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Zusammenfassung

Zusammenfassung

Das Uvea- oder Aderhautmelanom (UM) ist der haufigste intraokulare Tumor bei Er-
wachsenen und entwickelt sich aus den uvealen Melanozyten der Choroidea, des Ziliar-
korpers oder der Iris. Es unterscheidet sich sowohl tumorbiologisch als auch klinisch
deutlich von anderen Melanomsubtypen wie dem kutanen, akrolentiginésen oder muko-
salen Melanom. Obwohl eine gute lokale Tumorkontrolle durch eine Bestrahlung oder
eine Enukleation erzielt werden kann, stellt insbesondere die Lebermetastasierung, die
bei etwa 90 % der fernmetastasierten Patienten auftritt, eine therapeutische Herausfor-
derung dar. Die seit einigen Jahren erfolgreich beim kutanen Melanom eingesetzten ziel-
gerichteten Therapien mit BRAF- und MEK-Inhibitoren und die Immuncheckpoint-
Blockade mit Antikdrpern wie Ipilimumab und Nivolumab sind im UM nicht oder nur sel-
ten wirksam. Seit kurzem gibt es mit dem bispezifischen Molekul Tebentafusp nur eine
einzige zugelassene Systemtherapie, die aber nur fur einen Teil der Patienten mit UM
erfolgreich ist. Daher besteht insbesondere flir Patienten im metastasierten Stadium ein
hoher Bedarf fir die Entwicklung neuer Therapieoptionen.

Einige Transkriptionsfaktoren, die wahrend der Embryogenese eine wichtige Rolle bei
der Melanozytenentwicklung Gibernehmen, werden teilweise auch im kutanen Melanom
exprimiert und tragen signifikant zu dessen Entstehung und Progression bei. Der Tran-
skriptionsfaktor SOX10 wird sowohl in normalen Melanozyten als auch melanozytéaren
Tumoren exprimiert und ist essenziell fir das Uberleben von kutanen Melanomzellen.
Im Kontext des UM wurde SOX10 jedoch bislang nur wenig untersucht.

Ziel dieser Arbeit war daher die Durchfiihrung einer funktionellen Charakterisierung von
SOX10 im UM, um einerseits zu einem besseren Verstandnis der Biologie dieses selte-
nen Tumors beizutragen und andererseits diese Erkenntnisse fur die Ableitung mdgli-
cher neuer systemischer Therapiekonzepte zu nutzen. Zu diesem Zweck wurde zu-
nachst die Expression von SOX10 im UM durch Analyse des The Cancer Genome Atlas
(TCGA)-Datensatzes ,Ocular Melanomas*® mit 80 Primartumoren, immunhistochemische
Farbungen an 42 Metastasen sowie durch Gen- und Proteinexpressionsanalysen in
neun UM-Zelllinien bestimmt. Hierbei konnte bei fast allen analysierten Proben eine Ex-
pression nachgewiesen werden. Um die funktionelle Relevanz von SOX10 im UM zu
charakterisieren, wurde die SOX10-Expression in den drei SOX10-hochexprimierenden
UM-Zelllinien 92.1, Mel270 und OMM1.5 durch Transfektion mit spezifischen siRNAs
gehemmt. Dies flhrte zu morphologischen Veranderungen der Zellen und einer starken
Verringerung der Zellviabilitat. Analysen mittels Durchflusszytometrie bzw. Western Blot
zeigten, dass es nach SOX10-Hemmung auferdem zu einer Hypophosphorylierung des
Retinoblastom-Proteins (Rb), einer teilweisen Hochregulierung der Cyclin-abhangigen
Kinase-Inhibitoren p21 und p27 sowie zu einer Zunahme des Anteils an Zellen in der
G1-Phase kam, was auf einen Zellzyklusarrest hindeutet. Dartber hinaus fihrte die
SOX10-Hemmung zu einem Anstieg des Anteils an apoptotischen Zellen und einer ver-
mehrten Spaltung der Procaspasen 3 und 9 sowie des Caspase 3-Substrates PARP.
Die Analyse von pro- und antiapototischen Proteinen der Bcl-2-Familie, BH3-only-Prote-
inen sowie von Bax und Bak ergab jedoch keine weiteren Hinweise auf den genauen
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Mechanismus der Induktion der Apoptosekaskade. Der DNA-Schadensmarker y-H2A.X
wurde vermehrt erst 24h nach der Transfektion exprimiert und das Tumorsuppressor-
protein p53 zeigte keine Veranderungen im Vergleich zu den Kontrollen. Daher ist davon
auszugehen, dass der Zelltod nach SOX10-Hemmung unabhangig von DNA-Doppel-
strang-Brichen und p53 induziert wird. Bei der Analyse der ERK-, p38- und Akt-Signal-
wegaktivitat war insbesondere eine Aktivierung des p38-MAPK-Signalwegs nach
SOX10-Hemmung auffallig.

Da SOX10 als Transkriptionsfaktor direkt die Transkription anderer Gene beeinflusst,
wurde anschlieltend untersucht, wie sich die Hemmung von SOX10 auf die Expression
bekannter Zielgene wie PMP2, MIA und MITF sowie auf das Transkriptom der UM-Zellen
auswirkt. Hierbei zeigte sich, dass es durch die Hemmung von SOX10 zu ausgedehnten
Veranderungen des Transkriptoms kam. Der Transkriptionsfaktor MITF wurde in den
S0OX10-hochexprimierenden Zellen ebenfalls stark exprimiert und nach SOX10-Hem-
mung deutlich herabreguliert. Die Hemmung von MITF durch spezifische siRNAs fiihrte
ahnlich wie die Hemmung von SOX10 zu einer Abnahme der Zellviabilitat in zwei von
drei untersuchten Zelllinien. In diesen kam es ebenfalls zu einem Zellzyklusarrest in der
G1-Phase des Zellzyklus, einer Rb-Hypophosphorylierung, Verringerung der Cyclin D1-
und p27-Expression, Induktion der p21-Expression sowie zur Apoptose Uber den intrin-
sischen Apoptoseweg. Wie schon nach SOX10-Hemmung anderte sich die p53-Protei-
nexpression nach MITF-Hemmung nicht, sodass auch hier ein p53-unabhangiger Zell-
zyklusarrest induziert wird. Die ektope Expression von MITF konnte die zytotoxischen
Effekte der SOX10-Hemmung in den analysierten Mel270-Zellen abschwachen, weshalb
von einer zentralen Rolle von MITF bei der Vermittlung der Gberlebensférdernden Effekte
von SOX10 im UM auszugehen ist.

Da derzeit wirksame Therapien insbesondere fir UM-Patienten mit fortgeschrittener Er-
krankung nur begrenzt verfligbar sind, wurden im letzten Teil der Arbeit die zuvor ge-
wonnenen Erkenntnisse Uber die essenzielle Funktion von SOX10 im UM genutzt, um
neue Zielstrukturen fir eine zielgerichtete Therapie des UM zu finden. Konkret sollten
hierbei neue potenzielle Kandidaten identifiziert werden, deren Funktion im Rahmen ei-
ner zielgerichteten Therapie anstelle des pharmakologisch nicht beeinflussbaren SOX10
moduliert werden konnten. Basierend auf den im Rahmen dieser Arbeit generierten
RNA-Sequenzierungsdaten nach SOX10-Hemmung und einem bereits existierenden
SOX10-Protein-Interaktionsnetzwerk wurde in einem bioinformatischen Ansatz ein
neues Netzwerk flr die Selektion neuer therapeutisch angreifbarer Zielstrukturen (,target
selection network®) generiert. Anschlie®end wurden mithilfe dieses Netzwerks Kandida-
ten identifiziert, deren Genexpression nach SOX10-Hemmung einerseits herabreguliert
war und die andererseits pharmakologisch Uber small molecule-Inhibitoren oder blockie-
rende bzw. neutralisierende Antikdrper gehemmt werden kénnen und daher fir eine po-
tenzielle Systemtherapie im UM als prinzipiell geeignet erschienen. Fur eine erste in
vitro-Testung dieses Ansatzes wurden die vier Kandidatengene E2F1, EZH2, TFRC und
FGF9 ausgewahlt, wobei sich der Transkriptionsfaktor E2F1 als besonders vielverspre-
chend erwies. Die Hemmung mit dem pan-E2F-small molecule-Inhibitor HLM006474



Zusammenfassung

fUhrte zu einer deutlichen Abnahme der Zellviabilitat, einem Zellzyklusarrest in der S-
Phase, einer Herabregulierung der regulatorischen Zellzyklusproteine Cyclin E1, CDK2
und Cyclin A2, einer Rb-Hypophosphorylierung sowie einer reduzierten E2F1-Expres-
sion, zur Aktivierung des p38-MAPK-Signalweges und letztlich zum Zelltod durch
Apoptose. Diese ersten In vitro-Daten zeigen, dass E2F1 moglicherweise ein Kandidat
fur eine zielgerichtete Therapie des UM sein kdnnte. Darlber hinaus wird das Potenzial
bioinformatischer Ansatze als wichtige Werkzeuge fiir die Identifizierung neuer thera-
peutischer Ziele in der Krebstherapie deutlich.

Insgesamt liefert diese Arbeit neue Erkenntnisse Uber die Biologie des UM und insbe-
sondere die Rolle der Neuralleisten-Transkriptionsfaktoren in dieser Tumorentitat und
zeigt auch neue Mdglichkeiten fiir die translationale Nutzung dieses Wissens ber Tran-
skriptionsfaktoren bei der Entwicklung neuer Therapieoptionen fur UM-Patienten.
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Summary (English):

Uveal melanoma (UM) is the most common intraocular malignancy in adults and arises
from melanocytes in the choroid, ciliary body, or iris. It significantly differs both tumor
biologically and clinically from other melanoma subtypes such as cutaneous (CM), acro-
lentiginous, or mucosal melanoma. Although good local tumor control can be achieved
by irradiation or enucleation, the treatment of advanced disease stages is less effective
and especially the treatment of liver metastases which occur in about 90 % of patients
with advanced disease is challenging. Targeted therapies with BRAF and MEK inhibitors
and immune checkpoint blocking antibodies such as ipilimumab and nivolumab have
been successfully used for the treatment of metastatic CM, however, they are hardly
effective in metastatic UM. To date, the bispecific molecule tebentafusp is the only sys-
temic therapy approach which has led to a survival benefit for a subgroup of metastatic
UM patients. Thus, there is a high unmet medical need for the development of new ther-
apeutic options, especially for patients in the metastatic stage. A variety of transcription
factors that play an important role in the development of melanocytes during embryo-
genesis are also expressed in CM and contribute significantly to its development and
progression. The transcription factor SOX10 is expressed in normal melanocytes as well
as melanocytic tumors and is essential for the survival of CM cells. However, the role of
SOX10 in UM has not been elucidated yet.

The aim of this doctoral thesis was to provide a functional characterization of SOX10 in
UM in order to achieve a better understanding of the biology of this rare tumor and po-
tentially use these findings for the development of new therapies. First, basal expression
of SOX10 in UM was determined by analyzing the publicly available The Cancer Genome
Atlas (TCGA) dataset "Ocular Melanomas" including 80 primary tumors, by immunohisto-
chemical stainings of 42 UM metastases, and by gene and protein expression analyses
of nine UM cell lines, demonstrating that SOX10 was expressed in almost all analyzed
samples. To characterize the functional relevance of SOX10 in UM, its expression was
inhibited in the three SOX10-highly expressing UM cell lines 92.1, Mel270, and OMM1.5
by transfecting them with SOX10-specific siRNAs. This resulted in morphological
changes of the cells and a strong decrease of cell viability. Flow cytometry and Western
blot analyses showed that SOX10 inhibition also led to hypophosphorylation of the reti-
noblastoma protein (Rb), upregulation of cyclin-dependent kinase inhibitors p21 and p27,
and an increase of cells in the G1 phase, suggesting an arrest in this cell cycle phase.
In addition, SOX10 inhibition resulted in an increase in the proportion of apoptotic cells
and increased cleavage of procaspases 3 and 9 and the caspase 3 substrate PARP.
However, despite analyzing the expression of pro- and anti-apoptotic proteins of the Bcl-
2 family, BH3-only proteins, and Bax and Bak, the exact mechanisms of action could not
be deciphered. The expression of DNA damage marker y-H2A.X increased only 24h
after transfection, and the expression of tumor suppressor protein p53 did not change
compared to the controls, suggesting that SOX10 inhibition leads to cell death inde-
pendently of DNA double-strand breaks and p53 accumulation. Furthermore, analysis of



Summary (English):

ERK, p38, and Akt signaling pathway activity showed an activation of p38 MAPK signal-
ing after SOX10 inhibition.

Since SOX10 is a transcription factor and may directly affect the transcription of other
genes, the effects of SOX10 inhibition on the expression of known target genes such as
PMP2, MIA, and MITF as well as the global transcriptome of UM cells was studied,
demonstrating extensive changes in the transcriptome after inhibiting SOX10. The tran-
scription factor MITF was also strongly expressed in the SOX10-highly expressing cells
and was significantly downregulated after SOX10 inhibition. Inhibition of MITF by specific
siRNAs decreased the cell viability in two of three analyzed UM cell lines, induced a cell
cycle arrest in the G1 phase of the cell cycle, led to Rb hypophosphorylation, a decrease
of cyclin D1 and p27 expression, induction of p21 expression, and promoted apoptosis
via the intrinsic apoptosis pathway. Similar to SOX10 inhibition, p53 protein expression
levels did not change upon MITF inhibition, indicating that the cell cycle arrest had also
occurred independently of p53. Ectopic expression of MITF attenuated the cytotoxic ef-
fects of SOX10 inhibition in Mel270 cells, suggesting that MITF plays a major role in
mediating the pro-survival effects of SOX10 in the UM.

Effective therapy options especially for UM patients with advanced disease are limited
and new therapy options are urgently needed. Thus, the knowledge about the crucial
role of SOX10 in UM was used in the final part of this thesis to explore new putative
therapy approaches in UM. As no direct SOX10 inhibitor exists yet, potential target genes
which could be modulated instead of SOX10 should be identified. Based on RNA se-
quencing data after siRNA-mediated SOX10 inhibition and an already published SOX10-
protein interaction network, a new protein interaction network for the selection of putative
candidates for targeted therapies ("target selection network") was created in silico. Then,
this network was used to select genes that were down-regulated after SOX10 inhibition
and whose function can be inhibited by small molecule inhibitors and blocking or neu-
tralizing antibodies, respectively, suggesting that they may be suitable candidates for
systemic therapy in UM. Following this bioinformatical approach, the four candidate
genes E2F1, EZH2, TFRC, and FGF9 were selected and tested in in vitro experiments,
showing that the transcription factor E2F1 might be a promising target. Incubating UM
cells with the small molecule pan-E2F inhibitor HLM006474 resulted in a strong decrease
of cell viability, a cell cycle arrest in S phase, downregulation of the regulatory cell cycle
proteins cyclin E1, CDK2, and cyclin A2, Rb hypophosphorylation, to a reduced E2F1
expression, activation of the p38 MAPK pathway, and ultimately cell death via apoptosis.
These first in vitro data show that E2F1 may be an interesting new candidate for targeted
therapy in UM and further demonstrate the potential of bioinformatics approaches as
important tools for the identification of novel therapeutic targets for cancer therapy.

Overall, this work provides new insights into the biology of UM and in particular the role
of neural crest transcription factors in this tumor entity and demonstrates the importance
of new bioinformatical approaches for translational research and the development of new
therapy options.
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1 Einleitung

1. Einleitung

1.1 Das Uveamelanom

1.1.1 Lokalisation und Inzidenz

Das Uvea- oder Aderhautmelanom (UM) ist die haufigste bdsartige Tumorerkrankung
des Auges bei Erwachsenen und umfasst etwa 5 % aller neu diagnostizierten Melanome
[1, 2]. Unter dem Begriff des UM werden Melanome zusammengefasst, die sich aus den
Melanozyten der mittleren Augenhaut (Uvea) entwickeln, zu der die Aderhaut
(Choroidea), der Ziliarkérper und die Regenbogenhaut (Iris) zahlen [3]. Von allen
okularen Melanomen entfallen etwa 85 % auf das UM, 5 % auf Bindehautmelanome und
10 % entwickeln sich aus Melanozyten in anderen anatomischen Strukturen des Auges
[2]. Bei etwa 90 % der UM-Patienten’ tritt das UM in der Choroidea auf, wahrend im
Ziliarkorper und der Iris entstehende Melanome nur etwa 6 % bzw. 4 % der Patienten
betreffen [4].

Die allgemeine Inzidenz des UM betragt etwa 5,1 pro 1 Million Einwohner in Europa [5],
wahrend die altersadjustierte Inzidenz 4,4 pro Million in Europa [5] und 5,1 pro Million in
den USA betragt [6]. Innerhalb der europaischen Lander gibt es dabei deutliche geogra-
fische Unterschiede mit einem Nord-Sud-Gefélle: Wahrend im Zeitraum von 1995 bis
2002 in Sudeuropa die altersstandardisierte Inzidenz bei 3,1 pro Million lag, wurde fir
Nordeuropa eine deutlich héhere Inzidenz von 5,8 pro Million festgestellt [5]. In einer
frheren Untersuchung von Daten aus den Jahren 1983 bis 1994 wurde ebenfalls die
niedrigste Inzidenz mit 2 pro Million in Spanien und die héchste Inzidenz mit mehr als
8 pro 1 Million Einwohner in Danemark und Norwegen dokumentiert [7]. Die weltweit
niedrigsten Inzidenzraten mit weniger als 1 pro Million wurden in Lateinamerika (Costa
Rica), Asien (Regionen Singapur und Osaka) sowie in den USA in der afroamerikani-
schen Bevolkerung (Surveillance, Epidemiology, and End Results (SEER) Black-
Kohorte) festgestellt [8]. In Deutschland betrug die altersadjustierte Inzidenzrate 6,41 pro
Million im Zeitraum von 2009 bis 2015 [9]. Innerhalb Deutschlands gibt es ebenfalls ge-
ografische Unterschiede mit den niedrigsten Inzidenzen in den sudlicher liegenden Bun-
deslandern Hessen, Baden-Wiurttemberg und Rheinland-Pfalz (2,1, 3,4 bzw. 4,5 pro Mil-
lion) und den hdchsten im Norden in Schleswig-Holstein, Brandenburg und Mecklen-
burg-Vorpommern (10,2, 11,4 bzw. 12,5 pro Million) (Daten der Jahre 2009 bis 2015)
[9]. Pro Zunahme des Breitengrads um 10° steigt die Inzidenz um den Faktor 1,4 [7]. Als
Grinde fur die ausgepragten Inzidenzunterschiede abhangig vom Breitengrad werden
Umwelteinflisse wie Veranderungen der UV-Strahlungsintensitat oder unterschiedliche
Ethnien und die daraus resultierenden Unterschiede der Haut- und Augenfarbe diskutiert
[5, 7, 8]. Anders als beim kutanen Melanom (KM), dessen Inzidenzraten im gleichen

" Aus Griinden der besseren Lesbarkeit wird in dieser Dissertation das generische Maskulinum
verwendet. Es werden weibliche und anderweitige Geschlechteridentitaten ausdricklich mitge-
meint.
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1 Einleitung

Zeitraum um das Drei- bis Vierfache anstiegen und immer noch weiter steigen [10], legen
Daten aus den USA nahe, dass die Inzidenz des UM seit den 1970er Jahren relativ stabil
geblieben ist [6]. Im UM gibt es nur geringe geschlechterspezifische Unterschiede hin-
sichtlich der Inzidenz und des Erkrankungsalters [5, 6, 9, 11]. Altersstandardisiert liegen
die Inzidenzraten bei Mannern mit 2,86 pro Millionen Personenjahren etwas hdher als
bei Frauen (2,14 pro Millionen Personenjahre) [5, 6, 9, 11]. Laut SEER-Datenbank des
Zeitraumes 1975 bis 2016 liegt das mittlere Alter bei der Erstdiagnose bei 60,8 Jahren
(Standardabweichung (SD) + 14,1) und ist bei Mannern geringfiigig niedriger als bei
Frauen (60,5 + 13,9 vs. 61,1 £ 14,3, p = 0,027) [11]. In Deutschland wurde ein medianes
Alter von 67,5 Jahren bei Erstdiagnose berichtet [9]. Ahnlich wie auch bei anderen
Tumorarten steigt die Wahrscheinlichkeit, an einem UM zu erkranken, mit steigendem
Alter an. Eine europaweite Untersuchung von Daten aus dem Zeitraum von 1995 bis
2002 ergab eine altersabhangige Steigung der Inzidenz von 0,33 pro Million bei den 15-
bis 24-Jahrigen Uber 4,72 pro Million bei den 25- bis 64-Jahrigen bis zu 16,06 pro Million
bei den Uber 65-Jahrigen [5]. Ein Analyse von Daten von 3.654 UM-Patienten aus
Deutschland zeigte, dass Personen im Alter von 70 bis 74 Jahren die hochsten alters-
adjustierten Inzidenzraten aufwiesen und mehr als die Halfte aller Patienten zum Zeit-
punkt der Erstdiagnose alter als 65 Jahre waren [9].

1.1.2 Risikofaktoren

Bisher konnten einige exo- und endogene Risikofaktoren identifiziert werden, die mit ei-
nem haufigeren Auftreten des UM assoziiert sind.

1.1.2.1 Pigmentierung von Haut und Augen

Die Pigmentierung von Haut und Augen stellt einen Risikofaktor fur die UM-Entwicklung
dar. Personen mit einer hellen, also blauen oder grauen Augenfarbe, haben laut einer
systematischen Ubersichtsarbeit und drei Fall-Kontrollstudien aus Deutschland bzw. den
Niederlanden ein héheres Risiko fur die Entwicklung eines UM als Personen mit braunen
Augen (Odds Ratio (OR) 1,38 (95 % Konfidenzintervall (Cl) 1,04 — 1,82) bis 3,0 (95 % Cl
1,5 -6,0); OR Metaanalyse: OR 1,75, 95 % CI 1,31 — 2,34) [12-15]. Laut einer systema-
tischen Ubersichtsarbeit haben auRerdem Personen mit atypischen kutanen Navi
(OR 2,82, 95% CI 1,10 — 7,26), hellem Hauttyp (OR 1,8, 95% CI 1,31 — 2,47), normalen
kutanen Navi (OR 1,74; 95% CI 1,74, 95% CIl 1,27 — 2,39), Sonnenbrandneigung
(OR 1,64, 95% CI 1,29 — 2,09), Irisnavi (OR 1,53, 95% CI 1,03 — 2,27) und Sommer-
sprossen (OR 1,27, 95% CI 1,09 — 1,49) ein hdheres UM-Risiko [15]. Allerdings besteht
kein statistisch signifikanter Zusammenhang zwischen dem UM-Risiko und Personen
mit blonden bzw. roten Haaren (OR 1,02, 95% CI 0,82 — 1,26) [15]. Benigne Navi kdnnen
auch in der Choroidea auftreten, allerdings wird deren Transformationsrate zu einem
Malignom als sehr gering eingeschéatzt [16].
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1.1.2.2 Weitere genetische Risikofaktoren

Neben der Haut- und Augenfarbe gibt es weitere genetische Risikofaktoren fur die Ent-
wicklung von UM. Bisher wurden sowohl somatische als auch Keimbahnmutationen in
Genen identifiziert, die im UM haufig in mutierter Form vorliegen [17-20].

Die Lebenszeitpravalenz des UM wird auf 2,6 pro 1.000 (1:400) bei Personen mit okula-
rer Melanozytose geschatzt und ist damit deutlich haufiger als in der Allgemeinbevolke-
rung [21]. Bei der okularen Melanozytose handelt es sich um eine abnorme Vermehrung
von uvealen Melanozyten, die sich in Form von braungrauen bis blaulichen Flecken auf
der Lederhaut (Sklera) des Auges, einer Irisheterochromatie oder einer erhdhter
Pigmentierung des Augenhintergrundes (Fundus) manifestieren kann; bei einer zusatz-
lichen kutanen Hyperpigmentierung um das Auge herum wird der Befund als okuloder-
male Melanozytose bzw. Navus von Ota bezeichnet [22]. Genetische Analysen deuten
darauf hin, dass es sich bei der okuldren Melanozytose um einen kongenitalen uvealen
Navus handelt [17]. Da bei Personen mit okularer Melanozytose weder Keimbahnmuta-
tionen gefunden wurden noch eine Vererbung erfolgt, wird davon ausgegangen, dass
somatische Mutationen z. B im Gen Phospholipase C Beta 4 (PLCB4) fur dessen Ent-
stehung verantwortlich sind und diese zur haufigeren UM-Entstehung beitragen [17].

Der Grofdteil der UM tritt spontan auf, allerdings gibt es Hinweise auf eine moégliche fa-
miliare Tumorpradisposition von UM-Patienten bzw. eine familiare Haufung von UM bei
einem Teil der Patienten [23]. Abdel-Rahman et al. identifizierten bei UM-Patienten
trunkierende Keimbahnmutationen im BRCA-assoziierten Protein 1 (BAP1)-Gen als
mogliche Ursache fur ein familidr gehauftes Auftreten von Krebserkrankungen [18]. Di-
rekte Verwandte von UM-Patienten, die auch Trager dieser Mutation waren, erkrankten
ebenfalls an UM sowie anderen Tumoren wie etwa Adenokarzinomen der Lunge oder
Meningeomen [18]. Die Analyse von drei dieser Tumoren zeigte, dass es in diesen zu
einem loss of heterozygosity des Chromosoms (Chr.) 3p gekommen war und damit auch
der Bereich der chromosomalen Lokalisation von BAP1 (3p21) betroffen war [18]. BAP1-
Keimbahnmutationen wurden auch bei weiteren UM-Patienten gefunden und traten in
der Promotorregion, verschiedenen Exons als auch Introns des BAP1-Gens auf [24-28].
Je nach Mutation hatte dies Auswirkungen auf das Splicing der BAP71-RNA, die Kernlo-
kalisation oder die Enzymaktivitdt des Proteins [25]. Das BAP1-Tumorpradispositions-
syndrom wird auch mit einer familiar gehauften Entwicklung von Mesotheliomen [29],
Nierenzellkarzinomen [30] und melanozytaren kutanen Tumoren [31] in Zusammenhang
gebracht. Laut Schatzungen basierend u.a. auf Daten der SEER-Datenbank betragt die
UM-Pravalenz von Personen mit pathogenen BAP7-Keimbahnmutationen 2,8 %
(95 % CI1 0,88 - 4,81) in den USA [32]. Andere Studien gehen von einer Pravalenz zwi-
schen 1,6 % [33] und 3 % (bei jedoch geringerer Patientenzahl) aus [34]. UM-Patienten
mit BAP1-Keimbahnmutation haben signifikant grof3ere Primartumoren als Patienten
ohne eine solche (mittlerer Durchmesser 15,9 vs. 12,3 mm, p = 0,004), haufiger eine
Beteiligung des Ziliarkorpers (75 % vs. 21,6 %, p = 0,002) und sie entwickeln haufiger
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Metastasen (71,4 % vs. 18 %, p = 0,003), wohingegen kein statistisch signifikanter Zu-
sammenhang mit dem Alter zum Zeitpunkt der Diagnose besteht (56,8 vs. 58,4 Jahre,
p = 0,44) [33].

Keimbahnmutationen des Gens Methyl-CpG-Binding Domain Protein 4 (MBD4), die zum
Verlust der Proteinfunktion fiihren, wurden ebenfalls bei Patienten mit UM gefunden [19,
20]. Die Pravalenz von MBD4-Keimbahnmutationen bei UM-Patienten betragt zwischen
0,2 % [20] und 0,7 % [19]. Trager dieser Keimbahnmutationen haben ein 9,15-fach ho-
heres Risiko (95 % CI 4,25 — 19,73) fur die Entwicklung eines UM im Vergleich zur Ge-
samtbevdlkerung [19]. Es ist jedoch umstritten, ob MBD4-Mutationen Uberhaupt als pra-
disponierend fir das UM angesehen werden kdnnen oder nicht [20]. Ein potenzieller
Zusammenhang zwischen einer UM-Pradisposition und Keimbahnmutationen wird auch
fur die Gene Protection Of Telomeres 1 (POT1), einem Gen, das an der Aufrechterhal-
tung der Telomerlange beteiligt ist [35] sowie fiir Partner and localizer of BRCA2 (PALB2)
und MutL Homolog 1 (MLH1) diskutiert [36]. Genomweite Assoziationsstudien konnten
zudem eine Assoziation zwischen den Loci Tyrosyl-DNA Phosphodiesterase 1 (TDP1),
CLPTM1 like (CLPTM1L) sowie Einzelnukleodid-Polymorphismen (single nucleotide
polymorphisms, SNP) in der Region von HECT and RLD domain containing E3 Ubiquitin
Protein Ligase 2 (HERC2)/ OCA2 Melanosomal Transmembrane Protein (OCA2), die
die Pigmentierung der Iris und damit die Augenfarbe beeinflusst, und einem erhdhten
UM-Risiko identifizieren [37, 38].

1.1.2.3 Umwelteinfliisse

Ultraviolette (UV) Strahlung gilt als einer der Hauptrisikofaktoren fiir die Entstehung des
KM [39, 40], im UM scheint dies jedoch eher weniger der Fall zu sein. Fur die UV-Strah-
lung als méglichen Risikofaktor spricht, dass beispielsweise Schweilder ein deutlich ho-
heres Risiko fur die Entwicklung von UM haben (OR 7,3, 95 % CI 2,6 — 20,1 bei Mannern)
[41] und es auch Berichte Uber bilaterale UM bei dieser Berufsgruppe gibt [42]. Beim
Schweilden entsteht neben UV-A- (Wellenlange 315 bis 400 nm) und UV-B- (280 bis 315
nm) auch die energiereiche UV-C-Strahlung (100 bis 280 nm), die zwar im Spektrum des
Sonnenlichts enthalten ist, aber normalerweise die Erdoberflache nicht erreicht, da sie
bereits in der Erdatmosphare von der Ozonschicht absorbiert wird [43, 44]. Gegen einen
kausalen Zusammenhang zwischen dem Auftreten von UM und der UV-Exposition spre-
chen jedoch mehrere Aspekte. Auf dem Weg bis zu den Photorezeptoren der Netzhaut
(Retina) passiert das Licht nacheinander zuerst die Hornhaut (Cornea), das Kammer-
wasser, die Linse und dann den Glaskérper [44]. Die verschiedenen anatomischen
Strukturen des Auges absorbieren abhangig von der Wellenlange den GroRteil des ein-
fallenden UV-Lichts, sodass letztlich weniger als 1 % der UV-Strahlung auf die Retina
trifft [44]. Die kurzwellige UV-C-Strahlung wird bereits von der Cornea vollstandig absor-
biert [44]. Die langerwelligere UV-A-Strahlung erreicht bei jungen Menschen zwar die
Retina, wird bei alteren Menschen aber bereits von der Linse vollstandig absorbiert [44].
Somit durfte die UV-Exposition der Choroidea, die hinter der Retina liegt und in der die
meisten UM entstehen [3, 44], relativ gering sein. Zum anderen werden typische UV-
Mutationssignaturen wie die Transition von Cytosin zu Thymin (C>T) in den DNA-
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Sequenzen TCN und CCN, die etwa in Hauttumoren aus sonnenexponierten Korperstel-
len nachgewiesen werden kdénnen [45], im UM mit Ausnahme der Irismelanome nicht
gefunden [46-49]. Auch die Mutationslast des Tumors (tumor mutational burden, TMB)
ist im UM sehr gering [46], was ebenfalls nicht fur einen UV-induzierten Tumor spricht.
Zudem konnten in einer systematischen Ubersichtsarbeit und Metaanalyse auch kein
statistisch signifikanter Zusammenhang zwischen einer haufigeren UM-Entwicklung und
der beruflichen Sonnenexposition (OR 1,37, 95% CI 0,96 — 1,96), Nahe des Breitengrads
des Geburtsorts zum Aquator (OR 1,08, 95% CI 0,67 — 1,74) oder einer vermehrten
Freizeitaktivitat im Freien (OR 0,86, 95% CI 0,71 — 1,04) gefunden werden [15]. Neben
der kinstlichen UV-Strahlung werden daher auch die Exposition mit Dampfen und Che-
mikalien, die beim Schweil3prozess entstehen, als Erklarung fir das erhéhte UM-Risiko
von SchweilRern diskutiert [15]. Abgesehen von Schweillern wurde auch bei weiteren
Berufsgruppen ein erhéhtes UM-Risiko identifiziert. In einer bevélkerungsbasierten Fall-
Kontroll-Studie in neun europaischen Landern hatten vor allem Kdoche (relatives Risiko
(RR) 2,40, 95% CI 1,35 — 4,28), Waschereimitarbeiter (RR 3,14, 95 Cl 1,44 — 6,86) und
Reinigungspersonal (RR 2,15, 95% CI 1,30 — 3,54) ein héheres Risiko fur die Entwick-
lung eines UM [50]. Die Exposition mit land- und forstwirtschaftlich eingesetzten Pestizi-
den [51] und endokrin wirksamen Substanzen [52] scheint hingegen keinen Einfluss auf
das UM-Risiko zu haben.

1.1.3 Genetische Besonderheiten und Abgrenzung zu anderen
Melanomsubtypen

Obwohl Melanozyten die Ursprungszellen sowohl des UM als auch des KM und des
mukosalen Melanoms (MUM) sind, lassen sich diese Malignome sowohl genetisch als
auch klinisch klar voneinander abgrenzen.

1.1.3.1 Genetische Veranderungen im KM und anderen Melanomsubtypen

Die im KM am haufigsten vorkommenden genetischen Veranderungen betreffen aktivie-
rende Mutationen in den Genen B-Raf proto-oncogene, serine/threonine kinase (BRAF)
auf Chr. 7q34 [53] und NRAS proto-oncogene, GTPase (NRAS) auf Chr. 1p13.2 [54],
die zu einer konstitutiven Uberaktivierung des mitogen-activated protein kinase (MAPK)-
Signalweges fiihren, der das Uberleben und die Proliferation von Zellen férdert [40, 55,
56]. Etwa 41 % [57] bis 52 % [58] aller KM tragen BRAF-Mutationen. Ein Mutations-Hot-
spot betrifft das Codon 600 in der Kinasedomane des Proteins und die am haufigsten
dort zu findenden Veranderungen fihren zu einem Austausch der Aminosaure Valin zu
Glutaminsaure (BRAFY%%F) [55, 58]. Diese Veranderung fiihrt zur dauerhaften Aktivie-
rung des Proteins [55]. KM mit BRAF-Mutationen kommen haufiger in Hautarealen ohne
chronische Lichtschaden [57] sowie bei bis zu 50 % der sehr seltenen Bindehautmela-
nome vor [59, 60]. Aktivierende NRAS-Mutationen, die bei 18 % [57] bis 28 % der KM-
Tumoren auftreten, betreffen vor allem die Hotspot-Mutation im Codon 61 mit dem Aus-
tausch der Aminoséaure Glutamin durch Arginin (NRAS®'R) [58] und treten gehéuft in
KM auf chronisch lichtgeschadigten Hautarealen auf [57]. Ein weiteres, haufig mutiertes
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Gen im KM ist NF1 auf Chr.17911.2 [61], das flr das Protein Neurofibromin 1 codiert
und bei 14% der KM-Patienten mutiert ist; im Gegensatz zu Mutationen von NRAS und
BRAF flihren diese Mutationen nicht zu einer Uberaktivierung, sondern zu einem Funk-
tionsverlust des Proteins [58]. Im MUM, akrolentiginésen Melanom (ALM) und in Mela-
nomen, die in chronisch sonnengeschadigter Haut auftreten, werden aulierdem gehauft
genetische Veranderungen im Gen KIT proto-oncogene, receptor tyrosine kinase (KIT)
auf Chr. 4912 gefunden [62], das fiir eine Rezeptortyrosinkinase (RTK) codiert und den
PI3K/Akt-, MAPK- und Januskinase (JAK)/Signal Transducer and Activator of Transcrip-
tion (STAT)-Signalweg aktivieren kann [63, 64]. Interessanterweise sind alle diese Mu-
tationen im UM so gut wie gar nicht zu finden [49, 65].

Das UM ist ein Tumor mit einer sehr geringen medianen TMB zwischen 0,5 Mutationen
pro Megabase [46, 48, 66] und 1,3 Mutationen pro Megabase, [47, 67]. Im Gegensatz
dazu gehdrt das KM mit einem Median von 14,4 Mutationen pro Megabase zu den Tu-
moren mit der hochsten TMB [67]. Eine Analyse von Daten aus dem The Cancer Ge-
nome Atlas (TCGA) von KM- und UM-Primartumoren ergab, dass beide Tumorentitaten
deutlich mehr SNP als Deletionen oder Insertionen aufwiesen, am haufigsten dabei C>T
Transitionen [68]. Allerdings lag die mediane Anzahl an Veranderungen bei 223,5 im KM
und nur bei 11 im UM [68]. Ebenfalls unterscheiden sich KM und UM beztiglich des DNA-
Methylierungsmusters und der Expression von microRNAs (miRNAs) signifikant
voneinander [68].

1.1.3.2 Haufige Mutationen im UM

Trotz der geringen Mutationsrate konnten auch im UM Mutationen entdeckt werden, die
gehauft auftreten und entscheidend an der Pathogenese beteiligt sind. Die Mutations-
haufigkeit der im UM am haufigsten mutierten Gene G-Proteine Guanine Nucleotide-
binding Protein Subunit Alpha Q (GNAQ), Guanine Nucleotide-binding Protein Subunit
Alpha-11 (GNA11), BAP1, PLCB4, Splicing Factor 3B Subunit 1 (SF3B1), Eukaryotic
translation initiation factor 1A (EIF1AX) oder Cysteinylleukotrienrezeptor 2 (CYSLTR2)
unterscheidet sich zwischen den Geschlechtern nicht [11].

1.1.3.2.1 GNAQ und GNA11

Etwa 80 % bis 90 % aller UM tragen Mutationen in den Genen GNAQ auf Chr. 9921 [69]
oder GNA11 auf Chr. 19p13 [70], welche fir die a-Untereinheiten der heterotrimeren G-
Proteine GNAQ und GNA11 codieren, die an der Weiterleitung des Signals von G-Pro-
tein-gekoppelten Rezeptoren an die nachgeschalteten Signalwege im Zellinneren betei-
ligt sind [71-75]. GNAQ-Mutationen kommen bei 43 % [74] bis 50 % der UM [46] sowie
bei 6 % der Personen mit einem Navus Ota sowie 83 % aller blauen Navi vor [71, 76].
Bei Irismelanomen wurde sogar eine Haufigkeit von 68 % beschrieben [73]. GNA11-
Mutationen wurden bei etwa 45 % [46] bis 49% [74] der UM gefunden und wurden in
32 % der UM-Primartumoren und bis zu 57 % der UM-Metastasen [76] sowie in 7 bis
11 % aller blauen Navi nachgewiesen [76, 77]. Fur das Irismelanom wurde eine Haufig-
keit von etwa 16 % ermittelt [73]. Die Mutationen in GNAQ und GNA11 betreffen fast
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ausschlieBlich das Codon 209 im Exon 5 (hauptsichlich GNAQ/GNA1192%  seltener
GNAQ/GNA119%%P) "welches in der Ras-Domane von GNAQ und GNA11 liegt und fiir
die GTPase-Funktion essenziell ist, auRerdem mit ca. 6 % deutlich seltener das Codon
183 im Exon 4 (GNAQ/GNA11R"®_Mutationen) und fihren im weiteren Verlauf tiber MEK
und ERK zu einer dauerhaften Aktivierung des MAPK-Signalweges [46, 48, 71, 73, 76,
78, 79], des TRIO/Rac1/RhoA- und Yes1 Associated Transcriptional Regulator (YAP)-
Hippo-Signalweges [80, 81] sowie des B-Catenin-Signalweges (Abb. 1) [82].

’ Wachstumsfaktoren
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SULITLRILY

PIP3 PIP2
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Signalweg @ @
MAPK-Signalweg PI3K.lAkt/mTOR-
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Abb. 1: Typische Treibermutationen und Signalwegverdnderungen im UM, KM und ande-
ren Melanomsubtypen.

Treibermutationen im UM (gelbe Sterne) betreffen vor allem die G-Proteine GNAQ und GNA11,
G-Protein-gekoppelte Rezeptoren (GPCR) wie den Cysteinylleukotrienrezeptor 2 (CysLT2R) und
die Phospholipase C-Beta (PLCR), die zur konstitutiven Aktivierung des MAPK-Signalweges so-
wie zur Aktivierung des YAP-Hippo- und (-Catenin-Signalweges und Uber PIP2 des
PI3K/Akt/mTOR-Signalweges fihrt. Im Gegensatz dazu betreffen die haufigsten Treibermutatio-
nen im KM (rote Sterne) die Kinasen BRAF und NRAS sowie in MUM, ALM und Melanomen der
sonnengeschadigten Haut Mutationen in der Rezeptortyrosinkinase (RTK) KIT (blauer Stern).
Abbildung erstellt nach Park et al. 2018 [82] und Carvajal et al. 2017 [83].

Experimentelle Daten und Untersuchungen im Tumorgewebe von Primartumoren und
Metastasen legen nahe, dass die Mutationen GNAQ/GNA11%?% und GNA 1178 als Trei-
bermutationen des UM fungieren und bereits frih im Verlauf der Erkrankung entstehen
[71, 76, 84]. Im Tierversuch wurde bei Mausen, denen mit GNA11%2%L oder GNA11R783%¢
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transduzierte Melan-a-Zellen - eine immortalisierte murine Melanozytenzelllinie - ge-
spritzt wurden, ein deutliches Tumorwachstum im Vergleich zu den mit GNA11-Wildtyp
(wt)-transfizierten Zellen beobachtet [76]. Ahnlich fiihrte die Transfektion mit GNAQ®2%%
bei Melanozyten zum Zellwachstum unabhangig von der Anhaftung an den Untergrund
(anchorage-independent growth) und mit GNAQ®%" transfizierte Melan-a-Zellen konn-
ten ebenfalls die Entwicklung von Tumoren in Mausen induzieren [71]. Bei anderen
Melanomsubtypen als dem UM kommen GNAQ- und GNA11-Mutationen in weniger als
1 % aller Falle vor und nicht zusammen mit anderen typischen Treibermutationen in
BRAF, NRAS oder KIT [85, 86]. Genetisch dhneln diese Tumoren dem UM, da sie haufig
auch andere UM-typische Mutationen in Genen wie EIF1AX, SF3B1 oder BAP1 sowie
eine vergleichsweise geringe TMB aufweisen [86]. Die UV-typischen C>T Transitionen
treten in diesen Melanomen weniger haufiger auf als in anderen KM, allerdings deutlich
haufiger als in UM [86].

Aufgrund der prominenten Rolle von GNAQ und GNA11 bei der Pathogenese des UM
liegt es nahe, diese Proteine als Zielstrukturen fir eine zielgerichtete Therapie mit einem
small molecule-Inhibitor analog zu den BRAF-Inhibitoren (BRAFi) beim KM zu nutzen.
Das zyklische Depsipeptid FR900359 aus der gekerbten Spitzblume (Ardisia crenata)
wirkt als allosterischer Inhibitor der G-Proteine GNAQ und GNA11 und kann in vitro das
Zellwachstum, die Aktivierung des ERK-Signalweges und die Expression proliferations-
fordernder Proteine in den GNAQ-mutierten UM-Zelllinien 92.1 und OMM1.3 hemmen
sowie zum Zellzyklusarrest und zur Apoptose der Zellen flhren [87]. Onken et al. konn-
ten ahnliches bei Versuchen mit Patientenmaterial in der Kurzzeitkultur beobachten [88].
Angesichts dessen, dass FR900359 sowohl die Funktion des Wildtyp- als auch des
mutierten GNAQ- bzw. GNA11-Protein hemmt, heterotrimere G-Proteine jedoch an einer
Vielzahl an lebenswichtigen Signalwegen beteiligt sind und eine Hemmung daher mut-
malilich mit vielfaltigen systemischen Nebenwirkungen (NW) einhergeht [89], testeten
Onken et al. auch die Auswirkungen der Substanz auf verschiedene physiologische Pro-
zesse im Tiermodell [88]. Unterhalb der LDso von 0,6 mg/kg wurden nur moderate Effekte
wie etwa eine vorribergehende Hypotonie nach der Injektion der Substanz beobachtet,
sodass die Autoren der Studie davon ausgehen, dass es ein therapeutisches Fenster fir
die Nutzung beim Menschen geben kénnte [88]. Seit kurzem wird das Antikdrper-
Inhibitor-Konjugat DYP-688, das aus einem Antikdrper besteht, der an das haufig im UM
exprimierte Oberflachenprotein gp100 bindet und an den ein GNAQ/GNA11-Inhibitor
SDZ475 gekoppelt wurde, in der unverblindeten, multizentrischen first-in-human Phase-
1/2-Studie NCT05415072 bei Patienten mit metastasiertem UM und GNAQ- bzw.
GNA11-Mutation getestet [90].

1.1.3.2.2 BAP1

Das BAP1-Gen auf Chr. 3p21.1 [91] ist bei etwa 21 % [75] bis 40 % der UM insgesamt
und bei etwa 84 % der metastasierenden UM mutiert [24]. Bei einer genetischen Unter-
suchung von 19 Irismelanomen wurden keine BAP7-Mutationen gefunden [73]. Im Ge-
gensatz zu den Mutationen in GNAQ und GNA11, die sich auf einige wenige Hotspots
konzentrieren [71, 76], wurden BAP1-Mutationen an verschiedenen Stellen des Gens
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gefunden, die zu Veranderungen in der katalytischen Domane, den Domanen fir die
Bindung von BRCA1 und dem Protein BRCA1 Associated RING Domain 1 (BARD1)
oder zur Expression trunkierter Proteine flihren [24]. Bei einem geringen Teil der UM-
Patienten lassen sich wie oben beschrieben BAP7-Keimbahnmutationen nachweisen
[18, 24-28]. Bei UM-Tumoren mit einem hohen Metastasierungsrisiko kommt es sehr
haufig auch zu einer Monosomie 3, was darauf schlieRen lasst, dass der Verlust beider
BAP1-Allele fir den Krankheitsprogress noétig ist [24]. Mutationen in GNAQ und BAP1
konnen sowohl parallel als auch unabhangig voneinander in UM-Tumoren vorkommen
[24]. Allerdings treten BAP1-Mutationen im Gegensatz zu GNAQ- und GNA11-Mutatio-
nen erst spater im Krankheitsverlauf in zeitichem Zusammenhang mit der Metastasie-
rung auf [24]. BAP1 ist eine Deubiquitinase und agiert einerseits als Tumorsuppressor-
protein, da es eine wichtige Rolle bei der Reparatur von DNA-Doppelstrangbriichen
spielt und als transkriptioneller Regulator agiert [92]. Andererseits kann BAP1 in UM-
Zellen auch den Zellzyklusprogress fordern, indem es als Coregulator des
Transkriptionsfaktors E2F1 agiert und die Transkription von S-Phase-Genen férdert [93].
In vitro fuhrte der kurzzeitige Knockdown von BAP1 in UM-Zelllinien zu einer verringerten
Proliferation der Zellen, wahrend sich bei langerer BAP1-Hemmung keine Unterschiede
bezlglich der Zellviabilitat, Proliferation und des Zellzyklusfortgangs ergaben [94]. In
vivo flhrte die Implantation von BAP1-defizienten UM-Zellen zu einer geringeren Meta-
stasengrofle verglichen mit den Kontrollen [94]. Die BAP1-Hemmung mittels short hair-
pin RNA (shRNA) flhrte zu einer Herabregulierung von Genen wie Microphthalmia-
associated transcription factor (MITF) und Dopachrom-Tautomerase (DCT), die Be-
standteil der melanozytaren Differenzierung sind [94]. Demgegeniber wurde der
Stammzellfaktor Nanog homeobox (NANOG) nach BAP1-Hemmung hochreguliert und
morphologische Veranderungen wie ein weniger spindelférmiges Aussehen und weniger
Dendriten waren zu beobachten [94]. Der Verlust von BAP1 scheint also weniger die
Proliferationsfahigkeit der Zellen zu steigern als vielmehr die Dedifferenzierung und da-
mit die Metastasierungsfahigkeit der Zellen zu férdern [94]. BAP71-Mutationen wurden
auch im blue nevus-like melanoma gefunden [77].

1.1.3.2.3 SF3B1

Das Gen SF3B1 auf Chr. 2g33.1 [95] codiert fUr die Splicing Factor 3B Subunit 1, eine
Untereinheit des SF3b-Multiproteinkomplexes, und ist zu Beginn des Spleillosomauf-
baus fur verschiedene Umlagerungen der kleinen nuklearen Ribonukleinproteinpartikel
(small nuclear ribonucleoprotein particles, snRNP) zustandig [96]. Nachdem letztere
dadurch richtig an den Splei3stellen der pra-messenger RNA (mRNA) positioniert wur-
den, fuhren sie das Splicing durch, wobei die Intron-Sequenzen aus der transkribierten
pra-mRNA entfernt und letztlich nur die codierenden Bereiche der Exons in der prozes-
sierten mRNA (brig bleiben [96]. Die Haufigkeit von SF3B7-Mutationen im UM wird zwi-
schen 15 % [46, 47, 97] und 22 % [84] angegeben. Bei einer genetischen Untersuchung
von 19 Irismelanomen wurden keine SF3B7-Mutationen gefunden [73]. Die Mutationen
konzentrieren sich auf die sogenannten Huntington, Elongation Factor 3, PR65/A, TOR
(HEAT)-Domanen und betreffen am h&ufigsten das Codon 625 (SF3B1R62H/C/GPL)
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seltener befinden sich die Mutationen in anderen HEAT-Domanen wie etwa im Fall der
Mutationen SF3B1X%°™ oder SF3B1X7F [47, 48, 75, 97, 98]. Die Auswirkungen der
SF3B1-Mutationen auf die globale RNA-Prozessierung und Genexpression sowie des-
sen Beitrag zur Pathogenese des UM sind noch nicht eindeutig geklart. Harbour et al.
fanden beim Vergleich der Genexpression von finf SF3B71-mutierten und sechs SF3B1-
wt-UM-Tumoren nur zehn differenziell exprimierte Gene, die allerdings keine Ruck-
schllsse auf die funktionelle Relevanz der SF3B71-Mutation zuliel3en [98]. Ebenso konn-
ten die Autoren keine Veranderungen im Splicingverhalten, d.h. beziglich der Spleif3-
Donor- und Akzeptorstellen und des Beibehaltens von Introns, beobachtet werden [98].
Im Gegensatz dazu fanden Furney et al. bei der Untersuchung von jeweils drei SF3B17-
mutierten und SF3B7-wt-UM-Tumoren 325 differenziell exprimierte Gene ohne Anrei-
cherung fur bestimmte Kyoto Encyclopedia of Genes and Genomes (KEGG)- oder
REACTOME-Signalwege sowie Abweichungen beim Splicing von 130 Genen [47]. Die
Autoren identifizierten bei der Analyse verschiedener Datensatze ein alternatives Spli-
cing am 3’-Ende der Gene ATP Binding Cassette Subfamily C Member 5 (ABCC5) und
Ubiquinol-Cytochrome C Reductase Complex Chaperone CBP3 Homolog (UQCC) so-
wie der long non-coding RNA (IncRNA) Colorectal Neoplasia Differentially Expressed
(CRNDE) in SF3B1-mutierten UM-Tumoren [47]. Bigot et al. konnten bei 20 % der me-
tastasierten UM-Patienten mit SF3B7-mutierten Tumoren jedoch immunogene Neoanti-
gene, die vermutlich durch aberrantes Splicing aufgrund der Mutationen entstanden wa-
ren, sowie CD8* Gedachtnis-T-Zellen finden [99]. Interessanterweise konnten diese T-
Zellen SF3B1-mutierte UM-Zellen erkennen und abtdten, was darauf hinweist, dass
diese Neoantigene von den UM-Zellen auch prasentiert und dadurch fir die Erkennung
durch das Immunsystem prinzipiell zur Verfiigung stehen [99]. In anderen Melanomsub-
typen kommen SF3B171-Mutationen bei 1,66 % aller Falle vor [77, 85].

1.1.3.2.4 EIF1AX

EIF1AX codiert fur das Protein eukaryotic translation initiation factor 1A und ist an der
Translationsinitierung beteiligt, indem es die Anlagerung der Initiator-Methionyl-Trans-
fer-RNA (tRNA) an die 40S-Ribosomuntereinheit und so die Zusammenlagerung des
Prainitiationskomplexes fordert [100, 101]. Bei 12,5 % bis 24 % der UM-Tumoren finden
sich Mutationen in diesem Gen, das auf dem X-Chromosom an Position Xp22 lokalisiert
ist [75, 97]. In Irismelanomen scheinen EIF1AX-Mutationen bei 42 % der Falle und damit
etwas haufiger aufzutreten [73]. Am haufigsten fuhrten die Mutationen zum Austausch
einer der 15 N-terminal gelegenen, in Eukaryoten hochkonservierten Aminosauren [97].
In einigen Fallen kam es aber auch zu kurzen Deletionen oder Veranderungen der
Spleil’-Akzeptorstellen und damit zur Generierung von alternativ gespleil3ten EIF1AX-
mMRNAs, wobei es jedoch zu keinen loss-of-function-Mutationen kam [97]. Martin et al.
fanden bei der Analyse der Tumoren von UM-Patientinnen ausschlief3lich mutierte
EIF1AX-Transkripte, was vermuten lasst, dass das nichtmutierte EIF1AX-Allel durch die
X-Chromosomeninaktivierung stillgelegt wurde [97]. Die Mutationen im N-terminalen Ab-
schnitt von EIF1AX kommen zusammen mit Mutationen in GNAQ oder GNA11 vor [48].
Die auch in dieser Arbeit untersuchte UM-Zelllinie 92.1 besitzt eine homozygote
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EIF1AX®%P-Mutation [48]. In vitro fiihrt der Knockdown von EIF1AX zu einer Verringerung
der Zellviabilitadt sowohl in EIF1AX-wt als auch EIF1AX-mutierten UM-Zelllinien [48]. Mar-
tin et al. spekulierten, dass EIF1AX-Mutationen im N-terminalen Ende des Proteins dazu
fuhren kdnnten, dass die Erkennung der Initiationsstellen schlechter funktioniert oder
dass andere AUGs als Startcodons erkannt werden, was zur Verwendung alternativer
Startcodons bei der Translation tumorhemmender oder —férdernder Gene flihren kénnte
[97]. Johnson et al. fanden bei in vitro-Experimenten dann allerdings Hinweise darauf,
dass EIF1AX-Mutationen zu einer verminderten Translationseffizienz von Genen flihren,
die fur ribosomale Proteine codieren [48]. In den Tumoren weiblicher UM-Patientinnen
wurden héhere EIF1AX-mRNA-Level gefunden als bei mannlichen Patienten [11]. So-
wohl SF3B1- als auch EIF1AX-Mutationen waren haufiger in UM-Tumoren mit Disomie
3 zu finden [97]. Mutationen in SF3B1, EIF1AX und BAP1 kommen zwar haufig zusam-
men mit GNAQ- oder GNA11-Mutationen vor, allerdings gibt es nur wenige Einzelfalle,
bei denen mehr als eines der drei Gene mutiert ist [48, 97]. In anderen Melanomsubtypen
treten EIF1AX-Mutationen nur bei 0,62 % aller Falle auf [85].

1.1.3.2.5 CYSLTR2

Das auf Chr. 13q14 lokalisierte Gen CYSLTRZ2 codiert fur den Cysteinylleukotrienrezep-
tor 2 (CysLT2R), einen G-Protein-gekoppelten Rezeptor (GPCR) bestehend aus sieben
Transmembrandomanen, der durch die Bindung von Leukotrienen aktiviert wird [102].
GNAQ und GNA11 sind dabei am Transfer des Signals vom Rezeptor CysLT2R an die
nachsten Proteine der Signalkaskade wie die Proteinkinase C (PKC), Phospholipase C 3
(PLCPB) und B-Catenin beteiligt [82]. Eine Hotspot-Mutation an einer hochkonservierten
Stelle der Helix der Transmembrandoméne 3 im Codon 129 (CYSLTR2-"9) tritt bei etwa
2 % [46] bis 4 % [75] aller UM auf, jedoch ausschlieBlich bei denjenigen UM, die keine
GNAQ- oder GNA11-Mutationen aufweisen [74]. Diese Mutation fihrt zu einer Konfor-
mationsanderung des Proteins, wodurch es zu einem gain-of-function und einem dauer-
haften Signaling des Rezeptors iber GNAQ/GNA11 und PLCB unabhangig von der Bin-
dung eines Liganden kommt [74, 103]. Im Tiermodell konnten sowohl die murine immor-
talisierte Fibroblastenlinie NIH3T3 als auch Melan-a-Zellen, welche mit einem
CYSLTR2""?°%Konstrukt transfiziert worden waren, nach subkutaner Implantation
Tumoren in immunsupprimierten Mausen induzieren [74]. In Melan-a-Zellen flihrte die
CYSLTR2""?°®Variante zu einer verstarkten Pigmentierung der Zellen und nach Trans-
fektion in die UM-Zelllinie Mel290 wurde eine Zunahme der Genexpression der mela-
nozytaren Gene Tyrosinase (TYR), Tyrosinase-related protein 1 (TYRP1) und DCT fest-
gestellt [74]. Somit scheint die Mutation nicht nur die Expression melanozytarer Gene,
sondern auch die Tumorentstehung zu férdern. CYSLTR2-Mutationen wurden auch bei
1 % der blauen Navi gefunden und treten im blue nevus-like melanoma auf [77].

1.1.3.2.6 PLCB4

Mutationen des auf Chr. 20p12.3 —p12.2 lokalisierten Gens PLCB4 [104] treten bei etwa
2,5 % [75] bis 5 % [46] der UM auf, jedoch nur selten zusammen mit GNAQ- oder
GNA11-Mutationen [74]. Falls doch, handelt es sich bei diesen Fallen vorwiegend um
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Tumoren mit den selteneren GNAQ/GNA11R"8 _Mutationen [74]. PLCB4 wird durch
GNAQ und GNA11 in der Signaltransduktionskaskade aktiviert [66] und katalysiert dann
die Hydrolyse von Phosphatidylinositol-4,5-bisphosphat (PIP2) in der Zellmembran zu
Diacylglycerol (DAG) und zum second messenger Inositol-1,4,5-triphosphat (IP3) [105].
DAG verbleibt an der Zellmembran und fihrt zur Aktivierung der PKC, die wiederum die
Proliferation, Migration, Differenzierung und den Zelltod beeinflussen kann [106, 107].
IP; bindet dagegen im Zytosol an Rezeptoren am endoplasmatischen Retikulum (ER),
was zum Ca?"-Ausstrom aus dem ER flhrt [107]. Die daraus resultierende Erhéhung der
intrazellularen Ca?*-Konzentration nimmt letztlich ebenfalls Einfluss auf die Migration,
Zellteilung und den Zelltod [107]. In vitro flhrt die Hemmung mit dem PLC-Inhibitor U-
73122 zu einer Verringerung der Zellproliferation in den UM-Zelllinien 92.1 und Mel202
[108]. Auch in diesem Gen gibt es mit der PLCB4"%*°Y-Mutation einen Mutationshotspot,
der sich in der Y-Domane der hochkonservierten katalytischen Domane des Proteins
befindet und zu dessen konstitutiven Aktivierung und damit zu einem gain-of-function
fihrt [66, 108]. Melan-a-Zellen mit stabiler PLCB4”%*°Y-Expression zeigten in vitro ein
Wachstum in Zellkulturmedium ohne Phorbol-12-myristat-13-acetat, welches diese Zel-
len normalerweise zur Wachstumsstimulation benétigen und flhrten im Vergleich zu
PLCB4-wt-transduzierten Zellen zur Entwicklung von gréReren Tumoren in NOD-SCID-
Gamma-(NSG)-Mausen [108]. PLCB4-Mutationen wurden auch bei 1 % der blauen Navi
gefunden sowie im blue nevus-like melanoma [77].

1.1.3.2.7 MBD4

MBD4 auf Chr. 3g21.3 codiert fur eine DNA-Glykosylase, die an der DNA-Reparatur im
Rahmen der Basen-Exzisionsreparatur beteiligt ist und bevorzugt an methylierte CpG-
Dinukleotide bindet [109]. MBD4 entfernt in CpG-Dinukleotiden die Basen Thymin und
Uracil, die falschlicherweise mit Guanin paaren und durch die hydrolytische Desaminie-
rung von 5-Methylcytosin bzw. Cytosin entstanden sind, sowie andere durch Entzin-
dungsprozesse oder Chemotherapien chemisch veréanderte Basen wie etwa 5-Chlorura-
cil, 5-Fluorouracil (5-FU) oder 5-Joddesoxyuracil [109]. Rodrigues et al. konnten bei ei-
nem Patienten mit ungewohnlich gutem Ansprechen auf die Therapie mit dem
Programmed cell death 1 (PD-1)-Inhibitor Pembrolizumab eine Keimbahnmutation im
Gen MBD4 detektieren [110]. Bei diesem Patienten war das zweite Allel in den UM-
Zellen durch eine Monosomie 3 verloren gegangen [110]. Interessanterweise wiesen die
untersuchten Tumorproben aus dem Primartumor und einigen Metastasen deutlich mehr
Mutationen auf als es bei UM normalerweise zu erwarten ware [110]. Bei Uber 90 % der
Mutationen handelte es sich dabei um CpG>TpG-Transitionen, die typisch fir eine spon-
tane Desaminierung von 5-Methylcytosinen sind [110]. Bei der Analyse eines TCGA-
Datensatzes mit RNA-Sequenzierungsdaten von 80 UM-Patienten stie3en die Forscher
auf einen weiteren Patienten mit MBD4-Mutation und ebenfalls einer deutlich erhéhten
Anzahl an single nucleotide variants (SNV) im Vergleich zu den Ubrigen Patienten des
Datensatzes [110]. Spater wurde ein weiterer Fall einer UM-Patientin mit MBD4-Keim-
bahnmutation publiziert, bei der die Therapie mit Pembrolizumab initial zu einer Stabili-
sierung der Erkrankung fuhrte und die insgesamt erst zwei Jahre nach Entdeckung der
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ersten Metastasen und einer weiteren Therapie mit dem anti-Cytotoxic T-lymphocyte
associated protein 4 (CTLA-4)-Antikdrper Ipilimumab verstarb [111]. Auch diese
Patientin hatte eine Monosomie 3 und eine hohe TMB [111]. Die hohe Mutationslast
wurde auch von Rodrigues et al. in einem weiteren Kollektiv aus 75 Metastasen und 16
Primartumoren von 25 Patienten beschrieben; die Forscher konnten hier in den Tumoren
mit MBD4-Mutationen und Monosomie 3 deutlich mehr SNV nachweisen [112]. Die Pro-
file der Kopienzahlveranderungen zwischen MBD4-wt und MBD4-mutierten Tumoren
unterschieden sich nicht [112]. Patienten mit MBD4-wt hatten zwischen 5 und 25 SNV in
den Exonen der Primartumoren (Median: 13) und zwischen 5 bis 33 SNV in den Meta-
stasen (Median: 16), wohingegen die MBD4-mutierten-Tumoren zwischen 348 und 706
SNV in den Primartumoren und zwischen 266 und 652 SNV in den Metastasen aufwie-
sen [112]. Die Tumoren mit MBD4-Mutation zeigten aul’erdem eine ausgepragtere
Heterogenitat zwischen Primartumor und Metastasen [112]. In allen publizierten Fallen
kamen MBD4-Mutationen zusammen mit anderen bekannten Mutationen wie GNAQ),
GNA11 oder BAP1 vor [110-112]. Die Haufigkeit von MBD4-Mutationen im UM betragt
etwa 0,7 % [19] bis 3,6 % [20]. Im Gegensatz zu den GNAQ- und GNA11-Mutationen
scheint es im MBD4-Gen ebenfalls keine Mutationshotspots zu geben [19, 20]. Keim-
bahnmutationen des Gens MBD4, die zum Verlust der Proteinfunktion fihren, wurden
auch bei Patienten mit UM gefunden [19, 20]. Es ist jedoch umstritten, ob MBD4-Mutati-
onen Uberhaupt als pradisponierend fir das UM angesehen werden kénnen oder nicht
[20]. Derrien et al. postulierten, dass MBD4 ein pradisponierendes Gen sein kdnnte ba-
sierend auf der Annahme, dass fir MBD4-Mutationen ein RR von 9,15
(95% ClI 4,24 — 19,73) fur die Entwicklung eines UM errechnet wurde [19]. Allerdings trat
weder eine familiare Haufung von UM, noch bilaterale UM oder UM in einem jungeren
Lebensalter bei Patienten mit MBD4-Keimbahnmutation auf, wie es sonst haufig bei
Tumorpradispositionssyndromen der Fall ist [19].

