. A se-

ries of recent extreme heatwaves and droughts in Europe, like in 2003, 2006, 2018 and 2022, have

revealed the vulnerability by causing various impacts from increased heat stress on humans and the

ecosystem to missing cooling water for thermal power plants and increased incidence of climate-

sensitive diseases. The frequency and intensity of heatwaves and droughts are expected to increase

in most regions of Europe in the upcoming years.

In the past decade, artificial intelligence has shown its impressive capacity to solve complex, non-

linear problems and increase pattern recognition capabilities. In 2016, artificial intelligence beat

the world champion in Go, a challenge previously regarded as unsolvable by computers. Recent

ChatGPT-3 and GPT-4 launches have highlighted AI’s potential in text generation. Much of it lies

in the application of machine learning in climate sciences due to the complexity of the earth system

and the huge need for predictability and mitigation of various climate extremes. Increased volume

of observational and model data facilitates the development of machine learning applications in cli-

mate sciences. Explainable AI approaches allow an interpretation of the results and an examination

of the physical consistency of the results. Pattern recognition and clustering approaches allow to

derive consistent groupings of data based on inherent features.

This thesis aims to investigate the predictability and interrelation of heatwaves and droughts in Eu-

rope using machine learning approaches in a large ensemble. Physical interpretation of the results

is achieved via explainable AI methods. This dissertation employs data from a Single Model Ini-

tial Condition Large Ensemble (SMILE). A SMILE consists of multiple model runs with the same

external forcing but slightly varied initial conditions. The differences in the initial conditions allow

to estimate the uncertainty that arises due to nonlinear interactions in the climate system. A large

ensemble covers the natural variability of the climate and provides robust statistical estimations of

extreme events due to the large quantity of available events. This thesis uses a Regional Climate

Model (RCM), which, in contrast to General Circulation Models (GCMs), has a finer spatial reso-

v



lution and allows the resolution of fine-scale processes, such that the effects of local geographies

like mountains become visible.

This thesis includes three publications which use different machine learning methods and which

have applications in drought prediction, identification of heatwave patterns, and compound hot

and dry events. This interdisciplinary research draws relevance from meteorology, climatology,

statistics, and data science and contributes to scientific progress in geosciences.

In the first publication (Felsche and Ludwig, 2021), an Artificial Neural Network (ANN) is trained

to predict drought occurrence in two European regions, Munich and Lisbon, using data from a

large ensemble of climate simulations. Atmospheric and soil variables from the Canadian Regional

Climate Model 5 Large Ensemble (CRCM5-LE) and teleconnection indices such as the North At-

lantic Oscillation (NAO) are used as input data for the prediction. Standardised Precipitation Index

with a cumulative time of one month (SPI1) is used as the predictor variable. The best-performing

algorithms can correctly classify drought or no drought for about 55� 57% of the events in both

domains. The models are then analysed for variables important for prediction using explainable

AI methods like shapely values. Shapely values assign each variable a relative importance for

the prediction, allowing the comparison of the contribution of each variable. The North Atlantic

Oscillation (NAO) index and air pressure one month before the event were found to be the most im-

portant variables for prediction for both domains. Additionally, for the Lisbon domain, northward

near-surface wind is found to have an important contribution. For the Munich domain, in contrast,

teleconnection indices like the Scandinavian Oscillation Index (SCA) and East Atlantic/Western

Russia Oscillation (EAWR) five months before the event are found among the strongest predictors.

The study concludes that the Lisbon domain prediction is more reliable regarding the accuracy and

contribution of individual variables.

In the second publication (Felsche et al., 2023), machine-learning-based clustering is applied to

summer heatwaves in Europe to identify typical heatwave patterns in Europe in the current climate.

Therefore, the data from the CRCM5-LE model is used. The patterns are identified via an unsuper-

vised machine learning approach of hierarchical agglomerative clustering with cosine similarity as

a distance measure. A total of nine significant spatial patterns are found, ranging from the Iberian

Peninsula to North-Eastern Europe. The patterns are consistent with previous studies, observations

and historical extreme heatwave events. Additionally, the publication investigated the influence of

a soil moisture deficit in spring on a prolonged heatwave in summer in the identified region and
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the effect of a prolonged heatwave in summer on the soil moisture deficit in the following fall

via quantile regression slopes. The results of Felsche et al. (2023) indicate a predictive power of

soil moisture in the preceding winter/spring for a heatwave occurrence in summer in South Euro-

pean regions like Greece and South Italy, Southeast Europe, Iberian Peninsula and Western Europe.

Moreover, the study finds a correlation between a high number of heatwave days in summer and a

soil moisture deficit in the following fall for Northern European regions like Scandinavia, Northeast

Europe and Southeast Europe.

The third publication (Felsche et al., 2024) investigates the probability of occurrence of historical

extreme compound hot and dry events in the future. The study identifies the most extreme past

event occurrences from reanalysis data ERA5 in the past two decades, 2001 to 2022, for Europe’s

nine typical regions of compound hot and dry events. It quantifies the event probabilities with

CRCM5-LE for three Global Warming Levels (GWL; +1.2K, +2K, and +3K). GWL is defined

via the difference in mean surface air temperature with regards to the historical period 1850-1900.

The study uses copula statistics for bivariate probability quantification and uses a Survival Kendall

probability definition. The nine sub-regions are identified using the same approach as in publication

II. The results show that 2003 was the most extreme historical hot and dry event in four European

sub-regions located in Southwest Europe. The findings show a significant increase in the frequency

of extreme past events under higher warming levels. For some events, the probability increases

up to five to six times when comparing GWL2 and GWL3 and up to 46 percent (every second

summer) under the latter scenario. Additionally, the study performs a hot and dry compound event

climatology analysis by evaluating changes between the present and GWL3 periods. It shows

a northward shift in the climatology of hot and dry events. Eastern Europe’s current climate is

extending into parts of the Baltic Sea Coast and Scandinavia, the area experiencing a wet and moist

climate in the Alps is shrinking, and the hot and dry climate currently observed in the Balkan

Peninsula is expected to extend into substantial parts of Eastern Europe under a future GWL of

+3K.

This thesis studies the predictability and interrelationship of heatwaves and droughts and their

evolution with climate change by applying different machine learning techniques. With the help

of artificial intelligence methods such as ANN and hierarchical agglomerative clustering, the study

advances the scientific knowledge on the predictability of droughts. The thesis shows that air

pressure and teleconnection indices are essential predictors for droughts in Munich and Lisbon, as

well as that for Northern Europe number of heatwave days in summer, can serve as a predictor for
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an agricultural drought in fall. For summer heatwaves in South Europe, the soil moisture deficit in

the previous spring can serve as a predictor. The thesis shows that compound hot and dry events

will become more probable with rising Global Warming Levels in most European regions. At the

same time, there is a difference of up to five to six times in event occurrence when comparing

GWL +2K to GWL +3K, underlining the benefits of sticking to a two-degree target. This scientific

knowledge is valuable for further studies on the predictability of hot and dry events. The evolution

in the future is valuable for decision-makers for implementation of mitigation measures to address

the impacts of these events on human health, agriculture, and the environment.
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Zusammenfassung

Hitzewellen und Dürren beeinträchtigen zunehmend unser Ökosystem, unsere Infrastruktur und

unsere Gesellschaft, da sie aufgrund der derzeitigen Auswirkungen der globalen Erwärmung an

Intensität und Häufigkeit zunehmen. Eine Reihe von extremen Hitzewellen und Dürren in Europa

in den Jahren 2003, 2006, 2018 und 2022 haben die Vulnerabilität deutlich gemacht, indem sie

verschiedene Auswirkungen, von erhöhtem Hitzestress auf Menschen und das Ökosystem bis hin

zu fehlendem Kühlwasser für Wärmekraftwerke und dem vermehrten Auftreten von klimasensi-

tiven Krankheiten, verursacht haben. Es ist zu erwarten, dass die Häufigkeit und Intensität von

Hitzewellen und Dürren in den meisten Regionen Europas in den kommenden Jahren zunehmen

wird.

In den letzten zehn Jahren hat die künstliche Intelligenz (KI) beeindruckende Fähigkeiten gezeigt

komplexe, nicht lineare Probleme zu lösen und Mustererkennung zu verbessern. Im Jahr 2016

besiegte die künstliche Intelligenz den Weltmeister in Go, eine Herausforderung, die zuvor als

unlösbar für Computer galt. Die kürzlichen Veröffentlichungen von ChatGPT-3 und GPT-4 haben

das Potenzial der KI bei der Texterstellung aufgezeigt. Die Anwendung von KI in den Klimawis-

senschaften birgt ein großes Zukunftspotenzial aufgrund der Komplexität des Erdsystems und des

enormen Bedarfs an Vorhersagbarkeit und Mitigation der verschiedenen Klimaextreme. Die wach-

sende Menge an Beobachtungs- und Modelldaten erleichtert die Entwicklung von Anwendungen

für KI.

Ziel dieser Arbeit ist es, die Vorhersagbarkeit und den Zusammenhang von Hitzewellen und Dürren

in Europa mithilfe von Ansätzen des maschinellen Lernens in einem Large Ensemble zu unter-

suchen. Physikalische Interpretation der Ergebnisse erfolgt durch die Anwendung statistischer

Methoden, sowie Methoden as dem Bereich der Explainable AI. In dieser Dissertation werden

Daten aus einem Single Model Initial Condition Large Ensemble (SMILE) verwendet. Ein SMILE

besteht aus mehreren Modellläufen mit dem gleichen externen Antrieb, aber leicht veränderten

Initialbedingungen. Die Unterschiede in den Anfangsbedingungen ermöglichen es, die Unsicher-

heiten abzuschätzen, die durch nichtlineare Wechselwirkungen im Klimasystem entstehen. Ein
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Large Ensemble deckt die natürliche Variabilität des Klimas ab und liefert aufgrund der großen

Menge an verfügbaren Ereignissen statistisch robuste Abschätzungen von Extremereignissen. In

dieser Arbeit wird ein regionales Klimamodell (RCM) verwendet, das im Gegensatz zu allge-

meinen Zirkulationsmodellen (GCM) eine feinere räumliche Auflösung hat und die Darstellung

feiner Prozesse ermöglicht, sodass die Auswirkungen lokaler Geografien wie Gebirge sichtbar wer-

den.

Diese Dissertation umfasst drei Publikationen, in denen verschiedene Methoden des maschinellen

Lernens angewandt werden und die sich auf die Vorhersage von Dürren, die Identifizierung von

Hitzewellenmustern und die Wahrscheinlichkeitsquantifizierung von gleichzeitigen Hitze- und

Dürreereignissen beziehen. Diese interdisziplinäre Forschung ist im Bereich der Meteorologie,

Klimatologie, Statistik und Data Science zu verorten und trägt zum wissenschaftlichen Fortschritt

in den Geowissenschaften bei.

In der ersten Publikation (Felsche and Ludwig, 2021) wird ein künstliches neuronales Netzwerk

(ANN) trainiert, um das Auftreten von Dürren in zwei europäischen Regionen, München und

Lissabon, anhand von Daten aus einem Large Ensemble von Klimasimulationen vorherzusagen.

Atmosphären- und Bodenvariablen aus dem Canadian Regional Climate Model 5 Large Ensem-

ble (CRCM5-LE) und Telekonnektionsindizes wie die Nordatlantische Oszillation (NAO) werden

als Input für die Vorhersage verwendet. Als Vorhersagevariable wird der standardisierte Nieder-

schlagsindex mit einer kumulativen Zeit von einem Monat (SPI1) verwendet. Die leistungsstärksten

Algorithmen können für etwa 55� 57% der Ereignisse in beiden Domänen korrekt klassifizieren,

ob eine Dürre zu erwarten ist oder nicht. Die Modelle werden dann auf Variablen untersucht,

die für die Vorhersage wichtig sind, indem erklärbare KI-Methoden wie Shapely-Werte verwen-

det werden. Shapely-Werte weisen jeder Variable eine relative Bedeutung für die Vorhersage zu

und ermöglichen so den Vergleich des Beitrags der jeweiligen Variablen. NAO und der Luftdruck

einen Monat vor dem Ereignis erwiesen sich für beide Domänen als die wichtigsten Variablen für

die Vorhersage. Darüber hinaus ist der oberflächennahe Wind für Lissabon eine der wichtisten

Variablen. Für München hingegen gehören Telekonnektionsindizes wie der Skandinavische Os-

zillationsindex (SCA) und die Ostatlantik/Westrussland-Oszillation (EAWR) fünf Monate vor dem

Ereignis zu den stärksten Prädiktoren. Die Studie kommt zu dem Schluss, dass die Vorhersage für

Lissabon zuverlässiger ist, was die Genauigkeit und den Beitrag der einzelnen Variablen angeht.

In der zweiten Publikation (Felsche et al., 2023) wird ein KI-basiertes Clustering auf sommerliche
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Hitzewellen in Europa angewandt, um typische Hitzewellenmuster in Europa unter den derzeiti-

gen klimatischen Bedingungen zu identifizieren. Dazu werden die Daten des CRCM5-LE-Modells

verwendet. Die Studie wendet hierarchisches agglomeratives Clustering mit Cosinusähnlichkeit

als Distanzmaß an um die Hitzewellenmuster zu identifiziert. Es wurden insgesamt neun sig-

nifikante räumliche Muster gefunden, die von der Iberischen Halbinsel bis nach Nordosteuropa

reichen. Die Muster stimmen mit früheren Studien, Beobachtungen und historischen extremen

Hitzewellenereignissen überein. Darüber hinaus wurde in der Publikation der Einfluss eines Boden-

feuchtedefizits im Frühjahr auf eine lang anhaltende Hitzewelle im Sommer und die Auswirkung

einer lang anhaltenden Hitzewelle im Sommer auf das Bodenfeuchtedefizit im darauffolgenden

Herbst in den jeweiligen Regionen mittels Quantilsregressionskurven untersucht. Die Ergebnisse

von Felsche et al. (2023) zeigen eine Vorhersagekraft der Bodenfeuchte im vorangegangenen Win-

ter/Frühjahr für das Auftreten einer Hitzewelle im Sommer in südeuropäischen Regionen wie

Griechenland und Süditalien, Südosteuropa, der Iberischen Halbinsel und Westeuropa an. Darüber

hinaus wird in der Studie für nordeuropäische Regionen wie Skandinavien, Nordosteuropa und

Südosteuropa ein Zusammenhang zwischen einer hohen Anzahl von Hitzewellentagen im Sommer

und einem Bodenfeuchtedefizit im folgenden Herbst aufgezeigt.

Die dritte Publikation (Felsche et al., 2024) untersucht die Wahrscheinlichkeit des Auftretens his-

torischer gleichzeitiger Hitze- und Dürreereignisse (compound events) in der Zukunft. Die Studie

identifiziert die extremsten Ereignisse der Vergangenheit über den Reanalysedatensatz ERA5 in

den letzten zwei Jahrzehnten, 2001 bis 2022, für die neun typischen Regionen Europas. Sie quan-

tifiziert die Ereignis-wahrscheinlichkeiten mit CRCM5-LE für drei Global Warming Levels (GWL;

+1,2K, +2K und +3K). GWLs sind über die Differenz der mittleren Oberflächenlufttemperatur

zum Zeitpunkt der Betrachtung zum historischen Zeitraum 1850-1900 definiert. Die Studie ver-

wendet Copula-Statistiken zur Quantifizierung bivariater Wahrscheinlichkeiten und verwendet eine

Survival -Kendall -Wahrscheinlichkeitsdefinition. Die neun Unterregionen werden nach dem gle-

ichen Ansatz wie in Publikation II ermittelt. Die Ergebnisse zeigen, dass 2003 in vier von neun

europäischen Teilregionen das extremste historische Hitze- und Dürreereignis war. Die Analy-

sen zeigen eine erhebliche Zunahme der Wahrscheinlichkeit von compound events bei höheren

Erwärmungsniveaus. Bei einigen Ereignissen steigt die Wahrscheinlichkeit zwischen GWL2 und

GWL3 um das Fünf- bis Sachsfache, und um bis zu 46 Prozent (jeden zweiten Sommer) unter

dem letzteren Szenario. Darüber hinaus führt die Studie eine Analyse der Klimatologie heißer und

trockener compound events durch, indem sie die Veränderungen zwischen dem heutigen Zeitraum
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und GWL3 bewertet. Das derzeitige Klima in Osteuropa dehnt sich auf Teile der Ostseeküste und

Skandinavien aus, die Region mit feuchtem und nassem Klima in den Alpen schrumpft, und das

heiße und trockene Klima, das derzeit auf der Balkanhalbinsel zu beobachten ist, wird sich bei

einem künftigen GWL von +3 K voraussichtlich auf wesentliche Teile Osteuropas ausdehnen.

In dieser Arbeit werden die Vorhersagbarkeit und die Wechselbeziehung von Hitzewellen und

Dürren sowie deren Veränderung im Zusammenhang mit dem Klimawandel durch die Anwen-

dung verschiedener KI-Verfahren untersucht. Mit Hilfe von Methoden der künstlichen Intelligenz

wie ANN und hierarchischem agglomerativen Clustering bringt die Studie die wissenschaftlichen

Erkenntnisse über die Vorhersagbarkeit von Dürren voran. Die Arbeit zeigt, dass für Dürren

in München und Lissabon Luftdruck- und Telekonnektionsindizes wesentliche Prädiktoren sind,

und, dass für Nordeuropa die Anzahl der Hitzewellentage im Sommer als Prädiktor für land-

wirtschaftliche Dürren im Herbst dienen kann. Für sommerliche Hitzewellen in Südeuropa kann

das Bodenfeuchtedefizit im vorangegangenen Frühjahr als Prädiktor dienen. Die Dissertation zeigt,

dass heiße und trockene compound events mit dem Anstieg des globalen Erwärmungsniveaus in den

meisten europäischen Regionen wahrscheinlicher werden. Gleichzeitig ergibt sich ein Unterschied

in der Häufigkeit der Ereignisse um das Fünf- bis Sechsfache, wenn man GWL +2K mit GWL +3K

vergleicht. Dies unterstreicht die Schwere der Konsequenzen, wenn die globale Erderwärmung

nicht auf Zwei-Grad reduziert wird. Diese wissenschaftlichen Erkenntnisse sind wertvoll für weit-

ere Studien über die Vorhersagbarkeit von Hitzewellen und Dürren. Ebenso, können die Ergeb-

nisse als Entscheidungsgrundlage dienen um Maßnahmen zur Mitigation der Auswirkungen von

Hitzewellen und Dürren auf menschliche Gesundheit, Landwirtschaft und Umwelt durchzusetzen.
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1. Introduction

Our environment, our infrastructure and ecosystem are accustomed to deal with calculated ex-

tremes: there is a certain expectation value for which we adjust. Our homes are built to withstand

the average wind and weathers, the dams are built to hold the 100 year flood, the public transport

system can only deal with a certain amount of snow. Nevertheless we again and again experience

extremes where our society and ecosystem fail to deal with: be it the catastrophic flash flood in the

Ahr valley in Germany in 2021 (Truedinger et al., 2023) leading to deaths and massive distractions,

the strongest agricultural drought in 2018 in central and northern Europe leading to huge crop fail-

ures (Li et al., 2020) or the strong snowfall in Munich in 2023 (Livingston, 2023), where no trains,

busses, or airplanes were working for multiple days. Having the ability to predict the occurrence of

such kind of events becomes crucial, especially if we can mitigate the excess mortality, economic

damages, supply shortages and infrastructure failure. Prediction of the events needs an advanced

understanding of the underlying drivers and teleconnections that lead to the formation of extreme

events.

Europe experienced a rising trend in the occurrences of heatwaves and droughts in the past two

decades, with record-breaking events like 2003, 2018, 2022. Heatwaves and droughts pose an

immense challenge for research for a multitude of reasons. First of all extreme events happen rarely

by definition. Comprehensive historical weather observations are available for roughly 140 years

only, since 1880 (Kaspar et al., 2017). If an event happens only every 20 years, each of the observed

locations will have a record of 7 events only to be researched. This a number way too low for

statistically robust analyses. Secondly, the events of heatwaves and droughts happen on a vast scale

with a multitude of variables that influence their formation, ranging from atmospheric conditions to

land surface processes. Due to the internal chaotic nature of the weather system we cannot expects

that an interconnection found once will hold true for other event occurrences. Moreover, the events

of heatwaves and droughts are highly interrelated. A heatwave can trigger a drought and vice versa

also across seasons or even across different regions, thereby further complicating the investigations.

Reports by the Intergovernmental Panel on Climate Change (IPCC) that are summarizing the cur-
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rent state of research underline the rising occurrence of extreme weather events due to climate

change, including heatwaves and droughts, with varying regional impacts. It is scientific consensus

that Europe is experiencing currently and will face in the future more frequent, prolonged, and

intense heatwaves and droughts (Bednar-Friedl et al., 2022). As our climate undergoes signifi-

cant changes, understanding the dynamics of heatwaves and droughts becomes not only a scientific

imperative but also a critical foundation for developing effective strategies for adaptation and miti-

gation.

The research presented here employs state-of-the-art machine learning techniques to enhance our

comprehension of spatial and temporal patterns associated with heatwaves and droughts. The thesis

uses Artificial Neural Networks (ANNs) as a supervised method for prediction and clustering as an

unsupervised approach for identifying dominant spatial patterns.

