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Though this be madness,
yet there is method in it.
W. Shakespeare,Hamlet





Zusammenfassung

Wir untersuchen hochangeregte Wasserstoff- und Alkaliatome (
”
Rydbergatome“)

unter dem Einfluß eines starken Mikrowellenfeldes. Dasäußere Feld, dessen Fre-
quenz von der Gr̈oßenordnung der klassischen Keplerfrequenz des Valenzelektrons
ist, bewirkt eine starke Kopplung vieler verschiedener quantenmechanischer Ener-
gieniveaus und f̈uhrt schließlich zur Ionisation desäußeren Elektrons. Ẅahrend per-
iodisch getriebene Wasserstoffatome als ein Paradebeispiel quantenchaotischen Ver-
haltens in einem offenen (zerfallenden) System angesehen werden können, bringt
ein nicht-wasserstoffartiger Atomrumpf, der als ein rein quantenmechanisches Ob-
jekt zu betrachten ist, einige Komplikationen mit sich. Tatsächlich zeigen Experi-
mente an verschiedenen Elementen deutliche Unterschiede im Ionisationsverhalten
von Wasserstoff- und Alkaliatomen im Mikrowellenfeld.

Im ersten Teil dieser Arbeit wird ein theoretisch-numerischer Apparat entwik-
kelt, der es erm̈oglicht, numerische Experimente sowohl an Wasserstoff als auch
an Alkaliatomen unterexakt den gleichenLaborbedingungen durchzuführen. Auf-
grund der hohen Niveaudichte der periodisch getriebenen, dreidimensionalen Ato-
me im Bereich typischer experimenteller Parameter sind solche Simulationen nur
mit Hilfe modernster Parallelrechner in Verbindung mit einer effizienten parallelen
Implementierung unseres numerischen Verfahrens möglich.

Im zweiten Teil der Arbeit werden die Ergebnisse des numerischen Experiments
vorgestellt und diskutiert. Wir finden ebenso deutliche Unterschiede wieüberra-
schende Gemeinsamkeiten im Ionisationsverhalten von Wasserstoff- und Alkalia-
tomen und k̈onnen jene Frequenzbereiche identifizieren, in welchen Alkaliatome
wasserstoff- bzw. nicht-wasserstoffartiges Ionisationsverhalten zeigen. Unsere Re-
sultate erzwingen die Neuinterpretation eines großen Teils der vorhandenen expe-
rimentellen Daten und erlauben es insbesondere, das seit ca. einem Jahrzehnt un-
gelöste Problem des deutlich unterschiedlichen Ionisationsverhaltens verschiedener
atomarer Spezies unter dem Einfluß eines elektromagnetischen Feldes zu lösen.

Schließlich betrachten wir periodisch getriebene Rydbergatome als ein typisches
offenes, komplexes Quantensystem, das einen komplizierten zeitlichen Zerfall zeigt.
Insbesondere finden wir im Zerfall dieses realen atomaren Systems qualitative wie
quantitative Unterschiede zu Vorhersagen, die auf Untersuchungen quantenmecha-
nischer Abbildungen mit gemischt regulär-chaotischem klassischen Analogon beru-
hen.

i



Abstract

We study highly excited hydrogen and alkali atoms (’Rydberg states’) under the
influence of a strong microwave field. As the external frequency is comparable to
the highly excited electron’s classical Kepler frequency, the external field induces
a strong coupling of many different quantum mechanical energy levels and finally
leads to the ionization of the outer electron. While periodically driven atomic hy-
drogen can be seen as a paradigm of quantum chaotic motion in an open (decaying)
quantum system, the presence of the non-hydrogenic atomic core – which unavoid-
ably has to be treated quantum mechanically – entails some complications. Indeed,
laboratory experiments show clear differences in the ionization dynamics of mi-
crowave driven hydrogen and non-hydrogenic Rydberg states.

In the first part of this thesis, a machinery is developed that allows for numeri-
cal experiments on alkali and hydrogen atoms under precisely identical laboratory
conditions. Due to the high density of states in the parameter regime typically ex-
plored in laboratory experiments, such simulations are only possible with the most
advanced parallel computing facilities, in combination with an efficient parallel im-
plementation of the numerical approach.

The second part of the thesis is devoted to the results of the numerical exper-
iment. We identify and describe significant differences and surprising similarities
in the ionization dynamics of atomic hydrogen as compared to alkali atoms, and
give account of the relevant frequency scales that distinguish hydrogenic from non-
hydrogenic ionization behavior. Our results necessitate a reinterpretation of the
experimental results so far available, and solve the puzzle of a distinct ionization
behavior of periodically driven hydrogen and non-hydrogenic Rydberg atoms – an
unresolved question for about one decade.

Finally, microwave-driven Rydberg states will be considered as prototypes of
open, complex quantum systems that exhibit a complicated temporal decay. How-
ever, we find considerable differences in the decay of such real and experimentally
accessible atomic systems, as opposed to predictions based on the study of quantum
maps or other toy models with mixed regular-chaotic classical counterparts.
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Chapter 1

Introduction

The interaction of matter with radiation is one of the primary experimental means
to test theoretical ideas and to develop or search for novel physical phenomena.
An important example is the famous photoelectric effect [1] in which the critical
dependence of the ionization yield on the frequency rather than on the intensity of
the incoming radiation was observed. This led to the hypothesis of the quantum
nature of light and was crucial for the fast development of quantum theory in the
beginning of the last century.

In the second half of the last century, with the availability of quantum sources
of intense and coherent radiation – the laser and the maser – many highly sophis-
ticated experiments became possible, such as slowing down and cooling particles
to extremely low temperatures [2, 3, 4], high resolution spectroscopic or quantum
optics experiments to provide a rigorous verification of quantum-electro-dynamics
and quantum mechanics [5], or the control of chemical reactions by the transfer of
population with the help of an optimally shaped laser pulse [6, 7]. At even higher
intensities, these light sources also open new fields regarding the dissociation and
ionization process of molecules and atoms, with a crucial role played by multi-
photon processes. Among such strong field phenomena, experiments on the mi-
crowave ionization of highly excited hydrogen atoms were of particular conceptual
interest [8]. In contrast to the above mentioned photoelectric effect, the ionization
yield in these experiments strongly depends on the field amplitude, and only weakly
on the frequency. Furthermore, the microwave field induces a relatively large ioniza-
tion probability, inexplicable at that time. Subsequent theoretical investigation of the
process stressed the importance of the system’s classical counterpart, and the tran-
sition from classically regular to classically chaotic motion taking place at a given
field amplitude. Thus, microwave driven Rydberg atoms can nowadays be seen as
a key phenomenon that stimulated the search for fingerprints of classical chaos in
quantum systems. The ongoing study on this system for nearly three decades now
has produced an enormous richness of results and has spurred research in the field
of quantum chaos.

Microwave driven hydrogen atoms have now been studied by many groups in



2 Introduction

a more or less exact fashion. Despite their apparent similarity, little understanding
has been gained on microwave driven, singly excited multi-electron atoms. In fact,
laboratory experiments on alkali atoms have shown dramatic differences in their
ionization behavior as compared to that observed with atomic hydrogen [9].

All the theoretical work on microwave ionization so far has only tackled the sim-
pler atomic system of atomic hydrogen. Experimentally established differences [9]
in the ionization dynamics of alkali atoms have remained an open question. One
reason for the complications experienced with non-hydrogenic atomic cores is the
fact that such systems are indubitable three-dimensional objects. Hence, any theo-
retical approach has to deal with an extremely high density of bound states strongly
coupled to the continuum.

The aim of this work is to develop an algorithmic apparatus for the exact descrip-
tion of this system in its full complexity. Any such program requires the combination
of an accurate description of the atom coupled to the continuum and of state-of-
the-art high-performance parallel computing techniques to execute the underlying
model. Our numerical experiment will provide the first results on microwave driven
Rydberg states both on alkali atoms and of atomic hydrogen, in the regime of typical
laboratory parameters,without the need for any adjustable parameters. As a result,
we will develop a thorough understanding of the ionization process in both atomic
species.

1.1 History of the problem

1.1.1 Microwave driven hydrogen atoms

First experiments on the ionization of microwave driven Rydberg states of atomic
hydrogen were already performed in the nineteen seventies [8, 10]. Although mi-
crowave ionization requires the absorption of a large number of photons (in [8, 10]
the energy difference between the atomic initial state and the atomic continuum ex-
ceeds 80 times the photon energy), these experiments showed a relatively efficient
ionization, what was inconsistent with the quantum mechanical theories on multi-
photon ionization available at that time. Classical (Monte Carlo) calculations [11],
on the other hand, were able to reproduce the experimental results [8] rather well.
This gave clear evidence of the relevance of the underlying classical dynamics, i.e.
of the dynamics of the periodically driven Kepler problem. Investigations of the
stability properties of the classical dynamics indicated that the ionization process
can be ascribed to a diffusion mechanism [12]. More precisely, it was shown that at
sufficiently large field amplitudes – at the classical “chaos border” – non-linear reso-
nances in the classical phase space begin to overlap [13, 14, 15], leading to diffusive
energy gain of the electron, and finally to its ionization. The quantum mechanical,
experimentally measured 10% ionization threshold (i.e. the amplitude of the exter-
nal field which induces 10 % ionization probability at given atom-field interaction
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time) was identified with the onset of classically chaotic motion. Both, quantum
mechanical calculations [16, 17, 18] and experiments covering a broad range of mi-
crowave frequencies and principal quantum numbers of the atomic initial state [19]
confirmed these predictions for driving frequencies below the Kepler frequency of
the unperturbed highly excited electron.

For larger frequencies, however, quantum mechanics starts to deviate from the
classical predictions [20, 21], and the real (quantum mechanical) atom appears
more stable against ionization than its classical (chaotic) counterpart. To under-
stand this apparent violation of the correspondence principle, the dynamics of mi-
crowave driven atomic hydrogen was linearized and approximated by the Kepler
map [22, 23, 24], similar to the dynamics of a kicked rotor [24]. For the latter system,
it had been shown already before that classically diffusive motion is suppressed by
quantum interference effects, a process essentially equivalent to Anderson localiza-
tion [25] in disordered solid state samples, labeled ‘dynamical localization’ [26], to
stress the explicit time dependence of the underlying, perfectly deterministic Hamil-
tonian dynamics. According to the statistical description of the electronic transport
(along the energy axis) from the initial atomic state to the atomic continuum in terms
of a diffusion process, the real atom initially follows the classical model which pre-
dicts an onset of ionization at the classical chaos border, with the initial wave-packet
starting to spread diffusively over the bound-state spectrum. Since, in contrast to the
continuous spectrum which describes the classical dynamics, the bound-space quan-
tum spectrum is pure point,(1) the spreading of the quantum mechanical electronic
population must stop after some time, leading to a quasi-stationary distribution of the
initial wave-packet, as opposed to an unbounded diffusion in the classical system.
While Anderson localization explains the localization of the electronic density in
configuration space, and hence – in a certain parameter regime – the transition from
a metal to an insulator in disordered solids [25, 27], the time-dependent (dynamical)
counterpart predicts the localization of the electronic wave-function in energy space,
for frequencies larger than the Kepler frequency. This localization effect leads to a
freezing of the electronic distribution over a number of eigenstates, which is mea-
sured by the localization length [24]. However, the theory of dynamical localization
does not imply that ionization is not possible for frequencies larger than the Kepler
frequency of the electron. Here, an increasing field amplitude leads to an increase
of the localization length, and finally to a localization length comparable to or larger
than the energy difference between the initial atomic state and the continuum.(2)

This defines a delocalization border, above which the electron ionizes even in the
presence of (Anderson respectively dynamical) localization.

(1)We will see that, in a periodically driven atom, the bound pure point part actually turns into a set
of decaying states (see section 2.1.3). However, the widths of these resonance states are in general
much smaller than the average level spacing, and the spectrum can be considered as quasi-discrete, on
the appropriate time scales, since the Heisenberg time (see section 6.2.1.2) remains well-defined.

(2)This is in analogy to disordered solids, where a localization length larger than the sample size – the
equivalence of the energy difference between the initial state and the atomic continuum in dynamical
localization – leads to a finite conductance.
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Figure 1.1: Sketch of the ionization dynamics of microwave driven Rydberg states
of atomic hydrogen: For low scaled frequenciesω0, the quantum ionization border,
displayed by the scaled 10% ionization thresholdF0(10%), follows the classical
chaos border; for larger scaled frequencies, the classically chaotic motion is sup-
pressed (’dynamical localization’), and the quantum system is more stable than its
classical counterpart. The driving frequency and the field amplitude are scaled with
respect to the Kepler frequency of the unperturbed, highly excited electron, and of
the Coulomb field between the highly excited electron and the nucleus, respectively.

To understand the relevance of classical dynamics for the driven atom as the
quantum analogue of the periodically driven Kepler problem, one can take advantage
of the scale invariance of the classical equations of motion [28, 29]: As the electron
and the nucleus interact through Coulomb forces, the potential energy of the system
is a homogeneous function of the coordinates. Thus the equations of motion obey
a scaling rule, i.e. by measuring the frequencyω of the driving field in units of the
Kepler frequency of the electron, and the amplitudeF in units of the Coulomb field
between the electron and the nucleus, it is possible to keep the phase space structure
fixed while probing different initial conditions (e. g. principal actions and this is
principal quantum numbers of the atom). Apart from the finite size of Planck’s
constant~, these scaling rules also hold for the (quantum mechanical) periodically
driven hydrogen atom, and different atomic initial states can therefore be identified
with a well-defined classical dynamics which we fixed by the scaled frequencyω0

and the scaled field strengthF0 [24, 30, 31].
Figure 1.1 summarizes the global trend of the ionization border of microwave

driven atomic hydrogen as predicted by the sketched theory of dynamical local-
ization [24]: For scaled frequenciesω0 < 1 (where the frequency is smaller than
the electronic Kepler frequency) the (quantum) dynamics essentially follows the
classical prediction and the 10% threshold – displayed by the ionization border –
decreases with increasing scaled frequency. Chaotic ionization is suppressed for
larger (scaled) frequencies by the aforementioned dynamical localization, hence the
real atom is more stable than the classical atom, and the ionization border increases



1.1 History of the problem 5

with increasing (scaled) frequency forω0 > 1.(3)

Quantum calculations on simplified models like the quantum Kepler map [24]
or one-dimensional hydrogen atoms [18], and equally fully three-dimensional cal-
culations on moderately excited microwave driven hydrogen atoms [32, 33, 34], as
well as experimental results [20, 21, 31] confirmed the global trend of the scenario
described above.

Yet, on top of the ionization border in figure 1.1, the 10% ionization threshold
observed in the laboratory and in quantum calculations shows also local maxima,
when the frequency reaches an integer multiple (forω0 > 1) or a low order rational
fraction (forω0 < 1) of the electron’s Kepler frequency [31]. Since both, the de-
scription of the ionization process in terms of classical diffusion and the theory of
dynamical localization, are statistical descriptions of the ionization dynamics and do
not take into account classical nonlinear resonances, they obviously cannot provide
for an interpretation of local structures in the ionization border.

As a matter of fact, (classically) diffusive energy gain is only possible once the
classical resonance islands overlap, or if the phase space is purely chaotic. In the
generic case of microwave driven Rydberg atoms, however, and also for driving fre-
quencies larger than the Kepler frequency, the classical phase space structure is not
fully chaotic but mixed, and regular and chaotic regions coexist. This intricate (hier-
archical) phase space structure prevents a fast, diffusive energy gain of the electron,
since the electron’s trajectory gets trapped in the vicinity of regular islands that are
embedded in the ‘chaotic sea’. These regular islands are induced by non-linear res-
onances when the driving frequency is an integer multiple or a low order fractional
of the Kepler frequency [35]. Quantum mechanical simulations on the dynamics of
the driven atom showed that these classical stability islands cause also the quantum
mechanical atom to be locally (inω0) more stable against ionization, provided the
atomic initial state has some nonvanishing overlap with the island. Note that these
quantum non-linear resonances [36, 37] locally dominate the quantum dynamics
not only for frequencies below the electron’s Kepler frequency (ω0 < 1), where
the ionization process is well described by the classical dynamics, but also in the
(non-classical) regime of dynamical localization [33].

The above description summarizes the essential characteristics of the ionization
process of microwave-driven atomic hydrogen. Most of these characteristics have
been observed in the laboratory and found consistent explanations based on theoret-

(3)Here, it has to be noted that figure 1.1 displays the situation in scaled variables,F0, andω0 (for
fixed laboratory frequency and a given interaction time). The quantum ionization border, however,
depends not only on the scaled, but also on the laboratory frequency, and it decreases for decreasing
laboratory frequency (and fixed scaled frequency, what can be achieved by doing both, employing a
smaller frequency and using higher excited states). This explains the aforementioned apparent viola-
tion of the correspondence principle in the dynamically localized regime, since the quantum ioniza-
tion border tends to the classical chaos border for increasing principal quantum numbersn0 and fixed
scaled frequencyω0. Note that increasingn0 is tantamount to increasing the typical classical actions
in the system and to decreasing the effective Planck’s constant (i.e. Planck’s constant scaled by the typ-
ical action describing the motion of the electron). Thus, in the semiclassical limit (for~effective → 0),
the gap between the quantum and the classical ionization border (see figure 1.1) vanishes.
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ical model calculations. While the latter, so far, always had to rely on some approxi-
mations, due to the tremendous complexity of the real atomic excitation and ioniza-
tion process, the more serious of them nonetheless were founded on well-controlled
approximations, with a well-defined range of applicability (such as reduced dimen-
sionality of the model [38, 34, 33, 39], reduced principal quantum numbers com-
bined with the above mentioned scaling rules [32, 34, 33]). What remains to be
accomplished, and what will be accomplished in the present thesis, is an ab initio
treatment of the hydrogen problem, without any essential approximations, nor ad-
justable parameters. This is the final conclusive step in the comparison of theory
and experiment, and provides a ‘standard’ to which we will compare our results on
alkali Rydberg states.

1.1.2 Microwave driven alkali atoms

While nearly all of the theoretical work on microwave driven Rydberg states deals
with atomic hydrogen, arguably the larger part of the laboratory experiments are
performed on multi-electron atoms. From the experimental point of view, the use of
alkali rather than of hydrogen atoms entails some advantages:

Firstly, due to the absence of the angular momentum degeneracy in non-hydro-
genic atoms, the preparation of a well defined initial atomic state|n0,m0, `0〉 is
easier. Secondly, as alkali atoms are heavier elements than atomic hydrogen, a ther-
mal beam of alkali atoms is slower than a beam of atomic hydrogen with the same
temperature. Since the size of the atom-field interaction region is determined by the
microwave frequency, using a slower beam of atoms enables the experimentalist to
vary the atom-field interaction time over a broader range.

Apart from a few experiments on helium atoms [40, 41], in which the ionization
probability was not studied very systematically, there are two experimental groups
working on microwave ionization of Rydberg atoms different from hydrogen. At the
University of Munich [42, 43, 44, 9], the ionization of rubidium Rydberg states is
studied, and at the University of Virginia various alkali atoms [45, 46, 47, 48, 49, 50]
and alkaline earths [51] are being investigated. The two groups not only employ
different atomic species, but also probe different parameter regimes of the ionization
process, and hence they have produced results that until now have not led to a clear
understanding of the microwave ionization of alkali Rydberg states as compared to
the one of atomic hydrogen.

1.1.2.1 The Munich experiments

Before entering into a detailed discussion of the differences between the experimen-
tal observations of the Munich and the Virginia group and the results of the hydrogen
experiments, we briefly sketch a typical experimental set-up, as used by the Munich
group (see also figure 1.2):

A thermal beam of rubidium atoms enters the apparatus. After the beam is col-
limated in (A), the atoms are excited from the ground state to Rydberg states with
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atomic beam
(D)

(A)
(B)(C)

Figure 1.2: Typical experimental set-up [9] for the microwave ionization of rubidium
Rydberg atoms.

principal quantum numbers in the rangen0 = 50, . . . , 95, angular momentum̀0 =
1,(4) and angular momentum projection on the field axism0 = 0, by a pulsed laser in
region (B). The beam of Rydberg atoms then enters the interaction region (C), where
they are irradiated by a microwave pulse of frequencyω and well-defined duration
t. After leaving the interaction region, the non-ionized atoms are field-ionized by
a static electric field in region (D), and the electrons are recorded. By iteratively
repeating the experiment with and without microwave field, it is thus possible to
determine the ionization probability as a function of the principal quantum number
n0 of the initial atomic state, of the microwave field amplitudeF , of the frequency
ω, and of the atom-field interaction timet (for fixed `0 = 1 and angular momentum
projectionm0 = 0).

At first glance, the experiments on rubidium showed qualitatively similar results
as those on atomic hydrogen in the regime of dynamical localization: starting from
a certain value of the principal quantum number the ’scaled’ ionization threshold
increases with an increasing quantum numbern0. As explained above, keeping the
frequency constant and increasing the principal quantum number corresponds to an
increase of the scaled frequency in the case of atomic hydrogen. To interpret the
experimental results [42, 44, 9] in equal terms as the hydrogen results of [20, 21],
heuristic scaling rules were employed which consist in scaling the laboratory fre-
quency with respect to the energy difference between the initial state and the nearest
atomic state accessible by an energy gaining dipole transition. However, it has to be
noted here that, in contrast to the pure Coulomb potential, there is no justification in
terms of the classical equations of motion or of the quantum mechanical Schrödinger
equation for the existence of scaling rules for the alkali dynamics. On the contrary,
the existence of a non-hydrogenic atomic core introduces a finite length scale that
a priori prohibits the use of scaled variables. With the help of the aforementioned
semi-empirical scaling rules, qualitative agreement of the experimental results on

(4)Highly excited electrons with a low angular momentum have a finite probability to stay in the re-
gion of the atomic core, consisting of the nucleus and the inner electrons. Therefore, these low angular
momentum states exhibit a non-hydrogenic phase shift (’quantum defect’), and the unperturbed energy
of these ’non-hydrogenic’ states is separated from the ’hydrogenic’ part – i.e. from the high angular
momentum part – of the samen0 manifold. A more detailed discussion of the difference between
alkali and hydrogen atoms will be provided in section 2.3.



8 Introduction

rubidium atoms with the ionization dynamics of atomic hydrogen in the presence of
dynamical localization could be achieved. However, apart from this resemblance to
the hydrogen results (i.e. the emergence of dynamical localization for both atomic
species), these experiments raised some questions that hitherto have not found a
satisfactory answer:

• The experimental results showed a strongly enhanced ionization probability
for rubidium atoms as compared to the hydrogen experiments (i.e. the ’scaled’
10% threshold measured in the rubidium experiments are only 1/10 of those
observed for microwave driven atomic hydrogen). What causes alkali atoms
to be less stable under periodic driving than atomic hydrogen?

• Given the qualitative agreement of theω- andn0- dependence of the ion-
ization threshold for atomic hydrogen and alkali species, does some sort of
classical scaling prevail in this manifestly quantum mechanical problem?

1.1.2.2 The Virginia experiments

While the results of the rubidium experiments do not quantitatively match with those
of the hydrogen experiments, they do at least find qualitatively similar results as
experiments on atomic hydrogen, since also in these experiments the signature of
dynamical localization was observed, for non-hydrogenic atomic initial states. Thus
the Munich experiments suggest an alkali ionization process similar to atomic hy-
drogen which, however, appears for some unexplained reason more efficient than in
the case of atomic hydrogen. The experiments at the University of Virginia, on the
other hand, seem to tell a different story. These experiments were mainly performed
using relatively low microwave frequencies, and with the atoms initially prepared in
hydrogen-like (high angular momentum) states with nearly hydrogenic energies, as
well as in low angular momentum, non-hydrogenic states.

The low-frequency experiments on ’hydrogen-like’ initial states [46, 50, 48]
produced qualitatively and quantitatively similar results as experiments on atomic
hydrogen. They found a dependence of the ionization threshold on the principal
quantum numbern0 following F10% ' 1/9n4

0, in rough agreement with the experi-
ments on atomic hydrogen [52] in the low-frequency regime (far below the regime
of dynamical localization), forω0 < 0.05. In addition, the same functional de-
pendence of the ionization threshold onn0 is expected in the limit of a static field.
Experimental results on non-hydrogenic initial states, however, differed dramati-
cally. In the same frequency regime, and for the same range of principal quantum
numbersn0, a dependenceF10% ' 1/3n5

0 [53, 47, 48] was found, resulting in alkali
thresholds of 1/10 of the hydrogenic ones, qualitatively matching the results of the
rubidium experiments (which, however showed a different functional dependence of
F10%(n0) onn0).

To understand the1/n5
0 scaling law of the ionization threshold – that is valid for

low frequencies – the Virginia group proposed the following mechanism: It is known
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that the atomic energy levels with principal quantum numbern0 andn0 + 1 start
to cross at field amplitudes equal to1/3n5

0 [54], in a static electric field. While the
Hamiltonian of hydrogen atoms exposed to a static electric field is separable [55, 56]
due to the high (’dynamical’) symmetry of the Coulomb potential and thus the (hy-
drogen) energy levels of adjacentn0 manifolds really cross at this field amplitude,
the Hamiltonian for an atom with a non-Coulombic potential is non-separable. As
a consequence, the same manifolds actually undergo an avoided crossing at this
field amplitude. The non-hydrogenic (low angular momentum) state itself, which
is detached from the hydrogenic part of the manifold, exhibits an avoided cross-
ing with the rest of the manifold at an even lower field, namely atFac ' 2δ/3n5

0

(where0 ≤ δ ≤ 1 is the ’quantum defect’ of the low angular momentum state) [57].
For a very small external frequency, it is expected that adjacentn0 manifolds of a
periodically driven alkali atom perform an anti-crossing at the same field strength
(F ' 1/3n5

0) as in the static field. Hence this also describes the field at which
the electronic population can perform a Landau-Zener transition from then0 to the
n0 + 1 manifold. Once the transition from a non-hydrogenic initial state via then0

to then0 + 1 manifold is initiated, a fast ’ladder climbing’ in the Rydberg energy
progression is started, as the higher lyingn manifolds perform avoided crossings
already at weaker field amplitudes (due to the inequality1/3(n0 + 1)5 < 1/3n5

0).
Consequently, the field1/3n5

0 defines the ’rate limiting step’ for electronic trans-
port to higher energies, and is expected to define the threshold for the onset of the
ionization process, approximately confirmed by the experiments [53, 47, 48].

However, the Virginia experiments with non-hydrogenic alkali initial states were
never performed over a broad range of frequencies, nor over a broad range of prin-
cipal quantum numbersn0, and therefore the range of validity of this low-frequency
picture remained unclear (it is obviously only applicable for ’low’ frequencies, but
the notion of ’low’ frequencies remains to be quantified for alkali atoms).

Only in a recent series of new experiments by the same group on microwave
driven, hydrogenic initial states of lithium [49], with a frequency comparable to
that used in [31], a large range of principal quantum numbersn0 = 47, . . . , 95 was
scanned, and, both, a qualitatively and a quantitatively good match was observed
with the hydrogen experiments [31] in the scaled frequency rangeω0 = 0.2, . . . , 1.5.

1.1.2.3 Theoretical description of microwave driven alkali states – a challenge
for more than one decade

While the laboratory experiments are easier realized using alkali instead of hydrogen
atoms, the situation is exactly the opposite in a theoretical attempt to describe the
dynamics:

Firstly, due to the scattering of the highly excited electron off the multi-particle
core consisting of the nucleus and the inner electrons [58, 59], alkali atoms are in-
trinsically quantum mechanical objects. Therefore, the notion of a classical counter-
part is at least questionable and the discussion in terms of some classical dynamics



10 Introduction

by far less straightforward than in the hydrogen case. Furthermore, already unper-
turbed alkali atoms are indubitable three-dimensional objects, what is manifest in
the loss of the angular momentum degeneracy in the unperturbed atom. Therefore,
we cannot expect that calculations on one-dimensional model atoms can reason-
ably mimic or even reproduce the (three-dimensional) reality – only fully three-
dimensional quantum calculations can provide reliable results. In addition, as al-
ready mentioned and as we will see in chapter 2.2, due to the finite size of the atomic
core the alkali dynamics cannot be scale invariant. Thus, in contrast to atomic hy-
drogen, it is a priori illegitimate for alkali atoms to perform quantum calculations for
moderate excitations, and to re-scale the obtained results to higher, typical experi-
mental values of the principal quantum number. Therefore, a thorough investigation
of the observed differences in the ionization of alkali and hydrogen atoms imper-
atively requires the description of the alkali dynamics for the experimental values
of n0 ' 60. There, the density of states (which scales roughly asn5

0) is extremely
large, and hence the computational demands are much higher than in the range of
only moderately excited states.

Apart from the low-frequency approach of the Virginia group and a refined ver-
sion of the Kepler map that is advertised to describe alkali atoms exposed to a mi-
crowave plus a static electric field [60], without, however, any quantitative compar-
ison to the available experimental data, there is – to the best of our knowledge – so
far no serious theoretical attempt to describe the ionization of microwave driven al-
kali atoms.(5) In particular, there is no treatment of the problem where a broad range
of principal quantum numbers is probed. Thus, a connection of the two scenarios
described by the two experimental groups – dynamical localization as in driven hy-
drogen atoms, together with a strong enhancement of the ionization probability, and
an ionization threshold followingF ' 1/3n5 for low frequencies – has not been
established so far.

In this thesis, we will present the firstexacttreatment of microwave driven hy-
drogen and alkali atoms, without any adjustable parameter. With our theoretical
and numerical apparatus it is possible to perform a (numerical) experiment on alkali
atoms as well as on atomic hydrogen, employing precisely the same parameters as
in laboratory experiments. In this way, we provide for the missing link between
the Munich and the Virginia experiments, and we will also address the puzzle of
the experimentally observed discrepancies between the ionization thresholds of non-
hydrogenic alkali states and those of atomic hydrogen. In this context, we will eluci-
date the question whether the classical Kepler frequency (which plays a crucial role
for the understanding of microwave driven hydrogen) plays any role in the dynamics
of microwave driven alkali atoms, and hence the question whether or under which
conditions there exist any scaling rules for the ionization dynamics in the presence
of a non-hydrogenic core. Furthermore, this program also bears consequences for

(5)Apart from the mentioned approaches recently another study of microwave-driven alkali atoms
was performed [61]. These studies, however, concentrated on the transition probabilities between
moderately excited Rydberg states exposed to a slowly varying field, and did not take into account
ionization – which is appropriate in the parameter regime employed by this group.
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the emergence of dynamical localization in alkali atoms, and consequently for the
emergence of chaotic dynamics and its suppression in a pure quantum object.

1.2 Microwave driven Rydberg states as an open quantum
system

While research in the field of quantum chaos concentrated on the dynamics of
closed, bound systems in the beginning, later on many groups became also inter-
ested in the dynamics of open systems. In non-integrable systems, chaotic scatter-
ing processes lead to fluctuations of scattering matrix elements and of the cross sec-
tion, a phenomenon known from nuclear physics as Ericson fluctuations [62, 63].
Such fluctuations have been theoretically observed also in atomic physics, in the
cross section of hydrogen atoms exposed to crossed (static) magnetic and electric
fields [64]. In systems exhibiting Anderson localization (i.e. in systems where
the classically chaotic dynamics is suppressed by quantum effects), in both, the
localized and the metallic regime, similar fluctuations were observed in the conduc-
tance [27, 65] across the sample. Using a suitable generalization of the concept of
conductance for a periodically driven atomic system and a one-dimensional model
of the hydrogen atom, similar fluctuations have recently been found for microwave
driven hydrogen atoms in the dynamically localized regime [66, 67].

In this thesis, we will not concentrate on this kind of fluctuations, but rather on
a related theme, which is subject to ongoing vivid discussion in the literature since
at least one decade, namely the temporal decay of the system. For classical systems,
it is known that a chaotic phase space structure results in a fast decay of correla-
tion functions. A typical function to measure this decay is the survival probability
P class

surv (t), which measures the probability that a particle’s trajectory can be found
in a given region of phase space after timet. In a completely chaotic system, this
function behaves likeP class

surv (t) ∼ e−αt [68], whereα is determined by parame-
ters that describe the system’s phase space structure, such as the largest Lyapunov
exponent. However, typical Hamiltonian systems do exhibit neither completely in-
tegrable nor completely chaotic structure, but exhibit a mixed regular-chaotic dy-
namics. The corresponding phase space consists of regular islands, surrounded by
so-called ’KAM’ tori, that break up for an increasing strength of the perturbation
(i.e. at an enhanced ’chaoticity’) of the system, and are surrounded by chaotic re-
gions. The existence of regular islands causes the trajectories to remain trapped
inside a given phase space region for longer times, due to the hierarchical phase
space structure in the immediate vicinity of the islands [69, 70, 71, 72]. Thus it is
found that the survival probability does not decay exponentially, but algebraically
P class

surv (t) ∼ t−α [71, 73, 68]. While the general behavior – an algebraic decay of the
survival probability – is nowadays common sense, the actual value of the positive
decay constantα for classical, mixed regular-chaotic systems is still under active
debate [74, 75, 76, 77].

The situation obviously gets even more complicated for a quantum mechanical
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system: According to the correspondence principle, the quantum system should fol-
low the classical prediction. However, for long times – after the Heisenberg time,
which is given by the inverse of the mean level spacing – the system can resolve the
quantum nature of the spectrum, and the quantum motion deviates from the classical
prediction [78]. Furthermore, pure quantum effects can lead to interference effects,
leading to a different decay of the system on longer time scales, as compared to the
classical system. And indeed, there are proposals of decay constantsz for the decay
Psurv(t) ∼ t−z of quantum mechanical systems with mixed regular-chaotic classi-
cal counterpart, that deviate from the corresponding proposals of decay constants of
classical systems [78]. However, many groups studying the decay of quantum sys-
tems found different exponents [79, 80, 81, 82] in various systems, and the proposals
of decay constants range fromz = 2/3 [83], to z = 1 [78], andz = 3/2 [82].

Most of the systems that have been studied in this context are model systems,
like billiard systems [79], driven square potentials [84], or the kicked rotator [78, 85]
without a clear, straightforward experimental implementation. Furthermore, the fact
that the system is a decaying system is often modeled by the introduction of absorb-
ing boundary conditions [78, 85, 81], instead of an exact account of the continuum-
coupling.

In contrast to such toy models, microwave driven Rydberg atoms are also stud-
ied experimentally, and an algebraic decay of the survival probability was already
experimentally measured [86] and found in more (one-dimensional) [87] or less
(three-dimensional, amended by classical scaling rules) [86] simplified calculations
on atomic hydrogen. With our work on alkali Rydberg atoms exposed to a mi-
crowave field, we develop a powerful tool to investigate the decay of a time-depen-
dent, open quantum system: As mentioned in the previous section, we employ fully
three-dimensional simulations, and, as we will see in section 2.1.3, our framework
really presents an open system with decaying states, where the interaction with the
continuum (leading to the decay) is described exactly. Furthermore, we are dealing
with a pure quantum mechanical system which exhibits effects like dynamical local-
ization – as we will see in the progress of this thesis. As a result, our work enables
us to study the decay of a typical quantum system while our approach is designed
to simulate the parameters used in laboratory experiments exactly. Therefore, our
results can be immediately verified in state-of-the-art experiments [49, 9].

1.3 Structure of the thesis

The present thesis is separated in two parts:Part I describes the ’set-up’ of our
numerical experiment on microwave driven Rydberg states. Here we describe the
theoretical/numerical counterpart of the laboratory set-up, described in the above
introductory section.

In chapter 2, we provide the theoretical tools to describe our system. Due to time-
periodicity, we employ the Floquet theorem and, as our system is a decaying system,
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we use the method of complex dilation. The non-hydrogenic core potential will be
taken into account with a combination of quantum defect theory and R-matrix the-
ory, and the resulting Hamiltonian will be represented in an appropriate basis set.

In chapter 3, we show how we are handling the generalized eigenvalue problem ob-
tained in chapter 2. We briefly explain the diagonalization routine we are using, and
its implementation on a parallel computer. We further give account of the numerical
parameters we employ to achieve converged results.

In part II , the previously explained apparatus will be applied to microwave driven
lithium and rubidium atoms, as well as to atomic hydrogen.

