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Contextual Biases and Information Processing in Visual Perception

Summary

Human visual perception relies on context, as the brain integrates visual sen-
sory evidence with contextual information to form a visual percept. When
physical visual features are perceived differently from what they actually are,
visual biases can occur. Extensive research has been conducted to investigate
contextual information processing for different types of contextual biases and
distinct visual features. The current thesis aimed to investigate biases resulting
from natural and instructive contexts, with a particular focus on two visual fea-
tures: color and orientation. Two specific questions are addressed in this thesis:
(1) whether perceptual bias reflects information from natural context in color
vision, and (2) how a reference acts as a context that biases the perception of
orientation or color features.

The thesis consists of three studies presented as three manuscripts, each ad-
dressing a different aspect of contextual biases in visual perception. The first
study tackles the first question by measuring perceptual biases in discriminat-
ing between noisy hue ensembles. The results show systematic biases with
zero-crossings near a non-cardinal, blue-yellow color space axis. A Bayesian
observer model further reveals a prior for natural daylights underlying these
perceptual biases. The second and third studies focus on the second question by
investigating the typical phenomenon of contextual biases: reference repulsion.
The second study shows that reference repulsion can occur in a late, decision-
related stage of visual processing, where explicit and implicit processes might
differ. The third study demonstrates the repulsion effects of hue reference in
color vision, along with striking non-uniformities of the effects across colors.
Both studies explain the repulsion biases with an encoding-decoding model,
suggesting different visual features might share context-dependent reweight-
ing of sensory representations. Overall, this thesis provides new evidence of
contextual biases for various visual features and offers insights into the visual
processing of contextual information.
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Contextual Biases and Information Processing in Visual Perception

1 Introduction

We do not see things as they are,
we see them as we are.

Anaı̈s Nin

Visual perception is never an isolated island but grounded on the continent
of contextual information. In the face of enormous amounts of visual input,
context plays a significant role in selecting sensory information and stabilizing
visual percepts. For instance, the context of a coffee shop helps us to recognize
the person as a friend who frequents the coffee shop, even at a distance where
their facial features are not immediately discernible. On the other hand, con-
text can also lead to biases, which are mismatches between visual percepts and
physical features, sparking increased interest in vision science research.

Contextual biases have been widely reported across various visual features, in-
cluding orientations (Gibson and Radner, 1937, Schwartz et al., 2007, Girshick
et al., 2011, Luu and Stocker, 2018), motion (Weiss et al., 2002, Stocker and Si-
moncelli, 2006, Jazayeri and Movshon, 2007, Zamboni et al., 2016), brightness
(Eagleman et al., 2004), colors (Klauke and Wachtler, 2015, Kellner and Wachtler,
2016) and faces (Webster et al., 2004). Studying contextual biases in visual per-
ception is essential for advancing our understanding of visual processing under-
lying perception, as well as for uncovering common mechanisms of information
processing across different visual features.

The definition of context in visual perception is broad and refers to a wide vari-
ety of influences from the environment, experiences, and other factors on how
individuals perceive and interpret information, leading to various types of con-
textual biases. Contextual biases can occur in the spatial or temporal dimension.
For example, spatial context can tilt the visual percept of orientations, which is
known as the tilt illusion (Gibson and Radner, 1937, O’Toole and Wenderoth,
1977, Smith et al., 2001, Schwartz et al., 2007, Clifford, 2014): the perceived ori-
entation of an object is susceptible to the orientations of its surroundings and
appears to be tilted to the opposite direction (Fig. 1.1a). Similarly, a preceding
orientation can function as a temporal context that biases the perceived orien-
tation of an object, showing a tilt after-effect (Gibson and Radner, 1937, O’Toole
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and Wenderoth, 1977, Schwartz et al., 2007, Webster, 2015).

Alternatively, context can result from a particular behavioral task and even in-
fluence the following decisions and actions. When appreciating the woodcut
print ”Sky and Water I” by Maurits Cornelis Escher (Fig. 1.1b), visual percep-
tion goes through a dynamic and continuous separation of ground and object,
known as figure-ground reversal (Hochberg, 1950). If we are required to iden-
tify the birds and ignore the fishes, we are likely to constantly consider the
birds as objects and the fishes as background, and vice versa. The context in
this case is a task instruction that can often be manipulated under laboratory
circumstances.

ba

Figure 1.1: Examples of contextual biases. (a) The tilt illusion. The vertical
grating in the center appears repelled in orientation away from the 15◦ sur-
rounding grating. Figure adapted from Clifford (2014). (b) Sky and Water I by
Maurits Cornelis Escher (1938). Birds and fishes are alternatively foreground or
background, depending on what objects are the targets for recognition.

Investigating various types of contextual biases provides insights into the prin-
ciples and mechanisms of information processing for different visual features.
In this section, I will introduce two examples of contextual biases that are ad-
dressed in this thesis. Chapter 1.1 will focus on a particular visual feature, color,
by reviewing visual processing and contextual biases in color perception. Chap-
ter 1.3 will introduce reference repulsion, a task-relevant effect from an instruc-
tive context. Each example will be followed by a review of corresponding com-
putational models that aim to predict and explain contextual biases (Chapter
1.2 and Chapter 1.4).
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Contextual Biases and Information Processing in Visual Perception

1.1 Contextual biases in color vision

Likewise to other visual features, our color percept is susceptible to the context.
For example, the color of a banana will remain to appear yellow regardless of
whether it is under blue or green lighting. This phenomenon is known as color
constancy (Foster, 2011), which means that humans perceive an object’s color
as constant, even if the lighting conditions or the surrounding colors change.
Color constancy effects illustrate that visual perception takes the context into
account to obtain a relatively constant estimate of the color of an object, even
though the physical colors of the stimuli are changing (see Foster (2011) for a
review). In other words, context can modulate our color percept and lead to
perceptual illusions. Before diving into the regime of contextual biases in color
perception, the next section will provide a brief introduction to the basic color
sensory processing and the representation of a color space.

1.1.1 From color sensory processing to cone-opponency

The human visual system begins processing color information in the retina,
where cone cells, the photoreceptor cells that are responsible for color vision,
detect different wavelengths of light that are reflected off of objects in the en-
vironment. There are three types of cones in the human retina, each sensitive
to different ranges of wavelengths: short-wavelength sensitive cones (S-cones),
medium-wavelength sensitive cones (M-cones), and long-wavelength sensitive
cones (L-cones). The information from the cones is transmitted to bipolar cells
with lateral inhibition by horizontal cells, showing a center-surround antago-
nism: signals from a central region in the retina are combined with opposing
signals from the surrounding area. Then, retinal ganglion cells, which constitute
the output layer of the retina, transmit signals to the lateral geniculate nucleus
(LGN) in the thalamus and then to the primary visual cortex and other cortical
areas.

Three types of retinal ganglion cells project to different layers of the LGN and
result in three parallel visual pathways (see Lee (2011) and Dacey (2000) for re-
views). These visual pathways transmit information efficiently, by removing the
redundant inputs from different types of cones and conveying only the differ-
ence among cone signals. The magnocellular pathway passes through parasol
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ganglion cells and projects to the magnocellular (large-cell) layers of the LGN,
which transmit signals of achromatic contrast and exclusive to same-sign input
from L and M cones. The parvocellular pathway passes through in midget gan-
glion cells (Derrington et al., 1984), which project to the parvocellular (small-
cell) layers of the LGN and receive opposed signals from L and M cones (L-M).
The last pathway passes through in the bistratified ganglion cells (Martin et al.,
1997), which project to the koniocellular layers of the LGN and receive signals
from S cones while opposing combined signals from L and M cones (S-(L+M)).

90° 

0° 

S-(L+M)

L-M

hue angle 

L+M

Figure 1.2: Cone-opponent color space. The axes correspond to signals from
L+M, L-M, and S-(L+M) cone contrasts, respectively. The value along the L+M
axis represents a luminance change, the distance from the origin corresponds to
chromatic contrast, and the azimuth angle corresponds to hue. The horizontal
plane represents an isoluminant plane.

The evidence of antagonism and parallel signals reveals cone opponency, which,
in color vision research, can be represented in a color space — a metric of colors
with a set of coordinates. For example, a cone-opponent contrast color space
developed by Derrington et al. (1984), which is used in the present thesis, rep-
resents colors in terms of the relative activity of different types of opponent
mechanisms and, in particular, the contrasts between them. Fig. 1.2 shows an
example of this color space. Cone contrasts are defined with respect to a neu-
tral gray at the origin. Each of the three axes represents one of the opponent
contrasts. The vertical axis represents the combined signals from L and M cones
(L+M), corresponding to changes in luminance. Orthogonal to this axis, there
are two axes that correspond to L-M and S-(L+M) cone contrast and thus cap-
ture reddish-greenish and bluish-yellowish variation, respectively. In this color
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space, colors can be specified by a set of coordinates, where the value along the
L+M axis represents a luminance change, the distance from the origin corre-
sponds to chromatic contrast, and the azimuth angle corresponds to hue. Col-
ors sharing the same luminance are referred to as isoluminant and are located
on an isoluminant plane that is orthogonal to the L+M axis.

1.1.2 Contextual biases in hue perception

As introduced at the beginning of this chapter, the color appearance of an ob-
ject depends on its context. Even if under the same lighting, a neutral gray
color will appear reddish when presented on a green surround, and vice versa,
demonstrating contextual effects explicitly in the dimension of hue. Fig. 1.3
shows how colored surrounds influence color appearance. The colors of the
patches in the bottom rows appear similar on both neutral gray (left) and chro-
matic (right) surrounds. Yet, in fact, the colors of the bottom patches on the
neutral gray surround have the same RGB values as that of the upper patches
on the chromatic surrounds (marked by the asterisk signs).

Figure 1.3: An example of contextual modulations in color perception. The
patches in the bottom row on the gray background have the same colors (i.e.
the same RGB values) as the colors of the patches in the upper row on the chro-
matic background, marked with star signs. Figure adapted with permission
from Wachtler et al. (2003).

This phenomenon demonstrates that colored surrounds induce hue shifts in the
perceived color of the stimulus. Klauke and Wachtler (2015) have systemati-
cally measured such hue shifts induced by isoluminant chromatic surrounds in
various hues. This study employed an adjustment experiment, where partici-
pants were presented with a display comprising a neutral gray and a chromatic
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surround. Participants had to adjust the hue of a colored stimulus in the neutral
surround to match it to the hue of a colored test stimulus in the chromatic sur-
round. The hue shift was computed as the difference between the adjusted hue
and the test stimulus, and it showed a systematic pattern as a function of the
hue difference between the stimulus and the surround. As the hue difference
between the stimulus and its surround increased, the induced hue shift also
increased, reaching a peak value before gradually decreasing. This induction
effect resembles the tilt effect in orientation perception (Gibson and Radner,
1937), suggesting similar mechanisms of processing contextual information for
color and orientation.

The findings of Klauke and Wachtler (2015) not only provide evidence of the
contextual modulations in hue perception but also suggest a striking non-
uniformity of color perceptual quantities. Among the distinct colored sur-
rounds, the induction effect was qualitatively similar but differed in strength.
The strongest induction effect was along an oblique axis that connects blue and
yellow in the color space. Perceptual quantities exhibit non-uniformity not only
in contextual biases but also in color sensitivity. Boynton et al. (1986) found an
ellipse pattern of color discrimination thresholds in the CIELAB color space, a
color space that is supposed to be perceptually uniform. Subsequently, other
findings using various color spaces agreed that color discrimination is nonuni-
form among colors, showing lower thresholds at blue and yellow compared to
other colors (Danilova and Mollon, 2010). A similar bimodal pattern of color
discrimination thresholds has also been found in the DKL color space (Witzel
and Gegenfurtner, 2013).

Notably, the non-uniformity of color perception does not correspond to the
cardinal axes in the cone-opponent color space but matches an oblique axis
that connects unique blue and yellow hues (Webster et al., 2000, Valberg, 2001,
Wuerger et al., 2005). Furthermore, this blue-yellow axis is closely related to
the characteristics of colors in natural environments. The color distributions in
natural scenes are not uniform, revealing a strong bias of chromatic contrasts
along a bluish to yellowish axis that is midway between the S − (L+M) and
L − M axes (Webster and Mollon, 1997). Moreover, natural daylight varies
along this blue-yellow axis. By rotating a white plaque to switch its source of
illumination between sunlight and skylight, Mollon (2006) measured the corre-
sponding chromaticities of light reflected from the plaque, which moved along
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a color space axis that connects unique blue and unique yellow. As Shepard
(1992) pointed out, color perception depends not only on the contrast of retinal
signals but also on adaptation to color statistics in the surrounding environ-
ment. Grounded in this theory, color perceptual nonuniformities may result
from adapting and exploiting color information in natural environments.

1.2 Modeling contextual biases and Bayesian perception

From the perspective of information processing, the brain is an information
processor that never rests. Every second of the day, it receives sensory infor-
mation, transforms the information into neural codes, and cracks the codes to
generate percepts that can be used to make sense of the world and guide behav-
iors. The process, known as sensory encoding, involves mapping sensory input
from the physical world to a neural representation. These encoded represen-
tations should correspond to neural activities and can be used by downstream
neurons. Conversely, a decoder interprets the representations and maps them
back to the stimuli.

The encoding and decoding processes are, however, not deterministic due to the
noise resulting from the ambiguity of physical features and limitations of the
nervous system (Faisal et al., 2008). Therefore, it is necessary to represent the
outputs of the encoder and decoder in probabilities. Given a sensory input s, the
encoded representation will be a conditional probability p(m|s), wherem repre-
sents sensory measurements. Then, the observer will select an estimate ŝ (often
corresponding to a peak) from the decoded conditional probability p(s|m). The
brain is thus often hypothesized to be an encoder-decoder observer, with the
notion that an ideal observer should have probabilistic components that rep-
resent the states of the world, observations, following actions, and the losses
of actions (Kersten and Mamassian, 2009). The observer is considered ideal in
the sense that its performance for a specific task is statistically optimal (Kersten
and Mamassian, 2009).

The power of the encoder-decoder observer model lies in its ability to explain
how context shapes perception. The model achieves this through various ap-
proaches, such as illustrating how context can influence the encoding process,
assigning different weights to certain features of the sensory input or represen-
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tations, or providing expectations to the observer. From a probabilistic infer-
ence perspective, contextual information can combine with sensory measure-
ment distributions to create a joint probability that the decoder uses to generate
an estimate. In some cases, the estimate may not match the physical stimulus,
leading to a contextual bias that can be measured in behavioral experiments.
Therefore, the observer model and the related computational approaches are
powerful in providing explanations for contextual biases and revealing how
contextual information is processed. I will present two model examples to il-
lustrate this point, respectively in this section and Chapter 1.4.

low
medium
high

noisenoise

likelihood

prior

posterior

Figure 1.4: Bayesian model of perception: the posterior distributions are the
results of combining likelihoods with a prior distribution. The likelihoods are
Gaussian functions with three noise levels. The solid gray lines represent the
values of the true stimulus. The prior function is a Gaussian function with a
center at the dashed gray line. The green dots in the bottom figures indicate the
point of the estimate of the posterior.

Since Thomas Bayes (1701-1761) formulated his most famous rule of probabil-
ity, the Bayes’ theorem, this simple and elegant formula has been applied to
various fields of research for centuries. Not surprisingly, inspired by Hermann
von Helmholtz’s notes, “previous experiences act in conjunction with present
sensations to produce a perceptual image” (von Helmholtz, 1867), researchers
have ushered in an era of understanding perception and action with the Bayes
theory since the late 20th century.

The theory of the Bayesian brain proposes that our brain continuously forms
prior beliefs about the environment and updates the beliefs with new sensory
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evidence. In other words, the neural system relies on prior knowledge to obtain
reliable measurements from the noisy sensory information about the physical
world. The process of combining the two sources of probabilistic information
is called Bayesian inference, which can be described mathematically:

p(s|m) ∝ p(s)p(m|s)

In the framework of Bayesian perception, the likelihood p(m|s) represents the
probability of measurements given the stimulus, and the prior probability p(s)

represents the prior knowledge about the stimulus. The inference results in a
posterior probability p(m|s), which represents the density function of the stim-
ulus given the measurements (Fig. 1.4). An optimal Bayesian observer selects an
estimate corresponding to the peak (maximum a posteriori probability, MAP) or
the mean of the posterior, depending on the context of the inference problem.

Over the decades, Bayesian theories have been successfully applied to nu-
merous problems, including sensory cue integration (Ernst and Banks, 2002,
Battaglia et al., 2003), sensorimotor learning (Körding and Wolpert, 2004, 2006),
time perception (Jazayeri and Shadlen, 2010, Shi et al., 2013), visual perception of
depth (Knill, 2007), object perception (Kersten et al., 2004), illumination percep-
tion (Brainard et al., 2006), motion speed perception (Weiss et al., 2002, Stocker
and Simoncelli, 2006), and orientation perception (Girshick et al., 2011). While
Bayesian models have shown success in these research areas, concerns about
priors have emerged, leading to the exploration of reasonable choices of priors.

There are different ways to classify priors in perception, based on whether they
are induced by short-term context or based on long-term knowledge (Sotiropou-
los and Seriès, 2015). The former, so-called “contextual expectations”, can be
manipulated in experiments by explicit cues or implicit learning and show im-
mediate effects. For example, when participants are explicitly reminded of the
range in which the orientation stimulus would occur, their orientation estimates
depend on such prior expectations (Luu and Stocker, 2018). In the case of suc-
cessive visual stimulus presentations, participants can form particular expecta-
tions implicitly without explicit cues, such as learning the statistical regularity
of the stimulus from the perceptual history (Fritsche et al., 2020).

On the other hand, another type of prior expectation has been considered
to have long-term effects, more “structural”, and “conceptually more akin to
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Figure 1.5: Convex/concave illusion. The spheres appearing as convex half-
spheres (left) would appear as concave half-spheres if the image is flipped upside
down (right).

Bayesian priors” (Sotiropoulos and Seriès, 2015). These expectations originate
from our knowledge about the world, often developing over the course of life
and reflecting the structure of the environment. One well-known example is
that human assumes light comes from above (Sun and Perona, 1998). This ex-
pectation, for example, would make the spheres in Fig. 1.5 appear as protruding
(convex) half-spheres (left). However, flipping the image upside down would
lead to the percept of hollow (concave) half-spheres (Fig. 1.5, right). Indeed,
studies have predicted such convex-concave shape judgments of participants
using a ’light-from-above’ prior (Adams et al., 2004, Thomas et al., 2010).

By its definition, structural prior expectations should match environmental
statistics to facilitate the optimal performance of a Bayesian observer. Taking
the visual perception of motion speed as an example, it is well-known that the
perceived motion speed depends on the contrast of visual stimuli: a moving
stimulus appears slower when its contrast decreases (Thompson, 1982). To ex-
plain this effect as well as other visual illusions of motion, Weiss et al. (2002)
followed the assumption of Wallach (1935) (see review in Wuerger et al. (1996))
that humans prefer slow speed, consistent with the fact that most objects move
slowly or remain stationary in the natural world. The authors proposed that
this bias corresponds to the visual system’s preference for low speed that com-
bines noisy local image measurements. They formulated this assumption using
Bayes’ rule and derived an optimal Bayesian estimator that could predict the
bias.

However, like other Bayesian models in the same era, Weiss et al. (2002)’s model
was successful in accounting for psychophysical phenomena but had a prior for-
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mulated from theoretical assumptions and could not be validated. The challenge
of deriving a precise prior from perceptual measurements remained, until a new
methodology was developed by Stocker and Simoncelli (2006). Stocker and Si-
moncelli (2006) measured subjects’ discrimination responses of motion speed
and observed that a moving stimulus with lower contrast appeared slower. The
authors applied a Bayesian observer model, of which components were recov-
ered from psychophysical experiment measurements of perceptual variability
and bias. Specifically, in this observer model, the prior affects the position of
the distribution of estimates and thus contributes to the bias. Meanwhile, the
width of the likelihood affects both the width and the position of the distribu-
tion of estimates, which influences both perceptual variability and bias. The
relationship thus constrains the Bayesian components, leading to a recovered
prior favoring low stimulus speed.

Using the methodology linking the Bayesian model and psychophysical quan-
tities, Girshick et al. (2011) investigated the discrimination of orientations and
revealed a prior that matched environmental statistics. The authors measured
the threshold and bias in participants’ ability to discriminate the orientations
of a pair of noisy stimulus ensembles. The discrimination results showed not
only the well-known “oblique effect” in perceptual variability, but also non-
negligible discrimination biases towards cardinal orientations. Based on these
findings, the authors estimated a prior that peaked at cardinal orientations,
which coincides with the observation that cardinals dominate the distribution
of orientations in natural scenes. Thus, these results suggested the match be-
tween the Bayesian observer’s internal prior and the environmental distribu-
tion, indicating that the brain may adapt to the natural context and exploit the
environmental statistics to infer perceptual estimates.

1.3 Reference as a context: Reference repulsion

On a display of a group of disks, the same center disk appears larger or smaller,
depending on whether the surrounding disks are smaller or larger than it
(Fig. 1.6). The phenomenon, known as the Ebbinghaus illusion, demonstrates
the powerful effect of a context that has similar features to an embedded stimu-
lus. It is the same in real life, where contexts are so rich that any particular item
we are interested in is always presented together with other things. To evalu-
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ate, estimate, or memorize a stimulus feature, we often compare it with other
things explicitly or unconsciously. These “other things” can be categorized as
references, as we use them to obtain more information about the stimulus we
are interested in. While the reference context may contribute to forming or
maintaining a coarse estimate of a stimulus, researchers have been studying
other influences of the references with features similar to the stimulus. One
particular effect, reference repulsion, has become a focus of visual perception
scientists.

Figure 1.6: Ebbinghaus illusion. The center orange disks are identical in the left
and right groups.

The term reference repulsion was first used by Rauber and Treue (1998) in the
study of the perceived direction of a moving random-dot pattern (RDP). The par-
ticipants were asked to compare the perceived direction of a moving RDP with a
test direction presented either following or simultaneously with the RDP stim-
ulus. The perceived directions showed biases, which were systematically re-
pulsed away from the horizontal and vertical directions, suggesting that partic-
ipants might use cardinals as internal reference directions and overestimate the
difference between the presented direction and the nearest cardinal direction.
These findings were not confined to motion perception but were also shown in
the judgment of spatial distance, in which the presentation consisted of a stim-
ulus circle followed by a test point, while a vertical reference line was presented
throughout the trial. Participants were asked to judge whether the center of a
circle was to the left or right of a test point, and their responses clearly showed
the overestimation of the distance between the circle and the reference line.
Altogether, participants tended to overestimate the difference between a stimu-
lus and a reference, indicating the repulsion of the perceived stimulus from the
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reference.

