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Summary 

Climate change projections try to look into the future and are therefore uncertain by definition, 

since the climate system inherits a chaotic component. This component can be described in 

many ways and is usually referred to as natural or internal variability. Natural variability is an 

important part of the equation, yet often underestimated. People and decision makers are 

usually not able to act appropriately based on projections with large uncertainties. While 

changes in the mean state are usually at the focus of climate change impact assessments, the 

variability has often not been recognized as an important feature. However, it gets more and 

more attention in the scientific community and the broader public that variability changes 

might even be a more crucial challenge for mankind than mean climate changes. Year-to-year 

variability called interannual variability (IAV) is key for many impact-related assessments. For 

example, farmers need to adapt their practices if less “normal” and more extreme years appear 

to happen in the future. 

This thesis tries to shed light on parts of the scientific discussion concerning natural variability 

from a relatively new perspective: Single Model Initial-conditions Large Ensembles (SMILEs). 

SMILEs use the exact same model setup and just change the initial conditions for many runs 

(members). This can result in an ensemble of e.g., 50 members of one model that just differ in 

their specific manifestation of weather and climate. However, all members share the same 

general path, defined by the ensemble mean (forced response). SMILEs serve as a tool to better 

understand and quantify changes in the variability of the climate system (e.g., IAV) but due to 

the large data amount for relatively short periods, they can also be used for the robust 

assessment of extreme events like droughts. 

Three aspects of natural variability in SMILEs form the structure of this thesis and the respective 

three publications: 

A) Interannual variability (IAV) in the SMILEs 

B) Natural variability as part of the overall uncertainty of climate projections 

C) SMILEs as a statistically sound data base for extreme event analysis 

A) Interannual variability (IAV) is usually quantified by removing the general trend from a time 

series and looking at the standard deviation of the residuals. This can also be done for every 

member of a SMILE individually. As the intention of removing the trend is to get rid of the forced 

response of the climate model at consideration, it is better to remove the ensemble mean (EM) 

from each member in SMILEs. Another way to quantify year-to-year variability in SMILEs is the 

inter-member variability (IMV) which represents the standard deviation of all members from 

the EM for each year. It has no physical meaning like IAV but is a precise estimation of IAV with 

the advantage of a drastic extension of data points for statistical analysis. The first paper showed 

that the three regional SMILEs are capable of representing the IAV of observed climatology (E-

OBS data set) for several indicators and regions, with very few exceptions. In the future, the 

variability of summer temperature and precipitation, heatwaves and dry periods will increase, 

while winter temperature and precipitation variability will decrease. The time of emergence 

when the variability significantly changes in the future, depends on the methodology to quantify 

IAV. While the single usage of IAV (for each member) or the single use of IMV often do not 

reveal significant changes before the end of the 21st century, a combined approach, taking into 

account both IAV and IMV, reveals much earlier time of emergence signals. The three models 

generally agree on change signals but vary in strength and timing of these changes. 
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B) The uncertainty of climate projections can stem from three sources: scenario uncertainty, 

model response uncertainty and internal variability. A classical way to look at climate 

projections is to run a multi-model ensemble (for one or more scenarios) and interpret the 

spread of the model runs (so far often only one member per model) as model response 

uncertainty. The initiative for European coordinated regional climate projections is called 

EURO-CORDEX. A multi-model ensemble of 22 EURO-CORDEX members was analyzed with 

respect to the variability in change signals. A baseline group was built by the CRCM5-SMILE 

that represents isolated internal variability. By comparing the standard deviations of these two 

ensembles, it was possible to show that the internal variability can play a major role in climate 

projection uncertainty. Results show that the single model spread is usually smaller than the 

multi-model spread for temperature. The contribution of internal variability is generally higher 

for precipitation. There is a significant decrease of the contribution of internal variability over 

time for both variables. However, even in the far future (2070-2099) for most regions and 

seasons 25–75 % of the overall variability can be explained by internal variability. This means 

that in the interpretation of multi-model ensembles, their variability can not directly be assigned 

to model differences, especially not in the case of single member representatives for each model. 

C) Finally, the CRCM5-LE was used to detect changes in frequency of the 30-year return level 

(RL30) of low precipitation months and seasons. At the end of the 21st century, former RL30 

months in summer and fall will occur with much higher frequency in large parts of Europe (up 

to each year in Spain). These dramatic changes will pose huge challenges to water management 

practices, especially in moderate climatic regions that did not suffer water scarcity so far. 

Consecutive dry summers will also drastically increase their frequency for 2 consecutive 

summers in the Mediterranean region. For 3 or more consecutive dry summers, the frequency 

changes decline but are still relevant in France and the Iberian Peninsula. The 2018 summer 

drought in Germany was the second most severe at this point in history. With a simple quantile 

transfer approach, the future probability for such an event can be estimated with the CRCM5-

LE. It will rise from 1.4 % to 20 % at the end of the 21st century, meaning every fifth year will be 

a summer drought year comparable to 2018. The former drought analysis was purely based on 

precipitation. Looking at the propagation of the RL30 monthly changes from the CRCM5-LE’s 

precipitation into the RL30 changes of river discharge from a hydrological model, reveals the 

high non-linearity of the two variables. The river discharge follows the higher frequencies of 

RL30 in the summer, while they also show massive frequency gains in winter that are not 

apparent in the precipitation data. 

The analysis from this thesis shows the immense possibilities that SMILEs offer to explore the 

internal variability of the climate system and extreme events. The huge data base SMILEs 

provide gives scientists the tool at hand to quantify these phenomena and their future changes 

more robustly than ever. This thesis tried to look at three different aspects of the climate system’s 

variability but can only catch a glimpse of all the possibilities that lie within SMILEs.  
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Zusammenfassung 

Klimaprojektionen versuchen in die Zukunft zu blicken und sind damit aufgrund der 

chaotischen Komponente des Klimasystems automatisch mit Unsicherheiten behaftet. Diese 

Komponente kann vielfältig beschrieben werden und wird häufig als natürliche oder interne 

Variabilität bezeichnet. Natürliche Variabilität ist ein wichtiger Bestandteil des Systems, wird 

jedoch häufig unterschätzt. Die Bevölkerung und auch Entscheidungsträger sind gewöhnlich 

nicht in der Lage basierend auf Projektionen mit Unsicherheiten angemessen zu handeln. 

Während mittlere Änderungen gewöhnlich im Fokus bei Beurteilungen von Klimawandel-

auswirkungen stehen, wurde die Variabilität oft nicht als wichtiger Bestandteil der Diskussion 

gesehen. In der wissenschaftlichen Gemeinschaft und der breiten Öffentlichkeit erlangt es 

jedoch immer größere Aufmerksamkeit, dass Veränderungen der Variabilität unter Umständen 

sogar die größere Herausforderung für die Menschheit sein könnte als mittlere 

Klimaänderungen. Die Variabilität von Jahr zu Jahr – interannuelle Variabilität (IAV) – ist für 

die Beurteilung vieler Klimawandelauswirkungen essentiell. So müssen Landwirte 

beispielsweise ihre Bewirtschaftungsformen anpassen, sollten immer weniger „normale“ und 

mehr extreme Jahre auftreten. 

Diese Arbeit versucht Teile der wissenschaftlichen Diskussion um natürliche Variabilität aus 

einer relativ neuen Perspektive zu beleuchten: Sogenannte Single Model Initial-conditions Large 

Ensembles (SMILEs). SMILEs nutzen das exakt gleiche Modelsetup mehrfach und ändern dabei 

nur die die Initialbedingungen für eine Vielzahl von Läufen (member). Das führt zu einem 

Ensemble bei dem sich zum Beispiel 50 member eines Modells nur durch ihre spezifische 

Manifestation von Wetter und Klima unterscheiden, jedoch alle dem generell gleichen Pfad 

folgen, der durch den Ensemblemittelwert definiert ist (forced response). SMILEs dienen als 

Werkzeug um die Variabilität des Klimasystems besser zu verstehen und zu quantifizieren (z.B. 

IAV), und um eine robustere Einordnung von Extremereignissen wie Dürren vornehmen zu 

können. 

Drei Aspekte von natürlicher Variabilität in SMILEs bilden die Struktur dieser Arbeit und der 

entsprechenden drei Publikationen: 

A) Interannuelle Variabilität (IAV) in SMILEs 

B) Natürliche Variabilität als Teil der Gesamtunsicherheit in Klimaprojektionen 

C) SMILEs als robuste statistische Datengrundlage für Extremwertanalysen 

A) Interannuelle Variabilität wird gewöhnlich quantifiziert, indem man den Langzeittrend einer 

Zeitserie entfernt und die Standardabweichung der Residuen betrachtet. Das kann auch für 

jeden einzelnen der member eines SMILEs vollzogen werden. Da die Intention in der Entfernung 

der grundsätzlichen Reaktion des entsprechenden Modells auf Veränderungen der Atmosphöre 

(forced response) liegt, ist es bei SMILEs jedoch sinnvoller die Residuen jedes members zum 

Ensemblemittelwert (EM) zu berechnen. Ein weiterer Weg um die Variabilität von Jahr zu Jahr 

in SMILEs zu beschreiben ist die inter-member Variabilität (IMV), welche die 

Standardabweichung aller member zum EM repräsentiert. Sie hat keine physikalische 

Bedeutung wie IAV, bietet jedoch eine sehr präzise Annäherung an IAV und erweitert erheblich 

die Datenpunkte für statistische Analysen. Die erste Publikation zeigt, dass die drei regionalen 

SMILEs in der Lage sind die beobachtete IAV für fast alle Kombinationen aus Indikatoren und 

Regionen widerzugeben. In der Zukunft wird sich die Variabilität von Sommertemperatur und -

niederschlag, sowie für Hitzewellen und Dürreperioden erhöhen, während die Variabilität von 

Wintertemperatur  und -niederschlag geringer ausfallen wird. Der Zeitpunkt wann sich die 
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Variabilitäten signifikant unterscheiden werden (time of emergence) hängt dabei stark von der 

gewählten Methode zur Quantifizierung der IAV ab. Während die alleinige Verwendung der 

IAV jedes members bzw. die alleinige Verwendung von IMV kaum signifikante Änderungen der 

Variabilität bis zum Ende des 21. Jahrhunderts anzeigen, führt ein kombinierter Ansatz, der 

sowohl IAV als auch IMV zusammen verwendet, zu deutlich früher detektierbaren Änderungen. 

Die drei SMILEs sind sich grundsätzlich in den Änderungssignalen einig, variieren jedoch in 

Stärke und Timing dieser Änderungen. 

B) Die Unsicherheiten in Klimaprojektionen können aus drei Quellen stammen: 

Szenariounsicherheit, Modellunsicherheit und natürliche Variabilität. Eine klassische 

Herangehensweise an Unsicherheiten in Klimaprojektionen beinhaltet meist das Aufstellen 

eines Multimodell-Ensembles (für ein oder mehr Szenarios) und der Interpretation der 

Spannbreite des Ensembles (oftmals nur ein member pro Modell) als Modellunsicherheit. 

EURO-CORDEX ist der Name der europäischen Initiative für koordinierte regionale 

Klimaprojektionen. Ein Multimodell Ensemble aus 22 EURO-CORDEX Läufen wurde auf die 

Variabilität der Änderungssignale hin untersucht. Als Kontrollgruppe wurde das CRCM5-SMILE 

ausgewählt, das die isolierte interne Variabilität repräsentiert. Durch den Vergleich der 

Standardabweichungen der beiden Ensembles kann gezeigt werden, dass die interne Variabilität 

einen wichtigen Anteil an der Unsicherheit von Klimaprojektionen einnehmen kann. Die 

Ergebnisse zeigen, dass die Streuung des SMILEs bei Temperatur gewöhnlich kleiner als der des 

Multimodell Ensembles ist. Der Anteil interner Variabilität ist bei Niederschlag grundsätzlich 

höher. Für beide Variablen zeigt sich über die Zeit ein signifikanter Rückgang des Beitrags 

interner Variabilität. Trotzdem kann für die meisten Regionen und Saisons selbst in der fernen 

Zukunft (2070-2099) noch 25-75 % der Gesamtunsicherheit mit interner Variabilität erklärt 

werden. Das bedeutet für die Interpretation von Multimodell Ensembles, dass die dort 

vorgefundene Variabilität nicht so einfach direkt den unterschiedlichen Modellen zugeordnet 

werden kann, insbesondere wenn nur ein member pro Modell in das Ensemble eingeht. 

C) Schlussendlich wurde das CRCM5-LE genutzt, um Veränderungen in der Häufigkeit von 

Trockenmonaten und -saisons mit einer Wiederkehrdauer von heute 30 Jahren (RL30) zu 

bestimmen. Am Ende des 21. Jahrhunderts treten im Sommer und Herbst heutige RL30 Monate 

in ganz Europa deutlich häufiger auf (bis zu jedes Jahr in Spanien). Diese dramatischen 

Änderungen werden die Wasserwirtschaft vor gewaltige Herausforderungen stellen, 

insbesondere in klimatisch gemäßigten Regionen die bisher nur wenig oder gar nicht unter 

Wassermangel gelitten haben. Aufeinanderfolgende Trockensommer werden sich im 

Mittelmeerraum für 2 aufeinanderfolgende Jahre deutlich erhöhen. Für 3 oder mehr Jahre gehen 

die Häufigkeitsänderungen deutlich zurück, bleiben jedoch in Frankreich und der iberischen 

Halbinsel durchaus relevant. Der Trockensommer von 2018 in Deutschland war zu diesem 

Zeitpunkt der zweittrockenste Sommer seit Beginn der Aufzeichnungen. Mittels eines einfachen 

Quantiltransfer-Ansatzes kann die zukünftige Wahrscheinlichkeit eines solchen Events mit 

Hilfe des CRCM5-LE abgeschätzt werden. Die Wahrscheinlichkeit wird sich demnach von 1.4 % 

auf 20 % bis zum Ende des 21. Jahrhunderts erhöhen. Somit wird jeder fünfte Sommer eine 

vergleichbare Sommerdürre wie 2018 aufweisen. Die bisherige Dürreanalyse basierte auf 

Niederschlagsdaten von Klimamodellen. Betrachtet man die Übertragung der monatlichen 

RL30 Signale für Niederschlag aus dem CRCM5-LE in entsprechende Werte für den Abfluss aus 

einem hydrologischen Modell, zeigt sich eine hohe Nichtlinearität der beiden Variablen. Der 

Abfluss wird im Sommer ebenfalls deutlich häufiger Niedrigwasser aufweisen und folgt damit 

dem Niederschlagssignal. Zusätzlich, und im Gegensatz zu den Niederschlagssignalen des RL30, 

ist auch im Winter deutlich häufiger mit Niedrigwasser zu rechnen. 
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Die Analysen in dieser Arbeit zeigen das immense Potential von SMILEs auf, die natürliche 

Variabilität des Klimasystems und Extremereignisse zu erforschen. Die enorme Datenbasis die 

SMILEs zur Verfügung stellen, ermöglicht es der Wissenschaft in bisher ungekanntem Ausmaß 

und deutlich robuster diese Phänomene und ihre zukünftigen Änderungen zu quantifizieren. 

Diese Arbeit versucht drei Aspekte der Variabilität des Klimasystems zu beleuchten, kann jedoch 

nur eine Vorahnung auf all die Möglichkeiten geben, die in der Analyse von SMILEs liegen. 
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1 Structure of the thesis 

The thesis is organized as a cumulative dissertation, consisting of this framework and three 

publications. Two of these have been published in peer-reviewed journals and one is submitted 

to a peer-reviewed journal. 

The common thread of the thesis explores two great advantages of SMILEs: quantification of the 

role of natural variability in climate projections and robust change detection in extreme events 

(droughts). 

The framework first gives a thematic introduction to better understand the scope and 

background of the publications (chapters 2 to 4). This includes information on climate 

projections, their uncertainties and the concept of Single Model Initial conditions Large 

Ensembles (SMILE) – the data foundation of this thesis. This is followed by the presentation of 

the main topics (publications) and associated research questions that the publications address 

(chapter 5). Finally, the answers to the research questions and the drawn conclusions are 

presented together with the respective publications: 

A) Interannual variability in the SMILEs (chapter 6) 

B) Natural variability as part of the overall uncertainty of climate projections (chapter 7) 

C) SMILEs as statistically sound data base for extreme event analysis (chapter 8) 

2 Climate projections and impacts 

2.1 Climate projections in general and politics 

Climate change is the one of the most pressing issues for mankind on all levels of urgency. While 

the most severe impacts are projected to happen when the global mean temperature has 

increased by several degrees Celsius (far future, probably at the end of the 21st century), the 

impacts of the global temperature rise since pre-industrial conditions (1.0-1.5 °C) can already be 

felt now and will impact the near and mid-term future. Great effort has been made in the recent 

decades to reveal the fact that anthropogenic greenhouse gas emissions are responsible for the 

rapid climate change we experience, leading to a common agreement not only within the 

scientific community, but also in politics that the change is man-made and needs to be 

mitigated. Since it is already too late to prevent a certain part of climate change and its impacts 

to happen, adaptation strategies need to be developed to inevitable and potential future changes 

in climatic conditions. This requires good knowledge about the future conditions. Climate 

projections from models, which try to describe the earth system as good as possible, give an 

outlook on how the future might look like. They rely on socioeconomic pathways that inherit 

certain emissions that lead to different greenhouse gas (GHG) concentrations in 2100 and 

beyond. These GHG concentrations can be associated to a certain value of radiative forcing. 

Radiative forcing is the additional energy that is held back in the atmosphere by the GHGs and 

is expressed in W/m². In the framework of the Intergovernmental Panel on Climate Change 

(IPCC), a selection of Representative Concentration Pathways (RCP) was developed to define 

scenarios to drive climate models in a coordinated manner. These RCPs are named after the 

radiative forcing in 2100 caused by GHG concentrations: RCP8.5 relates to a radiative forcing of 

8.5 W/m² and is usually considered a worst-case scenario with almost no reductions in GHG 

emissions and global economic growth. It results in major temperature rises, especially in the 

second half of the 21st century and usually also causes the most extreme changes in weather 

patterns, extreme events, and related impacts. Given the fact that many of the recent years were 
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under the warmest ever recorded, the RCP8.5 scenario seems more plausible than 10 years ago 

when the discussion about the speed of climate changes evolved from a ca. 10 years lasting period 

of relatively stable global temperatures. This “global warming hiatus” raised a lot of attention 

from both science and politics, as negotiations about the international collaboration on 

measures to reduce GHG emissions were ongoing during that time. From a scientific point of 

view it was relatively clear that this can have many reasons and that a 10-15 year long period can 

just be an expression of natural variability (Medhaug et al. 2017). The discussion quickly receded 

as the coming years were under the warmest ever recorded. It however shows how much 

influence natural variability (NV) can have and how much the public opinion changes with the 

real-life experiences people make in the most recent years at a certain time. The last years were 

characterized by major floods and major heat and drought extremes alternating almost every 

year, with hardly any “normal” years anymore. As a result, the awareness of climate change not 

only as a long-term phenomenon of mean state changes in temperature, but also as a driver of 

more extreme years/events and higher variability, became apparent in broad parts of the society. 

