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Zusammenfassung

Zelluläre Krafterzeugung und Migration sind essentiell für Embryogenese, das
Immunsystem, Wundheilung und Krebs. In all diesen Fällen interagieren Zellen
mit einer komplexen Umgebung, welche ihr Verhalten beeinflusst. Um das
Verhalten von Zellen im physiologischen Kontext zu verstehen ist es dem-
entsprechend notwendig die physikalische Umgebung in experimentellen und
theoretischen Ansätzen zu berücksichtigen. Obwohl die molekularen Kompo-
nenten der zellulären Krafterzeugung und Migration gut charakterisiert sind,
fehlt nach wie vor ein theoretischer Ansatz der die Brücke zwischen moleku-
laren Komponenten und emergenten zellulären Verhalten schlagen kann. Dies
gilt insbesondere für Migration in komplexen, einengenden Umgebungen.

In früheren Arbeiten wurden effektive Modelle für Zellmigration auf zweidi-
mensionalen Substraten sowie Kontinuummodelle für biologische Kontraktilität
etabliert. In dieser Arbeit, verbinden wir solche effektiven Modelle mit den
molekularen Eigenschaften der zugrundeliegenden Komponenten. Dafür ana-
lysieren wir biologische Krafterzeugung und Migration in experimentellen Sys-
temen mit besonderem Fokus auf der Rolle der physikalischen Umgebung. In
Kapitel 2 analysieren wir die dynamische Krafterzeugung von rekonstituierten
Biopolymernetzwerken, welche aus Komponenten des zellulären Krafterzeu-
gungsapparates bestehen. Hierbei untersuchen wir, wie solche Netzwerke elastis-
che Strukturen mit unterschiedlichen mechanischen Eigenschaften verformen,
um den Zusammenhang zwischen Kontraktionsverhalten und den Eigenschaften
des Substrates zu verstehen. Darauf aufbauend entwickeln wir in Kapitel 3 ein
allgemeines Modell für Zellmigration auf strukturierten und beschränkenden
zweidimensionalen Oberflächen, welches wir systematisch vereinfachen um es
mit früher entwickelten, effektiven Modellen für die Migration auf solchen
Substraten zu verknüpfen. Dadurch erhalten wir ein tieferes Verständnis für
die dem beobachteten Migrationsverhalten zugrundeliegenden Mechanismen.
Zuletzt wenden wir dieses Vorgehen in Kapitel 4 auf Migration in dreidimen-
sionalen Umgebungen an. Hierbei spielt die komplexe Interaktion zwischen
den Verformungen des Zellkerns und dem zellulären Migrationsapparat eine
entscheidende Rolle für das emergente Migrationsverhalten.

Zusammenfassend verdeutlicht unsere Arbeit das Potential der Kombina-
tion von mikroskopischen und effektiven, makroskopischen Beschreibungen für
die Untersuchung emergenten Verhaltens komplexer biologischer Systeme.
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Summary

Cellular force generation and motility are key to embryonic development, the
immune system, wound healing, and cancer. In all these examples, cells migrate
and generate forces within a complex mechanical microenvironment, with which
they interact and which shapes their behavior. Thus, in order to understand
cellular behavior in physiological conditions, it is key to incorporate the physical
environment into experimental studies and and theoretical models. While the
molecular components driving cellular force generation and migration are well
characterized, a theoretical approach that is able to bridge the gap between
molecular components and the emergent cellular behavior is still lacking. This
applies in particular to migration in complex, confining physical environments.

Previous work established effective models for migration of cells on two-
dimensional (confining) substrates as well as continuum models for biological
contractility. In this thesis, we take a step towards connecting these effective
models to the molecular properties of the underlying components. For this,
we study biological force generation and cell migration in experimental sys-
tems which emphasize the role of the physical environment. In Chapter 2,
we analyze the dynamic force generation of reconstituted biopolymer networks
that consist of molecular components of the cellular force generation machin-
ery. Here, we study how such networks deform compliant structures with dif-
ferent mechanical properties to understand the interplay between contraction
behavior and the properties of the deformed substrate. We then build up on
our understanding of the molecular components of the cellular cytoskeleton
in Chapter 3 by developing a general model for migration on structured and
confining two-dimensional surfaces that we systematically coarse-grain to con-
nect it to previously found effective models for the migration behavior on such
substrates. This yields new insights into the mechanistic origin of the observed
migration behavior and results in efficient theoretical description that can be
easily generalized to new migration scenarios. Finally, we apply this approach
to the case of migration in three-dimensional confinement in Chapter 4, where
we find that complex interplay between nuclear deformations and the cellular
migration machinery are key to understand the emergent migration behavior.

Overall, our work highlights the power of combining microscopic models
with effective, coarse-grained models to understand the emergent behavior of
complex biological systems.
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Preface

The cellular cytoskeleton, a complex network of polymer filaments and regu-
latory proteins, is an integral part of all life forms as it gives cells their shape
and mechanical stability (Fletcher et al., 2010). Apart from being a passive
support structure, the cytoskeleton is also involved in a number of important
active processes, in particular in eukaryotic cells. A special focus lies here on
its force generation abilities, which allows cells to exert forces onto its microen-
vironment. This is essential for a number of biological processes: Stem cells
probe the mechanical properties of their environment through traction forces,
which ultimately controls their lineage specification (Engler, Sen, et al., 2006).
In tissue, contraction forces allow for a communication between cells (Char-
ras and Yap, 2018). Finally, expansion and contraction of the cell body allow
for eukaryotic cell migration (Danuser et al., 2013). In this context, cellular
force generation is mainly driven by filamentous actin, which is part of the cy-
toskeletal network together with microtubuli and intermediate filaments (Wen
et al., 2011). Both contractile and expansive force generation relies on the
consumption of chemical energy in the form of ATP: Contractile forces are
generated by bipolar molecular motors, which convert chemical energy into
movement along filaments and thus induce relative sliding motion between fil-
aments when bound to two different actin polymers (M. Murrell et al., 2015).
Expansive forces are driven by actin polymerization, which also relies on a con-
version of ATP to ADP (Mogilner, 2006). This energy consumption drives the
cellular cytoskeleton out of equilibrium, which results in rich and sometimes
counter-intuitive behavior that cannot be understood in terms of classical, equi-
librium physics (Banerjee et al., 2020). This makes the cellular cytoskeleton in
general and the force generating actin cytoskeleton in particular a fascinating
material to study.

Besides the interest in the actin cytoskeleton from a physical or material
scientific perspective, it also is a key component in many, previously men-
tioned biological processes. Here, cell migration stands out due to its wide
range of applications. Cell migration is essential for embryonic development,
where cells need to actively migrate to the correct region in the embryo to
allow for the formation of specialized organs and body parts (Franz et al.,
2002). Further, even in adult organisms, active cell migration is essential for
wound healing (Falanga, 2005) and the immune system, where immune cells
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need to migrate fast over large distances in the body to allow for an adequate
immune response (Luster et al., 2005). Cell migration can however also be
deadly for an organism when cancer cells transition to a migratory phenotype
and invade the surrounding tissue (Clark et al., 2015). This leads to the for-
mation of cancer metastasis, which is responsible for 90% of all cancer related
deaths (Chaffer et al., 2011). Thus understanding and predicting cellular mi-
gration behavior could be key to develop better treatment strategies. Here,
it is especially important to acknowledge the complex environment through
which cells migrate in the body that involves chemical and mechanical gradi-
ents in a complex network of narrow confinements through which cells have to
navigate. In biology, traditionally a large focus was put on chemical cues that
direct cell migration either in the form of chemoattractants or chemorepellents,
which play a role in the immune system or cancer (Petri et al., 2018; Roussos
et al., 2011). More recently however, also the role of the physical environment
was acknowledged. In particular due to the coupling between the cytoskeleton
and the environment, which gives rise to interesting, stiffness-dependent cellu-
lar force generation (Trichet et al., 2012) and directed migration behavior on
substrates of differential stiffness (DuChez et al., 2019; C.-M. Lo et al., 2000).
Apart from the mechanical properties of the environment, also its geometry can
have a strong impact on the observed migration behavior: Cells were found to
have a tendency to move and accelerate in narrow confinements in 2D and
3D (Brückner, Fink, Schreiber, et al., 2019; Pathak et al., 2012) and directed
confining geometries can gives rise to directed migration (Caballero, Comelles,
et al., 2015). This is particularly relevant in the physiological context, where
cells are usually strongly confined. In such 3D environments, an additional
component comes into play: the cellular nucleus, which, by itself, is a complex
active material with interesting mechanical properties. To successfully migrate
through 3D tissue, cells need to translocate and deform the nucleus with their
cytoskeleton (Friedl, Wolf, et al., 2011). Nuclear deformations can strongly
influence cellular behavior through changes in gene transcription (Hsia et al.,
2022), DNA damage (Irianto et al., 2017; Raab, Gentili, et al., 2016), or Cal-
cium signaling (Lomakin et al., 2020; Venturini et al., 2020). This gives rise
to an interesting feedback between the cellular environment, the cytoskeleton
and the nucleus that ultimately determines cellular migration behavior.

Due to the active nature of cytoskeletal force generation and cell migration,
equilibrium physical theories cannot be applied to analyze these processes. This
raises the question how two approach such systems from a theoretical point of
view. There, two distinct schools of thought developed over time (Brückner
and Broedersz, 2023): One tries to model the biological system by building
a model for the underlying molecular components and their interactions from
the bottom-up to then simulate these models and study their behavior. The
other approach is more agnostic and tries to capture the emergent behavior
on a more mesoscopic or macroscopic scale through an effective description.
Which approach is more suited often depends on the system of interest. If a
lot is known about the underlying molecular components and their interactions,
bottom-up models can be well suited and allow for a detailed understanding
of the system (Danuser et al., 2013). In contrast, if less is known about the
underlying processes, more agnostic, top-down approaches can prove valuable.
To constrain those, it is however often beneficial to have large amounts of ex-
perimental data, which can be used to systematically infer an effective physical
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description (Brückner, Ronceray, et al., 2020; Selmeczi, Li, et al., 2008). This
is in a sense analogous to the use of thermodynamics and statistical physics
in equilibrium physics, where statistical physics can give valuable insights into
complex systems, where the underlying physical laws are well understood, while
thermodynamics proves useful to explore systems for which such an underlying
physical theory is lacking, such as in the case of black holes (Carlip, 2014).
In the context of biological physics, both approaches face additional difficul-
ties (Brückner and Broedersz, 2023): The underlying molecular processes are
often times so complex that deciding on the right level of complexity and what
aspects of the system to include into the theoretical description can present a
major challenge and models quickly become so complex that they are hard to
constrain from experimental data. Data-driven approaches on the other hand
are bound to the experimental system for which they were constrained and can-
not be easily generalized to other scenarios due to the lack of understanding of
the underlying mechanisms (Brückner, Fink, Schreiber, et al., 2019). This is
in particular a problem in the context of a reductionist approach often taken
by physicists: By decomposing a complex system into simpler subsystems, one
tries to first understand the behavior of these subsystems before combining
them again to explain the emergent behavior of the total system. If the physi-
cal description of a process is however only inferred for a specific subsystem, it
is not straightforward to systematically increase the complexity of the system
again without having to constrain a completely new model again. A promising
avenue to overcome these limitations might however be to combine these two
approaches in a way that data-driven models allow for a characterization the
emergent behavior of the system and can act as a well-defined targets for simpli-
fying and coarse-graining bottom-up models without relying on uncontrolled
approximations and assumptions. Exploring the potential of this combined
approach will be one of the main themes of this thesis.

We approach to combine bottom-up and top-down approaches in this the-
sis by starting out in Chapter 2 with a relatively simple and well understood
experimental system: reconstituted actomyosin networks. There we study con-
tractile actomyosin gels that are coupled to a mechanical environment to ex-
plore the mechanosensitivity of actomyosin force generation. Interestingly, even
though some sensitivity of the contraction dynamics on the substrate stiffness
can be observed, the observed mechanosensitivity is clearly distinct from the
mechanosensitive force generation of cells, which involve additional components
such as focal adhesions (C.-M. Lo et al., 2000). Then we build up on our mech-
anistic understanding of the actin cytoskeleton that we developed in Chapter 2
to derive a general mechanistic model for cell migration on structured 2D sur-
faces in Chapter 3. We show that this model can be connected to previously
constrained data-driven models from which we obtain valuable insights into
the molecular processes underlying the emergent migration behavior. Beyond
that we demonstrate that our model can easily be generalized to different ex-
perimental systems, that it can be used to characterize differences between cell
lines, and that it can quantitatively predict the effect of changes in the experi-
mental conditions, such as the surface coating. Finally, in Chapter 4 we apply
this combined approach to a new experimental system, where neither bottom-
up nor top-down models have been developed so far: mesenchymal migration
through narrow 3D confinement. There, we infer an effective description of
the cellular migration behavior, which shows features that are clearly distinct
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to migration on 2D confining surfaces. In particular, through analysis of the
nuclear deformations, we find that cells transition from a pushing dominated
to a pulling dominated migration mode as confinement increases. We propose
a mechanistic model that can explain these differences between 2D and 3D mi-
gration by accounting for the effect of physical confinement and in particular
nuclear deformations on the cytoskeletal force generation.



2

Actomyosin force generation in compliant
environments

Actin-myosin networks play a crucial role in eukaryotic cell migration and cel-
lular force generation (Bausch et al., 2006; Kasza et al., 2007). Within cells,
actomyosin interacts with a number of other cellular components, including
the nucleus, the cell membrane, polarity cues, focal adhesions, and other poly-
meric networks that are part of the cellular cytoskeleton (Fletcher et al., 2010;
Iden et al., 2008). As such, it is often difficult to contribute cellular behavior
to the biophysical properties of specific cellular components, such as the acto-
myosin system, making it challenging to obtain a mechanistic understanding
of the cellular force production and migration machinery from observing the
emergent cellular behavior. To address this, a reductionist approach is com-
monly adopted by studying individual cellular components in isolation to learn
about their biophysical properties (Bausch et al., 2006). From this, one then
tries to gradually build-up towards cellular complexity by combining different
components and studying their interactions in order to arrive at a mechanistic
understanding of the emergent cellular behavior.

Following this approach, a number of experimental assays were developed
to study the contraction behavior of isolated and reconstituted actomyosin
networks with varying levels of complexity (see Section 2.2). These assays
commonly ignore however a key aspect of actomyosin-driven force generation
in the context of cell migration: the coupling to a compliant environment.
This is particularly important, since it is well documented that the mechanical
properties of the substrate crucially affect cellular force generation (Engler,
Carag-Krieger, et al., 2008; Ghibaudo et al., 2008; Tan et al., 2003; Trichet
et al., 2012), spreading and migration behavior (Han et al., 2012; C.-M. Lo
et al., 2000), and even stem cell differentiation (Engler, Sen, et al., 2006). In
particular, cells were found to generate stiffness-dependent traction forces with
higher forces being generated on stiffer substrates, which resulted in robust,
stiffness-independent substrate deformations (Trichet et al., 2012). Based on
this observation it was proposed that the mechanosensitive force generation
could give rise to the previously observed tendency of cells to migrate towards
stiffer substrates (C.-M. Lo et al., 2000).

Different models were proposed to explain this stiffness-dependent force
generation. While some of these models rely on complex feedback mechanisms
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ENVIRONMENTS

between adhesion formation and substrate stiffness (Elosegui-Artola, Trepat, et
al., 2018; Trichet et al., 2012), others simply describe cellular force generation
in terms of a contractile, visco-elastic unit (Marcq et al., 2011). This raises
the question to what extend this remarkable feature of mechanosensitive force
generation is an emergent property of the cellular force generation machinery
or if it is simply an inherent property of contractile actomyosin networks.

We address this question in this chapter by analyzing the contraction behav-
ior of reconstituted actomyosin networks that are coupled to soft, deformable
structures with well-defined mechanical properties that can be used as force
and velocity sensors. Interestingly, we find that the contractile force is stiffness-
independent, while the contraction velocity strongly depends on the stiffness of
the surrounding structure. From this data, we constrain an active fluid model
for contractile actomyosin networks that are coupled to elastic substrates. We
find that in order to explain both the observed contraction dynamics as well
as the resulting steady state force, the catch-slip behavior of myosin motors is
key. These results suggest that while actomyosin contractility displays some
degree of intrinsic mechanosensitivity, the observed stiffness-dependent force
generation in cells cannot be explained in terms of actomyosin contractility
alone and likely requires the interaction with additional cellular components,
such as mechanosensitive focal adhesions.

2.1 The biophysics of contractile actomyosin networks

We start by reviewing the biophysics of the individual components of acto-
myosin networks and discuss how the interactions between them give rise to a
global contractile behavior of the network. Actin networks within cells contain
a myriad of additional proteins that structure the network, such as crosslinkers
or capping and branching proteins (Chugh and Paluch, 2018). In contrast, ba-
sic reconstituted contractile actomyosin networks only require two components:
the biopolymer actin and the molecular motor myosin (Alvarado et al., 2015;
Thoresen et al., 2011). Apart from those two components, other proteins such
as actin crosslinker can be added to stabilize the actin network and to closer
resemble the networks found within cells.

Actin filaments and the semi-flexible wormlike chain

Actin filaments are a key component of the cellular cytoskeleton and as such
are crucial for cellular force generation and migration (Danuser et al., 2013).
Thus, their structure, dynamics, and mechanical properties are not only rel-
evant for this chapter, but play a central role throughout the entirety of this
thesis. Filamentous actin forms through polymerization of monomeric actin
into a helix like structure (Dominguez et al., 2011) (Fig. 2.1). Notably, actin
monomers are asymmetric and within a filament all monomers are oriented in
the same direction. The resulting directionality of actin filaments allows us to
distinguish between the two ends of an actin filament, which are denoted as
barbed (+) and pointed (−) ends. During filament growth, monomers are pre-
dominantly included at the barbed end, while disassembly of actin monomers
happens predominantly at the pointed end (Neuhaus et al., 1983). Apart from
this, the directionality of actin plays a crucial role when it comes to the inter-
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action with motor proteins as we will discuss later in the context of actomyosin
contractility.

Figure 2.1: Schematic illustration of the directed helix structure of
actin filaments. New monomers predominantly assemble at the barbed and
disassemble at the pointed end.

The key to understanding the ubiquitous involvement of actin in biological
force generation, ranging from cellular traction forces to muscle contractions,
are the mechanical properties of actin filaments: Compared to other polymers,
filamentous actin (F-actin) is of intermediate stiffness (Wen et al., 2011). It is
significantly stiffer than soft polymers such as DNA or synthetic polymers like
polystyrene but still soft enough to be subject to thermal fluctuations on the
length scale of a cell. This makes it softer than e.g. microtubuli, which are
so stiff that they appear as straight filaments on cellular scales. The behavior
of such semiflexible filaments subject to external forces can be understood in
terms of the Wormlike Chain (WLC) Model, which we briefly summarize in
the following.

In the WLC model, a polymer of contour length ` is characterized by its
bending energy Hb (Broedersz and MacKintosh, 2014). In 2D, this bending
energy can be simply written as

Hb =
κ

2

∫ `−∆`

0

dx

(
∂2u

∂x2

)2

, (2.1)

where κ is the bending modulus of the filament, `−∆` is the projected length of
the polymer, and u(x) denotes the deviation from a perfectly straight polymer
(x denotes the position along a straight polymer of length `). Note that the
expression in Eq. (2.1) depends on the assumption that there are no overhangs
in the contour of the filament and thus that the deviations from a perfectly
straight polymer are relatively small. This assumption restricts the application
of Eq. (2.1) to the case of stiff and semiflexible polymers. To derive a force
extension relation, we consider an axial force F that is applied at the end of the
filament. In that case, the total Hamiltonian reads (Broedersz and MacKintosh,
2014)

H = Hb + F∆` ≈
∫ `

0

ds

[
κ

2

(
∂2u

∂x2

)2

+
F

2

(
∂u

∂x

)2
]
. (2.2)

In Fourier space (u(x) =
∑
q uq sin(qx)), Eq. (2.2) can then be written as

H =
`

4

∑
q

(κq4 + Fq2)u2
q. (2.3)
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At thermal equilibrium, we get from the equipartition theorem that (Broedersz
and MacKintosh, 2014)

〈|uq|2〉f =
2kBT

`(κq4 + Fq2)
(2.4)

and thus the average value of ∆` in the presence of an axial force F is given by

〈∆L〉F = kBT
∑
q

1

κq2 + F
, (2.5)

where the additional factor of 2 accounts for the fact that there are two iden-
tical, but independent transverse degrees of freedom in 3D. The average ex-
tension δ` of a WLC subject to thermal fluctutations due to the application of
an axial force F is then to leading order given by (Broedersz and MacKintosh,
2014)

δ` = 〈∆`〉0 − 〈∆`〉F ≈
kBT`

4

90κ2
F. (2.6)

We thus find to leading order a linear relation between the applied force F and
the extension of the polymer δ`. Solving Eq. (2.6) for the force F then gives
us an expression for the effective spring constant k of a semiflexible polymer
as k = 90κ2/(kBT`

4).
However, if the axial force F is large enough, higher-order terms in Eq. (2.5)

will contribute, leading to a non-linear force-extension relation. This is par-
ticularly relevant in the case of compression due the buckling instability of
compressed rods (Landau et al., 1986a). This instability arises from the struc-
ture of the Hamiltonian (Eq. (2.3)): For positive values of F (extensile forces),
κq4 + Fq2 is strictly positive, such that H is always minimized by a perfectly
straight polymer (uq = 0 for all q). Under compressive loads however, κq4+Fq2

can take negative values, resulting in an instability with respect to transverse
deflections (buckling). This is the case if the compressive force exceeds the
threshold −F > κq2. Together with the smallest possible value of q = π/`,
this gives us the buckling force (Broedersz and MacKintosh, 2014)

Fb = κ
(π
`

)2

. (2.7)

Actin filaments that are exposed to compressive loads beyond this critical force,
will buckle and to good approximation not withstand any further compression
(k ≈ 0 for F > Fb).

So far we have only considered the response to static external forces. How-
ever, to understand the physical properties of bulk actin networks, it is key to
also consider the dynamic properties of single actin filaments. For that we con-
sider the dynamics of u(x, t) that are given by the Langevin equation (Broedersz
and MacKintosh, 2014; Gittes et al., 1998)

ζ
∂u(x, t)

∂t
= −δH

δu
+ ξ(t) = −κ∂

4u(x, t)

∂x4
+ ξ(t), (2.8)

where ξ(t) denotes Brownian white noise. In the absence of external forces
(F = 0), Eqs. (2.8) and (2.4) give us

〈uq(t)〉 =

√
2kBT

`κq4
e−ω(q)t, (2.9)
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with ω(q) = κq4/ζ and t > 0 and thus (Gittes et al., 1998)

〈uq(t)uq(0)〉 =
2kBT

`κq4
e−ω(q)|t|. (2.10)

Physically, the expression in Eq. (2.9) impies that bending modes dissipate on
a wavelength dependent timescale. As a consequence, when probed at hight
frequencies, the filament appears stiffer. Indeed, Eq. (2.10) can be used to
derive an expression for the frequency dependent (complex) spring constant of
a semiflexible polymer, which asymtotically approaches the value of k for static
forces obtained from Eq. (2.6) at low frequencies (Gittes et al., 1998; Granek,
1997).

Viscoelastic properties of actin networks

At high enough concentrations in solution, actin filaments interact with each
other to form connected networks either through entanglement or through the
addition of specific, crosslinking proteins (Broedersz and MacKintosh, 2014).
The cellular cortex, which is essential for the cellular mechanical stability and
contractility consists of exactly such a disordered actin network that is located
underneath the cell membrane in metazoan cells (Chugh and Paluch, 2018). To
motivate our model for such actin networks, we briefly discuss how the mechan-
ical properties of individual filaments result in the emergent bulk rheological
properties of entangled and crosslinked actin networks.

For that, we start by considering the minimal case of an entangled actin
network that is immersed in a liquid solvent forming an actin gel. In that
case, there will be two contributions to the bulk rheological properties: the
actin filaments and the solvent. This can be summarized in the mathematical
expression for the emergent complex modulus of the gel (Gittes et al., 1998)

G∗(ω) =
ρle
αω
− iωη, (2.11)

where ρ denotes the average actin density in the gel, le is the average free fila-
ment length between two points of entanglement, η is the viscosity of the sol-
vent, ω is the frequency at which the gel is getting sheared, and α−1

ω denotes the
frequency dependent stiffness of an individual actin filament discussed above.

At low frequencies, the complex single filament spring constant approaches
a real value (Eq. (2.6)). Thus, the only viscous contribution to the complex
modulus is from the solvent (Gittes et al., 1998). Depending on the degree of
crosslinking, the contribution of the network to the complex modulus is then
expected to be either that of an elastic solid or, below a critical connectivity
threshold, vanish completely due to a lack of mechanical stability (Broedersz,
Mao, et al., 2011). At higher frequencies, the imaginary part of αω becomes
relevant, resulting in a viscoelastic behavior of the network itself in addition
to the viscous contribution of the solvent (Gittes et al., 1998). Indeed, the
predicted scaling of both the real and imaginary part of the complex modulus
with frequency agree well with experimental data (Koenderink, Atakhorrami,
et al., 2006). Thus, overall actin gels display a complex, frequency-dependent
viscoelastic behavior. On long timescales however, they will either resemble an
elastic solid or a viscous fluid, depending on the degree of crosslinking (Koen-
derink, Atakhorrami, et al., 2006). These emergent viscoelastic properties of
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actin networks inspired a number of coarse-grained continuum models for the
behavior of actin gels, ranging from elastic (Ronceray and Lenz, 2015) and
viscoelastic solids (Kruse et al., 2005) to viscous fluids (Joanny and Prost,
2009).

Myosin motors and the parallel cluster model

Apart from the mechanical properties of actin filaments and networks, their
interactions with members of the motor protein family of myosins make them
a key component of the cellular cytoskeleton (Sellers, 2000). In particular
myosin II plays an important role for cell migration and contractile force gen-
eration (Aguilar-Cuenca et al., 2014). The collectively generated forces can
range from single cell traction forces on the scale of Nanonewtons (Trichet et
al., 2012) up to skeletal muscle contractions on the scale of Kilonewtons. In the
context of this chapter we focus exclusively on myosin II and use the general
term myosin interchangeably with myosin II.

Figure 2.2: Schematic illustration of myosin filaments and their in-
teractions with actin. A. Individual myosin proteins assemble into large,
bipolar clusters to form myosin filaments. B. Myosin heads interact with actin
filaments according to the six-step myosin cycle. A = actin, M = myosin, D
= ADP, T = ATP and P = phosphate. C. This complex cycle can be sim-
plified to two states (bound and unbound) with a constant on-rate kon and a
load-dependent off-rate koff(Fh), where Fh denotes the force per myosin head.
D. Catch-slip behavior of the actin-myosin bond. The bond lifetime initially
increases with load (catch) before it decreases at high loads (slip). E. Distri-
bution of the total load over bound myosin heads in the parallel cluster model.
All bound heads are assumed to share the total load FM equally.
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This astonishing ability arises from a combination of the structure of myosin
filaments and the force-sensitive binding and unbinding kinetics of individual
myosin heads. Individual myosin II proteins consist of a head domain which
can bind to actin filaments and a tail domain that can bind to other myosin
tails forming a characteristic bipolar filament structure (Fig. 2.2A) (Sellers,
2000). For skeletal muscle myosin II, these filaments can consists of hundreds
of individual proteins, while non-muscle myosin II filaments typically consist
of about 20 heads per side (Skubiszak et al., 2002; Thoresen et al., 2013;
Tyska et al., 1999). In the presence of ATP, the interaction between myosin
heads and actin filaments follow a six-step cycle (Fig. 2.2B) (Howard, 2005a).
This involves ATP-dependent binding, a conformational change upon ATP
hydrolysis, as well as unbinding upon ADP release. The conformational change
adapts the angle between the head and tail domain (Fig. 2.2C) resulting in a so-
called working stroke that dislocates the backbone (tail regions) of the myosin
cluster towards the barbed end of the actin filament (Howard, 2005a). If only
one side of a bipolar myosin filament (Fig. 2.2A) interacts with an actin filament
or if both sides interact with parallel actin filaments, the large number of heads
contained in a myosin filament allows them to move processively towards the
barbed ends of the actin filaments even though individual myosin molecules are
not processive (Howard, 2005c). If the two sides of the myosin filament interact
however with two anti-parallel actin filaments, the interaction between actin
and myosin results in relative motion of the two actin filaments.

The velocity with which myosin moves along or displaces actin filaments
and the rate of myosin detachment from actin depend on the load that is
exerted onto the myosin filament (Debold et al., 2005). This is due to the load
dependent unbinding kinetics of individual myosin heads (Fig. 2.2B and C). In
particular, myosin heads forms so-called catch-slip-bonds with actin (Guo et
al., 2006). This means that the bond lifetime initially increases with load before
it decreases at higher loads. We model this by simplifying the complex myosin
binding and unbinding cycle (Fig. 2.2B) to a simple binding and unbinding
cycle (Fig. 2.2C) with a load-independent binding rate and a load-dependent
unbinding rate (Fig. 2.2D). For the load-dependent unbinding rate, we use a
phenomenological expression as a function of the load per head Fh (Guo et al.,
2006)

khead
off (Fh) = kcatch

off (0)e
−Fhxcatch

kBT + kslip
off (0)e

Fhxslip
kBT , (2.12)

where kcatch
off (0) and kslip

off (0) weigh the contributions due to the catch and slip
behavior of the actomyosin bond, and xcatch/kBT and xslip/kBT are character-
istic force scales for the catch and slip behavior, respectively. To understand
how the load-sensitivity of individual heads determines the velocity and at-
tachment time of myosin clusters, we consider a microscopic model of myosin
filaments, the parallel cluster model (Erdmann and Schwarz, 2012).

The parallel cluster model. For that, myosin filaments are modeled as
a cluster of parallel, elastic springs that can bind to actin filaments. These
springs represent individual myosin heads and the total load experienced by the
myosin filament is thus equally shared over all springs that are currently bound
to an actin filament (Fig. 2.2E) (Erdmann, Albert, et al., 2013). The lifetime
of individual bonds is assumed to be independent of the state of neighboring
heads. The dynamics of the number of bound heads is then equivalent to
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a biased, one-dimensional random walk with forward rate khead
on and a load-

dependent backward rate khead
off (Fh). A motor filament unbinds in this model

when the number of bound heads is zero. This allows us to derive the average
unbinding time of a motor filament with initially m bound heads as the mean
first passage time τm,0 of a random walker starting at site m to reach site
0. The average unbinding time of a motor with m bound heads is thus given
by (Erdmann, Albert, et al., 2013)

τm,0(FM ) =

m∑
n=1

Nh∑
i=n

1

ikhead
off (FM/i)

i−1∏
j=n

(Nh − j)khead
on

jkhead
off (FM/j)

. (2.13)

Here, FM denotes the load that a myosin filament experiences in total and Nh
denotes the total number of heads per myosin filament that interact with an
actin filament.

Since we assume that every motor filament experiences the same average
load, we can average over all initial conditions to obtain the average unbinding
time at every point in time. To do so, we use the steady-state probability
distribution psi (FM ), which denotes the probability for a myosin filament under
load FM to be bound with i heads to an actin filament. Since the myosin
heads are stiff compared to the rest of the system (motor elasticity of about
2.5·103 pN/µm (Koenderink, Dogic, et al., 2009) compared to the effective actin
spring constant of about 0.2 pN/µm (Mogilner and Oster, 1996)), this steady
state should be reached fast compared to the other timescales in the system
and this approximation should be justified for our purposes. This steady-state
probability distribution is given by (Erdmann, Albert, et al., 2013)

psi (FM ) =

∏i−1
n=0

(Nh−n)khead
on

(n+1)khead
off (FM/(n+1))

1 +
∑Nh
k=1

∏k−1
j=0

(Nh−j)khead
on

(j+1)khead
off (FM/(j+1))

. (2.14)

We can use Eqs. (2.13) and (2.14) to calculate the load-dependent myosin
filament unbinding rate as

koff(FM ) =

(
Nh∑
m=1

psm(FM )τm,0(FM )

)−1

. (2.15)

From Eqs. (2.13) to (2.15) it becomes apparent that longer lifetimes of the
individual heads under load also translates to longer lifetimes of the motor
filament as a whole, such that myosin filaments also effectively behave as catch-
slip-bonds.

The origin of contractility in actomyosin networks

When myosin motors are added to actin networks, this results in a global con-
traction of the network (M. Murrell et al., 2015). This is curious because of
the disordered nature of actin networks. While within skeletal muscle, actin
filaments are arranged in a highly ordered structure that only allows for con-
tractile force generation (Craig et al., 2004), there is no reason a priori why
contraction should be favored over expansion in disordered actomyosin net-
works (M. Murrell et al., 2015). However, the specific mechanical properties
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of actin as a semi-flexible filament and the binding and unbinding dynamics of
myosin give rise to a number of mechanisms that can break this symmetry and
explain the observed dominance of contractility in actomyosin systems.

Polarity Sorting. The first mechanism we want to discuss is connected to
the unbinding of myosin motors. Myosin II traverses actin filaments towards
their barbed ends. Once it reaches the barbed end it might either fall off im-
mediately or dwell at the barbed end for an extended period of time. If the
motor dwells at the barbed end, this gives rise to a polarity sorting mechanism
that leads to a self-organization of the network that favors contractile config-
urations (Lenz, 2014; Liverpool et al., 2005; Surrey et al., 2001): If a myosin
motor binds to an actin filament it walks towards its barbed end. While walking
along the filament it can bind to a second filament with its other head region.
Once it reaches the end of one filament it remains there for some finite time
(end dwelling). Note that the motor will still walk along the other filament. In
that way, myosin motors cluster the barbed ends of actin filaments together.
This eventually results in the formation of actin asters where the pointed ends
are oriented away from the center of the cluster (Fig. 2.3). The asters them-
selves are not particularly contractile, since dwelling myosin does not apply an
active force onto the actin filaments anymore. However, if two asters overlap
and a myosin motor binds filaments associated with both asters, this results in
a contractile configuration, which can drive global network contractions.