Nearly ten years later, Jazayeri and Movshon (2007) revisited reference repul-
sion again as a new kind of perceptual illusion. The authors also measured
the perceived direction of moving RDP, but different from Rauber and Treue
(1998), who only used cardinal reference directions, they examined the phe-
nomenon with a full spectrum of reference directions, Besides, they instructed
participants to report the direction estimate after completing a fine discrimina-
tion task. In these experiments, a stimulus presentation consisted of a reference
boundary and a stimulus of moving RDP. The stimulus disappeared while the
reference remained presented throughout the trial, and participants were asked
to judge whether the perceived direction of moving RDP was more clockwise
(CW) or counterclockwise (CCW) than the orientation of the reference. Follow-
ing such a discrimination task, participants reported the estimated motion di-
rection of the stimulus by reproducing it with a computer mouse. What Jazayeri
and Movshon found was close to Rauber and Treue’s conclusion: participants
seemed to overestimate the difference between the stimulus and the reference,
resulting in direction estimates repulsive away from the reference boundary.

Jazayeri and Movshon also characterized significant features of such reference
repulsion biases. One feature is that estimated directions were consistent with
preceding discrimination choices. For example, if the subject reported that the
stimulus was more clockwise than the reference beforehand, the direction was
likely to be estimated clockwise to the reference. Moreover, the magnitudes of
the bias depended on the noise of the stimulus and the similarity between the
direction of the stimulus and the reference boundary. The biases were larger for
stimuli with lower motion coherence and for directions of stimuli closer to the
boundary. These findings are characteristic of reference repulsion, which has
been evidenced in various studies, as mentioned below.

1.3.1 At which stages does reference repulsion occur?

The findings of Jazayeri and Movshon (2007) on reference repulsion sparked the
interest among vision researchers, who were not only interested in the phe-
nomenon itself, but also in understanding when and how it occurs. A trial in
Jazayeri and Movshon’s experiments consisted of two successive tasks, thus
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separating it into several stages corresponding to a series of hypothesized pro-
cesses. At the time of stimulus presentation, the visual system encodes the stim-
ulus and subsequently decodes the sensory information with high-level visual
processing. Then, a decision-making process takes over to form the subject’s
response required by the tasks. In which of these stages does reference induce
repulsion? This question could not be answered by Jazayeri and Movshon’s
study because the reference was presented throughout each trial.

To investigate when a reference orientation influences the estimated direction
of the moving RDP, Zamboni et al. (2016) adapted the dual-task paradigm used
in Jazayeri and Movshon (2007)’s study by removing the reference during the
estimation task in which participants reproduced the memorized stimulus. They
found that with this design, no repulsion effects were observed, indicating that
reference repulsion only occurs when the reference is present during the es-
timation phase. The authors further slightly shifted the reference orientation
before the onset of the estimation task, with the hypothesis that such manipu-
lation would not affect estimates if reference repulsion occurs in an early sen-
sory process. Yet, the distribution of estimates shifted with the manipulated
reference. For example, when the reference was shifted 6◦ clockwise from its
original orientation, the distribution of estimates also shifted clockwise, and the
bias was repulsive away from the shifted reference. The authors thus concluded
that an explicit reference cue results in repulsive bias at a late, decision-related
stage rather than in early visual processing.

Recent studies (Luu and Stocker, 2018, 2021) also challenge the hypothesis that
reference repulsion occurs in early sensory processing. Instead, they suggested
that the effect is a post-decision bias resulting from a self-consistency principle
in perceptual inference. The hypothesis posits that reference repulsion arises
from perceptual inference, where a preceding discrimination choice conditions
working memory representations. In other words, the dual tasks in the mea-
surements on reference repulsion are not independent, so that participants rely
on a categorical prior formed in preceding categorical judgments to obtain an
estimate through a perceptual inference process. The hypothesis explained the
observed bias of estimated stimulus orientation being repulsive away from a
reference orientation following a categorical judgment. The authors also found
that the participant’s confidence in their prior knowledge can influence the
strength of the bias, further supporting the theory (Luu and Stocker, 2018).
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In a follow-up study, Luu and Stocker (2021) investigated if a categorical choice
directly modifies working memory representations by measuring the reference
repulsion effect when participants were given feedback about their judgment.
The results showed that, when participants received feedback indicating incor-
rect choices, they were able to flexibly update their categorical judgment and
utilize correct categorical information for the successive estimation. Taken to-
gether, these findings demonstrate that, given sensory presentations remaining
unchanged, the manipulation of subjective categorical judgment can lead to
changes in reference repulsion bias, which highlights the strong relationship
between reference repulsion and perceptual decision-making.

Another recent study (Fritsche and de Lange, 2019) challenges the perceptual
nature of reference repulsion. A bias arising in early visual processing would
influence the perceptual appearance and result in persistent behavioral biases
independent of when the sensory representation is read out. Conversely, a post-
perceptual decision-related bias could be interfered with by manipulation after
stimulus presentation and would depend on when a decision is made. Based on
these assumptions, the authors examined whether a reference orientation cue
could affect the perceptual appearance of an orientation stimulus in a follow-
ing discrimination task. While they observed shifts in the point of subjective
equality (PSE) in orientation discrimination, which suggests the perceived ori-
entation was biased away from the reference, the bias indicated by the PSE shift
showed a profile distinct from the reference repulsion bias in reproduction re-
sponses. This effect seemed to be explained by random trial-by-trial fluctuations
in stimulus measurement rather than a perceptual bias. Therefore, the findings
of this study suggest that, discrimination judgments involving a reference lead
to a post-perceptual bias related to decision-making or working memory, rather
than affecting the perceptual appearance of stimuli.

1.3.2 Open issues in studying reference repulsion

As outlined above, categorical judgment plays a critical role in inducing refer-
ence repulsion, especially when such repulsion bias can be manipulated through
decision-making. However, while several studies have consistently demon-
strated the reference repulsion effect, there has been inconsistency in whether
explicit discrimination choices were involved in corresponding measurements.
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Typical studies investigating reference repulsion used an explicit discrimination
task that is prior to the estimation task (Jazayeri and Movshon (2007), Luu and
Stocker (2018), Experiment 1 in Zamboni et al. (2016)). Other studies, while not
explicitly requesting participants to make categorical judgments (Rauber and
Treue (1998), Experiment 2 in Zamboni et al. (2016), Experiment 3 in Fritsche
and de Lange (2019), Ye and Liu (2020)), may nonetheless result in participants
being exposed to a categorical discrimination task, which could likely influence
their subsequent estimation responses. Such inconsistency indicates that, most
of these studies simply assumed that explicit choices are not necessary to induce
the repulsion effect and lacked rigorous comparison between the effects with
and without explicit choices.

In fact, the presence of an explicit commitment can influence whether under-
lying processes are categorized as explicit or implicit—hinging on whether the
task necessitates conscious and deliberate cognitive effort—and this distinction
may lead to disparate behavioral responses. For example, a recent study has
revealed a dissociation between implicit and explicit encoding of ensemble rep-
resentations (Hansmann-Roth et al., 2021). In the visual search task of an odd-
one-out target, when participants were asked to explicitly report the summary
statistics of the ensemble distractor, their responses showed an underestimation
of the richness of visual representations compared to their implicit assessment.
Therefore, to better understand the mechanisms of reference repulsion, it is
necessary to directly compare the reference-induced biases under explicit and
implicit instructions.

So far, I have focused on reviewing the studies on reference repulsion in two
domains of visual perception: motion directions and orientations. While similar
effects have been found in various processes of perception and cognition, such
as numerical decision-making (Talluri et al., 2018, 2021) and cognitive judgment
(Spicer et al., 2022), it remains unclear whether reference repulsion also occurs
for visual features beyond simple spatial features, such as colors. In color vision,
repulsion effects have been revealed in the contextual modulation of colored
surrounds on hue stimuli (Klauke and Wachtler, 2015, Kellner and Wachtler,
2016). The repulsion not only shows similarities to the tilt effect in orienta-
tion perception (Gibson and Radner, 1937, Clifford, 2014), but also suggests the
possibility of resembling the reference repulsion effects. The surrounding envi-
ronment may implicitly act as a reference, potentially causing repulsive biases
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without requiring participants to make any discrimination decisions or report
them explicitly. It is thus essential to systematically measure the repulsion from
an explicit color reference, which may also help determine whether reference
repulsion reflects common contextual information processing across different
visual features.

1.4 Modeling reference repulsion

low
medium
highsensory 

representation

(re-)weighting
function 

reweighted
representation 

noisenoise

Figure 1.7: Encoding-decoding model of reference repulsion: The reweighted
representations are the results of combining sensory representations with the
reweighting function. Sensory representations are Gaussian functions with
three noise levels. The solid gray lines represent the values of the true stim-
ulus. The reweighting function is a mixture of two symmetric Gamma density
functions that center around the reference boundary at the dashed gray line.
The green dots in the bottom figures indicate the reweighted representation.

Parallel to the behavioral measurements of the reference repulsion phe-
nomenon, several studies have adopted modeling approaches to uncover the un-
derlying mechanisms. Jazayeri and Movshon (2007) introduced the first model
to explain reference repulsion, which was based on a preceding hypothesis
about how sensory information was decoded from neural population codes
(Jazayeri and Movshon, 2006). The theory of population coding posits that sen-
sory information is encoded by populations of neurons (Pouget et al., 2000). To
decode the information, the brain needs to compute the likelihood of the stim-
uli that are consistent with the sensory response. The model in Jazayeri and
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Movshon (2006)’s study considers the likelihood function as a weighted sum
of sensory neuron responses, in which the activity of each neuron is weighted
by the log of its own tuning function. The model was able to explain various
psychophysical data and predict the underlying neuronal contributions. No-
tably, in a fine discrimination task where two alternative stimuli are similar, the
model predicts that discrimination depends more on the contribution of neu-
rons tuned away from the two alternatives than on neurons with preferences
near the two alternatives.

Based on these predictions, Jazayeri and Movshon (2007) proposed that refer-
ence repulsion results from a strategy for decoding sensory information, where
the responses of sensory neurons are weighted based on their contribution
to discrimination (Fig. 1.7). Specifically, the neurons with direction prefer-
ences moderately shifted towards the sides of a reference boundary are given
the highest weight in this strategy. The corresponding decoding model thus
plays the role of a reweighting function, with a profile that peaks moderately
shifted towards the sides of the boundary and can be implemented, for exam-
ple, as a gamma probability density function. The brain uses the product of the
reweighting function and the sensory representation of a stimulus to estimate
a stimulus, resulting in estimates that are biased away from the boundary. The
model successfully predicted the psychophysical data in multiple experiments,
although with different interpretations of the underlying processes (Jazayeri
and Movshon, 2007, Zamboni et al., 2016).

Recent studies have proposed alternative models to explain reference repulsion.
For example, Luu and Stocker (2018) adopted a Bayesian model of conditioned
perception (Stocker and Simoncelli, 2007), based on the assumption that percep-
tion is conditioned on the preceding decision and follows self-consistency. This
Bayesian observer model suggests that the brain infers an estimate by combin-
ing a categorical prior formed in the preceding discrimination with the sensory
representation of a stimulus. Another study (Ye and Liu, 2020) explained the ref-
erence repulsion bias with a variable-precision encoding model, in which the
encoding precision linearly decreases with increasing the difference between
the stimulus and reference orientation. These two models could account for the
repulsive bias in corresponding results, although they may subject to particular
premises such as an explicit discrimination choice (Luu and Stocker, 2018) or
particular stimulus settings (Ye and Liu, 2020).
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1.5 Aim of the thesis

As discussed above, contexts can bias visual percepts, as observed in various
types of contexts and explained by different computational models. Examining
how context induces bias has shed light on how the brain processes sensory
information. However, there are still unanswered questions about the mecha-
nisms of contextual information processing and the commonalities of contex-
tual biases across different visual features. This thesis aims to address some of
these issues through behavioral and modeling findings, focusing on two visual
features, color and orientation, and two specific types of biases arising respec-
tively from natural or instructive contexts.

The first study presented in Chapter 2 aims to reveal the perceptual bias of color
discrimination and explain color perceptual properties using Bayesian models.
The study extends the notion of natural prior from other visual perception do-
mains to color perception. The hypothesis is that observers may utilize color
information of natural environments and form a prior that favors particular
hues, such as those occurring predominantly under natural conditions, leading
to a systematic perceptual bias. Therefore, we measured the perceptual proper-
ties of hue discrimination to recover an internal prior for hue perception.

The other two studies focus on reference repulsion, a controversial task-specific
bias. The study in Chapter 3 assesses at which stage of contextual information
processing reference repulsion occurs. We adopted a paradigm where an ori-
entation reference was presented successively to the disappearance of an ori-
entation stimulus. If reference repulsion arises from an early sensory process,
such a post-stimulus reference would not bias the subject’s estimate of orien-
tation stimulus. Moreover, we designed two task conditions to compare the
effects between implicit and explicit processes and sought explanations from
an encoding-decoding observer model.

In Chapter 4, we examined whether reference repulsion is a common phe-
nomenon of contextual bias for orientation perception and color perception.
We designed an experiment to measure the subject’s estimates of hue stimuli
following an explicit comparison between the stimulus and a color reference.
Another goal of this study is to assess the non-uniformity in hue perception
by comparing the effects among different hues. The expectation is that, in line
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with the other visual features, an encoding-decoding model could explain the
repulsion effects and predict perceptual non-uniformities.
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A Bayesian observer model reveals a prior for natural daylights in 
hue perception 
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A B S T R A C T   

Incorporating statistical characteristics of stimuli in perceptual processing can be highly beneficial for reliable 
estimation from noisy sensory measurements but may generate perceptual bias. According to Bayesian inference, 
perceptual biases arise from the integration of internal priors with noisy sensory inputs. In this study, we used a 
Bayesian observer model to derive biases and priors in hue perception based on discrimination data for hue 
ensembles with varying levels of chromatic noise. Our results showed that discrimination thresholds for iso-
luminant stimuli with hue defined by azimuth angle in cone-opponent color space exhibited a bimodal pattern, 
with lowest thresholds near a non-cardinal blue-yellow axis that aligns closely with the variation of natural 
daylights. Perceptual biases showed zero crossings around this axis, indicating repulsion away from yellow and 
attraction towards blue. These biases could be explained by the Bayesian observer model through a non-uniform 
prior with a preference for blue. Our findings suggest that visual processing takes advantage of knowledge of the 
distribution of colors in natural environments for hue perception.   

1. Introduction 

The dynamic and statistical nature of the sensory environment poses 
challenges for sensory processing and perception. Sensory responses to 
the same stimulus can differ, and different stimuli can cause similar 
sensory stimulation. However, the natural sensory world is not entirely 
random but exhibits regularities, and exploiting such regularities can 
help an organism make useful decisions and efficient actions. Achieving 
this, however, requires that knowledge about the sensory environment is 
incorporated in sensory processing. 

That sensory processing might utilize knowledge about regularities 
of the world can be traced back to von Helmholtz’s idea of ‘unconscious 
inference’ (von Helmholtz, 1867). In recent decades, the development of 
the Bayesian inference framework suggests that incorporating prior 
knowledge can significantly enhance the reliability of perceptual esti-
mation, especially when the input signals are corrupted by noise (Knill & 
Pouget, 2004; Shi et al., 2013). The Bayesian inference framework has 

successfully accounted for perceptual performance in object perception 
(Kersten et al., 2004), multi-sensory integration (Ernst & Banks, 2002), 
sensorimotor learning (Körding & Wolpert, 2004), visual speed 
perception (Stocker & Simoncelli, 2006), visual orientation perception 
(Girshick et al., 2011; Su et al., 2023), and time perception (Shi & Burr, 
2016; Glasauer & Shi, 2022). 

In the case of orientation perception, Bayesian approaches have 
revealed that human observers’ perceptual judgments are systematically 
biased towards cardinal orientations (Girshick et al., 2011). The corre-
sponding prior matched the non-uniform distribution of orientation in 
natural scenes, where orientations near the cardinals have a higher 
incidence than oblique orientations (Girshick et al., 2011). Non- 
uniformities in the statistics of natural sensory signals also exist in the 
domain of color. For example, distributions of cone-opponent signals in 
natural scenes show a correlation between S-(L + M) and (L-M) co-
ordinates (Webster & Mollon, 1997; Wachtler et al., 2001; Nascimento 
et al., 2002; Webster et al., 2007), indicating a dominance of contrasts 
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along an oblique color space axis that corresponds to the variation of 
natural daylights. Analyzing human color perception in a Bayesian 
framework may provide insights into how human color perception is 
adapted to such non-uniformities in the chromatic properties of the 
natural environment. 

In the Bayesian framework, an observer’s statistical inference is 
influenced by two key components: the likelihood, which is the proba-
bility of sensory measurements given a stimulus, and the prior, which 
reflects the observer’s prior knowledge about stimulus probabilities 
(Knill & Pouget, 2004). Optimal integration of the two components re-
sults in a posterior density function that represents the probability of the 
stimulus given the measurements. Common choices for an optimal 
observer when selecting a point estimate of the posterior include the 
mode (maximum a posterior, MAP) or the mean (Stocker & Simoncelli, 
2006). 

A common difficulty encountered in the Bayesian inference frame-
work lies in measuring likelihood and prior, which are not directly 
accessible. Stocker and Simoncelli (2006) proposed a method to recover 
likelihood and prior from psychophysical measurements of perceptual 
bias and variability. Specifically, these measurements were obtained 
from discrimination between stimuli with different noise levels, corre-
sponding to different widths of the likelihood. According to the Bayesian 
inference framework, this results in different posterior distributions. 
When the likelihood does not align with the prior, the larger the noise, 
the larger the shift in the posterior induced by the prior (Fig. 1). Girshick 
et al. (2011) used this approach to investigate orientation perception 
and revealed a prior that peaked at the cardinal orientations, suggesting 
that visual perception may involve prior information regarding the 
regularities of natural scene structures. 

To investigate how prior knowledge is integrated into color pro-
cessing, we closely followed the approach by Stocker and Simoncelli 
(2006) and Girshick et al. (2011), applying the Bayesian framework in 
hue perception. We measured perceptual variability and biases of ob-
servers in the discrimination of noisy hue ensembles and used a Bayesian 
model to recover their priors. 

2. Methods 

2.1. Participants 

Six observers, (two males and four females), ranging in age from 23 
to 56 years, participated in the experiments. Four of the subjects had no 
knowledge with respect to the purpose of the study, while two were 
authors. All had normal or corrected-to-normal vision. Participants 
signed informed consent prior to the experiment and received a 
compensation of 10 Euros per hour. The study was conducted in 
accordance with the Declaration of Helsinki. 

2.2. Stimuli 

Stimuli were presented on a ViewPixx Lite 2000A display (VPixx, 
Saint-Bruno, QC, Canada), calibrated by a PR-655 spectroradiometer 
(PhotoResearch, Chatsworth, CA, USA) and controlled by a Radeon Pro 
WX 5100 graphics card (AMD, Santa Clara, CA, USA) in a HP Compaq 
Elite 8300 desktop computer running Ubuntu Linux 20.04. The screen 
resolution was set to 1920 × 1200 pixels at a refresh rate of 120 Hz. 
Stimuli were generated using PsychoPy 2020.1.2 (RRID:SCR_006571, 
Peirce et al., 2019) based on Python 3.6 (RRID:SCR_008394). 

Chromaticities of the stimuli were defined in an opponent cone 
contrast color space, similar to the one used by Derrington et al. (1984), 
but with the polarity of the y-axis defined such that positive values 
corresponded to increasing S-cone stimulation, in line with MacLeod 
and Boynton (1979). The x-axis corresponded to increasing L-cone 
excitation and decreasing M-cone excitation (L-M), such that the sum of 
L and M remained constant. Cone excitations were estimated based on 
the Stockman and Sharpe (2000) cone fundamentals. Cone contrasts 
were calculated with respect to a neutral gray (CIE [x, y] = [0.307, 
0.314], 106.7 cd/m2), which also served as the display background on 
which stimuli were presented and to which subjects were adapted. The 
cone excitations corresponding to this reference gray served as starting 
values from which resulting cone excitations for a given stimulus were 
calculated according to its cone contrasts. L-M cone contrasts were 
measured as the sum of the contrast of L and M cones. S-cone contrasts 
were scaled by a factor of 2.6, yielding approximately equally salient 
stimuli for all hues at a given cone contrast (Teufel & Wehrhahn, 2000). 

To account for individual differences in luminance perception, the 
color space plane that each subject perceived as isoluminant with the 
reference gray was determined using the method of Teufel and Wehr-
hahn (2000). Isoluminance points for 16 stimuli of different hues were 
determined using heterochromatic flicker photometry (Kaiser & Boy-
nton, 1996). Fitting a plane through the reference gray to these data 
yielded an estimate of the individual isoluminant plane for the respec-
tive observer. The individual luminance corrections relative to the 
nominal isoluminant plane were less than 4%. 

All stimuli used were isoluminant and had a fixed cone contrast of c 
= 0.12 with respect to the neutral gray background. Thus, stimuli varied 
only in azimuth angle, corresponding to hue (Fig. 2a). Note that scaling 
the S axis with respect to the L-M axis will affect the numerical values of 
hue angles for stimuli not aligned with a coordinate axis, but will not 
change their respective quadrants in the isoluminant plane. Each stim-
ulus presentation consisted of a reference stimulus, a comparison stim-
ulus, and a color gradient bar as a hue sequence reference (Fig. 2b). This 
color gradient was introduced to provide a direction of hue change, 
because, in contrast to orientation judgments, for hue there is no 
perceptual quality corresponding to clockwise vs. counterclockwise 
rotation. The gradient bar indicated from left to right increasing hue 

Fig. 1. Illustration of Bayesian inference in hue perception (after Stocker and Simoncelli, 2006). The same prior integrates with the likelihoods for two stimuli with 
different noise levels. Left: A stimulus with a low level of noise results in a narrow likelihood and thus a small shift of the posterior. Right: A stimulus with a high level 
of noise results in a wide likelihood and thus a large shift of the posterior. 
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changes along the color space azimuth (Fig. 2a-b). Both reference and 
comparison stimuli consisted of arrays of 16 circular patches with di-
ameters of 0.75◦ of visual angle, evenly spaced on a 4 × 4 grid extending 
3◦ × 3◦ of visual angle. Within each stimulus, the circular patches were 
randomly positioned on the grid of the array. The color gradient bar had 
an extent of 12◦ × 1.5◦ of visual angle. 

