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ABSTRACT 

To maximize our chances of survival and procreation, we need to process our 

environment in a highly sophisticated and accurate manner. In their limit, these two demands 

are mutually exclusive: While better sound localization, quicker reflexes or more accurate 

vision could improve survivability, the necessary energy consumption might not be 

sustainable. Luckily, our sensory systems strike an impressive balance between performance 

and energetic cost. In a both active and passive process, we learn about the rules that 

determine our experience and use them to form expectations. Efficient brain activity is then 

achieved by limiting the forward transmission of signals to deviations from what we predicted.  

In the visual domain, this means that our perception is dominated by our expectations 

when we are in a familiar environment. Research in cognitive neuroscience has shown that 

expected input elicits weaker brain activity than surprising input, without any behavioral 

disadvantages. However, knowledge about associated energetic efficiency is limited by three 

gaps in the current literature. First, conventional imaging techniques do not provide direct 

measurements of energy metabolism. Second, previous research has focused on localizing 

areas of maximal effect, potentially missing weaker, but more widespread patterns. Third, our 

knowledge about the world is imperfect, leading to uncertain expectations. This has rarely 

been accounted for. 

Neuronal activity is fueled by ATP, most of which is produced with chemical reactions 

that need oxygen. In the present work, I assessed energy metabolism with a novel imaging 

method that measures the rate of oxygen consumption across all parts of the brain. I used an 

experimental design during which participants saw visual object sequences that were either 

predictable, random, or surprising. Behavioral tests indicated that predictable sequences were 

learned without any feedback which resulted in anticipation of upcoming objects. I further 

found that participants varied in the confidence of their expectations. This had a major impact 

on oxygen consumption when viewing predictable sequences: The lowest energy usage was 

found for high levels of confidence. This effect was not limited to sensory regions but extended 

across large parts of the brain. Interestingly, my results suggest that confidence led to energy 

savings even when the visual input was objectively random. In conclusion, this work provides 

the first evidence that our expectations are a major promoter of efficient processing, which is 

crucial for any organism with limited energy availability.  
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1 General introduction 

The brain is an energy intense organ that consumes approximately 20 percent of the 

energy available to the body (Rolfe & Brown, 1997). Most of that energy is used to fuel the 

electrochemical activity of neurons. The action potential is the basic signaling unit in our 

nervous system and its propagation across the axon consumes 16% of the neuronal energy 

budget. Even more costly is the integration of multiple incoming signals at the dendrites: 44% 

of the energy budget is used towards postsynaptic potentials. Lastly, the resting potential itself 

needs to be upheld to enable action potentials and accounts for 15% (Howarth et al., 2012). 

The main energy currency is adenosine‐triphosphate (ATP), the majority of which is created in 

the mitochondria during cellular respiration. Here, one mol of glucose is metabolized with six 

moles of oxygen, yielding approximately 36 mol of ATP. Healthy brain function is heavily 

dependent on the constant provision of these compounds: Limited availability of glucose 

quickly impacts cognitive function (Warren & Frier, 2005) and sustained oxygen deprivation is 

a driver of inflammation and metabolic diseases (Eltzschig & Carmeliet, 2011; Shobatake et al., 

2022). Consequently, the management of energetic resources in the brain is of vital 

importance (Quintela‐López et al., 2022).  

Given the link between metabolic cost and signaling, efficient use of energetic 

resources rests on efficient neural activity. Neurons are thought to process (encode) sensory 

information in a way that minimizes the transmission of redundant information. This is known 

as the efficient coding hypothesis (Barlow, 1961; Simoncelli, 2003). Under this assumption, the 

brain preferentially processes deviations from previous input, or unique aspects of what is 

currently perceived. Both in space and in time, repeating patterns govern our experience, 

endowing us with the ability to process a wealth of information without encoding all details 

(Olshausen & Field, 2004). This logic has been extended from the level of neurons and 

neuronal populations to the interaction of large regions on a whole‐brain level (Bullmore & 

Sporns, 2012; Zhou et al., 2022). Surprisingly, empirical evidence of corresponding energy 

efficiency is rare. This might be due to the difficulty of measuring metabolic processes across 

the human brain.  

1.1 Measuring energy consumption in the human brain 
While ATP metabolism cannot easily be measured with routine human brain imaging 

techniques, glucose and oxygen can be assessed using positron‐emission‐tomography (PET) 

and magnetic resonance imaging (MRI) respectively. PET provides direct access to glucose 



2 

consumption (or rather, its uptake rate into cells) but necessitates the use of a radioactive 

tracer which limits its applicability in healthy subjects. Standard MRI techniques are much 

more prevalent due to their non‐invasive nature and sensitivity to changes in the oxygen 

content of blood. The dominant method of measuring neural activity in the brain is functional 

MRI (fMRI) based on the blood oxygenation level dependent (BOLD) signal (Ogawa et al., 

1990). BOLD imaging exploits the differential effect of oxygen‐carrying hemoglobin (HbO2) and 

deoxygenized hemoglobin (dHb) on the magnetic field. To fuel cellular respiration, arterial 

blood saturated with HbO2 perfuses the local vasculature, and oxygen is taken up into cells by 

passive diffusion. Consequently, the local dHb concentration increases, leading to 

characteristic distortions of the magnetic field. In isolation, this triggers a signal decrease 

(lower brightness in the resulting image). However, a disproportionate increase in cortical 

blood flow (CBF) provides HbO2 in excess of the amount of oxygen being consumed (Buxton et 

al., 2004). This supercompensation means that neuronal activity results in higher brightness 

in BOLD images. fMRI therefore measures a compound signal of hemodynamics and cellular 

respiration, complicating its interpretation in terms of energy consumption or neuronal activity 

(Drew, 2019; Kim & Ogawa, 2012). While its correlation to local electrophysiological activity 

has been established in primary sensory cortices (Logothetis et al., 2001), the link between 

neural activity and hemodynamic response (neurovascular coupling) varies across anatomical 

regions (Ances et al., 2008; Buxton et al., 2014; Devonshire et al., 2012). 

  Measuring energy consumption with MRI therefore necessitates dedicated imaging 

techniques, both in acquisition and processing. A promising set of methods extended BOLD 

imaging with the goal of quantifying the cerebral metabolic rate of oxygen consumption 

(CMRO2). These multiparametric MRI approaches measure or estimate both hemodynamic 

effects and deoxygenation to disentangle the constituent parameters of the BOLD signal 

(Bright et al., 2019). Specifically, multiparametric quantitative BOLD (mqBOLD; Christen et al., 

2012; Hirsch et al., 2014; Kaczmarz et al., 2020) combines separate MR measurements of CBF, 

cerebral blood volume (CBV) and deoxygenation to calculate CMRO2 at high spatial resolution. 

The MR data is combined with measures of arterial oxygen concentration (CaO2) using pulse 

oximetry and Hb concentration using blood sampling. The underlying logic of calculating 

CMRO2 is summed up by Fick’s Principle (Fick, 1870): 

CMRO2 = CaO2 * CBF * OEF 
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 The amount of oxygen carried in the arteries (CaO2) is combined with the volume of 

blood flowing to a given region (CBF) and finally multiplied by the relative amount of oxygen 

used (oxygen extraction fraction, OEF). This yields the absolute amount of consumed oxygen 

in a brain region, in units of µmol O2/min/100g. I describe the complete process in the 

corresponding methods section of project II.  

Previous studies using mqBOLD focused on comparisons between healthy and clinical 

samples in experiments without explicit tasks (resting state) (Christen et al., 2013; Göttler et 

al., 2019). The resulting CMRO2 measurements are in good agreement with the literature 

across acquisition methods (Christen et al., 2013; F. Xu et al., 2009a). Basic research is mainly 

available for the visual domain. In the visual cortex, oxygen consumption increases by 10‐30% 

during visual stimulation with a much larger increase in CBF (Lin et al., 2010). This supports 

classical accounts of neurovascular coupling. However, blood flow and oxygen consumption 

can decouple (Fox & Raichle, 1986) and CBF, CMRO2 and BOLD show adaptation (i.e. a reduction 

in response across longer stimulation) to different degrees (Moradi & Buxton, 2013). The 

relationship between blood flow and oxygen consumption also depends on attention: While 

unattended visual stimuli elicit coupled increases in line with classical neurovascular coupling, 

attended stimuli elicit outsized increases in CMRO2 (Moradi et al., 2012). Lastly, there is an 

ongoing discussion about the reason for the observed decoupling. A line of research found an 

increase in non‐oxidative metabolism during task activation (Fox et al., 1988; Paulson et al., 

2010). In terms of energy production, this metabolic pathway is much less energy‐efficient 

(yielding only 2 ATP per glucose as opposed to 36 with the full oxidative pathway). This means 

oxidative energy metabolism is still dominant, even during asymmetric increases of non‐

oxidative processes (Lin et al., 2010).  

In summary, constant availability and efficient use of energy is vital to the function of 

our brain. Glucose and oxygen are the main resources of energy metabolism, and their 

presence and use can be measured with neuroimaging methods. However, classical imaging 

techniques either rest on the application of radioactive compounds (PET) or are ill‐equipped 

to isolate metabolic aspects of their signal (fMRI). In contrast, mqBOLD provides direct access 

to oxygen consumption rates across the brain. Since previous studies focused on clinical 

populations or simple sensory stimulation, many questions about the role of energy efficiency 

in human cognition are still unanswered. 
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1.2 Perception as inference 
For a long time, visual processing (and sensory processing in general) was considered 

to be a bottom‐up process carried out by independent modules. Early visual cortices were 

thought to identify low‐level attributes like lines and edges which are combined into holistic 

percepts like objects later in the visual stream (Fodor, 1983; Pylyshyn, 1999). Over the last two 

decades, the mainstream view shifted towards an integrative account, where every level of 

processing is heavily impacted by later stages. This includes abstract knowledge about our 

environment and its objects based on our experience (Lupyan, 2015). Prior knowledge is 

assumed to be a necessary part of perception since our sensory input is often ambiguous. 

Crucially, there is no clear one‐to‐one correspondence between the concepts we think in and 

the current sensory information. Many of our concepts are abstractions that refer to a possibly 

infinite set of sensory patterns (e.g. a house or a cat). Furthermore, the same external object 

can lead to drastically different input to our retina depending on viewing distance, angle, 

lighting, occlusion, and many other factors. The fact that our brain is highly proficient at dealing 

with this inherent uncertainty led to the theory of perception as inference (Barlow, 1990; 

Helmholtz, 1867). According to this framework, perception is the continuous process of 

inferring the most likely source of our sensory input. 

Inferring the likelihood of a hypothesis given some evidence is well‐defined in Bayesian 

calculus. In Bayesian terminology, sensory input (also called evidence) is integrated with our 

previous best guess about what we see (the prior belief) to arrive at the best interpretation 

(the posterior belief). For any new evidence, this inference cycle continues (see Knill & Pouget, 

2004; Pouget et al., 2013 for reviews of Bayesian inference in the brain). This process is 

inherently probabilistic, meaning all the parameters are captured as probability distributions. 

Beliefs can be described by a point estimate of the most likely hypothesis and a variance. The 

variance (often referred to by its inverse, precision) captures the uncertainty of our beliefs, 

while the point estimate relates to the confidence that this specific hypothesis is accurate. In 

an evolutionary setting, one could identify movement in our peripheral vision as most likely 

being a peaceful animal, but our concrete action would depend on how confident we are in 

that assessment. It follows that our perception of the world is highly subjective since it rests 

on individual prior knowledge. Even if a given belief is objectively wrong, high precision means 

that a lot more evidence is needed to make us change our mind. 

A highly influential theory of Bayesian inference in the brain has been formulated in 

the seminal paper on predictive coding (Rao & Ballard, 1999). The authors showed that 
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characteristic features of visual cortex activity emerge from a computational model that 

actively predicts its own input while only forwarding deviations from predictions (termed 

prediction errors, PE) to higher levels. Under this account, the brain learns a so‐called 

generative model (Dayan et al., 1995) that encodes how external causes (e.g. the presence of 

a cat) generate observable sensory input (e.g. the line‐like percepts of fur and whiskers). The 

inferred cause then engenders predictions about further observations (e.g. the shape of the 

ears or the rhythm of movement). Since veridical encoding of these stimuli does not add to 

our inference, predicted aspects can be subtracted from bottom‐up input. If the sensory input 

does not conform to the predictions, PEs are used to improve (update) the generative model. 

In this context, the term “prediction” is not synonymous with forecasting (i.e. predicting a 

future state from current and past ones). Rather, predictive coding aims to infer the most likely 

source of the current percept. However, prediction in time can be accommodated by the same 

model (Jiang & Rao, 2022). Extending the logic of predictive coding, the Free Energy Principle 

(FEP; Friston, 2010) posits that reduction of PEs is the guiding principle of all perception and 

behavior. More precisely, intelligent lifeforms can be described as optimizing their generative 

model by minimizing a quantity related to PEs: Free energy. In this contest, the generative 

model is considered a world model, since it encompasses all beliefs about our experience 

(Friston et al., 2021). Intriguingly, the core mathematical formulation of free energy 

minimization can be expressed as balancing accuracy and complexity: While the model should 

represent the world as accurately as possible, its complexity should be minimal. This tradeoff 

suggests that perception and cognition aim for efficiency. Indeed, under the assumption that 

our central nervous system represents this model, it has been suggested that minimizing free 

energy achieves accurate inference with minimal metabolic cost (Sengupta et al., 2013). 

In summary, vision and perception in general can be understood as inferring what 

happens in the external world from imperfect sensory information. The uncertainty inherent 

in linking retinal images to abstract cognitive concepts can be resolved by employing Bayesian 

inference. Predictive coding suggests that the brain constantly improves the accuracy of our 

inference by representing and improving a generative model of the world. Instead of only 

aiming for perfect inference, the FEP suggests that the model is optimized for efficiency. 

1.3 Learning temporal patterns in visual input 
An increasing body of research substantiates the claim that perception and behavior 

are strongly driven by prior expectations and contextual information in space and time 
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(reviewed in de Lange et al., 2018). To study the proposed efficiency of perception, 

experiments have been developed that present participants with a chance to learn patterns in 

sensory input. Comparing naïve to familiarized stages across time in the same individual, or 

across individuals, should reveal optimized models and efficient use of energy. In an 

established experimental paradigm, participants are presented with sequences of visual 

stimuli that are determined by conditional probabilities, i.e. which stimulus is shown depends 

on the one(s) that preceded it (Conway, 2020; Schapiro & Turk‐Browne, 2015). To stress the 

fact that stimuli follow each other in time, the rules governing the sequences are referred to 

as transitional probabilities. The same Bayesian inference as described before applies here: 

Instead of mapping between sensory input and a percept, the relationship between current 

and future percepts is learned. After some exposure, given a current percept and a generative 

model of the transitional probabilities, the most likely future percept can be inferred (Fiser & 

Lengyel, 2022).  

Our ability to learn transitions and their probabilistic structure has been studied using 

a wide range of related paradigms. Statistical learning focuses on the continuous process of 

perceptual inference that is thought to drive our experience (Fiser & Aslin, 2002). Sequence 

(or sequential) learning is closely related, but while statistical learning often includes the 

segmentation of continuous streams into sequences, the patterns may explicitly be presented 

during sequence learning (Gheysen & Fias, 2012). Lastly, some authors differentiate rule 

learning from statistical learning based on whether transitions are deterministic or 

probabilistic (Maheu et al., 2022). 

Statistical learning in particular refers to the implicit acquisition of transitional patterns, 

without intention and awareness (Schapiro & Turk‐Browne, 2015). After passively viewing the 

visual input for a few minutes up to an hour, behavioral effects emerge: Participants can 

differentiate sequences that follow the transition patterns from the learning phase and detect 

expected stimuli more quickly (Turk‐Browne et al., 2005). However, while some studies 

provided evidence for the lack of awareness during statistical learning (Alamia et al., 2016; 

Destrebecqz & Cleeremans, 2001; Turk‐Browne et al., 2005), the validity of these assumptions 

has been debated: First, a study using post‐experimental questionnaires found that many 

participants did report awareness of underlying patterns (Dale et al., 2012). Second, the 

statistical validation of the absence of an effect is problematic with many standard tests and 

previous studies might have been underpowered to assert it (Vadillo et al., 2016). Opposing 
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an all‐or‐nothing position on this issue, it has been shown that both implicit and explicit 

processes contribute to statistical learning (Batterink et al., 2015). Nevertheless, dissociations 

have been found that differentiate implicit and explicit designs, especially with respect to 

neuroanatomical correlates in fMRI studies (Aizenstein, 2004; Batterink et al., 2019). While 

previous literature reflects considerable heterogeneity in paradigms, sometimes leading to 

disparate findings, recent years saw the development of unifying frameworks. Conway (2020) 

argued that most approaches reflect similar phenomena and vary gradually on three axes: 

Amount of exposure, amount of structure and amount of explicit instruction. The underlying 

process employed by the brain is thought to be the same across all variants: Bayesian inference 

(Fiser & Lengyel, 2022). 