Figure 2.3: Polarity sorting due to myosin dwelling at the barbed end.
If myosin motors stay bound at the barbed end of an actin filament, this leads
to the formation polarity sorted actin asters. Overlapping asters result in a
contractile configuration.

It was long unclear if myosin actually dwells near actin barbed ends and if
such a polarity sorting mechanism actually plays a role in actomyosin con-
tractility (Lenz, 2014). In particular in the context of highly crosslinked
networks such as the cellular cortex, it is also unclear if the described aster
formation can actually take place due to the strong constraints imposed by
the crosslinks. Nonetheless, recent work was able to experimentally confirm
myosin end dwelling and subsequent aster formation in random actomyosin
networks (Wollrab et al., 2018), making this a relevant mechanism at least in
the context for reconstituted actomyosin networks.
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Filament bundling. A second mechanism that favors contraction over ex-
pansion occurs when a myosin motor links two intersecting filaments (Fig. 2.4).
For a myosin motor to be able to crosslink the two filaments it has to bind
near the intersection. Since myosin traverses towards the barbed end of the fil-
aments, it is more likely to find myosin filaments on one side of the intersection
than the other (Lenz, 2014). As a consequence, as the motor migrates further
towards the barbed ends of the filaments, it applies a lateral contractile force
onto the filament, which leads to an increased alignment and bundling of the
filaments as the motor moves further away from the intersection. Other effects
such as the elastic properties of the myosin motor further contribute to an over-
all contractile dipole. Such myosin induced bundling is indeed also observed
experimentally in regions of high contractility in migrating cells (Svitkina et
al., 1997).

Figure 2.4: Lateral contraction due to myosin induced filament
bundling. As myosin motors traverse along two overlapping filaments to-
wards the barbed ends, they generate a lateral force that results in a lateral
contraction of the network and the formation of actin bundles.

Filament plucking. So far, we have focused on geometric arguments and the
myosin binding and traversing behavior. Those arguments are however quite
general and not specific to actin networks. It is however likely that the domi-
nance of contractility that is specific to actin networks arises at least partially
from the mechanical properties of actin filaments. In particular its bending
stiffness, which is low enough such that myosin motors are able to significantly
bend actin filaments. One scenario in which this plays a role arises when a
myosin motor connects two actin filaments that are approximately orthogonal
to each other, such that the motor plucks one of the filaments (Lenz, 2014;
Ronceray, Broedersz, et al., 2019) (Fig. 2.5). In that case, as the myosin motor
traverses towards the barbed end of the actin filaments, it will induce a strong
bending of one of the actin filaments, resulting in an additional contractile
contribution along the direction of that filament.

Filament buckling. The final mechanism that we want to discuss here is
connected to the buckling instability under compressive loads discussed above:
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Figure 2.5: Filament plucking favors contractility. Since actin is a semi-
flexible filament, myosin motors can bend the filaments. On average, this leads
to an overall contractile dipole.

Semiflexible filaments buckle under compressive loads that exceed a certain
threshold (Broedersz and MacKintosh, 2014). This renders them incapable of
transmitting compressive forces through the network that exceed this buckling
threshold.

Figure 2.6: Filament buckling suppresses extensile forces. A. Large
contractile stresses can propagate through the network over long length scales.
B. In contrast the propagation of large extensile stresses is suppressed due to
filament buckling. This leads to an overall dominance of contractile stresses.

Thus, local contractile force dipoles induced by myosin filaments (Fig. 2.6A)
are expected to result in a global contraction of the network (Ronceray, Broed-
ersz, et al., 2016). Strikingly, also local extensile force dipoles (Fig. 2.6A) are
predicted to lead to a global contraction due to the force asymmetric trans-
mission in the network. This mechanism is supported by direct experimental
observations of actin buckling in vitro(M. P. Murrell et al., 2012). Note how-
ever that also this mechanism has limitations in heavily crosslinked networks.
If the network is strongly crosslinked, the buckling threshold increases due to



16
CHAPTER 2. ACTOMYOSIN FORCE GENERATION IN COMPLIANT

ENVIRONMENTS

the short free filament lengths and the forces generated by the myosin motors
might not be large enough to buckle actin filaments.

2.2 Experimental studies of reconstituted actomyosin
networks

To give some context to our work, we review a number of existing experimen-
tal assays used to study actomyosin contractility in vitro together with the
key insights obtained with these assays. The simplest reconstituted system
that emulates the contraction behavior of the cellular cortex, simply consists
of actin filaments and myosin motors (see e.g. Schuppler et al., 2016). As
discussed in the previous section, in the presence of ATP, myosin motors in-
duce a global, isotropic contraction. Interestingly, when myosin motors are
only activated locally, the contraction behavior depends on the geometry of
the contractile region (Schuppler et al., 2016): Isotropic activation patterns,
such as circles, result in isotropic contraction behavior, preserving the original
shape of the pattern. Anisotropic geometries, such as squares, however, lead to
non-affine deformations due to the force balance within the network. Also, the
connectivity of the actin network needs to be high enough to allow for global,
isotropic contractions. This can be controlled through the average actin fila-
ment length through the addition of capping protein (Schuppler et al., 2016)
or through actin crosslinking (Ennomani et al., 2016). At low connectivities,
the network fragments and self organizes into dense actin bundles without sig-
nificant deformations of the outer boundaries of the contractile pattern. At
high connectivities, the network is too stiff to contract, with a contractility
optimum at intermediate connectivities. These observations yield important
insights for the design of contractile actomyosin networks in elastic frames that
we will discuss in the next section.

Instead of forming networks out of individual actin filaments, it is also pos-
sible to assemble actin bundles into a two-dimensional network through the use
of bundling proteins such as Fascin (Ideses et al., 2018). Despite the increased
stiffness of bundles compared to individual actin filaments, these networks still
display an isotropic contraction behavior in two dimensions. Interestingly, the
myosin induced contractility results in three-dimensional folding of the actin
sheet. The contraction dynamics of these networks display an interesting ac-
celeration behavior, which the authors connect to myosin catch-bond behavior.
This interpretation is supported by the fact that a similar acceleration behavior
can be observed in contractile microtubuli networks when the contractions are
driven by the molecular motor dynein, which also displays catch-bond behav-
ior (Foster, Fürthauer, et al., 2015).

Another common experimental assay assembles the actin network close to
a lipid bilayer, mimicking the biological configuration within cells, where the
actin cortex is attached to the cell membrane (Linsmeier et al., 2016; M. P.
Murrell et al., 2012; Vogel et al., 2013). A careful analysis of the change of fila-
ment length during network contraction by M. P. Murrell et al., 2012 revealed a
striking correlation between filament strain and network strain during contrac-
tion for a range of different crosslinker concentrations. This suggests buckling
to play a key role during network contraction in these experiments. Another
study finds that myosin activity can even result in actin filament fragmentation
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in such systems (Vogel et al., 2013) . This could have important implications
for the connectivity and the mechanical properties of the actin network at
different stages of the contraction. A detailed analysis of dependence of the
contraction dynamics on the number and density of myosin motors, revealed
that actomyosin contraction is highly cooperative and telescopic (Linsmeier
et al., 2016), meaning that strain rates increase with increasing myosin den-
sity and contraction velocity increases with the total number of active myosin
motors at constant density. These experiments yield important insights into
the underlying mechanisms of actomyosin contractility and how the network’s
contraction behavior is shaped by the underlying molecular components.

So far, we have discussed the coupling of actomyosin networks to membranes
simply as a tool to assemble effectively two-dimensional networks. In cells, the
actin cortex can however actively deform the membrane. This can be mimicked
by coupling contractile actomyosin to a deformable membrane by assembling
an actomyosin gel inside of a lipid vesicles (Nishigami et al., 2016). This re-
sults in repeated, non-periodic deformations of the vesicle due to actomyosin
contractility together with an asterlike self-organization of the actin network.
Unfortunately, this study does however not evaluate the mechanical properties
of the membrane, such that it is not possible to relate the observed deforma-
tions to myosin generated forces. This makes a more quantitative analysis of
these results difficult. Another approach to couple contractile actomyosin net-
works to a mechanical environment was established by Roos et al., 2003. There,
actin filaments were assembled into a regular network on top of microfabricated
pillars. These pillars are however too stiff for the myosin motors to induce ob-
servable deformations. This makes it impossible to systematically study the
interaction between a contractile actomyosin network and a compliant environ-
ment in this assay. An alternative approach that allows for a measurement of
the force generation of actomyosin structures is based on linking actin to beads,
which are in turn connected to an elastic substrate (Thoresen et al., 2011). The
deformations of the substrate can be used to compute the force velocity rela-
tion of actomyosin bundles, which connect two beads. While this is an elegant
approach to measure actomyosin force generation in bundles, it yields limited
information about the contraction behavior of disordered networks as found
within cells.

Overall, previous studies with tethered and untethered contractile acto-
myosin structures have greatly advanced the understanding of the mechanisms
underlying contractility of disordered actomyosin networks. Despite this, an
approach that allows for a quantitative analysis of the effect of a compliant
mechanical environment on the contraction behavior of actomyosin gels is still
lacking. In this context it is particularly interesting to study how the con-
traction behavior depends on substrate stiffness and how this compares to the
mechanosensitive force generation observed in cells.

2.3 Contraction dynamics and force generation of
anchored actomyosin networks

To address this, we introduce an experimental approach that generalizes micropillar-
based traction force microscopy assays to the case of reconstituted actomyosin
networks (see Jia et al., 2022 for experimental details). To do this, actomyosin
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gels are mechanically connected to soft pillars of tunable stiffness (Fig. 2.7).
The pillars are manufactured through a two-photon 3D-printing technique,
where bovine serum albumin (BSA) in solution is locally photopolymerized.
This results in soft hydrogel structures of well-defined geometries.

Figure 2.7: Sketch of the experimental setup (adapted from Jia et al.,
2022). A ring of compliant, biotinylated hydrogel pillars is printed through
photopolymerization, to which a crosslinked actin network can bind. Upon
myosin addition, the network contracts and deflects the pillars.

Here, we will discuss structures that consist of individual hydrogel pillars
that are arranged in a circular geometry (Fig. 2.7, left). The mechanical prop-
erties of these hydrogel structures and in particular their Young’s modulus
depends on the degree of photo-induced polymerization, allowing for a tight
control over the stiffness of the printed structures through the printing param-
eters, such as laser power and scan speed (Jia et al., 2022). Note that this
allows us to tune pillar stiffness without varying the pillar dimensions, which
could result in unwanted side-effects due to the changed surface area. To cover
a broad range of stiffnesses, the Young’s modulus was varied between 10 kPa
and 250 kPa. To be able to mechanically link actin filaments to the 3D printed
hydrogel structures, a fraction of the BSA in solution is biotinylated such that
biotin is present at the surface of the structures. Then, biotinylated actin
filaments are added to the solution. Note that while within cells actin is con-
stantly turned over through polymerization and depolymerization (Blanchoin
et al., 2014), here, actin filaments are stabilized. For actin filaments to be able
to bind to the biotinylated BSA structures as well as being crosslinked to a
connected network, an additional protein is necessary that can bind to biotin,
serving as a linker between different actin filaments as well as between actin
and BSA. For this, neutravidin is used. For simplicity, we just refer to biotin-
neutravidin-biotin complexes as crosslinkers in the following. The addition of
actin and the crosslinker, results in the formation of an actin network that is
stably connected to the ring of hydrogel pillars (Fig. 2.7, middle). Flourescent
microscopy confirms that the resulting actin network spans the entire distance
between pillars and is not only found between neighbouring pillars (Fig. 2.8A
and B). Interestingly, these images also reveal that the network attaches mostly
near the top of the pillars (Fig. 2.8A and B), which has important implications
for the analysis of the contraction induced pillar deflections. To trigger contrac-
tility, myosin is added to the solution (Fig. 2.7, right), which results in a global
contraction of the network. This can be quantified through the deflection of the
surrounding pillars, which happens within minutes after the addition of myosin
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(Fig. 2.8C and D). As we will discuss in more detail in the following sections,
tracking the deformation of the flourescently labeled mircopillars allows us to
quantify the myosin-induced contraction dynamics.

Figure 2.8: Experimental confirmation of the setup (adapted form Jia
et al., 2022). A. The z-projection of the actomyosin exoskeleton on a pillar
ring shows a spanning network over the entire area of the ring. B. The side
view of the pillar rings reveals that the spanning network is attached near the
tip of the pillars. C. Contraction dynamics of the pillar ring in response to
motor activation. Only the BSA hydrogel is imaged, actomyosin network not
visible. The white line in the top left image indicates the position for generating
orthogonal view. D. Dynamics of the pillar tips during the contraction. The
global contraction of the actomyosin network results in an isotropic deflection
of the pillars. Scale bars: 5 µm.

Quantification of the pillar deflections

Tracking the position of the tips of the pillars, we observe a distinct deformation
behavior (Fig. 2.9A). Initially, deformation is slow before the contraction accel-
erates, reaching a maximum after around one minute. Then the tips approach
their final, contracted position and the contraction slows down. Interestingly,
the acceleration lasts much longer than the dynamics of single or spatiotempo-
rally coordinated myosin motors in sarcomeres, which operate on the timescale
of milliseconds (Caruel et al., 2018). This acceleration behavior can be ob-
served at all considered pillar stiffnesses. Note that this analysis reveals a first
mechanosensitive property of actomyosin contraction behavior: The peak ve-
locity observed during the contraction displayed a strong stiffness dependence,
with soft pillar rings being contracted at much faster rates than stiff pillar rings
(Fig. 2.9B).

Apart from the contraction dynamics, we are particularly interested in the
force that is generated in the final contracted state, since this can be easily
compared to the stiffness-dependent traction forces generated in cells (Trichet
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Figure 2.9: Quantification of the contraction behavior at different pil-
lar stiffnesses (adapted from Jia et al., 2022). A. The contraction dynamics of
an exemplary pillar ring with and effective spring constant of kp = 35 pN/µm.
Shown are the average displacement and velocity of the pillar tips over time.
B. The peak contraction velocity at different pillar stiffnesses. The error bars
in A and B indicate one standard deviation. C. Sketch of a deflected pillar
that is subject to a point force at the tip. D. Active force per pillar exerted
on pillar rings with different stiffnesses. The final contraction force displays a
striking robustness over a broad range of pillar stiffnesses.

et al., 2012). For that we need an expression for the bending profile of the
pillars. In particular, we are interested in the shape of the neutral line of the
deflected pillar (Fig. 2.9C). To derive an analytic expression for the expected
pillar profile, we assume that (i) the pillar consists of a linear elastic material,
characterized by its Young’s modulus E, and (ii) the largest contribution to the
torque on the pillar stems from forces acting on its tip. The second assumption
is justified by observation that the spanning network is predominantly attached
at the top of the pillar (Fig. 2.8B). We thus approximate the force applied by
the actomyosin gel on the pillar by a point force F at the tip of the pillar.
Since the pillar length (15 µm) is much larger than the pillar width (2 µm),
we assume the pillar to be thin compared to its length and the deflection
to be small enough such that we can neglect higher-order derivatives of the
displacement (with respect to the height).

To find an expression for the deflected pillar profile, we consider the torque
balance in the y-direction. The y-component torque induced by a point force
in x-direction applied at the tip of the pillar (Fig. 2.9C) is given by (Landau
et al., 1986a)

MForce
y =

∫
dA xσzz =

E

R

π

4
r4, (2.16)

where E is the Young’s modulus of the pillar material and R−1 denotes the
local curvature of the pillar. Since the pillar is fixed at its base any torque
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needs to be balanced in the final deflected state. The balancing torque due to
the fixation at the base is given by (Johnston et al., 2009)

Mreaction = F× r = FpLêy. (2.17)

We can then calculate the internal torque at height z by virtually cutting the
pillar at height z. Similar to Eq. (2.17), the y-component of the internal torque
at this point is given by

M reaction
y (z) = Fp(L− z). (2.18)

Equating Eqs. (2.16) and (2.18) yields the equilibrium condition

E

R

π

4
r4 = Fp(L− z). (2.19)

To find the profile x(z) we express the curvature 1/R in terms of x(z) and
its derivatives as

1

R
=

x′′(z)√
1 + x′(z)

. (2.20)

By combining Eqs. (2.19) and (2.20) we obtain a differential equation for the
beam profile

x′′(z)√
1 + x′(z)

=
Fp
EI

(L− z). (2.21)

Using the assumption, that the beam is weakly deflected, this simplifies to

x′′(z) =
Fp
EI

(L− z). (2.22)

With the corresponding boundary conditions x′(z = 0) = 0 and x(z = 0) = 0,
we get the beam profile (Landau et al., 1986a)

x(z) =
4Fp
Eπr4

(
L

2
z2 − z3

6

)
, (2.23)

and the corresponding tip displacement

x(L) =
4L3

3Eπr4
Fp, (2.24)

which allows us to define an effective spring constant of the pillar

kp =
3Eπr4

4L3
. (2.25)

Based on this analysis, we can extend the ideas of traction force microscopy
to the case of reconstituted actomyosin gels by relating the observed pillar de-
flections to the total contraction force by fitting Eq. (2.23) to the experimentally
observed shapes of the deflected pillars. Note that the only free parameter in
Eq. (2.23) is the deflection force per pillar Fp. From this, we obtain an average
forces per pillar of 126 ± 0.02 pN, which is robust over a wide range of pillar
stiffnesses (Fig. 2.9D). Individual myosin filaments under these conditions can
generate forces close to 20− 60 pN (Y.-S. Cheng et al., 2020; Kalganov et al.,
2013; Vogel et al., 2013), suggesting that only a small fraction of the myofila-
ments in the exoskeleton effectively contribute to the contraction (see Jia et al.,
2022 for a more detailed discussion).
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2.4 A minimal model for anchored actomyosin
contractility

To obtain a better understanding of how the motor-induced contractility of
the network leads to the observed, stiffness-dependent acceleration effect during
the contraction and stiffness-independent contraction forces, we derive a simple
mechanical model for the mechanical properties of the actin network and the
motor activity. We then gradually increase the complexity of this model until
we are able to capture the observed experimental contraction behavior.

Significance of the elastic response of the network

In general, actomyosin networks can be described as active viscoelastic gels (see
Section 2.1) (Kruse et al., 2005; Prost et al., 2015), but the extent to which the
elastic response of the network plays a role depends on the timescale on which
the system is observed and experimental factors such as crosslinking. Since
the actomyosin network is coupled to elastic frames in our experimental setup,
the elastic response of the network will only significantly affect the contraction
behavior if the effective spring constant of the network is similar in magnitude
or larger than the stiffness of the pillars. To identify which aspects of the
viscoelastic actomyosin gel need to be included in our theoretical description,
we first consider the final contraction force as a function of the pillar stiffness
(Fig. 2.9D). When analyzing the final contracted state, the viscous response of
the network does not have to be accounted for. Hence, only the elastic response
of the actomyosin gel contributes.

Figure 2.10: Schematic illustration of the mechanical model (taken
from Jia et al., 2022). The rheological properties of the network as well as its
dimensions determines the effective network stiffness kam and viscosity γam.

We characterize the elastic response of the network by an effective spring
constant kam (Fig. 2.10). Due to the symmetric configuration of our exper-
imental setup, the system can be described by a 1D model with a spring,
representing the elastic response of the actomyosin gel, which is attached to
two springs of zero rest length, representing the pillars (Eq. (2.24)). Finally,
the myosin activity induces an active stress in the system, which leads to a
contractile active force FA acting on each of the pillars. Thus, the gel’s activ-
ity leads to a stretching of the two pillar springs by ∆x. Note that, due to the
symmetry of the system, this corresponds to a deformation of the actomyosin
spring by 2∆x. At mechanical equilibrium, this model yields the following force
balance equation:

2kp∆x = −2kam∆x+ 2FA. (2.26)
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Solving this equation for ∆x leads to

∆x =
FA

kp + kam
. (2.27)

which was found previously (Marcq et al., 2011; Trichet et al., 2012; Zemel
et al., 2010). Thus, if kam is larger or of a similar order of magnitude as kp, we
would expect that the final contraction force Fp = kpFA/(kp+kam) exerted on
the pillars depends on the pillar stiffness kp (Fig. 2.11A), as observed for living
cells (Trichet et al., 2012). Notably, we could not observe such a dependence
in our experiments, but instead measured an approximately constant force
(Fig. 2.9D). The robustness of the final contraction force in the pillar stiffness
is captured by this simple model, if the effective spring constant of the network
kam is negligible compared to the spring constant of the pillars kp over the entire
experimentally considered range. In this 1D model, we expect kam ∝ Gamh/N ,
where N is the number of pillars and the numerical prefactor depends on the
Poisson’s ratio of the gel, which we do not know. In our case h is around
4 − 5 µm , N = 10, and we expect Gam to be of order a few Pascal on the
timescale of the contraction (Mizuno et al., 2007). Based on these numbers we
do indeed expect kam � kp. Thus, we will proceed by modeling the actomyosin
gel as a viscous fluid and neglects its elastic properties.

Figure 2.11: Predictions of the one-dimensional contractility model
with constant active force (adapted from Jia et al., 2022). A. The stiff-
ness sensitivity of the final contraction force decreases with decreasing Young’s
modulus of the network. B. The contraction dynamics in response to a con-
stant contractile force do not display the characteristic acceleration behavior
observed experimentally.

A dynamical model for contractile actomyosin in soft frames

Next, we go beyond the steady state force and construct a dynamic model
for contractile actomyosin gels in soft frames. To do this, we have to account
for viscous contributions. For this, we use the same geometry as before, but
represent the viscous response of the actomyosin gel by a dashpot with an
effective friction coefficient γam (Fig. 2.10).

The friction coefficient can be estimated from the 3D geometry of the con-
tractile network, which allows us to relate the effective friction coefficient γam of
the dashpot to the dimensions and the rheological properties of the actomyosin
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network. Specifically, we approximate the actomyosin gel as a cylindrical lin-
ear elastic medium of radius R and height h. The height of the gel can be
estimated from light microscopy images (Fig. 2.8B), which show that the gel
attached approximately to the upper 30% of the pillars. Based on this geome-
try we then derive an expression for the effective friction coefficient γam. Based
on the approximation of the actomyosin gel as a cylindrical linear continuous
medium, we can derive a relation between the pillar force Fp and the veloc-
ity of the fluid’s outer surface. For this, we first consider the viscous stress
tensor (Landau et al., 1987):

σ′αβ = 2η

(
u̇αβ −

1

3
δαβ u̇γγ

)
+ ζδαβ u̇γγ . (2.28)

Here, η denotes the shear viscosity, ζ is the volume viscosity, and the dots
denote a temporal derivative. In the absence of external forces and neglecting
inertial effects, we then obtain the following differential equation for the strain
rate u̇αβ in an isotropic viscous fluid (Landau et al., 1987):

0 =

(
η +

1

3
ζ

)
∇(∇ · u̇)− ζ∇× (∇× u̇) . (2.29)

Since the load ω is applied radially, u̇φ and all angular derivatives vanish.
Additionally, we assume that the fluid remains in a perfectly cylindrical shape.
Hence, ∂zu̇r and ∂ru̇z vanish. We can thus simplify this expression to

0 =

(
η +

1

3
ζ

)
∇ (∇ · u̇) . (2.30)

Writing Eq. (2.30) explicitly for the different non-zero components in cylin-
drical coordinates yields

0 = ∂r

[
1

r

∂(ru̇r)

∂r

]
, (2.31)

0 = ∂2
z u̇z. (2.32)

We place the center of the coordinate system in the center of the cylinder.
Hence, we know that the velocity at the origin has to vanish due to sym-
metry, providing the following two boundary conditions: u̇r(r = 0) = 0 and
u̇z(z = 0) = 0. Integrating the two equations (Eq. (2.31) and (2.32)) with
these boundary conditions gives the following velocity field:

u̇r(r) = arr, (2.33)

u̇z(z) = azz. (2.34)

To fix the remaining two integration constants ar and az, we consider the
stress in the system. We can relate the components of the velocity field to the
viscous stress tensor via the constitutive relation

σ′αβ = η

(
∂αu̇β + ∂β u̇α −

2

3
δαβ∂γ u̇γ

)
+ ζδαβ∂γ u̇γ . (2.35)

Here, δαβ denotes the Kronecker delta and repeated indices are summed over.
The non-zero components are thus given by

σ′rr(r) = 2
(η

3
+ ζ
)
ar +

(
ζ − 2

3
η

)
az, (2.36)
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σ′φφ(r) = 2
(η

3
+ ζ
)
ar +

(
ζ − 2

3
η

)
az, (2.37)

σ′zz(r) = 2

(
ζ − 2

3
η

)
ar +

(
ζ +

4

3
η

)
az. (2.38)

To derive this, we used that u̇r(r = 0) = 0 and u̇z(z = 0) = 0 due to symmetry.
We model the forces applied to the network by the pillars by a continuous
load ω = NFp/A on the gel’s outer surface A = 2πRh (Fig. 2.10), where N
denotes the number of pillars per ring. By using these boundary conditions
(σ′rr(r = R) = ω = NFp/A and σ′zz(z = ±h/2) = 0), we can derive the
expression for Fp(t)

Fp(t) =
A

NR

6η

1 + 4η/3ζ
u̇r(r = R). (2.39)

Note that this expression can be mapped onto the expression of an incom-
pressible fluid with an effective viscosity ηeff

am = 6η/(1 + 4η/(3ζ)). We can thus
simplify this expression to

Fp(t) = ηeff
am

6A

NR
vp(t). (2.40)

Here, ηam denotes the viscosity of the actomyosin gel and vp = d(∆x)/dt is the
velocity of the tip of the pillars.

Eq. (2.40) is equivalent to the repsonse of a simple one-dimensional dashpot
with an effective friction coefficient of

γam = ηeff
am

6A

NR
=

12

N
ηeff

amπh, (2.41)

where we used A = 2πRh. Thus, the force balance describing the dynamics of
our system reads

2kp∆x = 2FA − 2γam
d∆x

dt
. (2.42)

Using Fp(t) = kp∆x and τ = γam/kp, this can be rewritten in terms of a
differential equation as

dFp(t)

dt
+
Fp(t)

τ
=
FA
τ
, (2.43)

which was found previously (Marcq et al., 2011). For a constant value of FA
and an initial force Fp(t = 0) = 0, the solution of Eq. (S23) is given by

Fp(t) = FA

(
1− e−t/τ

)
, (2.44)

implying that

∆x(t) =
FA
kp

(
1− e−t/τ

)
, (2.45)

and

vp(t) =
FA
kpτ

e−t/τ . (2.46)

Importantly, however, these predictions quantitatively and qualitatively fail
to capture the experimental data (Fig. 2.11B): Eq. (2.45) does not have an
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inflection point and the velocity in Eq. (2.46) correspondingly exhibits no peak
at t > 0. This implies that the active force FA cannot be constant, but instead
needs to increase over the course of the contraction. To account for this, we
consider in the following two possible contributions: a density-dependence of
the contractility, and the binding dynamics of the myosin motors.

The density dependence of the active contractility

The first effect that could introduce a time dependence of the contractility
of the network is the change in network density throughout the contraction
process (Bendix et al., 2008; Foster, Fürthauer, et al., 2015; Joanny, Kruse, et
al., 2013). To generate a contractile force, a myosin filament has to connect two
distinct actin filaments. The probability that a bound motor will indeed be in
such a contractile configuration grows with increasing network density due to
the increased number of possible binding sites within reach of the motor. Hence,
for lower densities, we expect the active force generated by the actomyosin gel
onto the pillars to scale linearly with the actin density and the number of
bound myosin filaments. At high densities, steric interactions will counteract
the contractile force, to leading order yielding a term that scales quadratically
with the actin density. In total, this gives us the following expression for the
active force as a function of the actin density (Chugh, Clark, et al., 2017):

FA(t) = ξNMρa(t) (ρmax
a − ρa(t)) . (2.47)

Here, ξ is a phenomenological coupling parameter, NM is the number of bound
myosin filaments and ρmax

a is the maximal possible density that the gel can
reach. While it is known that cortex thickness correlates with cortex contrac-
tility in vivo (Foster, Fürthauer, et al., 2015), due to the large areal changes
of the considered network in the x-y-plane, for simplicity we considered only
the increase in actin density from the in-plane contraction of the network. Fur-
thermore, we neglect the effect of filament alignment. This is justified by the
fact that we apply this model to crosslinked networks, in which the effects of
motor induced fiber alignment are reduced in comparison to non-crosslinked
networks (Koenderink, Dogic, et al., 2009).

Inserting the density dependent active force (Eq. (2.47)) into Equuation (2.43)
yields

dFp(t)

dt
+
Fp(t)

τ
=
ξ

τ
NMρa(t) (ρmax

a − ρa(t)) . (2.48)

Solving Equation (2.48) can indeed reproduce the observed acceleration behav-
ior (Fig. 2.12B, solid lines). However, this model lacks predictive power. We
demonstrate this by fitting the model to the displacement curve at a single
pillar stiffness (kp = 35 pN/µm) that is shown in Fig. 2.12B and then try to
predict the final contraction force at different pillar stiffnesses. In contrast to
the experimental data, this model predicts a strong stiffness dependence of the
final force (Fig. 2.12A). Also, the acceleration can only be observed for a very
limited range of pillar stiffnesses (below kp = 60 pN/µm). At higher stiffnesses
we find a monotonic decrease in velocity (Fig. 2.12B, transparent lines) remi-
niscent of the model with a constant active force. We thus conclude that the
density dependence of the active force alone is not sufficient to explain the
observed contraction behavior.
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Figure 2.12: Fits and predictions of the density dependent contractility
model (adapted from Jia et al., 2022). A. The predicted final contraction
force (solid line) shows a strong stiffness dependence, which is in contrast to the
experimental data (box plot). B. While the experimental contraction dynamics
can be fitted for soft pillars, the predicted dynamics at higher stiffnesses lack
the characteristic acceleration of the contraction.

The role of load-dependent myosin unbinding kinetics

From the previous sections, it becomes apparent that we are still missing a key
ingredient in our model to explain the observed stiffness-dependent acceleration
of the contraction dynamics as well as the robust, stiffness-independent steady-
state force generation. One aspect that we did not consider so far, is the load-
sensitivity of the myosin binding and unbinding kinetics (see Section 2.1). To
explore this option, we need to connect the experienced by individual myosin
filaments FM to the force that is exerted onto the pillars. We do this by
assuming that the force, generated by the deflected pillars is distributed over
all myosin filaments and that the active force is proportional to the number of
bound filaments. Thus, we take a mean-field approach and assume that every
motor is subject to a load

FM = aFp, (2.49)

where we introduce a phenomenological proportionality constant a. Our con-
tractility model is then defined by the two coupled differential equations:

dFp(t)

dt
+
Fp(t)

τ
=
ξ

τ
NM (t)ρa(t) (ρmax

a − ρa(t)) , (2.50)

dNM (t)

dt
= kon [Nmax

M −NM (t)]− koff(aFp(t))NM (t), (2.51)

where kon denotes the binding rate of myosin filaments and the filament un-
binding rate koff is defined by Eqs. (2.13) – (2.15).

Thus, filaments can constantly bind to and unbind from the network in a
load sensitive manner, resulting in a feedback loop that can either be posi-
tive (in the catch regime) or negative (in the slip regime). In the beginning
of the experiment, myosin filaments are in solution and first have to bind to
the network to generate contractile forces. As the force builds up, the load-
dependent myosin kinetics result in an increased number of motors being en-
gaged in force generation. The inherent positive feedback between the slow
build-up of viscoelastic network stresses and the active force generation by fast
load-dependent myosin binding kinetics in our model gives rise to the intricate
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contraction dynamics of the pillar ring, in quantitative agreement with our
experiments (Fig. 2.13A, inset).

To test the predictive power of our model, we constrain the model param-
eters by fitting the model to a single contraction curve at one pillar stiffness
(Fig. 2.13A, inset) and then compute the stiffness-dependence of the contrac-
tion of the pillar ring assay. Strikingly, this model accurately predicts the
dynamics (Fig. 2.13A) and steady-state values (Fig. 2.13B) of the actively gen-
erated forces over a broad range of pillar stiffness. The stiffness insensitivity
of the steady-state force can be explained by our contractility model, provided
that the network’s elastic response is much softer than the pillar stiffness and
can thus be neglected. Conceptually, the load sensitivity of the myosin binding
kinetics results in active force generation, which is largely controlled by the
internal stress of the actin network and is insensitive to the stiffness of the
frame. This appears to be the crucial mechanism behind the observed contrac-
tion behavior as indicated by the failure of the purely actin density-dependent
contractility model. However, while for the steady state, the density-dependent
effects seem to only have a small impact, we find that the density dependence
is essential to understand the stiffness dependence of the contraction velocity.
This is the case since motor filament binding kinetics only couple to the pillar
force but not to their displacement and thus not to the pillar stiffness. The
density dependence of the contractility in contrast couples the contractility also
to the pillar stiffness. We thus conclude that accounting for both the density
dependence of the contractility and the (un-)binding dynamics of the myosin
filaments is essential for the understanding of the contraction behavior of the
fabricated structures.

Figure 2.13: Fits and predictions of the full model with load-sensitive
myosin binding kinetics (adapted from Jia et al., 2022). A. The model
successfully predicts the stiffness-dependence of the peak contraction veloci-
ties based on fitting it to the contraction dynamics for a single pillar stiffness
(inset, kp = 35 pN/µm). B. It also correctly predicts the relative stiffness
independence of the final contraction force.