Chapter 4 presents first results, the ionization probability of driven lithium atoms.
We show typical ionization curves, similar to those observed in laboratory experi-
ments and in simplified simulations on microwave driven atomic hydrogen.

Chapter 5 concentrates on the difference between the ionization process of alkali
and hydrogen atoms. For this purpose we employ exactly the same laboratory pa-
rameters (frequency, field amplitude, interaction time, principal quantum number of
the atomic initial state) as used in experiments on atomic hydrogen, with the only
difference of a finite quantum defect of low-angular-momentum states. We will
explain the experimentally observed differences between the alkali and the hydro-
gen thresholds, and identify regimes of hydrogenic and non-hydrogenic ionization
behavior for alkali atoms. In this way we can establish a connection between the
experimental observations of the Virginia and the Munich group.

Chapter 6 is devoted to the time dependence of the ionization dynamics. We will
study the survival probability of microwave driven Rydberg atoms under different
conditions, and find an algebraic decay of the system. The decay exponent of our
system, however, isnota fixed, universal constant.

In chapter 7 we shortly summarize our results, and give an outlook on future per-
spectives.





Part I

The Set-Up





Chapter 2

Description of the system

2.1 Atomic Rydberg states in a microwave field

2.1.1 Atoms in electromagnetic fields

In this thesis, we are interested in Rydberg atoms with principal quantum numbers of
the valence electron betweenn0 ' 30 and80, exposed to a microwave field. As we
are dealing with singly excited states, correlation effects between the electrons, that
are of importance, e.g., in the dynamics of doubly excited helium atoms [88, 89], can
be neglected, and the atomic dynamics is determined by a spherically symmetric,
effective one-electron potentialVatom. Furthermore, the fine structure splitting is
negligible as compared to the mean level spacing.

For atomic hydrogen, the atomic potentialVatom is given by the attractive Cou-
lomb potential−1/r, and for alkali atoms we will specifyVatom in section 2.3.
Hence, the non-relativistic Hamilton operator of the atom interacting with the exter-
nal field reads, in atomic units (me = |qe| = ~ = 4πε0 = 1):(1)

H =
1
2

(p−A(r, t))2 + Vatom(r) + Φ(r, t). (2.1)

Here A(r, t) and Φ(r, t) denote the vector and the scalar potential of the exter-
nal electromagnetic field, respectively. Since the frequencyω of the microwave
fields we are interested in is typically of the order of10−6 a.u., its wave-length
λ = 2πc/ω ' 2π ·137/ω is much larger than the approximate radius of the electron
orbit (which is of the order ofn2 a.u.). Therefore we can employ the dipole approx-
imation [56], which leads to the following Hamiltonian, written in the length and in
the velocity gauge, respectively:

H =
p2

2
+ Vatom(r) + r · F · cos(ωt) (length gauge), (2.2)

H =
p2

2
+ Vatom (r)− F

ω
· p sin(ωt) (velocity gauge). (2.3)

(1)Throughout this thesis we will use atomic units. Only the microwave frequency will mostly be
specified inHz (with 1 a.u. = 4.1341 · 1016 Hz [90]) to ease the comparison to experimental data.
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In both representations,F expresses the amplitude and orientation of the external
field. The transition from the Hamiltonian in length gauge (2.2) to the one in ve-
locity gauge (2.3) is achieved via a gauge transformation (’Göppert-Mayer-trans-
formation’ [91]). Of course, both Hamiltonians (2.2) and (2.3) describe the same
physical situation. However, in a numerical treatment, depending on the particular
physical situation at hand, the appropriate representation of the Hamiltonian can lead
to a faster convergence of the results [92, 93]. For this reason we will employ (2.3) to
describe microwave driven atomic hydrogen. In order to specify the atomic potential
Vatom of alkali atoms, however, we will explicitly make use of configuration space
– therefore, in this case, the length gauge is the appropriate choice. The following
discussion will thus start from the representation (2.2) of the Hamilton operator.

2.1.2 Floquet theorem

As the external field in (2.2) and (2.3) is periodic in time, with periodT = 2π/ω, we
can use the Floquet theorem [94] to solve the time-dependent Schrödinger equation

i∂t|Φ(r, t)〉 = H|Φ(r, t)〉, with H(t+ T ) = H(t). (2.4)

Following this theorem, each solution of (2.4) can be written as a product of a phase
factor exp(−iεjt) and of a time-periodic function|Ψ(r, t)〉 [95, 96]. Thus, any
solution of (2.4) is given by a linear combination

|Φ(r, t)〉 =
∑
j

cje
−iεjt|Ψεj (r, t)〉, (2.5)

with |Ψεj (r, t)〉 = |Ψεj (r, t+ T )〉. (2.6)

The ’Floquet eigenstates’|Ψεj (r, t)〉 and the quasi-energiesεj [96] are given by the
eigenfunctions and the eigenvalues of the Floquet Hamilton operatorH = H − i∂t.
This operator acts on the extended Hilbert space of square integrable, time-periodic
functionsL2(R3)⊗L2(T ). The Floquet eigenvalue problem has the structure of the
stationary Schr̈odinger equation:

H|Ψεj (r, t)〉 = εj |Ψεj (r, t)〉, j ∈ Z. (2.7)

Each solution of (2.7), i.e. each Floquet eigenstate|Ψεj (r, t)〉, defines a whole class
of solutionsexp(ikωt)|Ψεj (r, t)〉 (with k ∈ Z) with corresponding quasi-energies
εj + kω. Each member of this class represents the same physical state, since the
function

e−i(εj+kω)t|Ψεj+kω(r, t)〉 = e−i(εj+kω)teikωt|Ψεj (r, t)〉 = e−iεjt|Ψεj (r, t)〉 (2.8)

is independent ofk. Hence, the spectrum ofH is periodic with periodω, and we can
restrict ourselves to a single Floquet zone of widthω to find the solutions of (2.7).(2)

(2)The discussion is in analogy to solid state physics, where the potential isspatiallyperiodic [97].
There, the Bloch waves play the role of the Floquet states, and the well known Brillouin zone cor-
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Since the whole spectrum is folded into a single Floquet zone of widthω, the choice
of the Floquet zone is – in principle – arbitrary.

With the help of the Floquet Hamiltonian and employing the length gauge (2.2),
the time-dependent Schrödinger equation for the microwave driven Rydberg atom
turns into(

p2

2
+ Vatom(r) +

F · r
2
(
eiωt + e−iωt

)
− i∂t

)
|Ψεj (r, t)〉 = εj |Ψεj (r, t)〉, j ∈ Z.

(2.9)

Due to the time-periodicity of the Floquet states|Ψεj (r, t)〉, it is convenient to ex-
pand them in a Fourier series:

|Ψεj (r, t)〉 =
∑
k

e−ikωt|Ψk
εj 〉. (2.10)

Inserting the Fourier expansion (2.10) in the Floquet eigenvalue problem (2.9) leads
to the following set of coupled, time-independent differential equations:(

p2

2
+ Vatom(r)

)
|Ψk

εj 〉+
F · r

2

(
|Ψk+1

εj 〉+ |Ψk−1
εj 〉

)
= (εj + kω) |Ψk

εj 〉, k ∈ Z.

(2.11)

The price for the transformation of the time-dependent eigenvalue problem into a
time-independent set of differential equations has to be paid by keeping track of the
additional quantum numberk, which counts the number of photons exchanged be-
tween the atom and the field. The notion of an exchange of photons can be used
in this context, although we employed a classical field in (2.2) and (2.3). In this
’semiclassical description’ the atom-field interaction is described byr ·F · cos(ωt),
instead ofg(a† + a) (with a† anda the creation and the annihilation operator, re-
spectively, of the photon field) in a fully quantized treatment of an atom interacting
with a single mode coherent state of the photon field. In the fully quantized version,
the expectation value ofa†a expresses the average numberN of photons in the field,
i.e. the field intensity. IfN is large, the difference between

√
N and

√
N + 1 is

small, and it can be shown [95, 98] that the Hamilton operator in the fully quantized,
dressed state approach [91] is equivalent to the Floquet HamiltonianH, provided the
quantum numberk is identified withN −N (whereN is the occupation number of
the mode), andF is identified with

√
N , independently ofk.

As is generally known, the spectrum of unperturbed atoms not only consists
of a discrete, but also of a continuous part. An external oscillating field induces a
coupling of all atomic states dressed withk photons to states dressed withk − 1

responds to the Floquet zone. However - due to the explicit time dependence - the Floquet problem
for a three-dimensional, atom with one active electron, leads to a3 + 1 dimensional problem – the
extra dimension given by the time axis – whereas the spatially periodic problem in general leads to a
time-independent eigenvalue problem, without increase of the dimensionality.
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Figure 2.1: Poles of the resolvent operator of the Floquet Hamiltonian of a periodi-
cally driven atom. The resonances that are embedded in the continuum without the
analytic continuation, can be uncovered only by analytic continuation of the resol-
vent operator.

andk + 1 photons, as apparent from (2.11). Consequently, all bound states are
coupled to the continuum, and thus each bound state can decay via a multi-photon
transition. Therefore, the spectrum of (2.9) consists of resonances with finite life-
times embedded in the continuum. An elegant way to extract the quasi-energiesεj
and the corresponding life times is provided by . . .

2.1.3 Complex dilation

Since all Floquet eigenstates of the driven atom are decaying states [99, 100], all
these states are represented by outgoing waves after a sufficiently long atom-field
interaction time. The situation can be described as a half scattering process. Con-
sequently, the eigenstates can be identified with the poles of the resolvent operator
G(E) = (E −H)−1 of the Hamilton operatorH [101]. The spectrum of the ana-
lytic continuation ofG(E) in the complex plane is sketched in figure 2.1, it consists
of:

• Poles in the negative complex plane (more accurately, on the second Riemann
sheet). They correspond to the scattering resonances at complex energiesε =
E − iΓ/2, Γ > 0.

• The eigenvalues of the continuum states which are situated on the real energy
axis.

• Finally, if there are any bound states (due to accidental destructive interference
of continuum transition amplitudes), they correspond to discrete eigenvalues
on the real axis, embedded in the continuum.
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Figure 2.2: Spectrum of the complex dilated Floquet Hamiltonian. For sufficiently
large rotation angleΘ the resonancesε = E − iΓ/2 are exposed and independent
of Θ.

To separate the quasi-energiesεj with the corresponding life times (given by the
inverse of the ionization ratesΓj) of the resonances from the continuum, we do not
explicitly use the resolvent operator in the following, but the method of complex di-
lation. This method is based on theorems of functional and operator analysis [102],
its applicability for the Coulomb potential is demonstrated in [100]. The method
consists in the complexification of the position and momentum operators, according
to:

r→ reiΘ, p→ pe−iΘ, (2.12)

with: 0 < Θ <
π

4
.

Note that the dilation (2.12) of the position and momentum operators leaves
the value of the commutator invariant, i.e[r,p] = [reiΘ,pe−iΘ]. The transforma-
tion (2.12) is accomplished by the non-unitary complex dilation operator

R(Θ) = exp
(
−Θ

2
(r · p + p · r)

)
. (2.13)

The spectrum of the dilated Floquet Hamiltonian is sketched in figure 2.2, it
consists of the following components:

a) The continuum part of the spectrum. The continuum states are situated on
half lines rotated by an angle−2Θ from the real axis, branching at the multi-
photon ionization threshold energiesKω (K an integer).

b) Complex eigenvaluesεj = Ej−iΓj/2 with positive ionization ratesΓj . These
resonance poles of the analytic continuation of the resolvent operator areΘ-
independent, provided the rotation angle is large enough to separate them from
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the continuum states (see a) above), i.e. forΘ > − arg(εj − iΓ/2)/2. The
corresponding wave-functions are square integrable functions [103] (in con-
trast to the eigenfunctions of the unrotated Hamiltonian, which are outgoing
waves [104], as mentioned above).

c) Apart from exceptional values ofF andω, there are no real eigenvalues, as un-
der periodic driving all bound states of an atom turn into resonances with finite
ionization rates [99], and thus all eigenvalues exhibit non-vanishing imaginary
parts.

If the complex dilated Hamiltonian

HΘ := R(Θ)HR(−Θ) (2.14)

is represented in a real basis, such as the Sturmian basis set we will employ in sec-
tion 2.4, the resulting matrix is a complex symmetric instead of a hermitian matrix.
Hence, the left eigenvectors of the complex dilated Hamiltonian are the transpose
and not the hermitian conjugate of the right eigenvectors. To express this, we will
use the notation〈Ψk

εj ,Θ
| for the left eigenvectors corresponding to|Ψk

εj ,Θ
〉. How-

ever, since the time-dependent part of a solution of the Floquet eigenvalue problem is
unchanged under the transformation (2.13), only the spatial part of the eigenvectors
has to be transposed, while the time-dependent part also has to be complex conju-
gated. The left eigenfunctions corresponding to the eigenvaluesεj of the complex
dilated Hamiltonian are thus given by

〈Ψεj ,Θ(r, t)|HΘ = εj〈Ψεj ,Θ(r, t)|, 〈Ψεj ,Θ(r, t)| =
∑
k

eikωt〈ψkεj ,Θ|. (2.15)

For the spatial part, we consequently have the following scalar product:

〈ψkεj ,Θ|φ
k
εj ,Θ〉 =

∫
d3rψkεj ,Θ(r)φkεj ,Θ(r). (2.16)

In the following chapters we will be interested in the ionization probability of a
given initial state. Therefore, we will implicitly make use of the time evolution op-
eratorU(t2, t1), which propagates the wave-function fromt1 to t2. A representation
of this operator for a complex dilated Floquet Hamiltonian was derived in [33, 34].
For the sake of completeness, we quote the result:

U(t2, t1) =
∑
j,k1,k2

e−iεj(t2−t1)eik1ωt1e−ik2ωt2R(−Θ)|ψk2
εj ,Θ
〉〈ψk1

εj ,Θ
|R(Θ). (2.17)

2.2 Atomic hydrogen

So far, our discussion was not specific for any particular atomic species – we simply
assumed a single electron Rydberg state, bound by an effective one-electron poten-
tial Vatom. For atomic hydrogen, this potential is given by the attractive Coulomb
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potential−1/r. In this case, all operators in the Hamiltonian (2.2) (which also
describes the classical Hamilton function, provided the operatorsr andp are re-
placed by the position and momentum variables) are power functions of the position
and momentum operator, more generally, they are homogeneous functions inr and
p [28]. This suggests to take advantage of the scale invariance of theclassicaldy-
namics of the driven Kepler problem [28, 29] in our description of the quantum
excitation and ionization process. The classical equations of motion are invariant
under the following transformations,

H0 = λH, t0 = λ−
3
2 t

r0 = λ−1r, p0 = λ
1
2 p (2.18)

F0 = λ2F, ω0 = λ
3
2ω,

with a real, positive scaling parameterλ. An appropriate choice isλ = n2
0 (with n0

the principal action, which corresponds to the principal quantum number in quantum
mechanics), since in this way the scaled, unperturbed energy can be kept constant
(E0 = n2

0E = −1/2). We already mentioned in the introduction that it is thus
possible to keep the (classical) phase space structure fixed while changing the actual
energy of the atomic initial state, i.e. the energy−1/n2

0 of an electron moving on
then0-th Bohr orbit. As easily deduced from (2.18), the relevant scaled quantities
describing the external field are

ω0 = ω · n3
0, (2.19)

and

F0 = F · n4
0. (2.20)

ω0 andF0 measure frequency and field amplitude in units of the Kepler frequency
of the classical electron and of the Coulomb force between electron and nucleus on
then0-th Bohr orbit, as already noted in section 1.1.1. Furthermore, due to Bohr’s
correspondence principle (applicable for largen0), the Kepler frequency also ap-
proximates the local energy spacing in the Rydberg progression of the quantum
spectrum. Thus measuringω in units of the Kepler frequency is tantamount to
scalingω with respect to the difference between the quantum mechanical (unper-
turbed) hydrogenic energy levelsEn andEn+1, and provides a direct link between
the characteristic time scale of the driving force and the local energy splitting of the
unperturbed quantum spectrum. Note, however, that the local energy splitting lends
itself as a natural measure of the driving frequency, even in the absence of a classical
analogue of the atomic dynamics.

Applying the scaling rules (2.18) to the quantum mechanical operators also af-
fects the commutator of the scaled position operatorr0 with the scaled momentum
operatorp0, according to

[r0, p0] = iλ−
1
2~ = i

1
n0
~. (2.21)
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Thus, the use of scaled variables seems to introduce an effective value~/n0 of
Planck’s constant. This highlights the fact that the so-called ’semiclassical limit
~ → 0’ [105] is reached for highly excited states. (Of course, also in this case the
actual Planck constant is constant. However, asn0 is increased,~ is small compared
to the typical actions which characterize the dynamics of the system).

With this caveat in mind, the above scaling rules remain very instructive for the
interpretation of the actual quantum dynamics. The use of scaled rather than labo-
ratory parameters facilitates the understanding of the quantum dynamics of driven
atomic hydrogen considerably, and allows to identify highly relevant and robust
signatures of the underlying non-linear classical dynamics in the quantum spec-
trum [106, 107, 108], which cannot be fully appreciated on the basis of a purely
quantum mechanical description.

Furthermore, the approximate validity of classical scaling for the quantum dy-
namics has an important practical consequence: Since the number of photons that
separate the atomic initial state from the continuum scales as1/2n2

0ω = n0/2ω0,
and the density of states scales asn5

0, fully three-dimensional quantum calculations
using typical experimental parameters (ω0 = 1 for n0 ' 60) were not feasible up to
now. Therefore, in the only three-dimensional quantum calculations on microwave
driven atomic hydrogen [32, 34, 86] reported up to now, the scaling rules (2.20) were
employed to map the results of exact calculations forn0 ' 23 on experimentally
used parameters. These simulations led to a qualitatively satisfactory comparison
with the experimental results, amended by a systematic difference between the nu-
merical (n0 = 23) and the experimental (n0 ' 60) ionization thresholds of up to
a factor two. This latter discrepancy illustrates that the classical scaling rules hold
only approximately in the real quantum system, as a consequence of (2.21) [34]
(see also the footnote on page 5). Only now, as we shall illustrate further down in
this thesis, can we treat the fully three-dimensional problem withn0 ' 60, without
additional reference to classical scaling rules.

For alkali atoms, on the other hand, the situation changes significantly. The dif-
ference between highly excited alkali atoms and Rydberg states of atomic hydrogen
consists in the presence of an atomic core, made of the nucleus and a multi-electron
cloud which screens the nuclear charge. In contrast to hydrogen, where the nucleus
is given by a single proton, with a radius of the order of10−5 a.u. [109], the atomic
core of alkali atoms has a size of some atomic units. Since the use of scaled pa-
rameters also includes the scaling of radii, the existence of such a finite-size radius –
which obviously does not scale as suggested by (2.18) – makes the use of the scaling
rules introduced above a prioriimpossible.

2.3 Alkali atoms

2.3.1 Quantum defect theory

The effect of the atomic core on the dynamics of the highly excited outer electron
of an alkali atom is twofold. Firstly, it causes a scattering of the wave-function
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of the outer electron, which consequently accumulates a phase shift relative to the
hydrogenic wave-function. Secondly, for large distancesr > rcore (wherercore

defines the size of the atomic core), the inner electrons screen the nuclear charge,
and the Rydberg electron moves in an attractive Coulomb potential with charge+1,
as in the case of atomic hydrogen. Thus, the radial part of the bound electronic
wave-functionF`,Ealk

has to fulfill the following equation:(
−1

2

(
d2

dr2
− ` (`+ 1)

r2

)
+ Vatom (r)− Ealk

)
F`,Ealk

(r) = 0, (2.22)

with Ealk < 0, and Vatom = −1/r, for r > rcore > 0.

Equation (2.22) is a second order differential equation and therefore has two lin-
early independent solutions, the ’regular’f(E, `, r) and the ’irregular’g(E, `, r)
Coulomb function [110, 111, 112]. The notion regular and irregular indicates the
behavior of these functions at the origin:

f(E, `, r)→ r`+1, (2.23)

g(E, `, r)→ r−`. (2.24)

Because of the boundary condition of a vanishing wave-function at the origin, the
hydrogenic wave-function is given by (2.23). For alkali atoms on the other hand, the
origin is excluded from the domain of equation (2.22), and hence also an irregular
contribution to the wave-function is possible. Thus, the hydrogenic boundary condi-
tion atr = 0 has to be replaced by the requirement that the wave-function acquires
a phase shiftτ with respect to the hydrogenic function (forr > rcore). A solution
of (2.22) is given by [110, 111, 112]:

F`,Ealk
(r) = N (Ealk) (f (Ealk, `, r) cos (τ)− g (Ealk, `, r) sin (τ)) , (2.25)

whereN (Ealk) is a suitably chosen, energy-dependent normalization constant. As
we consider bound states here, the functionF`,Ealk

(r) has to vanish forr → ∞.
Therefore, we need to know the behavior of the Coulomb functions for larger.
Asymptotically they tend to:

f(E, `, r)→ u(m, `, r) sin(πm)− ν(m, `, r)eiπm , (2.26)

g(E, `, r)→ −u(m, `, r) cos(πm) + ν(m, `, r)eiπm+ 1
2 , (2.27)

with m =

√
− 1

2E
(2.28)

whereu(m, `, r) andν(m, `, r) are exponentially increasing and exponentially de-
creasing functions, respectively [110, 111, 112]. To obtain an asymptotically de-
creasing function, the prefactors ofu(m, `, r) in (2.25) have to vanish. This leads to
the following condition:

sin(τ + πm) = sin(τ + π

√
− 1

2Ealk
) = 0. (2.29)
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Ergo, the energyEalk of unperturbed, bound alkali states has to fulfill the equation:

Ealk = − 1
2n2

eff

= − 1
2(n− δ`)2

, n ∈ N, (2.30)

whereδ` is connected with the phase shift of the alkali wave-function byτ = δ` · π,
and denotes the angular momentum dependent quantum defect. To emphasize the
correspondence with the hydrogen atom, the non-integer quantityneff is often called
the ’effective principal quantum number’.

The quantum defects only weakly depend on the energy, and can be obtained
from experimental, high-resolution spectroscopic data [113, 114]. As we see in ta-
ble 2.3.1, they take non-vanishing values only for small angular momenta (` < 3).

δ`=0 δ`=1 δ`=2 δ`=3 δ`>3

Li 0.399468 0.047263 0.002129 −7.7 · 10−5 0.0
Na 1.347964 0.855 0.015543 0.001453 0.0
K 2.180199 1.71 0.277 0.010098 0.0
Rb 3.1309 2.6515 1.3472 0.016312 0.0

Table 2.3.1: Quantum defects of lithium, sodium, potassium, and rubidium [113].
For sodium, potassium and rubidium the quantum defects of the` = 1 states (and
of the` = 2 states in the case of K) are the average values of the quantum defects of
states with total (spin and orbital) angular momenta1/2 and3/2.

Finally, for bound states, the properly normalized solution of (2.22) is given by:

F`,Ealk
(r) = cos(πδ`)s`(Ealk, r) + sin(πδ`)c`(Ealk, r). (2.31)

Here, the functionss`(Ealk, r) and c`(Ealk, r) are the energy-normalized regular
and irregular Coulomb functionsf(E, `, r) andg(E, `, r), respectively [115, 110].

As the external driving field induces a coupling of all bound states to the contin-
uum (see section 2.1.3), we also need to know the representation of the continuum
states. A relation between the quantum defects and the asymptotic phase shift of the
alkali continuum wave-function relative to the hydrogenic wave-function is given
by Seaton’s theorem [115, 110]:

lim
n→∞

δ` =
1
π

lim
E→0+

δ(E). (2.32)

ForE > 0, the solution of (2.22) can be written as:

F (E, r) ' 1√
2πE

(s(ξ) cos(δ(E)) + c(ξ) sin(δ(E)), (2.33)

ξ =
√

2E − `

2
ln(2
√

2Er) + argΓ(`+ 1− i√
2E

),
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Figure 2.3: For alkali atoms exposed to an external field, configuration space can be
divided in three regions: the inner region (I), the intermediate region (II), and the
external region (III). In all three regions the dynamics has to be described differently.

with Γ the well-known Gamma function [116]. The regular and irregular Coulomb
functions both forE < 0 andE > 0 can be expressed in terms of Whittaker func-
tions and expanded in power series, as described in [117, 110, 118, 119, 115]. The
continuation of the Coulomb functions, analytic in energy, for complex radii and
energies was developed in [120, 121, 122].

2.3.2 Alkali atoms in an external field

As already pointed out, we cannot specify an effective one-electron potential for
alkali atoms valid for allr ∈ R+, without the use of free, adjustable parameters.
However, knowing an expression for the wave-function of the valence electron out-
side the atomic core, we can treat the interaction of alkali Rydberg states with an
external field without the use of free parameters. The only parameters that will be
used are the quantum defects introduced above – obtained by highly accurate spec-
troscopic experiments.

For our approach we split configuration space in three regions (see figure 2.3)
distinguished by the relative relevance of the external field and the multi-particle
atomic fields:

(I) Inner region,0 < r < rcore: Inside the atomic core the dynamics is dominated
by complicated multi-particle effects. Here, it is impossible to describe the
dynamics in terms of a one-particle picture.

(II) Intermediate regionrcore < r < r0: Outside the atomic core, but not far away
from the origin, the external field is small compared with the field between
atomic core and electron. In this region, the wave-function of the outer elec-
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tron is given by (2.31) for bound states and by (2.33) for continuum states,
respectively.

(III) External region,r ≥ r0: For large distancesr, the electron is subject to the
potential−1/r+Vext, i.e. the radial part of the wave-function has to obey the
following differential equation:(
−1

2
d2

dr2
+
` (`+ 1)

2r2
− 1
r

+ Vext (r)
)
F`,E (r) = EF`,E(r), r ≥ r0.

(2.34)

At r = r0, the solution of (2.34) has to be matched smoothly to the wave-
function in region (II). This determines the phase shift ofF`,E(r) relative to
the hydrogenic solution of (2.34).

To find the eigenfunctions of the problem, we thus have to find a solution of (2.34).
However, in the restricted ranger ≥ r0 of this equation, the operatord2/dr2 is no
more hermitian.(3) To enforce the hermiticity of the second derivative also in the
reduced range, we have to add a surface term [123]

L = −1
2
δ(r − r0)(

∂

∂r
− C) (2.35)

to the left hand side of (2.34), whereδ(r) denotes the Dirac delta function. The
constantC in L – which is in principle arbitrary – helps to match the solution in
region (III) to that in (II) [124]. Therefore, we defineC as the logarithmic derivative
of the wave-function in (II), at the positionr0:

C = C`,E =
1

F`,E(r0)

(
d
dr
F`,E (r)

) ∣∣∣∣∣
r=r0

. (2.36)

The eigenfunctions of our problem are thus given by the solutions of equation (2.34),
amended by (2.36). The described approach was baptized a variant of R-matrix
in [124, 120]. In the following, we briefly sketch the conventional R-matrix method
as used in [125, 126, 127], and show the relation to our present approach.

The starting point for standard R-matrix methods is the same division of con-
figuration space as in figure 2.3, with the differential equation (2.34) for the radial
wave-functionF`,E(r) in region (III). Again, a surface termL is added, but now the
constantC is set to zero. This leads to the following differential equation:

(H + L`)ξ`,q(r) = Eqξ`,q(r), r ≥ r0 (2.37)

whereH denotes the operator on the left hand side of (2.34). The radial eigenfunc-
tionsξ`,q(r) to the eigenvaluesEq of (2.37) satisfy arbitrary boundary conditions at

(3)Note that here the loss of hermiticity is not related to the complex dilation of position and momen-
tum operators introduced in section 2.1.3. It is just a simple example that hermiticity of an operator
can only be stated if its domain is defined.
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r = r0. These normalized functions form a complete set over[r0,∞), hence we can
representF`,E(r) in this set:

F`,E(r) =
∑
q

∫ ∞
r0

ξ∗`,q(r
′)F`,E(r′)dr′ξ`,q(r). (2.38)

The wave-function in region (III),F`,E(r), has to satisfy (2.34). Adding the surface
termL to this equation we obtain:

(H + L − E)F`,E(r) = LF`,E(r), r ≥ r0. (2.39)

Multiplying (2.39) withξ∗`,q(r) from the left, and integrating over[r0,∞), we obtain:

(Eq − E)
∫ ∞
r0

ξ∗`,q(r)F`,E(r)dr = −1
2
ξ∗`,q(r0)

dF`,E(r)
dr

∣∣∣∣∣
r=r0

. (2.40)

With (2.40) and (2.38) we thus obtain an expression forF`,E(r) at the boundary
r = r0:

F`,E(r0) =
1
2

∑
q

ξ∗`,q(r0)ξ`,q(r0)
E − Eq

dF`,E(r)
dr

∣∣∣∣∣
r=r0

=R(r0, E)
dF`,E(r)

dr

∣∣∣∣∣
r=r0

, (2.41)

with the R-matrixR(r0, E). The typical procedure in this approach is to compute
the functionξ`,q(r) in region (III) according to (2.37), and to extract the eigenvalue
E subsequently with the help of (2.41), whereF`,E(r0) anddF`,E/dr

∣∣
r=r0

are de-
termined by the wave-function and its derivative at the boundary of region (II). The
eigenfunctionF`,E(r) valid for all r ∈ [r0,∞) is then given by (2.38).

The disadvantage of this approach for our problem is that the eigenfunctions and
eigenvalues from the region (III) are needed to form the R-matrix.After this matrix
is formed it is matched to the region (II) wave-function known from quantum defect
theory. The method we are using instead uses this information alreadybeforethe
diagonalization.

2.3.3 Periodically driven alkali atoms

To solve the Floquet problem (2.11), the method explained in the preceding section
has to be slightly modified. As shown in section 2.1.2, the spectrum of (2.11) is
ω-periodic, and thus for each quasi-energyεj alsoεj + kω (k ∈ Z) is an eigenvalue
of the problem. Thus, we have to adapt the surface term for the Floquet problem, by
redefining the constantC, (2.36), in the following way:

C = C`,εj ,k =
1

F`,εj ,k(r0)

(
d
dr
F`,εj ,k (r)

) ∣∣∣∣∣
r=r0

. (2.42)
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Hence, the functionF`,E(r) = F`,εj ,k(r) has to be evaluated at the quasi-energy
εj + kω:

F`,εj ,k(r) = cos(πδ`) · s`(εj + kω, r) + sin(πδ`) · c`(εj + kω, r), at r = r0.

(2.43)

To computec` ands` at (quasi-) energies different from the unperturbed alkali levels
−1/(2(n − δ`)2), we make in particular use of the representation of the Coulomb
functions as analytic functions of energy. Furthermore, sincek covers all integer
numbers, we also need the Coulomb functions in the continuum, i.e. Seaton’s theo-
rem (2.32).

From the definitions (2.36) and (2.42), it is clear thatC`,εj ,k has to be evaluated
exactly at the (quasi-) energyεmatch = εj + kω, which is an eigenvalue of the Flo-
quet problem. Asεj is not known beforehand, this requires in principle an iterative
procedure. Consequently, the diagonalization of the resulting eigenvalue problem
only yields a single converged eigenvalue, which is obtained after some iterations
in a self consistent way. To overcome this problem and to obtain more than just
one converged eigenvalue per diagonalization, we use an improvement that was also
used to describe alkali atoms in the presence of static fields [121]. The idea is to
expand (2.42), which is a smooth function of energy, as a power series in energy:

C`,εj ,k = C0
`,εj ,k

+ (ε+ kω)C1
`,εj ,k

+ . . . , (2.44)

Instead of the exact termC`,εj ,k, we employ only the constant and the linear term,
C0
`,εj ,k

andC1
`,εj ,k

. They are found by computing the Coulomb functions at the po-
sitionr0 over a suitable energy grid, and fitting the logarithmic derivative to a linear
function. This approach (’approximation of the linear energy dependence of the sur-
face term’, ALEDST) allows to obtain some hundred converged eigenvalues within
a single diagonalization. We will briefly account for the quality of this approxima-
tion in section 3.3.1.

2.4 Representation in a Sturmian basis set

The complex dilated set of coupled differential equations (2.11), amended by the
core induced surface term (2.42), is now represented in a suitable basis set. An
appropriate choice are the real Sturmian basis functions [128, 129, 130]|S(α)

n,`,m〉. In
spherical coordinates, the Sturmian functions are given by the expression:

〈r, θ, φ|S(α)
n,`,m〉 =D(n, `) exp

(
−r
α

)(
2r
α

)`
L

(2`+1)
n−`−1

(
2r
α

)
Y`,m (θ, φ) , (2.45)

with D(n, `) =

√
(n− `− 1)!

(n+ `)!
, and |m| ≤ ` < n,
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whereY`,m (θ, φ) denote the usual spherical harmonics [131, 132], andL
(k)
q (r) the

associated Laguerre polynomials [132, 116].(4) The ideal suitability of this set of
functions for hydrogen (-like) problems consists in the fact that they perfectly match
the internal SO(4) symmetry of the Coulomb problem [134]. Then-th Sturmian
function withn = α, for instance, coincides exactly with the eigenfunction of the
unperturbed hydrogen atom with energy−1/(2n2), angular momentum̀, andm
the projection of the angular momentum on the quantization axis. Furthermore,
the Sturmian functions are a discrete (though non-orthogonal) basis set representing
both the discrete and the continuum part of the spectrum.

The real scaling parameterα in (2.45) determines the scale of the oscillations
of the functions|S(α)

n,`,m〉. Comparing the definition (2.45) to the analytical form
of hydrogen wave-functions, we note that (up to normalization constants) thenth
bound hydrogen wave-function is represented by thenth Sturmian function, given
that rhydro = (n/α)rsturm. A suitable choice ofα enables us thus to define the
region where an optimal ’resolution’ of the wave-function is achieved, even for not
too large a basis size. In a numerical simulation we obviously have to introduce
a cutoffnsup of the Sturmian basis. This also introduces a shift of the continuum
threshold to a lower value: Since the expectation value of the position operator
〈rhydro〉 scales asn2 [131], using Sturmian functions the expectation value〈rsturm〉
scales asn ·α. The expectation value of the position of thensupth Sturmian function
thus scales asnsup · α, hence the effective continuum thresholdsneff

max is given by:

neff
max =

√
nsup · α, and Eeff

cont = − 1
2nsupα

. (2.46)

Note that also in laboratory experiments an effective cutoff quantum numberneff
max is

introduced, i.e. highly excited bound states withn > neff
max cannot be distinguished

from continuum states. There, the existence of an effective continuum threshold is
caused by unavoidable stray electric fields created by contact potentials [20, 42].