On a neutral gray background (46.01◦ × 29.68◦), a fixation cross 
(0.6◦ × 0.6◦) was presented at the screen center. The color gradient bar 
was presented on the upper part of the screen, 5◦ above the center. 
Reference and comparison stimuli were placed 3◦ left and right from the 
fixation cross, with the sides of reference and comparison stimulus 
assigned trial-by-trial in a pseudo-random fashion such that their posi-
tions were balanced within each session. 

For both reference and comparison stimuli, the hues of the circular 
patches either were identical (low-noise stimuli) or were drawn from a 
uniform distribution with a range (noise level) that was individually pre- 
determined for each subject to yield thresholds twice as large as the low- 
noise stimuli (high-noise stimuli, see below). The reference hues, θr, 
were evenly spaced along the azimuth of color space at 45◦ intervals 
from 22.5◦ to 337.5◦. For each θr, the corresponding color gradient bar 
was filled by 45 evenly spaced hue angles from θr - 30◦ to θr + 30◦. 

2.3. Procedures 

During the experiment, the participant sat in a dimly lit room and 
viewed the display binocularly from a viewing distance of 57 cm. A 
central fixation cross was displayed and participants had to maintain 

their eyes on the fixation throughout the entire trial. 
Each trial started with the presentation of the color gradient bar to 

indicate the range of hues to be tested. After 500 ms, the reference 
stimulus and the comparison stimulus were presented simultaneously 
for 500 ms, followed by a 500-ms full-screen checkerboard pattern of 
random chromatic squares (1.3◦ × 1.2◦) to prevent afterimages of the 
stimuli. Participants were instructed to compare the two stimuli and 
indicate whether the ensemble hue averages of the arrays from left to 
right matched the direction of color change shown by the color gradient 
bar. Responses were given by pressing the up or down arrow key with 
the right hand. There was no time constraint on the response. Average 
response times were within one second. 

For a given reference stimulus, its average hue and corresponding 
color gradient bar remained unchanged across trials, while the absolute 
hue difference between the reference hue and the average hue of the 
comparison stimulus was adjusted by a 1-up/2-down staircase that 
increased the absolute hue difference after every incorrect response and 
decreased the absolute hue difference after every two consecutive cor-
rect responses. Note that, for a given reference, there were two inde-
pendent 1-up/2-down staircases to adjust the comparison stimuli whose 
average hues were smaller and larger than the reference, respectively. 
Two same-noise conditions, low-noise versus low-noise (L-L) and high- 
noise versus high-noise (H-H), and one cross-noise condition, low- 
noise versus high-noise (L-H), were tested in the experiments. In the 
cross-noise condition, the reference stimulus was always the low-noise 
stimulus. 

Following the approach of Girshick et al. (2011), prior to the main 

Fig. 2. Stimuli and psychometric functions. (a) Stimulus chromaticities. All stimuli were defined in the isoluminant plane with fixed chromatic contrast and thus 
varied only in azimuth angle, corresponding to hue (colored circle). Eight hues with equidistant azimuth angles θ (gray open dots) were defined as reference hues. (b) 
Example of a stimulus display. Participants were asked to compare two arrays of color patches, presented on the left and right sides of fixation, and to indicate 
whether their respective average hues matched the direction of hue changes that was indicated by the color gradient bar at the top of the display. (For this example, 
the correct response should be ‘No’, given that the hue averages of the arrays from left to right do not match the direction of hue changes indicated by the color 
gradient bar). The figure shows the cross-noise condition with a high-noise array on the left and a low-noise array on the right. Note that hue differences have been 
exaggerated in the figure for illustrative purposes. (c) Examples of psychometric functions for the three noise conditions. Proportions of responses indicating the 
subject perceived the hue angle of the comparison stimulus (θc) as larger than the hue angle of the reference stimulus (θr) are plotted as a function of the difference 
between the hue angles θc and θr . Data are from a single subject’s responses with θr = 112.5◦ for the three noise conditions L-L (left), H-H (center), and L-H (right). 
Error bars of the data points denote standard error. Solid lines show cumulative Gaussian functions fitted to the data. Dashed lines denote 25%, 50%, and 75% values. 
Horizontal error bars around the estimated 50% points denote 68% confidence intervals. Deviance values represent the goodness of fit. 
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experiment, we determined each participant’s level of hue variance for 
the high-noise stimulus, ensuring the H-H discrimination thresholds 
were about twice as large as L-L discrimination thresholds. We selected a 
reference hue angle of 135◦, as thresholds for this hue were at inter-
mediate levels. For each participant, we measured the discrimination 
threshold (dL) of this stimulus in the L-L condition by fitting a cumula-
tive Gaussian function to the psychophysical data. Next, we fixed the 
reference and comparison stimuli at 135◦ and 135◦ + 2dL, respectively, 
adjusting the hue noise of both stimuli using a 1-up/2-down staircase to 
achieve 75% accuracy based on the psychometric function. The deter-
mined noise levels (21.2◦,20.1◦,24.5◦,20.1◦,22.2◦, and 24.4◦ for the six 
subjects, respectively) were used for the high-noise stimuli in the main 
experiment. Note that these measurements were only used to determine 
the hue variances and excluded from other analyses. 

In the main experiment, each session consisted of 128 trials, in which 
the first 8 trials were warm-up trials with random hues and were 
excluded from further analysis. Within each session, two reference 
stimuli with 180◦ difference in their mean hue angles, were randomly 
interleaved. Prior to the formal experiment, participants completed four 
practice sessions with feedback about the correctness of their responses 
given as text emojis (“:)” or “: (” for correct and incorrect responses, 
respectively). The feedback was only given in the practice sessions but 
not in the formal experiment. Each participant performed 5760 trials 
divided into 24 conditions (8 reference stimuli × 3 comparison condi-
tions) over 48 sessions. 

2.4. Data analysis 

2.4.1. Estimation of perceptual variability and bias 
The psychophysical data were analyzed separately for each subject. 

In addition, data for a hypothetical average observer were obtained by 
pooling all subjects’ data. For the data of each condition, we fitted a 
cumulative Gaussian function (Fig. 2c) using non-linear least square 
minimization with the Nelder-Mead algorithm (Gao & Han, 2012) and 
determined its mean, representing the point of subjective equality (PSE) 
and the standard deviation, representing the just noticeable difference 
(JND). PSE and JND thus reflected perceptual bias and perceptual 
variability, respectively. 

2.4.2. Estimation of the measurement distributions and the likelihood 
functions 

The measurement distribution is the conditional distribution p(m|θ)
and corresponds to the likelihood of a sensory measurement m given a 
particular stimulus hue angle θ. For each stimulus θ we estimated the 
measurement distribution as a von Mises distribution with a peak at θ 
and the concentration parameter κθ, thus 

p(m|θ) =
e(κθ cos(θ− m))

2πi0(κθ)
, (1)  

where i0(κθ) is the modified Bessel function of order 0. The concentra-
tion parameter κθ represents the measurement noise and is converted 
from the corresponding perceptual variability J(θ) by κθ = J− 2(θ). For 
each same-noise condition (L-L and H-H),we estimated J(θ) by fitting 
each subject’s JNDs as a sine mixture function of the hue angle θ: 

J(θ) = a(sinθ+ sin2θ) + b. (2) 

With periods of 180◦ and 360◦, the two sine functions allow 
capturing both the periodicity and asymmetry of the JND patterns. The 
parameters a and b were estimated using non-linear least squares 
minimization. 

To avoid any constraint of predefined shapes in estimating the 
likelihood, we adopted a sampling method based on representing the 
measurement distribution and the likelihood function as a two- 
dimensional function (Girshick et al., 2011), where the vertical dimen-
sion represented measurement distributions centered on particular 

stimulus hue angles θ, and the horizontal dimension represented likeli-
hood functions of θ given particular measurements m. Thus, a single 
measurement from the measurement distribution resulted in a likeli-
hood given by the corresponding horizontal slice of the two-dimensional 
function. 

2.4.3. Estimation of the priors 
To estimate the prior, we considered unimodal as well as alternative 

multimodal models. As model of the unimodal prior p(θ) we chose a von 
Mises function (Eq. 1), which guarantees that the prior had a period of 
360◦ and an integral of 1. We determined the prior by fitting the esti-
mation of a Bayesian observer to the behavioral data under the cross- 
noise condition (Girshick et al., 2011). We assumed that the Bayesian 
observer encodes with sensory noise and gives distributed measure-
ments m(θ) for repeated presentation of the same stimulus θ. Each 
measurement leads to a likelihood function, which is multiplied by the 
prior to obtain a maximum a posterior (MAP) estimate at the decoding 
phase. Note that, an alternative to the MAP estimate is the mean of the 
posterior; however, we opted for the MAP estimate in alignment with 
the approach outlined by Girshick et al. (2011). The MAP estimate thus 
represents the observer’s estimate θ̂ of the stimulus θ. Therefore, the 
measurement distribution of a stimulus results in a distribution of MAP 
estimates. The discrimination task was simulated by comparing two 
MAP estimate distributions according to signal detection theory (Green 
& Swets, 1966), yielding a single point on the simulated psychometric 
function. 

According to the Bayesian inference framework, non-negligible 
biases reflecting the prior should only be observed in the cross-noise 
condition in our experiments (Fig. 1). Thus, we fitted the observer 
model to the cross-noise biases to obtain the optimal parameters of the 
prior. For each participant, we simulated 1000 trials for each stimulus 
pair of the cross-noise comparison data. For every paired low-noise and 
high-noise stimuli, 1000 samples each were drawn from two corre-
sponding measurement distributions with centers at mL and mH, and 
concentration parameters κL and κH, respectively. Each sample gener-
ated a likelihood function that was combined with the prior and led to an 
estimate of the stimulus. The two distributions formed by the 1000 es-
timates each were compared, resulting in a response probability given 
the corresponding stimulus pair. We then obtained a model-generated 
psychometric function by fitting a cumulative Gaussian function to the 
simulated data. 

We evaluated the prior model by computing the likelihood of the 
cross-noise data given the model-generated psychometric function. The 
optimal parameters of the prior for each subject were estimated by 
maximizing the overall likelihood. We performed bootstrapping on each 
subject’s binary responses for each stimulus pair 100 times and esti-
mated the priors given the bootstrapped data. The point-wise standard 
deviation of the 100 estimated priors was taken as the uncertainty of the 
estimates. We further assessed the model by comparing its performance 
with the performance of a model with a uniform prior. We evaluated the 
performance of the model by a normalized difference of log-likelihood to 
the model with the uniform prior, 

L =
Lest − Luni

Lraw − Luni
, (3)  

where Lest and Luni represent the log likelihoods of the models with the 
estimated prior and the uniform prior, respectively, and Lraw represents 
the log likelihoods of the raw psychometric fits. Thus, L = 0 corresponds 
to the model with a uniform prior and L = 1 corresponds to the raw 
psychometric fits. Given the difference in the degrees of freedom be-
tween the estimated prior and the uniform prior, we also calculated the 
Akaike Information Criterion (AIC) scores (Akaike, 1998) of the models. 

To validate the unimodality of the prior model, we also modeled two 
alternative priors by normalized sine functions with periods of 360◦ and 
180◦, respectively, and determined the prediction performance of the 
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observer models with these priors. While we cannot exclude the possi-
bility of other forms of alternative priors, the 180◦ sine model enables 
describing multimodal priors while keeping the number of parameters 
well below the number of sample points in our data. Furthermore, 
perceptual quantities such as thresholds and biases often show sym-
metries in color space (Danilova & Mollon, 2010; Klauke & Wachtler, 
2015), and our data of variability and bias (see Results) were in line with 
such symmetry. Therefore, a prior with 180◦ periodicity seems the most 
promising model for a multimodal prior. 

3. Results 

3.1. Behavioral results 

We used two-alternative forced-choice discrimination experiments 
to measure perceptual variability and bias in hue perception. We tested 
three conditions for each measured hue: two same-noise conditions 
(low-noise versus low-noise, L-L, and high-noise versus high-noise, H- 
H), and one cross-noise condition (low-noise versus high-noise, L-H). 
The purpose of adopting these conditions was grounded in the Bayesian 
inference framework, which posits that, assuming the same prior, biases 
would not differ between stimuli with the same noise level but would 
increase with the noise level (Fig. 1). Thus, the same-noise conditions 
enabled measuring the perceptual variability of stimuli with specific 
noise levels, while the data in the cross-noise condition could potentially 
reveal the effect of a prior through a cross-noise bias, that is, a difference 
between the low- and the high-noise bias. 

We fitted the psychometric data for hue discrimination across 
varying noise conditions with cumulative Gaussian functions (see Fig. 2c 
for examples). The goodness of the psychometric fit was measured by 
deviance (Wichmann & Hill, 2001) and was comparable across subjects 
(0.94 ± 0.38 for the L-L condition, 1.03 ± 0.34 for the H-H condition, 
and 1.17 ± 0.61 for the L-H condition). Based on the estimated psy-
chometric function, we used the standard deviation of the cumulative 
Gaussian function as the just noticeable difference (JND) and calculated 
the point of subjective equality (PSE) at the threshold of 50%. These 
values reflected the discrimination thresholds and bias of each partici-
pant, respectively. In addition, we determined the results for a hypo-
thetical average subject whose data were from pooled trials of all 
subjects. This average subject showed an average performance: there 
was no significant difference between the average subject’s psycho-
physical estimates and the mean values of all subjects’ psychophysical 
measurements (sign test p = 0.44 for discrimination thresholds, sign test 
p = 0.68 for biases). 

3.1.1. Discrimination thresholds 
Under the same-noise conditions, discrimination thresholds as a 

function of hue angle typically exhibited a bimodal pattern (Fig. 3a). On 
average, across subjects, the L-L condition had two local minima at hue 
angles of 101.3◦ ± 22.5◦ and 298.1◦ ± 28.8◦ (see Figs. S1 and S2), and 
two local maxima occurred at 49.5◦ ± 24.6◦ and 170.4◦ ± 21.9◦. Fitting 
a sine mixture model to the discrimination thresholds yielded similar 
hue angles corresponding to these extrema (local minima at 97.3◦ ±

28.4◦ and 290.7◦ ± 18.1◦, and local maxima at 39.4◦ ± 47.1◦ and 
186.7◦ ± 23.6◦, averaged across subjects; Fig. 4a-b, also see Fig. S4a). 

The bimodal pattern of discrimination thresholds, with the lowest 
thresholds near an oblique blue-yellow axis, is in line with the results of 
previous studies (Danilova & Mollon, 2010; Witzel & Gegenfurtner, 
2013). In the H-H condition, thresholds were significantly higher than in 
the L-L condition (sign test p < .001) but the bimodal pattern persisted, 
however two of the subjects (S2 and S6) showed inconsistent maxima 
and minima between the conditions (Fig. S1). The cross-noise condition 
(L-H) typically yielded intermediate discrimination thresholds (Fig. 3b). 
Of the L-H discrimination thresholds, 82.5% were higher (sign test 
p < .001) than the corresponding L-L discrimination thresholds, and 
90.0% were lower (sign test p < .001) than the H-H discrimination 

thresholds. 

3.1.2. Biases 
We observed non-negligible bias only under the cross-noise condi-

tion (L-H) for all subjects (Fig. 3c; also see Fig. S3 for the same-noise bias 
results), which matches our prediction based on the Bayesian inference 
framework: assuming the same prior for perceptual inference, biases 
would only differ among stimuli with different noise levels. Given that in 
the cross-noise condition the low-noise stimulus always served as the 
reference stimulus, with fixed hue across trials, the cross-noise bias 
shown in Fig. 3c represents the perceptual bias of the high-noise stim-
ulus relative to the low-noise stimulus. Averaged across subjects, the 
biases showed a minimum of − 5.6◦ ± 3.1◦ and a maximum of 
5.5◦ ± 2.9◦. Among the biases, 88.9% of the negative values corre-
sponded to hue angles within the range of 112.5◦ to 292.5◦, and 85.7% 
of the positive values were at the hue angles smaller than or equal to 
112.5◦, or larger than or equal to 292.5◦, which indicated bias zero- 
crossings along an oblique blue-yellow axis. Specifically, zero- 
crossings occurred at the hue angles within 45◦ around 112.5◦ and 
within 45◦ around 292.5◦, except for one subject whose zero-crossings 
did not fall within the hue angles of 112.5◦ ± 45◦. Around the zero- 
crossings, biases were attractive towards blue hues (near 112.5◦) and 
repulsive away from yellow hues (near 292.5◦). Most subjects exhibited 
two zero-crossings, around 112.5◦ and 292.5◦, respectively. The two 

Fig. 3. Experimental data for subject S3 (left) and the average subject (right). 
(a) Hue discrimination thresholds (JNDs) under the same-noise condition. (b) 
Hue discrimination thresholds under the cross-noise condition. (c) Biases under 
the cross-noise condition, measured as hue angle differences between the high- 
noise and low-noise stimuli at the PSE. Bars denote one standard error of 
the estimates. 
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subjects that had inconsistent discrimination thresholds across condi-
tions showed additional bias zero-crossings around 157.5◦ (see S2 and 
S6 in Fig. S1). According to the Bayesian observer model, perceptual bias 
arises when the prior is non-uniform over the stimulus space and mis-
aligned with sensory measurements. This prediction matches our ob-
servations of non-zero cross-noise bias, suggesting non-uniformity of the 
perceptual prior. 

Since our color space is not perceptually uniform, we expect some 
bias to arise from the variation of discrimination thresholds. If changes 
in thresholds occur over a scale of hue angles comparable to the hue 
range of the noisy stimulus arrays, then the perceived ensemble average 
for a given stimulus may vary depending on the noise level. To deter-
mine the contribution of threshold non-uniformities to observed bias, we 
simulated the effect of non-uniform thresholds when the paired cross- 
noise stimuli had identical central hues of the ensemble. For each sub-
ject, we multiplied the hue angle differences between the hues in the 
high-noise stimuli and the central hue of the ensemble by the inverse of 
the fitted JNDs (see Modeling Results and Fig. 4a-b). Thus, we mapped 
the stimuli to a scale where hue differences were represented as multi-
ples of discrimination thresholds and then computed the hue averages of 
the scaled stimuli. This resulted in biases that varied systematically with 
hue angle, corresponding to the variation in discrimination thresholds. 
However, their magnitudes were considerably smaller than the observed 
cross-noise bias (Fig. S1). Averaged across observers, the biases arising 
from threshold non-uniformities showed maximal magnitudes of 
0.91◦ ± 0.78◦, that is, less than 20% of the magnitudes of the experi-
mentally measured biases. Thus, the variation of discrimination 
thresholds had a negligible influence on the cross-noise biases. 

Taken together, we found that hue discrimination thresholds fol-
lowed a bimodal pattern, with observers showing the best discrimina-
tion for bluish and yellowish stimuli. The introduction of chromatic 
noise resulted in increases in discrimination thresholds and cross-noise 
biases. The observed biases were attractive towards blue and repulsive 
from yellow, indicative of non-uniform priors. 

3.2. Modeling results 

To determine priors employed by observers, we used a Bayesian ideal 
observer model and optimized prior parameters to predict behavioral 
hue judgments. The model connects two behavioral measur-
ements—discrimination threshold and bias—to two Bayesian compo-
nents—likelihood and prior. Specifically, the stimulus uncertainty was 
propagated from the measurement distribution to the posterior distri-
bution, resulting in perceptual variability (Girshick et al., 2011). In line 
with this model, measurement distributions and likelihood functions 
were computed from the fitted same-noise variabilities. When stimulus 
noise increased the threshold, the widths of the corresponding mea-
surement distribution and likelihood function were also increased 
(Fig. 4, see also Fig. S4). We assumed the ideal observer’s estimates of a 
particular stimulus θ corresponded to maximum a posteriori (MAP) es-
timates θ̂ resulting from multiplying the likelihood function with a prior 
at the Bayesian decoding stage. We simulated each subject’s cross-noise 
data by comparing each pair of MAP estimate distributions (θ̂L and θ̂H). 
The prior was modeled as a von Mises function, and the prior parameters 
were obtained by maximizing the likelihood of the experimental data 
given the simulation-generated psychometric function. 

Most individual subjects’ priors, as well as the prior of the average 
subject, peaked in the second quadrant, corresponding to positive S and 
M cone contrasts and negative L cone contrast, that is, colors that appear 
bluish. These priors were large and had comparatively narrow peaks 
with standard deviations between 19.3◦ and 33.1◦ (Fig. 5 and Fig. S5). 
The two subjects whose discrimination thresholds were inconsistent 
across noise levels and whose biases showed more than two zero 
crossings had priors that peaked in the fourth quadrant (Fig. S5). These 
priors were shallow and relatively broad, with standard deviations of 
37.7◦ and 48.4◦. None of the priors peaked in the first or third quadrant. 

The confinement of priors to the second and fourth quadrants is in 
line with both the distribution of natural spectra and perceptual prop-
erties. Natural spectra vary mainly along the daylight locus, which 

Fig. 4. Threshold fits and estimated likelihood functions in the same-noise conditions. (a and b) Fitted JNDs of subject S3 (a) and the average subject (b). JND 
estimates are from the data shown in Fig. 3, error bars indicate one standard error. The dark and light gray lines are the fitted JNDs for the L-L and the H-H 
conditions, respectively. The gray shaded area indicates 68% confidence intervals of fitted JNDs. (c and d) Estimated likelihood functions of subject S3 (c) and the 
average subject (d). Each horizontal slice of the two-dimensional function represents a likelihood function of stimulus hue angle θ given a particular measurement m, 
and each vertical slice represents a measurement distribution centered on a particular θ. The gray level represents corresponding probability densities. 
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covers the range from long-wavelength-dominated sunlight to short- 
wavelength-dominated light from the blue sky (Wyszecki & Stiles, 
1982). The daylight locus aligns closely with a perceptual blue-yellow 
axis connecting wavelengths of 476 nm and 576 nm on the spectral 
locus (Mollon, 2006). This axis has an angle of 112◦ in our color space. 
The cross-subject average of the hue angles of prior peaks was 107.3◦ ±

26.7◦ (SE). The estimated prior for the average subject had its peak at 
115.2◦ ± 19.9◦ (Fig. 5, right). 