Studies using fMRI have provided evidence that statistical learning leads to prediction 

and anticipation on a neuronal level: In the visual cortex, expected events evoke corresponding 

activity even when they are omitted (Ekman et al., 2017; Kok et al., 2014) and characteristic 

signal patterns can be detected ahead of presentation (Summerfield et al., 2006). 

Furthermore, the activity patterns of neuronal populations increase in similarity for mutually 

predictive stimuli (Schapiro et al., 2012). The analysis of stimulus representations in fMRI data 

also showed that patterns representing expected stimuli are more stable, enabling the 

“readout” (decoding) of stimulus identities from activation patterns (Kok, Jehee & de Lange, 

2012). Lastly, contrasting imaging findings of predictable input with unpredictable (or 

surprising) input yielded a highly consistent finding: The same stimulus elicits lower activity 

when it confirms a learned pattern compared to a violation or the absence of a pattern (Alink 

et al., 2010; Egner et al., 2010; Richter et al., 2018a). 

 This phenomenon has been referred to as expectation suppression and is usually 

interpreted in the context of predictive coding: Bottom‐up signals (PEs) that are already 

accounted for by top‐down predictions are suppressed because they don’t improve our 

inference (Richter et al., 2018a). An alternative view is surprise enhancement, which posits 

that the forwarded PE signal is upregulated for surprising stimuli (without the predictable 

stimulus being affected). A single contrast of predictable and surprising stimuli cannot arbitrate 

between these explanations, because a measured difference can be based on either one of 

them. Consequently, some studies introduced a third type of stimulation, where the temporal 

contingencies are random (Davis & Hasson, 2018; for studies in animals see Kaposvari et al., 

2018; Ramachandran et al., 2017). In these studies, random stimulation is assumed to provide 



8 

a baseline (or neutral) condition, which isn’t subject to either expectation suppression or 

surprise enhancement. The former should lead to relatively lower activity for the predictable 

condition, while the latter is expected to lead to relatively higher activity for the surprising 

condition. A recent review found that evidence for expectation suppression is predominantly 

found in animal studies, but generally lacking in humans (Feuerriegel, Vogels, et al., 2021). This 

suggests that increases in PE signaling in reaction to surprising stimuli represent a more likely 

explanation. 

Interpreting the link between stimulus predictability and neuronal response is further 

complicated when taking confounding factors into account: Activity reductions are absent 

when a competing stimulus is attended instead (Richter & de Lange, 2019) and activity can be 

increased for predictable stimuli when they are relevant to the task performed by participants 

(Kok, Rahnev, et al., 2012). Following these findings, it has been argued that attentional 

mechanisms provide an alternative explanation to predictive processing (Alink & Blank, 2021). 

However, attention can be accommodated within the predictive coding framework as 

reflecting the precision of evidence and beliefs (Hohwy, 2012; Yon & Frith, 2021). Precision-

weighting means that the effect of observations on our beliefs depends on the reliability we 

attribute them with. Importantly, precision is not only based on the signal to noise ratio of a 

stimulus (an exogenous source of attention) but also our beliefs about their importance and 

reliability (an endogenous source of attention). This mechanism might explain the apparent 

discrepancy of the initially mentioned studies when assuming that task‐relevancy increases 

precision (Alamia & Zénon, 2016). Consequently, a surprising stimulus that is not relevant 

elicits weak PE signals because of low precision, while an expected stimulus that is relevant 

elicits strong activation due to high precision.  

In summary, the efficiency of predictive coding can be studied through our ability to 

extract regularities from sequences of visual input. Humans quickly learn the rules and 

probabilities and react more quickly and accurately to input that confirms these patterns. 

Statistical learning is the dominant experimental paradigm, but most approaches can be 

described through the lens of Bayesian inference. fMRI studies consistently find different 

responses to the same stimulus when presented in a predictable compared to a surprising 

context. Competing findings can be accounted for when factoring in the precision of evidence 

and beliefs. 
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1.4 Subjective confidence as a proxy for uncertainty 
The importance of precision in determining the integration of beliefs and evidence led 

to the search for its behavioral and neural indicators. However, the assessment of precision in 

the brain is complicated since, mathematically, it reflects a probability distribution over all 

competing hypotheses (Pouget et al., 2016). A promising approximation is the confidence of a 

participant in a given decision. In the context of Bayesian models, confidence refers to the 

(posterior) probability that a given hypothesis is correct, given the evidence (Hangya et al., 

2016). While this does not account for the full complexity of probabilistic beliefs, confidence 

is informative when the number of competing hypotheses is small or centered around a 

dominant one (Pouget et al., 2016). Confident decisions are thus assumed to reflect situations 

where our observations are strongly in favor of a given assumption, with the alternatives much 

less likely.  

Independent of statistical formulations, human confidence reports are a central 

concept in research on metacognition. Metacognition describes our ability to reflect on our 

own thoughts and decisions, providing us with a source of self‐regulation without needing 

explicit feedback (see Fleming (2024) for a recent review). In this context, confidence is a 

subjective feeling regarding the quality of our judgements, decisions and actions. Subjective 

ratings are usually assessed by asking participants to indicate their level of confidence in a 

given decision on a linear scale. These ratings exhibit good within‐subject reliability across days 

and their distribution is highly specific to an individual, akin to a “fingerprint” (Ais et al., 2016). 

While this subjective assessment is generally correlated with objective performance, it often 

deviates from it (Shekhar & Rahnev, 2021). While it has been argued that this dissociation 

indicates suboptimal inference in humans (Acerbi et al., 2014; Beck et al., 2012), a recent study 

showed that it can be explained by optimal inference with incomplete knowledge about the 

environment (Khalvati et al., 2021). Furthermore, studies comparing statistical formulations of 

confidence to subjective ratings report general agreement (Meyniel, Schlunegger, et al., 2015; 

Sanders et al., 2016). While Bayesian accounts of confidence are prevalent, the exact nature 

of how the sense of confidence emerges is still unknown, and multiple alternative models exist 

(Adler & Ma, 2018; Boundy‐Singer et al., 2022; Pleskac & Busemeyer, 2010). 

A promising neuronal source of subjective confidence is probabilistic population coding 

(Knill & Pouget, 2004). This idea rests on the tuning property of neurons, where the frequency 

of the firing rate indicates how strongly the sensory input matches the preferred stimulus 

characteristics (Salinas & Abbott, 1994). A population of differently tuned neurons represents 
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a probability density estimate over a given variable (Ma et al., 2006). Confidence ratings can 

then be seen as a summary statistic over this distribution, providing an estimate of the 

precision (Meyniel, Sigman, et al., 2015). Experimental results suggest that the sense of 

confidence reflects this statistic and informs adaptive behavior (Geurts et al., 2022; Van Bergen 

et al., 2015). Neuroanatomical areas where BOLD activity covaries with confidence are 

predominantly found in the frontal cortex, especially the anterior cingulate (ACC), the inferior 

and superior parietal cortex as well as the anterior insula (Bang & Fleming, 2018; Bounmy et 

al., 2023; Hebart et al., 2016). Interestingly, activity in these regions generally decreased with 

increasing confidence. The opposite was found for the link between uncertainty and BOLD 

activity (Geurts et al., 2022), suggesting that the brain increases its activity when information 

determining a decision is scarce or unreliable. 

In summary, research on confidence suggests a link between subjective judgements, 

Bayesian inference and neuronal activity. Neuronal population codes can be framed as 

probability distributions, a summary of which is consciously accessible. High confidence has 

been linked to lower fMRI activity, indicating a central role in decreased neural responses to 

predictable input. 

1.5 Evidence of predictive processing in the human brain     
Due to its explanatory power, Bayesian predictive processing is a leading framework in 

psychology and neuroscience (Clark, 2013; Friston, 2018; Hohwy, 2013; Yon et al., 2020). 

However, some authors warned against equating its influence with its truthfulness, citing 

missing evidence for neural representations of uncertainty and Bayesian calculus (Colombo et 

al., 2021). While the value of the Bayesian brain hypothesis in explaining empirical data is less 

contended, the question whether Bayesian inference is neurobiologically implemented led to 

concerns about its validity (Rahnev, 2019; Rescorla, 2021). Some of these concerns have been 

addressed by works on predictive coding, especially in the context of the FEP. Hierarchical 

predictive coding has been mapped onto cortical circuits (Bastos et al., 2012) and empirical 

data shows that predictions are processed in deep cortical layers while errors travel in 

superficial layers (Bastos et al., 2020; Kok et al., 2016). The problem of representing complex 

probability distributions in the cortex can be solved by appealing to approximations via 

sampling methods (Sanborn & Chater, 2016) or iterative optimizations (variational Bayes; 

Friston, 2010). A promising approach to validating predictive processing theories of the mind 

is computational modeling. Vincent et al. (2019) used the Bayesian inference calculus 
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postulated by the FEP to model the perception of visual sequences. The authors manipulated 

both the transitional probabilities and the precision of the evidence (i.e. how reliably the 

stimuli represented the true underlying sequence). Their model reproduced empirical pupil 

diameter data, which has been shown to be indicative of subjective uncertainty (Fan et al., 

2023; Lavín et al., 2014). While this application is highly specific, the same logic has been 

applied to electroencephalography (EEG) data during speech perception (Friston et al., 2021), 

supporting the general applicability of the FEP. While it has been argued that predictive 

processing theories are difficult to falsify due to their flexibility (Kogo & Trengove, 2015; 

Miłkowski & Litwin, 2022), empirical evidence for predictive processing has accumulated 

across methodologies (Walsh et al., 2020).  

In summary, Bayesian models of the mind are the dominant framework in neuroscience 

and psychology. While many questions about the neural implementation of Bayesian 

predictive coding remain, evidence has been provided across multiple paradigms and imaging 

methods.  

1.6 Aims of the current work 
In the present work, I tested the hypothesis that the inference of predictive structure 

in visual sequences leads to a decrease in energy metabolic activity. Furthermore, I aimed to 

establish individual confidence as a moderator of the link between objective predictability and 

energy consumption. I adapted an established statistical learning design to be compatible with 

mqBOLD, a novel metabolic imaging method. mqBOLD comes with a methodological challenge 

that necessitates changes to previous designs. While conventional BOLD has a temporal 

resolution of up to one second, mqBOLD results in averages over long blocks of stimulation. 

Therefore, I developed a task with stable task demands across this timespan and monitored 

the continuous engagement of the participants. I also ensured compatibility with previous 

findings by validating my design with conventional fMRI. To this end, I assessed BOLD data 

during long blocks of stimulation. The present work was divided into two projects which served 

five underlying aims. To my knowledge, this is the first investigation of the proposed energetic 

efficiency of predictive processing. 

➢ Project I. Develop and validate a new statistical learning design that assesses subjective 

confidence and is compatible with long blocks of stimulation. 

o Aim I. Establish a link between confidence ratings and markers of statistical 

learning after a learning phase. 
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o Aim II. Replicate previous BOLD findings of predictive processing using long 

stimulation blocks. 

o Aim III. Establish a link between confidence ratings and BOLD signals 

representative of prediction and prediction error signaling. 

➢ Project II. Measure the energy consumption during visual stimulation of three levels of 

predictability and investigate the effect of subjective confidence.  

o Aim IV. Implement a statistical analysis that allows for the integration and 

summation of energy consumption across the brain. 

o Aim V. Quantify the energy use on multiple levels of analysis, accounting for 

both functionally specific networks and net effects on the cortex. 
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Abstract 
Humans are adept at extracting patterns from sequentially presented information. This 

ability enables predictions about future states, resulting in anticipation both on a behavioral 

and neural level. Stimuli deviating from predictions usually evoke higher neural and 

hemodynamic activity than predicted stimuli, an effect which has been termed prediction 

error. However, interindividual differences in learning and uncertainty have rarely been taken 

into account. Under Bayesian formulations of cortical function, prediction errors should be 

stronger if a subject was highly confident that another stimulus should have appeared. While 

this is supported by studies employing Bayesian observers, prediction error signals in brain 

imaging have not been shown to scale with subjective confidence ratings. 

In the present study, participants viewed visual object sequences of varying 

predictability over multiple days. Additionally, we intermittently prompted them to rate their 

confidence after completing partially presented sequences, resulting in a range of confidence 

levels after the training phase. In the following MR scanning phase, participants saw sequences 

that either confirmed predictions, deviated from them or were completely random. We 

replicated BOLD findings of prediction error activity in the ventral visual stream and found that 

their magnitude increased with confidence ratings. Furthermore, we observed the opposite 

for the contrast between predictable and random sequences: In the anterior cingulate, 

predictable sequences elicited higher activity for low level of confidence, but lower activity for 

high levels of confidence. These results show that group‐level findings of predictive processing 

contain considerable variance that can be explained by differences in learning and inference. 
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Introduction 
Our visual experience evolves as a continuous stream of sensory states. In the natural 

world, states close in time tend to be correlated, providing a probabilistic mapping of visual 

input from one moment to the next. Studies presenting temporal sequences of visual stimuli 

show that humans and animals track the underlying transitional probabilities (Sherman et al., 

2020; Turk‐Browne et al., 2009a). After a training phase, both behavior and neural patterns 

indicative of prediction (or anticipation) emerge: Participants detect and categorize expected 

stimuli faster (Turk‐Browne et al., 2010) and stimulus templates of expected stimuli can be 

decoded from fMRI activity (Kok et al., 2014; Kok, Jehee, et al., 2012). Interestingly, the activity 

elicited by a given stimulus is increased when its occurrence violates previously presented 

patterns (Kaposvari et al., 2018; Manahova et al., 2018; Meyer & Olson, 2011; Richter et al., 

2018b). This increase likely represents a prediction error (PE) – the mismatch between 

predictions and evidence based on an internal model of the process (Keller & Mrsic‐Flogel, 

2018; Rao & Ballard, 1999).  

Most studies reporting PE activity focused on manipulating the parameters of the 

generative process, i.e. the true transitional probabilities of the sensory stream. However, the 

human inference process is subject to uncertainty (Hasson, 2017; O’Reilly, 2013), possibly 

implemented by a Bayesian integration of prior and evidence (Knill & Pouget, 2004; Pouget et 

al., 2013). Consequently, Bayesian predictive coding suggests that the magnitude of PEs 

depends both on the reliability of the evidence (the consistency of patterns and the signal to 

noise ratio) and the precision of our predictions (the probability of a prediction among all 

hypotheses) (Jiang & Rao, 2022 but see Aitchison & Lengyel, 2017 for non‐Bayesian 

interpretations). Two approaches to assess the latter are prevalent in the literature: First, 

corresponding parameters can be extracted from a computational model performing the task 

at hand. Second, participants can be prompted to rate their subjective confidence in a given 

decision. 

Confidence ratings are usually tied to an overt or covert decision by the participant. For 

this reason, they are usually not assessed when studying the learning of temporal patterns, 

which often aims at implicit processes (Schapiro & Turk‐Browne, 2015; Turk‐Browne et al., 

2010). Nevertheless, a promising line of studies combined both aspects by interjecting explicit 

predictions and confidence ratings between long blocks of visual stimulation. The authors 

showed that these separately acquired ratings reflect the confidence of an ideal Bayesian 

observer during the stimulation phase (Meyniel, Schlunegger, et al., 2015; Meyniel & Dehaene, 
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2017). Crucially for the present study, BOLD activity covaries with both surprise and confidence 

in a range on neuroanatomical regions (Bounmy et al., 2023). However, direct evidence that 

imaging‐derived PE activity scales with confidence is not available yet.  

In the present study, we aimed to show that PE activity scales with subjective 

confidence, building on a previous study using visual streams of everyday objects (Richter et 

al., 2018b). Furthermore, we addressed whether PE activity emerges as a function of 

increasing activity for surprising input (surprise enhancement) or decreasing activity for 

predictable input (expectation suppression). Evidence for the latter is inconclusive in humans 

with only few fMRI studies looking into the alternative explanations (Feuerriegel, Vogels, et al., 

2021). To address this gap, we included three experimental conditions regarding the visual 

stream: Fully predictable, fully unpredictable (random) and surprising. Following previous 

work, activity decreases for predictable compared to unpredictable stimulation served as 

evidence for expectation suppression (Manahova et al., 2018; Ramachandran et al., 2017). 