This dissertation contributes to advancing the understanding of heatwaves and droughts by making

use of a Single Model Initial Condition Large Ensemble (SMILE). The employed SMILEs consist

of a regional nested climate model, that is run several times with slightly iterated initial conditions,

thereby producing data not only from one model run, but 50. This method ensures correct esti-

mation of the natural climate variability in contrast to climate-change-induced signal. One other

benefit of SMILEs is that in contrast to conventional simulations those produce a high number of

extremes available for investigation.

In following the state of the research on heatwaves and droughts, data and machine learning meth-

ods are presented in section 2. Research questions are introduced in section 3, followed by the

three publications. The first publication within this dissertation focuses on monthly predictability

of droughts in Lisbon and Munich, utilizing ANNs (Paper I; section 4.1). In the second publi-

cation, we apply clustering techniques to discern typical patterns of heatwaves across Europe and

investigate the seasonal connection of heatwaves occurring in those regions with a soil moisture

deficit in the previous or following season (Paper II; section 4.2). Lastly, this dissertation explores

occurrences of past compound events—simultaneous occurrences of heatwaves and droughts. By

leveraging the SMILE approach, we quantify the probability of past extreme compound events

and project their occurrence in the future (Paper III; section 4.3). The key findings of the three

publications are discussed in section 5.
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2. Scientific Basis

2.1 Heatwaves and droughts

Prolonged periods of above-average temperatures are commonly known as heatwaves (Miralles

et al., 2019). Meteorological drought is commonly defined as a period of reduced precipitation

(Miralles et al., 2019). However, other definitions exist that focus more on soil moisture (agri-

cultural drought) or streamflow and reservoir levels (hydrological drought) (Sheffield and Wood,

2011).

The weather in the Northern Hemisphere is determined by the constant alternation of cyclones and

anticyclones arriving from the West (Roedel, 2013; Domeisen et al., 2023). Rossby waves are the

high latitude wind meanders between those cyclones and anticyclones (Bravar and Kavvas, 1991),

see Figure 2.1. Heatwaves and droughts occur when a large-scale circulation anomaly, namely an

anticyclone, remains over the same geographical area for a prolonged period (Bravar and Kavvas,

1991). Due to the weather system’s chaotical nature, no single mechanism causes this prolonged

stopping of the alternation of cyclones and anticyclones and contributes to the formation of those

events. Generally speaking, two main factors influence the formation of the events: dynamic and

thermodynamical drivers (Suarez-Gutierrez et al., 2020). Dynamical drivers are large-scale cir-

culation changes and atmospheric conditions influencing the events’ formation. Thermodynamic

drivers account for local effects as land-atmosphere interactions that are introducing feedbacks that

could weaken or strengthen the events. A study found that for heatwaves dynamical drivers and

thermodynamic conditions contribute each between 20 and 70% to the events anomalies (Wehrli

et al., 2019). Already now Climate Change is playing a significant role, contributing between 10%

to 40% of the heatwave event anomaly.
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Figure 2.1: Schematical overview of drivers contributing to the formation of heatwaves and meteorological
droughts in the mid-latitudes. Boldface text indicates processes in current climate and italic text projected
changes under anthropogenic warming. Asterisks indicate projected changes with high uncertainty. Adapted
from Domeisen et al. (2023).

2.1.1 Large-scale circulations influencing the formation

Large-scale atmospheric circulation patterns strongly determine European climate variability (Lim,

2015). The pressure system over the Atlantic Ocean and Europe can be divided into four main

modes of variability. The four leading modes are displayed in Figure 2.2 along with the percentage

of variance they explain (Felsche and Ludwig, 2021). Those modes are connected to temperature

and precipitation anomalies in certain regions. The most dominant pattern, North Atlantic Oscil-

lation (NAO), is characterised by the atmospheric pressure anomaly between the Azores High and

the Icelandic Low. It accounts for roughly 30% of variability. A positive NAO index in summer is

associated with dry and warm conditions in north-west Europe, whereas southern Europe and the

Mediterranean experience cooler and wetter conditions (Folland et al., 2009). The Scandinavian

Oscillation (SCA) (Figure 2.2) has the primary centre of action around the Scandinavian Peninsula.

A positive SCA index is usually associated with increased precipitation in the midlatitude north-

eastern Atlantic and decreased precipitation around north-eastern Europe (Bueh and Nakamura,

2007). The East Atlantic Oscillation (EA) (Figure 2.2 (C)) consists of a dipole: a low-pressure sys-
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Figure 2.2: First four leading eigenfunctions of the mean sea level pressure in CanESM2. The percentage of
variance the mode explains is given on top of the figures, from Felsche and Ludwig (2021)

tem situated in the North Atlantic basin and a high-pressure system over South Europe and South

Atlantic (Barnston and Livezey, 1987). A study by Mikhailova and Yurovsky (2016) depicted a

close positive relationship between the EA index and the surface air temperature in Europe in win-

ter. A positive correlation between EA and precipitation was found in Spain, France and West

Germany (Barnston and Livezey, 1987). The East Atlantic/Western Russia Oscillation (EA/WR)

(Figure 2.2 (D)) is characterised by two main large-scale anomalies north from the Caspian Sea and

western Europe (Lim, 2015). The positive EA/WR phase is defined by a negative pressure anomaly

over the Atlantic near 40�W and 40� 45�N and a positive pressure anomaly over central Europe.

A study by Lim (2015) showed that positive precipitation anomalies over midlatitude Atlantic and

negative anomalies over the European region are associated with the positive EA/WR.

Blocking is another key mechanism contributing to the formation of heatwaves and droughts in
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Europe (Figure 2.1). Blocking occurs when a strong anticyclonic persistent weather pattern forms,

so strong that it blocks the incoming storms (Sheffield and Wood, 2011) and is self-sustaining

(Kautz et al., 2022). This leads to the area under the blocking experiencing hot and dry conditions

for an extended period (Sheffield and Wood, 2011). Only a strong incoming anticyclone is able to

break it. It has been shown that blocking conditions in Europe can be induced by a positive phase

of NAO (Li et al., 2020). An atmospheric blocking caused historical events like the 2003 and 2018

heatwaves and droughts (Kautz et al., 2022; Kueh and Lin, 2020).

2.1.2 Land-atmosphere interactions influencing the formation

The influence of land surface on weather is mostly moduled through soil moisture (Hsu and Dirmey-

er, 2023). Soil moisture has a direct effect through the partitioning of land heat fluxes, as portrayed

in Figure 2.3.

This leads to two distinct evaporation regimes: moisture-limited and energy-limited (Seneviratne

et al., 2010; Teuling et al., 2009). In the first case, enough energy is present for evaporation;

however, due to dry soil, only little energy can be transmitted to the latent heat flux, which usually

contributes to the formation of convective clouds. Therefore, sensible heat flux prevails (Figure 2.3

left). This is the case in the Southern regions of Europe, such as the Mediterranean. The energy-

limited regime refers to a case where enough soil moisture is present. However, not enough energy

is present. The incoming solar radiation leads to a high evaporative fraction and high latent heat

flux (Figure 2.3 right). This regime prevails in Northern Europe in summer (Teuling et al., 2009).

The region in between is defined as transitional, where time-wise, both regimes might occur and,

therefore, strongly influence the large-scale atmospheric dynamics.

Moreover, heatwaves and droughts can have a mutually reinforcing relationship (Osman et al.,

2022; Felsche et al., 2023). With the start of a heatwave, there is a drying effect on soil and

vegetation, causing a reduction in evaporation. This, in turn, diminishes the probability of rainfall,

creating conditions for the emergence of droughts. On the other hand, with the onset of drought,

evaporation decreases. The resulting reduction in cloud cover allows more solar radiation to reach

the land surface, increasing the probability of heatwave formation (Figure 2.1). This bidirectional

interaction underlines the complex interdependency between heatwaves and droughts, highlighting

that through the feedback loops, the events can trigger each other and self-intensify (Miralles et al.,
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Figure 2.3: Schematical overview of moisture-limited and energy-limited regimes; adapted from Hsu and
Dirmey-er (2023)

2019).

The described feedbacks are non-linear and dependent on the observed regions. Quesada et al.

(2012) confirm that dry conditions in winter/spring seasons prevail before hot summers over South-

ern Europe. Moreover, a rainfall deficit in the Mediterranean in spring favours the formation of

heatwaves in Northern Europe as the rainfall deficit propagates northward throughout the summer

(Vautard et al., 2007; Stefanon et al., 2012). For summers it is confirmed that anomalously dry

Western and Northern European (Della-Marta et al., 2007), as well as in South-Eastern European

(Hirschi et al., 2011; Whan et al., 2015) summers significantly correlate with the occurrence of

heatwaves in those regions (Della-Marta et al., 2007).

2.1.3 Observed and projected changes in heatwave and drought occurrence

Since 1950, most regions worldwide have observed a significant increase in heatwave days, max-

imum duration, and cumulative heat (Perkins-Kirkpatrick and Lewis, 2020). A major heat and/or

drought event occurred in Europe every couple of years in the past two decades: 2003, 2010, 2012,

2015, 2018, 2022 (Russo et al., 2015; Hanel et al., 2018; Felsche et al., 2024). In most European

capitals, the number of heatwave days and long heatwaves increased when comparing 1998-2015

to 1980-1997 (Bednar-Friedl et al., 2022). The number of droughts has increased in Mediterranean
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regions and Central and Eastern Europe (Spinoni et al., 2017). Fewer droughts have been observed

in North Europe (Spinoni et al., 2017). Compounding heatwaves and droughts have larger impacts

through the increased stress of two extremes and the self-intensifying nature due to the interplay

between extreme events. There is medium confidence, that compound hazards of warming and

precipitation have become more frequent in the past years in Europe (Bednar-Friedl et al., 2022;

Mukherjee and Mishra, 2021) (definition of medium confidence according to the IPCC).

Under Global Warming conditions, an increase in the median, as well as extreme temperatures, is

to be expected. However, due to local drivers and interactions, the effect on precipitation and the

related drought phenomenon has to be modelled via climate projections.

Climate model projections estimate that the described trends will continue throughout the 21st cen-

tury (Garcia-Leon et al., 2021; Ballester et al., 2010). Heatwaves will likely become a major threat

for Europe and European cities (Bednar-Friedl et al., 2022). A doubling of heatwave frequency is

expected until the middle of the century (2050), with an even larger increase in severe heatwaves

(Lhotka et al., 2018). Climate change projections show an increased likelihood of drought occur-

rence under moderate and extreme greenhouse emission scenarios of RCP 2.6, RCP 6.0 and RCP

8.5 (Grillakis, 2019; Böhnisch et al., 2021). In all scenarios, an increase in spatial extent and dura-

tion is expected. The drying trend is expected to be stronger in Southern regions of Europe like the

Iberian Peninsula and the Mediterranean (Tuel and Eltahir, 2021; Böhnisch et al., 2021). Regarding

future compound heatwave and drought events, an increase is expected in most European regions

(Boehnisch et al., 2023). Northern France, Southern Germany, Switzerland, Southern Ireland, and

the Western coasts of the Black Sea are expected to experience a tenfold increase in occurrence

under the business-as-usual scenario.

If Global Warming is limited to 2�C, the number of compound hot and dry events would be at least

halved (Boehnisch et al., 2023). Limiting the increase below 2�C would reduce the share of the

European population exposed to hydro-meteorological events by 40% in Europe compared to a 3�C

scenario (Farinosi et al., 2020).
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2.2 Observational and modelled climate data

Different kinds of climate data exist, each providing own constraints and advantages, such that the

data source has to be intentionally chosen to fit the research question. There is observational data,

reanalysis data and model data.

Observational data is measured data via a variety of tools, from weather stations to airplanes and

satellites (Saltikoff et al., 2019). The main benefit of observational data is that it is the closest

representation we can use to study historical weather events. However, many limitations persist:

there is only a limited set of variables that can be measured, the spatial coverage is never complete

and is dependent on the density of measuring stations, and finally, the quality of the data can vary,

e.g. due to the device uncertainty, dependence of the measurement on certain weather conditions

or due to device maintenance, power outages, etc. (Tippett et al., 2015). Statistical tools exist that

help to overcome these limitations by extrapolating the data to a spatially consistent grid; however,

the physical relationships between the variables might be violated (Notz, 2015).

Reanalysis data is physically consistent modelling data that is merged with historical observations

by using data assimilation (Baatz et al., 2021). The assimilation technique ensures that the numer-

ical results reproduce the observations as well as possible while maintaining a physically consis-

tent solution for regions where observational data is missing (Baatz et al., 2021). Moreover, this

method has the benefit of producing many variables that cannot be measured. Limitations include

that reanalysis is limited to the range of observational data, which is available only from the 1950s.

Moreover, models come with known uncertainties, such as the dependence on the number of verti-

cal levels in the model, as well as the limited accuracy in the representation of the upper boundary

level (Lilensten et al., 2016). Last but not least, reanalyses require high computational power due

to model complexity (Lilensten et al., 2016).

Last but not least, conventional modelling data could be used for various purposes, e.g., to better

understand the past and the future, where we do not have historical data, or to assess rare meteoro-

logical events. Single-Model Initial-Condition Large Ensembles (SMILEs) are an essential recent

climate research and modelling development. The approach enlarges the amount of produced data

immensely. A SMILE is produced by repeatedly running a model with slightly iterated initial con-

ditions under the same greenhouse gas forcing scenario (Maher et al., 2021). This methodology

allows to distinguish between the climate-change-induced signal and the natural climate variability,
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which refers to the internal chaotic nature of the weather system, where slight changes might lead

to very different results (Maher et al., 2021).

Regional Single-Model Initial-Condition Large Ensembles (SMILEs)

There are global as well as regional SMILEs. Global climate models (GCMs) cover the whole

Earth’s surface and have a spatial resolution of 100 to 450 km due to high computational costs

(Liang-Liang et al., 2022). The resolution is often too coarse for investigating extreme hydromete-

orological events (Leduc et al., 2019). This problem is solved by nested Regional Climate Models

that have a dynamical code and parametrisation; however, they are taking the boundary conditions

from a GCM (Leduc et al., 2019). Leduc et al. (2019) find a better representation of local extremes

in the regional model when compared to the global model. Another study confirms that RCMs can

better represent temperature and precipitation in high mountain regions like the Alps, as well as

Central Europe in summer and north-eastern Europe in winter (Kendon et al., 2010).

Figure 2.4 displays the climate change projections of December precipitation for the first 24 mem-

bers of the CRCM5-LE, the dataset that has been used in this dissertation. The difference in the

change signal between the members is evident. The added value of the ensemble lies in the proper

estimation of the climate variability, which is only observable when all members are considered.

Moreover, regional SMILEs produce a huge statistical basis of extreme events available for in-

vestigation, as they produce thousands of model years (Maher et al., 2021). This makes them

particularly useful for investigating events like droughts and heatwaves.

Limitations of SMILEs concern the same issues as with conventional modelling. Each model has

structural differences from one another in modelling the physical mechanisms, in the choices during

the setup and tuning of the model (Lupo et al., 2013; Leduc et al., 2019). This model uncertainty

can only be assessed through a comparison to other models under the same greenhouse gas forcing

scenario (von Trentini et al., 2019).
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Figure 2.4: Short-term climate change projections (2020–39 vs 2000–19) for mean December precipitation
from the ensemble members 1–24 over the EU domain, adapted from Leduc et al. (2019)

2.3 Machine Learning

Machine Learning is a field of study in computational informatics that aims to train machines to

learn from the provided data without explicitly providing the rules for the generalisation (Shinde

and Shah, 2018). Machine Learning has a wide application in various fields, where it is too costly

to develop deductive algorithms to fulfil the task. There are many applications ranging from speech

recognition, computer vision, and text production to weather forecasts and tumour identification

(Shinde and Shah, 2018).

A general differentiation exists between a supervised and an unsupervised learning approaches.

The first refers to learning problems in which target data is given (Bishop, 2006, p. 3). If the
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target data is discrete, e.g. 0 or 1, then the problem is called a classification problem. In case the

target variable is continuous, the problem is called a regression problem (Bishop, 2006, p. 3). In

unsupervised learning, the goal is to discover patterns within the input data without a pre-defined

true result. Explicit examples are clustering to group the data, density estimation of a dataset or the

projection of the data to a lower-dimensional space for the purpose of visualisation or compression

(Bishop, 2006, p. 3).

This thesis applies Artificial Neural Networks (ANNs) and a clustering approach in the publica-

tions. In the following, those approaches will be introduced.

2.3.1 Foundations of ANNs

ANNs are a supervised learning approach. The design of ANNs is inspired by the architecture of

the brain (Russell and Norvig, 2009, p. 728). Like connected brain neurons, an ANN consists

of interconnected nodes. These nodes have the capacity to learn as they encounter information.

They are connected with each other by directed links (Russell and Norvig, 2009). The nodes are

organised in layers (Zhang, 2010; Russell and Norvig, 2009). Each node in the layer is connected

to all neurons in the preceding and following layer if it is a fully connected network. In an ANN,

the learning process of nodes is facilitated through the adjustment of weights associated with the

connections between nodes. Each node represents a computational unit that receives input signals

and computes an output. The input layer interacts with input data X. The output layer produces the

aimed result ypredicted . A multitude of hidden layers can be located between input and out put. An

exemplary architecture is shown in Figure 2.4 on the left.

A defined activation function, g, is used for each neural network to calculate the node output (Rus-

sell and Norvig, 2009). Activation functions play a crucial role in the functioning of neural net-

works as they introduce non-linearity, complexity and expressive power to the model. Without

them, the neural network would be a linear transformation of the data, regardless of the number of

layers or nodes. A link between the node i and the node j serves to propagate the activation ai from

i to j. A numeric weight wi, j is assigned to each connection. The output of the node is computed

by:
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Figure 2.5: Schematical overview of an artificial neural network

a j = g(in j) = g

 
n

Â
i=0

wi, jai

!
(2.1)

where g is an activation function (Russell and Norvig, 2009, p. 728). For example, the activation

function could be a hard threshold modelled with a step function or a logistic function called a

sigmoid. A schematical overview is displayed in Figure 2.5 on the right.

The optimisation process in artificial neural networks involves adjusting the weights, denoted as

wi, j, to minimise the error, or loss, between the ytrue and ypreducted . Two fundamental algorithms

are employed for this purpose: Gradient Descent and Backpropagation (Rumelhart et al., 2013).

The adjustment of weights is guided by the gradient of the loss function with respect to the weights

(Janocha and Czarnecki, 2017) (gradient descent). This gradient indicates the direction and magni-

tude of the steepest ascent of the error. This is first calculated only for the final layer. Backpropaga-

tion is then applied to transmit this information from the final layer in the opposite direction of the

gradient, effectively descending the error landscape (Russell and Norvig, 2009; Rumelhart et al.,

2013). The weight update rule is governed by the learning rate, a hyperparameter that influences

the size of each step in the weight adjustment process. The algorithm iteratively applies this process

until a satisfactory level of convergence is achieved, and the network produces accurate predictions

(Russell and Norvig, 2009; Rumelhart et al., 2013).
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Figure 2.6: Schematical overview of clustering. Left: exemplary distortion plot with the elbow at 3. Right:
Steps in the Hierarchical Agglomerative Clustering Algorithm

2.3.2 Foundations of Clustering

Clustering is a fundamental method in Data Mining (Rokach and Maimon, 2005), which can be

applied as a pattern recognition method. Clustering aims to discover knowledge, hence a new

set of categories or groups that share similar characteristics without prior knowledge of the right

outcome. The created subsets should be organised in such a way that each member belongs to one

and only one subset. Many algorithms use differing approaches for clustering, such as taking the

distance between data points, the density, or particular statistical distributions. Two basic types of

clustering algorithms exist: hierarchical and relocation methods (Fraley and Raftery, 1998).

Hierarchical methods produce a sequence of subgroups, each corresponding to a different overall

number of clusters. Thereby, we can start with each datapoint belonging to their own cluster and

merge them - ’agglomerative’, or we start with all datapoints in the same cluster and split the groups

at each stage - ’divisive’(Fraley and Raftery, 1998; Murtagh and Contreras, 2017). The agglomera-

tive algorithm is schematically shown in Figure 2.6. An optimisation criterion has to be introduced

for the splitting or merging to happen. Broadly used criteria for hierarchical agglomerative cluster-

ing include a single link (nearest neighbour), complete link (farthest neighbour) or sum of squares

(Fraley and Raftery, 1998; Rokach and Maimon, 2005).
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Relocation methods have the core idea of moving data points from one cluster to another so that

a criterion, like the within-group sum of squares, is minimised. A predefined number of clusters

has to be given for this method. The most common and broadly used relocation method is k-means

(Fraley and Raftery, 1998).

In both approaches, the problem of determining the correct number of clusters is imminent. The

elbow method is one of the most common and easiest approaches to do that. The elbow method

measures the distortion for different numbers of clusters in order to identify the optimal number

that achieves a balance between minimizing distortion and avoiding excessive complexity. The

distortion score is calculated via the squared distance of every point of the cluster to the assigned

center. The number of clusters corresponding to the distortion curve’s knee is then chosen as the

final number of clusters (Jung et al., 2003; Kodinariya and Makwana, 2013). Figure 2.6 on the left

shows an exemplary plot of the distortion score curve.