2.5 Discussion and outlook

Overall, while we found in this project that reconstituted actomyosin net-
works do display an inherent mechanosensitivity in their contraction dynamics
due to the load-dependence of myosin binding and unbinding kinetics, we also



2.5. DISCUSSION AND OUTLOOK 29

found that crosslinked actomyosin networks are not a minimal system to re-
produce the mechanosensitive force generation observed in living cells (Trichet
et al., 2012). This is surprising, since some of the physical models for cellular
force generation are purely based on geometric arguments and the mechanical
properties of cells, which to a large part originate from internal actin struc-
tures (Marcq et al., 2011). A possible reason for this difference between recon-
stituted networks and cells, could be the degree of crosslinking, which strongly
affects the stiffness of the network. Thus, at higher degrees of crosslinking,
one might still be able to reproduce the behavior observed in cells. Myosin
induced actin fragmentation as observed experimentally (Vogel et al., 2013) on
the other hand could inherently decrease the network connectivity, potentially
making the degree of crosslinking irrelevant. Here, it would be interesting to
go beyond the case of skeletal muscle myosin II, which forms large myosin clus-
ters and explore the contraction behavior of non-muscle myosin II. These tests
could allow to further differentiate the contributions of adhesion molecules and
the actomyosin network to the observed cellular mechanosensitivity.

Figure 2.14: Power generation in contractile actomyosin gels (taken
from Jia et al., 2022). Estimate of the transmitted and dissipated power of the
contraction shown in the inset of Fig. 2.13A (kp = 35 pN/µm) based on our
theoretical model.

Apart from serving as a potential model system to understand cellular rigid-
ity sensing, our contractility model together with the experimental results could
also yield insights into thermodynamic properties of the contraction process,
which could be relevant for the engineering of active biomaterials (Foster, Bae,
et al., 2023). For example, the model can be used to estimate the generated
mechanical power of the actomyosin network in the pillar ring assay. Part of
the work performed goes into the elastic deformation of the pillar frames and
part of the work is dissipated. The dissipated work Wdis in the model, how-
ever, only accounts for viscous dissipation and does not account for effects of
the motors that cannot contribute to the overall contraction. It can thus only
serve as a lower bound for the total amount of dissipated energy. If the pillars
are deflected by ∆xf in the final contracted state, the total work is given by:

Wtot = Wtrans +Wdis = N

∫ ∆xf

0

kp∆xd∆x+N

∫ ∆xf

0

2γamvpd∆x. (2.52)
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Here, the number of pillars N accounts for the fact that our model is one
dimensional. Note that the additional factor of two in the expression for Wdis

is a consequence of the geometry, which implies that the contraction velocity
of the gel is twice the deflection velocity of the pillars vp. Rewriting the right-
hand side of Eq. (2.52) as integrals over time yields the following expressions
for the dissipative and transmitted components of the generated power:

Pdis(t) = 2Nγamvp(t), (2.53)

Ptrans(t) = 2Nkp∆x(t)vp(t). (2.54)

As shown in Fig. 2.14, we observe a strongly peaked profile in both the dissi-
pated and the transmitted power with a peak transmitted power of 43·10−18 W.
This peaked profile is a consequence of the acceleration in the contraction pro-
cess, demonstrating how load-sensitivity of the myosin binding and unbinding
kinetics does shape the contraction dynamics but also has important implica-
tions for thermodynamic aspects of the system, such as power generation. Here,
it would be interesting to test these predictions by applying direct and indi-
rect experimental measurements of energy dissipation and propagation (Floyd
et al., 2019; Foster, Bae, et al., 2023; Seara et al., 2018) that were developed
for freely contracting and non-contractile polymer gels to our system.s
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The cytoskeleton in confined and directed cell
migration

In this chapter, we build on our understanding of subcellular components of
cellular force generation machinery developed in the previous Chapter to ana-
lyze how cellular behavior and in particular mesenchymal migration patterns
emerge from the interplay of the different underlying molecular components of
the cytoskeleton. Due to the importance of cell migration in key physiological
processes such as development (Franz et al., 2002; Scarpa et al., 2016; Weijer,
2009), wound healing (Fenteany et al., 2000; Krawczyk, 1971; Poujade et al.,
2007; Vishwakarma et al., 2020), the immune system (Friedl and Weigelin,
2008; Parkin et al., 2001) and cancer metastasis (Clark et al., 2015; Stuelten
et al., 2018; Yamaguchi et al., 2005), great research efforts were put towards
developing a better understanding of cell migration over the last decades. The
observation that the underlying molecular processes are conserved across a wide
range of eukaryotic migration modes and largely independent of the physiologi-
cal context drove efforts to find an overarching conceptual framework describing
eukaryotic cell migration (Abercrombie, 1980; Danuser et al., 2013). This gen-
erality together with the abundance of experimental data makes the problem
of eukaryotic cell migration particularly attractive for theoretical modeling,
since an integrated, holistic model of migrating cells would have an unusu-
ally broad range of applications in different biological systems. Despite the
detailed knowledge of both the underlying molecular processes as well as the
phenomenological migration behavior of cells, there is a strong fragmentation
of modeling approaches with detailed microscopic models that focus on subcel-
lular processes on the one hand (Danuser et al., 2013; Edelstein-Keshet et al.,
2013) and more phenomenological and data-driven approaches on the other
hand (Brückner and Broedersz, 2023). Bridging the gap between these two ap-
proaches and relating the emergent migration behavior directly to underlying
molecular processes would allow to better predict how changes in the cellu-
lar environment would change the migration behavior and would thus greatly
increase the generality of coarse grained cell migration models.

To bridge this gap, we first review the phenomenological migration behav-
ior of mesenchymal cells on structured two-dimensional substrates and discuss
previous phenomenological and data driven modeling approaches describing
the observed migration behavior. We then discuss key molecular processes and
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their interaction underlying mesenchymal cell migration. Based on this, we
then develop a mechanistic model that accounts for these molecular processes
that we systematically coarse grain to obtain a simple model for the emergent
migration behavior. To guide this coarse graining, we use a data-driven model
that was previously constrained from experimental data (Brückner, Schmitt,
et al., 2022), which we ultimately rediscover from our bottom-up model. From
this we obtain a mechanistic interpretation of a number of key aspects of this
data-driven model and show that our model can be generalized to describe the
migration behavior on various different substrates, allowing us to connect our
model to other phenomenological models and yielding new insights into cellular
migration behavior and decision making in complex environments.

3.1 Phenomenological and data-driven models for cell
migration on structured surfaces

In vivo, migrating cells interact with a similarly complex extracellular envi-
ronment (Charras and Sahai, 2014; Roussos et al., 2011). This makes migra-
tion in physiological conditions not well suited to constrain simple, biophysi-
cal migration models. Following a more reductionist approach, cell migration
was extensively studied on well defined, structured surfaces (Brückner, Fink,
Schreiber, et al., 2019; Caballero, Comelles, et al., 2015; Maiuri et al., 2015;
Selmeczi, Li, et al., 2008; Trichet et al., 2012). This led to the discovery of a
number of key aspects in the phenomenology of migrating cells that were for-
malized in simple, top-down models that were constrained directly from data
and that are largely agnostic to the underlying molecular processes (Brückner
and Broedersz, 2023; Selmeczi, Li, et al., 2008). Here, we briefly summarize the
observed phenomenology together with a number data-driven and phenomeno-
logical models that were developed for migration on different patterns.

Early studies of eukaryotic single-cellular organisms swimming in homoge-
neous environments found a simple diffusive behavior (Fürth, 1917; Przibram,
1913) (see Selmeczi, Li, et al., 2008 for an english review). A more detailed
analysis of the mean square displacement of the cells on shorter time scales
by (Fürth, 1920) revealed however deviations from a simple diffusive behavior
that Fürth could explain in terms of an inherent persistent in the movement
of the cells. He proposed to model cellular movement in terms of a persistent
random walk, where the walker moves along a (one dimensional) lattice with
lattice spacing ∆x and a hopping time ∆t. The persistence is introduced by
determining the preferred direction of the next step based on the direction of
the previous step, with λ∆t being the probability to switch direction from one
step to the other. The probability p±(x, t) that a walker (the cell) at position x
and time t moves in the ±-direction is then given by (Fürth, 1920; Kac, 1974)

p±(x, t+ ∆t) = (1− λ∆t)p±(x∓∆x, t) + λ∆tp∓(x∓∆x, t). (3.1)

In the continuous limit ∆t → 0 and ∆x → 0, with ∆x/∆t = v0 = finite,
Eq. (3.1) gives rise to the so-called telegrapher’s equation for the total proba-
bility p = p+ + p−(Balakrishnan, 1993; Kac, 1974)

∂2
t p+ 2λ∂tp = v2

0∂
2
xp, (3.2)
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which is equivalent to the overdamped Langevin equation (Sandev et al., 2022)

ẋ = v0η(t), (3.3)

where η(t) denotes so-called dichotomic noise that switches between the values
±1 at an average rate λ and 〈ζ(t)〉 = 0. The mean square displacement of
a particle following Eq. (3.2) agrees well with the data in (Fürth, 1920). An
alternative model for persistent random motion that gives rise to the same
mean square displacement can be formulated in terms of the underdamped
Langevin equation (Langevin, 1908; Lemons et al., 1997)

v̇ = −ζv + σξ(t), (3.4)

where v = ẋ is the velocity of the particle, ζ denotes an effective friction coef-
ficient, σ the noise amplitude, and ξ(t) represents Gaussian white noise with
〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t − t′), where the underdamped nature of the
cellular dynamics do not arise from inertia, as cells are living at low Reynolds
numbers (Needleman et al., 2019), but should be interpreted as an emergent
property of the cellular migration machinery. Eq. (3.4) indeed gives rise to the
same expression for the mean square displacement as Eqs. (3.2) and (3.3) (Uh-
lenbeck et al., 1930). Cell migration as persistent random motion as described
by Eqs. (3.2) and (3.4) or modifications of those were later shown to be ap-
plicable far beyond the swimming motion of single-cellular organisms and in
particular can also successfully describe mesenchymal cell migration on a num-
ber of different substrates (Fig. 3.1), some of which we will discuss in the
following.

Figure 3.1: Overview of phenomenological models for persistent ran-
dom motion of cells on different substrates. A. Cells on homogeneous
substrates can be described by an underdamped Langevin equation with in-
ternal memory. B. Durotaxis can arise from a persistent random walk with a
stiffness- and thus position-dependent persistence. C. Cellular Ratchetaxis can
be described as a discrete persistent random walk with a different persistence
depending on the direction of migration. D. The effect of confinement on the
cell dynamics can be captured by an underdamped Langevin equation with a
position and velocity dependent deterministic drift that accounts for the local
pattern geometry and orientation.

While Eqs. (3.1)–(3.4) were obtained based on manual tracking of cellu-
lar trajectories, automated cell tracking allowed for much better statistics and
consequently a more precise quantification of the cellular migration dynamics.
This revealed on the one hand that cellular migration dynamics can in fact
be more complex than a simple persistent random walk but also provided the
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means to select and constrain more complex migration models (Selmeczi, Li,
et al., 2008). In particular, migration data of cells migrating on unstructured
two dimensional surfaces (Fig. 3.1A) revealed that the autocorrelation of the
cellular velocity decays as a double exponential, in contrast to the single ex-
ponential decay predicted by Eq. (3.4) (Selmeczi, Mosler, et al., 2005), which
can be explained in terms of an internal memory of cells that goes beyond
the effective inertia term in Eq. (3.4). Capturing this behavior requires the
introduction of a memory kernel, leading to (Selmeczi, Mosler, et al., 2005)

v̇ = −ζ1v(t) + ζ2

∫ t

−∞
dt′e−γ(t−t′)v(t′) + σ(v(t))ξ(t), (3.5)

where the model parameter ζ1, ζ2 and γ from fitting the experimental data. For
a different cell line, Eq. (3.5) was found to require even further refinement by
introducing a velocity dependence of ζ1(v), resulting in a non-linear Langevin
equation (Selmeczi, Mosler, et al., 2005).

Other adaptations of the persistent random walk model were found to be
necessary when applying it to migration on unisotropic substrates. For exam-
ple, many cell lines have a tendency to migrate towards stiffer regions on a sub-
strate, a behavior termed durotaxis (C.-M. Lo et al., 2000; Sunyer and Trepat,
2020). Coincidentally, cells display an increased migratory persistence on stiffer
substrates (House et al., 2009; Raab, Swift, et al., 2012) (Fig. 3.1B), which
motivated the development of a persistent random walk model with a position
(and thus stiffness) dependent persistence by adapting Eq. (3.2) (Novikova et
al., 2017)

∂2
t p+ 2λ(x)∂tp = v2

0∂
2
xp. (3.6)

Eq. (3.6) is indeed sufficient to reproduce biased migration towards a stiffer
region (Novikova et al., 2017), a more detailed quantitative comparison with
experimental statistics that would be required to identify if stiffness dependent
migration persistence is indeed the dominant driver behind durotaxis is however
lacking. A similar approach was used to explain biased migration induced by
an anisotropy in the adhesive properties of the substrate, which was called
ratchetaxis (Caballero, Comelles, et al., 2015). There, cells migrate on periodic
chains of asymmetric patterns that result in different adhesive properties on
both sides of the cell (Fig. 3.1A). This process was successfully modeled in terms
of discrete, persistent random walker (Eq. (3.1)), with asymmetric switching
rates λ±, such that λ±∆t denotes the switching probability for a cell that
stepped in the ±-direction in the previous step (λ+∆t and λ−∆t correspond
to π−+ and π+− in (Caballero, Voituriez, et al., 2014), respectively ). This
results in the modified version of Eq. (3.1) (Caballero, Voituriez, et al., 2014)

p±(x, t+ ∆t) = (1− λ±∆t)p±(x∓∆x, t) + λ∓∆tp∓(x∓∆x, t). (3.7)

Interestingly, a simple one step persistence was sufficient in this case in con-
trast to the additional memory kernel required to describe migration on homo-
geneous substrates (Selmeczi, Mosler, et al., 2005).

Finally, we want to discuss the migration behavior of cells in geometric
confinement on two-state micropatterns. In that case, the persistence of the
cell will depend on the local geometry of the pattern, which can be captured in
terms of a generalization of Eq. (3.4) (Brückner, Fink, Schreiber, et al., 2019;
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Brückner, Ronceray, et al., 2020)

v̇(x, v) = F (x, v) + σ(x, v)ξ(t), (3.8)

where F (x, v) denotes the position- and velocity-dependent deterministic con-
tribution (drift) to the nuclear dynamics and σ and ξ are defined analogously
to Eq. (3.4) except that also the noise strength σ can in principle also vary
with position and velocity. For the case of cells migrating on patterns that
consist of two square-shaped islands that are connected by a narrow bridge
(Fig. 3.1D), Brückner et al. were able infer the values of F (x, v) and σ(x, v)
from experimental data and show that Eq. (3.8) can accurately describe the
observed migration dynamics (Brückner, Fink, Schreiber, et al., 2019). Similar
to the case of ratchetaxis, also on two-state patterns, no memory kernel was
needed to explain the observed migration behavior, which could be due to a
reset of the internal cellular organization on the islands. The inferred values of
F (x, v) on such two-state patterns revealed an interesting acceleration behav-
ior of the cells as they entered into the channel, which lead to a deterministic
cycling from one island to the other. To understand the mechanistic origin of
this acceleration, in subsequent work they went beyond the description of the
cell in terms of its overall location to a more detailed model that accounts for
more degrees of freedom (Brückner, Schmitt, et al., 2022). In particular, these
included the nuclear position xn, the position of an experimentally protrusion
coordinate xp and the cell polarity P (Fig. 3.2). By segmenting the full cellular
morphology compared to only tracking the nucleus or centrosome, they were
able to systematically constrain the structure of such a mechanistic model from
experimental data, which led to the following set of equations:

ζn(xn)ẋn = k(xp − xn) (3.9)

ζpẋp = −k(xp − xn)− ∂xpV (xp) + P (t) (3.10)

Ṗ = −α(xp)P (t)− βP (t)3 + σξ(t) (3.11)

Here, ζn,p denotes the friction experienced by the nucleus or the protrusion,
the spring constant k characterizes the linear elastic coupling between nucleus
and protrusion, the confining potential V (xp) accounts for the boundaries of
pattern, and the parameters α and β determine the stochastic dynamics of the
protrusion. On the islands, α > 0 and the polarization fluctuates around zero.
In confinement however, the sign of α can switch, resulting in a reinforcement
of deviation of P away from zero and thus a finite average polarization, where
β > 0 ensures that the polarity remains bounded. In this model, the interplay
between nucleus, protrusion and polarization give rise to effective underdamped
dynamics of the nuclear coordinate, demonstrating how the effectively under-
damped migration dynamics of cells can emerge from the interplay of different
degrees of freedom whose individual dynamics are overdamped. Further, this
model presents an explanation for the observed confinement-induced accelera-
tions in Brückner, Fink, Schreiber, et al., 2019 in terms of a coupling between
cellular confinement and polarization.

The mechanistic model presented in Brückner, Schmitt, et al., 2022 rep-
resents a first attempt to obtain more mechanistic insights from data-driven
models. However, due to their phenomenological nature these models can only
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Figure 3.2: Sketch of the data-driven mechanistic model derived in
Brückner, Schmitt, et al., 2022. The cellular migration dynamics are
captured by three coupled degrees of freedom: the nuclear position xn, the
protrusion coordinate xp, and the cell polarity P .

give limited insights into the underlying molecular processes and cannot eas-
ily be generalized to other substrates since they have to be constrained from
experimental data first. If they are systematically and thoroughly constrained
from experimental data, their mathematical structure represents however a
well-defined target for coarse-graining more detailed, bottom-up models to the
mesoscopic level without relying on uncontrolled approximations. This applies
in particular to models that can be formulated in terms of a Langevin equa-
tion with Gaussian white noise, which is the natural formalism to describe the
molecular dynamics of subcellular components.

3.2 The biophysics of cell migration: The four step
process

Connecting the emergent migration phenomenology to the underlying molecu-
lar processes requires a detailed knowledge of the cellular migration machinery.
Even as late as 1970 however, Abercrombie stated that the ”mechanism of loco-
motion of metazoan cells [...] can fairly be said to be wholly unknown” (Aber-
crombie et al., 1970). The reason for this was that while the active locomotion
of microbes was established early on and systematically studied as early as the
1830s (De Bruyn, 1947), the ability of active locomotion was not considered a
common and fundamental feature in animal cells (Abercrombie, 1980). This
changed however, by the time of Abercrombie’s famous Croonian Lecture in
1978 (Abercrombie, 1980) where he united active migration phenomena in the
previously independent fields of wound healing, development, and cancer in-
vasion (Abercrombie, 1977) in terms of shared underlying molecular processes
that he conceptualized in an overarching qualitative model of eukaryotic cell
migration that stands correct as a conceptual framework until today (Aber-
crombie, 1980; Danuser et al., 2013).

His model starts with a polarized cell (Fig. 3.3A) and divides the migration
process into four distinct processes (Abercrombie, 1980; Danuser et al., 2013):

1. Protrusion growth (Fig 3.3B)

2. Adhesion formation at the front (Fig 3.3B)

3. Adhesion disassembly at the rear (Fig 3.3C)
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4. Contraction of the cytoplasm (Fig 3.3C)

While Abercrombie’s original model was agnostic to wether those processes are
sequential or are performed in parallel, it is now well understood that in most
cells all four steps run in parallel (Danuser et al., 2013). In the following we
will dive deeper into the process of polarization and the individual steps of
Abercrombie’s model.

Figure 3.3: The four step process of mesenchymal cell migration.
A. Migration is preempted by the polarization of the cell, with a number of
molecular markers such as members of the Rho and Rac families being enriched
towards the front and the rear of the cell. These polarity markers control molec-
ular processes such as actin polymerization and cortex contractility. B. At the
front of a migrating cell, protrusion growth is driven by actin polymerization
against the membrane. The newly formed protrusion is stabilized through the
formation of focal adhesions. C. At the rear of a migrating cell, focal adhesions
disassemble and cortex contractions lead to a retraction of the rear.

Cell polarization

While the process of polarization was not discussed in the Croonian lecture, it
is an essential prerequisite to cell migration, since it establishes a front and a
rear of the cell. Cell polarization in higher organisms involves a number polar-
ity protein complexes that are conserved throughout evolution. These include
the PAR complex, the CRB complex and the SCRIB complex. Their down-
stream signaling induces cellular asymmetries and affects the cellular migration
machinery. Of the three complexes, the SCRIB complex antagonizes the CRB
and PAR complexes, while they act together in shared pathways (see Assémat
et al., 2008 for a comprehensive review). The polarity protein complexes in-
teract with the Ras superfamily, which themselves play a crucial role in the
establishment of cell polarization. Here, we only focus on the role of the three
most commonly studied members of Ras superfamily: RhoA, Cdc42 and Rac1
(Iden et al., 2008).

In the context of cell migration, the effect of RhoA on the Rho-associated
protein kinase (ROCK) plays a central role (Fig. 3.4). ROCK increases myosin
activity, resulting in a higher contractility as well as the formation of stress
fibers and focal adhesions (Iden et al., 2008; Leung et al., 1996; Riento et
al., 2003). ROCK also indirectly inhibits actin depolymerization and thus
stabilizes actin filaments. As a result less G-actin is available, which slows
actin polymerization (Maekawa et al., 1999; Riento et al., 2003). Since actin
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polymerization is essential for protrusion growth and myosin contractility drives
the rear contraction of the cytoplasm, the RhoA concentration is increased in
the rear of the cell (Fig. 3.3A and 3.4B).

Figure 3.4: The role of key members of the Ras superfamily. A. Sim-
plified scheme of the role of three key members of the Ras superfamily on
important cellular processes for the four step process. B. Localization of and
interaction between RhoA, Rac1 and Cdc42 within the cell.

Rac1 and Cdc42 both activate the Arp2/3 complex, which initiates the
growth of new actin filaments and is thus essential for protrusion growth at
the front of the cell (Jaffe et al., 2005; Millard et al., 2004) (see next para-
graph for more detail). The activation of Arp2/3 happens however through
two distinct pathways. Cdc42 binds to Neural Wiskott–Aldrich syndrome pro-
tein (N-WASP) to activate Arp2/3, while Rac1 affects Arp2/3 through another
member of the Wiskott-Aldrich syndrome protein family, the WAVE (WASP
family Verprolin homolog) regulatory complex (Iden et al., 2008) (Fig. 3.4). As
a consequence, during cell migration Rac1 and Cdc42 stimulate the growth of
actin protrusions with different morphologies. Rac1 leads to the formation of
flat, sheet like protrusions called lamellipodia, while Cdc42 triggers the growth
of narrow, fingerlike protrusions called filopodia (Kozma et al., 1996). Beyond
that, there are also direct interactions between the different members of the
Rac superfamily. In particular, Rac1 and Rho-ROCK inhibit each other, rein-
forcing the polarization of the cell (Iden et al., 2008; Nakayama et al., 2008)
(Fig. 3.4B).

The complex interaction network involved in cell polarization poses a chal-
lenge to mathematical modeling approaches (Edelstein-Keshet et al., 2013).
Due to its regulatory role for other migration processes it is however a key
component in many cell migration models (Danuser et al., 2013).

Actomyosin contractility

A key process that is controlled by the local distribution of polarity markers
is actomyosin contractility (Iden et al., 2008). During migration actomyosin
contractility is essential for two distinct processes: translocation of the cell
body including the nucleus and rear retraction. This can involve a number
of structurally different actomyosin networks including the disordered actin
cortex below the cell membrane (Martini et al., 2010; Paluch et al., 2013),
highly structured stress fibers (Burridge and Guilluy, 2016; Pellegrin et al.,
2007), and a contractile network in the crossover region between protrusion
and cell body (Svitkina et al., 1997). Cortex contractility is likely to play
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a more prominent role in three dimensional environments, where it can lead
to blebbing based migration (Lomakin et al., 2020) or drive migration even
in the absence of protrusion formation (R. Hawkins et al., 2011) while stress
fibre contractility is not essential for mesenchymal cell migration (Burridge
and Guilluy, 2016). Thus, even though cortex contraction and stress fibers
support detachment of focal adhesions in the rear, we focus on the contractile
network in the crossover region as the key contractile unit for mesenchymal cell
migration on 2D substrates, while the role of rear contractility in 3D confined
migration is explored in Chapter 2.

Figure 3.5: Sketch of the overlapping actin networks that generate
contractile forces in the cell. A highly oriented protrusion-associated actin
network overlaps with a disordered, nucleus-associated network. Myosin motors
accumulate in this cross-over region and result in contractile force generation.

To generate a contractile force that pulls the nucleus towards the leading
edge of the cell, myosin motors need to link filaments coming from the front of
the protrusion to filaments associated with the nucleus (Fig. 3.2). Consistent
with this, myosin was found to accumulate in migrating cells in the crossover
region between the cell body and the protrusion (Svitkina et al., 1997) where
the protrusion-associated actin network overlaps with the nucleus-associated
network. Actomyosin contractility can both be found in highly organized struc-
tures like stress fibers as well as in completely disordered actin networks (see
Chapter 2). Nonetheless, the relative orientations of connected actin filaments
controls the orientation and sign of the generated local force dipole (Lenz,
2014). Consequently, highly aligned actin structures such as sarcomeres or
stress fibers, will generate contractile forces along a well defined axis, while
myosin activity in disordered actin networks results in an isotropic contrac-
tion (Schuppler et al., 2016). In the crossover region between protrusion and
cell body, we find a partially aligned network (Small et al., 1995; Svitkina et al.,
1997): At the front of the protrusion, the vast majority of actin filaments is
oriented with their barbed ends towards the front (close to 80%) (Small et al.,
1995; Svitkina et al., 1997). This represents the ideal orientation to generate a
contraction along the nucleus-protrusion axis, since myosin II motors progress
towards the barbed end of an actin filament (Hartman et al., 2012). A smaller
fraction of filaments (about 20%) is oriented orthogonal to the direction of mi-
gration (Small et al., 1995; Svitkina et al., 1997) and is thus not actively con-
tributing to the translocation of the nucleus. In the contractile region between
the protrusion and the cell body, the fraction of these orthogonally oriented
filaments increases, likely due to actin reorientation caused by myosin contrac-
tility (Svitkina et al., 1997). Finally, a small number of filaments is oriented
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with their pointed ends towards the front of the protrusion (Small et al., 1995;
Svitkina et al., 1997), which would in principle result in an extensile local force
dipole (Lenz, 2014). Due to the small number of such extensile configurations
and the fact that filament buckling prevents the long range transmission of
extensile forces in actin networks (Ronceray, Broedersz, et al., 2016), their con-
tribution to the overall contractile force can however likely be neglected. As a
consequence, filaments in the protrusion-associated actin network are predom-
inantly found with their barbed ends oriented towards the protrusion front,
which should result in a strongly directed contraction. Consistent with this,
traction forces at the front of migrating cells are found to be typically oriented
orthogonal to the membrane, pointing towards the cell body (Du Roure et al.,
2005).

This highly oriented protrusion-associated network overlaps with a dis-
ordered nucleus-associated network of mixed orientation (Verkhovsky et al.,
1997). When these two networks are connected by myosin motors, this then
leads to a mix of relative orientations of the connected filaments and conse-
quent force dipoles. The dominant contribution to the contractile force is due
to actin filaments oriented with their barbed ends towards the protrusion front.
This can then lead to two qualitatively different relative orientations: parallel
and anti-parallel. Approximately anti-parallel filaments will generate a pre-
dominantly contractile force dipole along the nucleus-protrusion axis (Lenz,
2014), while approximately parallel filaments will either result in no force or a
contractile force orthogonal to the nucleus-protrusion axis (Lenz, 2014). The
latter will thus not contribute to the nuclear translocation. Hence, the over-
all translocation force actin on the cell body is determined by the number of
anti-parallel actin filaments in the crossover region.

Protrusion growth

To allow a continuous translocation of the cell body, the leading protrusion
needs to constantly expand during migration to stay ahead of the cell body.
This process is driven by actin polymerization: The increased concentration of
Rac1 and Cdc42 near the leading edge of polarized cells leads to a high degree
of actin polymerization toward the cell membrane at the front of the cell.
The pushing of the actin network against the plasma membrane generates a
pressure resulting in an expansion of the cell front (Mogilner and Oster, 1996).
Hence, the rate of actin polymerization and thus the growth velocity of the
cell’s leading edge is determined by the local concentration of actin monomers
as well as the mechanical properties of the actin network (Mogilner and Oster,
1996; Mogilner and Rubinstein, 2005), which both depend on the degree of cell
polarization (Iden et al., 2008). To understand how the actin concentration
and the network mechanics determine the leading edge dynamics, we consider
minimal model for actin force generation against a plasma membrane (Mogilner
and Oster, 1996).

The force generation through actin polymerization relies on continuous in-
sertion of actin monomers at the tip of the filament in a brownian ratchet like
mechanism termed polymerization ratchet (Mogilner and Oster, 1996; Peskin
et al., 1993). This requires however the occurrence of a gap between the tip of
the filament and the plasma membrane generated by stochastic fluctuations of
the length of the filament. As discussed in Chapter 2, actin filaments are easier
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bent than compressed, making it likely that bending is the primary source of
actin length fluctuations (Mogilner and Oster, 1996). In that case, the speed
of protrusion growth vp is given by the balance between actin polymerization
rate kon and depolymerization rate koff at the front of the filament, which can
be written as (Mogilner and Oster, 1996)

vp = δ cos θ (koncap(k)− koff) , (3.12)

where δ denotes the size of an actin monomer, θ is the angle between the actin
filament and the direction of migration, ca is the local concentration of actin
monomers in the cytosol and p(k) is the probability that there is sufficient
space between the filament and the membrane, which is given by (Mogilner
and Oster, 1996)

p(k) =

∫∞
δ cos θ

dxe
k(x−x0)2

2∫∞
0

dxe
k(x−x0)2

2

. (3.13)

Here, x0 is the equilibrium distance between the filament and the membrane
and k denotes the effective spring constant of the actin filament (see Section
2.1).

Eqs. (3.12) and (3.13) suggest that filaments with lower spring constants
k result in higher growth rates. This is however only true if the load that the
membrane exerts onto the actin filament does not exceed the buckling force:
Buckled filaments can hardly withstand any compressive force (Broedersz and
MacKintosh, 2014), strongly decreasing the pressure pushing the membrane
forward, which would result in a collapse of the protrusion. Since both the
effective spring constant k as well as the buckling force Fb decrease with the
length of the filament (see Section 2.1), this suggests that the effect of actin
crosslinking and branching on protrusion growth depends on the load generated
by the membrane: If the load does not exceed the buckling force, crosslinking
and branching will be detrimental to protrusion growth. In the case where the
load does exceed the buckling force however, crosslinking and branching are
essential for protrusion growth as they reduce the unsupported filament length
and thus allow the network to sustain larger compressive forces (Mogilner and
Oster, 1996; Mogilner and Rubinstein, 2005).

To understand which of the two regimes is relevant in the context of cell
migration, we compare typical values of the actin buckling force to membrane
generated forces. As discussed in more detail in Section 2.1, the actin buckling
force Fb can be written as (Broedersz and MacKintosh, 2014)

Fb =
kBT lpπ

2

L2
, (3.14)

where lp denotes the persistence length of the filament and L is the unsup-
ported length of the filament. In the absence of crosslinking, L is simply the
length of the filament. Here, we used Eq. (2.7) together with the fact that
the bending modulus κ can be expressed in terms of the persistence length as
κ = lpkBT (Broedersz and MacKintosh, 2014). Cells show a broad distribu-
tion in actin filament lengths up to ∼15 µm (Small et al., 1995; Svitkina et al.,
1997) (look for another source) and form actin driven protrusions (lamellipo-
dia and filopodia) up to the length of tens of micrometers (Brückner, Schmitt,
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et al., 2022; Caballero, Voituriez, et al., 2014; S. Cheng et al., 2002). Ac-
cording to Eq. (3.14), supporting a protrusion of a length of 10 µm without
crosslinking would limit the compressive forces applied onto an actin filament
by the membrane to Fb ≈ 4 × 10−3 pN at a temperature of T = 300 K and
with lp = 10 µm (Milo et al., 2016). To estimate the corresponding mem-
brane force, we consider the Laplace pressure generated in a lamellipodium
P = τ(R−1

1 +R−1
2 ), where R1 and R2 denote the two principle radii of curva-

ture. Since the height h of a lamellipodium (∼150 nm (Laurent et al., 2005))
is significantly smaller than its width (tens of micrometers (Brückner, Schmitt,
et al., 2022)), we can approximate the Laplace pressure as P ≈ τ/h. Together
with a surface tension of the order of 300 pN/µm (Lieber et al., 2013) and a
minimal membrane area per actin filament of about 50 nm2 (filament diame-
ter 6 nm (Milo et al., 2016)), this yields a minimal membrane force per actin
filament of 0.1 pN, which is orders of magnitude above the buckling force of a
10 µm long actin filament. As a consequence, the maximal protrusion length
that could be supported in the absence of branching, crosslinking and bundling
would be around 2 µm (see Eq. (3.14)), clearly indicating that within cells, the
formation of interconnected actin networks or bundles is essential to protru-
sion growth, in agreement with the observation of connected networks and tight
bundles in lamellipodia and filopodia respectively (Blanchoin et al., 2014; Faix
et al., 2006; Medalia et al., 2002) even though it is debated if the network
structure in lamellipodia is primarily due to branching or crosslinking (Higgs,
2011; Medalia et al., 2002; Urban et al., 2010).