Interestingly, the same contrast has been used to study the brain’s differential response to 

order and disorder in sensory input (Davis & Hasson, 2018; Nastase et al., 2014), a 

fundamental aspect of predictability. Areas that are more sensitive to structure might serve as 

prediction encoding hubs (Ficco et al., 2021). We expected BOLD activity in these areas to 

decrease with confidence, since new evidence will not lead to prediction updating. 

Results 

Confidence increases for predictable input and explains improvements in behavior 

For the visual stimulation, we used sequences of visual images comprised of five 

everyday objects in full color. Prior to the scanning session, participants completed a three‐

day training phase with 20 minutes of stimulation per day (Figure 1). This phase only included 

predictable and unpredictable sequences. After each day, we sampled the learning process 

with a sequence completion task: Participants saw incomplete sequences and had to choose 

the correct trailing object from a set of five options. Each trial was followed by a confidence 

rating prompt. We found that average confidence regarding predictable sequences increased 

over the training phase while it remained constant for unpredictable ones (Figure 2a). 

Objective accuracy in completing predictable sequences also increased over days (Figure 2b) 

and was highly correlated with confidence (r=0.8, p<0.001). If not indicated otherwise, the 

following analyses used average confidence ratings in predictable sequences after the last 

training day. To ensure visual fixation and attentiveness during the stimulation blocks, we 
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instructed participants to react to upside‐down images with a button‐press (the cover task). 

Neither reaction time nor accuracy were significantly different between conditions (reaction 

time: t(41)=‐1.2, p=.24; accuracy: t(41)=1.55, p=.13). 

We also tested whether learning the transitional probabilities led to behavioral 

advantages. To this end, we included a short task before the MR acquisition. We presented the 

participants with a target object that would occur in the following object sequence. Sequence 

presentation followed the same design as in the training phase, but instead of performing the 

cover task, participants were instructed to react to the occurrence of the target object. 

Reaction times were nearly 10% faster for predictable objects (median RT change=‐9.93%, 

t(41)=‐5.66, p<0.001), with a maximum gain of 48%. We also found that subjects with higher 

confidence had significantly larger gains in reaction time (Figure 2c). 

 

Figure 1. Experimental design. a. Creation of three types of object sequences. Predictable (P, green) and 

unpredictable (U, purple) sequences were shown during training. Surprising (S, yellow) sequences were only 

shown during the scanning session. See methods section for details. b. Objects were shown without ISI and whole 

sequences were separated by a fixation cross. Upside‐down objects occurred with a probability of 10% 

irrespective of condition. c. Sequence‐completion task. One to four of the leading objects were presented and 

the correct trailing object had to be selected from five options. The selection was followed by a confidence 

prompt. This task was not timed. Both predictable and unpredictable sequences were shown to keep object 

exposure comparable. We presented eight sequences per condition.  
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During fMRI scanning, we presented participants with blocks of four sequences per 

condition, with block order randomized. In addition to the predictable and unpredictable 

conditions, we included surprising blocks. These were based on predictable sequences from 

the learning phase but had one to three objects replaced (Figure 1a). The scanning phase 

included no sequence‐completion task or confidence ratings. Analysis of the cover task 

revealed that reaction times were faster in predictable than unpredictable blocks (Figure 2d). 

The same trend was present, but not significant, compared to the surprising blocks (t(41)=1.94, 

pFWE=0.18). The accuracy of reactions did not vary between conditions. Since the cover task 

was independent of the predictability of the sequences, we explored whether reaction times 

were impacted by confidence levels. We calculated condition‐wise correlations and found that 

high confidence in the predictable sequences was associated with quicker reaction times 

(Figure 2e, left). This link was not significant in the other conditions. Seeing this possibly 

confounding effect, we included reaction times in the following BOLD analyses. 

 

Figure 2. Training and cover task results. The central color legend applies to all subfigures. a. Average subject‐
wise confidence ratings within conditions after respective training days. Black markers show daily medians. b. 
Average percentage of correctly completed sequences. Unpredictable sequences could not be predicted over 
chance level and are not shown here. c. Significant linear regression between the relative difference in reacting 
to predictable versus unpredictable target objects and average confidence ratings for predictable sequences prior 
to scanning (r=‐0.536, p<0.001). Negative values on the x‐axis correspond to quicker reactions for predictable 
objects. d. Subject‐wise averages of reaction time in the cover task during fMRI acquisition. Dashed horizontal 
lines show respective medians, with a significant difference between the predictable and unpredictable condition 
(post‐hoc t‐test: t(41)=2.59, pFWE=0.04). Note that the lines for the unpredictable and surprising conditions 
overlap since the median is nearly the same. e. Condition‐wise correlations between confidence ratings and 
reaction time in the cover task during scanning. Since surprising sequences were based on predictable ones 
during scanning, we used the corresponding confidence ratings. The relationship was only significant for the 
predictable condition (r=‐0.5, pFWE=0.002). 
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Prediction errors in sensory areas and prediction activity in parietal areas 

We analyzed two contrasts with respect to the BOLD data: A PE contrast (surprising > 

predictable) and a prediction contrast (predictable > unpredictable). We adopt the 

terminology of “prediction contrast” in reference to non‐error related aspects of predictive 

processing. Confidence was included as a regressor of interest and reaction time differences 

between the respective conditions as a confound regressor (Methods). First, we inspected the 

main contrasts between conditions. PE activity was present bilaterally throughout the ventral 

stream, in close correspondence to previous work using an event‐based design after implicit 

statistical learning (Figure 3a, left; Richter et al., 2018). The prediction contrast did not provide 

evidence of expectation suppression, as we observed no significant negative clusters (i.e. 

predictable < unpredictable). Note that these results are based on a conservative whole‐brain 

analysis. However, we found two positive clusters: A medial cluster in the posterior cingulate 

cortex and superior parietal cortex and a left lateral cluster covering parts of the superior 

parietal cortex, inferior parietal cortex and a small area of the dorsal stream (Figure 3b, left).  

Confidence explains interindividual differences in error and prediction activity 

We investigated the link between confidence and predictive processing patterns in 

both a confirmatory and an exploratory way. Since we assumed that PE activity increases with 

confidence, we regressed the subject‐wise average contrast parameter estimates (COPEs) in 

the significant PE clusters on confidence ratings, controlling for reaction time differences. In 

accordance with our assumptions, we found that PE activity significantly increases with the 

participants’ confidence level (Figure 3a, right). We then performed a corresponding analysis 

for the positive clusters of the prediction contrast. If these increases indicated PE activity, 

possibly due to uncertainty in the predictable sequences by low‐confidence subjects, we 

would expect a similar relationship to confidence. However, we found no evidence for such a 

link (Figure 3b, right). A corresponding Bayesian correlation analysis revealed moderate 

evidence for the null hypothesis (BF=.195). 

For the exploratory analysis, we analyzed the confidence regressor estimates of the 

second‐level GLMs across the whole brain. No significant clusters emerged for the link 

between PE activity and confidence. The uncorrected maps indicate peaks in the ventral visual 

stream, anterior insula and inferior frontal cortex bilaterally (Figure 3c). Regarding the link to 

the prediction COPEs, we found a negative cluster in the anterior cingulate cortex (ACC; Figure 

3d, left), although it did not survive FWE correction for two‐sided cluster testing. Within this 

cluster, we found a strong negative association between COPEs and confidence. Interestingly, 
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the corresponding regression line crosses the zero value with respect to the COPEs (Figure 3d, 

right). Descriptively, this indicates that the relative difference flips sign – for low‐confidence 

participan7ts, predictable blocks elicited higher BOLD signal compared to unpredictable blocks 

while the opposite happened for high‐confidence subjects (Methods).  

Finally, the directionality of the relationship with confidence generally depended on 

the contrast: Inspecting the uncorrected parameter maps, we see that PE activity increases 

with confidence while the inverse can be seen for the prediction contrast activity (with a single 

exception in the inferior frontal cortex, Figure 3d, left).  

 

Figure 3. GLM group level results for main effects (a and b) and the confidence regressor (c and d). Shown are 

uncorrected t‐values thresholded at z=2.33 (p<0.01). Clusters surviving cluster correction (cluster‐forming 

threshold: z=3.09, cluster threshold: pFWE=0.025) are shown in black contours. a. Left: Surprising > predictable 

contrast maps. Right: Confidence significantly explains differences in average COPEs (R2
partial=.15, t(41)=2.54, 

p=.015). Data shown are subject‐wise average confidence ratings for the predictable condition (x‐axis) and 

subject‐wise COPE averages within the significant clusters shown left. b. Corresponding results for the predictable 

> unpredictable contrast. The linear model yielded no significant results (R2
partial=.001, t(41)=‐0.24, p=.82). c. 

Statistical map for the confidence regressor of the prediction error GLM . Parameter estimates indicate how 

strongly PE COPEs vary with confidence levels. d. Left: Corresponding statistical map for the prediction contrast. 

Cluster contours show a negative cluster (p=0.043) which did not survive FWE correction for two‐sided cluster 
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correction. Right: Confidence explained considerable variance of the COPEs in this cluster (R2
partial=.49). No test 

for significance was carried out because the ROI was based on the GLM results. 

Discussion 
In the present paper, we established a link between brain activation patterns of 

predictive processing during the presentation of temporal sequences and subjective 

confidence in knowing the underlying patterns. Importantly, confidence ratings were derived 

separately from the visual stimulation. While this approach deviates from similar work using 

statistical learning, we replicated BOLD findings from a recent study where participants were 

kept unaware of the patterns (Richter et al., 2018b). In line with our assumptions, PE activity 

in the ventral visual stream increased with confidence in knowing the (previously reliably 

predictable) object sequences. In the ACC, we found tentative evidence that the activity during 

predictable input relative to unpredictable input depended on confidence levels: For high 

confidence levels, activity for predictable input was lower. Conversely, for low confidence 

levels, unpredictable input elicited lower activity levels. These results stress the importance of 

accounting for interindividual differences in uncertainty during partly implicit predictive 

processes. 

Paradigms for learning of temporal regularities 

Our ability to extract regularities in the visual domain has been studied from various 

perspectives, leading to subtly different paradigms (Conway, 2020). These include statistical 

learning (Fiser & Aslin, 2002), sequence or sequential learning (Gheysen & Fias, 2012), 

probabilistic learning (Meyniel, Schlunegger, et al., 2015) or temporal community learning 

(Schapiro et al., 2013). Instead of being fundamentally different, these approaches can be 

described as gradually varying on three axes (Conway, 2020): Amount of exposure, amount of 

structure and amount of instruction or feedback. Importantly, unifying frameworks have been 

developed, arguing that Bayesian inference models can account for most variants of acquiring 

regularities from sensory stimulation (Fiser & Lengyel, 2019; Konovalov & Krajbich, 2018). 

While the present study did not aim to resolve competing perspectives, it focused on the latter 

account. Here, we combined an extended learning phase of continuous sensory stimulation, 

using initially deterministic sequences and light instructions with a separate explicit 

performance task. 

Prediction error activity 

We first discuss the results of our main contrasts with respect to previous studies. 

Firstly, we found evidence for PE activity throughout the ventral visual stream. Similar to 
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previous studies in humans, there was no evidence of expectation suppression (Feuerriegel, 

Vogels, et al., 2021). In our data, the process behind PE activity is thus better explained as 

upregulated processing for surprising stimuli as opposed to downregulated processing for 

predictable ones. However, we here used a whole‐brain approach that is more conservative 

than targeted analyses of the visual stream.  

Our findings bear striking similarity to a previous study (Richter et al., 2018b) despite 

differences in pattern length, instruction and participant awareness. This suggests that the 

underlying neural processes are not exclusive to incidental or implicit learning. Differences 

between neuroanatomical substrates of implicit and explicit learning point to more frontal 

activations for the latter, while implicit conditions predominantly affect sensory areas 

(Gheysen & Fias, 2012). However, these systems may work in parallel, with the implicit 

processes as a prerequisite for the explicit ones (Batterink et al., 2015). Consequently, one 

might expect additional activations in higher cognitive areas for our design. While not surviving 

cluster correction, we did find corresponding clusters in the precentral gyrus and inferior 

frontal cortex bilaterally (Figure 3a). It is possible that our study is underpowered to detect 

these effects. However, our GLM contrast was not designed to detect general patterns of 

statistical learning, but specifically isolated PE processing after a multi‐day training phase. 

Related to the implicit versus explicit divide, there is evidence that surprising stimuli only evoke 

higher activity when unattended (Kok et al., 2012). In contrast, our data suggests that PE 

activity persists even when participants were explicitly asked to reproduce the patterns. This 

was corroborated by reaction time data in our cover task: Reaction times were shortest for 

predictable sequences, suggesting that, even though participants were highly engaged here, 

surprising sequences still evoked a stronger signal. Of note, our study differs from previous 

work by using a block design. That means that our surprising condition represents a visual 

stream including both confirmations and violations of expectation. The subtleties of transient, 

event‐based responses might thus deviate from our findings. 

Prediction activity 

Previous research on the contrast between predictable and unpredictable stimulation 

produced varied results. Stimuli predictive of other stimuli can elicit either increased activity 

(Egner et al., 2008) or decreased activity (Davis & Hasson, 2018), potentially dependent on 

task relevance (Richter & de Lange, 2019). Neuroanatomical findings partly overlap with the 

ACC being implicated irrespective of effect directionality. In our data, we found extended 

increases for predictable input focusing on the superior parietal cortex, intraparietal sulcus 
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and posterior cingulate. The intraparietal sulcus has been found to increase activity in 

response to predictive stimuli (Egner et al., 2008) and is generally sensitive to the entropy of 

visual and auditory sequences (Nastase et al., 2014). Interestingly, the superior parietal sulcus 

is central to a wide range of predictive processing tasks, as shown by a recent modality‐ and 

task‐general meta‐study (Ficco et al., 2021). As an interim summary of our main effects, we 

corroborated various findings in the literature that establish modality‐specific areas of PE 

activity and modality‐general areas of predictive processing. In the following paragraphs, we 

introduce subjective confidence as a moderator of the direction and magnitude of these 

effects. 

Interpreting the effect of confidence 

Confidence ratings are often studied in the context of decisions, where they reflect the 

posterior probability of being correct, given evidence and an internal model (Pouget et al., 

2016, but see Adler & Ma, 2018 for a non‐Bayesian view). However, a line of studies (Bounmy 

et al., 2023; Meyniel, Schlunegger, et al., 2015; Meyniel & Dehaene, 2017) showed that 

confidence ratings can also be used to sample the uncertainty during continuous perceptual 

inference. This suggests that confidence is an ever‐present aspect of perception, which can be 

cast as ongoing inference about the correspondence of our internal model (and the associated 

predictions) with sensory input (Friston, 2010). However, while many studies explored imaging 

patterns of expectation and surprise, surprising trials were often defined by the objective 

deviation of a presented stimulus from preceding patterns (Kaposvari et al., 2018; Manahova 

et al., 2018; Meyer & Olson, 2011; Richter et al., 2018b). We suggest that much of the variance 

in individual response can be explained by accounting for individual (un)certainty in the 

presented patterns. As a simple example in the context of simpler paradigm, presenting a 

sequence of nine house images followed by a face image might lead to varying levels of 

surprise if observers did not infer the same conditional probability of observing a tenth house 

image. Given more complex patterns, as used in our study, interindividual variability is 

expected to increase. While the underlying reasons are beyond the scope of this study, the 

frequent divergence of human inference and behavior from (Bayes‐)optimal models has been 

discussed previously (Acerbi et al., 2014; Beck et al., 2012). 

Confirming our main hypothesis, PE activity in the significant clusters across the visual 

stream scaled with confidence. Previous studies investigating this link used model parameters 

derived from an ideal Bayesian observer, finding the strongest links between surprise and 

confidence outside of the visual cortex (Bounmy et al., 2023). To our knowledge, only two 
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other studies explored the link between imaging indicators of PE and confidence ratings: In an 

EEG analysis of a perceptual decision task, parietal event related potentials covaried with 

confidence ratings both during stimulus presentation and response (Boldt & Yeung, 2015). An 

fMRI study using a visual search paradigm found no evidence of PE scaling during stimulus 

presentation but did find an inverse relationship during the participants response in the 

inferior frontal gyrus (Sherman et al., 2016). To extend our findings, we performed an 

exploratory whole‐brain analysis but did not find significant clusters.  