Every clustering approach needs a pre-defined similarity or distance measure, which can tell how

similar or dissimilar two data points are. A valid distance measure should be symmetric and obtain

a zero value for identical vectors. Cosine Similarity distance d(r,q) is a frequently used measure

which gives the angle between two vectors. The smaller the angle between two data points, the

more similar they are. The distance between two vectors r and q is therefore defined as follows:

d(r,q) = 1� cs(r,q) (2.2)

cs(r,q) =
ÂN

i=1 ÂM
j=1 ri, jqi, j

(ÂN
i=1 ÂM

j=1 ri, j)1/2(ÂN
i=1 ÂM

j=1 pi, j)1/2 (2.3)

cs(r,q) refers to the cosine similarity measure between two vectors (Cheng and Wallace, 1993). It

is defined as 1 for parallel vectors and as 0 for orthogonal.

Explainable AI methods

The increased complexity of Machine Learning models turns the algorithms in ”black box” ap-

proaches, due to the missing transparency in how the models come to their decisions. Explainable

Artificial Intelligence is a field aiming to develop methods that would allow interpretability and in-
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sight into decision criteria. (Linardatos et al., 2021; Holzinger et al., 2022). In the thesis the SHAP

(SHapley Additive exPlanations) method is a applied. The methodology is inspired by game theory

(Lundberg and Lee, 2017). It estimates an average marginal contribution of each input feature on

the prediction of the result and therefore allows to calculate a relative importance score to each

input variable.

2.3.3 State of the art usage of AI in Climate Sciences

Although many machine learning methods have been known since the 1960s, the methods initially

received little development due to missing computational power needed to train the models (Boch-

enek and Ustrnul, 2022). Only with a massive increase in computational power and data volumes

over the past two decades are machine learning and artificial intelligence enjoying their golden

era. The 2012 Deep Learning Revolution marks the point where Deep Learning approaches out-

performed other machine learning approaches, demonstrating the capacity to solve more complex

problems and increasing the pattern recognition capabilities (Willingham, 2023). 2016 marked an-

other significant milestone, where, for the first time, artificial intelligence was able to beat the world

champion in Go. This ancient game before was considered an unsolvable challenge for AI (Shar-

ifani and Amini, 2023; Willingham, 2023). Most recent Chat GPT-3 and GPT-4 launches in 2020

and 2023, respectively, have yet again underlined the immense potential of artificial intelligence

(Liu et al., 2023). Those models showcase advanced text and content understanding and demon-

strate astonishing capabilities to interact with humans and generate texts from prose to poems and

programming code (Liu et al., 2023).

Machine Learning has broad applications in climate sciences. One application is in numerical

weather prediction research, where machine learning models are predicting specific variables like

wind (Heinermann and Kramer, 2016) or precipitation (Ahmed et al., 2020), the occurrence of ex-

treme events like droughts (Jiang and Luo, 2022), hurricanes (Asthana et al., 2021) or heatwaves

(Jacques-Dumas et al., 2022), or even deliver continuous forecasts for the whole atmospheric sys-

tem (Huntingford et al., 2019). A new hurdle was recently breached in this space: Weather Pre-

diction based on Deep Learning delivered more accurate forecasts than the most accurate physics-

based model developed by the European Centre for Medium-Range Weather Forecasts (ECMWF).

Huawei’s model ”Pangu -Weather” and Google’s Model ”GraphCast” deliver global weather pre-

dictions for over ten days at a high spatial resolution (Lam et al., 2023; Bi et al., 2023). Both
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models were trained on available reanalysis data. The big advantage of those models is that once

trained, they can be run on conventional computers and deliver results within a minute. In contrast,

conventional weather prediction models require giant supercomputers (Lam et al., 2023). Never-

theless, both models still have several weaknesses, like the underestimation of extreme events and

the inability to deliver ensemble forecasts. Also, doubts persist whether the models can predict

global warming-triggered unseen weather events since machine learning models learn from known

data (Lam et al., 2023; Bi et al., 2023). Disregarding those challenges, it becomes clear that the

potential for further development is enormous.

Another popular application of machine learning lies within synoptic meteorology and climatol-

ogy, which deals with finding generalised weather patterns. In many cases, no strict and precise

definitions exist, such that machine learning can help divide the dataset based on common charac-

teristics. Both applications, supervised when training to label already defined synoptic classes and

unsupervised when discovering patterns, find broad usage in research (Stryhal and Plavcová, 2023;

Lee and Sheridan, 2012; Mittermeier et al., 2022).
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3. Research Questions

This thesis aims to investigate the drivers, dynamics and interrelation of hot and dry extremes in Eu-
rope. Heatwaves and droughts are both events that share the same large-scale atmospheric drivers
and that will intensify under Global Warming conditions. Due to the internal chaotic nature of the
weather system, we are facing limited understanding and predictability of the generalised patterns
of those events. This thesis thrives on improving this understanding to allow for timely event miti-
gation and portray the consequences of climate change. This thesis used two fundamental concepts
that made the investigation possible: the SMILE framework and machine learning approaches. The
SMILE framework allowed for statistically reliable investigation of extreme events with a return
period of 20 years or more. Due to the 50-members, 50 times more extreme heat and drought
events were available for classification and driver investigation. Machine learning and artificial
intelligence are one of the biggest technological revolutions and potentials of our time. In the the-
sis, basic machine learning concepts were applied to research the physical features of heatwaves
and droughts. Explainable AI approaches supported the investigation and allowed to determine the
variables that allowed the prediction.

The scientific research projects that are part of this thesis provide answers to the following research
question:

Can machine learning approaches facilitate the research on prediction and interrelation of
heatwaves and droughts in Europe?
If yes, what can we learn from it about the physical nature of the events and the expected
changes in the future?

All three publications address the overarching research question. A schematical overview of the
publications in Figure 3.1 portrays the investigated event type, the timeframe and the applied ma-
chine learning method. In the following, the specific research questions of each publication are
introduced:

1. The first publication investigates drought prediction for two European locations with differing
climates: Munich and Lisbon. The research questions are the following:

• Q1.1: What is the potential of machine learning in drought prediction? What opportu-
nities for research does it offer?
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Figure 3.1: Schematic overview of the publications for the investigated event type, timeframe and machine
learning method

• Q1.2: What are the relevant variables for drought prediction in Lisbon? What are the
relevant variables for drought prediction in Munich?

• Q1.3: What role does seasonality play in the prediction? Are there particular seasons
where droughts are better predictable?

2. In the second research project, the phenomenon of European summer heatwaves and their
interrelation with the seasonal soil moisture anomaly is investigated. For any study dealing
with spatio-temporal events, the question of meaningful dimensionality reduction becomes
eminent. Therefore, the study aims to find typical heatwave patterns that can be used to study
the interrelation with soil moisture.

• Q2.1: How can we identify typical patterns of heatwaves in Europe with the help of
machine-learning-powered clustering?

• Q2.2: How does a soil moisture deficit in spring influence the occurrence of a summer
heatwave in the identified regions?

• Q2.3: What is the influence of a heatwave in summer on the soil moisture deficit in the
following fall for each of the identified regions?

3. The third research project brings the first two together. It investigates compound hot and dry
events by first identifying the typical patterns with the same methodology as in Paper II and
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then quantifying the probabilities of occurrence of historical compound hot and dry events
in Europe under current conditions, a Global Warming Level (GWL) of +2�C and a +3�C
degree.

• Q3.1: How can we identify typical patterns of compound hot and dry events in Europe
with the help of machine-learning-powered clustering? What are the most extreme
historical compound hot and dry events in those regions?

• Q3.2: How will the probability of historical compound hot and dry events change under
the influence of climate change under two possible scenarios of GWL2 and GWL3?

• Q3.3: How will the climatology of compound hot and dry events change under future
climate?

Two of the three papers have been published in peer-reviewed journals: Natural Hazards and Earth
System Sciences (NHESS) and npj Climate and Atmospheric Science. The last paper has been
submitted to Communications Earth & Environment. All the publications are introduced by an
overview page, which consists of the most relevant information on the publication, including a
plain language summary, information on the authors, authors’ contributions, the journal, and the
publication status. The papers are presented chronologically, as the last publication combines con-
cepts introduced in the first two.

The thesis is based on interdisciplinary research in meteorology, climatology, statistics and data
science and presents state-of-the-art geoscience research. Modern geosciences apply computer
sciences to model and analyse the physical processes of the Earth System in contrast to older and
traditional methods of observations via pen and paper, measurements via physical devices and
traditional statistics. The enhanced tools for analysis via machine learning are of high potential
for the future to discover physical knowledge by learning from the data and comparing to existing
physical theories. The presented methods are part of interpretable machine learning and pattern
recognition approaches. Future applications of machine learning in geosciences will boost the
performance both in modelling and analysis.

In addition to the three publications that are part of the thesis, the author contributed to three
projects in collaboration with co-authors. The research targets related topics of dynamics of heat-
waves, the expected changes of compound dry and hot events in agricultural areas, as well as the
expected impact of climate change on crop yields.

Böhnisch, A., Felsche, E., Ludwig, R. (2023). European heatwave tracks: using causal discovery
to detect recurring pathways in a single-regional climate model large ensemble. Environmental
Research Letters, 18(1), 014038.
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Boehnisch, A., Felsche, E., Mittermeier, M., Poschlod, B., Ludwig, R. (2023). Future hotspots of
compound dry and hot summers emerge in European agricultural areas. Authorea Preprints.

Schmidt, M., Felsche, E. (2023). The effect of climate change on crop yield anomaly in Europe.
Climate Resilience and Sustainability, 3(1), e261.
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4. Scientific Publications

4.1 Paper I: Applying machine learning for drought prediction
in a perfect model framework using data from a large en-
semble of climate simulations

Reference: Felsche, E., Ludwig, R. (2021). Applying machine learning for drought prediction in a
perfect model framework using data from a large ensemble of climate simulations. Natural Hazards
and Earth System Sciences, 21(12), 3679-3691.

Plain language summary: There is a strong scientific and social interest in understanding the
factors leading to extreme events like droughts in order to improve risk management. This study
applies an artificial neural network (ANN) to predict drought occurrence in two European regions
with differing climatology: Munich and Lisbon, with a lead time of 1 month. The approach takes
into account a list of 28 atmospheric and soil variables from a single-model initial-condition large
ensemble (CRCM5-LE) as input parameters to the ANN model. Drought occurrence is defined us-
ing the Standardized Precipitation Index (SPI). The best-performing machine learning algorithms
manage to obtain a correct classification of drought or no drought for a lead time of 1 month for
around 55%�57% of the events of each class for both domains. An analysis of the variables that
have the highest impact on the prediction is performed. The study shows that the North Atlantic
Oscillation index and air pressure 1 month before the event have the highest importance for the pre-
diction for both domains. For the model trained for the Lisbon domain, the variables of northward
near-surface wind (vas) and evaporation (evspsbl) are the next strongest predictors. For the Munich
domain, teleconnection indices EAWR and SCA 5 months before the event are found among the
strongest predictors. In general the prediction for the Lisbon domain is more reliable in terms of
absolute accuracy and contribution of individual variables.

Author’s contribution: This study was conceptualised by EF under the supervision of RL. Formal
analysis, visualization of results and writing of the original draft were performed by EF. All authors
contributed to the interpretation of the findings and revision of the paper.

Scope of the journal: ”Natural Hazards and Earth System Sciences (NHESS) is a not-for-profit
interdisciplinary and international journal dedicated to the public discussion and open-access pub-
lication of high-quality studies and original research on natural hazards and their consequences.
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Embracing a holistic Earth system science approach, NHESS serves a wide and diverse commu-
nity of research scientists, practitioners, and decision makers concerned with detection of natural
hazards, monitoring and modelling, vulnerability and risk assessment, and the design and imple-
mentation of mitigation and adaptation strategies, including economical, societal, and educational
aspects.” (EGU, 2024)

Status: published

Journal: Natural Hazards and Earth System Sciences (NHESS)

Impact Factor (2-Year): 4.58
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Abstract. There is a strong scientific and social interest in
understanding the factors leading to extreme events in or-
der to improve the management of risks associated with haz-
ards like droughts. In this study, artificial neural networks
are applied to predict the occurrence of a drought in two con-
trasting European domains, Munich and Lisbon, with a lead
time of 1 month. The approach takes into account a list of
28 atmospheric and soil variables as input parameters from
a single-model initial-condition large ensemble (CRCM5-
LE). The data were produced in the context of the ClimEx
project by Ouranos, with the Canadian Regional Climate
Model (CRCM5) driven by 50 members of the Canadian
Earth System Model (CanESM2). Drought occurrence is de-
fined using the standardized precipitation index. The best-
performing machine learning algorithms manage to obtain
a correct classification of drought or no drought for a lead
time of 1 month for around 55 %–57 % of the events of each
class for both domains. Explainable AI methods like SHap-
ley Additive exPlanations (SHAP) are applied to understand
the trained algorithms better. Variables like the North At-
lantic Oscillation index and air pressure 1 month before the
event prove essential for the prediction. The study shows that
seasonality strongly influences the performance of drought
prediction, especially for the Lisbon domain.

1 Introduction

Droughts remain to be one of the most dangerous hazards,
having a serious and large-scale impact on environment, so-
ciety and economy. Recent events like the summer 2018
drought in huge parts of central Europe led to severe forest

fires and crop failures. The damage was estimated to amount
to several hundred millions of euros solely in Germany (Fed-
eral Ministry of Food and Agriculture, 2018). Moreover the
effect of global warming leads to major changes in the earth’s
climate system, having a direct influence on the frequency
and severity of extreme events like droughts (Spinoni et al.,
2016). An increase in frequency of drought occurrence is a
major threat for current and future generations, and compre-
hensive knowledge on the phenomenon of drought is needed
in order to take action early and to prevent humanitarian
catastrophes. This goes in conjunction with drought predic-
tion. Precise drought prediction would enable the mitigation
of the dangers connected to drought occurrences such that
stakeholders, for example, would be able to store the maxi-
mal possible amount of water in the endangered regions. This
would help to mitigate the water shortage when the drought
arrives. Measures for demand reduction like that could be in-
troduced earlier and to a better-adjusted extent; this would
help to reduce the economic and societal damage.

To mitigate the effects of droughts the information on the
their onset is of crucial importance. This can be derived from
a drought index. A variety of drought indices exist, which are
typically defined according to statistical and physical mea-
sures. These mostly take into account atmospheric and soil
variables. Among the most popular ones are the standardized
precipitation index (SPI), standardized precipitation evapora-
tion index (SPEI), soil moisture percentile (SMP) and Palmer
drought severity index (PDSI). The standardized precipita-
tion index (SPI) is adopted as the standard meteorological
index by World Meteorological Organization (2012). It is a
measure of meteorological drought based on the probabil-
ity of occurrence of certain precipitation amounts in the area

Published by Copernicus Publications on behalf of the European Geosciences Union.
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of interest (Sheffield and Wood, 2011). Studies on drought
prediction by Belayneh et al. (2016) and Bonaccorso et al.
(2015) use SPI as a prediction variable for the forecast.

Forecasting of any physical phenomenon can be done by
either a physical, conceptual or data-driven model. The lat-
ter ones are widely used due to their rapid development
times and the flexibility in input parameters. McGovern et al.
(2017) argue that AI methods have a high potential for pre-
diction of extremes due to the ability of machine learning
methods to learn from past data, to handle large numbers of
input variables, to integrate physical understanding into the
models and to discover additional knowledge from the data.

A review of seasonal drought prediction given by Hao
et al. (2018) identifies two typical predictor groups of vari-
ables: large-scale climate indices that reflect the atmosphere–
ocean circulation patterns and local climate variables. The
first ones are known to correlate with precipitation patterns in
special regions and therefore are naturally correlated with the
occurrence of drought. The teleconnection indices important
for European precipitation include North Atlantic Oscilla-
tion (NAO), Scandinavian Oscillation (SCA), East Atlantic–
Western Russia Oscillation (EAWR), East Atlantic Oscil-
lation (EA) and Atlantic Multidecadal Oscillation (AMO)
(Hao et al., 2018). As shown by Folland et al. (2009) a
positive NAO index in summer is associated with dry and
warm conditions in the northwest of Europe, whereas south-
ern Europe and the Mediterranean experience cooler and
wetter conditions. More information on the influence of the
NAO, SCA, EA and EAWR on the European climate can be
found in Folland et al. (2009), Bueh and Nakamura (2007),
Mikhailova and Yurovsky (2016), Lim (2015); Barnston and
Livezey (1987) and Sheffield et al. (2009). A positive phase
of AMO is associated with humid conditions over Great
Britain and parts of Scandinavia and with dry conditions in
the Mediterranean (Sheffield and Wood, 2011, p. 26); the
negative phase is associated with a reversed pattern: dry con-
ditions in Great Britain and wet conditions in the Mediter-
ranean. A study by Sheffield et al. (2009) showed a correla-
tion between the amount of droughts and AMO of 62 % with
a significance at the 90 % level. A recent study by Bonac-
corso et al. (2015) uses NAO for prediction of probability
of drought occurrence for Sicily. The local climate variables
like precipitation, temperature and soil moisture were also
used as inputs to reflect the conditions at the time the pre-
diction occurs. Belayneh et al. (2016) and Bonaccorso et al.
(2015) used SPI for the past months as input variable to the
algorithm. A study by Morid et al. (2007) used precipitation
as an input parameter.

This paper examines the possibilities of meteorological
drought prediction with the lead time of 1 month, apply-
ing artificial neural networks (ANNs) for two domains with
different climate: one with Mediterranean (Lisbon) and one
with continental climate (Munich) (Ceglar et al., 2019). Both
sites experienced an increase in drought frequency when
comparing 2015 and 1950 and are projected to keep rising

under RCP4.5 as well as RCP8.5. (Spinoni et al., 2017). Ob-
servational data offer only a limited field for drought inves-
tigation, as can be seen from the following approximation.
Systematical weather observations started in 1781 by the So-
cietas Meteorologica Palatina (Kington, 1980). In this study
SPI1 < �1 is used as a threshold for drought occurrence. It
corresponds to the 15 % driest months (Keyantash and Na-
tional Center for Atmospheric Research Staff, 2018) and can
be estimated by a total number of 430 observed events until
the year 2020 (Eq. 1).

(2020 � 1781)years · 12monthsyr�1 · 15%

= 430 events (1)

Compared to that, CRCM5-LE offers a total number of
roughly 4500 events when using the first 50 years from the
climate simulation data (1955–2005) (see Eq. 2).

50 years per member · 50 members · 12monthsyr�1 · 15%
= 4500 events (2)

This is a difference of an order of magnitude. The more data
are available the better the predictions that can be derived by
a drought-predicting machine learning model and the more
can be learned about drought formation. According to von
Trentini et al. (2020) precipitation in summer and winter de-
rived from the European gridded dataset (E-OBS) does fall
to a high percentage into the range produced by CRCM5-LE
for the historic period. Therefore, the CRCM5-LE proves ap-
plicable to this study, and its larger number of extreme events
can be used as input to the machine learning algorithms. In
this study a variety of ANNs are trained. The best-performing
models are investigated, using explainable AI methods to un-
derstand the results.

While no comparable study exists for the Munich domain,
Santos et al. (2014) performed a drought prediction based on
SPI6 for Portugal for the months April, May and June us-
ing the following input variables: sea surface temperatures
(JFM), NAO (DJFM) and cumulative precipitation (NDJFM
for SPI6April, DJFM for SPI6May, JFM for SPI6June). The
best results were achieved for the prediction of SPI6 for
April, with a correlation coefficient of 0.98. SPI6 for May
and June referred to a correlation coefficient of 0.78 and 0.77,
respectively.

2 Data and methods

2.1 Datasets

To investigate the predictability of drought data from the
single-model initial-condition large ensemble (SMILE) con-
sisting of 50 members, the Canadian Regional Climate
Model 5 Large Ensemble (CRCM5-LE) is used. The data
were produced within the scope of the ClimEx project
(Leduc et al., 2019, http://www.climex-project.org, last ac-
cess: 28 November 2021). The CRCM5-LE was generated

Nat. Hazards Earth Syst. Sci., 21, 3679–3691, 2021 https://doi.org/10.5194/nhess-21-3679-2021

26



E. Felsche and R. Ludwig: Applying machine learning for drought prediction 3681

Figure 1. CRCM5 topography.

by dynamical downscaling of the data provided by the 50-
member initial-condition Canadian Earth System Model 2
using the Canadian Regional Climate Model 5 (Martynov
et al., 2013). The data have a resolution of 0.11� (12 km) and
are produced for the years 1950–2099 for a European and an
eastern North America domain. For the years 1950–2005 the
historical greenhouse gas concentrations and aerosol emis-
sions are being used. Starting from 2005, the model intro-
duces the RCP8.5 (IPCC, 2013) forcing scenario. A total of
42 atmospheric variables are available at a temporal resolu-
tion of 1 to 3 h. They are used on a monthly basis as input
to the machine learning algorithms. The list of variables is
provided in Table 1.

In the study we use monthly sea level pressure (psl)
from the driving model CanESM2-LE (Kushner et al., 2018;
Kirchmeier-Young et al., 2016) for the calculation of North
Atlantic Oscillation (NAO), Scandinavian Oscillation (SCA),
East Atlantic Oscillation (EA) and East Atlantic–Western
Russia Oscillation (EAWR) over the whole Atlantic basin
(20–80� N, 90� W–40� E). The Atlantic Multidecadal Oscil-
lation (AMO) is calculated using the sea surface tempera-
ture (SST) over 0–60� N, 0–80� W from the CanESM2. Only
the period 1955–2005 is considered in order to stay within
the scope of historical climate. The CRCM5 domain is dis-
played in Fig. 1. For the machine learning training a grid
point situated at 48.11� N, 11.91� E is referenced as Munich,
and 38.67� N, 9.17� W is referenced as Lisbon.