The elongation of the distribution of natural colors along an oblique 
axis in color space is paralleled by a perceptual non-uniformity: 
Discrimination thresholds are higher along this axis than perpendic-
ular to it. This relation between natural stimulus statistics and percep-
tion is nicely illustrated by comparing the color gamut of natural scenes 
and colors from the Munsell palette plotted in the same color space (see 
Fig. 5 in Webster, 2020). The distribution of our priors is in line with this 
picture, while at the same time emphasizing an asymmetry in favor of 
blue over yellow. 

To assess the effectiveness of the encoding–decoding model with the 
estimated prior, we compared its performance in predicting the cross- 
noise bias against a model with a uniform prior. The model with the 
estimated prior was found to be better at predicting both the sign and 
amplitude of the cross-noise bias than the model with the uniform prior 
(Fig. 6a-b). Across all subjects, the normalized log-likelihoods indicated 
that the estimated prior outperformed the uniform prior (Fig. 6c). 
Furthermore, when comparing the two prior models using Akaike In-
formation Criterion (AIC) scores (Akaike, 1998), we found that the 
estimated prior consistently performed better than the uniform prior 

(Table S1). Additionally, modeling the prior as a normalized sine func-
tion yielded similar results, with the estimated prior peaking around the 
blue hue (119.1◦ ± 28.6◦ (SE), averaged across subjects, see Fig. S7). 
Note that the sine function had a constrained period of 360◦ and thus 
exhibited a single peak over the hues. Its prediction performance was 
better than a bimodal sine function with period 180◦ (Fig. S7), which 
confirmed the unimodality of the prior. 

In summary, these results indicate that the observers used a non- 
uniform prior related to the oblique blue-yellow axis. Specifically, the 
average prior showed the highest probability at blue and the lowest 
probability at yellow. 

4. Discussion 

Our study aimed to investigate the perceptual characteristics of hue 
discrimination and identify an internal prior that contributes to hue 
perception. The experimental results showed that the lowest discrimi-
nation thresholds and smallest biases occurred for stimuli near a 
perceptual blue-yellow hue axis. In addition, cross-noise perceptual 
biases were attractive towards blue and repulsive from yellow, which 
was explained by a Bayesian observer model with a prior that favored 
blue. Our study extends the Bayesian perspective on perception to the 
domain of color and provides evidence of a systematic bias in color 
perception related to natural daylights. In contrast to previous attempts, 
where it had turned out difficult to determine adequate priors to explain 
human performance in color judgments (Brainard et al., 2006), our 
study presents an approach that recovers a prior that explains hue 

Fig. 5. Estimated prior for subject S3 (left) and the average subject (right). The gray shaded area indicates the point-wise standard deviation of 100 bootstrapped 
estimates. The boxes above the curves indicate the first quartile to the third quartile of the peak locations of the 100 bootstrapped estimates, with the black line at the 
median. The whiskers extend from the box by 1.5× the inter-quartile range (IQR). Flier points indicate values beyond the range of the whiskers. The light gray 
horizontal line represents the uniform prior. 

Fig. 6. Comparison of priors. (a and b) Cross-noise biases with predictions from estimated prior (black lines) and uniform prior (gray lines) for subject S3 (a) and the 
average subject (b). Circles represent the cross-noise biases shown in Fig. 3. (c) Normalized log-likelihoods of predictions using the estimated prior for all subjects, 
including the average subject (sAVG). Values greater than 1 indicate prediction better than raw psychometric fits, and values greater than 0 indicate prediction better 
than the model with uniform priors. 
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perceptual bias and can be related to natural color statistics. 
Our investigation focused on the hue aspect of color perception, 

using an isoluminant hue circle with fixed cone contrast. However, color 
perception also includes brightness and saturation, which vary along the 
luminance axis and with radial distance in the isoluminant plane, 
respectively. Thus, our results should be seen as reflecting a one- 
dimensional aspect of a broader multi-dimensional prior for color 
perception. For context-induced biases, there is a consistent general-
ization from one dimension to higher dimensions in color space (Klauke 
& Wachtler, 2015; Vattuone et al., 2021; Vattuone & Samengo, 2023), 
and we expect the same for biases arising from a prior and the prior 
itself. While it may be difficult to practically determine the prior dis-
tribution along the saturation dimension (i.e., the radial direction in the 
color space), it is quite possible that the actual three-dimensional prior 
has a peak at a luminance level different from isoluminance. The main 
axes of variation of natural spectra vary in elevation, but not system-
atically with hue (Webster & Mollon, 1997). Therefore, had we included 
stimuli with luminance variations and recovered the two-dimensional 
distribution of the projection of the prior onto the unit sphere, its 
actual peak might lie outside the horizontal isoluminance plane. How-
ever, we would not expect a significant difference in the azimuth value. 

4.1. Ensemble hue perception and interindividual variability 

Our psychophysical results showed that subjects could effectively 
integrate the information over noisy hue ensembles, which agrees with 
previous findings on ensemble hue perception (Maule et al., 2014; 
Webster et al., 2014; Maule & Franklin, 2015; Virtanen et al., 2020). 
Specifically, our data confirm that hue averaging does not require a 
spatial configuration with abutting hue elements (Virtanen et al., 2020). 

Previous studies have indicated that categorical effects may influ-
ence the percept of hue ensembles (Maule et al., 2014). However, 
discrimination thresholds in our experiments were approximately equal 
between yellow and blue (p = 0.35), despite their categories spanning 
different hue angle ranges (Webster et al., 2000; Hansen et al., 2007; 
Witzel & Gegenfurtner, 2013). Moreover, observers were instructed to 
discriminate hue using an external physical reference instead of internal 
criteria, minimizing potential categorical effects from subjective color 
naming. Nevertheless, to identify any relationship of the priors with 
individual specifics in color vision, we compared the locations of priors 
and unique hue percepts of the individual subjects. We determined the 
unique hue locations in five subjects (see Supplementary Methods) and 
found the standard deviation in unique hue locations (5.31◦ ± 2.05◦, 
averaged across four unique hues) was much smaller than that in the 
prior peak locations (70.46◦). For one observer (S1) whose blue and 
yellow unique hue locations deviated from other subjects’ settings to-
wards larger hue angles, the corresponding prior peaked at a hue angle 
close to the average peak location of all subjects’ priors. An observer 
(S6) with a prior peaking at the largest hue angle among subjects did not 
show pronounced deviations from the other subjects in unique hue 
categories. Overall, we did not find evidence for covariation between the 
prior peak location and any of the unique hue locations (Pearson cor-
relation r = − 0.33, p = 0.59 for unique blue, r = − 0.77, p = 0.12 for 
unique yellow, r = − 0.09, p = 0.88 for unique red, r = − 0.42, p = 0.47 
for unique green). Thus, it is unlikely that the biases we observed could 
be attributed to categorical effects. 

The lack of covariation between priors and unique hue settings may 
suggest different underlying mechanisms. Recently, Rezeanu et al. 
(2023) suggested that the basis for unique hues lies in retinal oppo-
nency. The model considered by these authors assumed adaptation to 
equal-energy spectra. However, under changes in macular pigment 
density, which would have a similar effect as deviations from equal- 
energy white along the daylight locus, the model’s loci of unique blue 
and unique yellow were fairly stable. Thus, it seems likely that the 
unique blue and yellow predictions of the model would not have been 
substantially different if adaptation to some other phase of natural 

daylights had been assumed. 
Even if the visual systems of different observers are adapted to the 

same natural stimulus statistics, some interindividual variability is ex-
pected. Unique hue percepts are influenced by chromatic context 
(Klauke & Wachtler, 2016), which suggests that, even if the basis for 
unique hues is established early in the visual system (Rezeanu et al., 
2023), cortical mechanisms may fine-tune color computations for 
perception. This implies that individual experience during ontogeny 
may affect perceptual priors, leading to interindividual differences. 
Moreover, the use of artificial primary spectra in experiments may cause 
variations in results among individuals. This is because differences in 
cone spectral sensitivities or pre-receptoral filters can result in different 
conditions for metamery and thus different results, even when the ob-
servers’ perceptions of specific broad-band natural spectra would be the 
same. 

4.2. Relation between perceptual variability and bias 

The two primary psychophysical measures – perceptual variability 
and bias – covaried in our experiments: both discrimination thresholds 
and biases were lowest near the blue-yellow axis and largest orthogonal 
to the blue-yellow axis. This finding is consistent with previous studies 
on orientation perception, which have shown a similar relation between 
threshold and bias minima occurring at cardinal orientations (Tomassini 
et al., 2010; Girshick et al., 2011). 

However, as previous studies have reported, orientation stimuli with 
high discrimination thresholds or high variability, such as oblique ori-
entations, can also be perceived with minimal bias (Tomassini et al., 
2010; Girshick et al., 2011). Wei and Stocker (2017) presented a 
mathematical description of the relation between variability and bias, 
suggesting a proportional relationship between bias and the derivative 
of the square of the discrimination threshold, and found that the relation 
holds for many visual features, including orientation, motion direction, 
magnitude, and spatial frequency (Wei & Stocker, 2017). The relation-
ship predicts that bias is minimal at the extrema of discrimination 
thresholds, with attraction towards the maxima and repulsion bias away 
from the minima of discrimination thresholds. According to this pre-
diction, one would expect that the bias of perceived hues in our study 
would show four zero-crossings, corresponding to the number of max-
ima and minima in the bimodal pattern of discrimination thresholds. 
Specifically, the hue percept should be biased away from the blue- 
yellow axis, where discrimination thresholds are minimal, and attrac-
ted towards colors with high discrimination thresholds, such as reddish 
and greenish hues (Fig. S8). However, the measured cross-noise biases 
showed repulsion from yellow and attraction towards blue. 

Potentially, our measurements might have missed to consistently 
identify some zero crossings, particularly around 157.5◦ where inter- 
subject variability occurred in biases (Fig. 3c) and some subjects 
showed more than two zero-crossings (Fig. S1). Even if this were the 
case, the attraction bias around blue in our results is nevertheless 
inconsistent with the prediction of the Wei-Stocker relation, which 
would predict that the bias should be repulsive away from blue. An 
alternative possibility that could explain the deviation of our results 
from the relation is a strongly skewed likelihood function. Intuitively, 
one would expect the bias to be zero when the prior of a Bayesian 
observer is uniformly distributed across the entire range of stimuli. 
However, the model with a uniform prior predicted non-negligible bias 
for some of our subjects (Fig. 6, see also S2 and S6 in Fig. S6). These 
results are likely related to the asymmetry of the likelihood function in 
the observer model (Wei & Stocker, 2015), which resulted from esti-
mating the likelihood directly from the experimental data by sampling 
from a measurement distribution, a method also employed by Girshick 
et al. (2011). While it might be feasible to simultaneously model the 
likelihood and prior (Stocker & Simoncelli, 2006), we relied on the 
measurement distribution to ensure reliable likelihoods that captured 
the perceptual variability for stimuli with specific noise levels. A heavy- 
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tailed likelihood might lead to a deviation of the posterior from the true 
stimulus, such that both likelihood shape and prior could contribute to 
perceptual bias (Stocker & Simoncelli, 2006; Wei & Stocker, 2015; Prat- 
Carrabin & Woodford, 2021). However, the asymmetric likelihood with 
a uniform prior generated less accurate predictions than the model with 
a non-uniform prior (Fig. S6). Thus, the key factor in yielding the sys-
tematic bias in our study is likely the non-uniformity of the prior. 

Could the marked deviation from the Wei-Stocker relation indicate 
that the perception of color is governed by fundamentally different 
principles than other visual features? Wei and Stocker derived their 
relation under assumptions of efficient coding, specifically, that stimulus 
encoding maximizes the mutual information between stimuli and sen-
sory representations. How such efficient coding principles would 
generalize from the univariate case as considered by Wei and Stocker 
(2017) to higher-dimensional stimulus spaces, like for three- 
dimensional color space, has not been fully worked out yet (Yerxa 
et al., 2020). Therefore, it is unclear whether the Wei-Stocker relation 
applies to univariate manifolds in higher-dimensional stimulus spaces as 
in our case of a hue circle in three-dimensional color space. Moreover, 
given the multiple transformations of color signals in the visual system, 
perceptual judgments in the chromatic domain may be subject to more 
complex constraints than visual features with simple stimulus corre-
spondence, such as spatial features including orientation or motion di-
rection. Different criteria of efficiency may apply to different aspects or 
at different stages of visual processing (von der Twer & MacLeod, 2001; 
Lee et al., 2002; Manning et al., 2024), which would imply deviations 
from the conditions considered by Wei and Stocker (2017). In particular, 
sensory signals for color vision are encoded first in a cone-opponent 
fashion by the retinal circuitry. The resulting representation is the 
basis for the color space that is commonly used (MacLeod & Boynton, 
1979; Derrington et al., 1984), including in our study. Retinal cone 
opponency decorrelates the photoreceptor signals and thus reduces 
redundancy (Ruderman et al., 1998; Lee et al., 2002). However, it does 
not capture the distribution of natural chromatic signals to achieve 
maximal information (Wachtler et al., 2001; Kellner & Wachtler, 2013). 
Specifically, retinal cone opponency does not align with the variation of 
natural illumination, as is reflected by the non-cardinal orientation of 
the daylight axis in cone-opponent color space (Mollon, 2006). A sen-
sory representation better matched to the distribution of natural chro-
matic signals appears only at a later stage, by the transformation of color 
signals in the visual cortex, where the precortically separated cone- 
opponent signals (Chatterjee & Callaway, 2003) are mixed and a 
distributed code is achieved (Lennie et al., 1990; Wachtler et al., 2003; 
Kuriki et al., 2015; Li et al., 2022) that captures the oblique axis of 
variation of natural daylights (Wachtler et al., 2003; Lafer-Sousa et al., 
2012). At least at early cortical stages, neural activity shows features of 
both kinds of representations (Kaneko et al., 2020). While color 
appearance judgments are likely based on the cortical representation, 
perceptual variability may be reasonably assumed to be influenced 
considerably by the signal-to-noise ratios at precortical stages (Vor-
obyev & Osorio, 1998). These different influences may result in 
thresholds and biases inconsistent with the Wei-Stocker relation. 

4.3. Hue perceptual non-uniformity and blue-yellow asymmetries 

Our study reveals the non-uniformity in perceptual quantities in the 
present color space. Specifically, discriminability and variability vary in 
this cone-opponency based color space (Boynton et al., 1986; Krauskopf 
& Gegenfurtner, 1992; Danilova & Mollon, 2010; Bosten et al., 2015; 
Klauke & Wachtler, 2015). Our results verified that such non-uniform 
discriminability also exists for hue ensembles with chromatic noise. 
Moreover, we found that biases in hue judgments varied with hue, 
showing minima near blue and yellow, which further reflected the non- 
uniformity. Notably, the non-uniformity arises not along the cardinal 
axes of precortical cone opponency, but with respect to the oblique blue- 
yellow axis that aligns with the variation of natural daylight. The 

variance of chromaticity in natural outdoor scenes is also high along this 
axis (Webster & Mollon, 1997; Webster, 2014; Webster, 2020). This axis 
has been found special for color vision in many respects, from the dis-
tribution of natural chromatic signals (Webster & Mollon, 1997; 
Wachtler et al., 2001; Webster, 2020) to neural processing (Wachtler 
et al., 2003; Lafer-Sousa et al., 2012) and perception including 
discrimination (Danilova & Mollon, 2010; Bosten et al., 2015), color 
induction (Klauke & Wachtler, 2015), color constancy (Delahunt & 
Brainard, 2004; Pearce et al., 2014; Gegenfurtner et al., 2015; Lafer- 
Sousa et al., 2015; Weiss et al., 2017), and, as our results show, priors 
for hue perception. These prominent features suggest a role of this axis 
as a perceptual cardinal axis for color vision. 

While blue and yellow appear symmetrical, in terms of their simi-
larities in perceptual quantities and the coincidence with the daylight 
locus (Mollon, 2006; Webster, 2020), the bias in our results was 
attractive towards blue and repulsive from yellow, confirming asym-
metries between blue and yellow (Webster, 2020). A previous study has 
demonstrated a systematic deviation towards blue when subjects 
adjusted yoked blue-green hue pairs to achieve an equal perceived 
mixture of binary hues (Webster et al., 2014). The deviation occurred for 
unique blue settings and not for other unique hues, which matches the 
unimodality of the systematic prior revealed in our results. Moreover, 
the deviation only occurred in the blue-green settings, while no con-
spicuous bias arose in the mixture consisting of yellow hues, which 
strongly evidenced asymmetries between blue and yellow. 

A special role of blue has been observed previously in color con-
stancy: bluish illumination results in higher color constancy than other 
chromatic illuminations (Delahunt & Brainard, 2004; Pearce et al., 
2014; Winkler et al., 2015; Radonjic et al., 2016; Weiss et al., 2017; 
Aston et al., 2019). An explanation for this so-called “blue bias” was that 
the illumination sensitivity threshold is higher for blue than for other 
colors (Pearce et al., 2014; Radonjic et al., 2016), which would be in line 
with the hypothesis that the visual system may adapt to the natural 
environment and be least sensitive to the illumination changes that are 
most likely to occur (Aston et al., 2019). Additionally, such reduced 
sensitivity may be attributed to innate physiological factors: short- 
wavelength-sensitive cones have shown relatively poorer detection of 
changes in ratios of cone excitations due to illuminant changes (Nasci-
mento & Foster, 1997). Alternatively, given the color distribution of 
lighting and shadows in natural scenes, the blue bias may emerge from 
the observer’s tendency to infer blue tints as illuminants (Winkler et al., 
2015). Although these explanations do not reconcile, most of them 
commonly imply an environmental account of the blue-yellow asym-
metry: color vision may be adapted to natural spectra and expect blue 
illumination as a dominant feature in natural conditions. 

In line with these interpretations, our observer model attributes the 
blue-yellow asymmetries at the behavioral level to a unimodal prior that 
peaks at blue. Notably, the unimodal prior outperforms bimodal or 
uniform priors in predicting the perceptual biases (Fig. S7). Our model is 
in line with the notion that perception, and in particular color percep-
tion, is shaped by the regularities of the sensory environment (Shepard, 
1992), but also suggests an asymmetry in natural daylight. As Mollon 
(2006) has pointed out, the clear sky appears unique blue, which sug-
gests that the light of the sky, resulting from the fundamental physical 
process of Rayleigh scattering, might provide a stable reference to which 
color perception is anchored. Thus, in keeping with other Bayesian ap-
proaches, our results suggest that human perception internalizes the 
natural sensory statistics and incorporates prior knowledge into the 
processing of sensory information. 
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Reference induces biases in late 
visual processing
Yannan Su 1,2*, Thomas Wachtler 1,3 & Zhuanghua Shi 4

How we perceive a visual stimulus can be influenced by its surrounding context. For example, the 
presence of a reference skews the perception of a similar feature in a stimulus, a phenomenon called 
reference repulsion. Ongoing research so far remains inconclusive regarding the stage of visual 
information processing where such repulsion occurs. We examined the influence of a reference on late 
visual processing. We measured the repulsion effect caused by an orientation reference presented 
after an orientation ensemble stimulus. The participants’ reported orientations were significantly 
biased away from the post-stimulus reference, displaying typical characteristics of reference repulsion. 
Moreover, explicit discrimination choices between the reference and the stimulus influenced the 
magnitudes of repulsion effects, which can be explained by an encoding-decoding model that 
differentiates the re-weighting of sensory representations in implicit and explicit processes. These 
results support the notion that reference repulsion may arise at a late decision-related stage of visual 
processing, where different sensory decoding strategies are employed depending on the specific task.

The world around us is filled with a wealth of visual stimuli, where objects are arranged in a contextual setting. 
Our perception of the world, thus, is not merely a collection of individual isolated objects, but is susceptible 
to the surrounding context. This susceptibility to context has been recognized since ancient times, such as the 
observation in ancient China 400 BC that the moon looks bigger when it rises on the horizon than when it is 
 overhead1. Context-based perceptual biases typically appear in the form of repulsion. When two similar objects 
or features are placed together, they appear more distinct or dissimilar than if presented separately. The repulsion 
effect has been widely observed in basic visual features, including motion  direction2,  orientation3,4, brightness 
and  color5,6,  numerosity7, and even in higher cognitive  judgments8.

Recent studies have shown that the repulsion bias can be amplified through explicit comparison with an 
external reference, so-called reference  repulsion9–12. Jazayeri &  Movshon10 have demonstrated a classic example of 
reference repulsion using a dual-task paradigm, where participants reproduced the motion direction of a moving 
random-dot pattern after comparing it with a reference boundary. In contrast to classical contextual effects such 
as the tilt effect or the tilt after-effect3, the results revealed a systematic bias away from the reference that was 
strongest when the stimulus aligned with the reference. The authors concluded that the bias in the reproduction 
task was a result of the first discrimination that caused preferentially weighted signals from neurons tuned away 
from the reference in decoding. This weighted representation of sensory likelihoods ’repels’ from the reference, 
resulting in better  discrimination10. An alternative account proposes that the repulsion bias arises from the 
sensory encoding rather than the decoding  process13. It posits that the encoding precision of measurement varies 
according to the difference between the stimulus and the reference. During decoding, this variable-precision 
encoding is integrated with a uniform prior to form a posterior  distribution13. The prediction based on that 
posterior distribution could produce a similar reference repulsion effect. Both accounts, despite applying different 
underlying mechanisms, concur in that the reference repulsion originates from the perceptual stage.