We tested whether prediction activity scaled with confidence but found no relationship 

within the clusters of the contrast between predictable and unpredictable sequences. 

Mirroring the previous analysis, we then performed a whole‐brain analysis on the voxel level. 

This yielded a cluster in the ACC where nearly 50 percent of the variance was explained by 

confidence levels. The direction of this effect was opposite to the PE contrast: Here, contrast 

estimates decreased as a function of confidence. Since this cluster did not survive correction 

for multiple comparisons, the results should be interpreted with care. However, evidence for 

the role of the ACC in predictive processing and conflict processing in general is widespread 

throughout the literature (Alexander & Brown, 2019; Garrison et al., 2013; Vanveen & Carter, 

2002). Consequently, we discuss some implications of this finding in the following lines. 

Recently, the ACC has been described as part of a prefrontal network that anticipates PEs 

across cortical hierarchies (Alexander & Brown, 2018). This suggests a decrease in activity with 

increasing confidence, which has been confirmed for probabilistic learning tasks (Bounmy et 

al., 2023; Davis & Hasson, 2018). However, if the ACC is central to PE processing, we would 

expect corresponding results regarding our PE contrast. Possible explanations for this 

dissociation might lie in the hierarchical nature of predictive processing (Alexander & Brown, 

2018): PEs in the visual stream indicate low‐level mismatches without necessary awareness, 

while errors in higher cortices are subject to conscious reflection and, possibly, anticipation. 

Future studies are necessary to differentiate the modulating effect of confidence across the 

hierarchy of predictive processing. 

Lastly, the confidence parameter estimates in the ACC flipped sign at medium‐to‐high 

levels of confidence. This means that predictable sequences elicited higher activity than 

unpredictable ones for low confidence levels, while the opposite was true for high levels. 

Regarding low levels of confidence, this can be explained by precision weighting of expected 

errors (Yon & Frith, 2021): If participants inferred that there is a ground truth to the predictable 
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sequences while not being able to accurately predict the order, PEs of high precision can be 

expected. Due to the stochastic nature of the unpredictable condition, stimuli can never be 

accurately predicted, but the precision of errors is low. Nevertheless, if the unpredictable 

condition did elicit residual error activity, it might explain the relatively higher activity for high 

confidence levels. Here, the correspondence between predictions and sensory information is 

(close to) perfect in the predictable condition, triggering little to no error anticipation or 

processing. Finally, it is possible that even after three days of exposure, subjects still assumed 

that there is some order in randomness (Huettel et al., 2002), leading to incorrect predictions 

of comparatively high precision. Tentative evidence for this assumption can be found in the 

confidence ratings for the unpredictable condition. While these did not change during training, 

they were still far from minimal, indicating that some of the subjects did not correctly infer 

that these sequences were inherently unpredictable. 

Methods 

Participants 

We recruited 44 participants including students, doctoral researchers, clinic staff and the 

general population of Munich. The sample size was based on a‐priori analysis, aiming to detect 

at least a medium effect size (d>=0.5, alpha=0.05, beta=0.9). All participants took part in a 

familiarization MRI session (20 minutes), an online training phase over three days and the main 

MRI session (70 minutes) on the day after training completion. Two participants were excluded 

from the analysis due to technical problems during data acquisition. The remaining 42 

participants (19 female, age [mean(std)] = 27.1(3.9)) were included for analysis if not indicated 

otherwise. The study was approved by the ethics board of the Technical University of Munich 

(TUM), and we acquired written informed consent from all participants. 

Visual stimuli 

We selected 224 full‐color images of everyday objects from a larger image set (Brady 

et al., 2008). The stimuli were chosen to be maximally homogenous regarding salience, e.g., 

by excluding food items and bright colors. If not stated otherwise, all allocations of stimuli to 

subjects and conditions were random. A set of 80 images was drawn for every subject, with 

half assigned to the predictable condition and the other half to the unpredictable condition. 

Experimental design 

Implementation. We used Psychopy (Peirce et al., 2019) to implement the design. The 

online training sessions were realized using pavlovia.org, where Javascript‐translated Psychopy 
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experiments can be run online with millisecond precision (Bridges et al., 2020; Sauter et al., 

2020). 

Main task. Participants saw sequences of five objects each, each stimulus presented 

for 800ms with no inter‐stimulus interval and a 1100ms fixation cross between sequences. 

Three types of sequences were presented: Predictable sequences had the same order for 

every repetition. Unpredictable sequences were randomly drawn from the subject‐specific set 

of unpredictable images. After all unpredictable images were shown, new sequences were 

formed. Surprising sequences were based on predictable sequences but had one to three 

stimuli replaced with random unpredictable images upon every repetition. The visual stream 

was reshuffled prior to repeated presentation based on two rules: Objects could only repeat 

after all objects in the respective condition were presented, and objects (or sequences) could 

not appear twice in a row. This was done to minimize the confounding effects of repetition 

suppression. To ensure fixation and concentration, participants were instructed to quickly 

react to occurrences of upside‐down objects. These appeared with a probability of 10%, 

independent of condition. 

Training phase. Over the course of three days prior to the main scanning session, 

participants followed an online implementation of the main design. This phase only included 

predictable und unpredictable sequences. We instructed every participant to perform the 

training in a quiet environment without distractions. Stimulation blocks lasted 20 minutes per 

day, with a break of one minute after 10 minutes. Instructions were shown on screen before 

the stimulation began and the first day included a five‐minute familiarization block with on‐

screen feedback regarding cover‐task button presses. To measure objective and subjective 

progress in statistical learning, a testing phase followed each training day. Here, participants 

saw eight incomplete sequences for both conditions. After every sequence, participants chose 

what they assumed would be the correct trailing object from five options and gave a 

confidence rating on a scale of one to seven. No feedback was given regarding performance 

and no information on the underlying conditions was disclosed. 

Imaging phase. During scanning, stimuli were presented against a grey background and 

subtended 4° of visual angle. We chose a block design with four successive sequences of one 

condition forming one block. The order of blocks was randomized, as were sequences within 

blocks. Participants saw 12 blocks per condition with a duration of 20.4s each, adding up to a 
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run time of 12 minutes and 23.4 seconds. We disclosed no information regarding the sequence 

patterns and the imaging session included no sequence completion test. 

MRI acquisition 

High‐resolution structural scans were acquired with a T1‐weighted 3D MPRAGE 

sequence (170 slices, voxel size = 1.0x1.0x1.0mm³, FOV = 250x256x170mm³, TR/TE/flip 

angle=9ms/4ms/8°). fMRI data was acquired using single‐shot EPI (40 slices, voxel size = 

3.0x3.0.3.0mm3, FOV 192x192x127.8mm3, TR/TE/flip angle=1200ms/30ms/70°) with 612 

dynamic scans plus 2 dummy scans (total duration: 768 seconds). 

MRI data preprocessing 

We preprocessed both structural and functional MRI data with fMRIPrep (Esteban, 

2019) which produces an automated processing description that we provide in the 

supplement.  

Statistical analysis 

We performed whole‐brain BOLD data analysis using FSL FEAT via a Python interface 

(adapted from Esteban et al. 2020). Regarding the first level analysis, we modelled the 

experimental manipulation as blocks, following their presentation timing with a length of 20.4 

seconds (four object sequences) and included the respective temporal derivatives. The 

resulting boxcar functions were convolved with a double gamma hemodynamic response 

function. We added eight motion regressors: Six translations and rotations as well as two 

measures of bulk head motion (DVARS and framewise displacement). Finally, we included the 

average global CSF and white matter signal. All regressors were taken from the fMRIPrep 

results. The data were grand mean scaled, smoothed with a 6mm³ kernel and high pass filtered 

at 120 seconds. Since we did not have a resting condition, we created two GLMs: One leaving 

the surprising blocks unmodelled (used to create the prediction contrast between the 

modelled blocks) and one leaving the unpredictable blocks unmodelled (used to create the PE 

contrast). This was done to prevent overparametrization of the design matrix which can lead 

to unstable estimates.  

Subsequent group‐level analyses were run using FSL’s FLAMEO and included two 

covariates: Confidence ratings from predictable sequences (individual average after the last 

training day) and the percent change in reaction time to catch trials between the conditions 

being contrasted (individual average over all blocks). Since we acquired separate statistical 

maps from the first level analyses, we ran two corresponding analyses on the group level. This 

influences the interpretation of the covariates: The effect of confidence is now specific to the 
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respective contrast (i.e. explained variance regarding the prediction contrast or PE contrast). 

Statistical maps of significant activation were obtained using FSLs cluster correction with a 

voxel threshold of z=3.09 and a cluster threshold of p=0.05 (Woo et al., 2014). Since cluster 

correction is applied for negative and positive clusters separately, we used an FWE‐corrected 

threshold of 0.025. Our interpretation of contrast parameter estimates (COPEs) rests on the 

underlying subtraction of two parameter estimates. The resulting COPE thus informs both 

about the magnitude of the difference as well as the direction (which parameter weight is 

larger). Comparisons regarding the anatomical localization were based on relative voxel 

coverage over regions in the Harvard‐Oxford Cortical Probabilistic Atlas. 

All analyses on behavioral data were performed using the python package pingouin 

(Vallat, 2018). In linear regressions, the partial R² values for confidence predictors were based 

on a partitioning of explained variance following Grömping (2006). 
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Supplementary material 

MRI data processing 

The following paragraphs include the automatically created methods section created by 

fMRIPrep. No changes have been made by the authors. 

Results included in this manuscript come from preprocessing performed using fMRIPrep 20.2.4 

(Esteban, Markiewicz, et al. (2018); Esteban, Blair, et al. (2018); RRID:SCR_016216), which is 

based on Nipype 1.6.1 (Gorgolewski et al. (2011); Gorgolewski et al. (2018); 

RRID:SCR_002502). 

Anatomical data preprocessing 

A total of 1 T1‐weighted (T1w) images were found within the input BIDS dataset. The T1‐

weighted (T1w) image was corrected for intensity non‐uniformity (INU) with 

N4BiasFieldCorrection (Tustison et al. 2010), distributed with ANTs 2.3.3 (Avants et al. 2008, 

RRID:SCR_004757), and used as T1w‐reference throughout the workflow. The T1w‐reference 

was then skull‐stripped with a Nipype implementation of the antsBrainExtraction.sh workflow 

(from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of 

cerebrospinal fluid (CSF), white‐matter (WM) and gray‐matter (GM) was performed on the 

brain‐extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, Zhang, Brady, and Smith 2001). 

Volume‐based spatial normalization to one standard space (MNI152NLin2009cAsym) was 

performed through nonlinear registration with antsRegistration (ANTs 2.3.3), using brain‐

extracted versions of both T1w reference and the T1w template. The following template was 

selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c 

[Fonov et al. (2009), RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym], 

Functional data preprocessing 

For each of the 1 BOLD runs found per subject (across all tasks and sessions), the following 

preprocessing was performed. First, a reference volume and its skull‐stripped version were 

generated using a custom methodology of fMRIPrep. Susceptibility distortion correction (SDC) 

was omitted. The BOLD reference was then co‐registered to the T1w reference using flirt (FSL 

5.0.9, Jenkinson and Smith 2001) with the boundary‐based registration (Greve and Fischl 2009) 

cost‐function. Co‐registration was configured with nine degrees of freedom to account for 

distortions remaining in the BOLD reference. Head‐motion parameters with respect to the 

BOLD reference (transformation matrices, and six corresponding rotation and translation 

parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 5.0.9, 

Jenkinson et al. 2002). The BOLD time‐series (including slice‐timing correction when applied) 

were resampled onto their original, native space by applying the transforms to correct for 

head‐motion. These resampled BOLD time‐series will be referred to as preprocessed BOLD in 

original space, or just preprocessed BOLD. The BOLD time‐series were resampled into standard 

space, generating a preprocessed BOLD run in MNI152NLin2009cAsym space. First, a reference 

volume and its skull‐stripped version were generated using a custom methodology of 

fMRIPrep. Several confounding time‐series were calculated based on the preprocessed BOLD: 
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framewise displacement (FD), DVARS and three region‐wise global signals. FD was computed 

using two formulations following Power (absolute sum of relative motions, Power et al. (2014)) 

and Jenkinson (relative root mean square displacement between affines, Jenkinson et al. 

(2002)). FD and DVARS are calculated for each functional run, both using their 

implementations in Nipype (following the definitions by Power et al. 2014). The three global 

signals are extracted within the CSF, the WM, and the whole‐brain masks. Additionally, a set 

of physiological regressors were extracted to allow for component‐based noise correction 

(CompCor, Behzadi et al. 2007). Principal components are estimated after high‐pass filtering 

the preprocessed BOLD time‐series (using a discrete cosine filter with 128s cut‐off) for the two 

CompCor variants: temporal (tCompCor) and anatomical (aCompCor). tCompCor components 

are then calculated from the top 2% variable voxels within the brain mask. For aCompCor, 

three probabilistic masks (CSF, WM and combined CSF+WM) are generated in anatomical 

space. The implementation differs from that of Behzadi et al. in that instead of eroding the 

masks by 2 pixels on BOLD space, the aCompCor masks are subtracted a mask of pixels that 

likely contain a volume fraction of GM. This mask is obtained by thresholding the 

corresponding partial volume map at 0.05, and it ensures components are not extracted from 

voxels containing a minimal fraction of GM. Finally, these masks are resampled into BOLD 

space and binarized by thresholding at 0.99 (as in the original implementation). Components 

are also calculated separately within the WM and CSF masks. For each CompCor 

decomposition, the k components with the largest singular values are retained, such that the 

retained components’ time series are sufficient to explain 50 percent of variance across the 

nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped 

from consideration. The head‐motion estimates calculated in the correction step were also 

placed within the corresponding confounds file. The confound time series derived from head 

motion estimates and global signals were expanded with the inclusion of temporal derivatives 

and quadratic terms for each (Satterthwaite et al. 2013). Frames that exceeded a threshold of 

0.5 mm FD or 1.5 standardised DVARS were annotated as motion outliers. All resamplings can 

be performed with a single interpolation step by composing all the pertinent transformations 

(i.e. head‐motion transform matrices, susceptibility distortion correction when available, and 

co‐registrations to anatomical and output spaces). Gridded (volumetric) resamplings were 

performed using antsApplyTransforms (ANTs), configured with Lanczos interpolation to 

minimize the smoothing effects of other kernels (Lanczos 1964). Non‐gridded (surface) 

resamplings were performed using mri_vol2surf (FreeSurfer). 
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Abstract 

Neural activity is a highly energy‐intensive process. In the human brain, signaling 

consumes up to 75% of the available energy resources with postsynaptic potentials as the 

largest factor. Visual processing is especially costly, with increases in energy consumption of 

up to 20% in the visual cortex. In recent years, vision has been cast as a constructive process, 

harnessing prior knowledge in a constant feedback loop of top‐down prediction and bottom‐

up sensory input. Interestingly, sensory input that is in line with our predictions might be 

processed at lower energy metabolic cost. However, there is no evidence for this claim yet, 

possibly due to the scarcity of measures that quantify energy consumption in the human brain. 

Here, we used a novel MR method measuring the cerebral metabolic rate of oxygen 

during sensory stimulation of visual sequences that varied in their predictability. Since 

predictive processing is driven by estimates of uncertainty, we assessed how confident 

subjects were in their knowledge of the underlying patterns. We found that processing 

predictable sequences steeply decreased in energetic cost with increasing confidence. 