2.2 Input variables for drought prediction

In order to calculate NAO, SCA, EA and EAWR, the method
introduced by Hurrell et al. (2003) is used: a principal com-
ponent analysis (PCA) of the monthly psl is performed over
the 20–80� N, 90� W–40� E domain. The leading eigenvec-
tors, scaled by the amount of variance they explain, rep-
resent the leading circulation patterns of the atmospheric
system. The first eigenvector corresponds to NAO, the sec-
ond one to SCA, the third one to EA and the fourth one to
EAWR. To calculate the teleconnection indices (NAO, SCA,
EA, EAWR) the eofs package described in Dawson (2016)
is used. It is an implementation of the technique of empiri-

Figure 2. First four leading eigenfunctions of the mean sea level
pressure in CanESM2. Percentage of variance the mode explains is
given at the top of the panels.

cal orthogonal functions (EOFs) (Dawson, 2016). The lead-
ing modes of the PCA corresponding to NAO, SCA, EA
and EAWR derived from the CanEsm2 dataset are shown in
Fig. 2.

AMO is calculated by spatial averaging over the 0–60� N,
0–80� W area of the anomaly of sea surface temperature
(Trenberth, 2011). Additionally the 10-year running mean of
AMO is calculated as an input variable as it is widely used in
various studies and was shown to be correlated with precipi-
tation (Enfield et al., 2001).

Variable subset selection helps to limit the computational
time and to improve predictive accuracy (Kumar and Minz,
2014). In order to eliminate redundant variables, Pearson’s R

between all the CRCM5 variables for the chosen domains is
calculated. Pearson’s R (⇢X,Y ) is a measure of linear corre-
lation between two variables X and Y ; ⇢X,Y equals 1 if the
correlation is totally positive, 0 if there is no linear correla-
tion and �1 if the correlation is total negative (Guyon and
Elisseeff, 2003). For two samples x and y, Pearson’s R is
defined in the following way:

⇢x,y =
Pn

i=1(xi � x̄)(yi � ȳ)
qPn

i=1(xi � x̄)2
qPn

i=1(yi � ȳ)2
. (3)

The bar refers to the average over the index i (Guyon and
Elisseeff, 2003). Pearson’s R is a popular and easy method
for feature selection of continuous variables as introduced in
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Table 1. The 42 monthly atmospheric and soil variables from CRCM5-LE. TOA refers to top of atmosphere.

clt Total cloud fraction % prw Water vapor path kgm�2

dds Near-surface dew point depression K ps Surface air pressure Pa
evspsbl Evaporation kgm�2 s�1 psl Sea level pressure Pa
evspsblland Water evaporation from land kgm�2 s�1 rlds Surface downwelling longwave radiation Wm�2

hfls Surface upward latent heat flux Wm�2 rlus Surface upwelling longwave radiation Wm�2

hfss Surface upward sensible heat flux Wm�2 rlut TOA Outgoing longwave radiation Wm�2

hurs Near-surface relative humidity % rsaa Shortwave radiation absorbed by atmosphere Wm�2

huss Near-surface specific humidity 1 rsds Surface downwelling shortwave radiation Wm�2

mrfso Soil frozen water content kgm�2 rsdt TOA incident shortwave radiation Wm�2

mrlso Soil liquid water content kgm�2 rsus Surface upwelling shortwave radiation Wm�2

mrro Total runoff kgm�2s � 1 rsut TOA outgoing shortwave radiation Wm�2

mrros Surface runoff kgm�2 s�1 sfcWindmax Daily maximum near-surface wind speed ms�1

mrso Total soil moisture content kgm�2 snc Snow area fraction %
mrsos Moisture in upper portion of soil column kgm�2 snd Snow depth m
prc Convective precipitation kgm�2 s�1 snw Surface snow amount kgm�2

prdc Deep convective precipitation kgm�2 s�1 tas Near-surface air temperature K
prfr Freezing rain kgm�2 s�1 tasmax Daily maximum near-surface temperature K
pr Precipitation kgm�2 s�1 tasmin Daily minimum near-surface temperature K
prlp Liquid precipitation kgm�2 s�1 ts Surface temperature K
prrp Refrozen rain kgm�2 s�1 uas Eastward near-surface wind ms�1

prsn Snowfall flux kgm�2 s�1 vas Northward near-surface wind ms�1

Table 2. List of sorted-out variables.

Kept variable Sorted-out variable Pearson’s R

hurs dds �0.9879
evspsbl evspsblland 0.9994
evspsbl hfls 0.9988
mrso mrlso 0.9991
rlut rlaa �0.9549
tas rlds 0.9550
tas rlus 0.9960
rnt rns 0.9954
rnt rsaa 0.9831
rnt rsdt 0.9970
rnt rss 0.9872
rnt rst 0.9926
tas tasmax 0.9932
tas tasmin 0.9864

Biesiada and Duch (2007); ⇢ is calculated for all possible
permutations of the 41 input variables. The ones correlating
to a high degree are examined, and a threshold of 0.95 is
chosen. In Table 2 a list of sorted-out variables and the corre-
sponding values of Pearson’s R is given. The high correlation
values can be explained by a physical relationship between
the variables: e.g., the total evaporation (evspsbl) is almost
the same as evaporation from land (evspsblland) as there are
no relevant water bodies in the chosen domains. Out of the
full list of 42 variables, 14 are sorted out as being redundant.

2.3 Standardized precipitation index

The standardized precipitation index (SPI) is a precipitation-
based index introduced by McKee et al. (1993). For the cal-
culation of SPI a continuous monthly precipitation dataset
is used. The index can be calculated on different timescales:
typically, it is 1, 3, 6, 12 or 24 months. As a first step the pre-
cipitation values are accumulated for the needed timescale.
The resulting dataset is fitted to a gamma distribution for
each month separately and then transformed to a normal dis-
tribution such that the mean SPI is zero. The SPI value for a
given precipitation is then the number of standard deviations
from normal. Because of the normalization, the SPI is espe-
cially useful to represent wetter and drier climates as well as
to account for differences among seasons. As the two study
sites are having different meteorological conditions, the SPI
provides a convenient and comparable measure (Zargar et al.,
2011). As noted in Yoon et al. (2012) the accumulation pe-
riod of the SPI value needs to be chosen equal to or less than
the prediction lead time as otherwise the precipitation values
needed for the mathematical calculation of the SPI would
be given as input to the machine learning algorithm. There-
fore the accumulation period of 1 month is chosen. SPI1 is
calculated for Lisbon and Munich each using the data from
1955–2005 from all members as reference.

2.4 Machine learning

This study investigates drought predictability applying the
technique of supervised machine learning for this purpose.
Machine learning is a promising tool for the analysis of com-
plex and data-rich phenomena as droughts (McGovern et al.,
2017). The Python package Keras, a high-level neural net-
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work package, is used for the design of the machine learn-
ing models (Chollet et al., 2015) as it allows the design of
neural networks in an easy way by adding layers. Three cru-
cial elements are needed to perform drought prediction by
supervised machine learning: input data; a target variable to
be predicted; and a computation pipeline, which includes the
machine learning algorithm.

The data from the years 1957–1999 are used as training
data; the years 2000–2005 are used for the testing purpose.
Each of the time periods is available 50 times as we are deal-
ing with an ensemble of 50 members. This results in 2150
model years for training and 250 years for testing. A small
fraction of the training data are used for the validation of the
machine learning algorithms. The target variable chosen for
the prediction of droughts is SPI1. Two classes for the predic-
tion are identified in the following way: SPI1 < �1 is defined
as an event and is initialized with 1; SPI1 > �1 is initialized
with 0 and corresponds to a non-drought event. The lead time
of 1 month is chosen for the prediction as it has been used in
previous studies by Yoon et al. (2012) and Deo et al. (2017).
Moreover shorter prediction lead times usually obtain better
results when compared to longer periods, as seen in Bonac-
corso et al. (2015). After the feature selection 28 variables
originating directly from the CRCM5-LE dataset are used as
input. In addition to those the teleconnection indices NAO,
SCA, EA, EAWR, AMO and AMO10 are used as input.

To predict, for example, a drought or non-drought in April
of 1980, the data for 12 months before the event are used as
input. This is NAO and other teleconnection and atmospheric
variables for the period April 1989–March 1980; for a pre-
diction of an event in May 1980, May 1989–April 1980 is
used as input. The 12 months before the event are chosen in
accordance with the study by Morid et al. (2007), who found
that the best-performing drought prediction model was the
one including the value up to 12 months before the predicted
one. We perform a time series prediction with no limitation
on special months or seasons to be inspected.

For this analysis we use a supervised machine learning al-
gorithm, an artificial neural network (ANN). ANNs are algo-
rithms whose design is inspired by the architecture of the hu-
man brain with its neurons (Russell and Norvig, 2009); they
both consists of connected nodes. A link between the node i

and the node j serves to propagate the activation ai from i

to j . To each connection a numeric weight wi,j is assigned.
The output of the node is computed by

ai = g(inj ) = g

 
nX

i=0
wi,j ai

!

(4)

(Russell and Norvig, 2009, p. 728). The activation function
defines the output of the node. In order to have stable learners
with confident predictions a function with a soft threshold
is recommended (Russell and Norvig, 2009). In this study
the following three activation functions are used: sigmoid,
rectified linear unit (ReLU), exponential linear unit (ELU).

Sigmoid activation is especially useful for the output layer
(Russell and Norvig, 2009), while ReLU and ELU both have
the property of allowing very fast optimization (Maas, 2013).

The sigmoid function, also called the logistic function, is
defined in the following way:

Logistic(x) = 1
1 + e�x

(5)

(Russell and Norvig, 2009). This function has an output be-
tween 0 and 1. This can be interpreted as a probability of be-
longing to the class 1. One of the main disadvantages of the
sigmoid activation function is the vanishing gradient prob-
lem: at higher, almost saturated layers with values of 1 or
�1, the gradients become nearly 0, resulting in a slow opti-
mization convergence (Russell and Norvig, 2009, p. 726).

ReLU refers to rectified linear unit and shows better per-
formance when dealing with the vanishing gradient problem
(Maas, 2013). ReLU is defined in the following way:

f (x) = max(0,x). (6)

ELU refers to the exponential linear unit and was intro-
duced by Clevert et al. (2016). Clevert et al. (2016) claim
that in experiments the ELU activation led to faster learn-
ing and significantly better generalization performance than
ReLU and sigmoid activation. The function is defined as

f (x) =
(

x if x > 0
↵(exp(x) � 1) if x  0;

(7)

↵ controls the value to which an ELU saturates for negative
inputs. Per default the value is set to 1 such that the function
saturates at �1.

Two kinds of layers are used in this study: dense and
dropout. Dense refers to a regular fully connected neural net-
work layer. Dropout refers to a layer which is randomly set-
ting a fraction of inputs to zero at each update. This technique
is used to prevent overfitting and therefore to improve the
performance of the algorithm (Chollet et al., 2015). The first
part of the study concentrates on the methodological search
for the best-performing algorithms. A pipeline to search for
the best-performing architecture, value for L2 regularization
and loss function is built up.

The model performance is evaluated using accuracy and
F1 score (Sasaki, 2007). The latter one is especially useful
when training on datasets with an imbalanced class distribu-
tion as it is in the case of our dataset. Accuracy is defined in
the following way:

Accuracy = Number of right predictions
Total number of samples

. (8)

F1 score is a harmonic measure between precision and re-
call. Precision is the amount of true positives with respect to
the amount of positively classified data. Recall is the amount
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of true positives with respect to the total number of positives
in the data. The F1 score is defined in the following way:

F1 score = 2
Precision · Recall

Precision + Recall
. (9)

Due to the class imbalance within the dataset we require
that the accuracy of each class is at least 50 %. In that case
given the distribution of the test dataset of 1803 non-drought
events to 387 droughts for Lisbon and 1848 non-drought
events to 352 drought events for Munich a marginal F1 score
of 0.26 for Lisbon and 0.24 for Munich is given.

The best-performing models are additionally evaluated us-
ing the Heidke skill score (HSS). The range of the HSS is
�1 to 1. Values below zero indicate that the random fore-
cast (a forecast which randomly assigns the labels) has a bet-
ter performance than the trained model. HSS of 1 indicates a
perfect forecast. HSS is defined in the following way:

HSS = 2
ad � bc

(a + c)(c + d) + (a + b)(b + d)
, (10)

where a is the number of true positives, b the number of false
positives, c number of false negatives and d number of true
negatives.

The second part of the study analyzes the best-performing
algorithms (one for the Lisbon domain, one for the Munich
domain) by applying explainable AI methods. SHAP (SHap-
ley Additive exPlanations) is a state-of-the-art method for in-
terpretation of machine learning models, which was inspired
by game theory (Lundberg and Lee, 2017). It estimates for
each input feature an average marginal contribution to the
prediction of the result and therefore allows a comparison
of the contributions among different features. In addition to
that the difference in predictability among the seasons is cal-
culated and compared to gain a better understanding on the
influence of seasonal weather patterns.

An overview of the proposed methodology can be found
in Fig. 3.

3 Results

This study consists of two parts: the first part deals with a
systematical search for the best-performing setup of the ANN
model for the two domains of interest: Munich and Lisbon.
A repeated training is conducted by varying the values of
parameters like the architecture of the hidden layers, L2 reg-
ularization and the loss function. In the second part of the
analysis the best-performing models for the two domains are
analyzed using explainable AI methods.

3.1 Model training results

For the design of the ANN it is crucial to perform fine-tuning
of the model parameters to find the optimal setup. An ar-
chitecture has to have enough layers and neurons to capture

the complexity of the dataset (Goodfellow et al., 2016). In
order to find the best architecture the learning curve of the
algorithm is inspected. The learning curve shows the loss of
the training and validation datasets on the weights during the
training (Goodfellow et al., 2016). Two examples are shown
in Fig. 4. The plot shown at the top refers to an architecture
which is not able to capture the complexity of the dataset: the
loss is hardly decreasing in the training or validation data.
The bottom figure refers to an architecture which overfits:
in the last epochs the loss of the validation dataset is rising,
while it decreases in the training dataset.

In this way a network is searched which captures the given
complexity of the dataset. This is reached with an algorithm
consisting of at least five layers. Additionally two dropout
layers, which set a specified number of nodes to zero in a
random way, are introduced in order to fight overfitting.

3.1.1 L2 regularization

L2 regularization is a broadly applied method to prevent
overfitting in the training data (Bishop, 2007). The main idea
behind regularization is to add a penalty term to the loss func-
tion, which will punish the classifier for complexity and force
some of the weights to zero (Russell and Norvig, 2009). In
case of L2 regularization the punishing term is proportional
to the L2 norm of the weight vector. The weight of the pun-
ishing term � determines the relative importance of the regu-
larization.

The results of the training with different values of � for
L2 regularization are shown in Table 3. Training results are
displayed in this particular case as the regularization is intro-
duced to prevent overfitting. Generally the performance for
the test dataset is more important and will be inspected in fol-
lowing experiments. If � is set to zero the regularization term
vanishes. Especially in those cases the overfitting is high. For
Lisbon overall higher performance could be seen for � val-
ues around 0.01, 0.001 or 0.0001. Models that are trained on
the Munich dataset perform better with the � value of 0.001.
Since the performance of the model with regards to the F1
score has a higher importance for an imbalanced dataset than
the pure accuracy, the value of 0.001 is chosen for the fol-
lowing ANN model training.

3.1.2 Loss function

As a next step the influence of the different loss functions
on the model performance is investigated. Loss function is a
function to evaluate how well a specific algorithm manages
to fit the training data (Janocha and Czarnecki, 2016). It is an
important part of the optimization function which has a direct
influence on the updating of the weights of the ANN (Rus-
sell and Norvig, 2009). In addition to overall accuracy and F1
metric, the accuracies of the non-drought and drought classes
in the test dataset are displayed. The results are shown in Ta-
ble 4. Binary cross-entropy, mean absolute error and hinge
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Figure 3. Overview of the proposed methodology.

Table 3. Results of ANN training for different values for � for L2 regularization. � of 0.001 (bold) is chosen for both domains for subsequent
training since the performance of the model with regards to the F1 score has a higher importance for an imbalanced dataset than the pure
accuracy.

� Lisbon Munich

Train Test Train Test

Acc F1 Acc F1 Acc F1 Acc F1

0 0.961 0.861 0.733 0.206 0.959 0.865 0.787 0.176
0.1 0.495 0.233 0.373 0.294 0.506 0.241 0.536 0.215
0.01 0.517 0.245 0.460 0.269 0.519 0.268 0.431 0.275
0.001 0.572 0.261 0.540 0.288 0.490 0.288 0.563 0.266
0.0001 0.765 0.472 0.627 0.259 0.823 0.557 0.719 0.189

loss functions show the best performance for the Munich
domain. In contrast to that, for the Lisbon domain only the
mean absolute error loss function has an accuracy of higher
than 0.5. Also in the case of the Munich domain mean ab-
solute error shows a higher performance with regards to the
F1 score. Therefore mean absolute error is used for further
analysis.

3.1.3 Model architecture

Lastly the models are trained on both domains using differ-
ent architectures. Table 5 displays the model training results
for the test dataset. The column “architecture” refers to the
number of neurons in each dense (De) layer separated by the
*-sign. For dropout (Dr) layers the fraction of weights which
are randomly set to zero is given. The model architecture
consists overall of seven layers. For example the architecture
for the model in the first line of Table 5 is the following:

1. dense layer with 4000 neurons

2. dropout layer randomly setting 50 % of weights to zero

3. dense layer with 1000 neurons

4. dropout layer randomly setting 50 % of weights to zero

5. dense layer with 500 neurons

6. dense layer with 100 neurons

7. dense layer with 5 neurons.

We require the accuracy of both classes individually to
be higher than 0.5 and search for an F1 score as high as
possible. In the case of the Lisbon domain, three trained
models satisfy the criterion of at least 50 % accuracy of
each class: the model in the first, in the fourth and in
the last row. The best performance in terms of F1 score
is obtained for the last model with the following architec-
ture: 5000*0.5*4000*0.5*1000*500*100. For the Munich
domain only the first and the fourth models satisfy the cri-
terion of at least 50 % accuracy for each class. For further
analyses the first model is chosen as it shows the highest F1
score. The following model architecture is used for the Mu-
nich domain: 4000*0.5*1000*0.5*500*100*5. For the best-
performing models HSS equals 0.06 for Lisbon and 0.04 for
Munich. These results confirm that the obtained prediction is
better than the one obtained by a random forecast and there-
fore does show a weak prediction skill. In the next step those
models are analyzed using explainable AI methods.
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Table 4. Performance of the model for different loss functions for the test dataset. Acc nd refers to the accuracy on the non-drought class
and Acc d to the accuracy of the drought class. Mean absolute error (bold) is chosen for subsequent analysis since for Munich and Lisbon it
shows an accuracy of at least 0.5 for both classes and a higher performance with regards to the F1 score.

Loss function Lisbon Munich

Acc nd Acc d Acc F1 Acc nd Acc d Acc F1

Mean absolute error 0.511 0.516 0.540 0.288 0.500 0.582 0.512 0.276
Mean squared error 0.440 0.655 0.479 0.312 0.562 0.509 0.553 0.267
Binary cross-entropy 0.436 0.610 0.467 0.292 0.589 0.440 0.565 0.245
Hinge 0.229 0.753 0.323 0.287 0.568 0.486 0.555 0.259
Squared hinge 0.486 0.501 0.489 0.261 1.000 0.000 0.840 0.000

Figure 4. Learning curve for two chosen fitting examples: algorithm
complexity insufficient (a) and overfitting (b).

3.2 Explainable AI methods for the analysis of the
best-performing algorithms

3.2.1 Shapely values

For the Munich and Lisbon domain Shapely values are cal-
culated using the results of the best-performing models for
the test dataset. For the calculation each of the 12 months
used as input to the predicting algorithm for each variable
is considered individually, resulting in 28 atmospheric vari-
ables ⇥12 + 6 teleconnection indices ⇥12 = 408 variables.
The number behind the variable name refers to the number of
months before the event (NAO1–NAO value 1 month before
the predicted event). The results are shown in Fig. 5. Since
the calculation of Shapely values is computationally expen-

Figure 5. Mean Shapely values normalized to the contribution to
the prediction for the top 15 variables, with the highest importance
for Lisbon (a) and Munich (b) in the test dataset. The number be-
hind the variable name refers to the number of months before the
event (NAO1–NAO value 1 month before the predicted event). The
results indicate that for the Lisbon domain psl1 and ps1 are the most
influential drought predictors; for Munich this is NAO1.

sive, they are calculated five times on a subset of 500 data
points. The error bars displayed in black on the plot indicate
that the uncertainties are smaller than the nominal values of
the variable contributions. The nominal Shapely values are
normed and recalculated to a percentage of contribution to
the prediction; e.g., the NAO1 value explains roughly 2.3 %
of the prediction for the Lisbon domain.

We see that for both domains the contribution to the pre-
diction is broadly distributed among the many input vari-
ables. Between Lisbon and Munich, Shapely values show a
distinct difference in the nominal values of the feature con-
tributions: values for Lisbon are about 6 times higher than
those for Munich (e.g., the contribution of NAO1 for Munich
is around 0.3 % and for Lisbon around 1.9 %).

