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Summary 

 

Epidemiological studies have yielded evidence that environmental pollution can adversely 

influence human metabolic health, including conditions such as diabetes and obesity. However, 

the existing literature has mainly focused on adults or the elderly, leaving a gap in the knowledge 

about the risks in children. Moreover, potential mechanisms through which early-life exposures 

may affect children’s metabolism require more evidence. To address this gap, the main objective 

of this research work was to explore associations between exposure to environmental factors and 

the risk of metabolic disorders during early childhood, using data from a large-scale public health 

screening of children in Bavaria, Germany.  

Long-term exposure estimates of air pollutants, air temperature, greenness, and light at night for 

each participant’s residence were assessed using high-resolution data from reliable sources. 

Two important aspects of children’s health were studied in this thesis. In the first publication, a 

novel approach was employed to investigate the associations between prenatal and early life 

exposure to air pollution, air temperature, and surrounding greenness, and the development of islet 

autoimmunity (a crucial precursor of type 1 diabetes). This study used high temporal-spatial 

resolution data to examine different exposure windows in 85,251 children at the zip code level and 

52,636 children at the residential level, all aged between 1.75 and 5.99 years.  The results showed 

a higher risk of islet autoimmunity with decreasing air temperature. In the second publication, the 

effects of outdoor artificial light at night on body mass were investigated among 62,212 children 

younger than 11 years, and the analyses revealed significant positive associations, with the effects 

being more pronounced in boys.  

In conclusion, this thesis significantly advances our understanding of the adverse health impacts 

of environmental factors on children’s metabolic health. While affirming prior research findings, 

it also introduces novel evidence and strengthens the existing body of knowledge. This study 

stands as one of the first to examine the effects of a wide range of environmental factors on 

children’s metabolic health. Nevertheless, further research is needed to gain a deeper 

understanding of the associations and to explore the underlying mechanisms. Moreover, the 

impacts of environmental factors on children’s health should be further investigated across 
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different geographic regions with different exposure patterns and with the incorporation of 

behavioral and lifestyle data.  
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Zusammenfassung 

 

Epidemiologische Studien haben gezeigt, dass sich Umweltverschmutzung negativ auf die 

menschliche Stoffwechselgesundheit auswirken kann, einschließlich Erkrankungen wie Diabetes 

und Adipositas. Die vorhandene Literatur konzentriert sich jedoch hauptsächlich auf Erwachsene 

oder ältere Menschen, so dass eine Wissenslücke bzgl. der Risiken bei Kindern besteht. Auch die 

potenziellen Mechanismen, durch die frühkindliche Expositionen den Stoffwechsel von Kindern 

beeinflssen können, benötigenweiter evidenz. Um diese Lücke zu schließen, bestand das Hauptziel 

dieser Forschungsarbeit darin, Zusammenhänge zwischen der Exposition gegenüber 

Umweltfaktoren und dem Risiko von Stoffwechselstörungen in der frühen Kindheit zu 

untersuchen. Hierzu wurden Daten aus einem groß angelegten Public Health Screening von 

Kindern in Bayern verwendet wurden. 

Anhand von hochauflösenden Daten aus zuverlässigen Quellen wurden für den Wohnort jedes 

Teilnehmenden Langzeitexpositionsschätzungen für Luftschadstoffe, Lufttemperatur, 

Grünflächen und Lichtexposition bei Nacht abgeschätzt. 

Im Rahmen dieser Forschung wurden zwei wichtige Aspekte der Gesundheit von Kindern 

untersucht. In der ersten Veröffentlichung wurden ein innovativer Ansatz verfolgt, der die 

Untersuchung verscgidener Expositionszeitfenster mit hochauflösenden zeitlich-räumlichen 

Daten einschloss. Dieser ansatz diente dazu, die Zusammenhänge zwischen vorgeburtlicher und 

frühkindlicher Exposition gegenüber Luftschadstoffen, Lufttemperatur, und Grünheit, und der 

Autoimmunität der Inselzellen (eine entscheidende Vorstufe von Typ-1-Diabetes) bei 85,251 

Kindern auf Postleitzahl- und bei 52,636 Kindern auf Wohngebietsebene im Alter zwischen 1.75 

und 5.99 Jahren untersucht. Die Ergebnisse zeigten ein höheres Risiko für Inselzellen-

Autoimmunität mit abnehmender Lufttemperatur. In der zweiten Veröffentlichung wurden die 

Auswirkungen von nächtlichem künstlichem Licht im Freien auf die Körpermasse von 62,212 

Kindern im Alter von unter 11 Jahren untersucht. Die Analysen ergaben signifikante positive 

Zusammenhänge, wobei die Auswirkungen bei Jungen stärker ausgeprägt waren. 

Zusammenfassend lässt sich sagen, dass diese Dissertation unser Verständnis für die negativen 

gesundheitlichen Auswirkungen von Umweltfaktoren auf die meabolische Gesundheit vn Kindern 

erheblich erweitert. Sie bestätigt frühere forschungsergebnisse und liefert darüer hinaus neue, die 
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bestehendenErkentnisse Stärkende epidemiologische Evidenz. Diese Studie gehört zu den ersten, 

die die auswirkunken eines breiten spektrums von umweltfaktoren auf die metabolische 

Gesundheit von Kindern untersuchen. Dennoch ist weitere Forschung erfordlich, um ein tieferes 

Verständnis dieser Zusammenhänge zu erlangen und die zugrunde liegenden Mechanismen zu 

erforschen. Außerdem sollten die Auswirkungen von Umweltfaktoren auf die Gesundheit von 

Kindern in verschiedenen geografischen Regionen mit unterschiedlichen Expositionsmustern und 

unter Einbeziehung von Verhaltens- und Lebensstildaten weiter untersucht werden. 
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I. Introductory  Summary 

 

1. General Introduction  

The term environmental pollution has been recognized globally for a long time, and its impacts on 

humanity and the environment have been evident since early human settlements (1,2). Archaeological 

findings provide evidence of pollution from past human activities. Initially, pollution was not 

considered a significant problem and its effects were not perceived as harmful (3). However, with 

rapid population growth and the establishment of permanent settlements, pollution emerged as a major 

problem affecting both human well-being and the environment (4,5). As human population density 

rises, so does the intensity of human activities, leading to a concomitant increase in the environmental 

impact. These impacts extend beyond humans to affect aquatic and terrestrial animals, as well as 

microorganisms, which, due to their abundance and diversity, play a crucial role in sustaining the 

ecosystem's biogeochemical functions (6). The Earth is currently facing numerous challenges caused 

by human activities, triggered mainly by the Industrial Revolution (4). These challenges have led to 

irreparable damage, including toxic emissions from fossil fuel combustion, disposal of harmful 

effluents into water bodies, deforestation due to urbanization, and soil productivity decline from plastic 

waste littering (3). Despite significant recent efforts to address environmental pollution, the problem 

persists, posing ongoing health risks (7). The importance of environmental factors in determining the 

health of human populations is becoming increasingly evident. Over the past decades, global concern 

has grown substantially regarding the public health consequences associated with environmental 

pollution (8). According to the World Health Organization (WHO), environmental risks were 

responsible for around 12.6 million deaths in 2012, constituting approximately 22% of the global 

burden of disease (Figure 1) (9). Furthermore, in 2015, it was estimated that pollution-related ill-health 

resulted in 9 million premature deaths, surpassing the combined mortality rates of malaria and 

tuberculosis (10). Undoubtedly, the challenges are most observed in developing regions, where 

traditional pollution sources significantly impact a large proportion of the population. However, even 

in developed countries, environmental pollution remains a persistent issue (11).  
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1.1. Major sources of environmental factors 

The sources of environmental exposure include various aspects of pollution. For instance, air 

pollution, primarily caused by industrial emissions and intensive human activities, introduces harmful 

particulate matter and gases into the atmosphere, affecting both local and global environments. 

Depending on their origin, air pollutants can lead to severe health consequences for both humans and 

other living organisms (12). Water pollution results from both natural processes and human activities, 

with significant consequences for aquatic life and human health, and can cause health hazards and 

death of human beings as well as aquatic life (6,13). Urbanization and industrial growth also produce 

noise pollution, which has a detrimental effect on people's health. Noise pollution is mainly caused by 

unwanted sounds made by road and rail traffic, airplanes, industrial machinery, and other sources, 

which can directly and indirectly impact physical human health (14), but also result in psychological 

problems such as anxiety, and stress (15,16). Additionally, as climate change accelerates, extreme 

temperature events are becoming more frequent and intense. The observed change in global 

temperature patterns can increase the risk of heat- and cold-related illnesses (17). According to the 

Intergovernmental Panel on Climate Change (IPCC), as the global average temperature continues to 

rise, more heatwaves and heat extremes are expected (18). Finally, urbanization, economic growth, 

Figure 1. Worldwide distribution of disease burden attributable to environmental risks in 2012. Reprinted from 

World Health Organization, Prüss-Ustün, A., Wolf, J., Corvalán, C., Bos, R. & Neira, M. Preventing disease through 

healthy environments: a global assessment of the burden of disease from environmental risks, copyright (2016). 
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and new technologies especially in modern societies have led to the widespread use of artificial light, 

known as light pollution, which affects both natural ecosystems and human health (19,20). 

1.2. Impacts on human health 

Environment significantly influences human health. Depending on the composition of pollutants, the 

concentration, and the time of exposure, environmental factors can cause a wide range of acute and 

chronic diseases (3,21,22). In 2015, air pollution caused 6.4 million deaths around the world, of which 

4.2 million were due to exposure to air pollution. During that year, poor-quality air was responsible 

for 19% of cardiovascular deaths, 21% of strokes, and 23% of lung cancers worldwide (23). Systematic 

reviews reported an association between high levels of air pollutants, especially fine particulate matter 

(24), and an increased risk of type 2 diabetes (T2D) and other metabolic disorders. T2D, a chronic 

condition characterized by insulin resistance and dysfunction of β cells, is a rapidly rising public health 

concern. Although genetics plays a crucial role, environmental exposures are suggested to have 

significant impacts on the development of the disease (25). Studies suggest that air pollution may 

potentially lead to impaired glucose metabolism and insulin resistance (26,27). Exposure to particulate 

matter (PM), including particles with a median aerodynamic diameter < 10 µm (PM10) and <2.5 µm 

(PM2.5), has also been linked to adverse pulmonary effects such as respiratory symptoms and decreased 

lung function, cardiovascular diseases (CVD) (28), and cancers (29). Oxidative stress and 

inflammation are suggested to be key pathways in these associations (30). 

Exposure to higher levels of traffic noise is associated with various negative health effects, including 

myocardial infarction (31), sleep disruption (32), metabolic complications (33), and diabetes (34). 

According to the European Environment Agency, approximately 22 million individuals experience 

chronic high annoyance, while 6.5 million suffer from sleep disturbance, both due to long-term 

exposure to noise pollution (35). A meta-analysis also revealed that traffic noise is among the top four 

environmental factors with the most significant impacts on human health, resulting in 400-1500 

Disability-Adjusted Life Years (DALYs) per million population in Europe (36). Traffic noise exposure 

acts as an environmental stressor, affecting psychological and physiological processes which may lead 

to changes in stress hormone levels and increased blood pressure and heart rates (37).  However, 

despite noise levels above recommended guidelines being widely experienced by the general 

population, it has not been sufficiently addressed in the Global Burden of Disease (GBD) study (38).  
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The impact of ambient temperature on morbidity and mortality is an important public health concern 

as there is evidence of a large number of hospitalizations during both heat waves and cold spells 

(39,40). Temperature extremes are widely evident to increase the risk of mortality and morbidity from 

cardio-respiratory conditions and diabetes (41,42). According to the literature, urban residents in larger 

cities are more exposed to temperature changes compared to residents of suburban areas and are at a 

higher risk of heat-related illnesses (43). Depending on the time scale, ambient temperature may have 

different health effects. High temperatures have been more commonly associated with immediate 

impacts, while low temperatures have shown more delayed health effects (44,45).  Moreover, ambient 

temperature plays an important role in air pollution-health associations (46). For example, studies 

revealed that low temperatures significantly amplified the effect of PM2.5, PM10, SO2, and O3 levels 

on chronic obstructive pulmonary disease (COPD) hospitalization rates (47,48). 

Green spaces affect human population in multifaceted ways, with evidence indicating its significant 

impact on health and well-being. Studies have shown that increasing the quantity and quality of natural 

environments, such as gardens, parks, and open spaces in residential areas can lead to various positive 

health outcomes (49,50). These effects are supposed to be mediated through several potential effect 

mechanisms including increased opportunities for physical activity and social interactions (51), mental 

health recovery (52), relaxation and stress reduction (53,54), and reductions in air and noise pollution 

(55). Recent studies using satellite imagery to measure neighborhood greenness or vegetative presence 

have shown associations with lower body mass index (BMI) (56) and a reduced risk of overweight or 

obesity (57) and CVD (58).  

Artificial light at night (LAN) is linked to a range of health problems, with disruption to the biological 

clock and the suppression of melatonin production being among the most common consequences (59), 

which could potentially increase the risk of cancers, including breast and prostate cancers, as reported 

in ecological and observational studies (60–62). Beyond cancer, LAN-induced sleep disturbance might 

affect metabolism and contribute to several health issues such as heart disease, diabetes, and obesity 

(63). 
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1.3. Impacts on Children 

The health effects of environmental exposures in children who are believed to be the group with the 

highest risk level have been widely evident (64–66). It is well evident that environmental factors are 

linked to the development of a wide range of health conditions in children, from cardiorespiratory 

diseases to metabolic disorders like diabetes and obesity (67–70). In recent years, researchers have 

increasingly focused on understanding how environmental factors affect children’s health (71). 

Children, due to their unique physiological and behavioral characteristics, are more vulnerable to the 

effects of environmental exposures (72). Their organs are still developing and their immune systems 

are not fully mature, making them more susceptible to potential risks from environmental toxins and 

pollutants (73,74). Additionally, certain behaviors such as hand-to-mouth activity and increased 

contact with environmental surfaces may further increase their exposure to harmful substances (64). 

The significance of early-life exposure cannot be overstated. Research has shown that exposure during 

critical developmental stages, including prenatal and early childhood periods, can have long-lasting 

effects on children's health that extend into adulthood (75,76).  

1.3.1. Air pollution and air temperature and islet autoimmunity 

The increasing prevalence of autoimmune diseases has become a significant global public health 

concern, affecting millions of individuals worldwide, with children being especially vulnerable (77–

79). Islet autoimmunity, characterized by autoantibodies targeting pancreatic islet cells, serves as a 

precursor to type 1 diabetes (T1D), a chronic and autoimmune disorder triggered by the destruction of 

insulin-producing cells in the pancreas (80). The epidemiological landscape of T1D has been 

extensively studied in recent decades, revealing substantial variations in disease incidence among 

countries and different racial groups (81). Although the causes of these differences have not been fully 

understood, it is increasingly evident that beyond genetics, environmental factors may significantly 

contribute to the initiation or modulation of the immune response that leads to islet autoimmunity and 

T1D (82,83). Ecological studies have reported geographic variations in T1D incident rates in different 

geographical scales, including global comparisons (81), Europe-wide assessments (84), and within 

individual countries (85), all indicating the importance of climate as a contributing factor. For instance, 

distinct differences in rates were observed in Finland (86), Norway (87), Sweden (88), England (89), 

and Germany (90). In Italy, the incidence rate in certain regions was almost four times higher than on 
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the mainland (91). Different hypotheses have been put forward to explain the geographical variations 

in islet autoimmunity and T1D rates, including the potential impact of environmental factors, but our 

knowledge regarding their connections is still developing. 