Strikingly, these energetic effects were not limited to visual areas, summing up to a cortical 

difference of 13% between high and low levels of confidence. Furthermore, sequences 

deviating from expectations were energetically cheaper than predictable ones for low 

confidence levels, but costlier for high levels. These results speak for a major role of predictive 

processing in balancing the brain’s energy budget and emphasize the impact of interindividual 

differences when learning predictive patterns. 
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Introduction 

To produce the energy that fuels neural activity, the brain needs a steady supply of 

oxygen and glucose. Neural signaling is estimated to account for 75% of the brain’s energy 

consumption in grey matter with 50% of that fraction going towards postsynaptic potentials 

(Howarth et al., 2012). The rate of energy consumption is strongly affected by sensory 

stimulation: In the visual cortex, up to 20% more energy is used during stimulation (Lin et al., 

2010). Such effects cannot be reliably measured by conventional BOLD imaging, which is 

strongly driven by hemodynamic effects (Drew, 2019). While blood flow and energy 

consumption are tightly coupled at rest, the ratio differs across the cortex (Devonshire et al., 

2012; Drew, 2022; Hyder, 2010) and is impacted by attentional state (Moradi et al., 2012) as 

well as stimulation duration (Moradi & Buxton, 2013). Addressing this problem, 

multiparametric quantitative BOLD imaging (mqBOLD; Christen et al., 2012; Hirsch et al., 2014; 

Kaczmarz et al., 2020) provides direct access to energy metabolic processes by measuring the 

cerebral metabolic rate of oxygen on a voxel level (CMRO2). CMRO2 has three key advantages 

for research on energy consumption: First, it represents the main resource of ATP production 

in the brain (Dienel, 2014; Harris et al., 2012) and is biologically interpretable. Second, it 

combines separate measurements of hemodynamics and blood (de‐)oxygenation. This 

accounts for differences in neurovascular coupling, allowing the comparison and integration 

of CMRO2 across the brain. Third, due to the quantitative approach, CMRO2 can be analyzed in 

absolute values, enabling inference on conditions instead of contrasts while staying 

comparable between subjects. 

Previous studies on the energetic cost of visual perception purely focused on stimulus 

characteristics, presenting simple or complex stimuli and limiting the analysis to the visual 

cortex (Griffeth et al., 2015; Lin et al., 2010). However, perception can be understood as a 

constructive process that heavily relies on prior knowledge from higher cognitive areas to 

interpret sensory input (Clark, 2013; de Lange et al., 2018; Teufel & Fletcher, 2020). The 

predictive coding framework posits that the brain is constantly optimizing a model of the world 

with the goal of minimizing the surprise of sensory observations (Rao & Ballard, 1999). 

Deviations from the model lead to error signals and subsequent model updating which are 

implemented in the brain as hierarchical feedback loops (Bastos et al., 2012; Walsh et al., 

2020). A cornerstone of predictive processing is the extraction of spatial and temporal patterns 

to infer causes from incomplete observations and predict future events from past and current 
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ones. The latter ability is exemplified by studies investigating statistical learning, where a 

sensory stream is generated from specific transitional probabilities. These provide a source of 

prediction after repeated exposure (Fiser & Lengyel, 2022; Turk‐Browne et al., 2009b, 2010). 

Studies using such a design revealed lower activation for expected compared to unexpected 

stimuli across conventional imaging modalities (Manahova et al., 2018; Richter et al., 2018a; 

Stefanics et al., 2011). This is expected when understanding predictive coding as a theory of 

efficient coding (Chalk et al., 2018; Quintela‐López et al., 2022): By learning the patterns 

behind sensory input, our predictions can be optimized to the point where little to no error 

signals or changes to the internal model are necessary (for a mathematical derivation see 

Sengupta et al., 2013). However, there is no empirical evidence available that this results in 

reduced energy consumption. 

In the present study, we extended an established visual statistical learning design with 

a multi‐day training phase, maximizing consolidation of the underlying patterns. Additionally, 

we accounted for individual differences in the learning process by assessing participants’ 

confidence in knowing the underlying patterns (Geurts et al., 2022; Meyniel, Sigman, et al., 

2015; Sanders et al., 2016). Predictive processing theories heavily draw from Bayesian 

inference models where uncertainty about predictions has a major effect on perception (Yon 

& Frith, 2021). While statistical learning is based on continuous, partly implicit processes (but 

see Dale et al., 2012; Vadillo et al., 2016), a line of studies has shown that intermittent 

confidence ratings separate from the learning process reflect the statistical confidence of a 

Bayesian observer during the learning blocks (Bounmy et al., 2023; Meyniel, Schlunegger & 

Dehaene, 2015; Meyniel & Dehaene, 2017).   

To summarize, we here used a MR‐derived measure of oxygen consumption to study 

how predictive characteristics of external input and internal beliefs impact the brain’s energy 

balance. We hypothesized that predictable stimuli are cheaper to process than unexpected 

stimuli and that this difference scales with subjective confidence in the predictable patterns. 

To preview our findings, the energetic cost of predictable input indeed decreased with 

confidence in both sensory and higher cognitive regions. Intriguingly, a general energetic 

advantage only emerged at high confidence levels. 
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Results 

Confidence ratings and processing speed increase with repeated exposure to visual patterns 

Prior to the scanning session, participants completed a three‐day online training phase. 

They were presented with image sequences of everyday objects that either followed a 

deterministic pattern (predictable condition, P) or a random pattern (unpredictable condition, 

U) (Figures 1a and b). To ensure vigilance and gaze fixation, participants had to react to upside‐

down objects, which occurred irrespective of sequence predictability. Average accuracy 

exceeded 95% and neither accuracy nor reaction time differed between conditions (reaction 

time: t(40)=‐1.4, p=.17; accuracy: t(40)=1.51, p=.14). Separate from the statistical learning 

blocks, we assessed the trajectory of learning both on an objective and a subjective scale. To 

this end, we presented participants with incomplete sequences and prompted them to choose 

the correct follow‐up object. For each choice, we assessed confidence ratings as an indicator 

of uncertainty regarding knowledge of the underlying patterns (Figure 1c). Over the training 

days, confidence ratings increased for predictable visual sequences while they remained 

constant for unpredictable input (Figure 1d, left). We also saw an objective improvement in 

pattern completion (Figure 1d, right) which was highly correlated with confidence (r=0.82, 

p<0.001). Since we did not provide any feedback, this suggests that participants were highly 

accurate in assessing their performance.  

Directly prior to scanning, we included an additional task that aimed at detecting 

improvements in an implicit marker of learning. Similar to the training phase, we presented 

predictable and unpredictable sequences. Instead of performing the cover task, participants 

were instructed to react to the occurrence of a target object that was shown before each 

sequence. The target was randomly chosen from the upcoming objects, meaning it could be 

anticipated in the predictable condition. We found that participants detected predictable 

objects over 10% faster (median RT change=‐10.75%, t=‐5.7, p<0.001). Furthermore, this 

difference scaled with confidence ratings, meaning that confident subjects gained a stronger 

increase in processing speed (Figure 1e).  
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Figure 1. a. Experimental stimuli were sequences of five everyday objects. Predictable sequences (P) had 

consistent order and composition, unpredictable ones (U) were random. During MR acquisition, surprising 

sequences (S) composed of P and U were additionally shown. See Methods section for details. b. Stimulus 

presentation. Objects were shown sequentially and have no interstimulus interval. With a 10% chance, an image 

was horizontally flipped, and participants had to react with a button press. c. Sequence completion test after each 

training day. One to four images of a sequence were shown, and the correct trailing object had to be chosen from 

five options. This was followed by a confidence rating prompt. d. Left: Subject‐wise average confidence ratings 

following respective training days. Black lines and markers indicate day‐wise sample medians. Right: Percentage 

of correctly chosen trailing images in the completion test. Averaged completion percentage is in steps of 12.5% 

because eight sequences were tested per day. e. Results of separate object detection task. Detecting a predictable 

compared to an unpredictable target was significantly quicker for participants with high confidence (r=‐0.54, 

p<0.001). Negative values indicate faster reactions for predictable objects. 

The interaction of predictability and confidence drives energy consumption 

For our main analysis, we first created voxel‐wise brain maps of CMRO2 from our MR 

and blood sampling data (Figure 2a and Methods). We then averaged condition‐wise CMRO2 

values for every subject within 400 functional regions as defined by the Schaefer parcellation 

(Schaefer et al., 2018). This was done to control for voxel‐level noise and to differentiate 

sensory from higher cognitive regions. Prior to analyzing the imaging data, we tested for 

potential confounding effects of the cover task. Unlike during the training phase, we found 

differences between conditions (repeated measures ANOVA: F(2,80)=4.44, p=0.015). Post‐hoc 

tests showed that participants reacted most quickly to predictable items (Figure 2b). This is 

surprising, given the independence of the cover task from sequence predictability and the 

absence of reaction time differences in the training phase. Consequently, we controlled for 

these effects in the following analyses. 
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In contrast to conventional GLM analyses, our aim was not to localize regions of 

maximum effect, but to assess net energetic changes on a larger scale. As argued previously, 

evoked activity extends far beyond local peaks which can limit results to the “tip of the 

iceberg” (Noble et al., 2022, 2023). To address this, we analyzed metabolic effects on the level 

of functional networks. We used an established cortical atlas which defines regions based on 

functional coactivation (Schaefer et al., 2018). These regions form extended networks that 

differentiate sensory from higher cognitive areas. For our analysis, we used six networks 

covering most of the cortex, comprising 374 regions. The regional data was analyzed using a 

single linear mixed model with predictors of condition, confidence, functional network, and 

reaction time in the cover task (Methods). Essentially, this model allowed us to explain regional 

CMRO2 as a linear combination of predictability and confidence, with separate regressors for 

six functional networks while accounting for confounding effects of reaction time. The random 

term of the model addresses subject‐specific baselines of CMRO2 on which the fixed terms are 

added. Confidence values correspond to the condition‐wise average after the last training day, 

and we used ratings from the predictable sequences for the surprising condition. All resulting 

model estimates are relative to the reference categories of the respective predictors: We used 

the visual network and the predictable condition. Importantly, since CMRO2 values are 

quantitative, the model parameters for the reference levels can be interpreted without 

referring to a contrast estimate. Parameter estimates for reference levels can thus be 

interpreted for the visual network in the predictable condition. This extends to all predictor 

levels (i.e., conditions and networks) for which no significant interaction is present.  

We first confirmed that our model significantly improves upon a null model that lacks 

the experimental variable (BFlog=131.51; X²(42)=552.6, p<0.001). Table 1 includes an overview 

of all significant predictors and the full model results are provided in the supplement. The 

intercept of 136.33 represents the baseline CMRO2 across subjects, in units of µmol 

O2/min/100g. Given our reference levels, this refers to the visual network during predictable 

input, for a hypothetical subject with average confidence and reaction time. Validating our 

approach, this is well within the range of 120‐160 usually reported for healthy human subjects 

(summarized in Xu et al., 2009, see also Christen et al., 2012; Göttler et al., 2019). With respect 

to our main research question, we found no main effect of condition, but a significant 

interaction between condition and confidence. This means that, while energy consumption 

did not differ between levels of predictability per se, the conditions were differentially affected 
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by confidence levels. Overall, CMRO2 decreases with confidence (denoted by the negative 

estimate for the reference category) but this effect is offset in the surprising condition. The 

linear combination of these parameters is visualized in Figure 2e (for uncertainty of these 

estimates refer to Table 1). As the reference category corresponds to the predictable condition, 

our results show a steep decrease of energetic cost with confidence for predictable sequences. 

Interestingly, this effect was not significantly different for unpredictable sequences, suggesting 

that confidence impacted energetic cost even in the face of objectively random stimulation. 

However, the corresponding parameter estimate showed a quantitative trend towards a 

weaker effect of confidence. 

High confidence reduces energy consumption across the whole cortex 

Interestingly, while the functional networks differed in their CMRO2 baseline, the 

interaction between predictability and confidence was largely consistent across the cortex. The 

control network (also referred to as the fronto‐parietal network) is a notable exception: Here, 

the decrease of CMRO2 with confidence was significantly weaker than in the other networks. 

Regarding unpredictable sequences, the control network showed another unique deviation. 

Irrespective of confidence levels, its energy consumption was significantly higher than in the 

other conditions. 

Given that the interaction of condition and confidence was found across networks, we 

evaluated the net effect on the whole cortex. To achieve this, we used the significant model 

parameters of confidence and network to calculate the predicted CMRO2 for low (5th 

percentile), average (50th percentile) and high (95th percentile) confidence. Since CMRO2 is a 

rate of consumption relative to a tissue mass of 100g, we scaled the predicted energy 

consumption to the gray‐matter mass of the respective networks (Methods). Strikingly, our 

data suggest that high confidence reduces cortical energy consumption by 13.25% (CI: [0.34; 

26.16]) relative to low levels of confidence (Figures 2d).  
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Figure 2. a. Flowchart depicting the workflow of CMRO2 calculation from experimental data*. Parameter maps 

show group averages in cerebral grey matter. Details are described in the method section. b. In the cover task, 

participants reacted significantly quicker to predictable than surprising objects (t(40)=‐2.9, pFWE=0.017) with a 

trend in the same direction compared to unpredictable objects (t(40)=‐2.24, pFWE=0.091). Points show subject‐

wise averages across the scanning session and dashed lines indicate condition‐wise medians. c. Condition‐wise 

correlations between confidence ratings and reaction time in the cover task during scanning. We found a 

significant negative association for the predictable condition (r=‐0.42, pFWE=0.018). The effect was similar for the 

surprising condition but did not survive FWE correction (r=‐0.36, pFWE=0.066). d. Left: Oxygen consumption per 

minute (scaled to network gray‐matter mass) as predicted by the significant model terms of network and 

confidence. Low, average and high confidence correspond to the 5th, 50th and 95th percentile of z‐scaled 

confidence ratings. Right: Predicted relative energy consumption for subjects with high confidence compared to 

low confidence, summed over all networks. The black error bar indicates the 95th confidence interval of estimated 

energy consumption in high confidence subjects based on the confidence interval of the model parameter (see 

Methods). e. Predicted CMRO2 across confidence levels for the reference network (Visual), based on our model 

slopes (Table 1). Shaded areas indicate whether predictable sequences (green) or surprising sequences (yellow) 

are more costly. Note that the slopes for predictable and unpredictable sequences entirely overlap according to 

our model. The regression lines are slightly offset for visualization purposes. f. Cortical CMRO2 difference between 

surprising and predictable sequences is explained by confidence (linear regression controlling for reaction time: 

R2
partial=.18, t(40)=2.92, p=0.005). Data shown are subject‐wise cortical CMRO2 differences between surprising and 

predictable sequences in the experimental data. *Visualizations of head and vessels were created using Servier 

Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license 
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Predictor level Predictor (only significant§) Estimate  
(in µmol 

O2/min/100g) 

95% CI p-value 

Reference 

effect*  

Intercept  136.33 128.84 – 

143.83 

<0.001 

 confidence ‐5.39 ‐9.88 –  

‐0.9  

0.019 

 reaction time ‐4.84 ‐7.73 –  

‐1.95 

0.001 

 network[control] 10.91 7.28 – 

14.54 

<0.001 

 network[DMN] 8.26 5.08 – 

11.43 

<0.001 

 network[SomMot] ‐11.81 ‐15.08 –  

‐8.54 

<0.001 

 network[salience] ‐17.67 ‐21.37 –  

‐13.96 

<0.001 

Interaction condition[S]*confidence 5.67 ‐2.25 – 

12.45 

0.026 

 condition[U]*confidence 5.10 ‐0.27 – 

12.94 

0.174§ 

 condition[U]*reaction time 3.12 0.16 –  

6.08 

0.039 

 condition[U]*network[control] 6.51 0.8 – 

12.21 

0.025 

 confidence*network[control] 5.03 1.7 –  

8.35 

0.003 

Table 1. Significant predictors estimated by a robust linear mixed model with the following formula (following R 

conventions): condition*confidence*network + condition:reaction_time + (1|subject/condition). Estimates 

reflect absolute CMRO2 values and can be interpreted as a predicted change in energy consumption for a given 

change in (standardized) predictors. Non‐significant predictors are omitted for brevity. We provide the full model 

output in the supplement. *Parameters are based on these reference categories: condition[predictable] and 

network[visual] §Additional inclusions due to importance for experimental interpretation 

Relative cost of surprising input is a function of decreasing cost of predictable input 

As non‐quantitative imaging methods are limited to contrast‐based analyses, 

prediction error activity is often formalized as a relative increase in activity for surprising over 

predictable input. Since our quantitative data resolves the cost of individual conditions, it 

informs us about the origins of relative effects. Looking at the condition‐wise slopes (Figure 

2e), our model suggested that relative prediction error activity emerges as a function of the 

decreasing cost of predictable input. We tested this assumption on our empirical data, 

regressing the difference between CMRO2 in the surprising and predictable condition against 

confidence. As expected, prediction error activity emerged at high levels of confidence (Figure 
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2f) across the cortex. Interestingly, the opposite was true for low levels of confidence and both 

conditions had similar energetic cost at slightly above average confidence.  

Cover task reaction times play in major role for energy consumption 

According to our model, reaction times in the cover task had a general effect on cortical 

energy consumption, with a magnitude similar to the effect of confidence. The slower subjects 

reacted to the upside‐down stimuli, the lower their energy consumption was across conditions 

(Table 1). However, this effect was significantly weaker in the unpredictable condition. Since 

confidence was central to the effect of predictability on energy consumption, we wondered if 

it also explains differences in reaction time. We therefore correlated confidence ratings and 

reaction times for each condition separately. 