The Sturmian functions are only orthogonal for a scalar product involving a fac-
tor 1/r, instead of the usual scalar product. Hence, our eigenvalue problem (2.11),
which is of the formAx = λx, turns into a generalized eigenvalue problem of the
form:

Ax = λBx. (2.47)

The matrixA is given by the matrix elements (evaluated as radial integrals in the
range[r0,∞)):

A =
(
S

(α)
n′,`′,m′,k′

∣∣2HΘ

∣∣S(α)
n,`,m,k

)
, (2.48)

where the symbolHΘ in (2.48) denotes the complex dilated operator on the left
hand side of equation (2.11), amended by the (complex dilated) surface term(δ(r−

(4)Note that there are different definitions of the associated Laguerre polynomials. The definition we
are using here differs from that used in [133] by a factor(−1)k and from that used in [131] by a factor
(q + k)!.
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r0)( ∂∂r + C`,εj ,k))Θ that was derived in section 2.3. Yet, if we follow (2.44) and
approximate the surface termC`,εj ,k byC0

`,εj ,k
+ (ε+kω)C1

`,εj ,k
, it is convenient to

split the functionC`,εj ,k between the matricesA andB: The constant termC0
`,εj ,k

is added toA, while the linear termC1
`,εj ,k

is absorbed inB, which is then given by:

B =
(
S

(α)
n′,`′,m′,k′

∣∣∣2− (δ (r − r0)
(
C1
`,εj ,k

))
Θ

∣∣∣S(α)
n,`,m,k

)
. (2.49)

The notation(·| · |·) in (2.48) and (2.49) instead of the usual brackets〈·|·|·〉 shall
illustrate that the radial part of the integral is not evaluated for allr ∈ R, but only
for r0 ≤ r < ∞, due to the division of configuration space. Furthermore, the
additional subscriptk in |S(α)

n,`,m,k) denotes the Sturmian function|S(α)
n,`,m) dressed

by k photons.
From now on we will specify the polarization of the microwave field, and in

the following we employ a linearly polarized external fieldF, along thez-axis.
With this choice, the spatial part of the atom-field interaction operator reduces to
F · r = Fz = Fr cos θ. After integratingHΘ and (2 − (δ(r − r0)(C1

`,εj ,k
))Θ)

over the solid angledΩ, we finally obtain the following expressions for the matrices
defining our generalized eigenvalue problem (2.47)

A =
(
S

(α)
n′,`′,k′

∣∣∣ [e−iΘ

r

[
e−iΘ2

n

α
− 2
]]
δk,k′δ`,`′

∣∣∣S(α)
n,`,k

)
+

(
S

(α)
n′,`′,k′

∣∣∣ [−e−2iΘ 1
α2
− 2kω

]
δk,k′δ`,`′

∣∣∣S(α)
n,`,k

)
+

(
S

(α)
n′,`′,k′

∣∣∣ [−e−iΘδ(r − r0)
[
e−iΘ d

dr
−
(
C0
εj ,`,k

)
Θ

]]
δk,k′δ`,`′

∣∣∣S(α)
n,`,k

)
+

(
S

(α)
n′,`′,k′

∣∣∣ [FeiΘrA`+1

[
δk−1,k′ + δk+1,k′

]]
δ`+1,`′

∣∣∣S(α)
n,`,k

)
+

(
S

(α)
n′,`′,k′

∣∣∣ [FeiΘrA`
[
δk−1,k′ + δk+1,k′

]]
δ`−1,`′

∣∣∣S(α)
n,`,k

)
, (2.50)

with

A` =

√
`2 −m2

4`2 − 1
, (2.51)

and

B =
(
S

(α)
n′,`′,k′

∣∣∣(2− e−iΘδ (r − r0)
(
C1
`,εj ,k

)
Θ

)δk,k′δ`,`′
∣∣∣S(α)
n,`,k

)
. (2.52)

In (2.50) and (2.52) we used the notation
∣∣∣S(α)
n,`,k

)
instead of

∣∣∣S(α)
n,`,m,k

)
. Omission of

them-quantum number indicates that, after integration over the solid angle – apart
from k counting the ’photons’ – only thè and then quantum numbers are left.
Since – in the dipole approximation – the external field conserves thez-projection
of the angular momentum,m is a good quantum number and is not changed by the
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external field. Apart from this selection rule∆m = 0, there are also selection rules
in the photon numberk and the angular momentum quantum number`, as immedi-
ately apparent from (2.50) and (2.52):A can be split into two parts, the first three
lines of (2.50) describe the unperturbed atom, for which the angular momentum is
conserved. Consequently, for this part we have the selection rules

∆` = 0, ∆k = 0, (2.53)

equally valid forB. The last two lines of (2.50) represent the interaction with the
field, which induces the following selection rules:

∆k = ±1, ∆` = ±1. (2.54)

The selection rules forA are an expression of the fact that the external (dipole) field
couples only neighboring angular momenta. A change of the angular momentum
by one quantum is connected with the absorption or emission of a photon (which
carries away one quantum). Therefore we can define a generalized parity

Π = (−1)∆`+∆k, (2.55)

which is conserved by the external field. This means that we have to solve (2.47)
separately in the two subspaces with parityΠ = +1 andΠ = −1. In practice,
the separation into these two subspaces entails the advantage that the matrixA (the
same asB) is split in two (uncoupled) matrices, and thus only half the memory is
needed to store each of them for numerical diagonalization.

If the integrals in (2.50) and (2.52) are evaluated for allr ∈ R+, as it is the case
for atomic hydrogen and for the large angular momentum states of alkali atoms,
there are further strict selection rules for the principal quantum numbern [34].
These, however, are invalidated in the presence of a non-hydrogenic core which
restricts the range of the integrals tor ∈ [r0,∞).

2.5 Physical quantities

2.5.1 Ionization probability

The theoretical apparatus explained so far will be applied to determine the ionization
probability of microwave driven Rydberg atoms, with the results presented in part II
of this thesis. Much the same as in the (laboratory) experiments on alkali atoms, in
our calculations the atoms are initially prepared in a well defined state|n0, `0,m0〉.
For a situation like this, the survival probabilityPsurv, i.e. the probability to find the
atom in a bound state after an atom-field interaction timet = t2 − t1, writes:

Psurv(t2 − t1) =
∑

bound states |ξm〉

∣∣〈ξm|U(t2, t1)|n0, `0,m0〉
∣∣2, (2.56)
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whereU(t2, t1) is the time evolution operator (2.17). Following the derivation
in [33, 34], this leads to the expression:

Psurv(t) =
∑
Π,k,j

〈ψkεj ,Θ|R(Θ)|n0, `0,m0〉2 exp(−Γjt), (2.57)

and, consequently, the ionization probabilityPion(t) = 1− Psurv(t) is given by:

Pion(t) = 1−
∑
Π,k,j

〈ψkεj ,Θ|R(Θ)|n0, `0,m0〉2 exp(−Γjt). (2.58)

In (2.57) and (2.58) we averaged the phase of the driving field over one field cycleT ,
as it is also done in typical experiments, where only the interaction timet = t2−t1 is
well defined, while the timest1 andt2 when the atom enters or leaves the interaction
zone are averaged overT .(5) Furthermore, the sum in (2.57) and (2.58) runs over all
Fourier components of all atom-field eigenstates|ψεj 〉 in one Floquet zone of width
ω, in both subspaces with parityΠ = +1 andΠ = −1. The projection of the atomic
initial state on all atom-field eigenstates in (2.58) is equivalent to assuming a flat
pulse of durationt in the (laboratory) experiment. Of course, this so called ’sudden
approximation’ [136] is not completely correct if the microwave field is switched on
’slowly’. For a sufficiently long switching time of the field, it might even be that only
one Floquet state is populated. In this case, the single Floquet state approximation
(SFSA) [137, 138] can be employed, in which the ionization probability writes

P SFSA
ion (t) = 1− 〈ψkεj ,Θ|R(Θ)|n0, `0,m0〉2 exp(−Γjt). (2.59)

Here,|ψkεj ,Θ〉 denotes the Floquet state which is adiabatically connected to the field-
free atomic initial state. To apply the SFSA, it is crucial that the evolution of the
initial atomic state follows the change of the external field slowly enough that only
one state is populated, what is usually not the case in typical microwave experi-
ments. Therefore, we will in general employ the sudden approximation. Only in
section 4.2.1 will we draw a comparison between results of the sudden approxima-
tion and of the SFSA.

2.5.2 Shannon width

As we will see, the initial atomic state gets strongly distorted under periodic driving,
and spreads over many atom-field eigenstates. To quantify the number of atom-field
eigenstates contributing to the representation of the atomic initial state in the external
field, we follow [16, 139] and borrow a concept of information theory. In [16, 139]
the Shannon width [140] was used as a measure for the localization properties of

(5)Only in a very recent experiment of the Virginia group,t1 and t2 were well-defined. In this
experiment, a Rydberg wave packet was excited at a well-defined phase of the microwave field, and
the dependence of the ionization yield of the wave packet on the relative phase between the motion of
the wave packet and the oscillations of the field was investigated [135].
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an atomic initial state. The Shannon entropyS(n0, F, ω) and the Shannon width
W (n0, F, ω) [140] are defined as:

S(n0, F, ω) = −
∑
j

wj lnwj , with wj =
∑
k

〈ψkεj ,Θ|R(Θ)|n0, `0,m0〉2, (2.60)

W (n0, F, ω) = expS(n0, F, ω). (2.61)

The Shannon width expresses the average number of atom-field eigenstates needed
to represent the initial state|n0, `0,m0〉 in the Floquet basis at a given field am-
plitudeF and frequencyω. Obviously,W (n0, F, ω) = 1 if and only if the initial
atomic state is represented by a single atom-field eigenstate.

However, since all eigenstates of microwave driven atoms are decaying states,
the above definition ofW (n0, F, ω) is only valid at timet = 0, and the exponential
functionsexp(−Γjt) of (2.58) do not appear in (2.61). With the description of
the atom-field eigenstates as decaying states, investigations of the change of the
Shannon width with the interaction time require a modified definition, taking into
account the finite ionization rates of the atom-field eigenstates [141, 142]. However,
for our present purposes, the definition (2.61) will be sufficient.





Chapter 3

Numerical treatment of the system

In the preceding chapter we provided the theoretical description of microwave dri-
ven alkali Rydberg states, and obtained the generalized eigenvalue problem (2.47).
As the quantum numbersk ∈ Z, n ∈ N, and` = 0, . . . , n − 1 in (2.50) and (2.52)
have an infinite domain, the matricesA andB are in principle infinite matrices. Ob-
viously, the range of these quantum numbers has to be truncated in practice. The
cutoff values are specified by the condition that the results have to be converged. The
way we determine these cutoff values will be explained in section 3.3.1. However,
though the truncated matrices are finite, they are still rather huge. For the numerical
treatment – i.e. the diagonalization of the generalized eigenvalue problem, as it will
be described in section 3.1 – we thus need a large main memory of the computing
system, which is only available on parallel architectures. We therefore need, in addi-
tion, an efficient, intelligent parallel implementation of the diagonalization routine,
which is explained in section 3.2.

3.1 The Lanczos algorithm

To compute the ionization probability (2.58), we need the eigenvalues and eigenvec-
tors of the generalized eigenvalue problem (2.47). While – employing suitably cho-
sen cutoff values of the quantum numbers – the dimension of the problem becomes
rather large (up to106), we do not need to know all eigenvalues (and eigenvectors),
but only those within a single Floquet zone of widthω around an arbitrary energy
E0. This means that typically less than104 eigenvalues (of all the106 eigenvalues)
are required. A suitable routine to find only a ’few’ eigenvalues (with the corre-
sponding eigenvectors) of a huge matrix is the Lanczos routine [143, 144], which
enables us to find the largest eigenvalues of a given eigenvalue problem. To apply
the Lanczos algorithm to our generalized eigenvalue problem (2.47), we shiftA by
E0, i.e., by the energy that defines the position of the chosen Floquet zone:

A = A− E0B (3.1)
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and are looking now for the smallest eigenvalues of the shifted generalized eigen-
value problem

A · x = λB · x. (3.2)

Multiplying (3.2) byA−1 we obtain the eigenvalue problem:

A−1 · B · x = µ · x. (3.3)

The largest eigenvaluesµi in the eigenvalue problem (3.3) are the inverse of the
smallest eigenvaluesλi, i.e. the inverse of the eigenvalues in the Floquet zone around
E0. In this way we transformed the original generalized eigenvalue problem to
equation (3.3), which can be solved with the help of the Lanczos routine.

The idea of the Lanczos algorithm is to construct iteratively anlancz-dimensional
subspace spanned bys1, (A−1 · B) · s1, (A−1 · B)2 · s1, (A−1 · B)3 · s1, . . . , (A−1 ·
B)nlancz−1 · s1 (with an arbitrary, normalized starting vectors1), in which the best
approximations of the eigenvaluesµi are found. The construction of this subspace
is achieved by building an orthonormalized basiss1, s2, . . . , snlancz

(in our case the
Lanczos vectorssi are orthonormalized with respect toB, since the Sturmian func-
tions are not orthogonal with respect to the usual scalar product) of the subspace,
where in general a good approximation is reached already fornlancz << dimA.
The matrix of the basis vectorsS = s1, s2, . . . , snlancz

transformsA−1 · B into a
tridiagonal, complex symmetric matrix:

S−1 · (A−1 · B) · S =


α1 β1 0 . . . 0
β1 α2 β2 0 . . .

0 β2 α3 β3
...

0
... ... ... ...

0 . . . 0 βnlancz−1 αnlancz

. (3.4)

The tridiagonal matrix obtained in this way can then be diagonalized with standard
diagonalization routines like the QR-decomposition [145].

To understand the construction of the Lanczos vectors, we have a look at thejth
column of the productA−1 · B · S:

A−1 · B · sj = αjsj + βj−1sj−1 + βjsj+1. (3.5)

Since the vectorssj are orthonormal, we obtain the following relations for the coef-
ficientsαj andβj :

αj = sTj · B ·A−1 · B · sj , (3.6)

βj =
√

tTj+1 · B · tj+1, with tj+1 = A−1 · B · sj − αjsj − βj−1sj−1, (3.7)

and the recurrence relation for the Lanczos vectors:

sj+1 =
1
βj

tj+1, (j ≥ 1). (3.8)
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The first Lanczos vectors1 is chosen as an arbitrary unit vector, andβ0 = α0 = 0.
With these settings and (3.8), it is clear (by induction) that thesj are orthogonal.

The implementation of the sketched algorithm, and how, in particular, this is ac-
complished on a parallel computing architecture, will be described in section 3.2.3,
but before we will mention some basic ideas of parallel computing.

3.2 Numerical implementation

3.2.1 Some basic ideas of parallel computing

Many problems in physics can be solved faster on a parallel instead of a scalar or
vector computer, or (as it is the case with our problem) they can only be solved with
the help of a parallel computer, due to the bare size of the problem, for instance. The
idea of parallel computing is that all processing elements work on different parts of
the problem simultaneously. Thus, on the one hand it is in principle possible to
speed-up the numerical routine by a factor up to the number of processing elements
working in parallel, if the work is equally distributed (’balanced’) and if the whole
routine can be done in parallel. On the other hand, the main memory is multiplied
by the number of processing elements involved in the problem (given that the mem-
ory of the machine is distributed over the processing elements, see below). In our
specific case, the concept is to split the huge matricesA andB into smaller matrices,
which are treated locally on each processing element. Therefore it is important to
know how the main memory can be accessed in the computer.

In principle, there are two concepts handling the memory: Shared memory ma-
chines, where each processing element has access to the whole memory, and dis-
tributed memory machines, where the main memory is physically distributed over
the different processing elements. If large memory is needed, so far most machines
(e.g., the CRAY T3E [146]) are organized in the latter way, and the parallel machine
consists of many processing elements having access to not too large memory each.
Recently, another concept of the organization of the memory emerged, which is a
mixture of the two aforementioned ones, the hybrid architecture, where subgroups
of processing elements (e.g. eight in the case of the HITACHI SR8000-F1 [147])
share the same memory, to form a shared memory node. Several of these nodes are
organized as a distributed memory machine.

To design an efficient parallel program, one not only has to take into account
an efficient sequential computation on the single processing elements, but also the
interaction of the processing elements for the exchange of data. The required com-
munication between the processing elements needed for this can be achieved by
the use of special message passing software, like MPI [148, 149] (Message Pass-
ing Interface), or PVM (Parallel Virtual Machine). In addition, there are special
’data-parallel’ programming languages like HPF (High Performance Fortran), mes-
sage passing libraries for shared memory architectures like OpenMP (Open Mes-
sage Passing), or vendor specific libraries like the CRAY specific SHMEM (Shared
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Memory access library, which simulates the direct access of a processing element
to the memory of the other processing elements, although the machine physically
has a distributed memory). Apart from OpenMP, which requires a shared memory
architecture, and the CRAY specific SHMEM, the mentioned examples are claimed
to be portable between different machines and there exist implementations on most
of the modern parallel computing facilities, but MPI appears to become the stan-
dard [150, 151] and is widely used. Thus, to optimize the portability, this was also
our choice for the implementation of our code.

In MPI there are several modes of communication between the processing ele-
ments of a given computing architecture:

• point-to-point communication (a single processing element sends or receives
a message, which is received or was sent by another processing element),

• collective communication (a single processing element sends or receives a
message to or from all the other processing elements, each processing element
broadcasts data to all other elements, or the processing elements have to be
synchronized at a certain point in the code),

• global reduction operations (evaluation of the maximum, the sum, logical op-
erations,. . . , of a data set distributed over all processing elements).

With the help of calls to this communication interface it is thus in principle
possible to transform an existing sequential code ’with a minimum effort’ into a
parallel code (where ’minimum’ does not mean that the effort is really small, but that
the structure of the parallel code can be similar to that of the sequential code), which
typically will be executed by the various processing elements in parallel. One only
has to know at which places in the code communication (i.e. exchange of relevant
information) with individual or all involved processing elements is necessary, and
how this communication is accomplished to achieve an efficient code producing
correct results. In particular, appropriate timing of the communication is crucial for
optimal synchronization.

An efficient code should allow a considerable speedup if the problem is solved
onp > 1 processing elements, instead of execution on a single processing element.
The speedupS(p) is defined as [152, 153]

S(p) =
T (1)
T (p)

, (3.9)

whereT (p) is the execution time onp processing elements. With (3.9), the effi-
ciencyE(p) of a code running onp processing elements is defined as

E(p) =
S(p)
p

=
T (1)
pT (p)

. (3.10)

High efficiencyE(p) → 1 is reached if the time required for communication in the
parallel code does not produce too much overhead, i.e. if the communication time is
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short compared to the time spent for purely local operations, and if the non-parallel
part of the algorithm (that has to be done in a sequential fashion) can be minimized.
Therefore, it is in general worthwhile to restructure the sequential code when imple-
menting it on a parallel architecture, with particular care for the synchronization of
the processing elements. This is often achieved by dividing the work (i.e. the loops)
into smaller tasks to be distributed over the different processing elements, to end up
with a balanced code. However, it is in general impossible to achieve the optimal
efficiencyE(p) = 1, since in generic cases there is always a portionf of the prob-
lem, which has to be solved sequentially. An estimate for the possible speedup that
can be reached is given by the well-known Amdahl’s law [154, 153, 152]

SA(p) =
p

pf + (1− f)
. (3.11)

Thus, the optimal speedup is limited by1/f , no matter how many processing ele-
ments are employed. Note that the estimate (3.11) characterizes only a simplified
situation. Also other estimates [155, 152] introduce an upper bound ofS(p), due to
the sequential part of the code, and thereforeE(p) = 1 cannot be reached.(1)

Appropriate synchronization of the processing elements is also crucial to obtain
correct results. A typical problem occurring with a badly synchronized code is that
a processing element starts a computation without having received yet the value of
some variable necessary on input but calculated by some other processing element.
If no synchronization mechanism prevents the processing element from executing
the local computation before receipt of the relevant data, the result of this com-
putation will be uncontrolled, typically without generation of any error message.
Another relevant problem is the occurrence of ’deadlocks’. A deadlock describes
a situation when two or more processing elements are waiting for an event or a
communication call from one of the other processing elements, but this event never
occurs (because, e.g., the waiting processing element is the last one to finish a loop
in which the event should take place).

The first implementation of our code [156] was done on a CRAY T3E of the
Rechenzentrum of the Max-Planck Society [146], using mainly MPI. Since the
point-to-point communications in MPI are implemented as double-sided commu-
nication routines,(2) i.e. they consist of a message from the sending together with
a message from the receiving processing element, for some of the point-to-point

(1)Another notion to specify the efficiency of a parallel code is the scalability of the code. In contrast
to the estimate for the optimal speedup given by (3.11), it is assumed that on a larger parallel computer
typically a larger problem is solved than on a scalar computer, and thus the fractionf that has to
be solved sequentially is not constant. A code is called scalable if its performance is approximately
constant when the size of the problem (i.e. the number of elementary operations) and the number of
processing elements are increased by the same factor.

(2)So far we referred to MPI-1. The more recent, extended version MPI-2 provides also one-sided
communication calls, however, this extension is only rarely implemented up to now. In particular,
there was at least no stable implementation on the CRAY T3E nor on the HITACHI SR8000-F1, at
least at the time when the code was implemented on these machines.
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communications needed in our code we employed calls to (one-sided) communica-
tion routines from the CRAY specific SHMEM library. Since the SHMEM library
simulates the direct access of all processing elements to the memory of the other
processing elements (although the CRAY T3E is a distributed memory machine), it
allows a point-to-point communications employing only a single processing element
to send or receive the data. Therefore the SHMEM routines are typically faster than
the MPI routines where both processing elements, i.e., the sending and the receiving
processing element are involved in the communication process.

In a second step, to describe multi-photon ionization processes starting at low
principal quantum numbers of the atomic initial staten0 ' 28, . . . , 40, and demand-
ing the absorption of112, . . . , 50 photons to access the atomic continuum, a larger
amount of available main memory (approximately 100 GByte) was needed, and we
ported the code to the HITACHI SR8000-F1 of the Leibniz-Rechenzentrum (LRZ)
at Munich. For the migration from the CRAY T3E to the HITACHI SR8000-F1
the CRAY specific SHMEM calls had to be replaced by (two-sided) communication
calls to MPI. In addition, some of the point-to-point MPI communication routines
are implemented in a different way on the different architectures, what led occasion-
ally to deadlocks on the HITACHI SR8000-F1. For this purpose we replaced pairs
of separate calls to sending and receiving routines (MPISEND and MPIRECV)
by single calls (MPISENDRECV or MPISENDRECVREPLACE), which per-
form sending and receiving of the data in one call. (However, though only one
call to MPI is employed to transfer data from one processing element to another
in this way, both the sending and the receiving processing element are involved in
the communication process, and the communication routine is still a double-sided
communication routine).

Hitherto we do not use the new features of the HITACHI SR8000-F1, i.e. the
hybrid architecture which allows for the use of intra-node shared memory program-
ming and the use of MPI only between the nodes, but we use a massively paral-
lel code, which does not distinguish between inter- and intra-node communication.
This is justified, as we obtained a satisfactory performance of our code, even by
using the HITACHI SR8000-F1 in a massively parallel way, if the physical prob-
lem has suitable dimensions (we will account for the efficiency of our code in sec-
tion 3.2.4). A refinement of the code for the hybrid architecture will probably pro-
vide a further speed up of the program, and will be completed soon.

3.2.2 Storage of the matrices

Before presenting the structure of our code, we briefly sketch the structure of the
matricesA andB and the way they are stored.

As we have seen in section 2.4, the external field couples only Floquet-states
with the quantum numbers∆` = ±1 and∆k = ±1. With this selection rules it is
possible to build upA as a banded, complex matrix with block structure. Each of
the blocks in the matrix consists of matrix elements defined by integrals between the
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states with angular momentum̀and photon numberk, according to the aforemen-
tioned rules. For microwave driven atomic hydrogen, or for the blocks containing the
large angular momentum alkali states (i.e. when the integrals are evaluated between
states with vanishing quantum defect) the integrals are evaluated for allr ∈ R+,
and there are also restrictive selection rules for the principal quantum number (i.e.
∆n = 0,±1,±2). Therefore, these block are essentially empty. However, in the
general case of alkali states with non-vanishing angular momentumδ`, there are no
more selection rules inn. Yet, in both cases – for alkali or hydrogenic states – the
banded matrixA (with dimensionntot, and bandwidthnlarg) is symmetric.

Consequently, all the relevant information is contained in the lower triangular
band, which we store as an array of sizenlarg × ntot, and distribute it overnprocs

processing elements. This number depends on the effective size ofA (which is given
in GByte bynlarg · ntot · 16/230, since individual elements are complex numbers
represented in double precision arithmetics), and on the accessible memoryM per
processing element (for the HITACHI SR8000-F1M is approximately given by
6.5 GByte/PE with PE = 1, . . . , 8, the number of processing elements employed
per node):

nprocs =
ntot · nlarg

M
. (3.12)

For the sake of efficiency and portability of the code, we perform most of the calcu-
lations locally on each processing element, using BLAS-2 and BLAS-3 (Basic Lin-
ear Algebra Subprograms [157, 158, 152]), for matrix-vector (level 2) and matrix-
matrix (level 3) operations. These subroutines are standardized and optimized for
most machines. Therefore, the matrix is divided innsizg × nsizg blocks that are
stored in the memory of the processing elements, and on which the BLAS opera-
tions can be performed. The way we partition the matrix is sketched in figure 3.1.
The connection between the sizensizg of the blocks and the bandwidthnlarg of the
matrix is given by

nlarg = nr · nprocs · nsizg. (3.13)

Herenr is the number ofnsizg × nsizg block lines of thenlarg × nlarg blocks, that
are stored in the memory of each processing element, where in practice the choice
nr = 2 leads to the best performance.(3) Thus, until anlarg × nlarg block of A is
completed in a certain matrix calculation, each processing element has to process
nr lines, each of them containingnband of thensizg × nsizg blocks, wherenband is
given by

nband = nr · nprocs. (3.14)

(3)If ntot gets very large, the block-sizensizg gets too small, and hence the BLAS performance –
which shows an optimal performance for a specific block-size depending on the available cache (high
speed buffers between the processing element and the main memory that capture those portions of the
memory currently in use [152]) of the specific machine – decreases. In this case the choicenr = 1
may become more appropriate.
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Figure 3.1: Partitioning of the matrices:ntot is the total dimension,nlarg its band-
width;nband denotes the number ofnsizg×nsizg blocks in a line, andnr the number
of such lines stored in the memory of each of thenprocs processing elements.

All processing elements will be working on one of these lines simultaneously. There-
fore, working through the total matrix requires to processncycle lines, with

ncycle =
ntot

nsizg · nprocs
. (3.15)

In the memory of each processing element, the matrices are stored asnband×ncycle

arrays, whose entries are given by thensizg × nsizg matrices, which are exactly the
same sub-matrices that appear also in the (physical) matrixA.

Due to the selection rules∆k = ∆` = 0 for the matrixB, the only non-
vanishing matrix elements ofB are the diagonal blocks. Hence, the bandwidthnlarg

of B is much smaller as compared toA. However, the organization and storage of
B is done in the same way as explained above, with a smallernlarg and a smaller
nband.

In a similar way each vector that is needed (e.g. eigenvectors, or the Lanczos
vectors) is distributed over all processing elements: As a vector can be seen as the
equivalent of a banded matrix with the bandwidth 1, the storage of a vector reduces
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to the storage of a two-dimensional array of sizensizg × ncycle, in the memory of
each processing element.

3.2.3 Implementation of the Lanczos algorithm

After filling the matricesA andB, and storing them in the memory of thenprocs

processing elements as described above, the generalized eigenvalue problem has to
be diagonalized. For that purpose we use a parallel implementation of the Lanczos
algorithm. In section 3.1 we have seen that the Lanczos algorithm is defined by
the equations (3.6), (3.7), and the recurrence relation for the Lanczos vectors (3.8).
Thus an implementation of the algorithm requires the following operations:

1. several scalar productsxT · y,

2. a matrix-vector productB · x,

3. and a routine that allows to computeA−1 · B · x.

Having provided routines to perform these three operations, it is possible to imple-
ment the algorithm. However, in a parallel routine, the three operations are less
’trivial’ than in a sequential routine. Before we sketch the implementation of the
Lanczos routine itself, we therefore explain the parallel implementation of these
routines.

3.2.3.1 xT · y

Using BLAS, each of thenprocs processing elements performs a scalar product lo-
cally, on the part of the vectorsx andy stored on the processing element’s mem-
ory. Afterwards, the local results of all processing elements are added up by means
of a MPI global reduction operation (MPIREDUCE). The result is broadcasted
(MPI BCAST) to all processing elements.

3.2.3.2 B · x

The product ofB with a vectorx

...
Bi−2,i−2

Bi−1,i−2 Bi−1,i−1

Bi ,i−2 Bi ,i−1 Bi ,i
Bi+1,i−2 Bi+1,i−1 Bi+1,i Bi+1,i+1

...


·



...
xi−2

xi−1

xi
xi+1

...


(3.16)

is reduced to multiplications of thensizg × nsizg matrices (labeled byBi,j in (3.16))
and thensizg vectors (labeled byxi in (3.16)) that are stored locally on each pro-
cessing element. These matrix-vector multiplications are performed with the help
of BLAS.
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The routine starts with the products along the diagonal, i.e. each processing
element computes a productBi,i · xi.

Afterwards the sub-diagonal is processed: For this purpose, each processing
element sends its part of the input vector (the part used for the product along the
diagonal) to the next processing element (we define the order of the processing ele-
ments as ascending along the block diagonal) and receives a part of the input vector
from the previous processing element. With this new part of the input vector the
processing element computes the product with the sub-diagonal block, i.e. each
processing element performs the calculationBi,i−1 · xi−1. The result is added to the
output vector at positioni, and the part of the vector used for the calculation (i.e.
xi−1) is sent to the subsequent processing element.

The previous step is repeated (with the matrixBi,i−2), in this way the processing
elements work through all the blocks in one line ofB, and so on, until the bandwidth
of the matrix is reached. As requested, the entry in the output vector at positioni is
now

Bi,i · xi + Bi,i−1 · xi−1 + Bi,i−2 · xi−2 + . . . . (3.17)

Having finished one block line, the processing element proceeds with the next line
which is stored in the processing element’s memory, i.e. with the linei + nprocs in
B, and starts again with the product of the diagonal block, nowBi+nprocs,i+nprocs ·
xi+nprocs .

3.2.3.3 A−1 · B · x

Before computing the productA−1 ·B ·x we note that the matrixA−1 is never used,
but only the productA−1 · B ·x. Consequently, we do not invert the matrixA, since
a matrix inversion is hard to parallelize, but solve the system

A · x = B · y (3.18)

for x = A−1 · B · y. The solution of (3.18) is obtained in two steps: First,A is
decomposed in a product of a lower triangular matrixL, a diagonal matrixD, and
an upper triangular matrixLT (with unity as the diagonal elements ofL andLT ):

A = L ·D · LT . (3.19)

This allows to solve equation (3.18) by backward substitution [145].
The decomposition ofA is achieved with the help of a parallel blockLDLT-

decomposition, which is performed similarly to a conventional, sequentialLDLT-
decomposition [145]. To save memory, the decomposition is done ’in place’, and the
matrix A – which is not used anymore afterwards – is overwritten by the matrixL
andD, while the matrix elements of the latter are written on the diagonal elements
of L (which are unity). In the following we sketch the routine we are using. To
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illustrate our notation, we rewrite (3.19) in matrix form:
A11

A21 A22

A31 A32 A33
...

...
...

...

 = (3.20)


L11

L21 L22

L31 L32 L33
...

...
...

...

 ·

D11

D22

D33

...

 ·

LT11 LT21 LT31 . . .

LT22 LT32 . . .
LT33 . . .

...

 .

The entries of the matrices in (3.20) arensizg×nsizg blocks as they are stored in the
memory of the processing elements, where each processing element has access to
ncycle lines of these blocks, as explained in section 3.2.2.

Alike a sequentialLDLT-decomposition of a complex symmetric matrix, the
diagonal blockA11 is decomposed at first, according to

A11 = L11 ·D1 · LT11. (3.21)

The result (i.e., the triangular matrixL11 with the elements of the diagonal matrix
D1 on the diagonal) is stored in place of the blockA11, and also sent to the other
processing elements.

Afterwards, the succeeding processing elements decompose the rest of the blocks
in the first row, by solving the equation

Aj1 = Lj1 · (D1 · LT11). (3.22)

After this calculation,Lj1 is stored in place ofAj1, and sent to the other processing
elements.

With the received block, the processing elements update their blocks ofA in line
j: Aji → Aji − Lj1 ·D1 · LTi1, (i ≤ j) and the second row will be processed: The
diagonal element – belonging to the second processing element – is decomposed as

A22 = L22 ·D2 · LT22, (3.23)

whereA22 is the new, updated block (using the old block the equation that has to be
solved readsAold

22 = L21 ·D1 ·LT21 +L22 ·D2 ·LT22). Again,L22 andD2 are stored
in place of the old diagonal block, and sent to the other processing elements. With
this block, the other processing elements can decompose the rest of the second row,
by solving the equation

Aj2 = Lj2 · (D2 · LT22). (3.24)

Again,Lj2 is stored in place ofAj2 and sent to the other processing elements, that
update their blocks in a line by replacingAji → Aji − Lj2 ·D2 · LTi2.
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Thereafter the third row is processed, the diagonal block (which belongs now to
the third processing element) has to be decomposed as

A33 = L33 ·D3 · LT33. (3.25)

AfterL33 andD3 are stored and sent to the other processing elements, the processing
elements proceed in decomposing the third row in an analogous way as already
for the first two rows. The procedure continues until theLDLT decomposition is
completed.

In this decomposition, all operations on single blocks (decomposingAji) are
done locally on a single processing element. The decomposition of the diagonal
blocks (Aii = LiiDiL

T
ii) is performed with a usualLDLT- decomposition, as de-

scribed in [145], and the solution of the non-diagonal matrix equations (Aji =
Lji ·Di · LTii) is achieved by a call to BLAS-3.

After the decomposition (3.19), the solution of (3.18) requires two steps: In the
first step we solve the equation

L · a = b, (3.26)

with: a = D · LT · x, and b = B · y,

by backward substitution. Therefore, we rewrite (3.26):

i∑
j=jmin

Lijaj = bi, (3.27)

whereLij arensizg × nsizg blocks, andaj , bi are vectors of lengthnsizg. As the
original matrixA was a banded matrix, also the triangular matrixL is a banded
matrix, with the same bandwidth. Therefore, the sum in (3.27) starts fromjmin

instead of one. Solving (3.27) is done in the spirit of a usual (sequential, not blocked)
backward substitution [145], and we solve the equation

ai = L−1
ii

bi − i−1∑
j=jmin

Lijaj

 . (3.28)

The procedure is similar to theLDLT-decomposition, i.e., at first the diagonal prob-
lem y1 = L−1

11 b1 is solved by the first processing element, andy1 is sent to the
next processing elements. These update their right hand sides of (3.27), according
to bi → bi − Lijaj (for j < i). Afterwards the second row is processed, starting
with the diagonal blocka2 = L−1

22 b2 (of course this is done with the updated block
b2), and the result is sent to the next processing elements. This procedure is con-
tinued until equation (3.26) is solved. As in theLDLT-decomposition explained
above, all operations on the blocks (solution of the diagonal problems, or updating
the right-hand sides) are performed with calls to BLAS.
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After solution of (3.26) equation (3.18) can be solved. This is achieved by an-
other backward substitution, to solve the system

LT · x = D−1 · a, (3.29)

wherea is the solution of the previous backward substitution, andD is the diagonal
matrix, whose entries are stored on the diagonal of the (decomposed) matrixA. The
solution of (3.29) is obtained in the same way as solving (3.26).

3.2.3.4 Lanczos algorithm

With 3.2.3.1, 3.2.3.2, and 3.2.3.3, we have provided parallel implementations of
the routines needed in the Lanczos algorithm. Here we briefly sketch the parallel
version of the Lanczos routine:

Before starting the actual Lanczos iteration, we define the first Lanczos vector
(which is in principle arbitrary) as̃s1 = (1, 1, . . . , 1)T , and normalize it with respect
to the correct scalar product:s1 = s̃1/(s̃T1 ·B · s̃1). In addition, we setα0 = β0 = 0.
Subsequently, the Lanczos steps can be performed:

1. EvaluateA−1 · B · sj with the help of theLDLT-decomposition and of the
subsequent backward substitution.

2. Calculateαj = sTj ·A−1 · B · sj , according to (3.6).

3. Calculate the vectortj+1 = A−1 · B · sj − αjsj − βj−1sj−1, according to
(3.7).

4. Calculateβj =
√

tTj+1 · B · tj+1, according to (3.7).

5. According to (3.8), the next Lanczos-vector is given bysj+1 = (1/βj)tj+1.
The action ofB onsj+1 is calculated, and the next Lanczos step can be started
(end of Lanczos step).

nlancz Lanczos steps yield a tridiagonal matrix with diagonalα1, α2, . . . , αnlancz

and sub-diagonal (respectively supra-diagonal)β1, β2, . . . , βnlancz−1. This matrix
is diagonalized using a QR algorithm [145]. The eigenvectors of the generalized
eigenvalue problem are obtained as a linear combination of the Lanczos vectors,
with the coefficients of the linear combination given by the coefficients of the matrix
that diagonalizes the tridiagonal matrix.