1.1.3.3 Chromosomale Aberrationen

Strukturelle Varianten kommen im UM deutlich seltener als in anderen Melanomsubty-
pen vor und entsprechen nur etwa 40 % der Haufigkeit des KM, 20 % des ALM und 10 %
des MUM [47]. Es gibt jedoch eine Reihe an wiederkehrenden chromosomalen Aberra-
tionen. Diese umfassen die Monosomie 3 [47, 75, 113] bei 53 % [48] bis 57 % der UM-
Patienten [46, 66], den Verlust von Chr. 1p [46, 47, 75] bei ca. 24 % [114], den Verlust
von Chr. 6q [46, 47, 113] bei ca. 28 % [114], Verlust von Chr. 8p [46, 47, 66] sowie den
Verlust von Chr. 16q [46, 47, 66] bei 16% [114]. Ein Zugewinn von Chr. 6p [46, 47, 75,
113] kommt bei 18 % [114] und ein Zugewinn von Chr.8q [46, 47, 66, 75, 113] bei 53 %
[114] der Patienten vor. Seltener wurden auch andere Varianten wie etwa ein Zugewinn
von Chr. 11 [47] oder der Verlust des X-Chromosoms [66] beschrieben. Die Haufigkeiten
der chromosomalen Aberrationen unterscheiden sich je nachdem, ob es sich um einen
nicht-metastasierenden Primartumor, eine metastasierenden Primartumor oder um Me-
tastasen handelt (Tabelle 1) [115].
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Tabelle 1: Chromosomale Veranderungen im Uveamelanom in nicht-metastasierenden und
metastasierenden Primartumoren sowie Metastasen [115]

Chromosomale Nicht-metastasierende = Metastasierende

Veranderung Primartumoren Primartumoren Metastasen
Monosomie 3 21 % 73 % 67 %
Verlust Chr. 1p 0 % 33 % 33 %
Verlust Chr. 6q 7% 40 % 83 %
Verlust Chr. 8p 14 % 27 % 0 %
Verlust Chr. 13q 14 % 13 % 50 %
Verlust Chr. 18 7% 13 % 33 %
Zugewinn Chr. 1q 0% 7% 33 %
Zugewinn Chr. 6p 29 % 20 % 17 %
Zugewinn Chr 8q 14 % 53 % 100 %
Zugewinn Chr. 16p 0% 7% 33 %

1.1.3.4 Einteilung nach Gensignaturen

Trotz der vergleichsweisen geringen Anzahl an genetischen Veranderungen wurden
zahlreiche Versuche unternommen, UM anhand ihres Mutationsprofils in Klassen zu un-
terteilen und mit der Prognose zu korrelieren. Onken et al. untersuchten hierfir 25 zuvor
unbehandelte UM-Primartumoren mittels sondenbasierten high-density Oligonukleotid-
Arrays und fanden heraus, dass sich die Tumoren zu zwei unterschiedlichen molekula-
ren Klassen zuordnen lieRen [116]. In Tumoren der Klasse 1 (niedriges Risiko) waren
histologisch mehr gut differenzierte spindelférmige Zellen zu sehen und auf chromoso-
maler Ebene war ein Zugewinn von Chr. 6p detektierbar [116]. In Klasse 2 (hohes Risiko)
waren auf Chr. 3 lokalisierte Gene herab- und auf Chr. 8q lokalisierte Gene hochreguliert,
zudem waren histologisch mehr schlecht differenzierte, epitheloide Zellen zu sehen und
auf chromosomaler Ebene ein Verlust von Chr. 3 zu beobachten [116]. Tumoren mit
einem Verlust von Chr. 6g und ein Zugewinn von Chr. 8q waren nicht eindeutig einer
molekularen Klasse zuzuordnen [116]. Patienten mit Tumoren der Klasse 1 hatten eine
92-Monats-Uberlebenswahrscheinlichkeit von 95 %, Patienten mit Tumoren der
Klasse 2 nur von 31 % (p = 0,01) [116]. Interessanterweise genligte eine Analyse der
Genexpression der drei Gene Pleckstrin Homology Like Domain Family A Member 1
(PHLDA1),  Frizzled Class Receptor 6 (FZD6) und  Ectonucleotide
Pyrophosphatase/Phosphodiesterase 2 (ENPP2), um anhand dieser die Tumoren zu-
verlassig einer der beiden molekularen Klassen zuordnen zu kdnnen [116]. Die Vorher-
sage des Uberlebens anhand der molekularen Klasse war insgesamt zuverlassiger als
Vorhersagen, die anhand pathologischer, zellmorphologischer oder klinischer Faktoren
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wie etwa der Tumorlokalisation oder des Tumordurchmessers getroffen wurden [116].
Weitere molekularbiologische Analysen von Klasse 2-Tumoren zeigten, dass in diesen
Tumoren Gene fir die Melaninbiosynthese wie DCT und TYR sowie Gene der Neural-
leistenspezifikation inklusive Regulatoren des Wnt-Signalweges wie Catenin Beta 1
(CTNNB1) und Endothelin Receptor Type B (EDNRB) herabreguliert waren [117]. Da-
hingegen waren epitheliale Gene wie Epithelial Membrane Protein 1 (EMP1) und
Epithelial Membrane Protein 3 (EMP3) sowie Zelladhasionsmolekile wie Cadherin 1
(CDH1) und Gene sowie die fir die Interaktion mit der Basalmembran wichtige Gene
Microtubule Actin Crosslinking Factor 1 (MACF1) und Secreted Protein Acidic And
Cysteine Rich (SPARC) hochreguliert [117]. Dies erklart auch die epitheloide Morpholo-
gie der Klasse 2-Tumoren [117].

Die Weiterentwicklung der Sequenziertechniken ermdglichte es spater, noch detaillier-
tere Einblicke in die molekulare Landschaft des UM zu gewinnen. Royer-Bertrand et al.
sequenzierten 24 Primartumoren und neun Lebermetastasen sowie entsprechende Nor-
malgewebe mittels Hochdurchsatz-whole genome-Sequenzierung und konnten vier mo-
lekulare Subgruppen identifizieren [49]. Tumoren der Klasse A und B wiesen eine Mo-
nosomie 3 auf sowie Verluste von Chr. 8p auf, bei Tumoren der Klasse B kamen auch
Verluste von Chr. 6q vor [49]. Fur Klasse A-Tumoren war dartber hinaus ein Verlust von
Chr. 1p charakteristisch [49]. Die Tumoren in Klasse C wiesen kaum chromosomale Ab-
errationen auf und in Klasse D traten Hinzugewinne des distalen Teils von Chr. 8q
auf [49]. Bei 77 % der Tumoren mit Monosomie 3 traten auch somatische Mutationen in
BAP1 auf [49]. Wahrend GNAQ- oder GNA11-Mutationen in allen untersuchten Proben
gefunden wurden, wurden SF3B17- und EIF1AX-Mutationen vor allem in Tumoren der
Klassen C und D gefunden und SF3B7-Mutationen vor allem in Klasse D [49]. Interes-
santerweise fanden die Forscher keine signifikanten Unterschiede zwischen Primartu-
moren und Metastasen [49].

Robertson et. al. analysierten einen noch gréfieren Datensatz basierend auf ausgedehn-
ten molekularbiologischen Analysen von 80 UM-Primartumoren der TCGA-Datenbank
[75]. Ahnlich wie Royer-Bertrand et al. konnten auch sie die Tumoren in vier molekulare
Gruppen einteilen [75]. Cluster 1 und 2 enthielten Tumoren mit Disomie 3 und héherer
BAP1-Genexpression, Cluster 3 und 4 Tumoren mit Monosomie 3, BAP1-Mutationen
und verringerter BAP1-Genexpression [75]. Die Tumoren in Cluster 1 waren durch die
wenigsten chromosomalen Aberrationen sowie durch einen partiellen oder vollstandigen
Zugewinn von Chr. 6p charakterisiert; zudem traten auch nur in diesem Cluster EIF1AX-
Mutationen auf [75]. In Cluster 2 wurde ein Zugewinn von Chr. 6p und ein partieller Zu-
gewinn von Chr. 8q beobachtet sowie Mutationen in SF3B7; in Cluster 3 traten Zuge-
winne von Chr. 8q auf und in Tumoren des Clusters 4 wurde das Isochromsom 8q
(= Chr. 8 mit 2 g-Armen) detektiert [75].

Field et al. fanden bei einer weiteren Analyse von whole exome sequencing-Daten von
139 Primartumoren eine Mutationssignatur, die mit der Alterung assoziiert ist und auch
die Hotspot-Mutationen in GNAQ, GNA11 und SF3B1im Codon 625 erklart [84]. Dartber
hinaus wurde eine Signatur, die mit DNA-Schaden durch reaktive Sauerstoffspezies
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(ROS) assoziiert ist sowie eine weitere Mutationssignatur unbekannten Ursprungs ent-
deckt [84]. UV-Signaturen kamen hingegen nicht vor [46-49, 84].

1.1.3.5 Evolution der genetischen Aberrationen

Aufgrund genetischer Untersuchungen von Tumormaterial aus Primartumoren und Me-
tastasen konnte gezeigt werden, dass UM die charakteristischen genetischen Aberrati-
onen in verschiedenen Stadien des Krankheitsprogresses akquirieren bzw. diesen un-
terschiedlich beeinflussen. Die Hotspotmutationen in GNAQ und GNA11 scheinen be-
reits frih im Verlauf der Erkrankung zu entstehen und damit maf3geblich zur Initiierung
des UM beizutragen [71, 76]. Ausflhrlichere Analysen zur Klonalitat von 139 UM-
Primartumoren durch Field et al. zeigten, dass Mutationen in GNAQ, GNA11, CYSLTR2
und PLCB4, die fir Proteine des Gg-Signalweges codieren, bei allen untersuchten
Tumoren zu finden waren [84]. Mutationen in diesen Genen sowie in BAP1, EIF1AX und
SF3B1 und haufig zusammen mit diesen auftretende chromosomale Veranderungen wie
etwa die Monosomie 3, ein Zugewinn von Chr. 6p und von Chr. 8qg, waren in allen
Tumorzellen eines Tumors zu finden [84]. Dies lasst darauf schlie3en, dass die typischen
Treibermutationen bereits sehr frih in der Entwicklung des UM im Primartumor auftreten
und nur wenige weitere im Verlauf der Erkrankung hinzukommen [84]. Der Verlust des
Chr. 3 scheint hauptséachlich vor dem Auftreten von BAP7-Mutationen zu geschehen;
erst danach entstehen weitere Mutationen auf Chr. 3 [75]. Allerdings gibt es dennoch
genetische Unterschiede zwischen Metastasen und Primartumoren. Karlsson et al. se-
quenzierten sechs subkutane und 26 Lebermetastasen mittels whole genome
sequencing und fuhrten eine Transkriptomanalyse bei 28 der Metastasen durch und ver-
glichen diese mit den Daten von 80 UM-Primartumoren des TCGA-Datensatzes [118].
Dabei detektierten die Forscher wie erwartet die gehauft im UM auftretenden Mutationen
in den Genen GNAQ, GNA11, CYSLTR2, PLCB4, SF3B1 und BAP1, jedoch nicht in
EIF1AX [118]. Bei 29 der untersuchten Metastasen (91 %) wurden BAP7-Mutationen
entdeckt, die in den meisten Fallen zusammen mit einer Monosomie 3 auftraten [118].
Ein Zugewinn von Chr. 8q trat bei allen Metastasen auf und generell hdufig zusammen
mit einer Monosomie 3 [118]. Insgesamt kamen Amplifikationen oder Verluste einzelner
Chromosomenarme signifikant haufiger in den Metastasen im Vergleich zu den Primar-
tumoren des TCGA-Datensatzes vor [118]. In UM-Metastasen wurden auch Deletionen
im Gen Cyclin Dependent Kinase Inhibitor 2A (CDKN2A) gefunden, das flr die Tumor-
suppressorproteine p16™%4@ und p14ARF codiert [118]. Der Zugewinn von Chr. 8q scheint
erst spater in der Entwicklung des UM stattzufinden, da 93 % der Mutationen auf Chr.
8q vor der Verdoppelung entstanden waren [66].

1.1.4 Diagnostik

Die Diagnostik, Behandlung und Nachsorge von UM-Patienten ist im deutschsprachigen
Raum sehr heterogen organisiert und wird von verschiedenen Fachdisziplinen durchge-
fuhrt, wie eine Befragung aus dem Jahr 2021 zeigte [119]. Dies liegt auch daran, dass
es derzeit nur eine von der Arbeitsgemeinschaft Standard Operating Procedures (SOP)
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des Netzwerkes der Onkologischen Spitzenzentren Deutschlands veroffentlichte SOP
zur Standardisierung der Diagnostik und Behandlung des UM in den klinischen Zentren
des Netzwerkes gibt [120]. Eine evidenzbasierte Leitlinie in Deutschland speziell zu die-
ser Tumorentitat existiert noch nicht.

Der Primartumor des UM verursacht in vielen Fallen keine oder nur geringe Beschwer-
den, daher wird die Diagnose bei etwa 30 % der Patienten zufallig bei augenarztlichen
Untersuchungen ohne vorangehende Symptome gestellt [121]. Falls Symptome auftre-
ten, sind diese haufig unspezifisch: Mit 37,8 % werden am haufigsten verschwommenes
Sehen genannt, gefolgt vom Sehen von Lichtblitzen (Photopsie, 8,6 %), Glaskdrpertru-
bungen (floaters) (7,0 %), Gesichtsfeldeinschrankungen (6,1 %) oder Schmerzen
(2,4 %) [121]. Ein mit bloRem Auge sichtbarer Tumor tritt nur bei etwa 3 % der Patienten
auf [121]. Besteht der Verdacht auf ein UM, soll eine weiterfihrende Diagnostik durch-
gefuhrt werden, die im Idealfall eine augenarztliche sowie allgemeine Anamnese, Be-
stimmung des Visus und des Augeninnendrucks sowie Biomikroskopie des vorderen
Augenabschnittes und des Fundus beinhalten sollte [120]. Zusatzlich dazu kann auch
eine optische Koharenztomographie (OCT), eine OCT-Angiographie oder auch Autoflu-
oreszenzanalyse durchgefiihrt werden [120]. Aufgrund der Seltenheit der Erkrankung
sollte die Behandlung in einem spezialisierten Zentrum durchgefihrt werden [120]. Zur
Diagnosesicherung bei unklaren Befunden bzw. fur genetische Analysen kann eine
Biopsie des Tumors durchgefiihrt werden, allerdings muss diese gegen potenzielle Risi-
ken abgewogen werden [120, 122, 123]. Die Glaskorperblutung ist mit 96,5 % die mit
Abstand haufigste Komplikation nach transvitrealer Biopsie, bildet sich aber bei den
meisten Patienten (86,6 %) innerhalb von 2 Jahren wieder spontan zurtck [123]. Eine
Netzhautabldsung wird bei etwa 17 % der Patienten nach Biopsie beobachtet [123]. Die
Ausbreitung der Tumorzellen im Auge nach der Biopsierung scheint dagegen kaum auf-
zutreten [123]. Histologisch kdnnen UM-Tumoren aus spindelartigen (Grad G1),
epitheloiden Zellen (Grad G3) oder einem Mix aus beiden Morphologien bestehen
(Grad G2), wobei grélkere Tumoren eher epitheloide Zellen beinhalten und mit einer
schlechteren Prognose assoziiert sind [124, 125]. UM kénnen darlUber hinaus sowohl
pigmentiert (melanotisch) als auch unpigmentiert (amelanotisch) sein [124].

Fir die weitere Therapieplanung ist ein Staging essenziell, um maoglicherweise vorhan-
dene Fernmetastasen friihzeitig zu entdecken [120]. Dazu wird zusatzlich zu den oben
beschriebenen Untersuchungen eine Oberbauchsonografie durchgefihrt, um potenzi-
elle Lebermetastasen zu detektieren, sowie ggf. eine weitergreifende Bildgebung und
eine Bestimmung der Laktatdehydrogenase (LDH), des Tumormarkers S100 und der
Leberfunktionswerte im Serum [120]. Die Einteilung in die Stadien erfolgt nach der
8. Version des American Joint Committee on Cancer (AJCC) Staging Manuals [120,
125]. Das Stadium | bezeichnet dabei Tumoren der TNM-Klassifikation TONOMO (Tumor-
basis < 9 mm plus Tumordicke < 6 mm bzw. Tumorbasis zwischen 9 und 12 mm plus
Tumordicke < 3 mm, keine Lymphknoten- oder Fernmetastasen), wahrend gréliere
Tumoren je nach Dicke, Ausmal} der Ziliarkérperbeteiligung und extraokularen Ausdeh-

38



1 Einleitung

nung den Stadien Il und Il zugeteilt werden [125]. Patienten mit regionalen Lymphkno-
ten- oder mit Fernmetastasen werden dem Stadium IV zugerechnet [125]. Bei einem
klinischen Verdacht auf Metastasen erfolgt eine weitergebende Diagnostik wie eine
Computertomographie des Thorax und Abdomen und eine Magnetresonanztomographie
[120].

1.1.5 Therapieoptionen

1.1.5.1 Therapie des Primartumors

Der Primartumor kann in der Regel durch lokale Verfahren gut therapiert werden. Kleine
Tumoren bis zu einer Gré3e von 6 mm werden vor allem augenerhaltend durch eine
lokale Bestrahlung (Brachytherapie) mittels Ruthenium-106-('Ru) Applikator oder
Protonenstrahlen behandelt [120]. '%°Ru emittiert B-Strahlung und hat eine deutlich ge-
ringere Eindringtiefe als etwa der y-Strahler Jod-125 ('?°l), was zwar den Einsatz auf
kleine Tumoren begrenzt, allerdings werden dadurch weniger strahlenbedingte Schaden
an benachbarten Strukturen wie der Retina oder dem Sehnerv verursacht [126, 127].
Durch die '"®Ru-Applikation kann eine gute lokale 5-Jahres-Tumorkontrolle bei mehr als
80 % der Patienten erreicht werden [127]. Je nach Lage des Tumors kann aber auch
primar eine Protonentherapie indiziert sein wie etwa bei juxtapapillérer, zentraler Lage
[120]. Bei grofReren Tumoren kommt ebenfalls eine Protonenbestrahlung infrage, die ggf.
mit einer adjuvanten Tumorresektion kombiniert werden kann [120]. In zweiter Linie wer-
den auch Brachytherapien mit '2°I-Applikation durchgefiihrt [120]. Eine weitere Behand-
lungsmaoglichkeit von Tumoren ohne extraokulare Beteiligung stellt die stereotaktische
Bestrahlung dar [120]. Diese kann mit einem Bestrahlungsroboter wie z.B. CyberKnife®
erfolgreich mit minimalen NW fir den Patienten durchgefihrt werden [128, 129]. Durch
diese lokalen MaRnahmen kann das Auge und im Idealfall die Sehfahigkeit erhalten wer-
den, allerdings kann es neben den bereits erwahnten strahlenbedingten Schaden an der
Retina auch insbesondere bei der Bestrahlung von grofden Tumoren zur Ausbildung ei-
nes toxischen Tumorsyndroms kommen [130]. Hierbei kommt es zu einer fortschreiten-
den Abldsung der Retina und einem Glaukom infolge der Anh&ufung von Zerfallsproduk-
ten des Tumors [130]. Bei grof3en Tumoren und extraorbitaler Beteiligung wird das Auge
im Rahmen eine Enukleation chirurgisch entfernt, bei sehr ausgedehnten Befunden wer-
den auch die benachbarten Strukturen der Orbita mit entfernt (Exenteration) [120, 131].
Die multizentrische randomisierte Collaborative Ocular Melanoma Study mit 1.317 UM-
Patienten konnte keine signifikanten Unterschiede bezlglich des Uberlebens von UM-
Patienten mit '2°I-Brachytherapie im Vergleich mit Patienten feststellen, die eine
Enukleation erhalten hatten (12-Jahres-Mortalitat 43 % vs. 41 %) [132]. Bei sehr kleinen
Tumoren im vorderen Augenabschnitt wie etwa bei Irismelanomen kann auch eine
Exzision des Tumors mit Erhalt des Auges durchgefiihrt werden [131]. Im Falle eines
Lokalrezidivs kommen Verfahren wie die adjuvante transpupillare Thermotherapie,
Brachytherapie, Teletherapie oder die Enukleation zum Einsatz [120].
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1.1.5.2 Therapie im metastasierten Stadium

Trotz guter lokaler Tumorkontrolle entwickeln etwa die Halfte aller UM-Patienten Fern-
metastasen, welche zu mehr als 90 % in der Leber auftreten und daher eine Besonder-
heit des UM darstellen [133-136]. Bei etwa 55 % aller Patienten mit Metastasen treten
ausschliellich Lebermetastasen auf [133]. Aul3erhalb der Leber kdnnen sich Metastasen
aber auch in anderen Organsystemen wie der Lunge (16 % bis 31 %), dem Gehirn (5 %
bis 6 %), den Knochen inklusiver der Wirbelkdrper (9 % bis 23 %), kutan/subkutan (4 %
bis 17 %) oder in Lymphknoten (10 % bis 14 %) ansiedeln [133, 134, 136]. Metastasen
treten bei der Mehrzahl der Patienten innerhalb der ersten flinf Jahre nach der Erstdiag-
nose auf [133, 135]. Es gibt jedoch auch Berichte Uiber eine Metastasierung noch nach
langen Zeitraumen von mehr als 30 bis 40 Jahren [133, 135]. Die Ursachen fur den aus-
gepragten Hepatotropismus des UM sind noch nicht vollstandig verstanden, es wird aber
diskutiert, dass das Mikromilieu der Leber mit der Expression von zahlreichen Wachs-
tumsfaktoren [137], der langsame Blutfluss in der Leber und die Expression von Adha-
sionsmolekilen auf den Sinusendothelzellen [138] die Etablierung und das Wachstum
von Metastasen begtinstigen [139, 140]. DarlUber hinaus profitieren die Tumorzellen vom
dort herrschenden immunsuppressiven Mikromilieu, um sich der Kontrolle durch das Im-
munsystem zu entziehen [139, 140]. Aufgrund dieser besonderen Ausgangssituation
werden haufig leberspezifische Therapieverfahren bei Patienten mit metastasiertem UM
angewendet. In Deutschland, Osterreich und der Schweiz werden diesbeziiglich am
haufigsten die selektive interne Radiotherapie (SIRT, in 80 % der befragten zertifizierten
Hautkrebszentren), Radiofrequenzablation (RFA, 59 %), trans-arterielle Chemoemboli-
sation (TACE, 56 %) sowie die stereotaktische Bestrahlung (50 %) angeboten [119].

1.1.5.2.1 Leberspezifische Therapieverfahren

Einzelne, klar abgegrenzte Metastasen kdnnen chirurgisch entfernt werden, wenn nach
der Resektion noch 30 % bis 40 % funktionsfahiges Lebergewebe verbleibt [141]. Das
mediane Gesamtiberleben (OS) lasst sich so von 8 Monaten auf 14 Monate verlangern
und resultiert in einer 1-Jahres-OS-Rate von 56,7 % bzw. einem 5-Jahres-OS von 7,0 %
[141]. Bei freien Resektionsrandern betragt das mediane OS 27 Monate, bei R1-Resek-
tion betragt das mediane OS noch 17 Monate und nach R2-Resektion (makroskopisch
erkennbar keine tumorfreien Schnittrander) 11 Monate [141]. Prognostisch glinstige Fak-
toren, die mit einem besseren 2-Jahres-OS einhergehen, sind eine RO-Resektion, weni-
ger als vier Lebermetastasen, nur ein betroffener Leberlappen, keine disseminierten
Lebermetastasen sowie ein krankheitsfreies Intervall zwischen der Diagnose des Pri-
martumors und der Metastasen von mehr als 24 Monaten [141].

Bei der SIRT oder Radioembolisation werden Uber einen Katheter 20 bis 60 um grol3e
Mikropartikel (Mikrospharen) aus Glas oder Harz, die mit dem B-Strahler Yttrium-90 be-
laden wurden, in die zur Metastase fiihrenden Aste der Leberarterie eingebracht [142].
Die Mikrospharen verbleiben dann in den Kapillaren des Tumors und bestrahlen ihn von
innen heraus, wodurch gesundes Leberparenchym im Gegensatz zu einer von auf3en
erfolgenden Bestrahlung geschont wird [142]. Das mediane OS nach SIRT betragt laut
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einer systematischen Ubersichtsarbeit von Alexander et al. 12,3 Monate, das mediane
hepatische progressionsfreie Uberleben (PFS) 5,4 Monate [143]. Die Krankheitskontroll-
rate (DCR) betragt 67,5 % [143]. Die SIRT flhrt haufig zu NW wie Fatigue, Ubelkeit,
Erbrechen und abdominellen Schmerzen im Schweregrad 1 bis 2, seltener werden auch
schwerwiegendere NW vom Grad 3 und 4 wie Leberversagen, strahlenbedingte
Cholezystitis, Magenulzera oder Schmerzen berichtet [143].

Die RFA eignet sich zur Therapie einzelner Lebermetastasen bis etwa 3 cm Durchmes-
ser [144]. Bei diesem Verfahren werden eine oder mehrere nadelartige Elektroden unter
bildgebender Kontrolle durch die Haut in den Tumor gestochen und Strom appliziert,
wodurch es zu einer lokalen Erhitzung des Gewebes auf etwa 60°C und anschlieenden
Nekrose des Tumors kommt [144, 145]. Die RFA kann auch intraoperativ mit einer
Metastasektomie kombiniert werden [145, 146]. Das mediane OS dieser Kombinations-
therapie ahnelt dem nach alleiniger Resektion (28 vs. 27 Monate); allerdings kann durch
die RFA mehr gesundes Lebergewebe bewahrt und so kédnnen auch Patienten behan-
delt werden, bei denen eine chirurgische Entfernung der Metastasen sonst nicht mdglich
ware [145]. Daruber hinaus wird die RFA auch zur Behandlung von rezidivierenden Le-
bermetastasen nach einer chirurgischen Entfernung eingesetzt [146]. Nach RFA betra-
gen die 2-Jahres- und 4-Jahres-OS-Raten 68 % bzw. 45 % [146]. Das 1-, 2-, 3- und 4-
Jahres-rezidivfreie Uberleben (RFS) nach RFA betragt 71 %, 56 %, 37 % bzw. 19 %
[146].

Die TACE ist ein lokales Chemotherapieverfahren, bei dem beispielsweise Doxorubicin,
Mitomycin C, Cisplatin, Irinotecan oder 5-FU mit einem Embolisat (Ol, Sphéaren,
Gelatineschwammchen oder Polyvinylalkoholpartikel) vermischt und Gber einen Kathe-
ter direkt in die zu den Metastasen fuhrenden Leberarterien infundiert wird [147]. Der
Vorteil hierbei ist, dass durch die lokale Begrenzung der Behandlung einerseits eine ho-
here Dosierung appliziert werden kann und andererseits durch den Verschluss der zu-
fihrenden Gefalle durch das Embolisat die Blutversorgung des Tumors beeintrachtigt
wird, wodurch es zu ischamischen Schaden und einer Nekrose des Gewebes kommt
[147]. Generell wird die TACE relativ gut vertragen [148, 149]. Als NW der Therapie
kénnen ein Postembolisationssyndrom mit Fieber, Ubelkeit und Schmerzen auftreten,
selten auch ein Leberversagen sowie systemische Folgen wie eine Veranderung des
Hautkolorits, Mukositis oder eine Knochenmarksdepression [147, 149]. Das mediane OS
liegt zwischen 5 Monaten [149] und 21 Monaten [148]. Die Ansprechraten liegen zwi-
schen 16 % [149, 150] und 57 % [151], die DCR bei 72 % [149, 150].

Bei den isolierten Perfusionstherapien wird der hepatische Kreislauf vom restlichen Blut-
kreislauf abgekoppelt und anschlie®end nur die Leber mit dem Chemotherapeutikum
Melphalan perfundiert, um die systemische Toxizitat zu verringern [152, 153]. Im Rah-
men der isolierten hepatischen Perfusion (IHP) werden in einer offenen Operation die
Leber und alle zu- und abfihrenden Gefalke freiprapariert, vom restlichen Korperkreis-
lauf durch Ligaturen abgekoppelt und ein venovendser Bypass von der V. saphena zur
rechten V. axillaris angelegt, bevor die Leber mit dem Chemotherapeutikum Melphalan
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perfundiert wird [152]. Die perkutane hepatische Perfusion (PHP) funktioniert nach ei-
nem ahnlichen Prinzip, allerdings werden die Gefal3e nicht in einer offenen Operation
abgeklemmt, sondern minimalinvasiv ein spezieller Doppel-Ballon-Katheter in die
V. cava inferior zur Abkopplung des Leberkreislaufes vom Koérperkreislauf eingebracht
[152]. Der Zufluss der Perfusionsflissigkeit erfolgt Uber einen Katheter, der Uber die
Oberschenkelarterie bis in die A. hepatis communis eingefiihrt wird, der Abfluss tber
den im Mittelteil fenestrierten Doppel-Ballon-Katheter in der V. cava inferior [152]. Im
Perfusionskreislauf lauft das aus der Leber kommende Blut durch Kohlefilter, die das
Chemotherapeutikum herausfiltern, bevor es Gber die V. jugularis interna wieder in den
Blutkreislauf zuriickgefihrt wird [152]. Der Vorteil der PHP ist, dass sie als minimalinva-
siver Eingriff weniger belastend fir den Patienten ist und im Gegensatz zur IHP mehrere
Male wiederholt werden kann, weil fur die PHP keine ausgedehnte Operation durchge-
fuhrt werden muss [152, 153]. Die Ansprechraten mit IHP liegen zwischen 37,5 % und
66 %, die der PHP liegen bei 34 % bis 50 % [153-156]. Das mediane PFS nach IHP
betragt 8,0 Monate (Bereich 6,0 bis 13,9 Monate) und 7,6 Monate (Bereich 6,0 bis
14,3 Monate) nach PHP, das mediane OS liegt bei 12,1 Monaten (Bereich 10,0 bis 22,4)
nach IHP und 15,3 Monate (Bereich 12,0 bis 19,1 Monate) nach PHP [153, 156-158].
Allerdings kommt es nach der IHP deutlich haufiger als nach der PHP zu schweren post-
operativen Komplikationen oder zum Leberversagen bis hin zum behandlungsbedingten
Tod bei bis zu 27 % der Patienten nach IHP [153, 158, 159].

Die intraarterielle Chemotherapie (auch hepatische (intra-)arterielle Infusionstherapie,
HAI) bezeichnet ein Verfahren, bei dem das Chemotherapeutikum Fotemustin direkt in
die A. hepatica appliziert wird [160]. Uber diese Arterie werden in der Regel die Meta-
stasen versorgt, wahrend die Versorgung des Leberparenchyms tberwiegend Uber die
Portalvene erfolgt [160]. Im Vergleich zur intravendsen (i.v.) Applikation von Fotemustin
konnte in der prospektiven, randomisierten und kontrollierten Phase-3-Studie EORTC
18021 kein Uberlebensvorteil mit der HAI erzielt werden (Hazard Ratio (HR) 1,09;
95 % CI 0,79 — 1,50) [160]. Das mediane OS lag nach HAI bei 14,6 bis 15 Monaten und
nach Fotemustin i.v. bei 13,8 Monaten [160, 161]. Das mediane PFS lag mit HAI bei
4,5 Monaten und war signifikant besser als mit Fotemustin i.v. (3,7 Monate) [160, 161].
Die 1-, 2- und 3-Jahres-OS-Raten mit HAI liegen bei 67 %, 29 % bzw. 12 % [161]. Die
Ansprechraten fir die HAI liegen bei 10,5 % und mit Fotemustin i.v. bei 2,4 % [160]. Eine
andere Publikation berichtet von Ansprechraten von 36 % nach HAI [161]. Im Vergleich
zur i.v. Chemotherapie kommt es bei der HAI seltener zu hamatologischen NW wie etwa
Thrombozytopenien oder einer febriler Neutropenie [160]. Bei fast einem Drittel der HAI-
Patienten treten katheterbedingte Komplikationen wie etwa Fehlperfusionen, Stenosen
oder Thrombosen auf [160]. Weitere NW umfassen Bauchschmerzen, Magenulzera oder
Ubelkeit und Erbrechen [160, 162]. Bei adjuvanter Anwendung der HAI nach Protonen-
bestrahlung konnte ein medianes OS von 9 Jahren im Vergleich zur Kontrollgruppe mit
7,4 Jahren erreicht werden sowie ein 5-Jahres-OS von 75 % bzw. 56 % [162]. In diesem
Setting berichteten die Autoren Uber einen hohen Anteil an hepatischen NW der
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Schweregrade 3 bis 4, darunter Erhéhungen der Transaminase, gamma-Glutamyltrans-
ferase, alkalischen Phosphatase und der Bilirubinkonzentration, die sich nach Ende der
Therapie jedoch wieder zurtickbildeten [162].

1.1.5.2.2 Systemische Therapien: Immuncheckpoint-Blockade und
Zielgerichtete Therapien

Die Immuncheckpoint-Blockade (ICB) mit Antikérpern gegen CTLA-4 (Ipilimumab) bzw.
PD-1 (Nivolumab, Pembrolizumab) hat im KM zu spektakularen Erfolgen und langen
Ansprechdauern geflihrt und wurde daher auch mit gro3er Hoffnung im fortgeschrittenen
UM eingesetzt [163-166]. Eine systematische Ubersichtsarbeit von Heppt et al. zeigt
aber, dass die ICB im UM nur bei sehr wenigen Patienten wirksam ist [167]. Die An-
sprechraten mit Ipilimumab lagen zwischen 0 % und 6,5 % mit einem medianen PFS von
weniger als 3 Monaten und einem medianen OS zwischen 5,2 bis 9,8 Monaten [167].
Fir die Therapie mit Nivolumab wurden Ansprechraten zwischen 0 % und 25 % und mit
Pembrolizumab zwischen 0 % und 37 % berichtet, allerdings waren die Fallzahlen in den
Studien teilweise sehr gering und randomisierte kontrollierte Studien fehlen [168-170].
Die Kombination von Ipilimumab und Nivolumab erzielte Ansprechraten von 3 % bis
17 % und langere OS als die jeweiligen Monotherapien, allerdings kam es bei einem
deutlich groReren Teil der Patienten zu starkeren NW [168]. Es wird vermutet, dass die
schlechten Ansprechraten unter anderem auf die sehr geringe TMB des UM und die
damit einhergehende geringere Anzahl an Neoantigenen zurlickgeht [46, 48, 66]. Hierfur
spricht auch, dass UM mit Mutationen im MBD4-Gen, welche eine hohere TMB haben,
haufiger ein Ansprechen auf ICB zeigten [110, 111]. Aulerdem war die Programmed cell
death ligand 1 (PD-L1)-Expression der Tumorzellen bzw. PD-1-Expression der tumorin-
filtrierenden Lymphozyten in UM-Metastasen im Vergleich zu KM-Metastasen geringer,
was ein weiterer Grund fir die schlechteren Ansprechraten auf die anti-PD-1-
Immuntherapien darstellen konnte [171]. Generell scheinen Lebermetastasen von Mela-
nomen schlechter auf ICB anzusprechen als extrahepatische Metastasen [172]. In einer
retrospektiven Analyse von Koch et al. zur dualen ICB erreichten UM-Patienten mit aus-
schlieBlichen Lebermetastasen ein geringeres medianes OS als Patienten, die zusatz-
lich extrahepatische Metastasen hatten (6,1 vs. 18,2 Monate) [173]. Die Ansprechraten
der Patienten mit ausschliel3lich hepatischen Metastasen waren ebenfalls tendenziell
geringer (8,7 % vs. 16,7 %, p = 0,45), der Unterschied war jedoch nicht statistisch signi-
fikant [173]. Als Grunde hierfir werden von den Autoren unter anderem das spezielle
immunsuppressive Milieu der Leber diskutiert [173].

Die im UM haufig vorkommenden Mutationen in GNAQ und GNA11 fihren zu einer kon-
stitutiven Aktivierung des MAPK-Signalweges, weshalb spekuliert wurde, dass eine ziel-
gerichtete Therapie mit MEK-Inhibitoren (MEKI) wirksam sein kénnte [46, 48, 71, 73, 76,
78]. Allerdings waren die Ansprechraten in den entsprechenden Studien, darunter auch
die doppelverblindete Phase-3-Studie SUMIT mit dem MEKIi Selumetinib [174], nur sehr
gering und lagen zwischen 0 % und 14 %, das mediane PFS zwischen 3 und 16 Wochen
und das mediane OS zwischen 9,1 und 11,8 Monaten [175]. Auch Kombinationen ver-
schiedener MEKi mit weiteren zielgerichteten Inhibitoren wie etwa dem PKC-Inhibitor
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Sotrastaurin (AEB071) [176] oder dem Akt-Inhibitor Uprosertib [177] fihrten zu keiner
signifikanten Verbesserung des PFS und der Ansprechraten, aber teils erheblichen NW.
Aufgrund der limitierten Ergebnisse der systemischen Therapien empfiehlt die Arbeits-
gemeinschaft SOP zur Behandlung des UM eine friihzeitige palliativmedizinische und
psychoonkologische Betreuung der Patienten [120].

Trotz der enttauschenden Ergebnisse aus den Studien zur ICB wird an weiteren immu-
nologischen Behandlungsansatzen gearbeitet. Einen neuen, vielversprechenden Ansatz
fur die systemische Therapie des UM stellt das bispezifische Molekul Tebentafusp dar
[178], das seit April 2022 in der EU zur Behandlung des nicht-resezierbaren oder meta-
stasierten UM bei Patienten mit dem HLA-Typ A*02:01 zugelassen ist [179]. Dabei han-
delt es sich um eine l6slichen T-Zell-Rezeptor (TCR), welcher mit einem Anti-CD3-
Effektor gekoppelt ist und die Peptidsequenz YLEPGPVTA des Oberflachenproteins
gp100 erkennt, welches von MHC Klasse I-Molekilen auf UM-Zellen prasentiert wird
[180]. Aufgrund des TCR-Anteils von Tebentafusp wirkt es aber nur bei Patienten mit
dem HLA-A-Subtyp A*02:01, der als haufigster HLA-A-Subtyp bei mehr als 20 % der
Europaer und etwa 28,8 % der deutschen Bevolkerung vorliegt [181, 182]. Durch
Tebentafusp werden T-Zellen zu den Tumorzellen geleitet und aktiviert, wodurch eine
Antitumor-Immunantwort ausgelést wird [180, 183]. In einer Phase-3-Studie
(NCT03070392) mit 378 zuvor unbehandelten metastasierten UM-Patienten lag das 1-
Jahres-OS mit Tebentafusp bei 73 % (95 % CI 66 - 79) und das der Kontrollgruppe bei
59 % (95% CI 48 - 67) lag [178]. Eine kurzlich durchgefiihrte Phase-2-Studie mit 127
Patienten mit vortherapiertem, fortgeschrittenem UM (NCT02570308) konnte zeigen,
dass Tebentafusp das OS der Patienten im Vergleich zur Kontrollgruppe, welche
Pembrolizumab, Ipilimumab oder Dacarbazin erhielt, auch bei therapierefraktaren Pati-
enten signifikant verlangerte [184]. Darlber hinaus werden derzeit auch Studien zur Vak-
zinierung dendritischer Zellen (DC) mit Tumor-RNA, um eine spezifische Antitumorant-
wort zu generieren sowie zum autologen T-Zell-Transfer durchgefihrt. Bei der DC-Vak-
zinierung werden reife DC aus isolierten Monozyten des Patienten generiert und mit Tu-
mor-RNA, entsprechenden Peptiden oder einer mRNA, die fliir ein tumorspezifisches
Protein codiert (z.B. gp100) durch Elektroporation beladen und anschlielfend dem Pati-
enten wieder i.v. verabreicht [185-187]. Die DC-Vakzinierung mit gp100-mRNA konnte
in einer Fallserie mit 14 metastasierten UM-Patienten eine tumorspezifische Immunant-
wort bei 29 % und ein medianes OS von 19,2 Monaten erreichen, ohne dass schwere
NW = Grad 3 auftraten [186]. Im adjuvanten Setting konnte die Vakzinierung mit DC, die
mit TYR- bzw. gp100-mRNA beladen waren, bei UM-Patienten mit Monosomie 3 erfolg-
reich eine Metastasierung bei 39 % der Patienten verhindern; das mediane DFS lag bei
34,5 Monaten, das mediane OS bei 51,8 Monaten und das 3-Jahres-OS bei 79 % [187].
Beim autologen T-Zell-Transfer werden tumorinfiltrierende Lymphozyten aus resezier-
tem Metastasengewebe isoliert, in vitro expandiert und dem Patienten nach dem Erhalt
einer lymphodepletierenden Chemotherapie wieder infundiert [188]. Die Ansprechraten
liegen bei diesem Verfahren bei 35 %, Grad 3-NW traten als Folge der Chemotherapie
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auf und umfassten Lympho-, Neutro- und Thrombozytopenien sowie Anamien und In-
fektionen [188]. Diese beiden Therapieverfahren sind jedoch sehr aufwendig und teuer,
da sie die Aufbereitung der patienteneigenen Zellen in Speziallaboratorien erfordern.

1.1.6 Prognose

Das 1-Jahres-OS des UM liegt bei 95,9 % [5] und die 5-Jahres-OS bei 68,9 % in Europa
[5] bzw. 81,6 % in den USA [6]. Das Uberleben sinkt jedoch stark mit steigendem Tu-
morstadium [189]. UM-Patienten im Stadium | haben ein 10-Jahres-melanomspezifi-
sches Uberleben von 94 %, wahrend das der Patienten in den Stadien 1l und 11l bei 85 %
bzw. 61 % liegt [189]. Pro Tumorstadium vergréRert sich die HR flr eine Metastasierung
um den Faktor 3 [189]. Etwa 50 % der Patienten entwickeln Metastasen trotz
erfolgreicher Tumorkontrolle des Primartumors [135], was sich dramatisch auf das OS
auswirkt: Das mediane OS im metastasierten Stadium betragt nur 1,07 Jahre laut einer
Metaanalyse von Rantala et al. [190]. Andere Studien berichten von kiirzeren medianen
OS von 3,9 Monaten bzw. einem 1-Jahres-OS von 21,2 % sowie einem 3-Jahres-OS
von nur 4,3 % [191]. Zu den Risikofaktoren fur eine Metastasierung zahlen im Stadium |
eine hohere Tumordicke und eine breitere Tumorbasis, im Stadium |l zuséatzlich ein ho-
heres Alter der Patienten, die Pigmentierung des Tumors, eine pilzférmiges Tumor-
wachstum und subretinale FlUssigkeitseinlagerungen und bei Stadium Il ein pilzformi-
ges Tumorwachstum, Pigmentierung des Tumors sowie die Lage im unteren Bereich der
Choroidea [189]. Ungeachtet der kontinuierlichen Weiterentwicklung der Therapiever-
fahren hat sich die Dauer des Uberlebens von UM-Patienten mit Metastasen in den letz-
ten 40 Jahren kaum verandert [6, 190, 191]. Trotz alledem flhrt die Behandlung der
Metastasen zu einer signifikanten Verbesserung der 1- und 2-Jahres-OS-Raten (mit
Behandlung: 30,2 % vs. 5,6 %, ohne Behandlung: 12,2 % vs. 1,1 %, p < 0,001) und das
mediane OS betragt 6,3 Monate (Interquartilsabstand (IQR) 2,96- 14,41) fur Patienten
mit Behandlung der Metastasen vs. 1,7 Monate (IQR 0,66 — 3,5) ohne Behandlung [191].
Interessanterweise scheinen Patienten mit extrahepatischen Metastasen ein besseres
Uberleben zu haben als Patienten mit Lebermetastasen; nach einem Jahr lag das Uber-
leben bei 52,8 % (extrahepatische Metastasen) gegenuber 18,4 % (hepatische Metasta-
sen) und nach 3 Jahren bei 19,8 % gegenuiber 2,9 % [191]. In einer retrospektiven Ana-
lyse von Koch et al. erreichten UM-Patienten mit ausschlief3lich Lebermetastasen unter
dualer ICB ein geringeres medianes OS als Patienten, die zuséatzlich auch extrahepati-
sche Metastasen hatten (6,1 vs. 18,2 Monate) [173]. Die Ansprechraten der Patienten
mit ausschlieBlich hepatischen Metastasen waren auch tendenziell geringer (8,7 % vs.
16,7 %, p = 0,45), der Unterschied war jedoch nicht statistisch signifikant [173].

Die Prognose des UM wird maR3geblich durch die genetischen Veranderungen des Tu-
mors mitbeeinflusst. Die Monosomie 3 ist mit einem hohen Risiko fiir eine Metastasie-
rung [24, 48], einer hdheren Mortalitat [75, 192] sowie einem kirzeren RFS assoziiert
und ist damit einer der wichtigsten prognostischen Faktoren [46]. BAP1-Veranderungen
sind ebenfalls mit einem hoheren Metastasierungsrisiko assoziiert [24, 193]. Hierbei ha-
ben UM-Patienten mit somatischer BAP7-Mutation ein signifikant hoheres Risiko fur die
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Entstehung von Metastasen als Patienten mit BAP7-Keimbahnmutation (HR 4,81 vs.
HR 1,7, p < 0,0001) [193]. Laut einer Analyse von Ewens et al. entwickeln 74 % der UM-
Patienten mit somatischen BAP7-Mutationen, 36 % mit BAP1-Keimbahnmutationen und
26 % ohne BAP1-Mutationen Metastasen [193]. Die BAP7-Genexpression ist in
Tumoren mit hohem Metastasierungsrisiko (Klasse 2) signifikant geringer als in solchen
mit niedrigerem Metastasierungsrisiko (Klasse 1) [24]. Patienten mit einer héheren
mikrovaskularen Dichte zeigten in einer Studie von Brouwer et al. ebenfalls ein schlech-
teres OS und waren mit Monosomie 3 und einem BAP1-Verlust assoziiert [194]. Weitere
chromosomale Aberrationen, die mit einer hoheren Mortalitat assoziiert sind, umfassen
den Verlust von Chr. 1p und den Zugewinn von Chr. 8q [192]. Interessanterweise scheint
es auch ein Zusammenhang zwischen der Irisfarbe und der Prognose des UM unabhan-
gig von anderen genetischen Risikofaktoren zu geben [195]. UM-Patienten mit grauen
oder blauen Augen haben ein signifikant schlechteres OS als Patienten mit griinen oder
braunen Augen [195]. Im Gegensatz dazu haben Patienten mit Mutationen in den Genen
SF3B1 [47, 98], EIF1AX [48] oder einem Zugewinn von Chr. 6p [192] eine gunstigere
Prognose. Im Fall von SF3B1 haben Patienten mit einer Mutation in diesem Gen auch
signifikant seltener BAP1-Mutationen und und eine Monosomie 3, werden der Klasse 2-
Gensignatur zugeordnet, haben weniger undifferenzierte, epitheloide Zellen und sind
junger als Patienten mit SF3B7-Wildtyp-Tumoren [47, 98]. MAglicherweise konnte auch
das Auftreten von immunogenen Neoantigenen, die durch aberrantes Splicing generiert
werden und bei etwa 20 % der UM-Patienten mit SF3B71-mutierten Tumoren gefunden
wurden, die Prognose dieser Patienten mit beeinflussen [99].

1.2 Melanozyten: Ursprung des Uveamelanoms

1.2.1 Allgemeines und Melanogenese

Das UM entwickelt sich wie auch das KM aus Melanozyten, den Pigmentzellen des Kor-
pers [3]. Diese Zellen sind hauptsachlich in der Haut in den unteren Schichten der Epi-
dermis zu finden [196], kommen aber auch in der Choroidea, dem Ziliarkérper und der
Iris im Auge [197], im Gehirn in den Leptomeningen [198], dem Locus coeruleus und der
Substantia nigra [199], im Innenohr in der Stria vascularis der Cochlea [200] sowie im
Herz in den Klappen und im Septum vor [201]. Sowohl kutane als auch uveale
Melanozyten produzieren zwei verschiedene Pigmente, das braunschwarze Eumelanin
und das rétlich-gelbe Phaomelanin [202-205]. Wahrend Eumelanin einen guten Schutz
gegen die UV-Strahlung bietet, ist dieser bei Phdomelanin deutlich weniger ausgepragt
[202, 206]. Beide Pigmente werden im Rahmen der Melaninsynthese (Melanogenese)
in einem mehrstufigen, enzymatisch gesteuerten Prozess ausgehend von der Amino-
saure Tyrosin synthetisiert und in speziellen Organellen, den Melanosomen, gelagert
[207, 208]. Uveale Melanozyten unterscheiden sich von kutanen in einigen Eigenschaf-
ten. Kutane Melanozyten geben ihre Melanosomen an die sie umgebenden Keratinozy-
ten ab, damit diese sie sonnenschirmartig uber den Zellkern lagern kdnnen, um die DNA
vor der mutagenen UV-Strahlung zu schiitzen [202, 207]. Melanozyten der Haut besitzen
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dazu mehrere als Dendriten bezeichnete Zellauslaufer, die sich zwischen den umliegen-
den Keratinozyten ausbreiten und so die Verteilung des Melanins an diese erleichtern
[207]. Uveale Melanozyten besitzen ebenfalls Dendriten [209], allerdings geben sie ihre
Melanosomen nicht an ihre Nachbarzellen ab, sondern behalten diese in ihrem Zellinne-
ren [210]. In der Haut wird die Eumelaninsynthese durch einen sorgsam koordinierten
parakrinen Prozess durch UV-Exposition stimuliert [207, 208]. Durch die UV-Strahlung
kommt es in den Keratinozyten der Epidermis zu DNA-Schaden und in Folge dessen zur
direkten Steigerung der lokalen Proopiomelanocortin (POMC)-Synthese durch die Akti-
vierung und Bindung des Tumorsuppressorproteins p53 an den POMC-Promotor [211].
POMC ist ein Praprohormon, dass neben der Haut auch in anderen Organen wie dem
Gehirn gebildet wird und das durch enzymatische Spaltung in verschiedene hormonell
aktive Peptide zerlegt wird, darunter die Melanocortine a-, - und y-melanozytenstimu-
lierendes Hormon (MSH) und adrenocorticotropes Hormon (ACTH) sowie B-Endorphin
[212]. Das hierbei entstehende a-MSH wird von den Keratinozyten sezerniert und bindet
auf den benachbarten Melanozyten an den Melanocortin-1-Rezeptor (MC1R) [213, 214].
Hierdurch wird intrazellular eine Erh6hung der zyklischen AMP (cAMP)-Spiegel und Ak-
tivierung der Proteinkinase A ausgeldst, was zur Phosphorylierung des CRE-bindenden
Proteins (CREB) und nach dessen Bindung an das C-responsive element (CRE) im Pro-
motor des Transkriptionsfaktors MITF dessen Transkription induziert [213, 214]. MITF
wiederum stimuliert als Masterregulator der Melanogenese die Transkription zahlreicher
Enzyme der Eumelaninsynthese wie TYR, DCT oder TYRP1 [215]. Die Pigmentierungs-
intensitat von uvealen Melanozyten variiert je nach Augenfarbe und Ethnie [204, 216,
217]. Anders als kutane Melanozyten reagieren die uvealen Melanozyten etwa in der Iris
nicht mit einer verstarkten Pigmentsynthese auf eine UV-Exposition, weshalb sich die
Augenfarbe trotz kontinuierlicher Sonnenexposition nicht verandert [218]. Ebenso wenig
wird das Wachstum der Zellen durch Verletzungen oder Entziindungen beeinflusst [219].
In der Iris wurde einerseits kein a-MSH nachgewiesen, andererseits reagierten uveale
Melanozyten auf eine a-MSH-Stimulation in vitro nicht mit einer verstarkten Melanoge-
nese bzw. Proliferation, was durch die fehlende Expression des korrespondierenden
Rezeptors MC1R erklart werden kénnte [218, 219]. Der Prostaglandin F-Rezeptor-A-
gonist Latanoprost sowie andere Prostaglandinanaloga, die zur medikamentdsen Sen-
kung des Augeninnendrucks eingesetzt werden, kdnnen jedoch zu einer Veranderung
der Irispigmentierung durch Erhéhung der TYR-Expression fuhren, wobei jedoch die
Proliferation der Zellen nicht beeinflusst wird [220-222]. Bislang gibt es auch keine Hin-
weise, dass Latanoprost das UM-Risiko erhéht [223].

Die physiologische Rolle der Melanozyten im Auge ist derzeit noch nicht vollstandig ver-
standen. Der Schutz vor UV-Strahlung kann im Gegensatz zu den kutanen Melanozyten
nur eine geringe Rolle spielen, da anatomische Strukturen wie die Cornea, Linse und
der Glaskdrper bereits mehr als 99 % der eintreffenden UV-Strahlung absorbieren und
uveale Melanozyten mit Ausnahme der Irismelanozyten somit kaum gegeniber UV-
Strahlung exponiert werden [44]. DarUber hinaus kommen uveale Melanozyten aufgrund
der davor liegenden Netzhaut und des retinalen Pigmentepithels (RPE) so gut wie gar
nicht in Kontakt mit sichtbarem Licht [216]. Da Eumelanin nicht nur UV-protektiv, sondern
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auch antioxidativ und als schwacher Radikalfanger wirkt, wird daher spekuliert, dass das
Pigment die Retina vor oxidativem Stress durch die ROS-Bildung aus der stark durch-
bluteten Choroidea schitzt [216]. Uveale Melanozyten scheinen auch fir die normale
Funktion der Uvea von Bedeutung zu sein, da melanozytendefiziente Mause eine dun-
nere Choroidea und abnorme choroidale GefalRe aufweisen [224]. Neben der Melanin-
synthese exprimieren uveale Melanozyten auch Enzyme fur die Degradierung der ext-
razellularen Matrix (EZM) wie tissue plasminogen activator (tPA) sowie Wachstumsfak-
toren wie den Vascular endothelial growth factor (VEGF), die ebenfalls einen Beitrag zur
physiologischen Rolle der Zellen im Auge leisten kénnen [205].

1.2.2 Embryonale Entwicklung der Melanozyten in der Haut und im Auge

Bei der Melanomentstehung werden unter anderem embryonale Transkriptionspro-
gramme reaktiviert, die normalerweise nur wahrend der Neuralleistenentwicklung aktiv
sind [225, 226]. Der Grund hierfir liegt in der besonderen Embryonalentwicklung der
Melanozyten, die die Ursprungszellen aller Melanome darstellen. Obwohl kutane
Melanozyten in der Epidermis, einem ektodermalen Gewebe, lokalisiert sind, entwickeln
sie sich aus einer transienten neuroektodermalen Vorlauferzellpopulation, der Neural-
leiste (neural crest, NC) [227, 228]. Die NC-Entwicklung wird wahrend der Entstehung
des Nervensystems (Neurulation) an den Randern der Neuralplatte etwa 20 Tage nach
der Fertilisation induziert [229, 230]. Die multipotente Zellpopulation der NC-Zellen be-
findet sich zwischen dem Neuralrohr und dem dariberliegenden Ektoderm und stellt die
Vorlauferzellen von Melanozyten aber auch anderen Gewebetypen wie peripheren Ner-
ven, Knorpel, Knochen, Fettgewebe, glatten Muskelzellen im Herz oder Zellen der Ne-
bennierenrinde [228, 229, 231]. Von ihrem Ursprungsort wandern die trunkalen NC-Zel-
len schlielich dorsal oder ventral der mesodermalen Somiten an ihre jeweiligen Zielorte
[227, 232]). Die als Melanoblasten bezeichneten Vorlauferzellen der kutanen
Melanozyten nehmen von der NC aus die dorsolaterale Route zwischen Ektoderm und
Somiten, wandern aktiv in die Dermis und schlie3lich durch die Basalmembran in die
unteren Schichten der Epidermis ein, wo sie letztlich zu reifen Melanozyten differenzie-
ren [227, 228, 232]. Die Faltung des Neuralrohrs, Spezifikation und Delamination der
NC-Zellen sowie die Migration und Differenzierung der Vorlduferzellen zu den verschie-
denen Geweben werden durch die zeitliche und értlich begrenzte Expression verschie-
dener Transkriptionsfaktoren genau gesteuert (Abb. 2) [228, 229, 232, 233]. Bei der
Melanozytenentwicklung spielen hierbei vor allem die Transkriptionsfaktoren SRY-Box
transcription factor 10 (SOX10) und MITF eine entscheidende Rolle. Bereits vor der Mig-
ration wird SOX10 in den ersten multipotenten Vorlauferzellen exprimiert, die sich sowonhl
zu Melanozyten als auch Gliazellen differenzieren kdnnen [227, 234, 235]. Wahrend ih-
rer Migration in Richtung Dermis und Epidermis ist das Uberleben der melanozytaren
Vorlauferzellen (Melanoblasten) essenziell von der Expression von SOX10 abhangig
[236]. MITF ist eines der ersten melanozytenspezifischen Gene, das wahrend der Emb-
ryonalentwicklung exprimiert wird und ist ebenfalls essenziell fir das Uberleben der
Melanoblasten wahrend ihrer Migration sowie fur ihre Weiterentwicklung zu reifen Mela-
nozyten und die folgende Melanogenese [228, 237].
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Abb. 2: Embryonale Entwicklung der kutanen Melanozyten des Korperstamms und betei-
ligte Transkriptions- und Wachstumsfaktoren

(A) Die Induktion und (B) Faltung der Neuralplatte wahrend der Frihphase der Embryogenese
wird durch ektodermal sezernierte Faktoren (bone morphogenetic proteins (BMP) und Wnt family
members (WNT)) sowie mesodermal sezernierte Fibroblastenwachstumsfaktoren (FGF) stimu-
liert. Diese induzieren die Expression der Transkriptionsfaktoren Msh homeobox 1 (MSX1) und
Paired box 3 (PAX3) in der Neuralplattengrenze. (C) Aus den Zellen der Neuralplattengrenze
bildet sich nach der Faltung der Neuralplatte und der Delamination die transiente Zellpopulation
der Neuralleisten-(neural crest, NC)- Zellen, in der Faktoren wie MSX1, PAX3, Forkhead box D3
(FOXD3) und SOX10 sowie die EMT-Marker SNAIL und SLUG exprimiert werden. (D) Nachdem
die Zellen eine epitheliale-mesenchymale Transition (EMT) durchlaufen haben, migrieren die Vor-
lauferzellen der Melanozyten, die Melanoblasten, aus der NC in die Epidermis, wo sie zu reifen,
pigmentbildenden Melanozyten differenzieren. Wahrend der Migration sind die Zellen firr ihr Uber-
leben auf die Expression von SOX10 angewiesen. Abbildung modifiziert nach Wessely et al. 2021
[233].

Uveale Melanozyten gehen aus kranialen NC-Zellen hervor, die entscheidend am Auf-
bau des Gesichts sowie der Augenentwicklung beteiligt sind und im Auge Teile der Cor-
nea, des Ziliarkérpers, der Iris und sowie der Tranengange bilden [231]. Die Entwicklung
der NC-Zellen im Kopfbereich, aus denen sich aulerdem auch Knochen und Bindege-
webe des Gesichts entwickeln, unterscheidet sich in einigen Punkten, ist aber insbeson-
dere, was die Spezifikation der okularen NC-Zellen betrifft, noch deutlich weniger gut
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erforscht [231, 238]. Nachdem das Neuralrohr geschlossen ist, bilden sich im spateren
Kopfbereich noch wahrend der Delamination der NC-Zellen die Augenblaschen durch
Ausstllpungen des ersten Hirnblaschens (Prosencephalon) zwischen dem
Telencephalon und dem Diencephalon des Embryos aus, welche sich nach dem Kontakt
mit dem oberflachlichen Ektoderm zum Augenbecher einstilpen (Abb. 3, siehe Seite 51)
[231, 239]. Nach der epithelialen-mesenchymalen Transition (EMT) wandern NC-Zellen
aus dem Bereich des Diencephalons und des anterioren Mesencephalons in die Augen-
anlagen ein [231], wo die kranialen NC-Zellen als lose Zellpopulation das periokulare
Mesenchym im posterioren Teil des Augenbechers bilden [240]. Bei Menschen erfolgt
die Wanderung der NC-Zellen in die sich entwickelnden Augen dabei in drei Wellen
[240]. Die NC-Zellen der ersten Migrationswelle bilden zwischen dem Ektoderm (spate-
res Corneaepithel) und der anterioren Oberflaiche der Linse das spatere Cornea-
endothel, die der zweiten Welle differenzieren zwischen Corneaendothel und —epithel zu
Corneakeratinozyten und die der dritten Welle bilden Teile des Ziliarkdrpers und des
Irisstromas [240]. In der Maus sind die ersten Melanoblasten bereits an Tag 15,5 der
Embryonalentwicklung in der Choroidea nachweisbar, was etwa der 8. bis 9. Woche der
Embryonalentwicklung beim Menschen entspricht [238]. Beim Menschen wurden reife
uveale Melanozyten in der Embryonalentwicklung erst ab der 28. Woche nachgewiesen
[241].

Neben den uvealen Melanozyten gibt es im Auge mit dem RPE noch eine weitere ana-
tomische Struktur aus pigmentierten Zellen, die als einzellige Schicht aus kubischen
Epithelzellen zwischen der Choroidea und der Retina liegt [242]. Diese Zellen stammen
entwicklungsgeschichtlich jedoch von Zellen des Neuroektoderms des Augenbechers ab
und nicht von kranialen NC-Zellen [243]. Ihre Aufgaben umfassen die Aufnahme von
abgestolienen Spitzen der AulRensegmente der angrenzenden Photorezeptoren der Re-
tina durch Phagozytose sowie den Transport von Nahrstoffen, Wasser und lonen zu den
Photorezeptoren, wodurch sie maf3geblich zum Erhalt der Sehfunktion beitragen [244].
In der Fovea interagiert dabei eine Pigmentzelle mit etwa 23 Zapfen und bildet mit diesen
eine funktionelle Einheit [244]. Das RPE ist intensiv pigmentiert unabhangig von der Au-
genfarbe oder der Ethnie und enthalt vor allem Eumelanin [216]. Durch die Absorption
des in das Auge fallenden Lichtes erhitzen sich die Zellen des RPE auf mehr als 40°C;
diese Warme wird Uber die starke Durchblutung in die darunterliegenden Choroidea ab-
gefuihrt [245]. Dartber hinaus ist das RPE am Aufbau der Blut-Retina-Schranke beteiligt,
die fur die normale Sehfunktion und die Stellung des Auges als immunprivilegiertes
Organ essenziell ist [246].
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Abb. 3: Embryonale Entwicklung der uvealen Melanozyten aus kranialen NC-Zellen

Nach der (A) Induktion, (B) Faltung der Neuralplatte, (C) Verschluss des Neuralrohrs und Bildung
der Neuralleiste (NC) bilden sich (D) aus dem kranialen Anteil des Neuralrohrs die drei primaren
Hirnblaschen (Pros-, Mes- und Rhombencephalon; Sicht von oben auf das Neuralrohr). Durch
weitere Ausstllpungen bilden sich das rostral gelegene Telencephalon und kaudal gelegene
Diencephalon aus dem Prosencephalon; zwischen diesen beiden Strukturen entwickeln sich spa-
ter die Augen. (E) Aus den Ausstilpungen des Prosencephalons bilden sich zwei Augenblaschen
und die kranialen NC-Zellen beginnen mit der Migration. (F) Das Neuralepithel der
Augenblaschen beginnt sich nach dem Kontakt mit dem Ektoderm, der Linsenplakode, aus der
spater die Linse entsteht, zum Augenbecher einzustllpen. NC-Zellen aus dem Di- und anterioren
Mesencephalon wandern dann in drei Migrationswellen in die Augenanlagen ein und (G) diffe-
renzieren dort zu Zellen des Corneaendothels, den Corneakeratinozyten, des Ziliarkdrpers,
Irisstromas und zu reifen uvealen Melanozyten. Letztere konnen ab der 28. Schwangerschafts-
woche beim Menschen nachgewiesen werden. Abbildung modifiziert nach [231, 233, 239, 240,
247].
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1.3 Der Neuralleisten-Transkriptionsfaktor SOX10

1.3.1 Physiologische und pathophysiologische Rolle

SOX10 (SRY-Box transcription factor 10) gehdrt zu den Sry (sex determining region
of Y)-HMG-Box (SOX)-Transkriptionsfaktoren [235, 248] und wurde 1993 erstmals be-
schrieben, als es zusammen mit sechs weiteren SOX-Proteinen in der Maus entdeckt
wurde [249]. Innerhalb der mehr als 20 Mitglieder umfassenden SOX-Proteinfamilie wird
SOX10 zusammen mit SOX9 und SOX8 der SoxE-Gruppe zugeordnet [249]. Das
SOX10-Gen liegt auf Chr. 22q13.1 [250] und enthalt finf Exons [251]. Das hierdurch
codierte SOX10-Protein besteht aus 466 Aminosauren mit einem Molekulargewicht von
etwa 50 kDa [250, 252]. Alle SOX-Transkriptionsfaktoren besitzen eine high mobility
group (HMG)-Domaéane, Uber die sie einerseits an die kleine Furche der DNA binden und
diese dadurch stark verbiegen und Uber dessen C-terminalen Teil andererseits andere
Transkriptionsfaktoren binden kdnnen [248, 253, 254]. Die Mitglieder der SoxE-Familie
besitzen zusatzlich zur HMG-Domane eine C-terminale und eine zentrale Transaktivie-
rungs-Domane [248, 250, 252]. SOX10 weist mit einer Sequenzibereinstimmung von
59 % eine hohe Homologie mit SOX9 auf [250]. Die gréiten Ubereinstimmungen befin-
den sich im N-terminalen Teil der HMG-Domane, im zentralen Teil der Aminosaurese-
quenz und am C-Terminus des Proteins [250]. Die SOX-Proteine binden an das 7 Ba-
senpaare (bp) kurze Konsensusmotiv 5'-(A/T)(A/T)CAA(A/T)G-3', das jedoch sehr haufig
im Genom vorkommt [248]. SOX10 kann an die DNA sowohl als Monomer als auch Ho-
modimer oder Heterodimer mit anderen SoxE-Proteinen und Cofaktoren binden [248,
254]. Die Aktivitat von SOX10 kann posttranslational durch Phosphorylierung [255] und
SUMOylierung [256, 257] moduliert werden. Die SUMOylierung von SOX10 verringert
die transkriptionelle Aktivitat seiner Zielgene, allerdings nicht die Bindung des Transkrip-
tionsfaktors an die DNA [256]. Zudem moduliert die SUMOylierung die Funktion von
Sox10 und Sox9 bei der NC-Entwicklung im Krallenfrosch (Xenopus laevis) [257]. Im KM
konnte speziell die SUMOylierung der Aminosaure Lysin (Lys) 55 als wichtige Modifika-
tion fur die Veranderung der transkriptionellen Aktivitat des Proteins identifiziert werden
[258]. SOX10 kann an acht Positionen phosphoryliert werden, die sich in Proteinmotiven
befinden, die durch MAP-Kinasen und Cyclin-abhangige Kinasen (CDK) phosphoryliert
werden [255]. Die Phosphorylierung an der Aminosaureposition S24 verringert beispiels-
weise die transkriptionelle Aktivitdt am MITF-Promotor, jedoch scheint die transkriptio-
nelle Aktivitat nicht pauschal durch Phosphorylierungen an bestimmten Stellen gesteuert
zu werden, sondern auch vom zelluldren Kontext abhangig zu sein [255]. Ahnlich kann
die Stabilitdt des Proteins durch Phosphorylierung je nach Zellkontext moduliert und
mdglicherweise Uber zusatzliche Feedback-Mechanismen beeinflusst werden [255]. Ob-
wohl SOX10 als Transkriptionsfaktor seine Funktion im Zellkern ausibt und vor allem
dort nachgewiesen werden kann, kommt das Protein auch im Zytoplasma vor und kann
zwischen diesen subzellularen Kompartimenten hin- und herwechseln [259]. Han et al.
konnten zeigen, dass SOX10 durch die Kinase ERK2 an den Aminosaurepositionen
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Threonin (Thr) 240 und Thr244 phosphoryliert wird und dies die SUMOylierung des Pro-
teins an Position Lys55 verhindert [258]. Diese ERK2-vermittelte Phosphorylierung ver-
mindert die transkriptionelle Aktivitdt von SOX10 und kann zu einer geringeren Expres-
sion seiner Zielgene wie MITF und TYR flhren [258]. Weder die Phosphorylierung noch
die SUMOylierung scheinen jedoch die subzellulare Lokalisation von SOX10 zu beein-
flussen [255, 256].