Interestingly, reaction times decreased with confidence in the predictable and the 

surprising condition, although the latter association did not survive correction for multiple 

comparisons (Figure 2c). Although tentative, this pattern has an intriguing implication for the 

energy metabolic effects: While more confident subjects used less energy for predictable 

input, they also reacted quicker in the cover task, which in turn increased energy consumption. 

This led us to ask the question whether these effects even out according to our model. We 

recalculated the net cortical energy consumption with opposing effects of reaction time 

(methods). While the trend of a cortical CMRO2 decrease persisted (8.27%, CI: [‐5.46; 22.03]), 

we found no significant evidence when factoring in opposing effects of reaction time.  

Discussion 

In the present study, we quantified the metabolic cost of processing visual sequences 

under different levels of objective and subjective predictability. According to the predictive 

coding framework, humans build a predictive model of the world that is updated when 

deviations are encountered (Rao & Ballard, 1999). Expected visual stimuli lead to weaker error 

signaling and model updating across processing hierarchies of the cortex (Bastos et al., 2012; 

Walsh et al., 2020). It has been argued that these predictive models balance accuracy and 

complexity (Friston, 2010). This might promote the minimization of energy usage in the brain 

(Sengupta et al., 2013). Due to the limited availability of in‐vivo metabolic imaging methods, 

this assumption has never been tested.  

We show that cortical energy consumption is driven by the interaction between the 

objective predictability of visual input and subjective confidence in knowing the patterns. 

When presented with highly predictable input, energy consumption decreased with increasing 
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confidence, up to a cortical difference of 13 percent. As a consequence, perceiving surprising 

input became more costly in comparison. These effects were remarkably consistent across the 

cortex, with only the control network showing slight deviations from the system‐level effect. 

High confidence was also linked to quicker detection of predictable stimuli. In summary, we 

found that predictable patterns promote behavioral improvements and concurrent energy 

metabolic reductions.  

Energy metabolism and efficiency 

When formulating biologically realistic models of brain function, accounting for 

resource constraints is crucial (Roberts et al., 2014). Healthy brain function relies on constant 

oxygen and glucose delivery and shortages can have severe consequences ranging from 

cognitive deficits to cell death (Lee et al., 2020; Warren & Frier, 2005). Interestingly, the brain 

seems to be optimized for efficiency, from the firing patterns of neurons to the architecture of 

functional networks (Yu & Yu, 2017; Zhou et al., 2022). In related cognitive research, it has 

been argued that learning is an efficient process that maximizes performance while minimizing 

cost (Commins, 2018). These lines of research can be unified from an information‐theoretic 

perspective: Akin to training algorithms in machine learning, the brain might aim to optimize 

behavioral accuracy while minimizing the complexity of internal representations (Zénon et al., 

2019). This notion has been generalized under the Free Energy Principle (Friston, 2010): 

Humans build an internal model of the world that is continuously updated with new 

information, balancing model accuracy with model complexity. Assuming that the brain 

represents this model, the efficiency of the model might extend to the energetic efficiency of 

the underlying neural activity (Sengupta et al., 2013). Computational studies using neural 

networks are in support of this hypothesis: Networks trained to minimize their activity in a 

sequence prediction task developed predictive architectures (Ali et al., 2022) and predictive 

learning algorithms were expressed as energy‐minimization algorithms (Luczak et al., 2022). 

Despite these theoretical and computational underpinnings, no direct evidence is available 

that predictive processing leads to metabolic efficiency. 

The role of subjective confidence during statistical learning 

The ability to extract transitional probabilities from sequential stimulation is often 

termed statistical learning and has a rich tradition in cognitive research (Schapiro & Turk‐

Browne, 2015). Previous work focused on the assumed automaticity of the learning process, 

which can happen in the absence of intention or awareness (Alamia et al., 2016; Turk‐Browne 

et al., 2005). However, recent work showed that, while implicit processes are a prerequisite, 
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explicit knowledge can be acquired in parallel (Batterink et al., 2015; Dale et al., 2012). Blurring 

the lines further, Conway (2020) argued that most designs studying the learning process of 

transitional probabilities tap into the same underlying process. However, there is evidence for 

a difference in the neuroanatomical substrates of implicit and explicit statistical learning, so 

comparisons between studies should be drawn with care (Aizenstein, 2004). Recently, it has 

been suggested that a general Bayesian inference process underscores all probabilistic 

computation (Fiser & Lengyel, 2022). Consequently, instead of addressing a specific paradigm, 

the current work used streams of visual sequences as a tool to elicit probabilistic learning. 

  By including confidence ratings, we addressed a major parameter of Bayesian 

inference: Uncertainty (often referred to by its inverse, precision). Both perception and 

decisions are subject to uncertainty, stemming from both external sources (e.g. the visibility 

of a stimulus) and internal sources (e.g. noise in neural transmission) (Bach & Dolan, 2012). 

These sources have downstream effects on the identification of rules in our environment or 

the prediction of likely outcomes of a decision. Furthermore, while Bayesian inference is a 

powerful model of human cognition, individuals often deviate from the idealized performance 

(Acerbi et al., 2014; Beck et al., 2012). These lines of research suggest that considerable 

interindividual differences are to be expected when submitting a group of participants to the 

same task. To account for this variance, we used confidence ratings as a proxy for individual 

uncertainty. 

The exact interpretation and implementation of confidence ratings is still debated. 

Previously, it has been defined as the posterior probability that a choice is correct, given the 

evidence (Pouget et al., 2016). For a statistically precise estimate, a neural representation of 

probability distributions is needed, an assumption that has been called into question 

(Koblinger et al., 2021). A promising explanation are probabilistic population codes (Knill & 

Pouget, 2004). Under this model, neurons are sensitive to different expressions of internal or 

external variables, adjusting their firing pattern or frequency according to the similarity of the 

stimulus to their preferred values. A population of neurons can then serve as a probability 

distribution over possible values of the variable (for a review of the evidence see Ma & 

Jazayeri, 2014). In this context, confidence ratings provide a summary statistic over this 

distribution, indicating the spread of the probability distribution around the central tendency 

(Meyniel, Sigman & Mainen, 2015). However, multiple alternative explanations have been 

developed, ranging from approximations to non‐Bayesian accounts of confidence (Adler & Ma, 
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2018). Nevertheless, most formulations agree that some form of confidence‐weighting is 

central to the human inference process. 

The effect of subjective confidence on energetic cost 

Our results confirm that confidence determines energy consumption during varying 

levels of objective predictability. The link between confidence and brain activation during 

probabilistic learning has been investigated in a previous line of studies using conventional 

BOLD (Bounmy et al., 2023; Meyniel, Schlunegger & Dehaene, 2015; Meyniel & Dehaene, 

2017). Three caveats apply when comparing these studies to our results. First, we presented 

long blocks with stable transitional probabilities, while the underlying parameters were 

volatile in their design. Second, local BOLD effects do not necessarily correspond to energy 

consumption (Drew, 2019), especially when extending the analysis above local peaks as in our 

case. Lastly, our data represents an average of multiple minutes of visual input. Transient brain 

responses as revealed by BOLD analyses may not correspond to the net efficiency of a given 

neural process. Consequently, our data is reflective of the aggregate cost of continuous 

precision‐weighted updating. 

The aforementioned studies found that BOLD activity decreased with confidence while 

it increased with surprise in various areas. They also report results for regions most sensitive 

to precision‐weighted updating: Here, surprising input elicited higher signal across confidence 

levels. In contrast, we found that predictable input leads to higher energy consumption than 

surprising input for low confidence, while the inverse was true for high confidence. 

Furthermore, the cost of surprising input did not change with confidence in our data. A 

possible explanation is the length of the presentation blocks in our study: While deviations 

from the learned sequences were initially surprising, participants might have learned the 

increased variance of the presentation. This would make the surprising sequences more akin 

to sequences of intermediate (probabilistic) predictability. In line with this argument, humans 

have been shown to track changes in environmental statistics, discounting previous 

observations (Beierholm et al., 2020; Maheu et al., 2022). In this case, confidence ratings from 

the previously predictable condition would have no lasting effect on the ”surprising” condition. 

Nevertheless, we still reproduced the classical pattern of higher cost for surprising 

compared to predictable input. In our data, this effect only emerged at high confidence levels 

due to the decreasing cost of predictable input. This addresses the arbitration between two 

potential processes behind prediction errors: Surprise enhancement assumes that surprising 

stimuli evoke stronger signals while expectation suppression assumes decreased signals for 
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predictable input (Feuerriegel et al., 2021; Manahova et al., 2018). From the perspective of 

energy consumption, our data is suggestive of expectation suppression as the source of 

relative prediction errors. This contrasts with results from BOLD and EEG studies, where 

evidence for surprise enhancement is stronger (reviewed in Feuerriegel, Vogels & Kovács 

(2021)).  

Interestingly, the effect of confidence on cortical cost was not significantly different 

between predictable and objectively random input. Since we gave no feedback during the 

sequence prediction task, it is possible that participants thought they detected a pattern in the 

random sequences. This is supported by the low, but far from minimal confidence ratings for 

unpredictable sequences during training. Humans tend to perceive structure even in random 

sequences (Huettel et al., 2002) which might drive perceptual inference in the absence of 

feedback. Future studies are needed to examine to which extent the effect of precise priors is 

independent of their objective accuracy. We also found that reaction times in the cover task 

increase with confidence during predictable and surprising sequences. This indicates that 

highly confident subjects improved their performance in a concurrent, but unrelated task. A 

tentative interpretation is that participants shifted their resources from model updating to 

lower‐level perception of the objects’ orientations. Under this assumption, the brain does not 

aim to decrease energy consumption per se, but rather reassigns resources dynamically under 

the constraints of energy availability (Christie & Schrater, 2015).  

Energetic changes on a cortical level 

In summary, our results show that an experimental manipulation as seemingly small as 

a change to transitional probabilities can lead to large differences in energy consumption. 

Surprisingly, these effects were highly consistent over the cortex, affecting both sensory and 

higher cognitive networks. Importantly, our study does not speak to the functional specificity 

of these energetic changes. Rather, we provide evidence for the net effect of perceptual 

inference on the cortex. The widespread changes in energy metabolism are in line with recent 

accounts of brain function as a highly integrated system (Pessoa, 2023). The focus on 

localization in neuroimaging research might have been supported by traditional mass‐

univariate analyses, which restrict the view of the brain to the “tip of the iceberg” (Noble et 

al., 2022, 2023). Specific to predictive processing, a recent meta‐studied found a brain‐

spanning prediction network that encompassed functionally connected regions across the 

brain (Ficco et al., 2021). Furthermore, a recent preprint reported representations of prior 

information across all levels of processing in the mouse cortex (Findling et al., 2023). In line 
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with these works, we propose that the efficiency of a highly integrative system is best 

evaluated over a correspondingly large spatial extent.  

Oxidative versus glycolytically driven energy metabolism 

Lastly, a recent paper developed an integrative framework drawing a direct link 

between predictive processing and differential patterns of BOLD, CMRO2 and CMRGlc (the 

cerebral metabolic rate of glucose) (Theriault et al., 2023). The authors argue that the ratio 

between ATP‐yielding metabolites differs between bottom‐up prediction errors and top‐down 

predictions: Prediction errors rely on fast and flexible ATP generation via non‐oxidative 

glycolysis, while prediction is based on the more efficient but less flexible oxidative 

phosphorylation. Importantly, the BOLD signal is driven by blood flow, which indicates oxygen 

availability but not necessarily oxygen consumption (Fox et al., 1988). As blood flow is more 

closely related to glucose use than oxygen use, BOLD is a better reflection of CMRGlc than 

CMRO2 (Raichle & Mintun, 2006). It follows that, on the one hand, our CMRO2 data might be 

less sensitive to changes in error signaling but on the other hand, it could unveil prediction‐

related changes that BOLD does not capture. Future studies could dig deeper into these 

assumptions with the aim of providing a complete picture of the energy metabolism of the 

brain during predictive processing.  

Methods 

Participants 

We recruited 44 participants including students, doctoral researchers, clinic staff and 

the general population of Munich. The sample size was based on a‐priori analysis, aiming to 

detect at least a medium effect size (d>=0.5, alpha=0.05, beta=0.9). All participants took part 

in a familiarization MRI session (20 minutes), an online training phase over three days and the 

main MRI session (70 minutes) on the day after training completion. Two participants were 

excluded due to technical problems during data acquisition. One further subject was excluded 

from analysis because their data indicated that the training phase was not properly performed: 

The same button was pressed for every confidence rating prompt and performance was still at 

chance level after the full training phase. The remaining 41 participants (18 female, age 

[mean(std)] = 27(3.9)) were included for all analyses. The study was approved by the ethics 

board of the Technical University of Munich (TUM), and we acquired written informed consent 

from all participants. 
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Visual stimuli 

We selected 224 full‐color images of everyday objects from a larger image set (Brady 

et al., 2008). The stimuli were chosen to be maximally homogenous regarding salience, e.g., 

by excluding food items and bright colors. All allocations of stimuli to subjects and conditions 

were random. Figure 1a visualizes the creation of the visual streams. A pool of 80 images was 

generated for every subject, with half assigned to the predictable condition and the other half 

to the unpredictable condition. Based on these images, eight predictable sequences were 

created for every subject. These objects could only occur in the sequence and position 

determined during stimulus creation. For the unpredictable condition, a starting set of eight 

sequences was created. After all were presented during the training or scanning phase, eight 

completely new sequences were randomly created for every repetition. Consequently, these 

objects never occurred in the same sequence or position, but the total number of occurrences 

was the same as for predictable objects. Lastly, only for the scanning phase, half of the 

predictable sequences and half of the unpredictable objects were combined into surprising 

sequences. Predictable sequences formed the basis but had one to three objects between 

position two and five replaced with a random object from the unpredictable condition. The 

first object was always unchanged to trigger conditional predictions based on the learned 

transition probabilities. 

Experimental design 

Implementation. We used Psychopy (Peirce et al., 2019) to implement the design. The online 

training sessions were realized using pavlovia.org, where Javascript‐translated Psychopy 

experiments can be run online with millisecond precision (Bridges et al., 2020; Sauter et al., 

2020). 

Main task. We presented participants with continuous visual streams based on the described 

object sequences. Each stimulus was presented for 800ms with no inter‐stimulus interval 

within sequence and a 1100ms fixation cross between sequences. When all unique sequences 

of a condition were shown, their order was reshuffled for continued presentation with the 

constraint that objects (or sequences) could not appear twice in a row. This was done to 

minimize confounding effects of repetition suppression. To ensure fixation and concentration, 

participants were instructed to quickly react to occurrences of upside‐down objects. These 

appeared with a probability of 10%, independent of condition. 

Training phase. Over the course of three days prior to the main scanning session, participants 

followed an online implementation of the main design. This phase only included the 
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predictable und unpredictable sequences. We instructed every participant to perform the 

training in a quiet environment without distractions. Stimulation blocks lasted 20 minutes per 

day, with a break of one minute after 10 minutes. Instructions were shown on screen before 

the stimulation began and the first day included a five‐minute familiarization block with on‐

screen feedback regarding cover‐task button presses. The instructions stressed the importance 

of the cover task, but also noted that questions regarding the order of objects in a sequence 

would follow each training day. During this task, participants saw eight incomplete sequences 

(the first one to four objects were shown) for both conditions (to keep image familiarity the 

same across conditions). After every sequence, participants chose what they assumed would 

be the correct trailing object from five options and gave a confidence rating on a scale of one 

to seven. No feedback was given regarding performance and no information on the underlying 

conditions was disclosed. 

Imaging phase. During scanning, stimuli were presented against a grey background and 

subtended 4° of visual angle. Each condition was presented for three long blocks, during the 

complete duration of a pcASL sequence (6 minutes), a T2* sequence (5.5 minutes) and a DSC 

sequence (2.5 minutes). The resulting CMRO2 values were calculated as described below (see 

MRI data processing). The order was randomized, although a condition could not occur three 

times in a row. We left breaks of one minute between each consecutive sequence. During the 

T2 sequence, there was no experimental stimulation. Per condition, a total of 169 object 

sequences over a stimulation time of approximately 14 minutes were presented. Before every 

scanning sequence, a reminder regarding the cover task was shown on screen. Additionally, 

participants got feedback on their mean reaction time after each sequence to promote 

attentiveness and motivation. We disclosed no information regarding the sequence patterns 

and the imaging session included no sequence completion test. 

