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Summary

This dissertation offers a multifaceted examination of robust asset allocation strategies in the
context of financial portfolio management, a subject of paramount importance and great interest
to investors seeking to navigate the intricacies and complexities of modern financial markets, with
significant implications for both academic research and practical applications. The field intersects
various disciplines, including finance, economics, mathematics, statistics, computer science, and
behavioral psychology. As such, it presents a unique and compelling opportunity for innovative
and multidisciplinary approaches to portfolio management, opening avenues for new research and
applications.

The initial chapter provides an introduction to the topic, defining the term robustness in the con-
text of financial portfolio management as the ability of a portfolio to perform well under a variety
of perturbations. It also highlights the various facets of robust asset allocation, including statis-
tical robustness, computational robustness, model robustness, and more, each being highlighted
for its critical importance in the broader context of effective portfolio management. This chapter
also sets the stage for the dissertation by providing a comprehensive introduction for each essay
included, describing the motivation, notation, and key contributions of each research article.

The body of the dissertation comprises several contributing essays. The first essay revisits Harry
Markowitz’s pioneering portfolio construction model. It demonstrates how extending this foun-
dational model with practically relevant constraints and an explicit formulation of uncertainty in
forecasting return statistics can address many of the alleged shortcomings of the original model.
The second essay introduces an innovative domain-specific language, designed to simplify solv-
ing convex-concave saddle problems. This language has direct and significant applications in the
realm of robust optimization, offering a new tool for researchers and practitioners alike. The third
essay focuses on the area of robust bond portfolio construction, providing advanced methods for
assessing and optimizing bond portfolios under a variety of market conditions, adding depth to
this important area of portfolio management. The fourth essay concerns itself with computational
methods in the field of behavioral finance. It presents novel approaches for portfolio optimization,
using cumulative prospect theory utility to effectively integrate investor behavior and preferences
into portfolio construction, thus bridging the gap between theory and practical investor behav-
ior. The final essay serves as a bridge between traditional statistical methods and contemporary
deep learning techniques. It introduces the Autoregressive Moving Average (ARMA) cell as a
novel component for neural autoregressive modeling, thereby significantly expanding the toolkit
available for robust forecasting in various applications, including financial forecasting.

In summary, this dissertation contributes to multiple dimensions in the field of robust asset al-
location. It provides not only comprehensive theoretical insights and practical applications but
also fosters a collaborative environment for continued innovation and development in this dynam-
ically evolving field. The inclusion of open-source software with each research contribution greatly
enhances the practical utility of the work. This ensures that the insights and methodologies de-
veloped can be readily applied and extended in both academic and industry settings, and thus
have the potential to make a lasting impact on the field.



Zusammenfassung

Diese Dissertation stellt eine umfassende Untersuchung von robusten Anlagestrategien im Kon-
text des Finanzportfolio-Managements dar, einem Thema von höchster Bedeutung und großem
Interesse für Investoren im Hinblick auf die Herausforderungen und Komplexitäten moderner
Finanzmärkte. Dies hat bedeutende Implikationen sowohl für die akademische Forschung als
auch für praktische Anwendungen. Das Feld überschneidet sich mit verschiedenen Disziplinen,
darunter Finanz- und Wirtschaftswissenschaften, Mathematik, Statistik, Informatik und Verhal-
tenspsychologie, und bietet somit eine einzigartige Gelegenheit für innovative und multidisziplinäre
Ansätze im Portfolio-Management, die neue Wege für Forschung und Anwendungen eröffnen.

Das einleitende Kapitel bietet eine Einführung in das Thema und definiert den Begriff der Ro-
bustheit im Kontext des Finanzportfolio-Managements als die Fähigkeit eines Portfolios, unter
einer Vielzahl von Marktveränderungen hinreichend gute Renditecharakteristiken zu erzielen. Es
beleuchtet auch die verschiedenen Facetten der robusten Vermögensallokation, wie statistische
Robustheit, rechnerische Robustheit, Modellrobustheit und mehr, wobei die kritische Bedeutung
jedes Aspekts im Gesamtkontext eines effektiven Portfoliomanagements hervorgehoben wird. Zu-
dem setzt dieses Kapitel den Rahmen für die gesamte Dissertation, indem es eine umfassende
Einführung in jeden einzelnen Aufsatz bietet und die Motivation, Notation und die wesentlichen
Beiträge beschreibt.

Der Hauptteil der Dissertation setzt sich aus den beitragenden Aufsätzen zusammen. Der er-
ste Aufsatz knüpft an das einflussreiche Portfoliokonstruktionsmodell von Harry Markowitz an
und zeigt auf, wie praktisch relevante Nebenbedingungen sowie eine explizite Modellierung der
Unsicherheiten in der Renditeprognose die vermeintlichen Schwächen des Ansatzes adressieren
können. Der zweite Aufsatz führt eine domänenspezifische Sprache zur Vereinfachung der Lösung
von konvex-konkaven Sattelpunktproblemen ein, welche direkte Anwendungen im Bereich der ro-
busten Optimierung findet und ein neues Werkzeug für Industrie und Forschung darstellt. Der
dritte Aufsatz widmet sich dem Bereich des robusten Anleihenportfolio-Managements und entwick-
elt innovative Methoden zur Bewertung und Optimierung von Anleihenportfolios unter verschiede-
nen Marktbedingungen. Der vierte Aufsatz beschäftigt sich mit computergestützten Methoden
in der verhaltensorientierten Finanzwissenschaft. Er präsentiert neuartige Ansätze für die Port-
foliooptimierung, die auf der cumulative prospect theory basieren, wodurch das Verhalten und
die Präferenzen von Investoren effektiv in die Portfoliokonstruktion integriert werden und somit
einen Beitrag zur Annäherung von Theorie und praktischem Investorenverhalten leisten. Der let-
zte Aufsatz vereint traditionelle statistische Methoden und moderne Deep-Learning-Techniken.
Er führt die Autoregressive Moving Average (ARMA)-Zelle als eine neue Komponente für neu-
ronales autoregressives Modellieren ein, was die verfügbaren Methoden für robuste Prognosen in
verschiedenen Anwendungen, einschließlich der Finanzprognose, wesentlich erweitert.