SOX10 wird bereits wahrend der Embryonalentwicklung in den frilhen Phasen der NC-
Entwicklung exprimiert und beeinflusst ma3geblich die weitere Entwicklung der daraus
entstehenden Zelltypen [260]. Konkret ist SOX10 essenziell an der Entwicklung der
Melanozyten [261] und des peripheren Nervensystems (PNS) beteiligt [236]. In der me-
lanozytaren Linie ist SOX10 sowohl zentral in die Melanozytenentwicklung als auch in
die Differenzierung und Melanogenese involviert [261-263]. SOX10 wird dabei nicht nur
in NC-Zellen, sondern auch in den migrierenden unreifen melanozytaren Vorlauferzellen
exprimiert [236] und ist obligat fir das Uberleben der Zellen in dieser Phase [264]. Post-
natal wird SOX10 sowohl in reifen differenzierten Melanozyten als auch in den mela-
nozytaren Stammzellen im Haarfollikel exprimiert [265-267]. Harris et al. konnten im
Mausmodell zeigen, dass die Expression von SOX10 dabei paradoxerweise sowohl flr
die Etablierung und Aufrechterhaltung der undifferenzierten melanozytaren Stammzel-
len als auch fur die differenzierten Melanozyten und die normale Pigmentierung der Zel-
len wichtig ist [267]. Diese eigentlich gegensatzliche Rolle von SOX10 wird durch die
Modulierung der SOX10-Expressionslevel erreicht, da davon ausgegangen wird, dass
die SOX10-Aktivitat in melanozytaren Stammzellen herabreguliert wird, um die Selbst-
erneuerungsfahigkeit der Zellen aufrechtzuerhalten und eine Differenzierung der Zellen
zu vermeiden [267]. Neben der Haut wurde eine SOX10-Expression auch in der norma-
len Uvea bei 44 % der Proben in der Choroidea, 48 % im Ziliarkérper und 11 % in der
Iris detektiert [268, 269]. SOX10 ist in Melanozyten entscheidend in die Melanogenese
involviert, da es unmittelbar oberhalb der Bindestelle des Transkriptionsfaktors Paired
box 3 (PAX3) an den Promotor des Transkriptionsfaktors MITF, dem Hauptregulator der
Melanogenese, bindet und somit direkt dessen Expression steigern kann [261-263]. Zu-
dem steuert SOX10 direkt die Transkription der Gene TYR [270], TYRP1 [271]und DCT
[272, 273], die fur Enzyme der Eumelanin-Synthesekaskade ausgehend von der Amino-
saure L-Tyrosin codieren [274].

Aufder in Melanozyten wird SOX10 auch in anderen von NC-Zellen abstammenden Ge-
webetypen wie den Nerven- und Gliazellen des PNS inklusive Schwannzellen,
Oligodendrozyten, Axonen von Motoneuronen, Ganglien des Sympathikus und
Parasymphatikus sowie Zellen des enterischen Nervensystems exprimiert [252, 266,
275]. Eine SOX10-Expression im Gehirn wurde sowohl bereits bei 17- bis 25-Wochen
alten Foten als auch bei Erwachsenen nachgewiesen [275]. Darlber hinaus wurde eine
SOX10-Expression in der fetalen Lunge, Niere und in Brust-Stammzellen sowie bei Er-
wachsenen in Brustdrisengewebe, Kolon, Dinndarm, Herz, in den abluminalen
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myoepithelialen und luminalen Azinuszellen und Schaltstlicken der Parotis, in den sub-
mukosalen Bronchialdriisen sowie in geringerem Ausmal in der Blase, Prostata, Magen
und Pankreas detektiert [266, 275-277].

Heterozygote Mutationen im SOX70-Gen sind beim Menschen mit dem autosomal-do-
minant vererbten Waardenburg-Shah-Syndrom (Waardenburg-Syndrom Typ 4, WS4)
assoziiert, das sich als Pigmentierungsstérungen der Haut und Haare wie einer charak-
teristischen weillen Stirnlocke, weilten Wimpern und Augenbrauen, Irisheterochromatie
und Hauthyperpigmentierung sowie weit auseinanderstehenden Augen, kongenitaler
sensorineuraler Taubheit und einem Megakolon verursacht durch eine Agangliose des
Kolons (Morbus Hirschsprung) manifestiert [251, 278, 279]. Daruber hinaus wurden
SOX10-Deletionen bei Patienten mit dem Waardenburg-Syndrom Typ 2 detektiert, das
bei etwa 15 % der Patienten durch heterozygote Mutationen in MITF bedingt ist und
dessen genetische Ursachen in den Ubrigen Fallen unbekannt ist [280]. Weiterhin sind
SOX10-Deletionen bei Patienten mit peripherer demyelinisierender Neuropathie mit
zentraler dysmyelinisierender Leukodystrophie, Waardenburg-Syndrom und Hirsch-
sprung-Krankheit (PCWH) beschrieben worden [281]. Pingault et al. konnten SOX10-
Mutationen bei Patienten mit Kallmann-Syndrom nachweisen, bei dem es zu einer
Anosmie, einem hypogonadotrophen Hypogonadismus und zusatzlichem Horverlust
kommt [282]. Bisher wurden in der Literatur etwa 300 Falle von Patienten mit krankheits-
verursachenden genetischen Veranderungen im SOX70-Gen beschrieben [283]. Die
haufigsten mit einem Krankheitsbild assoziierten Aberrationen waren Punktmutationen,
die zur Ausbildung neuer Stopcodons fuhrten; letztere wurden entlang des gesamten
Gens gefunden [283]. Mutationen, die zur Expression eines trunkierten Proteins flihrten
und durch neue Stopcodons oder eine Verschiebung des Leserahmens verursacht wur-
den, wurden bei etwas mehr als der Halfte der untersuchten Falle gefunden und bei etwa
einem Drittel wurden Missense-Mutationen oder kurze Deletionen bzw. Insertionen fest-
gestellt, die zu keiner Verschiebung des Leserahmens fuhrten [283]. Missense-Mutatio-
nen traten dabei gehauft in der HMG-Domane auf, jedoch nicht unbedingt an Aminosau-
repositionen, die mit posttranslationalen Modifikationen assoziiert sind [283]. Bei etwa
10 % der Falle wurden ganze oder teilweise Variationen der Kopienzahl gefunden [283].
Eine Sox710-Haploinsuffizienz fuhrt bei Mausen zu einer veranderten Fellfarbung mit cha-
rakteristischem wei3en Fleck am Bauch (,white belly spot*) und einem Megakolon durch
Agangliose des Kolons (,Dom Hirschsprung mouse model“) [236, 284]. Ein kompletter
Funktionsverlust von SOX10 wahrend der Embryonalentwicklung ist nicht mit dem Le-
ben vereinbar [236, 284-286]. Bisher wurden nur zwei Falle von SOX10-Alterationen, die
beide Allele betrafen und bereits in utero zum Tod der betroffenen Foten fuhrten, in der
Literatur berichtet [285, 286]. LeBel et al. berichteten den weltweit ersten dokumentierten
Fall eines in der 31. Schwangerschaftswoche totgeborenen Fétus mit einer homozygo-
ten SOX10-loss-of-function-Mutation [286]. Bei dieser Mutation handelte es sich um eine
392 kb grolde Deletion auf Chr. 22q13.1, die das gesamte SOX710-Gen sowie up- und
downstream liegende Gene auf einem Allel umfasste sowie um eine 7 kb grof3e Deletion
auf dem anderen Allel, die zu einem Verlust des Exons 3 und Teilen des Exons 2 flhrte
[286]. Der Foétus wies eine Wachstumsretention, weille Haare, kleine, niedrig sitzende
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Ohren, einen breiten Nasenriicken, erhéhten Augenabstand, eine Mikrognathie,
Arthrogrypose, FuRdeformitaten, Kontrakturen der Extremitaten, eine Atrophie der Ske-
lettmuskulatur und eine Fallot-Tetralogie auf [286]. Bei dem zweiten von Stevenson et
al. berichteten Fall handelte es sich um einen in der 32. Schwangerschaftswoche totge-
borenen Fotus, bei dem ebenfalls Deletionen beider SOX710-Allele vorlagen und der
weille Haare sowie eine kurze Lidspalte, Dystopia canthorum und eine Arthrogrypose
aufwies [285]. Im Mausmodell ist ein kompletter Funktionsverlust von Sox710 ebenfalls
letal, da die Mause bereits in utero sterben [236, 284].

1.3.2 Expression im Melanom und anderen Tumorarten

1.3.2.1 Expression und Funktion im kutanen Melanom

SOX10 wird nicht nur in Melanozyten, benignen Navi sowie kongenitalen Riesennavi,
sondern auch im KM exprimiert [265, 266, 287, 288]. SOX10 kann als Marker flir mela-
nozytare Zellen in der histologischen Diagnostik beispielsweise zur Detektion von Mela-
nomzellen im Wachterlymphknoten eingesetzt werden, da SOX10 eine ahnliche Spezi-
fitat und Sensitivitat wie eine Kombination der haufig in der Diagnostik eingesetzten Mar-
ker S100, Melan-A oder HMB-45 aufweist [287]. Die Hohe der SOX10-Expression in
Navi wurde je nach Studie sowohl als héher [265] als auch niedriger [289, 290] im Ver-
gleich zu den untersuchten Melanomproben beschrieben. Da SOX10 auch in benignen
Navi exprimiert wird, ist es als Marker zur Unterscheidung von benignen und malignen
Zellen nicht geeignet [287]. Im Melanom wurde in verschiedenen Studien eine SOX10-
Expression bei 43 % [291] bis 100 % [265, 288] der untersuchten Primartumoren detek-
tiert. Mehr als 80 % der SOX10-positiven Proben enthielten dabei mindestens 75 %
SOX10-positive Zellen [265, 288]. Ubereinstimmend damit zeigen Einzelzell-RNA-
Sequenzierungsanalysen und immunhistochemische (IHC)-Farbungen eine inter- und
intratumoral heterogene SOX10-Expression in Melanomproben, dabei wurden im glei-
chen Tumor sowohl Zellen mit als auch ohne SOX10-Expression gefunden [292]. SOX10
wird vor allem von Melanomzellen, aber kaum von anderen Zellen im Tumor oder seiner
Umgebung wie Keratinozyten, Fibroblasten oder Makrophagen exprimiert [290].

Die Daten zu SOX10 als prognostischen Marker sind uneindeutig. In der Studie von Ag-
narsdottir et al. korrelierte eine starke nukleare SOX10-Farbeintensitat mit einem besse-
ren OS und einem langeren RFS [265]. Gambichler et al. konnten in ihrer Analyse jedoch
eine signifikante positive Korrelation zwischen der SOX10-Expression und dem Alter,
der Tumordicke, nodularen Melanomen, einem hoheren Tumorstadium, Rezidiven und
dem krankheitsspezifischen Tod finden [289]. Eine weitere Arbeit stellte ebenfalls eine
Korrelation zwischen einer hdheren SOX710-Genexpression und einem kirzeren OS fest
[290]. SOX10 kann nicht nur im Tumorgewebe selbst, sondern auch im Serum nachge-
wiesen werden und erhéhte Serumspiegel wurden bei Melanom- sowie Vitiligopatienten
festgestellt [293].

SOX10 ist nicht nur ein diagnostischer Marker, sondern spielt auch eine tragende funk-
tionelle Rolle im Melanom, da es essenziell fiir die Proliferation und das Uberleben von
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KM-Zellen ist. Die Hemmung von SOX10 durch RNA-Interferenz fihrt in vitro zu einer
verringerten Expression des Transkriptionsfaktors E2F1, dem Tumorsuppressorprotein
Retinoblastom-Protein (Rb) und MITF sowie einer erhéhten Expression der CDK-Inhibi-
toren p21 und p27 und resultiert letztlich in einem Zellzyklusarrest in der G1-Phase sowie
je nach Zelllinie zur Seneszenzinduktion oder Apoptose der Zellen [288, 290, 294, 295].
Die Effekte werden dabei unabhangig vom Tumorsuppressor p53 vermittelt [294]. Ein
wichtiger Faktor in diesem Zusammenhang ist SOX9 [296]. Die Expressionshdhe von
SOX9 im KM schwankt und wurde sowohl als gering wie auch als stark beschrieben
[291, 296]. Durch die Herabregulation von SOX10 kommt es im KM zu einer erhéhten
SOX9-Expression und umgekehrt verringert eine hohe SOX9-Expression die SOX10-
Expression durch direkte Bindung von SOX9 an den SOX70-Promotor, sodass hier eine
gegenseitige Beeinflussung der beiden strukturell nah verwandten Transkriptionsfakto-
ren stattfindet [296]. Die ektope Expression von SOX9 flhrt zur Ausbildung eines Gen-
expressionsprofils, das dem nach SOX10-Herabregulierung stark dhnelt und Gene be-
trifft, die an der Regulierung der melanozytaren und mesoektodermalen Differenzierung
sowie der Apoptose und des Zellzyklusprogresses beteiligt sind [296]. Interessanter-
weise bewahrt die Herabregulierung von SOX9 die Zellen nach SOX10-Hemmung vor
Apoptose [296]. Neben dem Einfluss auf das Uberleben und die Zellzyklusregulation
fordert SOX10 auch die Invasion durch direkte transkriptionelle Regulation von Mela-
noma inhibitory activity (MIA) [295] und peripheral myelin protein 2 (PMP2) [297]. Durch
RNA-Sequenzierungsanalysen nach SOX10-Knockdown wurde zudem eine Herabregu-
lation von Genen des Notch-Signalweges, der DNA-Replikation und des Zellzyklus so-
wie eine Hochregulierung von Genen unter anderem des Tumornekrosefaktor (TNF)-
und NF-kB-Signalweges beobachtet [290]. SOX10-Knockout-Zelllinien zeigen eine Gen-
signatur, die mit einem invasiven, aber wenig proliferativen Phanotyp assoziiert ist [292].
In vitro kann durch eine transiente SOX10-Hemmung ein Phanotyp-Switch von einem
proliferativen hin zu einem invasiven und ruhenden Phanotyp (quiescent cells) induziert
werden [292].

Die Rolle von SOX10 bei der Tumorinitierung konnte im Tiermodell gut demonstriert
werden. Im Nras®¢'K-Melanom-Mausmodell beeintrachtigt eine Sox70-Haploinsuffizienz
die Entstehung von Melanomen, indem es der Nras®'K-induzierte Hyperproliferation ent-
gegenwirkt [288]. Weitere Untersuchungen am Tiermodell konnten zeigten, dass Sox10
nicht nur fur die Entstehung, sondern auch fir die Aufrechterhaltung der Melanome es-
senziell ist [288]. Im Grm1T9-Mausmodell fiihrte die Sox70-Haploinsuffizienz dazu, dass
weniger Tumoren zu einem spateren Zeitpunkt gebildet wurden im Vergleich zu den
Kontrolltieren, was die entscheidende Rolle von SOX10 bei der Melanomentstehung un-
terstreicht [294]. Darliber hinaus beschleunigte die ektope Uberexpression von sox10
die Entwicklung von Melanomen im transgenen p53/BRAF-Zebrafischmodell [225]. Die
protumorigenen Effekte von SOX10 werden dabei auch im Zusammenspiel mit dem Im-
munsystem vermittelt. Rosenbaum et al. konnten kirzlich zeigen, dass Sox10 die Ex-
pression der immunassoziierten Proteine Herpes virus entry mediator (HVEM) und CEA
cell adhesion molecule 1 (CEACAM1) positiv reguliert und die Hemmung von Sox10 in
vivo in immunkompetenten C57BL/6-Mausen zu einem geringeren Tumorwachstum
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fuhrt als in immundefizienten NSG-Mausen [298]. Der Effekt war laut den Analysen zu-
mindest teilweise von der Prasenz von CD8* T-Zellen abhangig [298]. Zudem fanden die
Forscher, dass SOX10 negativ mit immunassoziierten Signalwegen in Patientenproben
korreliert ist [298].

SOX10 beeinflusst im KM auch das Therapieansprechen. KM mit BRAF'°-Mutation
kénnen durch eine zielgerichtete Therapie mit BRAFi oder einer Kombination aus BRAFi
und MEK:i effektiv behandelt werden [299, 300], allerdings kommt es bei einem Grof3teil
der Patienten zur Resistenzentstehung innerhalb des ersten Jahres nach Therapiebe-
ginn [301, 302]. Es gibt Hinweise, dass SOX10 bei der Resistenzentstehung eine wich-
tige Rolle spielt und insbesondere der Verlust der SOX10-Expression zur Therapieresis-
tenz beitragt. /n vitro flhrt eine SOX10-Hemmung zur erhéhten Expression des Trans-
forming Growth Factor Beta (TGF-3)-Rezeptors 2 und infolge dessen zur Aktivierung des
TGF-B-Signalweges mit einer vermehrten Expression von Jun Proto-Oncogene, AP-1
Transcription Factor Subunit (JUN), dem Epidermal Growth Factor Receptor (EGFR) und
Platelet derived growth factor receptor beta (PDGFRB) und einer erhéhten Resistenz
gegenuber dem BRAFi Vemurafenib [302]. In Tumorproben von Melanompatienten mit
erworbener Resistenz gegen BRAFi oder MEKi konnte ebenfalls eine erhdhte Expres-
sion von EGFR, PDGFRB, TGF-B-Rezeptoren sowie TGF--Zielgenen wie JUN festge-
stellt werden [302]. Die Hemmung von SOX10 verhindert im KM aufterdem die durch
BRAFi-induzierte Expression des Transkriptionsfaktors Forkhead box D3 (FOXD3), der
eine wichtige Rolle bei der adaptiven Resistenz gegen BRAFi spielt und erhéht die Emp-
findlichkeit von KM-Zellen auf den BRAFi Vemurafenib in vitro und in vivo durch Modu-
lierung des Neuregulin/Erb-B2 Receptor Tyrosine Kinase 3/AKT (NRG1/ERBB3/AKT)-
Signalweges, der bei der Umgehung der MAPK-Hemmung aktiviert wird [258].
Capparelli et al. konnten zeigen, dass die Expression von SOX10 als Antwort auf eine
Zielgerichtete Therapie abnimmt und MEKIi- bzw. BRAFi plus MEKi-resistente Zellen
kaum noch SOX10 exprimieren [292]. Neben der zielgerichteten Therapie mit MAPK-
Inhibitoren stellt die ICB mit Antikdrpern gegen die Checkpoint-Proteine CTLA-4 und PD-
1 eine weitere zentrale Therapiesaule von Patienten mit metastasiertem KM dar [164-
166]. Yokoyama et al. konnten zeigen, dass die Expression des PD-1-Liganden PD-L1
invers mit der SOX10-Expression sowohl in Patientenproben als auch in Melanomzellli-
nien korreliert [303]. /n vitro fihrte die Hemmung von SOX10 zu einer erhéhten PD-L1-
Expression sowohl mit als auch ohne Interferon-gamma (IFN-y)-Stimulation, wahrend
die Uberexpression von SOX10 die PD-L1-Expression hemmte [303]. Die Verénderun-
gen der PD-L1-Expression scheinen dabei unabhangig vom JAK-abhangigen IFN-y-
Signalweg stattzufinden, Gber den die PD-L1-Expression sonst gesteigert wird, sondern
Uber das Protein Interferon regulatory factor 1 (IRF1) vermittelt zu werden [303]. SOX10
bindet hierzu an eine Enhancer-Region von /IRF4, welches IRF1 hemmt und infolgedes-
sen die PD-L1-Expression verringert [303]. Die Behandlung mit dem Histondeacetylase-
Inhibitor (HDACi) Vorinostat konnte die Expression von SOX10 und IRF4 verringern und
die von IRF1 und PD-L1 steigern; weitere Analysen mit spezifischeren HDACi legen da-
bei nahe, dass HDAC1 und HDACS3 hierbei involviert sind [303]. Dieser Befund ist span-
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nend flr eine mogliche therapeutische Nutzung und wird durch Daten aus dem Tiermo-
dell unterstrichen, die einen synergistischen Effekt von HDACi und anti-PD-1-
Antikérpern im Melanom nahelegen [303].

SOX10-Mutationen sind im KM eher selten und kommen bei 0,65 % bis 8,6 % der Mela-
nome sowohl in Primartumoren als auch Metastasen vor [294, 304]. Aufgrund der Sel-
tenheit von SOX710-Mutationen im Melanom wird allerdings davon ausgegangen, dass
eine normale Funktion von SOX10 fir die Melanomentstehung wichtig ist [294].

1.3.2.2 Expression in nicht-melanozytaren Tumoren

SOX10 wird auch in einer Reihe von anderen Tumoren exprimiert und kann fiir diese
Tumoren als diagnostischer Marker genutzt werden [266]. In benignen Nervenscheiden-
tumoren wie dem Neurofibrom und Schwannom wird SOX10 diffus exprimiert, in malig-
nen peripheren Nervenscheidentumoren diffus bis fokal [266]. Astrozytare Tumoren ex-
primieren SOX10 in allen verschiedenen Differenzierungsstufen [305]. Dartber hinaus
konnte eine SOX10-Expression im triple-negativen Mammakarzinom nachgewiesen
werden, flr das es auch ein sensitiver diagnostischer Marker ist [306], sowie im ,basal-
like®* Mammakarzinom, flir das es ein spezifischer, aber nur moderat sensitiver
Biomarker ist [307, 308]. SOX10 wurde auflerdem in Tumoren der Speicheldrise gefun-
den und eignet sich dort ebenfalls als Marker zur Diagnostik von Azinuszell-, adenoid-
zystischen, epithelial-myoepithelialen, myoepithelialen und pleomorphen Karzinomen
[277]. Eine erhdhte SOX10-Expression wurde im Harnblasenkarzinom im Vergleich zu
gesundem Blasengewebe detektiert und eine hohe SOX10-Expression korrelierte bei
dieser Tumorentitat signifikant mit einem hdéheren Tumorstadium, undifferenzierteren
Zellen und dem Vorhandensein von Lymphknotenmetastasen [309]. Weitere Analysen
zeigten, dass SOX10 im Harnblasenkarzinom ein unabhangiger prognostischer Marker
fur das OS ist [309]. Im hepatozellularen Karzinom (HCC) wurde ebenfalls eine erhéhte
SOX10-Expression gefunden [310]. In HCC-Zellen aktiviert SOX10 den Wnt/p-Catenin-
Signalweg und fordert auf diesem Weg die Proliferation der Tumorzellen [310]. SOX10
wird au3erdem in Ovarialkarzinomen exprimiert und ist dort ein unabhangiger Faktor fur
eine schlechte Prognose; zudem ist eine SOX10-Kernfarbung mit einer Chemoresistenz
von ovarialen Adenokarzinomen assoziiert [311].

1.3.3 SOX10 im Kontext des Uveamelanoms

Im Kontext des UM wurden bisher nur einzelne Arbeiten im Zusammenhang mit SOX10
publiziert. Alghamdi et al. untersuchten 38 UM-Primartumoren mittels IHC-Farbungen
und konnten eine nukledre SOX10-Proteinexpression in 100 % der analysierten Proben
feststellen [268]. Bei 94,7 % der Falle war eine diffuse nukleare Positivitat und bei 5,3 %
eine fokale Kernfarbung detektiert worden [268]. Die IHC-Farbung von anderen mela-
nozytaren Markern wie etwa gp100 ergab eine diffuse zytoplasmatische Positivitat bei
94,7 % und eine fokale bei 2,6 % [268]. Im gesunden Gewebe der untersuchten Augen
wurde zudem eine SOX10-Farbung in den inneren und aueren Kernschichten der Re-
tina bei 78 % der untersuchten Augen und bei 17 % im RPE festgestellt [268]. In der
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normalen Uvea wurde eine SOX10-Expression bei 44 % der Choroidea-, 48 % der Zili-
arkorper- und 11 % der Irisproben detektiert [268]. Mori et al. untersuchten die SOX10-
Expression in drei Adenomen und zwei Adenokarzinomen des pigmentierten
Ziliarepithels (APCE) sowie elf UM-Primartumoren [269]. Die Autoren spekulierten, dass
sich die Tumorentitaten aufgrund ihrer unterschiedlichen embryonalen Herkunft anhand
der Expression von SOX10 unterscheiden lassen kénnten [269]. Tatsachlich konnten die
Forscher eine diffuse SOX10-Farbung in allen untersuchten UM, nicht aber in den APCE
nachweisen [269]. Fodor et al. konnten beim Vergleich von drei Uveaproben und 18 UM-
Primartumoren eine erhéhte SOX10-Genexpression in den Tumorproben finden [312].
Stalhammar et al. beobachteten in sechs untersuchten UM-Lebermetastasen eine starke
SOX10-Farbung in vier Tumoren und eine schwache in zwei Proben [313]. Kalirai et al.
haben eine Expression von SOX10 in den Zelllinien Mel270 und OMM2.5 beschrieben
[314].

Haufig im UM mutierte Gene wie BAP1 und SF3B1 nehmen auch Einfluss auf die
SOX10-Expression. In vitro fihrte die Hemmung von BAP1 in der UM-Zelllinie 92.1 zu
einer Verringerung der SOX70-Genexpression [24]. Sf3b1°#°-Mutationen fiihrten bei
Zebrafischen zu einer verringerten Expression von sox70 und anderen NC-Transkripti-
onsfaktoren wie foxd3, sox9, crestin und snai1b [315]. SOX710-Mutationen im Zusam-
menhang mit dem UM wurden bisher in zwei Fallberichten beschrieben. Das et al. ver-
glichen mittels Exomsequenzierung Primartumorgewebe eines UM-Patienten und uvea-
les Gewebe von Kontrollpersonen ohne Tumor mit Blutproben derselben Probanden, um
somatische Mutationen zu finden, die mit dem Auftreten eines UM assoziiert waren [316].
Im Tumor des UM-Patienten wurden dabei 31 somatische Mutationen gefunden, darun-
ter 25, die zu einer Veranderung der Aminosauresequenz fuhrten [316]. Unter den de-
tektierten Aberrationen fanden die Autoren eine 20 bp umfassende Deletion in Exon 4
von SOX10 (H387fs), die zu einer Verschiebung des Leserahmens flihrte und einen Be-
reich des Proteins zwischen den beiden Transaktivierungsdoméanen betraf [283, 316].
Die funktionellen Auswirkungen dieser SOX70-Mutation auf die Proteinfunktion wurden
jedoch nicht in weiteren Analysen getestet. Bei der whole genome-Sequenzierung von
103 UM-Tumorproben fanden Johansson et al. bei einer Patientin (ID MELA-0831) mit
choroidalem Melanom eine missense-Mutation (SOX10"*™)  die zwar als ,moderate im-
pact” eingestuft, jedoch nicht weiter funktionell untersucht wurde [46]. Die Mutation liegt
im N-terminalen Teil des Proteins, allerdings in keiner funktionellen Domane [46, 283].
Ob die beiden beschriebenen SOX70-Mutationen eine Rolle bei der UM-Entstehung
spielten, wie Das et al. spekulierten, bleibt aufgrund der fehlenden funktionellen Unter-
suchungen jedoch unklar [316].

Die funktionelle Relevanz von SOX10 im UM wurde bisher kaum untersucht. Ding et al.
konnten mittels Chromatin-Immunprazipitation (ChlP) zeigen, dass SOX10 die
spermienspezifische Isoform der  Glycerinaldehyd-3-phosphatdehydrogenase
(GAPDHS) direkt transkriptionell reguliert [317]. GAPDHS wird im UM stark exprimiert
und ist in UM-Zellen maldgeblich an der aeroben Glykolyse beteiligt, indem es die
Oxidation von Glycerinaldehyd-3-phosphat zu 1,3-Bisphosphoglycerat katalysiert [317].
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Neben der Glykolyse ist die Expression von GAPDHS auch ein entscheidender Faktor
fur die Proliferation der Zellen, da dessen Hemmung zu einer Verringerung der Kolo-
nienzahl und einem Zellzyklusarrest in der G2-Phase fihrt [317]. Die Hemmung von
SOX10 in der Zelllinie OCM-1 fiihrte ebenfalls zu einer geringeren Kolonienanzahl, ver-
minderten Glukose-Aufnahme und geringeren Laktat- und Adenosintriphosphat (ATP)-
Produktion [317]. Die ektope Expression von GAPDHS konnte die Effekte der SOX10-
Hemmung in vitro und im Mausmodell aufheben, sodass die Autoren davon ausgingen,
dass SOX10 das Tumorwachstum im UM Uber die Regulierung der GAPDHS-Expres-
sion entscheidend moduliert [317]. Die Erkenntnisse dieser Arbeit missen jedoch mit
Vorsicht betrachtet werden, da die verwendete Zelllinie OCM-1 aufgrund einer Kontami-
nation mit der Melanomzelllinie M14 und dem Vorhandensein der UM-untypischen
BRAFV®E_Mutation als problematisch anzusehen ist [318-321].

Ma et al. konnten zeigen, dass SOX10 in der UM-Zelllinie MUM2B die Expression des
Tumorsuppressors Lactamase 3 (LACTB) durch Bindung an dessen Promotor direkt un-
terdriickt, der in Melanomzellen herabreguliert ist [322]. Dartber hinaus wurden bisher
noch keine weiteren Arbeiten zur funktionellen Relevanz von SOX10 im UM publiziert.

1.4 Zielsetzung der Arbeit

Das UM ist eine seltene Melanomform, flr dessen Therapie im fortgeschrittenen Stadium
bisher nur eingeschrankt wirksame Optionen zur Verfigung stehen. Abgesehen vom
bispezifischen Molekiil Tebentafusp, das einen Uberlebensvorteil in einer Subgruppe
von UM-Patienten erreichen konnte [178], existiert derzeit keine wirksame systemische
Therapie des UM im metastasierten Stadium. Im Vergleich zum KM liegen im UM
Mutationen in anderen und weniger Genen vor und die durch sie codierten Proteine kon-
nen durch niedermolekulare Inhibitoren oder Antikdrper derzeit klinisch nicht wirkungs-
voll gehemmt werden. Daher besteht ein hoher medizinischer Bedarf, neue Zielstruktu-
ren zu identifizieren, die im UM eine wichtige Rolle bei der Entstehung, dem Wachstum
oder der Krankheitsprogression spielen und sich daher mdglicherweise als Angriffs-
punkte fur eine medikamentdse Therapie eignen konnten.

Frihere Arbeiten haben gezeigt, dass Transkriptionsfaktoren wie SOX10, Brn3a oder
MSX1, welche bei der Entstehung der Melanozyten wahrend der Embryogenese eine
zentrale Rolle spielen, auch wichtig fur die Proliferation, Migration und Invasion des KM
sind [288, 295, 297, 323, 324]. Es ist jedoch unklar, ob insbesondere der Transkriptions-
faktor SOX10 auch im UM funktionell relevant ist.
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In dieser Arbeit sollen daher folgende Fragestellungen beantwortet werden:

1. Wird der Transkriptionsfaktor SOX10 im UM exprimiert?

2. Welche funktionelle Relevanz hat SOX10 im UM und ahnelt diese Rolle dem im KM,
obwohl sich das UM und KM sowohl genetisch als auch klinisch grundsatzlich von-
einander unterscheiden? Wie wirkt sich die Hemmung von SOX10 auf das Wachs-
tum und Uberleben der Zellen aus?

3. Welche Signalwege oder Zielgene sind an der Vermittlung der Effekte nach SOX10-
Hemmung beteiligt?

4. Welche Faktoren beeinflusst SOX10 direkt und indirekt, um seine Funktionen im UM

zu vermitteln und lassen sich diese Faktoren mdglicherweise pharmakologisch mo-
dulieren und so fir eine Systemtherapie des UM nutzen?
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2. Material und Methoden

2.1

Material

2.1.1 Verwendete primare Zellen und Zelllinien

2.1.1.1 Primare Zellen

Tabelle 2: Verwendete primdre humane Zellen

Bezeichnung Ursprung

Bestell-Nr., Herkunft

HM

Humane epidermale, neonatale

Melanozyten aus

Haut

FC-0019, Cell Systems
Biotechnologie Vertrieb GmbH,
Troisdorf, DEU

gesunder

Primare HM wurden bis maximal Passage 10 kultiviert.

2.1.1.2 Zelllinien

Tabelle 3: Verwendete uveale und kutane Melanomzelllinien

Bezeich-
nung

Melanom-
Subtyp,
Lokalisation

Genetische Veranderungen [320, 325-329]

92.1

Mel270

OMM1.5
(= OMM2.5)
Mel285

Mel202

Mel290

Uveamelanom,
Priméartumor

Uveamelanom,
Primartumor (Rezidiv
nach Bestrahlung)

Uveamelanom,
Lebermetastase

Uveamelanom,

Priméartumor

Uveamelanom,
Primartumor

Uveamelanom,
Priméartumor

GNAQ®2%L GNA11™, EIF1AX®®, SF3B1*,
Disomie 3, Zugewinn Chr. 6p, Zugewinn
Chr. 8q

GNAQ®2%"  GNA11"t, EIF1AX", SF3B1™,
Disomie 3, Tetrasomie 6p, Disomie 8

GNAQ®2%" GNA11", EIF1AX", SF3B1™

GNA11" Disomie 3, Verlust 3p26-pter, Ver-
lust Chr. 6q, Tetrasomie 8q, Disomie 8p

GNAQ®2%t GNAQR?' Disomie 3, Zugewinn
Chr. 6p, Verlust Chr. 6q, Zugewinn Chr. 8q,
EIF1AX", SF3B1R625¢

GNAQ™, GNA11*t, EIF1AX"t, SF3B1", Diso-
mie 3, Verlust Chr. 3p26-pter, Disomie 6,
Disomie 8, Zugewinn Chr. 8q24.1-24.2
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Uveamelanom, sub- GNAQ", GNA11%2%L Translokation (1; 3), Zu-

OMM-1 . .
kutane Metastase gewinn Chr. 8p11, Zugewinn Chr. 16p12

Uveamelanom,
OMM2.3 GNAQ®20%P GNA11M
Lebermetastase

Kutanes Melanom,
1205Lu Lungenmetastase BRAFV600E, NRAS™, c-KIT", CDK4K?2Q
(Xenograft-Modell)

Die Zelllinien Mel270, OMM1.5 und OMM2.3 stammen von verschiedenen Tumoren des-
selben Patienten und wurden aus einem Rezidiv des Primartumors (Mel270) bzw.
Lebermetastasen (OMM1.5, OMM2.3) generiert [330]. Die Zelllinie 1205Lu wurde aus
einer Lungenmetastase generiert, die nach einer subkutanen Injektion der KM-Zelllinie
WM793 in einem Xenograft-Mausmodell gewachsen war [331]. Die UM-Zelllinien 92.1,
Mel270, OMM1.5 und Mel285 wurden freundlicherweise von Prof. Dr. Klaus Griewank
(Universitatsklinikum Essen), die UM-Zelllinien Mel202, Mel290, OMM-1, OMM2.3 und
OMMZ2.5 von Prof. Dr. Martine Jager (Universitatsklinikum Leiden, Niederlande) und die
KM-Zelllinie 1205Lu von Prof. Dr. Meenhard Herlyn (Wistar Institute, Philadelphia, USA)
zur Verfugung gestellt.

2.1.2 Reagenzien
Tabelle 4: Verwendete Reagenzien

Reagenz Hersteller, Ort

Amersham™ ECL Prime Western Blotting GE Healthcare Life Sciences, Chalfont,
Detection Reagent GBR

Ampicillin Sigma-Aldrich, Taufkirchen, DEU

Antibiotic-Antimycotic (100x; Penicillin
10.000 U/ml, Streptomycin 10.000 ug/ml,
Fungizone® (Amphotericin B) 25 ug/ml)

Invitrogen/Thermo Fisher Scientific,
Waltham, Massachusetts, USA

Aqua ad iniectabilia B. Braun, Melsungen, DEU

Aqua bidest fiir Laborzwecke H. Kerndl GmbH, Weissenfeld, DEU
Bluing Reagent Roche Diagnostics, Mannheim, DEU
Bovines Serumalbumin (BSA) Sigma-Aldrich, Taufkirchen, DEU

Calciumchlorid Dihydrat (CaCl, * 2H,0) Sigma-Aldrich, Taufkirchen, DEU

cOmplete™ Mini Protease Inhibitor Cock-

, Roche, Penzberg, DEU
tail Tabletten
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Dako REAL Antibody Diluent

DermalLife® Basal Medium
DermalLife® M LifeFactors Kit
(fir neonatale Melanozyten)
Desoxynukleotid-Triphosphat-Set
Diethylcarbonat (DEPC)-H.O
Dimethylsulfoxid (DMSO)
Ethanol

Ethylendiamintetraessigsaure (EDTA),
0,5M, pH 8,0

Fotales bovines Serum (FBS) Superior
Glycerol
Hamatoxylin

Hank’s Balanced Salt Solution
(HBSS, ohne Mg**, Ca*)

Hematoxylin Il
HLMO006474

4-(2-Hydroxyethyl)-piperazin-1-
ethansulfonsaure (HEPES), 1 M, pH 7,4
innuMIX gPCR DSGreen Standard
Insulin solution human, 10 pg/ul
Isopropanol

jetPRIME® DNA & siRNA Transfection
Reagent

Kanamycin

Leibovitz's L-15 Medium

Agilent Technologies, Santa Clara,
Kalifornien, USA

LifeLine Cell Technology, Frederick,
Maryland, USA

LifeLine Cell Technology, Frederick,
Maryland, USA

Roche, Penzberg, DEU
Merck, Darmstadt, DEU
Sigma-Aldrich, Taufkirchen, DEU
Merck, Darmstadt, DEU

Sigma-Aldrich, Taufkirchen, DEU

Millipore/Merck, Darmstadt, DEU
Sigma-Aldrich, Taufkirchen, DEU
Roche Diagnostics, Mannheim, DEU

Gibco® by Life Technologies/Thermo
Fisher Scientific, Waltham,
Massachusetts, USA

Roche Diagnostics, Mannheim, DEU

Selleck Chemicals LLC, Houston, Texas,
USA

Sigma-Aldrich, Taufkirchen, DEU

AJ Innuscreen GmbH, Berlin, DEU
Sigma-Aldrich, Taufkirchen, DEU
Merck, Darmstadt, DEU

Polyplus-transfection S.A., lllkirch, FRA

Gibco® by Life Technologies/Thermo
Fisher Scientific, Waltham,
Massachusetts, USA

Gibco® by Life Technologies/Thermo
Fisher Scientific, Waltham,
Massachusetts, USA
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Invitrogen/Thermo Fisher Scientific, Wal-

Lipofectamine® RNAIMAX
potectamine I tham, Massachusetts, USA

Lipofectamine™ 3000 Reagent Invitrogen/Thermo Fisher Scientific, Wal-
(inkl. P3000™ Reagent) tham, Massachusetts, USA

Luria Broth (LB) Pulver Sigma-Aldrich, Taufkirchen, DEU

MCDB 153-Medium, Pulver Sigma-Aldrich, Taufkirchen, DEU
Methanol Merck, Darmstadt, DEU

Natriumazid (NaNs) Sigma-Aldrich, Taufkirchen, DEU
Natriumchlorid (NaCl) Sigma-Aldrich, Taufkirchen, DEU
Natriumfluorid (NaF) Sigma-Aldrich, Taufkirchen, DEU

Natriumhydrogencarbonat (NaHCO:s),

Sigma-Aldrich, Taufkirchen, DEU
7.5 %

Natriumhydroxid (NaOH) Sigma-Aldrich Taufkirchen, DEU

Invitrogen/Thermo Fisher Scientific, Wal-

NuPAGE™ Antioxidant
tham, Massachusetts, USA

Invitrogen/Thermo Fisher Scientific, Wal-

NuPAGE™ LDS Sample Buffer (4X)
tham, Massachusetts, USA

NuPAGE™ MES SDS Running Buffer Invitrogen/Thermo Fisher Scientific, Wal-

(20X) tham, Massachusetts, USA
NuPAGE™ Sample Reducing Agent Invitrogen/Thermo Fisher Scientific, Wal-
(10X) tham, Massachusetts, USA

Invitrogen/Thermo Fisher Scientific, Wal-

NuPAGE™ Transfer Buffer (20X)
tham, Massachusetts, USA

Gibco® by Life Technologies/Thermo
Opti-MEM™ serumreduziertes Medium Fisher Scientific, Waltham, Massachu-

setts, USA
PCR-grade H,O Roche, Penzberg, DEU
Phosphate Buffered Saline (PBS), Klinikumsapotheke Gro3hadern, Kilini-
ohne Ca*, Mg?** kum der Universitat Minchen

Gibco® by Life Technologies/Thermo
Fisher Scientific, Waltham, Massachu-
setts, USA

Phosphate Buffered Saline (PBS),
ohne Ca*, Mg, steril

PhosSTOP™ Phosphatase Inhibitor Tab-

Roche, Penzberg, DEU
letten

Propidiumjodid Sigma-Aldrich, Taufkirchen, DEU
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RNase A

RNasin® Ribonuclease Inhibitor

RPMI1640 Medium (mit 2 mM Glutamin,
ohne HEPES)

S.0.C. Medium

SeeBlue™ Plus2 Pre-stained Protein
Standard

Select Agar™

Tazemetostat

Tris-(hydroxymethyl)-aminomethan
(Tris), 1,0 M, pH 7,4

Triton X-100

Trypsin Neutralization Solution

Trypsin-EDTA 0,5 %

Tween®-20

Western Blocking Reagent, 10x

Z-DEVD-FMK

Sigma-Aldrich, Taufkirchen, DEU
Promega, Madison, Wisconsin, USA

Gibco® by Life Technologies/Thermo
Fisher Scientific, Waltham, Massachu-
setts, USA

Invitrogen/Thermo Fisher Scientific,
Waltham, Massachusetts, USA

Invitrogen/Thermo Fisher Scientific,
Waltham, Massachusetts, USA

Invitrogen/Thermo Fisher Scientific,
Waltham, Massachusetts, USA

Selleck Chemicals LLC, Houston, Texas,
USA
Sigma-Aldrich, Taufkirchen, DEU

Sigma-Aldrich, Taufkirchen, DEU

LifeLine Cell Technology, Frederick,
Maryland, USA

Gibco® by Life Technologies/Thermo
Fisher Scientific, Waltham, Massachu-
setts, USA

Sigma-Aldrich, Taufkirchen, DEU
Roche, Penzberg, DEU

Selleck Chemicals LLC, Houston, Texas,
USA

66



2 Material und Methoden

2.1.3 Verbrauchsmaterial

Tabelle 5: Verwendetes Verbrauchsmaterial

Verbrauchsmaterial

Hersteller, Ort

pitraAmp PCR-Reaktionsgefalte, 0,2 mi

Aluminiumfolie

Amersham™ Hyperfilm™ ECL Rontgen-
filme

Einmalreaktionsgefale, 15 ml und 50 ml

FACS Tube, Polystyrene, 5 ml Round
Bottom Tube

Sorenson BioScience, Salt Lake City,
Utah, USA

CeDo GmbH, Ménchengladbach, DEU

GE Healthcare Life Sciences, Chalfont,
GBR

Greiner Bio-One, Frickenhausen, DEU

Falcon/Corning, New York, USA

Filtropur BT50, 500 ml, 0,2 um Sterilfilter
Glaskapillare fur LightCycler® 2.0
Halbmikro-Kivetten aus PMMA, 1,5 ml

Invitrolon™ PVDF/Filter Paper Sandwi-
ches, 0.45 uym, 8.3 x 7.3 cm
(for mini gels)

Kantle Microlance™ 3, 20 G

Kryoréhrchen, 2 ml

NuPAGE™ 4- 12 %, Bis-Tris, 1,0 mm,
Mini Protein Gel, 10-well

Optically Clear Adhesive Seal Sheets
Klebefolien fir gPCR-Platten

Parafilm M

Pasteurpipetten aus Glas
PCR-Platten, 96-Well, Halbrand,
weild, ABI-Typ
PCR-Reaktionsgefalie, 0,6 ml

Petrischalen, 10 cm
Prospekthiille, glasklar
Rotilabo® Spritzenfilter, 0,22 ym

Sarstedt, Nimbrecht, DEU
Roche, Penzberg, DEU
BRAND, Wertheim, DEU

Invitrogen/Thermo Fisher Scientific,
Waltham, Massachusetts, USA

Becton-Dickinson, Franklin Lakes,
New Jersey, USA

Greiner Bio-One, Frickenhausen, DEU

Invitrogen/Thermo Fisher Scientific,
Waltham, Massachusetts, USA,

Thermo Fisher Scientific, Waltham,
Massachusetts, USA

Bemis, Soignies, BEL
Hirschmann, Eberstadt, DEU

VWR International, Radnor,
Pennsylvania, USA

Agilent Technologies, Santa Clara,
Kalifornien, USA

Greiner Bio-One, Frickenhausen, DEU
Vleveka, St. Deurne, NLD
Carl Roth, Karlsruhe, DEU
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Rundbodenréhrchen, 12 mi Greiner Bio-One, Frickenhausen, DEU

Safe Seal Einmalreaktionsgefalie,

Sarstedt, Nimbrecht, DEU
1,5mlund 2,0 mi

SafeSeal-Tips® premium, Volumina

Biozym Scientific, Hess. Oldendorf, DEU
100 = 1250 pl, 10 = 100 wl, 0,1 — 10 il '0zym Scientiiic, Fess. ldendo

Becton-Dickinson, Franklin Lakes, New

Spritze Discardit™ II, 10 ml und 20 m|
Jersey, USA

Stripette™ serologische Einmalpipetten,

Corning, New York, USA
2ml, 5ml, 10 ml, 25 ml

Zellkulturflaschen, 25 cm? (T25) und

Greiner Bio-One, Frickenhausen, DEU
75 cm? (T75) mit Filterkappenverschluss

Zellkulturplatten,

iner Bio- Frickenh DE
12-. 24-. 48- und 96-Well Greiner Bio-One, Frickenhausen, DEU

Zellkulturschalen, 10 cm TPP, Trasadingen, CHE
Zellschaber, 24 cm TPP, Trasadingen, CHE

2.1.4 Zellkulturmedien

2.1.4.1 Kultur primarer humaner Melanozyten

Tabelle 6: HM-Medium, 500 ml

Komponente Menge Endkonzentration
DermalLife® Basal Medium 485 ml
rh-Insulin LifeFactor [5 mg/ml] 500 pl 5 pg/ml
Ascorbic Acid LifeFactor [50 mg/ml] 500 pl 50 pg/mli
L-Glutamine LifeFactor [200 mM] 15 ml 6 mM
Epinephrine LifeFactor [1 mM] 500 pl 1 uM
StiMel8™ LifeFactor 5ml
Calcium Chloride LifeFactor [2 mM] 500 pl 200 uM

> 500 mi

Alle Komponenten mit Ausnahme des Dermal.ife® Basal Mediums sind Bestandteile des
DermalLife® M LifeFactors Kits. Die Komponente StiMel8™ LifeFactor enthalt FBS, hu-
manes rekombinantes FGF-b, humanen rekombinanten epithelialen Wachstumsfaktor
(EGF), Endothelin-1, Apo-Transferrin, Hydrocortison-Hemisuccinat und bovinen
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Hypophysenextrakt; der Hersteller stellt jedoch keine weiteren Informationen zur Zusam-
mensetzung bereit. Nach dem Mischen der Komponenten wurde das HM-Medium uber
einen Filtropur BT50-Filter sterilfiltriert und aliquotiert in mit Aluminiumfolie umwickelten
50 ml-Réhrchen lichtgeschitzt kurzzeitig bei 4°C und langerfristig bei -20°C gelagert.

2.1.4.2 Kultur uvealer Melanomzelllinien

Medium zur Kultivierung der UM-Zelllinien 92.1, Mel270, OMM1.5, Mel285, Mel202,
Mel290, OMM-1, OMM2.3 und OMM2.5.

Tabelle 7: Uvea-Medium, 500 ml

Komponente Menge Endkonzentration
RPMI1640-Medium 450 mi
(mit 2 mM Glutamin und Phenolrot, ohne HEPES)
FBS Superior 50 ml 10 %
> 500 mi

Nach dem Mischen der Komponenten wurde das Uvea-Medium sterilfiltriert und bei 4°C
gelagert.

2.1.4.3 Kultur der kutanen Melanomzelllinie 1205Lu

Das TU2%-Medium wurde fur die Kultivierung der KM-Zelllinie 1205Lu verwendet.

Tabelle 8: TU2%-Medium, 500 ml

Komponente Menge Endkonzentration
MCDB 153-Medium 400 ml 80 %
Leibovitz's L-15 Medium 100 ml 20 %
FBS Superior 10 ml 2%
Insulin solution human [10 pg/ul] 250 pl 5 pg/ml
CaCly-Lésung [2 M] 420 pl 1,68 mM

> 500 mi

Fir die Herstellung des MCDB 153-Mediums wurde 17,6 g MCDB-Mediumpulver
(Sigma-Aldrich) in 900 ml Aqua ad iniectabilia aufgel6st, 15,7 ml NaHCO3 (7,5 %) zuge-
geben und die Lésung mittels 3 N NaOH-Lésung unter Rihren auf einen pH-Wert von
7,4 eingestellt. Anschliefiend wurde Aqua ad iniectabilia bis zu einem Endvolumen von
1 Liter hinzugefugt, das Medium Uber einen Filtropur BT50-Filter sterilfiltriert und bei 4°C
gelagert. Fur die Herstellung des TU2%-Mediums wurden allen Komponenten gemischt,
ebenfalls sterilfiltriert und bei 4°C gelagert.
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2.1.4.4 Einfriermedium
Tabelle 9: Einfriermedium, 10 ml

Komponente Menge Endkonzentration

DMSO 1 ml 10 %
FBS Superior 9 ml
> 10 mi

Das Einfriermedium zur Kryokonservierung von Zellen in flissigem Stickstoff wurde un-
mittelbar vor dem Einfrieren der Zellen hergestellt, mithilfe eines Spritzenfilters und einer
20 ml-Spritze sterilfiltriert und bis zur Verwendung bei 4°C vorgekuhilt.

2.1.5 Puffer und Lésungen

2.1.5.1 Zellkultur

Tabelle 10: CaClz-Lésung, 2 M, 10 ml, fiir TU2%-Medium und Inkubationspuffer (Apoptose-
FACS)

Komponente Menge Endkonzentration
Calciumchlorid Dihydrat (CaCl; * 2H,0) 2,94 g 2M
H.O (Aqua ad iniectabilia) Ad. 10 ml

Die Lésung wurde mithilfe eines Spritzenfilters und einer 20 ml-Spritze sterilfiltriert und
anschlief’end bei 4°C gelagert.

Tabelle 11: 1x Trypsin/EDTA-L6sung, 0,05 %, 50 ml

Komponente Menge Endkonzentration
Trypsin-EDTA 0,5 % 5 ml 1x (0,05 %)
HBSS 45 mi

> 50 mi

Die 1x Trypsin-EDTA-L&sung wurde kurzzeitig bei 4°C und fir langere Zeit bei -20°C
gelagert.
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2.1.5.2 Transformation
Tabelle 12: Luria Broth (LB), 11

Komponente Menge

Luria Broth Pulver* 25¢g
H.O (Aqua ad iniectabilia) Ad. 11
* 25 g Luria Broth enthalten 10 g Bacto-Trypton, 5 g Hefeextrakt und 10 g NaCl

Das Luria Broth-Pulver wurde mithilfe eines Magnetriihrers in H.O gel6st, durch Auto-
klavieren sterilisiert und anschliel3end bei 4°C gelagert.

Tabelle 13: LB-Agar, 1 |

Komponente Menge
Luria Broth Pulver* 25¢g
Select Agar™ 159

H.O (Aqua ad iniectabilia) Ad. 11
* 25 g Luria Broth enthalten 10 g Trypton, 5 g Hefeextrakt und 10 g NaCl

Alle Komponenten wurden in HO mithilfe eines Magnetrihrers gel6st, durch Autoklavie-
ren sterilisiert und anschliel3end bei 4°C gelagert.

2.1.5.3 Genexpressionsanalysen
Tabelle 14: dNTP-Mix fiir qPCR, 10 mM, 200 pi

Komponente Menge Endkonzentration

dATP [100 mM] 20 pl 10 mM
dCTP [100 mM] 20 pl 10 mM
dGTP [100 mM] 20 pl 10 mM
dTTP [100 mM] 20 pl 10 mM
DEPC-H.O 120 pl

> 200 pl

Alle Komponenten sind Bestandteile des Desoxynukleotidtriphosphat-(dNTP)-Sets (Ro-
che) und wurden wie der dNTP-Mix bei -20°C gelagert.
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2.1.5.4 Western Blot
Tabelle 15: 11 mM EDTA/PBS, 50 ml

Komponente Menge Endkonzentration

EDTApH 8,0[0,5M] 1100 pl 11 mM
PBS (ohne Ca?', Mg?*) 48,9 ml
> 50 ml

Die Lésung wurde mithilfe eines Spritzenfilters und einer Spritze sterilfiltriert und bei
Raumtemperatur (RT) gelagert.

Tabelle 16: 5x CSH-Stock, 20 ml

Komponente Menge Endkonzentration
Tris, pH 7.4 [1 M] 5ml 250 mM
NaCl [5 M] 5 mi 1,25 M
EDTA, pH 8,0 [0,5 M] 200 pl 5 mM

H.O (Aqua ad iniectabilia) 9,8 ml
> 20 ml

Die fertige Losung wurde bei 4°C gelagert.

Tabelle 17: 1x CSH-Lysepuffer, 5 mi

Komponente Menge
5x CSH-Stock 1 ml
Triton X-100 [10 %] 50 pl
7x cOmplete™ Mini Stock 750 pl

(1 Tablette in 1,5 ml H,O gel6st, Lagerung bei -20°C)

10x PhosSTOP™ Stock 500 pl

(1 Tablette in 1 ml H2O gelést, Lagerung bei -20°C)

H.O (Aqua ad iniectabilia) 2,7ml
> 5ml

Der 1x CSH-Lysepuffer wurde in 1,5 ml-Reaktionsgefalie aliquotiert und bei -80°C gela-
gert.
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Tabelle 18: 1x Laufpuffer, 1000 ml

Komponente Menge

NuPAGE™ MES SDS Running Buffer (20X) 50 ml
ddH->O (Aqua bidest fiir Laborzwecke) 950 ml
> 1000 ml

Tabelle 19: 1x Transferpuffer, 500 mi

Komponente Menge

NuPAGE™ Transfer Buffer (20X) 25 ml

NuPAGE™ Antioxidant* 500 pl

Methanol 50 ml (1 Gel) bzw. 100 ml (2 Gele)**

ddH.O (Aqua bidest fiir Laborzwecke) 424,5 ml (1 Gel) bzw. 374,5 ml (2 Gele)**
> 500 mi
*: maximal 30 min vor dem Transfer hinzugeben.

**. Beim Transfer von 2 Gelen wird der Methanol-Anteil im 1x Transferpuffer von 10 %
auf 20 % erhoht und entsprechend das Volumen an ddH20 verringert.

Tabelle 20: 1x Waschpuffer, 500 ml

Komponente Menge Endkonzentration

PBS 499,5 ml
Tween®-20 500 pl 0,1 %
> 500 mi

Tabelle 21: 1x Blocking-Lésung, 550 ml

Komponente Menge Endkonzentration

PBS 450 ml

Western Blocking Reagent, 10x 50 ml

NaF [0,5 M] 50 mi 45,5 mM
> 550 mi
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2.1.5.5 Durchflusszytometrie (FACS)

Tabelle 22: Inkubationspuffer, 50 ml, fiir Apoptose-FACS

Komponente Menge Endkonzentration
HEPES [1 M, pH 7,4] 500 pl 10 mM

NaCl [5 M] 1,4 ml 140 mM
CaCl; [2 M] 125 pl 5mM

H.O (Aqua ad iniectabilia) 47,975 ml
> 50 mi

Die Loésung wurde sterilfiltriert und bei 4°C gelagert.

Tabelle 23: Annexin-V-Farbelosung fiir Apoptose-FACS, Ansatz fiir 1 Probe

Komponente Menge

Annexin-V-FLUOS 1 pl

Inkubationspuffer 50 pl

> 514l

Tabelle 24: Propidiumjodid-Vorverdiinnung fiir Apoptose-FACS, 100 pl

Komponente Menge Endkonzentration
Propidiumjodid [50 pug/mi] 10 pl 5 ug/mi
PBS 90 ul

> 100 pl

Die Vorverdunnung wurde lichtgeschitzt bei 4°C gelagert.

Tabelle 25: Propidiumjodid-Féarbelésung fiir Apoptose-FACS, Ansatz fiir 1 Probe

Komponente Menge

Propidiumjodid-Vorverdinnung [5 ug/ml in PBS] 10 pl
Inkubationspuffer 50 ul
> 60 pl
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Tabelle 26: FACS-Waschpuffer, 50 ml, fiir Zellzyklus-FACS

Komponente Menge Endkonzentration

BSA 250 mg 0,5%
PBS Ad. 50 ml

Die Lésung wurde sterilfiltriert und anschlieRend bei 4°C gelagert.

Tabelle 27: Propidiumjodid-Stocklésung, 5 mg/mi, fiir Zellzyklus-FACS

Komponente  Menge Endkonzentration

Propidiumjodid 50 mg 5 mg/ml
PBS Ad. 10 ml

Die Loésung wurde lichtgeschlitzt bei 4°C gelagert.

Tabelle 28: RNase A-Lésung, 10 mg/ml, fiir Zellzyklus-FACS

Komponente Menge Endkonzentration

RNase A 100 mg 10 mg/ml
PBS Ad. 10 ml

Die Lésung wurde aliquotiert bei -20°C gelagert.

Tabelle 29: Propidiumjodid-Farbelésung fiir Zellzyklus-FACS, Ansatz fiir 1 Probe

Komponente Menge

Propidiumjodid-Stocklésung [5 mg/ml in PBS] 0,2 pl

RNase A-Lésung [10 mg/ml in PBS] 0,8 pl
FACS-Waschpuffer 300 pl
> 301 pl
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2.1.6 Kommerzielle Kits

Tabelle 30: Verwendete Kits

Kit

Hersteller

Verwendung

Annexin-V-FLUOS
Staining Kit

CellTiter-Blue®
Cell Viability Assay

Expand™ Reverse
Transcriptase

LightCycler® TagMan®
Master Kit

NucleoSpin® Plasmid
(NoLid)

Pierce™ BCA Protein
Assay Kit

Proteome Profiler™ Array
Human Phospho-Kinase-
Array Kit

RNase-Free DNase Set

Roche, Penzberg, DEU

Promega, Madison, Wis-
consin, USA

Roche, Penzberg, DEU

Roche, Penzberg, DEU

Macherey & Nagel, Diren,
DEU

Thermo Fisher Scientific
Waltham, Massachusetts,
USA

R & D Systems, Minnea-
polis, Minnesota, USA

Qiagen GmbH, Hilden,
DEU

Annexin-V-Farbung flir
Apoptosebestimmung
(Durchflusszytometrie)

Zellviabilitatsbestimmung

cDNA-Synthese

Quantitative Realtime-
PCR

Isolierung von Plasmid-
DNA aus Escherichia coli
(E. coli)

Proteinkonzentrations-
bestimmung

Semiquantitative Analyse
der Phosphorylierung aus-
gewahlter Proteine

DNase-Verdau wahrend
RNA-Isolierung

RNeasy® Mini Kit

Qiagen GmbH, Hilden,
DEU

RNA-Isolierung

ultraView Universal
Alkaline Phosphatase
Red Detection Kit

Universal ProbeLibrary
Set Human

Venor®GeM Classic
Mycoplasma Detection Kit
for conventional PCR

Roche Diagnostics, Mann-
heim, DEU

Roche, Penzberg, DEU

Minerva Biolabs, Berlin,
DEU

Antikérper fur Nachweis
von immunhistochemi-
schen Farbungen

Fluorescein (FAM)-mar-

kierte Hydrolyse-Sonden
fur quantitative Realtime-
Polymerase-Kettenreak-

tion (PCR)

Mykoplasmen-Detektion
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2.1.7 Oligonukleotide

2.1.7.1 Primer fur die quantitative Realtime-PCR (qPCR)

Alle gPCR-Primer wurden von der Firma Eurofins Genomics (Ebersberg, DEU) in lyo-
philisierter Form bezogen und anhand der Herstellerangaben auf eine Stockkonzentra-
tion von 100 yM durch Zugabe von PCR-grade H>O (Roche) gel6st. Fir die Verwendung
in den gPCR-Ansatzen wurde die Stockkonzentration mit PCR-grade H>O auf eine Ar-
beitskonzentration von 10 yM verdunnt. Das Primerdesign der forward- (fw) und reverse
(rev)-Primer und die Auswahl einer zum Primerpaar passenden Sonde wurde mithilfe
des Assay Design Centers von Roche (https://lifescience.roche.com/en_de/brands/uni-
versal-probe-library.html#assay-design-center) durchgefihrt. Die Sonden stammten aus
dem Universal ProbeLibrary Set Human (Roche).