For the Lisbon domain, the variables with a higher-impact
are sea level pressure (psl), surface pressure (ps) and NAO 1
month before the event. The first two variables are strongly
autocorrelated for the Lisbon domain due to its location at
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Table 5. Performance of models for the Lisbon and Munich domains for different variations in architecture on the test dataset. Acc nd refers
to the accuracy of the non-drought class and Acc d to the accuracy of the drought class. The sixth model architecture is chosen for subsequent
analysis for Lisbon and first for Munich (bold) due to an accuracy of at least 0.5 of both classes and a higher performance with regards to the
F1 score.

Neurons Architecture Lisbon Munich

Acc nd Acc d Acc F1 Acc nd Acc d Acc F1

De*Dr*De*Dr*De*De*De 4000*0.5*1000*0.5*500*100*5 0.511 0.516 0.540 0.288 0.562 0.509 0.553 0.267
De*Dr*De*Dr*De*De*De 5000*0.5*1000*0.5*500*100*5 0.581 0.496 0.566 0.292 0.378 0.693 0.428 0.279
De*Dr*De*Dr*De*De*De 5000*0.5*4000*0.5*500*100*5 0.457 0.602 0.483 0.296 0.725 0.338 0.663 0.243
De*Dr*De*Dr*De*De*De 5000*0.5*4000*0.5*1000*100*5 0.570 0.501 0.558 0.290 0.527 0.514 0.525 0.257
De*Dr*De*Dr*De*De*De 5000*0.5*4000*0.5*1000*500*5 0.402 0.635 0.444 0.292 0.683 0.409 0.640 0.266
De*Dr*De*Dr*De*De*De 5000*0.5*4000*0.5*1000*500*100 0.575 0.526 0.566 0.305 0.420 0.619 0.452 0.266

the sea. The strong influence of ps and psl and NAO shows
the influence of the atmospheric pressure system on drought
formation in Lisbon. It is also striking that the influence of
the local pressure seems to be higher than the influence of
NAO. The next two variables for the Lisbon domain with
the strongest contribution to the prediction are northward
near-surface wind (vas) and evaporation (evspsbl). The lat-
ter variable has a very direct influence on the formation of
drought given that if evaporation is getting lower, the prob-
ability of formation of rain clouds also decreases (Sheffield
and Wood, 2011). The contribution of vas to drought forma-
tion in Lisbon needs to be further studied. For the Munich do-
main the highest influence is found for NAO1, psl1, EAWR5
and ps1. The results indicate that NAO is the most influential
drought predictor for Munich. Additionally the contribution
of EAWR5 and SCA5 on the Munich domain cannot be ne-
glected as they are found within the top five predictors. A
further investigation of this relationship is of interest for the
understanding of drought formation in Munich.

3.2.2 Seasonality

In order to evaluate the influence of seasonality on the pre-
diction the performance of the model is calculated sepa-
rately for the four seasons. Since the distribution between
the drought and non-drought classes is different among the
seasons (e.g., range of 17% to 19% of drought events for
the Lisbon domain) a rescaling of the number of drought
and non-drought events is performed to ensure comparabil-
ity among the results. To compare the performance a preci-
sion recall plot is used (Saito and Rehmsmeier, 2015). Re-
call and precision are calculated for each of the four seasons
(MAM, JJA, SON, DJF) and for the 2 half-years (MAMJJA
and SONDJF) using the estimated scaling factors. Results of
the calculation are shown in Fig. 6. The dotted line marks
the line under which the classifier shows no skill. The line
is defined as a proportion of drought events against overall
number of events (Saito and Rehmsmeier, 2015). For the Lis-
bon domain it becomes evident that the model performance
is very different across seasons: higher precision of around
0.23 can be found during the winter half-year. However for

Figure 6. The effect of seasonality on precision and recall for Lis-
bon (blue) and Munich (green). The results indicate that for the Mu-
nich and Lisbon domain better drought predictability is possible in
spring, fall and summer.

the spring season and summer half-year the recall rises, while
precision goes down. For the Munich classifier the results for
the different seasons are closer together in terms of recall.
It shows a worse performance for the winter months (DJF),
while fall, spring and summer show an overall better model
performance. This is an indication that for the Munich do-
main, better drought predictability is possible in spring, fall
and summer.

An additional analysis is conducted to calculate the
Shapely values separately for the four season and the two
domains in order to understand the influence of the different
variables on the prediction. The results of the analysis can be
seen in Figs. 7 and 8. The results for the Lisbon domain show
that NAO1 is the strongest predictor in winter and spring,
while the contribution of pressure to drought predictability is
higher in fall, followed by NAO1. In contrast, for the summer
season NAO1 is not among the top 10 predictors but rather
other teleconnection indices like EAWR5, NAO7 and SCA7.
Those teleconnection indices originate from winter months,
when NAO was shown to have the highest impact on the pre-
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Figure 7. Shapely values for Lisbon calculated separately for the four seasons and sorted by the maximum contribution in DJF (a), MAM
(b), JJA (c) and SON (d) for the test dataset; evspsbl abbreviated as evp.

Figure 8. Shapely values for Munich calculated separately for the four seasons and sorted by the maximum contribution in DJF (a), MAM
(b), JJA (c) and SON (d) for the test dataset; sfcWindmax abbreviated as sfcWm.

diction. However, given the low performance of the model
in the summer season, further investigation is needed. For
the Munich domain NAO1 has one of the highest contribu-
tions for spring, summer and fall, while it cannot be found
among the strongest predictors for winter. EAWR5 is one
of the strongest predictors for summer, spring and fall. The

feature contributions for predictions in the winter season in
Munich indicate that atmospheric variables 10 or 12 months
before the event might be drought indicators.
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4 Discussion and conclusion

Drought is a multiscale phenomenon, and its formation
and evolution are different for every climatology and sea-
son. In this study, we (i) explored the possibilities of us-
ing the data provided by CRCM5-LE to predict droughts
using ANNs and (ii) applied explainable AI methods to
gain a better understanding of the results. A drought event
is defined as an SPI1 less than �1 at the given site. The
first half of the study deals with the systematic search for
the best-performing models. For the Lisbon domain the
best results are obtained by the model with L2 regulariza-
tion of 0.001; mean absolute error as a loss function; and
the architecture 5000*0.5*4000*0.5*1000*500*100, where
five layers are fully connected, and two layers are dropout
layers. For the Munich domain, the best results are ob-
tained by the model with L2 regularization of 0.001; mean
absolute error as a loss function; and the architecture
4000*0.5*1000*0.5*500*100*5, where five layers are fully
connected, and two layers are dropout layers. The best-
performing models obtain accuracies of 57 % for the Lisbon
domain and 55 % for the Munich domain.

The precision of the prediction in both cases is rather mod-
erate as a high percentage of data are misclassified. For Lis-
bon, classifier precision remains at around 22 %. This means
that one out of four predicted drought events is an actual
drought. For the Munich case, this ratio is even lower and
amounts to 18 %. However, the models provide an impor-
tant basis for the development of future drought-predicting
models and offer a fruitful ground for the investigation of in-
fluence of single input variables during different seasons on
drought formation.

Compared to the study by Santos et al. (2014), who in-
vestigated drought predictability in Portugal, the weak pre-
diction accuracies of our study are not surprising. In Santos
et al. (2014), SPI6 for April, May and June is predicted; how-
ever precipitation amounts for the months until March were
also given as input. As SPI6 is calculated using the sum of
6 months precipitation, the model receives over half of the
information it needs for the calculation of the value. As no
similar studies exist for the Munich domain, no comparison
can be performed.

The second half of the study concentrates on the analy-
sis of the obtained algorithms using explainable AI methods.
Among the strongest predictors for the domains are NAO, psl
and ps 1 month before the event. This underlines the impor-
tance of the atmospheric system on the drought formation.
For the model trained for the Lisbon domain, the variables of
northward near-surface wind (vas) and evaporation (evspsbl)
followed. For the Munich domain, EAWR and SCA 5 months
before the event are found among the strongest predictors. In
general the percentages of the contribution of the strongest
predictors for the Munich domain are around 6 times lower
than those for the Lisbon domain.

This study indicates that seasonality is a crucial factor for
drought predictions. Precision and recall of the prediction are
lower in summer for the Lisbon domain and in winter for the
Munich domain. Moreover, while for the Munich domain the
spread of precision and recall across the seasons is rather low,
huge differences are found for the Lisbon domain: the trained
model obtained higher recall and lower precision for spring
and higher precision and lower recall for fall when com-
paring to the baseline of all data. The results show that for
the Lisbon domain, NAO1 is the strongest predictor in win-
ter and spring, while the contribution of pressure to drought
predictability is higher in fall, followed by the contribution
of NAO1. For the Munich domain, NAO1 is found to have
one of the highest contributions for spring, summer and fall,
while it could not be found among the 10 strongest predictors
for winter.

Further investigations are of interest for scientific research
on both objectives. In terms of drought prediction, further re-
search is possible within the same setting. The field of AI
is evolving rapidly, showing new algorithms, methods and
frameworks, such that there is a high potential for finding
better-suited algorithms (Hao, 2019). One of the main limita-
tions of this study remains that an application of the obtained
framework on observation data is not possible due to the fact
that observational data lack a multitude of variables which
are used as input in this study, e.g., heat fluxes and radiation.
However the results obtained by Shapely value calculation
are of high importance for the choice of variables for the
development of a future model which potentially could be
applied to observational data. Given the high Shapely impor-
tance of NAO for drought prediction, other large-scale vari-
ables, such as atmospheric blocking, can be added to the in-
put variables. Moreover, the application to new domains is
of interest to investigate the regionality of drought prediction
possibilities. Explainable AI methods offer an important ap-
proach to improve the current limitations of machine learning
models; their application is of high importance in the field of
physical geography since it enables a physical interpretation
of statistical results to be provided.
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ARTICLE OPEN

Inter-seasonal connection of typical European heatwave
patterns to soil moisture
Elizaveta Felsche1,2,3✉, Andrea Böhnisch 2 and Ralf Ludwig 2

Although prolonged heat periods have become a recurring feature of European climate, little knowledge is available on dominant
spatial patterns of heatwaves and their influence on moisture-related processes. Increased knowledge will help to improve
heatwave and drought prediction and mitigation. This study uses hierarchical agglomerative clustering to derive nine dominating
spatial heatwave patterns from a 50-member regional climate model (Canadian Regional Climate Model version 5, CRCM5-LE). The
heatwave patterns correspond well with clusters derived from an observational data set (E-OBS) and with extreme historical
heatwave events. Moreover, we analyse the occurrence of heatwaves in the identified spatial patterns regarding a soil moisture
deficit present before and after the event. We show that negative soil moisture anomalies in the preceding winter/spring (JFMA)
can serve as a predictor for heatwaves in South Europe. For North Europe, we find a negative correlation between the number of
heatwave days in summer and autumn (OND) soil moisture content.

npj Climate and Atmospheric Science ������������(2023)�6:1� ; https://doi.org/10.1038/s41612-023-00330-5

INTRODUCTION
Heatwaves and droughts substantially impact human mortality,
economic well-being, infrastructure, and natural ecosystems1–3.
For example, the 2003 heatwave in Europe is estimated to have
caused more than 70,000 deaths4. Globally, 2% of working hours
are lost due to too-hot conditions5. Droughts that often
accompany a heatwave have been estimated to cause losses of
USD 621 Million on average per event between 1950 and 2014 in
Europe6. The 2010 heatwave in Russia caused USD 15 Billion (1%
gross domestic product) in total economic losses7. Since 1950,
most regions worldwide have observed a significant increase in
the number of heatwave days, maximum duration, and cumula-
tive heat8. Climate model projections estimate that the described
trends will continue throughout the 21st century9,10. There is a
high need for operational seasonal forecasts of heatwaves and
droughts to mitigate their impacts, e.g., to introduce measures for
water saving or prepare navigation infrastructure for low
flows11,12. Current forecasts offer limited predictive capabilities,
underlining the importance of future studies to increase under-
standing of mechanisms causing the events13–15. Identifying
heatwave patterns allows a meaningful way of dimensionality
reduction, which is important for further research on driving
physical mechanisms for heatwave occurrence.
Current research highlights that heatwaves and droughts are

highly interrelated and caused by similar persistent large-scale
atmospheric circulation patterns16–18. Moreover, the self-
intensifying nature of extreme droughts and heatwaves has been
suggested as central to their evolution19–21. There is a two-fold
relationship. On the one hand, soil and vegetation dry with the
occurrence of a heatwave, leading to reduced evaporation.
Therefore, the likelihood of rainfall decreases, favouring the
formation of drought20,22. On the other hand, evaporation
decreases with the onset of drought. The reduced cloud cover
leads to a larger fraction of solar radiation reaching the land
surface, increasing the likelihood of heatwave formation20,22.
Global-warming-induced changes in thermodynamic conditions

account for 57.3% of Europe’s increase in extreme heat
occurrence23.
The influence of precipitation and soil moisture anomalies on

heatwave formation has been studied in different European
regions. A rainfall deficit in the Mediterranean in spring is found to
favour the formation of heatwaves in Northern Europe as the
rainfall deficit propagates northward throughout the summer16,24.
A recent study17 confirmed that dry conditions in winter/spring
seasons prevail prior to hot summers over Southern Europe. Other
studies confirm that anomalously dry Western and Northern
European summers significantly correlate with the occurrence of
heatwaves in those regions25. Soil moisture and other
precipitation-related indices correlate with the temperature
extremes in South-Eastern Europe26,27. For the European heatwave
of July 2019, land-atmosphere feedback and influences of
northward propagation of dryness contributed to the exceptional
intensity of the event28.
Most research on heatwaves investigates historical events

based on observational data17,24,26,29, which rarely happen by
definition. Moreover, only few studies have analysed generalised
patterns of heatwaves to derive scientific findings applicable to
coherent regions24,29 instead of focusing on the causes of single
events30,31. By ’coherent regions’, we here and thereafter mean
regions connected to similar atmospheric circulation patterns,
such that the heatwaves occur simultaneously and over the same
geographical region. Large climate model ensembles have proven
their usefulness for the investigation of extreme events both in
terms of extreme cold and wet, as well as in terms of hot and dry
events32–36. They allow the assessment of the natural variability of
extreme weather events and therefore facilitate to derive of
statistically reliable findings. Moreover, regional climate models
offer a finer spatial resolution, which allows for the resolution of
finer spatiotemporal processes and therefore obtains spatial
patterns on a regional and subregional level when compared to
Global Climate Models37,38.
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In this study, we want to take a regional approach to the
investigation of heatwaves, as those usually cover a fraction of the
continent. Therefore, we aim to find stable spatial patterns of
heatwaves using the 50 members of a Single Model Initial-
condition Large Ensemble (SMILE) CRCM5-LE over Europe.
Canadian Earth System Model 2-Large Ensemble (CanESM2-LE)
during the period 1950-2099 is used to derive the boundary
conditions for the Canadian Regional Climate Model version
5-Large Ensemble (CRCM5-LE)39. CRCM5-LE obtains more realistic
representations of climate over complex topologies, as in the
southwest part of Scandinavia, the Iberian Peninsula, the Alps and
the Pyrenees39. A study by Trentini et al.40 confirms the
applicability of the chosen model for heatwave research in the
European domain. It investigates the interannual variability of
three different large ensembles, with CRCM5-LE being one of
them, and compares it to E-OBS data. The study shows that
CRCM5-LE has a good representation of JJA temperature and the
number of heatwave days per year. Another study41 compares
CRCM5-LE with the EURO-CORDEX ensemble and confirms the
added value of the ensemble for the European domain. Moreover,
CRCM5-LE was already used in a multitude of studies on European
extreme events32,42,43.
We use 1500 model years that correspond to the years 1981-

2010 historical climate. A ‘heatwave day’ occurs when the local
daily maximum temperature exceeds the 95th JJA percentile of
the whole period. We use the three-day-running mean in order to
obtain robust signals. In total, we obtain more than 50,000
heatwave days. For an exact definition of a heatwave day, see the
section ‘Methods’. Following previous studies on heatwave
classification24,29, in the first step, we apply hierarchical agglom-
erative clustering on the heatwave days in order to identify
predominant heatwave patterns. The clustering algorithm starts
by assigning each data point to its own cluster (agglomeration).
Then it merges all the clusters using a defined similarity measure
and builds a hierarchy between clusters, which is based on how
similar they are to one another44. We use cosine similarity as our
similarity measure. The optimal number of clusters is determined
using the elbow method. It picks the number where the added
information by creating one more cluster sharply drops45. This
point is determined by calculating the knee of the curve. For a
detailed description, see ‘Methods’. Subsequently, the obtained
spatial patterns of heatwaves are analysed in terms of the
influence of soil moisture and precipitation conditions in spring
and summer on heatwave formation and the influence of
heatwave occurrences on dry conditions in the following fall/
winter.

RESULTS
Typical European heatwave patterns
We focus our investigations on the European domain of the
CRCM5-LE39, as we are interested in regional heatwaves. We
obtain a total of nine significant spatial patterns from CRCM5-LE
for the years 1981–2010. Figure 1 shows the identified spatial
patterns, which we order from West to East: Iberian Peninsula (IP),
Western Europe 2 (WE2), Western Europe 1 (WE1), Britain and
Ireland (BI), South-Eastern Europe (SEE), Greece and South Italy
(GSI), Scandinavia (SCA), Central-Eastern Europe (CEE) and North-
Eastern Europe (NEE).
The pattern significance is assessed via bootstrapping, which

we apply according to the existing literature on heatwave
clustering24,29. For bootstrapping, we divide the data set into a
validation and training set 100 times so that one-hundredth of the
data is assigned to the validation set and the rest to the training
data set. We perform clustering using the training data set and
then assign clustering classes to the validation data according to
the nearest distance to data points within the training data set.

The obtained labels are compared to the ones originating from
clustering the whole data set. A stability score is calculated for
each cluster. It corresponds to the number of correctly assigned
events vs the total number of validation events per spatial pattern.
The stability scores are compared to the ones from a Monte-Carlo
pseudo-experiments, where we assign the validation data points
1000 times to one of the clusters in a random way. This allows us
to estimate the probability density function of the null hypothesis
that the clustering does not entail information. In Fig. 2, the mean
stability scores per cluster derived from bootstrapping are
compared with the ones from the Monte-Carlo pseudo experi-
ments. The nine patterns are significant on the 99 % level
according to a two-sided t-test; the least stable spatial patterns
with a stability score below 0.9 are WE1, SEE and CEE.
The visual inspection of the spatial patterns confirms their

meaningfulness since natural geographical boundaries like
mountains serve as delimiting boundaries, as is the case for IP,
WE2 and SEE. In order to characterise the heatwave patterns, we
examine the mean maximum temperature and the mean calendar
day of the first heatwave occurrence (see Fig. 1). We find three
spatially related groups when looking at the mean first calendar
day of the heatwave in a year. The earliest events happen in the BI
pattern with the mean first calendar day of the event of 25th June,
followed by Northern patterns of SCA, CEE, and NEE at the
beginning of July. The mean first calendar day of heatwave is the
latest in the Southern and Central European patterns of IP, WE2,
WE1, SEE, and GSI, where the mean first calendar day of heatwave
occurs in the second half of July. The mean maximum
temperature is higher for the patterns with fewer events - e.g.,
WE2 and WE1. From that, we can derive that events that belong to
those patterns have their hot spots over the same area, while, e.g.,
in the case of GSI, the maxima of the respective events match to a
lesser percentage.
Next, we visually compare the patterns to observed historical

heatwaves in Europe. We find that many patterns obtained from
the analysis on CRCM5-LE reproduce historical events, even
though those have not been part of the analysis. For example,
the WE1 is similar to the French heatwave in the summer of 20031.
The record-breaking heatwave in the summer of 1976 in Britain
can be matched with the BI pattern1. CEE pattern reproduces the
heatwave of 1994 in Eastern Germany and Poland1. Finally, the
events of 2007 in the Balkans and Greece and 2010 in Russia can
be matched to SEE and NEE, respectively1.
Additional validation is performed by comparing the spatial

patterns from CRCM5-LE to the ones derived from the clustering
of heatwaves derived from the observational data set E-OBS. The
E-OBS’ spatial patterns can be found in Fig. 3. To compare both
clustering results, we calculate the cosine similarity between the
spatial patterns obtained from CRCM5-LE and those from E-OBS
and match them by the maximum value. The measure is chosen to
stay consistent with the distance measure used for clustering.
Cosine similarity corresponds to one when the input vectors are
identical and to zero if they are orthogonal. The results are shown
in Table 1. The patterns IP, BI, SCA and CEE, are in excellent
correspondence, as can be seen visually and from the pattern
cosine similarity. Furthermore, WE1 and WE2 combine to one
common pattern in E-OBS - the WE, as indicated by the high
similarity value. Therefore, we calculate the sum of the patterns by
adding the values pixelwise. Similar behaviour can be seen in SEE
and GSI, which divide into a Southern and a Northern part. In
contrast, the patterns originating from E-OBS divide into West
(Italy) and East (Balkans and Greece). Finally, the two North-
Eastern patterns in E-OBS combine into the NEE pattern of CRCM5-
LE. Supplementary Table 1 shows the pattern similarity values
derived from the ERA-Interim-driven model run of CRCM5
(CRCM5/ERA) and CRCM5-LE. The patterns can be found in
Supplementary Figure 1. The results are comparable to those for
E-OBS. They confirm that the dominating spatial heatwave
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patterns from CRCM5-LE are similar in the area they cover with
those found when clustering observational data or the reanalysis-
driven run of CRCM5. Given the difference in the number of
events used as input for the analysis (1059 events from E-OBS vs
51.044 events from the 50 members of CRCM5-LE), we argue that
the patterns originating from CRCM5-LE allow reliable statistical
interpretability and robustness and are therefore used for further
analysis.