Object detection task. On the day of the imaging session, prior to entering the scanner room, 

participants performed an object detection task on a laptop. The presentation format followed 

the specifications of the main task, except for transitions between sequences. We presented 

eight unpredictable (reshuffled) and eight predictable (as learnt) sequences in random order. 

Prior to every sequence, a target object from the following sequence was shown. An onscreen 

prompt instructed participants to react as quickly as possible to the presentation of the target 

image by pressing the Arrow Up button. During the task, the target image was presented for 
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five seconds. To allow for anticipation, it could only match positions two to five of the following 

sequence.  

MRI acquisition 

For CMRO2 mapping, the following sequences were acquired:  

• Multi‐echo spin‐echo T2 mapping: 3D gradient spin echo (GRASE) readout as described 

previously (Kaczmarz et al., 2020), 8 echoes, TE1 = ΔTE = 16ms, TR=251ms, α=90°, voxel 

size 2x2x3.3mm3, 35 slices. T2 data was acquired once per subject, without any task.  

• Multi‐echo gradient‐echo T2* mapping: As described previously (Hirsch et al., 2014; 

Kaczmarz et al., 2020), 12 echoes, TE1 = ΔTE = 5ms, TR=2229ms, α=30°, voxel size 

2x2x3mm3, gap 0.3mm, 35 slices. T2* was acquired for all conditions. 

• Dynamic susceptibility imaging (DSC): As described previously (Hedderich et al., 2019). 

Injection of gadolinium‐based contrast agent as a bolus after 5 dynamic scans, 0.1ml/kg 

(maximum: 8ml per injection, 16ml per session), flow rate: 4ml/s, plus 25ml NaCl. 

Single‐shot GRE‐EPI, EPI factor 49, 80 dynamic scans, TR = 2.0s, α=60°, acquisition voxel 

size 2x2x3.5mm3, 35 slices. To stay within the limits of a full clinical dosage (16ml), we 

acquired DSC in two conditions only: Predictable and unpredictable. Processing of the 

data in the surprising condition used DSC from the predictable condition. 

• Pseudo‐continuous arterial spin labeling (pcASL): As described previously (Alsop et al., 

2015), and implemented according to (Göttler et al., 2019; Kaczmarz et al., 2020). PLD 

1800ms, label duration 1800ms, 4 background suppression pulses, 2D EPI readout, 

TE=11ms, TR=4500ms, α=90°, 20 slices, EPI factor 29, acquisition voxel size 

3.28x3.5x6.0mm3, gap 0.6mm, 30 dynamic scans including a proton density weighted 

M0 scan. ASL was acquired for all conditions. 

Prior to data acquisition, a venous catheter was placed by a medical doctor through 

which blood samples were taken and sent to our in‐house clinical chemistry laboratory. 

Creatinin values were analyzed as an indicator of healthy kidney function and contrast agent 

was only applied for subjects below a threshold of 1.3. No subject exceeded this value. 

Hemoglobin and hematocrit were requested and used in modelling of CMRO2. Finally, arterial 

oxygen saturation was measured via a pulse oximeter (Nonin 7500FO, Nonin Medical B.V., The 

Netherlands). 
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MRI data processing 

To calculate CMRO2, the following parameters were integrated and derived as described 

below: The oxygen content of blood (O2 saturation and Hematocrit), the flow of blood (CBF), 

and the relative oxygen extraction (OEF). Note that the resulting CMRO2 values represent a 

consumption rate for a given condition and are not time‐resolved. The processing of the 

quantitative parameter maps was performed with in‐house scripts in MATLAB and SPM12 

(Wellcome Trust Centre for Neuroimaging, UCL, London, UK). T2* images were corrected for 

macroscopic magnetic background gradients with a standard sinc‐Gauss excitation 

pulse (Baudrexel et al., 2009; Hirsch & Preibisch, 2013). Motion correction was performed 

using redundant acquisitions of k‐space center (Nöth et al., 2014). R2’ maps are derived from 

T2 and T2* images and yield the transverse, reversible relaxation rate that is dependent on the 

vascular dHb content (Blockley et al., 2013, 2015; Bright et al., 2019). However, confounds 

from uncorrectable strong magnetic field inhomogeneities at air‐tissue boundaries, iron 

deposition in deep GM structures as well as white matter structure need to be 

considered (Hirsch & Preibisch, 2013; Kaczmarz et al., 2020). The cerebral blood volume (CBV) 

was derived from DSC MRI via full integration of leakage‐corrected ΔR2*‐curves (Boxermann, 

J.L., Schmainda, K.M., Weisskoff, R.M., 2006) and normalization to a white matter value of 

2.5% (Leenders et al., 1990) as described previously (Hedderich et al., 2019; Kluge et al., 2016). 

From R2’ and CBV parameter maps, the oxygen extraction fraction (OEF) was calculated 

(Christen et al., 2012; Hirsch et al., 2014; Yablonskiy & Haacke, 1994). CBF maps were 

calculated from pcASL data, based on average pairwise differences of motion‐corrected label 

and control images and a proton‐density weighted image. 

For each subject and condition, we calculated CMRO2 in a voxel-wise manner by 

combining all parameter maps via Fick’s principle 

CMRO2 = OEF · CBF · CaO2                                                      

where CaO2 is the oxygen carrying capacity of hemoglobin and was calculated as CaO2 = 

0.334 · Hct · 55.6 · O2sat, with O2sat being the oxygen saturation measured by the pulse 

oximeter (Bright et al., 2019; Y. Ma et al., 2020) and Hct representing Hematocrit as measured 

by blood sampling prior to scanning. CBF was upscaled by 25% to account for systematic CBF 

underestimation due to four background-suppression pulses (Garcia et al., 2005; Mutsaerts et 

al., 2014). All parameter maps of each individual subject were registered to the first echo of 

their multi echo T2 data. 
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For statistical analysis of CMRO2, we only included voxels with a grey matter probability 

of > 0.5. Furthermore, the images were masked using an intersection mask to exclude voxels 

with excessive susceptibility, indicative of artefacts (T2 and T2* > 120ms, R2’ > 9ms) and voxels 

with biologically unlikely CBF (> 90 ml/min/100g) or OEF (> 90%). 

Statistical analysis 

Mixed models. We used robust linear mixed models as implemented in the R package 

robustlmer (Koller, 2016) to minimize the effect of outliers. This method uses the Huber loss 

function, which is quadratic for small differences, but linear for large differences. The random 

model term was used to specify conditions as repeated (nested) measurements within 

subjects. Consequently, our model estimated a subject‐wise CMRO2 baseline for each 

condition. The fixed effects included a three‐way interaction of condition, confidence and 

network as well as a two‐way interaction of condition and reaction time in the cover task. 

Confidence values were based on the average condition‐wise ratings after the last training day. 

Since surprising sequences were based on predictable ones, we assigned the same confidence 

ratings.  

The input to our model were condition‐wise regional CMRO2 values, obtained by the 

median voxel value within 400 functional areas as defined by the Schaefer parcellation 

(Schaefer et al., 2018). This parcellation was chosen for two reasons: First, regions are defined 

by coactivation patterns, meaning that averaging over the respective voxels upholds some 

functional homogeneity. Secondly, it defines seven distributed functional networks that have 

been found to vary in their tendency to perform sensory or higher cognitive processing. These 

include, loosely ordered from higher cognitive to sensory (Margulies et al., 2016): Limbic 

network, default mode network (DMN), control network (fronto‐parietal network), ventral 

attention network (salience network), dorsal attention network, visual network and somato‐

motor network. 26 of the 400 areas, mainly in the temporal pole and orbitofrontal cortex, had 

to be excluded from the analysis. This was due to susceptibility artefacts in the R2’ maps, 

leading to signal dropout in these regions. The limbic network is therefore not covered by our 

model. Across subjects and areas, a total of 45507 observations entered the model estimation. 

We z‐standardized the behavioral predictors and left the outcome CMRO2 values unchanged. 

For model estimation, we chose the predictable condition and the visual network as reference 

categories. A significant reference effect in the absence of significant parameter estimates for 

other categories means that the effect of the predictor does not vary across categorical levels. 
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This also means that a significant effect for a non‐reference category level has to be interpreted 

in relation to the reference effect. Due to the quantitative nature of CMRO2, the reference 

effect is itself interpretable as an effect for the predictable condition in the visual network. 

Finally, we compared our model to a null model without the condition predictor using the 

performance package (Lüdecke et al., 2021) for standard mixed models as implemented in 

lme4. Since the model outcome represents absolute CMRO2, parameter estimates can be 

interpreted as the predicted change in energy cost for a given change in standardized 

predictors. 

Model-based CMRO2 cost predictions. For model‐based predictions, we added the 

corresponding parameter estimates as described in the results. Total CMRO2 was therefore 

calculated as the sum of the intercept (the sample baseline for predictable input in the visual 

network), the network effect (the difference of the network energy consumption from the 

visual network) and the reference effect of confidence. We calculated the predicted cortical 

CMRO2 for weakly confident (5th percentile, confidence(z)=‐1.96), average (50th percentile, 

confidence(z)=0) and highly confident (95th percentile, confidence(z)=1.96) subjects. The 

outcome was then scaled to the grey matter mass of each network in MNI space, approximated 

by grey matter voxel count multiplied by a tissue mass of 0.0014 gram per cubic millimeter 

(Barber et al., 1970; IT’IS Foundation, 2022). Finally, predicted CMRO2 was summed over 

networks to obtain cortical values. We repeated this procedure for the 5th and 95th percentile 

of the confidence parameter estimate (Table 1) to obtain an upper and lower bound of the 

predicted energy cost.  
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Table S1. Full results of the robust linear mixed model with the following formula (following R convention): 

condition*confidence*network + condition:reaction_time + (1|subject/condition) 
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4 General discussion 

In the present work, I combined current theories of cognitive function with metabolic 

imaging to investigate the energetic impact of predictive processing in the human brain. I 

focused on predictive processing in the temporal domain, as this allowed me to hold low‐level 

attributes of the stimuli constant. Across a training period of three days, participants saw both 

deterministic and random sequences of visual objects. This led to both explicit and implicit 

learning effects regarding deterministic sequences. First, participants improved in reproducing 

their composition. Second, they detected these objects more quickly than objects from 

random sequences. The latter is indicative of anticipation, a hallmark of predictive processing.  

While previous studies relied on defining the predictability of visual stimulation purely 

by its objective structure, I expected a modulating effect of subjective uncertainty. According 

to Bayesian formulations of cognition, humans constantly infer the most likely current and 

future state of their environment in a probabilistic manner. I showed that participants indeed 

varied in their subjective uncertainty when tasked to reproduce the sequences. While most 

were highly confident after three days of training, others remained insecure. I also observed 

considerable variance in confidence ratings for random sequences, although these stayed 

constant over the training phase. Relating explicit and implicit markers of learning, I showed 

that the improved detection speed of predictable objects scaled with confidence ratings.  

In addition to the behavioral validation of my design, I used fMRI to validate its effects 

on BOLD activity. Unlike previous work, stimuli were presented in a block design that better 

corresponded to the long acquisition times of the subsequent metabolic imaging sequences. I 

replicated both modality‐specific prediction error activity in the visual stream and modality‐

general clusters of prediction in the posterior cortex. Analyzing the effect of confidence, I 

provided the first evidence that the magnitude of predictive BOLD activity depends on the 

level of confidence regarding the presented patterns.  

Building on these findings, I acquired multiparametric quantitative BOLD data and 

calculated the regional rate of oxygen consumption for the same design. Instead of using mass‐

univariate statistics to localize areas of maximum effect, my focus was on the net effect of 

energy consumption on the level of cortical networks. First, echoing my BOLD results, the 

effect of sensory predictability on energy consumption depended on the confidence level. 

Predictable input strongly decreased in cost for increasing confidence levels, while surprising 

input was not affected. Studies using fMRI or EEG consistently find surprising input to elicit 
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stronger brain activity than predictable input. My results suggest that an impact on large‐scale 

energy use only emerges at high levels of confidence. Intriguingly, the cost‐decreasing effect 

of confidence was not different for unpredictable sequences. This points to a possible 

independence of the cost‐saving effect of confident predictions from their accuracy. Finally, 

higher confidence was linked to quicker reaction times in the cover task, which was 

independent of sequence predictability. As quicker reaction times led to higher energy usage, 

this partially offset the decreases in energy consumption for predictable input. One 

interpretation is that participants with high confidence dynamically reallocated their energetic 

resources.  

I framed these projects in the context of efficiency in the brain – predictive processing 

is expected to result in perception that is maximally informative while staying minimally costly. 

To operationalize the cost aspect of efficiency, I quantified a biologically valid measure of 

energy metabolism. The increased informative content of perception was reflected in more 

accurate and quicker behavior with regards to predictable sequences. However, information is 

a well‐defined mathematical quantity. A complete image of efficient processing would thus 

benefit from rigorous quantification of both energy consumption and information content. In 

the following paragraphs, I will therefore use information theoretic concepts to expand upon 

my results.  

4.1 Efficiency and information theory 
Over half a century ago, Barlow (1961) proposed an influential theory of neuronal 

function: The brain reduces the redundancy of sensory information, essentially stripping away 

all aspects that do not meaningfully add to its identification of interpretation. This is now 

known as the efficient coding hypothesis (Loh & Bartulovic, 2014; Simoncelli, 2003) and is 

formulated in the language of information theory (an introduction is given in Timme & Lapish, 

2018). Neuronal firing carries information about the external world, reducing the organism’s 

uncertainty about the state of the environment. Information is measured in bits, with each bit 

adjudicating between two competing interpretations. A bitrate, then, refers to the amount of 

information transmitted in a given timeframe. To be efficient, neurons maximize their bitrate 

relative to their energy consumption (Niven & Laughlin, 2008; Sengupta & Stemmler, 2014; Yu 

& Yu, 2017). Zooming out, the architecture of macro‐scale neuronal networks also follows the 

principle of efficiency: On this level, connections between distant neurons are the major cost 

factor, leading to an optimization of wiring cost (Bullmore & Sporns, 2012). Efficiency on both 
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levels, from single neurons to brain networks, is crucial given the highly integrated nature of 

brain function (Pessoa, 2023).  

The language of information theory can be applied to the cognitive level in the context 

of active inference, the guiding principle of perception and action under the FEP (Friston et al., 

2016). Active inference is a variant of Bayesian inference, but since it explicitly includes the 

notion of efficiency, I will focus on this special formulation here. Under active inference, the 

amount of information in a sensory event is relative to our prior beliefs. A central concept is 

surprise, which is maximal when we observe an event that we believed to be very unlikely. 

Surprising events have a high bitrate, since they carry information that was, by definition, not 

accurately accounted for by our beliefs (Baldi & Itti, 2010). While surprise is specific to a single 

event (or state), entropy extends this notion to a system (or process) that can be described by 

a range of states. Entropy is maximal if the predictability of the current (or future) states is 

minimal. In terms of probabilities, the different states of a high‐entropy process are all equally 

likely. Crucially, under active inference, entropy is both an attribute of the physical world and 

our internal model of it. With respect to the latter, high entropy means holding maximally 

unspecific beliefs regarding our observations. As suggested by Barlow (1961), active inference 

posits that humans reduce the redundancy of sensory information by only processing aspects 

of high surprise. Events correctly predicted by the internal model are already available to the 

mind and don’t need to be processed in their entirety. 

However, surprising information does not lead to model updating at all costs. In line 

with concerns that full Bayesian inference might not be realistically implemented in the brain 

(Koblinger et al., 2021), an approximation is calculated. Through an iterative process, the 

model converges to the simplest set of beliefs that can still account for the evidence. Changes 

to the model are only made if the gain in accuracy outweighs the cost of changing the model. 

This also shields the model against overfitting on the basis of rare events. The maximum 

entropy principle (Jaynes, 1957) applies here: In the absence of sufficiently strong evidence, 

the internal model stays maximally agnostic with respect to its beliefs.   

4.2 Bayesian inference and imaging markers of predictive processing 
These concepts can directly be applied to my design. Predictable sequences have 

minimal entropy since the transition between two objects is deterministic. During the 

participants’ inference process, their internal model converges to the generative process. 