While the physics of actin bundles and filopodia growth were extensively
studied elsewhere (Heussinger et al., 2007; Mogilner and Rubinstein, 2005),
here we focus on lamellipodium growth and thus the case of crosslinked and
branched networks. As discussed above, the growth of lamellipodia involves the
activation of Arp2/3, which plays a crucial role in determining the resulting
actin structure, (see Pollard, Blanchoin, et al., 2000; Pollard and Borisy, 2003
for comprehensive reviews): The WAVE regulatory complex that is activated
at the front of the protrusion combines the assembled Arp2/3 complex with
actin monomers that are integrated in an existing filament, resulting in the
binding of Arp2/3 to the side of the filament (Mullins et al., 1998; Pantaloni et
al., 2000). Upon binding to actin, Arp2/3 initiates the nucleation of new actin
filaments whose pointed end is capped by the Arp2/3 complex. This creates
a rigid connection between the preexisting filament and the newly formed fila-
ment that is characterized by a 70° branching angle. As a consequence, actin
filament orientations are distributed over a broad range of angles with peaks at
±35° (Maly et al., 2001) and the majority of filaments being oriented with their
barbed ends towards the front of the protrusion (Small et al., 1995; Svitkina
et al., 1997). Note that in principle the Arp2/3 induced branching leads to
an explosion of free filament ends, which represent binding sites for globular
actin in the cytosol (Pollard and Borisy, 2003). To avoid complete depletion of
globular actin in the cytosol and thus retain filament growth, capping proteins
bind to barbed ends in the branched network, terminating further growth and
thus limiting the total number of growing filaments (Wear et al., 2004; Weeds
et al., 1993). Additionally, further away from the front of the protrusion, actin
depolymerization occurs at an accelerated rate, supplying new actin monomers
that can be integrated at the front of the protrusion (Pollard and Borisy, 2003).
Apart from branching, crosslinkers lead to additional mechanical connections
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between actin filaments (Blanchoin et al., 2014). Together with filament cap-
ping, this results in mesh sizes in cells of about 30 nm (Bovellan et al., 2014),
strongly increasing the buckling force to about 0.6 nN (see Eq. (3.14)). The
importance of this reduced mesh size and thus increased buckling force can be
seen by the fact that cells that lack the crosslinker filamin display unstable
protrusions (Cunningham et al., 1992). Additionally, branched actin networks
were found to increase in stiffness as they grow under load, which is thought
to be caused by a tighter packing of actin due to filament bending, causing an
increase of the branching angle (Bieling et al., 2016).

Apart from increasing the mechanical support of actin filaments, branching
has another positive effect on actin polymerization compared to the growth of
filopodia and individual actin filaments: Branching induces a tilt of the fila-
ments relative to the membrane. This tilt leads to larger gaps between the
filament tip and the membrane as the filament bends due to thermal fluctua-
tions (Mogilner and Oster, 1996; Mogilner and Rubinstein, 2005). Hence, this
results in a faster filament growth compared to actin filaments that approach
the membrane from a 90° angle (see Eq. (3.12)) and allows growth against
higher membrane forces. Taken together, both the increased concentration of
actin monomers in the cytosol in the absence of RhoA at the leading edge as
well as the mechanical support through branching induced by Rac1 result in a
coupling between the degree of cell polarization and protrusion growth, which
makes cell polarity a key dynamical parameter for protrusion growth and cell
migration (Krause and Gautreau, 2014).

Besides polymerization rate and filament stiffness, also membrane tension is
an important factor controlling protrusion growth as growth is driven by actin
pushing against the plasma membrane (Mogilner and Oster, 1996). Following
the picture of the polymerization ratchet, the membrane tension induces a flow
of actin away from the membrane towards the cell body. The net growth rate of
the protrusion is then given by the balance between the polymerization velocity
and the actin retrograde flow (Sens, 2020). Hence, higher membrane tension
should result in slower protrusion growth. On the other hand, there is recent
evidence for a positive feedback between retrograde flow and cell polarization,
which could increase polymerization rate and thus protrusion growth at the
front of the cell (Maiuri et al., 2015). Additionally, increases in membrane
tension during protrusion growth can inhibit the formation of competing pro-
trusions further stabilizing the leading protrusion (Houk et al., 2012). Taken
together, these results highlight membrane tension as a key parameter control-
ling protrusion growth that couples in a non-trivial way to cell polarity.

Adhesion structure and dynamics

Protrusion growth and thus cell migration as a whole relies on a mechanical
coupling between the actin cytoskeleton and the substrate. In mesenchymal
cell migration, this is realized through integrin based adhesions. These can
take the form of matured focal adhesions that are connected to actin stress
fibers, as introduced above, but also smaller, less mature adhesion complexes
can be sufficient for migration (Burridge, 2017). In particular, migrating cells
in their native, compliant, three dimensional environment display less focal ad-
hesions and associated stress fibers compared to cells migrating on stiff, two
dimensional plastic or glass substrates commonly used in cell migration exper-
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iments (Burridge and Guilluy, 2016). As a consequence, models that describe
two dimensional migration on stiff substrates might exaggerate the role of fo-
cal adhesions for cell migration in physiological conditions. However, focal
adhesions allow us to introduce the key components and concepts underlying
integrin-based adhesion. For this, we briefly describe the structure and dy-
namics of integrin-based adhesion complexes during cell migration and discuss
their interaction with other components of the migration machinery, specifically
actin polymerization, myosin contractility, and cell polarity.

Essential for any adhesion complex that connects the cellular cytoskeleton
to the substrate are transmembrane proteins. The most prominent group of
such transmembrane proteins involved in mesenchymal cell migration are in-
tegrins (S. H. Lo, 2006). Integrins need to be mechanically linked to actin
structures to allow force transmission to the substrate. In focal adhesions
however, even though direct interactions between actin and integrin are possi-
ble (Van Der Flier et al., 2001), there is a spatial separation between integrins
and actin (Kanchanawong et al., 2010), such that direct force transmission is
not possible. This gap is bridged by the linker protein talin, which has binding
sites for both actin and integrins (Critchley, 2009). Talin binding to integrin
further induces a conformational change of integrin, which increases its affinity
for possible extracellular binding partners (Shattil et al., 2010). Consequently,
focal adhesions are organized in a layered structure with integrins at the bot-
tom with a narrow layer of proteins involved in signaling on top. Then follows
the force transduction layer containing talin that is linked to actin structures
in the highest layer (Kanchanawong et al., 2010). This layered structure with
a number of different molecular components allows cells to sense and adapt
their adhesive properties to the mechanical tension transmitted through their
adhesions.

The force-adaptation of cellular adhesions emerges from the interplay of
different mechanosensitive adhesion molecules. For example, integrins behave
as catch-bonds with a peak lifetime at a load of about 30 pN when bound to
fibronectin (Kong et al., 2009) while talin exposes cryptic binding cites upon
stretching, which allows binding of other molecules of the adhesion complex
either involved in signaling or reinforcing the connection to the actin cytoskele-
ton (Ciobanasu et al., 2014; Menkel et al., 1994; Yan et al., 2015). Even though
the molecular details behind the force-adaptation of adhesion complexes are
only partly known, this results in an overall integrin recruitment and adhesion
growth under tension, which is essential for focal adhesion maturation (Bur-
ridge and Guilluy, 2016).

During migration, an asymmetry in focal adhesion assembly and disassem-
bly needs to be sustained by the cell to allow for protrusion growth at the
front of the cell and adhesion detachment at the rear (Broussard et al., 2008).
To do so, cells utilize a combination of mechanical and chemical signaling to
control adhesion formation and detachment. In the cell rear, focal adhesions
are essential to inhibit complete rear retraction and retain a spreaded mor-
phology during migration (Wehrle-Haller, 2012), which is supported by RhoA
induced contractility. On the other hand, adhesions must disengage with the
substrate to allow a translocation of the cell. This is also driven by myosin
contractility in the form of stress fibre contractions (Broussard et al., 2008).
Due to the catch-bond nature of the adhesion bonds, this requires however
a previous destabilization of the focal adhesions to avoid cell rupture Kirfel
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et al., 2004. At the cell front, cells initially form transient, so-called nascent
adhesions near the cell membrane. This process relies on Rac1 and Cdc42
activity (Nobes et al., 1995) and could be supported by the retrograde flow
by engaging the catch-bond property of integrins (Wehrle-Haller, 2012). In-
terestingly, this process does however not rely on myosin contractility (Choi
et al., 2008), which only comes into play as these transient adhesions mature
into more stable focal adhesions (Burridge and Guilluy, 2016; Riveline et al.,
2001). Over time, the contractile forces move the focal adhesions towards the
cell body, where they largely disassemble (Digman et al., 2008; Rid et al., 2005;
Wehrle-Haller, 2002). Overall, adhesions represent a mechanical anchor for the
actin cytoskeleton that supports actomyosin-driven contractility and inhibits
retrograde flow thus allowing protrusion growth.

The role of adhesion complexes during cell migration is conceptualized in
the molecular clutch model (Chan et al., 2008). There, the mechanical coupling
between the actin cytoskeleton and the substrate is modeled as an elastic spring
that is permanently attached to the substrate and can bind to and unbind
from actin filaments with rates kon and koff , respectively. As the actin moves
towards the cell body with the retrograde flow velocity vr, bound elastic springs
get stretched until they unbind from the actin filament. The rate with which
the stretching occurs depends on the compliance of the substrate, with slower
loading on softer substrates. The unbinding rate koff and thus the average
extension of a bound spring generally depends on the load on the bond and
either decrease (slip-bonds) or increase (catch-bonds) with increased stretching.
The interactions between adhesion bonds and actin filaments either give rise
to a constant, friction like force or oscillatory loading and failure, depending
on the substrate stiffness (Chan et al., 2008) and the binding and unbinding
rates (Sens, 2020). This then gives rise do different migration morphologies. To
capture more detailed aspects of how substrate stiffness modifies the friction
between the actin retrograde flow and the substrate, more detailed effects,
such as load-dependent talin unfolding and consequent adhesion reinforcement,
can be easily integrated in this simple framework (Elosegui-Artola, Oria, et
al., 2016). Overall, the frictionlike effect of adhesion binding and unbinding
makes adhesion complexes an essential component of the cellular migration
machinery as they allow both, adhesion expansion as well as rear retraction in
a polarization dependent manner.

3.3 A general, bottom-up model for confined cell
migration

It is astounding that despite the immense molecular complexity of the migra-
tion machinery, the emergent migration behavior can be captured in a simple
conceptual picture such as the four-step process and relatively simple phe-
nomenological and data driven models (Brückner and Broedersz, 2023; Ca-
ballero, Comelles, et al., 2015). This difference between molecular and behav-
ioral complexity did however result in the paradoxical situation that despite
the extensive knowledge of the cell migration process that is based on more
than a century of research, there is a substantial fragmentation when it comes
to modeling approaches (Danuser et al., 2013; Edelstein-Keshet et al., 2013).
This is partially driven by the amount of information that is available in the
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field, which allows for a myriad of modeling approaches on many different levels
of detail, ranging from microscopic models for subcellular processes (Danuser
et al., 2013) to coarse-grained models which treat cells effectively as point par-
ticles (Selmeczi, Li, et al., 2008). All of these approaches made important
contributions to the field. Nonetheless, both approaches come with their own
limitations: Models that describe detailed molecular dynamics are difficult to
constrain from migration data due to the large number of parameters that
these models consist of. Models that do acknowledge the emergent character
of cell migration however rely typically on phenomenological or data-driven
approaches (Brückner and Broedersz, 2023; Selmeczi, Li, et al., 2008). As a
consequence, these models are typically not generalizable and are unable to
predict the effect of different cellular environments, drug treatments, or differ-
ences between different cell lines on the observed migration behavior, resulting
in different models for each substrate or cell line (see Section 3.1). Thus, a mod-
eling approach that is able to connect the simple, emergent migration behavior
to the underlying molecular processes is needed.

Due to the extensive characterization of the migration behavior on two-state
patterns that was previously done in our group (Brückner, Fink, Schreiber, et
al., 2019; Brückner, Schmitt, et al., 2022; Brückner, Fink, Rädler, et al., 2020),
these represent an ideal system to attempt connecting a bottom-up model to
top-down models before subsequently generalizing our model to other sub-
strates. From (Brückner, Schmitt, et al., 2022), it is apparent that protrusion-
growth plays an essential role in the interaction of the cell with its microenvi-
ronment, guiding the overall migration behavior. Guided by that observation
and in line with the four-step process discussed above, our model focuses on
actin polymerization against the cell membrane and the consequent retrograde
flow, adhesion bonds with the substrate, the contractile link between protru-
sion and nucleus, and the interplay between actin polymerization and cell po-
larity (Fig. 3.6). To construct such a model, we build on existing models for
one-dimensional mesenchymal migration with protrusions on both sides of the
nucleus (Lavi et al., 2016; Ron et al., 2020; Sens, 2020). These models treat
the mechanical coupling between nucleus and protrusion however only heuris-
tically by introducing an elastic coupling between nucleus and protrusion that
was attributed to the effective material properties of cells. The force acting
onto the nucleus did thus only depend on the length of the protrusion, while
other factors of the cellular microenvironment were not accounted for. As a
consequence, they are not directly applicable to describe cell migration on sub-
strates with a more complex two-dimensional geometry. To generalize these
models to arbitrary geometries, we thus start by deriving an expression for the
protrusion force in terms of the protrusion’s dimensions that are determined
by the geometry and the adhesive properties of the substrate.

In the protrusion, membrane tension (membrane force fτ ) generates a ret-
rograde flow (velocity vr) of actin towards the cell body that is reinforced by
myosin contractility (force fc) in the crossover region between protrusion and
cell body (see Section 3.2). The sum of membrane and contractile forces is
balanced by the viscous drag of actin filaments in the cytosol (drag coefficient
ζa0 ) and the adhesion force fad that arises from the binding kinetics of adhesion
bonds to the actin filaments (Fig. 3.6A), such that

ζa0 vr + fad = fc + fτ . (3.15)
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Figure 3.6: Components of the migration model (taken from Flommers-
feld et al., 2023). A. Side view with key molecular components. The stochastic
(un)binding of adhesion molecules with rates kon/off gives rise to effective fric-
tion coefficients of protrusion (ζa) and nucleus (ζn). Actin polymerizes at the
edge of the protrusions (rate rp) and depolymerizes near the nucleus (rate rd).
Polarity cues transiently bind to actin with rates κcon and κcoff . B. Top view
on unisotropic substrate. The retrograde flow (velocity vr) is driven by myosin
contractility (fc) and membrane forces (fτ ). Confinement-induced actin align-
ment (angle θ) stimulates protrusion growth, resulting in increased membrane
tension and retrograde flow.

The force that is exerted by the adhesion bonds in the protrusion is given
by fad = ρb〈nfb〉`rwp, where ρb is the total surface density of bonds, n is
the fraction of bound bonds, fb is the force per bond, wp is the width of
the protrusion and `r is the region at the front of the protrusion over which
the retrograde flow is concentrated. Following Sens, 2020, we approximate
〈nfb〉 ≈ n〈fb〉 and use 〈fb〉 = kbvr/koff(fb), which leads to

fad =
ρb`rkbn(fb)wp

koff(fb)
vr = ζa1 (fb)vr, (3.16)

where kb is the effective spring constant associated with adhesive bonds and
koff(fb) denotes the bond’s (load-dependent) unbinding rate. Overall, the col-
lective binding and unbinding dynamics of the adhesion bonds result in an
effective friction force. We can thus rewrite Eq. (3.15) as

ζavr = fc + fτ , (3.17)

with ζa = ζa0 + ζa1 (fb).
To find the myosin generated contractile force, we build up on our discus-

sion of actomyosin contractility inside cells in Section 3.2: Myosin generates a
contractile force by traversing counter-oriented actin filaments inside the net-
work in the crossover region between protrusion and cell body and the overall
contractility is determined by the number of actin filaments associated with
both the nucleus and the protrusion. While we have no reason to believe that
the number of nucleus-associated filaments is sensitive to the cellular environ-
ment, the number of protrusion-associated filaments in the crossover region is
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determined by the influx of new actin filaments due to the retrograde flow and
the depolymerization rate rd. The total rate of influx of actin from a protru-
sion of width wp is then given by ρbwp`r〈Nb〉−1vr/`a, where 〈Nb〉 denotes the
average number of adhesion bonds per actin filament and `a is the size of an
actin monomer. The prefactor ρbwp`r/〈Nb〉 accounts for the fact that protru-
sion associated actin needs to be mechanically connected to the substrate to
support force transmission between the front of the protrusion and the nucleus.
In the crossover region, we expect the retrograde flow to cease, making depoly-
merization the main driver of actin filament loss in the contractile region. The
total number of protrusion-associated actin filaments in the crossover region at
steady state is thus given by

Np
F (vr) =

vrρbwp`r
rd`a〈Nb〉

. (3.18)

Together with the number of antiparallel oriented, nucleus-associated filaments
Nn
F and the total number of myosin motors rmρm, where rm denotes the myosin

interaction radius and ρm is the myosin line density, we can then write the
number of contractile actomyosin configurations Nam as

Nam = n||rmρmN
n
FN

p
F (vr) = ÑF ρbρmwpvr, (3.19)

where n|| denotes the fraction of incoming actin filaments oriented parallel
to the nucleus-protrusion axis and we introduced the geometry-independent
parameter ÑF = n||N

n
F rm`r/(`ard〈Nb〉). The total contractile force is then

simply given by

fc = ÑF ρbwpρmfmvr =
ÑF ρbρmwpfm

ζa − ÑF ρbρmwpfm
fτ , (3.20)

where fm denotes the force generated by an individual myosin filament. Phys-
ically, larger membrane forces increase the retrograde flow, which elevates the
actin density in the crossover region resulting in an increasing contractility
(Figs. 3.6B).

This leads to a coupling between myosin contractility and the membrane
force. Hence, to find an expression for the contractile force in terms of the
protrusion dimensions, we require an expression for the membrane force fτ .
For this, we consider the formation of a protrusion of length Lp, height hp,
and width wp � hp (Laurent et al., 2005; Shahapure et al., 2010). The
resulting increase in surface area is opposed by the membrane force fτ =
2(hp+wp)τ ≈ 2wpτ . Interestingly, for constant surface tension τ the contractile
force is independent of protrusion length (Eq. (3.20)), which is incompatible
with protrusion-guided migration and in particular the data driven model in
Brückner, Schmitt, et al., 2022. The surface tension of cells can however vary
with surface area (Gauthier et al., 2011; Houk et al., 2012; Roffay et al., 2021)
for which we account by introducing an area dependence of the membrane ten-
sion, resulting in τ = τ0+2τ1Lp/hp, with parameters τ0 and τ1. The membrane
force is then

fτ = 2wpτ0 +
4τ1
hp

wpLp. (3.21)

The first term is due to the baseline membrane tension, which should be bal-
anced by the internal cytosolic pressure, such that only the second term con-
tributes to the mechanical coupling between nucleus and protrusion in terms
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Figure 3.7: Effect of the retrograde flow on the overall contractility
and polarization. A. The retrograde flow velocity vr determines the actin
concentration in the crossover region and thus the contractile force. Protrusion
growth leads to an increase in membrane tension τ and thus retrograde flow,
resulting in an increased contractility further increasing the retrograde flow.
B. The retrograde flow advects a polarity cue that can bind to and unbind
from actin with rates κcon and κcoff , respectively. If strong enough, this leads
in an accumulation of polarity cue in the shorter side of the cell, where it
inhibits actin polymerization, resulting in a reinforcement of cell polarity that
is countered by diffusion of the polarity cue.

of the contractile force (Eq. (3.20))

fc =
4τ1ÑF ρbρmwpfm(

ζa − ÑF ρbρmwpfm
)
hp
wpLp = kcLp. (3.22)

In general, the effective spring constant kc depends on the the contractile
force itself through the myosin load-velocity relation (Howard, 2005b) and
the mechanosensitivity of the adhesion bonds. Considering that the typical
nuclear velocities found during mesenchymal cell migration (< 30nm/s (B.
Amiri et al., 2023; Brückner, Fink, Schreiber, et al., 2019; Gupton et al.,
2006)) are at least an order of magnitude below the unloaded myosin velocity
(200 − 800nm/s (Howard, 2005c)), it appears however reasonable to approxi-
mate the force generated per myosin filament fm by the myosin stall force fs.
Further, Brückner, Schmitt, et al., 2022 found that a non-linear coupling be-
tween nucleus and protrusion did not significantly improve the agreement with
experimental data. This suggests that in our case also the mechanosensitivity
of the adhesion bonds can be neglected for a model that describes the popula-
tion averaged migration behavior, such that we use n = n0 and koff = k0

off in
the expression fro ζa. Finally, we expect the focal adhesions are the dominant
contribution to ζa due to the importance of focal adhesions for the formation of
intact lamellipodia (Damiano-Guercio et al., 2020) and thus neglect the viscous
contribution ζa0 , such that overall ζa ≈ ζa1 (0) (a more detailed discussion of the
effect of a force dependence of kc can be found in (Flommersfeld et al., 2023)).
This leaves us with a linear elastic coupling between nucleus and protrusion,
which has been assumed in several migration models (Brückner, Schmitt, et al.,
2022; Ron et al., 2020; Sens, 2020). In our model, this elastic coupling emerges
from the interplay between increased membrane tension, retrograde flow, and
myosin contractility (Fig. 3.7A).

This result, together with Eq. (3.17) allows us to express the retrograde
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flow velocity in terms of the protrusion dimensions and since the velocity of
the front of the protrusion is given by the difference between the (projected)
polymerization velocity and the retrograde flow velocity, the velocity left/right
protrusion is given in terms of its position x`/r as

ẋ`/r = −
k`/r(x`/r)

ζa(x`/r)
(x`/r − xn)∓ `aS`/rrp(x`/r), (3.23)

where we substituted Lp = x`/r − xn, introduced the order parameter S`/r =
〈| cos(ϑ`/r)|〉 that measures the average orientation of actin filaments (Fig. 3.6B),
and k`/r(x`/r) = kc(x`/r)+4τ1wp(x`/r)/hp. The protrusion dynamics then de-
termine the nuclear dynamics through the balance of the two protrusion forces
(Eq. (3.22))

ẋn =
kc(x`)

ζn(xn)
(x` − xn) +

kc(xr)

ζn(xn)
(xr − xn). (3.24)

Where the nuclear friction coefficient ζn is defined analogously to the friction
experienced by the actin retrograde flow as ζn = ζn0 + ζn1 (0)), with ζn1 (0) =
ρb`nkbn0wn/k

0
off . Since the nucleus is much larger than the actin filaments,

it is less clear if the internal friction can be neglected. Hence, we account for
both contributions in the expression for ζn.

To be able to evaluate Eq. (3.23) we require an expression for the polymer-
ization rate rp, which depends on the local concentration of certain polarity
cues (Rappel et al., 2017). Following previous work (Lavi et al., 2016; Maiuri
et al., 2015), we account for this process by considering a generic back-polarity
cue that can be advected by the actin retrograde flow and inhibits actin poly-
merization (Fig. 3.7B). Beyond those two requirements our model does not rely
on other, specific properties of the polarity cue. Hence, there are a number of
different biological candidates for such a polarity cue. The best supported and
most natural candidate would be myosin II, other proteins can however also
not be excluded such as RhoA (see Flommersfeld et al., 2023 for a more de-
tailed discussion). Here, we thus stick to the notion of an abstract polarity cue
that could either have a direct biological correspondent or could summarize
the effect of a number of different polarity markers.

Since the polymerization rate depends on the local polarity cue concen-
tration c, we first need to analyze the dynamics of c in the two protrusions.
For that, we consider the difference in the average concentration between the
two halves of the cell ∆c = cr − c`, where c`/r is the concentration to the
left/right of the nucleus. The polarity cue binds to and unbinds from actin
filaments with rates κcon and κcoff and is thus advected with the retrograde flow.
The advective flux between the two parts of the cell is then ∆vrncc0, where
∆vr = vr(xr)− vr(x`), nc = κcon/(κ

c
on + κcoff) is the bound fraction of polarity

cue, and c0 is the average cue concentration in the cell. Together with diffusion
of the polarity cue in the cytosol, the flux between the two cell parts is then

J(x, t) = −(1− nc)D̃∂xc(x, t)−∆vrncc0 + σ̃ξ(t), (3.25)

with the diffusion constant D̃. Guided by the structure of the data-driven
model in Brückner, Schmitt, et al., 2022, we assume that the polarity to be
the dominating source of noise in our model. We account for this through
the Gaussian white noise ξ(t) of strength σ̃. To simplify the treatment of
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the polarity cue and since we are only interested in the average concentration
difference between the two sides of the cell. To obtain the flux through the
center plane of the cell J0(∆c, t), we approximate ∂xc ≈ ∆c/Lc, which leads to

J0(∆c, t) ≈ −(1− nc)D̃L−1
c ∆c− ncc0∆vr + σ̃ξ(t). (3.26)

To find a equation for the dynamics of the local polarity cue concentration,
we use the continuity equation

∂c(x, t)

∂t
= −∂J0(x, t)

∂x
, (3.27)

which, together with no-flux boundary conditions at the front of the protru-
sions, describes the concentration profile along the entire long axis of the cell.
Due to the boundary conditions, the only flux of polarity cue in or out of the
two halves of the cell is through the midplane (Fig. 3.7). The flux for each half
of the cell then gives

∂cr(t)

∂t
≈ −0− J0

Lc/2
= 2L−1

c J0 (3.28)

and
∂c`(t)

∂t
≈ −J0 − 0

Lc/2
= −2L−1

c J0. (3.29)

Using ∆c = cr − c`, we then get an approximate expression for the dynamics
of ∆c in a cell with no-flux boundary conditions

∂∆c

∂t
≈ 4J0(∆c, t)

Lc
≈ −D∆c(t)− 4ncc0

Lc
∆vr(∆c) +

4σ̃

Lc
ξ(t), (3.30)

with D = 4(1− nc)D̃L−2
c .

To express Eq. (3.30) in terms of the actin organization in the protrusion,
we note that at steady state, the retrograde flow equals the projected polymer-
ization velocity (see Eq. (3.23)), such that ∆vr(∆c) = `aSrrp(xr)−`aS`rp(x`).
To find a leading order description of the dynamics of ∆c, we then split rp in
an even (r′p) and an odd (r′′p ) part in ∆c. Together with c(x`/r) = c0∓∆c(t)/2,
we then get

∆vr(∆c) = `ar
′
p(∆c)(Sr − S`) + `ar

′′
p (∆c)(Sr + S`). (3.31)

The even term in ∆c acts as a bias, which dilutes the side of the cell in which
the actin filaments are more aligned with the direction of migration. Due to
this simple effect on the concentration dynamics, we do not expect the detailed
functional dependence of r′p to play a qualitative role and thus only keep the
leading order term, such that r′p ≈ rp(c0). The odd term, however, will either
oppose or reinforce the concentration gradient depending on its sign. Since
we assume that the back-polarity cue inhibits actin polymerization and thus
retrograde flow, we expect the odd term reinforces the concentration gradient
to leading order. To ensure that ∆c remains bound, we expand r′′p up to third
order, such that r′′p (∆c) ≈ −r1∆c+ r3∆c3, with r1/3 > 0. From this we get

∆vr(∆c) = `arp(c0)(Sr − S`)− `ar1(Sr + S`)∆c+ `ar3(Sr + S`)∆c
3 (3.32)
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To align our notation with Brückner, Schmitt, et al., 2022, we introduce the
polarization P (t) ≡ −P0∆c(t), which is determined by

Ṗ = −αP − βP 3 + δ (Sr − S`) + σξ(t), (3.33)

with σ = −4P0σ̃L
−1
c , δ = 4P0ncc0L

−1
c `arp(c0), α = D−4ncc0L

−1
c `ar1 (Sr + S`),

and β = 4P−2
0 ncc0L

−1
c `ar3(Sr + S`). To couple Eq. (3.33) to Eq. (3.23), we

account for the leading order effect of the polarity on the polymerization rate
through rp(t) = rp(c0) + r1P

−1
0 P (t). The resulting mechanistic model given

by the closed set of Equations (3.23), (3.24), and (3.33) describing protrusion-
driven 1D cell migration is illustrated in Fig. 3.8.

Figure 3.8: Schematic representation of the model. The two protrusion
coordinates are driven by polarization dependent polymerization rate rp(P )
and are connected to the nucleus through linear elastic springs. Both the
protrusion coordinate and the nuclear coordinate are subject to a friction force
that accounts for the interactions with the substrate and in the case of the
nucleus with the cytosol.

3.4 Migration and decision making in lateral
confinement

In the following, we will apply this general model to migration on concrete
substrates for which further specification of the dependence of model parame-
ters on the substrate’s physical properties and geometry is needed. To do this,
we utilize both bottom-up considerations and insights that were obtained from
top-down models when available.

For this, we start with cells migrating on dumbbell shaped two-state pat-
terns, where the cells are exposed to lateral confinement as they migrate from
one island to the other (Fig. 3.1D). This system was previously analyzed ex-
tensively in our group and multiple data-driven models were developed for
it (Brückner, Fink, Schreiber, et al., 2019; Brückner, Schmitt, et al., 2022). A
key insight of these studies was that confinement stimulates protrusion growth
and cell polarization resulting in an overall acceleration of the cell. A mecha-
nistic explanation for this phenomenon on the molecular level is however still
lacking. We start by proposing such a mechanism and show that the data-
driven models can be re-derived from our bottom-up model. In contrast to the
models in (Brückner, Fink, Schreiber, et al., 2019; Brückner, Schmitt, et al.,
2022) the bottom-up model can however be generalized more easily to other
geometries, which we demonstrate by applying it to a chain of square-shaped
islands that are connected by bridges of varying width. In this geometry, cells
on an island can choose between two channels of different width. We analyze
how the cellular decision making depends on the pattern widths as well as on
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different model parameters that characterize the adhesiveness of the pattern
as well as the contractility and polarity of the cell.

Bridging the gap to data-driven models on two-state patterns

We account for the geometry of the two-state pattern in our model by not-
ing that the actin organization is a key determinant of protrusion growth and
cell polarity in Eqs. (3.23) and (3.33) through the order parameter S`/r. In
the absence of confinement, actin branching (Mullins et al., 1998) and ran-
dom fluctuations lead to a range of filament orientations (Small et al., 1995;
Svitkina et al., 1997). In confinement however, we expect the distribution of
orientations to be reduced (Fig. 3.9A), either through direct geometric con-
straints for filaments longer than the pattern width or through propagation
of a preferred orientation over a correlation length scale from the edge of the
confined protrusion into the bulk through alignment interactions, as in liquid
crystals (Fürthauer et al., 2019; Lee et al., 1971; Saintillan et al., 2013).

Figure 3.9: Cell migration in lateral confinement (adapted from Flom-
mersfeld et al., 2023). A. Lateral confinement of the protrusion leads to actin
filament alignment. B. Fit of the analytic expression for α on dumbbell-
shaped patterns to the values reported in Brückner, Schmitt, et al., 2022. C.
Lateral confinement induces spontaneous polarization of the cell. For homo-
geneous confinement (upper), both polarization directions are equally likely.
For asymmetric confinement (lower), polarization is biased in the direction of
stronger confinement. D. Fit of the analytic expression for ζn(wc)/ζn(wcell) on
dumbbell-shaped patterns to the values reported in Brückner, Schmitt, et al.,
2022.

To account for such boundary-induced alignment, we assume that the order
parameter S increases with confinement as S = 1− sw2

p, where s > 0 accounts
for the strength of actin alignment interactions. From this we find an analytic
expression for α (Eq. (3.33)) as a function of protrusion width:

α(wp,`, wp,r) = D − 4ncc0L
−1
c lar1(2− sw2

p,r − sw2
p,`). (3.34)

This expression presents a mechanistic explanation for the geometry-adaptation
phenomenon found in Brückner, Schmitt, et al., 2022: With increasing con-
finement α becomes negative, inducing a self-reinforcement of the polarity and
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consequently protrusion growth. This qualitative change arises from the com-
petition between advection and diffusion that is summarized by the right hand
side of Eq. (3.34). In the absence of confinement, actin polymerization is less
directed, resulting in slower protrusion growth and a lower retrograde flow such
that diffusion in the cytosol is fast enough to dominate the advection of the
polarity cue. In confinement however, the increased actin alignment results
in faster protrusion growth and thus faster retrograde flow, which leads to
a reinforcement of the polarity. To test if the channel width dependence in
Eq. (3.34) agrees qualitatively with the channel width dependence of α found
from fitting experimental data, we fit α(wcell, wc) for an unconfined cell (width
wcell) entering a confining channel (width wc) with its leading protrusion to
the parameter values found in Brückner, Schmitt, et al., 2022, which leads to
an excellent agreement (Fig. 3.9B). In particular, our model correctly predicts
the observed non-linear dependence of α on pattern width.

When comparing Eq. (3.33) to Eq. (3.11), we do however find that our model
contains an additional term δ (Sr − S`) that vanishes when the cell migrates in
uniform confinement but biases polarization towards the confined side in a case
of asymmetric confinement as found on dumbbell-shaped patterns (Fig. 3.9C).
As a consequence, in our model cells that protrude into the channel are more
likely to polarize towards the channel, while both polarization directions are
equally likely in Brückner, Schmitt, et al., 2022. For the population-averaged
migration statistics on the dumbbell-shaped patterns, this is likely to only have
a small effect, but when cells encounter asymmetric confinement that we will
discuss later, we will see that this plays an important role for the cellular
decision making.

A second group of parameters that depends in general on pattern width
are the effective spring constants and friction coefficients. Interestingly, in
Brückner, Schmitt, et al., 2022 the nuclear friction coefficient does depend on
channel width, while the friction coefficient of the protrusion is independent
of the geometry. Also here, our bottom-up model can give insights into this
difference in their channel width dependence. When unconfined, the nuclear
friction is determined by the unconfined width of the cell body wcell, such
that ζn(xn) = ζn(wcell) (see Eq. (3.24)). If a cell migrates however into a
confinement of width wc that is narrower than the width of the cell, the nuclear
friction will gradually decrease until the entire nuclear region is confined to the
width wc. To isolate the effect of the confinement and simplify the comparison
to Brückner, Schmitt, et al., 2022, we rewrite the nuclear friction coefficient
as ζn(xn) = γ(xn)ζn(wcell), with γ(xn) = ζn(xn)/ζn(wcell). We are mostly
interested in the minimal value of γ when the nuclear region is completely
confined, which is then given by

ζn(wc)

ζn(wcell)
=

1 + ρb`nkbn0/(k
0
offζ

n
0 )wc

1 + ρb`nkbn0/(k0
offζ

n
0 )wcell

. (3.35)

We fit Eq. (3.35) to the values reported in Brückner, Schmitt, et al., 2022,
finding an excellent agreement between our analytic expression and the fitted
parameter values at different confinement widths (Fig. 3.9D). To account for
the gradual decrease of γ(xn) as the nucleus moves into the bridge, we follow
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Brückner, Schmitt, et al., 2022 and use

γ(xn) =
ζn(wc)

ζn(wcell)
+

1

2

(
1− ζn(wc)

ζn(wcell)

)(
1− cos

(
2π(xn − xcenter)

L

))
, (3.36)

where xcenter denotes the center of the confinement and L is the period of the
pattern. Further, our model also gives insight into the geometry independence
of the protrusion friction found in Brückner, Schmitt, et al., 2022. While cells
can form more adhesions on wider or more densely coated adhesive patterns,
wider protrusions also lead to larger contractile forces through the pattern
width dependence of kc (Eq. (3.22)). Consequently, on substrates with ho-
mogeneous adhesiveness, k`/r/ζa is independent of protrusion width and thus
identical on both sides of the cell. Hence, the fact that both k and the friction
coefficient of the protrusion ζp in Eq. (3.10) are independent of the channel
width can be interpreted as a cancelation of the channel width dependence of
both parameters.