2.2 Impacts of natural variability on climate projection uncertainty 

Decision makers need to know which uncertainties are included in the projections by typical 

multi-model ensembles. They need to understand where they come from and how much of the 

uncertainty can be reduced by advances in science. Decision makers also need to better 

understand that NV is an inherent part of the climate system, which is an irreducible part of the 

uncertainty when looking into the future. Even if we had a model that captures all relevant 

processes perfectly, we could not make a deterministic forecast of the climatic conditions for 

years and decades. The chaotic nature of the earth system will always leave space for a range of 

possible future conditions. Of course, main drivers of the path the system will take are the 

socioeconomic scenarios (and therefore emission scenarios), but around this general path will 

always remain a corridor of possible manifestations of the path’s boundary conditions. The 

quantification of the role of NV is thus crucial to understand the level of irreducible uncertainty. 

2.3 Impacts of more and longer drought situations 

Higher variability of the climate system on short time scales (from year to year) leads to more 

dry years or drought situations in general. The worst case are several dry years/seasons in a row 

that can have devastating effects on natural and anthropogenic systems. Agriculture, forestry, 

energy production, drinking water supply, shipping navigation, tourism, human health, and 

ecosystems all suffer under a shift towards more dry conditions in various ways. Many sectors 

therefore learn more and more how crucial it is to plan for a more diverse climate with a 

sequence of very dry and wet years in a row and less “mean” years. Planning of increasing 

interannual variability will be a major challenge for these sectors already now and in the near 

future. Adaptations in a technical and economical way are crucial to establish sustainable 

systems. Farmers need to adapt their selection of crops to be more resilient to extreme 

conditions or develop new sorts of crops that do so. The forestry sector needs to change the 

dominant monocultural woods into a more resilient mixture of species to prevent huge losses 

due to diseases and wildfires. Energy producers and inland navigation need to find ways to deal 

with longer periods of extreme low flows in rivers. The management of water resources in 

reservoirs and groundwater is one of the most important tasks since they often provide large 

parts of the drinking water supply. While arid regions usually already have management 

practices for droughts in place, currently moderate climatic regions will need to change their 

routines noticeably when droughts become more dominant. This also includes the increasing 

need for irrigation of agricultural land. While tourism may profit from drier conditions in some 
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parts of the world, larger parts of the sector will need to reduce their water footprint 

considerably. With water becoming a sparse resource, conflicts between users are inevitable and 

increase the risk of conflicts. Finally, it is unclear how ecosystems can adapt or “move” as a 

reaction to the dramatic pace of changes that are much faster than typical climate changes in 

the past. 

3 Uncertainties in climate projections 

Looking into the future is complex and difficult by definition. However, the general idea to use 

models that resemble the earth system is the only possible way to enable mankind to plan for 

future conditions on Earth. The models cannot be perfect since the system they try to mimic is 

infinitely complex. To understand it, an enormous number of measurements (stations, drones, 

satellites, balloons, ships and submarines) would be required to better understand the system 

as it is now. Weather forecast is usually reliable for only one to three days, not more. And the 

reason is not so much the inaccuracy of weather models, but that information on the starting 

conditions is insufficient to feed the models properly. Another restriction, even if the knowledge 

of the earth system was enhanced to a degree where we fully trust the models, is the 

computational power needed to let these complex models run. We already use the most 

powerful supercomputers in the world, but it still requires a lot of personal and technical effort, 

time, energy, and money to produce, store and analyze these data sets. 

The models have, however, shown that they can reproduce historical climatic conditions well in 

many cases (Flato et al. 2014; Hausfather et al. 2020). In general, the models are robust enough 

to trust them in terms of trends for the future. If many models predict the same behavior, the 

prediction is usually considered “robust”. The assumption behind that is that all models are 

independent in their structure and implementation of processes, although many share the same 

physical principles as a basis. Some parts of the climate system are only parameterized and not 

fully solved by physical equations. This is where the most differences between models lie. The 

idea of model democracy is more and more challenged, since a number of models originate from 

the same branches. In multi-model ensembles, it might also be a good idea to give higher weight 

to models that performed better during hindcast simulations of the past than those who 

performed worse (Eyring et al. 2019). One model – one vote is still common, however. 

Hawkins und Sutton (2009) and Hawkins und Sutton (2011) introduced a framework for the 

analysis of uncertainty in climate projections and divided it into three different components: 

• Scenario uncertainty, since the future emissions of greenhouse gases are unknown 

• Model response uncertainty, since different models simulate differently when driven 

by the same emission scenario 

• Natural variability, i.e. natural fluctuations of the climate system that are independent 

of radiative forcing 

Uncertainty of future conditions generally increases from a global view down to regional and 

local considerations. It is also higher for more complex climate phenomena and higher for 

extreme values than for mean states. For example, the global mean surface temperature 

uncertainty is lower than the uncertainty for heavy precipitation events in a certain country or 

region. 
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4 Climate model ensembles and their meaning in the light of NV 

4.1 The GCM-RCM coupling 

“Climate models” is the general term used in the public debate to describe a number of numeric 

models with different characteristics. To understand the work performed in the publications it 

is necessary to get an overview of the different model types and their interactions. First of all, 

climate models are better described as Earth System Models (ESM) nowadays, since they do not 

only include the atmosphere but also other components and their interactions with the 

atmosphere like the cryosphere (snow, ice), land cover, vegetation and the oceans, which are of 

huge importance to climatic behavior. These models try to mimic the behavior of this complex 

earth system to the best extent possible and are continuously improved (Bonan und Doney 

2018). Since a global system needs to be simulated, the models cover the whole earth and are 

therefore also called Global Climate Models or General Circulation Models (GCM). The current 

framework for the execution of GCM simulations, called Coupled Model Intercomparison 

Project Phase 6 (CMIP6) includes more than 100 models from 50 institutions (Copernicus 2021). 

Their spatial resolution typically ranges from 200-600 km, 10 to 20 vertical atmosphere and up 

to 30 ocean layers (IPCC 2018). This rather coarse resolution does of course not match the 

heterogeneity of the real world and is mostly caused by the huge amount of processing power 

that increases quadratically with spatial resolution improvements. A common technique for the 

production of better resolution is called dynamical downscaling and uses the GCM outputs of 

the atmospheric and ocean states at each timestep as input (e.g. 6 hours) for another model that 

is “nested” over a particular region of the earth (e.g. Europe). This secondary model is called 

Regional Climate Model (RCM) and has a much higher resolution of typically 10-50 km and is 

therefore representing the earth system and its processes like mountains, shorelines, clouds, 

precipitation and radiation much more accurate. The driving GCM hands over the boundary 

conditions at the edges of the area that is processed by the RCM, called domain, as well as ocean 

states (e.g. temperature) inside and outside of the domain. The RCM takes these boundary 

conditions and uses them to drive its own model algorithms. The transition zone at the 

boundaries of the domain are usually excluded from analysis because the influence of the GCM 

is still strong near the edges and the performance of the RCM really evolves after a certain 

distance from the edges (ca. 100-200 km). Depending on how much freedom should be 

attributed to the RCM, there is a technique to maintain the influence of the GCM in the RCM, 

called spectral nudging. It prevents large and mostly unrealistic departures between the GCM 

driving fields and the RCM fields at the GCM spatial scales. It is therefore meant to prevent the 

RCM to develop its own dynamic that cannot be brought in line with the surrounding global 

conditions. 

The main advantage of dynamical downscaling with an RCM is the higher resolution that can 

better simulate important processes in the atmosphere and the interaction with land and ocean 

surfaces. A good overview of the history of RCMs and their added value was published by Giorgi 

(2019). 
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4.2 RCMs over Europe: EURO-CORDEX 

The global climate modeling community learned quickly that an integrated approach for their 

modeling activities benefits the possibilities for scientific analysis, but also for communication 

to the public and to decision makers. The CMIP framework coordinates model runs on the GCM 

level. The regional climate modeling community is organized in the so called CORDEX initiative 

(Coordinated Regional Downscaling Experiments) that is separated into continental divisions, 

one of them being EURO-CORDEX for the European domain. The spatial resolution (0.11° 

corresponding to about 12 km) and the domain size and position is fixed, which makes data 

processing easy. A number of GCM-RCM combinations have been realized, mostly without 

systematic approaches. This ensemble of opportunity thus has flaws when it comes to systematic 

evaluations. However, it gives a good first order estimate of the variability of regional climate 

projections over Europe. As more and more simulations became available, the matrix of 

GCM/RCM combinations was filling up in the last years, but still leaves some empty spaces. 

An overview of the first EURO-CORDEX simulations is given in Jacob et al. (2014), showing the 

general direction of future climatic conditions in Europe in a detailed manner. Many following 

studies completed the picture from various angles often considering extreme high precipitation, 

drought and heat wave statistics (e.g., Prein et al. 2016; Rajczak und Schär 2017; Christensen et 

al. 2019; Vautard et al. 2014). A set of two studies evaluated the current status of the GCM-RCM 

matrix in terms of model performance against historical observations (Vautard et al. 2021) and 

assessing the projections of this most recent EURO-CORDEX ensemble (Coppola et al. 2021). 

4.3 SMILE concept 

The concept of building ensembles of different models (and GCM-RCM combinations for 

CORDEX) to get an overview of the spread of past and future behavior of climate projections is 

a major pillar of climate change research and thus got and still gets a lot of scientific attention. 

These multi-model ensembles can give a corridor of possible future conditions. This is typically 

done by giving ensemble means and information about the minimum/maximum values of single 

models or by quantile approaches to show the range of results. This is important information 

for decision makers as these corridors can serve as a baseline for adaptation measures. The multi-

model ensembles mostly express model response uncertainty since they give information on 

how much different models deviate in the future projections if a subsample of model runs with 

the same external forcing (RCP scenario) is chosen. 

A different concept of a climate model ensemble is to take one model and create a larger number 

of runs by this model alone. One possibility is to change the setup of the model in terms of 

parametrization changes to see how these changes influence the results of the model. This is a 

sensitivity analysis and exposes the behavior of a certain model in different setups (Hourdin et 

al. 2017). The model community can learn about their models and their limitations by such an 

experiment. Another concept of multiple runs of a single model is to leave the model in the exact 

same setup and just alter the initial conditions in a very tiny way. This is called a Single Model 

Initial conditions Large Ensemble (SMILE). At first glance, it might not be obvious why to 

perform such an experiment with the exact same model many times. But the effect of small 

changes in the initial conditions can have massive effects on the different runs (called members 

of the ensemble) on short and medium, but also longer time spans of several decades. To popular 

science, this phenomenon is known as the “butterfly effect”, where even a small change, initiated 

by the swing of a butterfly to stay in the metaphor, can cause global changes. And indeed, the 

chaotic nature of the climate system makes it possible that two members that deviate just by 

extremely small differences in the initial conditions (e.g., manipulating one variable field by 
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factors of 10-13) can provide totally different sequences of weather after several days already. As 

all members are forced by the same RCP scenario, they generally follow a similar path into the 

future, which can be best expressed as the ensemble mean. However, single member behavior 

can deviate from this ensemble mean quite distinctly. The spread of the ensemble is thus an 

expression of the isolated natural variability of the chaotic climate system only, without 

influences of scenario and model-response uncertainty. This “clean” approach makes a 

systematic analysis and quantification of natural variability possible in a way that was not 

possible before SMILEs. 

An increasing number of GCM SMILEs is available and as there is a vital community, efforts are 

undertaken to coordinate the data archiving and future experiment designs 

(https://www.cesm.ucar.edu/projects/community-projects/MMLEA/, and the associated 

github:  https://large-ensemble.github.io/). A publication by Lehner et al. (2020) gives a good 

overview of the available SMILEs and tries to evaluate the findings by Hawkins und Sutton 

(2009) with the new tools that SMILEs provide. While the natural variability on global scale can 

already be detected by the original approach of Hawkins und Sutton (2009), the importance of 

natural variability on a regional scale is often underestimated by up to 50 % when SMILEs are 

not considered (Lehner et al. 2020). 

Only few of these GCM ensembles have been downscaled with RCMs, and at the time of the 

publications only three were available. They are presented in the following, with the CRCM5-LE 

being used in all three publications, while the other two were only used in one publication. 

4.4 Concept of Interannual and intermember variability 

SMILEs provide a range of equally possible manifestations of the same boundary conditions. A 

short explanation with conceptual figures is given here to better understand the relation 

between different dimensions of a SMILE data set and how they interact. The mean of all 

members is called ensemble mean (EM) and represents the model’s response to a certain forcing 

like an RCP scenario. The interannual variability (IAV) is now just calculated as the residuals 

from one member’s time series against the EM. It directly represents the year-to-year variability 

of the model, but only within that specific member. The dimension of IAV is thus “time”. The 

residuals can also be extracted against the member’s own trend (linear or higher order trends), 

resulting in different results. However, the EM is a better estimate of the forced response and 

thus gives a better estimation of IAV. This is of course only possible for SMILEs. A different 

assessment of natural variability is also only possible with SMILEs: the intermember variability 

(IMV) does not depict the variability of one member along the time dimension but the variability 

of time series of all members for each time step (years). The dimension of IMV is thus 

“ensemble”. The IMV has no physical meaning like IAV but gives a very good estimate of the 

SMILE’s internal variability which is directly connected to IAV as well. This is shown in one of 

the papers: von Trentini et al. (2020).  



 

8 
 

 

Figure 1: Conceptual depiction of IAV (A), IMV (B) and the EM in a SMILE 

4.5 The CRCM5-LE 

The CRCM5-LE dataset is a 50-member ensemble of the Canadian earth system model CanESM2 

(Fyfe et al. 2017), downscaled by the Canadian regional model CRCM5 (Version 3.3.3.1, Šeparović 

et al. 2013; Martynov et al. 2013) for two domains: Northeastern North America (not part of this 

study) and Europe. The 50 members originate from five families of simulations, each starting at 

different 50-year intervals of a preindustrial run with a stationary climate and run from 1850-

1950. They are then separated into ten members each by small atmospheric perturbations and 

run from 1950 to 2099. This 50 member CanESM2-LE was then dynamically downscaled within 

the ClimEx project with CRCM5 over a domain covering Europe (EU11d2) with a horizontal grid-

size mesh of 0.11 degrees on a rotated latitude-longitude grid, corresponding to a 12-km 

resolution, using 5-minute time steps, which fits the common EURO-CORDEX grid 

specifications. Further information on the settings of the whole experiment, as well as a detailed 

description and analysis of the dataset (also for the American domain) can be found in Leduc et 

al. (2019). The stored variables and the terms of use can be found in the respective 

documentation on the project homepage (www.climex-project.org). The CRCM5-LE 12-km grid 

equals the one used in EURO-CORDEX simulations, although the CRCM5-LE domain is slightly 

smaller, still covering most of Europe (Figure 2). Many publications have made use of the 

CRCM5-LE already. An overview can be found on the ClimEx project homepage (www.climex-

project.org). 
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Figure 2: The EURO-CORDEX domain (red), the CRCM5-LE domain (green) and the subdomains used in the 
first two publications 

4.6 Two additional RCM SMILEs for Europe 

Additional to the CRCM5-LE, two similar SMILEs have been used in one publication and are 

briefly introduced here. The first ensemble consists of 21 members of the global model CESM, 

downscaled by the regional model CCLM over a slightly smaller domain as the CRCM5-LE 

domain (Fischer et al. 2013; Addor und Fischer 2015; Brönnimann et al. 2018). In the second 

ensemble 16 members of the global model EC-EARTH were downscaled with the regional model 

RACMO for a smaller domain over Western Europe (Aalbers et al. 2018). Differences in 

variability of the three RCM-SMILEs may stem from the differences in the resolution of both 

GCMs and RCMs, the different domain sizes, the different models, differences in aerosol forcing 

in the RCM simulations (constant in CCLM and CRCM, transient in RACMO) and in the 

application of an ocean slab model in the EC-EARTH-RACMO ensemble. The initialization is 

carried out differently in the three driving GCM-SMILEs: CanESM2 builds on a hybrid approach, 

where five members of different ocean conditions starting in 1850 were divided into ten 

members each by atmospheric perturbations in 1950 (see Leduc et al. 2019 for details). The 

CESM members stem from small atmospheric perturbations of the order of 10-13 on January 1st 

1950 (Fischer et al. 2013). EC-EARTH uses the first 16 days in the year 1850 of an initial run to 

start the 16 members (Aalbers et al. 2018). 
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4.6.1 The CRCM5 and CCLM models as representatives of a strong drying mechanism 
The CRCM-LE seems to be quite sensitive to land-atmosphere feedback mechanisms that 

accelerate dry and hot conditions during summer, especially in southern Europe. The extreme 

conditions on the Iberian Peninsula are a typical manifestation of this behavior, where hot and 

dry meteorological periods dry out the soils, which leads to a negative feedback loop, creating 

more hot and dry air near the surface, accelerating the further drying of the soil. Other regional 

models like CCLM also seem to have this feedback loop included as the CCLM shows much drier 

and hotter conditions in the arid parts of Europe compared to other RCMs, driven by the same 

GCM in the CORDEX ensemble. When looking at the past years in real-world measurements, 

not climate model data, this feedback mechanism seems rather plausible, and these “extreme” 

RCM simulations might be a realistic description of Europe’s future climate conditions in 

summer. 

5 Setting natural variability and extreme events into context of 

climate projections 

Since the importance of natural variability and extreme events from the impact side and the 

basics of climate simulations on various scales have been discussed now, the two parts need to 

be integrated. And this is the core of my PhD thesis. The huge amount of data provided by 

SMILEs give us a new source of information to answer questions on two major topics: 

• the relevance of natural variability in the context of climate change (simulations)  

• the probabilities of extreme events in an unprecedented manner 

NV of the climate system can be defined in many ways and there is no clear definition that serves 

all aspects and fields of research. The term generally covers all deviations in climate variables on 

all possible timescales from paleoclimatology, where cycles of hot and cold eras can take millions 

of years easily, up to ice and warm periods in the last ice ages with eras of several thousands of 

years. When going to the most recent 100-200 years, many oscillations have been identified with 

frequencies of several decades (e.g., ENSO, NAO), which in the context here will be called long-

term natural variability. Short term NV is the variability that covers shorter time periods. 

Interannual variability (IAV) expresses the variability of climate as captured instinctively by 

humans over their life and has effects on the planning activities of all kinds of sectors. The IAV 

can most simply be quantified as the standard deviation of a group of consecutive years, e.g., a 

30-year period. 