Using exact arithmetics, this would be the complete Lanczos algorithm. How-
ever, in a numerical implementation, the finite precision of the operations leads to
rounding errors. The main effect of these rounding errors lies in the loss of the or-
thogonality of the Lanczos vectors [159]. Thus, we explicitly reorthogonalize the
vectors after each Lanczos step (defined above):

s′j = sj −
j−1∑
i=1

γisi, with γi = si · B · sj . (3.30)
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In this way the new vectorss′j are orthogonal by construction, even with finite pre-
cision of the operations.

Finally, since the number of Lanczos steps is much smaller than the dimension
of the matrices, obviously not all eigenvalues are converged. Performing onlynlancz

Lanczos steps is equivalent to settingβnlancz
= 0, therefore it cannot be assumed

that eigenvectors with a finite overlap with the last (then-th) Lanczos vector are
converged. Thus the convergence of eigenvectors and associated eigenvectors is
tested with the requirement that the overlap of the converged eigenvectors with the
last row ofS, i.e. withsnlancz

, should vanish.

3.2.4 Performance of the parallel code

Of course, the first goal of a computer program for the numerical simulation of a
physical process is the stable production of reliable, converged results. However,
if the size of the problem increases, and the use of so called ’supercomputers’ (a
fancy term for the ’fastest and most powerful general-purpose scientific computing
systems available at any given time’ [152]) is needed, an almost equally important
requirement is to use the computing facilities in a most efficient way.

The speed of a computer is characterized, e.g., by the peak performance of the
CPU (central processing unit), which is measured by the number of floating point
operations carried out per second (FLOPS=10−6 MFLOPS=10−9 GFLOPS). Thus,
the performance of a parallel code can be measured in the number of MFLOPS
achieved per processing element (’single processing element performance’). In ad-
dition, a well performing code should also be scalable, as already mentioned before.
In our context, the scalability of the code requires that the solution of a larger prob-
lem – which requires a bigger number of processing elements due to the larger size
of the matrices – should achieve a similar single processing element performance as
a smaller problem does. As already mentioned above, for a good single processing
element performance of our code we made use of BLAS where it was possible.(4)

Furthermore, the code is written such that the communication overhead is reduced.
To achieve an optimal single processing element performance, the block-size

nsizg can be optimized for the BLAS routines. The optimal choice strongly depends
on the specific computer that is employed, in particular on the available cache. While
we experienced a quite good performance fornsizg ' 20 on the CRAY T3E, we ob-
served a better performance for larger block-size on the HITACHI SR8000-F1. For
realistic problem sizes, however, we only tested the rangensizg = 28, . . . , 64, yet
we expect an even better performance for larger values ofnsizg. However, follow-
ing (3.12) and (3.13), the block-sizensizg is determined by the total dimensionntot

of the matrices, and the accessible memory per processing elementM according to

nsizg =
M

nr · ntot
. (3.31)

(4)With much effort eventually a better performance than those of BLAS can be achieved, especially,
if basic vector or vector-matrix operations (i.e. BLAS-1 or BLAS-2) are used. However, in general
the use of BLAS is preferable, especially, if matrix-matrix operations (BLAS3) are used [160].
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Thus, for a large problem size, the block-size decreases and also the single pro-
cessing element performance decreases. To overcome this problem, and achieve a
satisfactory performance even for a largentot & 500000, we did (on the HITACHI
SR8000-F1) not employ eight processing elements per node but a smaller number,
and could thus enlargeM .

Table 14 summarizes the performance of our code for various problem sizes (un-
der production conditions):

ntot 1010016669264 617484 471912 279072 279072 279072
nlarg 6306 6832 6622 7936 4862 4862 4862
nlancz 210 200 200 210 350 230 100
nsizg 28 33 35 42 64 64 64

#nodes 20 15 15 12 5 5 5
nprocs 114 104 104 96 40 40 40

nprocs/node 5.7 6.9 6.9 8 8 8 8
MFLOPS/p.e. 290 305 334 409 408 442 495
GFLOPS tot. 33 32 35 39 16 18 20

rel. perf. 14 18 19 27 27 30 33

Table 14: Performance of the code for variable problem size. The size of the prob-
lem is specified by the first two lines. The first four and the sixth column display
examples with a similar number of Lanczos iterations (nlancz which is given in the
third line). The matrices used for the examples shown in the fifth, the sixth, and the
seventh column are the same, only the number of Lanczos iterations varies in the
three examples. The fifth and the sixth line show the number of employed nodes
and the number of employed processing elements, respectively. Forntot > 500000,
we did not employ all processing elements of a node (the average number of pro-
cessing elements per node is shown in line seven), so thatnsizg (fourth line) does
not get too small (to maintain good BLAS performance). The eighth line shows the
single processing element (p.e.) performance in MFLOPS, and the ninth line the
total performance of the code in GFLOPS, the ratio of this value and of the possible
peak performance (peak performance per node times the number of nodes that are
employed, given in line six) is shown in the tenth line.

For problems withntot < 500000, where the block-sizensizg is consequently rel-
atively large, we achieve a quite good single processing element performance, to-
gether with a good effective performance of the code (the expected performance
of the HITACHI SR8000-F1 measured with the LRZ-benchmarks is approximately
33% of the peak performance compared to 12% in the most unfavorable case [147]).
In those cases we also achieve a good scalability, as can be seen from the compari-
son of lines six and eight of table 14 (for the examples shown in columns four and
six). As mentioned above, for largerntot we employed less than eight processing
elements per node. While this increases the single processing element performance
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(using a smallernsizg would decrease the single processing element performance in
the examples shown in the first four columns even more), a too small number of
processing elements per node can reduce the efficiency of the code (since in this
case some of the processing elements are ’idle’, i.e. they don’t do anything during
the run of the code and cannot be used by other users of the computer). To specify
the efficiency of our code, we display the ’relative performance’ given by the ratio
of the possible peak performance to the effective performance of the code in the last
line of table 14.

For largentot we expect an improvement of the relative performance by using
the special features of the HITACHI SR8000-F1, i.e., the hybrid architecture. In
this case,nsizg can be increased (asM in (3.31) is given by6.5 GByte instead of
6.5 GByte divided by the number of employed processing elements per node), and
hence the efficiency of the BLAS will be also increased. The necessary modification
of our code will be accomplished in the near future.

Finally, from the comparison of the examples shown in the fifth, sixth, and sev-
enth columns, we see that an increase of the number of Lanczos vectors decreases
the efficiency of the code. Thus, it is preferable to employ only a few hundred Lanc-
zos iterations and perform several diagonalizations, instead of employing a very
large number (several thousand) of Lanczos iterations in one single diagonalization.

3.3 Application

Our theoretical/numerical apparatus outlined above – the theoretically exact descrip-
tion of microwave driven Rydberg states, together with its numerical implementa-
tion – can now be applied to a real physical example. Before the matrices are filled
according to (2.50) and (2.52), and before the generalized eigenvalue problem is
solved, we have to specify the shiftE0 as defined in (3.1). We defineE0 by the
region of the quasi-energy spectrum we are interested in, which is usually chosen
close to the field free limit of the atomic initial states that are expected to show a
noticeable ionization probability at the given field parameters (amplitude and fre-
quency).

Typically the states in one Floquet zone of a given generalized parityΠ are
not obtained with a single shiftE0 and a large number of Lanczos steps, but it is
preferable to divide the Floquet zone in10−30 pieces, and to employ only a smaller
number (approximately150 − 400) of Lanczos steps per shift. As we have seen in
section 3.2.4 such a procedure leads to a more efficient code than using several
thousand Lanczos steps. Secondly, the spectrum of driven Rydberg states consists
of resonances embedded in the continuum, but to represent the initial atomic states
we are interested in, we only need the resonance states [34]. Yet, with an increase
of the number of Lanczos steps the number of continuum states we find increases
faster than the number of resonances, since there are many continuum states next
to each resonance, and the Lanczos algorithm starts to find those eigenvalues which
are closest to a given shift. Therefore, we choose a sufficiently dense grid of shifts
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Figure 3.2: Plot of the complex eigenvaluesEj − iΓj/2 of the complex rotated
Hamiltonian of microwave driven lithium atoms exposed to a field withF =
2.3 · 10−9 a.u. andω = 36 · 2π GHz = 5.47 · 10−6 a.u.. The continua are rotated
in the lower complex plane, ideally by an angle−2Θ starting from the branching
points−0.00014454 a.u., and − 0.00013907 a.u. (defined by the effective thresh-
old −1/(2(nsupα)), with α = 70 andnsup = 155, shifted by−17ω respectively
−18ω). This is approximately true only close to the real energy axis, and only near
the branching point, as displayed in the inset (the branching point is situated approx-
imately in the middle of the inset, the energy range displayed in the inset is approx-
imatelyω/10). Although there exist plenty of continuum states that are not fully
converged, the relevant states that contribute to the ionization probability (through a
non-vanishing overlap) of the initial state are converged, and exhibit ionization rates
of the order10−9, . . . , 10−13. In the plot they appear as black dots close to the (real)
energy axis.

in the Floquet zone we are interested in. This provides for a better performance of
our code, and a smaller number of continuum states is obtained.

A typical example for the spectrum generated this way is shown in figure 3.2,
where we display the complex quasi-energies of lithium atoms exposed to a mi-
crowave field of frequencyω/2π = 36 GHz, and field amplitudeF = 2.3·10−9 a.u.
We display two Floquet zones of widthω, in the subspace with parityΠ = +1
centered around the field-free state|n0 = 59, `0 = m0 = 0〉. As explained in sec-
tion 2.1.3, theoretically the continuum states are rotated by2Θ (whereΘ = 0.06
in the calculations leading to figure 3.2) around the branching points. The latter are
given by the effective threshold (2.46), shifted by integer multiples ofω. In the case
of figure 3.2, this corresponds to the branching points atEbp1 = −0.00013907 a.u.
andEbp2 = −0.00014454 a.u. The latter one is located approximately in the middle
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of the energy range shown in the inset of figure 3.2.
A deeper investigation of figure 3.2 indicates that there are many states with

ionization rates|Γ/2| > 5 · 10−8 a.u., most of which represent continuum states.
However, these states are not situated on parallel half lines starting atEbp1 orEbp2,
but they are lying on (not necessarily straight) lines distributed over the Floquet
zone. Only close to the real axis and close to the branching points are the contin-
uum states approximately localized along parallel lines, but even here we cannot
identify a single half line starting at the branching point, but rather several of them,
as displayed in the inset of figure 3.2. A similar behavior was already described in
studies on microwave driven atomic hydrogen in a moderately excited energy range
n0 ' 23 [33], where this apparent splitting of the continua was attributed to the
lifting of the continuum angular momentum degeneracy, induced by the finite basis
size employed in numerical calculations.(5) This discrepancy between mathemati-
cal theory [161, 102] and numerical experiment as far as the continuous part of the
spectrum is concerned leads us immediately to the question of the accuracy of the
numerical results, i.e. to the question which numerical eigenstates can be considered
as converged.

The theory of complex dilation only ensures that the Green’s function that in-
volves a sum over all states (resonances and continua), and therefore also the time
evolution operator (2.17) is converged [162]. Thus, we can, in principle, only be sure
that the ionization probability (2.58) corresponds to a (converged) physical quantity,
while single atom-field eigenstates do not represent any physically meaningful quan-
tity. However, as long as a resonance is relatively isolated, and their widthΓ is not
too large, such a state dominates the time evolution operator, andε = E − iΓ/2 can
be identified with the quasienergy and corresponding inverse life-time of a single
atom-field eigenstate. Single continuum eigenstates or resonances that are strongly
coupled to the continuum, on the other hand, cannot be represented by single com-
plex eigenvalues of the complex dilated Hamiltonian, but their representation re-
quires the sum over all eigenstates ofHΘ [163, 164, 64, 162].

In order to make reasonable statements about the convergence of the obtained
results it is crucial to do the relevant tests. In our situation, the following criteria
have to be fulfilled by converged results:

• −Γj < 0: The imaginary parts of the complex rotated quasi-energies have to
be negative.

• Re(wj) = Re〈n0, `0,m = 0|R(−Θ)|εΘ
j 〉2 ≥ 0: In the complex dilated

eigenvalue problemwj is actually the square and not the modulus square
of the projection〈n0, `0,m = 0|R(−Θ)|εΘ

j 〉. Therefore – in contrast to
the un-dilated case – a priori nothing ensures the positivity ofwj nor of
Re(wj). However, as the weight of a given initial state projected on some

(5)Note that in one-dimensional calculations on microwave driven atomic hydrogen, on the other
hand, also for the location of the continua good agreement with the mathematical theory was found
in [33].
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atom-field eigenstate has to be a real, positive number in a converged situa-
tion, Re(wj) ≥ 0 has to be fulfilled.

• Im〈n0, `0,m = 0|R(−Θ)|εΘ
j 〉2 = 0: The same argument (forwj being a

real, positive number) leads to the requirement that the imaginary parts of the
weights have to vanish.

• Pion(t = 0) =
∑

j〈n0, `0,m = 0|R(−Θ)|εΘ
j 〉2 = 1 + i · 0: As the atom-field

eigenstates form a complete basis set, the sum over the weights of all atom-
field eigenstates in a Floquet zone, summed over both generalized parities
must add up to one. This includes the requirement that we have chosen a
sufficiently dense grid of shiftsE0 and a sufficiently large number of Lanczos
iterations per diagonalization at each shift, in order to represent the atomic
initial state in the Floquet basis.

• (EΠ
j −iΓj/2)+ω = E−Π

j −iΓj/2: A typical problem of non-converged results
is that the periodicity of the Floquet spectrum does not even hold locally.
We experienced this criterion being stronger for the imaginary part of the
spectrum. While a too small basis set may still abide the periodicity of the
real partsEj of the quasi-energies, in such non-converged situations the width
Γj of the atom-field eigenstateεj = Ej − iΓj/2 (in the subspace with parity
Π) typically differs by more than one order of magnitude from the width of
the same state dressed by one photon, i.e., from the widthΓ̃j of the state
Ej + ω − iΓ̃j/2 (which now belongs to the subspace with parity−Π).

• Finally, the results, i.e., the complex quasi-energies and the weights of the
desired initial states, have to be stable under variation of the parameters which
determine, e.g., the basis size, the rotation angleΘ,etc.

3.3.1 The parameters

In this section we will elucidate the choice of the numerical parameters(6) we em-
ployed for our numerical experiment. We start with the basis size that is needed.
This is determined by the following parameters:

1. nsup: The number of Sturmian functions|S(α)
n,`,m〉 for the expansion of the

Floquet-states according to (2.45). As explained in section 2.4,nsup is re-
lated to the effective cutoffneff

max by neff
max = √nsup · α. In state-of-the-art

experiments the effective threshold varies betweenneff
max ' 90 [20], neff

max '
135 [42], andneff

max ' 280 [49]. To obtain converged results even for initial
statesn0 = 70 . . . , 80, we need an effective thresholdneff

max > 100, and in

(6)Here we want to emphasize that our approach includes no free, adjustable parameters. The only
parameters we have to choose are tested with the requirement of a stable, converged result, but not
employed as free parameters which typically have the job to ’scale’ ’numerical’ results to experimental
data.



56 Numerical treatment of the system

0 10000 20000 30000 40000 50000
interaction time t [2π/ω]

0
0.2
0.4
0.6
0.8

1

0.20

0.40

0.60

0.80

io
ni

za
tio

n 
pr

ob
ab

ili
ty

 P
io

n(
t) 0.2

0.4

0.6

0.8

nsup=150
nsup=155

(a)

(b)

(c)

Figure 3.3: Convergence test for variable basis sizensup. The effective cutoff is kept
constantneff

max ' 104, by setting eithernsup = 155 andα = 70 (dashed line), or
nsup = 150 andα = 72.3 (full line). Displayed is the ionization probability of three
different (lithium) initial states|n0 = 50, `0 = m0 = 0〉 (a), |n0 = 60, `0 = m0 =
0〉 (b), and|n0 = 66, `0 = m0 = 0〉 (c), exposed to a field withF = 3.1 · 10−9 a.u.
andω/2π = 36 GHz, as a function of the interaction time. The vertical dotted line
appearing close tot = 0 denotes the interaction timet = 327 · 2π/ω, a typical
experimental interaction time [20] we will employ in our numerical experiments.
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practice we employed an effective cutoffneff
max = 104.2. This was obtained

by fixing nsup = 155 andα = 70.0 for lithium atoms, andnsup = 190 and
α = 57.1 for rubidium atoms, for which a larger basis size is needed, due to
the existence of more non-vanishing quantum defects for the heavier elements
(see table 2.3.1). Only in the simulations on rubidium atoms with the param-
eters of [42], in which a smaller frequency (ω/2π = 8.87 GHz) is employed,
and hence the conditionω · n3

0 = 1 requires a largern0 ' 91 (in contrast to
ω · n3

0 = 1 for ω/2π = 36 GHz [20] andn0 = 57), we used a slightly larger
cutoff neff

max ' 110 (employingα = 69.1 andnsup = 175). In figure 3.3 we
show the effect of obtaining the sameneff

max with slightly different parameters
nsup andα. Here we display the ionization probability of three different ini-
tial states|n0 = 50, `0 = m0 = 0〉 (a), |n0 = 60, 0, `0 = m0 = 0〉 (b), and
|n0 = 66, `0 = m0 = 0〉 (c), as a function of the interaction time for the
choicensup = 150 andα = 72.3 (full line), and the combinationnsup = 155
andα = 70 (dashed line). The results are quite stable under this variation –
even for an interaction time oft = 50000 · 2π/ω the relative difference in the
ionization probability is smaller than 7% which is in the range of experimen-
tal accuracy [86]. For typical interaction times we will be interested in, i.e.
t ' 100, . . . , 1000 · 2π/ω, the relative error is even smaller than 3%.

2. The number of photonsk taken into account in the Fourier expansion (2.10)
of the Floquet states. The minimum and the maximum number of photons
play a different physical role - it is therefore useful to investigate them both
separately:

(a) kmin: The results are quite stable under variation of the minimum num-
ber of photons employed as a cutoff in the expansion (2.10). Here, the
choicekmin ' −10 is typically enough to obtain converged results, as
can be seen in figure 3.4, which reproduces a typical situation. Even in
the lower plot – which is a magnification of the region close to the real
axis in the upper plot – we can detect only a small difference between
the results obtained withkmin = −6 and withkmin < −6. The choice
of kmin is mainly governed by the states that we want to describe: for
instance, if the shiftE0 is set toE0 ' −0.0003470 a.u. (close to the
field-free energyE = −0.0003471 a.u. of the state|n0 = 38, `0 =
1,m0 = 0〉) – which is the case in figure 3.4 – a choicekmin ' −8
makes it impossible to characterize Floquet states emanating from field
free states with principal quantum numbern0 = 35, since the gap be-
tweenE0 and−1/(2·352) is larger than11·ω. In order to describe these
states correctly, the choicekmin ' −13, . . . ,−16 would be appropriate.

(b) kmax: The situation is completely different for the maximum cutoff
in the sum (2.10). The maximum number of photons which dress the
atomic states determines the coupling to the continuum. Obviously,
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Figure 3.4: Convergence test inkmin: Complex energiesεj of microwave driven
lithium atoms with angular momentum projectionm = 0, at field amplitude
F = 5.5 · 10−9 a.u., and frequencyω = 5.47 · 10−6 a.u. (i.e. ω/2π = 36 GHz),
in the energy range around the field-free state|n0 = 38, `0 = 1,m0 = 0〉. Differ-
ent symbols correspond to the different values ofkmin which is the minimum cutoff
value of the photon number employed in the sum (2.10). The lower plot is a magni-
fication of the upper, in the region close to the real axis, the symbols are chosen the
same as in the upper plot. Obviously, the results are quite stable under variation of
kmin. Converged results are achieved already forkmin ' −10. The other parameters
are chosen askmax = 74, `max = 73, Θ = 0.06.
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Figure 3.5: Convergence test inkmax: For the same situation as in figure 3.4, the
cutoff value for the photons that describe the coupling to the continuum is tested.
Again, different symbols denote different values ofkmax. The same values and
corresponding symbols are used in the lower plot that is a magnification of the upper,
in the region close to the real axis. It can be seen that for converged results at least
kmax = 78 photons are needed. (The other parameters are chosen as:kmin = −18,
`max = 73, andΘ = 0.06.)
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it has to suffice to reach the effective continuumkmax ≥ Nmin with
Nmin = |E0 + 1/(2nsup · α)|/ω. In studies on the microwave ioniza-
tion of atomic hydrogen with principal quantum numbersn ' 23 [34]
it was found that this minimum numberNmin is close to the number
of photons needed to obtain converged results, i.e.,kmax ' Nmin + 2
was employed. Yet, the situation gets more complicated in our case, but
this is only indirectly related to the use of alkali atoms instead of atomic
hydrogen: In fact, it is not the non-hydrogenic core that produces the
need of a larger photon number, but the use of length gauge instead of
velocity gauge which was employed in [34]. It is known from the study
of multi-photon processes that the velocity gauge leads to a faster con-
vergence than the length gauge [93, 92], but due to the partition of con-
figuration space our approach requires the use of the length gauge (see
section 2.3). A typical situation is displayed in fig. 3.5, where we have
plotted the complex energies in a given range with varying photon num-
berskmax. Here the minimum number of photons to reach the effective
continuum is given byNmin ' 55, while the minimum number needed
to obtain converged results iskmax ' 78. This gives a rough estimate
for kmax that was valid as a rule-of-thumb for our situation, namely:
kmax ' 1.5 · Nmin, . . . , 2 · Nmin. Note, however, that our results on
atomic hydrogen presented further down have been obtained in the ve-
locity gauge (see also section 2.1), and there a smaller photon number
kmax could be used.

3. `max: The last parameter that determines the dimension of the matrices is
the maximum number of angular momenta in the expansion of the atom-field
eigenfunctions in the Sturmian basis (2.45). Of course,`max = nsup − 1
would always lead to converged results, given that the other parameters are
chosen properly. Yet, especially in the situation where the multi-photon pro-
cess is of high order (and hence a large numberkmax of photons is needed) it
is vital to truncate the basis – which determines the memory needed to store
the matrices – as much as possible without loss of convergence. A first guess
for the choice of̀ max could be`max = neff

max, but it turned out that this value
is not necessarily enough. A situation where a larger number of angular mo-
menta is needed occurs when a large photon numberkmax > neff

max is needed
for the convergence. In this case it is possible to access states with angular
momentum̀ > neff

max – that already belong to the effective continuum – via
a multi-photon transition of the orderkmax. The fact that the high angular
momentum states in the effective continuum are needed to achieve converged
results is a consequence of the fact that not only the bound state dynamics, but
also the interaction with the continuum is important to describe microwave
driven Rydberg states correctly. Consequently, an appropriate choice for the
maximum angular momentum is̀max ≥ `0 + kmax ± j, where`0 is the an-
gular momentum of the initial atomic state that shall be described, andj is a
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Figure 3.6: In the same situation as shown in figure 3.5 and 3.4 the maximum an-
gular momentum̀ max used for the representation of the atom-field eigenstates is
tested. Here the situation is a little bit more complicated: As can be seen, conver-
gence ofall states is not achieved, even for`max = 83. However, it is sufficient that
the eigenvalues with a non-vanishing overlap with the initial state are converged. As
apparent from the lower plot, the isolated stars marked by arrows are not converged.
These states, however, have an overlapwj < 10−5 with the states we are interested
in, i.e. with the initial states|n0, `0,m0 = 0〉 with n0 = 35, . . . , 54 and`0 = 0, 1.
The non-converged states are high angular momentum states (and therefore high
n0-states), that experience an extremely high field amplitude. Consequently, these
states could only be converged with a larger basis size, in particular not only a larger
lmax but also a larger number of photons would be required. (The other parameters
arekmax = 80, kmin = −18, andΘ = 0.06.)
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small number (j = 1, . . . , 5).
In figure 3.6 the situation is illustrated, again with a typical plot of a region of
complex energies obtained for different values of`max (as in the two previous
figures the lower plot is a magnification of the region close to the real energy
axis in the upper plot). As a matter of fact, pictures like this are a little bit
misleading without any additional information:
Apart from the states that are converged with the chosen maximum angular
momentum̀ max, there are some states that are still not converged even with
the largest valuèmax. In the lower part of figure 3.6 this is the case, e.g., for
the isolated stars marked by arrows. Clearly, these states are not converged
even for the choicèmax = 83. These states are emanating from high angular
momentum states – and therefore from highn0 states – that experience an ex-
tremely large field, and hence the convergence of these states requires a larger
photon number. However, they exhibit only vanishing overlap with those ini-
tial states we are here interested in. More precisely, these states have an over-
lapwj < 10−5 with the initial states|n0, `0,m0 = 0〉 with n0 = 35, . . . , 54
and`0 = 0, 1.

So far, we gave account of the parametersnsup, kmin, kmax, `max, which deter-
mine the basis size, this is the dimensionntot of the matrices that have to be diago-
nalized. However, the required memory to store the matrixA is not yet completely
determined, since the effective bandwidth ofA can still be minimized by choos-
ing an intelligent hierarchy of the quantum numbersk, `, andn for the ordering of
the matrices: Due to the selection rules (2.54) and (2.53), even the banded part of
the matrixA is far from being fully occupied. To obtain matrices with the small-
est possible bandwidthnlarg, it is preferable to choose the quantum number with
the smallest range as the outmost and the one with the largest range as the inner-
most. This leads to the following rule-of-the-thumb: If the total number of photons
kmax+|kmin|+1 is less than the maximum angular momentum`max, it is reasonable
to order the matrices according to` → k → n (i.e. the outermost quantum number
is `, the nextk, the innermostn). If the number of photons exceeds the maximum
angular momentum, the orderingk → `→ n leads to a smaller bandwidthnlarg.

Besides the parameters which determine the size of the matrices, there are some
additional parameters that fix the basis set without influencing the size of the matri-
ces. They are given by:

1. α: The Sturmian scaling parameter in the definition (2.45) was already men-
tioned above, in the discussion of the effective thresholdneff

sup. Varying α
leads to a change of the effective thresholdneff

sup, and may change the photon
order of the ionization process. Given that the other parameters are chosen
properly (and especially that the effective threshold is not too low in energy),
this influences the widths of the atom-field eigenstates only a little bit. More
precisely, modeling a situation where the multi-photon process is changed by
one order may lead to a (slight) shift of the ionization rates of some eigen-
statesεj , and hence to a small change of the ionization probability at a given
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Figure 3.7: Convergence test inΘ: At a field amplitudeF = 2.7 · 10−9 a.u. and
frequencyω = 5.47 · 10−6 a.u., the rotation angleΘ is tested. As already observed
in figure 3.6, it is not possible to obtain convergence of all Floquet states. Again
it is sufficient that the states with a non-vanishing overlap with the initial states are
converged, what is achieved for0.02 < Θ < 0.07. (The other parameters are chosen
askmax = 34, kmin = −24, lmax = 82, the energy range is chosen close to the field
free energyE = −0.0001456 of the lithium state|n0 = 59, `0 = m0 = 0〉.)
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interaction time. However, such behavior is also observed in laboratory exper-
iments [20], under variation of the effective threshold, and is not an indication
of un-converged results, but simply the physical consequence of changing the
order of the multi-photon process. Apart from that, the numerical results are
quite stable under variation ofα, at fixed order of the multi-photon process.

2. Θ: According to the theory of complex scaling (see section 2.1.3), the eigen-
vectors and eigenvalues of the resonances should be independent ofΘ, as long
asΘ is large enough to uncover the resonances. As already seen in figure 3.2,
a numerical implementation leads to a more complicated situation [165]. Res-
onances which are too close to continuum states may ’interact’ with the latter
and slightly shift with respect to their converged position [165, 33]. Too large
rotation anglesΘ > 0.1 lead to a shift of eigenvalues close to the branch-
ing points above the real energy axis, and thus to non-converged results. Too
small rotation anglesΘ < 0.01, on the other hand, cannot uncover all reso-
nances. We observed stability of the results forΘ = 0.02, . . . , 0.07. However,
it is not possible to obtain convergence ofall states in a Floquet zone, but at
least the states with a non-vanishing overlap with the low-angular momentum
initial states can be converged with this choice. An example for the conver-
gence with respect toΘ is shown in fig 3.7, for this situation a rotation angle
Θ = 0.04 was supposed to be an adequate choice.

3. r0: In contrast to simulations of low-lying alkali Rydberg statesn0 . 20
[108], higher excited states (withn0 & 30) are very stable under variation
of the radiusr0 where the inner and the outer region are matched (see sec-
tion 2.3). The reason for this stability is that the probability for the highly
excited electron to be close (r ' 10 a.u.) to the atomic core is very small.
Obviously, this probability increases for states with lowern0. In our cal-
culations we observed stability forr0 ' 10, . . . , 20, for principal quantum
numbersn0 > 28. Forn0 ' 20, smaller matching radiir0 ' 4 lead to stable
results.

Before proceeding to the real physical problem and presenting the results of our
numerical experiment in the second part of this work, we finally want to give ac-
count of the quality of the approximation of the linear dependence of the surface
term (ALEDST) that was described in section 2.3.3. Without this approximation,
the generalized eigenvalue problem (2.47) is only valid for a surface term evaluated
exactlyat the energyE+kω, and thus reliable results can only be achieved employ-
ing a self consistent approach. The production of converged results with the help
of a self consistent method needs at least two iterations (two diagonalizations of the
generalized eigenvalue problem, where the surface term (2.42) for the matrix in the
second iteration is evaluated at the eigenvalue obtained with the previous diagonal-
ization), and as a result only one single atom-field eigenstate is converged, while the
error of the other states increases with the distance (in energy) from the converged
result.
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Figure 3.8: Assessment of the quality of ALEDST: Displayed are the field free
results for the lithium Rydberg states|n0 = 23, `0 = m = 0〉 (upper plot),
|n0 = 24, `0 = 1,m = 0〉 shifted byω = −1.07171794 · 10−4 a.u. (middle plot),
and|n0 = 23, `0 = 2,m = 0〉 (lower plot). The full lines show the results obtained
with the surface term calculated according to (2.44) (i.e. with the ALEDST), while
the dashed lines show the results obtained with the surface term evaluated accord-
ing to (2.42), but using a fixed (real) matching energyEmatch. The results obtained
with (2.44) are essentially independent of the matching energy over the whole Flo-
quet zone (displayed by the size ofω in the lower plot), while the results obtained
without this approximation depend strongly on the choice of the matching energy.
In the latter case, the results only agree forEmatch = Ej , with Ej exactly the real
part of the quasi-energy of the requested eigenvalue.
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For the description of highly excited states, i.e., in the regime of a high density
of states, it is crucial to obtain more than one single converged result with a sin-
gle diagonalization of the generalized eigenvalue problem, since a large number of
atom-field eigenstates is needed to represent the field-free initial states. This can be
achieved with the ALEDST which we outlined in section 2.3.3.

A typical situation is shown in figure 3.8, where we plotted the (real parts of)
three different field free (lithium) eigenvalues|n0 = 23, `0 = m0 = 0〉, |n0 =
23, `0 = 2,m0 = 0〉, and|n0 = 24, `0 = 1,m0 = 0〉 obtained with and without
the ALEDST, as a function of the matching energy that was employed.(7) If neither
the ALEDST nor the self consistent approach are employed, but the surface term is
calculated according to (2.42) with a given matching energyEmatch, the obtained
results (dashed line) depend strongly on the choice ofEmatch. They are only ex-
act if Ematch = Ej = εj + iΓ/2, whereεj is the desired eigenvalue. In contrast,
if the ALEDST is employed, the results (solid line) are essentially independent of
the matching energy and hence they are located along a horizontal line. In all three
examples shown in figure 3.8, the relative error of the (real part of the) results is
by three orders of magnitude smaller when the ALEDST is employed as compared
to the calculation according to (2.42) (but without employing a self-consistent, it-
erative procedure). Note that the difference becomes even more significant for the
imaginary parts: While we observe a similar stability for the widthsΓj as for the
real part of the energyEj if the ALEDST is employed, the widths fluctuate strongly
without this approximation and take negative values as well as positive values.

In the present Floquet problem, the situation seems to be much more compli-
cated than in the case of alkali atoms in static fields [122]. For the static field
case it was reported that even without the ALEDST up to hundred converged re-
sults could be obtained with a single diagonalization, while we can obtain only a
single converged eigenvalue with one diagonalization without employing the linear
dependence of the surface term. However, with the use of the ALEDST, we obtain
several hundred converged results that are independent of the energy at which they
are evaluated.

(7)Note that for (field-free and atom-field) eigenstates emanating from states with largern0 the
difference between the results obtained with the ALEDST and without the ALEDST (and without
a self-consistent approach) becomes smaller than in the situation displayed in figure 3.8. In such
situations, calculations without the ALEDST lead to better results than for low energies aroundn '
20. However, also for higher energies we employed the ALEDST to ensure the convergence of a large
number of eigenstates.
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In this second part of this thesis, we shall present and discuss the results of
our numerical experiments on microwave driven Rydberg states of hydrogen and
alkali atoms. Given the theoretical/numerical apparatus described above, this is the
first time that computational physics meets experiment in this intricate and highly
complex physical situation. No single approximation on the dimensionality of the
problem, on the excitation of the initial atomic state nor on the parameters that char-
acterize the periodic external drive are needed. As a matter of fact, we shall see
that in some respect computational physics actuallybeatsexperiment, since, in our
virtual laboratory, experimental conditions can be realized which – though perfectly
realistic – are virtually unaccessible for the traditional experimentalist. More pre-
cisely, our apparatus allows to perform the same (numerical) experiment on different
atomic species, using precisely the same laboratory parameters.

In chapter 4, we start out with the fundamental building block of the experimen-
tal analysis of microwave ionization processes, the ionization yield. Its dependence
on the driving field amplitude, on the atomic initial state, and on the atom-field
interaction time is investigated, and analyzed in terms of the underlying spectral
structure, as well as in terms of the population distribution over the bound space
part of the spectrum, in terms of the Shannon width.

The following two chapters present the central physical results of this work: In
chapter 5, the ionization thresholds of driven alkali and hydrogen atoms are analyzed
over a broad range of atomic initial states underpreciselyidentical experimental con-
ditions. This comparison elucidates the similarities of alkali and hydrogen Rydberg
states, as well as the experimentally observed considerable differences in the ioniza-
tion dynamics of these systems, that remained hitherto unexplained, for more than
one decade. We shall identify three different regimes in the ionization dynamics of
driven, singly excited non-hydrogenic Rydberg states, and identify the relevant fre-
quency scales separating these regimes. This ultimately allows to establish scaling
rules for the ionization dynamics of driven alkali atoms.

Chapter 6 addresses a complementary aspect of our system: The external field
induces a strong coupling of atomic bound and continuum states, leading to ioni-
zation on a finite time scale. This highly non-perturbative ionization process can
be seen as a probe of the complex bound state dynamics. Hence, microwave-driven
Rydberg states represent a typical, complex quantum system which exhibits decay.
In chapter 6 we study the decay of the survival probability of the atomic bound state
population, and find an algebraic decay as familiar for quantum systems with a clas-
sically mixed regular-chaotic counterpart. However, our observations also suggest
important qualitative amendments to some predictions based on the study of simple
toy models.

Finally, chapter 7 summarizes our results and briefly outlines some open ques-
tions.





Chapter 4

Microwave Ionization of lithium
Rydberg atoms

4.1 Fixed field amplitude – various initial states

To provide for a comprehensive understanding of the ionization dynamics of micro-
wave driven alkali Rydberg states, we perform a numerical experiment which em-
ploys exactly the parameters of the Stony Brook experiments on atomic hydro-
gen [20]. Since the latter are by now rather well understood, the direct comparison
of alkali and hydrogen results will immediately reflect the additional effects induced
by a non-hydrogenic atomic core.

We chose to model the Stony Brook experiment, since it arguably covers the
widest range of scaled frequencies, such that the regime of classically chaotic ion-
ization (ω0 < 1), as well as the regime of dynamical localization (ω0 > 1) are
explored (see section 1.1.1). Following the (classical) scaling rules for atomic hy-
drogen (2.19) and (2.20), in these experiments the scaled frequency is varied by
fixing the laboratory frequency and varying the principal quantum number of the
initial atomic states, at fixed interaction timet ' 327 · 2π/ω. Since our method al-
lows to project the atom-field eigenstates obtained with a fixed field amplitude and
frequency on various atomic initial states, a procedure like this is more convenient
than fixing the initial state and varying the laboratory frequency. The latter approach
was employed in the experiments of the Pittsburgh group [21], which also scanned
a wide scaled frequency range and obtained similar results as those of Stony Brook,
by exposing eight different atomic initial states to a microwave field of variable
frequencyω/2π from 12.4 GHz to 18 GHz. Furthermore, in the Pittsburgh experi-
ment, a weak static electric field was added to the microwave field to enforce a quasi
one-dimensional motion of the electronic density (by populating extremal parabolic
states which are a coherent superposition of different angular momentum states).