Note that there are however differences between the two models when it
comes to the effective spring constants. First, in Brückner, Schmitt, et al.,
2022, both the protrusion and the nucleus are subject to the same spring con-
stant and it is just the difference in friction coefficients that leads to differences
in the rescaled spring constants k/ζn,p. In contrast, our model predicts that
the protrusions are subject to an additional membrane force that does not act
onto the nucleus, resulting in a difference between the effective spring con-
stants kc and k`/r. This difference can however be absorbed into the values of
the friction coefficients, such that this does not affect the model qualitatively.
More importantly however, while the model in Brückner, Schmitt, et al., 2022
assumes geometry independent spring constants k, our model predicts that the
pattern width dependence of kc does not cancel out and could thus play a role
for the migration behavior. Based on Brückner, Schmitt, et al., 2022, it seems
however as if this width dependence does not play an important role on two-
state patterns. A possible reason for this could be the strong fluctuations of the
protrusion coordinate and thus also the protrusion width, which determines the
value of kc. On patterns with narrower channels, we expect the rate with which
cells protrude into the channel to be smaller purely for geometric reasons, such
that cells mostly form unconfined protrusions on the islands. Thus we expect
the average value of kc to be significantly larger than kc(wc). On wider pat-
terns, cells protrude more often into the channel, such that the average value
of kc is closer to kc(wc). This could result in a relatively weak pattern width
dependence of the average spring constant 〈kc〉, which could explain why a con-
stant spring constant was sufficient in Brückner, Schmitt, et al., 2022. Later,
we will however discuss the migration behavior of cells that can decide between
channels of different widths, where we will see that the geometry dependence
of kc does have an important role for the cellular decision making.

Finally, comparing the expressions for the protrusion dynamics found here
and in Brückner, Schmitt, et al., 2022 (Eqs. (3.23) and (3.10)), we see that
Eq. (3.23) does not include an explicit expression that could be associated
with the confining potential V (xp) in Eq. (3.10). Instead, this can be captured
through a geometry dependence of the polymerization rate. As discussed in
Section 3.2, protrusion growth through actin polymerization requires the an-
choring of actin filaments to the substrate through focal adhesions. Outside
of the coated micropattern, this is however not possible, making it impossible
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for cells to form protrusions of significant length beyond the boundaries of the
pattern. We account for this by simply setting the polymerization rate to zero
if a protrusion reaches beyond the boundaries of the pattern, resulting in a
similar confining effect as V (xp).

Overall, we see that our bottom-up model is not only able to reproduce a
number of key results that were previously found with data-driven approaches,
but that we can also provide a mechanistic understanding of the observed
phenomena, in particular the geometry-adaptation of the migration behavior.
Beyond that, this approach allows us to derive analytic expressions for the
pattern width dependence of a number of key model parameters, which on the
one hand allows us to easily generalize our model to other pattern geometries
without having to fit our model to new experimental data and on the other
hand, this drastically reduces the number of parameters, since the entire pat-
tern width dependence of the model can now be captured in a few parameters
that characterize the pattern width dependence instead of having different,
independent parameter values for every geometry.

To bridge the remaining gap between our model and the model found
in Brückner, Schmitt, et al., 2022, we consider the dynamics of a single, ef-
fective, experimentally defined protrusion coordinate that emerge from the
dynamics of the two protrusions in our bottom-up model. The protrusion
coordinate in Brückner, Schmitt, et al., 2022 is defined as

xp =
∆x`x` + ∆xrxr

∆x` + ∆xr
, (3.37)

where ∆x`/r denotes the growth of the respective protrusion between two con-
secutive experimental observation times spaced by ∆t. While ∆x`/r exhibit
an intricate position and time dependence, we can at least find the model
in Brückner, Schmitt, et al., 2022 as an approximation of our bottom-up model:
Assuming that the dynamics of ∆x`/r are slower than the dynamics of x`/r,
we approximate the dynamics of the protrusion coordinate as

ẋp = − k

ζa
(xp − xn) +

∆xr
∆xtot

`aSrrp(xr)−
∆x`

∆xtot
`aS`rp(x`), (3.38)

where k = k` = kr and ∆xtot = ∆x`+∆xr. Eq. (3.38) contains a simple elastic
coupling of the protrusion coordinate and the nucleus together width a com-
plex dependence on the projected polymerization velocities on both sides of the
cell. The polymerization terms are phenomenologically captured in Brückner,
Schmitt, et al., 2022 by introducing a confinement potential that can be inter-
preted as the outer boundaries of the micropattern prohibiting further actin
polymerization and a polarization force P (t) that essentially follows Eq. (3.33)
without the additional bias term discussed above. When simulated, both mod-
els lead however to a qualitatively similar transition behavior (see Fig. 3.10).
Next, we consider the nuclear dynamics and use kc(x`/r) ≈ 〈kc(x`/r)〉 together
with as discussed above to rewrite Eq. (3.24) as

ẋn ≈ γn(xn)−1kn(x` + xr − 2xn), (3.39)

In the limiting case of strongly polarized cells, e.g. towards the right we get
∆x` + ∆xr ≈ ∆xr, such that x` ≈ xn and xr ≈ xp. We thus find x` +
xr − 2xn ≈ xp − xn. Similarly, in the case of a completely unpolarized cell,
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Figure 3.10: Dynamics of the two protrusion model for varying bridge
widths (4µm, 7µm, 12µm, 22µm and 35µm) (taken from Flommersfeld
et al., 2023). A. Example trajectories. B. Nuclear velocity maps. C. Joint
probability densities.

∆xr = ∆x` and thus x` + xr = 2xp. At the same time, xp ≈ xn, such that
again x` + xr − 2xn ≈ xp − xn. Hence, in those two limiting cases we recover
the nuclear dynamics found in Brückner, Schmitt, et al., 2022.

In Brückner, Schmitt, et al., 2022, it was also shown that the structure of
the drift term F (xn, vn) of the effective underdamped description in Brückner,
Fink, Schreiber, et al., 2019 (Eq. (3.8)) arises from the interplay between the
nucleus, the effective protrusion coordinate xp, and the cell polarity. This
allows us to bridge the entire gap from our bottom-up model to the top-down
description of the migration dynamics on the level of an underdamped Langevin
equation.

Cellular decision making in asymmetric confinement

Apart from connecting the emergent, overall migration behavior to underly-
ing molecular processes, once constrained from data and with the help of a
top-down model, our bottom-up approach also allows us to predict cellular
migration behavior on different substrates. To demonstrate this, we consider
the role of lateral confinement in a different geometry (Fig. 3.11A). There, cells
can migrate on a chain of square-shaped islands that are connected by channels
of increasing width, such that cells on an island encounter different degrees of
lateral confinement on both sides of the nucleus (Fig. 3.11B). As a consequence
of this asymmetry, while in the case of the two-state pattern, the bias term in
Eq. (3.33) and the width dependence of kc (Eq. (3.22)) could be neglected, here
we expect them to play an important role in the cellular decision making.

In particular, we expect that confinement has opposing effects on the pre-
ferred direction of migration. On the one hand, confinement-induced actin
alignment stimulates polarization towards the narrower channel (Eq. (3.33)).
On the other hand, the contractility decreases with confinement, due to kc be-
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Figure 3.11: Cellular decision making with asymmetric protrusions
(adapted from Flommersfeld et al., 2023). A. Sketch of the substrate geometry.
Cells migrate on a chain of islands that are connected by bridges of increasing
width. B. Illustration of the protrusion driven cellular decision making. Cells
form protrusions of different width on both sides of the nucleus. This affects
cell polarity as well as contractility. C. Predicted migration bias of a cell seeded
on an island with two adjacent, infinitely long channels of different widths. pr/`
denotes the probability that the cell migrates into the right/left channel.

ing proportional to the pattern width wp (Eq. (3.22)). We do however expect
this second effect to saturate at some point for a number of reasons: First, once
the pattern is wider than the unconfined width of the protrusion, the force gen-
eration will be independent of the pattern width. Second, at some point all
available actin and myosin in the protrusion are involved in the contraction,
such that even if the protrusion is wider, it is not possible to use more actin
and myosin in the protrusion. Finally, if the protrusion is significantly larger
than the nucleus, only a part of it might be mechanically linked to the nu-
cleus and thus contributing to the nuclear translocation. To account for such
a mechanism, we thus use

kc(wp) =

{
wp
wsat

kfree
c , wp < wsat

kfree
c , else

, (3.40)

where kfree
c denotes the effective spring constant of an unconfined cell and the

free parameter wsat is the width at which the pattern width dependence of
the effective spring constant saturates that needs to be determined through
comparison with experimental data. For wp < wsat, we do however expect a
net force away from confinement in unpolarized cells. To demonstrate this, we
consider cells that can choose between two infinitely long channels of different
width. In that case, our model predicts then that the preferred migration
direction depends on the two channel widths and transitions from favoring
wider to narrower channels with increasing width (Fig. 3.11C). Applied to the
experimentally more relevant scenario of migration on island chains, we expect
a transition from a bias towards the right (wider) channel at narrow channel
widths to a bias towards the left (narrower) channel at wide channel widths,
which we indeed observe experimentally for two different mesenchymal cell lines
(Fig. 3.12A) (see Flommersfeld et al., 2023 for experimental details).
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Figure 3.12: Cellular decision making in lateral confinement (taken
from Flommersfeld et al., 2023). A. Experimentally observed migration bi-
ases together with model fits for MDA-MB-231 and HT-1080 cells, where pr/`
denotes the probability for a cell to choose the right/left channel. With in-
creasing bridge widths, cells transition from a bias towards wider bridges to a
bias towards narrower bridges. B. Predicted migration biases of MDA-MB-231
cells on patterns of reduced adhesiveness together with experimental data.

Apart from the pattern geometry, other physical properties of the substrate,
such as adhesiveness, as well as the internal properties of the migrating cells will
affect cellular decision. In the following we will discuss how these will affect
the parameters of our model and the expected cellular migration behavior.
Starting with the adhesive properties of the substrate, we consider migration
on a pattern of reduced adhesiveness (experimentally realized through a lower
concentration of adhesion molecules on the surface). The density of adhesive
molecules on the surface ρad determines the number of adhesive bonds that the
cell can form. We thus expect that the bond density ρb ∝ ρad, which affects
the friction coefficients ζa/n. To check if ρb also contributes to the effective
spring constants we consider Eq. (3.22), from which we get

kc =
4τ1ÑF ρbρmwpfs(

ζa − ÑF ρbρmwpfs
)
hp
wp. (3.41)

Using however that ζa = ζa1 (0) = ρb`rkbn0wp/k
0
off (Eq. (3.16)), we find that

ρb cancels out in Eq. (3.22) and the effective spring constants are independent
of the adhesiveness. This leaves us with the friction coefficients ζa/n as ρb
sensitive parameters. As discussed in the Section 3.3, the contribution of the
viscous drag to the total drag coefficient of the actin filaments can be neglected.
Hence, ζa ∝ ρb and the rescaled spring constants k`/r/ζa ∝ ρ−1

b . In contrast,
for the nuclear friction the viscous drag does play an important role. To find
an expression for ζn in terms of ρad, we consider Eq. (3.35) and write the
contribution of the viscous drag to the nuclear friction coefficient ζn0 as

ζn0 =
ζn0

ζn(wcell)
ζn(wcell) =

(
1 +

ρb`nkbn0

k0
offζ

n
0

wcell

)−1

ζn(wcell) (3.42)

and thus

ζn1 (wcell) =

(
1−

(
1 +

ρb`nkbn0

k0
offζ

n
0

wcell

)−1
)
ζn(wcell). (3.43)
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Using that ζn1 = ρb`nkbn0wn/k
0
off we get

ζn(wcell) =
ρb`nkbn0wcell/(k

0
offζ

n
0 )

1− (1 + ρb`nkbn0wcell/(k0
offζ

n
0 ))−1

ζn0 . (3.44)

From the fit shown in Fig. 3.9D, we find

ρb`nkbn0wcell/(k
0
offζ

n
0 ) = 8.75ρb(ρad)/ρb(ρ

ref
ad ), (3.45)

where ρref
ad denotes the fibronectin concentration for the experiments with high

adhesiveness (corresponding to Fig. 3.12A). We can then rewrite Eq. (3.44) as

ζn(wcell, ρad) =
8.75ρb(ρad)/ρb(ρ

ref
ad )

1− (1 + 8.75ρb(ρad)/ρb(ρref
ad ))−1

ζn0

=
ρb(ρad)

ρb(ρref
ad )

1− (1 + 8.75)−1

1− (1 + 8.75ρb(ρad)/ρb(ρref
ad ))−1

ζn(wcell, ρ
ref
ad ).

(3.46)

Based on this, we can determine the values of the rescaled spring constant for
MDA-MB-231 cells on patterns with reduced adhesiveness (corresponding to
Fig. 3.12B, where ρad = 0.5ρref

ad ) relative to the experiment with high adhesive-
ness. To test our model, we thus fix our model parameters corresponding to
MDA-MB-231 cells on highly adhesive patterns by fitting the data in Fig. 3.12A
and then successfully predict the migration biases with reduced adhesiveness
(Fig. 3.12B). Even though the effect of the changed adhesiveness varies from
island to island, we find overall that for cells on less adhesive substrates, bi-
ases towards the narrower channel are increased and biases towards the wider
channel are reduced.

Next, we use our model to propose a possible interpretation of the differ-
ences between MDA-MB-231 cells and HT-1080 cells and discuss the role of
model parameters associated with internal differences between cell lines in cel-
lular decision making. We observe two trends when comparing the parameter
values obtained from our fits to the experimental data shown in Fig. 3.12A
(see Flommersfeld et al., 2023 for the obtained values): The rescaled spring
constants (k/ζ) are slightly lower for the HT-1080 cells than for the MDA-MB-
231 cells and parameters associated with the polarization dynamics (α, β, δ) are
strongly reduced in HT-1080 cells compared to MDA-MB-231 cells. The differ-
ence in rescaled spring constants could be explained through different adhesive
properties of the cell lines or differences in the actin and myosin expression
levels. The more striking difference between the two cell lines is however the
difference in polarization, where all parameters associated with the polarization
dynamics are reduced by about a factor of two. There are three obvious biolog-
ical parameters that impact the polarization dynamics: the diffusion constant
of the polarity cue in the cytosol D̃, the average polarity cue concentration c0
and the fraction of actin bound polarity cue nc (see Eqs. (3.33) and (3.34)),
where c0 only occurs in combination with nc. An explanation for the observed
difference in the polarization-associated parameters could thus be an overall
reduced concentration of polarity cue in HT-1080 cells compared to MDA-MB-
231 cells. Interestingly however, also D − 8ncc0`ar1L

−1
c is reduced by about a

factor of two even though D = 4(1 − nc)D̃L−2
c (Eq. (3.30)) does not directly

depend on c0. This could indicate a coupling between the overall concentration
of the polarity cue c0 and the bound fraction of the polarity cue nc. A possible
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mechanism behind such a coupling could be that with a lower absolute num-
ber of polarity cue, more unoccupied binding sites are available, leading to an
increased nc and thus a decrease of D with decreasing c0. Regardless of the
detailed mechanism that needs further experimental exploration, our model
suggests that the differences between HT-1080 and MDA-MB-231 cells can be
summarized as HT-1080 cells being less contractile and crucially less polarized
than MDA-MB-231 cells.

Figure 3.13: The polarity-contractility phase space for migration in
asymmetric lateral confinement (taken from Flommersfeld et al., 2023).
The migration behavior of cells on island chains can be qualitatively character-
ized in the contractility-polarity space. The estimated position of the different
island chain experiments relative to the case of MDA-MB-231 cells on highly
adhesive patterns (M+) are indicated by the black markers (cross: MDA-MB-
231 cells on highly adhesive patterns, diamond: MDA-MB-231 cells on less
adhesive patterns, star: HT-1080 cells on highly adhesive patterns).

Inspired by the observed separation of biological parameters in either af-
fecting the effective contractility or polarizability of cells, we characterize cel-
lular migration in asymmetric lateral confinement qualitatively in a reduced
two-dimensional phase space consisting of the effective contractility and the
polarizability of cells. We estimate the position corresponding to different
experimental conditions and cell lines in this reduced phase space by the po-
sition along the effective contractility dimension to correspond to the value of
kr/`/ζa and the position along the polarization dimension to be determined by
the value of ncc0 (Fig. 3.13). The position in the polarity-contractility space,
determines the cellular decision making as following: Increasing polarizability
(e.g. by going from HT-1080 to MDA-MB-231 cells) leads to a stronger effect
of the confinement induced actin alignment and consequent protrusion growth
towards the narrower channel, which results in an overall increase of the bias
towards the narrower channel and thus a decrease in pr−p` for the orientation
shown in Fig. 3.11. Perhaps counterintuitively, we also observe that an in-
creased effective contractility (e.g. because of reduced adhesiveness) increases
the bias towards narrower channels. This can be explained as follows: On the
one hand, an increase in the overall contractility increases the absolute differ-
ence in spring constants between the two sides and thus increases the net force
towards the wider side in unpolarized cells. On the other hand, for polarized
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cells increased contractility also reinforces the effect of protrusion growth ac-
cording to Eq. (3.22), such that overall the bias towards the narrower channel
increases with increasing contractility.

To summarize, connecting a detailed bottom-up model to data-driven top-
down models for migration in lateral confinement did not only allow us to
identify possible mechanisms underlying the observed migration phenomenol-
ogy but also led to new insights into the role of protrusion width for cellular
force generation. Beyond that, it revealed a bias in the polarization dynamics
in asymmetric confinement that remained elusive for the previously established
data-driven approaches when applied to migration on two-state patterns. These
new aspects of our migration model are direct consequences of the proposed
molecular mechanisms underlying the structure of our simple, coarse grained
model. To test if width dependent protrusion force and biased polarization
can in fact be observed experimentally, we applied our model to island chains,
where cells typically encounter confinements of different widths on both sides
of the cell body. The observed dependence of the cellular decision making on
the confinement widths does agree qualitatively with the predictions of our
model and we show that our model can even quantitively predict the effect
of substrate adhesiveness on the migration behavior, further supporting our
model. Finally, our model illustrates how both cell contractility and polar-
ity determine cellular decision making in confined environments, which can be
characterized in a reduced phase space for cellular decision making in confine-
ment, the polarity-contractility space.

3.5 Biased migration on anisotropic substrates

After using migration in laterally confining micropattern geometries to test
and constrain our model, we aim to demonstrate its generality by applying
to explain the emergence of biased migration on substrates with anisotropic
physical properties. For that we first discuss migration on asymmetric, ratchet-
shaped adhesive patterns that result in a directed migration behavior called
ratchetaxis before briefly discussing an extension of our model to cell migration
on compliant substrates with varying stiffness and show how our model gives
rise to durotaxis.

Ratchetaxis

While we discussed the effect of the overall substrate adhesiveness on the mi-
gration behavior in the Section 3.4, how anisotropies in the adhesion properties
of the cellular microenvironment can steer migration behavior remained unex-
plored there. Here we want to apply our model to an experimental system that
induces such anisotropies in the cellular adhesions in an elegant way through
the use of asymmetric micropatterns (see Caballero, Comelles, et al., 2015 for
a review of the experimental system). For that, cells are placed on a series
of adhesive patches with a non-adhesive region between neighboring patches.
Cells that are located on one patch can then engage with neighboring patches
through their protrusions, which ultimately allows the cell to pull its cell body
over the non-adhesive region to a neighboring patch. Depending on the shape
of the patches, the strength and stability of the protrusions on both sides of
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the cell are different, resulting in biased migration (Caballero, Voituriez, et al.,
2014).

Figure 3.14: Cell migration on directed substrates (ratchetaxis) (taken
from Flommersfeld et al., 2023). A. Triangular pattern with symmetric neigh-
boring patches. B. Periodic triangular patches. C. Periodic circular patches.
In contrast to symmetric patterns (C), triangular patterns (A, B) lead to pro-
trusions of different widths wp on both sides of the nucleus. If neighboring
patterns are also asymmetric (B) this can result in different densities of adhe-
sive bonds ρb at the front of the protrusions. x`/r denote the position of the
left/right protrusion. These asymmetries in protrusion width and adhesiveness
lead to biased migration.

To disentangle the effect of pattern shape on migration behavior, we con-
sider three different pattern geometries (Fig. 3.14). First, cells on a single
triangular patch pointing to the right with symmetric, rectangular neighboring
patches. Second, a periodic series of triangular patches pointing to the right
and finally as a control a series of circular patches. Following the experimental
characterization in Caballero, Voituriez, et al., 2014, we denote the direction
corresponding to the pointed side of triangular patterns as +-direction and
the direction corresponding to the blunt side as −-direction. On the first pat-
tern, due to the asymmetry of the patch on which the cell body is located, the
width over which protrusions can form in the −-direction is wider. Accord-
ing to Eq. (3.22) the effective spring constant of a protrusion is proportional
to its width. Hence, we account for this asymmetry of the patch through an
asymmetry in the effective spring constants on both sides of the cell such that
kc(x`) > kc(xr), where we followed the orientation of the pattern as shown in
Fig. 3.14, with the pointed side of the pattern being oriented towards the right.
As discussed above in more detail in Section 3.4, k`/r/ζa is however indepen-
dent of the width of the protrusion on homogeneously coated substrates due to
the cancellation of the pattern width dependence of k`/r and ζa. Thus in the
case of symmetric neighboring patches (Fig. 3.14A, C), k`/r/ζa is independent
of the shape of the patch on which the cell body is located. In the case of
asymmetric neighboring patches however (Fig. 3.14B), due to the tapering of
the pattern, protrusions in the −-direction overlap with non-adhesive regions.
This reduces the average adhesion bond density ρb below that protrusion, re-
sulting in an asymmetry in the values of ζa on both sides of the cell with
ζa(x`) < ζa(xr).

Accordingly, to check if our model does give rise to the correct migration
biases on the different patterns, we vary k`/ζa and kc(x`)/ζn while keeping
kr/ζa and kc(xr)/ζn fixed to introduce an asymmetry between the two sides of
the cell. We then quantify the migration bias in terms of the average long-term
bias p̄ = 〈(N+ − N−)/(N+ + N−)〉 for the different parameter combinations
(Fig. 3.15A). Following the previous discussion of the effect of pattern geometry
on parameter values, we increase kc(x`)/ζn with fixed k`/ζa to model migra-
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Figure 3.15: Migration biases on different geometries (adapted
from Flommersfeld et al., 2023). A. Migration biases for different model pa-
rameters for different geometries. Pattern geometry affects the rescaled effec-
tive spring constants kc(x`/r)/ζn(wcell) and k`/r/ζa(x`/r) and thus the overall
migration bias p̄. To explore the effect of the asymmetry in rescaled spring
constants, we keep kc(xr)/ζn(wcell) and kr/ζa(xr) fixed while varying the other
parameters. The parameter values corresponding to the patterns shown shown
in Fig. 3.14 are indicated by yellow markers (periodic circles pattern: circle,
single triangle pattern: square, periodic triangle pattern: triangle). B. The
model reproduces the experimentally observed first-step migration biases on
different micropatterns.

tion on a triangular pattern with symmetric neighboring patches (Fig. 3.14A).
Consistent with experimental observations in Caballero, Voituriez, et al., 2014,
this results in biased migration towards the −-direction both in the long-term
bias (Fig. 3.15A) as well as for the first step migration behavior (Fig. 3.15B)
for which a majority of cells performs a step in the −-direction. To model
migration on periodic triangular patterns, we then also increase k`/ζa, which
indeed reverses the migration bias and ultimately results in a +-bias for both
the long-term as well as the first step migration biases (Fig.3.15A, B) which is
again consistent with the data in Caballero, Voituriez, et al., 2014. The values
used for the simulations of the first step bias on the different geometries are
indicated by a yellow markers in Fig. 3.15A. We thus see that our model can
easily be generalized to describe migration on different confining geometries.

To explore the behavior for other parameter combinations than the ones
describing the three geometries shown in Fig. 3.14 we consider migration on
periodic triangular patterns with varying pattern spacing (Lo Vecchio et al.,
2020). Increased pattern spacing ∆xpattern leads to a reduced adhesion density
below the protrusion and thus changes in ζa(x`/r). To derive an analytical
expression for the change in k`/r/ζa(x`/r) with pattern spacing, we consider
the adhesive area below a protrusion Aad, which differs depending on what
side of the triangular neighboring patch a protrusion encounters. Following
the orientation shown in Fig. 3.14 the right protrusion encounters the blunt
end of the pattern while the left protrusion overlaps with the pointed end,
which can be written as

Aad = g`/r(Lp −∆xpattern)wp, (3.47)

with Lp and wp denoting the length and width of the protrusion respectively
and the geometric factor 0 < g`/r ≤ 1 accounts for the shape of the pattern.
Since protrusions are typically narrower than the blunt end of the pattern, we
choose gr = 1 and g` < 1. The average density of adhesive molecules below
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the protrusions is then given by

ρad = ρhom
ad

Aad

Ap
= ρhom

ad g`/r(1− L−1
p ∆xpattern), (3.48)

where ρhom
ad is the average adhesion density on homogeneously coated surfaces.

For the cell line used in Lo Vecchio et al., 2020 (NIH3T3 cells), the number
of adhesion bonds that cells can form saturates at high numbers of adhesive
molecules. We include such a saturation behavior through through

ρb = ρhom
b tanh

(
ρad

ρsat

)
, (3.49)

where ρsat determines at what adhesion molecule density the bond density sat-
urates and we assumed that the density of the pattern is high enough such that
the bond density on homogeneously coated surfaces ρhom

b is equal to the satura-
tion density, which was shown to be the case in Lo Vecchio et al., 2020. Using
Eqs. (3.48) and (3.49) together with the expression for ζa (see Section 3.3),
we can express the rescaled spring constants k`/r/ζa in terms of the pattern
spacing ∆xpattern as

k`/r

ζa
=

k`/r

ζhom
a

1

tanh
(
g`/rρ

hom
ad

ρsat
(1− L−1

p ∆xpattern

) , (3.50)

where ζhom
a is the effective friction coefficient of the protrusion on a homoge-

neously coated substrate.
For the experiments in Caballero, Voituriez, et al., 2014, a pattern spacing

of ∆xpattern = 20.5µm was used and Lp was found to be approximately 27µm.
By imposing that at a pattern spacing of 20.5µm the rescaled spring constants
match the values shown in Fig. 3.15A (kr/ζa = 1.2 h−1 and k`/ζa = 2.3 h−1),
we constrain the parameters k`/r/ζa and g` (Fig. 3.16A). This leaves us with

a single free parameter ρsat/ρ
hom
ad that determines the onset of saturation. For

a value of ρsat/ρ
hom
ad = 0.05 (g` = 0.12, k`/r/ζ

hom
a = 1.2 h−1), we find good

agreement with the experimental data in Lo Vecchio et al., 2020 (Fig. 3.16B).
Overall, we conclude that our mechanistic model can give rise to a similar

biased migration behavior on asymmetric adhesive patterns as the phenomeno-
logical treatment of this process in terms of a biased persistent random walk
in Caballero, Voituriez, et al., 2014. Our approach does however yield a di-
rect mechanistic explanation of the direction-dependent migration persistence:
The increased protrusion width on the blunt side of the pattern is counteracted
by a decrease in average protrusion length due to the reduced average adhe-
sion density on that side. Depending on the balance between those two effects
that is affected by pattern spacing, this results in the overall force generated
in the −-direction to either be larger or smaller than the protrusion force in
the +-direction. While these two effects of the pattern geometry on protrusion
formation were also identified from the experimental analysis in Caballero, Voi-
turiez, et al., 2014, the theoretical treatment in terms of a direction dependence
of the persistence in a discrete, persistent random walk (see Section 3.1) was
then based on phenomenological arguments. Here, we show that such a biased
migration also directly emerges in a mechanistic, bottom-up migration model.
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Figure 3.16: Effect of pattern spacing on the migration bias on peri-
odic triangular patterns (taken from Flommersfeld et al., 2023). A. Depen-
dence of the rescaled spring constants on pattern spacing for different values
of the saturation parameter ρsat/ρ

hom
ad (0.05, 0.10, 0.15, 0.20). With increasing

pattern spacing both k`/ζa and kr/ζa increase, but k`/ζa is much more sensitive
to the pattern spacing due to the asymmetric shape of the adhesive patches.
The parameter combination chosen to fit migration bias at a pattern spacing of
20.5 µm in the main text is indicated by the yellow triangle. B. Effect of pattern
spacing on the average long-term migration bias p̄ = 〈(N+−N−)/(N+ +N−)〉
on periodic triangular patterns, with the number of steps in the +/−-direction
N+/−. As observed experimentally, the bias increases with increasing pattern
spacing (experimental data form Lo Vecchio et al., 2020)

Durotaxis

Another form of directed cell migration due to anisotropies in the environment
is durotaxis. A mechanistic model with a similar structure to ours was previ-
ously shown to give rise to single cell and collective durotaxis (Sunyer, Conte,
et al., 2016). In this model, the interaction between the molecular clutch at the
front of the protrusion with a substrate of different stiffness on both sides of the
cell gave rise to a net force towards the stiffer region. Here we briefly discuss
some preliminary results on how such a mechanism would be implemented in
our model and compare the emergent durotactic behavior from the resulting
model to a phenomenological model that treats durotaxis in terms of a persis-
tent random walk with stiffness dependent persistence (Novikova et al., 2017).
We show that such a stiffness dependent persistence time in does not arise from
a purely mechanical model, but does arise in our model when accounting for
the effect of the substrate stiffness on the polarization dynamics.

As discussed in Section 3.1, cell migration is commonly modeled in terms of
a persistent random walk. In the continuous limit, the resulting migration dy-
namics are described by the telegrapher’s equation (Eq. (3.2)). In this model,
there are two obvious ways how a migration bias could be introduced: either
through a position dependent persistence time λ(x) or a position dependent
velocity v0(x). There are however contradictory experimental results on the
coupling between cell velocity and substrate stiffness, with one study finding
a decrease in velocity with increasing stiffness (Missirlis et al., 2014), another
study finding an increase (House et al., 2009), and a third study finding no stiff-
ness dependence at all (Raab, Swift, et al., 2012). In contrast all these studies
find an increase in persistence time with increasing stiffness, suggesting that



3.5. BIASED MIGRATION ON ANISOTROPIC SUBSTRATES 67

while the stiffness dependence of the migration velocity might differ between
cell types, the coupling between persistent time and substrate stiffness seems to
be a relatively general feature of migrating cells. Based on this, in Novikova et
al., 2017 it is shown that the telegrapher’s equation with a position dependent
persistent time is sufficient to explain durotaxis, a more detailed comparison
to experimental data is however lacking. In contrast to this, in Sunyer, Conte,
et al., 2016 it is shown that a mechanistic model of a similar structure to ours
can explain individual and collective durotaxis. There, collective durotaxis is
much more efficient, since the distance over which a cell collective can probe
the substrate stiffness is bigger than the distance that an individual cell can
cover, leading to a higher sensitivity to shallow stiffness gradients. Since this
study was however mainly concerned with collective durotaxis, a more detailed
analysis of the emergent single cell durotactic behavior is missing. In partic-
ular, they did not consider the stiffness dependence of the persistence time
and migration velocity, making a comparison to the phenomenological model
in Novikova et al., 2017 difficult. Here, we want to sketch out how the mecha-
nism proposed in Sunyer, Conte, et al., 2016 can be implemented in our model
(Fig. 3.17), discuss a possible coupling between substrate stiffness and the po-
larity dynamics and briefly compare the resulting durotactic behavior to the
phenomenological model in Novikova et al., 2017.

Figure 3.17: Migration model on compliant substrates. The substrate
is modeled in terms of elastic springs that are put in series to the adhesion
bonds that connect the insight of the cell to the substrate.

The model is based on a change in the effective bond stiffness k′b of the
adhesion bonds when binding to a soft substrate. This is modeled by putting a
second spring representing the compliant substrate (spring constant ks) in series
with the adhesion bonds (Fig. 3.17). The effective stiffness of the combined
spring is then given by

k′b(x) = (k−1
s (x) + k−1

b )−1. (3.51)

Replacing kb with k′b(x) in the friction coefficients of ζa/n then leads to a
stiffness-sensitive migration model. Since the effective spring constants kc and
k`/r depend on ζa (Eqs. (3.22) and (3.23)), this also leads to a stiffness de-
pendence of the spring constants. Overall, we find that the rescaled spring
constants kc/ζn and k`/r/ζa all increase with decreasing stiffness. Based on
the observation that viscous drag of the nucleus also significantly contributes
to ζn, while ζa is dominated by by the adhesive friction, we expect however
k`/r/ζa to be stronger affected by changes in the substrate stiffness than kc/ζn.