Tabelle 31: Verwendete Primer fiir sondenbasierte qPCR

Primer-

Zielgen orientie- Sequenz (5° 2> 39) Sonde
rung
Fw AGCCACATCGCTCAGACAC

GAPDH 60
Rev GCCCAATACGACCAAATCC

MIA Fw GGGCCAAGTGGTGTATGTCT 16
Rev CAGATCTCCATAGTAATCTCCCTGA

MITE Fw AGAGTCTGAAGCAAGAGCACTG 34
Rev TGCGGTCATTTATGTTAAATCTTC
Fw TTGACGATTACATGAAAGCTCTG

PMP2 48
Rev GCTGATGATCACAGTGGGTTT
Fw GTACCCGCACTTGCACAAC

SOX9 61
Rev TCGCTCTCGTTCAGAAGTCTC
Fw GACCAGTACCCGCACCTG

SOX10 61
Rev CGCTTGTCACTTTCGTTCAG

Nach der Produkteinstellung der Universal Probe Library und des Assay Design Centers
Ende 2020 wurden die qPCR-Experimente mit dem interkalierenden DNA-Farbstoff
dsGreen durchgeflihrt und flr das Primerdesign neuer gqPCR-Primer das Programm Pri-
mer-BLAST des National Center for Biotechnology Information (NCBI)
(https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi) verwendet.
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Tabelle 32: Verwendete Primer fiir gPCR mit interkalierendem Farbstoff dsGreen

Zielgen (Protein) Primerorientierung Sequenz (5‘ > 3Y)

or 1 Fw CCGTGGACTCTTCGGAGAACTT
Rev GGCTGATCCCACCTACGGTC
. Fw ACTCAGAAGGCAGTGGAGCC
Rev GTCTGGCCCATGATTATTCTTCGT
B Fw ACCACCTGGGTCAGTCCG
Rev GATAAATTCCAGAATGCCAAATCGG
Fw GGAGGACGCGCTAGTGTTCT
TFRC (CD71)
Rev GCCATCTACTTGCCGAGCCA

2.1.7.2 Small interfering-Ribonukleinsauren (siRNAs)

Alle siRNAs wurden in lyophilisierter Form bezogen, anhand der Herstellerangaben auf
eine Stockkonzentration von 100 uM geldst und bei -20°C gelagert. Fur die Arbeitskon-
zentration von 20 uM wurden Aliquots der Stockldsung im Verhaltnis 1:5 mit DEPC-H.O
verdunnt und diese Verdinnungen ebenfalls bei -20°C gelagert.

Tabelle 33: Verwendete siRNAs

Name Zielgen  Hersteller Sequenz (5' 2> 3') oder Assay-ID
, ] Eurofins
NT-siRNA (Kontroll- ) GCGCAUUCCAGCUUACGUATT
) Genomics
siRNA)
Silencer® Select Thermo Fisher
MITF-siRNA MITF Scientific 58792
_ Eurofins
SOX10-A-siRNA SOX10  Genomics CCGUAUGCAGCACAAGAAATT
_ Eurofins
SOX10-B-siRNA SOX10  Genomics GUAUGCAGCACAAGAAAGATT
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2.1.8 Expressionsplasmide

Tabelle 34: Verwendete Expressionsplasmide

Hersteller,
Name Vektor- Ort, Bestell- Beschreibun
Backbone ’ g
nummer
OriGene,
- Rockville, Leervektor mit C-terminalem Myc und
pCMV6- (Leer- Maryland, ~FLAG®-Tag (Myc-DDK-Tag)
Entry ’
vektor) USA, Resistenz: Kanamycin 25 ug/ml
PS100001
Expressionsvektor fir konstitutive Expres-
pCMV6- _ sion von M-MITF (Transkriptvariante 4,
MITF-Myc- PCMVE- OriGene, melanozytare Isoform) mit C-terminalem
DDK Entry RC209561  \1vc und FLAG®-Tag (Myc-DDK-Tag)
Resistenz: Kanamycin 25 pg/mi
Leervektor generiert aus pCMV6-XL5-

- SOX10 (OriGene) durch Schneiden mit
pCMV6- (Leervek- - Enzym Notl und Religation des Vektor-
XL5 tor) Backbone

Resistenz: Ampicillin 100 pg/ml
pCMV6- . Expressionsvektor fur konstitutive Expres-
XL5- PCMV6- OriGene, g5 von SOX10
XL5 SC123774
SOX10

2.1.9 Antikorper

2.1.9.1 Primare Antikorper

Resistenz: Ampicillin 100 pg/mi

Tabelle 35: Verwendete Primarantikorper fiir Proteinexpressionsanalysen

Spe- Bestell- Verdiin-
Bezeichnung -p Hersteller, Ort
zies Nr. nung
Sigma-Aldrich,
anti--Aktin mouse A1978 Siinnk 1:5.000
Taufkirchen, DEU
Cell Signaling Technology,
anti-Akt rabbit 9272 Danvers, Massachusetts, 1:1.000

USA
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anti-phospho-Akt

Ser473
anti-Bak

anti-Bax

anti-Bcl-2

anti-Bcl-2
anti-Bel-X.
anti-Bcl-w
anti-Caspase 3
anti-Caspase 9
anti-CD71
anti-CDK2
anti-Cyclin A2

anti-Cyclin D1

anti-Cyclin E1

anti-Cytochrom C

anti-E2F1

anti-ERK1/2 (p44/42

MAP Kinase)

anti-phospho-ERK1/2

Thr202/Tyr204
anti-EZH2
anti-FGF9/GAF
anti-FLAG®

anti-phospho H2A.X
(gamma = y-H2A.X)

anti-MITF

anti-Myc-Tag

rabbit

rabbit

mouse

mouse

rabbit
rabbit
rabbit
rabbit
rabbit
rabbit
rabbit
rabbit

mouse

mouse

mouse

mouse

rabbit

mouse

mouse
rabbit
rabbit

rabbit

rabbit

mouse

9271

3814

sc-20067

OP60

4223
2762
2724
9662
9502
13113
2546
67955

33-3500

4129

556433

ab4070

9102

9106

3147
ab206408
14793

9718

12590
2276

Cell Signaling Technology

Cell Signaling Technology

Santa Cruz Biotechnology,
Dallas, Texas, USA

Calbiochem/Mereck,
Darmstadt, DEU

Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology
Cell Signaling Technology

Invitrogen/Thermo Fisher
Scientific, Waltham, Mas-
sachusetts, USA

Cell Signaling Technology

BD Pharmingen, Franklin
Lakes, New Jersey, USA

Abcam, Cambridge, GBR

Cell Signaling Technology

Cell Signaling Technology

Cell Signaling Technology
Abcam

Cell Signaling Technology
Cell Signaling Technology

Cell Signaling Technology
Cell Signaling Technology

1:1.000

1:1.000

1:1.000

1:100

1:1.000
1:1.000
1:1.000
1:1.000
1:1.000
1:1.000
1:1.000
1:1.000

1:1.000

1:1.000

1:500

1:500

1:1.000

1:1.000

1:1.000
1:1.000
1:1.000

1:1.000

1:1.000
1:1.000
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anti-p21 rabbit 2947 Cell Signaling Technology  1:1.000

anti-p27 mouse sc-1641 Santa Cruz 1:200

anti-p38 rabbit 9212 Cell Signaling Technology 1:1000

anti-phospho-p38

MAP Kinase rabbit 9211 Cell Signaling Technology  1:1.000

Thr180/Tyr182

anti-p53 mouse OP43 Calbiochem 1:1.000

anti-PARP rabbit 9542 Cell Signaling Technology  1:1.000

anti-Rb rabbit 9309 Cell Signaling Technology  1:1.000

anti-phospho-Rb rabbit 8180 Cell Signaling Technology ~ 1:1.000

Ser780 gnaiing o
ti-phospho-Rb

ZZ:;;;SF) © rabbit 9301 Cell Signaling Technology  1:1.000
ti-phospho-Rb

22:8%7725)1 © rabbit 8516 Cell Signaling Technology  1:1.000

anti-SOX10 mouse SC Santa Cruz 1:500

365692 '

2.1.9.2 Sekundare Antikorper

Tabelle 36: Verwendete HRP-gekoppelte Sekundarantikérper fiir Proteinexpressionsana-
lysen

Reaktivitit Spezies Bestell-Nr. Hersteller Verdiinnung
anti-mouse  horse 7076 Cell Signaling Technology 1:5.000
anti-rabbit goat 7074 Cell Signaling Technology 1:2.000

2.1.9.3 Neutralisierende und blockierende Antikorper

Tabelle 37: Neutralisierende und blockierende Antikorper gegen FGF9 und Transferrin-Re-
zeptor (CD71)

Bezeichnung Spezies Bestell-Nr. Hersteller, Ort

R&D Systems, Minneapolis,

anti-FGF9 mouse MAB273-100 Minnesota, USA

anti-TfR (Transferrin-

oat AF2474 R&D Systems
Rezeptor, CD71) : y
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2.1.9.4 Primarer Antikorper fur immunhistochemischen SOX10-Nachweis

Tabelle 38: Primarer Antikorper fiirimmunhistochemischen SOX10-Nachweis

Bezeichnung Spezies Bestell-Nr. Hersteller, Ort Verdiinnung
Cell M , Rocklin,
SOX-10 (EP268)  rabbit  383R-16 . ' o due, ROcKin 1:100
Kalifornien, USA
2.1.10 Gerate
Tabelle 39: Verwendete Gerite
Gerat Hersteller, Ort Verwendung

800 Series-150

Analysenwaage
BP210D

Axiovert 25

BZ-X800

Centrifuge 5415 C

Centrifuge 5415 R

Cryo Cooler® Einfrier-
box

CytoFluor™ 2350

Eismaschine

FACScan

FACSCanto Il

GeneExplorer

Jutta Ohst german-cryo
GmbH, Jichen, DEU

Sartorius Lab Instruments
GmbH, Géttingen, DEU
Carl Zeiss, Jena, DEU

Keyence Deutschland, Neu-
Isenburg, DEU

Eppendorf, Hamburg, DEU

Eppendorf, Hamburg, DEU

VWR International, Radnor,
Pennsylvania, USA

Millipore/Merck, Darmstadt,
DEU

ZIEGRA-Eismaschinen,
Isernhagen, DEU

Becton Dickinson, Franklin
Lakes, New Jersey, USA

BD Biosciences, San Jose,
Kalifornien, USA

Bioer Technology,
Hangzhou, CHN

Kryotank zur Lagerung von
Zellen in flussigem Stickstoff

Abwiegen von Reagenzien

Fluoreszenzmikroskop mit
Kamera

Fluoreszenzmikroskop mit
Kamera

Tischzentrifuge fur 1,5 ml-
und 2 ml-Reaktionsgefalie

Kahlzentrifuge fur 1,5 ml-
und 2 ml-Reaktionsgefalie

Einfrieren von Zellen

Plattenphotometer

Eisproduktion

Durchflusszytometrie

Durchflusszytometrie

Thermocycler,
cDNA-Synthese
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GloMax® Explorer

Heracell CO; Incuba-
tor

ImageQuant LAS4000

Infinite 200 PRO
LightCycler® 2.0

MicroAmp® Adhesive
Film Applicator

Microfuge® 22R Cent-
rifuge

Mini BlotBoy ™

Nanodrop 2000c

Promega, Madison,
Wisconsin, USA

Heraeus, Hanau, DEU

GE Healthcare Life Sci-
ences, Chalfont, GBR

Tecan, Grodig, AUT
Roche, Mannheim, DEU

Applied Biosystems/ Thermo
Fisher Scientific, Wilmington,
Delaware, USA

Beckman Coulter, Brea,
Kalifornien, USA

Benchmark Scientific,
Edison, New Jersey, USA

Thermo Fisher Scientific,
Wilmington, Delaware, USA

Plattenphotometer
Brutschrank zur Kultivierung
von HM und Melanomzellen

Detektionsgerat flir Chemi-
lumineszenz (Western Blot)

Plattenphotometer
Quantitative Realtime-PCR

Applikator zum Aufdricken
von Klebefolien auf gPCR-
Platten

Kihlzentrifuge fir 1,5 ml-
und 2 ml-Reaktionsgefalle

Schdttler fir Western Blot

Spektrophotometer

pH-Meter HI 2211-02

Polymax 1040

PowerPac Basic™

qTower®

RoboCycler® Gradi-
ent 96

RP X-OMAT

Schuttelinkubator
CH-4103

Sicherheitswerkbank
HERAsafe

Sicherheitswerkbank
Klasse Il Typ A/B3

Hanna Instruments Deutsch-
land, Véhringen, DEU

Heidolph Instruments
GmbH, Kelheim, DEU

Bio-Rad, Miinchen, DEU

Analytik Jena, Jena, DEU

Stratagene, La Jolla, Kalifor-
nien, USA

Kodak, Stuttgart, DEU

Infors HAT, Einsbach, DEU

Heraeus, Hanau, DEU

NuAire, Plymouth, Massa-
chusetts, USA

pH-Wert-Einstellung von
Lésungen und Puffern

Schdttler fir Western Blot

Stromquelle fir SDS-PAGE
und Tank Blot (Western
Blot)

Quantitative Realtime-PCR

Thermocycler,
cDNA-Synthese

Roéntgenfilm-Entwicklung

Schiittelinkubator fiir Bakte-
rienkultivierung

Steriles Arbeiten, Zellkultur

Steriles Arbeiten, Zellkultur
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SmartSpec 3000

Swip KL-2 Schattler

Thermomixer 5436

Tischzentrifuge
Multifuge 3 S-R

Tischzentrifuge
Rotixa 50 RS

Ultra-Low Tempera-
ture Freezer

VARIOKLAV®
Dampfsterilisator
500 E

Vortex-Genie 2

Wasserbad U3

XCell II™ Blot Module

XCell SureLock®

Mini-Cell Electropho-

resis System

Zahlkammer Neu-
bauer improved

2.1.11 Software

Bio-Rad, Hercules, Kalifor-
nien, USA

Edmund Biihler, Hechingen,
DEU
Eppendorf, Hamburg, DEU

Heraeus, Hanau, DEU

Hettich, Baech, CHE

New Brunswick/Eppendorf,
Hamburg, DEU

H&P Labortechnik GmbH,
Oberschleilheim, DEU

Scientific Industries, Bohe-
mia, New York, USA

Bachofer Laboratoriumsge-
rate, Reutlingen, DEU

Invitrogen/Thermo Fisher
Scientific, Waltham, Massa-
chusetts, USA

Invitrogen/Thermo Fisher
Scientific, Waltham, Massa-
chusetts, USA

Paul Marienfeld, Lauda-Ko-
nigshofen, DEU

Tabelle 40: Verwendete Programme

Photometer zur RNA-, DNA-
und Protein-Konzentrations-
bestimmung

Schuttler zum Schwenken
von Western Blot-Membra-
nen

Proteindenaturierung

Zentrifugieren von 15 ml-
und 50 mI-Réhrchen

Zentrifugieren von 15 ml-
und 50 mI-Réhrchen

-80°C Kuhltruhe, Probenauf-
bewahrung

Autoklavieren von Glas- und
Plastikwaren

Mixen

cDNA-Synthese

Tank Blot (Western Blot)

Natriumlaurylsulfat — Poly-
acrylamidgelelektrophorese
(SDS-PAGE) (Western Blot)

Zellzahlbestimmung

Programm Unternehmen, Ort Verwendung

Roche,
Assay . . , C
Desian (https://lifescience.roche.com/en_de/brands/ Primerdesign fir quan-
Centger universal-probe-library.html#assay-design- titative Realtime-PCR

center)
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AxioVision,
Version Carl Zeiss, Jena, DEU Mikroskopsteuerung
4.7.2
Durchflusszytometrie
CellQuest Becton-Dickinson, Heidelberg, DEU (Apoptose-/
Zellzyklus-FACS)
Durchfl t tri
_ BD Biosciences, San Jose, dreniiusszylometrie
FACSDiva . (Apoptose-/
Kalifornien, USA
Zellzyklus-FACS)
FlowdJo, Durchflusszytometrie
Version BD Biosciences, San Jose, Kalifornien, USA (Apoptose-/
10.8.1 Zellzyklus-FACS)
GraphPad
Pris?n GraphPad Software (https://www.graph- Statistische
o pad.com, San Diego, Kalifornien, USA) Berechnungen
Version 5
i-control 1.8,
Version Tecan, Grodig, AUT Plattenphotometer
3.1.10.0
Illustrator,
Versionen Adobe Systems Inc., San Jose, Kalifornien, Grafikerstellun
cssund  USA 9
CC 2018
Fiji Densitometrische Ana-
Image J
(https://Fiji.sc) lysen
ImageQuant _ . I
L AS4000 GE Healthcare Life Sciences, Chalfont, Chemilumineszenzde-
’ GBR tektion
Version 1.3
Microsoft ) . Auswertung, Dokumen-
i Microsoft, Redmont, Washington, USA )
Office 2016 tation
Nanod RNA-, DNA- und Pro-
anodrop Thermo Fisher Scientific, Wilmington, Dela- ) u.n ro
2000c, Ver- teinkonzentrationsbe-
. ware, USA .
sion 1.4.2 stimmung
Photoshop,
Versionen Adobe Systems Inc., San Jose, Kalifornien, Bildbearbeitun
cs2und  USA J
CC 2018

85



2 Material und Methoden

National Center for Biotechnology

Primer- Information (NCBI) Primerdesign fur quan-

BLAST (https://www.ncbi.nim.nih.gov/tools/primer- titative Realtime-PCR
blast/index.cgi)

qPCRsoft Quantitative Realtime

Version Analytik Jena, Jena, DEU PCR

41.3.0

QuPath,

Version QuPath (https://qupath.github.io) Bildanalyse-Software

0.3.2

Bioinformatische Analy-
sen (RNA-Sequenzie-

R Studio Posit PBC, Boston, Massachusetts, USA
rung, Netzwerkerstel-

lung)
SPSS Sta-
tistics, Ver- Statistische Berechnun-
) IBM, Armonk, New York, USA
sion gen
28.0.0.0

2.2 Methoden

2.2.1 Zellkultur

2.2.1.1 Kultivierung von kutanen bzw. Uveamelanom-Zelllinien

Alle Zelllinien wurden bei einer Konfluenz von 80 bis 90 % 2x pro Woche passagiert.
Dafiir wurde das Zellkulturmedium abgenommen, die Zellen mit HBSS (13 ml fir T75-
Zellkulturflache, 5 ml fur T25-Zellkulturflasche) gewaschen, 2 ml 1x Trypsin/EDTA-
Lésung 0,05 % zugegeben und durch Schwenken gleichmaRig verteilt. Nach einer Inku-
bationszeit von etwa 2 bis 5 min bei RT wurden die abgelosten Zellen mit 8 ml Medium
(TU2% fur KM-Zelllinie 1205Lu, Uvea-Medium fur UM-Zelllinien) abgespult, um den en-
zymatischen Verdau abzustoppen und in ein 15 mI-Reaktionsgefal} Uberfihrt. Die Zellen
wurden dann in einer grof3en Tischzentrifuge zentrifugiert (1.000 Umdrehungen pro min
(rpm), 3 min, RT), der Uberstand abgenommen und das Pellet im jeweiligen Medium
resuspendiert. Die Zellsuspension wurde dann im gewilnschten Verhaltnis (zwischen 1:3
und 1:6) in einem Gesamtvolumen von 13 ml Medium (T75) bzw. 5 ml (T25) in einer
neuen Zellkulturflasche ausgesat. Nach der Zugabe von Antibiotic-Antimycotic (100x) im
Verhaltnis 1:100 wurden die Zellen im Brutschrank bei 37°C, 5 % CO; inkubiert. Die
Zellen wurden regelmafig mithilfe des Venor®GeM Classic Mycoplasma Detection Kit
for conventional PCR (Minerva Biolabs, Berlin, DEU) nach Herstellerangaben auf eine
Kontamination mit Mykoplasmen kontrolliert.
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2.2.1.2 Kultivierung von humanen Melanozyten

Die Kultivierung und Passagierung der HM erfolgte analog zu Punkt 2.2.1.1 mit wenigen
Anderungen. Da das HM-Medium kein FBS enthalt, wurde der enzymatische Verdau
durch Trypsin nach dem Abldsen der Zellen durch Zugabe von 2 ml Trypsin Neutraliza-
tion Solution neutralisiert, bevor die Zellen mit 6 ml HM-Medium abgesplilt, in ein 15 ml-
Reaktionsgefald dberfuhrt und dann zentrifugiert wurden. Die Aussaat und Kultivierung
der Zellen erfolgte in HM-Medium und Zusatz von 1x Antibiotic-Antimycotic. Da es sich
bei den HM um primare Zellen handelt, wurden diese nur bis Passage 10 kultiviert.

2.2.1.3 Einfrieren und Auftauen von Zellen

Fur die Kryokonservierung wurden in einer T75-Zellkulturflasche wachsende Zellen mit
einer Konfluenz von 80 bis 90 % wie oben beschrieben mittels Trypsin-EDTA-LOsung
abgel6st und das Zellpellet in 3 ml kaltem Einfriermedium resuspendiert. Anschliel3end
wurde je 1 ml dieser Zellsuspension in vorgekuhlte Kryoréhrchen tberfuhrt. Diese wur-
den unmittelbar danach in eine mit Isopropanol gefiillte Cryo Cooler® Einfrierbox ge-
stellt, die Zellen darin Uber Nacht bei -80°C eingefroren, anschlieend in einen Kryotank
mit flissigem Stickstoff Uberfiihrt und dort bei -180°C gelagert. Zum Auftauen der Zellen
wurden die gefrorenen Kryordhrchen kurz bei 37°C, 5 % CO: inkubiert, bis die Zellsus-
pension aufgetaut war. Diese wurde unmittelbar danach in ein 50 ml-Reaktionsgefaf
Uberfihrt, in dem 20 ml Medium vorgelegt waren, zentrifugiert (1.000 rpm, 3 min, RT)
und der Uberstand verworfen. Das Zellpellet wurde in einer T75-Flasche in 13 ml Me-
dium oder T25-Flasche in 5 ml Medium jeweils mit 1x Antibiotic-Antimycotic-Zusatz aus-
gesat und bei 37°C, 5 % CO- inkubiert. Das Medium wurde am Folgetag ausgetauscht,
um verbliebenes DMSO aus dem Einfriermedium sowie tote Zellen zu entfernen.

2.2.2 Transfektionen

2.2.2.1 Transfektion von siRNAs

Die RNA-Interferenz ist eine Variante der post-transkriptionellen Regulation, um die Ex-
pression eines bestimmten Genes durch die Degradierung seiner mRNA zu verringern
[332]. Bei diesem Prozess wird zuerst eine doppelstrangige RNA (dsRNA) durch die
Ribonuclease Dicer in kurze, 21 bis 23 bp lange dsRNA-Molekiile, die siRNAs, gespal-
ten, die an ihrem 3’-Ende einen 2 Nukleotide umfassenden Uberhang aufweisen [333].
Das noch doppelstrangige RNA-Molekul wird dann entwunden und ein Strang in den
RNA-induced silencing complex (RISC) integriert, wodurch der RISC an die entspre-
chende Ziel-mRNA geleitet wird, dort bindet und gebundende mRNA schneiden kann
[333]. Die siRNA muss dabei nicht exakt komplementar zur Ziel-mRNA sein, um deren
Degradierung zu erreichen [334]. Die RNA-Interferenz kann man nutzen, um spezifisch
einzelne Gene in vitro auszuschalten, indem man kurze, 21 Nukleotide umfassende
dsRNA fur eine spezifische mRNA designt, chemisch synthetisiert und wie in dieser Ar-
beit durchgefuhrt durch Verpackung in kationische Liposomen in die Zellen einbringt,
also eine Transfektion durchfihrt [335, 336].
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Fur die Transfektion von siRNAs in HM mithilfe des jetPRIME® DNA & siRNA Transfec-
tion Reagent wurden zuerst 100.000 Zellen pro Well in eine 6-Well-Platte ausgesat und
diese Uber Nacht bei 37°C und 5 % CO: inkubiert. Am Tag der Transfektion wurden pro
Well 200 pl jetPRIME® Buffer und 2,2 ul siRNA (Konzentration 20 uM) gemischt und
dann 4 pl jetPRIME®-Transfektionsreagenz zugegeben. Der Ansatz wurde 10 s durch
Vortexen gemischt und 10 bis 15 min bei RT inkubiert. Wahrenddessen wurde das Me-
dium der am Vortag ausgesaten Zellen durch 2 ml neues HM-Medium ohne Antibiotika-
und Antimykotikazusatz ersetzt. Nach abgeschlossener Inkubation wurden pro Well
206 ul des Transfektionsansatzes tropfenweise auf die Zellen pipettiert und die Platten
bei 37°C und 5 % CO: fur 24h bis 96h inkubiert.

Fir die siRNA-Transfektionen der KM- und UM-Zelllinien wurde das Transfektionsrea-
genz Lipofectamine® RNAIMAX verwendet. Am Tag vor der Transfektion wurden in eine
6-Well-Platte je nach Zellart und Inkubationsdauer 80.000 bis 150.000 Zellen pro Well in
TU2% bzw. Uvea-Medium ausgesat. Am Tag der Transfektion wurden zunachst die si-
RNAs (Tabelle 41) bzw. das Transfektionsreagenz (Tabelle 42) in zwei getrennten Re-
aktionsgefal3en vorverdinnt.

Tabelle 41: siRNA-Vorverdiinnung, Ansatz fiir 1 Well einer 6-Well-Platte

Komponente 1x

1,5 ul SIRNA[20 uM] 1,5l
Opti-MEM™ Medium 125

Tabelle 42: RNAiIMAX- Vorverdiinnung, Ansatz fiir 1 Well einer 6-Well-Platte

Komponente 1x

Lipofectamine® RNAIMAXRNAIMAX 1,25 ul
Opti-MEM™ Medium 125 pl

Anschlieend wurde die RNAIMAX-Verdiinnung zur siRNA-Verdinnung gegeben, vor-
sichtig gemischt und der Ansatz fiir 10 bis max. 20 min bei RT fir die Ausbildung der
siRNA-Liposomkomplexe inkubiert. Vor der tropfenweisen Zugabe von 250 ul Transfek-
tionsansatz pro Well wurde das Medium vom Vortag durch 1250 pl neues Medium (je
nach Zellart TU2% oder Uvea-Medium) ohne Antibiotics/Antimycotics ersetzt. Die Zellen
wurden anschlielRend bei 37°C und 5 % CO: fur 24h bis 96h inkubiert. Die finale siRNA-
Konzentration im Well betrug 20 nM in beiden hier beschriebenen Protokollen.

2.2.2.2 Transfektion von Expressionsplasmiden

Fir die Transfektion der Expressionsplasmide wurden die Zellen am Vortag wie oben
beschrieben in 6-Well-Platten ausgesat. Am Tag der Transfektion wurden dann zunachst
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der Plasmid-DNA-Ansatz (Tabelle 43) und der Lipofectamine™ 3000-Ansatz (Tabelle
44) in zwei 1,5 ml-Reaktionsgefalien angesetzt und durch kurzes Vortexen gemischt.

Tabelle 43: Ansatz fiir Plasmid-DNA-Transfektion, Ansatz fiir 1 Well einer 6-Well-Platte

Komponente 1x
Plasmid-DNA 2,5 ug
P3000™ Reagent 2 ul

Opti-MEM™ Medium 125 pl

Tabelle 44: Lipofectamine™ 3000-Ansatz, Ansatz fiir 1 Well einer 6-Well-Platte

Komponente 1x

Lipofectamine™ 3000 Reagent 3,75 ul
Opti-MEM™ Medium 125 pl

Dann wurde der Lipofectamine™ 3000-Ansatz zum Plasmid-DNA-Ansatz hinzugefiigt
und durch Pipettieren vorsichtig miteinander vermischt. Anschlieend wurde der Ansatz
fur die Ausbildung der Liposomkomplexe fir 10 bis 15 min bei RT inkubiert. In der Zwi-
schenzeit wurde das Medium von den Zellen abgenommen und durch 2 ml neues Kul-
turmedium ohne Antibiotika- und Antimykotikazusatze ersetzt, bevor 250 ul Transfekti-
onsansatz pro Well tropfenweise auf die Zellen pipettiert wurden. Die Zellen wurden
dann bei 37°C, 5 % CO2flr 12h bis 72h inkubiert.

2.2.2.3 Sequenzielle Transfektion von Expressionsplasmiden und siRNAs

Im Rahmen von Rescue-Experimenten wurden Transfektionen von Expressionsplasmi-
den und siRNAs in kurzem zeitlichen Abstand durchgefiihrt, um gleichzeitig eine ektope
Expression von MITF und Hemmung von SOX10 zu erzielen. Da flr die Transfektionen
unterschiedliche Transfektionsreagenzien verwendet werden mussten, die beide die
Zellviabilitat per se bereits verringern kénnen, wurden die Transfektionen mit zeitlichem
Abstand zueinander durchgefiihrt. Zuerst wurden an Tag 1 225.000 Zellen/Well in 6
Well-Platten ausgesat. An Tag 2 erfolgte dann die Plasmid-Transfektion mit 2,5 uyg MITF-
Myc-DDK-Plasmid, dem Kontrollvektor pCMV6-Entry oder einem Transfektions-Ansatz
ohne Plasmid-DNA wie in Abschnitt 2.2.2.2 beschrieben. Nach 16h wurden die Zellen
2x mit Medium gewaschen und dann mit SOX10-B-siRNA, Kontroll-siRNA oder dem
siRNA-Transfektionsreagenz ohne siRNA transfiziert (siehe Abschnitt 2.2.2.1). Nach 24h
und 48h wurde die Zellviabilitat bestimmt und die Zellen fiir Proteinexpressionsanalysen
wie in Abschnitt 2.2.5.1 beschrieben geerntet.
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2.2.3 Transformation, Kultivierung, Lagerung und Plasmidisolierung aus
Escherichia coli

2.2.3.1 Herstellung von LB-Agar-Platten mit Selektionsantibiotikum

Die LB-Agar-Platten mit Selektionsantibiotikum wurden hergestellt, indem der bei 4°C
gelagerte LB-Agar in einer Mikrowelle bei 180 Watt fur 5 bis 10 min verflissigt wurde.
Anschliellend wurden 50 ml in ein 50 ml-Reaktionsgefal abgefillt, die Lésung bis auf
etwa 40°C abgekuhlt und das jeweilige Selektionsantibiotikum in der gewlinschten Kon-
zentration (Kanamycin: 25 ug/ml bzw. Ampicillin: 100 pg/ml) der flissigen LB-Agar-
Lésung zugesetzt. AnschlieRend wurden in einer Sicherheitswerkbank je 15 ml der war-
men LB-Agar-Lésung in eine Petrischale (@ 10 cm) abgeflllt und die Schalen ohne De-
ckel fir einige Stunden stehen gelassen, bis eine feste Agarschicht entstanden war.
Nach dem Aufsetzen der Deckel wurden die Platten mit Parafilm M abgedichtet und mit
der Agarseite nach oben fir maximal 4 Wochen bei 4°C aufbewahrt.

2.2.3.2 Transformation von E. coli DH5a

Fir die Ubertragung von Plasmid-DNA in kompetente Bakterien (Transformation) wur-
den zuerst 200 pl chemisch kompetente, bei -80°C gelagerte E. coli-Bakterien des La-
borstammes DH5a auf Eis aufgetaut und in 12 mlI-Rundbodenrdéhrchen Uberfihrt. Zu den
Bakterien wurde dann 1 bis 10 ng Plasmid-DNA hinzugefligt und das Réhrchen auf Eis
fir 40 min inkubiert. Der Ansatz wurde danach fir 90 s im Wasserbad bei 42°C inkubiert,
um die Aufnahme des Plasmids mittels Hitzeschockmethode zu induzieren und dann fir
2 min auf Eis wieder abgekunhlt. AnschlielRend wurden 800 pl S.0.C. Medium hinzuge-
fugt, die Bakteriensuspension in einem Schuttelinkubator (Infors) bei 37°C, 300 rpm fir
1h inkubiert und schlief3lich 100 pl des Ansatzes auf eine LB-Agar-Platte mit Selektions-
antibiotikum ausplattiert. Die Platte wurde dann Uber Nacht bei 37°C inkubiert. Am
nachsten Tag wurden entweder direkt einzelne gewachsene Kolonien gepickt, um Uber-
nachtkulturen anzulegen (siehe 2.2.3.3), oder die Platte wurde mit Parafilm M abgedich-
tet und mit der Agarseite nach oben bis zur weiteren Verwendung bei 4°C aufbewahrt.

2.2.3.3 Kultivierung und Lagerung von transformierten E. coli

Um einzelne Kolonien transformierter E. coli DH5a fiir verschiedene weitere Anwendun-
gen zu expandieren, wurden Ubernachtkulturen angelegt. Dazu wurde jeweils 1 Kolonie
gepickt und damit 5 ml LB-Medium inklusive Selektionsantibiotikum in einem 50 ml-Re-
aktionsgefal® angeimpft. Die Reaktionsgefal®e wurden dann fiir 12h bis maximal 16h in
einem Schdittelinkubator bei 37°C und 300 rpm inkubiert. Fur die langerfristige Lagerung
der transformierten E. coli wurden 800 ul der Ubernachtkultur mit 200 pl sterilautokla-
viertem 87 % Glycerol vermischt und bei -80°C gelagert.

2.2.3.4 Isolierung und Konzentrationsbestimmung von Plasmid-DNA

Fur die Isolierung von Plasmid-DNA aus den transformierten E. coli-Bakterien wurden
zuerst Ubernachtkulturen angelegt (siehe Abschnitt 2.2.3.3). Aus dieser wurden 2 ml
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Bakteriensuspension in ein 2 ml-Reaktionsgefal® tberfiihrt, in einer kleinen Tischzentri-
fuge mit 11.000 g fiir 30 s zentrifugiert und der Uberstand verworfen. Dieser Schritt
wurde einmal wiederholt und anschlieRend die Plasmid-DNA aus dem Bakterienpellet
nach Angaben des Herstellers mit dem NucleoSpin® Plasmid (NoLid) Kit (Macherey &
Nagel) isoliert. Fur die Konzentrationsbestimmung wurden 4 pl DNA in 76 ml DEPC-H,O
im Verhaltnis 1:20 verdinnt, in eine Quartz-Klivette Uberfiihrt, die optische Dichte bei
260 nm (A260), 280 nm und 320 nm in einem SmartSpec 3000 Photometer (Bio-Rad)
bestimmt und die DNA-Konzentration berechnet:

c(DNA)[ug/ul] = A260 * 20 (Verdiinnungsfaktor) = 50 ng/ul (Umrechnungsfaktor)

Fir den Referenzwert (¢ = 0 ug/ul) wurde die Kivette mit 4 ul Elutionspuffer in 76 ul
DEPC-H20 befillt und vermessen. Die Lagerung der Plasmid-DNA erfolgte bei -20°C.

2.2.4 Genexpressionsanalysen

2.2.4.1 RNA-Isolierung und Konzentrationsbestimmung

Fur die RNA-Isolierung wurde zuerst das Medium von den in 6-Well-Platten kultivierten
Zellen abgesaugt und diese 2x mit je 1 ml PBS gewaschen. AnschlieRend wurde die
RNA mithilfe des RNeasy® Mini Kits (Qiagen) nach Herstellerangaben isoliert. Die auf-
gereinigte RNA wurde durch Zugabe von 30 ul RNase-freiem H>O von der Saule eluiert.
Die Konzentrationsbestimmung wurde an einem SmartSpec 3000 Photometer in einer
Quartz-Kuvette bzw. an einem Nanodrop 2000c Spektrophotometer (Thermo) nach An-
gaben des Herstellers durchgefiihrt. Die Lagerung der RNA erfolgte bei -80°C.

2.2.4.2 cDNA-Synthese

Die complementary DNA (cDNA)-Synthese wurde mit dem Expand™ Reverse
Transcriptase-Kit (Roche) und Oligo-(dT)ss-Primern durchgefuhrt. Dabei wird nur die
MRNA aus dem Pool der Gesamt-RNA mithilfe des Enzymes Reverse Transkriptase und
Oligo-(dT) 1s-Primern, die selektiv an den poly-(A)-Schwanz von mRNAs binden, in einen
komplementaren DNA-Strang (= cDNA) umgeschrieben, der anschliefend mittels PCR
vervielfaltigt werden kann [337]. Zuerst wurden 1000 ng RNA in einem PCR-Reaktions-
gefall mit DEPC-H2O auf ein Volumen von 8,5 ul verdinnt, 2 ul Oligo-(dT)+s-Primer
(250 ng/ul, Eurofins Genomics, Ebersberg, DEU) zugegeben und der Ansatz in einem
RoboCycler® Gradient 96 (Stratagene) bzw. GeneExplorer Thermocycler (Bioer) bei
65°C fur 10 min inkubiert, um die RNA zu denaturieren. Danach wurde der Ansatz auf
Eis gestellt, 9,5 yl Reverse Transkriptase-Mix (Tabelle 45) hinzupipettiert und fir 1h bei
42°C inkubiert.
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Tabelle 45: Reverse Transkriptase-Mix

Komponente Menge

5x Expand™ Reverse Transcriptase Buffer * 4 ul

Dithiothreitol (DTT) [0,1 M] * 2l
dNTPs [je 10 mM] 2 ul
RNasin® Ribonuclease Inhibitor 0,5 ul
Expand™ Reverse Transcriptase * 1l

> 9,5 ul

*: Komponenten des Expand™ Reverse Transcriptase-Kits (Roche)

Die fertig transkribierte cDNA wurde anschlie3end durch Zugabe von DEPC-H,0O im Ver-
haltnis 1:3 verdiinnt und bei -80°C gelagert.

2.2.4.3 Quantitative Realtime-PCR (qPCR)

Die Analyse der Genexpression wurde mittels gPCR bestimmt. Das Verfahren beruht
auf der Polymerase-Kettenreaktion (PCR), bestehend aus Denaturierung der DNA, An-
lagerung der Primer (,Annealing“) und Elongation des DNA-Strangs durch eine DNA-
Polymerase; allerdings wird die Menge des entstehenden PCR-Amplikons nicht erst am
Ende der PCR, sondern bereits wahrend des PCR-Vorgangs nach jedem Amplifikations-
zyklus und somit in Echtzeit mithilfe von Fluoreszenzfarbstoffen bestimmt [338]. Diese
kénnen entweder interkalierende Farbstoffe sein, die an doppelstrangige DNA (dsDNA)
binden, oder Fluoreszenzfarbstoffe, die an komplementar bindende Sonden (z.B.
TagMan®) gekoppelt sind [338]. Fir diese Arbeit wurde beide Detektionsvarianten ver-
wendet. Farbstoffe wie SYBR® Green | oder das Analogon dsGreen fluoreszieren nur,
wenn sie an dsDNA binden; dadurch ist die Fluoreszenzintensitat im PCR-Ansatz pro-
portional zur entstehenden Menge an dsDNA [338]. Allerdings binden die Farbstoffe
auch an Primer-Dimere oder unspezifische Amplifikationsprodukte, weshalb die Me-
thode weniger sensitiv als die sondenbasierten Methoden sind. [338]. Flr den sonden-
basierten Ansatz wurden Hydrolyse-Sonden aus der 165 Sonden umfassenden Univer-
sal Probe Library (Roche) verwendet [339]. Die Sonden bestehen aus 8 bis 9 bp langen
Oligonukleotiden und enthalten modifizierte DNA-Analoga (locked nucleic acids), die
starker als normale DNA-Nukleotide binden und dadurch die Schmelztemperatur und
Thermostabilitat der Sonde erhdhen [339]. An das 5° Ende der Sonde ist der Fluores-
zenzfarbstoff FAM und an das 3 Ende ein sogenannter Quencher gekoppelt, welcher
die FAM-Fluoreszenzintensitat stark verringert [338, 339]. Die Sonde analog zu den Pri-
mern wahrend des Annealingschrittes komplementar an das DNA-Amplikon und wird
wahrend des Elongationsschrittes durch die 5-Endonuklease-Fahigkeit der DNA-Poly-
merase abgebaut [338]. Dabei wird der Fluoreszenzfarbstoff vom Quencher getrennt,
sodass die Hemmung der Fluoreszenz wegfallt und ein Fluoreszenzsignal detektiert wer-
den kann [338].
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Die sondenbasierte gPCR wurde mithilfe des Glaskapillarensystems von Roche durch-
gefuhrt. Dafur wurde zuerst ein Mastermix-Ansatz (Tabelle 46) erstellt, 7 pl davon in die
Offnung einer Glaskapillare pipettiert, 3 ul der zuvor mit DEPC-H,0 im Verhaltnis 1:3
verdinnten cDNA (sowohl Proben als auch Standards) zugegeben, die Glaskapillare
verschlossen und mithilfe eines vorgekiihlten Kapillarenadapters in einer kleinen Tisch-
zentrifuge (Eppendorf) abzentrifugiert (1.000 rpm, 30 s, 4°C). Die Kapillaren wurden
dann in das Karusselsystem des PCR-Gerats Uberflihrt und die Reaktion in einem
LightCycler® 2.0 (Roche) mit dem in Tabelle 47 aufgeflihrten Programm durchgefuhrt.

Tabelle 46: qPCR-Mastermix fiir sondenbasierte qPCR, Ansatz fiir 1 Probe

Komponente Menge Endkonzentration
PCR-grade H,O 4,5 ul
Sonde (passend zum Primerpaar, 0,1 ul 100 nM

aus Universal Probe Library) [10 pM]

Primer forward [10 uM] 0,2 ul 200 nM
Primer reverse [10 uM] 0,2 pl 200 nM
5x Mastermix* 2 ul

> 7ul

* aus LightCycler® TagMan® Master Kit: 10 pl aus Vial 1a (Enzym) zu Vial 1b (Puffer)
pipettieren, vorsichtig mischen; Lagerung bei -20°C

Tabelle 47: Programm zur Durchfiihrung der sondenbasierten gPCR

Programmschritt Temperatur Dauer Zyklenzahl

Prainkubation 95°C 10 min 1

Denaturierung 95°C 10s

Annealing 60°C 30s 40
Elongation 72°C 1s

Abkuhlen 4°C 30s 1

Fur die gPCRs mit dem interkalierenden Farbstoff dsGreen wurde ein Mastermix erstellt
(Tabelle 48), je 7 ul pro Well in eine 96-Well-PCR-Platte pipettiert, 3 ul der zuvor im
Verhaltnis 1:3 mit DEPC-H20 verdiinnten cDNA (Proben oder Standard) zugegeben und
die Platte mit einer durchsichtigen Versiegelungsfolie verschlossen. Die Platte wurde
dann in einer Tischzentrifuge (Eppendorf) abzentrifugiert (500 rpm, 1 min, RT) und die
Reaktion in einem qTower® (Analytik Jena) mit dem in Tabelle 49 beschriebenen Pro-
gramm durchgefihrt. Um das Vorhandensein unspezifischer Amplifikationsprodukte
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auszuschlieen, wurde im Anschluss an die gPCR eine Schmelzkurvenanalyse durch-
gefuhrt.

Tabelle 48: qPCR-Mastermix fiir qPCR mit interkalierendem Farbstoff dsGreen, Ansatz fiir
1 Probe

Komponente Menge Endkonzentration

2x innuMIX gPCR DSGreen Standard 5 pl

Primer forward [10 uM] 0,2 ul 200 nM
Primer reverse [10 pM] 0,2 pl 200 nM
PCR-grade H,0O 1,6 pl

> 7ul

Tabelle 49: qPCR-Programm zur Durchfiihrung der gPCR mit interkalierendem Farbstoff
dsGreen

Programmschritt Temperatur Dauer Zyklenzahl
Prainkubation 95°C 2 min 1
Denaturierung 95°C 10s
40
Annealing & Elongation 60°C 30s
Schmelzk 65° -95°C
chmelzkurve 30s ’

AT1°C/10 s)

Die Genexpression wurde mittels relativer Quantifizierung bestimmt, weshalb eine Stan-
dardkurve mit 3 Verdinnungsstufen in die Experimente inkludiert wurde. Hierfir wurde
1000 pug RNA unbehandelter 1205Lu-Zellen in cDNA umgeschrieben, der Ansatz analog
zu den Proben 1:3 mit DEPC-H20O verdinnt und dann ohne weitere Verdinnung (100 %
Genexpression), in einer 1:2 (50 %) und 1:10 (10 %) Verdinnung in der gPCR einge-
setzt. Die Genexpression der Proben wurde dann in Relation zur Expression in den
1205Lu-Zellen gesetzt und auf die Expression eines Haushaltsgens, in diesem Fall
GAPDH, normalisiert. Die Berechnung der relativen Genexpression erfolgte anhand der
ermittelten Werte im Programm Microsoft Excel.

2.2.4.4 RNA-Sequenzierung und differenzielle Genexpressionsanalyse

Die UM-Zelllinien 92.1 und Mel270 wurden in vier biologischen Replikaten ausgesat, wie
in Abschnitt 2.2.2.1 beschrieben mit einer Kontroll-siRNA oder SOX10-B-siRNA trans-
fiziert und nach 24h geerntet. AnschlielRend wurde eine RNA-Isolierung mit dem RNeasy
Mini Kit (Qiagen) inklusive DNase-Verdau mithilfe des RNase-Free DNase Sets (Qiagen)
nach Herstellerangaben durchgefihrt. Die Library-Praparation und RNA-Sequenzierung
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der insgesamt 16 Proben wurde von der Firma CeGaT GmbH (Tlbingen, DEU) ausge-
fuhrt. FUr die Library-Praparation wurde die RNA-Konzentration fluoreszenzbasiert zu-
nachst mithilfe eines Qubit® Fluorometers (Thermo Scientific) gemessen und die RNA-
Qualitat mithilfe eines Bioanalyzer 2100 (Agilent Technologies) Uberprift. Dann wurden
je 100 ng RNA und das KAPA RNA HyperPrep Kit with RiboErase (Roche) verwendet,
um die Sequenzierlibraries zu erstellen. Die Sequenzierung erfolgte mit dem Gerat No-
vaSeq™ 6000 (lllumina, San Diego, Kalifornien, USA) mit einer Leselange von 2 x 100
bp. Die Software lllumina bcl2fastq (2.20) wurde verwendet, um die sequenzierten
Reads zu demultiplexen und die Software Skewer (Version 0.2.2) [340] fur das Adapter-
trimming. Die FASTQ-Dateiangaben wurden mit dem Programm FastQC (Version
0.11.5-cegat) ausgelesen. Die weitere bioinformatische Analyse erfolgte durch Chris-
topher Lischer, M.Sc. (AG Systems Tumor Immunology, Hautklinik des Uniklinikums
Erlangen) mithilfe der statistischen Programmiersprache R in der Entwicklungsumge-
bung R Studio und den Software Packages ,DESeq2*, ,AnnotationDbi*, ,pheatmap® und
,ggplot2* [341, 342]. Zuerst wurde ein Alignment der Reads an das humane Referenz-
genom in der Assembly GRCh38.p2 (hg38)) mit der Gencode Annotation Version 22
[343] und dem Short Read Aligner ,STAR" [344] in der Version 2.0201 durchgefihrt.
Unkorrigierte Read-Zahlen pro Gen wurden erfasst durch das Paket ,Subread” und des-
sen Funktion ,featureCount* [345]. Als erste vorlaufige Analyse wurde eine Principal
Component (PC)-Analyse durchgefihrt, um eine erwartungsfreie Gruppierung der Pro-
ben durchzufiihren. Um Gene zu identifizieren, welche nach SOX10-Inhibition differen-
ziell exprimiert waren, wurden alle Gene mit einer signifikant veranderten Genexpression
bei einer family-wise error rate (FWER) von 0,05 identifiziert. Danach wurden alle Gene
mit einer log.fold change <|1| der Genexpression ausgeschlossen, um so Gene zu iden-
tifizieren, die sowohl eine statistische Signifikanz als auch mindestens eine Verdopplung
bzw. Halbierung als EffektgroRe zeigten. Diese wurden dann mit bereits publizierten
ChIP-DNA-Sequenzierungs (ChlP-Seq)-Daten Daten zur Bindung von SOX10 im Be-
reich 10.000 bp upstream bis 5.000 bp downstream um Transkriptionsstartstellen (TSS)
in murinen Melanozyten [346] abgeglichen, um Gene zu identifizieren, die eventuell di-
rekt durch SOX10 transkriptionell reguliert werden. Die so generierte Liste an differenzi-
ell exprimierten Genen wurde dann weiter in Gene Ontology (GO) Term-Analysen unter-
sucht, um die am starksten veranderten Signalwege sowie Gene herauszufiltern, die ei-
nen Bezug zu den Prozessen Apoptose und Zellzyklusregulierung haben.

2.2.4.5 Grafische Darstellung von UM-Genexpressionsdaten aus der TCGA-
Datenbank

Die grafische Darstellung der Daten zur Genexpression der Transkriptionsfaktoren
SOX10, SOX9, POU class 4 homeobox 1 (POU4F1) und MSX1 in 80 UM-Primartumoren
erfolgte als Heatmap. Die Daten stammen aus dem TCGA Ocular Melanomas (UVM)-
Datensatz des TCGA [75, 347] und wurden Uber den Xena Functional Genomics
Explorer (https://xenabrowser.net/) [348, 349] heruntergeladen und anschlieRend mit-
hilfe des Programms Heatmapper (http://www.heatmapper.ca) [350] visualisiert.
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2.2.5 Proteinbiochemie

2.2.5.1 Proteinisolierung

Fur die Isolierung von Protein aus HM und verschiedenen Zelllinien wurde zuerst das
Medium von den in 6-Well-Platten kultivierten Zellen abgenommen, in einem 1,5 ml-Re-
aktionsgefal gesammelt, dieses in einer kleinen Tischzentrifuge zentrifugiert
(2.000 rpm, 2 min, 4°C) und anschlieRend der Uberstand abgesaugt. Wahrenddessen
wurden die Zellen 2x mit je 1 ml PBS gewaschen, 500 yl 11 mM EDTA/PBS auf die
Zellen gegeben und fir 5 bis 10 min bei 37°C, 5 % CO- inkubiert, bis sich die Zellen vom
Boden abldsten. Die Zellsuspension wurde anschlieRend zum Pellet des Mediumuber-
standes hinzugefuigt, erneut zentrifugiert (2.000 rpm, 2 min, 4°C) und der Uberstand ver-
worfen. Die Zellen wurden dann 2x mit je 1 ml PBS gewaschen und erneut abzentrifugiert
(2.000 rpm, 2 min, 4°C). Nach dem letzten Waschschritt wurde der Uberstand vollstandig
abgenommen und das trockene Pellet entweder bei -80°C aufbewahrt oder die
Proteinextraktion direkt fortgefiihrt. Um die Zellen zu lysieren und die Proteine zu extra-
hieren, wurde das Zellpellet in 50 bis 60 ul 1x CSH-Lysepuffer resuspendiert und fur
30 min auf Eis inkubiert. AnschlieRend wurde das Lysat in einer kleinen Tischzentrifuge
(13.000 rpm, 20 min, 4°C) zentrifugiert, um ungeldste Bestandteile wie Zelltrimmer ab-
zutrennen. Der Uberstand wurde dann in ein neues 1,5 ml Reaktionsgefal Uberfihrt.
Die Lagerung erfolgte bei -80°C.

2.2.5.2 Proteinkonzentrationsbestimmung mittels BCA-Assay

Die Proteinkonzentrationsbestimmung der Lysate erfolgte mithilfe des Pierce™ BCA
Protein Assay Kits (Thermo Scientific). Bei dieser kolorimetrischen Messmethode wer-
den zwei chemische Reaktionen kombiniert. Im alkalischen Milieu werden bei der Biuret-
Reaktion Cu?*-lonen durch Proteine zu Cu* -lonen reduziert [351, 352]. Ein Cu* -lon
bildet dann mit 2 Bicinchoninsaure (BCA-) Molekilen einen lilafarbenen Komplex mit
einem Absorptionsmaximum bei 562 nm [351, 352]. Bei dieser Wellenlange wird die Ab-
sorption des Komplexes photometrisch bestimmt, die sich im Bereich von 20 bis 2000 ug
Protein/ml linear zur Proteinkonzentration verhalt [351, 352]. Um eine absolute Quantifi-
zierung der Proteinkonzentration in den Proben durchzufiihren, wurde eine Standard-
kurve aus BSA mit bekannten Proteinkonzentrationen erstellt. Dafiir wurden aus einer
BSA-Stocklésung mit einer Konzentration von 10 pg/ul und 1x CSH-Lysepuffer eine Ver-
dinnungsreihe mit den Konzentrationen 8, 4, 2, 1 und 0,5 pg/pl BSA angesetzt. Zur
Durchfiihrung des BCA-Assays wurde zunachst eine Arbeitslésung durch Mischen von
50 Teilen des Reagenz A (BCA) mit 1 Teil des Reagenz B (Kupfersulfat) aus dem
Pierce™ BCA Protein Assay Kit in einem 50 ml-Reaktionsgefald hergestellt und je 1 ml
davon in 1,0 cm-Halbmikro-Kuvetten aus PMMA pipettiert. Dann wurden pro Kuvette
entweder 10 ul Proteinlysat, BSA-Standard oder 1x CSH-Lysepuffer (fir Ermittlung des
Referenzwerts) hinzupipettiert, diese mit Parafilm M verschlossen, durch Invertieren ge-
mischt und fir 15 min bei RT inkubiert. Anschliel3end erfolgte die Messung der optischen
Dichte der Referenzkuvette (mit 1x CSH-Puffer), der 5 Kivetten mit den BSA-Standards
und der Kivetten mit den Proteinproben bei einer Wellenlange von 562 nm in einem
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SmartSpec 3000 Photometer (Bio-Rad) bzw. einem Nanodrop 2000c Spektrophotome-
ter (Thermo Scientific) mit dem Programm ,Protein BCA®. Die Berechnung der Protein-
konzentrationen in den Proben wurden mithilfe der erstellten BSA-Standardkurve im Pro-
gramm Microsoft Excel bzw. durch das Programm Nanodrop durchgefiihrt.

2.2.5.3 Proteinexpressionsanalyse mittels Western Blot

Die Analyse der Proteinexpression erfolgte mittels Western Blot-Verfahren. Dabei wer-
den Proteine unter denaturierenden Bedingungen zuerst in einem Sodiumdodecyl-Poly-
acrylamid-Gel (SDS-PAGE) der GroRe nach elektrophoretisch aufgetrennt und dann mit-
hilfe von Strom auf eine Membran Ubertragen (,geblottet*), auf der die gesuchten Prote-
ine Uber die Bindung von spezifischen Antikérpern nachgewiesen werden [353, 354]. Die
Membran wird nach dem Blotten in einem Blockingpuffer, der Milchpulver oder BSA ent-
halt, inkubiert, um unspezifische Bindungen der Antikdrper zu vermeiden [353, 355]. Die
geblockte Membran wird anschliefend zunachst mit spezifischen Primarantikérpern in-
kubiert, die an die immobilisierten und aufgetrennten Proteine binden, dann gewaschen
und mit Sekundarantikdrpern inkubiert, die an die primaren Antikorper binden und mit
dem Enzym HRP (horseradish peroxidase, Meerrettich-Peroxidase) gekoppelt sind
[355]. Nach Zugabe eines Chemilumineszenzreagenzes setzt die HRP das darin enthal-
tene Luminol in Anwesenheit von H20, zu 3-Aminophthalat um, wobei Licht mit einer
Wellenlange von 425 nm emittiert wird, welches mittels Rontgenfilm oder einer Digital-
kamera detektiert werden kann [355].

Zuerst wurden die Proteinlysate fir die SDS-PAGE unter denaturierenden Bedingungen
in 1,5 ml-Reaktionsgefallen vorbereitet (Tabelle 50).

Tabelle 50: Probenvorbereitung fiir SDS-PAGE, Ansatz fiir 1 Probe

Komponente Menge
Proteinlysat 10 oder 15 ug
NuPAGE™ LDS Sample Buffer (4X) 6 pl

NuPAGE™ Sample Reducing Agent (10X) 2,4 ul
H20 Ad. 24 pl

Die Ansatze wurden dann bei 70°C flir 10 min in einem Thermomixer (Eppendorf) inku-
biert und bis zur Beladung des Gels bei RT aufbewahrt. Die SDS-PAGE wurde mit vor-
gefertigten NUPAGE™ 4 - 12% Bis-Tris-Gradienten-Gelen nach Herstellerangaben
durchgefiihrt. Hierfir wurden die Gele in die Elektrophoresekammer eingespannt,
200 ml vom 1x Laufpuffer mit 500 ul NuPAGE™ Antioxidant versetzt, damit die innere
Kammer zwischen den beiden Gelen bis zum Rand befillt und 600 ml des Ubrigen
1x Laufpuffers in die dulRere Kammer gefillt. Nach dem Entfernen der Kdmme aus den
Gelen wurden die Geltaschen 2-3x mit 1x Laufpuffer mithilfe einer BD Discardit 1I-Spritze
mit Microlance™ 3 20G-Kanlle gespilt, um Gelreste aus den Taschen zu entfernen. Die
Gele wurden anschlieRend mit 10 yl des SeeBlue™ Plus2 Pre-stained Protein Standards

97



2 Material und Methoden

als Grélkenmarker in der ersten Tasche und mit jeweils 24 ul denaturierter Proteinlésung
in den weiteren Taschen beladen. AnschlieRend wurde die Elektrophoresekammer ge-
schlossen und die Proteine durch Anlegen einer konstanten Spannung von 150 V fir 50
min (PowerPac Basic, Bio-Rad) elektrophoretisch aufgetrennt. Um die Proteine vom Gel
auf eine Polyvinylidenfluorid (PVDF)- Membran (Invitrolon™ PVDF/Filter Paper Sand-
wich) zu ubertragen, wurde die PVDF-Membran zuerst durch Inkubation in 100 % Me-
thanol fir 30 s, gefolgt von 2 min in H.O und 15 min in 1x Transferpuffer auf den Blot-
vorgang vorbereitet. Das Gel mit den aufgetrennten Proteinproben wurde mithilfe eines
Spatels aus der umgebenden Plastikkassette geldst und auf ein mit 1x Transferpuffer
getranktes Filterpapier (ebenfalls Bestandteil des Invitrolon™ PVDF/Filter Paper Sand-
wiches) gelegt. Danach erfolgte der Aufbau des ,Blotting-Sandwich®, die Filterpapiere
und Blotting Pads (Schwamme) wurden zuvor ebenfalls in 1x Transferpuffer getrankt:
Auf 2 Blotting Pads wurde erst ein Filterpapier gefolgt von dem Gel, der PVDF-Membran,
einem weiteren Filterpapier und 2 Blotting Pads gelegt. Dieser Stapel wurde dann in die
Blotting-Apparatur eingespannt (beschriebene Anordnung entspricht der spateren Ori-
entierung des Stromflusses von der Kathode zur Anode) und die innere Kammer mit 1x
Transferpuffer befillt, bis dieser das Blotting-Sandwich knapp Uberdeckte. In die dulRere
Kammer wurden 600 ml H>O zur Kiihlung der Apparatur gefiillt. Der Transfer der Prote-
ine erfolgte dann bei einer konstanten Spannung von 30 V fir 70 min. Nach dem Transfer
wurde die PVDF-Membran kurz in 1x Waschpuffer gewaschen und dann 1h in 20 ml 1x
Blocking-Losung bei RT unter Schwenken inkubiert. Anschlieliend wurde die Membran
in 15 ml Priméarantikdrperlésung (verdinnt nach Angaben des Herstellers in 1x Blocking
Lésung oder 3 — 5% BSA/PBS (Tabelle 35) sowie mit Zugabe von 0,02 % NaNs) unter
Schwenken Uber Nacht bei 4°C inkubiert. Am nachsten Tag wurde die Membran zuerst
dreimal fir je 10 min in 1x Waschpuffer bei RT unter Schwenken gewaschen und dann
die Membran unter Schwenken in 15 ml Blocking-Puffer mit einem passenden Sekun-
darantikérper in entsprechender Verdinnung (Tabelle 36) fur 1h bei RT inkubiert. An-
schliel’end folgten erneut drei Waschschritte a 10 min mit 1x Waschpuffer bei RT unter
Schwenken. Fir die Detektion mittels Chemilumineszenz wurden 1,5 ml Detektionsrea-
genz durch Mischen von 750 pl Reagent A und 750 pl Reagent B des Amersham™ ECL
Prime Western Blotting Detection Reagent hergestellt und dieses gleichmaflig auf die
abgetropfte PVDF-Membran pipettiert, die Membran in eine Klarsichtfolie gelegt und fur
5 min bei RT inkubiert. Uberschiissiges Detektionsreagenz wurde dann mit einem Pa-
pierhandtuch vorsichtig aus der Folie gestrichen und die Folie mit der darin eingepackten
PVDF-Membran in eine Rontgenfilm-Kassette mit Tesa-Film geklebt. In der Dunkelkam-
mer wurde dann ein Roéntgenfilm (Amersham™ Hyperfilm™ ECL) in die Kassette gelegt
und der Film nach der gewlinschten Belichtungszeit (1 s bis maximal 10 min) im RP X-
OMAT Entwickler (Kodak) entwickelt. Die Detektion des Chemilumineszenzsignals aller
Western Blots ab Kapitel 3.4 wurde mithilfe einer Digitalkamera in einem ImageQuant
LAS4000-Detektionsgerat (GE Healthcare) nach der gleichen Vorgehensweise (aber
Platzierung in der ohne Rdntgenkassette) vorgenommen. Nach der Detektion des Che-
milumineszenzsignales wurde die PVDF-Membran aus der Folie genommen und in 20
ml 1x Blocking-Losung mit 0,02 % NaNs fir 1h bei RT unter Schutteln inkubiert, um dann
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entweder mit einem weiteren Primarantikorper rehybridisiert (weiteres Verfahren dann
wie oben beschrieben ab der Zugabe des Primarantikdrpers) oder bei 4°C aufbewahrt
zu werden.

2.2.5.4 Phospho-Kinase-Array

Um die Aktivierung verschiedener Signalwege nach SOX10-Hemmung durch Phospho-
rylierung der beteiligten Kinasen in einem einzigen Experiment simultan zu untersuchen,
wurden die Proteinlysate mit einem Proteome Profiler™ Array Human Phospho-Kinase-
Array Kit (R&D Systems) analysiert. Dabei wird eine Nitrozellulosemembran, auf der An-
tikorper gegen 43 Phosphorylierungsstellen humaner Kinasen und 2 weiteren Proteinen
aufgebracht sind, zuerst mit einem Zelllysat inkubiert (Abb. 4 und Tabelle 51), wobei die
Proteine durch die Antikérper auf der Membran immobilisiert werden [356]. Danach wer-
den die immobilisierten Proteine durch Zugabe von biotinylierten Antikérpern mittels
Chemilumineszenz-Nachweis detektiert [356].

Membran A Membran B

— Nt oS
—_r—r—— -

—M~N M INno hoom‘c'_

e

Abb. 4: Membranbelegung Phospho-Kinase-Array

Tabelle 51: Membranbelegung Phospho-Kinase-Array

Membran A Membran B
Koor- Target/ Phosphorylie- Koor- Target/ Phosphorylie-
dina- Kontrolle rung dina- Kontrolle rung
ten ten
A13,
A1, A2 Referenzspot - A4 p53 S392
A3, A4 p38a T180/Y182 21; Referenzspot -
T202/Y204
A5, A6 ERK1/2 02/Y204,
T185/Y187
T183/Y185,
A7,A8 JUNK 1/2/3
T221/Y223
A9,
a0 GSK-3a/p S21/89
B3,B4 EGFR Y1086 o Akt123  T308
B5,B6  MSK1/2 S376/S360 | piy P53 546
B7,B8 AMPKa1 T183
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o AKt1/23  S473

1,62 TOR 52448 <t E?:afs T389
C3,C4 CREB 5133 <% ps3 515
C5,C6 HSP27 578/582 <> cun 563
C7,C8 AMPKa2  Ti72

g?o -Catenin -

D1,D2 Src Y419 o z:ajf T421/3424
D3,D4 Lyn Y397 o RSK1/2/3  $380/S386/S377
D5,D6 Lk Y394 Dy eNOS $1177
D7,D8 STAT2 Y689

De STATSa Y694

E1.E2 Fyn Y420 1) STAT3 Y705
E3,E4 Yes Y426 =2 par T198
E5 E6  Fgr Y412 1o PLCy Y783
E7,E8 STATG Y641

= STATSb Y699

F1,F2  Hek Y411 Ty STAT3 s727
F3,F4  Chk-2 T68 1o WNKI T60
F5,F6  FAK Y397 T PYK2 Y402
F7,F8 PDGFRB Y751

C STATSalb  Y694/Y699

G1, G2 Referenz-spot - g}; HSP60 -
o s e |Qp [l
G9, PBS (Negativ-

G10 kontrolle)

Fur das Experiment wurden je 1,2 Mio Zellen der Zelllinien 92.1 und Mel270 auf zwei
T75-Zellkulturflaschen ausgesat und tber Nacht bei 37°C, 5 % CO: kultiviert. Am Folge-
tag wurden die Zellen wie in Abschnitt 2.2.2.1 beschrieben mit Kontroll-siRNAs oder
SOX10-B-siRNA und dem Transfektionsreagenz Lipofectamine® RNAIMAX transfiziert.
Pro T75 wurde aufgrund der grolieren Grundflache des Kulturgefalies die 7,8fache
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Menge des dort beschriebenen Transfektionsansatz verwendet. Nach einer Inkubations-
zeit von 24h wurden die Zellen geernet. Dafir wurde das Medium von den in T75-Fla-
schen kultivierten Zellen abgenommen und die Zellen in 10 ml PBS gewaschen, jedoch
Medium und PBS nicht verworfen, sondern in einem 50 ml-Reaktionsgefal gesammelt.
AnschlielRend wurden 5 ml 11 mM EDTA/PBS auf die Zellen gegeben und diese flir etwa
10 min bei 37°C, 5 % CO- inkubiert, bis sich die Zellen vom Boden ablésten. Die Zellsu-
spension und die 15 ml PBS, die zum Nachspllen der Zellkulturflasche verwendet wur-
den, wurden ebenfalls in das 50 ml-Reaktionsgefal® Uberfluhrt. Das Reaktionsgefal
wurde dann in einer groRen Tischzentrifuge mit 1.000 rpm bei RT fir 3 min zentrifugiert
und der Uberstand verworfen, das Zellpellet mit 10 ml PBS gewaschen, erneut zentrifu-
giert (1.000 rpm, 3 min, RT) und in 10 ml PBS resuspendiert, um die Zellzahl fir die
Berechnung des Puffervolumens flr die Lyse mithilfe einer Neubauer-Zahlkammer zu
bestimmen. Nach einem weiteren Zentrifugationsschritt wurde das Zellpellet in 1,5 ml
PBS resuspendiert, in ein 1,5 ml Reaktionsgefald iberfuhrt, dieses in einer kleinen Tisch-
zentrifuge bei 2.000 rpm, 2 min, 4°C zentrifugiert und der Uberstand vollstéandig entfernt.
Das trockene Zellpellet wurde bis zur Durchfiihrung des Phospho-Kinase-Assays bei -
80°C gelagert. Die Lyse und Durchfihrung des Phospho-Kinase-Arrays wurden dann
gemal den Angaben des Herstellers durchgefuhrt. Insgesamt wurden 600 pg Protein
von Lysaten aus drei unabhangigen Versuchen gesammelt und gepoolt. Die Effizienz
der SOX10-Hemmung wurde zuvor durch Western Blot-Analysen fur jeden Versuch se-
parat untersucht. Die Detektion des Arrays erfolgte in der Dunkelkammer mittels Rént-
genfilm, die densitometrische Auswertung wurde mit dem Programm /magedJ durchge-
flhrt.