Under all the possible ways to explore this data, I chose to look at three different topics and 

corresponding research questions. They are listed in Table 1 and summaries of the main 

conclusions for these questions are given in the following chapters 6 to 8, accompanied by an 

overview page and the full text manuscript for each paper separately. 

The Earth System Dynamics (ESD) paper looked at three RCM-SMILEs and how their IAV can 

be described and evaluated both for historical and future time periods. The Climate Dynamics 

paper compared the CRCM5-LE against the “common” EURO-CORDEX ensemble and 

quantifies the role of natural variability in a multi-model ensemble. Both papers investigate the 

opportunities that SMILEs provide for the analysis of natural variability in climate projections. 

The third paper then moves to the other above mentioned bullet point: SMILEs as valuable tools 

for extreme events analysis by investigating drought probability changes. 
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Table 1: Research topics, corresponding research questions and the associated publications where they are 
addressed. 

Topics and research questions Journal 
article 

Interannual variability (IAV) in the SMILEs 

• How well do the SMILEs represent the observed IAV? 

• How does the IAV develop in the future in SMILEs? 

• What methods are suitable to robustly detect changes in IAV 
within SMILEs? 

 

Published in 
ESD 

Natural variability as part of the overall uncertainty of climate 
projections 

• How large is the spread of signals from the CORDEX ensemble 
with special consideration of the GCM-RCM combinations? 

• How much of the uncertainty in a multi-model ensemble like 
CORDEX can be explained by NV? 

• What does that mean for the interpretation of multi-model 
ensembles? 

 

Published in 
Climate 
Dynamics  

SMILEs as statistically sound data base for extreme event analysis 

• How will dry period frequencies change over Europe in the 
future? 

• How does that relate to the 2018 summer drought in Germany? 

• How does this meteorological signal evolve into a hydrological 
model response at two gauges in Germany? 

 

Submitted to 
Geophysical 
Research 
Letters 
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6 Interannual variability in the SMILEs 

The variability of three regional SMILEs is assessed against the variability of an observational 

data set (E-OBS). After a successful assessment, the future development of the interannual 

variability (IAV) is analyzed by different approaches to detect the time of emergence in IAV 

changes. 

6.1 How well do the SMILEs represent the observed interannual variability? 

We find that the large ensembles analyzed generally represent observed IAV correctly, but care 

needs to be taken during the analysis for specific regions and indicators. Cases of many 

individual members showing both higher and lower variability compared to observational IAV 

can be found for all ensembles for specific indicators and regions. However, the single observed 

realization of historical climate makes it difficult to evaluate systematic errors of the ensembles, 

as the E-OBS distribution is not necessarily representative of the perfectly sampled IAV. A large 

study on the global mean surface temperature in GCM-SMILEs with the same methodology also 

concludes that most models reproduce the internal variability well, but regional differences can 

be large (Suarez-Gutierrez et al. 2021). 

6.2 How does the interannual variability develop in the future? 

The results found for changes in IAV are generally in line with existing literature on Europe. We 

likewise find increasing variability for the summer temperature and precipitation (Fischer und 

Schär 2009; Fischer und Schär 2010; Vidale et al. 2007; Yettella et al. 2018; Suarez-Gutierrez et 

al. 2018) and decreasing variability for winter temperature and precipitation (Bengtsson und 

Hodges 2019; Holmes et al. 2016). The summer extreme indicators for the number of heatwaves 

and maximum dry period length also show increased variability in two of the three models, in 

conjunction with increases in their mean states. 

6.3 What methods are suitable to robustly detect changes in interannual variability? 

Three different methods were tested to detect if – and when – changes in IAV become significant. 

The first method applied the classical IAV definition to each member individually over moving 

time periods. Counting the members with significant changes (both positive and negative) 

showed that for most indicators the number of members stays well below 50 % for the whole 

21st century (except maximum length of dry periods in CRCM5 and CCLM). 

The second approach makes use of the assumption that IMV is a good approximation of IAV and 

calculates the IMV for each year. The resulting time series also show significant changes in 

variability for only few cases (mostly for CRCM5). 

The third approach combines the two approaches to define variability (IAV and IMV), and pools 

together all years of a 30-year period from all members, resulting in a much larger sample size 

per period. With this approach significant changes in variability can be detected much more 

robust. Significant changes in variability thus already start to emerge early in the 21st century for 

some indicators. Differences occur between an absolute and relative treatment of changes in 

precipitation-based indicators. 
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Abstract. For sectors like agriculture, hydrology and ecology, increasing interannual variability (IAV) can have
larger impacts than changes in the mean state, whereas decreasing IAV in winter implies that the coldest seasons
warm more than the mean. IAV is difficult to reliably quantify in single realizations of climate (observations and
single-model realizations) as they are too short, and represent a combination of external forcing and IAV. Single-
model initial-condition large ensembles (SMILEs) are powerful tools to overcome this problem, as they provide
many realizations of past and future climate and thus a larger sample size to robustly evaluate and quantify
changes in IAV. We use three SMILE-based regional climate models (CanESM-CRCM, ECEARTH-RACMO
and CESM-CCLM) to investigate downscaled changes in IAV of summer and winter temperature and precipita-
tion, the number of heat waves, and the maximum length of dry periods over Europe. An evaluation against the
observational data set E-OBS reveals that all models reproduce observational IAV reasonably well, although both
under- and overestimation of observational IAV occur in all models in a few cases. We further demonstrate that
SMILEs are essential to robustly quantify changes in IAV since some individual realizations show significant
IAV changes, whereas others do not. Thus, a large sample size, i.e., information from all members of SMILEs, is
needed to robustly quantify the significance of IAV changes. Projected IAV changes in temperature over Europe
are in line with existing literature: increasing variability in summer and stable to decreasing variability in win-
ter. Here, we further show that summer and winter precipitation, as well as the two summer extreme indicators
mostly also show these seasonal changes.

1 Introduction

In addition to the changes in mean climatological states, the
variability of the climate system is an important feature of
climate change. This variability of the climate system is sub-
ject to various drivers. Variability can be caused by natural
forcings on different timescales, such as changes in solar ra-
diation or volcanic eruptions. Variability of single compo-
nents of the climate system can also be caused by the redis-
tribution of heat and momentum between and within differ-
ent components (e.g., ocean and atmosphere) of the coupled

climate system, referred to as unforced internal variability.
Next to these variations, anthropogenic changes in green-
house gas concentrations contribute to a changing climate.
Climate variability can be sampled on different timescales
from hours and days up to multi-decadal variations.

For impact analysis of climate change, the future develop-
ment of interannual variability (IAV) is of utmost importance
in addition to changes in the mean climate state. Particularly
increases in the IAV can be crucial for many impact sectors,
as this makes it much harder for stakeholders to plan from
year to year. In this study, daily data are used to calculate six
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indicators (summer and winter mean surface air temperature
(tas) and accumulated seasonal precipitation (pr)) and two
indicators for climatological extremes with high societal im-
pact: the number of heat waves per year (tas-HW-Nr) and the
maximum length of dry periods per year (pr-DP-MAX); see
Table 1 for definitions. Heat waves can cause an increase in
health problems and even fatalities among the population, as
well as damage to infrastructure (e.g., highways) and ecolog-
ical problems, as seen during the most recent heat waves in
Europe (e.g., 2003, 2018, 2019). Long dry periods can have
major impacts on ecology, forestry, agriculture, drinking wa-
ter supply, power plant cooling outages, transport on rivers
and many more. All these sectors should implement adapta-
tion strategies to face changing climatic conditions, including
IAV.

Early studies with regional climate models from PRU-
DENCE showed a distinct increase in IAV for the 21st cen-
tury in summer temperatures (Fischer and Schär, 2009, 2010;
Vidale et al., 2007) as well as decreasing winter temperature
variability (Vidale et al., 2007). Later work with ENSEM-
BLES models revealed a less pronounced increase in sum-
mer temperature variability (Fischer et al., 2012). Analysis
of SMILEs also showed future increases in variability of Eu-
ropean summer temperatures with increasing global warming
(Suarez-Gutierrez et al., 2018; Yettella et al., 2018). Holmes
et al. (2016) and Tamarin-Brodsky et al. (2020) also find in-
creasing temperature variability in summer and decreasing
variability in winter for the future. European winter tem-
perature variability has already today decreased since the
pre-industrial era in another large climate model ensemble
(Bengtsson and Hodges, 2019).

For large areas of the globe, including Europe, an in-
crease in precipitation variability from daily to multi-decadal
timescales is expected due to higher temperatures (Pender-
grass et al., 2017). However, Ferguson et al. (2018) find sig-
nificant changes in the IAV of monthly precipitation only in a
small fraction of CMIP5 models for a western European do-
main until the end of the 21st century. Earlier analysis with
regional climate models revealed future increases in summer
and decreases in winter for IAV of precipitation over similar
domains as used in this study (Giorgi et al., 2004).

Uncertainty of future climate projections can stem from
at least three sources (Hawkins and Sutton, 2009): emission
scenario, model response to a selected forcing and internal
variability of the climate system. Internal variability is often
referred to as “irreducible uncertainty” at timescales beyond
seasons to decades. While scenario and model response un-
certainty have been referred to in many climate simulation
experiments (CMIP and CORDEX), the internal variability
component had received less attention for many years. In re-
cent years, a new tool for the assessment of internal variabil-
ity has become quite popular: single-model initial-condition
large ensembles (SMILEs), where the same model is forced
with the same emission scenario several times – with the runs
(members) just differing in their initial conditions. This setup

is able to isolate the internal variability component from the
scenario and model response uncertainty for the respective
model. Based on SMILEs, it has been shown that the contri-
bution of internal variability to the total uncertainty of multi-
model ensembles (CMIP, CORDEX) can be large, especially
for mid-term projections and precipitation (Kumar and Gan-
guly, 2018; von Trentini et al., 2019) at the regional level.

The terms large ensemble (LE) and SMILE usually de-
scribe the same thing, but we prefer SMILE as it incorpo-
rates the type of large ensemble which is built upon differ-
ent initial conditions. Up to now, a number of large ensem-
bles have been produced. Deser et al. (2020) give the latest
overview of the different SMILEs available. However, most
studies only use one SMILE for their analysis and the rare
comparisons are usually just between two ensembles: similar
patterns of internal variability of temperature and precipita-
tion trends for the middle of the 21st century were found for
a CCSM3 and an ECHAM5 ensemble over North America
by Deser et al. (2014). Martel et al. (2018) showed a consen-
sus of the IAV of annual mean and extreme precipitation in
a CanESM2 large ensemble (which is also used for bound-
ary conditions of the CRCM5 in this study; see Sect. 2) and
CESM-LE with two global observational data sets.

All these simulations were performed with global cli-
mate models (GCMs), and only a few were dynamically
downscaled with regional climate models (RCMs). Here, we
compare three dynamically downscaled large ensembles, all
forced by the Representative Concentration Pathway (RCP)
8.5, for Europe. It is the first time that regional large en-
sembles are compared with respect to forced changes and
their internal variability. The added value of RCM simula-
tions is well documented for EURO-CORDEX (Giorgi et al.,
2009; Torma et al., 2015; Sørland et al., 2018; Giorgi, 2019).
Downscaled climate data are also a necessity for impact mod-
eling at regional to local scales (e.g., for hydrology, agricul-
ture, biodiversity research) due to their more accurate repre-
sentation of topography, complex coastlines and the hetero-
geneity of land surface properties.

Terminology in the context of climate variability is not al-
ways clear in the literature, as the terms natural variability,
internal variability, IAV and inter-member variability (IMV)
are often used synonymously or mixed up. Here, the term in-
ternal variability describes the variability at timescales from
seconds up to multiple decades caused by unforced internal
effects of a model or the real world due to the chaotic nature
of the climate system only, without incorporating naturally
forced variability due to volcanic eruptions and solar forc-
ing. Anthropogenic changes in greenhouse gas and aerosol
concentrations as well as natural solar and volcanic forcing
can cause changes in the mean climate state that are super-
imposed by internal variability. Moreover, higher greenhouse
gas concentrations can cause changes in the internal variabil-
ity itself in the future as well – adding another component to
climate change effects.
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Table 1. Indicators and their definitions.

Indicator Used variable Definition

tas-JJA tas Summer mean temperature (June–August)

tas-DJF tas Winter mean temperature (December–February)

tas-HW-Nr tas Number of heat waves per year; a heat wave is defined as a
minimum of 3 d above the 95th percentile of daily mean tem-
perature of the reference period; no filtering on summer months
is applied at any stage; however, by definition the heat waves
will occur during summer in the reference period. They might,
however, extend to spring and fall under RCP8.5.

pr-JJA pr Summer precipitation sum (June–August)

pr-DJF pr Winter precipitation sum (December–February)

pr-DP-MAX pr Maximum length of a dry period per year; dry periods are a
minimum of 11 consecutive days with every day showing less
than 1 mm of precipitation; no filtering on summer months is
applied at any stage; the periods can thus also occur in winter
(but this is rather unlikely in Europe).

In this study, IAV is calculated as the standard deviation of
anomalies of each member from the ensemble mean (EM),
which represents an estimate of the forced response of the
respective model. SMILEs have the advantage that the EM is
a much better estimate of the forced response than a trend fit-
ted to single members. After removing the forced response,
the residual IAV equals the total unforced internal variability
– including low-frequency variations. We will show that IAV
can be well estimated by the IMV of a SMILE in many cases,
as both metrics sample the unforced internal variability of a
SMILE, just on different dimensions: IAV is sampled on the
time dimension of a single member, while IMV is sampled
on the member dimension for each year (see Sect. 3.4). Both
IAV and IMV are terms used to describe the more general
term “internal variability” throughout this paper. Also, note
that the EM of each SMILE can be regarded as the change
signal with the highest probability, but which specific mem-
ber would become realized depends on internal variability.

The usage of three RCM-SMILEs has some advantages
compared to multi-model ensembles consisting of single re-
alizations that enable us to go beyond the current literature on
IAV changes. First, we can better evaluate the models against
observations as (a) the forced response of the model is bet-
ter estimated by the EM and (b) we thus reduce the prob-
lem of having only one realization of climate to the observa-
tional data side of the evaluation. Second, we can more reli-
ably quantify changes in the IAV and rule out that potential
changes only occur as a result of sampling uncertainty. Ad-
ditionally, we can better demonstrate when changes are sig-
nificantly different from historical conditions. In recent liter-
ature, often no significance test of detected changes in inter-
annual variability is performed (e.g., Bengtsson and Hodges,
2019). Many studies just provide information about the ro-

bustness of change (e.g., by stippling in maps), measured by
the accordance in the sign of change of (usually) 67 % of the
models of multi-model ensembles (e.g., Holmes et al., 2016).
This does, however, not allow information about the signifi-
cance compared to a reference climate. Third, SMILEs allow
a better separation of models as they are not only described
by one member each. Additionally, we combine these gen-
eral SMILE advantages with the higher resolution of RCMs.

The remaining paper is structured as follows: First, the
model ensembles and the observational data set E-OBS are
briefly presented. Then, the change in mean temperature and
precipitation together with the inter-member spread of pro-
jected changes is analyzed for each ensemble, as the mean
changes are important baseline information for variability
changes. Next, the IAV of the three regional large ensem-
bles is evaluated against E-OBS to assess the abilities of the
models to represent observed IAV for the selected indicators.
Finally, IAV in historical climate and future changes in IAV
are compared between SMILEs. This includes a discussion
on different methods to estimate IAV and detect significant
changes in IAV. In the main text, most results will only be
presented for mid-Europe (ME), with references to the other
regions and their figures in the Supplement.

2 Data

The climate model ensembles each consist of a GCM single-
model initial-condition large ensemble, which has been dy-
namically downscaled over Europe with a single regional
climate model: a 50-member CanESM2-CRCM5 ensem-
ble (Kirchmeier-Young et al., 2017; Leduc et al., 2019), a
21-member CESM-CCLM ensemble (Fischer et al., 2013;
Addor and Fischer, 2015; Brönnimann et al., 2018) and a
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Table 2. Specifications of the three ensembles used in this study.

CRCM CCLM RACMO

Scenario RCP8.5 RCP8.5 RCP8.5
GCM CanESM2 CESM 1.0.4 EC-EARTH 2.3
GCM resolution 2.8◦ 2.0◦ 1.0◦

RCM CRCM5 CCLM4-18-7 RACMO22E
RCM resolution 0.11◦ 0.44◦ 0.11◦

No. of members 50 21 16

16-member EC-EARTH-RACMO ensemble (Aalbers et al.,
2018), all forced with the RCP8.5 scenario, resolved on dif-
ferent spatial resolutions (Table 2). Hereafter we indicate
the GCM-RCM combinations with the RCM names only
(CRCM, RACMO and CCLM). This setup with a shared sce-
nario but different models enables us to analyze differences
in internal variability between the three ensembles. Differ-
ences in variability may stem from the differences in the
resolution of both GCMs and RCMs, the different domain
sizes, the different models, and differences in aerosol forc-
ing in the RCM simulations (constant in CCLM and CRCM,
transient in RACMO) and in the application of an ocean slab
model in the EC-EARTH-RACMO ensemble. RACMO also
uses slightly different grid specifications. The domain size of
CCLM equals the EURO-CORDEX domain, while CRCM
uses a slightly smaller domain, and RACMO only captures
central and northeastern Europe (Fig. 1). The initialization is
carried out differently in the three driving GCM-SMILEs:
CanESM2 builds on a hybrid approach, where five mem-
bers with different ocean conditions starting in 1850 were di-
vided into 10 members each using atmospheric perturbations
during the initialization in 1950 (see Leduc et al., 2019 for
details). The CESM members stem from small atmospheric
perturbations of the order of 10−13 on 1 January 1950 (Fis-
cher et al., 2013). EC-EARTH uses the first 16 d in the year
1850 of an initial run to start the 16 members (Aalbers et al.,
2018). These climate model data sets will be compared but
will also be compared to observations: the gridded observa-
tional data set E-OBS has daily precipitation and tempera-
ture available for Europe (version v12.0, spatial resolution of
0.22◦ on a rotated pole grid). We use the E-OBS data set be-
cause of its availability for Europe and it has similar spatial
resolution to the regional climate models under considera-
tion. We accept the known weaknesses of the data set (mostly
caused by inhomogeneities in the sparse station network; E-
OBS is also known for rather low precipitation fields; see
Hofstra et al., 2009) and assume that it is nonetheless suit-
able for the purpose of this study.