Accordingly, the entropy of the model and the bitrate of sensory input decrease. This is 
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evidenced by the increased confidence ratings which have been shown to map on the certainty 

of beliefs (Meyniel, Sigman, et al., 2015; Sanders et al., 2016). For any given predictable object, 

the trailing object is expected with higher certainty and elicits lower surprise. At the same 

time, if an object occurs that deviates from specific expectations, it elicits higher surprise. My 

BOLD results support this line of reasoning: With increasing confidence, surprise decreases for 

expected objects and increases for deviations. This is reflected by the increasing magnitude of 

relative PE activity in the visual stream.  

However, while these findings map well onto the conceptual understanding of surprise 

(see also Egner et al., 2010; Richter et al., 2018), an interpretation in terms of the mathematical 

concept is more complicated. This has been approached by performing the inference process 

computationally, based on the mathematical rules of Bayesian inference. Calculations of 

surprise over time can then be correlated with the time course of BOLD or EEG activity. In a 

recent fMRI study, Bounmy et al. (2023) reported that the activity across multiple visual areas 

tracks Bayesian surprise. This is in contrast to a similar study that found no effects of surprise 

in sensory areas (Meyniel & Dehaene, 2017). However, activity in a range of posterior (e.g. 

intraparietal sulcus) and frontal (e.g. superior frontal gyrus) regions covaried with surprise in 

both studies. This can be explained by the hierarchical nature of predictive coding in the brain 

(Alexander & Brown, 2018; Jiang & Rao, 2022). PEs are assumed to be calculated at every level 

of the cortical hierarchy, corresponding to different levels of complexity. In my BOLD data, 

these effects were present at the uncorrected level (see Project I, Figure 3c) but did not survive 

cluster correction. Contrasting predictable and unpredictable sequences resulted in clusters 

which are in line with previous studies. Meyniel and Dehaene (2017) found that highly similar 

bilateral clusters in the parietal cortex covary with the extent of confidence‐weighted 

updating. This is supported by my behavioral data, according to which participants were still 

learning the transitional probabilities when they entered the scanner. Finally, it should be 

noted that dissociations in localization are not necessarily a sign of competing findings. A 

recent meta‐study found that predictive processing is subserved by a brain‐spanning network 

(Ficco et al., 2021). Variations in experimental design and statistical method can lead to 

different, equally valid clusters surviving the analysis (Gonzalez‐Castillo et al., 2012).  

4.3 Precision-weighting and attention 
Whether attention is a confounder, or an aspect of predictive processing is still debated 

in the literature. While the present study controlled for spatial attention by use of a cover task, 
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the differences in reaction time point to varying levels of attentional resources across 

conditions. Some authors maintain that attention is a separable phenomenon from prediction 

that only rests on task‐relevancy and the salience of external stimuli (Alink & Blank, 2021). The 

authors argue that both attention‐based and prediction‐based processes could result in the 

same experimental observations. However, attention and prediction are not necessarily 

competing explanations. 

Formulations of predictive coding under the FEP posit that attention reflects the 

uncertainty of perceptual beliefs (Feldman & Friston, 2010). If predictions regarding current or 

future states of the world are imprecise, this uncertainty might be resolved by new sensory 

information. This leads to an increased allocation of resources towards sensory input (framed 

as an increase in the precision of sensory evidence). Consequently, attention boosts the 

processing of sensory input because our internal model aims for the reduction of uncertainty. 

However, a range of studies show that the detection of expected stimuli is quicker and more 

accurate (de Lange et al., 2018). Accepting the previous line of reasoning, this can’t follow from 

uncertain beliefs. However, in the same way that sensory evidence is subject to precision‐

weighting, so are prior beliefs. Instead of resulting in facilitated processing of sensory input, 

this leads to a stronger effect of predictions. This effect can be observed in studies providing 

prior information for inherently ambiguous stimuli. Various studies used so‐called two‐tone ( 

“Mooney”) images, which are greyscale images that have been binarized so that only black 

and white pixels remain. While they are initially difficult to categorize, participants become 

significantly quicker and more accurate after a familiarization phase with the original images 

(Dolan et al., 1997; Teufel et al., 2018). As the sensory input remained the same, the changes 

in reaction time likely stem from changes to prior beliefs. Although speculative, the two 

described sources of reaction time decreases could both stem from a reduced complexity of 

belief updating. When either prior beliefs or sensory evidence has high precision, and the 

other factor low precision, little competition arises between expectations and input. This might 

allow for quicker reactions. 

4.4 The efficiency of perception based on internal models 
The surprise‐focused account of perception provides a convincing explanation for 

lower brain activity during expected stimulation. However, if perception is not driven by 

sensory evidence in these cases, it must be driven by prior knowledge. Predictable information 

generally facilitates perception (de Lange et al., 2018) meaning that the same (if not more) 
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information is available to the brain than sensory input alone provides. The anatomical 

implementation of predictive coding rests on separate prediction and prediction‐error 

encoding neuronal populations (Bastos et al., 2012). Consequently, neural activity at each level 

of the hierarchy is needed during the perception of sensory input, irrespective of the weighting 

of prior versus evidence. Why would perception driven by prediction be more energetically 

efficient?  

The straightforward explanation is that the cost of perception is simply the addition of 

the cost of prediction and the cost of surprise (and subsequent model updating) (for a related 

argument see Press et al., 2020). However, there is evidence that representing predictable 

information is in itself cost‐efficient. From an information theoretic standpoint, processes of 

lower entropy allow for data compression. Assuming that the amount of bits a given neuronal 

population can represent is limited, a finite number of short codes (e.g. 010 in binary) are 

available. If frequently encountered (predictable) stimuli are represented with short codes and 

long codes are reserved for rare stimuli, then any predictable environment will trigger short 

codes more often. The dominance of short codes in the brain has been studied under the term 

“sparse coding” (Olshausen & Field, 2004). Chariker et al. (2016) showed that the relay of 

visual information in the thalamus is based on a surprisingly low number of neurons, highly 

suggestive of a sparse code for visual perception. Despite possibly reduced energetic cost, 

sparsity comes with downsides: It has been argued that they impede generalization (Spanne 

& Jörntell, 2015) and limit the accuracy of predictions in time (Chalk et al., 2018). Sparsity can 

thus not be the only means of efficient coding for intelligent lifeforms.  

In higher stages of processing, a different mechanism for efficient codes has been 

suggested: Dimensionality reduction. While dedicated statistical methods exist, I here use this 

term for the representation of multivariate information with fewer variables based on the 

underlying similarities. A simple case is chunking (Cowan, 2012), a psychological phenomenon 

where stimuli that occur together in space or time are held in working memory as a single 

entity. Brady, Konkle & Alvarez (2009) specifically argued that this includes statistical 

regularities. With respect to my design, this would suggest that confident participants 

represented predictable sequences as a single chunk, necessitating fewer bits for their 

representation. Related neuroimaging evidence comes from studies showing that stimuli co‐

occurring in time or space converge in their representation (Pudhiyidath et al., 2022;  Schapiro 

et al., 2012). Similar to the drawbacks of sparse coding, using representations of lower 
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complexity is not always beneficial. If differences between similar stimuli are task‐relevant, 

more specific (“sharpened”) representations might be preferable (Kok, Jehee, et al., 2012), 

promoting higher‐dimensional representations (Tang et al., 2019). A methodological caveat 

applies here: Representations as measured by fMRI refer to BOLD activation patterns on the 

level of voxels. Interpreting these signals as a neural code is problematic: Apart from the 

dissociations between the BOLD signal and neural activity, a voxel includes hundreds of 

thousands of neurons (see Kriegeskorte & Kievit, 2013 for a discussion of these issues).  

 Finally, research on prediction and efficient representations can be unified within the 

cognitive map framework (Behrens et al., 2018; Bellmund et al., 2018). Cognitive maps are a 

generalization of spatial maps that are used for navigation in physical space by animals and 

humans alike. Spatial maps have a well‐established neuronal foundation focused on 

hippocampal cells. Physical space is represented by grid cells, who fire according to a 

consistent interval of distance travelled. Locations in space are represented by place cells, 

whose activity corresponds to specific points in space. It has since been argued that the brain 

represents relations between concepts in the same way it treats relations between places in 

physical space: As a map in abstract (cognitive) space. These maps may afford relational 

learning, generalization and prediction all with the same underlying neural architecture 

(Whittington et al., 2020). Supporting the applicability of this concept to my design, Stiso et 

al., (2022) found evidence of cognitive map formation during sequence learning. It should be 

noted that while predictive coding and cognitive maps use similar conceptual language, there 

is little overlap in research (but see Stachenfeld et al., 2017). Recently, predictive coding and 

cognitive maps have been contrasted as models of early visual cortex activity (Linton, 2021). 

However, computational work suggests that predictive coding algorithms can serve as a means 

efficient cognitive map construction (Gornet & Thomson, 2023).  

In summary, the efficiency of representing environments of low entropy can be 

expressed by information theory. In the brain, sparse neural codes, low‐dimensional 

representations, and cognitive spaces might be means of implementing efficient function. 

Predictive coding provides a neural architecture and algorithmic motif that aims to minimize 

associated neuronal activity. On a cognitive and behavioral level, this results in efficient 

Bayesian inference as suggested by active inference. This neuro‐cognitive architecture could 

ultimately serve the minimization of energy expenditure, which is favored by evolution. While 
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intriguing, future studies are needed to link all these concepts. The present work provides a 

first piece of evidence in line with this claim. 

4.5 From biological to artificial intelligence 
Research on the efficiency of human perception has implications beyond the 

understanding of human intelligence. Recent large language models (LLMs) seem to mimic 

human intelligence with respect to written language and have impacted science and the 

general public alike (see Clusmann et al., 2023; Demszky et al., 2023 for perspectives in 

psychology and medicine). A review of the similarities between artificial and biological 

intelligence is beyond the scope of this work (but see Xu & Poo, 2023) and here I will focus on 

the aspect of efficiency and energy consumption. Strikingly, estimations of electrical energy 

consumption of LLMs show a power draw on the order of megawatt hours (training phase) to 

kilowatt hours (application phase) (Luccioni et al., 2022, 2023). In comparison, ATP 

consumption in the brain amounts to the equivalent of only 17 watts (Levy & Calvert, 2021).  

As predictive coding is a general algorithmic motif, it can be implemented in machine 

learning models. In this context, it has been discussed as a biologically realistic and potentially 

more efficient alternative to the dominant backpropagation algorithm (Salvatori et al., 2023; 

Zahid et al., 2023). While direct comparisons are not available, a recent study provides 

evidence for a link between predictive processing and energy consumption. Instead of testing 

whether predictive coding results in energy efficiency, Ali et al., (2022) asked what kind of 

architecture a neural network develops if its energy consumption is constrained. To this end, 

the authors trained a recurrent neural network to predict sequences of numbers. Here, a 

crucial similarity between artificial and biological neural networks was exploited: Both are 

comprised of layers of neurons that each receive and send signals from other layers. As the 

input to neurons (postsynaptic activations) is the main cost factor in the brain, their network 

was optimized to minimize its input weights. The results confirmed that a network trained to 

minimize input uses lower average activity than a classical network. Strikingly, when the 

authors examined the activity patterns of individual network neurons, they found that some 

predicted upcoming pixels while others were sensitive to deviations from these predictions. 

As this architecture evolved without any explicit implementation, this suggests that predictive 

coding is a consequence of limited energetic resources. While the differences between 

artificial and biological networks are only just being explored (see e.g. Lillicrap et al., 2020), 
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this shows that the coding principles and energetics constraints of the brain can be used to 

improve the efficiency of machine learning applications.  

4.6 Limitations 
In isolating the aspect of predictability, the present design controlled for a range of 

cognitive and behavioral variables. Many of these are crucial aspects of natural human 

behavior, like movement, action, curiosity, and self‐guided attention. This heavily reduces the 

complexity of natural experience. For this reason, overly controlled experimental designs have 

been criticized as it is difficult to ascertain whether the resulting patterns are ecologically valid 

(reviewed in Sonkusare et al., 2019). Furthermore, the context of a MR scan is highly unnatural, 

since it heavily restricts movement and exposes the participants to constant noise. Recent 

work in mice suggests that complex, natural behavior elicits equally complex and distributed 

activity in the brain that is not captured by controlled designs (Benson et al., 2023). Under 

active inference, perception is only one part of the way humans interact with their 

environment: During pure perception, optimization of the internal model is limited to the 

extent of updating. Action, however, endows us with the alternative to choose (or change) our 

sensory input instead. Consequently, my results are a partial account of the effect of predictive 

processing on energy efficiency. 

For the present projects, I ensured that measured brain activity exclusively results from 

the perception of single objects and internal prediction. To that end, stimuli were only 

presented in the center of the screen and the cover task necessitated constant fixation and 

attention. In the natural world however, objects are nearly always in context, which has been 

shown to elicit predictive processing (Bar, 2004). While my stimuli were more naturalistic than 

traditionally used gratings or simple shapes, they still limited the visual stream to relatively low 

complexity. In recent years, movies have been used in research to approximate the complexity 

of natural experience. Movies elicit complex viewing behavior that varies between closer 

examination of details and exploration of novel aspects (Ramos Gameiro et al., 2017). This is 

akin to the action aspect of active inference. Currently, whole‐brain metabolic imaging 

methods do not provide the temporal resolution to account for changes in sensory input based 

on self‐guided attention on a second or even millisecond level. 

A range of studies suggests that predictability and structure play a crucial role in free 

movie viewing. Hasson et al. (2008) reported a gradient of temporal windows in the brain 

based on BOLD signals – while sensory cortices were sensitive to input on a frame‐by‐frame 
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basis, higher cognitive networks represented accumulated information over scenes. The 

authors also explored the importance of predictability by showing movie scenes in reverse. 

While sensory areas showed high similarity in activity between forward and backward scenes, 

higher cognitive areas differed more strongly in their response. A recent study by Lee, Aly and 

Baldassano (2021) confirmed the hierarchy of temporal windows and explicitly linked movie 

viewing to anticipation. The authors found that fMRI patterns corresponding to specific scenes 

shifted to a timeframe before these scenes started on repeated viewing. While these findings 

are in line with the hierarchical nature of predictive coding, they suggest that the full range of 

predictive processing can only be elicited by complex input.  

Regarding the employed imaging methods, mqBOLD improves upon BOLD in terms of 

quantification and biological validity. At the same time, the method comes with some unique 

drawbacks. As noted before, the temporal resolution is limited to blocks of multiple minutes, 

precluding research on highly dynamic processes. However, this is largely a result of the signal 

to noise ratio of the perfusion sequences, which might be improved in future versions. 

Furthermore, measures of oxygen extraction should ideally only depend on venous blood since 

this is indicative of the amount of consumed oxygen (Hua et al., 2019). The presently used 

method cannot differentiate between venous and arterial CBV, resulting in a mixed signal that 

can bias CMRO2 estimates. Finally, while oxidative energy metabolism accounts for up to 98% 

of ATP production in the visual cortex (Lin et al., 2010), the ratio between oxidative and non‐

oxidative metabolism is an active area of research. Consequently, a holistic measurement of 

energy consumption should include both glucose and oxygen consumption.     

5 Conclusion and future directions 

 Efficient function is a crucial aspect of any system with limited resource availability. 

Without an accurate sense of vision, our ability to survive and make purposeful decisions 

would be heavily compromised. At the same time, the incurred energetic cost must not exceed 

the advantages gained by our visual system. In the present work, I examined whether this 

balance can be struck by reducing the redundancy of visual information. Building on previous 

findings showing that expected visual input elicits weaker brain activity, I measured oxygen 

consumption in the brain under varying levels of stimulus predictability. The results show that 

the impact of predictability depends on the confidence we associate with our expectations. 

Energy metabolic cost was minimized when stimulation was deterministic and predictions 
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highly confident. I found that this decrease was present throughout most of the cortex, leading 

to a system‐wide increase in energetic efficiency. This is in line with recent formulations of the 

brain as a highly integrated inference system and provides the first evidence of the large‐scale 

energetic efficiency of precise expectations. 

My results suggest multiple avenues for future research. First, the precision and 

accuracy of predictions could be manipulated independently. This would help understanding 

to which extent the efficiency of visual processing rests on objective accuracy. Second, studies 

on the mechanisms behind efficient coding would benefit from metabolic imaging data. An 

understanding of the contribution of different coding mechanisms has implications for the 

development of more environmentally friendly AI. Lastly, metabolic efficiency should be 

studied under more naturalistic conditions. Combining new developments in perfusion 

imaging and functional PET with free movie viewing or video game playing would inform us 

about the interaction of efficient processing and free attention allocation.  
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