Zusammenfassend leistet diese Dissertation Beiträge zu mehreren Aspekten der robusten
Vermögensallokation. Sie bietet nicht nur umfassende theoretische Einsichten und praktische
Anwendungen, sondern fördert auch eine kollaborative Umgebung für weitere Innovationen und
Entwicklungen in diesem dynamischen Feld. Die Bereitstellung von Open-Source-Software zu je-
dem Forschungsbeitrag erhöht die praktische Relevanz der Arbeit erheblich, sodass neue Erkennt-
nisse und entwickelte Methodologien problemlos sowohl in akademischen als auch in industriellen
Umgebungen angewendet und erweitert werden können, und somit das Potenzial haben, nach-
haltige Auswirkungen auf das Feld zu haben.
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Part I.

Introduction and Background



1. General introduction

The field of robust asset allocation is both fascinating and challenging, with many opportunities
for innovation and advancement that can have a significant impact on the financial industry. This
dissertation aims to contribute to the current understanding of robustness in asset allocation, by
exploring and developing various theoretical frameworks, computational methods, and practical
applications. To give the reader some context, this chapter starts by providing a brief motivation
that highlights the importance of robustness in portfolio management, before discussing various
forms of robustness relevant to asset allocation.

1.1. Motivation

Throughout the past century, much effort has been devoted to the development of portfolio man-
agement strategies that seek to provide superior risk-adjusted returns to their investors, dating
back to the seminal work of Graham and Dodd (1934). Despite these efforts, the financial markets
remain a thorny landscape to thrive in, with countless examples of failed portfolio management
strategies. One such case is Long-Term Capital Management (LTCM), a hedge fund that, although
founded by Nobel laureates and staffed with some of the brightest minds in finance, collapsed in
1998 after losing $4.6 billion in less than four months (Lowenstein, 2001). The collapse of LTCM
was a wake-up call for the financial industry, highlighting the need for more robust portfolio
management strategies. Other crises, such as the 2007-2008 financial crisis or the COVID-19
pandemic, further underscored the importance of robustness in portfolio management, as many
portfolios suffered significant losses during these events. To this day, robust asset allocation strate-
gies remain less well understood, and implementing them in practice remains a challenge, leaving
room for further research and innovation.

At its core, robustness in portfolio management entails designing strategies that excel not just in
expected scenarios but also maintain their effectiveness in the face of unexpected events, or at
least, do not suffer catastrophic losses. This is a challenging task, as the financial world is com-
plex and interconnected, with many sources of hard to quantify uncertainty. The comprehensive
understanding of risk, extending beyond traditional financial metrics to include market, credit,
operational, and systemic risks, is crucial in developing robust asset allocation strategies. Thus,
any attempt to design robust asset allocation strategies must navigate these layers of complexity,
ensuring portfolios are optimized for anticipated conditions while remaining resilient against the
unknown.

Furthermore, the concept of robustness in asset allocation offers a unique intersection of disci-
plines, ranging from finance and economics to mathematics, statistics, computer science, and even
behavioral psychology. This multidisciplinary nature of robustness in asset allocation makes it a
fascinating and challenging field, with many opportunities for new research and innovation, some
of which are explored in this dissertation.
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1.2 Forms of robustness in asset allocation

This dissertation thus investigates the diverse interpretations of robustness in asset allocation, and
explores various methods and techniques to design robust portfolio management strategies. From
optimizing portfolio returns and managing risk to adapting to changing market conditions and
investor preferences, the essays in this dissertation offer a multifaceted perspective on robustness
in financial portfolio management.

Special attention is also given to the practical implementation of each contribution in this disser-
tation, with each essay accompanied by a software implementation that is publicly available as
open-source code, with the link provided alongside the essay. The software implementations are
designed to not only allow for reproducibility of the results but also to serve as a starting point
for future research and innovation in the field of robust asset allocation.

1.2. Forms of robustness in asset allocation

In this dissertation, the concept of robustness is pivotal, and accordingly, we start by providing a
definition of robustness in this setting. One interpretation of robustness is the ability of a system
to maintain feature persistence when subjected to a wide range of perturbations (Jen, 2003). In
asset allocation, feature persistence may refer to the ability of a portfolio to maintain positive
returns, or to maintain a certain risk level, across a wide range of market regimes. This definition,
albeit not universally agreed upon, serves as the basis for the following discussion of robustness in
asset allocation. As robustness can take on various forms, each targeting specific facets of portfolio
management, our discussion now turns to these pertinent aspects of robustness. These aspects
are not mutually exclusive, and in fact, many of them are closely related, as will be discussed in
the following.

Statistical robustness. Focusing on the resilience of statistical methods against model assump-
tion violations, and in particular, deviations from the assumed distribution of the data or out-
liers (Huber and Ronchetti, 2009), statistical robustness is immediately relevant to portfolio man-
agement. For instance, a loss that would happen once in a thousand years according to normally
distributed asset returns may be observed every few years in practice, motivating the use of more
robust statistical methods, such as using a heavy-tailed distribution (Mittnik and Rachev, 1993).
Robust statistics is a well-established field, with many methods and techniques, such as robust
regression, robust covariance estimation, and robust testing (Huber and Ronchetti, 2009). One
immediate application of robust statistics in the context of portfolio management is thus to use
robust methods to estimate the expected returns and covariance matrix of the assets, which are
crucial inputs to portfolio optimization models.

Robust optimization. Addressing uncertainties in input parameters within the model, robust
optimization stands in contrast to traditional optimization, which relies on precise estimates of
these parameters - often a challenging task in practice. Instead, robust optimization considers a
range of plausible values for the input parameters, and seeks to optimize for various moments of
the objective, such as the expected value or the worst-case value (Shapiro et al., 2021; Beyer and
Sendhoff, 2007; Ben-Tal et al., 2009; El Ghaoui and Lebret, 1997). Theoretical and computational
advancements in robust optimization have made the approach increasingly practical, with portfolio
optimization being a prominent example, as it is known to be sensitive to input parameters.
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1.3 Outline of the dissertation

Robust optimization is closely related to statistical robustness, as it can be used to address model
assumption violations, and much of the literature on robust asset allocation focuses on robust
optimization methods (e.g., Fabozzi et al., 2007; Tütüncü and Koenig, 2004).