3 Methods and results

3.1 Spatial aggregation

All indicators (Table 1) are calculated on a grid basis for
each ensemble. For comparison, the indicators are spatially
aggregated to four regions in Europe, for which all three
RCM domains overlap (Fig. 1): the British Isles (BI), France
(FR), mid-Europe (ME) and the Alps (AL). These regions
are well known from other European climate model stud-
ies (Lenderink, 2010; Lorenz and Jacob, 2010; Kotlarski et
al., 2014; von Trentini et al., 2019) and were introduced by
Christensen and Christensen (2007). The procedure of cal-
culating the indicators on the grid level and spatially aggre-
gating them afterwards has the advantage that no regridding
of data is needed. However, the different spatial resolutions
of the models alone can potentially lead to higher variabil-
ity in the 0.11◦ data (CRCM and RACMO), compared to
the 0.22◦ (E-OBS) and 0.44◦ (CCLM) data. This is espe-
cially the case for spatially heterogeneous variables and indi-
cators (Giorgi, 2002; Kendon et al., 2008). The indicators in
this study, however, have relatively low spatial heterogeneity
(seasonal temperature and precipitation, heat waves, and dry
periods are rather large-scale phenomena), where the range
of spatial resolutions of the data used here (between 0.11 and
0.44◦) is not expected to be significantly sensitive. The effect
of regridding before the calculation of indicators is shown
by a short experimental analysis, where 1 year of five mem-
bers of the 0.11◦ CRCM data is regridded to 0.44◦ (simply
averaging 4×4 grid cells each), before the indicators are cal-
culated. The results show that the effect of regridding on the
IMV is indeed minor for the indicators considered (Fig. S1).
The approach of direct regional aggregation of the indicators
calculated on the grid level is therefore applied for the further
analysis of this study.

3.2 Ensemble spread of projected mean climate change

Before analysis of IAV, simple scatterplots of the changes
in the mean climatological states of each member for tem-
perature and precipitation for summer and winter between
1980–2009 and 2070–2099 are shown for ME; see Figs. 2
and 3. They give a first impression on the spread of projected
changes between the members of SMILEs and on the dif-
ferences in the mean changes between models. We test the
similarity of means between all models with a two-sample t
test (α = 0.05) and the similarity of spreads with a Brown–
Forsythe test (BF test with α = 0.05) on equal variances. The
BF test does not show significant differences in variance for
both temperature and precipitation in winter and summer for
all model combinations. The spread of signals between mem-
bers of one SMILE can be solely attributed to the internal
variability of the respective model.

In summer in ME, all models show decreasing precipita-
tion; between −3 % and −16 % for RACMO and −14 % to
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Figure 1. Domains of the three RCMs and the boundaries of the four analysis regions; BI: the British Isles; FR: France; ME: mid-Europe;
AL: Alps; the CCLM domain matches the EURO-CORDEX domain.

−35 % for CRCM and CCLM (Fig. 2). Increases in summer
temperature between 3 and 5 ◦C are projected by RACMO
and CCLM, while CRCM shows much higher changes be-
tween 5 ◦C and more than 6 ◦C. Thus, RACMO and CCLM
show similar changes in temperature (although statistically
different in their means), while CCLM and CRCM show
similar changes in precipitation. The spread of changes for
both temperature and precipitation of RACMO and CRCM
are similar, both in terms of standard deviation and total
range, while CCLM shows a higher standard deviation and
total range (Table 3). Similar results as discussed here for
mid-Europe (mean changes and spread) are found for France
and the Alps (not shown), with the largest decrease in sum-
mer precipitation over France and the strongest warming over
the Alps. The British Isles region shows less pronounced
changes for both temperature and precipitation (although
they are consistent in sign). CRCM shows a closer similar-
ity of precipitation decreases to RACMO in BI rather than to
CCLM, as is the case for the other three regions ME, FR and
AL.

In winter, all models project increasing precipitation (1 %–
32 %) and temperature increases between 1.4 and 5 ◦C by the
end of the 21st century (Fig. 3). RACMO and CRCM show a
similar standard deviation and range of temperature and pre-
cipitation changes again, together with similar mean changes
as well (significant for temperature but not for precipitation).
CCLM shows distinctly smaller changes in combination with
a smaller spread of changes (Table 3). Similar results also ap-
pear for FR, AL and BI, although some members of CCLM
and CRCM also project a slight decrease in precipitation in
these regions.

3.3 Evaluation against E-OBS

For the evaluation of the models’ IAV against E-OBS, we ap-
ply an approach proposed by Suarez-Gutierrez et al. (2018)
and Maher et al. (2019). For the observations and for each
model and member separately, the anomalies relative to the
reference period 1961–1990 are calculated for the years
1957–2099 and 1957–2015 in E-OBS, respectively (Fig. 4).
Model mean state biases of the indicators, which can be
quite large (see Fig. S2) are thereby removed. For each year,
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Table 3. Standard deviation and total range for changes in Figs. 2 and 3.

tas (◦C) pr (%)

CRCM RACMO CCLM CRCM RACMO CCLM

Summer SD 0.27 0.28 0.39 4.2 3.8 5.1
Summer range 1.16 0.96 1.59 16.2 13.2 21.1
Winter SD 0.37 0.38 0.30 5.5 5.3 4.2
Winter range 1.87 1.47 1.33 26.1 21.2 12.9

Figure 2. Change in mean summer temperature and precipitation
for every member of the three ensembles in mid-Europe (2070–
2099 against 1980–2009). Changes are relative to each members’
value in 1980–2009 for precipitation, while temperature changes
are absolute.

we then plot the ensemble median, minimum and maximum
member, the area between the 12.5th and 87.5th percentile,
within which 75 % of the members are situated, and the E-
OBS data. For a perfect model, the E-OBS data are expected
to occur normally distributed within the range spanned by
the ensemble and are concentrated in the inner 75 %, sev-
eral years situated in between the minimum and maximum
of members, but also outside this range from time to time.
If the E-OBS data are concentrated too much inside the total
range or even the 75 % area, the variability of the ensem-
ble overestimates the observational variability. By contrast,
if too many E-OBS data points exceed the ensemble spread,
SMILE underestimates observational variability. To quantify
this further, the probability density function of the anoma-
lies in the period 1957–2015 is plotted for each member and
E-OBS separately. The functions are estimated probability

Figure 3. Change in winter temperature and precipitation for every
member of the three ensembles in mid-Europe (2070–2099 against
1980–2009). Changes are relative to each members’ value in 1980–
2009 for precipitation, while temperature changes are absolute.

densities based on a normal kernel function, similar to an ap-
proach by Lehner et al. (2018).

The forced response (ensemble median) increases for all
indicators analyzed, except for summer precipitation, which
decreases in all models, and there is no clear change in pr-
DP-MAX in RACMO. Note that this approach does not only
compare the IAV of the models and E-OBS, but also the
forced response in the historical period. Differences in the
distributions can thus also arise from a false representation
of the forced response in a model, compared to the trend in
E-OBS. On the other hand, if the modeled and observed dis-
tributions largely coincide, both the forced response and the
IAV are well represented by a model. All three models gen-
erally seem to reproduce the forced response in the historical
part quite well, as the models are consistent with the trends
of the E-OBS points (e.g., increase in tas-JJA). Only for sum-
mer precipitation (pr-JJA) do all models show a decrease in
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Figure 4. Anomalies from 1961 to 1990 of the six indicators in mid-Europe (ME) for E-OBS (circles 1957–2015) and the three ensembles
(1957–2099), represented by the median, minimum and maximum (solid lines) of the ensemble and an area from the 12.5th and 87.5th
percentile, spanning the range of the inner 75 % of the members (shading). Black lines show the linear trend for the E-OBS points. The
indicator names are in bold when the trend is significant using a Mann–Kendall test (α = 0.05).

the forced response, whereas E-OBS shows no significant
negative trend. However, in all ensembles, not all members
show decreasing trends. The observations may thus still be
consistent with the simulated forced response.

The comparison of E-OBS and the three SMILEs during
the historical period from 1957 from 2015 in ME shows
largely good representations of IAV in the ensembles, as
seen by well distributed E-OBS points within the 75 % range
(12.5 %–87.5 % quantile) and minimum and maximum range
of the ensembles (Fig. 4). However, too a strong clustering
of the E-OBS points in the 75 % area occurs for winter pre-
cipitation in CRCM (97 % fall inside) and number of heat
waves in CCLM (90 %), meaning the simulated IAV is too

high. On the other hand, too many outliers beyond the min-
imum and maximum members appear in winter temperature
in CCLM (22 % outside of total range), winter precipitation
in RACMO (17 %) and maximum duration of dry periods
in CRCM (10 %), i.e., for these models and indicators the
simulated IAV is too low. To demonstrate this further we cal-
culate probability density functions of the annual anomalies
for each member and E-OBS (Fig. 5). Note that probability
density functions could also be somewhat inflated by the un-
derlying mean trend, but we expect this effect to be small be-
cause trends in the observational period are small and largely
consistent between models and observations. To evaluate the
ability of SMILEs to represent observational IAV, we test
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whether the E-OBS distribution looks like a possible mem-
ber of the respective ensemble. The observations are not ex-
pected to fall near the ensemble median but rather should be
ideally indistinguishable from a random additional member
of the ensemble, since E-OBS only represents one possible
realization of historical climate. Significant differences can
be seen for the examples already mentioned: the distribution
of CRCM in winter precipitation is much broader than the
E-OBS distribution, whereas the winter temperature distri-
bution for CCLM is concentrated too much in the middle
compared to E-OBS.

Similar results as in ME can be found in the other three re-
gions as well (Figs. S3–S5), with only a few cases where the
E-OBS distributions show a distinctly different shape than all
members of the ensembles (Fig. 6 for AL and Figs. S6 and S7
for BI and FR, respectively), especially for the maximum du-
ration of dry periods of CCLM in France. This is not too
surprising, as the maximum duration of dry periods is an ex-
tremely sensitive indicator because of its potentially extreme
differences in magnitude between (model) years/members
(one wet day can make a huge difference). The other two
SMILEs are able to represent the E-OBS variability for this
indicator in France though. Other remarkable features are the
underestimation of variability in RACMO for all six indica-
tors in the British Isles region (Fig. S6), as well as the rela-
tively good performance of the models for the Alps (Fig. 6),
which is probably the most difficult region for a model to
represent correctly due to the strong spatial heterogeneity.
However, the Alps show some “outlier-members” with dis-
tinctly different distributions in the ensembles (e.g., winter
precipitation in CRCM), which cannot be found in the other
regions – at least not this pronounced. These outliers demon-
strate how large the influence of internal variability between
members can be in a single realization of climate, as these
outlier members just deviate from all other members by their
initial conditions. Estimating the IAV of a model thus needs
a large number of members, as even with 49 members that
give a uniform range of distributions (pr-DJF in CRCM5 in
the Alps, Fig. 6), one single additional member can change
the picture and add more information on the range of IAV for
the respective model. The evaluation of E-OBS gets rather
difficult in these cases, as the methodology is based on the as-
sumption that the E-OBS distribution should somehow “fit”
to the uniform range of distributions of the model. If the E-
OBS data showed such an outlier behavior, it means that the
one realization of climate variability as seen by the E-OBS
data might still be part of a SMILE’s range of possible vari-
ability manifestations. However, from a probability perspec-
tive, the conclusion of similar variabilities becomes rather
unlikely. It just makes it harder to prove that E-OBS has a
different distribution than all members of a SMILE.

3.4 Projected changes in internal variability and the
connection between IAV and IMV

The temporal development of the internal variability is im-
portant information along with the underlying forced re-
sponse (change in the EM) for a better understanding of
changing climatic conditions. We discuss three possible ways
to describe changes in the internal variability on annual
timescales within a SMILE. All three methods are based on
the application of a BF test on equal variances. While IAV
and IMV are expressed as standard deviations (SDs), the BF
test analyses differences in the variance, which is just the
square of SD. In the cases of IAV (methods 1 and 3), moving
time periods of 30-year length, shifted by 1 year each (1961–
1990, 1962–1991, . . . , 2070–2099) are used. For the second
method, IMV is sampled over the dimension of the ensemble
size per year. Thereby we test whether the internal variability
changes significantly over time. Differences in the methods
arise from the different data samples used for the testing.

The first method is based on the methodology that one
would choose for single members and observations. By look-
ing at the IAV for different periods within one member,
changes in IAV can be detected. Usually the forced response
is taken out of the data by fitting a polynomial to the data and
only using the residuals. However, the estimate of the forced
response of a model based on only one member may deviate
from the true forced response (Lehner et al., 2020). There-
fore, we choose the EM as an estimate of the forced response
and use the residuals from each member with respect to the
EM for the BF test. The BF test results is Boolean informa-
tion for each member and each moving period on whether
the variance has significantly changed with respect to a refer-
ence period (here: 1961–1990) or not. This information can
be used to show the percentage of members with a signif-
icant change (separated for positive and negative changes)
in each period. The advantage of SMILEs within this ap-
proach is the better estimate of the forced response and a
more robust detection of changes, as they are built on mul-
tiple members. One member alone could be an outlier in its
representation of (changes in) IAV just as it could be for the
trend. The method is sensitive to the chosen reference period
of course, as the variance of this period determines the base-
line variance. Since we use moving periods, the results do not
change significantly when using different periods starting in
the 1960s.

For the second method, we make use of the assumption
that the IMV for a given year is a good approximation for
the IAV in a period around that year (e.g., ±15 years to get
a sample size of the typical 30 years for climate analysis).
The sampling of variability is thus not based on consecutive
time series within each member but on a compound of an-
nual data for 1 year from all members of a SMILE. The IMV
is also based on residuals from the EM as for IAV. Under
the assumption of small influence of low-frequency variabil-
ity, IMV should be a good estimate of total unforced IAV, as
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Figure 5. Probability density functions of the annual anomalies during the period 1957–2015 in E-OBS and each ensemble member for all
six indicators in mid-Europe (ME).

both sample the annual variability during a similar state of
climate for a given time horizon. This concept is particularly
relevant in the presence of non-linear forcing. For instance,
the response to a volcanic eruption cannot be separated eas-
ily from unforced IAV. In addition, the anthropogenic forc-
ing since 1950 has not been linear in time. Using IMV is an
elegant way to get around this challenge. Some recent pub-
lications support the concept of using IMV as an approxi-
mation of IAV, although the two have different background
meanings: while IAV has a physical meaning and represents
the variability of a consecutive sequence of weather phenom-
ena, IMV is a measure of variability without a direct physical
meaning (Nikiéma et al., 2018).

In Leduc et al. (2019) the authors state that “In the case of a
climate system under transient forcing, the use of [IMV equa-
tion] to assess temporal variability using the inter-member
spread involves weaker assumptions than calculating the

residual temporal variability from detrended time series.”
(Leduc et al., 2019, p. 681), based on the study by Nikiéma
et al. (2018). A recent publication by Wang et al. (2019) even
concludes that the IMV of winter sea level pressure over
Eurasia in a SMILE is driven by the same mechanisms as
observed IAV via an EOF analysis. Another example is the
analysis of seasonal mean and heavy precipitation in Europe
where long-term variations are small compared to the IAV in
the RACMO ensemble (Aalbers et al., 2018). A comparison
of IAV and IMV in each ensemble is carried out by compar-
ing the means and standard deviations of these two variability
metrics – calculated over different dimensions of the ensem-
ble data. The IAV is calculated for each member during a
30-year reference period (1980–2009) and three future pe-
riods. The mean and standard deviation of these 50, 21 and
16 values is calculated for IAV. The IMV is calculated for
each of the 30 years of the respective period between the 50,
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Figure 6. Probability density functions of the annual anomalies for all six indicators in the Alps (AL). For details, see Fig. 5.

21 and 16 members, leading to a mean and standard devi-
ation, calculated from these 30 values. The mean and stan-
dard deviation of IAV and IMV are indeed very similar for
all indicators, periods and regions (exemplarily shown for
winter temperature in Fig. 7). Especially the similarity in fu-
ture changes suggests a similar response to external forcing
for the two variability metrics IAV and IMV. The IMV has
the advantage that it is insensitive to inflation effects of the
variability due to an existing trend and forced effects like
cooling after volcanic eruptions for example. However, al-
though IAV and IMV seem to be similar in many cases (see
also literature above), they can potentially also differ under
special circumstances in the external forcing like volcanic
eruptions. Note that according to our results IMV is always
slightly larger than IAV. This may be caused by two factors.
First, detrending the time series is more likely to remove than
to add some of the variability, and it affects only IAV. Sec-
ond, also without detrending the data, in the presence of low-

frequency variability, IAV is likely smaller than IMV, which
has no auto-correlation in the underlying data. For the vari-
ables considered here, differences are small though, implying
that the low-frequency variability is indeed small compared
to the high-frequency variability.

Given the similarity of IAV and IMV, the third approach
pools together the annual anomalies from the EM from all
members for a given 30-year period (30 times the ensemble
size, e.g., 30× 21 values for CCLM). It is therefore a mixture
of IAV and IMV, enabling a more robust BF test result for
changes in variance by a larger sample size.

While the interpretation of temperature-based indicators is
always based on absolute anomalies from the EM, it can be
useful to look at both absolute and relative anomalies from
the EM for precipitation-based indicators (in contrast to the
previous evaluation against E-OBS, where they were only ab-
solute anomalies). Relative anomalies thus give information
on how much the standard deviation changes with respect
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Figure 7. IAV and IMV of winter temperature in the three ensembles for the reference period (1980–2009) and three future periods. Bars:
mean over the variability of each member (IAV) or year (IMV). Error bars: ± standard deviation (members or years); IMV: 16/21/50 mem-
bers; IAV: 30 years of the respective period.

to changes in the EM. For example, a stable IMV in abso-
lute terms will result in a decrease in the relative IMV when
the EM increases. Increasing relative IMV, together with an
increasing EM on the other hand means that the internal vari-
ability is increasing even more than the mean.

The percentage of members with significant changes in
IAV as a function of time is shown in Fig. 8 for all indica-
tors, for mid-Europe. Significantly decreasing IAV for win-
ter temperature and increases for summer temperature and
heat waves are found, but only for a minority (<50 %) of
the members for all models, even at the end of the 21st cen-
tury. While all three models point to the same direction of
change, percentages differ substantially. For winter and sum-
mer precipitation, an even smaller percentage of members
shows significant changes in IAV, and there is no clear direc-
tion of change in any model. Only CRCM for pr-JJA shows
an increasing number of members with significant positive
changes throughout the second half of the 21st century. For
dry periods, RACMO has a very small number of members
showing significant changes in both directions, while CRCM
and CCLM show marked increases in the number of mem-
bers with significant positive changes in IAV throughout the
21st century. For the last period 2070–2099, even all mem-
bers of CCLM show significant increases.

The temporal evolution of IMV (relative to the EM for
precipitation-based indicators, Fig. 9) generally supports the
direction of changes as seen by the method using the percent-
age of members with significant changes in IAV. However,
when testing for significant changes in the variance between
members, hardly any of the changes are significant. CRCM
shows significant changes in the majority of years for tas-
DJF from 2040 on, for tas-JJA from 2080 on and for pr-JJA
from 2060 on. As the IMV is calculated for each year, the
plot shows the noise in the IMV per year, which can be large.