Limited epidemiological research has been conducted to explore links between air pollution and the 

onset of childhood T1D. Nonetheless, early findings indicated that both maternal and early-life 

exposure could contribute to the disease development. For example, in Sweden, a case-control study 

investigated the impacts of prenatal exposure during gestation and found that mothers of children with 

T1D mostly resided in regions with higher nitrogen oxide (NOx) levels in the third trimester or elevated 

ozone (O3) levels in the second trimester (92). In the U.S., childhood exposure to O3 was associated 

with increased risk of T1D. Also, PM10 showed associations with T1D development in children aged 

5 and under, and sulfate (SO4) was linked with diagnosis before the age of 15 (93,94). A prospective 

birth cohort study in Norway found that higher exposure to ambient nitrogen dioxide (NO2) in the first 

year of life was associated with an increased risk of developing islet autoimmunity (95). The exact 

mechanisms underlying the link between air pollution exposure and the risk of islet autoimmunity are 

not fully understood. However, existing evidence suggests that air pollution-induced inflammation 

and oxidative stress play a crucial role in this pathway (96). Exposure to air pollutants like O3 can 

generate free oxygen radicals that can lead to damage in β cells or increase the presentation of 

diabetogenic antigens, thereby increasing the susceptibility to T1D (97).  

Air temperature shows significant variations across geographical regions and seasons, playing a 

crucial role in modulating human physiology and influencing various biological processes. Within 

Europe, a clear north-south gradient in T1D incidence rates has been identified, with the highest 

incidence rates observed in northern and north-western regions, characterized by cooler climates, 

while southern and eastern regions showed the lowest rates (98–100). In Germany, higher incidence 

rates in the northern regions compared to the southern parts were reported (90). Similarly in Sweden, 

the north-south pattern in incidence rate was observed. This could potentially be attributed to ambient 

temperatures, as the mean yearly temperature in Sweden has shown an inverse relationship with 

latitude (85). Although limited, epidemiological studies have further supported the link between air 

temperature and the risk of childhood islet autoimmunity. For instance, in Sweden, significant 

associations between T1D incidence and low mean temperature were observed (101,102). The 

consistent findings of seasonal patterns in the clinical onset of T1D, with the highest incidence 

occurring during the colder seasons, in both the northern and southern hemispheres, further strengthen 
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the evidence for the impact of low temperature on the risk of developing T1D (103–106). The 

mechanism behind this association is unclear, but it could be due to the impacts of low temperature 

on immune function and viral infections, which are known to contribute to the pathogenesis of T1D 

(107,108). Another reason could be the increased demand for insulin production on pancreatic β cells. 

In low temperatures, both healthy individuals and those at risk of developing islet autoimmunity have 

shown elevated fasting blood glucose levels and increased insulin levels. This suggests that a cooler 

environment may put more stress on β cells to maintain glucose homeostasis (109,110). 

1.3.2. Light at night exposure and BMI 

Childhood overweight and obesity is another health concern with an increasing prevalence worldwide. 

Even though the trend appears to have slowed down in recent years, the high prevalence rate remains 

concerning (111). The rise in childhood obesity has serious implications for future health, mainly 

through metabolic problems and diseases associated with it (112). Traditionally, risk factors for 

obesity focused on lifestyle behaviors such as unhealthy dietary habits, insufficient physical activities, 

or sedentary behaviors, all of which result in a chronic imbalance between energy intake and 

expenditure. However, recent studies suggest that environmental factors such as air pollution and LAN 

are likely involved as well (20,113,114). LAN has increasingly been recognized as a disruptor of 

natural light patterns and a new source of environmental pollution (115). The exposure could disrupt 

the human circadian rhythm by suppressing melatonin secretion (116), even at dim light intensities 

(117). Investigation of outdoor LAN exposure revealed its contribution to the development of 

chronobiology-related disorders such as obesity (118), cancers (119,120), and CVD (121). There is 

only limited research on LAN exposure’s impact on children’s health.  In China, both indoor (70) and 

outdoor (20) LAN exposures were associated with increased odds of obesity and overweight in 

children and adolescents. The findings were further supported by studies that reported children living 

in brighter areas in China (122), Germany (123), and the U.S. (124) had a higher prevalence of sleep 

disorders, including disruptions in sleep patterns and duration, which are potential contributors to the 

obesity risk (125,126).   
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2. Objectives  

In light of the evidence highlighting the significant influence of environmental factors on metabolic 

health, it becomes essential to gain a deeper understanding. While an increasing amount of research is 

investigating the effects of the environment on health outcomes in adults, there remains a gap in our 

knowledge concerning children’s health. This lack of sufficient evidence poses a barrier to the 

implementation of effective policies and interventions aiming at promoting metabolic health in this 

vulnerable group. In addition, given that early life is a critical period for metabolic development, it is 

necessary to investigate the effects of environmental factors among pediatric populations.   

This cumulative thesis aims to bridge this gap by extensively investigating the influence of various 

exposures on metabolic health outcomes, with the main focus on early-life exposure in children.  

The specific objectives of this thesis are: 

1. To investigate the effects of long-term exposure to air pollution, ambient air 

temperature, and the level of nearby greenery throughout pregnancy and the initial 

years of life with early-onset islet autoimmunity.  

2. To explore the long-term effects of nighttime exposure to artificial light on the body 

mass of children. 

Beyond the two main papers, this thesis incorporates a supplementary paper in the appendix 

with the primary objective being: 

1. To examine the long-term effects of air pollutants, traffic noise, ambient air 

temperature, and surrounding greenness on incident T2D in adults. 
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3. Methods 

3.1. Study population and design 

This cumulative thesis is based on data from the Fr1da cohort study, a large-scale screening program 

for T1D in Bavaria, Germany. The study was initiated in 2015 and aims to identify children at 

increased risk for T1D at an early stage, which allows for timely intervention and prevention of 

complications. The screening process involved the analysis of islet autoantibodies in capillary blood 

samples taken through a blood spot test. In the context of a well-baby visit, a questionnaire was 

administered to collect demographic data, including the children's date of birth, sex, weight, height, 

date of blood collection, residential address, and first-degree family history of T1D. Children with 

positive autoantibody results were referred for confirmatory diagnostic testing, and those diagnosed 

with early-stage T1D received early treatment to prevent complications (127). The data used in this 

thesis were obtained from the Fr1da database and included information on demographic characteristics 

and screening results for over 90,000 children recruited between 2015 and 2019. The data were 

collected and managed by the Fr1da study team following strict data protection regulations and were 

pseudonymized before analysis.  

In publication 1, we analyzed data from 85,251 Fr1da participants aged 1.75 to 5.99 years who had 

valid residential zip code data (Figure 2a). For 52,636 participants, we had access to their full 

residential address information, which enabled a more precise exposure assessment. 

In publication 2, we expanded our analysis to include a larger sample size of Fr1da participants, 

comprising a total of 62,630 children under the age of 11  who provided complete and accurate 

residential details (Figure 2b). 
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a) 

 

b) 

 

Figure 2. Spatial distribution of study subjects across the Bavarian region in Germany. Panel (a) displays the 

participant counts per postal code area for the first study and panel (b) presents number of the participants within 

1 km × 1 km grid cells for the second study. 
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3.2. Address geocoding 

Residential addresses for more than 100,000 Fr1da participants were geocoded using the 'Adressen-

Batch' geocoder application provided by the Federal Agency for Cartography and Geodesy*  (128), 

using the coordinate reference system known as  Universal Transverse Mercator (UTM-32) for 

location determination. Those addresses that did not meet the required match score were manually 

reviewed and corrected. The final geocodes’ positional accuracy was confirmed by cross-referencing 

a selection of coordinates with Google Maps. 

3.3. Outcome definition 

Islet autoimmunity was characterized by the identification of minimum of two islet autoantibodies in 

two sequential blood samples. This definition ensures that the presence of islet autoimmunity is 

confirmed through repeated testing, reducing the likelihood of false positives and increasing the 

reliability of the results. 

The BMI of each participant was calculated using their height and weight measurements. 

Subsequently, BMI z-scores specific to age and sex were computed, with reference to the World 

Health Organization Child Growth Standards (127).  

3.4. Exposure assessment and data source 

To assess the association between environmental exposures and the risk of islet autoimmunity 

development, hourly measurements of particulate matter with an aerodynamic diameter ≤ 2.5 µm 

(PM2.5), nitrogen dioxide (NO2), and ozone (O3) were provided by the German Environment Agency† 

at a spatial resolution of approximately 2 km × 2 km (129). Daily mean air temperature maps were 

generated through a multi-stage modeling approach at a 1 km × 1 km resolution, incorporating weather 

station observations, satellite-based land surface temperature, elevation, vegetation, and land use 

                                                      
* Bundesamt für Kartographie und Geodäsie (BKG) 

† Umweltbundesamt (UBA) 
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predictors (130). Greenness exposure was assessed using monthly average Normalized Difference 

Vegetation Index (NDVI) data from TERRA MODIS satellite images at a spatial resolution of 1 km 

× 1 km (131). All exposure data were captured from 2008 to 2019, with a consistent temporal 

resolution. Exposure values were matched with residential address points and also averaged over zip 

codes for the epidemiological analyses. We assessed mean exposure during pregnancy, the first year, 

and the first two years of life for each exposure variable to capture critical developmental periods.  

The assessment of artificial light at night (LAN) exposure involved the use of monthly and annual 

mean raster grids sourced from Visible Infrared Imaging Radiometer Suite (VIIRS) with a spatial 

resolution of 300 m × 400 m (132,133). The raster grids were matched with participants’ residential 

addresses based on the spatial location, to extract their exposure values. Exposure to LAN was 

assessed by averaging the raster grids during the reference year of the study (2015) and the12 months 

preceding the screening month.  

3.5. Statistical analysis 

Cross-sectional associations between exposure variables and the risk of islet autoimmunity were 

assessed using generalized additive models in both single-exposure and multi-exposure settings. The 

models were adjusted for age, sex, family history for T1D, and area-level socioeconomic status (SES) 

variables. 

The associations between LAN and BMI z-scores were examined using generalized additive models 

without and with adjustment for confounders such as demographic charcteristics (age and sex) and 

socioeconomic factors (the percentage of low-income households (earning <1200 € per month) at a 1 

× 1 km2 grid resolution, and residential urbanization levels where 1indicated cities with high levels of 

urbanization, 2 represented towns/suburbs with intermediate levels of urbanization and, 3 indicated 

rural areas with low levels of urbanization)). In cases where BMI z-scores were missing, a 

deterministic imputation method was employed using regression predictions. Additionally, we 

explored effect modification by sex by the inclusion of interaction terms. 

In both studies, the reliability and validity of our findings were ensured by analyzing an independent 

sample as a means of replication. In the first paper, we used data from the Diabetes Mellitus Incidence 

(DiMelli) cohort study, which monitored T1D incidence in children aged ≤20 in Bavaria from 2009 

to 2012 (134). We substituted the cases that tested positive in the Fr1da study with T1D cases from 
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DiMelli who aged 6 years or under (N = 150) and reanalyzed the data. In the second paper, we 

replicated the main analyses using data for 39,782 children in the second phase of Fr1da screening, 

known as Fr1da PLUS, conducted in the same study area from 2019 to 2021, with the recruitment, 

screening, data collection, consent procedures, and variables measured being identical to the original 

Fr1da study. 
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4. Key findings 

The first publication addresses the first key objective outlined in this thesis: the investigation of 

associations between exposure to different environmental factors during pregnancy and early 

childhood and the oncet of islet autoimmunity. 

The results showed that at the level of individual addresses, lower ambient air temperature averages 

during pregnancy and early life were significantly associated with a higher risk of islet autoimmunity. 

Specifically, for each interquartile range (IQR) decrease in air temperature, the odds ratios (ORs) for 

islet autoimmunity were 1.49 (95% confidence interval (CI): 1.21–1.83) during pregnancy, 1.28 (95% 

CI: 1.06–1.54) in the first year, and 1.25 (95% CI: 1.05–1.49) in the first two years of life. These 

associations remained stable after accounting for additional environmental variables in multi-exposure 

models.  

At the level of zip codes, a similar inverse association was observed for air temperature exposure 

during pregnancy (OR: 1.28 (95% CI: 1.04–1.57)). However, the effect estimates for the first year and 

first two years of life exposures were less pronounced and lacked statistical significance.  

The association of air pollutants and greenness did not reach statistical significance; however, the 

effect estimates remained consistent at both exposure levels. 

 Key finding 1: Prenatal and early-life exposure to lower air temperature increased the risk 

of early-onset islet autoimmunity. The associations remained independent of the effects of 

air pollutants or greenness and were evident at both address- and zipcode-level exposures. 
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The second publication addresses the second key objective of this thesis: the investigation of 

associations between LAN exposures and BMI z-score. 

The study demonstrated a significant and positive link between LAN exposure and BMI z-scores. The 

results showed that by each 10 nW/cm2/sr increase in LAN, BMI z-scores increased by 32.2% (95% 

CI: 23.6-40.8) at baseline and by 31.1% (95% CI: 22.7-39.5) within one year before screening. The 

associations remained significant even when accounting for age, sex, percentage of households with 

low income, and level of urbanization. The study also revealed a significant modification of the 

associations by sex with stronger effects of LAN in male individuals compared to female individuals. 

 Key finding 2: Exposure to higher levels of LAN increased age- and sex-adjusted BMI 

significantly. Sex had a modifying effect with the effect of LAN being more pronounced 

in male individuals. 
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5. Discussion 

This thesis significantly adds to the existing knowledge in the field of long-term exposure to 

environmental factors and their effects on children’s health. The study extensively investigated the 

influence of air pollution, air temperature, greenness, and light pollution on metabolic health outcomes 

in children and yielded two key findings: firstly, a decrease in air temperature significantly raises the 

odds of early-onset islet autoimmunity, and secondly, an increase in outdoor LAN is linked to 

increased body mass in children. So far, only a few epidemiological studies have investigated the 

association between environmental exposures and children’s metabolic health. Therefore, this research 

work substantially bridged the existing gap in the field of environmental risks. 

5.1. Plausible biological mechanisms 

There are several putative pathways explaining the associations found in this research work.  

Temperature and islet autoimmunity   Potential mechanisms to explain the increased risk of 

early-onset islet autoimmunity with low temperatures include: 

1. Increased demand on β cells for insulin secretion in low temperatures. This was supported by 

studies considering seasonality which reported lower glucose values and lower insulin 

secretion during warmer seasons (109,135).  