Computational robustness. The resilience of computational methods against numerical or algo-
rithmic errors is an essential aspect of computational robustness. In portfolio management, this
involves ensuring that the numerical methods used to solve the optimization problem are stable
and reliable and that the results are not affected by numerical errors. Moreover, it may also
involve following best practices in software engineering, such as using version control, automated
testing, and continuous integration, to ensure the reliability of the software implementation of
the portfolio management strategy. This process is simplified by the advancement of higher level
programming languages and domain-specific languages, which allow for concise and expressive
code that is easy to read and understand, and thus, less susceptible to errors.

Model robustness. As market dynamics evolve, shifts in the underlying assumptions of the
portfolio management model may occur, rendering the model obsolete. Model robustness refers
to the degree to which a model can adapt to changing market conditions, or to the degree to
which the model remains valid in the face of structural changes in the market. For example, a
model that exploits a small inefficiency in the market may become obsolete if the inefficiency is
corrected, whereas a model that trades based on long-term economic trends may remain valid for
a longer period of time.

Other forms of robustness. In addition to the forms of robustness discussed above, there are
many other forms of robustness that are relevant to portfolio management. For example, op-
erational robustness refers to the resilience of the portfolio management against process failures,
such as human errors or technical failures, and is often closely related to computational robustness
for quantitative strategies. A prominent example is the Knight Capital Group trading error in
2012, where faulty software and a lack of control systems led to a series of erroneous trades which
cost the company $440 million (Davidson, 2012). Further, regulatory robustness aims to ensure
that changes in regulatory requirements, such as capital requirements or trading restrictions, do
not adversely affect the portfolio management strategy. Ethical robustness investigates the eth-
ical implications of the strategy, ensuring that the strategy is aligned with the ethical values of
the investors, with the recent rise of environmental, social, and governance (ESG) investing be-
ing a notable example. Finally, considering behavioral robustness is a crucial aspect of portfolio
management, as evidently investors exhibit behavioral biases, such as loss aversion and overcon-
fidence, which can lead to suboptimal investment decisions if not properly accounted for (Barber
and Odean, 2013).

1.3. Outline of the dissertation

This dissertation comprises five essays, addressing various aspects of robustness in asset allocation.
The remainder of this chapter provides a brief overview of each essay, highlighting its contributions
and relevance to the field of robust asset allocation, as well as the notation and terminology used.

4



1.3 Outline of the dissertation

The subsequent chapters then include the essays in their entirety. The five essays that comprise
this dissertation are:

1. Markowitz Portfolio Construction at Seventy: Revisiting Harry Markowitz’s pioneering
work, this essay extends his original model by incorporating practical constraints and addressing
uncertainties in the expected returns and covariance matrix of the assets. It exemplifies robust
optimization and model robustness in modern portfolio management.

2. Disciplined Saddle Programming: Shifting focus to convex-concave saddle point problems,
this essay introduces a novel domain-specific language for specifying and solving such problems,
with natural use cases being robust optimization in finance and related fields.

3. Robust Bond Portfolio Construction via Convex-Concave Saddle Point Optimiza-
tion: Focusing on the bond market, this essay explores methods for computing the minimum
value of a bond portfolio under various adverse yield curve and spread environments, as well as
methods to construct portfolios that perform well in these worst-case settings.

4. Portfolio Optimization with Cumulative Prospect Theory Utility via Convex Op-
timization: This essay tackles the challenge of maximizing non-concave cumulative prospect
theory utility (CPT) in portfolio selection. It contributes to behavioral robustness by providing
a computational framework that can incorporate investor preferences and empirically observed
behavioral patterns into portfolio construction.

5. ARMA Cell: A Modular and Effective Approach for Neural Autoregressive Model-
ing: Bridging the gap between traditional statistical methods, in this case autoregressive moving
average (ARMA) models, and modern deep learning techniques, this essay introduces the ARMA
cell, a novel neural network component that can effectively model a wide range of time series. It
contributes to robust forecasting by providing a flexible and robust framework for modeling time
series, which can be used in portfolio management and beyond.
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2. Modern portfolio theory

A central challenge in portfolio management is the construction of robust portfolios that can con-
sistently deliver high returns in the face of uncertainties. The seminal work by Harry Markowitz
in 1952 laid the groundwork for modern portfolio theory (MPT), introducing an optimization
framework that balances expected return against risk, defined as the variance of portfolio re-
turns (Markowitz, 1952). Before Markowitz, portfolio construction was largely driven by heuris-
tics and intuition, with little theoretical foundation and rigor. Markowitz had the vision of an
optimization-based approach to portfolio management, which he realized through the development
of the mean-variance optimization model. Over the decades, this framework has evolved signifi-
cantly, adapting to advancements in computational power, optimization techniques, and practical
investment constraints. Still, the method is commonly criticized, with a prime concern being
its sensitivity to input data, especially the estimated return statistics (Michaud and Michaud,
2008). The essay revisits Markowitz’s original model and shows how contemporary advancements
in optimization and computational techniques can be used to address these concerns, thereby en-
hancing the robustness of the model. Building on the foundations of Markowitz’s work, the model
introduced in this essay is therefore termed ”Markowitz++.” In the scope of the dissertation, this
essay serves to provide some historical context to portfolio optimization, highlighting the evolution
of the field and the relevance of Markowitz’s original insight in the context of modern portfolio
management. Additionally, it introduces terminology and notation that will be used in most of
the other essays.

2.1. Background and notation

The aim of portfolio construction methods is to determine the optimal holdings of a portfolio
according to some objective, typically involving maximizing the expected return, and constraints.
To construct a portfolio, we start with a set of n assets, called the investment universe.