Figure 10 shows the change in variability determined from
the pooled annual anomalies from the EM for moving 30-
year periods from all members. This means, all 30 anomalies
from all members are pooled together before calculating the
standard deviation (i. e. pooled IAV) and tested for significant
changes in the variance with a Brown–Forsythe test. Given
the much larger sample size per 30-year period, in contrast to
the two former methods, we can now see significant changes
in many combinations of indicator and model (Fig. 10). As
expected from the previous two methods, internal variabil-
ity decreases for winter temperature and increases for sum-
mer temperature and the number of heat waves. In contrast
to the former methods, however, significant changes can be
detected earlier. In these cases, the internal variability has
already changed significantly in the historical simulations
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Figure 8. Percentage of members with significantly different variance (Brown–Forsythe test with α = 0.05) with respect to the reference
period 1961–1990 in mid-Europe. The analysis is based on residuals after removing the EM from each member. The years on the x axis
denote to the starting year of moving 30-year periods.

of SMILEs or it changes in the present/near future around
2020. The internal variability in the number of heat waves
increases until about 2010–2030, reaches a plateau for about
30–40 years and then decreases again. This behavior can
be explained by the forced response of the indicator, which
shows strong increases until around 2060, when the number
of heat waves stabilizes around 6 (and even decreases after-
wards in CRCM, Fig. S2), because the heat waves become
so long that their number per year cannot increase anymore.
This is especially true for CRCM, where the mean duration
of heat waves at the end of the 21st century is much longer
than for CCLM and RACMO and about 16 d (not shown),

leading to a rough estimate of 6× 16= 96 heat wave days
per year, equal to about 3 months. Since heat waves are de-
fined by the 95th percentile of temperature in the reference
period (thus describing extreme conditions), the former ex-
treme heat becomes a regular condition during the summer
months at the end of the 21st century in CRCM. For the
pooled IAV, both absolute and relative changes in IAV are
shown for precipitation-based indicators to demonstrate the
effect of the two different approaches. For pr-DJF, CRCM
does not show any change in absolute IAV, while this stable
behavior in combination with the increase in pr-DJF in the
EM leads to a decreasing relative IAV, which is significant
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Figure 9. IMV per year sampled on the dimension of the respective ensemble size (50, 21 and 16) for mid-Europe. The analysis is based on
residuals after removing the EM from each member. The markers highlight years with a significantly different variance than the reference
year 1961. Precipitation-based indicators are shown with their relative anomalies from the ensemble mean (percentage).

from the early 21st century onwards. CCLM and RACMO
show increasing variability in absolute terms, but changes are
significant for RACMO only, from∼ 2060 onwards. For both
CCLM and RACMO there is no clear change in IAV relative
to the change in EM for pr-DJF. Note that while RACMO
shows the lowest absolute IAV it shows the highest relative
IAV. This originates from the lower EM for winter precip-
itation in RACMO compared to CRCM and CCLM, which
both have quite distinct wet biases (Fig. S2). For summer
precipitation, absolute IAV increases according to all mod-
els, while EM decreases. Changes in absolute IAV are largest
and significant for CRCM and RACMO from ∼ 2000, re-
spectively∼ 2045 onwards. For CCLM, changes are not sig-

nificant. Owing to the decreasing EM, increases in relative
IAV are significant for all models and significant changes oc-
cur earlier in time (∼ 1970 for CCLM, ∼ 1990 for CRCM
and ∼ 2040 for RACMO). The changes in EM and IAV in
both summer and winter have also been detected by Pen-
dergrass et al. (2017) for CMIP5 and CESM-LE precipita-
tion data in extratropical regions. IAV of pr-DP-MAX does
not change according to RACMO, while CRCM and CCLM
show distinct increases that go hand in hand with increases in
the EM that is also much stronger in these two models than
in RACMO (Fig. 4). The changes are significant for relative
IAV later in time than for absolute IAV.
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Figure 10. “Pooled IAV” for mid-Europe. The analysis is based on residuals, pooled together from all members, after removing the EM from
each member. Temperature-based indicators are shown in absolute terms (a–c). Precipitation-based indicators are shown both in absolute
terms (d–f) and relative to the ensemble mean (g–i). The change from dashed to solid lines marks the point in time when all following periods
show significant changes in variance (BF Test with α = 0.0.5).

The abovementioned results are mostly valid for the other
regions as well. Differences in the magnitudes of variability
and its changes are briefly discussed in the following (see
Figs. S8–S10): ME shows higher winter temperature vari-
ability than the other three regions, especially than BI. Lower
levels of variability compared to the other regions occur over
the British Isles for winter temperature and winter precipi-
tation (relative to EM). The Alps show a smaller variabil-
ity for the number of heat waves than the other regions. The
variability of pr-DP-MAX for all three ensembles is similar
to ME in AL, while BI and FR hardly show any significant

changes. If all regions are considered, RACMO generally has
the highest internal variability in winter and the lowest vari-
ability in summer for temperature and precipitation (relative
to EM), while CCLM has the highest internal variability for
summer temperature and precipitation (relative to EM) as
well as for heat waves and dry periods (both absolute and
relative to EM). Significant changes generally occur similar
to ME for winter and summer temperature and precipitation
(both absolute and relative to EM). Changes in the number of
heat waves are not significant in CCLM in all three regions
and in RACMO in AL.
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The first method, testing the percentage of members with
significant changes in IAV, gives a good overview of the be-
havior of the members in general. It can, however, only in-
form about the direction of change in IAV. Additional infor-
mation on the magnitude of the changes in IAV is needed to
get the whole picture. The second method using IMV is in
general agreement with the first method when looking at the
direction of change. It incorporates the magnitude of internal
variability and can show significant changes in the IMV in
the same figure. The variations in IMV from year to year are
relatively large. Therefore, the BF test results also largely de-
pend on the choice of a reference year to test all other years
against. Changes from one year to the next can give very
different results. Unstable significance testing is the result.
Method 1 is less sensitive to the reference given the overlap-
ping periods. Considering the sample sizes in this study, the
best results can be obtained with method 3, where sensitivity
can be tested with a much larger sample size. For method 1 it
is 30 values per period, for method 2 it is 16/21/50 values per
year, and for method 3 it is the product of both 30 years and
the ensemble size of the respective ensemble. However, if the
sample size was larger for the first two methods, they would
probably also result in the detection of significant changes,
e.g., when using more members.

To see how the ensemble size impacts the results for the
pooled IAV, we reduce the largest ensemble (CRCM with
50 members) to the size of the other ensembles (16 and 21)
and repeat the analysis for ME. Even after reducing the en-
semble size to only 16 members, the changes at the end of
the 21st century in CRCM are still significant for indicators
that already showed significant changes for all 50 members.
However, the detection of significant changes is only possi-
ble at a later time horizon (Fig. S11) for changes in tas-DJF
(around 40 years later), relative changes in pr-DJF (20), ab-
solute changes in pr-JJA (20) and relative changes in pr-DP-
MAX (15). Tests with a number of ensemble sizes suggest
that around 10 members are sufficient to detect the signifi-
cance of changes and around 20 are sufficient to detect the
timing of these significant changes additionally.

4 Discussion

The number of SMILEs available for the quantification of
internal variability in this study is still relatively small – we
only used three GCM-RCM combinations (to the knowledge
of the authors these three ensembles are the only regionally
downscaled SMILEs over Europe). More simulations with
RCM-SMILEs could help to make results even more robust
– especially for winter precipitation and dry periods, where
the three ensembles do not agree on the change in variability.

The effect of regional aggregation after the calculation of
indicators on the grid level and the potential effects of the
original resolution of different data sets on the internal vari-
ability seem to be minor for the selected indicators, as seen in

the experimental analysis conducted on a subset of the data
(Fig. S1). This estimate of sensitivity to differing spatial res-
olutions might be conservative, however. Nevertheless, the
methodology seems to be suitable for the selected indicators
of this study.

Methods based on anomalies from the EM are chosen in
order to compare results despite different biases in histori-
cal and future mean climate states. It can, however, not be
ruled out that differences in the variability may originate
from mean state biases of the models. CRCM for example
shows much higher precipitation sums than the other two en-
sembles, leading to higher variability in absolute terms. The
normalization with the ensemble mean covers these differ-
ences in absolute amounts. In the end it largely depends on
the definition of variability: is one interested in absolute de-
viations (mm) or in the fluctuations in relative terms (%)?
Results are sensitive to a relative versus an absolute defini-
tion or vice versa. The relative approach has the advantage
that it allows for a fair comparison of models with different
mean precipitation amounts. This is also why a recent publi-
cation by Giorgi et al. (2019) gave preference to the relative
definition, for example.

The scatterplots of projected changes for seasonal temper-
ature and precipitation (Figs. 2 and 3) show both agreement
and dissent, but usually at least two of the three models show
similar ranges for one variable. Better agreement might be
possible when comparing the data sets not for a fixed period
but for periods with the same global warming level in each
driving GCM.

We find that the large ensembles analyzed here generally
represent observed IAV correctly, but care needs to be taken
during the analysis for specific regions and indicators. Cases
of many individual members showing both higher and lower
variability compared to observational IAV can be found for
all ensembles for specific indicators and regions. However,
the single observed realization of historical climate makes
it difficult to evaluate systematic errors of the ensembles, as
the E-OBS distribution is not necessarily representative of
the perfectly sampled IAV. It would be interesting to com-
pare large ensembles against an observational large ensem-
ble as proposed by McKinnon and Deser (2018) to better see
systematic deficiencies of large ensembles compared to ob-
servations.

The results found for changes in IAV are generally in line
with existing literature on Europe. We likewise find increas-
ing variability for the summer indicators tas-JJA and pr-JJA
(Fischer and Schär, 2009, 2010; Vidale et al., 2007; Yet-
tella et al., 2018; Suarez-Gutierrez et al., 2018) and decreas-
ing variability for the winter indicators tas-DJF and pr-DJF
(Bengtsson and Hodges, 2019; Holmes et al., 2016). The
summer extreme indicators tas-HW-Nr and pr-DP-MAX also
show increased variability in two of the three models, in con-
junction with increases in their mean states. Several mecha-
nisms contribute to the changes in all indicators. For changes
in the summer temperature IAV, land–atmosphere coupling
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is becoming more important in central or northern Europe
in the future because the transitional zone between dry and
wet climates moves northwards from the Mediterranean re-
gion, leading to enhanced alternation of dry and wet summer
soil moisture (Seneviratne et al., 2006; Fischer et al., 2011).
Moreover, stronger warming over land than over the oceans
causes the land–ocean temperature gradient in summer to in-
crease. This results in increased variability in thermal ad-
vection, which is suggested to play a role in the increase
in temperature variability in Europe as well (Holmes et al.,
2016). Analysis of observations shows that in the Mediter-
ranean more than half of summer temperature variability can
be explained by large-scale atmospheric circulations and sea
surface temperatures (Xoplaki et al., 2003). The decrease
in winter temperature IAV is suggested to be influenced by
changing circulation patterns (Vautard and Yiou, 2009), and
a decrease in variability of advected heat due to the decrease
in the winter land–ocean temperature gradient (Holmes et
al., 2016) and arctic amplification and sea ice loss (Screen,
2014; Sun et al., 2015; Tamarin-Brodsky et al., 2020), even
under unchanged circulation variability (Holmes et al., 2016;
Tamarin-Brodsky et al., 2020).

The increase in summer precipitation variability that
would not be expected under decreasing mean summer pre-
cipitation might be caused by a reduction in the number of
wet days (>1 mm) that exists in all three ensembles (not
shown), as discussed by Räisänen (2002). A reduction in wet
days implies an increase in variability since the seasonal pre-
cipitation sum becomes more dependent on individual pre-
cipitation events.

Land–atmosphere feedback mechanisms are not yet fully
understood, and there are still improvements needed in their
implementation in earth system models and regional climate
models (Vogel et al., 2018). Uncertainties in the future re-
gional development of heat waves and dry periods are thus
rather large (Miralles et al., 2019). Nevertheless, increasing
frequency, intensity and variability in the number of heat
waves as projected by SMILEs using RCP8.5 in this study
seem plausible, although the magnitudes can be uncertain.
The strong increase in the maximum length of dry periods
in two of the models is not necessarily what could be ex-
pected. While the length of severe dry periods increases in
the future for southern Europe, central and northern Europe
do not show any change in the EURO-CORDEX data for dry
period length (Jacob et al., 2014). Analysis of precipitation
changes shows that both CRCM and CCLM (the RCM itself,
not SMILE) are on the dry end of projections for summer
precipitation (von Trentini et al., 2019). This might be re-
lated to sensitive implementations of land surface modules
in these two RCMs. RACMO does not show an increase in
the maximum length of dry periods.

Although beyond the scope of this paper, which only ana-
lyzed the manifestations of internal model variability in sur-
face variables (tas, pr and associated indicators), there is a
need for a better understanding of the mechanisms leading to

the model-inherent characteristics of internal variability and
why differences between the models appear (e.g., circulation
patterns, ocean characteristics).

Using SMILEs for studying changes in IAV allows for
much more robust statements on the direction, magnitude
and emergence of changes, when using a certain model and
RCP scenario. Analyzing the individual members, significant
changes in IAV are found in less than half of the members for
almost all indicators and ensembles, even at the end of the
21st century (Fig. 8). However, pooling the data of all ensem-
ble members, all three ensembles show significant changes in
internal variability of most indicators and often from early in
the 21st century onwards (Fig. 10).

Thompson et al. (2015) showed that a statistical model
based on a historical period could be as good as a SMILE
for predicting future variability of seasonal temperature and
precipitation trends up to 2060. The detection of significant
increases in internal variability in summer and winter tem-
perature much earlier than 2060 (Fig. 10) challenges this as-
sumption of stable variability. For precipitation (especially
absolute changes), however, the changes are often not signif-
icant before 2060, confirming the results of Thompson et al.
(2015).

5 Conclusions

There is an increasing interest on the part of the scien-
tific community to use single-model initial-condition large
ensembles in a wide variety of applications, ranging from
deeper levels of understanding of natural climate variability
to impact assessments in different fields. The rich data basis
which these ensembles provide for the analysis of internal
variability is very valuable and enables new insights into this
critical part of the climate system. Future changes, in partic-
ular, can be better set into context. The effects of dynamical
downscaling of GCM large ensembles with regional climate
models are not yet sufficiently explored. Further research is
needed in this direction to see whether and by how much
the internal variability is altered in the RCM simulations of
a respective GCM large ensemble. However, downscaling is
an important step to make climate simulation information at-
tractive for local adaptation research and impact modellers.
The results from this study can be helpful for these research
communities to better understand and quantify the role of
IAV in the climate system. In particular, increases in variabil-
ity as seen for summer temperature, relative summer precip-
itation, heat waves and dry periods in most regions and mod-
els can be a huge burden for sectors like agriculture, ecology
and hydrology.

The evaluation and comparison of the three RCM-SMILEs
in this study gives a first overview of the agreement of
SMILEs with observations and among each other. The gener-
ally high agreement with observations suggest that the inter-
nal variabilities of the RCM-SMILEs at the regional scale
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are useful approximations of the observed IAV of the cli-
mate system in Europe. The direction of changes in internal
variability is also mostly the same between the ensembles,
suggesting a relatively robust signal. While the “summer in-
dicators” mostly show increasing variability in the future,
winter temperature and precipitation show decreasing vari-
ability or no change. The change in variability is potentially
impact-relevant as it suggests that the most extreme summers
and winters may warm more strongly than the corresponding
mean.

Despite an increasing number of studies that compare
SMILEs (Deser et al., 2014; Martel et al., 2018; Rondeau-
Genesse and Braun, 2019; Deser et al., 2020; Lehner et al.,
2020), one limitation of many publications using SMILEs is
the use of only one model and thereby one estimate of in-
ternal variability, leaving it unclear how representative the
results are. Although the respective SMILE is usually evalu-
ated against observations in these studies, the uncertainty in
future changes in IAV cannot be quantified in the same way
as in this study. A further challenge is also the fact that low-
frequency variability at decadal and multi-decadal timescales
remains uncertain and cannot be rigorously evaluated against
observations due to the relatively short observational record
and the difficulty of separating forced changes from unforced
internal variability in observations.

Overall our results underline the great potential of SMILEs
in quantifying the changes in IAV and when they become
significant, also at the regional scale.
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7 Natural variability as part of the overall uncertainty of climate 

projections 

After it was shown in the first publication that the IAV of SMILEs well represents the observed 

IAV and IMV, they can be used for a relation study against a classical multi-model ensemble 

(MME), built by 22 EURO-CORDEX members. The variability of signals from the MME is 

compared to the purely internal variability of the CRCM5-LE to quantify the relation between 

the two metrics. This allows to assess the share of internal variability on the overall variability 

of the MME. 

7.1 How large is the spread of signals from the CORDEX ensemble with special 

consideration of the GCM-RCM combinations? 

Overall, the spread of signals in CORDEX can mostly be explained by the different GCMs used 

for long-term projections, as already described by Kendon et al. (2010). Especially for larger GCM 

samples (EC-EARTH and HadGEM2-ES), the GCM dominance can be observed more robustly. 

There have been attempts to separate out the noise components in climate model ensemble 

signals. For example, Saffioti et al. (2017) showed that the removal of atmospheric circulation 

variability largely decreases the spread of trends in an initial condition ensemble as well as a 

multi-model ensemble of GCMs. Since there is no better multi-model ensemble available so far 

(in terms of sampling different models and members), the CORDEX ensemble can be seen as a 

first order approximation of the uncertainty in a multi-GCM/RCM ensemble. To better assess 

the uncertainties between signals in RCMs and their driving GCMs over Europe further research 

is needed. 

7.2 How much of the uncertainty in a multi-model ensemble can be explained by 

natural variability? 

The multi-model ensemble variability is usually much higher than the CRCM5-LE variability for 

temperatures. However, both ensembles generally show an increase in variability of temperature 

towards more continental climates in the East, which suggests that this gradient in CORDEX is 

at least partly due to internal variability. 

In general, the contribution of internal variability is much higher for precipitation signals than 

for temperature signals. Additionally, the influence of internal variability significantly decreases 

for later future periods. Nevertheless, in many regions the contribution lies between 0.25 and 

0.5 for seasonal temperature, and between 0.5 and 1.0 for seasonal precipitation. 

Deser et al. (2012) conducted a similar experiment with 21 CMIP3 models and 40 CCSM3 

members, building a ratio between the standard deviations of trends from 2005-2060 globally. 

They also find ratios above 0.75 and 1.0 for large parts of Europe for annual temperature and 

precipitation - the latter generally showing much higher ratios. 