Based on this discussion, we simulate our model on a substrate with sharp
transition from a soft region on the left to a stiff region on the right (Fig. 3.17)
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Figure 3.18: Durotaxis with a purely mechanical ratchetaxis mecha-
nism and little stiffness sensitivity of kc/ζn. A. The average nuclear po-
sition over time shows a clear trend towards the stiffer region (xn > 0). B. The
distribution of 103 cells on the substrate that were initiated at xn(t = 0) = 0
gets increasingly asymmetric as cells spread over the substrate (∆t = 5h). C.
The velocity autocorrelation on soft and stiff homogenous substrates reveal a
slight increase in persistence time on the stiffer substrate. D. The average cell
speed on soft and stiff substrates show as slight increase in cell speed on stiff
substrates. Error bars and shaded regions indicate one standard deviation.
Simulation parameters can be found in Section 3.7.

by increasing both kc/ζn and k`/r/ζa in the soft region. To do so, we seed in-
dividual cells at the transition point from soft to stiff (xn = 0) and track their
migration dynamics. If the difference in k`/r/ζa on both sides of the substrate
is larger than the difference in kc/ζn, this does indeed result in a migration
bias towards the stiffer region of the substrate (Fig. 3.18A, B). As we increase
the difference in kc/ζn while keeping the difference in k`/r/ζa the same, we
do however observe a reduced durotaxis efficiency (Fig. 3.19A, B). The under-
lying mechanism can be illustrated by considering a cell with one protrusion
in the soft and the other protrusion in the stiff region: The protrusion in the
softer region, will effectively experience a smaller adhesive friction, resulting in
a shorter protrusion. At the same time, the reduced adhesive friction results in
a faster retrograde flow and an increased value of kc. However, if the shortening
of the protrusion is stronger than the increase in kc (i. e. k`/r/ζa is more sen-
sitive to ks than kc/ζn), the protrusion force kcLp will be reduced on the soft
side leading to a net force pulling the nucleus towards the stiffer side. To com-
pare the migration behavior of our model to the stiffness-sensitive telegrapher’s
equation (Novikova et al., 2017), we quantified the migration persistence and
velocity on homogeneous substrates of different stiffness, corresponding to the
two regions in the previous scenario (Figs. 3.18C, D and 3.19C, D). In the case
where kc/ζn is relatively little affected by the substrate stiffness (Fig. 3.18),
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both the persistence time (quantified through the velocity autocorrelation) as
well as the average cell speed slightly increase on stiffer substrates. Interest-
ingly, when we increased the stiffness-sensitivity of kc/ζn (Figs. 3.19) we ob-
served however a decrease in average cell speed with increasing stiffness while
still observing an increased persistence time. This sensitivity of the qualita-
tive behavior of the average cell speed to the precise parameter values might
explain the conflicting experimental findings on the effect of substrate stiffness
on cell velocity. Overall, we find however that the stiffness-dependence of both
statistics is relatively minor in this model.

Figure 3.19: Durotaxis with a purely mechanical ratchetaxis mech-
anism but higher stiffness sensitivity of kc/ζn. A. The average nuclear
position shows a weaker trend towards the stiffer region (xn > 0) compared to
Fig. 3.18. B. The asymmetry in the distribution of 103 cells on the substrate
(xn(t = 0) = 0) is reduced (∆t = 5h). C. The velocity autocorrelation on
soft and stiff homogenous substrates reveal a slight increase in persistence time
on stiffer substrates. D. The average cell speed is slightly decreased on stiff
substrates in contrast to Fig. 3.18. Error bars and shaded regions indicate one
standard deviation. Simulation parameters can be found in Section 3.7.

A key difference between the purely mechanical model in Sunyer, Conte,
et al., 2016 and our migration model is that our model also accounts for the
polarization dynamics of cells. These are determined by the retrograde flow
and thus in principle depend on the adhesive friction and protrusion length.
So far, we neglected this coupling between stiffness and polarity and focused
on the mechanism proposed in Sunyer, Conte, et al., 2016 instead. To get an
intuition for the effect that substrate stiffness has on the polarization dynamics,
we consider the average protrusion length of a stationary cell on a compliant
substrate, which is given according to Eq. (3.23) by

Lp =
ζa(x`/r)

k`/r(x`/r)

(
`aS`/rrp(c0) +

`aS`/rr1

P0
|P (t))|

)
(3.52)
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Since to leading order ζa(x`/r)/k`/r(x`/r) ∝ ζa(x`/r)
2 (Eq. (3.23)) and ζa ∝ k′b,

we then get to leading order
Lp ∝ k′2b . (3.53)

Hence, on stiffer substrates, cells form shorter protrusions. The length of the
protrusion together with the adhesive friction controlles the retrograde retro-
grade flow velocity as vr ∝ Lp/ζa (Eqs. (3.17) and (3.22)), which leads to

vr ∝ k′b. (3.54)

Thus, based on our model, we would expect that also the retrograde flow is
reduced on softer substrates. As a consequence, we expect that the diffusive
term in Eq. (3.30) is strongly suppressed with increasing stiffness, since the
rescaled diffusion constant scales as D ∝ k′−2

b . At the same time, the advective
contribution, which reinforces polarization, is increased on stiffer substrates
(Eq. (3.54)). Noticeably, the polarization dynamics couple thus even stronger
to the substrate stiffness than the rescaled spring constants.

To get an intuition for the effect of the coupling between substrate stiffness
and polarization dynamics, we account for this in a simplistic way, by keeping
the rescaled spring constants fixed and simulate our model with simplified,
stiffness dependent polarization dynamics given by

Ṗ = −α(ks)P + σξ(t), (3.55)

with α > 0 for simplicity. Similar to the discussion of the purely mechanical
durotaxis mechanism, we simulate cells on a substrate with a sharp transition
from soft to stiff at xn = 0, which we implement by increasing α, when cells
are in the soft region relative to the value in the stiff region. Even with stiff-
ness independent rescaled spring constants, the polarization dynamics give rise
to durotaxis (Fig. 3.20A, B). The dynamics of the probability density of the
cell positions appear however to be qualitatively different to the purely me-
chanical mechanism: While for stiffness dependent rescaled spring constants,
we observed a translocation of the peak of the distribution towards the stiffer
region (Figs. 3.18B and 3.19B), for polarity driven durotaxis, we observe the
formation of a pronounced, but localized peak in the soft region and a spread
out distribution on the stiffer side (Fig. 3.20B) resulting however in a similar
translocation of the average position over time (Figs. 3.18A and 3.20B). We also
observe a stronger increase in persistence time and cell speed with increasing
stiffness in the case of polarity driven protrusion (Fig. 3.20C, D).

Overall, we find however that both mechanisms result in durotaxis and
stiffness dependent migration persistence, consistent with the phenomenologi-
cal model in Novikova et al., 2017. They seem to differ however quantitatively
and in the case of cell speed even qualitatively in the stiffness dependence of
the persistence time and average cell speed. A more detailed analysis of the
different models will however be needed to ensure that these differences are
intrinsic to the different models and not artefacts of the selected parameter
values. The experimental evidence for a strong coupling between cell persis-
tence and substrate stiffness (House et al., 2009; Missirlis et al., 2014; Raab,
Swift, et al., 2012) might suggest that the polarity dynamics might play a sig-
nificant role during single-cell durotaxis, even though both effects are likely
to contribute to the overall migration behavior. However, a more detailed ex-
perimental characterization of the migration statistics and cell morphology for
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Figure 3.20: Durotaxis with a polarity-dominated ratchetaxis mecha-
nism. A. The average nuclear position shows a comparable trend towards the
stiffer region (xn > 0) as in Fig. 3.18. B. The asymmetry in the distribution
of 103 cells on the substrate (xn(t = 0) = 0) is appears to be qualitatively
different compared to the purely mechanical durotaxis model (∆t = 5h). C.
The velocity autocorrelation on soft and stiff homogenous substrates reveals
a strong increase in persistence time on the stiffer substrate. D. Similarly,
the average cell speed is strongly increased on stiff substrates. Error bars and
shaded regions indicate one standard deviation. Simulation parameters can be
found in Section 3.7.

different cell lines on substrates of varying stiffness would be needed to be able
to constrain reliable mechanistic and phenomenological models for single-cell
durotaxis.

3.6 Discussion and Outlook: Towards shape and
collective migration

To summarize, we developed a generalizable model for directed mesenchymal
cell migration in structured microenvironments from basic biophysical princi-
ples. At the core of our model is the coupling between substrate-controlled
protrusion formation and cellular migration behavior. Guided by data-driven
and phenomenological models, we applied our model to explain the emergence
of directed migration, stimulated by a number of different physical cues, includ-
ing lateral confinement, anisotropic adhesion patterns and stiffness gradients.
Beyond that, we demonstrated that our model can bridge the gap between
two previously relatively separate approaches to cell migration: mechanistic
bottom-up models and data-driven top-dow models. This connection could
benefit both approaches: It allows for a mechanistic interpretation of the ob-
served emergent migration behavior captured by data-driven approaches and
increases the generalizability of such models. On the other hand data-driven
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models can be used to select the right level of complexity for a bottom-up
model and could help constraining model parameters of the often times under-
constrained bottom-up models.

As we demonstrated in the case of migration in lateral confinement, this
connection between bottom-up and top-down model can be explicitly traced
out if they are both formulated in terms of Langevin equations, with the ef-
fective underdamped dynamics of cell as a whole emerge from the interplay
of a number of different internal degrees of freedom that follow overdamped
dynamics. In our case, we could use an intermediate, overdamped model that
was previously constrained from data (Brückner, Schmitt, et al., 2022) to help
bridge the gap between overdamped and underdamped description. This and
other overdamped data-driven approaches (S. Amiri et al., n.d.) can drastically
help in identifying relevant degrees of freedom and yield more direct access to
their effective dynamics. If such a model is however not available, our model
can also be directly related to the emergent underdamped dynamics, by calcu-
lating the deterministic drift of the underdamped Langevin equation through

F (xn, vn) =

〈
dẋn
dt

∣∣∣∣xn, vn〉 =

〈
dẋn
dxn

vn +
dẋn
dx`

ẋl +
dẋn
dxr

ẋr

∣∣∣∣xn, vn〉
=− kc(x`) + kc(xr)

ζn(xn)
− la(Slkc(x`)− Srkc(xr))

ζn(xn)

(
rp(c0) +

r1

P0
〈P (t)|xn, vn〉

)
− ζn(xn)−1

[
k`kc(x`)

ζa(xl)
(〈x`|xn, vn〉 − xn) +

krkc(xr)

ζa(xr)
(〈xr|xn, vn〉 − xn)

]
.

(3.56)

Even though the remaining conditional averages of P , x` and xr have to be
typically evaluated numerically, the structure of Eq. (3.56) might be able to
provide an intuition for the relation between microscopic mechanism and fea-
tures of the emergent migration behavior. Thus, we believe that the com-
bination of our mechanistic model and an underdamped Langevin inference
approach (Brückner, Arlt, et al., 2021) can be extremely fruitful to understand
cell migration in various experimental scenarios on all different levels ranging
from molecular organization to emergent migration behavior. We will demon-
strate one application of this in the following Chapter.

In cases where the phenomenological model is not formulated in terms of
an underdamped Langevin equation, such as in the cases of ratchetaxis and
durotaxis discussed here, an explicit identification of aspects of the mechanistic
model and properties of the phenomenological model is more difficult. In the
cases discussed here, the corresponding models were formulated in terms of
discrete and continuous persistent random walks. Since also an underdamped
Langevin equation leads to some kind of persistent random motion, this allows
at least a heuristic identification of different aspects of the two approaches.

So far, we focused on applying our model to describe the emergent one-
dimensional, single cell migration behavior of the cell as a whole. There is
however no fundamental reason, why this model could not be generalized be-
yond that. First, even one-dimensional models can already be informative
about certain features of the cell morphology. This was previously demon-
strated with related models that were able to describe the stick-slip dynamics
of certain migrating cell together with other migration modes that are charac-
terized through the cellular morphology (B. Amiri et al., 2023; Sens, 2020). In
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Figure 3.21: Possible effects of myosin unbinding cascades (taken from
Flommersfeld et al., 2023). A. Time series of a MDA-MB-231 cell with dysfunc-
tional rear contractility (scale bar: 50µm, time interval: 10min). B. The cor-
responding kymograph (horizontal scale bar: 1h, vertical scale bar: 50µm). C.
Simulated kymograph with a model that accounts for load-dependent myosin
unbinding cascades. All other parameters are identical to the ones used to
model MDA-MB-231 cells on island chains of high adhesiveness. The arrow in
B. and C. indicates the time point of rear contraction failure.

the context of our model, we discuss in Flommersfeld et al., 2023 how force-
sensitive unbinding of myosin motors can give rise to rear retraction failure that
is associated with a characteristic morphology that we could also occasionally
observe experimentally (Fig. 3.21). This demonstrates the potential of our
and related mechanistic models can be used to relate morphological features
of migrating cells to underlying molecular processes. Even more morphologi-
cal features could be captured through two-dimensional generalizations of the
model. Such a 2D generalization of a purely mechanical model was recently
published in Chen et al., 2023 and could form the basis of a generalization of
our model by also accounting for the polarization dynamics.

Finally, our model could also be informative about the interactions between
migrating cells and consequently collective migration. Experimentally, when
migrating cells encounter each other in a confined environment, three distinct
outcomes can be observed (Brückner, Arlt, et al., 2021): both cells reverse
upon collision and migrate away from each other, only one cell reverses its
direction of motion with the other cell following this cell, and finally both
cells sliding past each other while keeping their direction of migration. The
statistics of and the dynamics during these events vary however between dif-
ferent cell lines. Here, we want to briefly discuss how these collision outcomes
could emerge from the basic components of our model and how we expect dif-
ferences in the adhesiveness of cells to other cells to affect the statistics and
dynamics of the different outcomes. For simplicity, we start with cells that



74
CHAPTER 3. THE CYTOSKELETON IN CONFINED AND DIRECTED

CELL MIGRATION

do not adhere to each other such that their interactions are simply based on
excluded volume interactions (Fig. 3.22). In that case, if two cells collide in a
confined environment, we expect that based on the geometry of the collision
two distinct mechanisms affect the dynamics of the leading protrusions of the
cells. Where the protrusions do not directly collide, the protrusions can grow
past the other cell but are now laterally confined by the other cell. Based on
our model, we would thus expect that this confinement stimulates protrusion
growth resulting in the cells getting accelerated past each other. Such an accel-
eration during sliding events was indeed observed for cells with low expression
of cell-cell adhesion molecules (Brückner, Arlt, et al., 2021). Where the two
protrusion collide head on however, the polymerization force generated by the
other cell, will oppose the actin polymerization at the front of the protrusion.
Hence, the probability that a sufficiently large gap between the filament tip
and the membrane opens up is reduced resulting in a lower polymerization
rate in the leading protrusions upon collision. If this effect is strong enough,
the polymerization rate in the trailing protrusion will eventually overtake the
polymerization in the leading protrusion, resulting in a growth of the trailing
protrusion and subsequently a repolarization of the cells. In a scenario, where
the repolarization of both cells is similarly fast, this will result in a reversal of
both cells and a migration away from each other. If one cell repolarizes slower
than the other cell because it was e. g. more polarized before the collision, this
would result to both cells migrating in the same direction after the collision and
thus following each other. We thus see that our model together with simple
excluded volume interactions is already able to qualitatively give rise to the
observed collision events.

Figure 3.22: Possible collision outcomes without cell-cell adhesions.
Based on our model and consistent with experimental observations, we expect
three qualitatively different collision outcomes: following, reversal, and sliding.

A simple refinement of this model would be the introduction of cell-cell
adhesions (Fig. 3.23). During sliding, this would lead to an effective friction
between cells, which would counteract the confinement induced acceleration.
Consistent with this, in Brückner, Arlt, et al., 2021 sliding events without
acceleration were observed for cells that form more cell-cell adhesions. Beyond
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that, adhesions would also allow for a tug-of-war scenario upon collision and
repolarization. If one cell wins wins this tug-of-war while still adhering to the
other cell, it could drag along the loosing cell leading to an additional path to a
following event upon collision. If the adhesions break however, we would obtain
the same outcome as without adhesions with reversal of both cells. Based on
this, we would expect that following events are more commonly observed in
cells that form cell-cell adhesions, which is indeed consistent with the data in
Brückner, Arlt, et al., 2021.

Figure 3.23: Possible collision outcomes with cell-cell adhesions. The
addition of cell-cell adhesions adds an additional pathway for following events
through a tug-of-war scenario and slows down sliding due to friction between
cells.

This simple toy model for cell-cell interactions will likely reach its limits
when compared quantitatively to the observed interaction behavior. Nonethe-
less, the qualitative agreement with experimental observations, could indicate
that our model could form the basis of more refined models for interacting cells
that e. g. also account for cell-cell adhesion based signaling. Overall, we be-
lieve that our model has the potential to be easily generalized to other aspects
of single and collective cell migration. This applies in particular if these gener-
alizations are guided by data-driven, top-down models for cell migration, where
our model can give valuable insights into the physical mechanisms underlying
the migration phenomenology.
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3.7 Appendix: Simulation details on compliant
substrates

To simulate our model on compliant substrates of different stiffness, we sim-
ulated Eqs. (3.23), (3.24), and (3.55) with the stiffness dependent parameters
shown in Table 3.1. For the simulations on substrates of varying stiffness, we
used the paramters corresponding to the stiff substrate for x > 0 and the pa-
rameters corresponding to soft substrates for x < 0, with x ∈ {xn, xp, x`}. We
initialized N = 103 cells at xn = 0, with random polarization and simulated
them for 50h. If cells overlapped with both regions, we used the parame-
ter values corresponding to the soft substrate for k`/ζa and kc(x`)/ζn and
the parameter values for the stiff substrate for kr/ζa and kc(xr)/ζn. For the
polarity-dominated durotaxis model, we used α = (αsoft + αstiff)/2 when cells
overlapped with both regions. To determine the persistence time and average
cell speed on soft and stiff substrates, we simulated N = 300 cells on homoge-
neous substrates of both stiffnesses with the corresponding parameter values
given in Table 3.1. The cells were initialized with random polarity.

model mechanical mechanical mechanical mechanical polarization polarization
(Fig. 3.18) (Fig. 3.18) (Fig. 3.19) (Fig. 3.19) (Fig. 3.20) (Fig. 3.20)

substrate stiff soft stiff soft stiff soft

k`/r/ζa (h−1) 1.0 2.2 1.0 2.2 1.4 1.4
kc(x`/r)/ζn (h−1) 0.5 0.8 0.45 0.9 0.6 0.6

`arp(c0) (µmh−1) 10 10 10 10 10 10
α (h−1) 1.5 1.5 1.5 1.5 1.5 10

σ (µmh−3/2) 100 100 100 100 100 100
lar1P

−1
0 1 1 1 1 1 1

Table 3.1: Model parameters used to simulate migration on compliant sub-
strates.
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The nucleus in 3D confined cell migration

In the previous chapter, we focused on cellular migration behavior on two-
dimensional substrates, which is controlled by the interactions of the cellular
cytoskeleton with the microenvironment. However, the observed migration
behavior on 2D substrates does not direclty translate to physiologically relevant
conditions (Wu et al., 2018). One of the key reasons for this is that in vivo,
cells mostly migrate in complex, three-dimensional, confining environments,
resulting in a different migration behavior compared to 2D systems. Three
dimensional confinement affects cell migration in a two-folded way: First, even
though the molecular components of the migration machinery are preserved
from 2D to 3D migration, the physical confinement in 3D allows cells to utilize
different migration modes (Faure-André et al., 2008; Irimia et al., 2007). In
particular, cells can employ adhesion independent modes of migration, such as
amoeboid migration, that are not possible on two-dimensional surfaces (R. J.
Hawkins et al., 2009; Lämmermann et al., 2008; Reversat et al., 2020). Second,
the cell nucleus as the largest and stiffest organelle in the cell plays a crucial
role in three dimensional migration, as it has to be strongly deformed for cells
to migrate through narrow confinements in their environment (McGregor et
al., 2016). Due to the mechanical properties of the nucleus, this requires the
generation of large intracellular forces to translocate the nucleus. Additionally,
this can even result in confinement-dependent signaling or changes in gene
transcription (Kalukula et al., 2022) that can strongly affect the migration
behavior. Unfortunately, in most experimental systems, physical confinement
of the cell and in particular the nucleus goes hand-in-hand with an adaptation
of the migration mode (Faure-André et al., 2008; Irimia et al., 2007). This
makes it challenging to disentangle these two effects of 3D confinement, which
would be required to systematically generalize 2D migration models to 3D
environments.

To make a step towards such a generalization of our migration model from
Chapter 3, we consider a generalization of the two-state patterns discussed in
Section 3.4 (Fig. 4.1): Metastatic cancer cells (MDA-MB-231) migrate within
microcavities which consist of an adhesive 2D surface at the bottom and non-
adhesive hydrogel side-walls of variable stiffness (for more information about
the experimental details see Stöberl et al., 2023). The shape of the cavity
resembles the previously discussed two-state patterns with two square-shaped
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chambers of either side of a narrow constriction. Note that the cells are not
confined from the top but the side-walls are high enough to ensure that cells
do not spill over the edge of the cavity. Since cells are not compressed from the
top and the confining channel is relatively short, cells still display a mesenchy-
mal migration mode that is driven by the formation and adhesion of a leading
edge protrusion to the other chamber before the cell body is moved through
the confinement (see Stöberl et al., 2023 for examples of the cell morphology).
Hence, this setup allows us to study the effect of cellular and nuclear con-
finement without altering the mode of migration compared to 2D substrates.

Figure 4.1: Experimental system to study 2D mesenchymal cell mi-
gration in 3D confinement. Cells can migrate along adhesive, fibronectin
coated surfaces at the bottom of dumbbell-shaped microcavities from one cham-
ber to the other. The side walls of the cavity are made out of non-adhesive
hydrogel, with variable stiffness.

To set the stage for our analysis of this system, we first review the current
literature on the role of the nucleus during confined cell migration. In particu-
lar, we focus on the role of nuclear mechanics during cell migration and discuss
recent evidence for possible nuclear adaptations in confinement. While these
studies correlate the overall migration ability of cells in confining environments
with nuclear properties such as stiffness, a full dynamical characterization of
the migration behavior in 3D confinement is still missing. As a consequence,
also the interplay between nuclear confinement and the migration machinery
remains largely unexplored, making it difficult to systematically constrain and
test mechanistic migration models. To obtain such a dynamical character-
ization, we infer a dynamical model in terms of an underdamped Langevin
equation for this system at varying constriction widths. With increasing con-
finement, we observe increasing quantitative and qualitative adaptations of the
migration dynamics. The observed channel width dependence appears to be
consistent with the previously proposed conceptual picture of the nucleus as a
potential barrier in 3D (McGregor et al., 2016; Patteson et al., 2019). In con-
trast to this general conceptual picture however, our approach integrates the
effects of nuclear deformations in a fully dynamical model. To test this interpre-
tation of the inferred non-linear dynamics more rigorously, we aim to generalize
the mechanistic model from Chapter 3 to account for three-dimensional con-
finement. A natural question that arises when trying to generalize this model,
is through what mechanisms cells generate sufficient forces to move their nu-
cleus into physical confinement. Since this question is a topic of debate in the
literature (Davidson, Battistella, et al., 2020; Keys et al., 2022; McGregor et
al., 2016), we aim to obtain insights into this by using the observed nuclear de-
formations to deduce the force balance acting on the nucleus during migration.
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This analysis reveals that cells adapt their force generation in confinement,
resulting in a transition from a pulling-dominated to a pushing dominated
translocation. Based on this, we propose a mechanistic migration model that
builds up on our model for 2D migration but additionally accounts for nuclear
deformations and an adaptive force generation. We show that this model can
describe the channel width dependence of a number of key migration statistics
and that it can successfully predict the effect of increased confinement on the
non-linear migration dynamics that we found through our inference approach.

4.1 The complex role of the nucleus in confinement:
From physical barrier to adaptive ruler

Both in healthy processes (e.g. immune cell migration) as well as disease (e.g.
cancer metastasis), cells migrate through the complex environment of the ex-
tracellular matrix (ECM) (Friedl, Wolf, et al., 2011; Yamaguchi et al., 2005).
As cells invade this matrix, they squeeze through tight meshwork forming con-
finements ranging from less than 1 µm up to tens of microns (Khatau et al.,
2012; Paul et al., 2017). While protease-based remodeling of the ECM can help
cells to overcome such constrictions, it is not required for successful migration
through narrow confinements (Jill Mackarel et al., 1999; Wolf et al., 2007).
Considering the size of the nucleus (with a typical diameter of around 10 µm)
this highlights the intruiging ability of cells to deform their nuclei during mi-
gration. This is particularly impressive as the nucleus composes the largest
and stiffest organelle in the cell (Dahl et al., 2008; Lammerding, 2011).

Motivated by these striking deformations, the role of the nucleus in confined
cell migration was extensively studied over the last two decades. Commonly
used assays that closely mimic physiological conditions, such as migration in
heterogeneous collagen matrices (Lämmermann et al., 2008; Wolf et al., 2007),
have the limitation that they do not allow for a tight control over the degree
of confinement. To overcome this, microchannel assays were employed that
allow studying confined cell migration under well defined conditions (Irimia
et al., 2007). Different studies using such microchannel assays revealed that
the mechanical properties of the cell and in particular the nucleus determine
the ability of cells to migrate into these channels (Fu et al., 2012; Rolli et al.,
2010; Rowat et al., 2013). More specifically, a more detailed analysis of the
migration dynamics through narrow confinement revealed that nuclear defor-
mations are rate-limiting (Davidson, C. Denais, et al., 2014; Lautscham et al.,
2015). How strongly the nuclear deformations hinder migration depends on the
mechanical properties of the nucleus to which both the nuclear lamina as well
as the chromosome content of the nucleus contribute (Fu et al., 2012; Rowat
et al., 2013). The nuclear lamina is a dense network of intermediate filaments
(lamins) that are associated with the inside of the nuclear envelope and give
mechanical support to the nucleus (Dobrzynska et al., 2016). Depending on
the molecular makeup of this network, the nucleus displays more viscous or
more elastic properties. Specifically, lamins can be divided into two groups:
lamin A and lamin B. High lamin B contents result in an elastic response of
the nucleus to deformations on timescale of multiple hours, while high lamin
A contents lead to more irreversible deformations (Harada et al., 2014). In
some highly migratory cells, such as immune cells and certain invasive cancer
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cell lines, lamins are down-regulated (Krause and Wolf, 2015), which allows
for an easier migration through highly confined environments but can have a
negative impact on the lifetime of cells due to an increased DNA damage in-
duced by nuclear deformations (C. M. Denais et al., 2016; Harada et al., 2014;
Raab, Gentili, et al., 2016). Apart from the nuclear lamina, the chromosome
organization plays a key role in determining the mechanical properties of the
nucleus: Highly organized and compacted heterochromatin is stiffer than less
organized, open euchromatin (Pajerowski et al., 2007). Surprisingly, a reduced
fraction of heterochromatin in the nucleus however results in decreased trans-
migration rates through confinement, which could be related to changes in the
gene transcription with changing chromosome organization (Fu et al., 2012).
Depending on the degree of nuclear deformations, either the nuclear lamina or
the chromatin organization dominates the viscoelastic response of the nucleus,
with chromatin dominating the viscoelastic response at small strains and the
nuclear lamina dominating at larger strains (Stephens et al., 2017). This leads
to complex rheological properties that can be captured in terms of models that
account for those two key components of the nucleus separately (Hobson et al.,
2020). Overall, these studies suggest that in general the nucleus hinders migra-
tion in confined environments, the extend to which depends on its molecular
makeup and the degree of chromosome condensation. Consistent with this, we
find that in our experimental system the ability of cells to transition from one
chamber to the other strongly decreases at narrow channel channel widths as
visible from the dynamics of the nuclear coordinate xn (Fig. 4.2).

Figure 4.2: Effect of the degree of confinement on the migration
dynamics (adapted from Stöberl et al., 2023). Representative examples of
cell trajectories for different channel widths (from left to right: 4 µm, 7 µm,
12 µm, 20 µm and 35 µm). With reducing channel width, cells spend more and
more time in the chambers. Scale bar: 20 µm.

So far we have focused on the role of the nucleus during confined cell mi-
gration as a passive cargo that needs to be transported along. Recent evidence
however suggests that the nucleus takes a much more active role during cell
migration and might even adapt its mechanical properties to confinement. In
dendritic cells the accumulation of a perinuclear actin network can be observed
when cells move their nucleus into confinement (Thiam et al., 2016). This net-
work causes a transient rupture of the nuclear lamina, which could facilitate
the deformation of the nucleus. Consistent with this, cells that did display this
confinement induced actin accumulation or displayed it at a location away from
the nucleus showed a reduced ability to migrate through the confinement. Be-
yond the case of highly specialized dendritic cells, recent AFM measurements
of the stiffness of cancer cells that migrate in confinement indicate that these
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cells soften in confinement (Rianna et al., 2020). A distinction between the
contribution of the nucleus and the cytoskeleton to this softening is however
difficult. Another possible nuclear adaptation mechanism that was speculated
on based on theoretical arguments, would be a confinement induced reduction
in nuclear volume due to water outflux through pores in the nuclear enve-
lope (Cao et al., 2016). A precise, dynamic quantification of nuclear volumes
has however proven to be challenging, such that so far it remains unclear if such
a volume adaptation occurs in migrating cells and how significant it is (David-
son, Sliz, et al., 2015). Apart from these confinement-induced adaptations of
the nuclear properties, the nucleus could also play an active role in sensing con-
finement and triggering changes in the cytoskeletal activity. Such a coupling
between nuclear deformation and cytoskeletal activity was recently observed
upon compressing cells from the top with flat silicon microcantilevers down to
a well-controlled height (Lomakin et al., 2020; Venturini et al., 2020). Below a
certain threshold height, cells displayed an active response to the compression
by an increased cortex contractility. This coupling between nuclear deforma-
tion and actomyosin contractility is caused by a release of Ca2+ that is trig-
gered by an increased tension in the nuclear membrane due to a confinement
induced increase in nuclear surface area. In these experiments, the confine-
ment was however externally induced, such that it remains an open question
if such a coupling between nuclear shape and cytoskeletal activity also plays a
role during self-imposed confinement, where cells migrate by themselves into a
constriction.

Overall, we see that the nucleus plays a crucial role in 3D confined cell
migration with its complex rheological properties, potential confinement adap-
tation and its role in measuring the degree of confinement. It has to be stated
however that in particular the evidence for a stiffness adaptation and the func-
tion of the nucleus as a “ruler” for confinement have so far only been shown for
specific cell lines, making it unclear how general this phenomena are. Addition-
ally, despite recent progress in that direction (such as in Rianna et al., 2020 and
Davidson, Sliz, et al., 2015), dynamical measurements of the nuclear properties
of migrating cells in confinement are still rare. Hence, much of which is known
about the mechanical properties of the nucleus stems from experiments per-
formed with isolated nuclei which is oblivious to possible interactions between
the nucleus and the cytoskeleton. This makes it challenging to choose the right
level of description for the nucleus in the context of confined cell migration.

4.2 Inferring a data-driven model for cell migration in
physical confinement

To get a better idea for how the nucleus effects the overall migration behav-
ior in confinement, we follow the approach introduced in Chapter 3 of using
data-driven, top-down models to guide the construction of more mechanistic,
bottom-up models. While for the case of 2D migration, detailed, data-driven
models for the emergent migration behavior were already available, this is not
the case for migration in 3D confinement. Existing phenomenological models
typically focus on the role of the nucleus as an effective potential barrier that
needs to be overcome during migration (McGregor et al., 2016). Even though
this can even be used to correctly describe the reduced migration ability at
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increased nuclear strains (Patteson et al., 2019) this approach neglects the in-
terplay between the nucleus and the complex, geometry-dependent migration
machinery. Hence, a full dynamical, data-driven characterization of the overall
migration behavior in 3D confinement is still lacking.

As discussed in Section 3.1, the dynamics of the nucleus of a migrating
cell along the long axis of two-dimensional two-state patterns can be captured
in terms of the underdamped Langevin equation (Brückner, Fink, Schreiber,
et al., 2019)

dvn
dt

= Fw(xn, vn) + σwξ(t). (4.1)

Here, Fw(xn, vn) captures how the deterministic acceleration of the nucleus
depends on its position xn and velocity vn in a confinement of width w, and
the Gaussian white noise ξ(t) of strength σw accounts for the stochastic na-
ture of cell migration. Here, we apply this approach to our three-dimensional
generalization of the two-state patterns to obtain a systematically constrained
top-down model of confined cell migration that captures the full migration
dynamics at varying confinement widths. Since the experimental procedure
results in a broad range of channel widths, we bin the data with respect to
the measured width of the pattern in the centre of the channel. That way, we
have sufficient data for each considered channel width to constrain the terms
in Eq. (4.1) (the bins and the corresponding statistics can be found in Stöberl
et al., 2023). We then apply the Underdamped Langevin Inference (ULI) al-
gorithm (Brückner, Ronceray, et al., 2020) to infer an estimator of Fw(xn, vn)
from experimental trajectories. This algorithm is based on a truncated expan-
sion of the deterministic drift Fw(xn, vn) in terms of N manually chosen basis
functions ĉα(xn, vn), such that (Brückner, Ronceray, et al., 2020)

Fw(xn, vn) ≈
N∑
α=0

Fα,w ĉα(xn, vn). (4.2)

The order to which this expansion is performed determines the number of
parameters that have to be estimated from the data. The free parameters Fαw
can be estimated by projecting the migration dynamics onto the basis functions
as (Brückner, Ronceray, et al., 2020)

Fα,w = 〈v̇nĉα(xn, vn)〉. (4.3)

Since ULI is a parametrized inference method, the basis functions have
to be chosen manually. Specifically, the inferred estimator for the drift term
Fw(xn, vn) and thus the accuracy of the inferred model will depend on the
choice of the basis function. Here, we choose monomials in xn and vn as basis
functions due to the simplicity and flexibility of this basis. To simplify the
inference and reduce the number of unnecessary parameters in Eq. (4.2), we
select the possible monomials based on symmetry considerations: The pattern
is mirror symmetric with respect to both its long and its short axis. Since cells
can be polarized along the long axis their orientation relative to the center of
the pattern does however also affect their acceleration. To account for this, we
impose that Fw(−xn,−vn) = −Fw(xn, vn) by only including monomials ĉ`,m =
x`nv

m
n with an odd combined order ` + m. Without this exclusion criterium,

the introduction of higher order terms in the expansion of Fw(xn, vn) quickly
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leads to a high number of model parameters. Depending on the amount of
available data, this can result in underconstrained models with fail to reproduce
the experimentally observed migration behavior. As a consequence, enforcing
the experimental symmetries in our basis functions allows us to capture more
complex aspects of the migration dynamics that require higher order terms in
the expansion of Fw(xn, vn).