Holdings and trades. The portfolio that we are allocating has a positive value V , and we can
invest in these assets by allocating a fraction wi of the portfolio value to the i-th asset, and thus
w ∈ Rn is the vector of asset weights. Any remaining fraction of the portfolio value is held in
cash, denoted by c, leading to the identity

1T w + c = 1,

where 1 is the vector of all ones of the appropriate dimension. When wi > 0, we say that the
portfolio has a long position in the i-th asset, and when wi < 0, we say that the portfolio has a
short position in the i-th asset. Similarly, when c > 0, the portfolio is holding cash and is referred

6



2.1 Background and notation

to as diluted and when c < 0, the portfolio is borrowing cash, and is referred to as margined.
Closely related is the notion of leverage, which we take to be

L =
n∑

i=1
|wi| = ∥w∥1,

noting that other definitions of leverage are also used.

We change the portfolio holdings by executing trades

z = w − wpre,

where wpre represents the pre-trade weights. We use turnover, to quantify the volume of the
trades, which we define as

T = 1
2

n∑
i=1

|zi| = 1
2∥z∥1.

Costs and constraints. One way of making the portfolio robust is by making the model more
realistic, i.e., by taking into account practical considerations. In practice, there are several implicit
and explicit costs associated with our allocation and trading decisions. We can therefore model
holding and trading costs, ϕhold and ϕtrade, where ϕhold should take into account the cost of
shorting assets and borrowing cash, and ϕtrade should take into account the bid-ask spread of the
assets, as well as the market impact, i.e., the change in price caused by the trade itself. There are
also constraints that portfolio managers are facing, which could be external, such as regulatory
constraints, or internal, such as risk limits. The model should thus allow for constraints on the
portfolio holdings and trades, such as limits on the leverage, the turnover, or bounds on the
individual asset weights, cash holdings, or trades. The semantics of constraints are that they are
hard, i.e., no violation is tolerated. However, instead of constraints, we can also add penalization
terms to the objective to disincentive allocations with undesirable properties, while keeping the
problem feasible. In some cases we only want to penalize after a certain threshold, prompting the
use of soft constraints, where instead of the constraint

f ≤ fmax,

we add the term
γ(f − fmax)+,

to the objective, where γ is a positive scalar, and (x)+ = max{x, 0}. Conveniently, if f is a
convex function, then so is (f − fmax)+ by the composition rules for convex functions (Boyd and
Vandenberghe, 2004, §3.2.4). The semantics of soft constraints are therefore that they add no
penalty if f ≤ fmax, and a penalty tunable by the parameter γ if f > fmax.

Risk and return. The Markowitz method aims to trade off the expected return and risk of the
portfolio. The gross portfolio return, i.e., before deducting any trading and holding costs, is given
by R = rT w + rrfc, where r ∈ Rn is the vector of asset returns, and rrf is the risk-free rate.
While the returns of assets are not random, but rather determined by the orders of the market
participants, it is often useful to model them as a multivariate random variable, with expected
value µ ∈ Rn and covariance matrix Σ ∈ Sn

++, i.e., a symmetric positive definite matrix. The
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2.2 The Markowitz model

portfolio return is then a random variable with expected value R̄ = µT w + rrfc and variance
σ2 = wT Σw. The essay makes no attempt at suggesting a model for the expected returns, as
it is by the nature of the problem the most difficult task, with successful models often being
closely guarded secrets. While the covariance matrix is comparatively easier to estimate, it is
still a challenging task, with many models and techniques available (Johansson et al., 2023). One
common approach, especially with large universes, is to use a factor model, where the return of
the n assets is expressed in terms of a smaller number of underlying factors. This relation is
expressed by the factor loading matrix F ∈ Rn×k. One way of using the factor approach is to
model the first two moments of the asset returns as

µ = F f̄ + ϵ̄ and Σ = FΣf F T + D,

with f̄ ∈ Rk and Σf ∈ Sk
++ being the expected factor returns and the factor covariance matrix,

respectively. This model allows expressing idiosyncratic risk and return contributions through the
vectors ϵ̄ ∈ Rn and D ∈ Sn, where the latter is a diagonal matrix. Using a factor model can not
only improve the out of sample performance of the model (Feng et al., 2020), but also greatly
speeds up solving the optimization problem, as demonstrated in the essay.

Robust optimization. The estimation of µ and Σ is subject to considerable uncertainty, which
can be amplified by the optimization process. These challenges can be addressed by using robust
optimization techniques, which seek to construct portfolios that perform well, either measured by
the expected value or the worst-case of the objective, across a spectrum of plausible outcomes,
expressed as a set of scenarios or as a probability distribution (Shapiro et al., 2021; Beyer and
Sendhoff, 2007; Ben-Tal et al., 2009; El Ghaoui and Lebret, 1997). In this essay, we follow Boyd
et al. (2017) and use the worst-case over a convex set of possible values, defined as

Rwc = min{(µ + δ)T w | |δ| ≤ ρ}, (2.1)

for the expected portfolio return, and

(σwc)2 = max{wT (Σ + ∆)w | |∆ij | ≤ ϱ(ΣiiΣjj)1/2}, (2.2)

for the portfolio variance, where δ ∈ Rn and ∆ ∈ Sn are perturbations to the expected return and
covariance matrix, respectively, and ρ ∈ Rn

+ and ϱ ∈ (0, 1] are parameters that control the size
of the perturbations. These specific formulations have analytical solutions, making them easy to
implement. Anthropomorphizing the optimization problem, the semantics are that we can choose
the weights of the assets, but an adversary can choose the perturbations, so we wish to maximize
the return in the worst-case scenario.

2.2. The Markowitz model

In his original paper, Markowitz geometrically illustrated the risk-return trade-off characterizing
the optimization problem

maximize µT w
subject to wT Σw ≤ (σtar)2,

1T w = 1,
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2.2 The Markowitz model

where the portfolio return is maximized subject to a variance and budget constraint. The
Markowitz++ model, as introduced in this essay, extends the original model by introducing
additional constraints and costs, leading to a much more robust portfolio. Still, we can easily
implement and solve it in practice by modeling it as a convex optimization problem.