To study the influence of the atomic core on the ionization process, we start out
with lithium instead of atomic hydrogen. Yet, in contrast to many experiments on
lithium atoms of the Virginia group [49, 50, 48], that were performed on initial states
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Figure 4.1: Ionization probability of lithium atoms prepared in initial states with
angular momentum̀0 = 0, angular momentum projectionm0 = 0, and principal
quantum numbers in the rangen0 = 50, . . . , 80. The atoms are exposed to four
different field amplitudesF = 2.0 · 10−9 a.u. (black triangles),F = 2.3 · 10−9 a.u.
(red diamonds),F = 2.7 · 10−9 a.u. (black circles), andF = 3.1 · 10−9 a.u. (stars).
The frequency and the atom-field interaction time are kept constant atω/(2π) =
36 GHz andt = 327 · 2π/ω, respectively, typical experimental values as they were
employed in [20]. The local maxima atn0 = 63 andn0 = 68 are caused by avoided
crossings in the Floquet spectrum, that induce a local enhancement of the ionization
rates.

with angular momentà = 1 or ` = 2, to minimize the effect of the multi-particle
core, the influence of the atomic core is precisely our interest. For this purpose,
it is natural to choose initial states with angular momentum` = 0, i.e. states that
exhibit the largest quantum defectsδ`. More precisely, in our calculation we expose
lithium atoms, initially prepared in states|n0, `0 = m0 = 0〉, to a linearly polarized
microwave field of frequencyω/2π = 36 GHz, at atom-field interaction times indi-
cated above, what precisely matches the situation of the Stony Brook experiment.

Figure 4.1 displays our first (physical) result, the ionization probability as a func-
tion of the principal quantum numbern0 of the initial atomic state, at four different
field amplitudesF = 2.0 · 10−9 a.u., F = 2.3 · 10−9 a.u., F = 2.7 · 10−9 a.u.,
andF = 3.1 · 10−9 a.u. As the external field with fixed (laboratory) amplitudeF ,
measured in units of the Coulomb field between electron and atomic core (in other
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words, the ’scaled’ field amplitudeF0
(1) ), increases with increasing quantum num-

bern0 (scanningn0 from 50 to 80 is equivalent to scanning the ’scaled’ field ampli-
tude (2.20) fromn4

0 · F = 0.0125 to n4
0 · F = 0.08192, at fixedF = 2 · 10−9 a.u.),

in all four curves there is an increase of the ionization probability withn0. Besides
that, all four curves show a typical threshold behavior: below some quantum number
nthreshold (e.g.nthreshold = 60 atF = 2.7 · 10−9a.u.) the ionization probability re-
mains relatively small and flat. This is the perturbative regime, where the field which
is experienced by the electron does not induce appreciable ionization (i.e., whereF
is small as compared to the Coulomb field∼ n−4

0 ). Forn0 > nthreshold, the ion-
ization probability starts to increase rapidly, hereafter the field is strong enough to
induce a strong coupling of a large number of atomic bound (and continuum) states.
Said differently, beyond the perturbative regime the external field (which has cylin-
drical symmetry) destroys the spherical symmetry of the unperturbed initial atomic
state, leading to a large ionization probability.

Besides the threshold behavior of the four curves, we observe local structures
on top of the global trend, e.g. the local maxima atn0 = 63 (at F = 2.0 ·
10−9 a.u., F = 2.3 · 10−9 a.u., and F = 2.7 · 10−9 a.u.). Such local enhance-
ment of the ionization probability of a given initial state is caused by the compli-
cated structure of the Floquet spectrum: Near-degeneracies between two (or more)
atom-field eigenstates at a given field amplitude reflect multi-photon resonances be-
tween atomic bound states. These enhance the coupling to the atomic continuum
and thus the observed total ionization rate [38]. The situation is illustrated in fig-
ure 4.2 where we display the ionization probability of the (`0 = m0 = 0) state
n0 = 63 as a function of the field amplitude (in (a)), together with the evolution
of the quasi-energies (real parts in (b),(c), imaginary parts in (d)) as a function of
the field amplitude: there is an avoided crossing between two atom-field eigen-
states close toF ' 2.3 · 10−9 a.u. (in (c)). The projection of the initial state
|n0 = 63,m0 = `0 = 0〉 on the near-degenerate Floquet states (displayed in (e))
is larger than the projection of thè0 = 0 states with principal quantum number
n0 = 62 andn0 = 64, and thus the initial state|n0 = 63,m0 = `0 = 0〉 exhibits
an enhanced ionization probability at this field amplitude. The effect reaches its
maximum atF = 2.3 · 10−9 a.u., leading to an even larger ionization probability of
then0 = 63 state than atF = 2.7 · 10−9 a.u. The same phenomenon, i.e. a local
maximum inPion caused by a multi-photon resonance, appears close ton0 = 68 (in
figure 4.1), and also, below threshold, atn0 = 51 for F = 3.1 · 10−9 a.u. We will
return to the role of avoided crossings in the Floquet spectrum, and to the discussion
of figure 4.2 in the next section.

Let us also mention here that a similar behavior as the one of the ionization yield
as a function of the principal quantum numbern0 (i.e. a threshold behavior of the

(1)As noted in section 2.2, the scaling rules (2.19) and (2.20) are a priori only applicable for the
driven two-body Coulomb problem. However, to give an estimate of the order of magnitude, we will
use the notion of scaled variables also for the dynamics of alkali atoms. To emphasize that the use
of scaling rules is a priori not justified we will use the notion ’scaled’ variables for alkali atoms in
quotation marks.
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Figure 4.2: Spectral structure underlying the ionization yield of the state|n0 =
63, `0 = m0 = 0〉 (compare figures 4.1 and 4.3), which is shown in (a). In (b)
we plot the level dynamics of the real part of the quasi-energies in a single Flo-
quet zone, and a detail of the Floquet zone in (c), where we recognize the avoided
crossing between the state indicated by green squares and the one represented by
black diamonds. This anticrossing is responsible for the maximum ofPion in (a), at
precisely the same field amplitude: (d) displays the dynamics of the corresponding
ionization rates, and (e) the associated overlaps of the atom-field eigenstates with the
initial state|n0 = 63, `0 = m0 = 0〉. The avoided crossing in (c) also induces the
steep rise of the widths and a (local) maximum of these widths atF = 2.3·10−9 a.u.
as observed in (d). To keep the complexity of the present plots at a reasonable level,
we only display the quasienergies, widths, and weights of those states having an
overlap larger than2% with the atomic initial state.
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global trend, together with the appearance of local extrema) was also reported in the
discussion of laboratory experiments on the microwave ionization of atomic hydro-
gen [31]. There, local minima of the ionization probability were observed close to
ω0 = 1, ω0 = 1/2, andω0 = 1/3, and attributed to quantum signatures of local
stability islands in classical phase space, i.e. manifestations of resonances between
the external driving frequency and the characteristic frequencies of the unperturbed
classical Kepler motion. Due to the lack of a uniquely defined classical one-particle
potential for alkali atoms, a similar explanation for the local structure in figure 4.1
cannot be adopted here. However, as we will see in chapter 5, in the region where we
observe most of the local structures, i.e. forn0 = 59, . . . , 80, the alkali dynamics
mimics the one of hydrogen. Nonetheless, since the single-valued ionization yield
Pion is a quantity which averages over all the details of the atomic excitation process
(see equation (2.58)), similar ionization yields do not suffice to postulate a classical
analog of the alkali excitation and ionization process, and we therefore refrain from
a purely classical interpretation of the above results.

4.2 Fixed initial states – changing the field amplitude

After changing the ’scaled’ field amplitude by varying the principal quantum number
n0 at fixed field amplitude, we will now do the reverse, and varyF for constantn0

as it is typically also done in laboratory experiments. In figure 4.3 we plotted the
ionization probability of five initial states (n0 = 61, n0 = 63, n0 = 65, n0 = 67,
n0 = 69, `0 = m0 = 0) as a function of the field amplitudeF . Much alike the
previous section, we observe a threshold behavior for eachn0-value. Below a certain
threshold amplitude, the Coulomb field largely dominates the external drive, and the
dynamics is dominated by the symmetry of the pure atom, i.e. the situation can
be treated in a perturbative way and, consequently, the ionization probability does
not increase appreciably. Above the threshold field, we observe a steep increase
of Pion, caused by non-perturbative couplings, involving multi-photon processes of
different order [34]. The threshold field also defines the ionization border, below
which ionization is negligible. This ionization border is traditionally defined as that
field amplitude which causes an ionization probability of ten percent (the so-called
’10% ionization threshold’), at given interaction time.

In the discussion of figure 4.1 we recognized that the state|n0 = 63, `0 =
m0 = 0〉 is less stable at a driving field amplitudeF = 2.3 · 10−9 a.u. than at the
stronger fieldF = 2.7 · 10−9 a.u. This pronounced local maximum in figure 4.1
also manifests in figure 4.3. Here we see it as a shoulder in the ionization signal of
|n0 = 63, `0 = m0 = 0〉, which exceeds all the other curves shown in the plot, up to
F ' 2.4 ·10−9 a.u. As a matter of fact, this curve can be understood as a vertical cut
throughn0 = 63 in figure 4.1. The large overlap of|n0 = 63, `0 = m0 = 0〉 with
the anticrossing states in figure 4.2 causes the enhancement ofPion(n0 = 63) locally
in n0 in figure 4.1, and locally inF in figure 4.2 and 4.3. The local maximum of
Pion(n0 = 63) atF ' 2.3·10−9 a.u. (in figure 4.3 and 4.2 (a)) precisely corresponds
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Figure 4.3: Ionization probability of five different initial states|n0, `0 = m0 = 0〉
with n0 = 61 (circles),n0 = 63 (squares),n0 = 65 (diamonds),n0 = 67 (crosses),
n0 = 69 (stars) as a function of the field amplitudeF (interaction time and fre-
quency as in figure 4.1). Above threshold, there exist local structures like the local
maxima forn0 = 63 andn0 = 61. The broad shoulder in the ionization yield of
n0 = 63 is caused by avoided crossings in the Floquet spectrum, which were al-
ready identified in figures 4.1 and 4.2.

to the closest approach of the anticrossing states in figure 4.2 (c), as well as to a
local maximum in their ionization rates (figure 4.2 (d)), and of their relative weights
(figure 4.2 (e)) in the representation of the atomic initial state.

Besides the broad shoulder of the ionization signal ofn0 = 63 in figure 4.2 (a)
and 4.3, all atomic initial states exhibit a rather steep increase of the ionization
signal as a function ofF . This is paralleled by a dramatic increase of the number
of Floquet states which generate the dynamics (i.e. which have a non-negligible
overlap with the initial atomic state, see equation (2.58)). Indeed, the Shannon width
(2.61) – which measures the number of states that contribute appreciably to the
representation of the initial state – increases fromW = 46 atF = 2 · 10−9 a.u. to
W = 118 atF = 2.42 · 10−9 a.u., for n0 = 63, and similarly for the other quantum
numbers represented in figure 4.3, see section 4.2.2. This observation correlates with
the usual picture of the ionization process in the regime of dynamical localization:
an increased localization length, which can be measured by the Shannon width,
induces an enhanced ionization yield, at fixed atomic initial staten0.
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Figure 4.4: Ionization probability of the (`0 = m0 = 0) initial statesn0 = 63
(squares),n0 = 65 (diamonds), andn0 = 67 (crosses) obtained in the single Floquet
state approximation (interaction time and frequency as in figure 4.1). As only one
single Floquet state is populated, the enhancement of the ionization rates at avoided
crossings plays a more important role than in the ionization probability evaluated
in the sudden approximation. Thus the SFSA yields show more local maxima than
the ionization signals plotted in figure 4.3. Note that the ionization probability of
the state|n0 = 63, `0 = m0 = 0〉 exactly follows the run of the widths of those
eigenstates in figure 4.2 (d) which exhibit the largest weights in the representation
of the atomic initial state.

4.2.1 Comparison with the single Floquet state approximation

We have seen in the preceding sections that the ionization yieldPion can be strongly
affected by local structures in the Floquet spectrum, locally in some parameter like
F or n0. Depending on the actual switching of the microwave pulse, the sudden
approximation (2.58) providing us with figures 4.1 and 4.3 may not be the closest
description of the actual situation in the laboratory, notably for experiments which
switch the microwave rather slowly. To estimate the possible influence of the switch-
ing stage of the atom-field interaction on the local as well as on the global depen-
dence of the ionization yield onF , it is therefore useful to compare the predictions
of the single Floquet state approximation (SFSA, (2.59) to our above results. Do-
ing so, we always use the Floquet state with the largest overlap with the field-free
atomic initial state (at givenF ) as input for equation (2.59) [137].

Figure 4.4 displays the SFSA-results obtained with the same parameters as those
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in figure 4.3 for the (̀0 = m0 = 0) atomic initial statesn0 = 63, 65, 67. The ion-
ization curves of then0 = 63, and then0 = 65 states resemble those obtained with
the sudden approximation for a weak driving fieldF . 2.1 · 10−9 a.u. (n0 = 65)
andF . 1.9 · 10−9 a.u. (n0 = 63). For larger field amplitudes, the results obtained
with the two different approaches deviate. This can be easily understood from the
plot of the avoided crossing in figure 4.2: AtF ' 2 · 10−9 a.u., the continuation of
the atomic initial state (i.e. the Floquet state marked by squares in figure 4.2, which
has the largest overlap with|n0 = 63, `0 = m0 = 0〉 up toF ' 2.3 · 10−9 a.u.) un-
dergoes an avoided crossing with another Floquet state (marked by diamonds), and
thus the ionization probability increases in both approaches, the SFSA and the sud-
den approximation, and both curves exhibit a local maximum atF ' 2.3 ·10−9 a.u..
However, as the state marked by squares in figure 4.2 has an overlap of less than
25% with the atomic initial state, in the sudden approximation the single avoided
crossings are by far less important than they are in the SFSA and the sudden ap-
proximation leads to a smoother curve and to a less pronounced maximum.

The same scenario leads to the pronounced structure in the ionization yield of
then0 = 65 andn0 = 67 states (i.e. the maxima aroundF = 2.5 · 10−9 a.u. and
F = 2.9 · 10−9 a.u.), which are smoothed out in the sudden approximation.

As we see in figure 4.2 (e), and in the similarity of the obtained ionization curves
for weak driving field, the SFSA is only a useful approximation as long as there is
one single Floquet state having a large overlap with the atomic initial state (this
explains the large discrepancy between the two approaches for the staten0 = 67,
where even atF = 1.2 · 10−9 a.u. the largest overlap of a single Floquet state with
the field-free initial state is only approximately 14 %), and as long as the adiabatic
continuation of the initial state is relatively isolated in the spectrum. The second
condition implies that the continuation of the initial state does not undergo avoided
crossings. There, the atom-field eigenstates get strongly mixed, what is accounted
for by the contribution of both states to the representation of the initial atomic state
in the sudden approximation. In the SFSA on the other hand, the identification
of the state which represents the continuation of the field free eigenstate becomes
ambiguous: For a reasonable application of the SFSA, one has to decide whether the
diabatic continuation (in this case the avoided crossing is crossed) or the adiabatic
continuation (when the avoided crossing is really avoided) is populated after the
anticrossing. Therefore the time scaleτ defined by the avoided crossing, which is
roughly given by the inverse energy splitting [137], has to be compared with the time
needed to pass the avoided crossing. If the change ofF is much slower thanτ , i.e.
for τ << (1/F )dF/dt, the electronic population follows the adiabatic continuation,
whereas the diabatic continuation is the appropriate choice in the opposite case. In
the intermediate situation, however, both states are populated and the SFSA breaks
down [137].

Since the spectrum of microwave driven Rydberg states exhibits abundant avoi-
ded crossings of variable size, in general, an atomic initial state is represented by
multiple atom-field eigenstates. Thus, summing over multiple atom-field eigenstates
as it is done in the sudden approximation typically provides for a better descrip-
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tion of the experimental situation than the SFSA. This is in particular true for the
latest generation of the Virginia experiments on lithium atoms [49], that employ
a switching time of only three field-cycles. But also in the experiments in Stony
Brook [20, 31] and in Munich [42, 9], that employ switching times of approximately
50 field-cycles, more than just one single atom-field eigenstate are populated at field
amplitudes strong enough to induce appreciable ionization. This manifests, e.g., in
the experimentally observed transition from a mono-exponential time dependence
of the ionization probability to an algebraic time dependence for an increasing field
strength in the Munich experiments [86]. Such a non-exponential time dependence,
however, is only possible if the initial atomic state is represented by a large num-
ber of atom-field eigenstates as suggested by (2.58) rather than by only one single
atom-field eigenstate as suggested by (2.59). We will study the temporal dependence
of the ionization probability of microwave driven Rydberg states in more detail in
chapter 6, where we will also refer to assumptions concerning the temporal decay
of complex quantum systems made by other research groups.

While not only the set-up of the recent Virginia experiments [49], but also the
Munich and presumably the Stony Brook set-ups provide for the population of mul-
tiple atom-field eigenstates, the finite switching time can induce the prefered pop-
ulation of a reduced number of atom-field eigenstates (as compared to the sudden
approximation), possibly with specific stability properties [166, 167]. Thus, the ex-
perimentally observed ionization probability may locally inF or n0 significantly
differ from the results obtained with the sudden approximation which, however,
globally will provide for a good description of the experiments. Due to these pulse
induced effects, we will also observe local deviations of the numerically obtained
10% ionization threshold from experimental data in chapter 5, but we expect an ex-
cellent agreement of our results to results obtained with a very fast switching of the
field as it is approximately possible, e.g., in the Virginia experiments.

4.2.2 Shannon width

In the previous sections we recognized that the abundance of avoided crossings in
the Floquet spectrum expresses the coupling of the atomic initial state to a large
number of atom-field eigenstates. To quantify the number of Floquet states con-
tributing to the representation of the initial state, we introduced the Shannon width
W (n0, F, ω) (2.61) in section 2.5.2, and we already used this quantity in section 4.2,
in our discussion of the threshold behavior of the ionization yields in figure 4.3. In
figure 4.5 we displayW (n0, F, ω) as a function of the field amplitudeF for the
initial atomic states we studied in figure 4.3.

The width functionW (n0, F, ω) shows a similar dependence on the field am-
plitude as we observed it for the ionization probability: The stronger the external
perturbation, the more Floquet states are needed to represent the initial state. Much
as for the ionization probability, the slope ofW (n0, F, ω) is not constant and it also
exhibits a threshold behavior. Since a weak driving field does not induce a strong
perturbation of the initial atomic state, the state is represented by only a small num-
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Figure 4.5: Shannon widthW (n0, F, ω) (2.61) of the`0 = m0 = 0 initial states
n0 = 61 (circles),n0 = 63 (squares),n0 = 65 (diamonds),n0 = 67 (crosses), and
n0 = 69 (stars), as a function of the field amplitudeF . The frequency of the driving
field is chosen as in figure 4.1. The arrows mark the field amplitude of the 10%
ionization threshold (att = 327 · 2π/ω) of (from left to right)n0 = 63, n0 = 65,
n0 = 67 (which agrees with the threshold ofn0 = 69), andn0 = 61. These
thresholds coincide roughly with the positions where the slope of the ShannonW
changes from a weaker to a steeper slope.

ber of Floquet-states, associated with a small ionization probability. Above a criti-
cal field, the external perturbation is strong enough to destroy the atomic symmetry
properties, and consequently, the atomic initial state is distributed over a large num-
ber of atom-field eigenstates. As already noted above, this is generally the case
when the continuation of the initial state – which is relatively isolated in the quasi-
energy spectrum for weaker field amplitudes – undergoes several avoided crossings,
and thus, its character (i.e. its symmetry properties) changes. Starting from this
threshold value ofF , W (n0, F, ω) increases faster than it does for weaker fields,
in accordance with the steep increase ofPion above threshold. However, the width
function does not show the pronounced maximum we observed forn0 = 63, and
which we attributed to the avoided crossing. At this maximum the ionization rates of
two single atom-field eigenstates that dominate the representation of the initial state
get strongly enhanced, and the weights of these two atom-field eigenstates when
projected on the initial state decrease after the avoided crossing as we observed in
figure 4.2. Thus, the Shannon width – which is calculated of the weightswj rather
than of the ionization ratesΓj – does not show a maximum like the ionization prob-
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ability, but it increases at the avoided crossing.
Since the change of the Shannon width reminds us of theF -dependence of the

ionization probability, we compare the values ofW (n0, F, ω) at the 10% ionization
threshold fields in table 4.2.2 for different values ofn0:

n0 F10% [a.u.] W (n0, F10%, ω)
61 2.7 · 10−9 77
63 1.9 · 10−9 37
65 2.0 · 10−9 63
67 2.1 · 10−9 85
69 2.1 · 10−9 69

Table 4.2.2: Shannon widthW (n0, F, ω) at the10% thresholdF10%(t = 327·2π/ω)
for the initial states|n0, `0 = m0 = 0〉, with the samen0 values as employed in
figures 4.3 and 4.5.

The table shows that for different initial states,W (n0, F10%, ω) varies by more than
a factor two, although the ionization probability of all five states (with principal
quantum numbers that differ by only 10%) reaches the same value at the given
driving fields. Here, some of the eigenstates over which the field-free eigenstate
spreads below threshold exhibit large ionization rates (as it is the case with the
anticrossing states forn0 = 63) and hence a smaller value ofW is sufficient to
induce 10% ionization (compareW = 37 for n0 = 63 vs. W = 63, . . . , 85
for n0 = 61, 65, 67, 69 at threshold). However, it is close to threshold where the
Shannon width increases dramatically. Consequently, the threshold fieldsF10%(t =
327 · 2π/ω) roughly agree with the fields where the slope ofW (n0, F, ω) changes
from a weak to a steeper increase, as can be observed in figure 4.5.

4.3 Time dependence of the ionization signal

We have seen that, for fixed interaction timet, local structures in the ionization yield
(vs. F or n0) are caused by avoided crossings in the Floquet spectrum, eventually
amended by a pulse-induced redistribution of the weightswj of the various Flo-
quet states which contribute to the ionization signal. Whereas the avoided crossings
induce local enhancements of the ionization rates of the interacting states, pulse in-
duced redistributions of thewj determine the path of the wave function across the
crossing and hence the dependence of the total ionization yield on the control pa-
rameterF , throughPion = 1 −

∑
j wjexp(−Γjt). By virtue of this last equation

(or (2.58), where thewj are given by the overlaps of the field-free initial state with
all atom-field eigenstates), however, it is clear that local structures ofPion will also
depend on the interaction timet, since both,Γj andwj depend onF , andwj ad-
ditionally depends onn0 (for a given microwave pulse). Therefore, the yield will
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Figure 4.6: Ionization yieldPion(t) vs. field amplitudeF , for different interaction
times (as given in the legend) for the (`0 = m0 = 0) initial statesn0 = 61 (a),
n0 = 63 (b),n0 = 65 (c),n0 = 67 (d), andn0 = 69 (e). An increase of the interac-
tion time leads to an overall increase of the slope of the ionization signal. Further-
more, local structures emerge and/or disappear, induced by avoided crossings in the
Floquet spectrum (see figure 4.2), at specific vales ofF .
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increase in time with locally (inF or n0) distinct rates, causing changes in the local
structures of the ionization signal, on time scales which reflect the distribution of the
Γj over several orders of magnitude.

As an example, figure 4.6 shows the time evolution of the ionization signals of
figure 4.3, fort = 128 · 2π/ω, . . . , 5015 · 2π/ω. Changing the interaction time by
a factor 39 obviously does not change the global trend of the five ionization curves,
apart from a global increase of the slope.

However, closer inspection of figure 4.6 reveals a change in the local structure of
the ionization signals. The pronounced local maximum in the yield of then0 = 63
state, aroundF = 2.3·10−9 a.u. att = 327·2π/ω, flattens out for longer interaction
times. This is caused by a faster decay of then0 = 63 state atF ' 2.6 · 10−9 a.u.
than atF ' 2.3 · 10−9 a.u. The faster decay atF ' 2.6 · 10−9 a.u. seems to
contradict the observation we made in the discussion of figure 4.2, i.e. the fact that
the ionization rate of the Floquet state with the largest contribution to then0 = 63
state reaches a maximum (Γj ' 4 · 10−9 a.u.) atF ' 2.3 · 10−9 a.u. However, for
long interaction times the two anticrossing states already decayed (e.g.,exp(−Γj ·
t) ' 9 · 10−3 for Γj ' 4 · 10−9 a.u. andt = 1026 · 2π/ω), and their contribution to
the representation of the initial staten0 = 63 become less important. On long time
scales, more stable states (withΓj < 10−9 a.u.) dominate the decay ofn0 = 63,
and the ionization probability increases slower than on short time scales.

While the maximum in then0 = 63 curve flattens out with increasing interaction
time, the opposite behavior is observed for then0 = 67 state atF = 1.35 · 10−9a.u.
(figure 4.6 (d)). Here, interaction timest > 500 · 2π/ω lead to the emergence of a
subthreshold peak atF = 1.35 · 10−9 a.u.

This variation of the local structure in the ionization signal due to a change of
the interaction time was recently experimentally observed in the study of (`0 =
m0 = 1 states of) lithium atoms by the Virginia group [49]. There (see figure 3(a)
of reference [49]), a similar situation occurred as we observe it in the temporal
evolution of the ionization curve for then0 = 61 state atF ' 2.2 · 10−9 a.u.,
and forn0 = 67 at F ' 1.8 · 10−9 a.u.: at short atom-field interaction times (in
the Virginia experiment att ≤ 115 · 2π/ω, in our results att . 600 · 2π/ω) the
ionization yield is essentially flat below threshold. For large interaction times (in
the Virginia experimentt = 1150 · 2π/ω, in our simulationt > 2000 · 2π/ω) an
additional ’shoulder’-like structure appears.

To finish this chapter, let us come back to the ionization probability as a function
of n0, for a fixed field amplitude, what we studied already in section 4.1.

In figure 4.7, where we display the time evolution ofPion vs. n0 (for F =
2.3 · 10−9 a.u.), we see that the distinct time evolution of different atomic initial
states (at a given field amplitude) induces a change in the local structures much as we
observed it in the temporal evolution ofPion vs.F . While, e.g., the local maximum
atn0 = 66, that is only hardly identified fort = 128 · 2π/ω, gets more pronounced
for longer interaction times, the local minimum atn0 = 70, for instance, gets less
pronounced for increasing interaction times. Whereas in these two examples only
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Figure 4.7: Temporal evolution of the ionization probability as a function of the
principal quantum numbern0 (`0 = m0 = 0), at fixed field amplitudeF =
2.3 · 10−9 a.u.. The distinct time evolution of different initial states leads to an
enhancement of some of the local structures already observed in figure 4.1 (e.g., the
pronounced local maximum atn0 = 63), and occasionally to the emergence of new
local structures, as the local maximum atn0 = 66

the difference between the ionization probability at the local extremum (n0 = 66
respectivelyn0 = 70) and the preceding local extremum (n0 = 64 respectively
n0 = 69) changes with increasing interaction time, we observe a different behavior
at the minimum atn0 = 67 (at, e.g.,t = 1026 · 2π/ω): The minimum gets more
pronounced fromt = 128 · 2π/ω to t = 3286 · 2π/ω, but att = 15023 · 2π/ω the
minimum is no more located atn0 = 67, but rather atn0 = 68. This means that for
each local structure there is a certain time scale when it appears most pronounced.
Once again, as for the change of the local structures ofPion vs. F under variation
of the interaction time, this can be understood from the ionization probability as a
weighted sum over the exponentialsexp(−Γjt). Different widthsΓj play a domi-
nant role on different time scalest, and the impact of these widths on the ionization
probability of a given initial state is determined by the weightwj which differs for
different states|n0, `0,m0〉. Thus, we observe a distinct time evolution ofPion for
different initial conditions (i.e.n0 or F ).

Studying the time dependence ofPion vs. F (figure 4.6) andPion vs. n0 (fig-
ure 4.1), we observe that also the 10% ionization threshold changes witht. While
this change (induced by local structures ofPion vs. n0 or F ) is in some cases only
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a small change to lower field amplitudes or principal quantum numbers, the emer-
gence of subthreshold peaks (e.g., atF ' 1.3 ·10−9 a.u. in figure 4.6 d) may induce
rather pronounced changes of the ionization threshold. Accordingly, we will also
observe time-dependent changes in the dependence of the threshold on the ’scaled’
frequency (see the succeeding chapter). Such changes were observed in the recent
experiment of the Virginia group [49], after earlier theoretical predictions [33, 38].
These (theoretical and experimental) observations, as well as our observations of the
change ofPion (vs. F , or vsn0) with the change oft, already show that (2.58) cre-
ates a complicated time dependence ofPion(t) involving multiple time scales, which
differs for different initial conditions (set byF andn0). As already mentioned, an
algebraic time dependence (for a sufficiently strong driving field) was already ob-
served, both in laboratory and in numerical experiments [86], and is nowadays in-
tensely discussed [79, 80, 84, 82, 83, 78]. In chapter 6 we will study this aspect in
more detail.





Chapter 5

(Scaled) Frequency dependence of
the ionization threshold

We now come to the central result of this thesis, the first numerically exact descrip-
tion of the ionization threshold of highly excited Rydberg states, covering essen-
tially the complete parameter space of typical laboratory experiments, without any
adjustable parameters. Since a large part of the experimental data as well as essen-
tially all theoretical model treatments so far dealt with atomic hydrogen, and given
the well-defined classical analogy for the driven two-body Coulomb problem, we
will therefore first compare our ab initio results on hydrogen to experimental data.
Afterwards, we will enter the discussion of the ionization dynamics of alkali Ryd-
berg states, which bears some unexpected surprises, as we will see in the sequel of
this chapter.

5.1 Atomic hydrogen

Numerical experiments on the ionization dynamics of atomic hydrogen in a broad
range of the scaled frequency were already performed in [33, 34, 38, 32]. However,
at that time, neither the available supercomputers were powerful enough nor was
there, more importantly, the necessary expertise on large scale parallel computing.
Consequently, these calculations were done either using a one-dimensional approx-
imation of the real atom [38], or by employing the scaling rules (2.19) and (2.20), to
’rescale’ results obtained in three-dimensional calculations on initial states around
n0 ' 20 to typical experimental quantum numbersn0 ' 60 [32, 34]. Here, we need
not resort to any approximations any more, and can use precisely the experimental
parameters of [20], i.e. a microwave frequencyω/2π = 36 GHz, and principal
quantum numbers of the initial state in the rangen0 = 46, . . . , 78, defining a multi-
photon process of the order44, . . . , 15.

As already mentioned in the previous chapter, for our calculations we chose
the experimental parameters of the Stony Brook group [20] instead of the parame-
ters of the Pittsburgh experiment [21], since fixing the laboratory frequencyω and
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Figure 5.1: Scaled ionization thresholdF0,10%(t) vs. scaled frequencyω0 of mi-
crowave driven atomic hydrogen: Three-dimensional numerical results obtained
at frequencyω/2π = 36 GHz for the initial states̀ 0 = m0 = 0 (stars) and
`0 = 1, m0 = 0 (open circles), with an atom-field interaction timet = 327 · 2π/ω
(a), andt = 128 ·2π/ω (b). The laboratory results (squares, [20]) shown in (a) were
obtained at exactly the same frequencyω/2π = 36 GHz and atom-field interaction
time, but the atomic initial state was a microcannonical mixture of differentm0 and
`0 states on then0 energy shell. The experimental results shown in (b) (filled cir-
cles, [21]) were obtained at frequencies in the rangeω/2π = 12.4, . . . , 18 GHz,
and with interaction timest = 93, . . . , 135 · 2π/ω. Furthermore, in the laboratory
experiment [21] a quasi one-dimensional extremal parabolic state was chosen as the
initial state.
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changingn0 is more convenient for our numerical set-up than changing bothω and
n0, as it was done in [21]. However, as we want to compare the ionization thresh-
olds of atomic hydrogen with the thresholds of low angular momentum alkali states
later on, we employ a well-defined initial state|n0, `0,m0 = 0〉 with `0 = 0 and
`0 = 1 also for our hydrogen calculations. This is in contrast to the experimental
set-up [20, 31] where the initial state was a microcannonical mixture ofm and`
states in then0-energy shell. As noted already in the previous chapter, in the Pitts-
burgh experiments [21], on the other hand, well-defined atomic initial states (i.e.
extremal parabolic states, a superposition of different`0 states) were populated by
superimposing a weak static electric field on the microwave.

In figure 5.1 we display our numerical results for the scaled 10% ionization
thresholdF0,10% as a function of the scaled frequencyω0, together with the lab-
oratory results of the groups in Stony Brook (a), and Pittsburgh (b), respectively.
Precisely as in both laboratories, an atom-field interaction timet = 327 · 2π/ω (=
9.1 ns) was employed in (a), while a shorter pulset = 128 ·2π/ω was used in (b).(1)

The ionization thresholds were extracted from ionization signals as depicted in fig-
ure 4.3, for each value ofn0. In contrast to our Floquet approach that implies a flat
pulse (with constant field amplitudeF ) of durationt, in both laboratory set-ups a
finite switching time of the field, given by approximately50 field-cycles in [20], and
determined by a half-sine pulse in [21] was used.

The overall agreement of the numerical data with the experimental results of
both groups is very satisfactory. The scaled threshold follows the theory outlined
in section 1.1.1 (see figure 1.1). We only briefly summarize the major observations
here:

• For low scaled frequenciesω0 . 0.8, . . . , 0.86, the quantum dynamics fol-
lows the classical prediction, and the scaled ionization thresholdF0,10%(ω0)
decreases with increasing frequency.

• For larger scaled frequenciesω0 & 0.86, . . . , 0.8, the classically chaotic ion-
ization is suppressed by quantum mechanical interference processes – known
as dynamical localization [24] – andF0,10%(t) increases withω0.

• On top of the global behavior ofF0,10%(t), there are local structures, notably
a maximum nearω0 ' 1.2, and – less pronounced – close toω0 ' 1.9. These
are signatures of the classical stability islands induced by resonant driving of
the atom, i.e., atω0 = 1, 2, 3 (the exact position of these maxima, however,
varies a little bit, as can be seen in the figure, fromω0 ' 1.05 in the Pittsburgh
experiment toω0 ' 1.0, . . . , 1.3 in the Stony Brook experiment [20, 33]).

Apart from the overall agreement of the numerical and the experimental results,
there are also some deviations between both data sets. Firstly, the laboratory results

(1)In the laboratory set-up [21] the interaction time actually varied between93 and135 field cycles,
as the frequency was variedω/2π = 12.4, . . . , 18 GHz and the laboratory interaction timet = 7.5 ns
was kept constant.
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of both experiments show globally slightly lower thresholds as compared to our nu-
merical results, for frequenciesω0 & 1.3 (in (a), respectively forω0 & 1.5 in (b)).
This can be attributed to the difference in the initial states chosen in our numerical
and in the laboratory experiments. Already from the comparison of the numerical
results for`0 = 0 and`0 = 1, it is apparent that the exact value of the ionization
threshold depends on the choice of the angular momentum of the initial state. The
comparison of the numerical results shows that the`0 = 0 states are more stable
than thè 0 = 1 states for all scaled frequenciesω0 = 0.5, . . . , 2. Such behavior –
i.e. an increase of the stability for decreasing angular momentum – was observed
already before in calculations on moderately excited hydrogen atoms [33] where a
weak dependence ofF0,10% on the angular momentum was found with a minimum at
intermediate angular momenta. Thus, we expect an even better global agreement be-
tween results of our numerical and the laboratory experiment, if precisely the same
initial atomic state is populated. However, even with the population of the identical
initial state, our numerical data may still slightly deviate from the laboratory results
locally, since we employ a sudden switching of the microwave field, in contrast to
the finite switching time of the laboratory experiments. As already noted in the pre-
ceding chapter, a finite switching time may provide for the contribution of only a
reduced number of atom-field eigenstates to the ionization probability as compared
to the sudden approximation. This changes also the local structures in the ionization
probability, and hence also the local structures inF0,10% vs. ω0. The pronounced
local minimum atω0 ' 1.4 in the Stony Brook experiment (see figure 5.1 (a)), for
instance, can most probably be attributed to such a pulse-induced effect [33].