2.2.5.5 Immunhistochemischer Nachweis von SOX10 in Tumorgewebe

IHC-Farbungen von SOX10 wurden auf Schnitten von Formalin-fixiertem und in Paraffin
eingebettetem Tumormaterial von 44 UM-Metastasen aus dem Bestand der Pathologie
des Uniklinikums Erlangen in der Dermatopathologie der Hautklinik Erlangen in einem
BenchMark XT ULTRA Farbeautomat (Ventana Medical Systems, Tucson, Arizona,
USA) durchgefihrt. Hierflr wurden 5 um dicke Gewebeschnitte entparaffiniert, hitzevor-
behandelt und mit dem fiir die in vitro-Diagnostik geeigneten Antikérper SOX-10 (EP268,
Cell Marque, Rocklin, Kalifornien, USA), 1:100 verdinnt in Dako REAL Antibody Diluent
(Agilent Technologies, Santa Clara, Kalifornien, USA), inkubiert. Der Nachweis der
SOX10-Antikdérper-Bindung erfolgte mithilfe des ultraView Universal Alkaline Phospha-
tase Red Detection Kit (Roche Diagnostics, Mannheim, DEU) nach Herstellerangaben.
Aufderdem wurde eine Gegenfarbung mit Hematoxylin Il (Roche Diagnostics) nach An-
gaben des Herstellers durchgefiihrt. Lichtmikroskopische Einzelaufnahmen der gefarb-
ten Schnitte wurden mit einem BZ-X800-Mikroskop mit Kamera (Keyence, Neu-Isen-
burg, DEU) mit einem 10x Objektiv aufgenommen, lichtmikroskopische Serienaufnah-
men mit einem 20x Objektiv. Letztere wurden dann digital mithilfe der Analysesoftware
des Gerats zusammengefligt und der Anteil an SOX10-positiven Zellen mithilfe des Pro-
gramms QuPath (https://qupath.github.io) durch Dr. Elias Koch (Hautklinik des Uniklini-
kums Erlangen) bestimmt.
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2.2.6 Funktionelle Analysen

2.2.6.1 Zellviabilitatsbestimmung

Die Bestimmung der Zellviabilitat erfolgte mit dem CellTiter-Blue® Cell Viability Assay
(Promega). Dieser Assay basiert auf dem Prinzip, dass lebende, metabolisch aktive
Zellen das dunkelblaue, schwach fluoreszierende Resazurin zu pinkem, stark fluoreszie-
rendem Resorufin umsetzen kénnen, dessen Anregungsmaximum bei 579 nm und
Emissionsmaximum bei 584 nm liegt [357]. Dabei ist die Zellviabilitdt proportional zur
gemessenen Fluoreszenz [357]. Fir die Bestimmung der Zellviabilitat wurden Zellen in
6-Well-Platten ausgesat, am Folgetag transfiziert oder neues Medium mit den entspre-
chenden Inhibitoren bzw. blockierenden Antikérper hinzugegeben und flr 24h bis 96h
bei 37°C, 5 % CO: inkubiert. Am Analysetag wurde das Medium zunachst vollstandig
von den Zellen abgenommen und davon wieder 750 pl auf die Zellen zurlickpipettiert.
Danach erfolgte die Zugabe von 150 pl CellTiter-Blue®-Reagenz pro Well, das Medium
und Reagenz wurden durch leichtes Schwenken der Platte vermischt und die Platte
wurde anschlielend je nach Zelllinie fiir 30 min bis maximal 2h bei 37°C, 5 % CO, inku-
biert, bis eine Verfarbung des Mediums von tintenblau zu lila erkennbar war. Als Refe-
renz fur eine Zellviabilitat von 0 % wurden in einem separaten 1,5 ml Reaktionsgefal
750 pl Medium ohne Zellen und 150 ul CellTiter-Blue® Reagenz vermischt und dieser
Ansatz auf die gleiche Weise wie die Zellkulturplatte inkubiert. Fur die Messung wurden
dann jeweils 100 ul des mit CellTiter-Blue® Reagenz versetzten Mediumuberstandes
sowie des Referenzansatzes in eine 96-Well-Platte Uberflhrt und die Fluoreszenzinten-
sitat bei einer Anregungswellenlange (Exzitation) von 530 nm und einer Emissionswel-
lenldange von 590 nm in einem Plattenphotometer bestimmt (CytoFluor™ 2350- Platten-
photometer (Millipore), Infinite 200 PRO (Tecan) bzw. GloMax® Explorer (Promega) mit
dem Programm ,Cell Titer-Blue* (Exzitation: 520 nm, Emission: 580 — 640 nm)). Die Be-
rechnung der relativen Zellviabilitat in Relation zu den jeweiligen Kontrollen erfolgte mit-
hilfe des Programms Microsoft Excel.

2.2.6.2 Annexin V-Propidiumjodid-Farbung und Durchflusszytometrie

Zelltodanalysen wurden durch Farbung der Zellen mit Annexin-V-FLUOS und
Propidiumjodid und anschlieBender durchflusszytometrischer Messung durchgefihrt.
Die innere und &aulere Lipidschicht der Zellmembran ist in lebenden Zellen
asymmetrisch aufgebaut und wird in diesem Zustand durch spezielle Membranproteine,
den Flippasen, gehalten [358]. Bereits wahrend der friihen Apoptosephase kommt es
jedoch zu Stérungen der Membranintegritat, sodass das normalerweise in der inneren
Lipidschicht befindliche Phosphatidylserin (PS) auch auf der Aul3enseite prasent ist [358,
359]. Diese Anderung der Membrankomposition wird bei der Annexin V-Farbung ausge-
nutzt. Dabei werden Zellen mit FAM-markiertem Annexin V inkubiert, einem rekombi-
nanten Protein, das in Anwesenheit von Calcium-lonen mit hoher Affinitat an PS bindet
[360]. Neben apoptotischen Zellen kann Annexin V auch nekrotische Zellen anfarben,
da es bei diesen wahrend der Nekrose zu einem Verlust der Membranintegritat kommt
[358, 360]. Um daher zwischen apoptotischen und nekrotischen Zellen unterscheiden zu
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kénnen, wird die Annexin-V-Farbung zudem mit einer Propidiumjodid-Farbung kombi-
niert [358, 360]. Propidiumjodid ist ein nicht-membrangangiger DNA-Farbstoff, der je-
doch die durchlassige Membran nekrotischer Zellen durchdringen kann [358, 360]. Die
Analyse der Farbeintensitat kann mit einem Durchflusszytometer durchgefuihrt werden
[358].

Fir die Farbung wurden in 6-Well-Platten ausgesate Zellen 48h bis 96h nach Transfek-
tion oder Inkubation mit Inhibitoren analysiert. Der MediumUberstand der Zellen wurde
am Analysetag in 1,5 ml-Reaktionsgefalien gesammelt, zentrifugiert (2.000 rpm, 2 min,
4°C) und der Uberstand verworfen. Die Zellen wurden mit PBS gewaschen, dann 500 pl
11 mM EDTA/PBS pro Well zugegeben und die Platte im Brutschrank bei 37°C, 5 % CO-
fur etwa 5 bis 10 min inkubiert, bis sich die Zellen abgeldst hatten. Die abgelosten Zellen
wurden dann in das gleiche 1,5 ml-Reaktionsgefal wie zuvor Uberfuhrt, abzentrifugiert
und der Uberstand verworfen. Das Zellpellet wurde anschlieRend noch 2x mit PBS ge-
waschen und zwischendrin zentrifugiert, bevor es in 50 pyl Annexin-V-Farbelésung re-
suspendiert und fur 10 bis 15 min lichtgeschitzt inkubiert wurde. Anschliellend wurden
in FACS-R6hrchen je 60 ul Propidiumjodid-Farbelésung vorgelegt und die Zellsuspen-
sion in diese hineinpipettiert. Die Zugaben der Farbelésungen und die anschlieRende
Inkubation erfolgte im Dunkeln in der Sterilbank, um das Ausbleichen der Fluoreszenz-
farbstoffe zu verringern. Die FACS-R&hrchen wurden dann lichtgeschiitzt auf Eis gestellt
und 10.000 Zellen pro Probe an einem Durchflusszytometer (FACScan (Becton-Dickin-
son) bzw. FACSCanto Il (BD Biosciences)) gemessen. Die Analyse der Messung er-
folgte mit den Programmen CellQuest (Becton Dickinson) bzw. FlowJo (BD
Biosciences).

2.2.6.3 Zellzyklusanalyse mittels Propidiumjodid-Farbung und
Durchflusszytometrie

Die Bestimmung der Zellzyklusphasen, in der sich eine Zelle befindet, kann mittels
Durchflusszytometrie beruhend auf der Anfarbung der DNA mit Propidiumjodid erfolgen
[361]. Die Fluoreszenzintensitat des eingelagerten Propidiumjodids ist direkt proportional
zur DNA-Menge der Zelle, wodurch bestimmt werden kann, ob sich eine Zelle geman
ihrem DNA-Gehalt in der G1-Phase, S-Phase oder in der G2-Phase (doppelte DNA-
Menge) befindet [361]. Da Propidiumjodid auch RNA anfarbt, wird diese durch einen
RNase-Verdau wahrend des Farbevorgangs entfernt [362]. Fur die Zellzyklusanalyse
wurden in 6-Well-Platten ausgesate Zellen 48h und 72h nach Transfektion oder Inkuba-
tion mit Inhibitoren analysiert. Dafur wurde zuerst das Medium abgenommen und in ei-
nem 2 ml-Reaktionsgefal® gesammelt. Die Zellen wurden dann 2x mit PBS gewaschen
und durch Zugabe von 500 ul 1x Trypsin/EDTA-LOsung abgeldst. Die Zellsuspension
wurde mit dem zuvor gesammelten Mediumuberstand abgespiilt, um den Verdau durch
das Enzym Trypsin abzustoppen und dann in ein 2 ml-Reaktionsgefal® tUberfihrt, wel-
ches in einer kleinen Tischzentrifuge zentrifugiert (2.000 rpm, 5 min, 4°C) wurde. An-
schlieRend wurde der Uberstand verworfen, das Pellet 2x in PBS gewaschen und zwi-
schen den Waschgangen zentrifugiert (2.000 rpm, 5 min, 4°C). Die Zellen wurden dann
in 100 pl PBS resuspendiert. Um die Zellen fur die Farbung zu fixieren, wurde ein Vortex-
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Genie 2 auf Stufe 1 eingestellt, darauf das 2 mI-Reaktionsgefald mit der Zellsuspension
platziert und dann unter langsamem, kontinuierlichen Schutteln 1,4 ml 75 % Ethanol
tropfenweise hinzupipettiert. Anschlieend erfolgte die Inkubation tber Nacht bei 4°C.
Fir die Propidiumjodid-Farbung wurden die fixierten Zellen erneut zentrifugiert
(2.000 rpm, 5 min, 4°C), der Uberstand entfernt, das Pellet mit 500 ul FACS-Waschpuffer
gewaschen, wieder zentrifugiert und der Uberstand verworfen. Der Waschschritt wurde
einmal wiederholt und das Pellet dann in 300 ul Propidiumjodid-Farbelésung resuspen-
diert. Nach einer Inkubation von 15 min bei 37°C wurden die Ansatze in FACS-R&hrchen
Uberfihrt und 5.000 Zellen pro Probe an einem Durchflusszytometer analysiert
(FACScan (Becton-Dickinson) bzw. FACSCanto Il (BD Biosciences)). Die Bestimmung
der Zellzyklusphasen erfolgte im Anschluss mithilfe der Software CellQuest bzw. FlowJo.

2.2.7 Erstellung eines SOX10-basierten UM-Protein-Interaktionsnetzwerks
zur ldentifizierung neuer therapeutischer Zielstrukturen im
Uveamelanom

Die im folgenden beschriebene Erstellung, grafische Darstellung und Analyse des
SOX10-basierten UM-Proteininteraktionsnetzwerkes sowie die Identifizierung von po-
tenziellen Kandidatengenen fir neue zielgerichtete Therapien erfolgte durch Adrian
Weich, M.Sc. und Prof. Dr. Julio Vera-Gonzalez (AG Systems Tumor Immunology, Haut-
klinik des Uniklinikums Erlangen).

2.2.7.1 Erstellung eines UM-Proteininteraktionsnetzwerks

Um ein virtuelles Interaktionsnetzwerk von Proteinen zu erstellen, die eine wichtige Rolle
im UM spielen, wurden in einer Literaturrecherche zuerst die wichtigsten Signalwege im
UM identifiziert und die entsprechenden Komponenten aus der REACTOME-Datenbank
(https://reactome.org/) [363, 364] (Tabelle 52) in das Programm CellDesigner (Version
4.4.2) eingefigt [365].

Tabelle 52: Wichtige intrazelluldre Signalwege im Uveamelanom und REACTOME-Identifi-
kationsnummern

Identifikationsnummer

(REACTOME-Datenbank) Signalweg [Literaturreferenz]

[363, 364]

R-HSA-5693532 DNA-Doppelstrangreparatur [46, 366, 367]
R-HSA-1234174 Hypoxieantwort [75, 366]

R-HSA-5673001, Ras-Raf-MEK-ERK-MAPK-Signalweg [46, 71,
R-HSA-416476 75, 78, 168, 366, 368]

R-HSA-9012999 Trio-Rho-Rac-Signalweg [80, 81]
R-HSA-2028269 YAP-Hippo-Signalweg [80, 81]
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R-HSA-109704, R-HSA-165159,  P13K-Akt-mTOR-Signalweg [168, 367]
R-HSA-6807070

R-HSA-418217 PLC-PKC-Signalweg [75, 168, 366]
R-HSA-6783783 IL-10 [369, 370]

R-HSA-170834 TGF-B [369, 370]

R-HSA-877300 IFN-y [369, 370]

R-HSA-75157 FasL [369, 370]

R-HSA-389948 PD-1 [369, 370]

R-HSA-8950732 MIF [369, 370]

R-HSA-391160 CD47 [369, 370]

R-HSA-9619665 SOX10 [235, 346]

Dartber hinaus wurden die Gene bzw. Proteine MITF, DCT, TYR, KIT, IRF4, MEF2C,
ERBB3, ITPR2, CEBP, CREB3L2, BHLHB2, ETS1, E2F1, TYRP1, Nestin, EDNRB,
PAX3, cRET, EGR2, POU3F1 (OCT6), POU3F2 (BRN2), SP1 und MED1 [235, 346],
von denen eine Interaktion mit SOX10 bekannt ist, ebenfalls hinzugefiigt. Um das Netz-
werk weiter auszuweiten, wurden Daten zu miRNA-mRNA-Interaktionen aus den Daten-
banken miRTarBase (Version 6.1) [371, 372], miRecords (Version 4.5) [373], Human
Transcriptional Regulation Interactions database (HTRIdb) (Version 1) [374] und
TRANSFAC (Version 2015.1) [375] durch das Script miRNexpander
(https://github.com/marteber/miRNexpander) ebenfalls implementiert. Die Information
wurde nach der Transformierung in Graph Modelling Language durch miRNexpander im
Programm Cytoscape (Version 3.8.0) [376] weiter prozessiert. Um weitere SOX10-ba-
sierte Interaktionen in das Netzwerk zu integrieren, wurde das neu erstellte Netzwerk mit
einem fruher erstellten SOX10-Interaktionsnetzwerk zur Differenzierung von Oli-
godendrozyten Uberlagert [377].

2.2.7.2 Network Pruning und Motiverkennung

In einem nachsten Schritt wurde eine Bereinigung des Netzwerks durch Implementie-
rung von Expressionsdaten durchgefihrt (,Network Pruning*). Hierflr wurden Expressi-
onsdaten aus Mikroarrays von 63 UM-Proben aus der GEO-Datenbank (GEO ID:
GSE22138) [378, 379] sowie RNA-Sequenzierungsdaten von 80 UM-Primartumoren aus
der TCGA-Datenbank [75] verwendet. Alle Expressionswerte wurden in das Format
Ltranscripts per million* (TPM) konvertiert, fur jedes Gen die Mittelwerte berechnet und
diese separat fur jeden Datensatz zu den Knotenpunkten des Netzes Uber die jeweiligen
Ensembl Gen-IDs [380] zugeordnet. Diejenigen Knoten, die eine durchschnittliche Gen-
expression > 1 in einem der beiden Datensatze aufwiesen, wurden ausgewahlt und mit-
tels des Tools Network Analyzer im Programm Cytoscape einer Netzwerkanalyse und
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Topologiestatistiken unterzogen. Um den regulatorischen Kern des Netzwerks zu iden-
tifizieren, wurde das UM-Netzwerk mithilfe der Cytoscape-Anwendung NetMatchStar
[381] nach regulatorischen Motiven durchsucht. Dabei wurde nach den sieben regulato-
rischen Motivtypen (2-nodes-2-edges feedback loop, 3-nodes-3-edges feedback loop, 3-
nodes-4-edges feedback loop, 3-nodes-3-edges feedforward loop, 3-nodes-4-edges
feedforward loop, 4-nodes-4-edges feedforward loop, 4-nodes-4-edges feedback loop)
gesucht und dann eine Motivrangliste erstellt. FUr diese wurde eine gewichtete Bewer-
tungspunktzahl berechnet, um die wichtigsten Knotenpunkte und Interaktionen zu iden-
tifizieren:

Score; = wyE; + wy - BC; + ws - D;

Jedes Motiv i wurde dabei mit den verschiedenen Gewichtungen w1, w2 und w3 berech-
net, die die Wichtigkeit der drei Ranglistenfaktoren bestimmen: E; bezeichnet den jewei-
ligen Expressionswert der Knoten, die das Motiv i bilden; BC; ist die durchschnittliche
Betweenness-Zentralitat zwischen den Knoten, die das Motiv i bilden und D; ist der
durchschnittliche Grad der Knoten, die das Motiv / bilden. Die Gewichtungsfaktoren w1,
w2 und w3 summieren sich zu 1. In diesem Fall wurde fir w1 der fixe Wert von 0,5
definiert, um die Wichtigkeit der Expression zu untermauern, wahrend fir w2 Werte zwi-
schen 0,05 und 0,45 in 0,05-Schritten gewahlt wurden und w3 als 0,5- w2 berechnet
wurde [377, 382]. Die Motiv-Scores jedes Motivs i wurden fir jede Kombination von Ge-
wichtungsfaktoren berechnet und die verschiedenen Scores der gleichen Motive wurden
mit der "psel"-Methode unter Verwendung des R-Pakets rPref (Version 1.3) pareto-opti-
miert [383]. Die Expressionswerte waren bereits im Rahmen des Network Prunings im-
plementiert worden und basierten auf den RNA-Sequenzierungsdaten des TCGA-Da-
tensatzes publiziert von Robertson et al. [75]. Die bereits zuvor im Pruning-Schritt imple-
mentierte Betweenness-Zentralitat und die Grade der Knotenpunkte wurden mithilfe der
Anwendung Network Analyzer bestimmt. Nach Bildung einer Hierarchie wurden die
100 Motive mit der h6chsten Bewertung selektiert fur die Bildung des UM-Kern-Interak-
tionsnetzwerks.

2.2.7.3 Generierung eines Netzwerks fur die Zielstrukturselektion (, Target
selection network®)

Das UM-Kern-Interaktionsnetzwerk diente als Ausgangspunkt fir die Generierung eines
Netzwerks fir die Zielstrukturselektion (, Target selection network®). Dafur wurden die
Kern-Komponenten (Gene) des Netzwerks und ihre jeweiligen ersten Nachbarn im Netz-
werk extrahiert, nach ihrer grundlegenden Funktion reannotiert und den GO-Terms
.growth factors“ (GO:0008083), ,receptors” (GO:0043112), ,co-transcription factors*”
(G0:0001221) und ,transcription factors” (GO:0008143) zugeordnet. Das so kreierte
Netzwerk wurde mittels CerebralWeb-Implementierung reformatiert und die Ergebnisse
der differenziellen Genexpressionsanalyse nach SOX10-Knockdown in den UM-Zellli-
nien 92.1 und Mel270 (siehe Abschnitt 3.2.5.3) durch entsprechende Farbcodierung in
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das Netzwerk integriert. Im Netzwerk wurde dann nach potenziell therapeutisch modu-
lierbaren Zielstrukturen gesucht, die einerseits durch die SOX10-Hemmung herabregu-
liert wurden und deren Wirkung andererseits durch small molecule-Inhibitoren oder An-
tikbrper pharmakologisch inhibiert bzw. blockiert werden kann. Fir eine erste in vitro-
Validierung des Ansatzes wurden vier Kandidaten aus dem Netzwerk flir die Durchfiih-
rung weiterer funktioneller Analysen ausgewahlt.

2.2.8 Statistische Auswertung

Alle Experimente wurden in drei biologischen Replikaten durchgeflihrt, sofern keine an-
deren Angaben gemacht werden, und alle Daten werden als Mittelwerte £+ SD darge-
stellt. Ein zweiseitiger T-Test wurde flr die Analyse von zwei Gruppen verwendet, wah-
rend fUr die Analyse mehrerer Vergleiche eine einseitige analysis of variance (one-way
ANOVA) mit Dunnett’s Post Hoc-Test erfolgte. Die Korrelation zwischen der SOX10- und
MITF-Expression in UM-Zelllinien wurde nach Pearson berechnet. Ein zweiseitiger p-
Wert < 0,05 wurde als statistisch signifikant angesehen. Statistische Berechnungen wur-
den entweder mit den Programmen GraphPad Prism (https://www.graphpad.com,
GraphPad Software, San Diego, Kalifornien, USA) oder SPSS Statistics (IBM, Armonk,
New York, USA) ausgefihrt.
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3. Ergebnisse

3.1 Analyse der basalen SOX10-Expression im Uveamelanom

Der Transkriptionsfaktor SOX10 wurde im Kontext des UM in der Literatur bislang kaum
beschrieben. Daher wurde zunachst die basale SOX10-Expression in einer Auswahl an
UM-Zelllinien, in &ffentlich zuganglichen RNA-Sequenzierungsdaten des The Cancer
Genome Atlas (TCGA) [347] und in Patientenproben analysiert. Fir die Analyse der
Expression in den Zelllinien wurde zunachst RNA bzw. Protein aus den UM-Zelllinien
92.1, Mel270, OMM1.5, Mel285, Mel202, Mel290, OMM-1, OMM2.3 und OMM2.5 sowie
als Kontrolle aus HM und der KM-Zelllinie 1205Lu isoliert. Die SOX10-Expression der
zuletzt genannten Zelllinie war bereits in friheren Projekten der Arbeitsgruppe unter-
sucht worden [295]. AnschlieRend erfolgte die Bestimmung der relativen Genexpression
mittels gPCR und die Analyse der Proteinexpression mittels Western Blot. Die Analysen
zeigten, dass SOX10 mit Ausnahme der beiden Zelllinien Mel285 und Mel290 in allen
untersuchten UM-Zelllinien sowohl auf Gen- als auch Proteinebene stark exprimiert
wurde, auch im Vergleich zur KM-Zelllinie 1205Lu (Abb. 5).
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Abb. 5: Basale SOX10-Expression in UM-Zelllinien

(A) Relative Genexpression von SOX10, normalisiert auf GAPDH-Expression, in humanen Mela-
nozyten (HM), den UM-Zelllinien 92.1, Mel270, OMM1.5, Mel285, Mel202, Mel290, OMM-1,
OMM2.3 und OMM2.5 sowie der KM-Zelllinie 1205Lu, Mittelwerte + SD, n = 3. (B) Proteinexpres-
sion von SOX10 und B-Aktin (Ladekontrolle) in HM (zwei Spender), den UM-Zelllinien 92.1,
Mel270, OMM1.5, Mel285, Mel202, Mel290, OMM-1, OMM2.3 und OMM2.5 sowie der KM-Zellli-
nie 1205Lu.
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Die Analyse des TCGA Ocular Melanomas (UVM)-Datensatz, der RNA-Sequenzie-
rungsdaten von 80 UM-Primartumoren enthalt [75, 347], ergab eine hohe SOX710-Gen-
expression in allen untersuchten Tumoren, wahrend der nahverwandte Transkriptions-
faktor SOX9 geringer und die beiden neuralen Transkriptionsfaktoren POU4F1 (codiert
fir Brn3a) und MSX1, die ebenfalls eine Rolle bei der Progression und dem Uberleben
der Tumorzellen im KM spielen [323, 324], kaum exprimiert wurden (Abb. 6).

Abb. 6: Genexpression
von neuralen Transkripti-
onsfaktoren in UM-Pri-
martumoren

Grafische Darstellung der
Genexpression von SOX10,
SOX9, POU4F1 (codiert fur
Brn3a) und MSX7 in 80 UM-
Primartumoren, Daten aus
dem TCGA Ocular
Melanomas (UVM)-Daten-
satz.

SOX10 SOX9 POU4F1 MSX1

Darlber hinaus wurde die SOX10-Expression an Schnitten von fixiertem, in Paraffin ein-
gebettetem Tumormaterial von 44 UM-Metastasen aus der Leber (n = 30), Weichge-
webe (n = 5), der Orbita (n = 2) und anderen Lokalisationen (Omentum maijus, Ohrhelix,
axillare Lymphknoten, Mamma, Nebenniere, Niere, prasakral, je n = 1) durch IHC-Far-
bungen untersucht. Bei zwei aus der Leber entnommenen Geweben konnten jedoch
keine Tumorzellen festgestellt werden, daher wurden sie aus der weiteren Analyse aus-
geschlossen. Insgesamt waren bei 37 der 42 eingeschlossenen UM-Metastasen
(88,1 %) mehr als 1 % SOX10-positive Zellen im Tumorgewebe nachweisbar (Abb. 7A)
und bei 26 Proben (61,9 %) sogar mehr als 10 % SOX10-positive Zellen vorhanden (Abb.
7B bis F). Somit war eine SOX10-Expression bei der Mehrheit der untersuchten Patien-
tenproben detektierbar.
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Abb. 7: Inmunhistochemischer Nachweis der SOX10-Expression in UM-Metastasen

(A) Grafische Darstellung des Anteils an SOX10-negativen (< 1 % SOX10-positive Zellen im Tu-
mor) und SOX10-positiven Tumoren bei 42 analysierten UM-Metastasen. (B) Grafische Darstel-
lung des Anteils an Patientenproben mit < 10 % vs. > 10 % SOX10-positiven Zellen im Tumorge-
webe. Reprasentative Aufnahmen von IHC-Farbungen auf SOX10 in UM-Metastasen aus der
Leber (C, D: Ausschnitt vergroBert aus C), dem Omentum majus (E) und der Niere (F), 10x Ver-
gréRerung. Balken: 200 um.

3.2 Funktionelle Charakterisierung durch Hemmung der
SOX10-Expression mittels RNA-Interferenz

Da SOX10 in der Mehrheit der untersuchten UM-Patientenproben sowie UM-Zelllinien
im Gegensatz zu den anderen NC-Transkriptionsfaktoren stark exprimiert wurde, wurde
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die Funktion von SOX10 im UM durch RNA-Interferenz gehemmt und experimentell wei-
ter untersucht.

3.2.1 Verringerung der Zellviabilitat nach SOX10-Inhibition

SOX10 ist ein essenzieller Transkriptionsfaktor fir das Uberleben der melanozytaren
Vorlauferzellen wahrend ihrer Migration aus der NC in die Epidermis [236]. Darlber hin-
aus konnte im KM gezeigt werden, dass die Hemmung von SOX10 Zelltod induziert [294,
295]. Bisher war jedoch unklar, ob SOX10 eine ahnliche funktionelle Bedeutung fir das
Uberleben von UM-Zellen ausiibt. Um dies zu untersuchen, wurden die UM-Zelllinien
92.1, Mel270 und OMM?1.5, die eine hohe basale SOX10-Expression aufwiesen, sowie
die KM-Zelllinie 1205Lu und HM mit SOX10-siRNAs, einer Kontroll-siRNA oder nur mit
dem Transfektionsreagenz transfiziert. Nach 24h, 48h, 72h und 96h wurde dann die Zell-
viabilitat mithilfe des CellTiter-Blue® Cell Viability Assay (Promega) bestimmt. Die KM-
Zelllinie 1205Lu wurde ausgewahlt, da mit dieser bereits in frGheren Arbeiten der
Arbeitsgruppe Untersuchungen zur Zellviabilitdt nach SOX10-Inhibition durchgefihrt
wurden und sie sich daher fir einen Vergleich der SOX10-Funktion in KM- und UM-
Zelllinien anbot [295]. Die SOX10-Inhibition flhrte zu einer massiven Abnahme der Zell-
viabilitdt der UM-Zelllinien, welcher besonders ausgepragt in den Zelllinien 92.1 und
Mel270 war (Abb. 8). Die Verringerung der Zellviabilitat von OMM1.5 nach SOX10-
Knockdown ahnelte dem Verhalten der 1205Lu-Zellen.
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Abb. 8: Zellviabilitdt nach SOX10-Hemmung

Humane Melanozyten (HM), die KM-Zelllinie 1205Lu sowie die drei SOX10-exprimierenden UM-
Zelllinien 92.1, Mel270 und OMM1.5 wurden mit SOX10-A-, SOX10-B- oder einer Kontroll-siRNA
transfiziert und die Zellviabilitat nach 24h, 48h, 72h und 96h mithilfe des CellTiter-Blue® Cell

Viability Assay (Promega) bestimmt. 100%: Zellen nur mit Transfektionsreagenz ohne siRNAs
inkubiert. Mittelwerte + SD, n = 3. *: p < 0,05, **: p < 0,01, ***: p < 0,001 vs. Kontroll-siRNA.
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Erstaunlicherweise fiihrte die Transfektion von HM mit SOX10-spezifischen siRNAs trotz
erfolgreicher Hemmung der SOX10-Expression weder zu einer Veranderung der Mor-
phologie noch zu einer Abnahme der Zellviabilitat (Abb. 8 und Abb. 9A). Die KM-Zelllinie
1205Lu zeigte ahnliche Veranderungen nach SOX10-Hemmung wie die UM-Zelllinien,
die so bereits von Graf et al. beschrieben worden waren [295] (Abb. 9B). Morphologisch
waren nach 96h eindeutige Unterschiede zwischen den mit SOX10-siRNAs und Kontroll-
siRNA transfizierten UM-Zelllinien sichtbar (Abb. 10). Die mit SOX10-siRNAs transfizier-
ten Zellen zeigten eine deutlich geringere Konfluenz sowie deutlich mehr abgerundete
und abgeléste Zellen, was ein Hinweis auf einen vermehrten Zelltod nach SOX10-Hem-
mung sein kann.

A
Transfektionsreagenz jetPRIME®
+ @ siRNA + Kontroll-siRNA + SOX10-A-siRNA + SOX10-B-siRNA
24h
HM
96h
B Transfektionsreagenz Lipofectamine® RNAIMAX
+ o siRNA + Kontroll-siRNA + SOX10-A-siRNA + SOX10-B-siRNA
. . S W o v —
24h
1205Lu
96h

Abb. 9: Morphologische Verdnderungen von humanen Melanozyten (HM) und der KM-Zell-
linie 1205Lu nach SOX10-Hemmung

Lichtmikroskopische Aufnahmen von (A) HM sowie (B) der KM-Zelllinie 1205Lu 24h und 96h nach
Behandlung mit dem Transfektionsreagenz jetPRIME® (HM) bzw. Lipofectamine® RNAIMAX
(1205Lu) sowie Transfektion mit Kontroll-, SOX10-A-siRNA oder SOX10-B-siRNA, 50x Vergro-
Rerung.
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Transfektionsreagenz Lipofectamine® RNAIMAX
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Abb. 10: Morphologische Veranderungen von UM-Zelllinien nach SOX10-Hemmung

Lichtmikroskopische Aufnahmen der UM-Zelllinien 92.1, Mel270 und OMM1.5 24h und 96h nach
Behandlung mit dem Transfektionsreagenz Lipofectamine® RNAIMAX (+ & siRNA, Kontrolle)
bzw. Transfektion mit Kontroll-, SOX10-A-siRNA oder SOX10-B-siRNA, 50x Vergroerung.

3.2.2 Induktion eines Zellzyklus-Arrests in der G1-Phase

Der Begriff ,Zellzyklus® beschreibt den streng kontrollierten Prozess, bei dem eine Zelle
unterschiedliche Phasen auf dem Weg zur Zellteilung (Mitose) durchlauft [384]. Wahrend
der Interphase, die aus der G1-(,gap“), S- (,Synthese®) und G2-Phase besteht, wird die
DNA auf die bevorstehende Zellteilung in der M-Phase vorbereitet, indem die DNA re-
pariert und in der S-Phase verdoppelt wird [384]. Der Eintritt in die jeweilige nachste
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Phase des Zellzyklus wird dabei durch verschiedene Proteine und Checkpoints kontrol-
liert, an denen Uberprift wird, ob die notwendigen Vorbereitungen der Zelle und der DNA
fur die Mitose erfolgreich abgeschlossen wurden [385]. Sollte dies nicht der Fall sein,
kann ein Stop der Zellzyklusprogression in Form eines Zellzyklusarrests induziert wer-
den, um die Zelle in einem Wartezustand zu halten, bis sich die Umweltbedingungen fiir
eine Zellteilung gebessert haben, die DNA vollstandig repariert bzw. repliziert ist oder
bis geniigend Wachstumsfaktoren, Nahrstoffe oder Hormone vorhanden sind [385]. Die
beobachtete Verringerung der Zellviabilitat nach SOX10-Hemmung kann darauf hindeu-
ten, dass in den Zellen ein Zellzyklusarrest induziert wurde.

Um zu untersuchen, ob die Hemmung von SOX10 den Zellzyklusprogress beeinflusst,
wurden die UM-Zelllinien 92.1, Mel270 und OMM1.5, die KM-Zelllinie 1205Lu sowie HM
mit SOX10-siRNAs, Kontroll-siRNA transfiziert oder nur mit dem Transfektionsreagenz
behandelt. Nach 48h wurden die Zellen geerntet und einer Propidiumjodid-Farbung mit
anschliefender durchflusszytometrischer Analyse unterzogen. Auf3erdem wurde die Ex-
pression verschiedener zellzyklusassoziierter Proteine mittels Western Blot bestimmt.
Die durchflusszytometrischen Analysen ergaben eine Verschiebung der Zellzykluspha-
sen hin zu einem héheren Anteil an Zellen, die sich in der G1-Phase des Zellzyklus be-
fanden (Abb. 11). Der Effekt war am deutlichsten in der Zelllinie 92.1 zu beobachten,
wohingegen die SOX10-Hemmung in HM analog zu den Ergebnissen der Zellviabilitats-
analysen keine Veranderungen bewirkte.
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Der Ubergang von der G1-Phase in die S-Phase, in der die DNA verdoppelt wird, wird
durch Cycline, CDKs und CDK-Inhibitoren gesteuert und streng kontrolliert [384, 385].
Damit eine Zelle von der G1-Phase in die S-Phase Ubertreten kann, kommt es zuerst
durch die Phosphorylierung von Cyclin D1 tber die CDK4 und CDKG6 zur Aktivierung
dieses Cyclin-CDK-Komplexes [385]. Das Retinoblastom-Protein (Rb) ist einer der
Hauptregulatoren des Zellzyklus und bildet Komplexe mit den Transkriptionsfaktoren der
E2F-Familie, darunter E2F1 [386]. Durch die zuvor aktivierten Komplexe aus Cyclin D1-
CDK4/6 und Cyclin E-CDK2 kommt es zur Hyperphosphorylierung von Rb an mehreren
Aminosauren des Proteins, wodurch die Bindung von Rb und E2F1 abnimmt und nun
das ungebundene E2F1 die Transkription seiner Zielgene stimulieren kann, die fur den
Ubergang in die S-Phase benétigt werden [384-386]. Die Western Blot-Analysen zeigten
eine deutliche Hypophosphorylierung und eine leichte Abnahme der Rb-Expression in
den UM-Zelllinien bereits 24h nach der Transfektion mit SOX10-spezifischen siRNAs,
wie an der im Vergleich zu den Kontrollen geringeren Phosphorylierung des Rb-Proteins
an Ser780, Ser795 sowie Ser807 und 811 zu erkennen ist (Abb. 12).
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Abb. 12: Analyse der Retinoblastom-Protein-Phosphorylierung nach SOX10-Hemmung

Proteinexpression des Retinoblastom-Proteins (Rb), phosphoryliertem Rb (phospho-Rb; Phos-
phorylierung an Ser780, Ser795 bzw. Ser807 und Ser811) und SOX10 24h nach Transfektion mit
SOX10-A-, SOX10-B- oder einer Kontroll-siRNA. 3-Aktin diente als Ladekontrolle. &: Zellen nur
mit Transfektionsreagenz behandelt.

Das Tumorsuppressorprotein p53 wird oft als “Wachter des Genoms” bezeichnet, des-
sen Hauptaufgaben die Induktion des Zellzyklusarrests und der Apoptose, die Kontrolle
metabolischer Signalwege, der DNA-Reparatur und die Uberfiihrung der Zellen in den
Zustand der Seneszenz sind [386, 387]. Das Protein wird vom Gen TP53 codiert, wel-
ches das am haufigsten in Tumoren mutierte Gen ist [386, 387]. DNA-Schaden wie
dsDNA-Briche fuhren zur Blockierung der ubiquitinabhangigen Degradierung von p53,
wodurch p53 akkumuliert und die Transkription seiner Zielgene wie etwa das fiir p21
codierende CDKN1A stimuliert, welches wiederum die Funktion der CDKs hemmt [385,
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386, 388, 389]. Dies wiederum kann zu einer Hypophosphorylierung von Rb fiihren,
wodurch der Transkriptionsfaktor E2F1 an dieses gebunden bleibt, der Ubergang in die
S-Phase verhindert wird und somit einen Zellzyklusarrest in der G1-Phase ausgelost
wird [385]. In der G1-Phase ist p21 der entscheidende Mediator des p53-induzierten
Zellzyklusarrests [389-391]. Abgesehen von p21 kann p53 auch die Expression von
proapoptotischen Proteinen induzieren [387, 392, 393]. Das Protein p27 wird vom Gen
CDKN1B codiert und ist ebenfalls ein CDK-Inhibitor, der die Aktivitat von Komplexen aus
CDKs und verschiedenen Cyclinen inhibieren kann [394]. Fir die Transition von der G1-
in die S-Phase ist eine fortschreitende Abnahme von p27 und dadurch die Aufhebung
der Inhibierung der Komplexe Cyclin E-CDK2 und Cyclin-A-CDK2 nétig [394].

48h nach SOX10-Hemmung kam es zu keiner Veranderung der p53-Expression in den
drei untersuchten UM-Zelllinien (Abb. 13). Die Analyse der p21-Expression ergab ein
uneindeutiges Bild. Bei der Zelllinie 92.1 zeigten die mit Kontroll-siRNA transfizierten
Zellen die geringste Expression, wahrend die mit Transfektionsreagenz bzw. SOX10-
siRNAs transfizierten Zellen p21 deutlich exprimierten. In Mel270 war p21 nach der
Transfektion mit der Kontroll-siRNA nachweisbar, jedoch nicht nach Transfektion mit den
SOX10-spezifischen siRNAs. Dagegen war p21 in der Zelllinie OMM1.5 sowohl in den
Kontrollzellen als auch nach der Transfektion mit siRNAs (Kontrolle oder SOX10-spezi-
fisch) detektierbar. Die Hemmung von SOX10 fuhrte dort aber tendenziell zu einer leich-
ten Abnahme der p21-Expression verglichen mit den mit Kontroll-siRNA transfizierten
Zellen. Eine eindeutige Induktion von p27 konnte nur in der Zelllinie 92.1 nach SOX10-
Hemmung nachgewiesen werden, in Mel270 war kein p27 nachweisbar und in OMM1.5
nur nach Transfektion mit SOX10-B-siRNA.
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Abb. 13: Proteinexpression von p53, p21 und p27 nach SOX10-Hemmung

Proteinexpression von p53, p21, p27 und SOX10 48h nach Transfektion mit SOX10-A-, SOX10-
B- oder einer Kontroll-siRNA. B-Aktin diente als Ladekontrolle. @: Zellen nur mit Transfektions-
reagenz behandelt.
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Zusammengefasst deuten diese Ergebnisse darauf hin, dass die Hemmung von SOX10
zu einem Zellzyklusarrest in der G1-Phase des Zellzyklus fuhrt. Dartiber hinaus spricht
die fehlende Akkumulation von p53 nach SOX10-Hemmung dafir, dass der Zellzyklusar-
rest weitgehend p53-unabhangig induziert wird.

3.2.3 Induktion der intrinsischen Apoptose

Die Apoptose ist eine spezielle Form des programmierten Zelltodes, die erstmals von
Kerr et al. in dieser Form beschrieben wurde [395]. Bei der Apoptose kommt es im Rah-
men eines genau kontrollierten, energieabhangigen Prozesses zum Schrumpfen der
Zellen und zur Kondensierung des Chromatins im Zellkern (Pyknose), gefolgt von der
blasenférmigen Ausbuchtung der Zellmembran, Fragmentierung der DNA (Karyorrhexis)
und letztlich der Aufteilung der Zellfragmente in membranumhdillte Zellteile (Apoptose-
korper) [395, 396]. Apoptose kann durch eine Vielzahl an endogenen und exogenen Sti-
muli wahrend der Embryonalentwicklung, des Alterns oder zur Aufrechterhaltung der
Gewebshomdostase als Folge von Immunreaktionen, nach Beschadigungen und der
Exposition gegeniber schadlichen Noxen sowie durch die Bindung von Liganden an To-
desrezeptoren ausgelést werden [396]. Falls ein DNA-Schaden wahrend eines
Zellzyklusarrests nicht ausreichend repariert werden kann, kann das Checkpoint-
Signaling auch zur Apoptoseinduktion fihren [385]. Die Inhibition von SOX10 fUhrte zur
Verringerung der Zellviabilitat und morphologischen Veranderungen in Form von abge-
rundeten und abgelésten, zum Teil blasenartig veranderten Zellen, so dass die Vermu-
tung nahelag, dass in den Zellen Apoptose ausgelost wurde. Veranderungen der Zell-
membrankomposition wie die Exposition von PS an der Zelloberflache, wie sie im Rah-
men der Apoptose auftreten, kbnnen mittels Annexin V-Farbung nachgewiesen werden
und kombiniert mit einer Propidiumjodid-Farbung fir eine Zelltodanalyse mittels Durch-
flusszytometrie genutzt werden [358, 359]. Fur diese Analysen wurden HM, 1205Lu so-
wie den UM-Zelllinien 92.1, Mel270 und OMM1.5 mit SOX10-spezifischen siRNAs, Kon-
troll-siRNA oder nur Transfektionsreagenz fir 48h behandelt, dann die Zellen geerntet,
mit Annexin V und Propidiumjodid gefarbt und durchflusszytometrisch untersucht.

Die Analysen zeigten 48h nach der Transfektion mit SOX10-spezifischen siRNAs einen
starken Anstieg der apoptotischen und toten Zellen in den Zelllinien 92.1 und Mel270,
wahrend in 1205Lu, OMM1.5 sowie HM kaum Veranderungen beobachtbar waren (Abb.
14). Bei den zuletzt genannten Zellen traten jedoch auch in den zuvor durchgefihrten
Analysen der Zellviabilitdt und der Zellzyklusprogression kaum Veranderungen nach
SOX10-Hemmung zu diesem Analysezeitpunkt auf.
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Abb. 14: SOX10-Hemmung induziert Apoptose in UM-Zellen

Zelltodanalysen mittels Annexin V-Propidiumjodid-Farbung und anschlieRende Durchflusszyto-
metrie nach SOX10-Hemmung. Anteil der lebenden (AN-/PJ-), nekrotischen (AN-/PJ+), frih-
(AN+/PJ-) und spatapoptotischen (AN+/PJ+) Zellen nach Transfektion mit SOX10-A-, SOX10-B-
oder einer Kontroll-siRNA oder Behandlung nur mit Transfektionreagenz Transfektionsreagenz
(HM: jetPRIME®, andere Zellen: Lipofectamine® RNAIMAX; ,keine siRNA®) fur 48h, Mittelwerte
1+ SD, n = 3. AN: Annexin V, PJ: Propidiumjodid.

Die Apoptose kann Uber den extrinsischen oder den intrinsischen Signalweg ausgeltst
werden, die beide letztlich zur Spaltung der Caspase 3, DNA-Fragmentierung und Aus-
bildung der Apoptosekérper flihren [396]. Die Initiierung beider Wege ist dabei essenziell
von der Aktivierung verschiedener Cystein-Aspartat-Proteasen, den Caspasen, abhan-
gig [397]. Die Caspasen werden als inaktive Proenzyme (Procaspasen) gebildet, die
nach ihrer Aktivierung wiederum andere Caspasen oder sich selbst spalten und dadurch
aktivieren kdénnen, wodurch es zu einer Verstarkung der proapoptotischen Kaskade
kommt [396]. Initiatorcaspasen wie die Caspasen 2, 8, 9 und 10 stehen dabei am Anfang
der Kaskade, wahrend die Effektorcaspasen 3, 6 und 7 letztlich die zellularen Verande-
rungen der Apoptose vermitteln [396]. Wahrend der extrinsische Apoptoseweg durch die
Bindung von externen Liganden wie TNF-a oder Fas-Ligand an Todesrezeptoren aus-
geldst wird und Uber Caspase 8 vermittelt wird [396, 397], wird der intrinsische, mito-
chondriale Apoptoseweg unabhangig von Rezeptoren Uber negative Faktoren wie das
Fehlen von Hormonen, Zytokinen oder Wachstumsfaktoren oder positive Faktoren wie
ROS, Toxine, Strahlung, Hypoxie, Hyperthermie oder virale Infektionen ausgel6st [396-
398]. Er beinhaltet als zentralen Punkt die Veranderung der mitochondrialen Permeabi-
litdt, wodurch proapoptotische Proteine wie Cytochrom C vom Mitochondrium in das
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Zytosol gelangen [396-398]. Dieses bildet dann zusammen mit Apaf-1 und der Pro-
caspase 9 den Proteinkomplex des Apoptosoms, was zur Aktivierung der Caspase 9
fuhrt [396-398]. Die Proteine der Bcl-2-Familie kontrollieren die mitochondrialen Ereig-
nisse der Apoptose, indem sie die Permeabilitdt der Mitochondrienmembran und die
Cytochrom C-Freisetzung ins Zytosol beeinflussen [396, 399]. Proteine wie Bcl-2, Bcl-w,
Bcl-xL wirken antiapoptotisch, wahrend Bak, Bax, Bid, Bik, Bim und Bad die Apoptose
fordern [396, 399]. Bak und Bax bilden dabei Oligomere in der Mitochondrienmembran,
was zu deren Permeabilisierung und so zur Cytochrom C-Freisetzung aus den Mito-
chondrien fihrt [398, 399]. Sowohl der intrinsische als auch der extrinsische Signalweg
enden in einer gemeinsamen Signalkaskade, die durch die Aktivierung der Effektor-
caspasen wie der Caspase 3 durch die Initiatorcaspasen Caspase 8, 9 und 10 induziert
wird und zur Spaltung verschiedener Proteine fuhrt, darunter auch die Poly(ADP-ribose)-
Polymerase (PARP), und es letztlich zur DNA-Fragmentierung und Ausbildung der
Apoptosekorper kommt [396, 397].

Um den Mechanismus der Apoptoseinitiierung genauer zu untersuchen, wurde die Pro-
teinexpression verschiedener Proteine des intrinsischen Apoptoseweges durch Western
Blot-Analysen nach SOX10-Hemmung untersucht. 48h nach Transfektion mit SOX10-
spezifischen siRNAs kam es in den Zelllinien 92.1 und Mel270 zu einer deutlichen Spal-
tung der Procaspase 3 und 9 (Abb. 15A). In OMM1.5 war ebenfalls eine Spaltung der
Procaspase 9 nachweisbar, die jedoch weniger stark als in den Zelllinien 92.1 und
Mel270 ausgepragt war. Wie aufgrund der durchflusszytometrischen Analysen nach
Annexin V-Propidiumjodid-Farbung zu erwarten war, konnte gespaltene Caspase 3 in
der Zelllinie OMM1.5 kaum nachgewiesen werden. Ebenfalls 48h nach der siRNA-Trans-
fektion wurden die Expressionen der proapoptotischen Proteine Bak, Bax und
Cytochrom C sowie der antiapoptotischen Proteine Bcl-2, Bcl-w und Bcl-xL analysiert.
Die Expression von Bak, Bax, Bcl-2 und Bcl-w blieb weitgehend konstant, lediglich in
Mel270 war eine leichte Verringerung der Bcl-2-Expression im Vergleich zur Kontrolle
erkennbar, wahrend von Bcl-xL in zwei Zelllinien (92.1, Mel270) nicht nachgewiesen
werden konnte (Abb. 15B und C). Die Expression von Cytochrom C stieg nach SOX10-
Hemmung in der Zelllinie OMM1.5 an, wahrend sie sich in der Zelllinie 92.1 nicht veran-
derte und in Mel270 abnahm.
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Abb. 15: Analyse der Proteinexpression pro- und antiapoptotischer Proteine des intrinsi-
schen Apoptoseweges

(A) Proteinexpression von SOX10 und Spaltung der Procaspasen 9 und 3, (B) der proapoptoti-
schen Proteine Bak, Bax und Cytochrom C sowie (C) der antiapoptotischen Proteine Bcl-2, Bcl-
w und Bcl-xL 48h nach Transfektion mit SOX10-A-, SOX10-B- oder einer Kontroll-siRNA. &: Zel-
len nur mit Transfektionsreagenz behandelt. B-Aktin diente als Ladekontrolle.
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In einem weiteren Experiment wurde untersucht, ob eine pharmakologische Inhibition
der Caspase 3 den Zelltod nach SOX10-Hemmung verringern kann. Dazu wurden die
beiden Zelllinien 92.1 und Mel270, die bereits 48h nach der Transfektion mit SOX10-
spezifischen siRNAs deutliche Anzeichen der Apoptose zeigten, zuerst fir 1Th mit dem
spezifischen, irreversiblen Caspase-3-Inhibitor Z-DEVD-FMK oder dem Lésungsmittel
DMSO als Kontrolle vorinkubiert. Anschliefend wurden die Zellen mit SOX10-siRNAs
oder einer Kontroll-siRNA in Anwesenheit von Z-DEVD-FMK transfiziert und nach 48h
die Zellviabilitat bestimmt sowie die Zellen fur Western Blot-Analysen geerntet. Die
Transfektion mit SOX10-spezifischen siRNAs reduzierte die Zellviabilitat der Zelllinie
92.1 deutlich wie bereits zuvor gezeigt (Abb. 16A). Die Zellviabilitat der Zellen, die vor
und wahrend der Transfektion mit SOX10-siRNAs mit dem Inhibitor Z-DEVD-FMK inku-
biert worden waren, war jedoch hoher als die der Kontrollzellen, die mit DMSO anstatt
Z-DEVD-FMK behandelt worden waren. Allerdings war die Zellviabilitat trotzdem noch
deutlich niedriger im Vergleich zu den Zellen, die mit einer Kontroll-siRNA transfiziert
worden waren. Die Western Blot-Analysen zeigten eine verringerte Spaltung von PARP
sowie der Procaspase 3 bei einem Teil der mit SOX10-siRNAs und Z-DEVD-FMK-inku-
bierten Zellen im Vergleich zu Zellen nach SOX10-Hemmung ohne Apoptose-Inhibitor
(Abb. 16B und C).
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Abb. 16: Inhibition der Apoptose nach SOX10-Hemmung durch den Caspase-3-Inhibitor Z-
DEVD-FMK

(A) Zellviabilitat der UM-Zelllinie 92.1 48h nach Transfektion mit SOX10-B-siRNA oder einer Kon-
troll-siRNA. Die Zellen wurden 1h vor der Transfektion und dann wahrend der gesamten Ver-
suchslaufzeit mit Z-DEVD-FMK oder DMSO (Kontrolle) inkubiert, n = 1. &: unbehandelte Zellen.
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Proteinexpression von SOX10 sowie Spaltung der Procaspase 3 und PARP nach Inkubation mit
20 uM Caspase-Inhibitor Z-DEVD-FMK oder DMSO und Transfektion mit SOX10-A-, SOX10-B-
oder einer Kontroll-siRNA fiir 48h in den UM-Zelllinien (B) 92.1 bzw (C) Mel270. Die Zellen wur-
den analog zu den Zellviablitdtsexperimenten in (A) vor der Transfektion mit 20 yM Z-DEVD-FMK
oder DMSO fiir 1h vorinkubiert. B-Aktin diente als Ladekontrolle.

Die Daten deuten also darauf hin, dass die Hemmung von SOX10 zum Zelltod durch
Apoptose fiihrt. Insgesamt sind die verursachten Veranderungen aber so gravierend,
dass eine Caspasehemmung alleine den Zelltod nicht komplett verhindern kann.

3.2.4 Analyse von DNA-Schadensmarkern

DNA-Schaden sind eine der Hauptursachen fir einen Zellzyklusarrest [385]. dsDNA-
Briiche kommen relativ selten vor, kénnen jedoch zu weitreichenden Folgen wie groéfe-
ren chromosomalen Aberrationen flihren, wenn es bei ihrer Reparatur zu Fehlern bzw.
einer fehlerhaften Rekombination kommt [400]. Sie kénnen durch eine Vielzahl an exo-
genen und endogenen Faktoren oder auch im Rahmen der DNA-Fragmentierung wah-
rend der Apoptose entstehen [400, 401]. Die C-terminale Phosphorylierung der Histon-
variante H2A.X an Ser139 (y-H2A.X) wird nach dsDNA-Brichen durch die Serin/Thre-
oninkinasen ATM, ATR und DNA-abhangige Proteinkinase (DNA-PK) induziert und dient
als Markierung von DNA-Bruchstellen und zum Andocken von verschiedenen DNA-Re-
paraturproteinen [400-402]. Um zu untersuchen, ob es durch die SOX10-Hemmung zum
vermehrten Auftreten von DNA-Schaden kommt, wurde die Expression von y-H2A.X
nach SOX10-Inhibition untersucht. Die y-H2A.X-Expression war in 92.1 und Mel270
stark erhéht, wohingegen in OMM1.5 kaum eine Veranderung im Vergleich zu den mit
Kontroll-siRNA behandelten Zellen sichtbar war (Abb. 17). Die Analyse von Zellen, die
12h und 24h nach der Transfektion mit SOX10-spezifischen siRNAs geerntet waren,
zeigte insbesondere bei der Zelllinie Mel270 einen Anstieg der y-H2A. X-Expression erst
nach 24h im Vergleich zu den Kontrollen, wahrend eine Spaltung der Procaspase 3 so-
wie von PARP bereits nach 12h nachgewiesen werden konnte. Somit scheint es zuerst
zur Apoptoseinduktion und dann zur Ausbildung von dsDNA-Briichen zu kommen.

Diese Ergebnisse deuten insgesamt darauf hin, dass die Hemmung von SOX10 zwar zu
dsDNA-Briichen flihrt, diese aber vermutlich kein unmittelbarer Ausldser des Zellzyk-
lusarrests bzw. der Apoptose sind.
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Abb. 17: Expression von DNA-Schadensmarkern und Zellzyklusinhibitoren nach SOX10-
Hemmung.

Proteinexpression von y-H2A.X, einem Marker flir DNA-Doppelstrangbriiche sowie von Caspase
3 und PARP (A) 12h und (B) 24h nach Transfektion mit SOX10-spezifischen siRNAs oder einer
Kontroll-siRNA. Ladekontrolle: B-Aktin. (C) Im Vergleich dazu Proteinexpression von y-H2A.X,
Caspase 3 und SOX10 48h nach Transfektion mit SOX10-A-, SOX10-B- oder einer Kontroll-
siRNA. B-Aktin diente als Ladekontrolle. &: Zellen nur mit Transfektionsreagenz behandelt.

3.2.5 Analyse verschiedener Signaltransduktionswege nach SOX10-
Hemmung

Um zu entschlisseln, welchen Einfluss SOX10 auf die Aktivitat wichtiger Signalwege im
UM ausibt, wurde die Proteinexpression und Phosphorylierung von Proteinen des
MAPK- und Akt-Signalweges in den Zelllinien 92.1, Mel270 und OMM1.5 basal sowie
nach SOX10-Hemmung analysiert. Hierfiir wurden Western Blot-Analysen von unbehan-
delten Zellen sowie 24h nach Transfektion mit SOX10-siRNAs oder einer Kontroll-siRNA
durchgeflihrt. Die basale Expression wurde zudem mit der Expression in unbehandelten
HM und der KM-Zelllinie 1205Lu verglichen.
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3.2.5.1 Aktivitat des MAPK-Signalweges uber ERK und p38

ERK1 (p44) und ERK2 (p42) sind Kinasen des BRAF/MEK/ERK-Signalweges, der zent-
ral an der Regulation und Férderung der Proliferation und des Uberlebens von Zellen
beteiligt ist [403, 404]. Dieser Signalweg ist insbesondere im Kontext des UM interes-
sant, da er Uber die G-Proteine GNAQ und GNA11 aktiviert werden kann, die im UM
haufig durch Mutationen konstitutiv aktiv sind [71, 76]. Die Aktivitat wird durch die Phos-
phorylierung an Thr202 und Tyrosin (Tyr) 204 von ERK1 und Thr183 und Tyr185 von
ERK2 durch die im Signalweg vorgeschalteten Kinasen MEK1 und MEK2 vermittelt, die
wiederum durch BRAF ebenfalls durch Phosphorylierung aktiviert werden [405, 406].
Nach der Aktivierung kommt es zur Translokation und Akkumulierung von ERK1 und
ERK2 im Zellkern, wo sie unter anderem die Aktivitat von Transkriptionsfaktoren durch
Phosphorylierung erhdhen, die wiederum die Expression von Zellzyklusregulationspro-
teinen steuern [403, 404, 406, 407].

Basal war die Proteinexpression von ERK1 und ERK2 in allen vier untersuchten
Zelllinien sowie den HM nahezu identisch (Abb. 18A). Die Phosphorylierung und damit
Aktivitat des Signalweges unterschied sich jedoch deutlich zwischen den einzelnen Zell-
linien. Die starkste Phosphorylierung von ERK1 (phospho-ERK1) und ERK2 (phospho-
ERK2) unter allen Zellen wurde bei der KM-Zelllinie 1205Lu detektiert. ERK1 war aul3er
in den 1205Lu-Zellen nur in HM und in der UM-Zelllinie 92.1 schwach phosphoryliert. Im
Vergleich zu phospho-ERK1 war die Bande von phospho-ERK2 wiederum deutlich star-
ker ausgepragt und konnte in HM, 92.1 und OMM1.5 nachgewiesen werden. Die phos-
pho-ERK2-Expression unterschied sich zwischen diesen drei Zelltypen jedoch kaum.
Somit konnte nur fur die Zelllinie Mel270 keine basale Aktivitat des ERK-Signalings nach-
gewiesen werden.
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Abb. 18: Expression der MAP-Kinasen ERK1, ERK2 und p38

(A) Basale Proteinexpression und Aktivitat der MAP-Kinasen ERK1, ERK2 und p38. (B) Protein-
expression und Phosphorylierung der MAP-Kinasen ERK1, ERK2 und p38 nach Transfektion mit
SOX10-A-, SOX10-B- oder einer Kontroll-siRNA fir 24h. -Aktin diente als Ladekontrolle.
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Der p38-Signalweg ist ein zweiter MAPK-Signalweg, der durch Stress wie Hypoxie, UV-
Strahlung, oxidativen Stress sowie inflammatorische Zytokine wie Interleukin (IL)-1 und
TNF-a aktiviert werden kann und an der Regulation der Apoptose- und Zellzyklusarrest-
induktion, der Differenzierung und auch bei der Immunantwort beteiligt ist [407-409].
Analog zu ERK1/2 werden auch die p38-Kinasen durch Phosphorylierung von Tyrosin
(Tyr182) und Threoninresten (Thr180) in der Aktivierungsschleife des Proteins aktiviert
[408]. Die vier p38-Isoformen (a, B, y,0) werden von verschiedenen Genen codiert und
kénnen alle durch MEK6 phosphoryliert und damit aktiviert werden [407, 408]. Die
Kinase MEK3 hingegen aktiviert vor allem p38a, y und & [408]. Speziell nach dsDNA-
Brichen kommt es jedoch zu einer Akkumulation von p38a im Zellkern, sodass davon
ausgegangen wird, dass das Protein beim G2/M-Arrest und der DNA-Reparatur eine
Rolle spielt [410]. Zudem kann die Aktivierung von p38 zum Arrest am Ubergang von der
G1- in die S-Phase flihren [409]. Zu den von p38 phosphorylierten Proteinen gehoéren
unter anderem Kinasen, Transkriptionsfaktoren sowie Proteine der Zellzyklus- und
Apoptoseregulation wie CDK-Inhibitoren, Cyclin D1 und Proteine der Bcl-2-Familie [407-
409, 411]. Durch die Phosphorylierung von PP2A und der daraus resultierenden
Dephosphorylierung von MEK1/2 kann p38 aulierdem die ERK1/2-Signalachse hemmen
[412].

Die Analysen zeigten eine basale p38-Expression in allen untersuchten Zellen, wobei
die Zelllinien OMM1.5 und 1205Lu die héchste und HM die niedrigste Expression auf-
wiesen. Die KM-Zelllinie 1205Lu zeigte wie schon bei der Analyse von ERK die starkste
basale p38-Phosphorylierung (phospho-p38), gefolgt von den Zelllinien OMM1.5 und
Mel270. Nur eine sehr schwache Bande konnte bei 92.1 und keine Bande bei HM nach-
gewiesen werden (Abb. 18A).

Neben der basalen Expression wurden auch die Veranderungen in der Aktivitat der Sig-
nalwege nach SOX10-Hemmung mittels Western Blot-Analysen untersucht. In der Zell-
linie 92.1 kam es dabei zu einer geringfligigen Verringerung der phospho-ERK1- und
phospho-ERK2-Expression und einem Anstieg der phospho-p38-Expression, nicht aber
von p38 selbst (Abb. 18B). In der Zelllinie Mel270 wurde hingegen eine Zunahme von
phospho-ERK1 und phospho-ERK2 sowie von phospho-p38 detektiert. Ebenfalls war
eine Zunahme von phospho-p38 in OMM1.5 erkennbar. Die Expressionslevel von phos-
pho-ERK2 anderten sich nach Transfektion mit der siRNA SOX10-A nicht, waren aber
nach Transfektion mit der zweiten SOX10-spezifischen siRNA SOX10-B in dieser Zellli-
nie verringert. Somit schien es in allen drei Zelllinien zu einer Zunahme der p38-Aktivitat
nach SOX10-Hemmung zu kommen, wohingegen die ERK-Aktivitat zelllinienabhangig
variierte. Interessant war hierbei, dass sich die Aktivitat von ERK1 und ERK2 nach
Transfektion mit der Kontroll-siRNA teilweise von der der unbehandelten Zellen unter-
schied. Wahrend beispielsweise basal kein phospho-ERK1 und phospho-ERK2 in der
Zelllinie Mel270 nachweisbar war, zeigte sich nach Transfektion mit der Kontroll-siRNA
eine Phosphorylierung von ERK2. Andererseits war die basale phospho-ERK2-Expres-
sion von OMM1.5 relativ deutlich ausgepragt, wahrend sie nach Transfektion mit der
Kontroll-siRNA kaum noch nachweisbar war.