Convex optimization. All objective terms and constraints in the Markowitz++ model are con-
vex. Far from being a mere technicality, this is a crucial property that allows us to solve the
model efficiently and reliably. When Markowitz first introduced his model, the simplex algorithm
for linear programs (LPs) was just introduced (Dantzig, 1951), with the first solver for quadratic
programs (QPs) being developed a few years later (Wolfe, 1959). Today, convex optimization
is a mature field, encompassing not only LPs and QPs but also more general convex optimiza-
tion problems like second-order cone programming (SOCP) and semidefinite programming (SDP).
These problem classes allow us to model a wide range of practical applications, including port-
folio optimization, where we use SOCPs to directly model the volatility instead of the variance,
and SDPs can be used to model covariance matrices. The theory surrounding convex optimiza-
tion is also well-developed, ranging from sensitivity analysis via duality theory to convergence
guarantees (Boyd and Vandenberghe, 2004). Moreover, reliable solvers and algorithms are read-
ily available as both commercial (e.g., Gurobi Optimization, LLC, 2023; MOSEK ApS, 2020;
Cplex, IBM ILOG, 2009) and open-source (e.g., Goulart and Chen, 2024; Domahidi et al., 2013;
O’Donoghue et al., 2016; Stellato et al., 2020) software.

Domain-specfic languages. Once the problem is formulated mathematically, we can turn to
implementing it in software, where we leverage the power of modern programming languages and
domain-specific languages (DSLs). Using a DSL like CVXPY (Diamond and Boyd, 2016), the
software used throughout this dissertation to specify convex problems, we can express the problem
in code that closely resembles the mathematical formulation. For example, even without previous
experience with the Python programming language or CVXPY, the following code snippet can
easily be understood to solve the original Markowitz model for n assets, given expected return
vector mu and covariance matrix Sigma, and a volatility limit sigma_tar.

1 import cvxpy as cp
2

3 w = cp.Variable(n)
4 objective = cp.Maximize(mu.T @ w)
5 constraints = [w.T @ Sigma @ w <= sigma_tar**2, cp.sum(w) == 1]
6 problem = cp.Problem(objective, constraints)
7 problem.solve()

In addition to the conciseness of the code, leveraging the properties of convex optimization allows
us to solve the problem without worrying about the algorithmic details of the solver in most cases,
as indicated by the solve method not requiring any arguments. DSLs for convex optimization
also exist in other programming languages, such as Convex.jl (Udell et al., 2014) for Julia, CVXR
(Fu et al., 2017) for R, and CVX (Grant and Boyd, 2014) for MATLAB.
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3. Saddle programming

Convex optimization is a powerful tool in portfolio management, allowing us to model a broad
range of practical problems, as shown in the previous essay. It also became apparent that we can
improve the portfolio construction process by incorporating robust optimization techniques. In
this essay, we explore convex-concave saddle problems, a class of optimization problems that is
widely applicable in finance, machine learning, game theory, and other fields. One natural use case
of saddle problems is robust optimization, as saddle problems can be used to model worst-case
optimization problems. While specialized methods exist to solve some classes of saddle problems,
one common approach is to dualize the problem, i.e., to transform the saddle problem into a single
convex optimization problem. Traditionally, this is a manual expertise-driven process that is often
tedious and prone to errors. This essay introduces a novel approach to automate and simplify this
process, encapsulating it within the framework of disciplined saddle programming (DSP). This
approach leverages recent advances in the theory of conic representable saddle functions by Judit-
sky and Nemirovski (2022), and introduces a DSL that can parse saddle problems, automatically
dualize them, solve the resulting convex problem, and return the solution to the original problem.
The fact that it is disciplined implies that a small set of rules needs to be followed that provide
sufficient conditions for the representability of the problem. The essay also contributes insights
that are relevant for solving saddle problems in practice, as DSP ensures that even in cases where
certain technical conditions (like compactness) are not explicitly verified, the solutions obtained
are feasible and valid. This approach underscores the robustness and reliability of DSP in solving
a broad spectrum of saddle problems.

3.1. Background and notation

To understand the motivation behind DSP, we first need to understand the structure of saddle
problems, and how they can be solved using convex optimization. We start by introducing the
notation used in this essay.

Saddle problems. A convex-concave saddle problem is an optimization problem that involves a
saddle function, i.e., a function that is convex in one set of variables and concave in another set
of variables, either in the objective or in the constraints. Formally, a saddle function is a function
f : X × Y → R, with X ⊆ Rn and Y ⊆ Rm, that is a convex function in x ∈ X for any fixed
y ∈ Y, and a concave function in y ∈ Y for any fixed x ∈ X . The domain of the saddle function
is the Cartesian product X × Y, which we require to be a nonempty closed convex set. A saddle
point is a point (x∗, y∗) ∈ X × Y satisfying

f(x⋆, y) ≤ f(x⋆, y⋆) ≤ f(x, y⋆) for all x ∈ X , y ∈ Y.

10



3.1 Background and notation

That is, choosing any y ∈ Y that is not y∗ can only yield a value that is less or equal than
f(x∗, y∗), and similarly for x. Since we are interested in minimizing over x and maximizing over
y, the components of (x∗, y∗) are the corresponding best responses to each other.

A saddle point problem is to find a saddle point of a saddle function over a convex feasible set. The
more general class of saddle problems additionally includes problems involving functions defined
as the partial supremum or infimum of a saddle function, i.e., a saddle extremum function. The
saddle max function G : X → R ∪ {∞} and the saddle min H : Y → R ∪ {−∞} are defined as

G(x) = sup
y∈Y

f(x, y) and H(y) = inf
x∈X

f(x, y),

respectively. The saddle max function is convex, and the saddle min function is concave (Boyd
and Vandenberghe, 2004, §3.2.3), and we can therefore use them in the objective or constraints
of a convex optimization problem.