5.2 Alkali atoms

5.2.1 Lithium vs. hydrogen – three frequency regimes in the ionization
dynamics

To understand the influence of a non-hydrogenic core on the ionization dynamics
of periodically driven Rydberg states, we start out with lithium atoms exposed to a
microwave field. Frequencyω, principal quantum number of the initial staten0, and
the interaction timet remain fixed by the values employed in [20] and in our nu-
merical treatment of atomic hydrogen above. The angular momentum of the initial
states was chosen as in our hydrogen calculations,`0 = 0 and`0 = 1 (with m = 0).

In figure 5.2.1 we display the results, the ’scaled’ 10% ionization threshold
as a function of the ’scaled’ frequency of our numerical experiment on lithium
|n0, `0 = m0 = 0〉 states together with experimental (a) and our numerical (b)
results obtained on atomic hydrogen (in figure 5.2.1 (b) we also display our`0 = 1
results for lithium and hydrogen). Since the (laboratory) hydrogen experiments per-
formed withω/2π = 36 GHz [20] only considered principal quantum numbers
n0 = 45, . . . 80, we additionally reproduce laboratory results obtained on atomic
hydrogen withω/2π = 9.92 GHz andn0 = 32, . . . , 90, which cover the regime of
low scaled frequenciesω0 = 0.05, . . . , 1.1.
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Figure 5.2: Calculated ’scaled’ threshold fieldsn4
0 · F10% of lithium atoms (̀0 =

m0 = 0 states: filled diamonds, and̀0 = 1, m0 = 0 states: crosses) together
with experimentally measured scaled thresholds of atomic hydrogen (squares, [20],
and open triangles, [31]) in (a), and with numerically observed hydrogen thresholds
(stars,`0 = m0 = 0 states, and open circles,`0 = 1, m0 = 0 states) in (b).
The parameters for the calculations on lithium, for the experiment [20] and for the
calculations on atomic hydrogen are exactly the same, i.e.,ω/2π = 36 GHz and
t = 9.1 ns = 327 · 2π/ω. Since the experiment [20] only covers the frequency
regimeω0 > 0.5, we also display the experimentally measured thresholds of [31] (in
(a), open triangles) that were obtained withω/2π = 9.95 GHz, andn0 = 32, . . . , 90
(corresponding toω0 = 0.05, . . . , 1.1)
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Since the only difference between theω/2π = 36 GHz laboratory and numer-
ical experiment on hydrogen, on the one hand, and the lithium calculations, on the
other hand, is the quantum defect, we can present both the hydrogen and the lithium
results in terms of scaled variables as defined in section 2.2. Therefore, such a plot
allows for the unambiguous identification of the core-induced differences and the
similarities in the ionization dynamics of non-hydrogenic Rydberg states as com-
pared to the driven two-body Coulomb problem realized by atomic hydrogen.

A comparison of the (numerical and laboratory) hydrogen to the lithium results
clearly suggests a separation of the dynamics in three regimes:

(I) In regime (I),n3
0 · ω > 0.86 (as suggested by a comparison of our numerical

lithium data and the laboratory [20] hydrogen thresholds, respectivelyn3
0 ·ω >

0.8 as suggested by a comparison of our numerical thresholds of lithium and
hydrogen), the ’scaled’ threshold of lithium follows the global trend of the
hydrogenic curve. In particular, the scaled thresholds of both species exhibit
local maxima atn3

0 · ω ' 1, . . . , 1.3 andn3
0 · ω ' 2, . . . , 2.2.

(II) For ’scaled’ frequencies0.4 . n3
0 · ω < 0.8, . . . , 0.86 (regime (II)) there is a

dramatic difference between the hydrogen and the lithium data: whereas the
hydrogen curve follows the classical ionization threshold and increases with
decreasingn3

0 · ω, it decreases in the case of lithium.

(III) The ’scaled’ lithium threshold is essentiallyn3
0 ·ω-independent in regime (III),

i.e., for n3
0 · ω . 0.4, while the hydrogen threshold follows the classical

behavior. This leads to up to 13 times larger scaled (laboratory) thresholds for
hydrogen as compared to lithium.

The distinct dependence of lithium and hydrogen thresholds on the ’scaled’ fre-
quency in these three regimes can be explained by inspection of the level structure
of unperturbed lithium and hydrogen atoms, as sketched in figure 5.3:

5.2.1.1 Regime (I):n3
0 · ω > 0.8

In regime (I) – forn3
0 ·ω > 0.8, . . . , 0.86 – the external frequency exceeds or is com-

parable to the splitting between adjacent unperturbed hydrogen energy levels, which
coincides with the splitting∆Hyd between the unperturbed hydrogenic part (i.e. the
high angular momentum states, with vanishing quantum defects) of adjacent lithium
manifolds. Here, the external field can efficiently mix hydrogenic (emanating from
unperturbed levels with̀0 > 1) and non-hydrogenic (emanating from low angu-
lar momentum states) energy levels, and the hydrogenic character of the ionization
process prevails.

Both, hydrogen and lithium atoms evince dynamical localization, i.e. the sup-
pression of a diffusive ionization due to quantum interference effects in this regime.
The emergence of dynamical localization manifests in the overall increase of the
’scaled’ ionization threshold with increasing ’scaled’ frequency [24, 21].
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Figure 5.3: Hydrogenic (full lines) and non-hydrogenic (dotted lines) energy levels
of the unperturbed lithium atom, with a detail of the Rydberg progression on the
right. In alkali atoms, the angular momentum degeneracy of the hydrogen spec-
trum is lifted by the multi-electron core. The latter induces non-vanishing quantum
defectsδ` [113] of the low angular momentum states, which lead to the apparent
energy shift of the non-hydrogenic with respect to the hydrogenic eigenstates. The
relevant frequency scales for the ionization process, which define the intervals (I),
(II), and (III) in figure 5.2.1, are∆Hyd(n0), the spacing of adjacent hydrogenic man-
ifolds, and∆Alk(n0), the energy splitting corresponding to the first dipole-allowed
upward transition leaving the non-hydrogenic initial state of the atom.

On top of the global increase of the ’scaled’ ionization threshold we can detect
local maxima of the ’scaled’ lithium threshold, similar to those already observed in
the numerical and laboratory thresholds of hydrogen. However, the absolute values
of the lithium ionization threshold at the maxima deviate a little bit from that of the
(numerically obtained) hydrogen threshold, e.g.n4

0 · F10% ' 0.041 (lithium ` = 0
states) vs.n4

0 · F10% ' 0.05 (hydrogen` = 0 states) at the principle resonance,
but in both cases the maximum is similarly pronounced as the difference between
the local maximum and the succeeding minimum –n4

0 · F10% ' 0.0305 (lithium
` = 0 states) vs.n4

0 · F10% ' 0.042 (hydrogen` = 0 states) – coincides. For
atomic hydrogen, these maxima are caused by a resonance between the external fre-
quency and the Rydberg electron’s Kepler frequency which coincides with the local
energy spacing in the hydrogenic Rydberg progression. Such non-linear resonances
generate regular islands in the classical (mixed regular-chaotic) phase space of the
periodically driven (classical) hydrogen atom and induce also a local stability of the
quantum-mechanical atom. Thus, these stable regions in the dynamics of the driven
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hydrogen atom are a direct consequence of the classical phase space structure of the
driven two-body Coulomb problem. The appearance of these maxima in the lithium
threshold indicates that these non-linear resonances provide for a local stability even
in the alkali dynamics, where the Coulomb symmetry is broken already in the unper-
turbed alkali atom (which manifests in the fact that the Runge-Lenz vector [168] –
which is the additional constant of motion for the Coulomb problem, describing the
position of the unperturbed Kepler ellipse – is no more conserved in the presence of
a non-Coulombic potential). In both atomic species – atomic hydrogen and lithium –
the relevant frequency scale is given by the splitting between the hydrogenic part of
then0 and then0 + 1 manifolds. The possibility to drive this frequency (quasi-) res-
onantly dominates both the alkali and the hydrogen dynamics. Thus, in this regime
the ionization dynamics of driven alkali atoms is well-described by the dynamics of
driven atomic hydrogen. More precisely, here, the transition to chaotic transport in
the classical dynamics of atomic hydrogen governs also then3

0 · ω dependence of
alkali states, despite their manifestly non-classical character, due to the scattering of
the Rydberg electron off the multi-particle core [58, 169].

The dominance of the hydrogenic phase space structure for frequenciesn3
0 ·

ω > 0.86 agrees with earlier studies on moderately excited microwave driven al-
kali atoms. In these studies [170, 108] a prominent structure in the spectrum of
driven hydrogen atoms, which is directly related to the symmetry properties of the
Coulomb system [106], was found also in the lithium spectrum (note that these stud-
ies were performed below the ionization threshold, i.e., in the regime where it is still
appropriate to speak of the symmetry properties of the atom, which are not yet de-
stroyed by the external field.) Despite the presence of the non-hydrogenic core –
which causes a detachment of the states emanating from the low-angular momen-
tum states (with a non-vanishing quantum defect) from the hydrogenic part of the
manifold – both, the ionization rates and (the real parts of) the quasi-energies, ema-
nating from the hydrogenic part of the alkali manifold agree well with those of the
driven hydrogen atom. The core induces only a small shift of the real parts of the
quasi-energies relative to the energies of the driven hydrogen atom.

5.2.1.2 Regime (II):∆Hyd < ω < ∆Alk

In regime (II) the situation changes significantly. This regime corresponds to the fre-
quency window∆Hyd < ω < ∆Alk, i.e., here the external frequency is smaller than
the splitting between adjacent unperturbed hydrogenic energy levels∆Hyd, while
it is larger than the next possible dipole transition∆Alk leaving the initial atomic
state. This frequency cannot drive a one-photon transition between the unperturbed
hydrogen levels, while it can strongly couple the non-hydrogenic alkali initial state
to the hydrogenic manifold. Thus, an efficient mixing of non-hydrogenic and hy-
drogenic energy levels is still possible, for the ionization dynamics of alkali atoms
there is no qualitative change with respect to regime (I), andn4

0 ·F10% increases with
increasingn3

0 · ω.
In contrast to the quantum dynamics following the classical predictions in the
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case of hydrogen, the alkali threshold shows the signature of dynamical localization,
as in regime (I), without, however, any classical counterpart.

5.2.1.3 Regime (III):ω < ∆Alk

Finally, for frequenciesω < ∆Alk, i.e., in regime (III) where the frequency is
smaller than the next dipole allowed transition leaving the initial atomic state, even
the alkali spectrum does not offer any possible one-photon dipole transition that can
be driven efficiently. Thus, only higher order processes can activate the transport
of the electronic population to higher energies. In figure 5.2.1, the transition from
high to low ’scaled’ frequencies is reflected by a transition from a decreasing to
an essentiallyn3

0 ·ω-independent ’scaled’ threshold, when the frequency falls below
n3

0 ·ω ' 0.4 . The ’scaled’ frequencyn3
0 ·ω ' 0.4 corresponds ton0 = 42, where the

external frequency equals1.13 times the splitting between the unperturbed`0 = 0
and thè 0 = 1 state. Forn0 = 41, the frequencyω equals1.05 times thè 0 = 0 –
`0 = 1 splitting, while forn0 < 41 the splitting between the unperturbed`0 = 0 and
the`0 = 1 states exceeds the external frequency, and here a one-photon transition is
impossible.

The transition from frequenciesω which are small compared to∆alk to high
’scaled’ frequencies, i.e. the transition from the low ’scaled’ frequency regime (III)
to the high ’scaled’ frequency regimes of dynamical localization (II) and (I), can be
extracted most clearly from the ’unscaled’ representation in figure 5.4. It becomes
clear from this plot that the apparentn3

0 · ω independence of the ’scaled’ threshold
in regime (III) as suggested in figure 5.2.1 is really a feature of the representation of
the data in ’scaled’ units, while in laboratory units the threshold indeed does depend
on the principal quantum numbern0. In the low ’scaled’ frequency regime, i.e. for
principal quantum numbersn0 ≤ 42, there is a steep decrease of the laboratory
value of the threshold amplitude with increasingn0. This decrease changes abruptly
atn0 = 42 to a weaker fall-off ofF10% with n0. For largern0, the overall slope of
the ’unscaled’ alkali threshold does not change much, and finally, forn0 ≥ 55, also
the (numerical and laboratory) hydrogen thresholds follow the alkali threshold, in
agreement with the observations for regime (I) depicted above.

With the ’unscaled’ representation of the data, we can now draw a connection be-
tween the different approaches for the understanding of the microwave ionization of
alkali atoms as they were sketched in section 1.1.2. For this purpose we plotted also
the functions(3.7n5

0)−1, (3n5
0)−1 and(90n4

0)−1 in figure 5.4. While the function
(90n4

0)−1 is drawn as an approximate fit to our data (forn0 = 28, . . . , 42), the func-
tions (3.7n5

0)−1 [53, 46] and(3n5
0)−1 [171, 47, 111] are the ionization thresholds

proposed by the Virginia group as sketched in section 1.1.2.2. Since the difference
between(90n4

0)−1 and (3n5
0)−1 is only small forn0 ' 30, it is unclear whether

our results can be approximated by the Virginia thresholds, but it is consistent with
figure 5.4 that an−5

0 dependence is the limiting curve for the lithium thresholds in
this regime. Hence, we can now verify the assumption of ann−5

0 dependence of the
alkali ionization thresholds, as proposed by the Virginia group. However, it is clear
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Figure 5.4: ’Unscaled’ representation of the data shown in figure 5.2.1, on a lin-
ear (above) and on a double-logarithmic plot (below). For large principal quantum
numbersn0 > 54, the ionization threshold of lithium (filled diamonds) roughly
coincides with the hydrogen thresholds (stars: numerical results, and dashed line:
experimental results [20]). These quantum numbers determine regime (I) in fig-
ure 5.2.1, regime (II) is defined by quantum numbersn0 = 42, . . . , 54. Quantum
numbersn0 < 42 determine the low ’scaled’ frequency regime (III). Here the thresh-
old follows a trend between1/(3.7 ·n5

0) (thin dashed line) and1/(90 ·n4
0) (full line).

The dash-dotted line follows a law1/(3 · n5
0). Bothn−5

0 curves determine the ion-
ization threshold proposed by the Virginia group [53, 46, 171, 111].
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Figure 5.5: Shannon width of microwave driven lithium atoms, prepared in the
initial states |n0, `0 = m0 = 0〉, evaluated atF10%(t = 327 · 2π/ω), for
ω/2π = 36 GHz. The width functionW is plotted as a function of the principal
quantum number of the atomic initial staten0 (lower abscissa) and of the ’scaled’
frequencyn3

0 · ω (abscissa on top). The frequency is chosen as in 5.2.1.

that such a dependence is only true in regime (III), i.e. for frequenciesω smaller than
the energy splitting between the atomic initial state and the next state accessible via
a dipole transition, while for largern0 the atom shows the signature of dynamical
localization as observed by the Munich group.

5.2.2 The Shannon width

Before presenting the results of our numerical experiment on rubidium atoms, we
want to give account for another means to discriminate the dynamics in the low
’scaled’ frequency regime (III) from the dynamics in the regimes (II) and (I) of dy-
namical localization. Following the considerations about the onset of the ionization
process – i.e. the Virginia proposal (see section 1.1.2.2) leading to an−5

0 dependence
in regime (III), vs. ionization in the presence of dynamical localization in regimes
(II) and (I) – the number of Floquet states involved in the dynamics should differ
qualitatively in the different regimes. In regime (III), higher order multi-photon
resonances induce a transport of the electronic population via some Landau-Zener
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transitions to higher lying quasi-energy states, which ionize at a much weaker field
amplitude (as can be seen in figure 5.4). In this regime there is only a small number
of possible paths leading to ionization, and hence only a few states are involved in
the ionization process. In the regimes (II) and (I) on the other hand, the external fre-
quency can couple many atomic bound and continuum states quasi resonantly and
hence the electronic density spreads over many Floquet states. Thus, we expect less
states participating in the ionization process in regime (III) than in the regimes (I)
and (II). As a measure for the number of states partaking in the ionization process,
and to quantify the difference between ’few’ and ’many’ states more precisely, we
calculated the Shannon width (2.61) at the 10%-ionization threshold for each initial
state. The result is shown in figure 5.5.

Although the ionization probability after327 field cycles is the same for all
states, the Shannon width varies strongly. In particular, we see a significant differ-
ence between regime (III) and the regimes (II) and (I) of dynamical localization. As
explained above, in regime (III), the splitting between adjacent unperturbed (alkali)
energy levels∆alk is larger than the photon energyω, what prevents an efficient
coupling of many states, and the initial state extends over only a small number of
atom-field eigenstates.(2)

The transition from the low ’scaled’ frequency regime to regime (II) is visible
as a steep increase of the Shannon width as soon as the frequency exceeds∆Alk,
i.e. exactly forn0 > 42. It further exhibits local maxima aroundn3

0 · ω = 1 and
n3

0 · ω = 2, where the frequency is in resonance with the splitting between adjacent
hydrogen-like manifolds.

Although the Shannon width is in principle basis dependent, similar plots as
figure 5.5 are also feasible in laboratory experiments that allow for measuring the
final state distribution of the electronic population over the bound states. This can
be done, for instance, in the recent experiments of the Virginia group [49]. These
experiments should not only measure a difference in the slope ofn4

0 · F10% as a
function ofn3

0 ·ω in the low (regime (III)) and the high (regime (II) and (I)) ’scaled’
frequency regimes, but also a qualitative difference in the number of states over
which the electronic density spreads after the interaction timet at the field amplitude
inducing ten percent ionization probability. Hence, a marked transition between the
different regimes (i.e. from (III) to (II)) can immediately be measured not only by
means of the ionization probability, but also by the final state distribution in state-
of-the-art experiments.

5.2.3 Rubidium

Understanding the difference between the hydrogen and the lithium thresholds, we
will now address the question whether the behavior of lithium atoms under exter-

(2)Note that although in regime (III) only a small number – between 8 and 25 – of atom-field eigen-
states contribute to the representation of the initial state, this does not imply that this is a perturbative
regime, since in this regime the minimum number of photons to reach the effective continuum varies
from 44 to 112, what makes a perturbative description at least questionable, and practically impossible.
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nal driving is generic for singly excited Rydberg atoms. The specific feature of
lithium atoms is the presence of only one single large quantum defect for` = 0,
while already the splitting between the` = 1 and thè > 1 states can be neglected
compared to the splitting induced by an external field that produces an ionization
probability of a few per cent. Moving downwards in the periodic table of the el-
ements to the heavier alkali atoms, the number of non-vanishing quantum defects
is increasing: In sodium atoms, the` = 0 and` = 1 quantum defects have to be
considered as non-vanishing, whereas in potassium and rubidium there are already
three (̀ = 0, ` = 1, ` = 2) non-vanishing quantum defects (see table 2.3.1). To
study the influence of multiple quantum defects, we shall now employ rubidium
(m0 = 0) atoms, for which the signature of dynamical localization was already
observed experimentally, with, however, strongly enhanced ionization rates as com-
pared to atomic hydrogen [42, 9, 172].

For rubidium we performed two sets of numerical experiments: For the sake
of comparison with the numerical (lithium and hydrogen) results presented above,
in the first set we employed exactly the same parameters as already used for hy-
drogen and lithium, i.e. a laboratory frequencyω/2π = 36 GHz, with principal
quantum numbersn0 = 38, . . . , 66. In addition, we performed a simulation with
the laboratory parameters used in the experiments on microwave driven rubidium
atoms [42], more precisely with the frequencyω/2π = 8.87 GHz, and principal
quantum numbers in the rangen = 59, . . . , 80. The atom-field interaction time
in both “experiments” (i.e. the36 GHz and the8.87 GHZ simulation) was set to
t = 327 · 2π/ω,(3) and the angular momentum of the initial state was chosen as
`0 = 0 and`0 = 1, respectively.

In figure 5.6 we display the results of both numerical experiments, the ’scaled’
ionization thresholdn4

0 · F10%(t) as a function of the ’scaled’ frequencyn3
0 · ω.

The upper plot compares the data of all our numerical experiments performed at
frequencyω/2π = 36 GHz: the (̀ 0 = 0) thresholds of hydrogen and lithium atoms,
together with thresholds of̀0 = 0 and`0 = 1 states of rubidium. In the lower plot,
we compare the results of both rubidium simulations, atω/2π = 36 GHz and at
ω/2π = 8.87 GHz, respectively, covering essentially the same interval of ’scaled’
frequencies.

On a first glance, the lithium and the rubidium curves in the upper plot look
quite similar, i.e. also rubidium shows the separation in the three frequency regimes
we are already familiar with:

(I) For frequenciesn3
0 · ω > 0.8 . . . 0.86 – in regime (I), which is only partially

covered by our numerical experiment on rubidium in theω/2π = 36 GHz,

(3)This is in contrast to the laboratory experiments on rubidium [42, 9] where an atom-field interac-
tion timet = 5 µs was employed. However, such an interaction time corresponds tot = 2 · 1011 a.u.,
and, hence, to obtain reliable results for the ionization threshold, the error of the widthsΓj has to be
smaller than∼ 10−14 a.u., what is beyond the accuracy of our numerical results (limited by finite pre-
cision arithmetics). To achieve such accuracy employing a higher precision in the code (i.e. a higher
precision than double precision) would eventually help, however, this would also require much larger
memory (which is a critical resource).
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Figure 5.6: Upper plot: ’Scaled’ ionization threshold vs. ’scaled’ frequency for
rubidium atoms initially prepared in the states|n0, `0 = m0 = 0〉 (filled green
circles), and|n0, `0 = 1,m0 = 0〉 (black x) together with the results for initial
states|n0, `0 = 0,m0 = 0〉 of lithium (filled black diamonds) and of hydrogen
(stars). Principal quantum numbers, frequency and interaction time are the same in
all simulations, i.e.ω/2π = 36 GHz, andt = 327 · 2π/ω. Lower plot: ’Scaled’
ionization threshold vs. ’scaled’ frequency of rubidium atoms, obtained with the
same parameters as in the upper plot (filled circles:|n0, `0 = m0 = 0〉; x: |n0, `0 =
1,m0 = 0〉), compared to results forω/2π = 8.87 GHz, n0 = 59, . . . , 80, and
t = 327 · 2π/ω. Also for the lower frequency, results for`0 = 0 (filled green
diamonds) and for̀0 = 1 (black crosses) are shown.
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and which is not at all covered in theω/2π = 8.87 GHz simulation – the
’scaled’ rubidium threshold follows the lithium and the hydrogen results, both
qualitatively and quantitatively. In particular, we can also observe a local
maximum close to the principal non-linear resonance in the classical phase
space of the driven Coulomb system, more precisely atn3

0 · ω ' 1.3, cor-
responding ton0 = 62. In contrast to the lithium and the hydrogen data,
however, this maximum is less pronounced in the case of rubidium. We at-
tribute this to the difference in the level structure of unperturbed rubidium and
lithium (or hydrogen) atoms due to the additional non-vanishing quantum de-
fects. These anticrossings in the spectrum of the driven atom that induce the
local minimum atn3

0 · ω ' 1.3 become less important in the representation
of the `0 = 0, 1 initial states of rubidium atoms and we do only observe a
less pronounced maximum in the ’scaled’ rubidium threshold as compared to
lithium or hydrogen.

(II) In regime (II) (0.4 . n3
0 · ω < 0.86), the agreement between lithium and

rubidium thresholds is qualitatively and quantitatively perfect forω/2π =
36 GHz (displayed in a), while there is a small deviation between the lithium
(ω/2π = 36 GHz) and the rubidium (ω/2π = 8.87 GHz) data displayed
in (b), i.e. the8.87 GHz results show slightly lower thresholds. However,
this does not imply that the hydrogenic scaling rules are not applicable in this
regime. On the contrary, the perfect qualitative agreement of the8.87 GHz
and the36 GHz data strongly supports the validity of the scaling rules for
alkali atoms. Note that even for atomic hydrogen – where the scaling rules
are applicable [31] – a similar deviation can be observed when laboratory re-
sults forn0 ' 60 are compared with numerical results forn0 ' 23 [34, 33].
This can be understood already from the statistical theory of dynamical local-
ization [24], which introduces a ’scaled’ delocalization border that depends
not only on the ’scaled’ frequency, but also on the principal quantum num-
bern0 [33], as it was already noted in section 1.1.1. Thus the delocalization
border decreases for increasingn0 (and fixed ’scaled’ frequency), and there-
fore also the ’scaled’ ionization threshold decreases for increasingn0 in the
regime of dynamical localization. Note that such effect can be attributed to the
finite size of Planck’s constant~, as already mentioned earlier (see footnote
on page 5).

(III) Finally, for low ’scaled’ frequencies – in regime (III) – the ’scaled’ threshold
is nearly flat, i.e. essentially independent of the ’scaled’ frequency. Again,
theω/2π = 36 GHz rubidium data agree well with the lithium results. The
ω/2π = 8.87 GHz data, however, show the transition from (III) to (II) at a
slightly lower ’scaled’ frequency (n3

0 · ω ' 0.37 vs. n3
0 · ω ' 0.42), and – as

in regime (II) – exhibit slightly lower thresholds than the36 GHz data.

Yet, a closer look to the transition from the low ’scaled’ frequency (III) to the high
’scaled’ frequency regime (II), together with the attempt to interpret the transition
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from regime (III) to regime (II), reveals some differences between the rubidium and
the lithium thresholds.

5.2.3.1 Modifications of the transition from frequency regime (II) to (III) in
the presence of multiple quantum defects

For a better identification of the different transitions between the frequency regimes
(II) and (III), we present the data of figure 5.6 in ’unscaled’ units (ionization thresh-
old vs. principal quantum number of the initial state) in figure 5.7. Again, the
upper plot displays theω/2π = 36 GHz data for hydrogen, lithium, and rubid-
ium `0 = 0 states, and for rubidium̀0 = 1 states. The lower plot displays the
ω/2π = 8.87 GHz results for the rubidium̀0 = 0 and`0 = 1 states.

As already observed in the last section, microwave driven lithium atoms show a
relatively clear transition from regime (III) to (II) atn0 ' 42, from a dependence
betweenn−4

0 ton−5
0 for n0 below42, to a manifestly smaller slope forn0 > 42. For

the`0 = 0 and`0 = 1 states of rubidium, on the other hand, we can also observe a
dependence betweenn−4

0 andn−5
0 for low n0. However, there is no abrupt change to

a smaller slope at a precise value ofn0, but rather a smooth transition to regime (II)
betweenn0 ' 40 andn0 ' 46. The same scenario is also observed in the8.87 GHz
rubidium data, where thè0 = 0 and`0 = 1 thresholds start to deviate from the
approximaten−4

0 orn−5
0 dependence already atn0 ' 65, but – much as the36 GHz

data – exhibit a rather smooth transition to a lithium-liken0 dependence in regime
(II), which is not reached before approximatelyn0 = 70. This is in slight disaccord
with the rules which we formulated in the discussion of our lithium results for the
transition from regime (III) to (II), according to which the slope of the36 GHz
threshold should change atn0 = 47, corresponding toEn0=47,`0=1−En0=47,`0=0 '
2π · 36 GHz (while the transition in the8.87 GHz data is expected atn0 = 74,
corresponding toEn0=74,`0=1 − En0=74,`0=0 ' 2π · 8.87 GHz).

To understand the apparent deviation of then0-dependence of the rubidium
thresholds with respect to the lithium behavior, we define the function

D`→`+1
atom (n) =

−1

2(n′−δ`+1,atom)2 − −1

2(n−δ`,atom)2

ω
, (5.1)

with atom = Li, Na, K, Rb, and n′ = n or n− 1.

It is clear thatD`→`+1
atom (n) expresses the energy difference between the unperturbed

` state and the closest unperturbed` + 1 state (which potentially has the principal
quantum numbern − 1, e.g. for thè = 1 → 2 transition in rubidium, since the
integer parts of the relevant quantum defects may differ by unity in the cases consid-
ered here, see table 2.3.1) normalized by the frequencyω. In figure 5.8 we display
the function (5.1) as a function ofn0 for lithium (a) and rubidium ((b) and (c)). Fol-
lowing the (lithium) rules for the transition from (III) to (II),D`0→`0+1 = 1 should
indicate the quantum numbern0 where the transition from regime (III) to (II) oc-
curs. Comparison of figures 5.8(a) and 5.2.1 shows that this prediction fits well for
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Figure 5.7: ’Unscaled’ representation of the 10% ionization thresholds of figure 5.6.
In the upper plot, the results on hydrogen (stars), lithium (small filled black dia-
monds), and rubidium|n0, `0 = m0 = 0〉 states (filled green circles), as well as on
rubidium |n0, `0 = 1,m0 = 0〉 states (black x) are shown. All these results were
obtained forω/2π = 36 GHz. In the lower plot, we display results on rubidium
|n0, `0 = m0 = 0〉 (filled green diamonds) and|n0, `0 = 1,m0 = 0〉 states (black
crosses) obtained forω/2π = 8.87 GHz. In both plots the full (dashed) lines have a
slope∼ n−5

0 (∼ n−4
0 ).
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lithium, sinceD0→1
Li = 1 betweenn0 = 40 andn0 = 41 (in agreement with the

transition occurring at this quantum numbers in figure 5.2.1).
For rubidium, however, the situation changes significantly, as we learn from fig-

ure 5.8 (b) and (c), where we plottedD`0→`0+1
Rb for the transitions̀ 0 = 0 → 1,

`0 = 1 → 2, and`0 = 2 → 3 (for ω/2π = 36 GHz (b), andω/2π = 8.87 GHz
(c)). In (b) D0→1

Rb intersects the functionD = 1 close ton0 = 47, giving rise
to the assumption that in rubidium (initial angular momentum`0 = 0) the transi-
tion from (III) to (II) should take place atn0 ' 47. However, it is the transition
`0 = 1 → 2 that plays the important role, sinceD1→2

Rb = 1 betweenn0 = 40 and
n0 = 41. At this quantum number we observe a deviation from the lithium-like trend
in regime (III), i.e. this value defines the quantum number where the smooth tran-
sition to regime (II) starts. This indicates that the possibility to drive the transition
`0 = 1→ 2 resonantly is already sufficient to change the character of the ionization
process, even for the initial state|n0, `0 = 0,m0 = 0〉, which a priori remains unaf-
fected by this coupling. The reason for this deviation from the lithium rules is that
the external field is strong enough to couple low angular momentum states already
below threshold, thus leading to the importance ofD1→2

Rb . D0→1
Rb plays another role:

it approximates the quantum number where the smooth transition from regime (III)
to regime (II) is completed. In the specific case of the upper plot in figure 5.7, this
is the quantum numbern0 ' 46, for which we observe a lithium-like trend of the
rubidium threshold (in agreement withD0→1

Rb = 1 at n0 ' 47). Since the low-
angular momentum states are efficiently coupled already below threshold, the same
arguments are valid for atomic initial states with`0 = 1. Again,D1→2

Rb = 1 marks
the quantum number where the transition between regimes (III) and (II) starts, and
D1→0

Rb = 1 gives the quantum number which define the upper edge of the transition
region.

We observe the same situation for the8.87 GHz data in figure 5.8(c). Here, the
transition from low to high ’scaled’ frequencies approximately starts atn0 = 65, in
rough agreement withD1→2

Rb = 1 at n0 ' 63, while the transition is completed at
n0 ' 70, again in rough agreement withD0→1

Rb = 1 atn0 ' 74.

5.3 Does the alkali ionization dynamics obey scaling rules?

In section 2.2, we noted that there are a priori no scaling rules for the dynamics of
driven alkali atoms, as the size of the atomic core introduces a finite length scale.
Only now, with the results of our numerical experiments on lithium, rubidium, and
on hydrogen atoms, we cana posterioriassert that there are indeed scaling rules for
the dynamics of periodically driven singly excited Rydberg atoms. These scaling
rules, however, differ from the semi-empirical scaling rules proposed by the Munich
group that were mentioned in the introduction. The picture suggested by our data is
the following:

1. Regime (I): By virtue of (2.19) and (2.20), all alkali and hydrogen thresh-
olds are mapped on each other, for frequenciesn3

0 · ω & 0.86. Classical
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Figure 5.8: Splitting of adjacent, unperturbed, non-hydrogenic alkali energy levels
as defined by (5.1), normalized to the driving frequenciesω = 2π · 36 GHz (in
(a) and (b)) and byω = 2π · 8.87 GHz (in (c)). In (a) we displayD0→1

Li (n0), in
(b) the functionsD0→1

Rb (n0) (dashed line),D1→2
Rb (n0) (solid line), andD2→3

Rb (n0)
(dash-dotted line). The implicit equationD0→1

Li (n0) = 1 indicates the quantum
numbern0 where the transition from frequency regime (III) to (II) in the ionization
threshold (compare figure 5.2.1) takes place. In (b) and (c),D0→1

Rb (n0) = 1 and
D1→2

Rb (n0) = 1 define the range of quantum numbersn0 where the smooth transition
from (II) to (III) occurs (see figure 5.7).
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stability islands of the driven two-body Coulomb problem even prevail in the
alkali ionization dynamics, atn3

0 · ω ' 1.1, . . . , 1.3 (lithium, rubidium), and
at n3

0 · ω ' 2.2 (lithium). Consequently, the scaling property of the alkali
thresholds in this frequency regime expresses the dominant role of the classi-
cal phase space structure of the hydrogen problem [108], eventually amended
by core-induced scattering [173] between invariant tori of the Coulomb dy-
namics. The latter, however, can hardly be detected in the ionization yield or
threshold which both are rather insensitive to details of the atomic excitation
and ionization dynamics.

2. Regime (II): Whereas, in ’scaled’ units defined by (2.19) and (2.20), all alkali
thresholds coincide in this frequency window, there is a dramatic difference
with respect to the scaled hydrogen thresholds, which nonetheless abide the
same scaling rules. Since the latter results directly reflect the classical phase
space structure, it obviously follows that the alkali thresholds do no longer
mimic any characteristics of the classical Coulomb dynamics but rather are a
pure consequence of the alkali quantum spectrum.
Scaling prevails since, notwithstanding, every sufficiently strong field with
frequency larger than the relevant alkali energy splitting∆alk will induce
strong atomic excitation, irrespective of the element-specific unperturbed level
structure. Normalization ofω byn−3

0 additionally eliminates the local density
of states.

3. Regime (III): Only for frequencies which are smaller than the element-specific
∆alk does the scaling break down for non-hydrogenic alkali states. This is
natural, since the value∆alk directly reflects the finite size of the atomic core
(see our discussion in chapter 2.3), and defines the – element-specific – value
of n3

0 · ω which separates regimes (III) and (II).

In the following section we shall discuss the laboratory results of the Virginia
and of the Munich group in the context of our scaling rules formulated above. This
sheds new light on many laboratory results which so far have not been explained
satisfactorily. As we will see, the laboratory results are fully consistent with our
own findings.

5.4 Laboratory experiments

We shall now compare the results of our numerical experiments with those obtained
in the laboratory, on rubidium [42, 9], lithium [48], and sodium [47]. As mentioned
in the introduction, experiments on microwave driven non-hydrogenic states (where
transitions to states with non-vanishing quantum defects are possible) of alkali atoms
provoked the following observations and working hypotheses:

E1 Alkali atoms show enhanced ionization rates as compared to hydrogen [53,
47, 48, 42, 9].
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Figure 5.9: ’Unscaled’ representation of (laboratory) experimental results on mi-
crowave driven lithium (open squares [48]), sodium (stars [47], and rubidium (tri-
angles [42]), together with our numerical data on lithium (filled green circles) and
on rubidium (filled green diamonds). The different experiments were performed at
different frequencies and interaction timest: Li (experiment):ω/2π = 15 GHz,
t = 15000 · 2π/ω; Na (exp.):ω/2π = 8 GHz, t = 4000 · 2π/ω; Li (numerics):
ω/2π = 36 GHz, t = 327 · 2π/ω; Rb (num. and exp.):ω/2π = 8.87 GHz,
t = 327 · 2π/ω (numerics), andt = 44335 · 2π/ω (laboratory). The full (dashed)
line has a slopen−5

0 (n−4
0 ).