Model selection

However, to infer a model, one still needs to choose the maximum orders `max

and mmax of the monomial basis functions in xn and vn, respectively. Depend-
ing on the chosen values of `max and mmax the inferred non-linear dynamics
might vary dramatically. Thus, ULI does not yield a unique expression for
the terms in Eq. 4.1 and we require additional criteria to select a satisfying
model. A priori, it is not even clear that there exists a unique, optimal expres-
sion for Fw(xn, vn). Here, we make a leap of faith and assume that such an
optimal and at least semi-unique inferred model exists. We can confirm this
afterwards by comparing the structure of the different obtained models. We
try to identify such optimal models by sweeping over a broad range of values
for `max and mmax and infer the corresponding models from 50% of the exper-
imental data. This inference only utilizes the instantaneous position, velocity
and acceleration of the nucleus, such that we can asses the predictive power of
each model by creating a synthetic dataset by simulating Eq. (4.1) (see Stöberl
et al., 2023 for details) and compare the model predictions for a number of
key, long-timescale statistics with the other 50% of the data that were not used
during the inference. By gradually increasing the required predictive power
for a model to be accepted, we then check if indeed a semi-unique, optimal
model emerges for every considered geometry that can then be used to assess
the impact of physical confinement on the migration dynamics.

Figure 4.3: Examples of the long-timescale statistics (adapted from
Stöberl et al., 2023). A. The distribution of nuclear velocities together with
the gaussian kernel estimate. B. The distribution of nuclear position together
with the gaussian kernel estimate. C. The dwell time distribution obtained by
either using a Kaplan-Maier estimator or generalized gamma distribution to
estimate the survival function.

Following previous work on 2D two-state patterns (Brückner, Fink, Schreiber,
et al., 2019), we use the probability distribution of the nuclear position p(xn)
and velocity p(vn) as well as the dwell time distribution p(τ) to assess the pre-
dictive power of the inferred models (Fig. 4.3). To denoise the distributions
to ensure a numerically more stable comparison between the inferred models
and experimental data, we estimate p(xn) and p(vn) in a parameter-free way
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using a kernel density estimation (Parzen, 1962; Rosenblatt, 1956) with a Gaus-
sian kernel, which closely matches the distributions obtained from histograms
(Fig. 4.3, A and B). Since the recorded trajectories are finite, a simple his-
togram of the dwell times would result in a biased estimate of the distribution.
This can be corrected for by using a Kaplan-Maier estimator (Kaplan et al.,
1958), which allows for a parameter-free estimate of the survival function S(τ)
of a cell sitting in one chamber. The estimate of the dwell time distribution
p(τ) is given by p(τ) = ∂τ (1 − S(τ)) (Fig. 4.3C). Similar to the histograms
for p(xn) and p(vn), the estimate for p(τ) obtained in that way is relatively
noise, which makes a comparison between different distributions difficult. To
obtain a less noise-prone estimate of the dwell time distribution, we use a pa-
rameterized estimator of the survival function by fitting a generalized gamma
distribution (Stacy, 1962) to the data (Fig. 4.3C). We found a close agreement
between the dwell time distributions obtained with both methods, confirming
that the generalized gamma distribution is indeed a suitable parametrization
of the survival function.

Figure 4.4: Overview of the Hellinger distances between experimen-
tal and model statistics for models of different orders and channel
widths (from left to right: 4 µm, 7 µm, 9 µm, 12 µm) (adapted from
Stöberl et al., 2023). A. Hellinger distances of the dwell time distributions. B.
Hellinger distances of the velocity distributions. C. Hellinger distances of the
position distributions. D. Maximum Hellinger distance of the three considered
statistics.

To quantify the predictive power of the inferred model, we require a simi-
larity measure between the predicted and the experimentally determined dis-
tributions. Since all three distributions are probability distributions, we can
use the same measure for all three quantities. There is a host of measures
for the similarity between probability distributions that one can choose from.
The Kullback-Leibler divergence DKL(p|q) between two probability distribu-
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tions p(x) and q(x) of a generic random variable x (Kullback et al., 1951) is
potentially the most well known of such distributions and would also allow for
an information theoretical interpretation of the obtained difference between
distributions. In our case, the Kullback-Leibler divergence turned out to be
not particularly well suited because it diverges if q is 0 for a value of x for
which p is finite. We thus choose a different measure to quantify the differ-
ence between the predicted and the experimentally determined distributions,
the so-called Hellinger distance H(pexp, pinf) (Hellinger, 1909), with pexp and
pinf denoting probability densities obtained from experimental data and pre-
dicted by an inferred model, respectively. The Hellinger distance is bounded
to values between 0 (perfect agreement between pexp and pinf) and 1 (complete
disagreement between pexp and pinf), which makes it numerically more stable
in our case. When sweeping over `max and mmax, we find that there are strong
differences in the Hellinger distances and thus the performances of the inferred
models (Fig. 4.4). Interestingly, we find that an increase in mmax, the maximal
order in vn, quickly results in models with an inferior performance compared
to simpler models with lower values of mmax. In contrast, higher values in
`max often times leads to an increased predictive power of the inferred models,
suggesting that the dynamics are more complex with respect to the positional
degree of freedom than the velocity.

To select between models, we define a threshold value Hthresh such that
models are accepted if they score a value of H(pexp, pinf) < Hthresh for all
three statistics. For the narrowest considered channel width (w ≈ 4 µm), cells
perform almost no transitions. As a consequence, the dwell time distribution
can not be reliably estimated in that case and was excluded from as a selec-
tion criterium for this bridge width. Note that there will be a lower bound
to H(pexp, pinf) < Hthresh due to the finite data set. We will thus not be able
choose arbitrarily low values of Hthresh. To test if this approach can indeed
be used to identify a semi-unique optimal model, we started out with a value
of Hthresh = 0.15, which already ensures that large parts of the probability
distributions are correctly predicted by the model. We found however that this
criterium was not strict enough to lead to unique models, but instead found
large differences for different values of `max and mmax. We then gradually
decreased the threshold until we obtained a selection of models that qualita-
tively and quantitatively agree closely for each bridge width. At a value of
Hthresh = 0.14, we found satisfying agreement between the deterministic terms
Fw of different models for some channel widths, but larger qualitative differ-
ences for other channel widths (Fig. 4.5). For a value of Hthresh = 0.13 we found
a good qualitative and quantitative agreement between accepted models for all
channel widths while still being able to find models that were accurate enough
to be accepted with the exception of the narrowest channel width (Fig. 4.6).
For these, the inferred model was not able to reproduce the sharply peaked po-
sitional probability distributions well enough to pass the threshold. Since we
are however more interested in the dynamical properties of our model, we loos-
ened the selection criterium in that case to Hthresh = 0.14, which still lead to
a semi-unique model. Overall, we find that with increasing predictive power,
the inferred models become qualitatively and quantitatively more and more
similar, indicating that there is indeed a single, unique model that describes
the experimental migration behavior optimally. For the accepted models, we
then chose specific values of `max and mmax (see Table 4.1 and Fig. 4.7A) to
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analyze the effect of confinement on the cellular dynamics. Our results do how-
ever not depend sensitively on the choice of the model as long as they pass our
threshold.

Figure 4.5: Comparison between exemplary models with a threshold
of 0.14 (adapted from Stöberl et al., 2023). Shown are the bridge widths
7 µm, 9 µm and 12 µm.

Figure 4.6: Comparison between exemplary models with a threshold
of 0.13 (adapted from Stöberl et al., 2023). Shown are the bridge widths
7 µm, 9 µm and 12 µm.

bridge width 4 µm 7 µm 9 µm 12 µm

`max 3 9 8 7
mmax 2 3 2 3

Table 4.1: Orders of the basis functions used to infer the models used to
analyze the effect of confinement on the migration dynamics.
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Model comparison and interpretation

To gain insight on how 3D confinement and especially nuclear deformations,
affect the non-linear migration behavior of cells, we focus on channel widths of
12 µm and below (Fig. 4.7A), where we transition from transmigration with-
out nuclear deformations (w = 12 µm) to strong nuclear deformations induced
by the confinement (w < 12 µm). For w ≥ 7 µm, we find qualitatively simi-
lar models: The nucleus strongly decelerates when located near the center of
the chambers. In contrast, as the nucleus approaches the constricting chan-
nel, it accelerates into the channel and transitions to the other side of the
pattern. The structure of these nonlinear dynamics is at first glance reminis-
cent of cells migrating on corresponding 2D micropatterns (Brückner, Fink,
Schreiber, et al., 2019). Interestingly, at the narrowest channel width (4 µm)
this region of acceleration vanishes, which is consistent with the more station-
ary behavior that we observed in the experimental trajectories at this channel
width (Fig. 4.2). Even though we can observe some quantitative and quali-
tative differences between the inferred deterministic terms Fw(xn, vn) of the
underdamped Langevin dynamics in Fig. 4.7A, it is difficult to identify a clear
signature of increasing confinement from a simple visual comparison.

To help with that and to better visualize the effect of nuclear deformations
on the non-linear dynamics, we compute the difference 〈∆F 〉w = F12µm − Fw
(Fig. 4.7B), which we term Nuclear Confinement Maps (NCM). Between all
three considered channel widths, the NCMs share a number qualitative fea-
tures: Cells that migrate along the exemplary trajectory from the left to the
right chamber indicated by the black line in Fig. 4.7 (center) start out in a
region where 〈∆F 〉w > 0 (circle in Fig. 4.7B, C). In previous work from our
group on 2D micropatterns and as extensively discussed in Section 3.4, we
found that increasing confinement of the protrusion stimulates increasing pro-
trusion growth and thus stronger accelerations of the nucleus towards the chan-
nel (Brückner, Schmitt, et al., 2022). The pronounced region of 〈∆F 〉w > 0 in
the chambers could indicate that this geometry adaptation mechanism is also
present in 3D confinement. Once the nucleus approaches the channel entrance
(triangle in Fig. 4.7B, C), it crosses over into a region of 〈∆F 〉w < 0 in the
NCM. Since the region of 〈∆F 〉w < 0 coincides with the point at which fur-
ther translocation of the nucleus would require large nuclear deformations, this
suggests that this feature of the NCM may be due to an effective deformation
energy barrier that impedes entry into the channel. Once the nucleus transi-
tioned into the channel (square in Fig. 4.7B, C), we again observe a region of
acceleration that is consistent with an elastic release of the tension that was
build up to deform the nucleus in the previous step. If cells reach high enough
velocities, they cross through another region of 〈∆F 〉w < 0 as they move out
of the channel (star in Fig. 4.7B, C). Overall, the NCMs indicate that there
is a clear qualitative signature of 3D nucleus confinement that suggest that
elastic deformations of the nucleus affect the transmigration dynamics. Fur-
ther, while the differences between the inferred models appear to be consistent
with the previously proposed interpretation that nuclear deformations act as
an effective energy barrier (McGregor et al., 2016), they also highlight the need
to account for the coupling of the nucleus to the cellular migration and force
generation machinery to explain for the complex, underdamped migration dy-
namics, which clearly deviate from the diffusion of an overdamped particle in
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Figure 4.7: Inferred non-linear dynamics of the nucleus for varying
channel widths (from left to right: 4 µm, 7 µm, 9 µm) (adapted from
Stöberl et al., 2023). A. The inferred deterministic term Fw(xn, vn) within
the experimentally sampled region. The unsampled region is shown in white.
Central inset: Predicted deterministic dynamics obtained from simulations of
the mechanistic model (w = 7 µm). Right inset: Fw(xn, vn) for a channel
width of 12 µm. B. The difference between the deterministic term Fw(xn, vn)
and the reference term at 12 µm (‘Nuclear Confinement Maps’). The black
line indicates an exemplary trajectory of a transitioning cell. Inset: Predicted
confinement signature map obtained from simulations of the mechanist model
(7 µm). C. Snapshots of the typical cellular morphology at different points
during the transition indicated in (B). Scale bar: 20 µm.

a double-well potential as proposed previously in Patteson et al., 2019.

4.3 Cellular force generation and the nucleus: Is it
pulled or is it pushed?

While the inferred underdamped dynamics of the nucleus give us some indica-
tion of the role of the nucleus in 3D confined cell migration, more information
on the mechanical properties and the interaction between the nucleus and the
cellular migration machinery is needed to constrain a mechanistic model for
mesenchymal cell migration in 3D confinement. In particular, a key ques-
tion in this context is how cells generate sufficient forces to move their nuclei
into confinement. Both pulling forces generated in front of the nucleus and
pushing forces generated in the cell rear have been shown to play a role in con-
fined cell migration. Studies on embryonic mouse fibroblasts squeezing their
nuclei through narrow constrictions indicate that these cells translocate their
nucleus predominantly through actomyosin contractile forces that are gener-
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ated in front of the nucleus (Cao et al., 2016; Davidson, Battistella, et al.,
2020). This conclusion is based on both theoretical considerations as well as
direct experimental evidence. First, analysis of the observed nuclear shapes
found that their pronounced hour-glass shape when moving through the con-
finement (Davidson, Sliz, et al., 2015) is consistent with simulations of a nucleus
that is pulled through an equivalent constriction (Cao et al., 2016). There, the
nucleus is modeled as a hyperelastic shell with a poroelastic core. Second,
laser cutting of the cytoskeleton in front of the nucleus of a cell migrating into
confinement resulted in a clear retraction of the nucleus towards the cell rear,
indicating the release of a contractile tension in the front upon cutting. In
contrast, laser cutting in the cell rear did not result in a release of tension. A
study with MDA-MB-231 breast cancer cells in the same experimental system
however suggests a more complex picture (Thomas et al., 2015). There, the
role of the myosin II isoforms myosin IIA and IIB during confined migration
were analyzed. While myosin IIA, which is associated with traction force gen-
eration (Jorrisch et al., 2013), was accumulated in front of the nucleus, myosin
IIB was found to accumulate in the rear of the cell. Without myosin IIB, cells
were migrating less efficient through confinement suggesting that for MDA-
MB-231 cells forces generated in the rear of the cell play a significant role
during confined migration. Beyond that, dendritic cells were found to be able
to move their nuclei through narrow confinement without being able to form
adhesions with their leading protrusion (Thiam et al., 2016). This indicates
that even without being able to generate pulling forces due to the lack of fo-
cal adhesions at the leading edge of the cell, these cells are able to generate
sufficient forces to deform their nucleus and move through the constriction.
More recently, two preprints analyzed the mechanism behind rear contractility
driven nuclear translocation in more detail (Ju, Falconer, Dean, et al., 2022;
Keys et al., 2022). In Keys et al., 2022 a classification of migrating cells in
cortex-driven and non-cortex-driven migration is performed based on the cel-
lular morphology. Here, cortex-driven corresponds to a force generation mode
where pushing forces play a significant role, while non-cortex-driven migration
is thought to be dominated by pulling forces. Consistent with the literature
that we discussed above, they found that under strong confinement the migra-
tion of mouse embryonic fibroblasts was non-cortex-driven, while the migration
of MDA-MB-231 and HT-1080 cells was cortex-driven migration. In the ab-
sence of confinement all three cell lines displayed a morphology consistent with
non-cortex-driven migration. Similarly, in Ju, Falconer, Dean, et al., 2022 in-
dications for a confinement induced rear contractility were found for a different
cancer cell line (1205Lu cells). Both studies suggest that nuclear deformations
are a key requisite for increased rear contractility, which could be explained by
the mechanism discovered in Lomakin et al., 2020 and Venturini et al., 2020
that nuclear deformations trigger an increased Ca2+ release and consequent
cortical contractility.

Overall, these studies suggest that a mechanistic model for 3D confined
cell migration does not only have to account for the mechanical properties
of the nucleus but would also need to consider two distinct force generation
mechanisms that might be connected to nuclear deformations. Despite the
mounting evidence that such distinct mechanisms exist and both play a role
in many instances of confined cell migration, a quantitative understanding the
interplay between confinement and these force generation mechanisms is still
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lacking, which would be crucial for a model that can describe migration at
varying degrees of 3D confinement.

The nucleus as a force sensor

To obtain quantitative information on the dependence of the cellular force
generation on the degree of confinement, we use that the nuclear shape is
dictated by the forces that propel it through confinement. Previously, nuclear
shapes were used to infer the complete force distribution along the outline of
the nucleus (Estabrook et al., 2021). Here, we are only interested in the overall
balance between pulling and pushing forces such that we use a simplified version
of the same rational. At the heart of any method that relates shapes to forces
lies a model for the mechanical properties of the deformed object. Even though
the cell nucleus displays rich and complex rheological properties as discussed in
Section 4.1, it is unclear how much of this complexity contributes on the length
and time scales that we are interested. Apart from the mechanical properties
of the isolated nucleus, it is also unclear if possible adaptation mechanisms
play are present in our system. As a consequence, we first need to measure the
mechanical properties of the nucleus in confinement in our system before being
able to relate the observed nuclear deformations to cellular force generation.

For that, we utilize a key feature of our experimental system: the control
over the stiffness of the hydrogel walls. By embedding fluorescent beads in the
hydrogel and choosing the wall stiffness to be close to the nuclear stiffness (see
Stöberl et al., 2023 for further experimental details), we can observe how the
cell and specifically the nucleus deforms the substrate it transitions through
the confining channel. This allows us to measure the contact force between
the cell and the hydrogel. If the channel is narrow enough to induce significant
nuclear deformations, this contact force should be dominated by the mechanical
response of the deformed nucleus. To obtain a simple estimate of the contact
force Fh from the observed deflection ∆w/2 of the side walls without relying
on complex finite element simulations, we use a simple Hertz’ model (Hertz,
1882; Puttock et al., 1969)
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where Ri is the initial radius of the (unconfined) cell nucleus and Eh and νh
are the Young’s modulus and Poisson’s ratio of the hydrogel, respectively. At
the same time, this requires the nucleus to be compressed down to a width of
2Rc ≈ wd = w+ ∆w, where 2Rc is the width of the compressed nucleus in the
direction of compression and w and wd denote the width of the undeformed
and deformed channel, respectively. Using that the normal force generated by
a compressed spherical object is given by (Hertz, 1882; Puttock et al., 1969)
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with ∆R = Ri − wd/2. We can then estimate the expected wall deflection
induced by a spherical elastic nucleus of Young’s modulus En and Poisson
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ratio νn by equating Eqs. (4.4) and (4.5) as
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Note that Eq. (4.6) in principle allows us to determine the to mechanical pa-
rameters νn and En associated with the nucleus in this simplistic model. As
discussed in Section 4.1, a more detailed analysis revealed that the rheological
properties of the nucleus are more complex than that of a linear elastic sphere.
In our system however, the bead displacement data does not have the same
precision and deformation range as experiments with isolated nucleus. Hence,
our data is only sufficient to constrain a simplistic mechanical model of the
nucleus. Another simplifying assumption that goes into Eq. (4.6) is that the
nuclear deformations are predominantly elastic. This is supported by the ob-
servation that nuclear shape rapidly recovers to its original round shape after
exiting the channel, with a relaxation time of 20 minutes (Fig. 4.8). This
observation suggests that in our set-up with relatively short time scales of de-
formation the nuclear response is predominantly elastic. This is consistent with
relatively low lamin A levels found in MDA-MB-231 cells (Bell et al., 2022),
which was shown to increase the reversibility of nuclear deformations (Harada
et al., 2014).

Figure 4.8: Aspect ratio of the nucleus for different channel widths
(x-dimension/y-dimension) (taken from Stöberl et al., 2023). A. Aspect
ratio with respect to the nuclear position. The cells are oriented such that
they migrate from left to right. The grey dashed lines indicate the edges of
the channel and the grey dotted lines the point at which the nucleus starts
entering (left)/ fully left (right) the channel. B. Nuclear shape recovery after
a transition.

To further reduce the number of free parameters in Eq. (4.6) that we have
to constrain with the bead deflection data, we aim to measure the nuclear
Poisson ratio independently. For that, we quantify the volume of the nucleus
as it transition from one chamber to the other by using confocal imaging (see
Stöberl et al., 2023 for further experimental details). This analysis revealed a
temporary and repeated reduction in nuclear volume when the nucleus enters
the channel, which could potentially be arise from an outflux of water through
the water-permeable nuclear membrane upon compression as proposed previ-
ously (Cao et al., 2016). The quantification of the nuclear volumes in and
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out of confinement allows us to determine the Poisson ratio of the nucleus of
MDA-MB-231 cells through (Demtröder, 2017)

νn =
1

2

(
1− ∆V w

V∆w

)
. (4.7)

Figure 4.9: Experimental characterization of the nuclear mechan-
ics under confinement (adapted from Stöberl et al., 2023). A. Relative
volume change of the nucleus when confined by the channel with three dif-
ferent widths (mean ± SD for n > 2 cell nuclei per channel width) together
with fit of Eq. (4.7) (blue line). B. Exemplary snapshot of the fluorescently
labeled nucleus of an MDA-MB-231 cell passing through a soft PEG-NB hydro-
gel channel. Color-coded arrows indicate the displacement field of fluorescent
beads embedded in the hydrogel. Scale bar: 20 µm. C. Normal forces between
the nucleus and the hydrogel wall as a function of channel width together with
the fit of our simple mechanical model for the nucleus (blue line, shaded area
indicates one standard deviation).

We find that the observed volume changes at different channel widths can
be explained in terms of a single, deformation-independent Poisson ratio of
νn = 0.40 ± 0.02 (Fig. 4.9A). Since the mechanical properties of the hydrogel
are experimentally determined (Stöberl et al., 2023), this leaves us with a single
free parameter En in Eq. (4.6). Using Eq. (4.6) together with Eq. 4.4 to fit
our model to the experimentally determined contact forces between nucleus
and wall (Fig. 4.9B, C), we determine the value of En as En = 0.4kPa. Note
that our simplistic model is sufficient to explain the observed channel width
dependence of the contact forces without requiring more detailed mechanical
models of the nucleus or confinement dependent values of En. Overall, we find
that within the precision of our experimental system, the mechanical response
of the nucleus to confinement is well described by a spherical elastic material
with confinement independent mechanical parameters but with a Poisson ratio
that results in a volume reduction upon compression.

Relating nuclear shape to intracellular force generation

Following a similar approach to Estabrook et al., 2021, we use this simple
mechanical model for the nucleus (Eq. (4.5)) to deduce whether the nucleus
is being predominantly pulled or pushed through the confinement. To obtain
a first insight into the effect that external forces have on the confined nu-
cleus in the center of the channel, we quantify the deviation from an isotropic
(force free) expansion of the nucleus under compression through the channel
walls. The previous quantification of the nucleus Poisson ratio allows us to use
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the two-dimensional time-lapse microscopy data to obtain information on the
change of x-z aspect ratios (AR) as cells move from the chamber into the chan-
nel (see Fig. 4.10A and B for the definition of x, y, z in our setup). To find an
approximate expression for the dimensions of the nucleus under compression
in the presence of pulling and pushing forces acting along the direction of mi-
gration, we first calculate the shape of the unconfined nucleus with pulling and
pushing forces applied and then apply the confinement-induced deformation in
the y-direction together with an isotropic expansion in the x/z-direction.

Figure 4.10: The deformation of the nucleus (adapted from Stöberl et al.,
2023). A. The force free nucleus. B. The nucleus in the channel. The observed
shape is a result of lateral confinement by the channel walls and intracellular
forces acting on the nucleus. C. Force balance on the nucleus in the direction
of migration in the channel.

For this, we consider the strain uxx in the x-direction induced by the sum of
pushing and pulling forces acting on the nucleus. The strains in the orthogonal
directions can then be written as uyy = −νnuxx and uzz = −νnuxx (Landau
et al., 1986b). For small deformations along the x-direction, the strains can
be expressed as uxx = dx

x , uyy = dy
y , and uzz = dz

z (Hencky, 1928). To relate
the finite deformations ∆y and ∆z to the deformation ∆x induced by the
forces acting in x–direction we integrate the infinitesimal strains and use that
uyy = uzz = −νnuxx, such that∫ y0+∆y
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dy
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=

∫ z0+∆z
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From that, we get
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Writing the deformation of the nucleus in the x-direction induced by the com-
bination of pulling and pushing forces as ∆xforces, such that the new length of
the nucleus is xforces = x0 + ∆xforces, we can then use Eq. (4.9) to write the
corresponding nuclear dimensions in the orthogonal directions as

yforces = y0 + ∆yforces = y0

(
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)−νn
(4.10)

and

zforces = z0 + ∆zforces = z0

(
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x0

)−νn
, (4.11)

where x0/y0/z0 denote the force-free dimensions of the nucleus.
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Now we add the confinement due to the channel of width w, such that the
width of the nucleus in the channel yc = w. Consequently, the dimensions of
the nucleus in the other directions in the channel are given by

xc = xforces

(
w

yforces

)−νn
(4.12)

and
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The aspect ratio between the two unconfined dimensions of the nucleus in the
channel is then given by
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If the pulling force is stronger than the pushing force, we expect that ∆xforces >
0 and thus ARconfined > x0/z0 = ARfree, while in the case that pushing forces
are stronger than pulling forces, we expect ∆xforces < 0 and thus ARconfined <
ARfree. To express the effect of the intracellular force balance on the nuclear
aspect ratios in a single parameter, we define the shape parameter
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. (4.15)

For ε > 1 pulling is the dominant force driving nucleus translocation, while
for ε < 1 pushing dominates. Unfortunately, Eq. (4.15) cannot be used to
determine ε from our experimental data, since we have no direct experimental
access to xforces. To express ε in terms of measurable quantities, we use that
xforces = xc(w/yforces)

νn and yforces = y0(xforces/x0)−νn . This allows us to
write

xforces
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Together with Eq. (4.15) we then get the following expression for the shape
parameter in terms of experimentally accessible quantities:
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We use Eq. (4.17) to characterize the experimentally observed nuclear de-
formations (Fig. 4.11A). Values of ε exceeding 1 indicate that in confinement
the nucleus is being stretched in the direction of migration, while values below
1 indicate that the nucleus is compressed in the migration direction. In the
absence of nuclear deformations (w & 12 µm), ε initially rises with increasing
confinement width up to a maximal value of 1.4 at a channel width of 12 µm
(Fig. 4.11B). When transitioning into a regime where confinement induces sig-
nificant nuclear deformations (w < 12 µm), ε starts to decrease and eventually
drops to values below 1 for channel widths below 7 µm, where it reaches a
value of 0.5 at 4 µm confinement width. Thus, wild-type MDA-MB-231 cells
show a non-monotonic dependence of the shape parameters ε with channel
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Figure 4.11: Nuclear shapes in confinement (taken from Stöberl et al.,
2023). A. Illustration of the shape parameter ε. At ε = 1, the nucleus expands
isotropically in the two unconfined direction. At ε > 1, the nucleus displays
a more elongated morphology and at ε < 1, the nucleus appears to be more
compressed in the direction of migration. B. Values of the shape parameter ε in
the channel at varying channel widths. In the absence of nuclear deformations,
confinement leads to an increasingly elongated morphology. At channel widths
that require nuclear deformations, ε decreases with further confinement. This
change in nuclear deformations is indicative of a change in the nuclear force
balance. Inset: The deduced difference between pulling and pushing forces
acting on the nucleus. We observe a transition from pulling dominated to
pushing dominated nuclear translocation.

width, suggesting a change in the forces acting on the nucleus with varying
confinement.

To relate the observed nuclear deformations and in particular the shape
parameter ε to the difference of pulling and pushing forces, we consider the
force balance acting on the nucleus as it moves through the cytosol at constant
speed (Fig. 4.10C). We assume that there are two contributions to these forces:
a pulling force Fpull that is generated in front of the nucleus and a pushing force
Fpush acting from behind the nucleus. Since the drag force acts Fdrag on the
center of mass of the nucleus, we split it up with 1/2Fdrag acting on either side
of the nucleus, such that overall the nucleus experiences a drag force Fdrag.
The force balances at the front and the rear of the nucleus are then given by

Ffront = Fpull −
1

2
Fdrag (4.18)

and

Fback = Fpush −
1

2
Fdrag. (4.19)



96 CHAPTER 4. THE NUCLEUS IN 3D CONFINED CELL MIGRATION

At a constant velocity and shape of the nucleus, the forces at the front and the
back must balance out and be equal to the elastic force Fdeform generated by
the nucleus due to its deformation:

Fdeform = Ffront = −Fback (4.20)

We can then rewrite Fdeform = (Ffront − Fback)/2 in terms of the pulling and
pushing forces as

Fdeform =
Fpull − Fpush

2
. (4.21)

As discussed above, the deformations of the nucleus can be approximated by
the Hertz model. Here, we assume that the magnitude of the deformation force
is identical whether the nucleus is compressed or stretched. this yields the fol-
lowing expression of the deformation force in terms of the nuclear deformation
along the direction of migration:
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Together with Eq. (4.16) the deformation force associated with a value of the
shape parameter ε as
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This expression allows us to estimate the nuclear deformation forces from the
experimentally observed nuclear shapes as shown in Fig. 4.11B (inset). From
this, we find that our mechanical nucleus model indicates that the change in
the nuclear deformation behavior with changing channel widths is the con-
sequence of a transition from a pulling-dominated migration regime at wider
channel widths to a pushing-dominated migration regime at channel widths
below 7 µm. Thus, at least for MDA-MB-231 cells, the relative contribution
of pulling and pushing forces to the translocation of the nucleus is not an in-
trinsic property of the cell itself, but adapts to the degree of three-dimensional
confinement. This gives a new perspective on the debate about pulling and
pushing forces in confined migration and could at least partially explain the
seemingly conflicting results on whether pulling or pushing forces are respon-
sible for nuclear translocation.

4.4 Constraining a predictive, mechanistic model for
cell migration in 3D confinement

We use the combination of the observed nuclear deformations together and the
migration dynamics to constrain and test a mechanistic model for mesenchy-
mal cell migration in 3D confinement. Motivated by the observed change in
nuclear deformations with increasing confinement, we develop a model for cel-
lular force generation during confined migration. The key aspect of the model
is the combination of two confinement-dependent force generation mechanisms:
pulling forces, generated by actomyosin contractility at the front of the cell,
and pushing forces, regulated by the cortical tension in the rear. We incor-
porate these two mechanisms by generalizing a simple dynamical model that
describes mesenchymal cell migration on 2D substrates (Brückner, Schmitt,
et al., 2022)to 3D by including nuclear deformations in confinement.
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A mechanistic model for cell migration in 3D confinement

As a basis, we use the mechanistic model from Brückner, Schmitt, et al., 2022
for 2D confined migration that we derived from basic biophysical principles in
Chapter 3. Here, we start by briefly summarizing the structure of the model,
before discussing the adaptations made to account for the 3D nature of our
experiments in more detail.

Figure 4.12: Sketch of a minimal mechanistic model for mesenchymal
cell migration (adapted from Stöberl et al., 2023). The protrusion and the
nucleus are coupled elastically. Narrow confinement of the protrusion stim-
ulates cell polarization (i). On the other hand it also increases the nuclear
drag (ii) and induces nuclear deformations (iii). To overcome this migration
challenge, cells can generate pushing forces (iv) that are triggered by nuclear
deformations.

The model consists of three degrees of freedom: the nuclear position, the
position of the leading protrusion of the cell, and a polarization (Fig. 4.12).
The nucleus and the protrusion are coupled through an elastic spring of spring
constant k. After absorbing the friction coefficients of the nucleus and the
protrusion into the spring constants, we denote the rescaled spring constants
as kn and kp, respectively. The nuclear dynamics are then given by

γ(xn)ẋn = kn(xp − xn) + fpush(xn) + fchannel(xn). (4.24)

Here, γ(xn) accounts for spatial variations in the nuclear friction coefficient (see
discussion below). To account for the 3D nature of our experimental system, we
include two additional terms in Eq. (4.24) compared to the model discussed in
Chapter 3: fpush(xn) denotes the pushing force generated by rear contractions
of the cell and fchannel(xn) accounts for nuclear deformations induced by the
channel. The dynamics of the protrusion coordinate remain unchanged from
2D migration and are given by (see Section (Brückner, Schmitt, et al., 2022)

ẋp = −kp(xp − xn)− ∂xpV (xp) + rP (t). (4.25)

Here, the repulsive potential V (xp) = (xp/xboundary)8 limits protrusion for-
mation to the region of the dumbbell-shaped micro-cavities. Additionally, to
account for the internal organization of the cell, a polarization force P (t) acts
on the protrusion coordinate driving protrusion formation in the direction of
polarization. As derived in Chapter 3, the polarization force is sensitive to the
geometry of the pattern and evolves according to

Ṗ = −α(xp)P − βP 3 + σξ(t). (4.26)
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Here, the geometry sensitive parameter determines the value of the stable fixed
point P ∗ of P (t) with P ∗ = ±

√
−α/β for α < 0 and P ∗ = 0 for α ≥ 0. The

constant β > 0 ensures that P (t) remains bounded at all times. The term σξ(t)
denotes a Gaussian white noise-process of strength σ and with 〈ξ(t)〉 = 0 and
〈ξ(t)ξ(t′)〉 = δ(t − t′) that accounts for stochastic fluctuations in the internal
organization of the cell. To account for the increased confinement in the centre
of the pattern (Fig. 4.13 (ii)), we gradually decrease α towards the center of
the pattern according to

α(xp) =

{
αmin + α0−αmin

2

(
1− cos

(
xpπ
Lα

))
, |xp| < Lα

α0, else
, (4.27)

where 2Lα is the region in the center of the pattern in which the polarization
dynamics are affected by the confinement. The parameter αmin decreases with
decreasing bridge width as (see Chapter 3)

αmin = −α1 + α2w
2, (4.28)

such that for narrow channels, cells display a finite average polarization when
their protrusion coordinate is near the center of the pattern (Fig. 4.12 (i)). For
channel widths beyond the unconfined width of the cell wfree, we expect the
channel width to have no effect on the experiment. Hence, that in that regime
we choose αmin = α0.