2. Exposure to viruses during fetal life in low temperatures. Population-based studies have shown 

increased levels of antibodies to enteroviruses in pregnant mothers whose children later 

developed T1D (136,137). Laboratory investigations further reported that certain viruses, such 

as coxsackie, can induce T1D in animals (138,139). Even though the exact mechanism is not 

yet fully understood, it is hypothesized that direct mimicry of autoantigens or persistent viral 

infections may lead to chronic inflammation near or within β cells. Inflammatory responses 

such as cytokine release may contribute to the destruction of β cells (135).  

3. Vitamin D deficiency in cooler climates is caused by reduced sunlight exposure and ultraviolet 

irradiance. According to recent investigations, vitamin D plays a role in modifying the 

immune-mediated destruction of β cells by interacting with vitamin D receptors and proteins 
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that bind calcium (140). It also increases insulin secretion by regulating calcium flux and other 

mechanisms within β cells (141,142). 

LAN and BMI   Possible pathways connecting night-time light to higher BMI include: 

1. Disrupted circadian rhythm. Prolonged or constant exposure to artificial lights can disrupt 

natural circadian timing which affects the entire physiological state. This includes changes in 

the rhythmicity of various hormones that may lead to irregulated metabolic function, immune 

responses, and endocrine balance (121).  

2. Insufficient sleep due to sleep-wake cycle disturbance. Meta-analysis of epidemiological 

studies reported positive associations between sleep duration with higher body mass (125) and 

negative associations with waist circumference (143). Research suggests that short sleep 

duration might trigger hormonal responses that increase appetite and calorie intake. Changes 

in the levels of hormones such as leptin or ghrelin due to insufficient sleep could lead to 

increased hunger and obesity (144). Moreover, short sleep may activate inflammatory 

pathways that further contribute to obesity (145). 

3. Suppressed nocturnal melatonin secretion. Melatonin is a pineal gland hormone, with higher 

levels during the night and minimal synthesis during the day. It plays an important role in 

transmitting timing information to organs and is essential for circadian timing in humans (146). 

Research findings have reported an inverse link between melatonin and body weight and 

adiposity. The association is believed to be independent of calorie intake and may be related 

to its simulation of brown body tissue (147). Studies in animals further revealed the effect of 

melatonin on improving metabolic parameters and reducing body weight (148). 

4. Physiological and stress-related factors. Light exposure can promote oxidative stress, a critical 

factor in the pathogenesis of various disorders including obesity. Oxidative stress occurs due 

to an imbalance between free radicals, reactive oxygen species, and antioxidants in the human 

body (149,150). When organisms are exposed to light, they produce toxic molecules and 

reactive oxygen species (151). Melatonin and its metabolites play an important role in 

antioxidant defense and regulate antioxidant enzyme activity (152). Light-induced melatonin 

suppression could increase oxidative stress and potentially raise the risk of obesity. 
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5.2. Public health and policy implications 

The findings of this thesis provide strong evidence of the adverse impacts of environmental hazards 

on metabolic health. The results have important public health implications. 

Islet autoimmunity is a crucial precursor of T1D, a chronic metabolic condition with potentially 

serious lifelong effects (80). As global temperature fluctuations are expected to increase due to climate 

change (17), it becomes necessary for public health officials to acknowledge and address this 

environmental threat. Raising awareness among parents and healthcare providers regarding the 

potential effects of air temperature on metabolic health may encourage early detection and timely 

intervention. Such an approach could result in a substantial improvement in the overall health 

outcomes of children and prevent potential complications during adolescence and adulthood. 

The relationship between light pollution and increased BMI in children was another public health 

implication of this thesis. Since pediatric obesity remains a major public health challenge, identifying 

environmental elements that contribute to the disease’s development becomes crucial for creating 

effective preventive strategies (111). Light pollution is a growing concern in urban areas and has been 

linked to a range of adverse health outcomes, such as disrupted sleep patterns and higher risks of 

chronic diseases (115). This study's results highlight that children are also susceptible to the 

consequences of excessive artificial light exposure. Addressing this issue requires multifaceted 

strategies that involve public health and legislators, urban planners, and communities. There is a need 

to develop and enforce regulations and guidelines that prevent or restrict excessive outdoor lighting 

and promote sustainable and responsible use of artificial illumination in residential areas. Moreover, 

health education initiatives will inform parents, educators, and the general public about the negative 

effects of prolonged light exposure during nighttime hours. Encouraging parents to implement healthy 

sleep practices and create dark environments in bedrooms can further mitigate the impact of light 

pollution on children's health. 

By proactively addressing environmental exposures, we can take substantial steps to preserve 

children's health and promote a healthier and more sustainable future. 

  



Discussion 

33 
 

5.3. Methodological considerations  

Major strengths of this research work include a large number of participants from a well-known 

screening study and the wide range of environmental factors being investigated. 

The first publication stands as the most extensive assessment to date of the effect of geographical 

factors, including air pollution, air temperature, and surrounding greenness, on childhood islet 

autoimmunity. The unique strength is in the comprehensive examination of different exposure 

windows using high-resolution temporal-spatial data. The comprehensive nature of the study allowed 

us to investigate multiple exposures while controlling for confounding variables. The analysis 

approach employed in this study ensured reliable and robust results. Moreover, the publication 

highlighted the importance of early interventions for the high-risk population to mitigate the risk of 

developing T1D. 

The second publication presents a novel investigation into the effects of artificial light emissions on 

pre-pubertal weight gain. This unique approach provided valuable insights into potential 

environmental contributors to obesity. High-resolution satellite data used in this study captured 

significant variations in LAN across urban areas and strengthened the results.  

However, there are several limitations to consider. During the screening, it was presumed that the 

residential addresses provided were indicative of the relevant exposure locations. Unfortunately, we 

did not have access to information regarding changes in residence or the duration of time spent outside. 

This lack of data may have introduced uncertainty into the results due to the possibility of exposure 

misclassification. Moreover, the Fr1da study lacks comprehensive data on various behavioral and 

lifestyle variables typically employed as confounding factors or effect modifiers in epidemiological 

studies. 

5.4. Outlook: Future research  

In summary, this cumulative thesis indicated that early exposure to certain environmental factors 

increases the risk of adverse pediatric metabolic outcomes. The complex interplay between 

environmental factors and metabolic health in children necessitates ongoing research to deepen our 

understanding and develop effective interventions. 



Discussion 

34 
 

So far, the assessments of exposure-response associations in children were mostly cross-sectional 

analyses. Conducting longitudinal studies that track children’s exposure levels from early ages into 

adolescence or even adulthood would be beneficial and could offer a more accurate understanding of 

the long-term effects of these factors as well as their role in shaping the trajectory of metabolic 

disorders over time. 

The studies were based on data collected in Bavaria, Germany, and the results cannot be generalizable 

to the entire country or globally due to regional variations in both exposure and disease prevalence 

patterns. To achieve a comprehensive understanding, a comparison of results from investigations in 

diverse global populations is necessary.  

Considering the potential confounding effect of behavioral and lifestyle factors such as physical 

activity, dietary habits, and sleep patterns is crucial to explore the true exposure-response associations. 
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6. Conclusion 

The consequences of climate change and the rapid urbanization process are expected to result in higher 

human exposure to environmental pollutants or novel types of pollution. For instance, this could 

manifest as more temperature fluctuations due to climate change or the expanded use of electronic 

lighting in urban and industrial areas. Therefore, it is crucial to take action and mitigate these factors 

to protect human well-being. Findings from this thesis provide strong evidence of the influence of 

environmental hazards in children’s metabolic health by highlighting significant associations between 

lower temperatures and higher islet autoimmunity as well as higher light pollution and higher body 

mass. 

This research work concludes by emphasizing the need for continued research and collaborative efforts 

to ensure the harmonious coexistence between humans and environment and safeguard the health of 

current and future generations. Given the complexity of environmental hazards and intricate links 

between environmental pollution and human health, addressing their challenges necessitates a 

multidisciplinary approach involving scientists, policymakers, healthcare professionals, and 

communities.  
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A B S T R A C T   

Objective: Incidence of early-onset type 1 diabetes (T1D) has been increasing worldwide. Only few studies 
examined the relationship between geographical environmental variation and T1D incidence or its presymp-
tomatic stage of islet autoimmunity. Our study aimed to investigate the effect of long-term environmental ex-
posures during pregnancy and early life on childhood islet autoimmunity. 
Research Design and Methods: We used data from the Fr1da cohort study which screened children aged 1.75–5.99 
years for multiple islet autoantibodies in Bavaria, Germany between 2015 and 2019. We included 85,251 
children with valid residential information. Daily averages for particulate matter with a diameter <2.5 μm, 
nitrogen dioxide, ozone, air temperature, and greenness were averaged for each zip-code or directly assigned to 
the addresses. The exposure windows included pregnancy, the first year and the first two years of life. Gener-
alized additive models adjusting for individual and socioeconomic variables were used to investigate associations 
between environmental exposures and islet autoimmunity development. 
Results: Islet autoimmunity was diagnosed in 272 children. Colder air temperature during pregnancy was asso-
ciated with developing islet autoimmunity at the address (per 2.2 ◦C decrease, Odds ratio (OR): 1.49; 95% 
Confidence interval (CI): 1.21–1.83) and zip-code level (per 2.4 ◦C decrease, OR: 1.31; 95% CI: 1.08–1.59). Using 
the addresses, significant associations were also observed during the first years of life. 
Conclusion: In this study, children’s residential exposure to lower levels of air temperature during pregnancy and 
early life increased the risk of islet autoimmunity before the age of six.   

1. Introduction 

Type 1 diabetes (T1D) is one of the prevalent metabolic disorders of 
childhood (Atkinson et al., 2014; Daneman, 2006). Global epidemio-
logical studies have shown large variations of incidence rates in 
geographically different regions and an increased incidence of T1D over 
the past decades (Patterson et al., 2019; Group, 2006) particularly in 
children <5 years (DiMeglio et al., 2018). 

The clinical manifestation of T1D is preceded by a presymptomatic 

stage of islet autoimmunity marked by the presence of two or more islet 
autoantibodies. The development of islet autoantibodies has a peak 
incidence between 1 and 3 years (Ziegler and Bonifacio, 2012; Krischer 
et al., 2015) and progression to clinical diabetes occurs at a rate of 
around 10% per year (Bonifacio, 2015). It is generally assumed that, in 
addition to genetic predisposition, environment plays an important role 
in the initiation of autoimmunity to pancreatic islet cells and is partially 
responsible for geographical differences in T1D incidence. Individual 
environmental exposures such as diet (Ziegler et al., 2003), infections 
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** Corresponding author. Institute of Diabetes Research, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764, MD, Neuherberg, Germany. 

E-mail addresses: Mahnaz.badpa@helmholtz-muenchen.de (M. Badpa), Anette-g.ziegler@helmholtz-muenchen.de (A.-G. Ziegler).   
1 Shared last authorship. 

Contents lists available at ScienceDirect 

Environmental Research 

journal homepage: www.elsevier.com/locate/envres 

https://doi.org/10.1016/j.envres.2022.113503 
Received 24 February 2022; Received in revised form 8 May 2022; Accepted 16 May 2022   

i An update to this article is included at the end

mailto:Mahnaz.badpa@helmholtz-muenchen.de
mailto:Anette-g.ziegler@helmholtz-muenchen.de
www.sciencedirect.com/science/journal/00139351
https://www.elsevier.com/locate/envres
https://doi.org/10.1016/j.envres.2022.113503
https://doi.org/10.1016/j.envres.2022.113503
https://doi.org/10.1016/j.envres.2022.113503
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envres.2022.113503&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Environmental Research 212 (2022) 113503

2

(Lönnrot et al., 2017) and perinatal conditions (Bonifacio et al., 2008) 
have previously been addressed as potential triggers for T1D. However, 
the effect of geographic environmental conditions is poorly understood. 

In two case-control studies in the US, prediagnosis exposure to ozone 
(O3), particulate matter with a diameter <10 μm (PM10), and sulfate 
(SO4) were associated with childhood T1D development (Hathout et al., 
2002, 2006). In a Swedish case-control study, mothers of offsprings with 
T1D were more likely to be exposed to higher levels of nitrogen oxides 
(NOx) during the third trimester of pregnancy or higher O3 during the 
second trimester (Malmqvist et al., 2015). In Israel, exposure to low 
ambient air temperature during gestation increased the risk of T1D 
incidence in childhood (Taha-Khalde et al., 2021). In a Swedish study 
conducted between 1983 and 2008, long-term exposure to low air 
temperature was associated with the incidence of T1D diagnosis in 
children (Waernbaum and Dahlquist, 2016). Moreover, one previous 
study from Bavaria reported associations between environmental ex-
posures and the development of islet autoantibodies (Beyerlein et al., 
2015). Nevertheless, no study has yet examined the relationship be-
tween geo-environmental variation and islet autoimmunity. 

The Fr1da study screens children for islet autoimmunity in a public 
health setting in Bavaria, Germany, since 2015 and provides an oppor-
tunity to investigate geo-environmental exposures in the context of a 
presymptomatic disease stage on a population-based level. Environ-
mental geo-coding at the address or zip-code level of children’s indi-
vidual residences was used to define long-term exposures to air 
pollutants, air temperature, and greenness during pregnancy and the 
first two years of life, with the aim to identify whether there are asso-
ciations between these exposures and the development of islet autoim-
munity in childhood. 

2. Method 

2.1. Study design and population 

The Fr1da study screened children aged 1.75–5.99 years for islet 
autoimmunity in Bavaria, Germany from February 2015 to March 2019. 
Participation was voluntary and necessitated having no previous diag-
nosis for any type of diabetes. The detailed study design has been pub-
lished (Raab et al., 2016). Islet autoimmunity was defined as having two 
or more islet autoantibodies in two consecutive blood samples. Children 
with islet autoimmunity and their families were invited to participate in 
an educational program and metabolic staging by oral glucose tolerance 
test, and the child was further monitored at follow-up visits (Raab et al., 
2016; Insel et al., 2015). 

From a total number of 90,632 Fr1da participants, residential zip- 
codes of 85,251 children were available. Moreover, we used data of 
52,636 participants out of 52,782 with full residential addresses after 
excluding those for whom geocoding was not possible (N = 146). The 
spatial distribution of the participants is shown in Fig. 1 (see also Sup-
plemental Figure S1-Figure S2). 

Information on participants’ residential addresses at the time of 
screening and individual characteristics (age, sex, body mass index 
(BMI), and family history for any type of diabetes) were collected with 
self-administered questionnaires. Fr1da was approved by the institu-
tional review board at Technical University Munich. 

2.2. Geocoding 

We geocoded the residential addresses using the geocoder applica-
tion ‘Adressen-Batch’ provided by the Federal Agency for Cartography 
and Geodesy (BKG) (Geodesy and G.F.A.f.C.a), using the Universal 
Transverse Mercator (UTM-32) coordinate reference system. Addresses 
with a match score <95% with corresponding geocodes (N = 4,958) 
were reviewed for misspelled information and abbreviation in-
consistencies and manually corrected by comparing the address infor-
mation with Google Maps and Street View. Addresses that could not be 

Fig. 1. Fr1da study region and distribution of participants (a), frequency of 
islet autoimmunity (b) and zip-code mean of annual air temperature (in the 
year of study entry (2015)) (c) across Bavaria, Germany. 