E2 The ionization dynamics of alkali atoms differs quantitatively and qualita-
tively from the hydrogen dynamics [53, 47, 48].

E3 Employing semi-empirical scaling rules (which consists in normalizing the
driving field frequency with respect to the next energy gaining dipole tran-
sition leaving the initial state) the scaled alkali ionization thresholds show
qualitatively the same behavior as the scaled hydrogen thresholds [42, 9].

On the basis of the insight we have gained with our numerical experiments on the
ionization dynamics of microwave driven Rydberg states, we can now reformulate
these statements. In particular, we can clarify the apparent contradiction between E2
and E3 above – and corroborate our predictions (based on numerical experiments)
by means of experimentally measured ionization thresholds.



108 (Scaled) Frequency dependence of the ionization threshold

For this purpose, we display experimental results for the 10% thresholds of mi-
crowave driven lithium [48], sodium [47], and rubidium [42] atoms as a function
of the principal quantum numbern0, together with our numerical results on lithium
(ω/2π = 36 GHz) and the numerical8.87 GHz data on rubidium in figure 5.9. To
understand the similarities and differences between the different results shown in
that figure, we shall now discuss the results of the different experimental groups in
detail.

5.4.1 The Virginia experiments on lithium and sodium

The experiments on lithium [48] and sodium [47] were performed at rather low fre-
quenciesωLi/2π = 15 GHz (for lithium), andωNa/2π = 8 GHz (for sodium), and
for relatively low-lying Rydberg states (nLi = 19, . . . , 30, andnNa = 16, . . . , 42,
respectively). By virtue of (5.1), these frequencies correspond to a transition from
regime (III) to regime (II) atn0 ' 54 (lithium) and atn0 ' 52 (sodium). Hence,
both experiments were performed solely in regime (III), far below the transition to
the regime of dynamical localization, and in figure 5.9 the experimental lithium and
sodium thresholds cover only the low frequency regime. Thus, it is clear that, on
the one hand, lower thresholds than those of atomic hydrogen (which follows the
classical predictions in this regime) were measured (E1), and, on the other hand , a
qualitatively distinct behavior of the lithium and sodium ionization dynamics from
that of atomic hydrogen was observed (E2).

As discussed in [48, 47], and as evident from figure 5.9, the thresholds of both
experiments exhibit a dependenceF10% ' (3n5

0)−1, which was also the limiting
curve of our lithium and rubidium results for low quantum numbers (see section
5.2.1 and 5.2.3). The choice of the parameters in [48, 47] also explains why the
data obtained in these experiments follow then−5

0 behavior much more neatly than
our numerical data (as apparent from figure 5.9): the reason is that these experi-
ments were performed much closer to the limit of quasistatic fields, i.e. the em-
ployed quantum numbers correspond ton3

0 · ωLi = 0.016, . . . , 0.06, andn3
0 · ωNa =

0.005, . . . , 0.09, respectively, while our numerical experiment was performed at
n3

0 · ω > 0.12.

5.4.2 The Munich experiments on rubidium

While the experiments on rubidium [42, 9] were also performed at a rather low
frequencyωRb/2π = 8.87 GHz, they employ higher Rydberg states than the Vir-
ginia group, i.e. states in the rangen = 55, . . . , 93, corresponding ton3

0 · ωRb =
0.22, . . . , 1.16. This low (’scaled’) frequency interval was also covered by our nu-
merical8.87 GHz experiments on rubidium which were performed using precisely
the same parameters, apart from a shorter atom-field interaction timet = 327 ·2π/ω
as compared to the laboratory valuet = 44335 · 2π/ω. Consequently, the results
of the rubidium experiments show the same features as we already observed in our
simulation: For low principal quantum numbers,n0 < 65, the laboratory thresholds
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show a dependence close ton−5
0 . However, as in our numerical results, this law

remains an approximation, since relatively large quantum numbersn0 and hence,
larger ’scaled’ frequencies than in the Virginia experiments were employed.

Since rubidium atoms exhibit multiple non-vanishing quantum defects, the tran-
sition from regime (III) – withF10% ∼ n−5

0 – to regime (II) – where the decrease
of F10% with n0 is slower – does not occur abruptly. On the contrary, the laboratory
experiments observe a smooth transition betweenn0 ' 65 andn0 ' 70, i.e., exactly
in the range where we observe the transition in our simulation. However, the abso-
lute values of laboratory and numerical thresholds do not agree, what we attribute
to the difference in the atom-field interaction time (as noted earlier, the extremely
long laboratory interaction timet = 5 µs = 44335 · 2π/ω cannot be simulated for
ω/2π = 8.87 GHz, within our numerical set-up with finite precision arithmetics)

In figure 5.10 we display the laboratory results on rubidium [42], together with
our numerical (rubidium) thresholds and the (numerical and laboratory) results on
atomic hydrogen [20], in ’scaled’ variables. This comparison clearly demonstrates
that these early experimental results [42, 9] already provided strong evidence in
favor of our prediction of a separation of the alkali ionization dynamics in three
different frequency regimes, with:

(I) the hydrogenic regime (I) of dynamical localization, where the ionization dy-
namic follows the ionization process of atomic hydrogen;

(II) the non-hydrogenic regime (II) of dynamical localization, where the scaled
threshold for microwave driven alkali atoms increases with increasing scaled
frequency, while it decreases for atomic hydrogen;

(III) and finally regime (III), where the ’scaled’ alkali threshold only weakly de-
pends on the ’scaled’ frequency, or slightly increases with decreasingn3

0 · ω.

The immediate interpretation of these (laboratory) data [9, 42] was based on the
hypothesis that the (element-specific) characteristic level splitting between the non-
hydrogenic alkali initial states and the adjacent Rydberg level (see equation (5.1))
was the relevant frequency scale in the alkali ionization process, and that the hy-
drogen level splitting (associated with the classical Kepler frequency) did not retain
any relevance for the physical process at hand. Consequently, it was only natural
to redefineω0 by normalizing the driving field frequency with respect to the alkali
transition (see E3 above) rather than ton−3

0 . Obviously, this very initial hypothesis
precludes the distinction between regimes (I) and (II) identified by our numerical
data, and could not provide any satisfactory explanation of the apparent quantitative
differences between alkali and hydrogenic thresholds. Given the manifestly distinct
interaction times in rubidium and hydrogen experiments and the resulting (though,
as we shall see, secondary) temporal decrease of the threshold field, it was probably
hopeless to develop a consistent picture of the ionization process which put all avail-
able experimental data on common grounds. With the correct scaling rules for mi-
crowave driven alkali atoms (i.e. the same scaling rules as for atomic hydrogen) we
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Figure 5.10: ’Scaled’ representation of the experimental (triangles) [42] and numer-
ical (diamonds) rubidium ionization thresholds of figure 5.9, atω/2π = 8.87 GHz,
as a function of the ’scaled’ frequencyn3

0 ·ω. For comparison, theω/2π = 36 GHz
numerical results on rubidium (filled circles) and on atomic hydrogen (stars), as
well as the laboratory results on atomic hydrogen [20] (dotted line, also forω/2π =
36 GHz) are shown. In the (laboratory) experiments on rubidium, the atoms were
exposed to atom-field interaction times approximately 130 times longer (t = 5 µs)
than in numerical simulations on rubidium, or in the (laboratory and numerical)
experiments on hydrogen.

see that the principal reason for the different (laboratory) thresholds of hydrogen and
rubidium atoms is the fact that the rubidium data were obtained mainly in regimes
(III) and (II), where the ionization dynamics is qualitatively and quantitatively dis-
tinct from that of driven hydrogen atoms. The difference in the interaction time only
causes a weaker slope ofn4

0 · F10%(t) as a function of the ’scaled’ frequency, and
a deviation of the (laboratory) rubidium results (obtained witht = 44000 · 2π/ω)
by less than a factor 2.7 (3.3) from the laboratory (numerical) hydrogen results (ob-
tained witht = 327 · 2π/ω) in regime (I), and by less than a factor2.1 from our
numericalω/2π = 8.87 GHz data (also obtained witht = 327 · 2π/ω).

Yet our novel understanding of the microwave ionization process sheds new
light on another puzzling experimental observation of the Munich group. In the
experiment [9], rubidium atoms with principal quantum numbersn0 = 55, . . . , 99
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were exposed to a microwave field with frequencyω/2π = 12.6 GHz. The ex-
perimentally measured ’scaled’ ionization threshold showed a local maximum close
to n0 = 89 (see figure 5 (b) in reference [9]). According to the incorrect ’scal-
ing’ rules, this maximum was attributed to a ’scaled’ frequencyω/(∆(E(n0, ` =
1), E(n0− 1, ` = 2))) ' 4. However, since the results did not show any local max-
ima for lower frequencies (in particular there were no extrema at ’scaled’ frequen-
ciesω0 ' 1, ω0 ' 2, or ω0 ' 3) the origin of the mysterious maximum atω0 ' 4
seemed to be inexplicable. Now, understanding how to scale the alkali dynamics,
we can elucidate the origin of the maximum. Employing the hydrogenic scaling
rules (2.19) the quantum numbern = 89 corresponds to the ’scaled’ frequency
n3

0 · ω ' 1.3. Hence, the prominent structure of this experiment can be attributed
to the principal non-linear resonance in the classical phase space of the driven two-
body Coulomb system. Precisely as already observed in figure 5.2.1 atn3

0 · ω ' 1.1
for lithium, and in figure 5.6 atn3

0 · ω ' 1.3 for rubidium (ω/2π = 36 GHz), this
remnant of the regular island in the classically chaotic phase space of periodically
driven atomic hydrogen, prevails in the presence of a non-hydrogenic core. How-
ever, in the experimental results, the maximum appeared much more pronounced
than in our simulation on rubidium atoms. This can most probably be attributed to
the finite switching time of the experiment (approximately 70 microwave oscilla-
tions), in contrast to the sudden switching of the field assumed in our simulation.

Let us finish this section by noting that the existence of the maximum at the
’scaled’ frequencyn3

0 ·ω ' 1.3 in the experimentally measured rubidium thresholds
is a further evidence for the validity of the scaling rules in regimes (II) and (I).

5.5 Time dependence of the 10% ionization threshold

5.5.1 Time dependence ofn4
0 · F10%(t) vs.n3

0 · ω

In a comparison of our numerical (8.87 GHz) ionization threshold values for the
microwave ionization of rubidium Rydberg states with the results obtained in the
laboratory [9], we observe a discrepancy by a factor of approximately1.6 . . . 2.1,
together with a smaller slope ofn4

0 ·F10%(t) as a function ofn3
0 ·ω, in the laboratory

results. As both (the laboratory and the numerical) experiments were performed with
exactly the same frequency and the same quantum numbers of the initial states, we
attribute this difference to the different interaction times, which were approximately
135 times longer in the laboratory than in the numerical experiment.

To study the time dependence of the 10% ionization threshold in more detail, we
plotted the scaled threshold of microwave driven lithium atoms (ω/2π = 36 GHz)
as a function of the scaled frequency in figure 5.11, for different interaction times
ranging fromt = 128 · 2π/ω to t = 12795 · 2π/ω. The result resembles the ob-
servations we made in the comparison of the numerical and the laboratory rubidium
results:

Albeit we varied the interaction time by a factor 100, the ionization thresholds
only differ by a factor1.2 . . . 1.7. The global structure ofn4

0 · F10% vs.n3
0 · ω is not
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Figure 5.11: ’Scaled’ ionization threshold as a function of the ’scaled’ frequency, for
lithium atoms and different atom-field interaction timest. The parameters are the
same as in figure 5.2.1, except for the interaction time, which was varied from (read
the curves in the plot from above)t = 128 · 2π/ω, overt = 327 · 2π/ω (the time
used in figure 5.2.1) ,t = 1025 · 2π/ω, andt = 3718 · 2π/ω, to t = 12795 · 2π/ω.
Quite obviously, a longer interaction time induces a smaller slope ofn4

0 ·F10%(t) as
already observed in recent experiments [49].

affected by the different interaction times, the main effect of the longer interaction
time is a smaller slope in regimes (I) and (II), and lower thresholds in regime (III).
Some of the local structures in the curve, however, do change with a variation of the
interaction time, much as we already observed in the temporal evolution of the ion-
ization yieldPion vs. n0 (or Pion vs. F ) in section 4.3. The most prominent among
these changes in figure 5.11 is the change of the position of the local maximum close
to the principal resonance, fromn3

0 · ω ' 1.12 for t = 128 · 2π/ω to n3
0 · ω ' 1.24

for t = 12795 · 2π/ω. As noted in section 4.3, the reason for such changes in the
local structures lies in the complicated sum that defines the ionization probability,
which provides for an interplay of various Floquet states with different weightswj
and widthsΓj on different time scales. This leads to a distinct time evolution of
the ionization yield of different initial states (see section 4.3), and also to a distinct
evolution of their ionization thresholds.

As expected, the situation does not change significantly if we perform the nu-
merical experiment using rubidium atoms instead of lithium atoms (but leaving the
other parameters constant). For the sake of completeness, we display the analogue
to figure 5.11 in figure 5.12, the ’scaled’ 10% threshold for rubidium atoms as a
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Figure 5.12: Same as in figure 5.11, but for rubidium atoms exposed to a microwave
field of frequencyω/2π = 36 GHz. Here the interaction time is varied fromt =
128 · 2π/ω (for some values ofn3

0 · ω, the threshold is missing in the plot), over
t = 327 · 2π/ω, andt = 759 · 2π/ω, to t = 1029 · 2π/ω.

function of the ’scaled’ frequency, for different interaction times. Again we observe
a decrease of the slope ofn4

0 · F10% with increasing atom-field interaction timet,
and a by far less pronounced change ofn4

0 · F10% in regime (III), where the ’scaled’
threshold is essentially independent of the ’scaled’ frequency.

As a matter of fact, very similar results on the time dependence ofn4
0 · F10%

vs.n3
0 · ω as observed in our simulations were already experimentally observed in a

recent experiment of the Virginia group [49] (which we already mentioned several
times). There, hydrogen-like (m = 1) states of lithium were exposed to a microwave
field (’scaled’ frequency0.2, . . . , 1.4) with three interaction timest = 5 · 2π/ω,
t = 110 · 2π/ω, andt = 1100 · 2π/ω. Very much alike our results, the experimental
dependence ofn4

0 · F10% on n0 · n3
0ω did not significantly change with time, with

the exception of the slope of the experimental graph – which also decreases with
increasing interaction time – and changes of some local structures of the ionization
signal.
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Figure 5.13: Time dependence of the 10% ionization threshold for lithium atoms,
prepared in|n0, `0 = m0 = 0〉 states withn0 = 37 (x), n0 = 40 (blue triangles),
n0 = 53 (red squares),n0 = 59 (stars),n0 = 61 (blue circles),n0 = 69 (black
triangles), andn0 = 73 (diamonds).

5.5.2 Algebraic time dependence of the ionization threshold

So far, the time dependence of the ionization threshold of microwave driven Ry-
dberg states has rarely been investigated in the laboratory. Apart from the Vir-
ginia experiment mentioned above, a systematic study of the temporal change of
F10%(t) for a few atomic initial states was only performed in an experiment [42]
on rubidium atoms, and in numerical simulations on moderately excited (n0 =
23) atomic hydrogen [38]. In the experiment [42], atomic initial states|n0, `0 =
1,m0 = 0〉 with n0 = 75, 84, 85, 95 were exposed to a microwave field of fre-
quencyω/2π = 8.87 GHz, and the interaction time was varied fromt = 270 ·2π/ω
to t = 89000 · 2π/ω. The results showed an algebraic dependenceF10%(t) ' t−γ ,
with γ = 0.13±0.04 . . . 0.27±0.04, depending on the initial state. Also the numer-
ical studies on atomic hydrogen [38] showed an algebraic dependence ofF10%(t),
with γ ' 0.07.

In a first attempt to explain these experimental results, a simplified model sys-
tem based on the standard map [174] (where the interaction of the bound spectrum
with the continuum was omitted) attributed the algebraic dependence ofF10%(t) as
measured in [42] to the presence of (uncontrolled) noise in the experimental set-up.
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With our exact numerical treatment of a purely coherent driving of the atom we
can now ponder this assertion, by studying the time dependence of the ionization
threshold in the absence of noise. For this purpose, we display in figure 5.13 the
10% ionization threshold as a function of the interaction time, for seven initial states
of lithium, exposed to aω/2π = 36 GHz field. In all seven cases we observe an
approximative algebraic dependenceF10%(t) ∼ t−γ , over the whole range of the
interaction time, with the following exponentsγ:

n0 37 40 53 59 61 69 73
γ 0.059 0.06 0.074 0.133 0.07 0.069 0.11

Additionally for the states withn0 = 61 andn0 = 69 we observe a change ofγ
at a specific value of the interaction time. Aftert ' 5 · 109 a.u. (t ' 1010 a.u.) the
decay of the state|n0 = 61, `0 = m0 = 0〉 ( |n0 = 69, `0 = m0 = 0〉) changes to a
slower (faster) algebraic decay withγ ' 0.0134 (γ ' 0.3). While these results forγ
are in perfect agreement with the numerical studies on hydrogen [38], they slightly
deviate from the experimentally measured values of [42]. Since we experienced
similar results forγ in studies on microwave driven rubidium atoms (with the same
frequencyω/2π = 36 GHz different from the frequencyω/2π = 8.87 GHz used
in the experiment [42]), we do not assume that the larger value ofγ is a result of the
additional quantum defects of rubidium as compared to lithium.

A possible reason for a largerγ might be the initial conditions chosen in [42], i.e.
the lower frequency and the larger principal quantum numbers of the initial atomic
states. Employing highern0 but the same ’scaled’ frequency may result in a differ-
ence in the time dependence of the ionization threshold (since a highern0 causes a
different distribution of the weightswj). However, such distinct time evolution for
differentn0 need not be caused by the use of alkali atoms instead of atomic hydro-
gen. We rather attribute it to the fact that the semiclassical limit consists in taking
~→ 0 (i.e. n0 →∞) andt→∞ which, in general, do not commute [105]. There-
fore, it is not surprising that the time evolution of the ionization threshold changes
when proceeding to higher excited states.

We expect an even better agreement of our numerical valuesγ with the labo-
ratory values, if we would employ the frequency8.87 GHz also in the numerical
experiment (which is – as already noted before – computationally only feasible with
a larger memory). Furthermore, the finite switching time of the laboratory set-up
might also provide for different values ofγ, as compared to the flat pulse model of
our calculations.

Given the qualitatively good agreement of the time dependence of our numer-
ically obtained ionization threshold with the laboratory threshold [42] (as well as
with the numerical studies in [38]), we can conclude that the aforementioned as-
sumption of [174] is wrong. More precisely, we can confirm that an algebraic time
dependence of the ionization threshold – as it was measured in [42] – is not caused
by the presence of noise in the experimental set-up, but by the field-induced interac-
tion of the atomic bound states with the continuum (which was omitted in [174]).





Chapter 6

Time dependence of the ionization
yield

In the previous chapter we studied the ten percent ionization threshold as a measure
for the onset of the ionization process. Studying the time dependence of the thresh-
old we recognized that a change of the interaction time plays only a secondary role
for the onset of ionization (see figure 5.11). This manifests in a weak algebraic
decayF10% ∼ t−γ with an exponentγ = 0.06, . . . , 0.13 (see figure 5.13). Also in
chapter 4.2 did we already vary the interaction time by a factor 40 (respectively 117)
and observed a change in the local structure of the ionization probabilityPion(t) as
a function of the field amplitudeF (respectivelyn0) displayed in figure 4.6 (fig-
ure 4.7), albeit the global trend ofPion(t) vs. F (n0) did not change much. There,
we attributed this change to the complicated weighted sum defining the ionization
probability given by (2.58).

In the present chapter, we shall study the temporal decay of our system in more
detail, i.e., also for situations that lead to a larger ionization probability than studied
up to now. This discussion will make direct contact with a vivid ongoing debate
(which motivated this chapter), while it is intimately connected with our investiga-
tions above. However, whereas the various aspects of dynamical localization in real
atomic systems enjoy renewed interest only recently [49, 108, 175, 176] – possi-
bly since rigorous theoretical treatments beyond one-dimensional model systems,
including predictions of interesting novel phenomena have become available only
during the last couple of years – there is a considerable activity concentrating on
the temporal decay of chaotic quantum systems in a broad community ranging from
chemical physics [177] to mesoscopic [75], optical [178] and nuclear [179] physics.
Once again, a large part of these studies is devoted to simple model systems which
often suggest universal laws. As we shall see, realistic physical systems such as
strongly driven atoms tend to be too complex to feature universality.
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6.1 Algebraic decay of the survival probability

It is known that in classical systems which exhibit completely chaotic dynamics
the probability that a trajectory remains inside a given phase space region decays
quite fast, namely exponentially asP class

surv (t) ∼ e−αt [68, 177]. Typical Hamiltonian
systems, however, are neither completely chaotic nor completely integrable, but they
exhibit a mixed phase space structure where regular and chaotic regions coexist [18,
180, 30, 31]. In such situations the hierarchical structure of phase space causes a
particle’s trajectory to be trapped inside a given phase space region much longer,
leading to a slower decay than in the fully chaotic case. As already mentioned in
the introduction, in this case the probability to stay inside such a region decays
algebraicallyP class

surv (t) ∼ t−z [69, 70, 71, 72].
Here, we are interested in the implications of such a (classically chaotic) phase

space structure on the quantum mechanical survival probability, or, differently said,
on the time dependence of the survival probability of a decaying, open quantum
system that exhibits complex dynamics (with or without a classical (-ly chaotic)
counterpart). As we have seen in the preceding chapters of this thesis, an example
of such a system is provided by strongly driven alkali Rydberg states.

Due to its importance in the following discussion, we remind the reader of
the definition of the survival probability (2.57), and rewrite its definition here, in
a slightly modified form:

Psurv(t) =
∑
j

wj exp(−Γjt). (6.1)

Thewj now define the weight of the atom-field eigenstate with the quasi-energyεj
(and the corresponding widthΓj), when projected on the given atomic initial state.
With increasing number of non-vanishing weightswj , together with a broader distri-
bution of the widthsΓj – in other words with increasing strength of the perturbation
induced by the microwave field – the sum (6.1) generates a complicated time depen-
dence of the survival probability. If the distribution of the widthsΓj is sufficiently
dense, the sum in (6.1) can be transformed into an integral, leading to

Psurv(t) '
∫ ∞

0
w(Γ) exp(−Γt)dΓ. (6.2)

Starting from an equation like (6.2), several groups derived different proposals for
the decay of a complex quantum system. To deduce the explicit functional form
of the decay law from (6.2), one needs to know the distribution of the weightswj
and of the widthsΓj of the resonances, which possibly should be condensed in a
functionw(Γ). In derivations of decay lawsPsurv(t) ∼ t−z with constant decay
exponentsz, it is typically assumed that the widths are proportional to the weights,
i.e.,wj ∼ Γj [82, 78, 81]. Furthermore, a certain distribution of the resonances has
to be assumed [82, 81] to solve the integral in (6.2).

Decay exponents larger than one were obtained by employing general expres-
sions describing the distribution of resonance widths for open chaotic systems. With
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the help of the Porter-Thomas distribution [181] for a system with one decay channel
the exponentz = 3/2 [82] was found. Recently, a distribution of the widthsΓ for
systems with multiple decay channels was derived in [182]. Employing this distri-
bution the decay law∼ t−M [183] (withM counting the number of decay channels)
was found. In [183] thist−M law was tested by simulating a Bloch particle in the
presence of static and time-periodic forces. This realistic physical system (i.e. a
Bloch particle) showed an algebraic decay, the decay exponent, however, deviates
from the theoretical predictions, what remained unexplained in [183].

For systems exhibiting Anderson localization, on the other hand, the distribution
of the resonance widths [184, 185] differs from the distribution used in the above
derivation ofz = 3/2 or z = M quoted above. Thus, the emergence of Anderson
(or dynamical) localization obviously also has implications on the time dependence
of the survival probability, and we cannot assume that the decay exponentsz = 3/2
or z = M are valid for our system.

For highly excited atomic systems with a completely chaotic classical counter-
part, in [83] a smaller decay exponent was found, by using general scaling rules
for Rydberg state matrix elements. Employing such rules, it is expected thatΓn ∼
wn ∼ n−3 holds. With this relations a decayt−2/3 is obtained, what was also
observed in (classical) simulations on doubly excited helium atoms [83].

Arguing that the widths are distributed according to1/Γ [81] one obtains a de-
cay exponentz = −1. The same value is derived with the argument that the relation
Γn ∼ wn ∼ exp(−2n/`loc)/D (with D the classical diffusion constant of chaotic
transport, and̀loc ' D/2 the localization length) holds [78]. The decay∼ t−1 ob-
tained by these groups is advertised to be a universal law for systems with a mixed
regular-chaotic classical counterpart that exhibit localization, as realized by period-
ically driven Rydberg atoms. Accordingly, it was tested on the quantum version of
the standard map [78, 81], and on a refined version of this map (’quantum Kepler
map’) describing a simplified model of microwave driven atomic hydrogen [85], as
well as on a one-dimensional model of microwave-driven hydrogen atoms [85] (em-
ploying absorbing boundary conditions), and found to describe the temporal decay
with z = 1 perfectly well, in the employed parameter range.(1)

However, the larger part of the studies on the survival probability (or on similar
functions like the dwell time distribution [84]) were either performed using sim-
plified model systems, or the property that the system is an open system is rather
crudely modeled by the use of absorbing boundary conditions [85, 78, 81], instead
of treating the continuum coupling through some sort of ’leads’ rigorously. The sys-
tem we are studying, on the contrary, directly reproduces experimentally accessible

(1)Note that also calculations on a three-dimensional model of microwave driven hydrogen atoms
are reported in [85]. However, the three-dimensional results are only compared with the one-
dimensional results for short time scalest < 2 · 103 · 2π/ω (where the one-dimensional and the
three-dimensional results roughly agreed), while the algebraic decay (of the quantum Kepler map and
the one-dimensional model) is observed for30 · 2π/ω . . . 106 · 2π/ω. Thus, the results of [85] do
provide no evidence, that also the three-dimensional atom follows thet−1 dependence for long times,
i.e. for t > 2 · 103 · 2π/ω.
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situations (where an algebraic decay was already found [86]). Furthermore, em-
ploying complex dilation together with the Sturmian basis, the continuum coupling
is treated exactly in our theoretical/numerical approach.

With our set-up we can easily change the atomic species, and hence ’switch’ our
system from a system with a classical counterpart (i.e., periodically driven hydrogen
atoms employing vanishing quantum defects for all angular momenta) to a pure
quantum system as it is given by alkali atoms due to the scattering of the the electron
off a non-hydrogenic atomic core [58]. Hence, our approach is ideally suited to
study the decay of the survival probability of an open quantum system exhibiting
complex dynamics (with or without a classical, possibly chaotic counterpart) and
thus, to test the existence of possibly universal algebraic decay laws.

In the following section, we shall start our investigation of the time evolution
of the survival probability on lithium atoms. Afterwards, we will also deal with
rubidium and atomic hydrogen.

6.2 Microwave driven Rydberg states as an open quantum
system

6.2.1 Lithium

Before dealing with parameters that lead to an algebraic decay of the survival prob-
ability, in the following section we present results for a weak driving field, where no
algebraic decay is found.

6.2.1.1 Mono-exponential decay for weak driving

If the amplitude of the field is small, and the system close to the perturbative regime,
the main contribution to the sum in (6.1) stems from the adiabatic continuation of
the unperturbed atomic initial state. There the survival probability is essentially
given by a mono-exponential function of the interaction time.(2) This situation is
displayed in figure 6.1, where the survival probability is plotted for lithium atoms
initially prepared in the state|n0 = 54, `0 = m0 = 0〉, exposed to a microwave
field of amplitudeF = 1.5 · 10−9 a.u. The ’scaled’ field amplitude experienced
by the Rydberg electron,n4

0 · F = 0.013, is still rather small, compared to the
’scaled’ ionization thresholdF0,10%(t = 327 · 2π/ω) ' 0.029 (see figure 5.2.1) for
the given initial state. Accordingly, even at the largest interaction time displayed in
figure 6.1, the field induces an ionization probability of only13%. Here, the field
amplitude is too small to couple the initial atomic state efficiently to other bound

(2)Of course, this mono-exponential decay is not at all related to the exponential decay of classical
systems exhibiting a completely chaotic phase space. On the contrary, in this case the exponential
decay can be addressed to the representation of the initial state by (nearly) one single atom-field
eigenstate, as the quantum mechanical implication of the symmetries of the unperturbed system being
(almost completely) conserved.
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Figure 6.1: Time dependence of the survival probability of lithium|n0 = 54, `0 =
m0 = 0〉 states exposed to a microwave field of amplitudeF = 1.5 · 10−9 a.u.
and frequencyω/2π = 36 GHz (n4

0 · F = 0.013, n3
0 · ω = 0.861). The external

field doesn’t induce a large ionization probability (even for interaction timest =
5 ·1012 a.u. ' 4.3 ·106 ·2π/ω the ionization probability only amounts to 13%), and
the survival probability is close to a mono-exponential function of the interaction
time t.

or continuum states. This becomes clear in the upper plot of figure 6.2, where we
plotted the weightswj of the atom-field eigenstates when projected on the initial
atomic state, and the corresponding widthsΓj . There are only eight eigenstates with
a weightwj > 1%, which are enough to assemble a weight of 86% (in agreement
with a relatively small Shannon widthW = 12.4 for the given situation). Below
the ionization threshold, it is precisely the contribution of only few eigenstates (that
exhibit ionization ratesΓj . 5 · 10−14) to the survival probability, that leads to an
exponential decay, on the time-scalet < 5.5 · 1012 a.u. (' 5 · 106 · 2π/ω) shown in
figure 6.1.

6.2.1.2 Regime (I) and (II): Algebraic decay ofPsurv(t) for stronger fields

The situation changes significantly if the representation of the field-free initial state
needs a large number of atom-field eigenstates. Such a situation is shown in the
lower plot of figure 6.2, that shows the weightswj and the widthsΓj of lithium
atoms initially prepared in the state|n0 = 80, `0 = m0 = 0〉, exposed to a mi-
crowave field of amplitudeF = 3.1 · 10−9 a.u. In contrast to the previous case,
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Figure 6.2: Ionization ratesΓj and corresponding weightswj of the atom-field
eigenstatesεj when projected on the initial state|n0 = 54, `0 = m0 = 0〉 (up-
per plot), and|n0 = 80, `0 = m0 = 0〉 (lower plot), in a Floquet zone of width
ω (only the states with a weightwj > 10−5 are shown). Microwave field ampli-
tudesF = 1.5 · 10−9 a.u. (n4

0 · F ' 0.013, upper plot), andF = 3.1 · 10−9 a.u.
(n4

0 · F ' 0.127, lower plot), at frequencyω/2π = 36 GHz (n3
0 · ω ' 0.86, and

2.8, respectively). These are the raw data which generate the time dependence of
the survival probability depicted in figures 6.1 and 6.3 (black dash-dotted curve),
respectively.
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Figure 6.3: Time dependence of the survival probability of microwave driven lithium
atoms, for five different initial states exposed to the same field of amplitudeF =
3.1 · 10−9 a.u. and frequencyω/2π = 36 GHz. Clearly, this amplitude causes a
more complicated time dependence of the survival probability (for all five initial
conditions) than the one observed in figure 6.1. The dark blue dotted curve shows
the decay of|n0 = 50, `0 = m0 = 0〉 (n4

0 · F = 0.019, n3
0 · ω = 0.68, close to the

10% thresholdn4
0 ·F10%(t = 327 · 2π/ω) = 0.02, see figure 5.2.1) which is neither

exponential nor algebraic. In the other four cases (all with initial states|n0, `0 =
m0 = 0〉) an algebraic decayPsurv ∼ t−z can be observed over several decades of
the interaction timet: the green dashed line (z ' 0.98) represents the initial state
n0 = 68 (n4

0 · F = 0.07, n3
0 · ω = 1.72, n4

0 · F10%(t = 327 · 2π/ω) = 0.047), the
black dashed line (z ' 1) shows the initial staten0 = 74 (n4

0 · F = 0.09, n3
0 · ω =

2.22, n4
0 ·F10%(t = 327 · 2π/ω) = 0.06), the light blue dotted line (z ' 1.4) shows

the initial staten0 = 78 (n4
0 ·F = 0.11, n3

0 ·ω = 2.6, n4
0 ·F10%(t = 327 · 2π/ω) =

0.052), and the black dash-dotted line (z ' 1.5) presents the initial staten0 = 80
(n4

0 ·F = 0.127, n3
0 ·ω = 2.8, n4

0 ·F10%(t = 327 ·2π/ω) = 0.054). Comparison of
the ’scaled’ field amplitudes with the ’scaled’ ionization thresholds shows that, apart
from the initial staten0 = 50, all curves are obtained in the ’delocalized’ regime,
i.e., at field amplitudes above the ionization threshold.
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here not only a larger number of atom-field eigenstates is needed to represent the
field-free initial atomic state, but also the weights and the widths show a broad dis-
tribution over approximately four orders of magnitude. While in the above (nearly
perturbative) case the Shannon width of the initial state was given byW = 12.4, in
this case there are 19 atom-field eigenstates with a weightwj > 1% that sum up to
only 30%. In addition, there are many states with a smaller weightwj leading to a
large Shannon widthW = 285. Thus, the ’scaled’ field amplituden4

0 · F = 0.127
(compared ton4

0 · F10%(t = 327 · 2π/ω) = 0.054, see figure 5.2.1) is clearly large
enough to induce an efficient coupling of a large number of bound or continuum
states to the initial atomic state. And indeed, this leads to an algebraic decay of the
survival probability, displayed in figure 6.3. As already observed in numerical exper-
iments on atomic hydrogen and in laboratory experiments on rubidium atoms [86],
the survival probability starts to decay neither exponentially nor algebraically, and
after approximatelyt = 109 a.u. (' 870 · 2π/ω) we observe an algebraic decay ac-
cording toPsurv ∼ t−1.5. The decay follows this dependence over three decades of
the interaction time, i.e. up tot ' 1012 a.u. ' 870000 · 2π/ω. For longer times, the
atom-field eigenstates with widthsΓj & 10−11 already decayed, and the sum (2.57)
is dominated by only a few states with even smaller widthsΓj which contribute sig-
nificantly (i.e. with a weightwj > 10−5) to the representation of the initial state un-
der external driving. This is in agreement with figure 6.2, which shows seven states
with Γj < 10−11 a.u. as the states which contribute to|n0 = 80, `0 = m0 = 0〉
with the smallest widthΓj .

In figure 6.3 we furthermore display survival probabilities of (`0 = m0 = 0)
initial states with principal quantum numbersn0 = 78, 74, 68, and50, exposed
to the same microwave field with amplitudeF = 3.1 · 10−9 a.u. As for the case
n0 = 80, the initial statesn0 = 78 (Shannon widthW = 313), n0 = 74 (W = 283)
andn0 = 68 (W = 277) exhibit algebraic decay after approximatelyt ' 109 . . . 3 ·
109 a.u., over approximately three decades of the interaction timet. The decay
exponents are close toz = 1 in the casesn0 = 68 (z ' 0.98) andn0 = 74 (z ' 1),
whilst larger forn0 = 78 (z ' 1.4). For the initial staten0 = 50 (W = 88), on
the other hand, the field does not induce a clear algebraic decay. At least on time
scalest < 5 · 1012 a.u., only a decay which is neither exponential nor algebraic can
be observed.