Several recent studies, however, have challenged the notion that reference repulsion is solely a perceptual 
process. For instance, Zamboni et al.11 have shown that the presence of the reference during the reproduction 
task is crucial in eliciting the repulsion effect. When the reference orientation shifted slightly ( ±6◦ ) during 
the reproduction task, the repulsive bias also shifted accordingly with the reference. Similarly, Fritsche & de 
 Lange14 let participants first judge whether a grating stimulus was clockwise or counterclockwise relative to a 
previously presented reference boundary. Subsequently, participants indicated whether the stimulus had the 
same orientation as a comparison stimulus. The researchers found that the perceptual bias that occurred in a 
successive comparison task had distinct characteristics from those of the reference repulsion bias, suggesting 
that reference repulsion does not directly alter the appearance of the stimulus, but acts at a late decision stage. 
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This idea also aligns with the self-consistent Bayesian observer  model12,15, which posits that an optimal observer 
seeks self-consistency in representations across the hierarchy of inference. In a series of tasks, the decision in one 
task is influenced by the preceding task, and a prior categorical judgment biases downstream processes, such 
as reproduction, based on working  memory12,15. These findings suggest that the repulsion effect may emerge at 
the late decision stage.

Despite the ongoing debate surrounding the processing stage of the reference repulsion continues, most 
studies commonly used the reference throughout the trial, starting before or concurrently with the target 
stimulus. However, the timing of the reference plays a crucial role in determining the processing stage involved 
in the reference repulsion effect. For example, by presenting the reference after the sensory encoding of the 
stimulus, early encoding of the reference can be effectively avoided.

Another crucial factor influencing the repulsion effect is the distinction between explicit and implicit 
 processes16. Many studies investigating reference repulsion employ an explicit discrimination task before the 
primary  measurement10,12. In some cases, participants are exposed to an explicit categorical discrimination 
task, even if they are not asked to make explicit  judgments9,11,13,14, potentially causing the categorical decision 
to influence the main task. Therefore, it is crucial to directly compare the repulsion effect under explicit and 
implicit instructions to gain deeper insights into the nature of reference repulsion.

On this ground, we conducted a study using an ensemble orientation averaging paradigm to investigate 
the impact of the reference orientation and task conditions on the repulsion effect. Notably, we presented the 
reference after the stimulus. Our reasoning was twofold: if reference repulsion primarily occurs during early 
sensory processing, a post-stimulus reference would have no influence on the observer’s judgment; however, if 
the reference does affect judgment, we would observe judgment biased away from the reference. In addition, 
we introduced different task conditions to assess the impact of explicit and implicit processes on the repulsion 
effect directly.

We found that the post-stimulus reference indeed induced repulsion, but the effect differed between explicit 
and implicit processes. We attribute the findings to variations in weighting between implicit and explicit processes 
within an encoding-decoding model.

Methods
Participants
Five volunteers, one male and four females, ranging from 21 to 26 years old, participated in the experiments. 
All participants had normal or corrected-to-normal vision and were right-handed and naive with respect to 
the purpose of the experiment. Participants signed informed consent prior to the experiment and received a 
compensation of 10 Euros per hour. The study was approved by the ethics committee of the LMU Munich and 
carried out in accordance with the Declaration of Helsinki.

Stimuli
All visual stimuli were generated using the software Psychopy 2020.1.2 [RRID:SCR_006571, Ref.17] based on 
Python 3.7, presented on a ViewPixx Lite 2000A display, with a resolution of 1920× 1200 pixels at a refresh rate 
of 120 Hz, controlled by a Radeon Pro WX 5100 graphics card.

All stimuli were presented on a neutral gray background (106.7 cd/m2). The fixation dot (radius 0.6◦ ), if 
presented, was always shown at the screen center (Fig. 1). A reference consisted of a pair of line segments (length: 

Figure 1.  Experiment paradigm. A 500-ms presentation of the ensemble display was followed by a 500-ms 
circular white noise mask. A reference was presented simultaneously with the mask display and lasted until 
the end of the trial. Observers had to reproduce the mean orientation of the ensemble with a computer mouse, 
with (the dual-task blocks, colored orange) or without (the single-task blocks, colored blue) a preceding 
discrimination task. The task required them to indicate whether the mean orientation was CW or CCW of the 
reference orientation.
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5◦ , line width: 0.074◦ ), both positioned 5◦ from the screen center and were colinear, indicating a reference 
orientation. The ensemble display consisted of 24 tilted bars (length 0.6◦ , width 0.1◦ ), arranged on a grid of two 
concentric circles, 8 bars positioned on an inner circle with a diameter of 1.0◦ , 16 bars positioned on an outer 
circle with a diameter of 2.5◦ . Small independent variations were applied to the positions of the bars by adding 
random shift values (sampled from N (0, 0.1◦) ) on x-y coordinates. The mask display was a circular patch of 
white noise (contrast 0.5, spatial frequency 0.03 c/deg). The mask display was positioned at the screen center, 
with a diameter of 10◦ for masking the entire ensemble stimuli, or a diameter of 15◦ for masking the entire display 
after the trial.

The reference orientations were randomly chosen from 15◦ , 45◦ , 75◦ , 105◦ , 135◦ , and 165◦ (note the 0◦ is the 
vertical). The averaged orientation of the tilted bars was randomly probed around the corresponding reference 
orientation, with a step of 3◦ in a range of [ −18◦ , 18◦ ]. The variation of the orientations within the ensemble 
display had two versions: a low-noise version, in which all bars had the same orientation (i.e., 0◦ of orientation 
noise), and a high-noise version, in which the orientations randomly varied according to a normal distribution 
with a standard deviation of 9◦.

Procedures
During the experiment, the subject sat in a dimly lit room and viewed the display binocularly from a distance of 
57 cm. The fixation dot was present during the stimulus presentation and response waiting period. Participants 
were instructed to maintain their eyes on the fixation dot during the trial.

A trial started with a white fixation dot, shown in the center of the screen for 500 ms. Then, an ensemble 
display with 24 tilted bars appeared for 500 ms, followed by a 500-ms mask display with circular white noise, 
preventing any afterimage effects. After the ensemble display vanished, a reference was presented simultaneously 
with the mask display, remaining visible until the final response.

Participants were given two types of block-wise tasks: a single-task and a dual-task. To minimize explicitly 
using the reference in the single-task condition, the dual-task condition was introduced only after participants 
completed all required single-task blocks. The single task involved an orientation reproduction, where partici-
pants adjusted the orientation of a white line (length 3.0◦ , initial orientation randomly chosen from 0◦ to 180◦ ) 
at the screen center to indicate the perceived average orientation of the ensemble bars. By moving a computer 
mouse up or down, they could adjust the line’s orientation. Participants had to confirm the final orientation 
judgment by pressing the space key. Following the response, a mask display appeared for 500 ms to minimize 
cross-trial carryover effects.

The dual-task consisted of the orientation reproduction from the single task and a discrimination task. In 
the discrimination task, participants had to judge whether the averaged orientation was clockwise (CW) or 
counterclockwise (CCW) relative to the reference orientation by pressing the left or right key of the mouse. 
The discrimination task was conducted before the reproduction task, with a black fixation dot indicating the 
discrimination task. If the response time exceeded 4 seconds for discrimination or 8 seconds for reproduction, 
the corresponding trial was discarded and repeated at the end of the same block. Discarded trials were rare, on 
average 0.43%. The average response time was 2.04± 0.96 seconds.

Each block consisted of 156 trials, resulting from the full combination of the reference orientations (6 levels), 
the corresponding stimulus orientations (13 levels per reference orientation), and the two noise levels (high vs. 
low). The combination was randomized within each block. In total, there were ten blocks: five blocks for the 
single task, and five blocks for the dual task, yielding 1560 valid trials in total. Before the main experiment, par-
ticipants completed a practice block (156 trials) with feedback texts showing the error value of the reproduction 
(single-task) or the correctness of the discrimination judgment (dual-task).

Data analysis
Data analysis was performed for individual participants’ datasets as well as for the pooled data. For the discrimi-
nation task, we fitted a cumulative Gaussian function to the binary responses using the Psignifit  package18, and 
estimated lapse and guess rates, the point of subjective equality (PSE), and the standard deviation of the func-
tion. The PSE corresponds to the 50% threshold of the psychometric function, and the standard deviation of the 
cumulative Gaussian function corresponds to the reciprocal of the psychometric function slope.

For the reproduction task, we first measured the reproduced orientation relative to the reference, �ω , as

where ω̄ was the reproduced stimulus orientation and ωref  was the reference orientation, and we plotted the his-
togram of the estimates �ω (Fig. 3). To compare the distributions of estimates between conditions quantitatively, 
we fitted a symmetric Gamma mixture model to the data. The model can capture and describe the potential 
bimodality and skewness of the distribution. The model is a mixture of two identical Gamma density functions, 
denoted as Ŵ(α, θ) , each characterized by a shape parameter α and a scale parameter θ . The variance of each 
density function is thus αθ2 . The model parameters were optimized by minimizing the non-linear least squares, 
and the optimized parameters with 95% confidence intervals were compared within participants.

To compute the repulsive bias, we selected the trials with the estimates indicating correct orientation 
judgment. Note that, given there was no direct measurement of judgment correctness in the single-task condition, 
we classified the correctness of judgment based on the subject’s estimates in the reproduction task rather than 
the explicit judgment responses in the discrimination task. A reproduction response was deemed correct when 
the estimate fell on the same CW/CCW side of the reference as the true stimulus orientation. Approximately 
83.14% of the total trials were selected for the analysis ( 49.73% were from the single-task condition, and the rest 

(1)�ω = ω̄ − ωref ,
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were from the dual-task condition). The repulsive bias was determined as the bias of the estimate, with a positive 
sign indicating repulsive bias away from the reference.

Modeling
We used a two-component encoding-decoding model based on previous  studies10,11, which included two main 
components: a measurement distribution and a weighting function. The measurement distribution represented 
the noisy encoding of stimulus orientation. It was modeled as a Gaussian N(µ, σ) , with mean µ and variance 
σ , where σ represented the variability of sensory representations and thus could vary between stimulus noise 
levels. At the decoding stage, the sensory representations were re-weighted by multiplying the measurement 
distribution with a weighting function. We modeled this weighting function as a symmetric gamma mixture of 
two identical Gamma density functions that integrate to 1:

 where ω represents orientation in measurement distribution and g is a Gamma density function

with parameters of shape α , scale θ , and shift δ , and with a Gamma function Ŵ(α) . To capture changes due to 
explicit judgment at the decoding stage, we allowed for different weighting functions between two task conditions 
(single-task and dual-task). The model also included a constant motor bias term ǫ independent of conditions. 
Altogether, the model had two parameters σl and σh for the noise levels, six parameters defining the weighting 
functions ( αs , θs and δs for the single-task condition; αd , θd and δd for the dual-task condition), and a motor bias 
term ǫ.

The optimal parameters were estimated by maximizing the likelihood of measured data given the model using 
the Nelder-Mead  algorithm19. All trials were included for the optimization. The optimization was performed 
with bootstrapping 100 times for each subject’s data and for the pooled data. Our model was designed to account 
for both the mean and full distribution of the participants’ estimates. Therefore, for each stimulus orientation, 
500 samples were randomly drawn from the combination of the measurement distribution and the weighting 
function. This resulted in a set of predicted estimates, rather than mean or mode, that were analyzed in the same 
way as the experimental data.

Results
Behavioral results
To examine whether a reference orientation could bias the subject’s estimate of a preceding stimulus orientation, 
we analyzed and compared the estimates under different noise and task conditions.

We first evaluated the discriminability of reference and stimulus by fitting psychometric functions to the 
explicit judgment responses in the dual-task condition. Discrimination data under this condition showed that 
all participants were able to perform the task (Fig. 2a, see Fig. S1 for individual data). For the pooled data, the 
discrimination threshold increased from 5.16◦ ± 0.30◦ to 6.39◦ ± 0.44◦ with increasing stimulus noise levels. 
Likewise, stimulus noise elevated the discrimination thresholds for all individuals (sign test p = .031 , Fig. 2b). 
There was no difference in the PSEs between the two noise conditions (sign test p = .999).

We then evaluated the bimodality of the distribution of estimates, a characteristic that previous research has 
identified as a crucial aspect of the reference repulsion  effects10. Fig. 3 shows the distributions of estimates under 
different noise and task conditions. We applied Hartigan’s dip test of  unimodality20 to examine the multimodality 
of the distributions. For the pooled data, the distribution of estimates did not show multimodality under the 
single-task condition (dip test p = .120 for low noise stimuli, p = .682 for high noise stimuli), while the estimates 
of the dual-task condition followed bimodal distributions (dip test p < .001 for both low and high noise stimuli).

To further compare the distributions under the two task conditions, we fitted a symmetric mixed Gamma 
distribution to the distribution of estimates and subsequently compared scale ( θ ) and shape ( α ) parameters, 
which characterize the spread and skewness of the fit, respectively. For four out of five participants, both 
parameters were significantly different, with lower values of the scale parameter and higher values of the shape 
parameter under the dual-task condition compared to the values under the single-task condition (Fig. 4a,b, see 
Fig. S2 for individual’s parameters with 95% confidence intervals). This resulted in the variance of the fitted 
Gamma distribution, derived as αθ2 , being lower under the dual-task condition than under the single-task 
condition (Fig. 4c). The comparison results did not depend on the specific fitting method. Similar results were 
obtained by fitting the distribution with a mixture of two identical Gaussian density functions or a mixture of 
two identical Gamma density functions with shifts.

Correspondingly, we compared the variability of all estimates under different conditions. As Fig. 4d shows 
(see Fig. S3 for individual data), the estimates showed larger standard deviations in the single-task condition 
than in the dual-task condition for most individuals (four out of five participants), while participants did not 
show consistent differences in standard deviations between noise conditions.

For all participants, the estimates were biased away from the reference when the stimulus orientation was 
close to the reference orientation (Fig. 5a). The repulsion effect was more pronounced in the dual-task than in 
the single-task condition. In line with previous  findings10–12,15, the repulsion effects weakened with increasing 
difference between stimulus and reference orientation (Fig. 5b, also see Fig. 8a for individual data). Stimulus 
noise elevated the repulsive bias of most stimulus orientations (82.8% of individual’s repulsive biases under the 
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Figure 2.  Discrimination data in the dual-task condition. (a) Mean proportion of clockwise (CW) responses 
and associated cumulative Gaussian psychometric functions, separated for low (light gray) and high (dark gray) 
noise levels. The x-axis represents the stimulus orientation relative to the reference orientation. Positive values 
indicate orientations clockwise to the reference line. Data points were pooled from the dual-task condition of all 
participants’ data. Vertical dashed lines denote PSEs for the two conditions. The error bar denotes one standard 
error of the associated PSE. (b) Estimated parameters of the psychometric function. Top: Discrimination 
variability; Bottom: Discrimination bias (PSE). Data points denote averages across all participants, error bars 
denote standard deviations. Dashed lines connect individual’s estimates of each noise condition.).

Figure 3.  Distributions of all participants’ pooled estimates under different conditions. The x-axis represents 
the estimated orientation relative to the reference orientation. Curves denote the symmetric mixed Gamma 
density functions fitted to the distributions of estimates. The four colors of the lines represent the four 
conditions, where hues correspond to task conditions and shades correspond to noise levels (darker shades 
correspond to higher stimulus noise).
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single-task condition and 71.4% of individual’s repulsive biases under the dual-task condition). Interestingly, 
for stimulus orientations with larger differences (above 6◦ ) from the reference orientation, the repulsive biases 
were smaller under the dual-task condition compared to those under the single-task condition. Note that these 
repulsive biases were negative, indicating that for these stimuli the reference induced larger attraction effects 
under the dual-task condition compared to the single-task condition.

The overall results demonstrate that in the dual-task paradigm, participants’ estimates were biased away from 
a post-stimulus reference, presenting characteristic features of reference repulsion. Moreover, the distribution of 
these estimates was quantitatively distinct compared to those observed in tasks that did not require an explicit 
discrimination response.

Modeling results
Reference repulsion has been hypothesized as a consequence of a decoding strategy in which sensory neurons 
are weighted according to their contributions to the discrimination between reference and stimuli. This strategy 
is mathematically described by an encoding-decoding  model10. However, it remains unclear whether this model 
could account for the repulsion induced not only by simultaneously presented reference and the stimulus but 
also by a post-stimulus reference. Furthermore, the distinction between implicit and explicit discrimination 
and its impact on reference repulsion is still under investigation. To address these questions, we adopted an 
encoding-decoding model.

We assumed that the post-stimulus reference influences discrimination choices by re-weighting represen-
tations in working memory. In probabilistic terms, inferring an estimate involves combining a measurement 
distribution derived from sensory encoding with a re-weighting profile during the late stage of decision-making. 
Based on this assumption, we developed a two-component encoding-decoding model, consisting of a measure-
ment distribution centered on the true stimulus orientation and a weighting function featuring a profile that was 
symmetrical around the reference boundary and had a mixed Gamma density function.

We derived the parameters of the model by maximizing the likelihood of the subject’s estimates. It is important 
to note that the variability of measurements was influenced by both external and internal noise during stimulus 
encoding. Consequently, we compared the measurement distributions across noise conditions. Furthermore, 
since the two task conditions differed in terms of whether they involved an explicit choice at a late stage, we com-
pared the weighting functions between the conditions to investigate any potential difference. As Fig. 6a shows, 
the spreads of the measurement distributions increased with increasing the noise level of the stimulus (a sign test 
of p < .001 ). The estimated weighting functions showed different profiles between the task condition (Fig. 6b). 
While the averaged weighting functions among participants peaked at similar positions (around ±7◦ ) in both 
task conditions, the weighting functions displayed a lower degree of concentration in the single-task condition 
compared to the dual-task condition for all participants, represented by larger means and broader ranges (both 
with a sign test of p < .001 ). The models accurately predicted the entire distribution of the estimates (Fig. 7a), the 
explicit judgment responses (Fig. 7b), as well as the repulsive biases (Fig. 7c, and see Fig. 8 for individual’s results).

In light of these results, we conclude that an encoding-decoding model can account for orientation estimates 
in the presence of a post-stimulus reference orientation, suggesting that participants use the reference-relevant 
information to derive an estimate by re-weighting the preceding sensory information. This re-weighting strategy 
appeared relevant for an explicit discrimination judgment, as evidenced by re-weighting profiles that showed a 
higher degree of concentration when an explicit choice was required.

Figure 4.  Characteristics of the distributions of estimates. (a–c) Parameters of the fitted symmetric mixed 
Gamma density functions. (a): scale parameter; (b): shape parameter; (c): derived variance. Error bars denote 
±1 standard deviation across participants. (d) Standard deviations of participants’ estimates. Error bars denote 
±1 standard deviation across participants. The four colors represent the four conditions, where hues correspond 
to task conditions and shades correspond to noise levels.
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Discussion
The perception of visual stimuli is susceptible to the context in which they are presented, and specifically, 
judgments of a stimulus feature tend to be biased away from a reference that shares a similar feature. The present 
study investigated whether such repulsion effects can be induced by a reference presented after the stimulus. We 
found that participants’ estimates of the mean orientation of ensemble stimuli were biased away from a post-
stimulus reference. These repulsive biases showed the typical characteristics of the reference repulsion effect, 
which indicates that the repulsive bias occurred during a late stage of visual decision-making. Moreover, the 
explicit discrimination judgment made by participants between the stimulus and reference impacted on the 
magnitude and direction of these biases. This impact can be explained by an observer model that accounted for 
the differential re-weighting of sensory representations between implicit and explicit processes.

A novel paradigm with a post-stimulus reference
Our experimental paradigm complements previous studies that used a reference simultaneously presented 
with the stimulus [9-11]. Instead, we employed a post-stimulus reference, which we demonstrated can induce 
repulsion effects on the judgment of the preceding stimulus. It is important to note that while the reference 
influenced the participant’s estimates of the preceding stimulus, it is unlikely to reflect backward masking effects 
induced by the  reference21. In contrast to the brief stimulus presentations (typically less than 50 ms) that have 

Figure 5.  Estimates distribution and repulsive bias. (a) Distributions of all participants’ pooled estimates for 
each particular stimulus orientation. Probability is presented by gray level. Values on the x-axis and y-axis are 
orientations relative to the reference orientation. The dashed lines indicate where estimated orientations are 
equal to stimulus orientations. (b) Repulsive bias of all participants’ pooled data. Data are from trials where the 
subject’s estimates indicated that the subject correctly judged the side (CW/CCW) of the reference orientation 
on which stimulus orientation fell. The x-axis represents the absolute difference between the stimulus 
orientation and the reference orientation. Shades denote one standard error of the mean. The four colors 
represent the four conditions, where hues correspond to task conditions and shades correspond to noise levels.
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been used to induce backward masking  effects22, the stimulus in our study had a presentation duration of 500 
ms, which was sufficiently long for conscious visual processing of the stimulus.

Similarly, it is unlikely that the stimulus biased the perception of the subsequent reference. If the reference 
was systematically biased by the stimulus, we would expect consistent biases across individuals and noise condi-
tions in the discrimination data. However, this was not observed (Fig. 2b). Moreover, considering that reference 
repulsion effects typically involve working  memory15, it is unlikely that the reference presented throughout the 
tasks would be memorized and then biased by the stimulus. Nevertheless, our results are based on the compari-
son of reference-induced repulsion effects across the two task conditions. Even if any of the effects considered 
above were present, they would have been consistent across both conditions and thus would not substantially 
influence our conclusions.

Reference repulsion as a late decision-related bias
Our findings show that the presence of a reference during the target stimulus presentation is not necessary for 
reference repulsion effects to occur. This provides compelling evidence that reference repulsion bias can be a 
late decision-related  bias11,12,14,15, as opposed to an exclusive early-stage bias resulting from encoding or even 
decoding at the time of stimulus  presentation10,13, particularly when considering the impact of the post-stimulus 
reference on the reproduction of a preceding stimulus.

Thus, our findings align with existing theories on information integration during late-stage perceptual infer-
ence  processes11,12,15. Specifically, our dual-task results agree with the self-consistency theory, which posits that 
categorical judgments generate top-down expectations that serve as a categorical  prior12,15. Our results extend this 
theory by suggesting that these categorical priors can not only reflect expectations before the exposure to sensory 
evidence, but can also be formed in a subsequent event, updating sensory representations in working memory.

Our results suggest that the reference repulsion effect results from the combination of contextual informa-
tion and sensory representations in the perceptual inference process. However, it remains unclear whether this 
combined probabilistic information directly replaced the representation in working memory. According to Luu 
&  Stocker15, categorical judgments introduce biases in a downstream process from working memory. In their 
study, participants flexibly recombined probabilistic information in working memory recall, based on feedback 
about their categorical judgments, maintaining self-consistency. Further research could explore whether judg-
ments directly modify working memory representations, with a particular focus on the necessity of explicit 
judgment in these interactions.