Figure 4.13: Sketch of the proposed effect of the degree confinement
on the cellular force production mechanisms (adapted from Stöberl et
al., 2023). Compared to the unconfined case (i), confinement of the protrusion
(ii) stimulates protrusion growth resulting in an increased pulling force. On
the other hand, narrower protrusions contain less actomyosin, resulting in a
reduction of the pulling force. Strong deformations of the nucleus (iii) trigger
Ca2+ release, which results in a higher cortical contractility. Consequently, the
pressure in the rear of the cell increases, resulting in an increased pushing force
onto the nucleus.

The first adaptation required to account for 3D confinement in our model
concerns the nuclear friction (Fig. 4.12 (ii)). Without deformations, we found
that the nuclear friction is reduced in the centre of dumbbell shaped patterns
due to the reduced number of focal adhesions in the constriction (see discussion
in Section 3.4). In the presence of physical walls that strongly confine the
nucleus, however, we expect that the nuclear friction increases in the channel
due to interactions with the walls. We account for this through the channel
width dependence of the minimal friction coefficient γcentre in the centre of the
channel. If the cell is completely unconfined (w ≥ wfree), we simply expect
γcentre = 1. When the cell is confined but the nucleus is not deformed (2Rn ≤
w < wfree), we expect a linear decrease of γcentre with channel width due
to the reduced adhesive area compared to the unconfined case (Eq. (3.35)).
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Finally, in the presence of nuclear deformations (w < 2Rn), we expect a non-
linear increase of the nuclear drag with reducing channel width (Chang, 1961).
Taken together, we use the following expression for the nuclear friction in the
channel:

γcentre =


1, w > wfree

1+γ1w
1+γ1wfree

, 2Rn < w ≤ wfree

1+2γ1Rn
1+γ1wfree

(
1 + γ2

w

)
, w ≤ 2Rn

. (4.29)

Next, we consider the force fchannel generated due to the elastic deforma-
tions of the nucleus as it enters and leaves the channel (Fig. 4.12 (iii)). We
found from the inferred underdamped migration dynamics (Section 4.2) that
the nucleus acts as a barrier, impeding migration into the channel and accel-
erating migration out of the channel. Thus, we account for the elastic nuclear
deformations induced by the channel through a potential barrier, such that

fchannel(xn) = −∂xnW (xn). (4.30)

As the nucleus moves into the confinement, it is compressed in the orthogonal
direction, which leads to a lengthening of the nucleus. The confinement exerts
a force opposite to the direction of movement onto the nucleus until it has
completely entered the bridge. We thus use the following expression for the
potential barrier:

W (x) = Wmax

{
x
LW
− π−1 cos

(
πx
L

)
sin
(
πx
L

)
, 0 < x < L

0, else
(4.31)

where LW = Lb/2 + Rn with Rn being the average radius of the unconfined
nucleus. Since the pattern and consequently also the potential is symmetric, we
can calculate the value of the potential barrier at position xn through W (x =
LW − |xn|). We thus get the channel-induced deformation force

fchannel(xn) = −∂xW (x)∂xnx|x=LW−|xn| = sign(xn)∂xW (x)|x=LW−|xn|.
(4.32)

The observed 3/2-scaling of the nuclear normal forces with the nuclear defor-
mations (Fig. 4.9C) represents a lower bound for the dependence of the force
opposing the nuclear deformations. Since an analytic expression for the force
opposing the movement of a elastic spherical object that is pushed or pulled
into confinement is not available, we assume that fchannel follows the same
3/2-scaling, such that

Wmax = W0(2Rn − w)
3
2 . (4.33)

Finally, we include a pushing force fpush in our model for 3D confined cell
migration (Fig. 4.13 (iii)). This is motivated by the observed nuclear shapes
which are consistent with strong pushing forces driving nuclear translocation
at narrow channel widths (see Section 4.3) together with recent evidence that
nuclear deformations can trigger increases in cortical tension through Ca2+

release (Lomakin et al., 2020; Venturini et al., 2020), which allows cells to
generate pushing forces to move the nucleus through narrow constrictions (Ju,
Falconer, Tang, et al., 2022; Keys et al., 2022). In the absence of confinement,
the pushing force is unlikely to play a significant role due to the unhindered fluid
exchange between the front and the rear of the cell, which inhibits the buildup
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of a pressure difference between the front and the rear of the cell. As cells
move into the channel they gradually increase the nuclear strain. We account
for this by applying an increasing pushing force opposing nuclear movement as
the nucleus moves into the centre of the channel (Fig. 4.12 (iv)). This pushing
force is given by

fpush(xn) = sign(xp − xn)fmax(w) cos

(
πxn
Lb

)
. (4.34)

To derive an expression for fmax(w), we consider the case of a nucleus that is
completely confined laterally to a width w: Confinement induced pushing forces
are thought to be triggered by strong nuclear deformations that lead to Ca2+

release and consequently increased myosin activity in the cortex (Lomakin et
al., 2020; Venturini et al., 2020). The resulting increase in cortical tension
causes a higher Laplace pressure in the rear that pushes against the nucleus.
The pushing force in confinement is then proportional to the increase in cortical
tension ∆τcortex and the projected area S of the nucleus in the plane orthogonal
to the direction of migration (Cao et al., 2016)

fmax(w) ∝ S(w(xn))∆τcortex. (4.35)

We expect the dominant contribution to the bridge width dependence of S(w(xn))
to be the compression imposed by the side walls of the channel such that we
can approxmate the projected area of the nucleus as

S(w(xn)) = S0

(
w(xn)

2Rn

)1−νn
, (4.36)

where S0 is the projected area of the undeformed nucleus.
The calcium release upon nuclear deformation is associated with stretch-

sensitive calcium channels in the perinuclear endoplasmic reticulum (Lomakin
et al., 2020). To relate the change in Ca2+ concentration in the cytosol to the

degree of confinement, we assume that the concentration nCa2+

is proportional
to the fraction of open channels. We calculate this fraction with a simple
mechanical model for the opening probability of stretch sensitive ion channels,
which gives us (Phillips et al., 2013)

nCa2+

∝ 1

1 + exp
(

∆E−∆AτER

kBT

) , (4.37)

where ∆E is the energy difference between the opened and closed state of the
calcium channel and ∆A denotes the change in channel area upon opening,
in response to the tension in the perinuclear endoplasmic reticulum τER. We
assume a linear scaling of τER with the nuclear deformation 2Rn − w(xn) to
leading order. In the range of nuclear deformations probed in our experiments,
we expect the exponential part of the sigmoidal function in the previous equa-
tion to dominate, such that

nCa2+

∝ e−
∆E
kBT e

∆Aτ1(2Rn−w(xn))
kBT , (4.38)

where the prefactor τ1 is a parameter from the expansion of τER. This ex-
pansion is supported by measurements of the cortical myosin concentration
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under confinement in primary progenitor stem cells cultured from zebrafish
embryos (Venturini et al., 2020), which probed confinement heights down to
7 µm without observing a clear deviation from an exponential dependence. We
can then write the confinement induced change in cytosolic Ca2+ concentration
as

∆nCa2+

= nCa2+

0

(
e

2Rn−w(xn)
h∗ − 1

)
, (4.39)

where h∗ = ∆Aτ1/kBT is the characteristic confinement height of calcium
release.

In principle, we would expect the cortical tension to show a non-linear
dependence on the calcium concentration due to effects like contraction induced
Rho release (Ju, Falconer, Dean, et al., 2022) or saturation of the contractility.
However, to keep the number of model parameters as low as possible, we only
consider a linear dependence of the cortex tension on the calcium concentration.
We can then express the pushing force explicitly in terms of the confinement
width of the nucleus w(xn) as

fmax(w) = S0τ
0
cortex

(
w(xn)

2Rn

)1−νn (
e

2Rn−w(xn)
h∗ − 1

)
≈ S0τ

0
cortex

(
w(xn)

2Rn

)1−νn 2Rn − w(xn)

h∗

(4.40)

where τ0
cortex denotes the cortical tension in the absence of nuclear deformations.

Taken together, we adapt our model for two-dimensional confined cell mi-
gration to the case of 3D confinement, by introducing an additional nuclear
drag and elastic nuclear deformations in the channel due to interactions be-
tween the nucleus and the sidewalls. Beyond that, we account for the observed
force adaptation in confinement by introducing an additional pushing force
that increases with increasing nuclear deformations.

Constraining the model

To constrain our model, we use the rich migration dynamics that we observe
experimentally at different channel widths. In particular the rate with which
cells transition from one chamber to the other and the velocity with which
they move through the channel display an interesting bi-phasic dependence on
the channel width, reminiscent of the channel width dependence of the shape
parameter ε (Figs. 4.14 and 4.11): For channel widths wider than the nuclear
diameter (>12 µm), cells can enter the channel without requiring nuclear de-
formations. From our work on 2D confined cell migration (Chapter 3), we
know however that unconfined cells are also less polarized than confined cells.
Consistent with this, we observe lower migration velocities and less frequent
transitions compared to intermediate channel widths. Since in the absence of
nuclear confinement, cells can only effectively pull their nucleus forward, we ex-
pect Fpull − Fpush > 0 in that case, which we indeed observe. Consistent with
the increase in nuclear velocity at intermediate channel widths, also Fdeform

peaks at channel widths comparable to the nuclear diameter. Once the chan-
nel gets narrow enough to induce significant nuclear deformations (<12 µm),
transitions from one chamber to the other become rarer. At the same time, we
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observe a decrease in Fdeform, indicating an increase in pushing forces. Inter-
estingly, also the nuclear velocities in the channel decrease at narrow channel
widths.

Figure 4.14: Fitting the mechanistic model to key experimental statis-
tics (adapted from Stöberl et al., 2023). A. Difference between pulling and
pushing forces acting on the nucleus. B. Average velocity in the center of the
pattern (|xn| ≤ 6 µm). The maximal velocities are observed at an intermediate
channel width comparable to the nuclear width.C. Transition rates for varying
channel widths. Similar to the nuclear velocities, the highest transition rates
are observed at intermediate channel widths. Error bars: Error bars of the
channel width represent the standard deviation. Error bars associated with
the y-axis represent one standard deviation (A) or the standard error (B), (C).

We fit our mechanistic model simultaneously to these three statistics by
simulating the migration dynamics defined by Eqs. (4.24) - (4.26) and using
our mechanical model for nuclear deformations (see Section 4.3) to relate the
pulling forces, exerted by the protrusion onto the nucleus, and the pushing
forces in our model to nuclear deformations. We find that our model can in-
deed reproduce the experimentally observed channel width dependence of the
nuclear dynamics and deformations (see model fits in Fig. 4.14), which can
thus understood as an interplay between confinement induced polarization, in-
creased nuclear drag due to interactions with the channel walls, and elastic
nuclear deformations that trigger increased cortical tension and thus pushing
forces: At widths wider than the size of the nucleus, stronger confinement
leads to enhanced polarization and thus protrusion growth. This results in a
larger force pulling on the nucleus from the front resulting in increased nu-
clear velocities and transition rates. By contrast, for channel widths below
the nuclear width, increased pushing forces from the rear of the cell result in
a decreasing Fpull − Fpush, eventually even reaching negative values. Despite
the increased polarization and the additional pushing force, the increased nu-
clear drag results in a decrease of the predicted nuclear velocity in the channel.
Additionally, the increasing elastic energy barrier, associated to nucleus defor-
mations, hinders the movement of the nucleus into the channel, resulting in a
drop of the transition rates.

Model predictions

After constraining the model with a number of key experimental statistics, we
evaluate its predictive power. For that we consider aspects of the observed cel-
lular migration behavior that were not previously used to constrain the model:
the probability distributions of the nuclear position and velocities at different
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channel widths as well as the full non-linear migration dynamics inferred in
Section 4.2.

Experimentally, we observe that the probability distribution of the nuclear
position transitions from a broad distribution at wide channel widths, to a
strongly double-peaked distribution for narrow channels (Fig. 4.15A). The dis-
tributions of the nuclear velocities peak at zero independent of channel width,
by decrease in spread with decreasing channel width (Fig. 4.15C). From sim-
ulating our model, we find that both the distribution of the nuclear position
and velocity show semi-quantitative agreement with the experimental data. In
particular, the model captures the overall dependence of the distributions on
the channel width, with the appearance of clear peaks of the xn-distribution in
the chambers and pronounced minima in the channel at narrow channel widths
and an overall narrowing of the nuclear velocities with increasing confinement
Fig. 4.15B and D). We find that the location of the peaks in the xn-distribution
deviates between experiment and simulations. For the simulation we find a
maximum near the entrance of the channel, while in the experiments the max-
imum is located more towards the centre of the chamber. From assessment of
the bright-field videos, we found that after a failed transition attempt during
which the nucleus is placed near the entrance of the channel, the cells often
retract their nucleus back to the centre of the channel for an extended period
of time before it starts a new attempt. Since our model is designed to cap-
ture the interactions between the confinement and the cell and not necessarily
the cellular behavior in the chamber, we did not include a mechanism that
could account for this in our model in order to keep our mechanistic model
as simple as possible while still capturing the essence of the cell confinement
interactions. Beyond the differences between the model and the experiments
in the chambers, we also find that the experimental velocity distribution fall of
slower. This does however mostly affect the region of extremely high velocities
(>50 µmh–1), which occur extremely rare, such that they have little effect on
the population averaged migration dynamics.

To go beyond the comparison of a number of hand-picked statistics, we
compute the effective underdamped dynamics of our model to allow for a com-
parison with the inferred models in Section 4.2. Apart from testing our model,
this also allows us to connect features in the NCMs to biological mechanisms.
For that, we follow a the approach mentioned in Section 3.6 to compute the
effective underdamped dynamics of the nucleus from an overdamped model.

We start by rewriting the equations for the nuclear and the protrusion
coordinate as

γ(xn)ẋn = kn(xp − xn) + fpush(xn) + fchannel(xn) ≡ fn(xn, xp) (4.41)

and

ẋp = −kp(xp − xn)− ∂xpV (xp) + rP (t)) ≡ fp(xn, xp) + rP (t). (4.42)

This allows us to calculate Fw(xn, vn) of the underdamped Langevin equation
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Figure 4.15: Comparison between experimental and simulated prob-
ability distributions (adapted from Stöberl et al., 2023). A. and B. Ex-
perimentally observed and simulated distributions of the nuclear position xn
at different channel widths. C. and D. Experimentally observed and simu-
lated distributions of the nuclear velocity vn at different channel widths. Color
scheme: from light to dark: 4 µm, 7 µm, 12 µm, 20 µm and 35 µm

(Eq. (4.1)) as

Fw(xn, vn) = 〈v̇n|xn, vn〉 =

〈
dfn(xn, xp)

dt

∣∣∣∣xn, vn〉
=

〈
dfn
dxn

vn +
dfn
dxp

ẋp

∣∣∣∣xn, vn〉
Eq. (4.42)

= vn
dfn
dxn

+
dfn
dxp
〈fp(xn, xp) + rP (t)|xn, vn〉

Eq. (4.41)
= vn

dfn
dxn

+
dfn
dxp
〈rP (t)|xn, vn〉

+
dfn
dxp

fp(xn, xp)|
xp=xn+

γ(xn)vn−fpush(xn)−fchannel(xn)

kn

(4.43)

While most terms in Eq. (4.43) can be calculated analytically, 〈rP (t)|xn, vn〉
needs to be determined numerically. The resulting Fw(xn, vn) and correspond-
ing confinement signature maps are shown in Fig. 4.16.

Similar to the dynamics inferred from experiments, we observe a determin-
istic flow from one chamber to the other with a pronounced acceleration in the
channel (Fig. 4.16A). Inline with the previously discussed difference between
the observed and predicted nuclear positions, we find bigger differences between
the inferred dynamics (Fig. 4.7) and the effective underdamped dynamics of
the model are found on the islands, where the inferred models show strong de-
celerations of the nucleus, which are not captured by our model. Despite this,
we find that our model successfully predicts most of the key features observed
in the NCMs (Fig. 4.16B): At the channel entrance the elastic barrier associ-
ated with nuclear deformations results in a region of 〈∆Fw〉 < 0, followed by
a pronounced region of 〈∆Fw〉 > 0 associated with the recoil of the contrac-
tile actomyosin structures in the protrusion and the additional pushing forces



4.5. DISCUSSION AND OUTLOOK 105

Figure 4.16: Effective underdamped dynamics of the model (adapted
from Stöberl et al., 2023). A. The deterministic contribution to the under-
damped Langevin equation calculated through Eq. (4.43). B. The correspond-
ing nuclear confinement maps calculated as F12 µm − Fw. (from left to right:
4 µm, 7 µm, 9 µm).

acting onto the nucleus. Finally, as the cell leaves the channel, we observe a
region of deceleration (〈∆Fw〉 < 0) as the nucleus catches up with the protru-
sion. In conclusion, our mechanistic model demonstrates that cells transition
from pulling to pushing dominated migration to generate sufficient deforma-
tion forces in confinement. This model not only explains the observed nuclear
deformations but also allows for a mechanistic interpretation of the effective
cellular dynamics inferred from experimental data.

4.5 Discussion and Outlook

We generalized our approach of combining bottom-up mechanistic modeling
approaches with top-down inference approaches for cell migration to migration
in 3D confining environments. For that we studied the repeated self-imposed
migration of single cells through compliant 3D channels, which requires strong,
reversible nuclear deformations at narrow channel widths. These deformations
have a multifaceted impact on the cell dynamics in the channel, which become
apparent when comparing the inferred non-linear migration dynamics at dif-
ferent channel widths. In the presence of nuclear deformations, cells display a
marked slowing down during the entry phase of the nucleus into the channel, fol-
lowed by an acceleration out of the channel. To construct a mechanistic model
that can explain the observed effect of the 3D confinement on the non-linear
migration dynamics, we analyzed nuclear deformations during transitions from
one chamber. These indicated a confinement-sensitive, adaptive cellular force
generation, with additional pushing forces that might help migration through
narrow confinements. Based on this, we generalized our mechanistic model for
mesenchymal cell migration that we derived in Chapter 3 by accounting for
the adaptive modulation of forces in response to confinement. The increase in
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pushing forces within confinement, together with elastic deformations of the
nucleus and increased effective friction in the channel, explains both the ob-
served nuclear deformations, as well as the overall migration dynamics of the
cells across a broad range of channel widths.

Both pulling and pushing forces have been qualitatively identified to play a
role in confined cell migration (Davidson, Battistella, et al., 2020; Keys et al.,
2022; McGregor et al., 2016; Thomas et al., 2015). Our analysis of nuclear
deformations in confinement provides a quantitative measure of the balance
between pulling and pushing forces, which indicates a confinement-induced
adaptation of cellular force generation. This contributes to a more comprehen-
sive mechanistic understanding of the complex interplay between confinement,
the nucleus, and the cytoskeleton during mesenchymal cell migration and high-
lights the crucial importance of the interaction between nucleus and cytoskele-
ton during three-dimensionally confined cell migration. A potential mechanism
that could be involved in this force adaptation is the upregulation of cortical
contractility in response to externally induced nuclear confinement (Lomakin
et al., 2020; Venturini et al., 2020). Further research is however required to
experimentally verify the mechanism of increased cortical contractility through
intracellular calcium imaging and identify whether this mechanism is univer-
sally applicable or specific to certain highly migratory cell lines, such as cancer
cells.

Overall, we saw in this chapter how the combination of data-driven model
inference and measurements of the mechanical properties of the cell and its
organelles can be used to construct a mechanistic model for confined cell mi-
gration. Our dynamical model successfully predicts key features of the nuclear
confinement maps, which allows for a mechanistic interpretation of the inferred
dynamics in terms of confinement-induced elastic nuclear deformations and cel-
lular force adaptation. However, our approach relied on a previously derived
model for 2D confined cell migration and that this model could successfully be
generalized to the case of 3D migration as well as additional measurements of
the nuclear mechanics and deformations. Here, it would be interesting to de-
velop a systematic approach that allows to directly include other aspects than
the nuclear trajectories in the model inference that might allow for a more
direct inference of the underlying mechanistic model. For that, an approach
that infers overdamped Langevin equations might be promising (S. Amiri et
al., n.d.).

Another challenge that we faced when inferring the effective, underdamped
migration dynamics was the issue model selection and uniqueness. For that,
we quantified the predictive power of the model by comparing experimental
data and model predictions for a number of key experimental statistics. The
selection of these statistics is however subjective and specific to the experimen-
tal system. Here, parametrized inference approaches such as used here would
greatly benefit from a more systematic and general method of model selection.
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Conclusion and outlook

One of the most memorable moment of my physics education was when I saw
for the first time how the ideal gas law could be derived from the equation of
motion of individual particles. Being able to bridge some many length scales
and connecting microscopic properties to macroscopic was deeply impressive.
All of a sudden, seemingly simple, phenomenological equations such as the
ideal gas law or the van der Waals equation were so much richer, clearer, and
deeper than before. Since then, the idea that to understand a system you need
to connect its behavior to the properties and interactions of its underlying
components never really left me. Following this philosophy, I believe that
besides the results obtained in the individual projects that contributed to this
thesis, the key insight of this work is that a like-minded approach can also be
successful in the context of cell migration.

Obviously we are dealing with an active system here, such that the tools and
techniques used in equilibrium statistical physics are not applicable. Nonethe-
less, the spirit of connecting underlying microscopic details to macroscopic
behavior remains: For contractile actomyosin gels, we saw in Chapter 2 how
the load-sensitive binding and unbinding dynamics of individual myosin heads
shape the mechanosensitive large-scale contraction dynamics. For mesenchy-
mal migration in 2D, we found in Chapter 3 that a simple, springlike protrusion
force emerges from the interplay between actin polymerization, membrane ten-
sion and focal adhesions. Also accounting for a coupling between polarity cues
and retrograde flow, allowed us to explain the interesting geometry-sensitive
polarization dynamics that were observed previously. Here, previously con-
strained data-driven models for the overall migration behavior were essential
to guide the systematic coarse graining of our microscopic model. However,
in contrast to these data-driven models, our microscopic understanding of the
emergent migration behavior allowed us to easily generalize this model to a
number of different experimental systems. Finally, we demonstrated in Chap-
ter 4 that this approach can also be taken beyond migration on 2D surfaces and
can yield valuable insights into the differences between migration on 2D and 3D
substrates that can be understood as the consequence of transient deformations
of the nucleus.

To push this approach even further and apply it to other systems, con-
straining reliable and rigorously inferred data-driven models will be essential.
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Without such models, coarse graining and constraining microscopic models is
likely to be a hopeless endeavor. In my work, I was lucky that such models
were already established at least for the case of 2D migration and that the
application to our 3D migration assay was possible without big changes to the
method. Nonetheless, these techniques have to be further developed and ex-
tended to allow for their application to other systems, such as multicellular
migration or migration in irregular three-dimensional matrices. If that is done
successfully I do believe that microscopic models have a tremendous potential
in improving our quantitative understanding of cell migration in physiologically
relevant scenarios. The quantitative predictive power of our model for 2D mi-
gration that we show in Chapter 3 underlines this. Apart from the usefulness of
quantitatively predictive migration models for potential long-term applications
such as better predictions for cancer metastasis, this approach also gives us a
lens through which we can take a closer look into the fascinating and beautiful
complex system that underlies cell migration. I am thus convinced that both
bottom-up and top-down approaches to modeling biological systems can only
realize their full potential when being used in a combined approach.
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Hertz, H. (1882). “Ueber Die Berührung Fester Elastischer Körper.” In: crll
1882.92, pp. 156–171 (cit. on p. 90).

Heussinger, C., M. Bathe, and E. Frey (July 2007). “Statistical Mechanics of
Semiflexible Bundles of Wormlike Polymer Chains”. In: Physical Review
Letters 99.4, p. 048101 (cit. on p. 42).

Higgs, H. N. (Jan. 2011). “Discussing the Morphology of Actin Filaments in
Lamellipodia”. In: Trends in Cell Biology 21.1, pp. 2–4 (cit. on p. 42).

Hobson, C. M. and A. D. Stephens (July 2020). “Modeling of Cell Nuclear
Mechanics: Classes, Components, and Applications”. In: Cells 9.7, p. 1623
(cit. on p. 80).

Houk, A. et al. (Jan. 2012). “Membrane Tension Maintains Cell Polarity by
Confining Signals to the Leading Edge during Neutrophil Migration”. In:
Cell 148.1-2, pp. 175–188 (cit. on pp. 43, 48).

House, D. et al. (June 2009). “Tracking of Cell Populations to Understand Their
Spatio-Temporal Behavior in Response to Physical Stimuli”. In: 2009 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
Workshops. Miami, FL: IEEE, pp. 186–193 (cit. on pp. 34, 66, 70).

Howard, J. (2005a). “ATP Hydrolosis”. In: Mechanics of Motor Proteins and
the Cytoskeleton. Sinauer, pp. 229–224 (cit. on p. 11).

— (2005b). “MotilityModels: From Crossbridges to Motion”. In: Mechanics of
Motor Proteins and the Cytoskeleton. Sinauer, pp. 263–283 (cit. on p. 49).

— (2005c). “Speeds of Motors”. In: Mechanics of Motor Proteins and the Cy-
toskeleton. Sinauer, pp. 213–227 (cit. on pp. 11, 49).

Hsia, C.-R. et al. (Sept. 2022). “Confined Migration Induces Heterochromatin
Formation and Alters Chromatin Accessibility”. In: iScience 25.9, p. 104978
(cit. on p. 2).

Iden, S. and J. G. Collard (Nov. 2008). “Crosstalk between Small GTPases and
Polarity Proteins in Cell Polarization”. In: Nature Reviews Molecular Cell
Biology 9.11, pp. 846–859 (cit. on pp. 5, 37, 38, 40).

Ideses, Y. et al. (June 2018). “Spontaneous Buckling of Contractile Poroelastic
Actomyosin Sheets”. In: Nature Communications 9.1, p. 2461 (cit. on p. 16).

Irianto, J. et al. (Jan. 2017). “DNA Damage Follows Repair Factor Depletion
and Portends Genome Variation in Cancer Cells after Pore Migration”. In:
Current Biology 27.2, pp. 210–223 (cit. on p. 2).

Irimia, D. et al. (2007). “Polar Stimulation and Constrained Cell Migration in
Microfluidic Channels”. In: Lab on a Chip 7.12, p. 1783 (cit. on pp. 77, 79).

Jaffe, A. B. and A. Hall (Nov. 2005). “RHO GTPASES: Biochemistry and Biol-
ogy”. In: Annual Review of Cell and Developmental Biology 21.1, pp. 247–
269 (cit. on p. 38).



116 BIBLIOGRAPHY

Jia, H. et al. (June 2022). “3D Printed Protein-Based Robotic Structures Actu-
ated by Molecular Motor Assemblies”. In: Nature Materials 21.6, pp. 703–
709 (cit. on pp. 17–23, 27–29).

Jill Mackarel, A. et al. (June 1999). “Migration of Neutrophils across Human
Pulmonary Endothelial Cells Is Not Blocked by Matrix Metalloproteinase
or Serine Protease Inhibitors”. In: American Journal of Respiratory Cell
and Molecular Biology 20.6, pp. 1209–1219 (cit. on p. 79).

Joanny, J.-F., K. Kruse, et al. (May 2013). “The Actin Cortex as an Active
Wetting Layer”. In: The European Physical Journal E 36.5, p. 52 (cit. on
p. 26).

Joanny, J.-F. and J. Prost (Apr. 2009). “Active Gels as a Description of the
Actin-myosin Cytoskeleton”. In: HFSP Journal 3.2, pp. 94–104 (cit. on
p. 10).

Johnston, E. R., F. Beer, and E. Eisenberg (2009). Vector Mechanics for En-
gineers: Statics and Dynamics. McGraw-Hill (cit. on p. 21).

Jorrisch, M. H., W. Shih, and S. Yamada (Apr. 2013). “Myosin IIA Deficient
Cells Migrate Efficiently despite Reduced Traction Forces at Cell Periph-
ery”. In: Biology Open 2.4, pp. 368–372 (cit. on p. 89).

Ju, R. J., A. D. Falconer, K. M. Dean, et al. (Feb. 2022). Compression-Dependent
Microtubule Reinforcement Comprises a Mechanostat Which Enables Cells
to Navigate Confined Environments. Preprint. Cell Biology (cit. on pp. 89,
101).

Ju, R. J., A. D. Falconer, C. K. Tang, et al. (Feb. 2022). A Microtubule
Mechanostat Enables Cells to Navigate Confined Environments. Preprint.
Cell Biology (cit. on p. 99).

Kac, M. (Sept. 1974). “A Stochastic Model Related to the Telegrapher’s Equa-
tion”. In: Rocky Mountain Journal of Mathematics 4.3 (cit. on p. 32).

Kalganov, A. et al. (Mar. 2013). “Forces Measured with Micro-Fabricated Can-
tilevers during Actomyosin Interactions Produced by Filaments Containing
Different Myosin Isoforms and Loop 1 Structures”. In: Biochimica et Bio-
physica Acta (BBA) - General Subjects 1830.3, pp. 2710–2719 (cit. on p. 21).

Kalukula, Y. et al. (Sept. 2022). “Mechanics and Functional Consequences of
Nuclear Deformations”. In: Nature Reviews Molecular Cell Biology 23.9,
pp. 583–602 (cit. on p. 77).

Kanchanawong, P. et al. (Nov. 2010). “Nanoscale Architecture of Integrin-
Based Cell Adhesions”. In: Nature 468.7323, pp. 580–584 (cit. on p. 44).

Kaplan, E. L. and P. Meier (June 1958). “Nonparametric Estimation from In-
complete Observations”. In: Journal of the American Statistical Association
53.282, pp. 457–481 (cit. on p. 84).

Kasza, K. E. et al. (Feb. 2007). “The Cell as a Material”. In: Current Opinion
in Cell Biology 19.1, pp. 101–107 (cit. on p. 5).

Keys, J. et al. (Sept. 2022). Rear Cortex Contraction Aids in Nuclear Transit
during Confined Migration by Increasing Pressure in the Cell Posterior.
Preprint. Cell Biology (cit. on pp. 78, 89, 99, 106).

Khatau, S. B. et al. (July 2012). “The Distinct Roles of the Nucleus and
Nucleus-Cytoskeleton Connections in Three-Dimensional Cell Migration”.
In: Scientific Reports 2.1, p. 488 (cit. on p. 79).

Kirfel, G. et al. (2004). “Cell Migration: Mechanisms of Rear Detachment and
the Formation of Migration Tracks”. In: European Journal of Cell Biology
83.11-12, pp. 717–724 (cit. on p. 44).



BIBLIOGRAPHY 117

Koenderink, G. H., M. Atakhorrami, et al. (Apr. 2006). “High-Frequency Stress
Relaxation in Semiflexible Polymer Solutions and Networks”. In: Physical
Review Letters 96.13, p. 138307 (cit. on p. 9).

Koenderink, G. H., Z. Dogic, et al. (Sept. 2009). “An Active Biopolymer Net-
work Controlled by Molecular Motors”. In: Proceedings of the National
Academy of Sciences 106.36, pp. 15192–15197 (cit. on pp. 12, 26).

Kong, F. et al. (June 2009). “Demonstration of Catch Bonds between an In-
tegrin and Its Ligand”. In: Journal of Cell Biology 185.7, pp. 1275–1284
(cit. on p. 44).

Kozma, R. et al. (Sept. 1996). “The GTPase-Activating Protein n -Chimaerin
Cooperates with Rac1 and Cdc42Hs To Induce the Formation of Lamellipo-
dia and Filopodia”. In: Molecular and Cellular Biology 16.9, pp. 5069–5080
(cit. on p. 38).

Krause, M. and K. Wolf (Sept. 2015). “Cancer Cell Migration in 3D Tissue:
Negotiating Space by Proteolysis and Nuclear Deformability”. In: Cell Ad-
hesion & Migration 9.5, pp. 357–366 (cit. on p. 80).

Krause, M. and A. Gautreau (Sept. 2014). “Steering Cell Migration: Lamel-
lipodium Dynamics and the Regulation of Directional Persistence”. In: Na-
ture Reviews Molecular Cell Biology 15.9, pp. 577–590 (cit. on p. 43).

Krawczyk, W. S. (May 1971). “A Pattern of Epidermal Cell Migration during
Wound Healing”. In: Journal of Cell Biology 49.2, pp. 247–263 (cit. on
p. 31).

Kruse, K. et al. (Jan. 2005). “Generic Theory of Active Polar Gels: A Paradigm
for Cytoskeletal Dynamics”. In: The European Physical Journal E 16.1,
pp. 5–16 (cit. on pp. 10, 22).

Kullback, S. and R. A. Leibler (Mar. 1951). “On Information and Sufficiency”.
In: The Annals of Mathematical Statistics 22.1, pp. 79–86 (cit. on p. 85).

Lammerding, J. (Apr. 2011). “Mechanics of the Nucleus”. In: Comprehensive
Physiology. Ed. by Y. S. Prakash. 1st ed. Wiley, pp. 783–807 (cit. on p. 79).

Lämmermann, T. et al. (May 2008). “Rapid Leukocyte Migration by Integrin-
Independent Flowing and Squeezing”. In: Nature 453.7191, pp. 51–55 (cit.
on pp. 77, 79).

Landau, L. D. and E. M. Lifshitz (1986a). “Bending of Rods”. In: Theory of
Elasticity: Volume 7. Vol. 7. Elsevier, pp. 75–97 (cit. on pp. 8, 20, 21).

— (1986b). “Homogeneous Deformations”. In: Theory of Elasticity. Vol. 7.
Elsevier, pp. 13–15 (cit. on p. 93).

— (1987). “Viscous Fluids”. In: Fluid Mechanics. Elsevier, pp. 44–49 (cit. on
p. 24).
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