Conic optimization. A conic form problem is an optimization of the (standard) form

minimize cT x
subject to x ⪰K 0,

Ax = b,
(3.1)

where c ∈ Rn, A ∈ Rp×n, b ∈ Rp, and K ⊆ Rn is a proper cone (Boyd and Vandenberghe, 2004,
§4.6.1), with proper cones being defined as being closed, convex, pointed, and with nonempty
interior (Boyd and Vandenberghe, 2004, §2.4.1). Conic form problems are a subclass of convex
optimization problems and look similar to linear programs, and indeed, when K = Rn

+, we recover
the standard form of linear programs. However, conic form problems are much more general,
allowing us to model a wide range of practical problems, including QPs, SOCPs, and SDPs. In
most practical cases, the cone K is a Cartesian product of primitive cones, i.e., K = K1 ×· · ·×Kn,
where each Ki is a proper cone. As an example, we can model a Markowitz portfolio optimization
problem with a volatility instead of a variance constraint and a long-only constraint as a conic
optimization problem. We start with the problem

maximize µT w
subject to ∥LT w∥2 ≤ σtar,

1T w = 1,
w ≥ 0,

where µ ∈ Rn is the expected return vector, L ∈ Rn×n is the Cholesky factor of the covariance
matrix, and σtar ∈ R+ is the target volatility. The inequality for the long-only constraint here
is elementwise. We can rewrite the problem in standard form by introducing auxiliary variables
t ∈ R and y ∈ Rn and instantiating (3.1) with

c =

 −µ
0
0

 , A =

 0T 1 0T

−LT 0 In

1T 0 0T

 , b =

 σtar

0
1

 and x =

 w
t
y

 ,

where 0 is the vector of all zeros of appropriate dimension. The cone K is given K = Rn
+ × Qn+1,

where Qn+1 is the second-order cone in Rn+1, defined as

Qn+1 = {(t, y) ∈ R × Rn | ∥y∥2 ≤ t} .
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3.1 Background and notation

While forming the standard form manually has a didactic value, it is rarely necessary in practice,
as DSLs like CVXPY automate this process. The generality of conic optimization makes it useful
as an interface between solvers and modeling frameworks, as it allows users to express a wide range
of problems that eventually can all be reduced to a conic standard form problem. Conic solvers
can then be used to solve the problem using efficient algorithms that work across different cone
types, such as interior point methods (Potra and Wright, 2000). Finally, the conic form can be
used to generate theoretical insights, such as differentiating the optimal value of the problem with
respect to parameters (Amos, 2019; Agrawal et al., 2019), or deriving a dual reduction for conic
representable saddle functions (Juditsky and Nemirovski, 2022), which is the basis of DSP.

It is therefore not surprising that conic optimization has become the dominant paradigm in convex
optimization, with many solvers and DSLs available.

Dual reduction. The idea behind dual reduction is to transform a saddle problem into a single
convex optimization problem, which goes back to Morgenstern and Von Neumann (1953). As an
example, we consider the problem of maximizing the worst-case return of a portfolio (2.1), subject
to a budget constraint, given by

maximize infδ∈D δT w + µT w
subject to 1T w = 1,

with D = {δ ∈ Rn | |δ| ≤ ρ} and variables w ∈ Rn and δ ∈ Rn. For any w, the saddle extremum
function in the objective evaluates to the optimal value of the LP

minimize wT δ
subject to −δ ≤ ρ,

δ ≤ ρ,

with variable δ ∈ Rn. The dual of this LP is given by

maximize ρT λ1 + ρT λ2
subject to λ1 − λ2 = w,

λ1 ≥ 0, λ2 ≥ 0,

with dual variables λ1, λ2 ∈ Rn. Assuming strong duality holds, the optimal value of both
problems is equal, and we can therefore replace the saddle extremum function with the dual
objective, leading to the single convex optimization problem

maximize ρT λ1 + ρT λ2 + µT w
subject to λ1 − λ2 = w,

λ1 ≥ 0, λ2 ≥ 0,
1T w = 1,

with variables w, λ1, λ2. While it is easy to derive the dual reduction for this simple example by
hand, the process quickly becomes tedious for complex problems, motivating the development of
DSP.
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3.2 Disciplined saddle programming

3.2. Disciplined saddle programming

We now turn to the main contribution of this essay, DSP, a novel approach to automate the
process of dualizing saddle problems. We refer to the DSL, as well as its concrete implementation
in Python, as DSP.

Atoms and composition. The core idea behind DSP is to automate the process of dualizing
saddle problems, encapsulating it within a DSL. The DSL is based on the concept of atoms,
representing convex-concave saddle functions. Those functions include bilinear and bi-affine func-
tions, weighted norms, quadratic forms, and others. These atoms can be composed to form more
complex functions, which are also convex-concave saddle functions. For example, scaling a saddle
function with a positive scalar yields a convex-concave saddle function, as does adding two saddle
functions. When negating a saddle function, we obtain a saddle function with the roles of the
convex and concave variables switched.

Developing a DSL. DSP is inspired by the principles of disciplined convex programming (DCP),
extending its scope to encompass saddle problems. Just like DSLs for convex optimization (such as
CVXPY) abstract away the intricacies of canonicalizing convex programming models to a standard
form, DSP automates the dualization process, thereby greatly simplifying the specification of
saddle problems. As an example, we can easily express (2.1) in DSP as shown below, with the
full problem and the exact syntax (e.g., the notion of local variables) being explained in detail in
the essay. While for this specific case, an analytic expression is available, the DSP formulation is
much more general, allowing for arbitrary DCP representable constraint sets.

1 import cvxpy as cp
2 import dsp
3

4 w = cp.Variable(n)
5 delta = dsp.LocalVariable(n)
6

7 f = dsp.inner(w, mu + delta)
8 constraints = [cp.abs(delta) <= rho]
9

10 R_wc = dsp.saddle_max(f, constraints)

In this example, R_wc is a convex function that can be used in any CVXPY problem, underlining
the tight integration of DSP with CVXPY. The implementation also introduces a new Prob-
lem class dsp.SaddlePointProblem, which can be used to solve saddle point problems directly,
without the need to formulate the objective as a saddle max or saddle min function.

13



4. Bond portfolio construction

While equities often take the spotlight in the discourse around portfolio management, bonds are
a crucial component of many investment strategies. Indeed, the bond market even surpasses
equities in size, with the global bond market being valued at $130 trillion in 2022, compared to
$101 trillion for the global equity market (Kolchin et al., 2023).