Biases in the dual-task condition
Our results showed that reference repulsion displayed the typical characteristics previously reported, such as 
consistency with preceding discrimination choices, increased biases for stimulus orientation closer to the refer-
ence, and a systematic influence from stimulus  noise10. In the dual-task condition, our findings clearly aligned 
with these characteristics, while we also found that, for some subjects, the estimates for the stimulus orientation 
dissimilar to the reference displayed a greater attraction towards the reference than previously  reported12,15.

To examine whether these attraction biases resulted from the post-stimulus reference, we conducted a control 
experiment with two participants under the dual-task condition. Unlike the main experiment, where the refer-
ence was presented after the stimulus, in this control experiment, the reference and the ensemble stimulus were 
presented simultaneously. For the participant who exhibited fairly large attraction biases in the main experiment 

Figure 6.  Recovered models for individual participants. (a) Standard deviations of estimated measurement 
distributions. Error bars denote ±1 standard deviation of 100 bootstrapped estimates. (b) Estimated weighting 
functions. Shaded areas around the curves denote ±1 standard deviation of 100 bootstrapped estimates.
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(S1), the simultaneous presentation significantly reduced the attraction biases (ANOVA tests p < .001 for all 
stimuli with a distance larger than 9◦ ). However, there was no significant difference between the main and control 
experiments for the other participant (S3), likely due to this participant displaying relatively small attraction 
biases (Fig. S4). Therefore, it is plausible that the post-stimulus reference introduced greater attraction compared 
to a reference presented simultaneously with the stimulus, as participants may rely more on decision categories 
when sensory representations decayed in working  memory23.

An alternative explanation for the attraction bias is that participants might form and utilize prior expectations 
regarding the range of the  stimuli24,25. This notion is supported by the observations of attraction biases when 
participants were given explicit cues about the stimulus range (see Experiment 2  in12). In our study, we chose the 
reference orientations from eight fixed values, leading to a less stochastic stimulus sampling compared to previous 
 studies10,12. As participants were exposed to these stimulus orientations across trials, they may have become 
familiar with the statistical regularities of the reference orientations and implicitly learned that the stimulus 
orientations consistently fell within a certain CW/CCW range ( ±18◦ ) around the reference. Consequently, 

Figure 7.  Pooled model prediction for all participants. (a) Distributions of estimates predicted by the estimated 
model for each particular stimulus orientation. The density was presented with a lightness scale. All the 
values on the x-axis and y-axis are orientations relative to the reference orientation. The dashed lines indicate 
where estimated orientations are equal to stimulus orientations. (b) Psychometric functions of predicted 
explicit judgment as “the stimulus orientation is more clockwise than the reference orientation”. The x-axis 
represents the stimulus orientation relative to the reference orientation. Data are from all participants’ pooled 
judgment responses under the dual-task condition (open circle; same as the data in Fig. 2). Solid lines denote 
the cumulative Gaussian function fitted to the model prediction. Dashed lines denote the 50% threshold of 
discrimination. The error bar denotes one standard error of the estimated 50% threshold. (c) Repulsive bias 
predicted by the model (solid lines). Data are repulsive bias of all participants’ pooled data (dots; same as the 
data in Fig. 5b). The x-axis represents the absolute difference between the stimulus orientation and the reference 
orientation. Shades denote one standard error of the mean of 100 bootstrapped model predictions.
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participants may have formed prior beliefs corresponding to the stimulus range, resulting in estimates being 
attracted toward the center of these expectations (i.e. around 9◦ CW/CCW to the reference).

Biases in the implicit process
We observed reference repulsion effects even in the absence of an explicit task directly related to the refer-
ence. This distinguishes our study from previous studies that employed an explicit discrimination task in the 
 paradigm10,12. Instead, we employed a paradigm where the reference was only presented after the target stimulus, 
avoiding any contextual modulation of the reference during stimulus encoding, which excludes the classic tilt 
 effect3 that occurs when the stimulus and reference are presented simultaneously, or the tilt after-effect if the 
reference precedes the target stimulus. Therefore, our results provide further confirmation of earlier evidence 
of repulsion biases that arise during passive viewing of the reference and involve the implicit processing of 
reference-related  information11,14,15.

Similarly, implicit repulsion effects have also been observed in studies focusing on working  memory26–29. 
Although these studies did not explicitly employ a stimulus as a reference, participants implicitly compared the 
memorized stimuli, resulting in repulsive interactions. Various theories have attempted to explain these repul-
sion effects. For example, Ding et al.28 suggested that the heightened difference between the stimuli yielded a 
temporal repulsion effect when participants performed a successive reproduction task involving two orienta-
tions. These findings indicate that the implicit use of ordinal information constrains the decoding of working 
memory representations. Alternatively, an adaptive perspective of inter-item bias proposes that repulsion occurs 
between similar  stimuli27,29, while attraction occurs between dissimilar stimuli, thereby balancing accurate and 
distinct representations.

Despite the diversity of interpretations and methodologies, previous studies, in line with our findings, consist-
ently demonstrate implicit repulsive exaggeration between similar stimulus representations in working memory. 
In our study, even though the reference was not a memorized item, these exaggerations may have helped par-
ticipants to implicitly avoid overlapping representations.

Comparison between the single-task and dual-task conditions
We found distinct reference repulsion effects between the two task conditions and proposed a re-weighting 
account that differentiated between implicit and explicit processes as a plausible explanation for the observed 
behavior. However, it is important to consider alternative explanations for these differences.

One possibility is that, during the reproduction phase of the dual-task condition, participants intentionally 
adjusted the probe further away from the reference due to the forced discrimination choice. This adjustment 
may have exaggerated the orientation difference between the stimulus and the reference. Such a strategy could 
be adopted to maintain the participant’s self-consistency12 when the difference between the stimulus and the 

Figure 8.  Measured and predicted repulsive bias of individuals. (a) Measured repulsive bias of individual 
participants. Data are from trials where the subject’s estimates indicated that the subject correctly judged 
stimulus orientation relative to the reference orientation. (b) Model prediction of individual’s repulsive bias. The 
x-axis represents the absolute difference between the stimulus orientation and the reference orientation. Shades 
denote one standard error of the mean. The four colors represent the four conditions, where hues correspond to 
task conditions and shades correspond to noise levels.
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reference was too small or near zero. Consistent with this expectation, we found that the magnitude of the repul-
sion bias when the stimulus orientation aligned with the reference orientation ( 7.35◦ ± 2.47◦ , averaged across 
subjects and noise levels in the dual-task condition) matched the just noticeable difference ( 7.37◦ ± 2.11◦ , aver-
aged across subjects and noise levels) in the discrimination task. However, this explanation fails to account for 
the attraction bias towards the reference observed for stimuli with orientations that were significantly different 
from the reference orientation.

Another difference between the two task conditions is the memory delay before the reproduction phase. 
If the stimulus representations were held in working memory until the reproduction phase and read out 
specifically for the reproduction task, one would expect a larger variance in participant’s estimates due to 
larger internal memory-related  noise30–32. However, our results do not support this hypothesis. In fact, the total 
time to complete was not significantly different between the dual-task and the single-task (repeated measure 
ANOVA, p = .025 , see Fig. S5). Moreover, participants spent more time with the high noise stimulus when the 
task involved explicit judgment (interaction between noise and task conditions, repeated measure ANOVA 
p = 0.002 ). Additionally, the reaction times were shorter under the dual-task condition than the single-task 
condition for most participants, although a repeated measure ANOVA test showed a significant difference only 
for the interaction between the task and noise conditions ( p = .025 ). These comparisons of the reaction times 
suggest that the explicit discrimination response sped up the following reproduction task, indicating that the 
readout of the stimulus representation occurred at the first relevant task. Thus, the memory decay account 
cannot fully explain our results. However, it remains unclear whether the readout would be equivalent in terms 
of representation quantities and neural mechanisms to the readout for the following accurate reproduction.

Furthermore, it is also unlikely that the differential effects observed are attributable to learning over experi-
ment blocks and task conditions. Perceptual learning has been shown to occur over trials and blocks, reducing 
perceptual  variability33–35. Therefore, one might expect a decrease in the variance of the estimates over blocks, 
especially considering the possibility that participants learned to use the reference. Data from two participants 
who repeated the experiment under the single-task condition after completing the main experiment (Fig. S6) 
showed sharp transitions between the dual-task and single-task blocks, suggesting that the variability of the 
participants’ estimates was immediately reduced by the explicit discrimination, rather than gradually decreased 
over time through learning (Fig. S6a). These results also imply that participants were unlikely to learn to use the 
discrimination judgment before being exposed to the instruction of the explicit discrimination task. Interest-
ingly, the effects of explicit discrimination were reversible and anchored to the relevant task for both participants, 
evidenced by no significant difference in the standard deviations of estimates between the first and repeated 
single-task conditions (Levene’s test p > .05 for both participants, see Fig. S6b).

Therefore, our results strongly support genuine distinctions between explicit and implicit processes, which 
may reflect the employment of different strategies for utilizing sensory information in visual perception, depend-
ing on the availability of categorical context. The re-weighting model we adopted is not limited to early visual pro-
cessing or specific behavioral  paradigms10, suggesting a fundamental disparity in information utilization between 
explicit and implicit processes, which may apply to other findings on sensory information processing. Studies 
across various topics have reported non-normative patterns of information integration in explicit processes. 
For example, in visual search, Hansmann et al.16 found that the explicit encoding of ensemble representations 
is based on summary statistics, whereas the implicit assessment encodes ensembles with rich details. Similarly, 
Chen et al.36 found differences in the use of category information between implicit and explicit processes in 
category-based induction. When predicting the direction of moving geometric figures that were categorized by 
learning, participants were more likely to integrate information across categories in the implicit process, whereas 
the explicit process was dominated by single-category information. Consistent with these theories, our model 
suggests that the explicit process prioritizes the coarse information about statistical and categorical representa-
tions, while the implicit process tends to utilize rich sensory representations.

Finally, the role of explicit choices in contextual information processing remains an open question. Explicit 
choices may lead to feature-oriented attention and allocate more cognitive resources to the  reference37. Top-
down attentional guidance directs limited cognitive resources towards task-relevant signals for optimal 
 performance38,39. Therefore, it is possible that in the present study, participants paid more attention to the refer-
ence in the dual-task condition compared to the single-task condition, as they were aware of its relevance to the 
task. This increased attention to the reference could potentially result in distinct biases between the two condi-
tions. Moreover, explicit choices may alter decision-making, suggested by a recent study showing that explicit 
choices induce the down-weighting of late evidence in the accumulation of decision-relevant information, which 
is reflected by pupil-linked  arousal7. Another possibility is that explicit choices increase the gain of neurons 
encoding the reference, resulting in contextual modulation of the representation of the stimulus in working 
memory. Population coding models have extensively explained contextual biases, which posit modulations on 
the responses of neuronal populations in the visual  cortex6,40–44. For example, neurons in population codes may 
adjust their gains to different degrees as a consequence of the context, leading to  biases42,44. It is conceivable 
that explicit choices increase the gain around the reference and thus enhance the repulsion effect. However, the 
traditional population coding model has limitations in explaining the reference-induced attraction effect. Our 
results suggest a strategy for extending the model to account for the effects of explicit choices by incorporating 
the reweighting components we identified.

Conclusion
Reference repulsion is a well-known phenomenon that demonstrates how contextual information influences 
visual perception. Such repulsion may occur at an early, sensory-related stage, or a late, decision-related stage 
of visual processing. To investigate the influence of the reference during late visual processing, we conducted an 
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experiment using an ensemble stimulus of orientation, followed by the presentation of a reference orientation. 
We found strong repulsion effects induced by the post-stimulus reference, as evidenced by the significant bias 
in participants’ reported stimuli. Moreover, the explicit discrimination made between the reference and the 
stimulus had a notable impact on the magnitude of repulsion effects. This impact can be effectively explained by 
an encoding-decoding model that differentiates the re-weighting of sensory representations between implicit 
and explicit processes. In summary, our findings provide evidence that reference repulsion can occur during late 
visual processing, indicating distinct sensory decoding between implicit and explicit tasks.

Data availibility
The data and code can be found at the G-Node GIN platform: https:// doi. org/ 10. 12751/g- node. 46h2gl.
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Supplementary Information

Supplementary Methods

Two of five participants completed supplementary experiments after completing the main ex-
periment.

To examine any potential learning e↵ect, we asked two participants to repeat the experiment
under the single-task condition after the main experiment. The stimuli and procedures were the
same as those in the single-task condition of the main experiment.

To measure the repulsion e↵ect from a reference that is presented throughout the experiment
trial, we asked two participants to repeat the experiment under the dual-task condition. The
stimuli and procedures remained compared to those in the dual-task condition of the main
experiment, while the reference was presented simultaneously with the ensemble and lasted
until the final response.

Supplementary Figures
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Figure S1: Individual’s discrimination data in the dual-task condition: mean proportion of clock-
wise (CW) responses and associated cumulative Gaussian psychometric functions, separated for
the low and high noise levels. The x-axis represents the stimulus orientation relative to the
reference orientation. Positive values mean the orientation clockwise to the reference line. Data
points were pooled from the dual-task condition of all participants’ data. Vertical dashed lines
denote PSEs for two conditions respectively, and the error bar denotes one standard error of the
associated PSE.
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Figure S2: Estimated parameters of fitted symmetric mixed Gamma density functions for indi-
viduals. (a): scale parameter; (b): shape parameter. Error bars denote 95% confidence intervals
of the estimates. The four colors represent the four conditions, where hues correspond to task
conditions and shades correspond to noise levels.
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Abstract

Visual perception can be biased by contextual information. One phenomenon of contextual in-
fluence is reference repulsion: the visual estimates of stimuli are biased away from an explicit
reference that shares features with the stimuli, which has been observed in perception of motion
direction or orientation. In color vision, while repulsion effects are known to result from col-
ored surrounds, a systematic examination of the repulsion from an explicit color reference is still
missing. We used a dual-task paradigm where the subjects were asked to estimate the average
hue of a noisy color ensemble after discrimination between the average hue of the ensemble and
an explicit reference hue. The estimated hues showed systematic biases away from the reference
hues, demonstrating characteristic features of reference repulsion effects. An encoding-decoding
model successfully predicted the repulsion effects and explained the nonuniformities that blue
and yellow references showed the largest overall repulsion effects. These results suggest a gen-
eral mechanism for contextual information processing and visual decision-making.

1 Introduction

Our visual percept does not solely depend on the feature of the physical stimulus but is suscepti-
ble to contextual information. For example, the color appearance of an apple relies on the color
of a fruit bowl: a red apple appears less reddish in a red fruit bowl than in a green fruit bowl. This
example also evidences a significant and mysterious feature of contextual biases: visual estimates
can be biased and repelled away from the context. Such repulsive biases have been found occur-
ring in temporal, spatial, or instructive contexts (see Schwartz et al. (2007) for a review), across
a variety of visual features including orientation (Gibson and Radner, 1937; Fritsche et al., 2020),
motion direction (Rauber and Treue, 1998; Jazayeri and Movshon, 2007), and color (Webster et al.,
2002; Klauke and Wachtler, 2015).

Among the repulsive biases, one specific repulsion effect, so-called reference repulsion, has
been reported arising in the subject’s estimate following a discrimination choice. Such repulsion
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effects can be measured in a dual-task paradigm including a discrimination task and a succeeding
estimation task. When subjects report the feature of a stimulus after comparing it with an explicit
reference, the reported feature is systematically biased away from the reference. Such effects
are featured with conspicuous characteristics. For example, the reported estimates are usually
consistent with the preceding discrimination choices. Moreover, the magnitude of the effect
decreases with increasing the feature difference between the stimulus and the reference, and it
increases with increasing the stimulus noise (Jazayeri and Movshon, 2007). Reference repulsion
was first revealed by studies on the perception of motion directions (Rauber and Treue, 1998;
Jazayeri and Movshon, 2007; Zamboni et al., 2016), and then was found in orientation perception
(Luu and Stocker, 2018, 2021), numerical decision-making (Talluri et al., 2018, 2021), and cognitive
judgment (Spicer et al., 2022). The effects thus seem common across a wide range of processes of
perception and cognition. However, it remains little known whether reference repulsion exists
for various visual features, such as colors.

In color vision, repulsion effects are known to result from colored surrounds (Klauke and
Wachtler, 2015). When subjects adjusted the hue of a stimulus in a neutral gray surround to match
it to a test hue embedded in a chromatic surround, the chromatic surround induced hue changes
that were repulsive from it. The magnitudes of the repulsion effects increased until reaching a
maximum and then decreased with increasing the hue difference between the stimulus and the
surround. The effects do not only show similarities to the tilt effect in orientation perception
(Gibson and Radner, 1937; O’Toole and Wenderoth, 1977; Smith et al., 2001), but also imply the
possibility of resembling the reference repulsion effects. The surround might implicitly play a role
as a reference, which could induce repulsive biases without instructing subjects to generate or
explicitly report any discrimination choice (Rauber and Treue, 1998; Zamboni et al., 2016; Fritsche
and de Lange, 2019; Ye and Liu, 2020). Yet, much less is known about whether an explicit color
reference can induce systematic repulsion effects.

A non-negligible characteristic of color perception is the non-unifomity among different
hues. Such non-uniformity has been widely reported in hue perceptual variability (Boynton
et al., 1986; Krauskopf and Gegenfurtner, 1992; Danilova and Mollon, 2010; Witzel and Gegen-
furtner, 2013), chromatic contextual modulation (Klauke and Wachtler, 2015), and color working
memory (Bae et al., 2014, 2015). Specifically, studies have consistently addressed the special fea-
tures of some colors, such as blue and yellow. These colors have been shown lower discrimination
thresholds and higher perceptual sensitivity (Boynton et al., 1986; Krauskopf and Gegenfurtner,
1992; Danilova and Mollon, 2010; Witzel and Gegenfurtner, 2013). In a perceptual cone-opponent
color space, the contextual biases induced by colored surrounds have shown the largest magni-
tudes along an oblique, blue-yellow axis (Klauke and Wachtler, 2015). Taken together, it begs the
question that, if color reference induces repulsion effects, whether these effects are different for
distinct colors. Thus, another aim of our study was to compare the reference repulsion effects
among colors.

In the present study, we examined the reference repulsion effects in color perception, by mea-
suring the subject’s estimates of the hue ensemble following an explicit comparison between the
ensemble and a color reference. We observed that hue estimates were biased away from the refer-
ence, along with characteristic features of the reference repulsion effects. Despite similar patterns
of the effects for different hue references, the strongest overall repulsion occurred around blue
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and yellow hues. Such non-uniform repulsion biases were explained by an encoding-decoding
model, indicating that both encoding precision and reweightings of sensory representations were
different for different colors.

2 Methods

2.1 Subjects

Nine subjects, two males and seven females, ranging in age from 18 to 30 years, participated in
the experiments. All observers had normal or corrected-to-normal vision. Participants signed
informed consent prior to the experiment and received a compensation of 10 Euros per hour.
The study was conducted in accordance with the Declaration of Helsinki.

2.2 Stimuli

Stimuli were presented on a ViewPixx Lite 2000A display, calibrated by a PhotoResearch (Chatsworth,
CA) PR-655 spectroradiometer, and controlled by a Radeon Pro WX 5100 graphics card. The
screen resolution was 1920× 1200 pixels at a refresh rate of 120 Hz.

Chromaticities of the stimuli were defined in an opponent cone-contrast color space, with the
two coordinate axes corresponding to L-M and S cone contrast, respectively (Figure 1a). In this
color space, the distance from the center corresponds to chroma, the azimuth angle corresponds
to hue, and the orthogonal third axis corresponds to luminance contrast. Cone contrasts were
defined with respect to a neutral gray (106.7 cd/m2, CIE [x, y] = [0.307, 0.314]). S-cone contrasts
were scaled by a factor of 2.6, yielding approximately equally salient stimuli for all hues (Teufel
and Wehrhahn, 2000). Individual perceptual isoluminance with respect to the reference gray
was determined for 16 stimuli of different hues using heterochromatic flicker photometry (Kaiser
and Boynton, 1996). From these data, an isoluminant plane in cone-opponent color space was
calculated for each subject (Teufel and Wehrhahn, 2000).

Stimuli were generated using the software Psychopy 2020.1.2 (RRID:SCR 006571, Peirce et al.,
2019) based on Python 3.6, consisting of a target stimulus, a reference stimulus, and a gradient
color bar as a reference hue sequence along the color space azimuth. The target stimulus consisted
of arrays of 16 circular patches with diameters of 0.75◦ of visual angle, evenly spaced on a 4× 4

grid extending 3◦ × 3◦ of visual angle (Figure 1b). Within each stimulus, the circular patches
were randomly positioned on the grid of the array. The reference stimulus was a 0.8◦ × 4.0◦

rectangular patch. The gradient color bar had an extent of30◦ × 2◦ of visual angle.
On a neutral gray background (46.01◦ × 29.68◦), the stimulus was presented at the screen

center. The reference stimulus was presented on the upper part of the screen (6◦ above the center).
The gradient color bar was placed at the same height as the reference and split horizontally into
two parts by the inserted reference stimulus (Figure 1c).

All stimulus chromaticities were moderately saturated, with a cone contrast c = 0.12 with
respect to a neutral gray background. All stimuli and the gray background were isoluminant.
The hues of the reference stimulus θr , were regularly spaced along the azimuth of color space at
0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦. For each θr , the corresponding gradient color bar
was filled by 60 evenly spaced hue angles from a uniform distribution with the boundaries [θr -
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Figure 1: Experiment stimuli and paradigm. (a) Eight reference hues were defined by azimuth
angle θr in opponent cone-contrast color space (unfilled circles). (b) Examples of stimuli with
two noise levels. Both ensemble stimuli had an average hue of 270◦. (c) Experiment paradigm. A
1000-ms presentation of the reference along with the gradient color bar was followed by a 750-ms
presentation of the ensemble stimulus. After a 500-ms chromatic mask, subjects were instructed
on a discrimination task and an estimation task in sequence. In the discrimination task, subjects
had to indicate whether the stimulus was on the left or right side relative to the reference. In the
estimation task, subjects had to report the memorized hue average of the stimulus by clicking on
the gradient color bar.