Additionally, we test the robustness of our results in terms of
domain choice. As we cannot pick a larger domain, we compare
the resulting patterns for a smaller domain. We cut off ten
boundary pixels on each side, thereby reducing the 280 × 280 grid
to 260 × 260. The resulting heatwave patterns are similar in form
and shape, as in Fig. 1, but without the grid cells at the domain’s
border. Therefore, we conclude that the resulting heatwave
patterns do not depend on the domain choice. Moreover, we

Fig. 1 Nine typical heatwave patterns over Europe derived from CRCM5-LE. Patterns obtained by hierarchical clustering of 1981-2010
Canadian Regional Climate Model 5 Large Ensemble (CRCM5-LE). In the title from left to right: pattern abbreviation, number of events
belonging to the pattern (ev), mean maximum temperature in K, mean calendar day of the first heatwave occurrence. From left to right, from
top to bottom: IP: Iberian Peninsula, WE2: Western Europe 2, WE1: Western Europe 1, BI: Britain and Ireland, SEE: South-Eastern Europe, GSI:
Greece/Southern Italy, SCA: Scandinavia, CEE: Central/Eastern Europe, NEE: North-Eastern Europe.
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compare the patterns when including sea grid cells. We calculate
the spatial patterns with sea grid cells for the ERA-Interim driven
run of CRCM5. The results are shown in Supplementary Fig. 3. We
see that new patterns emerge over the sea areas that are not
impacting land clusters. In 7 out of 9 cases, land patterns stay very
similar—they cover the same area and, in some cases, add the sea
areas along the coast (e.g., WE and BI). The CEE pattern is no
longer present; however, it is constituted only out of 24 events
without the sea grid cells and is, therefore, unstable. Moreover, IP
splits up into IP1 and IP2. Therefore, we conclude that heatwave
patterns over land are mainly unrelated to sea heatwaves, and we
omit sea grid cells in further analysis.

Seasonal connection to soil moisture and precipitation
Heatwaves and droughts are related phenomena that influence
the formation of one another, as the hydrological cycle is
inseparably connected to the heat-related processes in the
atmosphere. Therefore, we inspect soil moisture anomalies and
anomalies in seasonal precipitation before the heatwave occur-
rence (JFMA), after the heatwave (OND) and during the heatwave
(MJJAS) in dependence on the number of heatwave days in every
spatial pattern per summer.
The quantile regression method is applied to investigate the

relationship between the number of heatwave days per summer
season and the soil moisture or seasonal precipitation (for more

Fig. 2 Mean stability score per heatwave pattern. The stability score of bootstrap samples is compared to Monte-Carlo pseudo-experiments.
The median in orange, end of the box, indicates the first and third quartiles. The boundaries of the whiskers indicate the 1.5
interquartile range.

Fig. 3 Nine typical heatwave patterns over Europe derived from E-OBS. In the title from left to right: pattern abbreviation, number of events
belonging to the pattern (ev), mean maximum temperature in K. Pattern names same are the same as in Fig. 1, except NEE1: North-Eastern
Europe 1, NEE2: North-Eastern Europe 2.
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information, see ‘Methods’ section). A scatter plot of soil moisture
and precipitation versus the number of heatwave days for IP in
JFMA is shown in Supplementary Fig. 2. We use the range of 10-
90th percentile, which allows us to investigate if there is a link
between the variables for the upper and hence more extreme
quantiles. We expect that the relationship between soil moisture/
precipitation and the number of heatwave days differs for upper
quantiles. For each pattern, we plot the soil moisture anomalies for
the 25 years (2% of most extreme events) with the highest
number of heatwave days to obtain a visual validation for the
correlations. The soil moisture anomalies in the upper portion of
the soil column (0cm-10cm depth) are used instead of deeper soil
moisture levels due to data availability. Additionally, we repeat the
analysis using a model run where ERA-Interim is used as a
boundary condition instead of CanESM2 to compare and validate
the findings.
Figure 4a, b shows the quantile regression slopes of the number

of heatwave days NHW in relation to soil moisture mrsosJFMA and
precipitation anomaly prJFMA in the preceding winter/spring
season (JFMA). Statistically significant slopes with a 90%
confidence level for a two-sided t-test are identified with black
edge. We find gradually increasing negative slopes for an
increasing number of heatwave days for North European patterns
of BI and NEE and Southern-European patterns GSI, SEE, IP and
WE2. In the case of the SEE pattern, there is a stronger influence of
precipitation deficit on the number of heatwave days than when
compared to other patterns. By contrast, we find no significant
relationship between the soil moisture anomaly and precipitation
deficit in winter/spring and the number of heatwave days in the
Central European WE1 and CEE patterns, as well as in the Northern
European pattern SCA. Our results suggest that there is a
predictive power of soil moisture in the preceding winter/spring
(JFMA) for heatwave occurrence in summer for South and North
Europe. Moreover, our results suggest that there is predictive
power of seasonal precipitation anomalies in winter/spring (JFMA)
in SEE for heatwave occurrence in summer. In Supplementary Fig.
4, we show the results of the quantile regression analysis for the
ERA-Interim-driven run of CRCM5. The results confirm the negative
relationship between the number of heatwave days and mrsos
anomaly in winter only for NEE, BI, SEE and IP, although none of
the slopes is significant.
Figure 4c displays the spatial distribution of mrsos anomalies for

the patterns IP, WE2, SEE, GSI, NEE and BI for the 25 years with the
highest number of heatwave days. We choose the patterns that
show a significant relationship in the quantile analysis. Significant
anomalies are indicated with the black edge. We find that the
extreme heatwave years in IP and SEE patterns are connected not

only to local soil moisture and precipitation deficit in the pattern
area but also in other parts of South Europe. We find that extreme
heatwaves in the GSI pattern are connected to continental and
Northern Europe soil moisture anomalies. Following Fig. 4a, the
anomalies are insignificant for the Northern patterns (NEE, BI). The
obtained results confirm findings concerning the positive
influence of the dry winter season on hot summers16,19,46. We
cannot find a significant dependency between soil moisture
deficits in the South and heatwaves in the North of Europe in
contrast to what is suggested by previous studies16,24. Results for
the remaining patterns are displayed in Supplementary Fig. 5.
A deficit in soil moisture in the season during the heatwave

(MJJAS) is present for all identified patterns in Fig. 5. We see
significantly decreasing slopes in Fig. 5a of NHW versus mrsosMJJAS
for all patterns. We find the same, although mostly non-significant,
relationship when performing the analysis on the ERA-Interim
dataset (see Supplementary Fig. 4b). These results are in
accordance with a previous study that also found increasing
negative slopes for the quantile analysis of soil moisture in relation
to the percentage of heatwave days in Central and Eastern
Europe26. We extend these results by finding this relationship also
in Northern Europe. The results are similar in the case of seasonal
precipitation as the dependent variable. We see that for the BI
pattern, soil moisture has a bigger influence than for other
patterns; for the IP pattern, precipitation anomalies are a more
robust predictor compared to other patterns.
In Fig. 5c, the spatial patterns are displayed. A significant soil

moisture deficit in SCA, CEE, and NEE for the 25 years with the
highest number of heatwave days is also connected to a
significant soil moisture increase in Western and Central Europe.
A contrasting pattern is visible in the IP region: for the 25 years
with the highest number of heatwave days, negative soil moisture
anomalies are observed in South-Western Europe and positive in
North-Eastern Europe. The dipolar structure is a well-known
phenomenon: it has been shown in previous studies that positive
phases of the North Atlantic Oscillation are connected to negative
SPI averages in Southern Europe and positive averages in
Northern Europe47.
Extremely long periods of heatwaves pose substantial stress on

the soil moisture visible in the following season (OND), as seen in
Fig. 6. While for quantiles below 0.2, coefficients equal zero, the
slopes turn negative for higher values for patterns SCA, NEE, SEE,
CEE and IP. Out of those, significant soil moisture anomalies in the
following season are present only for patterns SCA, NEE and SEE.
This is confirmed by the analysis of the ERA-Interim-driven run
(Supplementary Fig. 4c) apart from the highest quantile. These
results serve as an indication of the memory of soil moisture in
Northern Europe, as well as in the South-Eastern parts and suggest
that there is a predictive power of the number of heatwave days
per summer on dry anomalies in soil moisture in subsequent fall/
winter (OND). The slopes of the quantile regression for precipita-
tion anomalies are shown in Fig. 6b. None of the slope coefficients
is negative; this suggests that hot summers do not lead to dry fall/
winter in Europe. In contrast, we see a positive correlation
between the upper quantiles of the number of hot days and
seasonal precipitation in BI and NEE. The observed quantile
regression coefficients are the lowest compared to the other
seasons. For SCA, NEE and SEE, the negative soil moisture
anomalies are also visible in the following winter season (see
Fig. 6c). Results for the remaining patterns are displayed in
Supplementary Fig. 5.

DISCUSSION
Using cluster analysis, we identified (1) nine distinct patterns of
European heatwaves, which we validated by comparing with E-OBS
and applying bootstrapping. The spatial patterns offer not only the
possibility to investigate regional heatwave characteristics, e.g., BI

Table 1. E-OBS patterns assigned to CRCM5-LE patterns by the
maximum value of cosine similarity.

CRCM5-LE pattern EOBS pattern Similarity

IP IP 0.86

BI BI 0.85

SCA SCA 0.92

CEE CEE 0.83

SEE SEE 0.74

GSI SEE 0.74

NEE NEE1 0.87

WE1 WE 0.82

WE2 WE 0.68

WE1+WE2 WE 0.93

GSI+ SEE GSI+ SEE 0.92

NEE NEE1+NEE2 0.95
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earliest heatwaves to latest in Southern parts of Europe, but also
offer to understand further the seasonal influence of large-scale soil
moisture anomalies and precipitation anomalies on the number of
heatwave days in the chosen patterns and vice versa. We show that
(2) soil moisture deficit in the preceding winter/spring (JFMA) can
serve as a predictor for heatwaves in Southern (GSI, SEE, IP, WE2)
and Northern (BI, NEE) Europe. Moreover, (3) all patterns show a
significant negative relationship between soil moisture in the
summer season (MJJAS) and the number of heatwave days. (4)

The analysis of soil moisture anomalies in the following season
(OND) shows a significant negative relationship for SCA, SEE and
NEE. This shows that long heatwave events lead to a substantial soil
moisture deficit preserved until the following season. For now, the
obtained findings apply only to present-day climate; it has to be
further investigated whether future climate change impacts these
relationships.
In this study we perform a clustering analysis of heatwaves

using a SMILE of a high-resolution RCM. Through the employment

Fig. 4 Quantile regression slopes for NHW in relation to moisture-related variables in winter before. NHW versusmrsosJFMA (a) and prJFMA (b).
Statistically significant slopes with a 90% confidence level with a two-sided t-test are identified with black edge. mrsosJFMA for the 25 years
with the highest number of heatwave days in chosen patterns with significant precipitation anomalies (c).
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Fig. 5 Quantile regression slopes for NHW in relation to moisture-related variables in summer. NHW versus mrsosMJAAS (a) and prMJJAS (b).
Statistically significant slopes with a 90% confidence level with a two-sided t-test are identified with the black edge. mrsosMJJAS for 25 years
with the highest number of heatwave days in (c).
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of the CRCM5-LE, we assess the natural variability of heatwaves
and derive stable patterns of heatwaves. Regional Large
Ensembles have proven useful in research on extreme
events15,32,33. Nevertheless, it is known that the models are prone
to biases regarding the modelling of land-atmosphere interactions
that contribute to the formation of heat waves48. We find similar
patterns when clustering using the E-OBS dataset or ERA-Interim
driven run of CRCM5.
The classification into nine distinct heatwave patterns in Europe

is a unique finding of this study. The study by Stefanon24 finds six
heatwave patterns, however, based on 78 heatwave events that
consist of 643 heatwave days in contrast to more than 50,000
heatwave days used in our case. When we compare those patterns
to the ones found by our analysis, we can assign them in the
following way: ‘Russian’ pattern compares to NEE; ‘Western
Europe’ pattern to WE1 and WE2; ‘Eastern Europe’ pattern to
CEE, SEE, GSI; ‘Iberian’ pattern to IP; ‘North Sea’ pattern to BI and
SCA; ‘Scandinavian’ pattern to none, however, its area is in huge
parts outside of our domain. Therefore, we find similar heatwave
patterns in both studies. Also, previous studies mostly used the
percentage of rain days as a soil moisture proxy for the analysis
instead of direct soil moisture, as in our case16,17.
The coupling between spring soil moisture availability in

Southern Europe (GSI, IP, WE2, SEE) and heatwave occurrence in
summer has been described in previous studies24,49. The southern
regions of Europe have a dry climate, where evaporation is soil
moisture limited50. The described link between reduced soil
moisture leading to fewer clouds and more solar radiation and,

therefore, more heatwaves is valid for that region. It appears to be
one of the main driving mechanisms for heatwave formation. The
link for NEE is less significant, however present. It has to be
investigated further how far other factors, such as snow cover,
influence the link. The missing coupling between spring soil
moisture and precipitation and the occurrence of a heatwave in
SCA, WE1 and CEE can be explained by the fact that the
vegetation system in those regions is rarely water-limited51.
Therefore, even if there is a comparably dry spring, the soil still has
enough moisture for evaporation and the formation of clouds.
We see a coupling between the heatwave occurrence in the

Eastern and Northern parts of the domain (SCA, NEE, and SEE) and
autumn drought occurrence. Those regions have a temperate
climate and relatively high mean soil moisture values. This allows
for a higher variability of soil moisture when compared to more
Southern regions. Therefore, it takes the soil until the next season
to recover after a prolonged heatwave. This relationship is missing
for the Southern regions (IP, GSI, WE2). Those regions experience
low mean precipitation in summer and, therefore, a lower
expected and possible variability of soil moisture.
These results can, in most cases, be confirmed when performing

the analysis on the ERA-Interim-driven run of CRCM5. The results
mainly differ for upper quantiles (0.9). It can be explained by the
fact that we analyse only 30 years; therefore, the upper quantile
includes only three values, leading to high slope value uncertainty.
For future research, we suggest performing the analyses on

deeper soil moisture levels, as those are known to show higher
persistence52. Further, we suggest analysing for interdependencies

Fig. 6 Quantile regression slopes for NHW in relation to moisture-related variables in fall after. NHW versus mrsosOND (a) and prOND (b).
Statistically significant slopes with a 90% confidence level with a two-sided t-test are identified with black edging. mrsosOND for the 25 years
with the highest number of heatwave days in chosen patterns with significant precipitation anomalies (c).
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between heatwaves and precipitation/soil moisture deficits across
different areas, as we see, e.g., in Fig. 6 for BI pattern, soil moisture
over Central and Eastern Europe shows significant anomalies for the
25 years with the highest number of heatwave days. Also, a further
heatwave-pattern-based investigation in terms of the effects of
other variables, such as latent and sensible heat fluxes, would be of
interest for future studies on the interrelation of heatwaves and
droughts.
We suggest using the obtained patterns for heatwave analysis

and predictability instead of pixelwise or even country-wise
approaches in future studies. The obtained patterns allow a
meaningful complexity reduction by finding spatially coherent
regions instead of arbitrary grouping, e.g., by country. For
agricultural research and the general public, the study’s outcomes
can enhance the predictability of heatwave events in Southern (GSI,
SEE, IP, WE2) and Northern (BI, NEE) Europe on a seasonal scale.
Moreover, applying the described framework offers great

potential for investigating other extreme events like droughts.

METHODS
Data sets
The central part of our analysis is based on the daily maximum
temperature and monthly soil moisture and precipitation data
from the single-model initial condition large ensemble (SMILE)
consisting of 50 members, the Canadian Regional Climate Model 5
Large Ensemble (CRCM5-LE). The data was produced within the
scope of the ClimEx Project (Ref. 39, www.climex-project.org).
Dynamical downscaling via CRCM5-LE is applied to the data
originating from the 50-member initial condition Canadian Earth
System Model 2 (CanESM2)53. The data is provided at a resolution
of 0.11° (12 km) and is produced for the years 1950–2099 for a
European and an Eastern North America domain. Historical
greenhouse gas concentrations are used for the years
1950–2005; starting from 2006, the RCP8.554 forcing scenario is
used. We use the data from all 50 members for the years
1981–2010, translating to 1500 model years, which are analysed
for heatwave events. A comparison of the CRCM5-LE to the E-OBS
dataset has been performed in a previous study39 and showed a
temperature bias between −2 and +2 °C, while warm deviations
mainly happen over highlands. For the validation of the obtained
patterns, we use daily gridded observational data set E-OBS55 for
the years 1981-2010, as well as one model run of the CRCM5,
which was driven by the global atmospheric reanalysis data set
ERA-Interim via boundary conditions39,56.

Heatwave definition
Literature gives evidence for a wide range of similar heatwave
definitions, which are adapted to the specific study goals24,57–59. In
this study, we define heatwaves for land areas in continental
Europe (EUR-11 domain) as prolonged periods of above-average
temperatures in an extended area during the period 1981–2010.
These heatwaves consist of at least three consecutive hot days,
where hot days are characterised by a positive anomaly of daily
maximum temperature (tasmax) to the local 95th JJA (1981–2010)
percentile, allowing for comparability across the domain. In order to
obtain robust signals, we use the 3-day-running mean to derive
these anomalies. Negative anomalies are set to zero to focus on hot
extremes24. Two heatwaves are separated by a minimum of three
days below threshold57. We remove heatwave days consisting of
patterns smaller than 9 × 9 grid cells. An additional filter is
introduced to eliminate spatially small events covering an area of
less than 1% of the land area (500 grid cells). Positive anomalies
only occur during the months May-October in our data sets. The
analysis is based on heatwave days fulfilling the above-mentioned
criteria and amounts in the case of CRCM5-LE to around 50,000
heatwave days used as input for the clustering analysis.

Clustering analysis
In literature, clustering has frequently been used to analyse and
classify weather patterns in the mid-latitudes60–62. This study uses
the obtained heatwave days as input to the agglomerative
hierarchical clustering algorithm24,29. Distance between two
vectors, r and q, is defined here as follows:

dðr; qÞ ¼ 1$ csðr; qÞ (1)

csðr; qÞ ¼
PN

i¼1
PM

j¼1 ri;jqi;j

ð
PN

i¼1
PM

j¼1 ri;jÞ
1=2ð

PN
i¼1

PM
j¼1 pi;jÞ

1=2 (2)

cs(r, q) refers to the cosine similarity measure between two
vectors63. It is defined as 1 for parallel vectors and as 0 for
orthogonal. For the clustering algorithm, the average linkage is
used63.
The optimal number of clusters is determined by applying the

elbow method64: we compute the distortion score as the sum of
squared distances to the assigned centre for every possible
number of clusters and pick the number of clusters that
corresponds to the knee of the curve45,64.
Due to a large number of events, the obtained data set has, in

absolute numbers, a higher number of a-typical events, which
have a big distance to all other events of the data set. Filtering by
preliminary clustering to 32 clusters is introduced to remove these
events. Events belonging to so-called minority clusters with a
small number of events (<0.1% of the data) are removed from the
data set65. In total less than 1% of heatwave events are removed
that way. Repeated clustering is performed on the resulting data
set. We derive 12 clusters as the optimal number from the elbow
method. The obtained clusters are cross-validated by 100 times
dividing the data set into a verification period that amounts to 1/
100 of the data set and the remaining 99/100 used as input to
clustering. The nearest distance to the training clusters then
determines the labels for the verification period. Those are then
compared to the ones originating from the clustering on the
whole data set. Finally, a stability score is computed per cluster
that amounts to the number of correctly assigned validation
events to the total number of events per cluster. The results are
then compared to a Monte-Carlo pseudo-experiment, where the
labels are assigned in a purely random way 1000 times. Three out
of twelve clusters do not pass the described validation; nine are
significant on the 99%-level according to a two-sided t-test.

Quantile regression
In order to evaluate the impact of heatwave length on soil
moisture and seasonal precipitation deficit, we use quantile
regression as suggested by similar studies17,26. Quantile regression
is a method that goes beyond standard linear regression, as it can
be used when the linearity and independence of variables are not
given. It estimates the conditional median of the target variable66.
Here, we use a linear model for the conditional quantiles.
For the quantile regression, we use the following variables

derived from the CRCM5-LE data set:

1. Number of heatwave days per pattern NHW per summer
season of May, June, July, August, and September (MJJAS)

2. Mean soil moisture anomalies in the upper portion of the
soil column (top 10 cm) averaged for the following three
seasons in the pattern region: January, February, March,
April (JFMA) mrsosJFMA; May, June, July, August, September
(MJJAS) mrsosMJJAS and October, November, December
(OND) mrsosOND

3. Summed precipitation anomalies for the same seasons as in
(2): prJFMA, prMJJAS and prOND in the pattern region.

The pattern region for mrsos and pr is defined as the area of 100
land pixels around the maximum of the spatial pattern. Given the
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spatial resolution of 12 km, which amounts to approximately
14400 km2.