M. Badpa et al.                                                                                                                                                                                                                                  
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located were further validated with the original questionnaires. The 
positional accuracy of the final geocodes was checked by matching a 
sample of ~1% of coordinates (N = 4,800) with addresses on Google 
Maps. 

2.3. Environmental exposures 

We selected PM2.5, nitrogen dioxide (NO2), and O3 to represent 
ambient air pollution. The daily average concentrations for these pol-
lutants were calculated using hourly measured data provided by the 
German Environment Agency (UBA) (German Environmental Agency) 
at approximately 2 × 2 km spatial resolution from 2008 (the year the 
oldest child was gestated) to 2019 (two years after the youngest child 
was born). UBA computes air pollution data for entire Germany by 
combining predicted concentrations from simulations of the 
chemistry-transport model REM-Calgrid with measurements from up to 
250 German monitoring stations by optimal interpolation. Exemplarily 
for the year 2018, the leave-one-out cross-validation coefficient of 
determination (R2) for rural, suburban and urban regions ranged from 
0.94 to 0.97 for PM10, 0.71–0.94 for NO2 and 0.93–0.98 for O3. The root 
mean square error (RMSE), reported for four degrees of urbanization 
(rural, suburban and urban background, traffic), ranged between 6 and 
8 μg/m3 for PM10, 6–23 μg/m3 for NO2 and 14–15 μg/m3 for O3 
(Nordmann et al., 2020). 

Daily mean air temperature maps were available from own models 
for entire Germany with 1 × 1 km resolution from 2008 to 2019. The 
maps were compiled following previous multi-stage modelling ap-
proaches combining historical air temperature measurements with 
satellite-derived land surface temperature and spatial predictors (land 
use, Normalized Difference Vegetation Index (NDVI), and elevation). 
(Rosenfeld et al., 2017; Kloog et al., 2014). 

Greenness exposure was assigned using satellite-derived NDVI data 
from MODerate-resolution Imaging Spectroradiometer (MODIS) satel-
lite images at 1 × 1 km spatial resolution from 2008 to 2019, on a 
monthly basis. NDVI is derived from the ratio of red and near-infrared 
sunlight reflectance at the ground level and ranges from − 1 (water 
bodies) through 0 (barren areas) to +1 (completely green areas). (Earth 
data and N) Following previous studies (Fan et al., 2020) negative values 
were set to zero. 

For each participant, we extracted the exposure values by inter-
secting the exposure raster grids with the residential address point. For 
the zip-code-level analyses, we averaged the exposure data over zip- 
codes by intersecting the exposure raster grids with the German zip- 
code map provided by BKG (Fig. 1(c), Supplemental Figure S3-Figure 
S4) and assigned them to the participants’ residential zip-code. 

For each variable, we considered several long-term exposure win-
dows including mean exposure during 1) pregnancy (defined as 270- 
day/9-month average before birth), 2) the first year, and 3) the first 
two years of life (calculated by averaging the daily/monthly mean 
concentrations from the month of birth to respectively, the 365th day/ 
12th month, and the 730th day/24th month after birth). 

2.4. Statistical analysis 

Spearman’s rank correlation coefficient was calculated between 
environmental exposures within each exposure window and across 
multiple windows to investigate correlation patterns of exposure 
variables. 

We investigated the association of environmental exposures during 
pregnancy and early life with islet autoimmunity using generalized 
additive models. For each time window, we evaluated environmental 
variables separately in single-exposure models as well as jointly in a 
multi-exposure model. 

All models were adjusted for potential confounders including age (at 
the screening time, continuous), sex (female vs. male), family history of 
type 1 diabetes (yes vs. no), and area-level socioeconomic status (SES) 

including population density (low/medium density: ≤100 vs. high 
density: >100 persons/km2) and percentage of households with low 
income (continuous) selected based on existing literature (Hathout 
et al., 2006). SES data were available from a private company 
(WiGeoGIS) (Gesellschaft für Digitale Wirtschaftsgeographie mbH) at a 
1 × 1 km grid for the year 2014 (supplemental Figure S5). Since previous 
studies suggested BMI could be a mediator and modify the effect of 
environmental exposures on developing chronic diseases, it was not 
included in the main analysis (Kim et al., 2019). 

Results are presented as odds ratios (OR) with corresponding 95% 
confidence intervals (CI) per interquartile range (IQR) difference in 
continuous variables except for age (OR per 1-year increase). Moreover, 
we assessed the linearity of exposure variables by including them 
separately as thin-plate splines. 

2.5. Sensitivity analysis 

To evaluate the robustness of the main findings, we 1) fitted models 
further adjusting for a) standardized BMI (binary variable, ≤1 vs. >1; 
BMI standardized using World Health Organization reference values 
(Ziegler et al., 2020)); b) influenza prevalence in corresponding expo-
sure windows as a potentially precipitating factor in islet autoimmunity 
onset (Nenna et al., 2011), based on data from Robert Koch Institute 
(SurvStat@RKI 2.0, 2021); 2) included cold-season (September to 
February) and warm-season (March to August) average air temperature 
instead of whole period average. 

2.6. Validation analysis 

We validated the results by taking advantage of the independent 
Diabetes Mellitus Incidence (DiMelli) cohort study (Thümer et al., 
2010), monitoring incidence of diabetes mellitus in children ≤20 years 
old in Bavaria, between 2009 and 2012. We replaced the Fr1da 
antibody-positive children with DiMelli’s cases ≤6 years old (N = 150) 
and repeated our statistical analyses. 

All analyses were performed using the software R (version 4.0.2), 
packages ‘mgcv’, ‘raster’, and ‘sp’. The level of significance was set at 
0.05. 

3. Results 

Of the 85,251 children included, 272 (0.3%) were in the presymp-
tomatic stage of islet autoimmunity and the mean zip-code-level rate 
was 0.32 ± 0.90. At the time of screening, the mean age was 3.43 ± 1.22 
and there were slightly more males (females: 48.5%). 4.1% of children 
were obese, the mean standardized BMI was 0.12 ± 1.04 and 3.3% re-
ported a positive family history of diabetes (Table 1). 

Mean concentrations of air pollutants varied between the years while 
mean air temperature and greenness remained relatively stable. Chil-
dren were exposed to higher levels of PM2.5 and NO2 and lower O3 
during pregnancy compared to the other exposure windows (Table 1). 
Overall, children with full residential address information showed 
similar individual characteristics and exposure levels as the whole study 
population (see supplemental Table S1-Table S2 for details). 

Spearman’s correlation coefficients indicated the environmental 
variables were weakly to moderately correlated (rspearman < 0.7) at both 
address and zip-code exposure levels (Table 2). PM2.5 and NO2 were 
negatively correlated with O3 and greenness at almost all exposure 
windows. 

The association of environmental exposures with the odds of devel-
oping islet autoimmunity is presented in Table 3, after adjustment for 
age, sex, family history of diabetes, and SES factors. In all models, age 
and diabetes family history had a significant effect on developing islet 
autoimmunity. 

At the address level, exposure to low ambient air temperature during 
pregnancy and early life was significantly associated with a higher risk 
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of islet autoimmunity (OR per IQR decrease: 1.49, CI: 1.21–1.83; OR: 
1.28, CI: 1.06–1.54 and OR: 1.25, CI: 1.05–1.49 for pregnancy, the first 
year, and the first two years of life, respectively). The effect estimates 
remained stable in multi-exposure models at all exposure windows. In 
the zip-code-level analysis, we observed a similar effect of low air 
temperature during pregnancy (OR per IQR decrease: 1.28, CI: 
1.04–1.57), whereas effect estimates were weaker and not statistically 
significant for the first year and 2-year exposures (p = 0.19). The as-
sociations of other environmental factors remained stable at both 
exposure levels but did not reach statistical significance. The inspection 
of the shape of the spline functions indicated linearity for all exposure 
windows (Figure S6). 

In sensitivity analyses, adjustment for standardized BMI and influ-
enza prevalence did not affect the effect estimates at both exposure 
levels. Also, replacing whole period average air temperature with cold 
and warm season averages showed stable estimates for almost all 
exposure windows (Fig. 2, supplemental Table S3-Table S6). The vali-
dation analysis also confirmed our results and showed stronger effects of 
low ambient air temperature at almost all exposure windows (supple-
mental Table S7). 

4. Discussion 

In this large children cohort, we found that exposure to low ambient 
air temperature during pregnancy and early life significantly increased 
the risk of islet autoimmunity in childhood, after adjusting for age, sex, 
diabetes family history, and area-level SES factors. The effect estimates 
remained stable when mutually adjusting for other environmental var-
iables in multi-exposure models. The associations were also pronounced 
in zip-code-level analyses for exposure during pregnancy. The effects of 
other environmental factors, namely air pollution and greenness were 
not statistically significant. 

This is the first study reporting an effect of low mean air temperature 
exposure on islet autoimmunity, supporting the evidence of some 
studies that have previously detected that cold was associated with in-
creases in T1D incidence. In Sweden, a registry-based study of 5,831 
children with T1D onset before the age of 14 found an inverse significant 
relationship between the incidence rate and low mean air temperature 
(R2

model: 0.03; P = 0.005) (Dahlquist and Mustonen, 1994). An ecological 
analysis of worldwide incidence of insulin-dependent diabetes mellitus 
(IDDM) among children <15 years old observed an inverse correlation 
with average yearly air temperature (R2

correlation = − 0.55; P < 0.005) 
(Group, 1988). The same study also reported the highest incidence rates 
in the northern part of the world in the Scandinavian countries and the 
lowest rates in Japan. A similar geographical variation in risk was also 
observed within countries such as Sweden (Dahlquist et al., 1985), 
Finland (Reunanen et al., 1982) and Norway (Joner and Søvik, 1981), 
highlighting cold environment being a risk determinant for T1D. The 
hypothesis was additionally supported by epidemiological studies 
looking at the seasonal variation of T1D incidence rates and reporting 
lowest rates during the warm season (Dahlquist, 1991). In a recent 
cohort of 10,681 children including three study regions in Finland, an 
inverse association between exposure to biodiverse agricultural envi-
ronment in early life and the risk of islet autoimmunity and T1D was 
observed in the region Turku which showed the highest annual mean 

Table 1 
Individual characteristics, socioeconomic factors and environmental exposures 
of Fr1da participants.   

Address level (N = 52,636) Zipcode level (N = 85,251) 

Mean 
± SD/N 
(%) 

Min Max Mean 
± SD/N 
(%) 

Min Max 

Individual 
Characteristics       

Islet 
autoimmunity 
(N cases) 

225 
(0.43) 

.. .. 272 
(0.32) 

.. .. 

Islet 
autoimmunity 
(IR) 

.. .. .. 0.32 ±
0.90 

0.00 50.00 

Age a (years) (N 
miss = 141) 

3.33 ±
1.21 

1.75 5.99 3.43 ±
1.22 

1.75 5.99 

Sex (female) (N 
miss = 963) 

25,062 
(48.3) 

.. .. 40,891 
(48.5) 

.. .. 

Standardized 
BMI (N miss =
1,979) 

0.11 ±
1.01 

− 4.93 4.97 0.12 ±
1.04 

− 4.93 4.97 

Obese 1,959 
(3.8) 

.. .. 3,440 
(4.1) 

.. .. 

Diabetes family 
history 

1,407 
(2.7) 

.. .. 2,825 
(3.3) 

.. .. 

Socioeconomic 
factors       

Population 
density 
(persons/ 
km2)b 

2,580 
± 3,260 

2 21,183 1,673 
± 2,846 

7 20,061 

Households with 
low income 
(<1,250 €) (%) 

20.5 ±
22.5 

0.0 100.0 13.0 ±
15.8 

0.0 88.3 

Air pollution       
PM2.5 (μg/m3)       
Pregnancy 11.9 ±

2.1 
5.8 19.7 12.0 ±

2.2 
5.6 19.5 

1st year 11.5 ±
1.8 

6.1 18.8 11.6 ±
1.9 

6.1 18.6 

2 years 11.2 ±
1.6 

6.5 18.1 11.3 ±
1.7 

6.5 18.4 

NO2 (μg/m3)       
Pregnancy 16.0 ±

5.7 
4.4 37.2 15.9 ±

5.8 
4.2 35.6 

1st year 15.4 ±
5.4 

4.8 36.4 15.2 ±
5.5 

4.4 32.2 

2 years 14.9 ±
5.2 

5.3 35.1 14.8 ±
5.4 

4.5 31.2 

O3 (μg/m3)       
Pregnancy 45.1 ±

5.7 
21.8 73.4 45.1 ±

5.7 
24.6 74.7 

1st year 45.9 ±
5.1 

25.4 73.6 45.7 ±
5.0 

27.3 70.8 

2 years 47.0 ±
5.2 

27.0 73.2 46.5 ±
5.1 

28.6 69.9 

Air temperature 
& vegetation       

Air temperature 
(◦C)       

Pregnancy 9.0 ±
1.5 

2.8 13.3 8.7 ±
1.5 

4.3 13.1 

1st year 9.1 ±
0.9 

4.3 12.3 8.9 ±
0.9 

5.1 12.4 

2 years 9.1 ±
0.7 

5.1 11.8 9.0 ±
0.7 

5.5 11.8 

Greenness 
(NDVI)       

Pregnancy 0.62 ±
0.08 

0.03 0.84 0.61 ±
0.07 

0.27 0.81 

1st year 0.62 ±
0.07 

0.08 0.83 0.62 ±
0.06 

0.29 0.81 

2 years 0.63 ±
0.07 

0.09 0.82 0.62 ±
0.06 

0.30 0.81 

SD: Standard deviation; Min: Minimum; Max: Maximum; IR: Incidence rate of 
islet autoimmunity in zip-code areas; N miss: Number of missing observations; 

Standardized BMI: Standardized body mass index, calculated based on height, 
weight and age through the following formula: [(BMI/M)L − 1]/(L × S) where L 
= Box-Cox power transformation, M = median and S = variation coefficient. 
Normal BMI: standardized value < 1, overweight: 1 to 2 and obese: >2 38. PM2.5: 
Particulate matter with a diameter <2.5 μm; NO2: Nitrogen dioxide; O3: Ozone; 
NDVI: Normalized difference vegetation index; Pregnancy: Mean exposure 
during pregnancy; 1st year: Mean exposure during the first year of life; 2 years: 
Mean exposure during the first two years of life. 

a Age at screening time. 
b Density counts were rounded to integer values. 
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temperature and the shortest duration of snow cover across the three 
regions (Nurminen et al., 2021). However, the authors did not investi-
gate the effects of temperature or snow cover itself. 

Studies have reported environmental exposures during pregnancy 
and early childhood influence the risk of immune diseases such as al-
lergy and autoimmunity, as immune development predominantly occurs 
early in life (Prescott, 2013). Moreover, developing islet autoantibodies 
mainly happens in the first years of life (Nurminen et al., 2021). Our 
finding that low air temperature is associated with the emergence of islet 
autoantibodies indicates that low temperature may already be relevant 
for disease initiation and not only for the development of clinical T1D. 