30◦ and θr + 30◦]. The average hues of the corresponding target stimulus θs were θr + λ, where
λ was evenly chosen from the range of [−18◦, 18◦] with steps of 3◦. The hues of the circular
patches were generated according to two noise levels (Figure 1b). All hues were identical within a
low-noise target stimulus. For a high-noise target stimulus, the hues were drawn from a mixture
of two uniform distributions centered at θr+λ, in which the hue angles of 10 patches were evenly
drawn from a uniform distribution over a range of 32◦ and the hue angles of the remaining 6
patches were evenly drawn from a uniform distribution over a range of 16◦.

2.3 Procedures

During the experiment, the subject sat in a dimly lit room and viewed the display binocularly
from a distance of 57 cm. A central fixation dot (radius 0.2◦) was displayed before the target
stimulus presentation and during the response delay. Subjects were instructed to maintain their
eyes to the fixation throughout the entire trial.

Each trial started with the presentation of the reference stimulus and the gradient color bar
for 1000 ms, followed by a 750-ms presentation of the target stimulus. During the stimulus pre-
sentation, only the two ends (both 0.5◦ × 2◦) of the color bar remained presented to indicate the
sequence of hues along the color space azimuth. To prevent afterimages, a full-screen checker-
board pattern of chromatic squares was presented after the target stimulus. After 500 ms, the
reference stimulus and the gradient color were presented again during the response delay un-
til the trial was completed. Subjects were instructed to memorize the hue average of the target
stimulus to complete a dual task. First, subjects were cued by a black fixation dot to indicate that,
compared with the reference hue, whether the hue average of the target stimulus was closer to
the left or the right end of the gradient color bar. The judgment response was given by pressing
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the left or right arrow key with the right hand. The fixation dot turned white after the judgment
response, cueing subjects to indicate the hue average of the target stimulus by clicking on the
gradient color bar with a computer mouse. If the response time was longer than 5 seconds for
judgment or 10 seconds for estimation, the corresponding trial was discarded and repeated in
the same block. Average response times were 1.90 seconds.

Each block consisted of 52 trials, in which a pair of reference stimuli, with 180◦ as the dif-
ference in their mean hue angles, were randomly interleaved. All corresponding target hues and
the two noise levels were randomized within a block. Before the main experiment, subjects com-
pleted a few practice blocks with feedback as texts (”correct” or ”incorrect”) about the correctness
of their judgment responses. Each subject performed at least 40 blocks, resulting in 2080 trials
divided into 16 conditions (8 reference stimulus hues x 2 noise levels).

2.4 Data Analysis

Data analysis was performed for each individual’s dataset as well as for the pooled data. For
the discrimination task, we fitted a cumulative Gaussian function to the binary responses using
the Psignifit package (Schütt et al., 2016) and estimated the mean and standard deviation of the
function. The former represented the 50% threshold of the psychometric function (the point of
subjective equality, PSE), and the latter corresponded to the discrimination thresholds.

For analyzing the bias of the estimates, we selected the trials only with correct discrimination
judgment (90.84% of the total trials). We computed the repulsive bias by combining the biases
of the stimuli that had the same hue angular distance to the reference. The absolute value of
repulsive bias was equal to the absolute bias of the estimate, with a positive sign if the bias was
repulsive from the reference.

A significant aim of the study was to examine whether reference repulsion effects show dif-
ferent characteristics between hues. Therefore, for the following analysis, we separated data by
reference hues. We first analyzed the course of bias over all stimuli for each reference hue, to
make our results comparable to the previous findings about contextual modulation (Klauke and
Wachtler, 2015). Moreover, we fitted an ellipse model to normalized repulsive biases to inves-
tigate the systematic pattern of the biases and determine the reference hue angle that induced
the largest overall repulsion effects. We selected all repulsive biases (i.e., repulsive bias larger
than zero) and normalized them within each subject so that the relative weight of each reference
hue summed to unity. The parameters of the ellipse model were optimized using non-linear least
squares.

2.5 Modeling Analysis

To explain the repulsive bias and its non-uniformity over hues, we adopted an encoding-decoding
model (Jazayeri and Movshon, 2007) that posited the bias arose from combining the encoding and
decoding stages of visual information. The model hypothesized that the noisy encoding of the
stimulus led to fluctuated measurements at the encoding stage, which formed a measurement
distribution centered on the hue average of the stimulus. At the decoding stage, it assumed
discrimination choices re-weighted the sensory presentations by combining the measurement
distribution with a re-weighting function. The model consisted of a Gaussian-like measurement
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distribution and a re-weighting function that had maxima moderately shifted to the sides of the
boundary.

Given the periodicity and symmetry of perceptual measurements shown in the present color
space, we further assumed the parameters of the model components as functions of the reference
hue angles. We modeled the measurement distribution of a target stimulus hue µ as a Gaussian
probability density function N(µ, σ(θ)), where σ(θ) was a sine function of the reference hue
angle θ with a fixed period of 180◦. For modeling convenience, we assumed σ(θ) was approx-
imately equal to the width of the measurement distribution of stimulus hues around θ. Given
that the measurement variability was likely to depend on the stimulus noise, σl(θ) and σh(θ)

were modeled for the low-noise and high-noise conditions, respectively. We modeled the re-
weighting function as a symmetric Gamma mixture of two identical Gamma density functions.
Each function Γ(α(θ), β(θ), δ) consisted of a shape parameter α(θ), a scale parameter β(θ), and
a shift parameter δ. Both α(θ) and β(θ) were sine functions of the reference hue angle θ with
a fixed period of 180◦. In addition, the model included a constant representing the individual’s
motor bias that was independent of the stimulus settings. In summary, our model contained a
set of parameters for each sine function of the reference hue angle (σl(θ), σh(θ), α(θ), β(θ)),
two subject-specific parameters δ and ϵ. We obtained the optimal parameters by maximizing
the likelihood of measured estimates given the model using the Nelder-Mead algorithm. The
optimization included all trials and was applied individually to each subject’s data.

Predicted estimates of the optimized model were drawn from the product of the measure-
ment distribution and the re-weighting function. For each particular stimulus presented in the
experiment, we randomly sampled 500 estimates from the corresponding product distribution.
The model’s predicted estimates were selected and analyzed following the same procedure of
analyzing experimental measurements.

3 Results

3.1 Behavioral Results

The primary aim of the study was to examine the reference repulsion effects in hue perception.
Thus, we adopted a classic dual-task paradigm to hue perception and analyzed subjects’ discrim-
ination data and the reported estimates.

Figure 2 shows that, in general, subjects were able to discriminate between the target and
reference hues. The slopes of the psychometric function were steeper for the target stimulus
with higher noise, which were also shown in the discrimination measurements around every one
of the reference hues (Supplementary Figure S1). Such results indicate stimulus noise elevated
discrimination thresholds for all subjects (sign test, p < 0.001). The psychometric functions
showed shifts in the point of subjective equality (0.93± 0.30 (SE) on average), suggesting small
discrimination biases with inter-subject differences (Supplementary Figure S2).

A typical characteristic of the reference repulsion effects is a bimodal-shaped distribution
of subjects’ estimates that are biased away from the reference. Figure 3(a-b) shows that the
reported hues followed a bimodal distribution under both noise conditions (dip test p < 0.001

for both noise conditions). In line with previous studies, the estimates were repulsive away from
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Figure 2: Psychometric functions of discrimination judgment for a representative subject (“single
subject”, s5) and the pooled data (“pooled subject”). Data are shown for the low noise condition
(“L”) and the high noise condition (“H”), respectively. The y-axis represents the proportion of
subjects’ judgment as “the target stimulus hue is closer to the right end than the reference hue”
(i.e., the target stimulus hue angle is perceived as larger than the reference hue angle). The x-axis
represents the stimulus hue angle relative to the reference hue angle. Data are from all subjects’
pooled discrimination responses. Solid lines denote the cumulative Gaussian function fitted to
the data. Dashed lines denote the 50% threshold of discrimination. The error bar denotes the
68% confidence interval of the estimated 50% threshold.

the reference. Figure 3(c-d) shows that, for both noise conditions, repulsive biases were larger
for the stimulus hue closer to the reference hue. The magnitudes of the repulsion effects were
up to a maximum of about 4.59◦ ± 0.14◦ (SE) for low noise stimulus and 7.02◦ ± 0.17◦ (SE)
for high noise stimulus. As the target stimulus hue was less similar to the reference hue, the
biases became less repulsive and even attractive. When the hue angle difference between the
target stimulus and reference was smaller than 9◦, subjects showed larger repulsive bias was
larger for the target stimulus with higher noise (repeated measures ANOVA, F (1, 8) = 85.15,
p < 0.001). On the contrary, when the target stimulus was quite different from the reference in
hues (hue difference larger than 12◦), the repulsive bias decreased with increasing the stimulus
noise (repeated measures ANOVA, F (1, 8) = 22.03, p = 0.002).

To further test the uniformity of the effects across different hues, we separated the biases of
reported estimates by the reference hues. Figure 4 shows the biases as functions of the target
stimulus hues relative to each reference hue. At the hue distance of approximately 3◦, the biases
under both low and high noise conditions reached maximums of about 3.30◦ ± 0.52◦ (SE) and
5.31◦ ± 0.41◦ (SE), respectively. Beyond the maximum, biases decreased with increasing the
difference between the target stimulus and reference hues. Notably, although such systematic
changes of biases were qualitatively the same, it varies in shape for different reference hues. The
shape shows similarities between the reference pairs with a hue distance of 180◦, suggesting the
symmetry in the reference-induced biases along the azimuth of the color space.

Thus, we fitted an ellipse to normalized biases so that the overall bias was computed as a
weighted sum of the biases around each reference hue. If the biases were uniform across hues,
the fitted ellipse would have an eccentricity of 1. Figure 5a shows the fitted ellipse for all subjects’
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Figure 3: Estimate Distribution and repulsive bias. (a-b) Distributions of the subject’s estimates
for each particular stimulus hue angle. Data are shown for the low noise condition (“L”) and
the high noise condition (“H”), respectively, from the representative subject (a) and all subjects’
pooled data (b). The density was presented with a lightness scale. All the values on the x-axis
and y-axis are hue angles relative to the reference hue angle. The dashed lines indicate where
estimated hue angles are equal to stimulus hue angles. (c-d) Repulsive bias of the representative
subject (c) and all subjects’ pooled data (d). Data are shown for the low noise condition (“L”) and
the high noise condition (“H”), respectively. Data are from trials where the subject’s discrimina-
tion judgment was correct. The x-axis represents the absolute difference between the stimulus
hue angle and the reference hue angle. Error bars denote one standard error of the mean.

pooled normalized biases. All fitted ellipses (see Supplementary Figure S6 for individual’s fitted
ellipses) had an eccentricity between zero and one (0.71 ± 0.20 on average, Figure 5b). On
average, the longest axes of the ellipses were along the hue angle of 87.93◦ ± 15.14◦ for the low
noise condition and 112.53◦ ± 9.02◦ for the high noise condition (Figure 5c).

Taken together, the estimates of target hues showed repulsion biases away from the reference
hue. The repulsion effects were stronger for the target stimulus closer to the reference and with
higher stimulus noise. Such repulsive bias showed non-uniformity across hues, with the largest
overall biases around blue and yellow.
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the high noise condition (“H”), respectively. Data points are the averages of repulsive biases that
were normalized within each subject from trials where the subject’s discrimination judgment
was correct. Error bars denote standard deviation. (b-c) Characteristics of the fitted ellipses
on individual’s data (Supplementary Figure S6): eccentricities of the fitted ellipses (b), and the
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3.2 Modeling Results

An encoding-decoding model has been posited to explain the reference repulsion effects as a
consequence of re-weighting sensory representations by discrimination choices (Jazayeri and
Movshon, 2007). The model consists of two components: a measurement distribution and a re-
weighting function. The measurement distribution results from fluctuated measurements of a
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particular stimulus during the noisy sensory encoding. At the decoding stage, the measurement
distribution multiplies a re-weighting function that results from the discrimination judgment and
has maxima moderately shifted to the sides of the categorical boundary (such as in the shape of
a Gamma density function). The measurement corresponding to the peak of this product is thus
regarded as the estimate of the particular stimulus.
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Figure 6: Estimated model parameters as sine functions of reference hue angles. (a-b) The widths
of the measurement distributions, for low-noise and high-noise stimuli, respectively. (c-d) The
shape and scale parameters of the re-weighting profile as a gamma density function, respectively.
Different colors denote estimates for individuals.
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Figure 7: Estimated re-weighting functions. The re-weighting profiles were averaged across sub-
jects. Note that each model represents two identical profiles of a pair of reference hues that are
180◦ apart. The shade denotes ±1 standard error.

In the present study, we adopted this model on the subject’s estimates of hues. Moreover,
given the observed non-uniformity of the repulsive biases across hues, we assumed the parame-
ters of the encoding-decoding model varied systematically with hues, likely in a sine-like fashion.
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Figure 8: Model-predicted responses. Predictions are shown for the low noise condition (“L”)
and the high noise condition (“H”), respectively. (a) Psychometric functions of model-predicted
discrimination judgment. The y-axis represents the proportion of predicted subjects’ judgment
as “the target stimulus hue is closer to the right end than the reference hue” (i.e., the target
stimulus hue angle is perceived as larger than the reference hue angle). The x-axis represents the
target stimulus hue angle relative to the reference hue angle. Open circles denote all subjects’
pooled discrimination responses measured in the experiment (same data as in Figure 2). Solid
lines denote the cumulative Gaussian function fitted to the predicted data. Dashed lines denote
the 50% threshold of discrimination. (b) Distributions of predicted all subjects’ pooled estimates
for each particular stimulus hue angle. The density was presented with a lightness scale. All the
values on the x-axis and y-axis are hue angles relative to the reference hue angle. The dashed
lines indicate where estimated hue angles are equal to stimulus hue angles.
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Figure 9: Model-predicted bias of all subjects’ pooled data for different hues. Lines denote model-
predicted biases. Dots are biases measured in the experiments (same data as in Figure 4). Error
bars denote one standard error of the mean. The x-axis represents the hue angle difference be-
tween the stimulus and the reference.

Specifically, we assumed the widths of measurement distributions, and the shape and the scale of
the re-weighting functions were sine functions of reference hues with a fixed period of 180◦. We
hypothesized the relationship based on the observed symmetries in the bias patterns between
every pair of reference hues that were 180◦ apart. The assumed symmetry and periodicity were
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also in line with findings on color discrimination and hue contextual modulation (Boynton et al.,
1986; Krauskopf and Gegenfurtner, 1992; Danilova and Mollon, 2010; Witzel and Gegenfurtner,
2013; Klauke and Wachtler, 2015). Figure 6 shows the relationships between these model param-
eters and reference hue angles. On average, the estimated widths of measurement distributions
showed the lowest values at 135.91◦±3.43◦ and 315.91◦±3.43◦ for the low-noise stimulus. The
lowest estimated widths for the high-noise stimulus were at 134.35◦±1.93◦ and 314.35◦±1.93◦,
indicating the highest precision around blue and yellow, which was consistent between noise
conditions. The shape parameter of the re-weighting profile, determining the function’s skew-
ness and kurtosis, showed the lowest values at 134.90◦ ± 5.49◦ and 314.90◦ ± 5.49◦. The scale
parameter of the re-weighting function peaked at 121.67◦ ± 7.09◦ and 301.67◦ ± 7.09◦. The
shape and scale parameters together led to the distinct profiles of the estimated re-weighting
functions for different hues (Figure 7). The closer the hue was to an oblique space axis connect-
ing unique blue and unique yellow (approximately around 112◦ and 292◦, see Mollon (2006) and
Klauke and Wachtler (2015)), the wider was the spread of the re-weighting functions. The esti-
mated model was able to predict the data in both discrimination and estimation tasks (Figure 8).
As Figure 9 shows, the model’s prediction also captured the different profiles of bias for differ-
ent colors. Taken together, the two-component model was able to predict the repulsion effects
in hue perception. The model also explained the non-uniformity with different profiles of the
model components for different hues, suggesting that colors showed differences in both sensory
encoding precision and sensory representation re-weighting.
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4 Discussion

As one of the significant contextual biases, reference repulsion has been found in the subject’s
estimates of different visual features such as motion direction and orientation, whereas the phe-
nomenon remained unveiled for color perception. To examine the reference repulsion effects in
color perception, we measured the subject’s estimates of a hue stimulus after an explicit compari-
son between the stimulus and a color reference. The subject’s hue estimates were repulsive away
from the reference, showing the largest repulsive biases for the stimulus closer to the reference
and with larger chromatic noise. While the patterns of biases were qualitatively similar among
different hues, the largest overall repulsive biases occurred around blue and yellow. In line with
the findings in other visual domains, an encoding-decoding model predicted the overall repul-
sion effects and explained the non-uniformity of biases among colors with model components
differing between distinct hues. Our results thus suggest a common mechanism of processing
contextual information for various visual features.

4.1 Reference repulsion as a common mechanism

One of the research interests in visual perception is a general mechanism underlying contex-
tual information processing. Studies on color perception have revealed that, similar to orienta-
tions, color estimates are susceptible to temporal and spatial contexts (Barbosa and Compte, 2020;
Olkkonen et al., 2014; Klauke and Wachtler, 2015). In the temporal domain, the biases of color
estimates could arise from the history and distribution of stimuli (Barbosa and Compte, 2020;
Olkkonen et al., 2014), similar to the well known serial dependence (Fischer and Whitney, 2014)
and central tendency effects (Urban, 1911), respectively. The hue induction effect resembles the
orientation tilt affects, strongly supporting a common mechanism of contextual modulation be-
tween orientation and color perception (Klauke and Wachtler, 2015). In line with these findings,
our study shows that reference repulsion is possibly a common contextual bias across different
visual features, indicating a general mechanism of utilizing categorical context for perceptual
inference.

4.2 The nature of reference repulsion

Nevertheless, there remain debates about the perceptual nature of reference repulsion. Several
studies have posited that the repulsive effects occurred in the early sensory encoding stage, even
though with different mechanism accounts (Jazayeri and Movshon, 2007; Ye and Liu, 2020). On
the contrary, recent studies have found that repulsive biases could be modified by manipulat-
ing the tasks and presentations after stimulus encoding, suggesting reference repulsion is a late
decision-related bias (Zamboni et al., 2016; Luu and Stocker, 2021). For example, Zamboni et al.
(2016) showed that the presence of reference during stimulus reproduction was necessary to in-
duce the repulsive effects. When the reference was jittered during the reproduction, the repulsive
bias was shifted and yoked to the jittered reference. Moreover, Luu and Stocker (2021) showed
that, given feedback on the discrimination choices, subjects could recombine the probabilistic in-
formation and generate an estimate following the corrected choice, especially when the feedback
indicated an incorrect choice.
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Our study followed the classic paradigm to examine the reference repulsion effects and, there-
fore, could not directly disentangle the processes underlying the effects. Nevertheless, our find-
ings suggested a consistency between perceptual biases and reference-induced biases. Although
the discrimination biases were negligible when the data were pooled across hues, the biases
for particular hues appeared non-negligible for some subjects (for example, see s12 in Supple-
mentary Figure S2). In these cases, subjects tended to follow their discrimination choices, even
when the choices were biased (95.45% of trials with incorrect discrimination choices). For all
subjects and all colors, the proportion of estimates falling into a particular category correlated
with the proportion of the corresponding choices (Supplementary Figure S3, Pearson correlation
r(70) = 0.99, p < 0.001 for low noise stimuli, r(70) = 0.98, p < 0.001 for high noise stim-
uli). In other words, when the reference mismatched the point of subjective equality (PSE) of
discrimination, the estimates still followed the categorical choices but showed repulsion exclu-
sively around the reference. In line with other studies (Zamboni et al., 2016; Luu and Stocker,
2018, 2021), our findings imply that subjects tend to maintain self-consistency in consecutive
tasks, while the repulsion effect is related to the fine estimation with memory recall and depends
on the reference presented during the estimation.

To further examine the nature of reference repulsion, future studies could include an addi-
tional discrimination task in the experiment scenario, similar to the orientation study by Fritsche
and de Lange (2019). For instance, after subjects reported the memorized target stimulus, sub-
jects would need to compare the hue of the target stimulus with a presented comparison hue
ensemble. If reference repulsion affects the perception of the target stimulus, we would expect
non-negligible perceptual biases that are repulsive away from the reference in the second dis-
crimination task.

4.3 Reference repulsion vs. color-tilt

The pattern of the bias revealed in this study appears similar to that of the bias induced by chro-
matic surrounds (Klauke and Wachtler, 2015). In addition to showing similar profiles, the biases
we observed and the ones reported by Klauke and Wachtler (2015) both show non-uniformity
across hues, however, exhibiting opposite characteristics. While Klauke and Wachtler (2015)
have reported the strongest induction effect along a blue-yellow axis, we found the largest over-
all repulsion effects around blue and yellow hues. It is likely that different mechanisms underlie
the two phenomena, given that these two types of biases were measured with different stimulus
configurations and task settings. Underlying these biases, the significant distinctions between
the contextual processes were whether a memory recall and a categorical decision were involved.
Contextual modulation embedded in stimulus encoding has been proposed to explain the tilt ef-
fect including the color-tilt (Klauke and Wachtler (2015), see Schwartz et al. (2007) for a review).
For example, Clifford et al. (2000) have proposed to explain the orientation tilt effects by the shift
of preferred tuning values of neurons in the primary visual cortex. On the contrary, as mentioned
above, it remains debated whether reference repulsion arises from early sensory encoding or late
visual processing. Even though the surround might implicitly resemble a reference, the percep-
tual task did not involve an explicit discrimination choice, which could not reject the possibility
of the difference between implicit and explicit processes.
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4.4 Non-uniformity in the color space

Our results showed pronounced non-uniformity of the repulsive biases across hues. We found
the largest repulsion effects were around blue and yellow hues, in line with the non-uniformity
of contextual effect along a blue-yellow axis (Klauke and Wachtler, 2015). Such non-uniformity
was explained by the systematic changes of model parameters as hue varied. The estimated mea-
surement distributions revealed the highest precision of sensory information encoding around
blue and yellow hues, which is consistent with the behavioral measurements of color perceptual
variability (Boynton et al., 1986; Krauskopf and Gegenfurtner, 1992; Danilova and Mollon, 2010;
Witzel and Gegenfurtner, 2013). Moreover, the re-weighting functions that showed the widest
spread around blue and yellow matched the observations that the blue and yellow contexts show
wider ranges of modulation than other colors (Klauke and Wachtler, 2015). The modeling re-
sults thus imply that the perceptual non-uniformity may arise from the non-uniform encoding
and re-weighting of sensory presentations among different hues. One explanation may lie in the
adaptation of the visual system to natural environments. Given that the oblique blue-yellow axis
coincides with the highest variation in the natural spectra (Webster and Mollon, 1997; Mollon,
2006), it is likely that the visual system has developed lower variability and wider re-weighting
for the daylight colors dominating in natural environments than other colors.