DATA AVAILABILITY
The data is retrieved from the CRCM5-LE via https://www.climex-project.org/en/data-
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https://www.ecad.eu. Derived data supporting the findings of this study are available
from the corresponding author upon reasonable request.
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ABSTRACT10

Heatwaves and dry spells are significant climate hazards with far-reaching implications for health, economy,

agriculture, and ecosystems. The frequency of compound hot and dry summers in Europe has risen in recent

years. This study examines whether past compound events will remain rare climatological events under changing

climate conditions. We use reanalysis data (2001-2022) and compare it with model data on three Global Warming

Levels (GWL): +1.2 K, +2 K and +3 K for nine selected sub-regions. Key findings indicate a significant increase in

the frequency of the most extreme past occurrences under GWL2 and GWL3. For specific events, the probability

of occurrence rises by up to 5-6 times from GWL2 to GWL3. Moreover, our analysis unveils a significant

northward shift in the climatology of hot and dry events under GWL3. The hot and dry climate observed in Eastern

Europe under current conditions is anticipated to extend into substantial parts of the Baltic states, Finnland and

Scandinavia.

11

1 Introduction12

Prolonged periods of heatwaves and droughts significantly affect human health, the economy, agriculture, and natural13

ecosystems. Compounding events - two or more separate co-occurring events - are the ones that are known to cause14

high impacts1, 2. In recent years, Europe has experienced a series of compounding hot and dry events, e.g. 2003,15

2015 and 20183, 4, each of which has caused increased mortality5, 6, economic losses due to crop yield reduction,16

blockage of river transportation due to low flow, worker productivity decrease7, and posed extreme stress on the17

natural ecosystems.18

Quantifying the probability of historical compound hot and dry events is challenging due to the atmospheric and19

hydrological interrelation of temperature and precipitation8. Extreme heat and the absence of precipitation share20

the same atmospheric large-scale drivers as anticyclonic conditions, which lead to reduced cloudiness. Moreover,21

there is a self-intensifying feedback between hot and dry conditions9, 10: with the onset of a heatwave, soil dries,22

and when falling below a certain threshold, a larger fraction of solar radiation is transformed into sensible heat.23

This leads to an increase in air temperature and evaporative demand, which in turn dries the soil even more and24

reduces precipitation due to lower evapotranspiration11, 12. During hot and dry compound events, the Bowen Ratio25

of sensible heat to latent heat is enhanced compared to non-compound events in large parts of Europe, and lower soil26

moisture conditions are present13. Previous studies have shown that seasonal summer temperatures and precipitation27

in Europe are highly correlated1, 14, meaning that a higher number of compounding events happen than one would28

expect when looking at univariate probabilities and assuming independence. Moreover, looking to the future, rising29

summer average temperatures15 and a drying trend16 in the European summers might favour the intensification of30

the feedback mechanisms under changing climatic conditions17, 18.31

Quantifying the changes in probability of historical compound hot and dry events for different global warming32

levels is essential for many reasons. Determining the probability of historical events under future conditions33

and comparing it to the present probability gives us insight into what we might expect to experience, contingent34
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upon global warming levels we might reach. This knowledge is invaluable for stakeholders like policy-makers,35

politicians, engineers, and farmers when managing water resources, adjusting agricultural practices or adapting36

to changing ecological minimum flow conditions19. A significant increase in probability strengthens the need for37

impact mitigation20. For instance, if compound hot and dry events should become a frequent feature of the European38

climate, there is a need to develop alternative solutions for cooling of thermal power plants, as they heavily depend39

on cooling water from natural resources21, implementation of measures to conserve water22, 23, establishment of40

alternative transportation methods to shipping in summer and building green spaces like parks to reduce the urban41

heat island and urban sprawl effects to not additionally worsen the conditions in cities due to man-made issues24, 25.42

Thus, the probability of occurrence of compound hot and dry events is essential to assess; however, those43

events are complex and multivariate in terms of drivers and feedbacks and happen rarely by definition. The44

probability quantification based on observational data is limited due to its temporal length. Applying a Single Model45

Initial Condition Large Ensemble (SMILE)26 allows overcoming these limitations by providing a robust statistical46

estimation of extreme event occurrence. A SMILE consists of a multitude of simulations (ensemble members),47

each of which has the same forcing and the same physical model but differing initial conditions27. This allows48

to distinguish between the signal delivered by the internal chaotic nature of climate (natural climate variability)49

and a forced response due to effects like climate change. We argue for the application of SMILEs for extreme50

event probability quantification. Past studies have confirmed the usefulness of SMILEs for investigating compound51

extremes4, 13, 27, 28.52

In this study we want to identify the most extreme compound hot and dry events on the European and regional53

scale of the past two decades, 2001-2022. For those events, we aim to quantify the probability of occurrence given54

the current climate and how this probability changes under projected global warming levels of +2 K or +3 K (GWL255

or GWL3, respectively). Seneviratne et al. and Gampe et al. used Global Warming Levels (GWL) to communicate56

climate change impacts at temperature targets relevant to policy and decision-making29, 30. Moreover, they allow to57

compare results across forcing scenarios. In the study, we estimate the probability of the most extreme historical hot58

and dry events of the two past decades 2001-2022 in the European climate reanalysis dataset ERA531 by comparing59

it to a 50-member regional large ensemble, the Canadian Regional Climate Model, version 5, Large Ensemble60

(CRCM5-LE)32 under RCP8.5. For the most extreme compound hot and dry events in the ERA5 dataset, we quantify61

the probability for those events to happen by using the following three periods out of CRCM5-LE:62

• PRES: +1.2K GWL model world representing the present conditions. It corresponds to the model years63

2001-2020.64

• GWL2: +2K GWL model world representing the positive target set by the Paris Agreement; model years65

2021-2040.66

• GWL3: +3K GWL model world, approximately representing the realistic perspective following current trend;67

model years 2042-2061.68

We inspect temperature and precipitation and use seasonal summer averages (JJA) for the event definition. Due69

to the interrelation of those two variables, we cannot inspect those in univariate terms, but we have to model their70

interdependence using copulas8. In recent years, copulas have been widely used to study the interrelation between71

multiple variables13, 33, 34.72

Multivariate copulas are especially useful for assessing the occurrence probability and return periods of compound73

events35–37. We use the Survival Kendall probability pSK , which estimates the probability of having an event at74

least as rare in probability as the one observed38. With the application on compound hot and dry events, we75

follow the study of Aghakouchak et al., which investigated the 2014 Californian heatwave and drought35. Survival76

Kendall probability can be understood as a critical layer L separating the bivariate probability space into critical77

and non-critical regions. We use a Generalized Pareto Distribution (GPD) fit for values above the 95th percentile78

in temperature while using empirical distributions below. For precipitation, we use empirical distributions. The79

isolines dividing the probability space are shown for one arbitrary grid cell in Fig. 1. By spatially clustering the80
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resulting yearly pSK spatial maps of CRCM5-LE PRES, we identify nine European sub-regions most likely to81

experience a simultaneous event. We use the sub-regions to calculate local probabilities by averaging temperature82

and precipitation and then computing the pSK probability for the following regions: SWE: South-West Europe,83

CMD: Central Mediterranean, BP: Balkan Peninsula, AC: Atlantic Coast, CE: Central Europe, EE: Eastern Europe,84

NBS: North and Baltic Sea, NEE: North-East Europe and NSC: North Scandinavia. We obtained the regions by85

applying Hierarchical Agglomerative Clustering on all of the yearly events with pSK < 0.1 that have a spatial extent86

of at least 500 grid cells (⇡ 1% of the land area). More details can be found in Methods. Fig. 2 displays the entire87

European domain and sub-regions.88

Figure 1. Temperature and negative precipitation scatter plot for one exemplary grid cell. Black triangles for
CRCM5-LE data, red dots for ERA5 data. pSK isolines in the probability space are shown in red.

2 Results89

2.1 Identifying most extreme historical compound events on the European scale90

We first focus on identifying the most extreme event in the past two decades (2001-2022) on the European scale.91

Therefore, we detrend ERA5 for 1959-2022 and calculate its univariate quantiles for temperature and precipitation.92

We map the quantiles of ERA5 with those from CRCM5-LE PRES and adjust ERA5 according to the quantile.93

The authors argue in favour of this approach, in contrast to proceeding as usual and using the historical data as a94

reference, which would require three transformations on three periods of model data: GWL2, GWL3 and PRES. This95

would introduce a transformation error, as we have a limited historical data record of only 1959-2022. Moreover, for96

copula-based probability calculation, only ranks (hence quantiles) are used; therefore, there is no difference in the97

resulting probabilities in the analysis. We perform three statistical tests on temperature and precipitation between98

ERA5 and CRCM5-LE PRES on the sub-regional level. They confirm we can use the adjusted data, as it represents99

the univariate and bivariate structure well. We use 1,000 model years (50 members, 20 years each) for PRES, GWL2100

and GWL3. This gives us a solid statistical estimation. Read more on the methodology in Methods.101

We then calculate pSK of having an event of that magnitude. Therefore, we find the best fitting copula on the102

grid-cell-wise values and regionally averaged temperature and precipitation values. We plot the resulting pSK per103

year for the whole European domain in Fig. 3. The figure confirms the extreme rarity of 2003, as the probability104

is close to zero in the entire affected area. Moreover, to have an insight into which proportion of the domain is105

experiencing an extremely hot and dry event, we plot in red the fraction of land with a pSK value below the threshold106

of 10%, 5% and 1%. The pSK values for the latter case are calculated for every grid cell part of the domain. Also,107

2003 is the most extreme event in this measure, with over 20%, 15% and 10% of the grid cells affected, respectively.108

3
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Figure 2. Study domain and sub-regions. The orography [m] over the European domain of the CRCM5-LE in
0.11deg resolution in (a) and the sub-regions obtained by clustering events used in the analysis in (b)

Figure 3. Mean pSK for the whole European domain for 2001-2022 in ERA5 and fraction of land affected by a
compound hot and dry event per year. Mean pSK for averaged values of temperature and precipitation in blue. In red,
the fraction of land is experiencing a pSK below a threshold noted in the legend. The vertical line highlights the
event with the least pSK in black.

4
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Figure 4. Mean pSK for the years 2001-2022 in ERA5 and fraction of land affected by a compound hot and dry
event per year per region. Mean pSK averaged for every region per year in blue. Fraction of land experiencing an
extremely rare hot and dry event per year in red. The vertical line highlights the event with the least pSK in black.
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Additionally, we inspect the most extreme events on the regional scale. Therefore, we repeat the same analysis,109

averaging temperature and precipitation over the chosen sub-regions. The results can be seen in Fig. 4. We obtain110

that 2003 was also the most extreme in the southern parts of the domain, such as SWE, CMD, AC and CE. Moreover,111

we find 2012 for BP, 2015 in EE, 2018 in NBS, 2006 in NEE and 2002 in NSC as additional events to be inspected.112

Figure 5. Spatial maps of pSK for the six most extreme compound hot and dry events on the European scale: 2002,
2003, 2006, 2012, 2015, 2018.

We plot the event maps for the six extraordinary hot and dry years on the European domain in Fig. 5. The113

displayed event maps confirm the extremity of the year 2003. No other event had a comparable spatial extent. We114

calculate the probabilities of occurrence in the three chosen periods for the areas where the events are most extreme.115

The probabilities in % for the affected regions are displayed in Table 1. The probabilities for all events are extremely116

low in the current climate, underlining the extraordinarity of the chosen events. In the present, the probability lies117

between 2.2% for NEE in 2006 and NBS in 2018 and 0.002 % for the 2012 event for the Balkan Peninsula. The118

estimated probabilities correspond to return periods between 45 and >> 10,000 years. Moreover, we inspect the119

change in probability to GWL2 and GWL3; we see a diverging pattern. Events of 2002, 2003 and 2018 seem to120

become a frequent feature of the future European climate as the event probabilities rise to 46% for GWL3, while121

other events like 2006, 2012 and 2015 experience only a slight rise in probability, remaining a rare feature of the122

climate in the future.123

To better understand where the change in probability originates on the European scale, we look at the underlying124

distribution of temperature and precipitation in Fig. 6. In the following, we compare the events to future temperature125

and precipitation distributions under GWL2 and GWL3. We see that what used to be the most extreme events in126

the PRES period lie way closer to the centre of the distributions in the future periods of GWL2 and GWL3. The127

change is very pronounced, especially in temperature. The extreme temperatures during the 2003 event are below128

6

56



year region PRES GWL2 GWL3
pSK ptas/ ppr pSK ptas/ ppr pSK ptas/ ppr

2002 NSC
0.1 4.6 21.80.1 27.5 5.5 25.4 17.1 21.3

2003 SWE
0.1 5.4 57.10.1 4.5 4.5 9.5 34.2 26

2003 CMD
0.1 3.9 47.30.4 6.9 12.6 11.7 46.0 22.7

2003 AC
0.1 4.7 34.60.1 33.1 6.4 44.5 35.9 66.2

2003 CE
0.1 1.0 13.30.1 0.5 3.4 2.1 11.9 4.9

2006 NEE
22.6 51.4 85.52.2 1.4 4.0 3.1 5.6 4.0

2012 BP
0.0 7.1 57.70.002 0.0 0.4 0.0 2.5 0.1

2015 EE
21.9 53.3 93.30.9 0.6 2.1 1.5 2.7 1.7

2018 NBS
1.4 21.5 66.72.2 3.9 9.0 5.1 18.8 6.9

Table 1. Event probability in % in regions of event occurrence for the three chosen periods. The probability
corresponds to a pSK of a summer as hot and dry or hotter and drier than the historical event, Bold:pSK > 5%, return
period  20 years. ptas and ppr refer to univariate exceedance probabilities in temperature and precipitation.
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Figure 6. Bivariate distribution for average anomalies in temperature and negative precipitation for the three
chosen periods for the whole European domain. CRCM5-LE PRES in dark green, GWL2 in orange and GWL3 in
violet. The two lines encircle 95% and 50% of the data obtained by a kernel density estimate. ERA5 years
1959-2022 shown with black dots. Most extreme years from the previous analysis are notified with black text. The
most extreme year of 2003 for the whole domain is highlighted with black horizontal and vertical lines. Marginal
distributions of temperature anomaly for the three periods are displayed in the upper plot; negative precipitation
anomaly in the right plot. Dashed lines in the marginal plots indicate the 95th percentile of the corresponding
distribution.
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the 95th percentile in GWL2 and would be considered a rather cold summer under GWL3. Although very much129

dominated by temperature, drying also contributes to the events’ intensification. The dryness of 2003 will become130

less extreme and below the 95th percentile in negative precipitation (above the 5th percentile in precipitation) under131

GWL2 and GWL3. Hence, the event will become more common and less exceptional in the new climate, both in132

terms of temperature and precipitation.133

2.2 Distributional shifts on the regional scale134

Additionally, we investigate the changes in the distribution of temperature and precipitation anomaly on the regional135

scale. The results are displayed in Fig. 7. We also inspect the empirical univariate probabilities shown in Table 1136

under ptas and ppr.137

In terms of general change in climatology, we observe a two-fold pattern. Firstly, in the northern regions, such138

as NBS, NSC and NEE, changes are primarily driven by shifts in temperature, while precipitation changes only a139

little. Meanwhile, in the South and Central European regions, including Southern Western Europe (SWE), Central140

Mediterranean (CMD), Balkan Peninsula (BP), Atlantic Coast (AC), Central Europe (CE), and Eastern Europe141

(EE), the climatic alterations are further compounded by a decrease in precipitation. This implies a more frequent142

occurrence of compound hot and dry extremes.143

On the event level, we can now determine where the diverging intensification of event probabilities comes144

from. Some of the events like 2012 in BP and 2015 in EE were initially extreme in precipitation with the univariate145

probability ppr below 0.6% in PRES, as can be seen in the distribution plot in Fig. 7 and Table 1. Therefore, even146

under future climate conditions, those events are not to be expected more frequently than every 20 years or with a147

pSK <= 5%. Due to their initial intensity in temperature, all other events are expected to occur at least once or more148

often in the 20-year window under GWL3 climate conditions. Events like 2002, 2003 and 2018 are above the 5%149

threshold even under GWL2.150

These findings shed light on the potential long-term changes in extreme hot and dry compound event probabilities,151

suggesting that certain events may define the "new normal" while others stay extreme in future expected climates.152

2.3 Future compound hot and dry event climatology153

We evaluated in previous sections that historical compound hot and dry events will become more frequent in the154

expected future climate. However, is it possible to find comparable compound hot and dry events to what is to155

be expected in future in the present in other regions? Therefore, we take the distribution of GWL3 compound156

hot and dry events and try to find the most similar region in the present climate regarding extreme temperature157

and precipitation distribution. By doing this, we can say that under GWL of +3K, compound hot and dry events,158

e.g., in South Germany, will be like they are nowadays in Eastern Europe in terms of values for temperature and159

precipitation. Therefore, we define the extreme event distribution by considering all events with pSK < 0.05 and160

find the best match via the symmetrical Kullback-Leibler divergence39. We use the Kullback-Leibler divergence161

to measure the difference between two distributions. It is beneficial in our case, as it can be defined in bivariate162

terms—more on the definition in Methods.163

The clustered regions include various climatic zones, e.g., the Alps and vast parts of Germany are part of the164

same cluster, as the clustering is optimised towards events happening simultaneously and not to regions with a165

similar hot and dry events distribution. Therefore, we chose a representative point/grid cell for the region in PRES166

time frame and use the event distribution at that point for further analysis. The representative grid cell is found via167

the smallest summed distance to all the other grid cells in the cluster. The distribution of the chosen representative168

points is shown in Fig. 8 (a). NSC has the least dry and hot events compared to other regions’ distribution. All the169

other regions are closer connected with the representative point in BP demonstrating the hottest and driest climate.170

The geographical location of the chosen representative points is displayed in Fig. 8 (b) in red.171

Given the substantial climatic variations within geographical clusters, we choose to first calculate the matched172

climatologies of present-present (Figure 8 (b)) to then compare the results to the future (Figure 8 (c)). The comparison173

reveals a noteworthy northward shift of most hot and dry climatologies, as exemplified by BP, which is expected to174

cover most of Southern Europe and under GWL3 expands into more northern territories. Previously confined to175
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Figure 7. Bivariate distribution for average anomalies in temperature and negative precipitation for the three
chosen periods for chosen sub-regions ordered from South to North from West to East. The most extreme
ERA5-event based on pSK is highlighted with a black line.
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Figure 8. Changes in the climatology of compound hot and dry events from PRES to GWL3. (a) distribution of the
chosen representative point for every geographical cluster in CRCM5-LE PRES data. (b) results of matching the
representative point and grid cell values for CRCM5-LE PRES. Black-edged dots: location of the representative
points. (c) results of grid-cell-wise matching between the event distribution in CRCM5-LE GWL3 and
representative points in CRCM5-LE PRES.
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the Balkan Peninsula, it extends into huge parts of the Iberian Peninsula, South France, Italy and Eastern Europe176

under GWL3. The area in the Alps, currently experiencing the relatively wet and cold NSC climate, shrinks, shifting177

in parts to a CE climate. Furthermore, the EE climate is gradually extending its presence into substantial parts178

of Central Europe and the Baltic Sea coast, including southern Sweden and Finland. These findings collectively179

indicate a significant northward shift in all hot and dry climate zones under GWL3. In Supplementary Fig. S1, we180

plot the most probable values for an event with pSK = 0.05 for every region’s chosen representative point. The plot181

confirms the shifts in climatic zones we see in Fig. 8, as, e.g., the GWL3 value of CE representative point is close to182

the PRES values of AC and EE. This is a change we can also see in Fig. 8 (c).183

3 Discussion184

Our study highlights the significant implications of future climate conditions on compound hot and dry events185

in Europe. As a first step, we identify 9 European hot and dry events regions, where the events tend to happen186

simultaneously. For those regions, we identify the most extreme years out of the past 22 years of European climate:187

2002 for NSC, 2003 for SWE, CMD, AC, CE; 2006 for NEE; 2012 for BP; 2015 for EE, and 2018 for CE. We188

confirm that the most extreme historical events will become more frequent features of the European climate under189

both scenarios - GWL2 and GWL3. For some events, the probability of occurrence rises 5-6 times from GWL2 to190

GWL3 and up to 46% under GWL3, translating into almost every second summer. This underlines the importance191

of sticking to the +2 degrees in mitigation policy. Moreover, we see a twofold pattern. Some past events are192

characterised by an extremity mainly in precipitation, as those in 2006, 2012, and 2015. Those events will experience193

a rise in frequency; however, they will remain extreme and rare even under future climate conditions for GWL2194

and GWL3. Other past events such as 2002, 2003, and 2018 are projected to become immensely more frequent,195

with probabilities of up to 46%, as in the case of 2003 for CMD for GWL3. Additionally, our analysis reveals a196

significant northward shift in the climatology of hot and dry events under GWL3: the extremely hot and dry climate197

currently observed in BP is expected to extend into substantial parts of the spatial EE cluster, the relatively moist198

and cold NSC region in the Alps are contracting, while the EE compound event climate extends northward, reaching199

regions as far as the Baltic Sea and Scandinavia.200

Our study contributes three key findings to the scientific field: (1) Our study shows the utility of a high-resolution201

large ensemble for compound event investigation, as it is better able to relate to past experienced events due to202

the amount of data and to resolve heterogeneities, e.g., for the investigation of the climatology shifts. We see the203

topography and the proximity to coastlines as governing effects on the hot and dry summer climates, which GCMs204

could not show due to the coarse resolution. (2) Our study presents a methodology to quantify probabilities of205

historical compound events with large ensembles, using an extreme event definition via Survival Kendall probability.206