While commonly perceived as less risky, constructing bond portfolios comes with its own set of
challenges. A recent example highlighting the importance of robust bond portfolio construction is
the collapse of the Silicon Valley Bank, which, among other factors, invested in longer term bonds
to increase its yield, but was ultimately forced to sell its assets at a loss to meet its obligations
when US interest rates increased in 2022 (Yousaf and Goodell, 2023). This essay contributes
to the field of bond portfolio management by introducing a framework that not only allows for
an assessment of the worst-case of a given bond portfolio over a set of yield curves and credit
spreads, but also provides a methodology for constructing robust bond portfolios that maximize
the worst-case value of the portfolio.

4.1. Background and notation

We first introduce the notation used in this essay, in particular, the definition of bonds and bond
portfolios, yields, and spreads.

Bond portfolios. We define a bond as a financial contract defining a series of specified payments
over time, represented by a vector c ∈ RT , where T denotes the number of periods. Each
component ct of this vector corresponds to the net cash flow in period t to the bondholder. These
payments may include coupon payments, which are periodic interest payments, and the principal
payment, which is the final payment at maturity, i.e., the last period in which a cash flow occurs.

A bond portfolio is a collection of n bonds, with each bond having a maturity of at most T . We
represent holdings in a bond portfolio by a vector h ∈ Rn, where hi denotes the number of units
of bond i held in the portfolio. We assume that the portfolio is long-only, i.e., hi ≥ 0 for all
bonds. The prices of the bonds are collected in a vector p ∈ Rn

+, resulting in the total value of
the portfolio being V = pT h.

Yield curves and spreads. The price of a bond can be modeled as the discounted value of its
cash flows, i.e.,

pi =
T∑

t=1
ci,t exp(−t(yt + si)), i = 1, . . . , n,
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4.2 Robust bond portfolios

where we use continuous compounding for simplicity, but the results can be applied to periodic
compounding as well. Here, we observe that the discount factor is a function of the yield curve
y ∈ RT and the credit spread s ∈ Rn

+, that is, the current value of the future cash flow depends
on a time component as well as an idiosyncratic component for each bond. The yield curve y is
derived from traded bonds, with a common approach being to fit a smooth curve to the observed
yields, e.g., using a Nelson-Siegel model (Nelson and Siegel, 1987), but more complex models are
also used (Filipović et al., 2022). The credit spread s is a measure of the risk associated with the
individual bond, and depends on factors such as the credit rating of the issuer or the liquidity of
the bond.

4.2. Robust bond portfolios

The main contribution of the essay is to develop worst-case evaluation and robust bond portfolio
construction methods. For this, we first note that the value of a bond portfolio

V = pT h =
n∑

i=1

T∑
t=1

hici,t exp(−t(yt + si))

is a convex function of the yield curve y and the credit spread s for fixed holdings h. It also is
an affine, and thus concave, function of the holdings h for fixed y and s. We often work with the
logarithm of the portfolio value for convenience, and indeed, this composition remains convex in y
and s and concave in h. This property also trivially holds for the linearized change in the portfolio
value based on the first-order Taylor approximation, a common approach used in practice that
serves as a reference for the exact methods.

Having established these convexity properties, we can use convex optimization to solve the worst-
case evaluation problem, and saddle point optimization to solve the robust portfolio construction
problem.

Worst-case portfolio value. The worst-case portfolio problem minimizes the portfolio value over
a set of yield curves and credit spreads, i.e.,

minimize log(V/V nom)
subject to (y, s) ∈ U ,

where V nom is the nominal portfolio value, i.e., the value of the portfolio at the current yield curve
and credit spreads, and U is the convex uncertainty set of yield curves and credit spreads. This
set can be derived from historical data, forecasts, uncertainty quantification of the yield curve
and credit spread models, or other sources. The worst-case portfolio value is a convex function
of the yield curve and credit spread. It can readily be modeled using only a few lines of code in
CVXPY, as shown in the essay, and solved efficiently even for large portfolios.

Robust bond portfolio construction. A simple bond portfolio construction problem would be
to maximize the worst-case portfolio value over a set of feasible portfolios H ⊂ Rn

+. While this
might be intended in some cases, it can lead to portfolios that are extremely conservative, e.g.,
by holding only money market instruments or cash. Instead, we often have a nominal objective
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4.2 Robust bond portfolios

function ϕ : Rn
+ → R that we wish to minimize, which can include the negative expected return,

the variance, tracking error with respect to a benchmark, or other components. We can then
trade off the nominal objective with the worst-case portfolio value by introducing a regularization
parameter λ > 0, leading to the robust bond portfolio construction problem

minimize ϕ(h) − λ min(y,s)∈U log(V/V nom)
subject to h ∈ H.

This problem is a convex-concave saddle problem, and can either be solved by explicit dualization
for a given uncertainty set U , or by using the DSP framework introduced in the previous essay.
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5. Cumulative prospect theory optimization

One aspect of portfolio optimization that has received increasing attention in recent years is the
incorporation of behavioral aspects into the modeling process. While traditional models assume
rational investor behavior, behavioral models suggest that investors often behave irrationally in
the face of uncertainty, leading to suboptimal decisions. Cumulative prospect theory (CPT), de-
veloped by Tversky and Kahneman (1992), is a pivotal development in this area, offering a more
realistic depiction of investor behavior by incorporating aspects like loss aversion and the over-
weighting of low-probability events. This essay presents novel computational methods for portfolio
optimization using CPT utility, which, unlike other approaches, accommodates the complexities
and idiosyncrasies of human decision-making in financial markets.

While simple utility functions such as quadratic utility, solved by the Markowitz model, are easy
to optimize by today’s standards, CPT utility still poses computational challenges due to its non-
convexity. This essay addresses these challenges by introducing efficient optimization methods
that leverage the subtle convexity properties of CPT utility, enabling the construction of portfolios
that align more closely with actual investor preferences. As such, the essay contributes to robust
portfolio optimization by allowing to incorporate behavioral aspects into the modeling process,
providing a richer choice of utility functions.