However, such non-uniformity remains not considered when measuring reference repulsion
in other visual features. Previous studies usually pooled data corresponding to different refer-
ences. We re-analyzed the subjects’ estimates of orientations in the study by Luu and Stocker
(2018) and did not find systematic relation between the repulsive bias and reference orientation
(data not shown). This is likely due to that rich contexts of orientations in the experimental
environment might play the role of references (such as the orientations of a monitor’s edges).
Moreover, one could not exclude the possibility that the pronounced non-uniformity of reference
repulsion is exclusive to color vision.

4.5 Color categorical effects

The categorical effect has been one of the central debates in color vision. For color working
memory, Bae et al. (2015) have reported the biases of memorized colors that were away from the
color category boundary and towards the color category center. We examined the color categor-
ical effects by plotting the distribution of estimates on a continuous scale (Supplementary Figure
S5). Due to the focus on the induction of color references, we sampled the stimulus hues locally
around each reference, instead of sampling the hues covering a continuous range over the color
space. Nevertheless, the systematic repulsion effects could be found around the reference hue
and absent at the color category boundary. We consider our results do not contradict the findings
by Bae et al. (2015), but reconcile with the framework that color working memory relies on stim-
ulus categories – the key is, which categories do subjects use? Such categories should facilitate
maintaining memory representations and provide task-relevant information. Thus, in our study,
the categories originating from discrimination choices might mask or replace the subjective color
categories and dominate in biasing the memorized colors.
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4.6 Limitations

Finally, we consider several limitations of the present study. First, previous experiments on mo-
tion and orientation perception usually sampled the values of stimuli stochastically. However,
given the difficulty of performing the color perception tasks for naive subjects, the stimulus hues
were relatively fixed across trials. The range of tested colors was thus limited. Second, the en-
coding variability of each stimulus was approximated to that of its closest reference, while the
perceptual variability could be non-uniform within such a hue angle range of 36◦. Moreover, we
modeled the re-weighting function as a mixture of two symmetrical gamma density functions,
possibly ignoring the asymmetry between the choice-generated categories. One could model
different profiles of the re-weighting functions for the two categories around the same reference,
which might give a better explanation for the estimates distributed in an unbalanced fashion
around some reference hues.
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Figure S1: Individual’s perceptual variability of discrimination responses. Error bars denote 68%
confidence interval. Dash lines denote zero bias.
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Figure S2: Individual’s discrimination biases. Error bars denote 68% confidence interval.
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5 Discussion

5.1 Summary of findings

Various types of contexts have been found to bias visual percepts, as evi-
denced by psychophysical measurements and explained by computational mod-
els. While contextual biases provide valuable insights into how the brain pro-
cesses and infers visual information, there are still many unresolved questions
regarding the general mechanisms involved in contextual information process-
ing for various visual features. Even for specific biases induced by certain types
of contexts, debates persist regarding the stages of visual processing at which
these biases occur. This thesis aims to shed light on these issues by investigat-
ing the contextual biases in two specific visual features, color and orientation,
within natural or task-specific contexts.

The first study in this thesis (Chapter 2) examined whether perceptual biases in
color vision are related to natural contexts. Our hypothesis was that the visual
system may adapt to natural scenes and incorporate environmental statistics
into perceptual properties. To test this, we measured color perceptual vari-
ability and bias using two-alternative forced-choice discrimination experiments
between hue ensembles. For the isoluminant ensemble with hue defined by
azimuth angle in cone-opponent color space, perceptual variability showed a
bimodal pattern with the lowest values near a non-cardinal blue-yellow axis.
Near this axis, perceptual bias showed zero crossings, which was attractive to-
wards blue and repulsive from yellow. We explained the perceptual bias using
a Bayesian observer model and revealed a non-uniform prior that favored blue.
This prior coincides with the variation of natural daylights, suggesting that ob-
servers exploit knowledge of colors in natural environments to process hue
information.

In Study 2 and Study 3, we focused on how an explicit reference acts as a context
that biases visual estimates and leads to repulsion effects. Study 2 (Chapter 3)
addressed whether reference repulsion occurs in the early or late stages of visual
information processing. We measured participants’ estimates of an orientation
ensemble and found the repulsion effect from a reference orientation presented
after the disappearance of the ensemble. This revealed that a reference that oc-
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curs in late visual processing can induce repulsive biases, suggesting reference
repulsion as a late, decision-related bias. Moreover, whether the tasks involved
explicit discrimination choices affected the direction and magnitude of the bi-
ases, which could be elucidated by an encoding-decoding model that suggests
different reweightings of sensory representations between implicit and explicit
processes.

Study 3 (Chapter 4) extended the investigation of reference repulsion from ori-
entation perception to hue perception, aiming at a common mechanism for pro-
cessing contextual information across different visual domains. We measured
participants’ estimates of a hue ensemble after they made an explicit compar-
ison between the ensemble and a hue reference. We found the bias in hue es-
timates was repulsive away from the reference, showing quantitative differ-
ences among different hues. This was explained by an observer model simi-
lar to the one applied to orientation perception. The model also revealed non-
uniformities in both encoding and reweighting of sensory presentations among
different hues. Overall, these results support that reference repulsion is likely
to be a common contextual effect for various visual features, including color.

5.2 Contextual processing across visual domains

One contribution of the present thesis is to demonstrate general mechanisms of
contextual information processing across two visual domains: orientation and
color. Study 1 (Chapter 2) expands the notion of a natural prior in the Bayesian
observer model from orientation to color, and the other two studies (Chapter 3
and Chapter 4) together suggest a common effect from instructive contexts for
both visual features. These findings are generally in line with previous findings
that have hinted at similarities between the perceptual processes of orienta-
tion and color (Klauke and Wachtler, 2015, Olkkonen et al., 2014, Barbosa and
Compte, 2020, Chunharas et al., 2022).

Orientation and color are naturally comparable in perception studies, as they
are both fundamental features of natural scenes and both show the predom-
inance of particular feature values in environmental distributions. As the vi-
sual system has evolved through adaptation to environments, visual percep-
tion should exhibit the best sensitivity and the least bias for these predominant
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stimuli (Simoncelli, 2003), such as cardinals for orientation perception (Girshick
et al., 2011) and daylight colors for hue perception (Mollon, 2006). This hypothe-
sis has been supported by a variety of behavioral measurements (Girshick et al.,
2011), which our study (Chapter 2) also contributes to. Perceptual variability
has been shown to have the lowest values at cardinals regardless of whether
it arises in orientation discrimination (Orban et al., 1984, Girshick et al., 2011)
or orientation reproduction (de Gardelle et al., 2010, van Bergen et al., 2015),
known as the oblique effect. Accordingly, participants’ estimates of cardinals
tend to be unbiased (Girshick et al., 2011, van Bergen et al., 2015). Similarly, for
hue perception, our findings not only agree with previous findings that percep-
tual variability is lowest around daylight colors (Boynton et al., 1986, Krauskopf
and Gegenfurtner, 1992, Danilova and Mollon, 2010, Witzel and Gegenfurtner,
2013), but also provide the first evidence of systematic biases that are about zero
near these daylight colors. Our observer model further reveals that participants
may internalize the environmental color statistics and form a perceptual prior,
which is similar to the findings that the internal prior for orientation perception
reflects natural contextual information (Girshick et al., 2011).

Color perception also shares similarities with orientation perception in how
task-specific contextual information modulates sensory representations. Stud-
ies 2 and 3 (Chapter 3 and Chapter 4) indicate that a memorized stimulus could
be biased away from category boundaries, showing a repulsion effect that has
similar characteristic features between orientation and color perception. As this
similar effect has also been reported in the perception of motion direction, refer-
ence repulsion likely reflects a higher-level mechanism of information process-
ing shared by various visual features. Furthermore, given that working memory
may be involved in the repulsion effect, our findings imply comparable process-
ing of memory representations between color and orientation, which is consis-
tent with previous findings on color working memory (Olkkonen et al., 2014,
Bae and Luck, 2017, Barbosa and Compte, 2020, Chunharas et al., 2022). Similar-
ities between color and orientation working memory have been reported in the
dependence of the range and sequence of stimuli, known as central tendency
effect (Urban, 1911, Olkkonen et al., 2014) and serial dependence (Fischer and
Whitney, 2014, Barbosa and Compte, 2020). Moreover, when multiple stimuli
are held in visual working memory, the interactions between working-memory
representations of hues have been found comparable to those of orientations
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(Bae and Luck, 2017, Chunharas et al., 2022). Taken together with our results, it
is likely that contextual information affects working memory representations
in similar ways for different visual features.

5.3 Obstacles for a unified framework

While a unified framework for contextual information processing holds
promise, the processing of color information by the visual system is more com-
plex than that of spatial visual features such as orientation. The results of studies
1 and 3 (Chapters 2 and 4) support the idea that hue perceptual non-uniformity
is tuned to an oblique blue-yellow axis instead of the cardinal axes in color
space. This highlights a misalignment between perceptual attributes and cone
contrast coordinates. This mismatch is also evident in the neural responses
between the LGN cells and visual cortex neurons. The color selectivity of V1
neurons seems more diverse than that of the LGN cells (Hanazawa et al., 2000,
Wachtler et al., 2003, Kuriki et al., 2015), whose responses cluster around the
two cone-opponent axes (Derrington et al., 1984). The transformation of color
signals from the LGN to the visual cortex is likely responsible for color percep-
tion and underscores the intricate processing of color information.

Furthermore, our findings demonstrate one of the complexities of color vision
– individual differences, which are rarely found in orientation perception and
shown by only a few of the findings on the strength of anisotropy (Timney and
Muir, 1976). Individual variations at different levels of color processing influ-
ence many aspects of color vision, from color discrimination to the appearance
of the viral image #theDress (see Bosten (2022) for a review). Our results con-
tribute to the evidence of color inter-subject variability in different environ-
mental and task settings. In study 1 (Chapter 2) we observed between-subject
differences in the pattern of perceptual biases, resulting in some participants’
prior peak locations deviating from the majority. Similarly, in study 3 (Chapter
4), we reported individual differences in the reference repulsion effects of col-
ors, where the hues of the reference which induced the largest overall repulsive
biases differed between some participants.

One possible explanation for these inter-subject variabilities could be an in-
dividual’s adaptation of color vision to environmental statistics. Color vision
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is tuned to the chromatic and illumination statistics of environments, which
may develop from infancy (Skelton et al., 2023) and continue to vary through-
out the life span (see Maule et al. (2023) for a review). While blue and yellow
dominate the variation of daylights in most natural scenes (Mollon, 2006), sub-
stantial variation may lie in color statistics among individuals’ environments
due to geographic or seasonal variations (Laeng et al., 2007, Juricevic and Web-
ster, 2009, Welbourne et al., 2015), resulting in variability in color vision. For
example, adults born below the Arctic Circle showed poorer discrimination of
purple and better discrimination of green than adults born above the Arctic
Circle who experienced the purplish twilight of polar night (Laeng et al., 2007).
Furthermore, visual perception might be relatively robust to changes in colors,
as suggested by Brainard et al. (2006) who derived an illuminant prior that is
substantially broader than natural illuminants. This tuning account may also
imply between-subject differences in the perceptual color space and the repre-
sentation of chromatic information in the visual cortex, although many aspects
of cortical processing of color vision remain unknown.

Moreover, when studying sensory processing in color vision, a critical chal-
lenge lies in determining whether there is an influence from color categoriza-
tion. Unlike orientations, hues are often associated with subjective color cat-
egories. However, the role of color categories in visual information process-
ing remains controversial. Categorical effects have been shown in the reaction
times and error rates for discriminating suprathreshold colors, suggesting their
involvement in high-level visual processing (Bornstein and Korda, 1984, Witzel
and Gegenfurtner, 2015). Yet, it is still debated whether color categories af-
fect how participants perceptually distinguish colors. If so, two distinguishable
colors within the same category should appear more similar than two compa-
rable colors that are on different side of a category boundary (Bornstein et al.,
1976, Bornstein and Korda, 1984). This hypothesis has been challenged by sev-
eral systematic measurements of color sensitivity, which found no evidence for
categorical effects on category borders (Danilova and Mollon, 2010, Witzel and
Gegenfurtner, 2013). Similarly, the perceptual variability reported in study 1
(Chapter 2) shows no categorical effects in distinguishing hue ensembles that
consisted of cross-category colors, supporting the idea that color sensitivity is
independent of discrete color categories. Correspondingly, we did not find con-
tributions of color categorization to perceptual bias. These results contradict the
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notion of categorical effects on ensemble perception hue (Maule et al., 2014).

Categorization effect has also been found to play a significant role in color work-
ing memory. It can influence how participants estimate memorized color, such
as biasing their estimates away from category boundaries and towards cate-
gory centers (Bae et al., 2014, 2015). In study 3 (Chapter 4), we found simi-
lar category-related biases, while the categorical representations of hues arose
from a task-related instructive context (i.e., a hue reference) rather than sub-
jective color categories. Although our measurements did not include every hue
at the color category boundary, our results show no evidence for the effects
of color categories in hue estimates. This may be due to the effect of choice-
induced categories possibly substituting or masking the effect of color cate-
gories, indicating an interaction between categorical information and working
memory maintenance at high-level processes.

5.4 Stages of processing contextual information

The question that arises at the end of the last section is: what does the high-
level process mean in color perception? In the experiments of study 3 (Chapter
4), this process possibly involves top-down controls, as choice-induced cate-
gories may override color categories since they are relevant to particular tasks
and can guide subsequent decisions and actions. We may conclude that there is
a hierarchy of color perception that includes several stages. At the lower level,
cone opponent signals convey color information, laying the foundation for see-
ing and distinguishing colors. This stage may correspond to certain perceptual
characteristics, such as color sensitivity (Brown et al., 2011, Witzel and Gegen-
furtner, 2013, 2018). More complex processes occur at a higher level, where,
for example, color categorization takes place (Brouwer and Heeger, 2013, Bird
et al., 2014, Persichetti et al., 2015, Kim et al., 2020). On top of these levels, there
may be a level of decision-related processing that interacts with upstream pro-
cesses (Koida and Komatsu, 2007). In this section, I will discuss the stages of
contextual information processing applied in a broad sense.

Different types of contextual biases may correspond to distinct levels of vi-
sual processing and involve diverse neural mechanisms, depending on the spe-
cific context and associated behavioral demand. Many studies have suggested
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that contextual bias can occur in early sensory processes. Electrophysiolog-
ical measurements have shown that context modulates the population codes
of orientation-selective neurons in the primary visual cortex (V1) in different
ways (Sengpiel et al., 1997, Dragoi et al., 2000, Cavanaugh et al., 2002). Some
studies have indicated that contextual stimuli suppress the responses of the neu-
rons tuned to them (Sengpiel et al., 1997, Cavanaugh et al., 2002), while others
have suggested repulsive shifts in the preferred orientations of neurons away
from the contextual stimuli (Gilbert and Wiesel, 1990, Felsen et al., 2005). These
modulations have been found in sensory processes, resulting from intrinsic hor-
izontal connections within V1 and feedback connections between V1 and higher
visual areas such as V2 and V3 (Stettler et al., 2002, Bair et al., 2003, Nassi et al.,
2013). Another potential example of low-level sensory information processing
is the perceptual biases that are associated with the orientation distributions in
natural scenes. Some theories attribute these biases to non-uniformities in the
neural population codes for orientations (Girshick et al., 2011, Wei and Stocker,
2015). This pertains to the incorporation of prior probabilities into optimal neu-
ral populations, in which visual neurons efficiently encode stimuli from en-
vironmental distributions (Barlow and Others, 1961, Ganguli and Simoncelli,
2010).

Reference repulsion, on the other hand, is demonstrated as a late, decision-
related bias by our results (Chapter 3), which aligns with the hypothesis that it
may arise from cognitive processes (Luu and Stocker, 2018, 2021). Multiple ex-
planations may support that reference repulsion involves processing at a higher
level. For example, as reference stimuli share some features with target stimuli,
they may draw feature-oriented attention and gain more cognitive resources
(Treue and Martı́nez Trujillo, 1999). Moreover, behavioral context and task
demands may also elicit top-down controls over visual cortical pathways (see
Gilbert and Li (2013) for a review). For example, as shown in study 2 (Chapter 3),
reference repulsion effects may depend on the task being performed, even when
participants receive the same reference stimulus. Such task-dependent modu-
lations have also been reported in the selection of task-relevant components of
stimuli, supported by both behavioral and neural evidence (Li et al., 2004). The
top-down influences may involve feedback connections from multiple cortical
areas including those in the dorsal and ventral visual pathways, such as middle
temporal visual area (MT) (Rockland and Knutson, 2000), V4 (Rockland et al.,
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1994) and inferior temporal cortex (IT) (Rockland and Van Hoesen, 1994), as
well as prefrontal cortex (Morishima et al., 2009, Paneri and Gregoriou, 2017),
to provide information about attentional allocation and perceptual tasks.

Although the levels of contextual information processing are complex, fortu-
nately, we can develop computational models to gain deeper insights into vi-
sual processing. The encoding-decoding model in our studies 2 and 3 (Chapter
3 and 4) supports this notion: by showcasing distinct reweightings of neural
responses between implicit and explicit processes, the modeling results suggest
that reference-induced contextual biases can originate from late decision- and
task-related processes. Likewise, previous studies have employed models that
assist in targeting the level of visual processing. For instance, some studies pre-
dicted contextual biases using a model constrained to self-consistency princi-
ples, indicating a higher level of processing (Luu and Stocker, 2018, 2021). These
models have proven valuable in predicting contextual biases and shedding light
on the level of visual processing.

In summary, when investigating a specific contextual effect, it is crucial to con-
sider the level of contextual information processing. It is necessary to apply
appropriate task designs and utilize models that enable the differentiation of
various processes. Furthermore, obtaining neural evidence that aids in compre-
hending the underlying mechanisms would be highly advantageous.

5.5 Outlook

Reliable and systematic psychophysical measurement data are crucial for in-
vestigating visual processing and building related theories. In our studies, we
developed a series of paradigms that allowed for the systematic measurement
of color discrimination. However, the extensive experiment duration limited
the sample size of measured colors in some instances, such as study 1 (Chapter
2). Therefore, there is a need for efficient paradigms that can expedite measure-
ments. One approach is to employ appropriate adaptive measurement methods
to accelerate the process (Leek, 2001). Additionally, it is important to consider
and utilize the non-uniformities observed among hues in order to adjust the
stimulus design for different colors effectively. Similar to our study 1 (Chap-
ter 2), it is imperative not to disregard the nonuniform perceptual variability
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among hues, particularly when incorporating stimulus noises or predefining
hue-associated measurement ranges. Consequently, there is a clear need to es-
tablish a colorspace wherein hue representations exhibit perceptual uniformity,
enabling the transformation of measured hue into a uniform scale. Such trans-
formation may in turn help us understand the underlying mechanisms of per-
ceptual non-uniformities.

Moreover, given the prominent individual differences shown by our findings in
color perception, it is necessary to address two potential directions for future
research. Firstly, it is crucial to establish a link between color vision and the
adaption to the color statistics of different environments. This objective can be
achieved by measuring hue discrimination thresholds and biases of participants
who have undergone short- or long-term exposures to specific scenes. A recent
study has demonstrated that adapting to particular stimuli can alter discrimi-
nation variability and bias of orientations (Szpiro et al., 2022). Similar effects
of adaptation might also occur in color perception, leading to changes in par-
ticipants’ priors. The second approach is to conduct cross-experiment analyses
within the same group of participants to gain insights into individual differences
in color vision. This could involve a series of systematic measurements, includ-
ing perceptual variability and bias in hue discrimination, contextual modulation
effects of chromatic reference, subjective color categories, color constancy, and
so on. Future studies in this direction may help identify consistent individual
characteristics across various measurements, potentially elucidating the indi-
vidual differences observed in our studies. Altogether, this approach has the
potential to enhance our comprehension of the intricate nature of inter-subject
variations in color vision (Mollon et al., 2017).

Last but not least, there are improvements that can be made in the future to in-
tegrate computational models with neural evidence of visual perception. While
our models successfully explained the observed perceptual data, similar to pre-
vious models, they are often oriented towards efficient information processing
and optimal behavior. In other words, while these models are helpful in under-
standing the goals of neural processing, they are not comprehensive in their
ability to fully determine the various stages of information processing or un-
veil the underlying neural mechanisms. From the standpoint of Marr’s theory
(Marr, 1982), these models may describe the information processing system at
a computational level rather than an algorithmic level. The absence of the latter
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has generally been shown in computational models of neural systems. Taking
Bayesian models as an example: although recent studies have provided prelim-
inary evidence for the corresponding neural basis (van Bergen and Jehee, 2019,
Walker et al., 2020), Bayesian theories of perception have faced longstanding
criticism for their lack of neuroscientific evidence (Bowers and Davis, 2012).
Looking ahead, further research could address the aforementioned limitations
by exploring alternative models that may better capture the underlying neu-
ral mechanisms. Additionally, future studies could focus on closely examining
the neural correlates of contextual biases to gain a better understanding of the
visual processing involved in perceptual phenomena.

5.6 Concluding remarks

In conclusion, this thesis has addressed research questions related to contextual
information processing by examining contextual biases in color and orientation
perception and explaining perceptual phenomena with computational models.
Throughout the thesis, several key findings have demonstrated that contextual
biases correspond to intricate information processing that occurs across various
visual features and involves different stages. These findings imply a general rule
of statistical inference in vision that, for optimal performance, visual systems
combine sensory representations with regularities from natural environments
and behavioral task contexts. This thesis also identified some limitations that
suggest opportunities for further research. Among them, a deeper understand-
ing of how the brain processes color information is essential for a unified view
on the visual processing mechanisms in different visual domains. In addition,
there is a need to consider underlying neural mechanisms and levels of process-
ing when investigating biases in visual perception. Overall, I hope this thesis
will contribute to our understanding of visual information processing and pro-
vide a foundation for future research to build upon.
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