125



3 Ergebnisse

3.2.5.2 Aktivitat des Akt-Signalweges

Die PI3-Kinase/Akt-Achse ist ein weiterer Signalweg, der das Uberleben und das Zell-
wachstum entscheidend beeinflusst [413, 414]. Eine dauerhafte Aktivierung der Kinase
Akt wurde bei vielen Tumorentitaten und sowohl bei UM-Primartumoren als auch Zellli-
nien nachgewiesen [413-416]. Der Signalweg wird normalerweise durch die Bindung von
Wachstumsfaktoren an ihre Rezeptoren aktiviert [413]. Nach der Autophosphorylierung
dieser RTK kommt es zur Rekrutierung der Kinase PI3K an den Rezeptor, die in der
Zellmembran die Umsetzung von PIP; zu Phosphatidylinositoltriphosphat (PIP3) kataly-
siert [413, 414]. PIPs wiederum rekrutiert die 3-phosphoinositide dependent protein
kinase 1 (PDPK1) und den mechanistic Target of Rapamycin (mTOR)-Komplex 2, wel-
che Akt an Thr308 bzw. Serin (Ser) 473 phosphorylieren und damit aktivieren kann [413,
417, 418]. Negativer Regulator des PI3K/Akt-Signaling ist das Protein Phosphatase and
Tensin Homolog (PTEN) [413, 419]. Akt hemmt die Aktivitat unter anderem von p27, Bad
und der Caspase 9, wodurch es zu einer Hemmung der Apoptose, Verringerung des
Zellzyklusarrests, Aktivierung des mTOR- und NF-kB-Signalweges, Erhéhung der Lipid-
synthese sowie Férderung der Angiogenese kommt [413, 420-422].

In dieser Arbeit wurde sowohl die basale Expression als auch die Aktivitat von Akt durch
Analyse der Phosphorylierung von Serin 473 (phospho-Akt Ser473) bestimmt. Basal
zeigten sich kaum Unterschiede in der Akt-Expression der untersuchten Zellen (Abb.
19A). Die starkste Phosphorylierung zeigte — wie schon bei der Analyse von ERK und
p38 — die KM-Zelllinie 1205Lu gefolgt von der UM-Zelllinie OMM1.5 und den HM. Im
Gegensatz dazu zeigte sich bei den Zelllinien 92.1 und Mel270 nur eine schwache
Bande. Nach SOX10-Hemmung war in allen drei Zelllinien allenfalls eine geringe Ab-
nahme der phospho-Akt Ser473-Expression zu beobachten, wahrend sich die Expres-
sion von Akt nicht veranderte (Abb. 19B). Analog zu den Untersuchungen des MAPK-
Signalweges fiel jedoch auch hier auf, dass sich die basalen phospho-Akt-Spiegel der
unbehandelten Zellen von denen nach Transfektion mit der Kontroll-siRNA unterschie-
den.
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Abb. 19: Aktivitat des Akt-Signalweges basal und nach Hemmung von SOX10

(A) Basale Proteinexpression und Phosphorylierung (phospho-Akt Ser473) von Akt. (B) Protein-
expression und Phosphorylierung (phospho-Akt Ser473) von Akt nach Transfektion mit SOX10-
A-, SOX10-B- oder einer Kontroll-siRNA flir 24h. 3-Aktin diente als Ladekontrolle.
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Insgesamt war nur flr die Zelllinie OMM1.5 eine basale Aktivierung aller drei untersuch-
ten Signalwege nachweisbar. In 92.1-Zellen war primar der ERK-Signalweg aktiviert,
wohingegen in Mel270 vor allem der p38-Signalweg aktiviert war. Durch SOX10-Hem-
mung kam es zu einer Aktivierung des p38-Signalweges und einer Verringerung des Akt-
Signalweges, wahrend sich die Aktivitat des ERK-Signalweges stark zwischen den un-
tersuchten Zelllinien unterschied.

3.2.5.3 Analyse weiterer Signalwege

Neben den MAPK- und Akt-Signalwegen gibt es noch eine Reihe weiterer Signalwege,
die méglicherweise durch die SOX10-Hemmung verandert werden und funktionell zum
Zelltod beitragen kdénnten. Um diese in einem breitangelegten Ansatz simultan zu unter-
suchen, wurden die Zelllinien 92.1 und Mel270 mit SOX10-B- oder Kontroll-siRNA fir
24h transfiziert und die Zelllysate mittels Phospho-Kinase-Array analysiert (Abb. 20A
und B). Die densitometrische Analyse ergab jedoch nur geringfigige Unterschiede zwi-
schen den Kontrollen und den behandelten Zellen (Abb. 20C und D). Eine leicht erhdhte
Phosphorylierung wurde fiir die Proteine Akt (an Thr308), p27, CREB, Chk-2, mTOR,
Lyn, Yes, PDGF-R, p53 (an Ser46) sowie die STAT-Proteine STAT2, STAT5a/b, und
STATG6 in beiden Zelllinien sowie von EGFR in 92.1 nachgewiesen. In Mel270 war hin-
gegen die Phosphorylierung von c-Jun nach SOX10-Hemmung vermindert. Insgesamt
waren diese Unterschiede allerdings relativ gering ausgepragt und wurden daher im
Rahmen dieser Arbeit nicht weiter untersucht.

Abb. 20: Aktivitidtsanalyse weiterer Signalwege nach SOX10-Hemmung mittels Phospho-
Kinase-Array

(A, B) Rontgenfilmaufnahme des Phospho-Kinase-Arrays. Die Array-Membranen wurden mit Zell-
lysaten inkubiert, die von den Zelllinien 92.1 (A) und Mel270 (B) nach Transfektion mit SOX10-B-
oder Kontroll-siRNA fiir 24h stammten. Der Nachweis der Antikorperbindung erfolgte durch Che-
milumineszenz. (C, D) Ergebnis der densitometrischen Auswertung des Phospho-Kinase-Array.
(C) UM-Zelllinie 92.1, (D) UM-Zelllinie Mel270. Mittelwerte + SD, *: p < 0,05, **: p < 0,01, ***:
p <0,001.

Abb. 20 siehe Folgeseite
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Abb. 20, Beschreibung siehe S. 127
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Da SOX10 ein Transkriptionsfaktor ist, sind ein Teil der beobachteten Effekte der
SOX10-Hemmung auf eine direkte Veranderung der Genexpression seiner Zielgene zu-
rickzufuhren. Diese kdnnten mdglicherweise auch leichter pharmakologisch gehemmt
und dadurch fir eine zielgerichtete Therapie besser geeignet sein als SOX10 selbst, flr
das bisher noch kein spezifischer Inhibitor existiert [423]. Um in einem umfassenden
Ansatz die Veranderungen des Genexpressionsprofils zu untersuchen und potenzielle
SOX10-Zielgene oder Mediatoren der Effekte im UM zu identifizieren, wurden die Zellli-
nien 92.1 und Mel270 mit SOX10-B-siRNA oder einer Kontroll-siRNA transfiziert, die
RNA nach 24h isoliert und eine Transkriptomanalyse durchgefihrt. Die Anzahl der se-
quenzierten Leseraster betrug dabei zwischen 73,588 und 96,113 Mio Fragmente und
die der sequenzierten Basen betrug zwischen 14,621 und 18,89 Mrd. Basen. Die durch-
schnittliche Lange der getrimmten FASTQ-Reads betrug 100-102 bp.

Der Principal Component-Analyse (PCA) liegt ein mathematischer Algorithmus zu-
grunde, mit dessen Hilfe die Dimensionalitat der Daten reduziert werden kann, wobei
allerdings die Variation im Datensatz erhalten bleibt, indem Richtungen (directions) iden-
tifiziert werden (= principal components), entlang derer die Variation der Daten maximal
ist [424]. Die PCA der RNA-Sequenzierungsdaten zeigte eine eindeutige Trennung der
Cluster der beiden Zelllinien als auch der Cluster der mit SOX10-B- und Kontroll-siRNA
transfizierten Zellen, was auf eine grofde Variation der Genexpressionsdaten zwischen
den verschiedenen Gruppen hindeutet (Abb. 21A und B). Die biologischen Replikate
clusterten eng beieinander, sodass davon auszugehen ist, dass die Genexpressionspro-
file der Zellen in den jeweiligen Wiederholungsversuchen konsistent waren.
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Abb. 21: Principal component-Analyse (PCA)

(A) Zweidimensionale und (B) dreidimensionale Darstellung der PCA der RNA-Sequenzierungs-
daten der Zelllinien 92.1 (Rautensymbol) und Mel270 (Kreissymbol), die fur 24h mit SOX10-B-
(rot) oder einer Kontroll-siRNA (griin) transfiziert worden waren. N = 4. PC: principal component.

Insgesamt wurden 37.451 Gene mit einer mittleren Read-Anzahl > 0 gefunden. In der
differenziellen Genexpressionsanalyse der 17.448 Gene mit einer mittleren Anzahl an
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sequenzierten Reads > 10 wurden insgesamt 5.914 herabregulierte und 6.537 hochre-
gulierte Gene bei einer FWER von 0,05 identifiziert (Abb. 22A). Bei 4.997 Genen fihrte
die SOX10-Hemmung zu keiner signifikanten Veranderung der Genexpression. Bei
1.949 Genen kam es nach SOX10-Hemmung mindestens zu einer Verdoppelung oder
einer Halbierung der Genexpression (|logzfold change| > 1). Um nun potenzielle Zielgene
von SOX10 zu identifizieren, wurden publizierte Daten von SOX10-ChlP-Seqg-Experi-
menten mit murinen Melanozyten [346] mit der Liste der 1.949 am starksten in den UM-
Zelllinien veranderten Genen nach SOX10-Hemmung verglichen. Konkret wurde analy-
siert, welche der Gene SOX10-ChIP-Signale im Bereich -10.000 Basenpaare (bp) bis
+ 5.000 bp relativ zum jeweiligen TSS aufwiesen. Die so identifizierten 395 potenziellen
SOX10-Zielgene wurden mittels Gene Ontology (GO)-Term-Analysen (Abb. 22B) sowie
Netzwerkanalysen (Abb. 22C) untersucht. Die drei am meisten veranderten Signalwege
wurden den GO-Terms ,axonogenesis®, ,peptidyl-tyrosine phosphorylation“ bzw. ,pep-
tidyl-tyrosine modification“ und ,renal development system“ zugeordnet. Bei 27 Genen
wurde ein Bezug zu GO-Terms festgestellt, die mit Apoptose in Zusammenhang stehen,
darunter waren etwa Gene wie BCL2. Insgesamt ist festzustellen, dass die Hemmung
von SOX10 zu aulerst weitreichenden Veranderungen der Genexpression in den Zellen
fuhrte und eine Vielzahl an Signalwegen infolge dessen mutmallich beeinflusst werden,
darunter zahlreiche mit Bezug zur Embryonalentwicklung und Apoptoseinduktion.

Abb. 22: GO-Term-Analyse der RNA-Sequenzierungsdaten nach SOX10-Hemmung

(A) Schematische Darstellung des Vorgehens zur Identifizierung potenzieller SOX10-Zielgene
oder seiner Mediatoren im UM. Die SOX10-Hemmung flihrte zu einer signifikanter Herabregula-
tion von 5.914 Genen und einer Hochregulation von 6.537 Genen. Nach Ausschluss der Gene
mit einer geringen Expressionsveranderung (]Jlogzfold change| < 1) wurden die verbliebenen
1.949 differenziell exprimierten Gene mit veréffentlichten, von murinen Melanozyten stammenden
SOX10-ChIP-Seg-Signalen [346] aus dem Bereich von -10.000 bp bis +5.000 bp um die jeweili-
gen Transkriptionsstartstellen (TSS) der Gene abgeglichen. Dadurch wurden 395 differenziell ex-
primierte Gene identifiziert, die moglicherweise direkt durch SOX10 im UM reguliert werden. (B)
Untersuchung der 395 potenziellen SOX10-Zielgene mittels GO Term-Analysen und (C) Netz-
werkanalysen. Die drei am meisten veranderten Signalwege wurden den GO-Terms ,axonoge-
nesis®, ,peptidyl-tyrosine phosphorylation“ bzw. ,modification“ und ,renal development system*
zugeordnet. FWER: family-wise error rate.

Abb. 22 siehe Folgeseite
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Abb. 22, Beschreibung siehe S. 130
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3.3 SO0X10-Zielgene als potenzielle Mediatoren der Effekte

3.3.1 Veranderung der Genexpression von SOX9 und bekannten SOX10-
Zielgenen nach SOX10-Hemmung

SOX10 ist als Transkriptionsfaktor vor allem fiir die transkriptionelle Regulation von Ge-
nen verantwortlich. Ein Teil der Effekte, die nach der Hemmung von SOX10 zu beobach-
ten sind, ist aus diesem Grund sehr wahrscheinlich auf eine veranderte Expression sei-
ner direkten Zielgene zurlickzuflhren. Zusatzlich zur oben beschriebenen Analyse der
Transkriptomdaten wurde die Genexpression einiger ausgewahlter bereits bekannter
SOX10-Zielgene 24h nach Transfektion mit SOX10-spezifischen siRNAs mittels gPCR
in den UM-Zelllinien 92.1, Mel270 und OMM1.5 sowie der KM-Zelllinie 1205Lu analysiert

(Abb. 23).
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Abb. 23: Analyse der Genexpression von SOX70 sowie der durch SOX10 transkriptionell
regulierten Gene PMP2, MIA und SOX9 nach SOX10-Hemmung

Analysiert wurde die Genexpression von (A) SOX10, (B) PMP2, (C) MIA und (D) SOX9 nach
Transfektion mit SOX10-A-, SOX10-B- oder einer Kontroll-siRNA flur 24h. Normalisierung auf
GAPDH-Genexpression, Mittelwerte + SD, n = 3. *: p < 0,05, **: p < 0,01, ***: p < 0,001 vs. Kon-
troll-siRNA.

PMP2 ist ein cholesterol-und fettsdurebindendes Protein in den peripheren Gliazellen
und eines der Hauptproteine im Myelin des PNS [425]. PMP2 wird auch im KM expri-
miert, wo es die Migration und Invasion von Melanomzellen férdert und direkt durch
SOX10 transkriptionell reguliert wird [297]. Die PMP2-Genexpression war in der Zelllinie
OMM1.5 mit Abstand am hochsten und in diesen Zellen kam es nach SOX10-Hemmung
auch zu einer Verringerung der PMP2-Expression, die jedoch nicht signifikant war (Abb.
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23B). Eine ebenfalls verringerte PMP2-Expression wurde in den Zelllinien 1205Lu und
Mel270 nach SOX10-Hemmung beobachtet. Am geringsten wurde PMP2 in der Zelllinie
92.1 exprimiert. Hier fuhrte die Transfektion mit SOX10-siRNAs auch zu keiner weiteren
Reduktion der ohnehin geringen PMP2-Genexpression.

Das Protein MIA wird wahrend der Embryonalentwicklung und postnatal im Knorpel so-
wie in Chondrosarkomen, dem KM und Adenomen exprimiert, jedoch nicht in Melanozy-
ten [426]. MIA wird sezerniert, beeinflusst die Pigmentierung und Morphologie der Mela-
nomzellen und férdert die Invasion und Metastasierung im KM [426-428]. Dort wird MIA
durch SOX10 direkt transkriptionell reguliert und die Expression durch Hemmung von
SOX10 inhibiert [295]. In allen vier untersuchten UM-Zelllinien kam es zum Analysezeit-
punkt 24h nach der Transfektion mit SOX10-siRNAs zu keiner signifikanten Verande-
rung der MIA-Genexpression (Abb. 23C). Die MIA-Expression der Kontrollzellen war am
héchsten in der UM-Zelllinie 92.1 und der KM-Zelllinie 1205Lu und am geringsten in den
UM-Zelllinien Mel270 und OMM1.5.

Der Transkriptionsfaktor SOX9 gehort wie SOX10 zur SoxE-Subfamilie der SOX-Tran-
skriptionsfaktorfamilie und besitzt eine grolRe Homologie zu SOX10 und SOX8 [429].
Frihere Arbeiten konnten zeigen, dass die Hemmung von SOX10 im KM zu einem An-
stieg der SOX9-Expression fuhrt und umgekehrt, zudem bindet SOX9 an den SOX10-
Promotor [296]. In den UM-Zelllinien 92.1 und Mel270 konnte eine geringfiigige Steige-
rung der SOX9-Genexpression nach SOX10-Hemmung festgestellt werden, in der Zell-
linie OMM1.5 dagegen eine Abnahme, diese Zelllinie exprimierte jedoch nur wenig SOX9
(Abb. 23D). Auffallig war auflerdem die inverse Korrelation zwischen der SOX70- und
SOX9-Genexpression der Kontrollzellen sowohl bei der KM-Zelllinie 1205Lu als auch bei
den drei untersuchten UM-Zelllinien.

3.3.2 Das SOX10-Zielgen MITF als potenzieller Mediator der Effekte

3.3.2.1 MITF-Expression basal und nach Hemmung von SOX10

Das Gen MITF codiert fur den Transkriptionsfaktor Microphthalmia-associated transcrip-
tion factor und ist das am besten untersuchte Zielgen von SOX10. MITF gehért zur
Familie der basic-Helix-Loop-Helix-Leucin-Zipper-Transkriptionsfaktoren und gilt als
,Master-Regulator” der Melanogenese, da es die Expression zahlreicher an der
Melaninsynthese beteiligten Enzyme wie TYR oder DCT transkriptionell steuert [202,
208, 430, 431]. Das kodierende Gen umfasst etwa 230.000 bp und ist auf Chr. 3 lokali-
siert, zudem existieren mehrere TSS, sodass zahlreiche Isoformen durch alternatives
Splicen generiert werden kénnen [432, 433]. Die unterschiedlichen Isoformen unter-
scheiden sich im Bereich des ersten Exons durch die Verwendung unterschiedlicher
Promotoren, wahrend die Exons 2 bis 9 in allen Isoformen gleich bleiben [432, 433]. In
melanozytaren Zellen wird die M-Isoform exprimiert, deren Expression von den
Transkriptionfaktoren SOX10 und PAX3 durch Bindung an den Promotorbereich der M-
Isoform induziert werden kann [261, 262, 434-436]. Im Auge wird in der Iris die M-
Isoform, in der Choroidea neben der M- auch die A- und J-Isoform und im RPE zuséatzlich
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die D- und H-Isoform exprimiert [437]. MITF ist nicht nur an der Melanogenese in nor-
malen Melanozyten beteiligt, sondern wird auch im KM exprimiert, wo es ein entschei-
dender Faktor fir die Heterogenitat und die Plastizitat des KM ist [433, 438]. MITF ist
etwa zentral am Wechsel der Zellen von einem proliferativen, MITF-hochexprimierenden
hin zu einem invasiven, kaum proliferativen Phanotyp mit niedriger MITF-Expression und
wieder zurlick beteiligt [233, 438]. Zudem sind Amplifikationen des MITF-Gens bei etwa
20 % der KM nachweisbar [439]. Uber die Funktion im UM ist nur wenig bekannt, aller-
dings wird MITF bei etwa 65 % der UM exprimiert [440]. Es kdbnnen sowohl Zellen mit
hoher als auch niedriger MITF-Expression nebeneinander im Tumorgewebe vorliegen,
sodass davon ausgegangen wird, dass MITF &hnlich wie im KM zur Tumorheterogenitat
im UM betragt [437].

Da SOX10 die Expression des Transkriptionsfaktors MITF direkt transkriptionell regulie-
ren kann [261, 262], wurde eine Analyse der MITF-Gen- und Proteinexpression in HM,
der KM-Zelllinie 1205Lu sowie den UM-Zelllinien 92.1, Mel270, OMM2.3, OMM 1.5
(= OMM2.5), Mel285, Mel202, Mel290 und OMM-1 durchgeflihrt. Hierbei wurde eine
starke Expression in den sechs untersuchten UM-Zelllinien 92.1, Mel270, OMM1.5 (bzw.
OMMZ2.5), OMM2.3, OMM-1 und Mel202 nachgewiesen (Abb. 24A und B). Im Gegensatz
dazu wurde MITF in der Zelllinie Mel290 gering exprimiert. In den Zelllinien Mel285 und
1205Lu wurde MITF auf Genebene sehr gering exprimiert, wahrend eine Expression auf
Proteinebene nicht nachgewiesen werden konnte. Eine statistisch signifikante positive
Korrelation zwischen der SOX10- und der MITF-Proteinexpression in UM-Zellen und HM
konnte nachgewiesen werden (Pearson-Korrelationskoeffizient 0,792, p = 0,004, Abb.
24C).

Abb. 24: Basale Proteinexpression von MITF

(A) Relative Genexpression von MITF, normalisiert auf GAPDH-Expression, Mittelwerte + SD,
n = 3 und (B) Proteinexpression von MITF, SOX10 und B-Aktin in HM (zwei Spender), UM-Zellli-
nien 92.1, Mel270, OMM1.5 und Mel285 bzw. Mel202, Mel290, OMM-1, OMM2.3 und OMM2.5
sowie der KM-Zelllinie 1205Lu. (C) Grafische Darstellung der Korrelation zwischen der relativen
SOX10- und MITF-Proteinexpression bestimmt durch densitometrische Analysen mithilfe des
Programms ImagedJ, jeweils normalisiert auf die [B-Aktin-Expression, Expression von
OMM1.5/0MM2.5 = 1. Pearson-Korrelationskoeffizient r = 0,792, p = 0,004.

Abb. 24 siehe Folgeseite
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Abb. 24, Beschreibung siehe S. 134
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Um zu untersuchen, ob eine Hemmung von SOX10 auch direkte Auswirkungen auf die
Expression von MITF hat, wurden die SOX10-hochexprimierenden UM-Zelllinien 92.1,
Mel270 und OMM1.5 mit SOX10-spezifischen siRNAs, einer Kontroll-siRNA oder nur mit
dem Transfektionsreagenz transfiziert und die MITF-Expression analysiert. Bereits 24h
nach der Transfektion kam es zu einer deutlichen Verminderung der MITF-Gen- und
Proteinexpression in den drei untersuchten UM-Zelllinien (Abb. 25).
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Abb. 25: Veranderung der MITF-Expression nach SOX10-Hemmung

(A) Genexpression von SOX170 in der KM-Zelllinie 1205Lu sowie den UM-Zelllinien 92.1, Mel270
undOMM1.5 24h nach Transfektion mit SOX10-spezifischen siRNAs (SOX10-A, SOX10-B) oder
Kontroll-siRNA, normalisiert auf GAPDH-Genexpression, Mittelwerte + SD, n = 3, *: p < 0,05 vs.
Kontroll-siRNA. (B) Genexpression von MITF in der KM-Zelllinie 1205Lu sowie den UM-Zelllinien
92.1, Mel270 undOMM1.5 24h nach Transfektion mit SOX10-spezifischen siRNAs (SOX10-A,
SOX10-B) oder Kontroll-siRNA, normalisiert auf GAPDH-Genexpression, Mittelwerte £ SD, n = 3.
*: p < 0,05 vs. Kontroll-siRNA. (C) MITF- und SOX10-Proteinexpression 24h nach Transfektion
mit SOX10-spezifischen siRNAs (SOX10-A, SOX10-B), Kontroll-siRNA oder Behandlung nur mit
dem Transfektionsreagenz Lipofectamine® RNAIMAX (). Ladekontrolle: 3-Aktin.
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3.3.2.2 Verringerung der Zellviabilitat nach MITF-Hemmung

Die beobachteten Veranderungen der MITF-Expression nach SOX10-Hemmung legen
nahe, dass MITF durch SOX10 auch im UM reguliert und daher moglicherweise bei der
Vermittlung der Effekte nach SOX10-Hemmung beteiligt ist. Zudem ware denkbar, dass
die Hemmung von MITF auf UM-Zellen einen ahnlichen Effekt wie die Inhibition von
SOX10 haben kénnte, da MITF die Expression pro- und antiapoptotischer Proteine wie
Bcl-2 und zellzyklusregulatorischer Proteine wie Cyclin D1 und CDK2 beeinflussen kann
[437, 441, 442]. Um diese Hypothese zu untersuchen, wurden die UM-Zelllinien 92.1,
Mel270 und OMM1.5 in weiteren Experimenten mit MITF-spezifischer oder einer Kon-
troll-siRNA transfiziert und die Zellviabiliat nach 24h, 48h, 72h und 96h bestimmt. Analog
zu den Ergebnissen nach SOX10-Hemmung kam es auch nach Transfektion mit der
MITF-spezifischen siRNA zu einer deutlichen Abnahme der Zellviabilitat der untersuch-
ten UM-Zelllinien (Abb. 26). Am deutlichsten war dieser Effekt bei den Zelllinien 92.1 und
Mel270 zu beobachten, bei denen nach 96h kaum mehr lebende Zellen vorhanden wa-
ren (4,1 bzw. 5,6 % lebende Zellen). Die Zellviabilitadt von OMM1.5 nach Transfektion mit
MITF-siRNA blieb flr 48h nahezu konstant und nahm erst dann signifikant ab. Nach 96h
waren hier jedoch immer noch 29,5 % lebende Zellen vorhanden. In der Zelllinie 1205Lu
war hingegen kaum eine Abnahme der Zellviabilitat im Vergleich zu den mit der Kontroll-
siRNA transfizierten Zellen nachweisbar.
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Abb. 26: Verringerung der Zellviabilitdt nach MITF-Hemmung

Die KM-Zelllinie 1205Lu sowie die drei SOX10-exprimierenden UM-Zelllinien 92.1, Mel270 und
OMM1.5 wurden mit einer MITF- oder Kontroll-siRNA transfiziert und die Zellviabilitdt nach 24h,
48h, 72h und 96h mithilfe des CellTiter-Blue® Cell Viability Assay (Promega) bestimmt. 100%:

Zellen nur mit Transfektionreagenz Lipofectamine® RNAIMAX behandelt. Mittelwerte + SD, n = 3.
*:p <0,05, **: p<0,01, ***: p <0,001 vs. Kontroll-siRNA.
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3.3.2.3 Induktion eines Zellzyklusarrests in G1 durch MITF-Hemmung

Die Ergebnisse der Zellviabilititsanalysen lassen darauf schlieRen, dass nicht nur
S0OX10, sondern auch der Transkriptionsfaktor MITF essenziell fiir das Uberleben von
UM-Zellen ist. Um den Einfluss der MITF-Expression auf den Zellzyklusprogress zu un-
tersuchen, wurden die Zellen mit einer MITF-siRNA, Kontroll-siRNA oder nur dem Trans-
fektionsreagenz Lipofectamine® RNAIMAX fur 48h transfiziert und dann eine Zellzyk-
lusanalyse mittels Propidiumjodid-Farbung und Durchflusszytometrie durchgefiihrt. Hier
zeigte sich bei der Zelllinie 92.1 nach MITF-Hemmung ein deutlicher Zellzyklusarrest in
der G1-Phase (Abb. 27). Ein héherer Anteil an Zellen in der G1-Phase wurde ebenfalls
bei den Zelllinien Mel270 und 1205Lu beobachtet. Im Gegensatz dazu anderte sich die
Verteilung der Zellzyklusphasen in den OMM1.5-Zellen nach MITF-Inhibition nicht.
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Abb. 27: Zellzyklusarrest in der G1-Phase des Zellzyklus nach Hemmung von MITF

Anteil der in den Zellzyklusphasen G1, S und G2/M befindlichen Zellen nach Transfektion mit
MITF- oder einer Kontroll-siRNA bzw. nach Behandlung nur mit dem Transfektionsreagenz Lipo-
fectamine® RNAIMAX fur 48h, Mittelwerte £ SD, n = 3. Keine siRNA: Zellen nur mit Transfekti-
onsreagenz behandelt. Analyse durch Propidiumjodid-Farbung und anschlieRende
durchflusszytometrische Messung.

Dass eine Hemmung von MITF zu einem Arrest in der G1-Phase des Zellzyklus flhrt,
konnte durch Western-Blot-Analysen bestatigt werden. Nach MITF-Hemmung kam es
zu einer Hypophosphorylierung des Rb-Proteins sowie zu einer Verringerung der
Cyclin D1-Expression in den Zelllinien 92.1 und Mel270 (Abb. 28). Darlber hinaus
konnte eine Induktion der p21-Expression sowie eine Verringerung der p27-Expression
festgestellt werden, wohingegen sich die Expression des Tumorsuppressorproteins p53
nicht veranderte. Die Expression der untersuchten zellzyklusregulierenden Proteine ver-
anderte sich 24h nach der Transfektion in der Zelllinie OMM1.5 nicht. Dieses Ergebnis
stimmt mit den Ergebnissen der durchflusszytometrischen Analysen liberein, da bei die-
ser Zelllinie auch 48h nach der Transfektion noch keine Anzeichen eines Zellzyklusar-
rests zu beobachten war.
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3.3.2.4 Zelltodinduktion nach MITF-Hemmung uber den intrinsischen
Apoptoseweg

Die starke Abnahme der Zellviabilitat in den Zelllinien 92.1 und Mel270 nach MITF-Inhi-
bition deutete auf eine Zelltodinduktion hin. Um zu untersuchen, ob der Zelltod durch
Apoptose oder Nekrose verursacht wurde, wurden die UM-Zelllinien 92.1, Mel270,
OMM1.5 sowie die KM-Zelllinie 1205Lu mit MITF-siRNA, einer Kontroll-siRNA oder dem
Transfektionsreagenz alleine fiir 48h transfiziert, dann eine Annexin V-Propidiumjodid-
Farbung durchgefuhrt und die Zellen mittels Durchflusszytometrie analysiert. In den bei-
den Zelllinien 92.1 und Mel270 kam es - wie schon durch die Ergebnisse der Zellviabili-
tatsversuche zu erwarten war - zu einer deutlichen Zunahme an Annexin V-positiven
Zellen nach MITF-Hemmung, wohingegen die Zelllinien OMM1.5 und 1205Lu kaum Ver-
anderungen zeigten (Abb. 29). Dies spricht fur eine gezielte Zelltodinduktion durch
Apoptose nach MITF-Inhibition in zwei der drei untersuchten UM-Zelllinien.
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In Western Blot-Analysen konnte nach MITF-Hemmung eine Spaltung und damit Akti-
vierung der Procaspasen 3 und 9 sowie von PARP, welches durch die aktivierte Caspase
3 gespalten wird, in den Zelllinien 92.1 und Mel270 nachgewiesen werden (Abb. 30).
Dies deutet darauf hin, dass es in diesen beiden Zelllinien durch die Hemmung von MITF
tatsachlich zur Apoptoseinduktion kommt.
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Die Expression des antiapoptotischen Proteins Bcl-2 war nach MITF-Hemmung in den
Zelllinien 92.1 und Mel270 leicht verringert (Abb. 31). In der Zelllinie Mel270 kam es
aullerdem zu einer Verringerung der Bcl-w-Expression; demgegentiber war kein Bcl-w
in der Zelllinie 92.1 nachweisbar. Die Proteinexpression der Proteine Bak und Bax ver-
anderte sich in beiden Zelllinien nicht.

In OMMA1.5, in der es nach MITF-Hemmung kaum zur Zelltodinduktion kam, wurden wie
erwartet keine Veranderungen der Proteinexpression der vier untersuchten Proteine de-
tektiert. Ebenfalls untersucht wurde die Expression des DNA-Schadensmarkers y-
H2A.X, welcher in allen drei untersuchten Zelllinien in Vergleich zu den jeweiligen Kon-
trollen geringfligig starker exprimiert war.
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Die Daten deuten insgesamt darauf hin, dass die Hemmung von MITF in den Zelllinien
92.1 und Mel270 zur Apoptoseinduktion tber den intrinsischen Apoptoseweg fiihrt. So-
mit scheinen die Hemmung von MITF und SOX10 einen ahnlichen zytotoxischen Effekt
auf UM-Zellen auszulben.

3.3.2.5 Ektope Expression von MITF verhindert Zelltod nach SOX10-Hemmung

Die oben beschriebenen Experimente zeigen, dass die Hemmung von MITF zu ahnli-
chen Effekten wie die Hemmung von SOX10 fiihrt. Zusammen mit der Tatsache, dass
MITF ein direktes Zielgen von SOX10 ist, sprechen die Daten dafir, dass SOX10 seine
Uberlebensférdernden Effekte zum Teil Gber MITF ausubt. Sollte dies tatsachlich der Fall
sein, konnte eine SOX10-unabhangige Expression von MITF die Zellen bei einer
SOX10-Hemmung mdglicherweise vor dem Zelltod retten. Fir ein solches ,Rescue®-Ex-
periment wurden Mel270-Zellen zuerst mit einem MITF-Expressionsplasmid (pCMV6-
MITF-Myc-DDK), welches durch den enthaltenen CMV-Promotor unabhangig von der
SOX10-Expression zur Expression der melanozytaren Isoform von MITF (M-MITF) mit
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einem Myc-DDK-Tag fiihrt, oder mit dem entsprechenden Kontrollvektor (o CMV6-Entry)
transfiziert. Nach 16h wurden die Zellen dann mit SOX10-B-siRNA oder einer Kontroll-
siRNA transfiziert. Anschlielend wurde die Zellviabilitat mittels CellTiter-Blue® Assay
sowie die Apoptoseinduktion im Western Blot jeweils 24h und 48h nach der siRNA-
Transfektion analysiert (Abb. 32A). Zellen, die vor der SOX10-Hemmung mit dem Ex-
pressionsplasmid pCMV6-MITF-Myc-DDK transfiziert worden waren, zeigten nach 48h
eine héhere Zellviabilitat als diejenigen, die mit dem Kontrollvektor pCMV6-Entry trans-
fiziert worden waren (Abb. 32B und C).

A Mel270
o tiber Nacht a 24h, 48h
Cd ‘C 3
Transff'.-ktion mit. Transfektion mit
Expressionsplasmid SOX10-B-siRNA Analysen
- MITF-Myc-DDK - Zellviabilitat

- pPCMV6-Entry (Kontrollvektor) - Proteinexpression

+ MITF-Myc-DDK

*¥

140 4
120 1
100 1
80 1
60 1
40 A
20 1

pCMV6-Entry

12h 24h 48h 72h

Viabilitét [%]

pCMV6-Entry MITF-Myc-DDK
+ SOX10-B-siRNA  + SOX10-B-siRNA

Abb. 32: Analyse der Zellviabilitat nach ektoper Expression von MITF und zeitgleicher
SO0X10-Hemmung

(A) Schematische Darstellung des Versuchsprotokolls. Die UM-Zelllinie Mel270 wurde zuerst mit
dem Kontroll-Plasmid pCMV6-Entry oder dem Expressionsplasmid pCMV6-MITF-Myc-DDK
transfiziert, um eine ektope Expression von MITF zu induzieren. Nach 16h Inkubation wurde das
Medium gewechselt und die Zellen mit SOX10-B-siRNA transfiziert, um eine Hemmung der
SOX10-Expression zu erzielen. Nach weiteren 24h und 48h wurde die Zellviabilitat bestimmt und
die Zellen fur Proteinexpressionsanalysen geerntet. (B) Nachweis der ektopen MITF-Expression
12h, 24h, 48h und 72h nach der Transfektion mit dem Plasmid pCMV6-MITF-Myc-DDK in
Mel270-Zellen. Aufgrund des verwendeten Expressionsvektors verfiigt das ektop exprimierte
MITF Uber einen Myc-DDK-Tag und kann daher nicht nur durch MITF-spezifische Antikorper,
sondern auch durch anti-Myc- und anti-FLAG®-Antikorper im Western Blot detektiert werden.
Ladekontrolle: B-Aktin. pPCMV6-Entry: Kontrollvektor, @: unbehandelte Zellen. (C) Bestimmung
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der Zellviabilitdt von Mel270 nach Transfektion mit dem Kontrollvektor pCMV6-Entry oder dem
MITF-Expressionsplasmid pCMV6-MITF-Myc-DDK und zeitgleicher Hemmung der SOX10-Ex-
pression mithilfe des CellTiter-Blue® Assay (Promega), Analyse 48h nach Transfektion mit
SOX10-B-siRNA, Mittelwerte £ SD, n = 3. **: p < 0,01 vs. pCMV6-Entry + SOX10-B-siRNA.

Die Analyse der Effektorcaspase-Aktivitat ergab, dass in den Zellen mit ektoper MITF-
Expression nach SOX10-Inhibition weniger Spaltung der Procaspasen 3 und 9 sowie
von PARP zu beobachten war als in den Zellen, die mit dem Leervektor transfiziert wor-
den waren (Abb. 33). Am ausgepragtesten war dieser Effekt 48h nach der siRNA-Trans-
fektion. Somit scheint eine ektope Expression von MITF den Zelltod und die Caspase-
aktivierung nach SOX10-Hemmung zumindest teilweise verhindern zu kénnen.

24h 48h
LA sallice. oo Abb. 33: Analyse der Caspase-Aktivitat
-+ - -+ - pCMV6-Entry  .ch ektoper Expression von MITF und
el R . SOX10-B-siRNA zeitgleicher SOX10-Hemmung
- - 4+ - - 4+ 0

Proteinexpression von MITF, Myc, FLAG®,
S0OX10, Procaspase 3, Proccaspase 9 und

. o i. i“i i MITF PARP. Mel270-Zellen wurden mit dem Kon-

trollvektor pCMV6-Entry oder dem MITF-

r‘ = I Myc Expressionsplasmid pCMV6-MITF-Myc-
- FLAG® DDK ftransfiziert; nach 16h Inkubation er-
folgte dann eine weitere Transfektion mit

| el SOX10-B-siRNA oder einer Kontroll-siRNA.
PSSP WP WP | (cpasc9 Die Ernte der Zellen fiir die Western-Blot-
< gespalten Analysen erfolgte 24h und 48h nach der

— siRNA-Transfektion. B-Aktin diente als La-
e dekontrolle. @: Zellen nur mit Transfektions-

reagenzien (Lipofectamine™ 3000 und Lip-

-—- < gespalten _ _
— < ofectamine® RNAIMAX) behandelt.
—— e qup SED GNS GN | PARP
- — — — < gespalten

— — — s we® | (3-Aktin

Mit der Zelllinie 92.1, bei der nach Hemmung von SOX10 und MITF ebenfalls eine starke
Zelltodinduktion beobachtet wurde, war geplant, analoge Versuche durchzuflhren, aller-
dings liel} sich diese Zelllinie auch mit verschiedenen Transfektionsreagenzien nicht mit
den Expressionsplasmiden transfizieren. Aufgrund der schlechten Transfektionseffizienz
von <5 % war es daher nicht mdglich war, Rescue-Experimente mit dieser Zelllinie
durchzufihren.
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3.4 SOX10-basiertes drug repurposing

3.4.1 SOX10-basierte Identifizierung potenzieller Kandidatenstrukturen
fiir eine zielgerichtete Therapie mittels UM-Interaktionsnetzwerk

Da derzeit wirksame Therapien insbesondere fir UM-Patienten mit fortgeschrittener Er-
krankung nur begrenzt verfligbar sind, wurden im letzten Teil der Arbeit die zuvor ge-
wonnenen Erkenntnisse Uber die essenzielle Funktion von SOX10 im UM genutzt, um
neue Zielstrukturen fiir eine zielgerichtete Therapie des UM zu finden. Die Generierung
und Analyse der Netzwerke sowie die Selektion potenzieller Zielstrukturen auf Basis der
experimentellen Erkenntnisse zu SOX10 im UM erfolgte durch Adrian Weich, M.Sc. und
Prof. Dr. Julio Vera-Gonzalez (AG Vera-Gonzalez, Hautklinik des Uniklinikums
Erlangen). Konkret sollten mithilfe eines bioinformatischen, netzwerkbasierten Ansatzes
neue potenzielle Kandidaten identifiziert werden, deren Funktion im Rahmen einer ziel-
gerichteten Therapie anstelle des nicht pharmakologisch beeinflussbaren SOX10 modu-
liert werden kdnnten. Dabei kdnnten nicht nur neuartige Substanzen zum Einsatz kom-
men, die bisher nur praklinisch eingesetzt wurden, sondern moglicherweise bereits gut
erforschte oder sogar zugelassene Medikamente im Sinne eines drug repurposing in
einem neuen Anwendungsgebiet eingesetzt werden, flir das sie urspringlich nicht ent-
wickelt wurden [443]. Drug repurposing hat neben der Ersparnis von Kosten beziglich
der Forschung und Entwicklung unter anderem den Vorteil, dass etwa die fur eine Zu-
lassung bendtigten umfangreiche Sicherheitstests, wenn auch in einem anderen medi-
zinischen Anwendungsgebiet, bereits in der Vergangenheit durchgefuhrt wurden und
dadurch die Translation in die klinische Anwendung schneller erfolgen kann [443]. Dies
sind insbesondere Vorteile, die das drug repurposing fur die Behandlung von seltenen
Erkrankungen attraktiv machen, fiir die sonst nur begrenzte Ressourcen zur Verfiigung
stehen [443, 444].

Fir die Generierung eines UM-Protein-Interaktionsnetzwerkes wurden Proteine aus
wichtigen Signalwegen im UM und Proteine mit bekannter SOX10-Interaktion in ein
Netzwerk implementiert und dieses mit Daten bezlglich miRNA-mRNA-Interaktionen er-
weitert, wodurch ein Netzwerk bestehend aus 4.954 nodes (Knotenpunkten) und
63.506 edges (Ecken) generiert wurde. Nach der weiteren Prozessierung und der
Integration von Daten eines bereits zuvor erstellten SOX10-Interaktionsnetzwerkes aus
dem Kontext der Oligodendrozytendifferenzierung [377] wurde das Netzwerk auf
5.479 nodes und 65.032 edges erweitert. Nach Entfernung doppelter Knotenpunkte und
Self-Loops wurde so letztendlich ein Netzwerk bestehend aus 3.003 nodes und
12.517 edges erstellt. In dieses Netzwerk wurden dann Genexpressionsdaten von
80 UM-Primartumoren aus der TCGA-Datenbank des Datensatzes ,Ocular Melanomas®
[75] implementiert, das Netzwerk auf regulatorische Motive hin untersucht und nach Er-
stellung einer Hierarchie ein Kern-Interaktionsnetzwerk mit den 100 am héchsten bewer-
teten Motiven bestehend aus 65 nodes und 306 edges generiert (Abb. 34).
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Das Kern-Interaktionsnetzwerk wurde dann als Ausgangspunkt flr die Generierung ei-
nes Netzwerkes fur die Zielstrukturselektion (,target selection network®) genutzt, indem
die Kern-Komponenten des Netzwerks und ihre jeweiligen ersten Nachbarn im Netzwerk
extrahiert und nach ihrer grundlegenden Funktion reannotiert wurden. Das so entstan-
dene Netzwerk enthielt 394 nodes und 1.817 edges, die dann GO-Terms zugeordnet
wurden (Abb. 35). Dem Term ,growth factors® wurden dabei 63, dem Term ,receptors*
47, dem Term ,co-transcription factors® 63 und dem Term ,transcription factors“ 110
Gene (Anzahl inkl. ,,Co-transcription factors®) zugewiesen. Nach Integrierung der Ergeb-
nisse der RNA-Sequenzierung nach Transfektion mit SOX10-spezifischer siRNA wurden
letztlich 56 nodes identifiziert, die nach SOX10-Hemmung differenziell exprimiert waren.

Abb. 35: Netzwerk zur ldentifizierung potenzieller therapeutischer Zielstrukturen im UM
(,,target selection network")

Die Hintergrundfarbe reprasentiert die Zugehdrigkeit zu unterschiedlichen GO-Terms, die GroRe
des jeweiligen Knotens korreliert mit der log1o-transformierten mittleren Genexpression im UM,
berechnet auf Basis des TCGA-Datensatzes (80 UM-Primartumoren) [75]. Die Farbe des Ringes
um den Knoten stellt dar, ob das jeweilige Gen bei den in dieser Arbeit beschriebenen RNA-
Sequenzierungsanalysen nach SOX10-Hemmung in den UM-Zelllinien 92.1 und Mel270 im Ver-
gleich zur Kontrolle herabreguliert (blau) oder hochreguliert (rot) war. Gelber Pfeil: Position von
SOX10 im Netzwerk.

Abb. 35 siehe Folgeseite
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Aus diesem Netzwerk wurden dann die vier Kandidatengene Enhancer of zeste
homolog 2 (EZH2), E2F1, Transferrin-Rezeptor (TFRC) (codiert fur CD71) und FGF9
ausgewahlt und in ersten in vitro-Experimenten auf ihre Eignung als potenzielle thera-
peutische Zielstrukturen im UM getestet. Alle vier Kandidaten wurden nach SOX10-
Hemmung herabreguliert, kdnnen entweder durch small molecule-Inhibitoren oder neut-
ralisierende bzw. blockierende Antikérper gehemmt werden und wurden bereits in Ver-
bindung mit tumorférdernden Vorgangen im UM oder in anderen Krebsarten beschrie-
ben.

E2F1 aus der E2F-Transkriptionsfaktorfamilie ist zentral am Zellzyklusiibergang von der
G1- in die S-Phase beteiligt [386]. Die E2F-Transkriptionsfaktorfamilie besteht aus acht
nah verwandten Mitgliedern, die neben der Zellzyklusregulation auch in die Aufrechter-
haltung der Genomstabilitdt involviert sind [445]. Mit Ausnahme von E2F7 und E2F8
agieren sie in Komplexen mit TFDP1, TFDP2 oder TFDP3 aus der Transkriptionsfaktor-
dimerisierungspartner-(TFDP)-Familie [445]. E2F1, E2F2 und E2F3 foérdern die Expres-
sion ihrer Zielgene und werden daher als transkriptionelle Aktivatoren bezeichnet, wah-
rend die kanonische Repressoren E2F4, E2F5 und E2F6 die Transkription hemmen
[445, 446]. E2F7 und E2F8 besitzen zwei DNA-Bindedomanen, jedoch keine Dimerisie-
rungsdomane und konnen daher ihre repressive Funktion unabhangig der TFDP-Prote-
ine als Homodimere auslben, weshalb sie auch als atypische Repressoren bezeichnet
werden [445, 447]. E2F1 bildet in Zellen in der GO/G1-Phase Komplexe mit dem Tumor-
suppressorprotein Rb, wodurch seine Bindung an die DNA inhibiert wird und es tran-
skriptionell inaktiv ist [386]. Nachdem Rb durch die Cyclin-CDK-Komplexe Cyclin D1-
CDK4/6 und Cyclin E1-CDK2 in der G1-Phase hyperphosphoryliert wird, nimmt seine
Bindung zu E2F1 ab und E2F1 kann dann seine Funktion als Transkriptionsfaktor direkt
durch Stimulierung der Transkription von Genen ausiiben, die fir den Ubergang in die
S-Phase bendtigt werden [384-386]. Im KM flhrt die Hemmung von E2F1 zum Zelltod,
zur Seneszenz und erhoht die Sensitivitat gegen BRAFi von BRAFi-resistenten Zellen
[448]. Cronin et al. konnten nach Ausschaltung von SOX10 im KM eine Verringerung der
E2F1-Expression zeigen [294]. Daruber hinaus fehlen weitere Hinweise in der Literatur,
dass SOX10 die Expression von E2F1 beeinflussen kann. Pan et al. fanden, dass die
Hemmung von BAP1 die Expression von E2F1-Zielgenen, nicht aber von E2F1 selbst in
UM-Zellen verringert [93]. Darlber hinaus gibt es derzeit keine Publikationen zur Rolle
von E2F1 im UM.

Die Histonmethyltransferase EZH2 gehort zur Familie der Polycomb group-Gene und
stellt die katalytische Untereinheit des Polycomb repressive complex 2 (PRC2) dar, der
durch epigenetische Veranderungen die Stilllegung von Genen bewirkt [449]. Konkret
fuhrt EZH2 zur Dreifach-Methylierung von Lysin 27 am Histon H3 (H3K27me3), welches
als repressive Chromatinmarkierung dient und somit die Stilllegung von Genen bedingt
[450]. EZH2 ist eines der Gene, das Uber den Rb-E2F-Signalweg und insbesondere tber
E2F1 und E2F2 transkriptionell hochreguliert wird [451]. Es wird in proliferierenden
Zellen und auch in einer Vielzahl von Tumorentitaten inklusive dem KM exprimiert [451,
452]. Auch im UM scheint EZH2 eine Rolle zu spielen, wie die Analyse von 89 UM-
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Primartumoren zeigte; hier hatten Patienten mit einer héheren EZH2-Expression eine
héhere Mitoserate und Ki67-Expression, ein héheres Risiko fir die Entwicklung von Me-
tastasen und ein schlechteres krankheitsspezifisches Uberleben [453]. Die Funktion von
EZH2 kann Uber small molecule-Inhibitoren wie GSK126, EPZ011989 und Tazemetostat
(EPZ-6438) gehemmt werden, die mit seinem Substrat S-Adenosyl-Methionin (SAM)
konkurrieren und so eine kompetitive Hemmung des Enzyms bedingen [449]. Tazeme-
tostat wurde von der U.S. Food and Drug Administration (FDA) im Januar 2020 fir die
Behandlung von Patienten = 16 Jahren mit fortgeschrittenem oder metastasiertem, nicht-
resezierbarem epitheloiden Sarkom zugelassen [454]. LaFave et al. konnten zeigen,
dass Mesotheliom-Zellen mit einem Funktionsverlust von BAP1 sensitiv auf eine Hem-
mung von EZH2 mit dem small molecule-Inhibitor EPZ011989 reagieren [455], weshalb
eine weitere Arbeitsgruppe untersuchte, ob eine EZH2-Hemmung durch Tazemetostat
(EPZ-6438) ebenfalls einen Effekt auf UM-Zellen haben kénnte [456]. Allerdings zeigte
sich hier, dass der Inhibitor in keiner der getesteten Konzentrationen weder die Koloni-
enbildung noch das Zellwachstum der UM-Zelllinien (darunter die BAP1-exprimierende
Zelllinie 92.1) beeinflusste und auch keine Korrelation zwischen dem BAP1-Status und
der EZH2-Expression bestand [456]. Im Gegensatz dazu zeigten Jin et al. in ihrer Arbeit,
dass der EZH2-Inhibitor GSK126 die Zellviabilitat der Zelllinien 92.1, Mel270, OMM2.3
und OMM-1 verringern konnte, zur Apoptoseinduktion fuhrte sowie das Tumorwachstum
im Xenograft-Mausmodell verringerte [457].

Das Gen TFRC ist auf Chr. 3q29 lokalisiert und codiert fir das Protein Transferrin-Re-
zeptor 1 (CD71), das zentral an der Aufrechterhaltung des Eisenhaushalts der Zellen
beteiligt ist [458, 459]. Eisen wird im Kdrper neben der Verwendung in Hamoglobin und
Myoglobin zum Sauerstofftransport im Blut und den Muskeln auch fir die Funktion zahl-
reicher Enzyme bendtigt und ist unter anderem fiir die Funktion des Immunsystems es-
senziell [459, 460]. Da Fe3* schlecht I6slich ist und freie Eisenionen zur Produktion von
ROS fiihren, werden diese im Organismus an das Plasmaprotein Transferrin gebunden
transportiert [459, 461]. CD71 ist ein ubiquitar exprimierter Transmembranrezeptor und
liegt als Homodimer in der Zelloberflache vor, wo es die clathrin-vermittelte Endozytose
von Transferrin und den jeweils daran gebundenen zwei Fe**-lonen ins Zellinnere ver-
mittelt [459, 461-463]. CD71 scheint darliber hinaus an der Ferroptose, einer eisenver-
mittelten Art des nicht-apoptotischen Zelltodes, beteiligt zu sein, die mit Tumorerkran-
kungen und neurologischen Erkrankungen assoziiert wird [459, 464, 465]. Eine Uberex-
pression von CD71 im Vergleich zum normalen Gewebe wurde in zahlreichen Tumoren
gefunden [463], darunter auch im HCC [466, 467], wo die Expression im in vivo-Modell
positiv mit dem Fortschreiten der Erkrankung korrelierte [468]. Aulterdem wurde eine
erhdhte Expression im Mammakarzinom festgestellt, wo es ein schlechter prognosti-
scher Marker ist und negativ mit dem Ansprechen auf Tamoxifen korreliert [469]. Bislang
gibt es noch keine Publikationen zu einer gezielten Hemmung der CD71-Rezeptorfunk-
tion im UM, allerdings konnten Zhang et al. im Mausmodell zeigen, dass das DNA-Apta-
mer XQ-2d, das spezifisch an CD71 bindet, genutzt werden kann, um das daran gekop-
pelte Zytostatikum Monomethylauristatin E gezielt in UM-Zellen einzuschleusen [470].
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Fibroblast growth factor 9 (FGF9) ist ein Wachstumsfaktor aus der FGF-Familie, deren
18 sezernierte Mitglieder als Liganden der vier FGF-Rezeptoren FGFR1, FGFR2,
FGFR3 und FGFR4 wirken [471]. Letztere sind RTK, die aus drei extrazellularen Immun-
globulin-artigen Domanen (1, Il und Il1), die die Bindungsspezifitdt der FGFs bestimmen,
einer Transmembrandomane und der zweigeteilten intrazellularen Tyrosinkinasedo-
mane aufgebaut sind [471-473]. Von FGFR1, FGFR2 und FGFR3 kénnen durch alter-
natives Splicing der Exons 7 bis 9, die fUr die immunglobulin-artige Domane Ill codieren,
die beiden Splicevarianten IlIb (Nutzung von Exon 8) und llic (Nutzung von Exon 9) ge-
neriert werden, wodurch sich der C-terminale Bereich der Doméane Ill andert und die
Bindungsaffinitat zu den Liganden moduliert wird [472, 474]. FGFs sind zentral an der
Regulierung der Proliferation, Migration, am Metabolismus, Zelliberleben und an der
Differenzierung von Zellen beteiligt und kénnen parakrin als auch autokrin wirken [471].
Bisher wurden 22 FGFs, die aufgrund ihrer Sequenzhomologie, biologischen Funktion
und evolutionarer Verwandtschaft finf Subfamilien zugeordnet werden kénnen, identifi-
ziert [471]. FGF9 bildet zusammen mit FGF9, FGF16 und FGF20 eine eigene Subfamilie,
deren Mitglieder die lllc-Splicevarianten von FGFR1, FGFR2 und FGFR3 sowie im Ge-
gensatz zu anderen FGFs auch die llIb-Splicevariante von FGFR3 zusatzlich zu FGFR4
aktivieren kdénnen [471]. FGF9 bindet vor allem an die llic-Isoformen und zeigt die
hdchste Rezeptorspezifitat flir FGFR3c, gefolgt von FGFR2c [475]. Bislang gibt es keine
Publikationen zur Frage, ob SOX10 die Expression von FGF9 beeinflussen kann. Im
Kontext des UM konnten Seitz et al. zeigen, dass aktivierte hepatische Sternzellen FGF9
sezernieren und dieses die Proliferationsfahigkeit der UM-Zelllinien OMM-1 und
OMMZ2.5 in vitro fordert, was zum speziellen Hepatotropismus des UM beitragen kdnnte
[476].

3.4.1.1 Basale Expression der Kandidatengene E2F1, EZH2, TFRC und FGF9

Zunachst wurde die basale Gen- und Proteinexpression der vier ausgewahlten
Kandidatengene EZH2, E2F1, FGF9 und TFRC in den drei UM-Zelllinien 92.1, Mel270
und OMM1.5 sowie in der KM-Zelllinie 1205Lu mittels gPCR- und Western Blot-Analysen
untersucht. EZH2 und E2F1 wurden in allen untersuchten Zelllinien exprimiert, am
starksten war die Genexpression dabei in den Zelllinien 92.1 und Mel270 (Abb. 36A und
B). TFRC wurde ebenfalls in allen Zelllinien nachgewiesen (Abb. 36C). FGF9 wurde nur
in der Zelllinie 92.1 stark exprimiert; bei den beiden anderen untersuchten UM-ZL sowie
der KM-ZL 1205Lu war nur eine geringe FGF9-Genexpression nachzuweisen (Abb.
36D). Auf Proteinebene konnte E2F1 bei allen Zelllinien detektiert werden, wobei die
héchste Expression in der UM-Zelllinie Mel285 detektiert wurde. (Abb. 36E). EZH2
konnte neben den bereits untersuchten UM-Zelllinien 92.1, Mel270 und OMM1.5 auch
in der Zelllinie Mel285 sowie in der KM-Zelllinie 1205Lu nachgewiesen werden. Im Wes-
tern Blot zeigte sich bei HM nur eine schwache Bande. CD71 (codiert durch TFRC)
wurde am starksten in den UM-Zelllinien Mel270 und OMM1.5 exprimiert, gefolgt von
HM und Mel285. Die Expression in der KM-Zelllinie 1205Lu war wie bereits in der Gen-
expressionsanalyse gezeigt am geringsten. Im Gegensatz zu den Genexpressionsdaten

149



3 Ergebnisse

war in 92.1-Zellen jedoch eine geringere Expression als in der Zelllinie Mel270 nach-
weisbar. Ebenfalls eine von den Genexpressionsanalysen abweichendes Ergebnis
zeigte sich bei der Analyse der FGF9-Expression. Im Western Blot war die héchste Pro-
teinexpression in den Zelllinien 92.1 und Mel270 detektierbar, allerdings war im Gegen-
satz zur Genexpression kein deutlicher Expressionsunterschied zwischen beiden Zellli-
nien erkennbar. Insgesamt war eine FGF9-Proteinexpression in allen untersuchten UM-
Zelllinien, in der KM-Zelllinie 1205Lu und in geringem Ausmalf auch in HM nachweisbar.
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Zusatzlich zur basalen Genexpression wurde auch die Genexpression nach Transfektion
mit SOX10-spezifischen siRNAs analysiert und mit den Ergebnissen der unter Punkt
3.2.5.3 beschriebenen RNA-Sequenzierungsanalyse verglichen (Abb. 37). Hier zeigte
sich, dass laut der gPCR-Analyse die Gene E2F1 und TFRC nach SOX10-Hemmung in
den beiden Zelllinien 92.1 und Mel270 deutlich geringer exprimiert wurden, wahrend sich
die Expression in der Zelllinie OMM1.5 kaum anderte. Ebenfalls eine geringere Expres-
sion nach SOX10-Hemmung konnte in der Zelllinie 92.1 bei FGF9 detektiert werden,
wahrend sich die Expression in den Zelllinien Mel270 und OMM1.5 kaum veranderte,
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was auf die geringe FGF9-Genexpression der Zellen zurtickzufiihren war. Im Gegensatz
zu den RNA-Sequenzierungsdaten konnte die Herabregulation von EZH2 nach SOX10-
Knockdown in der gPCR-Analyse allerdings nicht bestatigt werden.
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Abb. 37: Genexpression der vier Kandidatengene E2F1, TFRC, EZH2 und FGF9 nach
SOX10-Hemmung

Relative Genexpression von (A, B) SOX10, (C, D) E2F1, (E, F) TFRC, (G, H) EZHZ2 und (I, J)
FGF9 nach Transfektion mit SOX10-A-, SOX10-B- oder einer Kontroll-siRNA fiir 24h, analysiert
durch qPCR (linke Spalte, n=3) bzw. RNA-Sequenzierungsanalyse nach Transfektion mit
SOX10-B- oder einer Kontroll-siRNA fur 24h (rechte Spalte, n = 4 gepoolt). Mittelwerte = SD, *:
p <0,05, *: p <0,01, **: p < 0,001 vs. Kontroll-siRNA.

Die Analyse der Proteinexpression nach SOX10-Hemmung ergab analog zu den Ergeb-
nissen der Genexpressionsanalysen eine deutliche Herabregulierung von E2F1 in den
UM-Zelllinien 92.1 und Mel270 (Abb. 38). Das von TFRC codierte Protein CD71 wurde
etwas verringert in der Zelllinie 92.1 exprimiert, allerdings zeigten sich hier keine Unter-
schiede nach SOX10-Hemmung in der Zelllinie Mel270, bei der zuvor eine verringerte
TFRC-Genexpression gefunden wurde, und in der Zelllinie OMM1.5. Analog zur Genex-
pressionsanalyse konnten in allen drei untersuchten Zelllinien keine Veranderungen der
EZH2-Expression detektiert werden. Anders als durch die Genexpressionsanalyse zu
erwarten gewesen war, zeigte die Zelllinie 92.1 keine Ubermafige FGF9-Proteinexpres-
sion im Vergleich zu den anderen beiden Zelllinien. Insgesamt war auch keine FGF9-
Herabregulation nach SOX10-Hemmung in allen drei Zelllinien nachweisbar. FGF9 kann
posttranslational durch N-Glykosylierung modifiziert werden und kann als 25, 29 und
30 kDa groRe Isoformen auftreten [477, 478]. Anders als in Abb. 36E zu sehen ist,
konnte nach SOX10-Hemmung bei der Detektion mit dem FGF9-spezifischen Antikdrper
eine zweite Bande mit einem etwas geringeren Molekulargewicht bei den Zelllinien 92.1
und Mel270 nachgewiesen werden. Eine 25 kDa-Bande wurde allerdings bei keiner der
drei untersuchten Zelllinien detektiert.
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3.4.1.2 Zellviabilitat nach Inhibition mit small molecule-Inhibitoren bzw.
blockierenden Antikdrpern

Als nachstes wurde die Wirkung der beiden small molecule-Inhibitoren Tazemetostat
und HLM006474 zur pharmakologischen Hemmung von EZH2 bzw. E2F1 sowie der Ein-
fluss von neutralisierenden bzw. blockierenden Antikérper gegen FGF9 und CD71 auf
die Zellviabilitat der drei UM-Zelllinien 92.1, Mel270 und OMM1.5 mittels CellTiter-Blue-
Assays untersucht. Hierbei zeigte sich insbesondere bei der Behandlung mit
HLMO006474 eine deutliche Reduktion der Zellviabilitdt nach 96h in allen drei analysierten
UM-Zelllinien (Abb. 39A). Die EZH2-Inhibition durch Tazemetostat (ICso: 11 nM [479]),
fUhrte nur in den hoéchsten getesteten Konzentrationen zu einer Abnahme der Zellviabi-
litat (Abb. 39B). HLM006474 ist ein pan-E2F-Inhibitor (E2Fi), der die DNA-Bindung der
E2F-Transkriptionsfaktoren hemmt (1Cso: 29,8 uM) und nicht spezifisch fur E2F 1 ist [480].
Daher wurde auch die Genexpression der sieben anderen Mitglieder der E2F-Transkrip-
tionsfaktoren analysiert. Diese waren nicht Bestandteile des generierten target selection
network, allerdings ist bekannt, dass andere Mitglieder dieser Transkriptionsfaktorfamilie
den Funktionsausfall einzelner E2Fs kompensieren kénnen [447, 481]. Daher liegt nahe,
dass die deutliche Abnahme der Zellviabilitdt nach HLM006474-Exposition nicht nur
durch E2F1, sondern auch durch Inhibition der anderen E2F-Transkriptionsfaktoren ver-
mittelt werden konnte. Die Daten der RNA-Sequenzierungsanalyse nach SOX10-Inhibi-
tion zeigten, dass insbesondere E2F3 in den Zellen stark exprimiert war und nach
SOX10-Hemmung herabreguliert wurde (Abb. 39C). AuRerdem konnte auch eine Her-
abregulation von E2F2, E2F4, E2F6 sowie E2F7 in beiden Zelllinien sowie von E2F8 in
der Zelllinie Mel270 detektiert werden.

Die Hemmung von CD71 mithilfe eines neutralisierenden Antikérpers flhrte nur in der
hdchsten getesteten AK-Konzentration zu einer Abnahme der Zellviabilitat der Zelllinie
92.1 nach 7 Tagen, wahrend sich die Zellviabilitat der beiden anderen Zelllinien kaum
anderte. Bei der Behandlung der Zellen mit einem FGF9-neutralisierenden Antikdrper
zeigten sich jedoch keinerlei Unterschiede in der Zellviabilitdt im Vergleich zu den Kon-
trollzellen (Abb. 40).
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Abb. 39: Verringerung der Zellviabilitat nach Inkubation mit HLM006474 bzw. Tazemetostat
und Expression von E2F-Transkriptionsfaktoren

Die UM-Zelllinien 92.1, Mel270 und OMM1.5 wurden mit verschiedenen Konzentrationen des (A)
pan-E2Fi HLM006474 bzw. (B) EZH2-Inhibitors Tazemetostat oder DMSO (Kontrolle, 100%) in-
kubiert und die Zellviabilitdt nach 96h mithilfe des CellTiter-Blue® Cell Viability Assay (Promega)
bestimmt. Mittelwerte + SD, n = 3. *: p < 0,05, **: p < 0,01, ***: p < 0,001 vs. DMSO-Kontrolle. (C)
Relative Genexpression der acht Mitglieder der E2F-Transkriptionsfaktorfamilie in den Zelllinien
92.1 und Mel270 nach Transfektion mit einer Kontroll-siRNA oder SOX10-B-siRNA fur 24h (n = 4
gepoolt). Mittelwerte £ SD, *: p < 0,001 vs. Kontroll-siRNA.
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Abb. 40: Analyse der Zellviabilitat nach Inkubation mit neutralisierenden Antikérpern ge-
gen FGF9 bzw. CD71

Die UM-Zelllinien 92.1, Mel270 und OMM1.5 wurden mit verschiedenen Konzentrationen von
neutralisierenden Antikdrpern gegen (A) FGF9 (#MAB273-100, R&D Systems) und (B) CD71
(#AF2474, R&D Systems) fir 7 Tage inkubiert und dann die Zellviabilitat mithilfe des CellTiter-
Blue® Cell Viability Assay (Promega) bestimmt. 100%: Zellviabilitdt unbehandelter Zellen. N = 1.
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3.4.2 Der pan-E2F-Inhibitor HLM006474 als mdgliche zielgerichtete
Therapie im Uveamelanom

3.4.2.1 HLMO006474 induziert Zellzyklusarrest und Apoptose in UM-Zelllinien

Da es durch die Behandlung mit dem pan-E2Fi HLM006474 zu einer deutlichen kon-
zentrationsabhangigen Abnahme der Zellviabilitdt kam, wurden weitere funktionelle Ana-
lysen mit diesem Inhibitor durchgefiihrt. Flr die Untersuchung der Zellzyklusprogression
unter HLM006474-Behandlung wurden die Zellen mit 50 yM HLM006474 oder DMSO
als Kontrolle fir 72h inkubiert und dann eine Zellzyklusanalyse mittels Propidiumjodid-
Farbung und Durchflusszytometrie durchgefiihrt. Hier zeigte sich bei allen untersuchten
Zelllinien ein deutlicher Anstieg des Anteils an Zellen in der S-Phase (Abb. 41).