The biological mechanisms are still unclear. However, there are 
several possible explanations: The observed effect of low air tempera-
ture exposure could be attributed to the increased demand on the β-cell 
for insulin during the cold months (Dahlquist, 1998). Another reason 
could be the prevalence of viral infections, rather than influenza that did 
not affect our results, and its role in human pancreatic β-cell damage 
(Afoke et al., 1991; Oikarinen et al., 2014). Even though it is unknown 
how perinatal virus exposure could induce T1D, it is believed that foetal 
viral exposures might lead to chronic infection within or in the vicinity 
of the β-cell. It may later cause inflammatory responses such as cytokine 
release which could initiate β-cell destruction (Mandrup-Poulsen, 1996). 
Also, the association might be due to lower exposure to sunlight and 
ultraviolet B (UVB) irradiance in cold environments and therefore, lower 
levels of vitamin D. Studies have linked vitamin D deficiency with the 
risk of autoimmunity (Borkar et al., 2010; Ponsonby et al., 2005) and 
developing pancreatic islets autoantibodies (Group, 1988; Zipitis and 
Akobeng, 2008). 

In this study, we did not observe any significant association between 
exposure to air pollutants and islet autoimmunity. Mean concentrations 
for PM2.5 and NO2 were all below half the EU (European Environment 
Agency, 2019) limits but above the WHO (Organization and W.H., 2021) 
target values of respectively 5 and 10 μg/m3. As mentioned above, 
existing literature mainly investigated the association of environmental 
determinants and overt clinical disease and not the initial islet autoim-
munity stage (Hathout et al., 2002, 2006; Malmqvist et al., 2015; Elten 
et al., 2020). 

Our data did not show any significant effect of surrounding 
greenness. 

5. Strengths and limitations 

This study has several strengths: We performed a comprehensive 
assessment of the impact of environmental exposures on early-stage islet 
autoimmunity. The study is unique as it represents a public health 
cohort from a specific region (Bavaria) looking for geo-environmental 
triggers while the Finnish study (Nurminen et al., 2021) looked at 
children who were pre-selected by genetic risk. We investigated a 
large-scale cohort of children with detailed information on participants’ 
characteristics which enabled us to control for potential confounders. 
We considered a wide range of exposure variables that were investigated 
separately and jointly as potential determinants of islet autoimmunity 
precursors. We also conducted the analyses at both address and zip-code 
levels, a validation analysis and various sensitivity analyses all of which 
basically showed constant results. 

Our study however faced several limitations. First, the residential 
addresses at the time of screening were assumed to be the addresses of 
relevant exposure. Changes in residence or differing time periods spent 
at home were unfortunately not available and added uncertainty to the 
results through potential exposure misclassification. However, a review 
from the 1980s–2000s reported that even though 9%–32% of women in 
the United States and abroad moved during pregnancy, the moves were 
mainly local and 52.1%–69.1% of mothers stayed in the same general 
area, e.g. the same county (median distance <10 km) (Bell and Belanger, 
2012). The fact that we observed stronger associations when comparing 
full addresses to zip-code indicates that indeed undifferential exposure Ta
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misclassification may influence the results substantially. In terms of 
mobility in childhood, studies have found age at diagnosis is correlated 
with likelihood of residential mobility, meaning that most people move 
when the child is growing. An Italian study reported that 70% of chil-
dren lived in the same address from birth to the year prior to diagnosis 
and 82% among those diagnosed before the age of 5 years did not move. 
However, several studies indicated a greater likelihood of moving 
around the time of birth (Vinceti et al., 2012). It is unclear whether the 
data from other countries applies to Germany. Second, information on 
human lifestyle such as physical activity, dietary behaviour and expo-
sure to passive smoking were not available which might influence islet 
autoimmunity (Rytkönen et al., 2003). Finally, accessibility to a pedia-
trician participating in the Fr1da project being the first step to be 
recruited into the cohort and regional health policies may affect the 
composition of the study population which could bias the 
exposure-disease relationship. 

6. Conclusion 

In summary, our study provided evidence that exposure to low 

ambient air temperature during pregnancy and early life might play a 
critical role in developing islet autoimmunity before 6 years of age, 
which may lead to T1D later throughout childhood or adult life. 
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Table 3 
Association (Odds Ratio and 95% CI) between islet autoimmunity and individual characteristics, socioeconomic factors and environmental exposures (per IQR 
difference).   

Address-level analyses (N = 52,636) Zip-code-level analyses (N = 85,251) 

IQR Single-exposure model Multi-exposure model IQR Single-exposure model Multi-exposure model 

OR (95% CI) Pvalue OR (95% CI) Pvalue OR (95% CI) Pvalue OR (95% CI) Pvalue 

Age .. 1.41 
(1.29–1.54) 

0.00 1.35 
(1.23–1.49) 

0.00 .. 1.30 
(1.20–1.40) 

0.00 1.25 
(1.14–1.37) 

0.00 

Sex (male) (reference: female) .. 1.13 
(0.91–1.42) 

0.35 1.13 
(0.91–1.41) 

0.36 .. 1.13 
(0.92–1.38) 

0.32 1.12 
(0.92–1.37) 

0.31 

Diabetes family history (yes) 
(reference: no) 

.. 4.55 
(3.18–6.51) 

0.00 4.57 
(3.19–6.54) 

0.00 .. 3.96 
(2.90–5.41) 

0.00 3.77 
(2.74–5.19) 

0.00 

Population density (low/med) 
(reference: high) 

.. 1.18 
(0.83–1.66) 

0.29 1.20 
(0.84–1.70) 

0.41 .. 0.91 
(0.68–1.22) 

0.63 0.94 
(0.69–1.28) 

0.64 

Households with low income 
(<1,250 €) 

31.74 1.00 
(0.81–1.23) 

0.34 0.94 
(0.76–1.16) 

0.33 13.06 0.93 
(0.82–1.07) 

0.20 0.90 
(0.78–1.04) 

0.22 

PM2.5 Pregnancy 2.71 1.20 
(0.99–1.46) 

0.06 1.14 
(0.88–1.47) 

0.33 2.73 1.12 
(0.93–1.35) 

0.22 1.05 
(0.82–1.33) 

0.71 

1st year 2.34 1.17 
(0.96–1.42) 

0.12 1.21 
(0.94–1.55) 

0.13 2.31 1.07 
(0.89–1.29) 

0.46 1.05 
(0.84–1.32) 

0.66 

2 years 2.16 1.19 
(0.97–0.46) 

0.09 1.26 
(0.97–1.63) 

0.08 2.14 1.08 
(0.89–1.32) 

0.43 1.05 
(0.83–1.33) 

0.67 

NO2 Pregnancy 8.61 1.07 
(0.85–1.34) 

0.57 1.00 
(0.74–1.35) 

0.99 8.73 1.13 
(0.88–1.44) 

0.34 1.09 
(0.79–1.50) 

0.61 

1st year 8.04 1.03 
(0.83–1.28) 

079 0.96 
(0.72–1.27) 

0.77 819 1.12 
(0.87–1.43) 

0.38 1.13 
(0.83–1.55) 

0.43 

2 years 7.49 1.05 
(0.85–1.29) 

0.68 0.95 
(0.72–1.24) 

0.70 7.75 1.14 
(0.90–1.44) 

0.28 1.16 
(0.86–1.56) 

0.34 

O3 Pregnancy 7.79 1.03 
(0.86–1.23) 

0.73 1.18 
(0.96–1.44) 

0.11 7.75 0.96 
(0.81–1.13) 

0.62 1.03 
(0.86–1.25) 

0.72 

1st year 6.54 1.06 
(0.89–1.27) 

0.51 1.09 
(0.89–1.32) 

0.40 6.32 0.99 
(0.84–1.16) 

0.86 1.01 
(0.84–1.20) 

0.95 

2 years 6.74 1.00 
(0.82–1.21) 

0.97 0.99 
(0.80–1.24) 

0.96 6.32 0.94 
(0.80–1.12) 

0.51 0.96 
(0.79–1.17) 

0.69 

Air temperature Pregnancy 2.24 1.49 
(1.21–1.83) 

0.00 1.51 
(1.21–1.88) 

0.00 2.36 1.31 
(1.08–1.59) 

0.01 1.32 
(1.07–1.63) 

0.01 

1st year 1.25 1.28 
(1.06–1.54) 

0.01 1.26 
(1.04–1.52) 

0.02 1.25 1.07 
(0.90–1.27) 

0.42 1.07 
(0.90–1.27) 

0.47 

2 years 0.93 1.25 
(1.05–1.49) 

0.01 1.27 
(1.06–1.52) 

0.01 0.94 1.05 
(0.88–1.24) 

0.58 1.05 
(0.88–1.25) 

0.61 

Greenness 
(NDVI) 

Pregnancy 0.10 0.93 
(0.79–1.11) 

0.42 0.99 
(0.83–1.20) 

0.95 0.09 0.99 
(0.84–1.17) 

0.93 1.09 
(0.91–1.31) 

0.34 

1st year 0.10 0.95 
(0.80–1.14) 

0.60 0.97 
(0.81–1.18) 

0.78 0.08 1.04 
(0.91–1.19) 

0.57 1.08 
(0.93–1.25) 

0.30 

2 years 0.09 0.99 
(0.83–1.17) 

0.87 0.99 
(0.83–1.18) 

0.92 0.08 1.01 
(0.86–1.18) 

0.34 1.14 
(0.95–1.36) 

0.15 

IQR: Interquartile range; OR: Odds ratio; CI: Confidence interval; PM2.5: Particulate matter with a diameter <2.5 μm; NO2: Nitrogen dioxide; O3: Ozone; NDVI: 
Normalized difference vegetation index; Pregnancy: Exposure during pregnancy; 1st year: Mean exposure during the first year of life; 2 years: Mean exposure during 
the first two years of life. 
Note: Models are adjusted for age, sex, diabetes family history and socioeconomic factors. The ORs are based on one IQR decrease in air temperature level and one IQR 
increase in other continuous variables except for age (OR per 1-year increase). 
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A B S T R A C T   

Background: Emerging evidence supports an association between light at night (LAN) exposure with obesity or 
overweight in adults. However, effects of LAN exposure during childhood have yet to be further investigated. 
Objective: In this study, we aimed to determine whether LAN exposure is associated with body mass in young 
children. 
Research design and method: We used data from the Fr1da cohort study which screened children for early-stage 
islet autoimmunity in Bavaria, Germany from February 2015 to March 2019. A total of 62,212 children aged 
<11 years with complete residential information was included in the analysis. Self-reported weight and height 
were used to calculate age- and sex-specific body mass index (BMI) z-scores. LAN exposure was based on 
remotely sensed images from Visible Infrared Imaging Radiometer Suite and assigned to the children’s resi-
dencies. We used generalized additive models to estimate the associations between LAN exposure and BMI 
adjusting for potential confounders. 
Results: We observed an increase in BMI z-scores of 34.0% (95% confidence interval (CI): 25.4–42.6) per 10 nW/ 
cm2/sr increment in LAN exposure at baseline (2015) and of 32.6% (24.3–41.0) for LAN exposure one year prior 
to screening, both adjusted for age and sex. Similar associations were observed after adjustment for socioeco-
nomic status and urbanization degree. 
Conclusion: Our findings suggest that outdoor light exposure may be a risk factor for weight gain during 
childhood.   

1. Introduction 

Over the past few decades, the global prevalence of childhood 
obesity and overweight has increased substantially (Abarca-Gómez, 
2017; PARK YS, 2004; WHO, 2015). For example, from 1970 to 2006, 
the prevalence rates in U.S. children and adolescents more than doubled 
(Hedley et al., 2004; Ogden et al., 2008). Similar increasing patterns are 
reported in Australia, China and the United Kingdom (Popkin, 2010). In 

fact, according to global pooling studies, almost all countries have 
prevalent obesity/overweight during childhood and adulthood (Boddy, 
2020; Collaboration, 2019; Collaboration, 2021). This threatens the 
health of a generation of children because being overweight or obese 
during childhood is associated with a variety of negative health conse-
quences in later life, such as cardiovascular diseases, gastrointestinal 
conditions, cancers, metabolic complications, and diabetes (Bibbins--
Domingo et al., 2007; Daniels, 2009; Fourlanos, 2008; Han, 2010). 
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Obesity is a multifactorial disorder affected by interacting genetic 
and non-genetic factors (Han, 2010), with a result of an imbalance be-
tween energy intake and expenditure (Bont et al., 2019; Rybnikova, 
2016). While a sedentary lifestyle and calorie intake are considered as 
initial causes, attempts to alleviate their detrimental impacts have not 
led to significant changes in the prevalence of obesity. It implies the 
influence of additional factors that may play a role in the etiology of 
obesity (McFadden, 2014; Pattinson et al., 2016). Artificial light expo-
sure is among the suspected factors. 

In modern societies, urbanization and infrastructure development 
have led to higher exposure to artificial lights, emitted by residential 
areas, road illumination and economic activities (Amaral, 2006). The 
widespread use of electrical lighting has beneficial effects on the quality 
of human life and suits contemporary lifestyles (Doll, 2006; Rybnikova, 
2016). However, benefits have been accompanied by adverse health 
impacts, mainly through disrupting circadian processes driving physi-
ological mechanisms including metabolism (Bass and Takahashi, 2010), 
sleep-wake cycles (Borbély, 1998), and body mass (Bray and Young, 
2007). For example, several epidemiological studies showed a negative 
association between light at night (LAN) exposure and obesity (Koo 
et al., 2016; Obayashi et al., 2013, 2016) and diabetes (Knutson, 2007). 
In China, higher levels of outdoor LAN were associated with larger BMI 
and higher odds of being overweight and obese in children (Lin, 2022). 
In the U. S., the increasing trends in LAN exposure paralleled the in-
crease in obesity rates (Fonken, 2014). Night-shift workers with dis-
rupted sleeping and eating phases were more likely to be obese 
compared with day-shift workers (Antunes, 2010; De Bacquer, 2009). 
LAN exposure was further associated with the risk of 
hormone-dependent types of cancer such as breast and prostate cancer 
in the U.S. (Bauer et al., 2013), Spain (Garcia-Saenz et al., 2018), and 
worldwide (Kloog et al., 2009). 

One potential mechanism that has been suggested is that LAN 
exposure may lead to disruption of the circadian rhythm, which regu-
lates several physiological processes such as metabolism and sleep-wake 
cycles. Exposure to LAN may suppress the production of melatonin, a 
hormone that is involved in regulating circadian rhythms, and change 
the timing and quality of sleep, which may affect energy balance and 
lead to weight gain (Bass and Takahashi, 2010; Bray and Young, 2007). 
Additionally, exposure to LAN may lead to changes in the timing and 
frequency of meals which can affect energy balance and contribute to 
weight gain (McFadden, 2014). For example, eating late at night has 
been linked to weight gain and higher BMI (Baron et al., 2011). 

However, although childhood plays a critical role in the establish-
ment of lifelong adiposity trajectories (Campbell et al., 2014), most 
previous studies focused on adults and only little is known about the 
LAN impacts on children’s health. Therefore, the present study investi-
gated the cross-sectional association between exposure to outdoor LAN 
with BMI in children in Bavaria, Germany, using data from the Fr1da 
study, a large cohort of Bavarian children. 