From our inspection of the survival probability, in particular of the states with
n0 = 78 andn0 = 74 in figure 6.3, the emergence of an algebraic decay be-
comes clear. On different time scales, different atom-field eigenstates with different
weights and widths dominate the ionization process described by (6.1). This leads to
bumps in the survival probability vs. time in this double-logarithmic plot. If several
bumps succeed on successive time scales (or in other words, if the weightswj and
widthsΓj are uniformly distributed over several orders of magnitude as in the lower
plot of figure 6.2), this leads to an approximate algebraic decay over several decades
of the interaction time [86].(3)

(3)Note that for a clean algebraic decay it is crucial that the widths are not only distributed over
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The time dependence of the survival probability we observed in figure 6.3 – i.e.
an algebraic decay forF > F10% but with various decay exponentsz = 1 . . . 1.5 –
seems to be in contradiction with the predictionsz = 2/3 made in [83] andz = 1
made in [78, 85]. In [83] it was argued that (classical) electrons are excited into
extremely highly excited Kepler orbits, whose excursion times are longer than the
microwave pulse duration. If the external perturbation (field amplitude) is strong
enough that the classical dynamics of the system (i.e. the classical dynamics of the
initially populated electronic trajectory) is fully chaotic, it is the population of such
highly excited states that prevents the system from fast decay and leads to the decay
∼ t−2/3. Consequently, such decay can only be expected if the set-up allows for the
population or detection of extremely high lying Rydberg states, i.e., Rydberg states
whose (unperturbed) Kepler period exceeds or is of the order of the microwave pulse
length. For interaction timest ' 103 · 2π/ω (this is roughly the time when the al-
gebraic decay of the curves in figure 6.3 starts) this would require the population
of statesn0 ' 1000 (see the scaling rules (2.18)). However, our approach to de-
scribe microwave driven Rydberg states introduces an effective continuum threshold
neff

max ' 104 (due to finite memory), as explained in section 2.4. The chosen cutoff
is sufficient to represent experimental results (see chapter 5), which are obtained at
not too long interaction times, but (as well as state-of-the-art laboratory experiments
that introduce effective continuum thresholdsneff

max ' 90 [20]. . . 280 [176, 49])
inappropriate to describe such extremely highly excited states. Thus, our present
set-up is not suitable to check the predictions of [83] for the long-time behavior.

The prediction of [78, 85], on the other hand, does not require the popula-
tion of such extremely high lying Rydberg states. Following [78, 85], the decay
Psurv ∼ 1/t should be reached after the Heisenberg time, up to which the quantum
system follows the classical analog. The definition of the Heisenberg time – which
is usually given by the inverse of the mean level spacing – is somehow unclear for
microwave driven alkali states, as the quasi-energy spectrum consists in principle
of resonances embedded in the continuum. But assuming that the mean level spac-
ing ∆mean is given by the width of a Floquet zone (into which all the spectrum is
folded) divided by the number of states that contribute to the dynamics of a given
initial state (measured by the Shannon width), we obtain the following approxima-
tive expression for the mean level spacing:

∆mean '
ω

W (F, n0, ω)
. (6.3)

For the states displayed in figure 6.3, this leads to a Heisenberg time betweentH '
5.7 · 107 a.u. andtH ' 1.6 · 107 a.u. Thus the Heisenberg time should definitely
be reached at the largest timest = 5 · 1012 a.u. displayed in figure 6.3 (which
corresponds to an energy splitting of2 · 10−13 a.u. (' ω/2.5 · 107)). Another
requirement for the appearance of the decay ratez = 1 is that the field parameters

several orders of magnitude, but that, furthermore, the widths are sufficiently dense. This is needed
for the transition from the sum (6.1) to the integral (6.2).
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are chosen in the delocalized regime [24, 85] (where the field is strong enough to
ionize the atom that exhibits dynamical localization, see section 1.1.1). Employing
both, the estimate for the localization border introduced in [24] or the numerically
obtained ionization border att = 327·2π/ω (see section 5.2.1), apart from the initial
staten0 = 50, all states in figure 6.3 are in the delocalized regime, and hence all
the prerequisites for the appearance of the ’universal’ decay∼ t−1 are fulfilled for
the statesn0 = 68, 74, 78, and 80. Yet, only the examples closer to the localized
regime, i.e., the statesn0 = 68 (n3

0 · F ' 0.07 vs.n3
0 · F10% ' 0.047) andn0 = 74

(n3
0 ·F ' 0.09 vs.n3

0 ·F10% ' 0.06), show the predicted decay rate, while according
to [85] the1/t decay should hold better in the strongly delocalized regime, i.e. for
n0 = 78 (n3

0 · F ' 0.11 vs. n3
0 · F10% ' 0.052) andn0 = 80 (n3

0 · F ' 0.127 vs.
n3

0 · F10% ' 0.054), where we observez = 1.4 andz = 1.5, respectively.
The reason for the failure of the prediction of a universal decay withz = 1 lies

in the intricate dynamics that leads to the decay of a real atomic system, which is
only inadequately described by simple maps like the quantum standard map or the
quantum kicked rotor, or by models of real atoms which employ absorbing boundary
conditions, as the fundament of the predictions in [81, 78, 85]. To emphasize this
statement, we checked the assumption that the weightswj are proportional to the
ionization ratesΓj , which is an essential input for the derivation ofz = −1 [81, 78].
According to [81], this proportionality should be valid for atom-field eigenstates
with Γj < ∆mean. For these states it is assumed that the relation between the widths
Γj and the weightswj can be described by first order perturbation theory (according
to Fermi’s golden rule), yieldingΓj ∼ wj . In our situation, however, the initial
atomic state is coupled to a large number of bound and continuum states, and there
are many paths leading to the ionization of the electron. More precisely, each atom-
field eigenstate with ionization rateΓj reflects a coherent sum over multi-photon
processes of different order. Thus, in this highly non-perturbative situation, we can-
not expect that the proportionality of the widths and the weights still holds. The
breakdown of the proportionality is illustrated conspicuously in figure 6.8, where
we plot the weights on the initial state|n0 = 80, `0 = m0 = 0〉 as a function of
the corresponding ionization rates for a field amplitudeF = 3.1 · 10−9 a.u. (with
the resulting temporal decay displayed in figure 6.3). From this figure it becomes
clear that in our case a proportionality of widths and weights does not hold, not even
approximately. On the contrary, we observe a broad distribution of the weightswj
over some orders of magnitude, with the corresponding widths spread over the range
5 · 10−11 < Γj < 2 · 10−7, while the mean level spacing can be approximated by
∆mean ' 1.8 · 10−8 a.u., i.e. Γj << ∆mean for the larger part of the eigenvalues.
This is in contrast to the quantum standard map, for which a large number of states
exists withΓj > ∆mean (see figure 3.11 in [81]), and hence the perturbative descrip-
tion of the states withΓj < ∆mean might provide correct results [81]. However, as
apparent from figure 6.3 this proportionality is not a generic situation and therefore,
it cannot be expected that the decay lawt−1 – which is based on the mentioned
perturbative assumption – defines a universal law.
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Figure 6.4: Weightswj vs. associated widthsΓj of the atom-field eigenstates which
contribute to the decay of the atomic initial state|n0 = 80, `0 = m0 = 0〉 exposed
to a field of amplitudeF = 3.1 · 10−9 a.u. (see figure 6.3). The upper plot displays
wj andΓj in the subspaceΠ = +1, the lower plot in the subspaceΠ = −1. Both
plots show the states in a Floquet zone of widthω = 36 · 2π GHz, only those states
with wj > 10−5 are displayed. In contrast to the assumption made in [78, 81], the
widths are obviously not proportional to the corresponding weights. On the contrary,
the widthsΓj are widely spread for all weightswj , as a consequence of the highly
non-perturbative continuum coupling induced by the driving field.
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6.2.1.3 Increasing decay exponent for increasing field amplitude

As we have seen now that microwave driven Rydberg states decay algebraically in
a certain parameter range (i.e. for sufficiently strong external fields), but without
a universal decay law, the next topic to study is of course the change of the decay
exponent. For an exemplary study ofz, we consider again a field amplitudeF =
3.1 · 10−9 a.u., with different principal quantum numbers of the atomic initial states
|n0, `0 = m0 = 0〉 exposed to the field. The survival probability as a function of the
atom-field interaction time is displayed in figure 6.5, 6.6 and 6.7, forn0 = 62 . . . 83.
The corresponding decay exponents are collected in table 6.2.1.3.

n0 n4
0 · F n3

0 · ω z W (F, n0, ω) n4
0 · F10%

62 0.046 1.30 0.48 (0.196) 135 0.031
63 0.049 1.37 0.324 190 0.0305
64 0.052 1.43 0.45 239 0.036
65 0.055 1.50 0.33 (0.657) 291 0.036
66 0.059 1.57 0.75 240 0.0383
67 0.062 1.65 0.82 283 0.043
68 0.066 1.72 0.98 277 0.045
69 0.070 1.80 0.916 212 0.0465
70 0.074 1.88 0.65 281 0.051
71 0.079 1.96 0.964 227 0.053
72 0.083 2.04 0.994 299 0.055
73 0.088 2.13 0.967 268 0.056
74 0.093 2.22 1.0 283 0.06
75 0.098 2.31 1.04 306 0.053
76 0.103 2.40 1.074 351 0.057
77 0.109 2.50 1.132 318 0.057
78 0.115 2.60 1.35 313 0.052
79 0.121 2.70 1.698 270 0.050
80 0.127 2.80 1.459 285 0.054
81 0.133 2.91 1.578 285 0.052
82 0.140 3.02 2.4(1.361) 259 0.068
83 0.147 3.13 2.5(1.327) 278 0.058

Table 6.2.1.3: Decay exponentsz (fourth column) extracted from figures 6.5, 6.6
and 6.7 for initial atomic states|n0, `0 = m0 = 0〉 exposed to a field of amplitude
F = 3.1 · 10−9 a.u. In columns two and three we also show the ’scaled’ field am-
plitude and frequency experienced by the respective initial states. The fifth column
displays the Shannon width (2.61) of the atomic initial state in the Floquet basis,
and the last column displays the ’scaled’ ionization threshold att = 327 · 2π/ω (see
figure 5.2.1). By comparison of columns two and five it is apparent that all the ex-
amples are in the delocalized regime, i.e. the ’scaled’ field amplitude is larger than
the ’scaled’ ionization threshold.
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Figure 6.5: Survival probability of lithium atoms exposed to a microwave field of
amplitudeF = 3.1 · 10−9 a.u., and frequencyω/2π = 36 GHz for several atomic
initial states|n0, `0 = m0 = 0〉 (with n0 given in the plots). In all cases an algebraic
decay over more than one decade of the interaction time can be extracted. The decay
exponentsz are summarized in table 6.2.1.3.
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Figure 6.6: Same as in figure 6.5, but for differentn0 values.
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Figure 6.7: Same as in figure 6.5 and figure 6.6, but for differentn0 values.

In all cases we observe an algebraic decay over more than one decade of the interac-
tion time. Forn0 = 62, 65, 82, 83 we observe different decay exponents on different
time scales, both are displayed in table 6.2.1.3, the exponent that is valid on shorter
time scales is shown in brackets. Such change of different decay exponents valid
on different time scales was already observed in [87], where it was attributed to the
electron being trapped in the vicinity of distinct hierarchical phase space structures
on different time scales.

In total, we observe an increase of the decay exponent from small valuesz '
0.2, to large exponentsz ' 2.5, with increasing quantum number, i.e. with in-
creasing ’scaled’ field amplitude and frequency (note that all examples are in the
delocalized regime, i.e.n4

0 · F > n4
0 · F10%(t = 327 · 2π/ω) while according to

the delocalization border introduced in [24] – which only gives a rough estimate of
the real atomic dynamics – only the examples withn0 ≥ 70 are in the delocalized
regime). The increase of the decay exponent fromz ' 0.2 to z ' 1 is accompa-
nied by a non-monotonous increase of the Shannon width which fluctuates between
W = 259 andW = 351 in the situations leading toz > 1. However, alsoz exhibits
a locally non-monotonous dependence onn0, e.g., forn0 = 78, 79, 80. We attribute
this behavior to particular structures in the Floquet spectrum which are selected via
the overlapswj with the specific atomic initial state. However, a detailed analysis
of this phenomenon remains to be accomplished.

6.2.1.4 Algebraic decay in regime (III)?

So far we studied the time dependence of the survival probability in the frequency
regimes (II) (n = 50) and (I) (n = 62, . . . , 83), where the external frequency is
sufficiently large to couple a large number of atomic bound and continuum states,
and where the atoms exhibit dynamical localization.

In the following, we will also show examples of the time dependence of the
survival probability in regime (III). In figure 5.5, it was seen that the number of
eigenstates which are coupled efficiently to the atomic initial state – measured by the
Shannon width of a given atomic initial state – is noticeably smaller in this regime,
although the same ionization probability (Pion = 10% for all field amplitudes in
figure 5.5) is induced. This also leads to a qualitative change of the time dependence
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Figure 6.8: Lithium atoms prepared in the state|n0 = 37, `0 = m0 = 0〉, driven
by a field of amplitudeF = 5.5 · 10−9 a.u. (solid line,n4

0 · F = 0.01, Shannon
width W = 13), F = 8.5 · 10−9 a.u. (dotted line,n4

0 · F = 0.016, W = 35),
andF = 1.3 · 10−8 a.u. (dashed line,n4

0 · F = 0.024, W = 101). Although
both ’scaled’ field amplitudes0.016 and0.024 are larger than the ’scaled’ ionization
thresholdn4

0 · F10%(327 · 2π/ω) = 0.0109 (see figure 5.2.1), only for the largest
field amplitude an approximate algebraic decay over more than two decades can
be observed. The ’scaled’ frequencyn3

0 · ω = 0.28 (with ω/2π = 36 GHz the
’unscaled’ frequency) of the three examples corresponds to regime (III).

of Psurv(t). Figure 6.8 shows the situation for lithium atoms prepared in the states
|n0 = 37, `0 = m0 = 0〉. The figure displays the survival probability of the given
initial state exposed to a field of variable amplitudeF = 5.5 · 10−9 a.u., F = 8.5 ·
10−9 a.u., andF = 1.3 ·10−8 a.u., respectively. All the curves in figure 6.8 display
a similar behavior of the survival probability: The interplay of different weightswj
and widthsΓj leads to bumps in the survival probability in this double logarithmic
plot, but only for the strongest field this leads to an approximately algebraic decay
over roughly three decades of the interaction time. This is a clear manifestation of
the difference to the high ’scaled’ frequency regimes (I) and (II): For an algebraic
decay in the regimes of dynamical localization (i.e. in regime (I) and (II)) it is
sufficient that the parameters are in the delocalized regime, and in figure 6.7 and 6.6
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we observed an algebraic decay over more than two decades forn4
0 · F ≥ 1.4 ·

n4
0 · F10%(t = 327 · 2π/ω) (see columns two and five in table 6.2.1.3). In regime

(III), larger ’scaled’ field amplitudes are needed to induce an algebraic decay (e.g.,
atF = 8.5 · 10−9 a.u. – for n4

0 · F ' 1.5 · n4
0 · F10% – no clear algebraic decay can

be observed), i.e. here the field is strong enough to induce appreciable ionization,
but – due to the absence of atomic transitions that can be driven (quasi-) resonantly
with the given frequency – it cannot induce a strong mixing of a large number of
atomic states (see also figure 5.5). Consequently, we do observe an algebraic decay
over more than two orders of magnitude only for considerably larger ’scaled’ field
amplitudes as compared to the ionization threshold (e.g.n4

0 ·F ≥ 2.2 ·n4
0 ·F10%(t =

327 ·2π/ω) atF = 1.3 ·10−8 a.u.), that are strong enough to couple the initial state
to many bound or continuum states, i.e. when the external field induces a large
Shannon width of the initial state (compareW (F = 8.5 · 10−9 a.u.) = 35 to
W (F = 1.3 · 10−8 a.u.) = 101).

6.2.2 Rubidium

We report now some typical results for the time dependence of the survival prob-
ability of microwave driven rubidium atoms. In figure 6.9 we display the survival
probability of |n0 = 50, `0 = 1,m0 = 0〉 and|n0 = 55, `0 = 1,m0 = 0〉 exposed
to microwave fields, with the parameters and the decay exponents displayed in ta-
ble 6.2.2.

n0 n4
0 · F n3

0 · ω z W (F, n0, ω) n4
0 · F10%(t = 327 · 2π/ω)

50 0.025 0.68 0.25 134 0.023
50 0.034 0.68 0.9 257 0.023
55 0.064 0.91 1.27 601 0.033

Table 6.2.2: Decay exponentsz (fourth column) extracted from figure 6.9 of rubid-
ium |n0, `0 = 1,m0 = 0〉 states. All three examples are in the delocalized regime
(compare column two and six), and exhibit an algebraic decay with increasing ex-
ponentz for increasing ’scaled’ field amplitudes. Much as in the case of lithium
we observe an increase of the Shannon width (fifth column) with increasing field
strength, withW > 100 in all three examples. The extremely large Shannon width
W = 601 for n0 = 55 can be attributed to the fact that here (n3

0 ·ω = 0.91) the atom
is driven nearly resonantly (where we already observed a maximum of the Shan-
non width at the ionization threshold in figure 5.5) and to the large field amplitude
F ' 2 · F10%(t = 327 · 2π/ω).

Much as in the case of lithium, all three examples – which are all in the delocalized
regime, i.e.,F > F10% (since the examples are chosen in regime (II), the localiza-
tion border of [24] – approximately valid for hydrogen atoms, and hence only valid
in the alkali regime (I) – cannot be applied) – exhibit an algebraic decay. As in the
above for lithium, in all three examples a large number of atom-field eigenstates
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Figure 6.9: Survival probabilityPsurv(t) of rubidium Rydberg states|n0, `0 =
1,m0 = 0〉 for n0 = 50 (dotted line: F = 4 · 10−9 a.u.; dashed line:F =
5.5 · 10−9 a.u.), andn0 = 55 (dash-dotted line:F = 7 · 10−9 a.u.), respectively,
at ω/2π = 36 GHz. We observe a clear algebraic decayPsurv ∼ t−z. The decay
exponentsz, as well as the ’scaled’ field parameters are displayed in table 6.2.2.

contribute to the sum defining the survival probability (W > 100) and we observe
an algebraic decay. Again, no universal decay lawt−1 can be observed, but a sys-
tematically increasing decay exponent with increasing ’scaled’ field amplitude. Let
us note here, that – in agreement with our results presented above – for microwave
driven rubidium atoms (frequencyω/2π = 8.87 GHz, initial staten0 = 84, i.e.
’scaled frequencyn3

0 ·ω ' 0.8) an algebraic decay withz ' 0.44±0.02 (i.e. z 6= 1)
was already found experimentally [86]. The exact modeling of the experimental
situation, however, would require a larger memory (as already mentioned before),
hence, so far we cannot provide for a quantitative comparison with the experimental
results.

6.2.3 Atomic hydrogen

For the sake of completeness, we also provide results on the ’simplest’ atom under
periodic driving, i.e. on microwave driven atomic hydrogen. As already mentioned,
in [85] the prediction of a ’universal’ decay law was tested on a one-dimensional
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Figure 6.10: Survival probability of hydrogen|n0, `0 = m0 = 0〉 states exposed
to a microwave field of amplitudeF = 6 · 10−9 a.u. Upper plot: green solid line:
n0 = 61; green dashed line:n0 = 63. Both curves follow a dependencet−z, the
decay exponentsz as well as the scaled field parametersF0 andω0 are collected
in table 6.2.3. Lower plot: green dashed line:n0 = 65; green dash-dotted line:
n0 = 69; green solid line:n0 = 71. Much as in the upper plot all three initial states
exhibit an algebraic decay, with the decay exponents and the scaled field parameters
given in table 6.2.3.
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model of microwave driven hydrogen atoms, and on the quantum Kepler map that
should approximate the dynamics of driven hydrogen atoms [24]. Furthermore, such
a decay was also predicted for driven, non-hydrogenic Rydberg states [85]. In the
previous sections, however, we saw that the latter prediction fails. Here, we will
investigate the validity of thet−1 law for atomic hydrogen.

For this purpose, we exposed hydrogen(`0 = m0 = 0) states, withn0 in the
range61 . . . 71, to a microwave field of amplitudeF = 6 · 10−9 a.u. (again the fre-
quency is chosen asω/2π = 36 GHz). The survival probability of the various initial
states is displayed in figure 6.10. Again, we observe an algebraic decay over several
decades of the interaction time for all initial states. The resulting decay exponents
are collected in table 6.2.3:

n0 n4
0 · F n3

0 · ω z W (F, n0, ω) n4
0 · F10%

61 0.08 1.24 0.15 155 0.049
63 0.09 1.37 0.52 201 0.043
65 0.11 1.50 0.82 171 0.045
69 0.14 1.80 1.1 208 0.051
71 0.15 1.96 1.4 187 0.053

Table 6.2.3: Decay exponentsz extracted from figure 6.10, for hydrogen`0 = m0 =
0 states. Comparison of the scaled field amplitude (second column) to the scaled
ionization threshold att = 327 · 2π/ω (sixth column, see figure 5.1) shows that all
cases corresponds to the delocalized regime (note that the examples are also in the
delocalized regime according to the the qualitative localization border introduced
in [24]). Again the Shannon width (fifth column) exceedsW = 100 in all five
examples.

As apparent from figure 6.10 and table 6.2.3, microwave driven hydrogen atoms
show essentially the same decay as we observed it for lithium and rubidium atoms in
section 6.2.1, and 6.2.2, respectively: The atoms (exposed to a field with parameters
chosen in the delocalized regime) exhibit an algebraic decayt−z with increasing
decay exponentz – fromz ' 0.15 to z ' 1.4 – for increasing scaled field amplitude.
Thus, we observed (qualitatively) exactly the same decay of lithium, rubidium, and
hydrogen atoms under periodic driving, i.e. all three atomic species experience an
algebraic decay for sufficiently large driving fields (that cause a coupling of a large
number of atom-field eigenstates), but they do not obey any universal decay law.

6.3 Outlook

In this chapter we provided the first exact theoretical/numerical results on the sur-
vival probability of real-existing three-dimensional atomic systems with principal
quantum numbersn0 = 37, . . . , 83. As already observed in numerical studies on
moderately excited atomic hydrogen (n0 = 23) in the localized regime [86] as well
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as in laboratory experiments on rubidium in the localized and the delocalized regime
[86],(4) we identify an algebraic decay of the survival probability for sufficiently
large ’scaled’ field amplitudes. ’Sufficiently large’ requires that the field is larger
than the ionization threshold in regimes (I) and (II), while it has to be considerably
larger in the low ’scaled’ frequency regime (III). In other words it has to be large
enough to induce a strong coupling of many (W & 100) states. In contrast to pre-
dictions based on the study of simplified model systems using absorbing boundary
conditions to model the decay [85, 78, 81], we found strong numerical evidence that
there is no universal decay law, at least we did not observe universal decay for mi-
crowave driven Rydberg states. On the contrary, in our studies on lithium, rubidium
and hydrogen atoms we observed a global (but locally non-monotonous) increase of
the decay exponent with increasing perturbation strength. Furthermore, occasion-
ally there is a transition between different decay exponents for different time scales,
as already observed in [87].

A crucial point to deduce the universal decay lawt−1 in [78, 81] was the as-
sumption that the weightswj of some atomic initial state when projected on the
atom-field eigenstates are proportional to the corresponding widthsΓj . In our sys-
tem, however, we do not even observe an approximate proportionality of thewj and
theΓj , but a broad distribution of the weights and widths. Hence, we can conclude
that the assumed proportionality does not at all represent a generic situation.

Since our system exhibits a high density of states, and we model a coherent cou-
pling of the bound states to the continuum, we expect the results obtained in this
chapter to be more general and to be also valid for other systems. More precisely,
we believe that the prediction of a universal decay law does neither hold for other
quantum systems with a high density of states that exhibit a strong coupling of many
bound and continuum states. Typically such systems will not show the proportion-
ality wj ∼ Γj , and we expect an (eventually non-monotonous) increasing decay
exponent with increasing perturbation strength as a general rule.

In agreement with our results obtained on alkali and on hydrogen atoms, such
behavior is not restricted to the traditional field of quantum chaos, but can be ob-
seved for quantum (-chaotic) systems with a mixed regular-chaotic classical counter-
part (like atomic hydrogen), as well as for pure quantum systems (like alkali atoms).

(4)Note that these experiments were performed partially in regime (II), and hence the (hydrogenic)
localization border introduced in [24] cannot be employed. However, for typical interaction times
t ' 300 · 2π/ω the ionization probability of the example showing an algebraic decay exceeds 10%
(see figure 3 (b) in [86]), and hence we can assume that the parameters correspond to the delocalized
regime.





Chapter 7

Summary and perspectives

7.1 Summary

In this thesis we performed an exact numerical experiment on the microwave ion-
ization of Rydberg states of alkali atoms and atomic hydrogen. Our experimental
apparatus combines sophisticated numerical methods with state-of-the-art (paral-
lel) computing techniques, and allows for an exact description of the field induced
coupling of the atomic bound states to the atomic continuum. In our fully three-
dimensional simulations of the periodically time-dependent problem, we employed
parameters (microwave frequency, field amplitude, principal quantum numbers of
the atomic initial states, and atom-field interaction time) as they are used in typical
laboratory experiments. In this parameter regime, we have to deal with a high den-
sity of states – scaling asn5

0 – and therefore the availability of large-scale parallel
computing facilities – together with an efficient parallel implementation of our code
– is essential for our calculations. Yet, our numerical experiment bears some advan-
tages as compared to laboratory experiments: In contrast to laboratory set-ups, we
can easily keep all parameters constant and perform precisely the same experiment
with different atomic species. Furthermore, our approach models a purely coherent
driving of the atom, without any external noise.

Performing our numerical experiments over a broad range of parameters, we
could identify three frequency regimes in the ionization dynamics of periodically
driven alkali atoms and specify the relevant frequency scales that separate these
regimes. In regime (I) – where the external frequency is larger than or comparable
to the level splitting of unperturbed hydrogenic energy levels, the alkali dynamics
mimics the hydrogen dynamics, both, qualitatively and quantitatively. Here also the
alkali dynamics is dominated by the hydrogenic phase space structure, and both,
alkali and hydrogen atoms exhibit dynamical localization (i.e., the quantum me-
chanical suppression of classically diffusive ionization). Furthermore, both atomic
species experience enhanced stability against ionization at initial conditions corre-
sponding to stable (elliptic) islands in the classically mixed regular-chaotic phase
space of the driven two-body Kepler problem, realized by microwave driven atomic
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hydrogen. For smaller frequencies, the alkali and hydrogen ionization dynamics dif-
fers dramatically, and we enter regime (II), where alkali atoms show the signature
of dynamical localization, whilst atomic hydrogen ionizes classically. In this fre-
quency window we can thus observe the emergence of dynamical localization in a
pure quantum system, without a classical analogue. Finally, for small frequencies
(regime (III)) also alkali atoms do no longer experience dynamical localization, the
alkali thresholds follow the behavior as proposed and intensively studied in labora-
tory experiments by the Virginia group. The difference in the ionization dynamics
of alkali and hydrogen atoms in regimes (II) and (III) leads to up to 13 times lower
ionization thresholds of alkali atoms in this regime.

With this novel insight in the ionization dynamics of periodically driven singly
excited multi-electron Rydberg atoms, we could reinterpret the available data of
laboratory experiments of the Munich and the Virginia experiments. Comparison of
the frequency used in these experiments with the internal atomic frequencies (de-
termined by the hydrogenic level splitting and the element-specific quantum de-
fects) shows that so far all laboratory experiments on alkali atoms were performed
mainly in (the non-hydrogenic) regimes (III) and (II). Consequently, these experi-
ments showed considerable discrepancies in the ionization thresholds of alkali and
hydrogen atoms (up to one order of magnitude), hitherto inexplicable. Our identi-
fication of the above frequency regimes does not only explain these experimentally
measured differences and provides for the missing link between the ionization sce-
narios suggested by the Virginia and the Munich group, but also suggests frequency
scales where (future) laboratory experiments should measure essentially the same
ionization thresholds for alkali as compared to hydrogen atoms.

By performing our numerical experiment on hydrogen, lithium, and rubidium
atoms, we furthermore could answer the question whether the dynamics of driven al-
kali atoms obeys any scaling rules. In contrast to atomic hydrogen, the multi-particle
atomic core of alkali atoms introduces a finite length scale, and hence scaling of the
alkali dynamics isa priori not justified. With our experiments on different atomic
species, we can now,a posteriorisubstantiate the existence of scaling laws also for
the alkali dynamics. Our results evince that in the regimes of dynamical localiza-
tion (i.e. regime (I) and (II)) it is indeed the splitting of unperturbed hydrogenic
energy levels (which coincides with the classical Kepler frequency of the unper-
turbed hydrogen atom) that dominates the dynamics (although in regime (II) the
alkali and the hydrogen excitation process differ qualitatively and quantitatively).
Hence, in these regimes it is appropriate to use the hydrogenic scaling rules also for
the alkali dynamics. Employing these rules, it is possible to map the ’scaled’ alkali
ionization thresholds as a function of the ’scaled’ frequency of different atomic (al-
kali) species on top of each other. The transition to regime (III), however, occurs at
an element-specific quantum number, and thus the scaling rules break down. This
is in agreement with the fact that in this regime it is no longer the hydrogenic en-
ergy splitting, but the splitting between (unperturbed) low-angular momentum alkali
states that dominates the dynamics.

Apart from the identification of the frequency dependence of the ionization dy-
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namics of driven Rydberg atoms, our system is an ideal candidate for the study of the
temporal decay of open, complex systems. Whilst this is a subject of vivid ongoing
discussion in literature, many contributions to this subject, however, are based on the
study of simplifying models of real existing systems, or model systems for which
an experimental verification is not straightforward. Our system, on the contrary,
has the advantage that it exhibits sufficiently complex dynamics due to its highly
non-linear level structure, is a decaying system, and can be studied in laboratory
experiments and now – with the apparatus described in this thesis – also in numeri-
cal experiments. As predicted for complex quantum system by various groups, and
as already experimentally observed for driven rubidium atoms [86], for sufficiently
large field amplitude we observed an algebraic decay∼ t−z of the survival probabil-
ity of the microwave driven atom. In contrast to the assumption of a universal decay
law following t−1 proposed by [78, 85, 81], however, we found an increasing decay
exponent with increasing ’scaled’ field amplitude. Thus we provided strong numer-
ical evidence that there is no such universal decay law at least for complex atomic
decay processes. Moreover, since our system bears many aspects of typical time-
dependent quantum systems (like scattering the electron off the atomic core [58],
dynamical localization, coherent coupling to multiply degenerate continua via mul-
tiphoton transition amplitudes of variable order) we expect the increase of the decay
exponent for increasing perturbation to be a general phenomenon for the decay of
open, complex quantum systems.

7.2 Perspectives

One of the main results of this thesis is the identification of the three frequency
regimes in the ionization dynamics of microwave driven alkali atoms, and hence
the elucidation of the experimentally observed dramatic differences in the ioniza-
tion thresholds of periodically driven alkali and hydrogen atoms in regime (III) and
(II). These differences are obviously caused by the existence of a multi-particle core
which induces non-hydrogenic modifications of the driven alkali spectrum as com-
pared to that of driven hydrogen atoms. Such additional structures in the spectrum
allow an efficient transport of the electronic population from the initial atomic state
towards the atomic continuum at field parameters (frequency and amplitude) where
such transport is not possible for atomic hydrogen. To discern these non-hydrogenic
structures in the spectrum of the driven atom it is necessary to undertake a detailed
analysis of the complex energy spectrum of the system. A possible and worthwhile
attempt in this direction is the study of the photoexcitation or photoionization cross
sections which can also be measured experimentally by probing the energy spec-
trum with an additional weak probe field (’Floquet spectroscopy’) [186, 187, 188].
In similar studies (i.e. in studies on the photoabsorption cross section) on non-hydro-
genic atoms exposed to external static electric and/or magnetic fields [189, 59, 190]
it was found that non-hydrogenic structures in the spectrum can be attributed to the
scattering or diffraction of the Rydberg electron at the atomic core. Thus, the core
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acts as a point-like scatterer for the electronic wave-function [58]. In analogy to the
time-independent problem, we expect considerable differences in the photoioniza-
tion spectrum of microwave driven alkali and hydrogen atoms in the non-hydrogenic
frequency regimes (II) and (III). In regime (I), however, where our studies showed
that the alkali ionization dynamics follows the hydrogenic dynamics, we expect no
significant differences in the alkali and the hydrogen spectrum. Since the classi-
cal phase space of the driven hydrogen atom is (mixed regular-) chaotic in regime
(I), such findings would agree with studies on billiard systems with and without
point-like interactions. There, no deviations between the spectral statistics with and
without a point-scatterer were found for chaotic billiards [191, 192], whereas for
integrable billiards the spectral statistics do change with the existence of a point-
scatterer [193, 194, 195]. While in studies on time-independent problems (billiards,
Rydberg atoms in static fields) the existence of a point scatterer only changes the
spectral statistics, in our problem the non-hydrogenic core also causes the atom to
be less stable against ionization than without a scatterer (as we observed it in regime
(II) and (III)). Thus, it would be worthwhile to perform a (laboratory or numerical)
experiment that measures both, the photoionization cross section and the ionization
probability of periodically driven Rydberg states. Such an experiment should not
only show the differences in the ionization thresholds between alkali and hydrogen
atoms in regimes (II) and (III) (that we identified in this thesis), but also a differ-
ence in the spectral statistics of both atomic species in these frequency regimes. To
our knowledge, such studies would provide for the first case where a difference in a
robust, experimentally accessible quantity – the ionization probability (which aver-
ages over the entire spectrum) – can be traced back to the difference in the spectral
statistics induced by core-scattered or diffractive orbits. Furthermore, these stud-
ies would be the first studies on modifications of the spectral statistics caused by a
point-like interaction in an explicitly time-dependent system.

Another worthwhile program that should be accomplished in future studies con-
cerns the decay of our system. In solid state physics it is well known that Anderson
localization causes fluctuations in the conductance across disordered solids. Re-
cently, a suitable generalization of conductance for driven atomic systems was un-
dertaken, and atomic conduction fluctuations were observed in one-dimensional cal-
culations on microwave-driven atomic hydrogen [66, 67, 196]. With our apparatus,
it is now possible to extend such studies to three-dimensional microwave driven hy-
drogen atoms, to verify that such fluctuations are no artefact of the one-dimensional
model of the atom. Moreover, such fluctuations should also appear in microwave
driven alkali atoms in regime (I), and also in regime (II), where we observe the sig-
natures of dynamical localization for alkali atoms, without a classical analogue. In
contrast to our studies on the decay of the survival probability, such studies require
a statistical analysis of the ’atomic conductance’ as a function of some parame-
ter [196]. For such a statistical analysis a large number of atomic samples (specified
by the field amplitude, frequency, and principal quantum number) has to be probed.
Therefore a larger amount of computation time is needed. Yet, in the near future,
with the ongoing increasing availability of supercomputing facilities also for civil
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purposes these studies become feasible.
Finally, our work proves that nowadays the exact treatment of complex dynam-

ical systems – without the application of (over-) simplified models, and without the
use of adjustable parameters – is indeed possible. In addition, we did not only show
that this kind of program is possible, but moreover our results show that a such a
numerical ’tour-de-force’ is crucial for the comprehensive understanding of highly
non-perturbative situations at high spectral densities.
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[1] A. Einstein,Über einen die Erzeugung und Verwandlung des Lichtes betref-
fenden heuristischen Gesichtspunkt, Ann. Phys.17, 132 (1905).

[2] C. C. Tannoudji,Nobel Lecture: Manipulating atoms with photons, Rev.
Mod. Phys.70, 707 (1998).

[3] S. Chu,Nobel Lecture: The manipulation of neutral particles, Rev. Mod.
Phys.70, 685 (1998).

[4] W. D. Phillips,Nobel Lecture: Laser cooling and trapping of neutral atoms,
Rev. Mod. Phys.70, 721 (1998).
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Fini, c’est fini, ça va finir, ça va peut-être finir.
Les grains s’ajoutent aux grains, unà un, et un jour,
soudain, c’est un tas, un petit tas, l’impossible tas.

S. Beckett,Fin de partie
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