92.1 Mel270 OMM1.5

1201 120 120 A

100 1 100 100 A

80 - 80 A 80 Zellzyklus-Phasen:
L 60 ® 60 R 60 B Gl

40 | 40 40 O s
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Abb. 41: Zellzyklusarrest in der S-Phase des Zellzyklus nach Inkubation mit HLM006474

Anteil der in den Zellzyklusphasen G1, S und G2/M befindlichen Zellen nach Inkubation mit 50
MM HLMO006474 oder DMSO (Kontrolle) fir 72h, Mittelwerte £+ SD, n=3. Analyse durch
Propidiumjodid-Farbung und anschlieende durchflusszytometrische Messung.

Die Veranderungen der Zellzyklusprogression konnte durch Western Blot-Analysen be-
statigt werden (Abb. 42). Die Expression von Cyclin D1 war nur gering nachweisbar und
nach HLM006474-Behandlung leicht vermindert, wahrend die p21-Expression in der
Zelllinie 92.1 erh6ht und in den Zelllinien Mel270 und OMM1.5 unverandert blieb und die
p27-Expression in allen Zellen leicht verringert war. Nach Inkubation mit HLM006474 fur
96h kam es sowohl zu einer verringerten Proteinexpression als auch zu einer Rb-Hypo-
phosphorylierung in allen untersuchten Zelllinien. Auf3erdem konnte eine Herabregulie-
rung von E2F1 beobachtet werden, was dadurch erklart werden kann, dass E2F1 unter
anderem auch seine eigene Transkription Uber eine positive Ruckkopplungsschleife re-
guliert [482]. E2F1 fordert als Transkriptionsfaktor direkt die Expression zahlreicher Pro-
teine, darunter die regulatorischen Proteine der G1- und S-Phase wie Cyclin E1, Cyclin
A2 und CDK2 [482-484]. Nach der Inkubation mit HLM006474 kam es zu einer deutli-
chen Verminderung der Expression von Cyclin E1, CDK2 und Cyclin A2, sodass von
einer Bestatigung des S-Phase-Arrests ausgegangen werden kann.
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Abb. 42: Expressionsanalyse
von zellzyklusregulierenden Pro-
teinen nach Inkubation mit
HLMO006474

Proteinexpression von Cyclin D1,
p21, p27, phosphorylietem Re-
tinoblastom-Protein (phospho-Rb;
Phosphorylierung an Ser807 und
Ser811), Rb, E2F1, Cyclin Ef1,
CDK2 und Cyclin A2 nach Inkuba-
tion mit 50 yM HLMO006474 oder
DMSO (Kontrolle) fur 96h. p-Aktin
diente als Ladekontrolle.

3.4.2.2 HLMO007464 aktiviert p38 MAPK und induziert Zelltod Uber

intrinsischen Apoptoseweg

Die starke Abnahme der Zellviabilitdt nach Inkubation mit HLM006474 deutet auf eine
Zelltodinduktion hin. Um zu untersuchen, ob der Zelltod durch Apoptose oder Nekrose
verursacht wird, wurden die UM-Zelllinien 92.1, Mel270 und OMM?1.5 fir 96h mit 50 uM
HLMO006474 oder DMSO als Kontrolle inkubiert, dann eine Annexin V-Propidiumjodid-
Farbung durchgeflihrt und die Farbung mittels Durchflusszytometrie analysiert. In allen
drei untersuchten Zelllinien kam es durch die Inkubation mit HLM006474 zu einer signi-
fikanten Zunahme an Annexin V-positiven Zellen, was flr eine gezielte Zelltodinduktion

durch Apoptose spricht (Abb. 43).
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Abb. 43: Zelltodanalysen mittels Durchflusszytometrie nach Inkubation mit HLM006474

Anteil der lebenden (AN-/PJ-), nekrotischen (AN-/PJ+), frih- (AN+/PJ-) und spéatapoptotischen
(AN+/PJ+) Zellen nach Inkubation der UM-Zelllinien 92.1, Mel270 und OMM1.5 mit 50 yM
HLMO006474 oder DMSO (Kontrolle) fir 96h, Mittelwerte £ SD, n = 3. Analyse durch Annexin V
(AN)-Propidiumjodid (PJ)-Farbung und anschlief’ende durchflusszytometrische Messung.

In Western Blot-Analysen wurde au3erdem gezeigt, dass die Inkubation mit HLM006474
zu einer Spaltung der Procaspasen 3 und 9 sowie des Substrates PARP in allen unter-
suchten UM-Zelllinien flhrte (Abb. 44). Die Expression des antiapoptotischen Proteins
Bcl-2 war in den Zelllinien Mel270 sowie OMM1.5 deutlich verringert und in diesen Zell-
linien war auch eine Spaltung der Procaspase 3 nachweisbar. Dies sind weitere Hin-
weise, dass in den UM-Zelllinien Apoptose durch die Inkubation mit HLM006474 ausge-
I6st wurde. Da eine Aktivierung des p38-MAPK-Signalweges durch verschiedene phar-
makologische Substanzen wie beispielsweise Furazolidon zu einem S-Phasen-Arrest
fuhren und Apoptose induzieren kann [485], kdnnte die Aktivierung dieses Signalweges
auch im Falle von HLM006474 moglicherweise bedeutend flr die Zelltodinduktion sein.
Ahnlich wie bereits zuvor im KM beobachtet wurde [448], erhéhte HLM006474 auch in
allen drei untersuchten UM-Zelllinien die Phosphorylierung von p38 und flhrte somit zu
einer Aktivierung des p38-MAPK-Signalweges. Aullerdem wurde die Expression des
DNA-Schadensmarkers y-H2A.X stark in den Zelllinien 92.1 und Mel270 sowie gering in
OMM1.5 nach Inkubation mit HLM006474 induziert. Anders als von Rouaud et al. im KM
gezeigt wurde [448], konnte im UM keine Akkumulation von p53 nach HLMO006474-
Inkubation detektiert werden.
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Abb. 44: Inkubation mit
HLMO006474 fiihrt zu Apoptose,
p38-Aktivierung und y-H2A .X-In-
duktion

Proteinexpression  von  Bcl-2,
Caspase 9, Caspase 3, PARP,
phospho-p38, p38, p53 und des
DNA-Schadensmarkers  y-H2A.X
nach Inkubation mit 50 puM
HLMO006474 oder DMSO (Kon-
trolle) fir 96h. B-Aktin diente als La-
dekontrolle.

Zusammenfassend deuten die Daten darauf hin, dass die Inkubation mit HLM006474 in
allen getesteten UM-Zelllinien durch Aktivierung des p38-Signalweges unabhangig von
p53 zum Zellzyklusarrest sowie zur Apoptoseinduktion Uber den intrinsischen Apoptose-
weg flhrt. Die Hemmung von E2F1 fihrt daher ahnlich wie die Hemmung von SOX10
und MITF mit siRNAs zum Zelltod von UM-Zellen. Somit konnte E2F1 ein vielverspre-
chender, neuer potenzieller Kandidat fir einen neuen Angriffspunkt einer pharmakologi-

schen Therapie im UM sein.
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4. Diskussion

Das UM entwickelt sich zwar wie das KM, ALM oder MUM aus den pigmentbildenden
Zellen der Haut, den Melanozyten, unterscheidet sich jedoch sowohl tumorbiologisch als
auch vom klinischen Verlauf her deutlich von diesen anderen Melanomsubtypen [3, 40].
Analysen haben gezeigt, dass Transkriptionsfaktoren, die an der embryonalen Entwick-
lung der Melanozyten beteiligt sind, auch eine bedeutende Rolle im KM spielen [233,
288, 294, 296, 323, 324]. Hierzu zahlt insbesondere der Transkriptionsfaktor SOX10. Er
wird bereits in der frihen Phase der Embryonalentwicklung in den ersten Vorlauferzellen
der Melanozyten in der NC exprimiert [227, 234, 235], ist dann wahrend der Migration
der Zellen aus dieser anatomischen Struktur in Richtung Dermis und Epidermis essen-
ziell fur das Uberleben der Zellen [236] und persistiert auch in adulten Melanozyten [265-
267]. Darlber hinaus wird SOX10 auch in benignen Navi, kongenitalen Riesennavi so-
wie im KM exprimiert und fordert in letzterem das Uberleben und die Invasion der Zellen
[265, 266, 287, 288, 294, 295]. Im Kontext des UM gibt es bisher nur wenige Publikatio-
nen zu SOX10. SOX10 wird von der Mehrheit der UM exprimiert und kann daher als
Marker bei der histologischen Diagnostik verwendet werden [268, 269]. Daruber hinaus
wurde in der Literatur der Fall eines UM mit einer 20 Basenpaare umfassenden Deletion
in Exon 4 des SOX10-Gens beschrieben, die zu einer Leserahmenverschiebung flihrte
[316]. Die Autoren fuhrten jedoch Uber die Mutationsanalyse hinaus keine weiteren Un-
tersuchungen durch, sodass die funktionelle Relevanz des Transkriptionsfaktors im UM
bisher unbekannt war.

Ziel dieser Arbeit war daher die Durchfiihrung einer funktionellen Charakterisierung von
SOX10 im UM, um damit einerseits zu einem besseren grundlegenden Verstandnis die-
ses seltenen Tumors beizutragen und um andererseits von diesen Erkenntnissen mog-
liche neue systemische Therapiekonzepte ableiten zu kdnnen. Zu diesem Zweck wurden
zuerst verschiedene UM-Zelllinien, offentlich zugangliche Genexpressionsdaten des
TCGA sowie Gewebeproben von UM-Metastasen auf die Expression von SOX10 hin
untersucht und eine SOX10-Expression bei der Mehrheit der untersuchten Proben ge-
funden. Um die funktionelle Relevanz von SOX10 zu charakterisieren, wurde die SOX10-
Expression in drei ausgewahlten SOX10-hochexprimierenden UM-Zelllinien durch
Transfektion mit spezifischen siRNAs gehemmt. Dies flhrte zu morphologischen Veran-
derungen und einer starken Verringerung der Zellviabilitat. Die Analysen mittels Durch-
flusszytometrie bzw. Western Blot zeigten, dass es nach SOX10-Hemmung zu einem
Zellzyklusarrest in der G1-Phase mit einer Rb-Hypophosphorylierung und einer teilwei-
sen Hochregulierung von p21 und p27 kam. Daruber hinaus fihrte die SOX10-Hemmung
zu einem Anstieg der apoptotischen Zellen und einer vermehrten Spaltung der Pro-
caspasen 3 und 9 sowie des Caspase 3-Substrates PARP. Die Analyse von pro- und
antiapototischen Proteinen der Bcl-2-Familie, einigen BH3-only-Proteinen sowie Bax
und Bak ergab jedoch keine weiteren Hinweise auf den genauen Mechanismus der
Apoptoseinduktion und die Expressionsanalyse des DNA-Schadensmarkers y-H2A.X
zeigte eine vermehrte Expression erst nach 24h. Das Tumorsuppressorprotein p53 ak-
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kumulierte nicht nach SOX10-Hemmung, weshalb davon auszugehen ist, dass der Zell-
tod nach SOX10-Hemmung unabhangig von p53 induziert wird. Bei der Analyse ver-
schiedener proliferationsfordernder Signalwege wurde wiederum eine zelllinienabhan-
gige, unterschiedliche Aktivierung des ERK-, p38- und Akt-Signalweges nach SOX10-
Hemmung gezeigt.

Da SOX10 ein Transkriptionsfaktor ist und daher direkt die Transkription anderer Gene
beeinflusst, wurde in einem weiteren Teil dieser Arbeit untersucht, wie sich die Hem-
mung von SOX10 auf die Expression verschiedener bekannter Zielgene wie PMP2, MIA,
und MITF sowie auf das Transkriptom der UM-Zellen auswirkt.

Durch die Hemmung von SOX10 kam es dabei zu weitreichenden Veranderungen des
Transkriptoms, darunter einer kompensatorischen Hochregulierung von SOX9, was zu-
vor auch im KM beobachtet worden war [296]. Insbesondere der Transkriptionsfaktor
MITF wurde in den SOX10-exprimierenden Zellen ebenfalls stark exprimiert und war
nach SOX10-Hemmung deutlich herabreguliert. Ein weiterer Fokus dieser Arbeit lag da-
her auf der funktionellen Analyse von MITF im UM. Die Hemmung von MITF durch spe-
zifische siRNAs flhrte ahnlich wie die Hemmung von SOX10 zu einer schnellen Ab-
nahme der Zellviabilitat in zwei der drei untersuchten Zelllinien. In diesen kam es eben-
falls zu einem Zellzyklusarrest in der G1-Phase des Zellzyklus, einer Rb-Hypophospho-
rylierung, Verringerung der Cyclin D1- und p27-Expression, Induktion der p21-Expres-
sion sowie zur Apoptose Uber den intrinsischen Apoptoseweg. Wie schon nach der
SOX10-Hemmung anderte sich die p53-Proteinexpression nach MITF-Hemmung nicht,
sodass auch hier von einem Zellzyklusarrest unabhangig von p53 ausgegangen werden
kann. Interessanterweise konnte eine ektope Expression von MITF die zytotoxischen
Effekte der SOX10-Hemmung in den analysierten Mel270-Zellen abschwéachen, was da-
fUrspricht, dass MITF zentral an der Vermittlung der Uberlebensférdernden Effekte von
SOX10 im UM beteiligt ist.

Da derzeit wirksame Therapieoptionen insbesondere fir UM-Patienten im fortgeschrit-
tenen Stadium nur begrenzt verfligbar sind, wurden im letzten Teil der Arbeit die zuvor
gewonnenen Erkenntnisse fur die Identifizierung neuer potenzieller Kandidaten genutzt,
die sich flr eine zielgerichtete Therapie des UM eignen kénnten. Da derzeit noch kein
Inhibitor bekannt ist, der SOX10 direkt hemmen kann [423], kdnnten stattdessen mdog-
licherweise von SOX10 regulierte Gene, die eine ahnliche Funktion aufweisen und leich-
ter pharmakologisch gehemmt werden kénnen, anstelle von SOX10 selbst fiir eine mog-
liche zielgerichtete Therapie eingesetzt werden.

Basierend auf RNA-Sequenzierungsdaten nach SOX10-Hemmung und einem bereits
existierenden SOX10-Protein-Interaktionsnetzwerk wurde in einem bioinformatischen
Ansatz ein Netzwerk fur diese Zielstrukturselektion (,target selection network”) generiert.
AnschlieRend wurden mit dessen Hilfe Kandidaten identifiziert, deren Genexpression
nach SOX10-Hemmung einerseits herabreguliert war und die andererseits pharmakolo-
gisch Uber small molecule-Inhibitoren oder blockierende bzw. neutralisierende Antikdr-
per gehemmt werden kdnnen und daher flr eine potenzielle Systemtherapie im UM mdég-

160



4 Diskussion

licherweise geeignet sind. Fir eine erste in vitro-Validierung wurden dabei die vier Kan-
didaten E2F1, EZH2, TFRC und FGF9 ausgewahlt. Hierbei zeigte sich, dass besonders
die Hemmung des Transkriptionsfaktors E2F1 durch den small molecule-Inhibitor
HLMO006474 zu einer deutlichen Abnahme der Zellviabilitat, einer Aktivierung des p38-
MAPK-Signalweges, Zellzyklusarrest in der S-Phase und letztlich zum Zelltod durch
Apoptose flihrte. Diese ersten Ergebnisse zeigen, dass E2F1 mdglicherweise ein Kan-
didat fur eine zielgerichtete Therapie im UM ware und ein mdglicher Mediator der Effekte
ist.

Insgesamt liefert diese Arbeit nicht nur neue Erkenntnisse Uber die Biologie des UM und
insbesondere die NC-Transkriptionsfaktoren im Kontext dieser Tumorentitat, sondern
demonstriert auch das Potenzial bioinformatischer Ansatze bei der Identifizierung neuer
therapeutischer Ziele in der Krebstherapie. Damit zeigt diese Arbeit Moglichkeiten fur
eine translationale Anwendung des Wissens aus der tumorbiologischen Grundlagenfor-
schung bei der Entwicklung neuer Therapieoptionen insbesondere fir seltene Tumorer-
krankungen auf.

4.1 Die funktionelle Rolle von SOX10 im Uveamelanom

4.1.1 Basale Expression von SOX10 im Uveamelanom

Die Untersuchung der SOX10-Gen- und Proteinexpression ergab eine deutliche SOX10-
Expression in sieben der neun analysierten UM-Zelllinien, in den Genexpressionsdaten
des TCGA-Datensatzes ,Ocular Melanomas* (n = 80) und in 37 von 42 immunhistoche-
misch untersuchten UM-Metastasen (88,1 %). Die weit verbreitete Expression in UM-
Zelllinien, Primartumoren und Metastasen bestatigt die Beobachtungen zweier friherer
Arbeiten, die bei IHC-Analysen von Tumormaterial eine SOX10-Kernfarbung in allen der
insgesamt 60 untersuchten UM-Primartumoren nachweisen konnten [268, 269]. SOX10
scheint dabei ein besonders sensitiver diagnostischer Marker flir das UM zu sein. Der
melanozytare Marker gp100, der durch Farbungen mit dem Antikérperklon HMB45 de-
tektiert werden kann [486], wurde in der erwdhnten Studie von Alghamdi et al. ebenfalls
untersucht; dabei wurde gp100 im Gegensatz zu SOX10 (100 % Positivitat) nur in 36
von 38 UM (94,7 %) exprimiert [268]. Eine weitere Arbeit konnte zeigen, dass UM von
den seltenen benignen APCE, die aus Zellen des pigmentierten Ziliarkdrperepithels ent-
stehen, histologisch zuverlassig anhand der SOX10-Expression unterschieden werden
kénnen, da APCE im Gegensatz zu UM kein SOX10 exprimieren [269]. Entwicklungsge-
schichtlich ist das Epithel des Ziliarkérpers eng mit dem RPE verwandt [487], wohinge-
gen UM aus melanozytaren Zellen entstehen und daher entwicklungsgeschichtlich von
NC-Zellen abstammen [216, 231]. Nichtsdestotrotz kénnen APCE auch melanozytare
Marker wie S100, Melan A oder MITF exprimieren, was die diagnostische Unterschei-
dung zum UM in der Praxis erschwert [488]. Da SOX10 nur in Zellen exprimiert wird, die
aus Vorlauferzellen aus der NC stammen [250-252], liegt es nahe, dass sich SOX10 als
Marker fur die eindeutige Unterscheidung des UM und APCE eignet.
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Die beiden UM-Zelllinien Mel285 und Mel290 exprimierten kein SOX10 und unterschie-
den sich damit deutlich von den anderen untersuchten UM-Zelllinien. In friheren Studien
von Griewank et al. bzw. van Dinten et al. konnte in diesen beiden Zelllinien keine Ex-
pression der melanozytaren Marker Melan A, gp100, TYR, TYRP1 und DCT nachgewie-
sen werden [320, 489]. Die Expression dieser Proteine wird mafigeblich durch MITF be-
einflusst, welches wiederum ein direktes Zielgen von SOX10 ist [261, 262]. Dartber hin-
aus werden TYR [270] und DCT [272, 273] direkt transkriptionell durch SOX10 reguliert.
Somit kénnte das in Griewank et al. und van Dinten et al. beschriebene Nichtvorhanden-
sein der melanozytaren Marker dieser beiden Zelllinien durch die fehlende SOX10-Ex-
pression erklart werden. Interessant ist in diesem Zusammenhang, dass Mel285 und
Mel290 im Gegensatz zu den anderen untersuchten Zelllinien keine Mutationen in den
Genen GNAQ und GNA11 aufweisen [320, 325], die insgesamt bei etwa 80 % aller UM
gefunden werden [71, 76]. Jager et al. spekulierten daher, dass die durch Mutationen in
GNAQ bzw. GNA11 aktivierten Signalwege die Expression von Pigmentierungsmarkern
im UM beeinflussen kénnten [325]. Bislang gibt es jedoch keine Publikationen, die einen
Zusammenhang zwischen GNAQ- bzw. GNA11-Mutationen und der SOX10-Expression
beschreiben. Daruber hinaus wurden in den Zelllinien Mel285 und Mel290 auch keine
Mutationen in den im UM haufig mutierten Genen BAP1 [24], EIF1AX und SF3B1 [97]
gefunden. Da in den Zelllinien weder die fur das UM charakteristischen Mutationen noch
die Ublichen melanozytaren Marker exprimiert wurden, stellten Jager et al. die Frage, ob
es sich bei diesen Zelllinien Gberhaupt um UM-Zelllinien handle [325]. Die Ergebnisse
ihrer short tandem repeats-Analyse von archiviertem Tumorgewebe der Patienten und
den daraus generierten Zelllinien legen aber nahe, dass Primartumor und Zelllinien vom
gleichen Spender stammen; ebenso sprechen chromosomale Aberrationen wie ein teil-
weiser Verlust von Chr. 3 (3p26-pter) und ein Zugewinn von Chr. 8 fir die Abstammung
von einem bodsartigen Tumor [325].

4.1.2 Auswirkungen der SOX10-Hemmung auf Zellviabilitat,
Zellzyklusprogression und Apoptose

Um die funktionelle Relevanz von SOX10 zu charakterisieren, wurde die Expression von
SOX10 in drei ausgewahlten SOX10-hochexprimierenden Zelllinien durch Transfektion
mit spezifischen siRNAs gehemmt. Die molekularbiologischen Analysen zeigten hierbei,
dass die Hemmung von SOX10 zu einer deutlichen Reduktion der Zellviabilitat, einem
G1-Arrest des Zellzyklus sowie einer starken Apoptoseinduktion flhrten, und dass-
SOX10 somit essenziell fiir das Uberleben von UM-Zellen ist. Eine verringerte Zellviabi-
litdt nach siRNA-vermittelter Hemmung der SOX10-Expression wurde zuvor bereits in
KM-Zelllinien durch Graf et al. beobachtet [295]. Ebenfalls konnte in KM-Zelllinien nach
SOX10-Hemmung mittels siRNAs oder shRNAs ein Zellzyklusarrest in der G1-Phase
des Zellzyklus sowie ein Anstieg an Annexin V-positiven Zellen beobachtet werden [288,
294, 295]. Diese Befunde legen nahe, dass SOX10 trotz der deutlichen tumorbiologi-
schen und klinischen Unterschiede im UM eine dhnliche Funktion wie im KM ausubt.
Trotzdem traten auch einige Unterschiede im Vergleich zum KM auf. Bei der Untersu-
chung der Zellzyklusprogression nach SOX10-Inhibition fiel etwa auf, dass die Abnahme
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der Zellviabilitat bei zwei der drei untersuchten UM-Zelllinien schon nach 48h deutlich
ausgepragter war als bei der bereits von Graf et al. untersuchten KM-Zelllinie 1205Lu
[295]. Der Grund fir die friihe und starke Abnahme der Zellviabilitat von 92.1 und Mel270
nach SOX10-Hemmung koénnte an einer noch starkeren Abhangigkeit der Zellen von
SOX10 liegen. Die Zellviabilitat der Zelllinie OMMA1.5 verringerte sich ahnlich wie die der
1205Lu-Zellen langsamer nach SOX10-Hemmung als in den beiden anderen untersuch-
ten Zelllinien. Daflir kbnnte es mehrere Griinde geben: Einerseits lag die Hemmeffizienz
24h nach der Transfektion der Zelllinie OMM1.5 nur bei etwa 50 %, wahrend sie in den
anderen Zelllinien zwischen 30 % und 40 % betrug. Die Ergebnisse der in 3.2.4 darge-
stellten Transfektionszeitreihe zeigten, dass die SOX10-Proteinexpression 12h nach der
Transfektion in den Zelllinien 92.1 und Mel270 etwas und nach 24h deutlich herabregu-
liert wurde; nach 24h konnte allerdings erst eine erste Verringerung der SOX10-Expres-
sion bei der Zelllinie OMM1.5 festgestellt werden. Nach 48h konnten dann keine Unter-
schiede zwischen den drei Zelllinien mehr festgestellt werden. Somit scheint die Hem-
mung der SOX10-Expression in der Zelllinie OMM1.5 nach der Transfektion etwas ver-
zOgerter einzutreten als in den beiden anderen untersuchten UM-Zelllinien 92.1 und
Mel270. Abgesehen von diesem Befund kdnnten die OMM1.5-Zellen eine Abnahme der
SOX10-Expression jedoch mdglicherweise besser kompensieren, da sie im Vergleich zu
den 92.1 und Mel270 sowohl eine hdhere basale Aktivitdt des ERK- als auch des Akt-
Signalweges aufwiesen (siehe Abschnitt 3.2.5), die beide das Uberleben von Zellen for-
dern [403, 404, 413, 414]. Auffallig war bei den Experimenten zur Zellviabilitadt auch, dass
diese bereits durch die Transfektion mit der Kontroll-siRNA beeintrachtigt wurde im Ver-
gleich zu den nur mit dem Transfektionsreagenz behandelten Zellen, was jedoch ein
haufig zu beobachtendes Phanomen bei Transfektionsexperimenten ist [490].

Zellen kénnen durch Stress in einen als Seneszenz bezeichneten Zustand gelangen, bei
dem es zu einem irreversiblen Wachstumsarrest und charakteristischen Veranderungen
der Zellmorphologie wie etwa dem Auftreten von vergréRerten, flachen Zellen kommt
[491, 492]. Cronin et al. berichteten, dass die Hemmung von SOX10 mittels shRNA zur
Induktion von Seneszenz in KM-Zellen fihrt [294]. Allerdings scheint dies nicht bei allen
kutanen KM-Zelllinien der Fall zu sein, da etwa Graf et al. dieses Phanomen bei den von
ihnen untersuchten Zelllinien wie etwa 1205Lu nicht beobachten konnten [295]. Die in
dieser Arbeit untersuchten UM-Zelllinien zeigten nach SOX10-Hemmung ebenfalls keine
morphologischen Zeichen, die auf eine Seneszenzinduktion hindeuten wirden, sodass
weitere Seneszenzmarker wie etwa eine erhdhte -Galaktosidase-Aktivitat oder senes-
zenzassoziierte Heterochromatin-Foci [492] in den Zellen nicht untersucht wurden.

Interessanterweise zeigten sich bei den in dieser Arbeit untersuchten HM trotz guter
Transfektionseffizienz auch 96h nach der Transfektion mit SOX10-spezifischen siRNAs
keine Verringerung der Zellviabilitat. Ebenso wurden auch keine morphologischen Ver-
anderungen oder Anzeichen einer Apoptose bei den durchflusszytometrischen Analysen
festgestellt. HM scheinen somit den Verlust von SOX10 besser kompensieren zu knnen
als die untersuchten UM-Zelllinien. Welche Signalwege hierfur konkret aktiviert werden,
wurde in der vorliegenden Arbeit nicht weiter untersucht. Insgesamt sind diese Befunde
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jedoch von Interesse in Anbetracht einer mdglichen therapeutischen Inhibition von
SOX10 zur Behandlung des UM und den damit moéglicherweise verbundenen uner-
wlnschten Auswirkungen auf SOX10-exprimierendes Nichttumorgewebe.

Die Apoptose ist der zentrale Mechanismus zur Aufrechterhaltung der Zellhomdostase,
der sowohl wahrend der Entwicklung als auch im adulten Organismus eine wichtige Rolle
spielt [395, 396]. Wahrend der Apoptose werden Zellen Uber Signalkaskaden dazu ge-
bracht, in einem kontrollierten und koordinierten Prozess zu sterben, ohne eine Entzin-
dungsreaktion auszulésen [395, 396]. Die Apoptose kann sowohl durch exogene Ein-
flisse wie das Binden von Liganden wie Fas oder TNF-a an die entsprechenden Todes-
rezeptoren, gefolgt von der Aktivierung der Caspase 8, ausgeldst werden (extrinsischer
Weg), als auch durch endogene Einflisse wie etwa DNA-Schaden oder zelluldrem
Stress, was zur Aktivierung des mitochondrialen, intrinsischen Weges mit Aktivierung
der Caspasen 9 und 3 flhrt [396, 397]. Die durchflusszytometrischen und Western Blot-
Analysen zeigten einen deutlichen Anstieg des Anteils der apoptotischen Zellen nach
SOX10-Hemmung in den untersuchten UM-Zelllinien, der bereits nach 24h nachweisbar
war. Am sensitivsten auf die SOX10-Hemmung schienen hierbei die beiden Zelllinien
92.1 und Mel270 zu reagieren, die beide aus UM-Primartumoren generiert wurden [325].
In diesen zeigten sich bereits 24h und 48h nach der siRNA-Transfektion deutliche Ef-
fekte. In der UM-Zelllinie OMM1.5 und der ebenfalls untersuchten KM-Zelllinie 1205Lu
setzte die Apoptose dagegen verzdgert ein. Diese Zelllinien wurden beide aus Metasta-
sen generiert [325, 331]. Ob jedoch ein kausaler Zusammenhang zwischen der Lokali-
sation des urspringlichen Tumors bzw. dem Tumorstadium und der Sensitivitat gegen-
Uber der SOX10-Hemmung besteht und ob SOX10 in Metastasen keine solch ausge-
pragte Rolle fir das Uberleben der Tumorzellen spielt wie in Primartumoren, bleibt spe-
kulativ. Versuche mit anderen UM-Zelllinien, die ebenfalls aus Metastasen generiert wur-
den, kdnnten hierauf aber mdglicherweise neue Hinweise geben. Einschrankend ist je-
doch anzumerken, dass die Zelllinien OMM1.5 und 1205Lu nicht komplett unempfindlich
gegen die SOX10-Hemmung waren, da der Zelltod nach Transfektion mit spezifischen
siRNAs in diesen Zellen nur spater einsetzte, aber nicht komplett ausblieb, wie die Daten
aus den Zellviabilitatsassays und den Durchflusszytometrie-Analysen zeigten. Um den
Mechanismus der Apoptoseinduktion nach SOX10-Hemmung genauer zu untersuchen,
wurde die Aktivierung der Caspasen 3 und 9 auf Proteinebene analysiert. In den Zellen
kam es zur Spaltung der Procaspasen 3 und 9, was auf eine Aktivierung des intrinsi-
schen, mitochondrialen Apoptoseweges hindeutet. Darliber hinaus konnte die Behand-
lung der Zellen mit dem Caspase-3-Inhibitor Z-DEVD-FMK den Zelltod nach SOX10-
Hemmung teilweise verhindern, was ein weiteres Indiz daflr ist, dass die Inhibition von
SOX10 zum Zelltod durch Apoptose fiihrt. Um weitere dabei beteiligte Faktoren zu iden-
tifizieren, wurde die Expression einer Auswahl von pro- und antiapoptotischen Proteinen
wie Bax, Bak und Mitglieder der Bcl-2-Familie nach 48h SOX10-Hemmung auf Protein-
ebene untersucht. Anders als erwartet zeigten sich hierbei jedoch kaum Unterschiede,
sodass nicht naher geklart werden konnte, wie genau es zur Apoptoseinduktion Uber
den intrinsischen Weg kam.
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DNA-Schaden wie etwa ein dsDNA-Bruch sind eine der Hauptursachen, wieso es zur
Induktion eines Zellzyklusarrests kommt [385]. Durch den Stop der Zellzyklusprogres-
sion soll dabei sichergestellt werden, dass der beschadigte DNA-Abschnitt erst durch
entsprechende Reparaturmechanismen repariert wird, bevor die Zellteilung von statten
geht und es somit nicht zu chromosomalen Aberrationen kommt [385]. Die Reparatur
von dsDNA-Brichen kann entweder Uber die homologe Rekombination oder das non-
homologous end joining (NHEJ) erfolgen [493]. Um die dabei beteiligten Repara-
turenzyme an die DNA-Bruchstellen zu lotsen, werden diese durch Phosphorylierung
des Histons H2A.X (y-H2A.X) markiert, was durch Western Blot-Analysen oder IHC-Far-
bungen nachgewiesen werden kann [400, 493]. Nach SOX10-Hemmung wurde bei den
untersuchten UM-Zelllinien eine erhdhte y-H2A. X-Expression im Western Blot detektiert.
Dies deutet darauf hin, dass es nach der Inhibition von SOX10 tatsachlich zu dsDNA-
Briichen kommt. Es stellte sich aber die Frage, ob der Verlust der SOX10-Expression
die Stabilitdt bzw. Reparaturfahigkeit der DNA unmittelbar negativ beeinflusst, indem
etwa die Expression bestimmter Reparaturenzyme des NHEJ herabreguliert wird oder
ob es sich um einen sekundaren Effekt handelte. Im Laufe der Apoptose kommt es in
den spateren Phasen zur Fragmentierung der DNA; diese DNA-Fragmente kénnen auch
eine vermehrte y-H2A. X-Expression induzieren [494]. Anders als etwa bei dsDNA-Bru-
chen durch ionisierende Strahlung, wo dies auch durch die Kinasen ATM und ATR ge-
schehen kann, wird die Phosphorylierung von H2A.X wahrend der spaten Phase der
Apoptose ausschlieRlich durch DNA-PK vermittelt, welche durch Autophosphorylierung
an Ser2056 aktiviert wird [495]. Die Aktivierung der DNA-PK wurde in dieser Arbeit nicht
untersucht, kénnte jedoch durch Nachweis des phosphorylierten Proteins in Western
Blot-Analysen erfolgen und damit mdglicherweise noch genauere Einblicke in die
Genese der dsDNA-Briche nach SOX10-Hemmung liefern. Die Ergebnisse der durch-
geflhrten Transfektionszeitreihe zeigten allerdings deutlich, dass die SOX10-Proteinex-
pression 12h nach der Transfektion in den Zelllinien 92.1 und Mel270 etwas verringert,
nach 24h jedoch deutlich herabreguliert wurde; nach 24h konnte auch erstmals eine
Verringerung der SOX10-Expression in der Zelllinie OMM1.5 festgestellt werden. Nach
48h waren keine Unterschiede zwischen den Zelllinien bezlglich der SOX10-Proteinex-
pression erkennbar. Eine Spaltung der Procaspase 3 sowie von PARP konnte in den
Mel270-Zellen bereits nach 12h, die Induktion der y-H2A.X-Expression jedoch erst nach
24h nachgewiesen werden. Zusammengenommen deutet dies darauf hin, dass es durch
die verringerte SOX10-Expression zuerst zur Apoptoseinduktion und infolgedessen zu
dsDNA-Briichen und einer erhéhten y-H2A. X-Expression kommt. Somit scheint es sich
bei den detektierten dsDNA-Briichen eher um einen sekundaren Effekt durch die DNA-
Fragmentierung im Rahmen der spaten Apoptose zu handeln, der jedoch nicht primar
ursachlich fur den Zellzyklusarrest und den Zelltod zu sein scheint.

Das Tumorsuppressorprotein p53 ist ein zentraler Mediator der Zellzyklusregulation am
Ubergang von der G1- in die S-Phase, der auch die Apoptoseinduktion fordern kann
[386, 387]. Analysen von Sun et al. haben gezeigt, dass das fur p53 codierende TP53-
Gen in UM-Zellen nicht mutiert und p53 in den Zellen funktionsfahig ist [496]. Im Falle
der untersuchten UM-Zelllinien fihrte die Hemmung von SOX10 zu keiner Akkumulation
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von p53. Somit scheint es in den Zellen auf einem p53-unabhangigen Weg zum Zellzyk-
lusarrest in der G1-Phase zu kommen. Eine dhnliche Beobachtung wurde auch im KM
gemacht, wo in KM-Zelllinien ebenfalls keine Veranderung der p53-Expression nach
SOX10-Inhibition festgestellt werden konnte [294].

4.1.3 Analyse verschiedener Signaltransduktionswege nach SOX10-
Hemmung

Da die Hemmung von SOX10 in UM-Zellen unabhangig vom Tumorsuppressor p53 zum
Zellzyklusarrest und anschief3enden Zelltod flhrte, missen andere Signalwege an der
Vermittlung dieses Effekts beteiligt sein. Sowohl die MAPK- als auch die PI3K/Akt-Achse
ist zentral an der Férderung der Proliferation und des Uberlebens von Zellen beteiligt
[403, 404, 413, 414]. Daher kdnnte eine Analyse der Aktivitat des ERK-, p38- und Akt-
Signalweges Aufschluss Uber eine mdgliche Beteiligung an der Induktion des Zellzyk-
lusarrests und der Apoptose nach SOX10-Hemmung geben. Die drei untersuchten UM-
Zelllinien wiesen alle Unterschiede der basalen Aktivitat der drei Signalwege auf. In der
Zelllinie 92.1 war vor allem der ERK-Signalweg aktiv, wahrend in der Zelllinie Mel270
der p38-Signalweg und in der Zelllinie OMM1.5 alle drei untersuchten Signalwege aktiv
waren. Eine mogliche Erklarung konnte sein, dass unterschiedliche Mutationen in den
typischerweise beim UM veranderten Genen die Aktivitat dieser Signalwege beeinflusst.
Ein Blick auf bereits publizierte Daten zum Mutationsprofil der Zellen zeigt, dass alle drei
UM-Zelllinien eine Mutation im Gen GNAQ aufweisen: Bei der UM-Zelllinie 92.1 ist dies
die Mutation GNAQ®?** und bei den beiden UM-Zelllinien Mel270 und OMM1.5 die Mu-
tation GNAQ®", da beide UM-Zelllinien aus einem Lokalrezidiv des Primartumors bzw.
einer Lebermetastase desselben Patienten generiert wurden [320]. Zuséatzlich zur
GNAQ-Mutation weist die UM-Zelllinie 92.1 auch eine homozygote EIF1AX®®°-Mutation
auf [48, 329], jedoch keine Mutationen in BAP1 oder SF3B1 [325]. In den Zelllinien
Mel270 und OMM1.5 wurden keine Mutationen in den Genen BAP1, EIF1AX und SF3B1
nachgewiesen [325]. Angesichts dieser geringen Unterschiede ist es jedoch eher un-
wahrscheinlich, dass die unterschiedlichen Signalwegaktivitaten durch Mutationen der
typischerweise im UM veranderten Gene begrindet ist. Die beobachtete auffallig starke
ERK-Aktivitat der KM-Zelllinie 1205Lu wurde bereits in friiheren Publikationen von
Smalley et al. beschrieben und ist sehr wahrscheinlich auf die BRAF?"c-Mutation dieser
Zelllinie und die daraus resultierende dauerhafte Aktivierung des BRAF-MEK-ERK-
Signalweges zurlickzufiihren [326, 328].

Da die Hemmung von SOX10 sowohl zum Zellzyklusarrest als auch zur Apoptose fiihrte,
war insbesondere die Analyse der Aktivitat des p38-Signalweges in den UM-Zelllinien
von Interesse. Dieser Signalweg wird vor allem durch Stress aktiviert und ist unter ande-
rem an der Regulation der Apoptose- und Zellzyklusarrestinduktion sowie der Zelldiffe-
renzierung beteiligt [407-409]. So kann es beispielsweise nach dsDNA-Brichen zu einer
Akkumulation der a-Isoform von p38 im Zellkern kommen [410] und die Aktivierung von
p38 kann zum Arrest am Ubergang von der G1- in die S-Phase filhren [409]. Bei der
Proteinexpressionsanalyse konnte eine leichte Erhéhung der p38-Phosphorylierung 24h
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nach der Transfektion mit SOX10-spezifischen siRNAs beobachtet werden. Fiir den Pro-
gress in die S-Phase ist eine niedrige p38-Aktivitat notwendig, da es andernfalls zu ei-
nem Zellzyklusarrest in der G1-Phase kommt [497]. Dies liegt einerseits an der Wirkung
von p38 auf Rb und E2F, da p38 den Tumorsuppressor Rb am N-terminalen Ende phos-
phorylieren kann und damit an anderen Stellen als die CDKs, wodurch die Bindung an
die E2F-Transkriptionsfaktoren verstarkt wird [498]. Die p38-Aktivierung reduziert aul3er-
dem die Expression von Cyclin D1 und tragt so zum Zellzyklusarrest in der G1-Phase
bei [499], indem es einerseits den transkriptionellen Repressor HMG-box protein 1
(HBP1) durch Phosphorylierung stabilisiert und damit die Transkription des flr Cyclin D1
codierenden Gens CCND1 hemmt [500], und andererseits Cyclin D1 an Thr286 phos-
phoryliert, was die Ubiquitinierung und letztlich den Abbau des Proteins férdert [501].
Daher ist es denkbar, dass der nach SOX10-Hemmung beobachtete G1-Arrest durch
eine Aktivierung von p38 mit vermittelt worden sein kénnte. Um diese Theorie zu unter-
mauern, kdnnten in Folgeexperimente Rescue-Versuche mit einem p38-Inhibitor wie
etwa Adezmapimod (SB203580) [502] durchgeflihrt werden, um zu testen, ob eine Hem-
mung der p38-Aktivitat die Apoptoseinduktion nach SOX10-Inhibition verringern kann.
Ebenfalls interessant ist in diesem Zusammenhang, dass es zu einer geringfiigigen Re-
duktion der Akt-Phosphorylierung nach SOX10-Hemmung kam. Da Akt pro-proliferativ
wirkt [413, 414], kdnnte eine geringere Aktivierung des Akt-Signalweges zum beobach-
teten Phanotyp nach SOX10-Hemmung beitragen.

Die ursprunglich aus einer Lebermetastase generierte Zelllinie OMM1.5 wies als einzige
der drei untersuchten UM-Zelllinien eine hohe basale Akt-Phosphorylierung auf und un-
terschied sich damit auch von der Zelllinie Mel270, die aus dem Primartumor desselben
Patienten generiert wurde [320, 325]. Man kdnnte daher spekulieren, dass eine Aktivie-
rung des Akt-Signalweges zum Krankheitsprogress des UM beigetragen haben kdnnte.
In der Literatur gibt es hierflr Hinweise, die diese Hypothese unterstitzen. Saraiva et al.
konnten bei der Analyse von 34 UM-Primartumoren eine Akt-Phosphorylierung in 55,5 %
der Proben nach primarer Enukleation und in 56,2 % nach initialer Bestrahlung feststel-
len und einen signifikanten Zusammenhang mit einem héheren Metastasierungsrisiko
aufzeigen [415]. Interessant ist in diesem Zusammenhang zu erwahnen, dass es durch
die Hemmung von GNAQ und GNA11 durch Transfektion von spezifischen siRNAs so-
wohl in GNAQ/GNA11-wt als auch mutierten UM-Zellen zu keiner Veranderung der Akt-
Signalwegaktivitat kommt [79] und GNAQ-Mutationen keinen Effekt auf die Aktivierung
von mTOR haben, welches funktionell eng mit dem Akt-Signalweg verbunden ist [503].

Eine weitere mdgliche Ursache fir eine dauerhafte Aktivierung des Akt-Signalweges
koénnten inaktivierende Mutationen des Tumorsuppressors PTEN sein. PTEN dephos-
phoryliert den second messenger PIP3, welches durch die PI3K-vermittelte Phosphory-
lierung aus PIP. generiert wird, und ist somit ein negativer Regulator des PI3K/Akt-Sig-
nalweges [413, 419]. Eine Analyse von 75 UM-Primartumoren zeigte, dass es bei 72,5
% der Proben zu einem Verlust der Heterozygositat von Chr. 10g23 kam, wo das PTEN-
Gen lokalisiert ist [504]. Etwa 16 % der untersuchten Tumoren zeigten einen kompletten
Verlust von PTEN sowie weitere 43 % eine verringerte PTEN-Expression im Vergleich
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zu gesundem Retinagewebe [504]. Der Verlust von PTEN war in dieser Kohorte auch
mit einem schlechteren OS assoziiert [504]. Im Rahmen dieser Arbeit wurde die PTEN-
Expression in den Zelllinien nicht untersucht, allerdings fanden Naus et al. bei einer
frGheren Analyse keine Mutationen oder Unterschiede in der PTEN-Expression in neun
untersuchten UM-Zelllinien, darunter auch in den in dieser Arbeit verwendeten Zelllinien
92.1 und Mel270 [505]. Griewank et al. fanden ebenfalls eine intakte PTEN-Expression
in allen von ihnen analysierten GNAQ- und GNA171-mutierten UM-Zelllinien, darunter
auch die in dieser Arbeit untersuchten Zelllinien 92.1, Mel270 und OMM1.5 [320]. Dies
spricht eher daflr, dass die hdhere basale Akt-Aktivitat in der Zelllinie OMM1.5 vermut-
lich nicht durch einen Verlust der PTEN-Aktivitat verursacht wird, sondern andere noch
unbekannte Faktoren eine Rolle spielen.

Interessanterweise traten einige Aktivitatsunterschiede von ERK, p38 und Akt zwischen
den unbehandelten und den mit der Kontroll-siRNA behandelten Zellen auf. So konnte
beispielsweise in den mit der Kontroll-siRNA transfizierten Mel270-Zellen eine ERK-
Phosphorylierung nachgewiesen werden, obwohl dies basal nicht der Fall war; ahnliches
konnte bezuglich der p38-Phosphorylierung in der Zelllinie 92.1 sowie Akt-Phosphorylie-
rung in den Zelllinien 92.1 und Mel270 gefunden werden. Die Beobachtung, dass es
nach der Transfektion von siRNAs zu einem Anstieg der Genexpression kommt, wurde
bereits in friiheren Studien ausfiihrlich untersucht [506, 507]. Durch die Transfektion von
siRNAs kann es als Nebeneffekt zu einer Reduzierung der miRNA-Menge in der Zelle
und infolge dessen zu einer Beeinflussung der mRNA-Expression unabhangig von der
eigentlichen Ziel-mRNA kommen [506, 507]. Die miRNA-Reduktion ist in diesem Zusam-
menhang abhangig von der Dosis der transfizierten siRNA und wird Uber das Protein
Ago2 vermittelt, da die transfizierten siRNAs mit den endogenen miRNAs um die Bin-
dung an Ago2 konkurrieren [507]. Konkret fUhrte die Verringerung der miRNAs zu einer
Hochregulierung der mRNAs, die eigentlich Ziel dieser miRNAs waren, da die regulato-
rische Funktion der miRNAs nicht mehr ausgetbt werden kann [506, 507]. Durch diese
Veranderungen der Genexpression kénnte es also nicht nur zu Unterschieden bezliglich
der Expression von ERK, p38 und Akt kommen, sondern mdglicherweise auch zu deren
Phosphorylierung und damit Aktivitdtsanderung. Auf der anderen Seite kann es jedoch
auch sekundar zu einer vermehrten posttranslationalen Degradierung von Proteinen
durch eine verstarkte Expression von Proteasen infolge aberranter miRNA-Spiegel kom-
men [507]. Allerdings haben nicht nur siRNAs, die auf ein bestimmtes Gen abzielen, eine
Wirkung, sondern auch Kontroll-siRNAs und die verwendeten Transfektionsreagenzien
[490]. Kleefeldt et al. konnten beispielsweise in murinen Fibroblasten zeigen, dass das
Transfektionsreagenz Lipofectamine® 2000 die Expression mehrerer von den Autoren
als ,steady-state mMRNAs* bezeichnete Gene wie etwa Tgfbr1-3 und Tgfb1-3 im Ver-
gleich zu den unbehandelten Zellen beeinflusste; ahnliches konnte nach der Transfek-
tion mit mehreren kommerziell erhaltlichen Kontroll-siRNAs beobachtet werden [490].
Daher ware denkbar, dass die in dieser Arbeit verwendete Kontroll-siRNA und das
Transfektionsreagenz Lipofectamine® RNAIMAX madglicherweise bereits die Aktivitat
der untersuchten Signalwege per se moduliert haben.
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Die simultane Analyse mehrerer Signalwege mittels Phosphokinase-Array 24h nach der
Transfektion mit SOX10-spezifischen siRNAs kam zu dem Ergebnis, dass es zwar zu
Aktivitatsveranderungen einiger Proteine bzw. Signalwege kommt, diese Veranderun-
gen insgesamt aber eher schwach ausgepragt waren und sich kein eindeutiges Aktivie-
rungsmuster herauskristallisierte. Daher konnte mit dieser Analyse kein einzelner Sig-
nalweg identifiziert werden, welcher primar durch die SOX10-Hemmung verandert wird.
Das Ergebnis des Phosphokinase-Arrays kénnte vielmehr als vergleichsweise unkon-
trollierter Versuch der Kompensation des SOX10-Verlusts gedeutet werden. Limitierend
ist in diesem Fall jedoch anzumerken, dass der Phosphokinase-Array nur einmal 24h
nach der Transfektion durchgefiihrt wurde, da zu diesem Zeitpunkt einerseits bereits
eine deutlich reduzierte SOX10-Expression und andererseits erste Anzeichen der
Apoptoseinduktion wie beispielsweise die Spaltung von PARP und Procaspase 3 in der
Zelllinie Mel270 nachgewiesen werden konnten. Da die SOX10-Expression zumindest
bei einem Teil der Zelllinien jedoch bereits 12h nach der siRNA-Transfektion vermindert
war, ist nicht auszuschlief3en, dass eine Analyse zu einem anderen Zeitpunkt weitere
Hinweise auf Veranderungen der Signalwege liefern wirde.

4.1.4 Analyse der globalen Genexpressionsveranderungen mittels RNA-
Sequenzierung

Die bioinformatische Auswertung der RNA-Sequenzierungsdaten verdeutlichte ein-
dricklich die weitreichenden transkriptionellen Veranderungen, die durch die SOX10-
Hemmung in den UM-Zelllinien verursacht wurden. Insgesamt wurden 5.914 herabregu-
lierte und 6.537 hochregulierte Gene nach SOX10-Hemmung gefunden, aus denen nach
dem Abgleich mit bereits publizierten SOX10-ChIP-Seqg-Daten aus Melanozyten von
Fufa et al. [346] 395 potenzielle SOX10-Zielgene identifiziert wurden. Als Limitation ist
hier zu nennen, dass es sich bei diesen Vergleichszellen nicht um uveale Melanozyten
handelte, deren Transkriptom sich mdglicherweise von ihrem kutanen Gegenpart unter-
scheiden kann. Allerdings waren zum Zeitpunkt der Analyse im Jahr 2019 keine publi-
zierten SOX10-ChlP-Seqg-Daten verfligbar, weshalb fur die Analyse auf die Daten von
normalen Melanozyten zuriickgegriffen wurde.

Transkriptionsfaktoren kénnen eine immense Anzahl an Genen transkriptionell regulie-
ren, wie etwa Sharov et al. in ihrer Arbeit anhand des Transkriptionsfaktors KLF 15 zeigen
konnte, fir den mithilfe mehrerer ChlP-Seq-Datensets 4.796 regulierte Zielgene in emb-
ryonalen Stammzellen identifiziert werden konnten [508]. Die grof3e Anzahl an differen-
ziell exprimierten Genen nach SOX10-Hemmung, die in dieser Arbeit gefunden wurden,
ist vermutlich einerseits auf direkte transkriptionelle Veranderungen der Zielgene zurtick-
zufiihren und andererseits auf sekundare Effekte als Folge der veranderten Genexpres-
sion dieser Zielgene. In diesem Zusammenhang ist zudem zu bedenken, dass SOX10
auch die Expression anderer Transkriptionsfaktoren wie beispielsweise MITF reguliert,
die ihrerseits wiederum eine Vielzahl an Zielgenen transkriptionell regulieren [261, 262,
509], was die Zahl der differenziell exprimierten Gene noch weiter steigert. Hoek et al.
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konnten durch die ektope Expression von MITF in der KM-Zelllinie SK-MEL-28 eine sig-
nifikante Anderung der Genexpression (logfold change = |1|) von 9.890 Genen nach-
weisen [509]. Da SOX-Proteine alle an das selbe, sehr haufig im Genom vorkommende
Konsensusmotiv binden kdnnen [248], sind in silico-Analysen der DNA-Promotorberei-
che nach diesem Motiv auch nur eingeschrankt hilfreich. Dies erschwert die Beantwor-
tung der Frage, welche Gene direkt durch SOX10 im UM transkriptionell reguliert werden
und wessen Expression lediglich durch sekundare Effekte wie z.B. kompensatorische
Mechanismen beeinflusst wird. So ist bekannt, dass der eng verwandte Transkriptions-
faktor SOX9 im KM nach Hemmung von SOX10 hochreguliert wird [296]. Im UM gibt es
hierzu noch keine Publikationen, allerdings zeigten die RNA-Sequenzierungsdaten und
gPCR-Analysen dieser Arbeit, dass auch in den Zelllinien 92.1 und Mel270 eine SOX9-
Hochregulation nach SOX10-Hemmung stattfand. Inwieweit solche sekundaren Folgen
zur proapoptotischen Wirkung der SOX10-Hemmung beitragen oder ihr entgegenwirken,
mussen zukunftige Untersuchungen zeigen.

Um zu entschlisseln, welchen Signalwegen die differenziell exprimierten Gene zuzuord-
nen sind, wurden GO Term-Analysen durchgefihrt. Interessanterweise waren die meis-
ten Veranderungen in Genen zu finden, die den Bereichen ,axonogenesis®, ,peptidyl-
tyrosine phosphorylation“ bzw. ,peptidyl-tyrosine modification“ und ,renal development
system“ zugeordnet werden kdnnen. Die Haufung von Genen aus dem Bereichen ,axo-
nogenesis®, ,neuron protection development®, ,presynapse assembly®, ,presynapse or-
ganisation” und ,regulation of synapse assembly” kénnten auf die embryonale Herkunft
aus NC-Zellen und die Rolle von SOX10 in Gliazellen und bei der Entwicklung des Ner-
vensystems zurickzufihren sein, die bereits ausfuhrlich untersucht worden ist [252, 254,
264, 266, 283]. Den GO-Terms ,peptidyl-tyrosine phosphorylation® bzw. ,peptidyl-tyro-
sine modification” werden Veranderungen die Phosphorylierung von Tyr204 bzw. Tyr185
an ERK1 und ERK2 [405, 406] oder von Tyr182 an p38 [408] zugerechnet, die in den
Western Blot-Analysen nachgewiesen werden konnten. Interessant war aber vor allem
der GO-Term ,renal development system®, der so nicht erwartet worden war, da sich die
Niere wahrend der Embryonalentwicklung eigentlich aus Zellen des Mesoderms entwi-
ckelt und somit nicht von NC-Zellen abstammt [510]. In der Literatur finden sich aber
einige wenige Publikationen zu SOX10 in der Niere. SOX10 wird in geringem Mafl} zwi-
schen der 17. und 25. Entwicklungswoche im fétalen humanen Nierengewebe exprimiert
[275] und SOX10-positive Zellen wurden auch in perivaskularen Zellen unter anderem
in der Niere nachgewiesen, obwohl diese Zellen entwicklungsbiologisch nicht aus NC-
Zellen hervorgehen [511]. Iskander et al. konnten allerdings im Tiermodell zeigen, dass
die Schrittmacherzellen des Nierenbeckens von NC-Zellen abstammen und SOX10 ex-
primieren [512]. Zudem berichteten Li et al. einen Fall eines Patienten mit Waardenburg-
Syndrom Typ 2, der eine Deletion im SOX10-Gen (c. 544-557del) und neben Horstdérun-
gen und einer Irisheterochromatie auch eine Nierenfehlbildung in Form einer Hufeisen-
niere aufwies [513]. Dies kdnnten Hinweise darauf sein, dass SOX10 bei der Nierenent-
wicklung doch eine funktionelle Rolle tibernimmt. Abgesehen von einer mdglichen Be-
teiligung von SOX10 ist jedoch bekannt, dass die beiden ebenfalls der SoxE-Familie
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zugehdrigen Transkriptionsfaktoren SOX9 und SOX8 an mehreren Stufen der Nieren-
entwicklung direkt beteiligt sind, darunter der korrekten Ausbildung der Harnleiter [514].
Da die SOX10-Hemmung in den UM-Zellen zu einer Hochregulation von SOX9 flhrte,
kdnnten die bei der GO-Term-Analyse identifizierten Veranderungen von Genen aus
dem Bereich ,renal development system* also auch als sekundarer Effekt der erhéhten
SOX9-Expression interpretiert werden.

Insgesamt zeigen die RNA-Sequenzierungsdaten, dass es keinen alleinigen zentralen
Mediator der Effekte oder keine einzelne Signalkaskade gibt, welche durch die Hem-
mung von SOX10 beeinflusst wird, sondern es sich vermutlich um ein multifaktorielles
Geschehen handelt, welches letztlich dazu fuhrt, dass die UM-Zellen nach Hemmung
von SOX10 sterben.

4.2 SO0OX10-Zielgene als potenzielle Mediatoren der Effekte

4.2.1 Genexpression bekannter SOX10-Zielgene

Bisher wurden einige Gene identifiziert, die durch SOX10 direkt transkriptionell reguliert
werden [261, 262, 295, 297, 515]. Es war jedoch unklar, ob diese Zielgene im UM Uber-
haupt exprimiert werden und wenn ja, ob sie auch durch SOX10 transkriptionell reguliert
werden. Im Rahmen dieser Arbeit wurde die Genexpression der SOX10-Zielgene MIA,
PMP2 und MITF sowie des nahe verwandten Transkriptionsfaktors SOX9 in verschiede-
nen UM-Zelllinien nach SOX10-Hemmung analysiert und mit der Expression in der KM-
Zelllinie 1205Lu verglichen. Hierbei fielen mehrere Aspekte auf. Alle drei untersuchten
UM-Zelllinien 92.1, Mel270 und OMM1.5 wiesen zwar eine ahnlich hohe basale SOX10-
Expression auf, allerdings unterschied sich die Expression der SOX10-Zielgene PMP2
und MIA deutlich zwischen den untersuchten UM-Zelllinien. Dies deutet darauf hin, dass
abgesehen von SOX10 noch weitere Transkriptionsfaktoren in die transkriptionelle Re-
gulation dieser Gene involviert sein mussen. Auffallig war in diesem Zusammenhang,
dass die Zelllinie OMM1.5 eine um den Faktor 300 hohere PMP2-Genexpression als
etwa die Zelllinien 92.1 und Mel270 zeigten. Die Ursache kdnnte mdglicherweise even-
tuell mit dem Ursprung der Zelllinie zusammenhangen. Im KM konnte gezeigt werden,
dass PMP2 zur Invasion der Zellen beitragt [297]. Die Aktivierung der Invasion gehort zu
den hallmarks of cancer und ist Voraussetzung fir die Metastasierung von Tumoren
[516]. Die UM-Zelllinie OMM1.5 unterscheidet sich von den Zelllinien 92.1 und Mel270,
da sie urspriinglich aus dem Tumorgewebe einer UM-Lebermetastase generiert wurde
[325] und daher vermutlich mehr Gene exprimiert, die eine wichtige Rolle bei der Inva-
sion und Metastasierung spielen. Nach SOX10-Hemmung kam es sowohl in OMM1.5
als auch in der Zelllinie Mel270, die eine deutlich geringere PMP2-Expression aufwies,
zu einer Abnahme der PMP2-Genexpression, sodass eine Expressionsregulation durch
SOX10 in UM potenziell mdglich ist.

Im Gegensatz zu PMP2 war die Expression von MIA in der Zelllinie 92.1 um das mehr
als sechsfache hoher als in der Zelllinie OMM1.5, veranderte sich aber nach SOX10-
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Hemmung nur in dieser Zelllinie. MIA wurde von Graf et al. unter anderem in der Zelllinie
1205Lu als direktes Zielgen von SOX10 identifiziert [295]. In dieser Arbeit konnten 24h
nach der Transfektion mit SOX10-spezifischen siRNAs keine signifikanten Unterschiede
der MIA-Genexpression in der Zelllinie 1205Lu beobachtet werden. Da Graf et al. in ihrer
Publikation [295] jedoch nur Daten von Western Blot-Analysen zeigen und keine Daten
zur Genexpression, bleibt unklar, ob sich die MIA-Genexpression erst spater als 24h
nach der Transfektion anderte oder eine Abnahme der MIA-Expression in dieser Arbeit
aus anderen Grinden nicht nachgewiesen werden konnte.

Der Transkriptionsfaktor SOX9 besitzt eine grofte Homologie zu SOX10 und SOX8 [250,
429] und wird im KM nach der Hemmung von SOX10 hochreguliert [296]. Zudem kann
eine ektope SOX9-Expression KM-Zellen vor Apoptose infolge einer SOX10-Hemmung
bewahren [296], weshalb eine Analyse der SOX9-Expression im UM auch von Interesse
war. Die drei in dieser Arbeit untersuchten UM-Zelllinien exprimierten alle deutlich weni-
ger SOX9 als die KM-Zelllinie 1205Lu. Auffallig war in diesem Zusammenhang die
inverse Korrelation zwischen der basalen SOX170- und SOX9-Genexpression sowohl bei
der KM-Zelllinie 1205Lu als auch bei den drei untersuchten UM-Zelllinien. Nach SOX10-
Hemmung kam es analog zu den Beobachtungen im KM von Shakhova et al. [296] zu
einer Induktion der SOX9-Genexpression zumindest in zwei der drei untersuchten UM-
Zelllinien. Somit scheint auch im UM eine antagonistische Regulation von SOX10 und
SOX9 stattzufinden.

4.2.2 MITF als Mediator der Effekte

4.2.2.1 Expression basal und nach Hemmung von SOX10

MITF ist das am besten untersuchte Zielgen von SOX10 [261, 262, 432]. Ahnlich wie
SOX10 ist auch MITF bisher erst wenig im Kontext des UM untersucht worden. MITF bei
etwa 65 % der UM exprimiert und korreliert negativ mit der Pigmentierung und positiv
mit der Proliferationsaktivitat [440]. Im Zebrafisch-UM-Modell konnte interessanterweise
auch eine Rolle als Tumorsuppessor beschrieben werden [517]. In dieser Arbeit zeigte
sich eine signifikante positive Korrelation zwischen der basalen SOX10- und MITF-Ex-
pression in den untersuchten UM-Zelllinien. Nur in zwei Zelllinien konnte kaum MITF
nachgewiesen werden; dabei handelte es sich um die Zelllinien Mel285 sowie Mel290,
die auch keine basale SOX10-Expression aufwiesen. Diese Zelllinie exprimiert auch
keine melanozytaren Marker wie Melan-A, TYR, TYRP1 und DCT [489]. Da MITF als
Master-Regulator der Melanogenese gilt [431], kdnnte die geringe MITF-Expression eine
Erklarung fir diesen Befund sein. Die siRNA-vermittelte Hemmung von SOX10 fuhrte in
den drei SOX10-exprimierenden Zelllinien 92.1, Mel270 und OMM1.5 zu einer deutli-
chen Verringerung der MITF-Gen- und Proteinexpression ahnlich zu den Beschreibun-
gen im KM [288]. Im KM konnte gezeigt werden, dass MITF neben den melanozytaren
Markern TYR [270] und DCT [272] auch die Expression pro- und antiapoptotischer Pro-
teine wie Bcl-2 [441], Hypoxia inducible factor 1 subunit alpha (HIF1a) [518] sowie die
der Zellzyklusregulatoren CDK2 [519] oder Cyclin dependent kinase inhibitor 2A (INK4A)
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[520] direkt transkriptionell reguliert. Daher kénnte MITF ein zentraler Mediator der Ef-
fekte der SOX10-Hemmung sein.