7.3 What does that mean for the interpretation of multi-model ensembles? 

These findings are of such importance, since climate modelers are often facing criticism for the 

large uncertainty of ensemble projections, with the criticism implying that the variety of model 

results is a consequence of the models’ inability to correctly represent climate processes (model 

response uncertainty). If natural variability can explain a large part of the spread of models, then 

the differences in climate signals from different models might not only be a result of insufficient 

or competing models but might also be partly explained by natural variability. Following the 
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idea that natural variability is inherent to the chaotic nature of the climate system and therefore 

cannot be diminished, a certain part of uncertainty of climate projections will be irreducible, 

even if scenario definition will become more precise and models will improve (see also Deser et 

al. 2012). 

The implications for the interpretation of multi-model ensembles in cases with similar 

variabilities (e.g., precipitation in DJF), might become clearer as a short mind game: First we 

need to accept the natural variability of the CRCM5-LE as a fair approximation to adopt it for 

other models. Then two things become apparent: 

A) We can add the CRCM5-LE variability as a “cloud” of internal variability around each of 

the dots for the CORDEX models (in Figures 2 and 3 of the publication). This is blurring 

the model response uncertainty dramatically in some cases. This means that only one 

realization, as in CORDEX usually available, does usually not depict the model response 

very well. 

B) On the other hand, if the CORDEX ensemble might even be totally (or to a large part) 

explained by natural variability, model response uncertainty may be interpreted as 

neglectable in these cases. 

These conclusions are of course very much depending on the length of the time period, variable, 

season and region considered, and are not meant as universally valid for multi-model ensembles 

like CORDEX. 
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Abstract
Uncertainties in climate model ensembles are still relatively large. Besides scenario and model response uncertainty, natural 
variability is another important source of uncertainty. To study regional natural variability on timescales of several decades 
and more, observations are often too sparse and short. Regional Climate Models (RCMs) can be used to overcome this 
lack of useful data at high spatial resolutions. In this study, we compare a new 50-member single RCM large ensemble 
(CRCM5-LE) with an ensemble of 22 EURO-CORDEX models for seasonal temperature and precipitation at 0.11° grid 
size over Europe—all driven by the RCP 8.5 scenario. This setup allows us to quantify the contribution of natural/model-
internal variability on the total uncertainty of a multi-model ensemble. The variability of climate change signals within the 
two ensembles is compared for three future periods (2020–2049, 2040–069 and 2070–2099). Results show that the single 
model spread is usually smaller than the multi-model spread for temperature. Similar variabilities can mostly be found in 
the near future (and to a lesser extent in the mid future) during winter and spring, especially for northern and central parts 
of Europe. The contribution of internal variability is generally higher for precipitation. In the near future almost all seasons 
and regions show similar variabilities. In the mid and far future only fall, summer and spring still show similar variabilites. 
There is a significant decrease of the contribution of internal variability over time for both variables. However, even in the 
far future for most regions and seasons 25–75% of the overall variability can be explained by internal variability.

Keywords Regional climate models · Natural variability · EURO-CORDEX · Uncertainty · Large ensemble · Climate 
change signals

1  Introduction: uncertainties in climate 
projections

So far, decades of research and development have gone into 
a better understanding of atmospheric processes and their 
interactions with other components of the climate system 
like land surface, oceans and ice. Yet, there are still large 

uncertainties about the future development of the climatic 
conditions, particularly at the regional scale. For well-
planned adaptation measures, which can include the use of 
impact models driven by (regional) climate models, decision 
makers demand more precise projections of how the future 
might look like. Climate scientists have a hard time explain-
ing why their models still cannot show a clearer picture of 
likely future changes, narrowing down the model spread 
of ensemble projections (Hawkins and Sutton 2009, 2011; 
Deser et al. 2012a).

In general, the overall uncertainty of such climate projec-
tions can be separated into three parts: (1) scenario uncer-
tainty, corresponding to the different emission scenarios that 
can be used as external forcing to the climate models, (2) 
model response uncertainty, corresponding to the response 
of the different models, developed by different institutions 
around the globe and (3) natural variability, inherent to the 
chaotic nature of the climate system (Hawkins and Sutton 
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2009). Scenario uncertainty is difficult to reduce, since this 
includes future knowledge about greenhouse gas and aerosol 
emissions and advances in technology (or a best guess of it), 
but might potentially become less in the future (Moss et al. 
2010). Model uncertainty might be reduced by advances in 
the knowledge of natural processes, and the capabilities of 
models in representing those. For instance, the increase in 
spatial resolution of regional climate models (RCMs) from 
0.44° to 0.11° was shown to have a significant effect on 
the model performance, often referred to as “added value” 
(Torma et al. 2015; Fantini et al. 2016; Prein et al. 2016). On 
the one hand, increasing computational capabilities avail-
able to modeling groups and further advances in describing 
processes more accurately has the potential to narrow down 
uncertainties, but adding more complexity to models may on 
the other hand also lead to higher uncertainties in the pro-
jections (Knutti and Sedláček 2013). Constraining models 
by observations can also reduce the uncertainty of future 
projections in some cases (Borodina et al. 2017; Lorenz et al. 
2018). The third part of uncertainty in climate projections 
is natural variability. Natural variability can be associated 
with interactions between the internal components of the cli-
mate system, which can lead to inter-annual, decadal or even 
multi-decadal variability like ENSO, NAO, etc. (Solomon 
et al. 2010; Zheng et al. 2018).

Observational data of the earth’s climate usually cover 
only several decades, and are thus not long enough to cap-
ture this mid- to long-term variability (Hawkins et al. 2016). 
Brisson et al. (2015) for example, used a weather genera-
tor to quantify uncertainties in estimating climatic condi-
tions from a 30-year period as recommended by the World 
Meteorological Organization (WMO), and showed that these 
uncertainties can well exceed 15% for extreme precipitation. 
This lack of data makes it very difficult or nearly impossible 
to use observations for the quantification of natural variabil-
ity on longer time scales.

A possible solution to deal with the lack of sufficiently 
long observational time series to assess long-term climate 
variability can be the use of climate models. The underly-
ing assumption has to be of course that the climate models 
are capable of simulating the climate system, including its 
natural variability (represented by the internal variability 
of the models). Aalbers et al. (2018) showed for example 
that the interannual variability of an EC-EARTH-RACMO 
initial conditions large ensemble of 16 members is similar 
to the one of E-OBS. So, if we accept the concept of a cli-
mate model as a surrogate of the natural climate system, 
we can use the model to generate a huge amount of data 
to create plausible parallel modifications of current and 
future climate. Therefore, the ClimEx project (http://www.
clime x-proje ct.org) provides 50 members of the Canadian 
global earth system model CanESM2 (Fyfe et al. 2017), 
dynamically downscaled by the Canadian regional climate 

model version 5 (CRCM5) over large parts of Europe and 
northeastern North America, running from 1955 to 2099. 
This leads to 50 parallel realizations of climate, just altered 
by very small differences in the initial conditions in the 
CanESM2 members, which makes all 50 members equally 
likely realizations of the same long-term climatic condi-
tions. This unprecedented dataset, hereafter referred to as the 
ClimEx CRCM5 large ensemble (CRCM5-LE) is described 
in Leduc et al. (2019).

This ensemble can be used to better understand and quan-
tify the uncertainties of ensemble approaches in regional 
climate change studies. In those studies usually an ensemble 
of different combinations of global climate models (GCMs) 
and regional climate models (RCMs) is used to cover the 
range of possible outcomes (Jacob et al. 2014; Vautard et al. 
2014; Roudier et al. 2016; Smiatek et al. 2016; Rajczak and 
Schär 2017). Often, the derived uncertainties from these 
multi-model ensembles are relatively large, since usually 
all three components of uncertainty are incorporated: Dif-
ferent scenarios driving different GCM/RCM combinations 
and inherent natural variability. For regional studies using 
RCMs, another dimension is added, as the model uncer-
tainty is now composed of the GCM and RCM response. 
Further constraint for assessing scenario uncertainty and 
model response uncertainty is that the “matrix” of all possi-
ble combinations of scenario, GCM and RCM is sparse and 
not balanced according to these three dimensions. Analysis 
is always restricted by the available simulations (often on 
an opportunity basis), thus making systematic comparisons 
on the influence of these factors difficult. Additionally, not 
all models are fully independent from each other, why the 
often claimed and applied model democracy (one model one 
vote) is increasingly challenged by some authors (Pennell 
and Reichler 2010; Leduc et al. 2016a; Knutti et al. 2017). 
In addition to the fact that multiple members are rarely avail-
able to assess internal variability, all these factors together 
induce large problems in distinguishing the three sources of 
uncertainty in climate projections in existing multi-model 
ensembles like EURO-CORDEX.

Therefore, several studies have produced and analyzed 
single model large ensembles with small alterations in initial 
conditions to address the uncertainty resulting from internal 
variability. On the GCM scale: The 40-member CCSM-LE 
(Deser et al. 2012a, b, 2014) and the 30-member CESM-LE 
(Kay et al. 2015). Another set of experiments with 90–100 
members was conducted by a group of Japanese authors 
with a 60 km resolution global atmospheric model and a 
20 km resolution regional model for a Japanese domain 
(Mizuta et al. 2017). The Netherlands Meteorological Insti-
tute (KNMI) performed an RCM experiment with 16 EC-
EARTH members, downscaled by the Dutch regional model 
RACMO2 to a resolution of 0.11° for Western Europe. Aal-
bers et al. (2018) give an overview of this ensemble and 

http://www.climex-project.org
http://www.climex-project.org


Assessing natural variability in RCM signals: comparison of a multi model EURO-CORDEX ensemble…

1 3

investigate several aspects of natural variability for mean and 
extreme precipitation. A set of 21 members of the CESM 
was downscaled by the regional model COSMO-CLM at a 
resolution of 0.44° for Europe (Fischer et al. 2013). All these 
studies showed that a single model large ensemble setup 
can be very valuable to better quantify natural variability in 
climate projections. However, only very few comprehensive 
comparisons with multi-model ensembles have been con-
ducted, and so far only with GCMs (Deser et al. 2012b; Kay 
et al. 2015; Leduc et al. 2016b).

In this study, we use the ClimEx CRCM5-LE to compare 
the inter-member spread due to natural variability in a sin-
gle model large ensemble with the multi-model variability 
(which implicitly includes the effect of natural variability) 
of a corresponding EURO-CORDEX ensemble. This results 
in the following research questions:

1. Which part of the multi-model spread (model uncer-
tainty and internal variability combined) of a 0.11° 
EURO-CORDEX ensemble can be attributed to internal 
variability?

2. What are the implications of this attribution for analyses 
of climate change signals from multi-model ensembles?

This study will first investigate the composition of the 
CORDEX ensemble in terms of GCM (member)/RCM com-
binations. This analysis is supposed to evaluate the ability 
of this ensemble of opportunity to represent the different 
sources of uncertainty of a multi-model ensemble in a sat-
isfying manner for the following comparison: The signals 
of the CRCM5-LE are compared to the signals of the COR-
DEX ensemble to quantify the spread of each ensemble on 
a grid point and regional scale. Thus, the uncertainty of 
signals originating from model-internal variability (natural 
variability uncertainty) is compared against that originating 
from a multi-model ensemble (model response uncertainty 

and internal variability combined). After a discussion of 
the results, the implications for the analysis of multi-model 
ensembles are briefly discussed.

2  Data

Two different ensembles of RCP 8.5 driven models in daily 
and 0.11° resolution are used in this study:

(A) 22 models from EURO-CORDEX.
(B) 50 members of the ClimEx CRCM5-LE.

All available datasets that share the common EURO-
CORDEX 0.11° grid in the EURO-CORDEX and ReKliES-
De datasets at the Earth System Grid Federation (ESGF) are 
pooled together and only refered to as ‘CORDEX’ in the 
following. This means that the two MPI-REMO2009 runs, 
the ALARO run and the ALADIN53 run are not considered 
because of their different grid specifications. The UHOH 
data cannot be used for the signal calculation since no histor-
ical data are stored for this run [see Supplementary Material 
(SM) Table S1 for all excluded runs]. During the analysis of 
the data, the model IPSL-WRF showed very high increases 
(quadrupling) in summer precipitation, especially for coastal 
parts of France and the Mediterranean and is therefore 
excluded from the CORDEX ensemble. Excluding a model 
in a variability study for its extreme results is of course cru-
cial. However, other studies also excluded the IPSL-WRF 
model from their analysis (Kotlarski et al. 2014; Smiatek 
et al. 2016; Rajczak and Schär 2017), supporting this deci-
sion. Differences introduced by including the IPSL-WRF 
model into the analysis are shown in Fig. S1, Supplemen-
tary Material. The 22 resulting CORDEX models are listed 
in Table 1 as a combination of RCMs and driving GCMs. 
These models are used to analyze the composition of the 

Table 1  Matrix of GCM 
(-member) and RCM used in the 
CORDEX ensemble

a The EC-EARTH_r1_RACMO22E simulation is used for the composition analysis of the CORDEX 
ensemble but not for comparison with the CRCM5-LE

Member CCLM4-8-17 HIRHAM5 RACMO22E RCA4 REMO2015 SUM

CanESM2 r1i1p1 1 1 2
CNRM-CM5 r1i1p1 1 1 1 3
EC-EARTH r1i1p1 1a 1

r3i1p1 1 1
r12i1p1 1 1 1 1 4

CM5A-MR r1i1p1 1 1
MIROC5 r1i1p1 1 1 2
HadGEM2-ES r1i1p1 1 1 1 1 1 5
MPI-ESM-LR r1i1p1 1 1 2
NorESM1-M r1i1p1 1 1
SUM 6 3 3 5 5 22
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ensemble. Two members of EC-EARTH have been down-
scaled with RACMO22E (r1 and r12), but we only use r12 
for the inter-comparison with the CRCM-LE for balancing 
reasons. Keeping both would double count this GCM-RCM 
pair (as the two EC-EARTH members are expected to be 
much more similar to each other than compared with other 
driving models), which would likely shrink the total vari-
ance of CORDEX (although probably by a small amount).

The second dataset is a 50-member ensemble of the 
Canadian earth system model CanESM2 (Fyfe et al. 2017), 
downscaled by the Canadian regional model CRCM5 (Ver-
sion 3.3.3.1, Martynov et al. 2013; Šeparović et al. 2013) 
for two domains: Northeastern North America (not part of 
this study) and Europe. The 50 members originate from five 
families of simulations, each starting at different 50 year 
intervals of a preindustrial run with a stationary climate 
and run from 1850 to 1950. They are then seperated into 
ten members each by small atmospheric perturbations 
and run from 1950 to 2099. This 50 member CanESM2-
LE was then dynamically downscaled within the ClimEx 
project with CRCM5 over a domain covering Europe 
(EU11d2) with a horizontal grid-size mesh of 0.11° on a 

rotated latitude–longitude grid, corresponding to a 12-km 
resolution, using 5-min time steps, which fits the common 
EURO-CORDEX grid specifications. Further information 
on the settings of the whole experiment, as well as a detailed 
description and analysis of the dataset (also for the Ameri-
can domain) can be found in Leduc et al. (2019). The stored 
variables and the terms of use can be found in the respec-
tive documentation on the project homepage (http://www.
clime x-proje ct.org). The ClimEx 12-km grid equals the one 
used in EURO-CORDEX simulations, although the ClimEx 
domain is slightly smaller, still covering most of Europe 
(Fig. 1).

3  Methods

The subregions used for analysis are taken from the PRU-
DENCE project (Christensen and Christensen 2007) and 
were already used in several other studies in the context of 
European climate model analysis (Lenderink 2010; Lorenz 
and Jacob 2010; Kotlarski et al. 2014). The subregions cover 
almost all the ClimEx domain despite the Mediterranean 

Fig. 1  The EURO-CORDEX 
and ClimEx domains with the 
subregions for analysis

http://www.climex-project.org
http://www.climex-project.org


Assessing natural variability in RCM signals: comparison of a multi model EURO-CORDEX ensemble…

1 3

parts of Morocco, Algeria and Tunisia, the Aegean Sea and 
small parts of Eastern Europe. Note that the Scandinavian 
subregion here is smaller than in other studies, since the 
ClimEx domain does not cover the northern parts of Scan-
dinavia. An additional analysis domain is a combination of 
all subregions (‘TOT’). For the whole study, only land grid 
points are considered.

The data of the 22 CORDEX models is first cut to the 
ClimEx domain. Since the CORDEX and CRCM5-LE data 
share the same 0.11° grid, no interpolation is needed to com-
pare the two datasets. Annual and seasonal means of tem-
perature and precipitation sums are calculated at every grid 
point on an annual basis from 1980 to 2099. The analysis 
of the data comprises grid point analysis as well as spatially 
averaged results (arithmetic mean) for the subregions (TOT 
as an area weighted mean of: BI, SC, FR, ME, EA, IP, AL, 
MD). For the spatially averaged results, the temperature/pre-
cipitation values are aggregated before signals are computed. 
The change signals are calculated using a 30-year reference 
period (REF: 1980–2009) as a baseline for three future peri-
ods: The near future (FUT1: 2020–2049), the mid future 
(FUT2: 2040–2069) and the far future (FUT3: 2070–2099).

Seasonal means (temperature) and sums (precipitation) 
are calculated in each grid point for every year and mem-
ber, followed by calculation of the temporal means for each 
30-year period (REF, FUT1-3). This allows calculating the 
standard deviation of signals for both ensembles and every 
grid point. The variabilities are compared using the ratio of 
standard deviations:

For this comparison the EC-EARTH_r1_RACMO22E 
run is not part of the CORDEX ensemble (see chapter 2). 
Additionally a two-sample F-Test is applied at the signifi-
cance level of 5%. When the Null Hypothesis of this test 
cannot be rejected, we assume that the two distributions have 
similar variances. The test also accounts for the different 
sample sizes of the two ensembles (50 and 21). To see how 
similarities in spatial patterns change over time between the 
two ensembles, a simple pattern correlation is calculated for 
moving window 30-year periods.

4  Results

4.1  Composition of the CORDEX ensemble

The CORDEX ensemble in this study consists of 22 dif-
ferent combinations of GCM, GCM member and RCM, 
with eight GCMs and five RCMs in total. Not all com-
binations of these have been realized, leaving about half 
of the GCM (-member)/RCM matrix blank (Table  1). 
The composition is quite heterogeneous, with a slight 

SDR = �(CRCM5 − LE) ∕�(CORDEX).

dominance of EC-EARTH and HadGEM2-ES for the 
GCMs and CCLM4-8-17 and REMO2015 for the RCMs. 
The EC-EARTH is the only model with different down-
scaled members, and fortunately there is even a pair of 
two members downscaled with the same RCM (RAC-
MO22E). Additionally, there are two simulations using 
the first member of the CanESM2 ensemble, downscaled 
with CCLM4-8-17 and REMO2015, giving us insight in 
the role of CRCM5’s contribution to the signals of the 
CanESM2-CRCM5-LE. Yet overall, the sampling is rela-
tively random, which makes systematic analysis on the 
influence of GCM (-member) and RCM on the variability 
extremely difficult. Nevertheless, it seems valuable to take 
a look at the variabilities inside the CORDEX ensemble to 
better assess the capacity of the ensemble for the variance 
comparison with the CRCM5-LE.