(3) Last but not least, we see our contribution in presenting the shifts in the climatology of compound hot and207

dry events up to GWL3. The spatial analysis of hot and dry climate patterns and spatial shifts while evolving208

towards GWL3 are vital tools for illustrating the potential consequences of climate change. Only few studies have209

investigated changes in compound hot and dry events13. Investigating climatology changes of extreme events is best210

possible with the application of a SMILE, as no other datasets provide enough data on extremes. As such, this work211

represents a valuable contribution that can inform compound event research and enhance the communication efforts212

of stakeholders from science and policy.213

A study by Ionita et al. confirms the chosen extreme compound hot and dry summers33: according to the study,214

2003 ranks the hottest year over northern Spain, France, and south Germany; 2015 the driest over east Europe,215

2012 the hottest in south-eastern Europe and 2006 and 2018 as one of the other extreme events in Europe. The216

correspondence is remarkable, as Ionita uses a different event definition, built out of criteria on the minimum length217

of the heatwave, temperature bigger than the 90th percentile, and three months’ Standardized Precipitation Index218

smaller than minus one. The study confirms our event definition approach, as it uses a different dataset and a219

different definition of an event and arrives with a similar event set. The only exception is 2002, which is not included220

in the list of events. However, the NSC region is small; therefore, the results might vary on a differently cut domain.221

To our knowledge, no studies exist that quantify the probability for all of the identified extreme hot and dry222
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compound events in bivariate terms. According to Charpentier et al.,40 for 2003, the return period is estimated to be223

115 to 37 years, corresponding to 0.8% to 2.7% in probability, depending on the model and heatwave definition.224

However, it must be noted that events were only defined in univariate terms in the study. Our results show a smaller225

probability, which is reasonable, as we include the extremity in precipitation. Rousi et al. find an increase in the226

probability of a summer like 2018 up to 96% in a 2�C warmer world (corresponds in our definition to GWL2) by227

looking at the distribution of accumulated heat3. Our approach shows an eight-fold (2.2% to 18.8% ) increase in the228

probability of occurrence between PRES and GWL2 but reaches a return period of once in five years in contrast229

to almost every year (96% under GWL2). However, the bivariate event definition in our study goes beyond the230

univariate, purely temperature-based definition by Rousi et al. Given that the reported impacts of the 2018 event231

are linked to drought and heat41, 42, this underlines the importance of investigating the events in bivariate terms, as232

otherwise, there is a high chance of probability overestimation. A study by Boehnisch et al. confirms that sticking to233

GWL2 might reduce event occurrences multiple times13. The study also quantified compound hot and dry summer234

occurrences; however, using only CRCM5-LE13. Another study confirmed that changes in compound hot and dry235

event probability in Europe are driven by changes in temperature43. In terms of changes in climatic zones of hot and236

dry extremes, our study presents novel results. However, we can compare the spatial patterns and shifts to a study by237

Beck et al., which quantified the changes in climate by the end of the century using the Köppen-Geiger classification.238

This classification is based on monthly temperature and precipitation values and describes changes in the mean239

climate44. The general trend found by our study can be confirmed, disregarding the difference in the definitions we240

see the same effect for, e.g., the climate present in the Iberian Peninsula spreading into Central European regions.241

The findings of this study should be viewed in the context of certain limitations. The reliance on a single large242

ensemble necessitates confidence in its representation of temperature and precipitation, as model and performed243

data adjustments biases might occur. Therefore, inspecting other high-resolution large ensembles in future research244

might be necessary. Focusing on two variables alone means that events may also have been extreme in other245

variables, e.g. wind, which could affect their probability. Moreover, the probabilities always rely on the event246

definition, and different event definitions will undoubtedly lead to other probabilities and return periods for event247

occurrence. A model-related limitation lies within the missing coupling of the dynamical downscaling between the248

RCM and the GCM. The high-resolution CRCM5-LE does not feed back into the driving CanESM2. Therefore, the249

higher-resolution land-atmosphere interaction cannot affect the boundary conditions of the driving climate model.250

Moreover, the GWL approach assumes independence from the chosen model scenario, which must be validated251

further.252

Looking forward, there are several avenues for future research. In terms of compound hot and dry events, we253

have estimated their occurrence probabilities in future. However, there is still a need for research on future factors254

leading to extreme event formation and evolution. Our study on probability estimation can serve as a blueprint for255

analysing other compound extreme events. Furthermore, there is potential in the analysis of shifts in climate zones,256

which could be applied to different types of extreme events as well as to studies on the mean climate.257

4 Methods258

4.1 Bivariate probability assessment based on Survival Kendall probability and Copulas259

In this study, we are investigating hot and dry extremes. We characterise the events by temperature and precipitation.
Those variables are highly interrelated. Therefore, we cannot calculate the probability in univariate terms, as this
would disregard their bivariate structure34, 35. Consequently, we use Copulas to describe the interrelation of the
variables. Moreover, for the event definition, we use the "Survival Kendall" hazard scenario36, which has previously
proven its usefulness for the application on extreme heat and dryness35. This approach divides the event probability
space into "safe" and potentially dangerous events. All events on the separating line share the same probability. We
calculate our Survival Kendall probability using the following relationship:

pSK = Pr(Ĉ(F̄X(x), F̄Y (y))� t) (1)

where F̄X(x) and F̄Y (y) are the marginal survival functions of the two variables, t the critical probability and Ĉ260

the survival copula. F̄X(x) = 1�FX(x) and F̄Y (x) = 1�FY (y), where FX(x) and FY (y) correspond to the marginal261
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cumulative distribution functions.262

With the application on compound dry and hot extremes, we follow a previous study on the 2014 Californian263

drought35.264

We use the VineCopula package in R45 for the calculation. Therefore, we first estimate the marginal probability265

functions and then transform those to uniform distributions. For precipitation, we use empirical probability functions.266

For temperatures above the 95-th percentile, we use a Generalized Pareto distribution fit to get a higher accuracy267

for rare events. Below the 95th percentile, we are using an empirical probability distribution. Different copula268

families exist that could be applied to bivariate structures. We fit 15 different copula families and use the Bayesian269

information criterion (BIC) to choose the best-fitting copula. All selected copulas pass the goodness-of-fit test based270

on Kendall’s process46, 47 on 0.05 level.271

4.2 Data sets272

Assessing the occurrence probabilities of rare events requires an abundant database. To do this, we use seasonally273

averaged temperature and precipitation for June-July-August (JJA) originating from a single-model initial condition274

large ensemble (SMILE), the Canadian Regional Climate Model 5 Large Ensemble (CRCM5-LE). The CRCM5-LE275

has been produced within the scope of the ClimEx project32 on a European and a North American domain at a276

spatial resolution of 0.11� (12km) for the years 1950-2099. We use the European domain for our analysis, which277

is displayed in Fig. 2. In the data production, dynamical downscaling via CRCM5-LE is applied on the global278

atmospheric 50-member initial-condition model - Canadian Earth System Model 2 (CanESm2)48. After a few279

years, the 50 members are losing their dependency due to the chaotic nature of the weather while maintaining its280

greenhouse gas forcing. The model is driven by historical greenhouse gas emissions up to 2005. Starting from the281

year 2006, the RCP8.5 forcing scenario is used. For the analysis, we are using the data from the three time periods:282

2001-2020 (PRES), 2021-2040 (GWL2) and 2042-2061 (GWL3). We use 20 years from the 50 members per period,283

which results in 1,000 years per period available for analysis.284

To assess the observed hot and dry events, we use the fifth generation of the ECMWF atmospheric reanalysis285

ERA531. We use linear interpolation on the European domain to make the data comparable with the grid from286

CRCM5-LE. For the fits, we are using the data for 1959-2022.287

Temperatures in both datasets are linearly detrended for each period. As there is a model bias, we transfer ERA5288

into the model world by transferring it according to its quantile and perform two tests to evaluate how well the289

representation is: we test via Kolmogorov-Smirnov, if both marginal distributions are well represented49, and we290

perform a test of the bivariate structures via the TwoCop test in R. The latter test is developed by Rémillard and291

Scaillet,50. It is designed to assess whether the empirical copulas between two distributions could belong to the same292

underlying distribution. Therefore, we can use it to evaluate whether they significantly deviate from one another.293

All the statistical tests have been performed on the a = 0.05 significance level. We follow the methodology of294

Zscheischler et al.34.295

4.3 Global Warming Levels296

Global Warming Levels have proven useful in science communication for calculating climate change-induced297

impacts with relevant levels for policy and decision-makers in various fields. The approach is less dependent on298

the choice of model and scenario. GWLs are calculated as mean surface air temperature anomalies referencing299

the historical conditions 1850-190029. They refer to the 20 years from the first year where the intended level was300

measured.301

For our analysis, we follow the results of a previous study13, that used the anomalies from the CanESM2 driving302

model from 1850-1900 and use the same three periods:303

1. Present period (PRES) 2001-2020 with GWL =+1.2�C304

2. Future I period with GWL =+2�C (GWL2)305

3. Future II period with GWL =+3�C (GWL3)306
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4.4 Finding regions where compound hot and dry events happen via Clustering307

We apply the clustering technique to obtain regions to analyse hot and dry events. We aim to have regions
experiencing events simultaneously, with a high spatial and temporal interrelation in event occurrence. This study
uses the yearly and per grid cell calculated pSK-probability of event occurrence as input to the agglomerative
hierarchical clustering algorithm. We define the distance measure for the algorithm as

d(r,q) = 1� cs(r,q) (2)

where r, q refer to two spatial events for which we are calculating the distance and cs to the cosine similarity308

measure51, 52. We only include grid cells with pSK < 0.1 for the clustering to cluster only on extreme occurrences.309

We estimate the optimal number of clusters by applying the elbow method53. We apply a majority cluster filtering310

method introduced in a previous study52 and arrive at 9 clusters used as regions for the hot and dry compound event311

probability quantification. The resulting clusters are displayed in Fig. 2, right.312

4.5 Estimating future compound hot and dry events climatology313

To estimate the future compound hot and dry event climatology, we take all the events from the PRES and GWL3314

period and filter pSK > 0.05 to obtain the distribution of hot and dry compound events per grid cell.315

For the construction of a distance measure, we use the Kullback-Leibler divergence39. The study by Perez et al.316

showed that it is possible to calculate the measure based on an empirical estimation from the samples using KD317

trees and nearest neighbours39. We use the Python implementation from Robert Kern54. As the Kullback-Leibler318

divergence is a non-symmetric measure, we symmetrise it by calculating the distance D via: D = 0.5KL(p,q)+319

0.5KL(q, p), where p and q are bivariate distributions of two different grid cells.320

To find the representative points for each cluster, we calculate the sum of the distance of every point to every321

other point in the spatial cluster. The point with the smallest summed distance is taken as a representative point for322

the spatial cluster. The distribution of the chosen points is shown in Fig. 8.323
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Will Present-Day Compound Hot and Dry European Summers Still Be Extreme in the
Future?, E. Felsche et al.
Supplementary material

Figure S1. Most probable values for pSK = 0.05 in temperature and precipitation for the chosen representative
points in the nine sub-regions for the three periods: PRES (left, most transparent), GWL2 (middle, medium
transparent), GWL3 (right, non-transparent)
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5. Synthesis

In the following the key findings of the three studies are formulated as answers to the research

questions introduced in section 3. The overarching research question providing the basis for the

entire thesis is answered below.

Paper I: Drought Prediction

Q1.1: What is the potential of machine learning in drought prediction? What opportunities for

research does it offer?

The methodology applied in Paper I showed that ANNs can be a useful tool for investigating the

predictability of extreme events like droughts. The trained models achieve an accuracy of 55%

and 57% for the Munich and Lisbon domains, respectively. The study found the best-performing

architecture and parameters for each of the domains. The accuracy shows that there is relevant

information that allows for correct prediction in more than half of the cases. Potentially better

results can be achieved when applying larger and more sophisticated models. The methodology

allows the inclusion of a big set of variables for prediction and the exploration which of those

offer the most relevant information via explainable AI methods. While physics-based evaluation

of the variables potentially important for the prediction has to be done before the training, only by

analysing the contribution of the variables will we know which information is used by the trained

model for the correct prediction.

Q1.2: What are the relevant variables for drought prediction in Lisbon? What are the relevant

variables for drought prediction in Munich?

Paper I provides an analysis of the variables most important for correct prediction. For the Lisbon

domain, we find only variables one month before the event in the top five predictors. Sea level

pressure (psl), surface air pressure (ps), and NAO are the top three relevant variables with the

highest contribution, therefore showing the strong influence of the atmospheric pressure system
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on drought formation in Lisbon. The first two relate to local conditions, while NAO refers to the

general state of the atmosphere over the Atlantic Ocean and Europe. The next two variables for

the Lisbon domain with the strongest contribution to the prediction are northward near-surface

wind (vas) and evaporation (evspsbl). In the city, northern wind prevails; therefore, the variable

vas is closely connected to the presence of wind in general (Alcoforado et al., 2006). As the

whole Iberian Peninsula is a moisture-limited system, the presence of the wind is connected to the

presence of convective clouds that are built in other areas and can discharge over Lisbon. evspsbl

has a very direct influence on the formation of drought given that if evaporation is getting lower,

the probability of formation of rain clouds also decreases (Sheffield and Wood, 2011).

For the Munich domain, the highest contribution is found for the following variables: NAO1, psl1,

EAWR5, ps1 and SCA5. While NAO, psl and ps refer to the atmospheric pressure, similar to Lis-

bon, it is particularly interesting that there is an influence on drought formation five months before

the event from teleconnections indices EAWR and SCA. The study finds that EAWR and SCA five

months before the event have the most influence on the prediction of droughts happening in spring

and summer, therefore referring to atmospheric conditions in winter. Both patterns indicate anti-

cyclonic conditions over Central Europe. This can be confirmed by Träger-Chatterjee et al., who

found that low precipitation amounts and high solar radiation in previous late winter and spring are

connected to dry and hot summers in Central Europe.

Q1.3: What role does seasonality play in the prediction? Are there particular seasons where

droughts are better predictable?

For the Munich domain, better drought predictability is given for spring, fall and summer months,

while the classifier shows lower Precision and Recall in winter. In contrast, for the Lisbon domain,

the lowest predictability is found in summer. For Lisbon, higher overall accuracy, precision and

recall are given compared to Munich.

Paper II: Heatwave patterns and soil moisture influence

Q2.1: How can we identify typical patterns of heatwaves in Europe with the help of machine-

learning-powered clustering?

In Paper II, nine dominant patterns of heatwaves in Europe are found: Iberian Peninsula (IP), West-
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ern Europe 1 and 2 (WE1 and WE2), Britain and Ireland(BI), South-Eastern Europe (SEE), Greece

and South Italy (GSI), Scandinavia (SCA), Central-Eastern Europe (CEE) and North-Eastern Eu-

rope (NEE). Those patterns correspond well with those gained from observational data and when

compared to previous studies and historical extreme heatwave events. Hierarchical agglomerative

clustering in combination with cosine similarity has proven to be a useful technique for clustering.

As some of the events in the dataset have rare spatial features, a majority cluster filtering was intro-

duced that excluded events dissimilar to other data. The excluded events constitute < 0.1% of the

data.

Q2.2: How does a soil moisture deficit in spring influence the occurrence of a heatwave in summer

in the identified regions?

The study identifies a significant relationship between a soil moisture deficit and precipitation

deficit in the preceding winter/spring (JFMA) and the number of heatwave days in summer in

Southern Europe (GSI, SEE, IP, WE2). Southern Europe is a moisture-limited region. Multi-

tude of positive feedbacks like reduced formation of convective clouds and increased solar radia-

tion contribute to maintaining the drought in those regions and amplifying the coupling between

drought and heat, which is transferred to the following season (Quesada et al., 2012). This finding

is confirmed by previous studies that outlined the governing role of spring soil moisture over the

Mediterranean on the heatwave formation in summer (Zampieri et al., 2009).

Q2.3: What is the influence of a heatwave in summer on the soil moisture deficit in the following

fall for each of the identified regions?

The analysis of soil moisture anomalies in the following season (OND) shows a significant nega-

tive relationship for SCA, SEE and NEE. This indicates that long heatwaves in summer lead to a

substantial soil moisture deficit preserved until the following season in those regions. SCA, NEE

and SEE in part are energy-limited evaporation regimes showing a higher overall variability of soil

moisture. Therefore, the study shows that a soil moisture deficit that builds up in summer takes

longer to return to normal levels in the following spring. This finding is new to our knowledge.
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Paper III: Compound hot and dry events

Q3.1: How can we identify typical patterns of compound hot and dry events in Europe with the

help of machine-learning-powered clustering? What are the most extreme historical compound hot

and dry events in those regions?

Publication III highlights the significant implications of future climate conditions on compound

hot and dry events in Europe. In Paper III, we show that the clustering methodology from Paper II

is applicable to compound hot and dry events. We find nine typical patterns of compound hot and

dry events in Europe: South-West Europe (SWE), Central Mediterranean (CMD), Balkan Peninsula

(BP), Atlantic Coast (AC), Central Europe (CE), Eastern Europe (EE), North and Baltic Sea (NBS),

North-East Europe (NEE) and North Scandinavia (NSC). The probability is defined in bivariate

terms via copulas and the Survival Kendall probability definition. We identify 2003 as the most

extreme compound hot and dry summer on the European scale and in the following regions: SWE,

CMD, AC and CE. 2012 is the hottest summer for BP, 2015 for EE, 2018 for NBS, 2006 for NEE

and 2002 for NSC.

Q3.2: How will the probability of historical compound hot and dry events change under the influ-

ence of climate change under two possible scenarios of GWL2 and GWL3?

The study results show that the most extreme historical events will become more frequent features

of the European climate under both scenarios - GWL2 and GWL3. For some events, the probability

of occurrence rises 5-6 times from GWL2 to GWL3 and up to 46% under GWL3, translating into

almost every second summer. This underlines the importance of sticking to the +2 degrees policy in

regulation. Especially past events of 2002, 2003, and 2018 with an initial extremity in temperature

are projected to become immensely more frequent, with probabilities of up to 46%, as in the case

of 2003 for Central Mediterranean for GWL3.

Q3.3: How will the climatology of compound hot and dry events change under future climate?

Publication III performs an analysis of the changes in the climatology of compound hot and dry

events by comparing the current climate to the future climate of hot and dry events under GWL3.

The study shows a northward shift in the climatology of hot and dry events under GWL3: the hot

and dry climate currently observed in the Balkan Peninsula is expected to extend into substantial

parts of Eastern Europe. The study also shows that the moist and cold regions in the Alps are
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shrinking under future climate and that the Baltic Sea and Scandinavia will experience the hot and

dry events climate now present in Eastern Europe.

Overarching research question

Can machine learning approaches facilitate the research on prediction and interrelation of heat-

waves and droughts in Europe?

If yes, what can we learn from it about the physical nature of the events and the expected changes

in the future?

This thesis illustrates throughout the three publications that machine learning is a helpful tool in

the investigation of heatwaves and droughts in Europe. Publication I demonstrates a framework

for machine-learning-powered drought prediction for two locations: Munich and Lisbon. Better

prediction accuracy is achieved for the Lisbon domain, which can be an indication of better overall

predictability in Lisbon. From the trained models, we then learn that global (NAO) and local air

pressure variables (ps, psl) one month before the event provide skill to the model in both domains.

Additionally, in Lisbon northward near-surface wind (vas) one month before the event, in Munich

SCA and EAWR five months before the event, are variables important for the prediction.

Papers II and III show that clustering, an unsupervised machine learning approach, can be a helpful

tool for a meaningful dimensionality reduction of spatial events. The research identifies nine typical

patterns of heatwaves in Europe and nine typical patterns of compound heatwaves and drought in

Europe. Paper II uses those patterns to investigate the interrelation of heatwaves with a soil moisture

deficit in those regions in the previous spring and the following fall. Paper III uses the identified

patterns to study the probability of occurrence of most extreme past compound hot and dry events.

The research shows an immense increase in the probability of future compound hot and dry events.

In many cases, there is a doubling in event probabilities derived for GWL2 to GWL3.

Machine Learning approaches are especially useful when, as in our case, working with a large

dataset of events provided by a SMILE.

This thesis has shown that machine learning and artificial intelligence approaches have huge po-

tential in investigating drivers of extremes with the application on heatwaves and droughts solely,

as well as on compounding events. Other studies confirmed the potential of machine learning for
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enhanced understanding of drivers of other hydro-meteorological extreme events like freezing rain

(Mittermeier et al., 2022), floods (Mosavi et al., 2018), as well as demonstrated the usability of

machine learning for applications on prediction of impacts like crop yield (Schmidt and Felsche,

2024).

Much of the future potential in climate research lies in artificial intelligence approaches that can

enhance the climate models and offer valuable analysis tools for observational and model data

investigation. The key to a successful application lies in integrating domain knowledge and me-

teorological knowledge into the machine learning model. As machine learning is a black-box

method, the key challenge lies in the interpretation of the results. Explainable and interpretable

AI approaches applied in this thesis allow for understanding the results and learning about the

investigated events.
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