4.2.2.2 Auswirkung der MITF-Hemmung auf Zellviabilitat, Zellzyklusprogress
und Uberleben von UM-Zellen

Die Analyse der Zellviabilitat zeigte, dass die Hemmung von MITF ahnlich wie die Hem-
mung von SOX10 zu einer Verringerung der Zellviabilitat in UM-Zellen fihrte. Wie schon
nach der SOX10-Hemmung war dieser Effekt am deutlichsten bei den Zelllinien 92.1 und
Mel270 zu beobachten, wahrend bei der Zelllinie OMM1.5 erst verzdgert nach 72h eine
signifikante Verringerung eintrat. Nach 96h sank die Zellviabilitat der OMM1.5-Zellen auf
etwa 30 %, wohingegen sich die der Zelllinien 92.1 und Mel270 auf etwa 5 % verringerte.
Bei der ebenfalls untersuchten KM-Zelllinie 1205Lu verringerte sich die Zellviabilitat nach
MITF-Hemmung nicht signifikant. Ebenfalls wurden keine Veranderungen der Zellzyk-
lusprogression und keine vermehrte Apoptoseinduktion beobachtet. Dies Iasst sich al-
lerdings damit erklaren, dass diese Zelllinie basal kaum MITF exprimierte, weshalb eine
Transfektion mit MITF-spezifischer siRNA folglich kaum einen Einfluss auf die Zellviabi-
litdt austibte. Bei diesen Versuchen war auffallig, dass die Zellviabilitat der mit Kontroll-
siRNA behandelten Zellen der Zelllinien 92.1 und Mel270 nach 72h und 96h deutlich
geringer war als in den nur mit dem Transfektionsmittel behandelten Zellen, die als Re-
ferenz fUr die Berechnung der Zellviabilitdt auf 100 % festgesetzt wurde. Dies deutet
darauf hin, dass siRNAs selbst die Zellviabilitdt negativ beeinflussen, auch wenn kein
bestimmtes Zielgen ausgeschaltet wird. Ahnliches konnte auch bei den jeweiligen Wie-
derholungsexperimenten sowie bei den Zellviabilitdtsanalysen nach SOX10-Hemmung
beobachtet werden. Es ist jedoch wichtig zu betonen, dass durch die Transfektionen mit
spezifischen siRNAs insgesamt deutlichere Effekte erzielt wurden im Vergleich zur
Transfektion mit der Kontroll-siRNA.

Die Daten der Zellzyklusanalyse nach 48h stehen im Einklang mit den Ergebnissen der
Zellviabilitdtsanalyse, die zum selben Zeitpunkt nach der Transfektion durchgeflhrt wur-
den. In den Zelllinien 92.1 und Mel270 befand sich nach MITF-Hemmung ein grof3erer
Anteil an Zellen in der G1-Phase verglichen mit den jeweiligen Kontrollzellen, wohinge-
gen bei der Zelllinie OMM1.5 kein Unterschied zu sehen waren. Bei letzterer waren nach
48h jedoch auch noch keine Unterschiede in der Zellviabilitat detektierbar. Am deutlichs-
ten war der Zellzyklusarrest in der Zelllinie 92.1 nachweisbar, die nach MITF-Hemmung
flr 48h nur noch eine Zellviabilitat von 35 % im Vergleich zur Kontrolle aufwies. In Wes-
tern Blot-Analysen konnten eine Rb-Hypophosphorylierung, eine Verringerung der Cyc-
lin D1-Expression und eine geringe Induktion der p21-Expression nachgewiesen wer-
den. Zusammengenommen sprechen diese Daten dafir, dass die Hemmung von MITF
analog zur Hemmung von SOX10 zu einem Zellzyklusarrest in der G1-Phase flhrt. Inte-
ressant ist dabei, dass es parallel auch zu einer Verringerung der p27-Expression kam.
Das Protein p27 ist wie p21 ein CDK-Inhibitor, der die Aktivitat von Komplexen aus CDKs
und verschiedenen Cyclinen inhibieren kann [394]. Eine Verringerung von p27 ist not-
wendig, damit die Zellen von der G1- in die S-Phase eintreten kénnen [394]. Mdglicher-
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weise handelt es sich bei der Abnahme der p27-Expression um einen Versuch der Zel-
len, den durch MITF-Hemmung verursachten Zellzyklus-Arrest in der G1-Phase doch
noch zu Uberwinden. Aulierdem wurde die p53-Expression analysiert, allerdings scheint
der Zellzyklusarrest nach MITF-Hemmung wie im Falle der SOX10-Hemmung
unabhangig von p53 abzulaufen. Zusatzlich zum Zellzyklusarrest in der G1-Phase des
Zellzyklus zeigten die Zelllinien 92.1 und Mel270 eine deutliche Zunahme der Annexin V-
positiven Zellen nach MITF-Hemmung. Die Apoptoseinduktion konnte durch weitere Pro-
teinexpressionsanalysen bestatigt werden. Die Verringerung der Expression antiapopto-
tischer Proteine wie Bcl-2 und Bcl-w sowie die Spaltung der Procaspasen 3 und 9 sowie
des Proteins PARP legen den Schluss nahe, dass die Hemmung von MITF in den Zell-
linien 92.1 und Mel270 analog zur Inhibition von SOX10 ebenfalls Gber den intrinsischen
Weg zur Apoptoseinduktion fihrt.

Die Zelllinie OMM1.5 unterschied sich in ihrem Verhalten nach MITF-Hemmung deutlich
von den beiden anderen untersuchten UM-Zelllinien. Sowohl die Zellviabilitat als auch
die Apoptoseinduktion und die Zellzyklusprogression anderte sich 48h nach der Trans-
fektion mit MITF-spezifischer siRNA kaum. Eine Erklarung fur die geringere Apoptosein-
duktion nach MITF-Hemmung im Vergleich mit 92.1 und Mel270 kdnnte die vermehrte
Aktivitat anderer Signalwege wie etwa des Akt-Signalweges in den Zellen darstellen.
Durch diese héhere Grundaktivitat dieses Signalweges kdnnten die Zellen moglicher-
weise in der Lage sein, den Verlust von MITF I&anger zu kompensieren.

Um einen experimentellen Beweis fir die zentrale Beteiligung von MITF an der
Zelltodinduktion nach SOX10-Hemmung zu bringen, wurden Rescue-Experimente
durchgeflhrt. Dabei wurde untersucht, ob die ektope Expression vom MITF den Verlust
von SOX10 kompensieren und somit die Zellen vor dem Zelltod bewahren kann. Fir die
Durchfihrung der Experimente wurden die beiden Zelllinien 92.1 und Mel270 verwendet,
da sie im Gegensatz zu OMM1.5 eine deutliche Abnahme der Zellviabilitat sowie einen
Zellzyklusarrest und Apoptoseinduktion bereits 48h nach SOX10-Hemmung zeigten. Die
ektope MITF-Expression wurde bei diesem Experiment durch Transfektion der Zellen
mit einem Expressionsplasmid erreicht, welches unter der Kontrolle eines CMV-Promo-
tors SOX10-unabhangig zur Expression eines Myc- und FLAG® -getaggten MITF-Pro-
teins fuhrt. Dadurch konnte die Expression des gebildeten Proteins nicht nur durch MITF-
Antikérper, sondern auch durch FLAG® - bzw. Myc-spezifische Antikorper im Western
Blot nachgewiesen werden Die durchgefiuihrten Proteinexpressionsanalysen zeigten
eine hohere Zellviabilitat und verringerte Spaltung der Procaspasen 3 und 9 bei gleich-
zeitiger ektoper MITF-Expression und SOX10-Hemmung. Die Expression des neugebil-
deten MITF liel3 sich sowohl durch MITF- als auch Myc- und FLAG® -Tag spezifische
Antikdrper nachweisen. Dabei war beim Nachweis mit MITF-spezifischen Antikorpern
eine Verlagerung der MITF-Bande bei den Zellen zu beobachten, die mit dem MITF-
Expressionsplasmid transfiziert worden waren. Dies lasst sich durch die geringfligig gro-
Rere ProteingréRe des bedingt durch den Expressionsvektor mit einem zusatzlichen
Myc- und FLAG® -Tag ausgestatteten MITF-Proteins erklaren. Bei der Durchflihrung des
Rescue-Versuches musste sowohl die Wahl geeigneter Transfektionsreagenzien, die
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Stabilitat der ektopen MITF-Expression als auch die optimale zeitliche Abfolge der bei-
den Transfektionen ausgetestet werden, um den Rescue-Effekt tatsachlich beobachten
zu konnen. Die Transfektionsreagenzien sollten dabei idealerweise einerseits eine hohe
Transfektionseffizienz haben und andererseits nicht toxisch auf die Zellen wirken. Das
Reagenz Lipofectamine® RNAIMAX konnte flr die siRNA-Transfektionen beibehalten
werden, es ist allerdings nicht fir die Transfektion von Plasmiden geeignet [521]. Mit
dem standardmaRig fir Plasmidtransfektionen in der Arbeitsgruppe verwendete Rea-
genz FUGENE® 6 (Promega, Madison, Wisconsin, USA) konnte aber nur eine sehr ge-
ringe Transfektionseffizienz in den UM-Zelllinien 92.1 und Mel270 erreicht werden, wie
Kontrollversuche mit einem GFP-Expressionsplasmid zeigten (Daten nicht in dieser Ar-
beit gezeigt). Der Einsatz des Reagenzes Lipofectamine™ 3000 erzielte zumindest in
der Zelllinie Mel270 ein besseres Resultat, sodass die Rescue-Experimente letztlich nur
mit dieser Zelllinie durchgefiihrt werden konnten. Um die Dauer und Stabilitat der ekto-
pen MITF-Expression zu untersuchen, wurden Mel270-Zellen mit dem Expressionsplas-
mid transfiziert und die MITF-Expression im Western Blot nach verschiedenen Zeitpunk-
ten analysiert. Eine starke ektope MITF-Expression war nach 12h und 24h erkennbar
und nahm danach wieder ab. MITF war aber auch noch 48h und 72h nach der Plasmid-
transfektion deutlich nachweisbar. Dadurch konnte bestatigt werden, dass die ektope
MITF-Expression fur mindestens 72h und damit fir die gesamte Dauer des Rescue-Ver-
suchs anhielt. Fir den Nachweis eines Rescue-Effektes durch MITF wurde aufgrund der
durchgefuhrten Vorversuche ein zweizeitiges Transfektionsprotokoll gewahlt, bei dem
zuerst die Transfektion des MITF-Expressionsplasmids gefolgt von der siRNA-Transfek-
tion im Abstand von 16h durchgefuhrt wurde. Da bereits 24h nach Transfektion mit einer
SOX10-spezifischen siRNA eine deutliche Zunahme an apoptotischen Zellen beobacht-
bar wurde, hatte eine zeitgleiche Transfektion von SOX10-siRNA und MITF-Expressi-
onsplasmid in den Vorversuchen bereits zum Sterben der Zellen gefuhrt, bevor ein mog-
licherweise schiitzender Effekt durch die ektope MITF-Expression eintreten konnte. Zu-
dem konnte durch die Pause von 16h zwischen den beiden Transfektionsschritten eine
vermehrte Zelltoxizitat aufgrund der Behandlung der Zellen mit den beiden Transfekti-
onsreagenzien minimiert werden.

Insgesamt deuten die Ergebnisse dieser Arbeit darauf hin, dass MITF im UM das Uber-
leben der Zellen férdert und damit protumorigen wirkt. In der Literatur sind bislang nur
wenige Arbeiten zur Rolle von MITF im Kontext des UM publiziert worden, die zum Teil
zu einem gegenteiligen Ergebnis kamen. Das MITF-Gen ist auf Chr. 3 lokalisiert [432,
433], welches eine entscheidende Rolle fur die Prognose des UM spielt, da die beim UM
gehauft auftretende Monosomie 3 mit einem hohen Risiko fur eine Metastasierung [24,
48], einer hoheren Mortalitat [75, 192] sowie einem klirzeren RFS assoziiert ist. Daher
stellt sich die Frage, ob MITF in diesem Zusammenhang analog zu BAP1 eine Rolle
spielt. Mouriaux et al. konnten eine MITF-Expression bei 65 % der UM-Primartumoren
und eine positive Korrelation zwischen der Expression von MITF und dem Proliferations-
marker Ki67 finden [440]. In ihrer Analyse konnten sie aber keinen signifikanten Uberle-
bensunterschied von UM-Patienten mit MITF-positiven im Vergleich mit MITF-negativen
Tumoren finden [440]. Ob es einen Zusammenhang zwischen der MITF-Expression und
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einer Monosomie 3 gibt, wurde in dieser Arbeit nicht untersucht [440]. Gelmi et al. stellten
auf der ARVO-Jahrestagung 2022 in Denver Daten einer Analyse zur MITF-Expression
bei 64 UM-Patienten des Universitatsklinikums Leiden vor [522]. Die Forscher konnten
einen signifikanten Zusammenhang zwischen einer geringen MITF-Expression und einer
Monosomie 3 sowie einer hdheren Pigmentierung der Tumoren und einer héheren Ex-
pression des Preferentially expressed antigen in melanoma (PRAME), allerdings keinen
mit dem Uberleben der Patienten feststellen [522]. Interessanterweise war in Tumoren
mit geringer MITF-Expression eine Hochregulation von Signalwegen zu beobachten, die
mit Entziindung assoziiert sind [522]. Es wurden auch die 80 Proben des TCGA Ocular
Melanomas (UVM)-Datensatz [75, 347] auf diese Aspekte hin analysiert und ahnliche
Ergebnisse beobachtet [522]. Aus diesen Erkenntnissen schlossen die Autoren, dass
der Verlust von MITF mit einem Fortschreiten der Erkrankung in Verbindung steht [522].
Die Ergebnisse der Arbeit von Phelps et al. [517] gehen in eine dhnliche Richtung und
starken die These, dass der Verlust von MITF die Tumorprogression férdern kénnte. Die
Autoren nutzten in ihrer Studie ein Zebrafisch-Modell, bei dem das humane GNAQ®?%%-
unter der Kontrolle des mitfa-Promotors exprimiert wird [523]. Sie konnten dabei
beobachten, dass der Verlust von mitfa die GNAQ®?%t-vermittelte Tumorentwicklung be-
schleunigte und MITF im UM im Gegensatz zum KM als Tumorsuppressor fungiert [517].
Somit scheint MITF im UM mdglicherweise unterschiedliche Rollen einnehmen zu kon-
nen und sowohl tumorsupprimierend als -fordernd zu wirken konnen.

4.3 Identifizierung neuer therapeutischer Zielstrukturen im
Uveamelanom

4.3.1 SOX10 als direkter Angriffspunkt einer zielgerichteten Therapie?

Aufgrund des starken und rasch einsetzenden zytotoxischen Effekte der SOX10-Hem-
mung auf UM-Zellen einerseits und die geringe Toxizitat auf HM andererseits liegt nahe,
die gezielte SOX10-Hemmung als neue spezifische Therapie im UM zu nutzen. Fir eine
pharmakologische Inhibition von Proteinen in vivo werden derzeit vor allem spezifische
monoklonale Antikdrper, die an die Zielstruktur binden oder niedermolekulare Wirkstoffe
(small molecule-Inhibitoren) eingesetzt, die Uber eine kompetitive oder allosterische
Hemmung die Funktion des Zielproteins modulieren [524, 525]. SOX10 ist ein intrazellu-
lar vorkommender Transkriptionsfaktor, der zwar zwischen dem Zytoplasma und dem
Zellkern hin- und herwechseln kann, allerdings weder an der Oberflache exprimiert noch
sezerniert wird [259] und daher nicht als Zielstruktur fir therapeutische Antikdrper zu-
ganglich ist [524]. Small molecule-Inhibitoren hemmen die Funktion ihrer Zielproteine
wie z.B. Proteinkinasen, zu denen auch BRAF und MEK zahlen, durch kompetitive Hem-
mung der ATP-Bindungsstelle oder durch eine allosterische Hemmung, indem sie an
Proteindomanen binden und damit deren Funktion blockieren [526]. Transkriptionsfakto-
ren sind im Gegensatz zu Proteinkinasen aufgrund ihres strukturellen Aufbaus pharma-
kologisch schwerer zu beeinflussen [527]. Sie haben typischerweise keine
Bindungstaschen, in die ein Inhibitor binden kénnte, sondern besitzen eher grolie, glatte
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Oberflachen ohne spezifische Angriffsflachen [527]. Zudem sind sie aus DNA-Bindedo-
manen und davon getrennten verschiedenen Effektordomanen aufgebaut, was die Ent-
wicklung eines spezifischen Hemmstoffes beispielsweise nach Vorbild der BRAFi oder
MEKi erschwert [527]. Bisher konnte noch kein spezifischer small molecule-Inhibitor fir
SOX10 entwickelt werden [423]. Interessant ist in diesem Zusammenhang jedoch das
Flavonoid Astragalin (Kaempferol-3-Glycosid), das naturlicherweise in Pflanzen wie dem
Kerzenstrauch (Cassia alata) und Teufelszwirn (Cuscuta chinensis) vorkommt [528].
You et al. konnten zeigen, dass Astragalin in KM-Zelllinien zur Apoptoseinduktion und
Herabregulierung von SOX10 fihrt und die ektope Expression von SOX10 die Wirkung
der Substanz vermindern kann [529]. Wie genau die Expression von SOX10 durch
Astragalin beeinflusst wird und welche Signalwege und Faktoren hierbei beteiligt sind,
wurde von den Autoren jedoch nicht weiter untersucht [529]. Somit kann Astragalin also
nicht als direkter Inhibitor von SOX10 gesehen werden, obwohl die verursachten Effekte
auf das Fehlen der SOX10-Funktion zurtickgehen.

Eine weitere Mdglichkeit der Funktionsbeeinflussung ware, die posttranslationalen Mo-
difikationen von Transkriptionsfaktoren mithilfe von small molecules zu modulieren und
auf diese Weise deren transkriptionelle Aktivitat zu regulieren, wie Williams et al. fur die
SOX-Proteine postulieren [527]. SOX10 kann jeweils an mehreren Stellen durch Phos-
phorylierung und SUMOylierung posttranslational modifiziert werden, was zu einer Ver-
anderung der transkriptionellen Aktivitdt und Férderung der Degradierung des Proteins
fuhren kann [255, 256, 258]. Welche Proteine an der Ausbildung dieser Modifikationen
beteiligt sind, ist bisher jedoch nur wenig erforscht worden. Girard und Goosens konnten
zeigen, dass das Ubiquitin-konjugierende Enzym 9 (UBC9) mit SOX10 interagiert und
zur SUMOylierung beitragt [256]. Im KM konnte speziell die SUMOylierung der Amino-
saure Lys55 als wichtige Modifikation fir die Steuerung der Proteinaktivitat identifiziert
werden [258]. Han et al. konnten zeigen, dass SOX10 durch die Kinase ERK2 an den
Aminosaurepositionen Thr240 und Thr244 phosphoryliert wird und dies die SUMOylie-
rung des Proteins an Position Lys55 verhindert, die flr die transkriptionelle Aktivitat von
SOX10 bendtigt wird [258]. Andere Phosphorylierungsstellen im SOX10-Protein kénnten
laut Abgleich mit vorhergesagten Proteinfunktionsmotiven der Eukaryotic Linear Motif-
Datenbank mdéglicherweise durch MAP-Kinasen und CDKs vermittelt werden; ein expe-
rimenteller Beweis flir diese in silico-Vorhersagen steht jedoch noch aus [255].

In vitro ist eine spezifische Inhibition von SOX10 durch die Transfektion der Zellen mit
entsprechenden siRNAs vergleichsweise einfach zu bewerkstelligen, wie sie auch in die-
ser Arbeit angewendet wurde. Da die Zellen bei der Kultivierung in vitro als einzellige
Schicht vorliegen, kommen sie zwangslaufig direkt in Kontakt mit den Transfektionsrea-
genzien. Im Gegensatz dazu mussten bei der Anwendung in einem Organismus ver-
schiedene Hirden auf dem Weg von der Applikation bis zum Tumor Uberwunden wer-
den. Dies betrifft sowohl die Stabilitdt der RNA und insbesondere die Resistenz gegen
den frihzeitigen Abbau im Blut und den Zielzellen, die Akkumulation im Zielgewebe und
die Aufnahme in die Zielzellen als auch mdgliche Off-Target-Effekte durch unbeabsich-
tigte Hemmung anderer Gene und das Auslésen einer Immunantwort gegen siRNAs als
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maogliche Komplikationen einer solchen Therapie [530]. Chemische Modifikationen der
Nukleotide sowie die Entwicklung von Liposomen und Nanopartikeln fir die Verpackung
der siRNA haben zu Fortschritten im Bereich der Stabilitat, des Transports und der
Minimierung von Nebeneffekten gefuhrt [530]. Neben siRNAs wurde auch auf dem Ge-
biet der Antisense-Oligonukleotide (ASO) in den letzten Jahren intensiv geforscht, um
diese Hirden zu Uberwinden. ASO sind lange einzelstrangige Oligonukleotide, beste-
hend aus chemisch modifizierten Nukleotiden, die komplementar an die jeweilige Ziel-
RNA binden [531]. Durch unterschiedliche chemische Modifikationen der Basen kann
sowohl Einfluss auf die Stabilitdt der Molekile als auch ihre Wirksamkeit und Vertrag-
lichkeit im Organismus genommen werden [531]. ASO kdnnen je nach Design sowohl
den Abbau als auch die Stabilitdt der mRNA durch Beeinflussung der Translationsma-
schinerie an unterschiedlichen Stellen in den Zellen hemmen oder stabilisieren und so
die Translation eines Proteins verhindern oder férdern [531]. Allein bis 2021 wurden be-
reits mehr als 10 auf ASO basierende Medikamente von der FDA zugelassen, darunter
vier Medikamente auf siRNA-Basis [531]. Morpholino-ASO gegen sox70 wurden bereits
im Tiermodell in Zebrafischembryos eingesetzt, um die sox10-Expression zu inhibieren
[532]. Derzeit sind aber keine Studien zu SOX10-ASO auf der Studienverzeichnis-Platt-
form clinicaltrials.gov registriert.

Eine weitere Option kdnnte theoretisch eine posttranskriptionelle Degradierung von
SOX10 durch proteolysis-targeting chimeras (PROTAC) darstellen. PROTAC koénnen
den Abbau ihres Zielproteins Uber das Ubiquitin-Proteasom-System induzieren [533].
Sie sind small molecules und bestehen aus einem ersten Liganden, der an das Zielpro-
tein bindet und aus einen Uber einen Linker verbundenen zweiten Liganden, der an eine
E3-Ubiquitinligase bindet, wodurch ein Komplex aus dem abzubauenden Zielprotein,
dem PROTAC und einer E3-Ligase ausgebildet wird [533, 534]. Dadurch wird das Ziel-
protein selektiv polyubiquitiniert und anschliefend im Proteasom abgebaut [533, 534].
Zu den Vorteilen dieser Technologie zahlen, dass (i) ein PROTAC-Molekul den Abbau
von gleich mehreren Zielmolekilen induzieren kann, weshalb sie in geringerer Dosie-
rung eingesetzt werden kénnen als small molecule-Inhibitoren, dass (ii) eine kompensa-
torische Hochregulierung der Proteinexpression als Reaktion auf eine Inhibitorbehand-
lung nicht zur Resistenzbildung fuhrt und dass (iii) ,undruggable” Zielproteine wie etwa
Transkriptionsfaktoren gezielt abgebaut werden kdnnen [5633, 534]. Allerdings sind die
bisher designten PROTAC mit 1 bis 2 kDa relativ grof3, sodass ihre Membrangangigkeit
eine grofRe Huirde fir die Wirkung darstellt; zudem sind bisher nur PROTAC fur Proteine
entwickelt worden, fur die bereits ein Ligand des Zielproteins und die mit dem Protein
assoziierte E3-Ligase bekannt waren [533]. Bislang gibt es noch keine Publikationen zu
PROTAC, die SOX10 oder ein anderes SOX-Protein spezifisch degradieren kdnnen.

Neben den technischen Herausforderungen einer medikamentésen Tumortherapie mas-
sen auch potenzielle NW bei einer SOX10-inhibierenden Therapie bedacht werden. Die
Versuche in dieser Arbeit haben gezeigt, dass HM eine SOX10-Hemmung sehr gut
tolerieren und sich auch nach 96h keine signifikanten Unterschiede in der Zellviabilitat
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zeigten. Dennoch kann nicht ausgeschlossen werden, dass eine therapeutische Inhibi-
tion nicht doch auch andere SOX10-exprimierende Zellen im Kérper negativ beeinflus-
sen kénnte, zu denen etwa die Schwann-Zellen im PNS gehdren [252, 266]. Bremer et
al. konnten in einem konditionalen Sox70-Knockout-Mausmodell zeigen, dass es einige
Wochen nach Induktion des Knockouts bei adulten Mausen zur Ausbildung neurologi-
scher Symptome kam, die sich im weiteren Verlauf des Experiments jedoch wieder bes-
serten [535]. Zudem veranderte sich die Fellfarbe der Mause fortschreitend von dunkel-
braun zu grau [535]. Am Ischiasnerv zeigte sich eine partielle Demyelinisierung, elektro-
physiologische Auffalligkeiten wie eine veranderte Amplitude der Aktionspotenziale und
eine vermehrte Degeneration der Axone [535]. Somit scheint Sox10 abgesehen von sei-
ner bedeutenden Rolle wahrend der Embryonalentwicklung auch eine wichtige Funktion
fur die Aufrechterhaltung der Struktur und Funktionsweise von peripheren Nerven im
adulten Organismus zu spielen [535]. In reifen Oligodendrozyten, die ebenfalls Sox10
exprimieren, fuhrt der Verlust im Tiermodell jedoch zu keinen Veranderungen der
Myelinisierung [536]. Daher kdnnte eine periphere Neuropathie eine mdgliche Kompli-
kation einer systemischen SOX10-Inhibitortherapie darstellen.

Um die Spezifitat einer SOX10-inhibierenden Therapie zu erhdhen und damit Off-target-
Effekte zu minimieren, kdnnte ein Antikérper-Medikamenten-Konjugat eine Moglichkeit
darstellen, um einen potenziellen SOX10-Inhibitor gezielt in UM-Zellen einzubringen.
Hier kdnnte beispielsweise eine Kopplung des Therapeutikums an Antikdrper gegen das
Protein gp100 in Betracht kommen. Dieses Oberflachenmolekul wird bei mehr als 80 %
der UM-Patienten auf 75 % bis 100 % aller Tumorzellen exprimiert [537] und ist auch die
Zielstruktur des bispezifischen Molekiils Tebentafusp, welches derzeit die einzige zuge-
lassene systemische Therapie ist, die das OS von metastasierten UM-Patienten signifi-
kant verlangern kann [178, 180]. Es ist keine SOX10-Expression in der Leber gefunden
worden, in der mehr als 90 % der Metastasen bei UM-Patienten auftreten [133-136, 275].
Daher kdnnte eine SOX10-inhibierende Therapie mdglicherweise mit einem leberspezi-
fischen Verfahren wie der Chemoembolisation oder einem isolierten Perfusionsverfah-
ren kombiniert werden, um die Gefahr von systemischen NW zu minimieren.

4.3.2 SOX10-basiertes drug repurposing zur ldentifizierung neuer
therapeutischer Zielstrukturen im Uveamelanom

Die vorgestellten Daten zeigen, dass sowohl SOX10 als auch sein Zielgen MITF essen-
ziell fir das Uberleben von UM-Zellen sind. Daher konnte sich die Inhibition weiterer
Zielstrukturen, die mit SOX10 und MITF funktionell assoziiert sind und pharmakologisch
maoglicherweise besser als diese beiden Transkriptionsfaktoren moduliert werden kon-
nen, als potenzielle Option fir die Entwicklung neuer Therapien im UM erweisen. Um
solche Zielstrukturen zu identifizieren, wurden die Erkenntnisse aus den SOX10-Inhibi-
tionsversuchen mit bioinformatischen Ansatzen verknupft und die Informationen in ei-
nem UM-Protein-Interaktionsnetzwerk geblindelt. Dieser neuartige Ansatz wurde dann
verwendet, um in silico potenziell interessante Ziele fiir eine pharmakologische Therapie
zu identifizieren, die bisher speziell im UM noch nicht oder nur kaum untersucht wurden.
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Insbesondere im Hinblick der Tatsache, dass das UM durch seine relativ geringe Muta-
tionslast und das Auftreten von nur wenigen Treibermutationen charakterisiert ist [46],
die sich zudem pharmakologisch bisher nicht gut beeinflussen lassen, kdnnte sich die-
ses Vorgehen als vielversprechende Methode zur Identifizierung neuer Zielstrukturen
herausstellen. Die Kombination mit weiteren bioinformatischen Analysemdglichkeiten
wie etwa mit sogenannten Docking-Simulationen bieten dabei neue Mdglichkeiten fir
die Therapieentwicklung. Bei diesen Simulationen wird die Bindungsaffinitat von Mole-
kulen an die gewlnschte Zielstruktur, z.B. das zu hemmende Enzym, in silico getestet,
um bisher unbekannte Interaktionen zwischen Proteinen und pharmakologischen Sub-
stanzen zu identifizieren [538]. Dies birgt das Potenzial, mdglicherweise bereits in klini-
schen Phasen getestete oder sogar schon zugelassene Medikamente im Sinne eines
drug repurposing in einem neuen medizinischen Anwendungsgebiet einsetzen zu kon-
nen [443, 444].

Im Rahmen dieser Arbeit wurden mithilfe des erstellten UM-Protein-Interaktionsnetzes
vier potenzielle Zielstrukturen selektiert, die sich méglicherweise als Angriffspunkte fir
eine medikamentose Therapie des UM eignen konnten. Diese wurden dann in in vitro-
Experimenten weiter charakterisiert. Die vier Kandidatenproteine sind allesamt durch
small molecule-Inhibitoren oder neutralisierende AK inhibierbar. Das grofte Potenzial
zeigte hierbei der Einsatz des small molecule-Inhibitors und pan-E2Fi HLM006474 [480],
der fur die Hemmung von E2F1 ausgewahlt wurde, da zum Zeitpunkt der Durchflihrung
der Experimente keine selektiver E2F1-Inhibitor kommerziell erhaltlich war. Durch
HLMO006474 kam es bereits bei einer Dosierung im niedrigen mikromolaren Bereich zu
einer starken Verringerung der Zellviabilitat sowie zur Apoptoseinduktion und zum Zell-
zyklusarrest.

4.3.21 E2F1 und HLMO006474 — geeignete Kandidaten fur eine
medikamentdse Therapie des UM?

E2F1 aus der E2F-Transkriptionsfaktorfamilie ist zentral am Zellzyklusiibergang von der
G1- in die S-Phase beteiligt [386]. E2F1 bildet in Zellen in der GO/G1-Phase Komplexe
mit dem Tumorsuppressorprotein Rb, wodurch es seine Funktion als Transkriptionsfak-
tor inhibiert wird [386]. Wird Rb durch CDKs hyperphosphoryliert, nimmt seine Bindung
zu E2F1 ab, wodurch E2F1 wieder seine Funktion als Transkriptionsfaktor direkt durch
Stimulierung der Expression von Genen ausiiben kann, die fir den Ubergang in die S-
Phase bendtigt werden [384-386]. Im KM wird E2F1 im Vergleich mit gesunder Haut und
Navi vermehrt exprimiert und seine Funktion wurde bereits durch spezifische Hemmung
mit siRNAs bzw. durch Einsatz von HLM006474 in KM-Zelllinien experimentell unter-
sucht [448]. Dabei kam es in vitro zu einer Verringerung der Zellviabilitat,
Apoptoseinduktion, p53-induzierten Seneszenzinduktion, einem G2/M-Zellzyklusarrest
sowie einem stark verringerten Tumorwachstum im Mausmodell nach der Behandlung
mit HLM006474 [448].

Die in dieser Arbeit untersuchten UM-Zelllinien 92.1, Mel270 und OMM1.5 zeigten nach
96h eine deutliche Abnahme der Zellviabilitat bei HLM006474-Konzentrationen > 10 uM.
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Bei Inkubation der Zellen mit einer Konzentration von 50 uyM konnte ein Zellzyklusarrest
und eine deutliche Apoptoseinduktion in allen drei Zelllinien beobachtet werden. Anders
als nach Hemmung von SOX10 und MITF, bei der jeweils ein G1-Phasen-Arrest induziert
wurde, kam es nach Inkubation mit HLM006474 zu einem Anstieg des Anteils an Zellen
in der S-Phase. Zu einer Verlangerung der S-Phasen-Dauer kann es einerseits
unabhangig vom Replikationsgeschehen kommen, wenn etwa dsDNA-Briiche auftreten
(Intra-S-Phasen-Checkpoint), oder wenn das Fortschreiten der Replikationsgabeln wah-
rend der Replikation beeintrachtigt wird (Replikationscheckpoint) [384, 539]. Letzteres
kann beispielsweise durch Hemmung der DNA-Polymerase, durch ein zu geringes
dNTP-Angebot oder abweichende DNA-Strukturen verursacht werden, wodurch es zu
einer Verlangsamung der DNA-Synthese kommt [539]. Ziel des S-Phasen-Arrest ist da-
bei, eine unkontrollierte DNA-Replikation zu verhindern und die Reparatur der DNA bzw.
Wiederauffillung des dNTP-Angebotes zu erlauben, bevor es zur Zellteilung kommt
[539]. Alle S-Phasen-Checkpoints werden dabei unabhangig vom Tumorsuppressor p53
aktiviert [539], wie es auch nach HLM006474-Inkubation in den drei untersuchten UM-
Zelllinien der Fall war.

E2F1 fordert als Transkriptionsfaktor neben regulatorischen Proteinen der G1- und S-
Phase wie Cyclin E1, Cyclin A2 und CDK2 auch die Transkription typischer S-Phase-
Proteine, die fir die Nukleotid- und DNA-Synthese wahrend dieses Zellzyklusabschnitts
bendtigt werden, darunter die Proteine Thymidinkinase, Thymidylat-Synthase, Dihydro-
folat-Reduktase (DHFR), DNA-Polymerase a, Proliferating Cell Nuclear Antigen (PCNA)
sowie Ribonukleotidreduktase 1 und 2 [482-484]. Eine Herabregulierung dieser Proteine
infolge einer Hemmung von E2F1 kann daher den beobachteten Arrest in der S-Phase
plausibel erklaren. Nach der Behandlung mit HLM006474 nahm auch die E2F1-Expres-
sion selbst ab, was darauf zurlickgefihrt werden kann, dass durch die Hemmung von
E2F1 die Verstarkung der eigenen Genexpression wegfallt, die normalerweise in einer
positiven Ruckkopplungsschleife Uber E2F-Bindestellen im E2F1-Promotor ausgelbt
wird [482, 540].

Einhergehend mit dem S-Phasen-Arrest kam es durch die Inkubation mit HLM006474 in
den untersuchten UM-Zelllinien auch zu einer Aktivierung des p38-Signalweges, der vor
allem durch Stress aktiviert wird [407-409]. Speziell nach dsDNA-Briichen kann es zu
einer Akkumulation von p38a im Zellkern kommen, sodass davon ausgegangen wird,
dass das Protein beim G2/M-Arrest und der DNA-Reparatur eine Rolle spielt [410]. Zu-
dem kann die Aktivierung von p38 zum Arrest am Ubergang von der G1- in die S-Phase
fuhren [409]. Ein Zusammenhang zwischen dem S-Phase-Arrest und der p38-Aktivie-
rung kénnte durch das Auftreten von Replikationsstress erklart werden, der durch Sto-
rungen der normalen DNA-Synthese bzw. einen verlangsamten Progress der Replikati-
onsgabeln ausgeldst wird [541]. Durch stillstehende oder verlangsamte Replikationsga-
beln und die dadurch entstehende einzelstrangige DNA, die zum Replikationsstress
fuhrt, kdnnen die Kinasen ATM und ATR aktiviert werden [541]. AuRerdem kann die Ak-
tivierung von ATM nach dsDNA-Brlchen zur Aktivierung von p38 flhren, wie sie auch in
dieser Arbeit nach Inkubation mit HLM006474 beobachtet wurde, wobei ATM selbst p38
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nicht direkt phosphoryliert [542]. ATM kann jedoch die MAP-Kinase-Kinase-Kinasen
Thousand and one amino acid (TAO1, TAO2 und TAO3) infolge von dsDNA-Briichen
aktivieren, die wiederum die MAP-Kinase-Kinasen MKK3 und MKK6 phosphorylieren,
welche schlielich p38 durch Phosphorylierung aktivieren [543]. Die Apoptoseinduktion
nach HLMO006474-Inkubation ging mit einer Abnahme der Bcl-2-Expression einher, die
auf eine Aktivierung des p38-Signalweges, das die Expression von Bcl-2 inhibieren kann
[544], zuriickgehen kdnnte. Rouaud et al. konnten dariiber hinaus beobachten, dass die
Inhibition von E2F1 zur p53-Aktivierung in KM-Zelllinien fuhrt [448]. In den untersuchten
UM-Zelllinien kam es jedoch zu keiner Akkumulation von p53 nach HLM006474-Inkuba-
tion, sodass davon auszugehen ist, dass die beobachteten Effekte auf den Zellzyklus
und den Zelltod im UM unabhangig von p53 vermittelt werden.

Obwohl eigentlich nur E2F1, nicht aber die anderen sieben Mitglieder der E2F-Transkrip-
tionsfaktorfamilie Teil des im Rahmen dieser Arbeit generierten target selection network
waren, wird auch deren Funktion bei der Inkubation der UM-Zellen mit HLM006474 mit
beeintrachtigt, da es sich bei HLM006474 um einen pan-E2Fi handelt [480]. Somit ist mit
diesem Inhibitor streng betrachtet keine selektive E2F1-Hemmung im eigentlichen Sinn
moglich. Aus therapeutischer Sicht muss die zeitgleiche Hemmung weiterer E2F-Tran-
skriptionsfaktoren allerdings kein zwangslaufiger Nachteil sein, da bekannt ist, dass an-
dere Mitglieder dieser Transkriptionsfaktorfamilie den Funktionsfall einzelner E2Fs kom-
pensieren kénnen [447, 481]. Ursache hierflr ist die starke Homologie der Transkripti-
onsfaktoren insbesondere im Bereich der DNA-Bindedoméanen, weshalb unterschiedli-
che E2F-Transkriptionsfaktoren an dieselben Promotorbereiche binden kénnen [447].
Es liegt daher nahe, dass die deutliche Abnahme der Zellviabilitdt nach HLM006474-
Exposition nicht nur durch die Hemmung von E2F1, sondern auch anderer E2F-Tran-
skriptionsfaktoren vermittelt wurde. Auch Rouaud et al. konnten im KM Unterschiede
zwischen der E2F 1-Hemmung mittels siRNAs und der HLM006474-Behandlung der Zel-
len finden, darunter etwa eine Herabregulation von Bcl-2 und JUN nur nach der Trans-
fektion mit E2F1-siRNAs sowie Unterschiede bei den Phasen, in denen es zum Zellzyk-
lusarrest kam [448]. Interessanterweise fulhrte die SOX10-Hemmung den RNA-Sequen-
zierungsanalysen nach zu einer Herabregulation fast aller E2F-Transkriptionsfaktoren in
den untersuchten UM-Zelllinien 92.1 und Mel270. Dies kdnnte so interpretiert werden,
dass die SOX10-Hemmung ahnlich wie HLM006474 eine Wirkung als pan-E2Fi ausubt.
Vor diesem Hintergrund kénnte sich eine Fokussierung nur auf eine alleinige Hemmung
von E2F1 moglicherweise eventuell gar nicht als zielfihrend in Hinblick auf die Entwick-
lung einer zytotoxischen Tumortherapie im UM erweisen. Cronin et al. konnten nach
SOX10-Hemmung im KM eine Verringerung der E2F1-Expression zeigen [294], darUber
hinaus gibt es jedoch keine Hinweise in der Literatur, dass SOX10 die Expression von
E2F1 beeinflussen kann oder es SOX10-Bindestellen in den Promotorregionen der E2F-
Transkriptionfaktoren gibt.
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In der Zusammenschau ergibt sich aus den beobachteten Ergebnissen das in Abb. 45
dargestellte Arbeitsmodell zur HLM006474-Wirkung in UM-Zellen. HLM006474 verhin-
dert die Bindung von E2F1 an die DNA. Dadurch kommt es zur verringerten Expression
der S-Phase-Gene und infolge dessen zu Verzdgerungen bei der DNA-Replikation, wes-
halb sich insgesamt der Anteil der Zellen, die sich in der S-Phase des Zellzyklus befindet,
erhoht. Der daraus resultierende Replikationsstress kénnte durch das Kollabieren von
Replikationsgabeln zu dsDNA-Briichen und der beobachteten erhdhten y-H2A.X-Ex-
pression fuhren, was bereits bei vielen Genotoxinen als sekundare Folge ihrer Wirkung
beobachtet wurde [400]. Infolgedessen kdnnten Stresskinasen (moglicherweise ATM,
ATR oder TAO) aktiviert werden, die Uber weitere Kinasen zur Phosphorylierung und
damit Aktivierung des stressassoziierten p38-Signalweges flihren. Dieser Signalweg
wiederum konnte durch die Beeinflussung der p21-, p27- und Bcl-2-Expression mafigeb-
lich an der beobachteten Zelltodinduktion Uber den intrinsischen Apoptoseweg beteiligt
sein.

Abb. 45: Arbeitsmodell der basalen E2F1-Funktion im UM sowie nach Inkubation mit dem
pan-E2Fi HLM006474

(A) Normaler Ubergang von der G1- in die S-Phase des Zellzyklus ohne E2F1-Hemmung. E2F1
bildet in Zellen in der GO/G1-Phase Komplexe mit dem Tumorsuppressorprotein Rb, wodurch
seine Bindung an die DNA inhibiert wird und es transkriptionell inaktiv ist. Nachdem Rb durch die
Cyclin-CDK-Komplexe Cyclin D1-CDK4/6 und Cyclin E1-CDK2 in der G1-Phase hyperphospho-
ryliert wird, nimmt seine Bindung zu E2F1 ab, welches dann seine Funktion als Transkriptions-
faktor direkt durch Stimulierung der Expression von Genen ausiiben kann, die fir den Ubergang
in die S-Phase bendtigt werden [384-386, 482]. SOX10 scheint die Expression von E2F1 in UM-
Zellen positiv zu beeinflussen, ob dies jedoch durch direkte Bindung von SOX10 an den E2F1-
Promotor geschieht oder ob hierbei noch andere Mediatoren beteiligt sind, ist derzeit noch unbe-
kannt. p21 kann Komplexe mit den CDKs CDK1, CDK2, CDK3, CDK4 und CDK®6 bilden und
deren Funktion hemmen [385, 386]. Das Protein p27 ist ebenfalls ein CDK-Inhibitor, der die Akti-
vitdt von Komplexen aus CDKs und Cyclin D, Cyclin E, Cyclin A und Cyclin B inhibieren kann
[394]. Fur die Transition von G1 in die S-Phase ist eine fortschreitende Abnahme der p27-Ex-
pression und dadurch die Aufhebung der Inhibierung der Komplexe Cyclin E-CDK2 und Cyclin A-
CDK2 nétig [394]. (B) Arbeitsmodell der HLM006474-Wirkung im UM. Der pan-E2Fi HLM006474
verhindert die Bindung von E2F1 bzw. anderen Mitgliedern der E2F-Transkriptionsfaktorfamilie
an die DNA, wodurch es zu einer Herabregulierung der E2F1-Expression selbst sowie von zahl-
reichen S-Phase-Genen kommt, die fir die DNA-Replikation bendtigt werden. Dies resultiert in
einer verzdgerten DNA-Synthese (S-Phasen-Arrest), die zu vermehrtem replikativen Stress flhrt
(z.B. verlangsamtes Fortschreiten und Kollabieren der Replikationsgabeln, dsDNA-Briche). In-
folgedessen kommt es zur Aktivierung des p38-MAPK-Stresssignalweges durch Phosphorylie-
rung von p38 — mutmallich durch Aktivierung von Stresskinasen wie ATM oder TAO -, was zur
p21-Induktion, Verringerung der Bcl-2-Expression und Spaltung der Procaspasen 3, 9 und von
PARP, also letztendlich zum Zelltod Gber den intrinsischen Apoptoseweg fiihrt. RRM2: regulato-
rische Untereinheit M2 der Ribonukleotidreduktase.

Abb. 45 siehe Folgeseite
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Neben HLMO006474 wurde mit dem Nukleosid-Analogon Ly101-4B von Lan et al. ein
weiterer pan-E2Fi beschrieben, der die Zellviabilitdt von Pankreaskarzinomzelllinien ver-
ringern konnte [545]. Dieser Inhibitor war zum Zeitpunkt der Erstellung dieser Arbeit
allerdings noch nicht kommerziell erhaltlich, weshalb nicht getestet werden konnte, ob
dieser auf UM-Zellen einen ahnlichen Effekt ausubt wie HLM006474.

E2F1 wird in zahlreichen Geweben, darunter auch in den verschiedenen Zelltypen der
Haut, exprimiert [546, 547], was die Frage nach potenziellen systemischen NW bei einer
klinischen Anwendung einer E2F-Inhibitortherapie aufwirft. Interessant ist in diesem Hin-
blick allerdings, dass HLM006474 die Zellviabilitdt von humanen Keratinozyten und
Melanozyten in vitro nicht beeinflusste und bei den damit behandelten Mausen keine
Anzeichen einer Toxizitat beobachtet wurden [448]. Ma et al., die den Inhibitor erstmals
im Zusammenhang mit E2F-Transkriptionsfaktoren beschrieben, konnten in einem 3D-
Hautmodell zwar eine Hemmung der Proliferation der Melanomzelllinie A375 zeigen,
aber ebenfalls keine zytotoxischen Effekte auf Keratinozyten sowie auf Fibroblasten er-
kennen [480]. Bisher gibt es jedoch noch keine Publikationen zum Einsatz in Patienten
und es sind derzeit in der Datenbank clinicaltrials.gov noch keine klinischen Studien zu
HLMO006474 oder einem anderen E2Fi registriert.

4.3.2.2 Weitere potenzielle Zielgene: TFRC, FGF9 und EZH2

Neben E2F1 wurden auch TFRC, EZH2 und FGF9 als potenzielle Zielstrukturen fir eine
zielgerichtete Therapie im UM identifiziert und deren Einfluss auf die Zellviabilitat von
UM-Zellen in ersten in vitro-Experimenten untersucht.

Tumorzellen bendétigen fir das Zellwachstum erhéhte Mengen an Eisen, welches mithilfe
des Transferrin-Rezeptors 1 (CD71) in die Zellen aufgenommen wird, der bei einer Viel-
zahl an Tumorentitdten wie auch dem HCC vermehrt exprimiert wird [459, 463, 466].
Das fur CD71 codierende Gen TFRC wurde in allen untersuchten UM-Zelllinien expri-
miert und die Genexpression von TFRC verringerte sich in den Zelllinien 92.1 und
Mel270 nach SOX10-Hemmung sowohl in der qPCR- als auch in der RNA-Sequenzie-
rungsanalyse. Allerdings fiihrte die Hemmung von SOX10 in der Zelllinie OMM1.5 zu
keinen signifikanten Veranderungen. In dieser Arbeit wurde die Funktion von CD71
durch Inkubation der Zellen mit einem blockierenden anti-CD71-Antikérper gehemmt,
um den Einfluss einer CD71-Hemmung auf die Zellviabilitdt zu testen. In der Zelllinie
92.1 verringerte sich die Zellviabilitat nach 7 Tagen der Inkubation mit diesem Antikdrper
in den hdéchsten getesteten Konzentrationen von 5 ug/ml und 10 yg/ml. In den beiden
anderen getesteten Zelllinien Mel270 und OMM1.5 traten jedoch kaum Effekte auf. Dies
konnte moglicherweise daran liegen, dass diese beiden Zelllinien in den Western Blot-
Analysen deutlich mehr CD71 exprimierten als die Zelllinie 92.1, sodass die eingesetzte
Antikérperkonzentration méglicherweise nicht ausreichend war, um CD71 und damit die
Eisenaufnahme effektiv zu blockieren.

In Zellen wird Eisen in Form von Fe3*-lonen im multimeren Protein Ferritin gespeichert,
wobei bis zu 4.500 Fe3*-lonen pro Ferritin-Komplex gespeichert werden konnen [548].
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Denkbar ware daher auch, dass diese beiden Zelllinien moglicherweise tiber mehr intra-
zellulare Eisenvorrate verfugten und daher nicht im selben Mal} auf extern Uber das Zell-
kulturmedium zugefiihrte Eisenionen angewiesen waren wie die Zelllinie 92.1. Um diese
beiden Hypothesen zu testen, ware eine Ausdehnung des Versuchs auf eine noch lan-
gere Inkubationszeit bzw. eine weitere Erhéhung der eingesetzten Antikdrperkonzentra-
tion denkbar sowie die Expressionsanalyse weiterer an der Eisenaufnahme und —spei-
cherung beteiligten Proteine wie Divalent Metal lon Transporter 1 (DMT1) oder Ferritin
[459, 549]. Aufer durch blockierende Antikdrper kann die CD71-Funktion durch
Ferristatin (NSC306711) und Ferristatin [l (NSC8679, Chlorazolschwarz) moduliert wer-
den [550, 551]. Ferristatin hemmt die Aufnahme von Transferrin, indem es unabhangig
von der normalerweise stattfindenden clathrin- und dynamin-abhangigen Endozytose die
Internalisierung von ungebundenem CD71 sowie dessen Abbau Uber lysosomale und
proteasomale Abbauwege férdert [551]. Ferristatin Il fihrt wie Ferristatin ebenfalls cho-
lesterol-abhangig zu einer Internalisierung und Degradierung von CD71, allerdings
scheint die Bindung von Transferrin an CD71 die Wirkung von Ferristatin |l aufheben zu
kénnen [550]. In vivo konnte in einem Rattenmodell ebenfalls eine Herabregulation von
CD71 auf Hepatozyten nach Ferristatin [I-Applikation festgestellt werden [550]. Fir wei-
tere Analysen der CD71-Funktion im UM ware es daher auch interessant, die Auswir-
kungen dieser small molecules auf UM-Zellen zu untersuchen.

Die Leber ist zentral an der Eisenhomobostase des Korpers beteiligt, da dort nicht nur
essenzielle Proteine des Eisenstoffwechsels wie Hepcidin [552] oder plasmatische
Eisen-Transportproteine wie das Transferrin synthetisiert und sezerniert werden [553],
sondern das Organ selbst als einer der Haupt-Eisenspeicher des Korpers dient [554].
Vor dem Hintergrund, dass sich die Uberwiegende Mehrheit der Metastasen bei UM-
Patienten in der Leber entwickeln [133-136], stellt sich daher die Frage, ob der Eisen-
stoffwechsel das Tumorwachstum von UM-Zellen mdglicherweise férdern kann bzw. das
hohe Eisenangebot in der Leber einer der Faktoren ist, der zum auf3ergewdhnlichen
Hepatotropismus des UM beitragt. Die aus einer Lebermetastase generierte UM-Zelllinie
OMM1.5 zeigte eine hohe TFRC-Gen- bzw. CD71-Proteinexpression, die auf Protein-
ebene geringfligig und auf Genebene deutlich héher als in der aus dem Primartumor
desselben Patienten generierte Zelllinie Mel270 ausgepragt war. Interessant ist in die-
sem Zusammenhang auch, dass eine erhéhte CD71-Expression im HCC-Tiermodell po-
sitiv mit dem Fortschreiten der Erkrankung korreliert ist [468]. Diese Befunde kdnnten
daher erste Hinweise darauf sein, dass CD71 und der Eisenstoffwechsel mdglicherweise
eine bedeutendere Rolle in UM-Lebermetastasen als in Primartumoren spielen kdnnten.

Obwohl es laut der Genexpressionsanalysen zu einer Herabregulation von TFRC nach
SOX10-Hemmung zumindest in den zwei Zelllinien 92.1 und Mel270 kam, ist anzumer-
ken, dass in den Western Blot-Analysen 48h nach der Transfektion mit SOX10-spezifi-
schen siRNAs keine Veranderungen der CD71-Expression zu beobachten waren. Somit
ist davon auszugehen, dass sich die CD71-Proteinexpression in den Zellen durch
SOX10-Inhibition nicht veranderte. Bislang finden sich in der Literatur kaum Hinweise zu
einem moglichen Zusammenhang von SOX10 und der Transkription von CD71. Cheli et

186



4 Diskussion

al. konnten zeigen, dass CD71 fur die richtige Entwicklung von Oligodendrozyten wichtig
ist, die ebenfalls SOX10-exprimierende Zellen sind, allerdings untersuchten die Autoren
nicht, ob SOX10 das TFRC-Gen direkt transkriptionell reguliert [555]. Somit bleibt zum
jetzigen Zeitpunkt unklar, ob SOX10 die Transkription von TFRC direkt moduliert oder
nicht bzw. ob eine SOX10-Hemmung wirklich die CD71-Expression nennenswert verrin-
gern kann. Dennoch kénnte CD71 unabhangig von SOX10 eine wichtige funktionelle
Rolle im UM etwa bei der Metastasierung spielen bzw. trotzdem als Zielstruktur fir eine
zielgerichtete Therapie des UM geeignet sein. Neben der Blockierung der Rezeptorfunk-
tion gabe es noch andere Ideen zur Nutzung der speziellen Eigenschaften von CD71 fir
eine therapeutische Anwendung. Dies betrifft insbesondere den Gebrauch des speziel-
len Internalisierungsmechanismus des Rezeptors, um mithilfe dessen Wirkstoffe gezielt
in CD71-hochexprimierende Zellen zu schleusen [467]. Bislang wurden bereits eine
Reihe an Transferrin-Medikamenten-Konjugate bzw. CD71-Antikdrper-Medikamenten-
Konjugate, an welche zytotoxische Substanzen wie etwa Doxorubicin, Mitomycin C, Cis-
platin, Diphtherietoxin oder Ricin A gekoppelt wurden, entwickelt und in praklinischen
Studien getestet, wo sie in verschiedenen Tumorentitaten teils vielversprechende Ergeb-
nisse erzielten [467]. Erste Medikamente nach diesem Wirkprinzip wurden auch schon
in klinischen Studien getestet. Eine Phase-1-Studie mit einem Konjugat aus Transferrin
und dem mutierten Diphtherietoxin CRM107 (Tf-CRM107) zeigte bei lokaler Applikation
eine Reduzierung der TumorgréfRe um 50 % bei neun von 15 behandelten Hirntumorpa-
tienten [556]. In einer Phase-2-Studie konnte Tf-CRM107 finf CR und sieben PR bei 34
lokal behandelten Gliompatienten erzielen [557]. Zwar wird eine Uberexpression von
CD71 im Vergleich zum normalen Gewebe in zahlreichen Tumoren gefunden [463], al-
lerdings weisen auch Erythroblasten, die Vorlauferzellen der Erythrozyten, eine hohe
CD71-Expression auf [558], sodass vor allem mit dem Auftreten von hamatologischen
NW als Folge einer systemischen anti-CD71-Therapie gerechnet wird, wie sie etwa in
der Phase-1/2-Studie PROCLAIM-CX-2029 auftraten [559, 560]. Bei letzterer first-in-
human-Studie wurde die Vertraglichkeit des Probody-Wirkstoff-Konjugates CX-2029 ge-
testet, das aus einem maskierten anti-CD71-Antikrper konjugiert mit Monomethylau-
ristatin E besteht und der erst durch die im Tumormikromilieu vorkommenden Proteasen
demaskiert wird und so weniger off-target-Effekte auf normales Gewebe ausuben soll
[560]. Genau diese hemmende Wirkung auf die Erythropoese ware fiir die Behandlung
der Polycythaemia vera jedoch erwiinscht, weshalb in der Phase-1-Studie die Vertrag-
lichkeit des humanen monoklonalen CD71-inhibierenden Antikdrpers PPMX-T003 ge-
testet wurde [561]. Dabei trat nur bei der hdchsten getesteten Dosierung eine Verringe-
rung des Hamoglobingehaltes und bei finf Teilnehmern eine Verringerung der Reti-
kulozytenzahl auf [561]. An Tag 1 der Antikorperapplikation traten milde bis mittel-
schwere grippeartige Symptome auf, jedoch keine schwerwiegenden NW [561]. Somit
scheint eine Hemmung von CD71 relativ vertraglich auch in Hinblick auf die Hemmung
der Blutbildung zu sein.

Als weitere Zielstruktur neben E2F1 und CD71 wurde die Histonmethyltransferase EZH2
im target selection network identifiziert. EZH2 wurde in allen untersuchten UM-Zelllinien
basal exprimiert und war in der RNA-Sequenzierungsanalyse in den Zelllinien 92.1 und
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Mel270 geringer exprimiert nach SOX10-Hemmung, dieser Befund konnte jedoch in der
Genexpressionsanalyse mittels qPCR nicht bestatigt werden. Ebenso konnten nach
SOX10-Hemmung in den Western Blot-Analysen keine Veranderungen der EZH2-
Proteinexpression detektiert werden. Die Hemmung von EZH2 mithilfe von Tazemetos-
tat fihrte nach 96h nur bei der héchsten getesteten Konzentration von 50 uM, die deut-
lich uber der ICso von 11 nM lag [479], zu einer geringfigigen Verringerung der Zellvia-
bilitat. Auffallig war in diesem Zusammenhang jedoch, dass bei dieser Konzentration
bereits die eingesetzte Menge des Ldsungsmittels DMSO zu einer deutlichen Beein-
trachtigung der Zellviabilitat fihrte. Es ist daher bei einer weiteren Steigerung der Dosie-
rung davon auszugehen, dass zwar die Zelltoxizitat vermutlich noch weiter steigerbar ist,
allerdings wirde dies nicht unwesentlich auf die erhdhte DMSO-Menge zurtickzufiihren
sein. EZH2 wurde im Kontext des UM bereits untersucht, allerdings mit divergierenden
Ergebnissen [456, 457]. Die Ergebnisse dieser Arbeit decken sich mit der Beobachtung
von Schoumacher et al., die kaum einen Einfluss von Tazemetostat auf die Kolonienbil-
dung sowie das Zellwachstum von UM-Zelllinien (darunter die BAP1-exprimierende Zell-
linie 92.1) beobachten konnten und auch keine Korrelation zwischen dem BAP1-Status
und der EZH2-Expression fanden [456]. Abgesehen von Tazemetostat gibt es jedoch
noch weitere EZH2-Inhibitoren wie etwa GSK126, welcher die Zellviabilitat der Zelllinien
92.1, Mel270, OMM2.3 und OMM-1 verringern konnte, zur Apoptoseinduktion fiihrte so-
wie das Tumorwachstum im Xenograft-Mausmodell hemmte [457]. Dieser Inhibitor weist
mit einer ICso von 9,9 nM eine ahnliche wie Tazemetostat auf [562]. Jin et al. [457] greifen
in ihrer Diskussion die Ergebnisse von Schoumacher et al. [456]. zwar kurz auf, eine
Hypothese zur Ursache fir die unterschiedlichen Ergebnisse wie mégliche Unterschiede
bezlglich der off-target-Effekte der beiden Inhibitoren, die diesen Befund erklaren kénn-
ten, diskutieren die Autoren jedoch nicht. Zusammengefasst konnten einerseits die Er-
gebnisse der RNA-Sequenzierung in Bezug auf die Herabregulierung von EZH2 nach
SOX10-Hemmung weder in den gPCR- noch in den Western Blot-Analysen reproduziert
werden, noch konnte ein zytotoxischer Effekt mit dem EZH2-Inhibitor Tazemetostat be-
obachtet werden, sodass EZH2 zum jetzigen Zeitpunkt eher kein geeigneter Kandidat
fur eine therapeutische Inhibition im UM darstellt.

Als vierter méglicher Zielkandidat wurde der Wachstumsfaktor FGF9 fur weitere Analy-
sen ausgewahlt. Die FGF9-Genexpression war mit weitem Abstand am hdchsten in der
Zelllinie 92.1, allerdings konnten auf Proteinebene nur geringe Unterschiede zwischen
den Zelllinien gefunden werden. Nach Hemmung von SOX10 wurde auch nur in dieser
Zelllinie eine Abnahme der FGF9-Expression beobachtet. Interessanterweise konnte auf
Proteinebene bei der Detektion zusatzlich zur bereits bei der basalen Expressionsana-
lyse detektierten etwa 30 kDa groRen Bande eine zweite Bande mit einem etwas gerin-
geren Molekulargewicht in den Zelllinien 92.1 und Mel270 beobachtet werden, deren
Intensitat nach SOX10-Hemmung zunahm. Bei dieser kdnnte es sich um die bereits fru-
her beschriebene 29 kDa grofRe Isoform von FGF9 handeln, da FGF9 posttranslational
durch N-Glykosylierung im ER modifiziert werden kann und daher Isoformen mit unter-
schiedlichen Molekulargewichten vorliegen kénnen [477, 478]. Bei der groReren, etwa
30 kDa umfassenden Bande scheint es sich dabei um die N-glykosylierte Form von
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FGF9 zu handeln [563]. Die starkere Auspragung der kleineren 29 kDa-Bande kénnte
ein Hinweis darauf sein, dass durch die SOX10-Hemmung mdglicherweise die Expres-
sion von Enzymen beeintrachtig wurde, die die N-Glykosylierung vermitteln. Die Hem-
mung von FGF9 wurde in dieser Arbeit durch Zugabe eines FGF9-neutralisierenden An-
tikérpers bewirkt, allerdings konnten hier keine Unterschiede in Hinblick auf die Zellvia-
bilitat festgestellt werden. Zusammen deuten die Ergebnisse darauf hin, dass FGF9 im
UM einerseits durch SOX10 kaum beeinflusst wird und andererseits fiir das Uberleben
der UM-Zellen kaum relevant zu sein scheint. In der Literatur finden sich ebenfalls kaum
Hinweise zu FGF9 im UM. Seitz et al. konnten zeigen, dass aktivierte hepatische Stern-
zellen FGF9 sezernieren und so parakrin die Proliferation von UM-Zellen steigern, so-
dass die Autoren schlussfolgern, dass FGF9 aus der Tumorumgebung in der Leber zum
Hepatotropismus des UM beitragen kénnte [476]. Seitz et al. konnten in den von ihnen
untersuchten UM-Zelllinien OMM-1, OMM2.5 und Mel270 nur sehr wenig FGF9 nach-
weisen, insbesondere im Vergleich zu den aktivierten hepatischen Sternzellen ([476] und
personliche Kommunikation mit T. Seitz). Aufgrund dieser geringen Expression von
FGF9 und den Beobachtungen dieser Arbeit scheint FGF9 analog zu EZH2 ebenfalls
kein geeignetes Ziel fiir eine zielgerichtete Therapie des UM sein. Dennoch konnten mit
E2F1 und TFRC/CD71 zwei Kandidaten mithilfe des target selection network identifiziert
werden, die sich fur eine therapeutische Inhibition im UM prinzipiell eignen und die mdg-
licherweise eine bisher noch unerforschte Rolle beim Krankheitsprogress und der Meta-
stasierung im UM spielen konnten.

4.4 Schlussfolgerung und Ausblick

Die in dieser Arbeit gewonnenen Erkenntnisse liefern neue Einblicke in die Tumorbiolo-
gie des UM und die Rolle der Transkriptionsfaktoren SOX10 und MITF beim Uberleben
der Zellen. SOX10 wird im UM exprimiert und ist essenziell fiir das Uberleben von UM-
Zellen. Vermittelt wird dieser Effekt unter anderem durch MITF, dessen Transkription
direkt durch SOX10 beeinflusst wird. Dieses neue Wissen Uber die essenzielle Funktion
von SOX10 im UM wurde genutzt, um neue Zielstrukturen fur eine zielgerichtete Thera-
pie des UM zu finden. Basierend auf den im Rahmen dieser Arbeit generierten RNA-
Sequenzierungsdaten nach SOX10-Hemmung und einem bereits existierenden SOX10-
Protein-Interaktionsnetzwerk wurde in einem bioinformatischen Ansatz ein neues Netz-
werk fur die Selektion therapeutisch angreifbarer Zielstrukturen (target selection net-
work) generiert. Die daraus ausgewabhlten ersten vier Kandidaten E2F1, EZH2, TFRC
und FGF9 wurden daraufhin in weiteren in vitro-Experimenten untersucht. Besonders
E2F1 bzw. der Einsatz des pan-E2Fi HLM006474 zeigte einen deutlichen antiproliferati-
ven Effekt und die Induktion eines Zellzyklusarrests und der Apoptose. Da die hier be-
schriebenen Experimente im herkdmmlich verwendeten zweidimensionalen Zellkultur-
system getestet wurden, ware eine Untersuchung der HLM006474-Wirkung auf UM-Zel-
len in einem dreidimensionalen System wie etwa Tumorspharoiden oder im Mausmodell
aufschlussreich, bevor Uber einen Transfer in die klinische Anwendung nachgedacht
werden konnte.
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Ebenfalls von Interesse ware auch die weitergehende Analyse von CD71 bzw. der Rolle
des Eisenstoffwechsels im UM, insbesondere im Kontext der Metastasierung, beispiels-
weise durch Behandlung der Zellen mit dem kommerziell erhaltlichen small molecule-
Inhibitor Ferristatin 1l. Die Resultate der Inhibitionsversuche und Expressionsanalysen
mit und ohne SOX10-Hemmung der beiden anderen getesteten Kandidaten EZH2 und
FGF9 legen dagegen nahe, dass diese beiden nach derzeitigem Wissensstand keine
geeigneten Kandidaten flr eine zielgerichtete Therapie des UM darstellen.

Insgesamt liefert diese Arbeit nicht nur neue Erkenntnisse tUber die Biologie des UM und
insbesondere die Rolle der NC-Transkriptionsfaktoren in dieser Tumorentitat, sondern
demonstriert auch neue Mdoglichkeiten zur Anwendung des Grundlagenwissens Uber
Transkriptionsfaktoren bei der Entwicklung neuer Therapieansatze fir UM-Patienten.
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