To get an overview of the influence of the components 
(GCM/RCM) of each simulation, the climate change sig-
nals of temperature and precipitation for the far future 
FUT3 (2070–2099) are displayed in scatterplots for win-
ter (DJF, Fig. 2) and summer (JJA, Fig. 3) for the TOT 
domain. A general clustering of the simulations sharing 
the same GCM can be observed, although there are large 
differences between the GCM cluster extents.

In winter, the differences between RCM simulations, 
driven by the same global model, range from 0.1 K in 
CanESM2 to 0.9 K in MIROC5 for temperature and from 
3.6% points [pp] in MIROC5 to 5.1 pp in CanESM2 for 
precipitation (Fig. 2). These ranges are usually similar to 
the CRCM5-LE extent. The EC-EARTH members r1 and 
r3 are close again, as well as the two RACMO22E simula-
tions (r1 and r12). The two CanESM2 simulations fit quite 
well into the CRCM5-LE, although being at the colder end 
of the cloud.

In summer, the spread of temperature signals of the same 
GCM downscaled by different RCMs range from 0.2 K in 
CNRM-CM5 to 1.5 K in HadGEM2-ES, while the spread 
for precipitation signals ranges from 4.5 pp in CNRM-CM5 
to 36 pp in CanESM2 (Fig. 3). These GCM ranges are larger 
than in winter, due to the higher importance of large scale 
circulations, and these are mainly driven by the GCM. The 
RCM CCLM4-8-17 shows the strongest decreases in precipi-
tation regardless the driving GCM—except CNRM-CM5, 
which generally seems to have a larger influence on the 
RCM output than other GCMs. The two CanESM2 simula-
tions show large differences and span a larger range, both 
in temperature and precipitation, than the CRCM5-LE. The 
combination of the rather warm and dry CanESM2 with 
the also rather dry CCLM4-8-17 (usually the driest RCM, 
driven by the same GCM) results in an extreme decrease 
of precipitation, accompanied by a strong warming signal. 
The EC-EARTH is the only GCM with different members 
(1*r1, 1*r3, 4*r12), giving insight into the variability of 
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another multi-member ensemble. The two simulations of 
member r1 and r3 have colder and less dry signals than the 
r12 simulations, yet still at the edge of the r12 cluster. The 
two simulations using the same RCM and only different 
members of EC-EARTH (r1_RACMO22E and r12_RAC-
MO22E) are very close. The CRCM5-LE cluster is at the 
very warm and dry end of the CORDEX ensemble, but the 
MIROC5_CCLM4-8-17, HadGEM2-ES_CCLM4-8-17 and 
CanESM2_CCLM4-8-17 simulations show similar or even 
stronger signals.

The GCMs usually dominate the signal of the simula-
tions, but there are some cases where the RCM can sig-
nificantly impact the resulting signal. These findings for 
the TOT domain can be found in a similar manner in the 
subdomains as well, although differences occur of course. 
For example, the positive winter precipitation signals mostly 
originate from Northern European subregions like Scandi-
navia, whereas the Mediterranean shows mostly negative 
signals (Figs. S2 and S3, SM). On the other hand, the same 
contrasting signals (mostly positive in SC, mostly negative 
in MD) result in a more or less balanced signal spread in 
TOT for summer (Figs. S4 and S5, SM).

In general, this CORDEX ensemble consists of a number 
of GCMs and RCMs with a wide range of signals. Although 
it is not a perfectly composed multi-model ensemble (which 
would be necessary for a real structured framework), the 
analysis suggests the assumption that its composition rep-
resents a fair assumption of the sources of uncertainty in a 
multi-model ensemble. It is therefore suited for the com-
parison with the 50 member single model large ensemble.

4.2  Comparison of variability in signals 
of CRCM5‑LE and CORDEX

To better assess and quantify the fraction of internal varia-
bility in the CORDEX ensemble, we compare the standard 
deviations of the CRCM5-LE and the CORDEX ensem-
ble. The variability between EURO-CORDEX models is 
analyzed on the grid point level, while other publications 
usually only mark areas where models agree on the sign 
of change and significant changes, without quantifying the 
uncertainty of the respective ensemble (Jacob et al. 2014; 
Vautard et al. 2014; Rajczak and Schär 2017).
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Fig. 2  Scatterplot of the signals (2070–2099 minus 1980–2009) of 
temperature and precipitation for winter (DJF) in the combined (area 
weighted mean of all other subregions) domain TOT (land grid points 
only). The color of the marker denotes to the GCM and the symbol 

denotes to the RCM. The members r1 and r3 of EC-EARTH have a 
black frame to distinguish them from member r12 simulations. The 
grey points show the signals of the 50 CRCM5-LE members
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4.2.1  Temperature

Figures 4 and 5 show the standard deviation of signals of 
CRCM5-LE and CORDEX for all three future periods and 
the respective SDR values for winter and summer tempera-
ture over Europe (respective figures for SON and MAM: 
Figs. S6 and S7, SM). The CRCM5-LE variability shows a 
large scale gradient from lower values in the West to higher 
values in the (North-) East, which might be associated with 
increasing continental climate as seen in Köppen-Geiger 
climate classifications (Beck et al. 2018). In winter COR-
DEX shows a similar, yet not so clear gradient, whereas in 
summer higher values seem to be found in southern parts 
of Europe. In both seasons, the most obvious gradient in 
CORDEX appears in mountainous regions like the Alps, 
the Pyrenees and the Scandinavian Mountains. Additionally, 
the variability increases from FUT1 to FUT3, especially in 
winter. The CRCM5-LE in contrast shows rather small vari-
ability in these mountainous regions.

The SDR mainly lies well below 1 in both seasons for 
most of Europe. This result suggests that for temperature, 
only a small part of the variability in the CORDEX ensemble 
can be explained by internal variability. For most parts, the 
SDR is smaller in summer than in winter. This is a result of 
two opposing effects: On the one hand, the overall CRCM5-
LE variability is higher in winter; on the other hand, the 
CORDEX variability is smaller in winter. This mainly 

affects the British Islands, Scandinavia and other parts of 
Northern Europe, where SDR values can even exceed 1, 
especially in the early and mid-future. In these cases, the 
internal variability estimated from CRCM5-LE is larger 
than the CORDEX multi-model variability. While this result 
would be rather unexpected in a systematic framework, the 
current CORDEX imbalanced composition could lead to an 
underestimation of either (or both) RCM and GCM contri-
butions to the total ensemble spread. In this context, it is 
not clear whether CRCM5-LE over- or underestimates the 
average internal variability of the CORDEX models. It is 
also not clear to which extent the true internal variability 
of the CORDEX ensemble is fully sampled by the available 
simulations.

A two-sample F-Test reveals the grid points with similar 
variances in both ensembles (Figs. 4 and 5, lowest rows). 
Empirical analysis shows that these are generally grid points 
with SDR values between 0.7 and 1.5 (similar to findings of 
Deser et al. 2012b). The share of grid points with similar 
variance decreases in both seasons for further future periods, 
with generally higher values in winter. Interesting to note is 
how the British Isles and parts of Norway fail the test for 
FUT1 because of the high variance in CRCM5-LE, showing 
similar variances for FUT2 and FUT3 with increasing COR-
DEX variability and relatively stable CRCM5-LE variability.
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Fig. 3  Same as Fig. 2, but for summer (JJA)
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4.2.2  Precipitation

The precipitation signals are calculated for each member 
individually in percent change, so the standard deviation 
over these members is also expressed in percent change. In 
winter, the general patterns of CRCM5-LE and CORDEX 

are quite similar with higher variability in southern parts of 
Europe (Fig. 6). Northern Africa shows the largest stand-
ard deviations of relative changes, because the absolute 
sums of precipitation are relatively small here. A remark-
able band of high variability stretches from the southeastern 
parts of Spain over coastal France to the Italian Alps in both 

Fig. 4  Rows 1–2: standard deviation of the winter temperature (tas-
DJF) signals of all models in each ensemble for the three future peri-
ods. Note the logarithmic scale. Row 3: SDR (σ [CRCM5-LE]/σ 
[CORDEX]) for the respective periods. Row 4: Two-sample F-Test 

on equal variances at 5% significance level; For white grid points, 
the Null Hypothesis of equal variances cannot be rejected (Equal 
VAR = ‘true’)
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ensembles. The variability in CRCM5-LE on the Iberian 
Peninsula is higher than in CORDEX, leading to high SDR 
values in FUT1. Other high SDR values can be found in 
Northern Africa and some mainly coastal areas in FUT1 and 
FUT2, whereas in FUT3 most of Europe shows SDR values 
around 1 and below.

Some differences in the variability of signals can be 
observed in summer between the ensembles, despite a gen-
eral increasing West–East and North–South gradient. The 
variability in CORDEX is larger in all future periods and 
almost all of Europe (Fig. 7). Topography does not seem 
to be a significant factor in CORDEX, while CRCM5-LE 

Fig. 5  Rows 1–2: standard deviation of the summer temperature 
(tas-JJA) signals of all models in each ensemble for the three future 
periods. Note the logarithmic scale. Row 3: SDR (σ [CRCM5-LE]/σ 
[CORDEX]) for the respective periods. Row 4: Two-sample F-Test 

on equal variances at 5% significance level; For white grid points, 
the Null Hypothesis of equal variances cannot be rejected (Equal 
VAR = ‘true’)



 F. von Trentini et al.

1 3

displays especially low variability in mountainous regions, 
as already seen for temperature in winter. This results in 
SDR values around 1 in FUT1, decreasing to values well 
below 0.5 for FUT3. For FUT1 in summer, the number of 
grid points with similar variability is comparable to the 
number found in the map for winter (Fig. 6), but decreases 

significantly until FUT3 in contrast to the winter season. The 
respective figures for SON and MAM can be found in the 
SM, Figs. S8 and S9.

The pattern correlations as function of the time hori-
zon between the standard deviation maps of both ensem-
bles show two different behaviors for temperature and 

Fig. 6  Rows 1–2: standard deviation of the winter precipitation 
(pr-DJF) signals of all models in each ensemble for the three future 
periods. Note the logarithmic scale. Row 3: SDR (σ [CRCM5-LE]/σ 
[CORDEX]) for the respective periods. Row 4: Two-sample F-Test 

on equal variances at 5% significance level; For white grid points, 
the Null Hypothesis of equal variances cannot be rejected (Equal 
VAR = ‘true’)
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precipitation (Fig. 8). Correlations are generally high for 
precipitation as well as for summer and fall temperatures. 
For all precipitation seasons, a decrease of correlation can 
be observed, which fulfills the expectation of a decreasing 
contribution of internal variability on the overall variability 
in the further future.

Temperature seasons show a remarkable behavior. The 
pattern correlation increases in all seasons during the first 
half of the twenty-first century, and remains more or less 
stable in tas-DJF and tas-MAM, while dropping signifi-
cantly for tas-JJA and tas-SON afterwards. The patterns 
of temperature thus do not seem to follow the expectation 

Fig. 7  Rows 1–2: standard deviation of the summer precipitation 
(pr-JJA) signals of all models in each ensemble for the three future 
periods. Note the logarithmic scale. Row 3: SDR (σ [CRCM5-LE]/σ 
[CORDEX]) for the respective periods. Row 4: Two-sample F-Test 

on equal variances at 5% significance level; For white grid points, 
the Null Hypothesis of equal variances cannot be rejected (Equal 
VAR = ‘true’)
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of decreasing correlation with time, and even increase for 
winter and spring. Further research is needed in this direc-
tion, especially if these results can be reproduced with other 
initial condition ensembles in the future.

To give an overview, Fig. 9 shows the regionally averaged 
SDR grid point values for all seasons and future periods for 
the subregions from Fig. 1. In general, the contribution of 
internal variability is much higher for precipitation than for 
temperature, and it decreases significantly the further the 
future period lies ahead. Annual and summer temperature/
precipitation and fall temperatures have significantly lower 
SDR values than the other seasons. The share of boxes with 
at least 2/3 of the grid points confirming the F-Test on equal 
variances is especially high for temperatures in FUT1 (12 
boxes) and precipitation in FUT1 (32) and FUT2 (15). Ratios 
above 1 mainly appear in FUT1 for spring temperatures and 
fall precipitation. The threshold of 2/3 is chosen on the basis 
of similar existing concepts like robustness of change as a 
function of the numbers of climate models agreeing in the 
sign of change (Jacob et al. 2014).

5  Discussion

5.1  Composition of the CORDEX ensemble

The composition of the 22-member CORDEX ensemble is 
defined by the available datasets that match the precondi-
tions described in the Data part of this study (chapter 2), 
leading to an ensemble of opportunity as a result. Although 
there have been efforts to fill the matrix of GCM-RCM-com-
binations, totally systematic analysis to separate contribu-
tions from GCMs and RCMs to the total ensemble spread 
is difficult—if not impossible—due to the sparsity of the 
matrix, the imbalance between GCM/RCM combinations, 
and the lack of several members for each combination to bet-
ter discriminate model uncertainty from internal variability 
(except for EC-EARTH, all GCMs only have one member). 
The uncertainty of the CORDEX ensemble signals is thus 
a combination of model response uncertainty and internal 
variability.

Overall, the spread of signals in CORDEX can mostly be 
explained by the different GCMs used for long-term projec-
tions, as already described by Kendon et al. (2010). Espe-
cially for larger GCM samples (EC-EARTH and HadGEM2-
ES), the GCM dominance can be observed more robustly. 
There have been attempts to separate out the noise com-
ponents in climate model ensemble signals. For example, 
Saffioti et al. (2017) showed that the removal of atmospheric 
circulation variability largely decreases the spread of trends 
in an initial condition ensemble as well as a multi-model 
ensemble of GCMs. Since there is no better multi-model 
ensemble available so far (in terms of sampling different 
models and members), the CORDEX ensemble can be 
seen as a first order approximation of the uncertainty in a 
multi-GCM/RCM ensemble. To better assess the uncertain-
ties between signals in RCMs and their driving GCMs over 
Europe further research is needed. For instance, considering 
several RCMs driven by the same GCM could help to better 
understand the uncertainty due to the choice of the RCM, 
while doing similarly over an RCM column (in Table 1) 
would allow to assess the RCM sensitivity to boundary 
conditions. Nevertheless, we tried to assess the contribution 
of internal variability to the CORDEX ensemble spread by 
comparing with CRCM5-LE, where the internal variability 
is sampled in a systematic manner.

5.2  Comparison of signals in CRCM5‑LE and CORDEX

The comparison of a single model large ensemble, com-
prised of 50 initial condition members of the CanESM2-
CRCM5 model chain (CRCM5-LE) with a multi-model 
ensemble of 21 different EURO-CORDEX models was 
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conducted to better quantify the contribution of natural vari-
ability in climate change signal uncertainty. In general, the 
CRCM5-LE ensemble shows stronger climate change signals 
for temperature than the CORDEX ensemble—especially for 
summer, where CRCM5-LE signals are very dry and warm. 
The negative precipitation signals in summer and fall are 
not due to a general dry bias of the CRCM5-LE data, since 
neither the CanESM2 nor the ERA-Interim driven CRCM5 

simulation showed significant dry biases for most parts of 
Europe from 1980 to 2012, especially not for the Mediter-
ranean, where the severe decreases are projected (Leduc 
et al. 2019). The CanESM2_CCLM4-8-17 simulation shows 
even drier signals for these seasons than the already rela-
tively dry CRCM5-LE, while the CanESM2_REMO2015 
simulation fits well into the CORDEX ensemble. The choice 
of RCM for downscaling CanESM2 thus seems to have a 

Fig. 9  SDR in all regions for annual and seasonal temperatures (a–c) 
and seasonal precipitation (d–f) in the three future periods. The white 
dots indicate no rejection of the Null Hypothesis (of equal variances) 

of the two-sample F-Test at a significance level of 5% in at least 67% 
of the grid points in this subregion



 F. von Trentini et al.

1 3

significant influence on the summer precipitation signals. A 
similar range can also be found for the five HadGEM2-ES 
simulations.

5.3  Signal variability comparison

Grid-point based analysis showed that the CORDEX vari-
ability is usually much higher than the CRCM5-LE variabil-
ity for temperatures (Figs. 4 and 5). However, both ensem-
bles generally show an increase in variability of temperature 
towards more continental climates in the East, which sug-
gests that this gradient in CORDEX is at least partly due to 
internal variability. Only in the near future during winter 
larger parts of Europe show similar variabilities in both 
ensembles. For the British Isles and Norway, CRCM5-LE 
even shows higher variability in FUT1 than CORDEX. A 
significant difference between the two ensembles is that 
mountainous areas in CORDEX often show the highest 
standard deviations for temperature, while in CRCM5-LE 
they show rather low values. This is probably because of 
the different orographies and snow representations used in 
the different RCMs in CORDEX, since it is mostly visible 
during DJF and MAM, when the largest snow packs are 
present. For summer and winter precipitation the patterns 
of equal variances are way more scattered over all of Europe 
(Figs. 6 and 7). While in FUT3 for summer almost no grid 
points show similar variances, the internal variability can 
still reach a similar variance than the multi-model variance 
in large parts of Europe in winter precipitation.

The analysis of pattern correlations between signals of the 
two ensembles gave a two-folded result. While for precipita-
tion, the expectation of decreasing pattern correlations was 
met, the temporal dynamics for temperature did not show 
clear indications (Fig. 8). Further research may be needed 
to clarify the relationships between patterns in this context.

In general, the contribution of internal variability is much 
higher for precipitation signals than for temperature signals. 
Additionally, the influence of internal variability signifi-
cantly decreases for later future periods (Fig. 9). Neverthe-
less, in many regions the contribution lies between 0.25 and 
0.5 for seasonal temperature, and between 0.5 and 1.0 for 
seasonal precipitation. SDR values around or even above 
one, seem to be implausible on the first glance. Even if inter-
nal variability plays an important role in the uncertainty, the 
sum of model response uncertainty and internal variability 
in the CORDEX ensemble should generally be higher than 
the internal variability alone in CRCM5-LE. These values 
probably occur when the CORDEX ensemble cannot cap-
ture the whole range of internal variability because of the 
limited sampling in this ensemble. Or the internal variability 
of the CRCM5-LE is not representative for other models 
(GCM/RCM combinations). Further research is needed on 

the comparison of the representations of internal variability 
in different large ensembles.

Deser et al. (2012b) conducted a similar experiment with 
21 CMIP3 models and 40 CCSM3 members, building a ratio 
between the standard deviations of trends from 2005 to 2060 
globally. They also find ratios above 0.75 and 1.0 for large 
parts of Europe for annual temperature and precipitation—
the latter generally showing much higher ratios. The ratios 
found by Deser et al. (2012b) for Europe are usually higher 
than the ones calculated for the ensembles in this study. This 
might originate from the different models and methods. 
While we used dynamically downscaled regional models 
for Europe, they used GCMs. Additionally they quantified 
the precipitation trend variability in mm/day, while we used 
relative changes.