2. Methods 

2.1. Study population and design 

The present study was based on data from the Fr1da cohort in 
Bavaria, Germany. From February 2015 until March 2019, more than 
90,000 children were recruited in this population-based screening for 
early-stage type 1 diabetes (having ≥2 pancreatic islet autoantibodies). 
Inclusion criteria were residing in Bavaria and having no previous 
diagnosis of diabetes. Recruitment was offered by primary care pedia-
tricians during medical check-up visits and written informed consent 
was obtained from the parents or legal guardians. Information on par-
ticipants’ residential addresses at the screening time and individual 
characteristics including age, sex, weight, and height were collected 
with self-administered questionnaires at the visit. The study design is 
described in detail elsewhere. We included 62,630 Fr1da participants 

aged <11 years with valid residential information in our analysis. Fig. 1 
provides a detailed overview of the exclusion process. Fig. 2(a) presents 
the distribution of participants across the study area. The study protocol 
was approved by the institutional review board at Technical University 
Munich. 

2.2. Outcome definition 

Height and weight were used to calculate BMI (BMI = weight (kg)/ 
height (m2)). Age- and sex-specific BMI z-scores were then calculated 
using the World Health Organization Child Growth Standards (WHO, 
2006) through the following formula: 

BMI z − score : [(BMI /M)L − 1] / (L×S).

where M = median, L = Box-Cox power transformation, and S =
coefficient of variation. Missing BMI z-scores (n = 12,574) were imputed 
using regression predictions for deterministic imputation. Participants 
with a BMI z-scores >5 or < − 5 were excluded (n = 79), following the 
Fr1da base paper (Ziegler et al., 2020). 

2.3. LAN exposure 

Population-based studies (Hurley et al., 2014; Kloog et al., 2009, 
2010) investigating LAN exposure primarily used data derived from the 
U.S. Defense Meteorological Satellite Program (DMSP) images. How-
ever, the application of the DMSP data in epidemiological research may 
cause exposure misclassification, mainly due to their poor spatial reso-
lution (~5 km2 at nadir). In 2011, a new instrument namely Visible 
Infrared Imaging Radiometer Suite (VIIRS) (Elvidge, 2021; Elvidge 
et al., 2017) was launched jointly by National Aeronautics and Space 

Fig. 1. Flow chart of the exclusion process.  
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Administration (NASA) and National Oceanic and Atmospheric 
Administration to collect high-quality radiometric data with worldwide 
coverage (National Oceanic and Atmospheric Administration (NOAA) 
National Oceanic and Atmospheric Administration (NOAA)National 
Oceanic and Atmospheric Administration (NOAA) ) The new instrument 
has several improvements, such as a higher spatial resolution (~750 m2 

at nadir), a finer radiometric quantization (14 bit), a lower light imaging 
detection limit (~2 × 10− 11 W cm− 2 sr− 1), a wider dynamic range, 
radiometric calibration, and having no saturation. Moreover, the VIIRS 
overpass time is after midnight (around 1:30 a.m.), whereas the DMSP 
overpass time was early evening (around 7:30 p.m.) (Elvidge, 2013). A 
recent study in Israel (Rybnikova, 2017) compared DMSP and VIIRS 
data to investigate the association between light pollution and breast 
cancer incidence and reported the VIIRS data being a considerably 
stronger predictor. 

We used monthly and yearly average raster grids from 2014 with 
coverage of 180◦ W, 75◦ N, 180◦ E, and 65◦ S and a spatial resolution of 
~300 m × 400 m and assigned them to the residential address of the 
study participants. The address geocoding procedure has been described 
in our previous paper (Badpa et al., 2022). Exposure to LAN was assessed 
1) at baseline (annual average for 2015), and 2) within one year prior to 
screening (by averaging the monthly mean values from the month of 
screening to the 12th month beforehand). We excluded outliers defined 
as LAN values more than the 3rd quartile +3*interquartile range (n =
339) (Fig. 2 (b)). 

2.4. Confounders 

Individual-level covariates included screening age (continuous) and 
sex (female or male). Percentage of households with low income pro-
vided by WiGeoGIS (Gesellschaft für Digitale Wirtschaftsgeographie) 
maps at 1 × 1 km2 spatial resolution for 2014 was used as a measure of 
neighborhood socioeconomic status (SES). Level of urbanization of 
residence was derived from the Eurostat (EUROSTAT, 2020) maps for 
2018 comprising three categories: 1 = cities (highly urbanized areas), 2 
= towns and suburbs (intermediate urbanized areas) and, 3 = rural areas 
(low-urbanized areas). 

2.5. Statistical analysis 

We used generalized additive models to evaluate the associations 
between LAN exposure and BMI z-scores. We developed two models 
including 1) Crude model: with no adjustment; and 2) Main model: 
adjusting for age, sex, the percentage of low-income households and 
urbanization degree. Effect estimates are presented as percent change 
with 95% confidence intervals (CIs) in geometric mean of BMI z-score 
per 10 nW/cm2/sr increase in LAN. To examine the exposure-response 
curve, we included LAN as a thin-plate spline and plotted the respec-
tive curves. 

As a recent study in China indicated stronger effects of outdoor LAN 
on BMI z-score and overweight in males (Lin, 2022), we further per-
formed a subgroup analysis stratified by sex. The potential effect 
modification by sex was investigated by adding an interaction term 
between LAN and sex (female vs male) into the main model. 

In sensitivity analyses we 1) investigated whether the associations 
were similar in preschool ages by restricting the dataset to children aged 
1.75–5.99 years; 2) checked the confounding role of other SES factors by 
replacing urbanization degree with population density (low/medium 
density: ≤400 vs. high density: >400 persons/km2); 3) repeated all 
analyses using the dataset excluding imputed BMI z-scores; 4) rerun the 
main model excluding age and sex. 

To validate our results we repeated the main analyses using Fr1da 
PLUS data, the second phase of Fr1da screening additional children 
between October 2019 and March 2021 in the same area. The recruit-
ment strategy and screening process used in Fr1da PLUS were identical 
to those used in the original Fr1da study in order to ensure consistency 
and comparability. Data collection and management for Fr1da PLUS 
followed the same standards as the original Fr1da study, and all par-
ticipants provided written informed consent. The variables measured in 
Fr1da PLUS were the same as those in the original Fr1da sample. For the 
validation analysis, we examined the data of 39,782 children out of 
48,175 available addresses in Fr1da PLUS. Supplemental Figure S1 il-
lustrates the exclusion details and spatial distribution of the validation 
sample. As the recruitment took place mostly during the Covid-19 
pandemic, we generated two pandemic-related variables and further 
added them to the validation analysis: 1) a binary lockdown variable 
indicating whether the child was screened during severe lockdown pe-
riods (yes vs. no); 2) a monthly time trend starting from the first month 
of screening and added as a linear term. 

All statistical analyses were performed using R 4.0.2 for Windows 
with the “mgcv” package and spatial analysis tools in the “raster”, 

Fig. 2. Spatial distribution of study participants and LAN values in 
Bavaria, Germany. Maps show a) number of the participants (n = 62,212) in 1 
km × 1 km grid cells and b) annual average of LAN (2015) at 300 m × 400 m 
grid resolution. LAN: Light at night; nW/cm2/sr: nanoWatts per square centi-
meter per steradian. Note: The red grids on the LAN map represent the outliers. 
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“rgdal”, and “sp” packages. 

3. Results 

3.1. Descriptive statistics 

A total of 62,212 participants was included in our analyses. The 
mean age was 3.33 ± 1.28 years, 48.3% were female and the mean BMI 
z-scores was 0.12 ± 1.03. The mean LAN exposure was 7.93 ± 7.78 nW/ 
cm2/sr at baseline and slightly higher with 8.31 ± 7.97 nW/cm2/sr 
within one year prior to screening (Table 1). On average, participants in 
the validation sample were older (4.41 ± 2.57) and had higher BMI z- 
score (0.27 ± 1.15) but similar levels of LAN exposure (Table S1). 

3.2. Regression models 

Per 10 nW/cm2/sr increment in LAN, BMI z-scores considerably 
increased by 32.2% (95% CI: 23.6–40.8) at baseline and by 31.1% 
(22.7–39.5) within one year before screening (crude model). Similar 
associations were observed when additionally controlling for age, sex, 
low-income households, and urbanization degree but in smaller 
magnitude (baseline exposure, BMI z-score increment: 14.4%, 95% CI: 
1.6–27.2; one-year exposure, BMI z-score increment: 12.1%, 95%CI: 
0.0–24.8). When stratified by sex, the effect estimates were much more 
pronounced in males than in females in both the crude and adjusted 
model (Table 2). In the latter, females showed no considerable associ-
ations anymore and effect estimates were small but still positive. We also 
observed significant effect modification by sex in both the crude and 
adjusted model (pinteraction<0.05). 

The inclusion of LAN as smooth function indicated linear relation-
ships between both exposure variables and BMI z-scores (Supplemental 
Figure S2). 

In sensitivity analyses, associations remained stable when we 
restricted the dataset to preschool-aged children. Controlling for 

population density instead of urbanization degree resulted in slightly 
higher estimates. Lower estimates were seen after the exclusion of age 
and sex from the main model (Fig. 3, Supplemental Table S2). 

The validation analysis also confirmed positive associations, 
although the estimates were attenuated. In contrast to our main analysis, 
the stratification by sex showed no differences for females and males and 
similar patterns were observed when stratifying by sex, but the inter-
action term was not significant. Associations remained robust when 
further adjusting for the pandemic-related variables (Fig. 3, Supple-
mental Table S3). 

4. Discussion 

Despite the growing body of evidence on the adverse effects of light 
pollution on human health, the planet has been more exposed to LAN 
over recent years (Hölker, 2010). In this large cross-sectional study of 
young children, we explored the association of outdoor LAN levels at 
baseline and within one year prior to screening with BMI z-scores. Our 
results provided epidemiological evidence that long-term exposure to 
LAN is associated with higher BMI after controlling for demographic and 
SES factors. There was also a suggestion of effect modification by sex and 
the effect estimates were stronger in males than in females. 

Despite the limited studies conducted, our findings were consistent 
with previous studies in children, adults, and animals, meaning that 
variation in light exposure may affect body mass (Fonken et al., 2013; 
Pattinson et al., 2016; Reid et al., 2014). In a recent Chinese study 
among over 47,000 children and adolescents aged 6–18 years, partici-
pants exposed to higher outdoor LAN levels had larger BMI z-scores (β =
0.26, 95% CI: 0.18–0.33 per unit increase in LAN) and higher odds of 
being overweight or obese (the third quartile vs. the lowest quartile: 
overweight + obesity: OR = 1.40, 95% CI: 1.25–1.56; obesity: OR =
1.46, 95% CI: 1.29–1.65) (Lin, 2022). A Korean cross-sectional study 
among 10,040 adults found a positive association between outdoor 
artificial LAN and obesity, after adjustment for various confounders (OR 
= 1.20; 95% CI = 1.06–1.36) (Koo et al., 2016). A large-scale ecological 
study looking at data from more than 80 countries around the world 
reported a positive association between outdoor LAN exposure with 
overweight and obesity in adult women and men (B = 0.002–0.009, t =
2.739–2.877, P < 0.01 and B = 0.003–0.043, t = 1.972–2.658, P < 0.1, 
respectively), after adjusting for per capita GDP, level of urbanization, 
birth rate and regional differences in overweight and obesity prevalence 
(Rybnikova, 2016). A meta-analysis of 12 studies reported that higher 
LAN exposure was associated with 13% (summary odds ratio (SOR) =
1.13; 95% CI: 1.10–1.16) and 22% (SOR = 1.22, 95% CI; 1.07–1.38) 
higher odds of overweight and obesity, respectively (Lai, 2020). 

Consistent results were reported for the association of LAN with BMI 
and the risk of overweight/obesity in shift workers. For example, a meta- 

Table 1 
Descriptive statistics of the study participants.  

Study variables Fr1da (N =
62,212) 

Male (N =
31,773) 

Female (N 
= 29,690) 

Pvalue 

Mean ±
SD/N (%) 

Mean ±
SD/N (%) 

Mean ± SD/ 
N (%)  

Age (years) 3.33 ± 1.28 3.32 ±
1.28 

3.34 ± 1.29 0.63 

Sex (female) (n miss =
749) 

29,690 
(48.3)    

BMI z-score (n miss =
1,034) 

0.12 ± 1.03 0.10 ±
1.06 

0.15 ± 1.00 <0.00 

Households with low 
income (<1250 €) (%) 

20.71 ±
22.31 

20.66 ±
20.36 

20.77 ±
22.26 

0.20 

Urbanization degree    0.11 
cities 21,130 

(34.0) 
10,687 
(33.6) 

10,147 
(34.2)  

towns and suburbs 23,547 
(37.8) 

12,006 
(37.8) 

11,277 
(38.0)  

rural areas 17,533 
(28.2) 

9079 (28.6) 8265 (27.8)  

LAN (nW/cm2/sr) 
Baseline exposure 7.93 ± 7.78 7.94 ±

7.83 
7.92 ± 7.72 0.43 

One-year exposure 8.31 ± 7.97 8.31 ±
8.02 

8.31 ± 7.92 0.29 

SD: Standard deviation; Min: Minimum; Max: Maximum; BMI z-score: Age- and 
sex-specific BMI; N miss: Number of missing observations; LAN: Light at night; 
nW/cm2/sr: nanoWatts per square centimetre per steradian; Baseline expo-
sure: Annual average in the study base year (2015); One-year exposure: 
Average exposure within one year prior to screening. 
Pvalues are derived from Kruskal-Wallis rank sum test for continuous variables 
and Chi-square test for categorical variables, indicating sex differences in study 
variables. 

Table 2 
Percent changes (95% CIs) in BMI z-score per 10 nW/cm2/sr increase in LAN.  

LAN (nW/cm2/sr) Crude modela Pvalue Main modelb Pvalue 

Overall 
Baseline exposure 32.2 (23.6–40.8) <0.001 14.4 (1.6–27.2) 0.03 
One-year exposure 31.1 (22.7–39.5) <0.001 12.1 (0.0–24.8) 0.04 
Female 
Baseline exposure 16.8 (7.0–26.7) <0.001 3.3 (− 11.1 – 17.6) 0.66 
One-year exposure 17.7 (8.1–27.3) <0.001 4.8 (− 9.4 – 19.0) 0.51 
Male 
Baseline exposure 54.2 (38.8–69.7) <0.001 31.2 (8.6–53.8) 0.01 
One-year exposure 50.3 (35.2–65.3) <0.001 23.7 (1.3–46.2) 0.04 

LAN: Light at night; nW/cm2/sr: nanoWatts per square centimeter per stera-
dian; Baseline exposure: Annual average exposure in the study base year 
(2015); One-year exposure: Average exposure within one year prior to 
screening. 

a Crude model: with no adjustment. 
b Main model: adjusted for age, sex, percentage of low-income households, 

and urbanization degree. 
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analysis including 28 studies revealed higher odds of obesity/over-
weight for night shift workers (OR = 1.23; 95% CI = 1.17–1.29) (Sun 
et al., 2018). However, the results may not be generalized to the general 
population because the levels of LAN exposure in shift workers are 
substantially higher than in the general population. 