To evaluate the influence of spatial resolution on the 
regionalized SDR values, we conducted a small methodo-
logical experiment, which cannot directly clarify the dif-
fering results, but helps to identify possible sources better. 
For the values in Fig. 9, the SDR is calculated on a grid 
point scale and is averaged over the subregions afterwards 
(Method M1). Another method can be to average over the 
temperature/precipitation values as a first step and do the 
signal, variability and SDR computation with these spatially 
averaged values afterwards (Method M2). This is a possi-
ble way to “simulate” a coarser resolution of the underly-
ing data, like it would come from a very coarse GCM. The 
differences between the two methods are shown in Fig. 10. 
A comparison of the results on annual time scale (Deser 
et al. 2012b only show annual results) reveal no difference 
between the two methods for tas-Y, and show higher SDR 
values by M1 for pr-Y. Thus, a coarser resolution data set 
will not produce higher ratios in this experiment. This con-
tradicts the hypothesis that differences in the spatial resolu-
tion of the applied models could explain differing results. 
The differences between the two studies in terms of used 
models and applied methods make the identification of the 
reasons behind the differences even more difficult.

6  Conclusions

Natural variability (represented by the model-internal vari-
ability of a single model large ensemble) can play a major 
role in the variability magnitude of future climate projec-
tions, depending on the regarded variable, season, region 
and time horizon. These findings are of such importance, 
since climate modelers are often facing criticism for the 
large uncertainty of ensemble projections, with the criticism 
implying that the variety of model results is a consequence 
of the models’ inability to correctly represent climate pro-
cesses (model response uncertainty). If natural variability 
can explain a large part of the spread of models, then the 
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differences in climate signals from different models might 
not only be a result of insufficient or competing models, but 
might also be partly explained by natural variability. Follow-
ing the idea that natural variability is inherent to the chaotic 
nature of the climate system and therefore cannot be dimin-
ished, a certain part of uncertainty of climate projections 
will be irreducible, even if scenario definition will become 

more precise and models will improve (see also Deser et al. 
2012b).

The implications for the interpretation of multi-model 
ensembles in cases with similar variabilities (e.g. pre-
cipitation in DJF), might become clearer as a short mind 
game: First we need to accept the natural variability of the 
CRCM5-LE as a fair approximation to adopt it for other 
models. Then two things become apparent:

Fig. 10  Difference of regional SDR outcome between methods M1 and M2 (M1 minus M2); M1 results are shown in Fig. 9
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(A) We can add the CRCM5-LE variability as a “cloud” 
of internal variability (gray dots in e.g. Fig. 3) around 
each of the dots for the CORDEX models. This is blur-
ring the model response uncertainty dramatically in 
some cases. This means that only one realization, as in 
CORDEX usually available, does probably not depict 
the model response very well.

(B) On the other hand, if the CORDEX ensemble might 
even be totally (or to a large part) explained by natural 
variability, model response uncertainty may be inter-
preted as neglectable in these cases.

These conclusions are of course very much depending 
on the length of the time period, variable, season and region 
considered, and are not meant as universally valid for multi-
model ensembles like CORDEX.

As a short outlook, the existing regional single model 
ensembles (Fischer et al. 2013; Aalbers et al. 2018) still need 
to be analyzed in more depth, since they show large potential 
for a better understanding of climate change uncertainty. 
Additionally, the previous results should be verified by more 
single model ensembles, and the differences between these 
kinds of ensembles need to be specified, e.g. to see if their 
representations of natural variability are similar (see also 
Xie et al. 2015).
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8 SMILEs as statistically sound data base for extreme event analysis 

While the first two publications dealt with the aspects of variability and uncertainty on a more 

theoretical level, the third paper can be considered a straightforward impact analysis using one 

SMILE. The main focus are meteorological droughts that have also been addressed in the former 

publications (dry period lengths). Here, the drought is analyzed with a return level approach 

that intends to detect changes in former 30-year return levels (RL30) of monthly/seasonal low 

precipitation frequencies.  

8.1 How will dry period frequencies change over Europe in the future? 

The most dramatic changes are projected to occur during the summer and fall months in large 

parts of Europe, where former RL30 months will occur much more frequently. For the most 

extreme changes in Spain, former RL30 will occur every year. Consistently, consecutive dry 

summers will also become more frequent on the 2-year level, while only a few areas will also 

show increases on the 3-to-4-year level, mostly in Southern Europe and parts of France. 

Consecutive dry winters will only occur in very few areas in Spain and Northern Africa and 

remain very unlikely in the vast parts of Europe. 

8.2 How does that relate to the outstanding 2018 summer drought in Germany? 

The probability of a 2018-like summer drought in Germany will dramatically increase from a low 

1.4 % to 20 % in the far future, based on a quantile transfer approach from observations to the 

CRCM5-LE. 

8.3 How does this meteorological signal propagate into a hydrological discharge 

signal? 

The summer drought in precipitation will have similar effects on the RL30 of two hydrological 

gauges in Bavaria. These gauges also show higher frequency of low flows in the winter months, 

where the precipitation is showing less frequent drought situations. This shows the high non-

linearity between precipitation and streamflow. 

  



 

55 
 

TITLE 
The summer drought 2018 in Germany – a window to future developments of meteorological 

droughts in Europe? 

AUTHORS 
Fabian von Trentini, Ralf Ludwig 

JOURNAL 
Geophysical Research Letters 

PUBLISHING DATE 
Submitted 

DOI 
- 

JOURNAL IMPACT FACTOR (WEB OF SCIENCE) 
5.58 

AUTHOR CONTRIBUTIONS 
FvT designed the concept of the study, performed the analysis, and created all figures. RL helped 

improve the concept and analysis. FvT led the paper writing with input from RL. 

CITATIONS (CROSSREF) 
- 

PLAIN LANGUAGE SUMMARY 
The summer 2018 drought in Germany was the second most severe in the history of records for 

precipitation. The future changes in drought frequencies are assessed for all of Europe by using 

a specific data source: an ensemble of climate model data that stem from a so called single-model 

initial-condition large ensemble (SMILE). Here, the exact same model is started 50 times, driven 

by the same emission scenario. The only difference between the runs are minor changes in the 

initial conditions. Months that had a statistical occurrence probability of every 30 years will 

occur much more often in the future. This is mainly true for summer and fall over large parts of 

Europe. Hot spots for consecutive dry summers (2-4) will mainly appear in the Mediterranean 

region, especially for Spain and France. Linking the statistics from the 2018 summer drought in 

Germany with the climate model data, the probability of such an event rises from 1.4 % under 

historical conditions to 20 % for the end of the 21st century. The changes in drought frequency 

defined by low precipitation amounts is then compared to changes in low flows in two rivers in 

Germany. The river discharge shows similar increases in frequency as the precipitation during 

summer. However, during winter half year, the low flows will occur much more often, although 

the precipitation changes do not depict this change in a similar way. This non-linearity might 

be caused by changes in evapotranspiration and snow dynamics. 



 

74 
 

9 References 

Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M. (2018): 

Local-scale changes in mean and heavy precipitation in Western Europe, climate change or 

internal variability? In: Climate Dynamics 50 (11), S. 4745–4766. DOI: 10.1007/s00382-017-

3901-9. 

Addor, Nans; Fischer, Erich M. (2015): The influence of natural variability and interpolation 

errors on bias characterization in RCM simulations. In: J. Geophys. Res. Atmos. 120 (19), 10,180-

10,195. DOI: 10.1002/2014JD022824. 

Bengtsson, L.; Hodges, K. I. (2019): Can an ensemble climate simulation be used to separate 

climate change signals from internal unforced variability? In: Clim Dyn 52 (5-6), S. 3553–3573. 

DOI: 10.1007/s00382-018-4343-8. 

Bonan, Gordon B.; Doney, Scott C. (2018): Climate, ecosystems, and planetary futures: The 

challenge to predict life in Earth system models. In: Science (New York, N.Y.) 359 (6375). DOI: 

10.1126/science.aam8328. 

Brönnimann, Stefan; Rajczak, Jan; Fischer, Erich M.; Raible, Christoph C.; Rohrer, Marco; 

Schär, Christoph (2018): Changing seasonality of moderate and extreme precipitation events in 

the Alps. In: Nat. Hazards Earth Syst. Sci. 18 (7), S. 2047–2056. DOI: 10.5194/nhess-18-2047-

2018. 

Christensen, Jens Hesselbjerg; Larsen, Morten A. D.; Christensen, Ole B.; Drews, Martin; 

Stendel, Martin (2019): Robustness of European climate projections from dynamical 

downscaling. In: Clim Dyn 419, S. 224. DOI: 10.1007/s00382-019-04831-z. 

Copernicus (2021): Latest projections of future climate now available. Online verfügbar unter 

https://climate.copernicus.eu/latest-projections-future-climate-now-available. 

Coppola, Erika; Nogherotto, Rita; Ciarlo', James M.; Giorgi, Filippo; van Meijgaard, Erik; 

Kadygrov, Nikolay et al. (2021): Assessment of the European Climate Projections as Simulated 

by the Large EURO-CORDEX Regional and Global Climate Model Ensemble. In: J. Geophys. 

Res. Atmos. 126 (4), e2019JD032356. DOI: 10.1029/2019JD032356. 

Deser, Clara; Phillips, Adam; Bourdette, Vincent; Teng, Haiyan (2012): Uncertainty in climate 

change projections. The role of internal variability. In: Climate Dynamics 38 (3-4), S. 527–546. 

DOI: 10.1007/s00382-010-0977-x. 

Eyring, Veronika; Cox, Peter M.; Flato, Gregory M.; Gleckler, Peter J.; Abramowitz, Gab; 

Caldwell, Peter et al. (2019): Taking climate model evaluation to the next level. In: Nature Clim 

Change 9 (2), S. 102–110. DOI: 10.1038/s41558-018-0355-y. 

Fischer, E. M.; Beyerle, U.; Knutti, R. (2013): Robust spatially aggregated projections of climate 

extremes. In: Nature Clim Change 3 (12), S. 1033–1038. DOI: 10.1038/nclimate2051. 

Fischer, E. M.; Schär, C. (2010): Consistent geographical patterns of changes in high-impact 

European heatwaves. In: Nature Geosci 3 (6), S. 398–403. DOI: 10.1038/ngeo866. 

Fischer, Erich M.; Schär, Christoph (2009): Future changes in daily summer temperature 

variability: driving processes and role for temperature extremes. In: Clim Dyn 33 (7-8), S. 917–

935. DOI: 10.1007/s00382-008-0473-8. 



 

75 
 

Flato, G.; J. Marotzke; B. Abiodun; P. Braconnot; S.C. Chou; W. Collins et al. (Hg.) (2014): 

Climate Change 2013. The Physical Science Basis. Cambridge: Cambridge University Press. 

Fyfe, John C.; Derksen, Chris; Mudryk, Lawrence; Flato, Gregory M.; Santer, Benjamin D.; 

Swart, Neil C. et al. (2017): Large near-term projected snowpack loss over the western United 

States. In: Nature communications 8, S. 14996. DOI: 10.1038/ncomms14996. 

Giorgi, Filippo (2019): Thirty Years of Regional Climate Modeling: Where Are We and Where 

Are We Going next? In: J. Geophys. Res. Atmos. 92 (7), S. 365. DOI: 10.1029/2018JD030094. 

Hausfather, Zeke; Drake, Henri F.; Abbott, Tristan; Schmidt, Gavin A. (2020): Evaluating the 

Performance of Past Climate Model Projections. In: Geophysical Research Letters 47 (1). DOI: 

10.1029/2019GL085378. 

Hawkins, Ed; Sutton, Rowan (2009): The Potential to Narrow Uncertainty in Regional Climate 

Predictions. In: Bull. Amer. Meteor. Soc. 90 (8), S. 1095–1107. DOI: 10.1175/2009BAMS2607.1. 

Hawkins, Ed; Sutton, Rowan (2011): The potential to narrow uncertainty in projections of 

regional precipitation change. In: Climate Dynamics 37 (1), S. 407–418. DOI: 10.1007/s00382-

010-0810-6. 

Holmes, Caroline R.; Woollings, Tim; Hawkins, Ed; Vries, Hylke de (2016): Robust Future 

Changes in Temperature Variability under Greenhouse Gas Forcing and the Relationship with 

Thermal Advection. In: J. Climate 29 (6), S. 2221–2236. DOI: 10.1175/JCLI-D-14-00735.1. 

Hourdin, Frédéric; Mauritsen, Thorsten; Gettelman, Andrew; Golaz, Jean-Christophe; Balaji, 

Venkatramani; Duan, Qingyun et al. (2017): The Art and Science of Climate Model Tuning. In: 

Bull. Amer. Meteor. Soc. 98 (3), S. 589–602. DOI: 10.1175/BAMS-D-15-00135.1. 

IPCC (2018): What is a GCM? Online verfügbar unter https://www.ipcc-

data.org/guidelines/pages/gcm_guide.html, zuletzt geprüft am 14.03.2023. 

Jacob, Daniela; Petersen, Juliane; Eggert, Bastian; Alias, Antoinette; Christensen, Ole Bøssing; 

Bouwer, Laurens M. et al. (2014): EURO-CORDEX. New high-resolution climate change 

projections for European impact research. In: Reg Environ Change 14 (2), S. 563–578. DOI: 

10.1007/s10113-013-0499-2. 

Kendon, Elizabeth J.; Jones, Richard G.; Kjellström, Erik; Murphy, James M. (2010): Using and 

Designing GCM–RCM Ensemble Regional Climate Projections. In: J. Climate 23 (24), S. 6485–

6503. DOI: 10.1175/2010JCLI3502.1. 

Leduc, Martin; Mailhot, Alain; Frigon, Anne; Martel, Jean-Luc; Ludwig, Ralf; Brietzke, Gilbert 

B. et al. (2019): ClimEx project: a 50-member ensemble of climate change projections at 12-km 

resolution over Europe and northeastern North America with the Canadian Regional Climate 

Model (CRCM5). In: Journal of Applied Meteorology and Climatology. DOI: 10.1175/JAMC-D-18-

0021.1. 

Lehner, Flavio; Deser, Clara; Maher, Nicola; Marotzke, Jochem; Fischer, Erich M.; Brunner, 

Lukas et al. (2020): Partitioning climate projection uncertainty with multiple large ensembles 

and CMIP5/6. In: Earth Syst. Dynam. 11 (2), S. 491–508. DOI: 10.5194/esd-11-491-2020. 

Martynov, A.; Laprise, R.; Sushama, L.; Winger, K.; Šeparović, L.; Dugas, B. (2013): Reanalysis-

driven climate simulation over CORDEX North America domain using the Canadian Regional 

Climate Model, version 5: model performance evaluation. In: Climate Dynamics 41 (11), S. 

2973–3005. DOI: 10.1007/s00382-013-1778-9. 



 

76 
 

Medhaug, Iselin; Stolpe, Martin B.; Fischer, Erich M.; Knutti, Reto (2017): Reconciling 

controversies about the ‘global warming hiatus’. In: Nature 545 (7652), S. 41–47. DOI: 

10.1038/nature22315. 

Prein, A. F.; Gobiet, A.; Truhetz, H.; Keuler, K.; Goergen, K.; Teichmann, C. et al. (2016): 

Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations. High resolution, high 

benefits? In: Climate Dynamics 46 (1-2), S. 383–412. DOI: 10.1007/s00382-015-2589-y. 

Rajczak, Jan; Schär, Christoph (2017): Projections of Future Precipitation Extremes Over 

Europe. A Multimodel Assessment of Climate Simulations. In: J. Geophys. Res. Atmos. 122 (20), 

10,773-10,800. DOI: 10.1002/2017JD027176. 

Saffioti, Claudio; Fischer, Erich M.; Knutti, Reto (2017): Improved Consistency of Climate 

Projections over Europe after Accounting for Atmospheric Circulation Variability. In: J. Climate 

30 (18), S. 7271–7291. DOI: 10.1175/JCLI-D-16-0695.1. 

Šeparović, Leo; Alexandru, Adelina; Laprise, René; Martynov, Andrey; Sushama, Laxmi; 

Winger, Katja et al. (2013): Present climate and climate change over North America as 

simulated by the fifth-generation Canadian regional climate model. In: Climate Dynamics 41 

(11), S. 3167–3201. DOI: 10.1007/s00382-013-1737-5. 

Suarez-Gutierrez, Laura; Li, Chao; Müller, Wolfgang A.; Marotzke, Jochem (2018): Internal 

variability in European summer temperatures at 1.5 °C and 2 °C of global warming. In: Environ. 

Res. Lett. 13 (6), S. 64026. DOI: 10.1088/1748-9326/aaba58. 

Suarez-Gutierrez, Laura; Milinski, Sebastian; Maher, Nicola (2021): Exploiting large ensembles 

for a better yet simpler climate model evaluation. In: Climate Dynamics 57 (9), S. 2557–2580. 

DOI: 10.1007/s00382-021-05821-w. 

Vautard, Robert; Gobiet, Andreas; Sobolowski, Stefan; Kjellström, Erik; Stegehuis, Annemiek; 

Watkiss, Paul et al. (2014): The European climate under a 2 °C global warming. In: Environ. 

Res. Lett. 9 (3), S. 34006. DOI: 10.1088/1748-9326/9/3/034006. 

Vautard, Robert; Kadygrov, Nikolay; Iles, Carley; Boberg, Fredrik; Buonomo, Erasmo; Bülow, 

Katharina et al. (2021): Evaluation of the Large EURO-CORDEX Regional Climate Model 

Ensemble. In: J. Geophys. Res. Atmos. 126 (17), e2019JD032344. DOI: 10.1029/2019JD032344. 

Vidale, P. L.; Lüthi, D.; Wegmann, R.; Schär, C. (2007): European summer climate variability in 

a heterogeneous multi-model ensemble. In: Climatic Change 81 (S1), S. 209–232. DOI: 

10.1007/s10584-006-9218-z. 

von Trentini, Fabian; Aalbers, Emma E.; Fischer, Erich M.; Ludwig, Ralf (2020): Comparing 

interannual variability in three regional single-model initial-condition large ensembles 

(SMILEs) over Europe. In: Earth Syst. Dynam. 11 (4), S. 1013–1031. DOI: 10.5194/esd-11-1013-

2020. 

Yettella, Vineel; Weiss, Jeffrey B.; Kay, Jennifer E.; Pendergrass, Angeline G. (2018): An 

Ensemble Covariance Framework for Quantifying Forced Climate Variability and Its Time of 

Emergence. In: J. Climate 31 (10), S. 4117–4133. DOI: 10.1175/JCLI-D-17-0719.1.



 

77 
 

 