Moreover, our main analysis suggested that exposure to LAN may 
have a stronger effect on weight gain in males than in females and is thus 
in line with the findings of the study in China in children (Lin, 2022). 
Possible explanations for the sex difference might include hormonal 
differences or susceptibility to environmental exposures. However, in 
our validation analysis, we could not confirm this pattern and observed 
similar associations for both females and males. Thus, additional 
research is needed to explore these mechanisms further. 

However, in our validation analysis, we could not confirm this 
pattern and observed similar associations for both females and males. 
One possible explanation for not observing the sex difference in the 
validation analysis could be related to the sample size. The number of 
participants in the validation analysis was not large enough to detect a 
difference in effect size between males and females. Thus, additional 
research is needed to explore these mechanisms further. Even though 
this is an epidemiological study looking into the links between LAN 
exposure and BMI and the findings do not directly attribute a causal 
relationship, the results are in line with results from previous laboratory 
experiments (Fonken et al., 2010). Fronken et al. (Fonken et al., 2013) 
reported changes in the circadian clock in mice exposed to dim LAN 
temporally altered feeding behavior and increased weight gain. Arbel 
et al. (Arble et al., 2009) showed that after a 6-week period and under 
similar locomotor activity and calorie intake conditions, mice fed only 
during the 12-h light phase gained significantly more weight than mice 
fed only during the 12-h dark phase (32 ± 1.5 g and 26 ± 1.7 g in the 
case and control groups, respectively; p < 0.05). 

Several pathways have been suggested through which artificial light 
pollution could potentially affect human health. For example, it is hy-
pothesized that LAN can alter the circadian rhythm. Circadian cycles 
regulate almost all organisms to synchronize their physiologic process 
with daily changes in the environment (Aulsebrook et al., 2018). 
Disruption of the 24-h light-dark cycle may cause both external and 
internal desynchrony, impair metabolic functions and result in a variety 
of disorders such as obesity and diabetes (Moreno, 2011; Navara and 
Nelson, 2007). 

Circadian misalignment induced by LAN exposure can also affect 
sleep duration. Studies showed short sleep duration was associated with 
obesity in all age groups (Chen, 2008) and children (Chahal et al., 2013). 
A review by Cho et al. reported negative health effects of exposure to 
bright light while sleeping in children and adolescents (Cho et al., 2015). 
Sleep deprivation and desynchronized sleep-wake cycles may affect 
metabolism and lead to higher risks of obesity (Lai, 2020). In addition, it 
can induce behavioural changes such as dietary patterns and physical 
activity which might be potential mediators in the LAN-obesity rela-
tionship (Park et al., 2019). Studies in humans have shown that 
phase-delayed feeding patterns are associated with altered metabolism 
and increased BMI (Garaulet and Madrid, 2010). 

Another pathway could be through suppression of nocturnal mela-
tonin, a pineal hormone which is primarily known for its critical regu-
lating role in circadian rhythms, sleep onset and the immune system 
(Karamitri and Jockers, 2019). Melatonin secretion is low during the 
daytime but high in the dark. Exposure to light during evening and night 
can delay or suppress normal melatonin secretion which can result in 
several diseases in humans, including different types of cancer, meta-
bolic syndrome, and weight gain (Tähkämö et al., 2019). An experi-
mental study reported significantly lower melatonin concentrations by 
exposure to light in both children and adults (Higuchi et al., 2014). The 
study also showed melatonin suppression by light was particularly 
pronounced in children, suggesting that melatonin is more sensitive to 
light during childhood. 

4.1. Strengths and limitations 

Our study has several strengths. First, to the best of our knowledge, 
this study is the first epidemiological evidence of the associations be-
tween outdoor LAN in pre-pubertal children. Second, This study is based 
on a large sample size which enabled us to investigate the associations in 
a statistically precise manner. Third, participants were geographically 
distributed across the study area which ensured large exposure con-
trasts. Fourth, we used the VIIRS nighttime light radiance data that have 
significant improvements in many aspects over the DMPS data which 
were mainly used in previous epidemiological studies. Fifth, along with 
the evidence from other cross-sectional and laboratory studies, the as-
sociation found between outdoor LAN and childhood body mass in our 
study may help change governmental policy and public health strategies 

Fig. 3. Associations between exposure to LAN and BMI z-scores in children in Bavaria, Germany: sensitivity and validation analyses. LAN: Light at night; nW/cm2/ 
sr: nanoWatts per square centimetre per steradian; Baseline exposure: Annual average exposure in the study base year (2015 for Fr1da and 2019 for Fr1da PLUS); 
One-year exposure: Average exposure within one year prior to screening. All estimates were adjusted for age, sex, percentage of low-income households, and 
urbanization degree if not stated otherwise in the label at the top of the panels. The top row shows the results from the main analysis and sensitivity analyses (using 
only preschool ages, adjusting for population density instead of urbanization degree, excluding imputed BMI Z-scores, and not adjusting for age and sex). The second 
row shows the results from the validation analyses using Fr1da PLUS data, including the main model with the same confounders as in the main analysis and the main 
model after additional adjustment for two pandemic-related variables. 
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to reduce outdoor LAN. Finally, we also performed validation and 
sensitivity analyses and the results were similar to the main results, 
indicating the robustness of our findings. 

Our results may be subjected to several limitations. First, we used 
satellite data to estimate individual LAN exposure, while outdoor LAN 
values may not precisely reflect individual LAN exposure as indoor LAN 
from electronic lamps, television, smartphones and computer screens 
can also affect individual exposure levels. However, the objective of this 
study was to investigate outdoor light pollution in order to determine 
whether it is associated with children’s health, especially BMI level, 
which was found to be considerably associated. In addition, compared to 
indoor LAN, outdoor LAN exposure is more likely to be reduced by 
effective government regulations to limit outdoor artificial light pollu-
tion. Second, it has previously been shown that the health effects of LAN 
are related not only to the intensity of light per se, but also to the 
exposure conditions such as the duration and biological time of the 
exposure (Cho et al., 2015). These data were not available in our study. 
The lack of residential history is another limitation. The residential 
addresses at the screening time were used as a proxy measure for 
exposure to LAN. Relocation and changes in light pattern might have led 
to exposure misclassification and biased risk estimates. However, we 
believe misclassification bias due to mobility changes during childhood 
to be relatively small because of low mobility rates. A German study 
reported that 73.3% of the study children lived almost half of their life at 
the registration address or nearby (Heinrich et al., 1999). Moreover, the 
BMI variable used in this study was based on self-reported information 
on children’s weight and height, which is prone to misclassification. 
Finally, because Fr1da was designed to investigate the early stages of 
pancreatic islet autoimmunity, the collected data are insufficient for an 
in-depth study. For example, we could not determine potential con-
tributors including indoor lighting and lifestyle-related factors. 

5. Conclusion 

Our results show that increased exposure to outdoor LAN was asso-
ciated with higher body mass in children and the associations were 
stronger in boys. This may draw attention to investigating environ-
mental light as a potential obesogenic factor during human develop-
ment, suggesting that lowering artificial LAN levels and returning to 
natural light patterns might be useful interventions for pediatric obesity 
prevention. Continued research on the impact of indoor and outdoor 
LAN and their independent and combined effects on human health as 
well as further interventional studies are needed. 
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IV. Appendix 

Publication 3: Air Pollution, Traffic Noise, Greenness, and 

Temperature and the Risk of Incident Type 2 Diabetes  

Methods 

Study population 

The third publication of this thesis was based on data collected in the Cooperative Health Research 

in the Region of Augsburg (KORA) cohort study. As part of the KORA study, a sequence of four 

cross-sectional surveys was conducted at five-year intervals (denoted as S1 to S4). Each survey 

involved selecting a random selection of participants from the urban area of Augsburg, Germany, 

and the two neighboring rural counties of Augsburg and Aichach-Friedberg. The study population 

for this analysis comprised a total of 9,116 participants aged between 25 and 74 years old, drawn 

from the two baseline surveys, S3 (1994-1995), and S4 (1999-2001), with available follow-up 

information until 2016. Figure A1 presents an overview of the KORA study.  

  

Figure A1. Overview of the KORA study 
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Outcome definition  

The incidence of T2D was determined through written questionnaires administered to all 

participants during follow-up examinations. To validate the incident T2D status and the date of 

diagnosis, a questionnaire was sent to the treating physician, or medical chart review was 

conducted. Participants were considered incident cases of T2D only if the treating physician 

explicitly reported a T2D diagnosis, if the diagnosis was documented in medical records, or if the 

participant reported the use of anti-diabetic medication during any follow-up period.  

Exposure data assessment 

Annual average residential exposure to nitrogen oxides (NO2, NOx), ozone (O3), different PM size 

classes (PM10, PM2.5, PMcoarse), PM2.5absorbance (as indicator for soot), and particle number 

concentration (PNC, an indicator for ultrafine particles) was estimated using land-use regression 

(LUR) models. These models were based on air pollution measurements recorded at 20 locations 

in the KORA study area during three two-week periods in 2014-2015, and were developed by 

statistically regressing the recorded annual average concentrations against spatial predictors 

derived from geographic information system participants' residential exposure levels were 

determined based on these models. 

The annual average day-evening-night sound level for 2011 was determined using a three-

dimensional ground model developed by ACCON GmbH. This comprehensive model considered 

factors such as breaking edges, bridge constructions, and noise abatement walls, particularly in 

relation to public roads. Additionally, it took into account characteristics from approximately 

87,000 buildings within the study area. 

NDVI data derived from Landsat 5 Thematic Mapper satellite images taken in 1994-1995 (S3) and 

1999-2001 (S4) at a spatial resolution of 30 meters was used to assess greenness within 300m and 

1000m buffers. In this study, all negative values were set to zero. 

Annual mean and standard deviation (SD) air temperature data for 2000 were extracted from 

temperature maps developed through the multi-stage modeling approach involving various data 

sources for entire Germany at 1 km x 1 km resolution.  
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Statistical analysis 

The longitudinal associations between environmental factors and T2D were examined using Cox 

Proportional Hazards models, with follow-up time as the underlying timescale and an indicator 

variable for subcohort (S3/S4). Participants were censored at the earliest occurrence of an event, 

withdrawal request, death, emigration, loss to follow-up, or the end of the study period. Three 

predefined models with varying levels of confounder adjustment were employed. Furthermore, 

effect modification was assessed by introducing interaction terms between each exposure variable 

and potential effect modifiers, such as sex, age, obesity, educational level, and physical activity. 
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Key findings 

The findings from the third publication revealed that while some positive effect estimates were 

observed, overall, there were weak or no significant associations between environmental exposures 

and incident T2D. Furthermore, the inclusion of additional covariates in the models had only 

minimal impacts on the effect estimates. Interestingly, the effects of NOx, O3, PM10, and PNC were 

found to be modified by sex, with NOx, PM10, and PNC having more pronounced effects in males, 

while O3 showed stronger effects in females, indicating potential sex-specific influences. 

Additionally, the effect of PM2.5absorbance was modified by educational level, with a more 

pronounced effect observed in highly educated individuals. 

 Key finding 3: Exposure to environmental factors showed weak or no significant 

associations with incident T2D, with some modified effects based on sex (NOx, O3, PM10, 

and PNC) and educational level (PM2.5absorbance). 
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Air pollution, traffic noise, greenness, and 
temperature and the risk of incident type 
2 diabetes
Results from the KORA cohort study

Mahnaz Badpaa,b,*, Alexandra Schneidera, Lars Schwettmannc,d, Barbara Thoranda,b,e, Kathrin Wolfa, 
Annette Petersa,b,e

Introduction: Type 2 diabetes (T2D) is a major public health concern, and various environmental factors have been associated with 
the development of this disease. This study aimed to investigate the longitudinal effects of multiple environmental exposures on the 
risk of incident T2D in a German population-based cohort.
Methods: We used data from the KORA cohort study (Augsburg, Germany) and assessed exposure to air pollutants, traffic noise, 
greenness, and temperature at the participants’ residencies. Cox proportional hazard models were used to analyze the associations 
with incident T2D, adjusting for potential confounders.
Results: Of 7736 participants included in the analyses, 10.5% developed T2D during follow-up (mean: 15.0 years). We found weak 
or no association between environmental factors and the risk of T2D, with sex and education level significantly modifying the effects 
of air pollutants.
Conclusion: Our study contributes to the growing body of literature investigating the impact of environmental factors on T2D risks 
and suggests that the impact of environmental factors may be small.

Keywords: Air pollution; Greenness; Traffic noise; Temperature; Type 2 diabetes; Environmental epidemiology; Population-based 
cohort

Introduction
Type 2 diabetes (T2D) is projected to become the 7th highest 
cause of mortality by 2030.1,2 Alongside well-known risk factors 
such as obesity, physical inactivity, and genetic predisposition, 
several environmental factors have been linked to T2D risk in 
previous studies.3,4

Four reviews5–8 compiled data from epidemiological studies 
and suggest a positive association between long-term expo-
sure to particulate matter (PM) and nitrogen dioxide (NO2), 
and prevalence and incidence of T2D. Similarly, meta-analyses 
suggested a positive correlation between exposure to traffic 
noise, particularly during nighttime, and a higher risk of T2D 
incidence.9,10 Moreover, access to green spaces, as measured by 
either the proportion of greenness or the proximity to green 
areas, has shown beneficial effects on reducing the likelihood 
of developing T2D.11 The association of temperature with T2D 
risk and fasting plasma glucose levels is, however, complex, with 
some studies suggesting increased risk with higher tempera-
tures,12 while others indicated U-shaped relationships involving 
both high and low temperatures.13

Despite these findings, studies assessing multiple environmental 
exposures are still scarce, and there is a lack of longitudinal inves-
tigations examining the link with T2D incidence. In this article, we 
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aimed to investigate the longitudinal effects of various exposures 
on T2D incidence in a German population-based cohort.

Methods

Study population

We used data from the third (KORA S3, 1994–1995, n = 
4856) and fourth (KORA S4, 1999–2001, n = 4260) survey 
of the KORA (Cooperative Health Research in the Region of 
Augsburg) study14 and follow-up information until 2016. For 
our analysis, we excluded participants who requested data 
withdrawal (N = 80), with a diabetes diagnosis at baseline  
(N = 381), lacked follow-up data (N = 521), with unknown 
residential address (N = 270), or had missing values in the main 
model’s covariates (N = 128) (Figure S1, http://links.lww.com/
EE/A267).

Incident T2D assessment

T2D incidence was assessed through self-reported, clinically 
diagnosed diabetes assessed through follow-up questionnaires 
that were validated by physicians, medical chart review, or 
self-reported use of glucose-lowering medication.15,16 Self-
reported dates of diagnosis, were verified through medical 
records or physician contact. (Text S1, http://links.lww.com/EE/
A267).

Exposure assessment

Annual mean concentrations of air pollutants, including nitro-
gen oxides (NO2, NOx), ozone (O3), PM in different size classes 
(PM10 [≤10 μm], PM2.5 [≤2.5 μm], PM2.5absorbance [PM2.5abs] as an 
indicator for soot, PMcoarse [2.5–10 μm]), and particle number 
concentration (PNC) as an indicator for ultrafine particles were 
estimated using land-use regression models for 2014–2015.17 
Traffic noise exposure was estimated for 2011 using the noise 
and air pollution information system for Augsburg city and geo-
referenced pictures for rural areas.18 Greenness within 300 m 
and 1000 m buffers was assessed using normalized difference 
vegetation index (NDVI) from Landsat 5 Thematic Mapper 
satellite images for 1994–1995 (S3) and 1999–2001 (S4).19 
Annual mean and standard deviation (SD) air temperature 
were extracted from temperature maps developed within a 
multi-stage modeling approach for 2000.20 All exposures were 
assigned to the participants’ residential baseline addresses.

Statistical methods

We used the Cox proportional hazards model to analyze the 
association between environmental factors and incident T2D, 
with follow-up time as the underlying timescale and an indicator 
variable for subcohort (S3/S4). Participants were censored at the 
time of the event, withdrawal request, death, emigration, loss to 
follow-up, or the end of the study period, whichever came first.

Three models with varying degrees of confounder adjust-
ment were specified a priori based on previous research21 and 
data availability. The minimum model included age, sex, and 
subcohort indicator, the main model was further adjusted for 
other baseline characteristics (body mass index [BMI], smoking 
behavior, alcohol consumption, education level, physical activ-
ity, and dietary score22), and the extended model additionally 
included clinical information (cardiovascular diseases (CVD), 
waist-hip ratio, and cholesterol level) (Text S2, http://links.lww.
com/EE/A267).

In premodels, we tested nonlinearity but observed no con-
siderable deviance from linearity. Therefore, exposure variables 
were included as linear terms (Figure S2, http://links.lww.com/
EE/A267).

Effect modification was assessed by including an interaction 
term between each exposure variable and potential effect mod-
ifiers (sex, age, obesity, educational level, and physical activity) 
(Figure S3, http://links.lww.com/EE/A267). Results are presented 
as hazard ratios (HRs) per interquartile range (IQR) increase in 
exposure variables with 95% confidence intervals (CIs).

We used R 3.6.1 with “survival,” “mgcv,” and “raster” pack-
ages for all statistical analyses.

Sensitivity analysis

To evaluate the robustness of our findings, we used an alterna-
tive statistical model (Poisson regression) and applied the main 
model separately for the two subcohorts.

Results
Altogether, 7864 (86.3%) participants out of 9116 participants 
were included in our study (Figure S1, http://links.lww.com/
EE/A267). Of these, 10.5% developed T2D until the end of 
follow-up (Table 1). At baseline, the mean age was 49.2 years, 
almost half of the participants were male (49.2%), and the 
mean BMI was 27.0 kg/m². About a quarter of the participants 
reported being active smokers, and 47.0% reported being phys-
ically active (Table 1).

Annual average concentrations of NO2, PM10, and PM2.5 at 
participants’ residences were below the European air quality 
standard values but exceeded the current WHO guideline val-
ues. The mean levels of traffic noise were above the European-
recommended maximum values (Table 2).

Although some of the environmental exposures showed posi-
tive effect estimates (e.g. PM2.5 showing the strongest effect esti-
mate) confidence limits were large as estimated with the main 
model (Figure 1). The incorporation of additional covariates in 
the models had little to moderate impact on the HRs and 95% 
CIs compared to the minimum adjusted model. Sex modified 
the effect of NOx, O3, PM10, and PNC on T2D incidence, with 
O3 being more pronounced in females and the others in males 
(Figure S3, http://links.lww.com/EE/A267). The effect of PM2.5abs 
was modified by educational level.

Poisson models provided similar associations (Figure S4, 
http://links.lww.com/EE/A267) as the main Cox model. Also, 
stratified analyses by subcohort showed comparable results 
(Figure S5, http://links.lww.com/EE/A267) to the main pooled 
model.

Discussion
Our longitudinal analysis showed weak or no associations 
between the various environmental factors and T2D incidence, 
after adjusting for confounding factors. These results were con-
sistent across different analytical approaches and stratified anal-
yses of the two subcohorts. Considering the lack of significant 
associations in the single-exposure models, we refrained from 
conducting multi-exposure models.
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Systematic reviews and meta-analyses have reported both 
positive and null associations between environmental expo-
sures and T2D risk, indicating the complexity of these relation-
ships.3,11,23 They indicated robust results for T2D prevalence and 
heterogeneity between studies for incident T2D. A meta-analysis 
of cohort studies found higher risks of T2D associated with 
exposure to PM2.5 (risk ratio [RR]: 1.39 [1.14–1.68]), PM10 
(RR: 1.34 [1.22–1.47]), and NO2 (RR: 1.11 [1.07–1.16]),5 
while another meta-analysis only reported an association for 
PM2.5.

3 Our study found positive but nonsignificant associa-
tions for PM2.5 (HR: 1.07 [0.97–1.17]) and weak associations 

for other air pollutants. Air pollution may contribute to insulin 
resistance and chronic inflammation, which are key mechanisms 
in the development of T2D.24

Similarly, a higher diabetes risk has been associated with 
higher levels of traffic noise.9,23 However, this was not confirmed 
in a meta-analysis of four studies (pooled odds ratio [OR]: 1.49 
[0.78–2.82]).11 In our study, we observed weak and nonsignif-
icant associations for traffic noise during the day (HR: 1.02 
[0.93–1.11]) or at night (HR: 1.02 [0.94–1.11]). Noise-induced 
sleep disturbance and chronic stress may contribute to insulin 
resistance and an increased risk of diabetes.25

Table 1.

Baseline characteristics of study participants

Variable

KORA S3 + S4 (n = 7864)a KORA S3 (n = 4042)a KORA S4 (n = 3822)a

Missing n (%)
Mean ± SD/

n (%)
Mean ± SD/

n (%)
Mean ± SD/

n (%)

Incident T2D during follow-up 0 (0.0) 829 (10.5) 486 (12.0) 343 (9.0)
Age (years) 0 (0.0) 49.2 ± 13.8 49.6 ± 13.9 48.8 ± 13.7
Sex (male) 0 (0.0) 3,873 (49.2) 2020 (50.0) 1852 (48.5)
BMI (kg/m²) 71 (0.9) 27.0 ± 4.5 27.0 ± 4.4 27.0 ± 4.6
Waist-hip ratio 55 (0.7) 0.9 ± 0.1 0.9 ± 0.1 0.9 ± 0.1
Education level 8 (0.1)
  Low 1148 (14.6) 676 (16.7) 472 (12.4)
  Middle 5671 (72.2) 2895 (71.6) 2776 (72.8)
  High 1037 (13.2) 470 (11.6) 567 (14.9)
Smoking status 5 (0.1)
  Current smoker 2012 (25.6) 1013 (25.1) 999 (26.2)
  Ex-smoker 2486 (31.6) 1243 (30.8) 1243 (32.6)
  Never smoker 3361 (42.8) 1786 (44.2) 1575 (41.3)
Alcohol intake (g/day) 17 (0.2) 16.3 ± 22.1 16.8 ± 22.8 15.9 ± 21.3
Physical activity (active) 18 (0.2) 3687 (47.0) 1784 (44.1) 1903 (50.0)
Dietary score 21 (0.3) 15.3 ± 3.6 15.3 ± 3.6 15.2 ± 3.6
Cardiovascular disease (yes) 17 (0.2) 3057 (39.0) 1674 (41.4) 1383 (36.3)
Total cholesterol (mg/dL) 139 (1.8) 229.2 ± 43.7 230.8 ± 44.0 227.4 ± 43.3

an refers to the sample size before excluding participants with missing confounders used in the main model.
BMI indicates body mass index; KORA, Cooperative Health Research in the Region of Augsburg; S3, Third cross-sectional health survey of the KORA cohort; S4, Fourth cross-sectional health survey of the 
KORA cohort; SD, standard deviation; T2D, type 2 diabetes.

Table 2.

Descriptive statistics of annual average air pollutant concentrations, traffic noise, NDVI, and air temperature at residences

Variable

KORA S3 + S4 (n = 7864)a KORA S3 (n = 4042)a KORA S4 (n = 3822)a

Mean ± SD
Mean ± SD/

n (%)
Mean ± SD/

n (%)

Air pollutant NO
2
 (μg/m³) 14.2 ± 4.4 14.1 ± 4.3 14.5 ± 4.5

NO
x
 (μg/m³) 22.1 ± 7.1 22.0 ± 6.9 22.2 ± 7.4

O
3
 (μg/m³) 38.8 ± 2.4 38.8 ± 2.4 38.9 ± 2.5

PM
10

 (μg/m³) 16.6 ± 1.5 16.5 ± 1.5 16.7 ± 1.5
PM

2.5
 (μg/m³) 11.8 ± 1.0 11.8 ± 1.0 11.8 ± 1.0

PM
2.5, abs

 (10-5/m) 1.2 ± 0.2 1.2 ± 0.2 1.2 ± 0.2
PM

coarse
 (μg/m³) 4.9 ± 1.0 4.8 ± 1.0 5.0 ± 1.0

PNC (10³/cm³) 7.3 ± 1.8 7.2 ± 1.8 7.3 ± 1.8
Noise Daily average traffic noise (dB) 54.7 ± 6.6 54.6 ± 6.6 54.9 ± 6.6

Nighttime average traffic noise (dB) 45.7 ± 6.4 45.6 ± 6.3 45.8 ± 6.4
Greenness NDVI in 300 m buffer 0.5 ± 0.1 0.4 ± 0.1 0.5 ± 0.1

NDVI in 1000 m buffer 0.5 ± 0.1 0.5 ± 0.1 0.5 ± 0.1
Temperature Annual mean temperature (°C) 10.6 ± 0.4 10.6 ± 0.4 10.6 ± 0.4

Annual SD temperature (°C) 6.1 ± 0.2 6.0 ± 0.2 6.1 ± 0.2

The EU air quality standard values are 40 µg/m3 for PM
10

 and NO
2
, and 25 µg/m3 for PM

2.5
. The WHO air quality guideline values are 10 µg/m3 for NO

2
, 15 µg/m3 for PM

10
, and 5 µg/m3 for PM

2.5
. The WHO 

air quality guideline value for O
3
 is 60 µg/m3, which is calculated based on the peak season. The EU-recommended maximum value for traffic noise during night is 40 dB in residential areas.

an refers to the sample size before excluding participants with missing confounders used in the main model.
NDVI values below 0 were excluded since they represent water or bare rocks.
KORA indicates Cooperative Health Research in the Region of Augsburg; NDVI, normalized difference vegetation index; NO

2
, nitrogen dioxide; NO

x
, nitrogen oxide; O

3
, ozone; PM

10,
 particulate matter with an 

aerodynamic diameter ≤10 μm; PM
2.5,

 particulate matter with an aerodynamic diameter ≤2.5 μm; PM
2.5,abs

, PM
2·5

 absorbance; PM
coarse

, particulate matter with an aerodynamic diameter of 2.5–10 μm; PNC, 
particle number concentration; S3, Third cross-sectional health survey of the KORA cohort; S4, Fourth cross-sectional health survey of the KORA cohort; SD, standard deviation.
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Systematic reviews reported that green spaces may have a 
protective effect on T2D.11,26,27 A meta-analysis provided fur-
ther evidence that exposure to greenspace is associated with 
wide-ranging health benefits, including a significant reduction 
in T2D incidence (pooled OR: 0.72 [0.61–0.85]).28 However, 
we observed only weak associations. Green spaces play a crucial 
role in promoting physical activity and protecting against air 
and noise pollution, all of which may contribute to mitigating 
chronic inflammation processes.29

Studies on the effect of air temperature on T2D risk are lim-
ited. In a study, diabetes incidence increased by 0.31 [0.19–0.43] 
per 1 °C increase in annual mean temperature.30 In this study, we 
observed a weak effect of annual mean air temperature increase 
(HR: 1.02 [0.92–1.12]). In previous research, both higher tem-
peratures31 and lower exposure to cold32 were associated with 
increased insulin resistance. However, our study found no evi-
dence of this effect.

As previously reported,33–36 our study found that sex and edu-
cation level significantly modified air pollutant effects. However, 
our results showed opposite directions, possibly due to popula-
tion variations, exposure misclassification, or chance findings. 
Lifestyle and physiological differences between sexes or educa-
tion levels may contribute to these variations.34,37

Strengths and limitations

Our study’s strengths include the use of two datasets from a 
large and well-characterized population-based prospective 
cohort, comprehensive exposure assessment, adjustment for 
important confounders, and application of various analytical 
approaches. However, limitations such as single-time point 
exposure assessment, potential exposure misclassification, not 
accounting for residential mobility from baseline to follow-up, 
and lack of information on other lifestyle and clinical factors 
should be acknowledged. Potentially, measurement error may 
have resulted in underestimation of the underlying associations 
and insufficient statistical power may be responsible for the 
wide CI. Our analyses were also restricted to a specific popula-
tion and geographic region.

Conclusions
Although we observed weaker associations than previous 
studies indicated, our study contributes to the literature 
on environmental factors on incident T2D. Future research 
should continue exploring the role of the environment in T2D 
development.

Figure 1. Hazard ratios and 95% CIs for the associations between environmental factors, and the risk of incident T2D. Minimum model included age, sex, 
and subcohort indicator. Main model was further adjusted for BMI, smoking status, alcohol consumption, education level, physical activity, and dietary 
score. Extended model additionally included cardiovascular diseases, waist-hip ratio, and total cholesterol level. HRs are expressed per IQR increase for 
each exposure variable. The IQRs were as follows: NO2: 7.0 μg/m³, NOX: 8.1 μg/m³, O3: 3.6 μg/m³, PM10: 2.2 μg/m³, PM2.5: 1.3 μg/m³, PM2.5,abs: 0.3 10-5/m, 
PMcoarse: 1.4 μg/m³, PNC: 1.9 10³/cm³, NoiseDay: 8.2 dB, NoiseNight: 7.9 dB, NDVI300:0.12, NDVI1000: 0.14, Tempannual mean: 0.6 °C, Tempannual SD: 0.2 °C. NDVI 
values below 0 were excluded since they represent water or bare rocks. Note: Minimum and main models were based on data for 7696 participants. In 
extended models we excluded 141 participants with missing clinical information, resulting in 7555 participants. BMI indicates body mass index; CI, con-
fidence interval; HR, hazard ratio; IQR, interquartile range; NDVI, normalized difference vegetation index; NO2, nitrogen dioxide; NOx, nitrogen oxide; O3, 
ozone; PM10, particulate matter with an aerodynamic diameter ≤10 μm; PM2.5, particulate matter with an aerodynamic diameter ≤2.5 μm; PM2.5,abs, PM2·5 
absorbance; PMcoarse, particulate matter with an aerodynamic diameter of 2.5–10 μm; PNC, particle number concentration; SD, standard deviation; T2D, 
type 2 diabetes; Temp, temperature.
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