5.1. Background and notation

Before introducing the optimization methods, we first provide the necessary background on CPT
and its application to portfolio optimization. CPT diverges from the conventional von Neumann-
Morgenstern (VNM) utility theory (von Neumann et al., 1944) by incorporating a value function
that is concave for gains and convex for losses (”S-shaped”), reflecting the phenomenon of loss
aversion. Moreover, it employs a probability weighting function that overweighs small probabili-
ties, capturing the human tendency to overreact to low-probability events.

CPT utility. We begin by defining the CPT utility function. For this, we first define a prospect
theory utility function u as a function of wealth relative to a reference point that has a greater
marginal utility loss for losses than marginal utility gain for gains and is concave for gains and
convex for losses. In the context of this essay, we use

uprosp(x) =
{

1 − exp(−γ+x) if x ≥ 0
−1 + exp(γ−x) otherwise ,

which is prospect theory utility function when γ− > γ+ > 0. The second component of CPT
utility is the probability weighting function that assigns a higher weight to extreme outcomes.
An extreme outcome is one where our portfolio of n assets with weights w ∈ Rn has a return
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that is either very high or very low. Letting r1, . . . , rN ∈ Rn denote the asset returns across N
periods, we obtain portfolio returns for each period as rT

i w, i = 1, . . . , N , or as the vector Rw,
where R ∈ RN×n is the matrix of returns. We can partition these returns into N− negative and
N+ nonnegative returns. The vectors π+ ∈ RN

+ and π− ∈ RN
+ jointly represent the probability of

each observation occurring, with πT
+1 + πT

−1 = 1. The vectors are constructed as π+ = (0N− , π′
+)

and π− = (0N+ , π′
−), where both π′

+ and π′
− are nonnegative and nondecreasing, with the exact

definition deferred to the essay. To give the most extreme outcomes a higher weight, we obtain
the weighted sum by applying the function

fπ(x) =
N∑

i=1
πix(i)

where x(i) is the i-th smallest component of x, which is a convex function. The CPT utility
function is then defined as

U cpt(w) = fπ+(ϕ+(︸ ︷︷ ︸
convex

1 − exp(−γ+Rw)︸ ︷︷ ︸
concave

)) − fπ−(ϕ−(︸ ︷︷ ︸
convex

−1 + exp(γ−Rw︸ ︷︷ ︸
convex

)),

with ϕ+ = max(x, 0) and ϕ− = − min(x, 0). Recognizing that this is a difference of two convex
functions, each composed with a concave function is crucial for the development of the optimization
methods.

CPT utility optimization. We define the CPT utility portfolio optimization problems as

maximize U cpt(w)
subject to 1T w = 1, w ∈ W,

where U cpt is the CPT utility function, w ∈ Rn are the portfolio weights, and W is the set of
feasible portfolios, which we require to be convex and DCP representable. Because the CPT utility
function is non-convex, this problem is non-convex as well.

5.2. Optimization methods

The central contribution of this essay is the development of optimization methods that effectively
handle the non-convexity of the CPT utility function in portfolio optimization. These methods
are grounded in the recognition that, despite its non-convexity, the CPT utility function possesses
convexity properties that can be exploited to construct efficient optimization algorithms.

Minorization-maximization method. The first method presented is the Minorization-
Maximization (MM) algorithm, which iteratively constructs a concave lower bound (minorant) for
the CPT utility and maximizes it. This approach bypasses the direct maximization of the non-
convex CPT utility, instead focusing on a surrogate problem that is more tractable yet closely
approximates the original problem. The MM algorithm can handle arbitrary DCP-compliant
constraints and is therefore well-suited for complex optimization problems.
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Convex-concave method. The second method, the Convex-Concave procedure (CC), leverages
the convex-concave structure of the CPT utility. It iteratively linearizes the convex terms of
the CPT utility and maximizes this local approximation of the function, allowing for efficient
optimization even in the presence of complex portfolio constraints. Indeed, like the MM algorithm,
the CC procedure also handles arbitrary DCP-compliant constraints.

Gradient ascent. Finally, the Gradient Ascent (GA) method is introduced for large-scale prob-
lems. This method utilizes gradient-based optimization techniques that are well-suited for prob-
lems with a large number of assets. The GA method is implemented using automatic differenti-
ation and modern computational frameworks, in this case, PyTorch (Paszke et al., 2019). It is
particularly well-suited for scenarios where the portfolio constraints are relatively simple.

In conclusion, this essay not only introduces novel computational methods to tackle the chal-
lenge of portfolio optimization under CPT utility but also significantly contributes to the broader
field of financial decision-making, where nonconvex optimization problems frequently arise. The
methodologies developed here have the potential to be extended to other areas of computational
finance and economics, where similar challenges are encountered.
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6. Neural network based time series forecasting

Recent advancements in time series analysis have seen a surge in the adoption of deep learning
techniques, from fields like finance and economics (Li and Ma, 2010) to meteorology (Hsieh and
Tang, 1998) and retail demand forecasting (Kochak and Sharma, 2015). However, despite the
progress, traditional linear autoregressive models like the ARMA (Autoregressive Moving Aver-
age) model still hold significant relevance, especially in scenarios involving smaller datasets or
lower signal-to-noise ratios. In such contexts, complex models like recurrent neural networks
(RNNs), while powerful and expressive, often fail to outperform simpler alternatives, either due
to overfitting or training difficulties. This essay introduces the ARMA cell, a novel neural network
component that integrates the simplicity and effectiveness of traditional ARMA models with the
flexibility and scalability of deep learning frameworks. The ARMA cell offers a more nuanced ap-
proach to time series modeling, balancing complexity with practicality and opening new avenues
for efficient forecasting in various applications, demonstrated in a series of numerical experiments
in the essay.

6.1. Background and notation

Before introducing the ARMA cell, we first provide the necessary background by defining the
notation used in this essay, as well as introducing the ARMA model and recurrent neural networks.
Time series data can be broadly categorized into univariate (xt ∈ R), multivariate (xt ∈ Rk),
and tensor-variate (Xt ∈ RN1×...×Nd) types, with observations indexed by t = 1, . . . , T . There are
a variety of models that can be used to describe the dynamics of time series data, including the
ARMA model and recurrent neural networks, which we introduce below.

ARMA and VARMA models. The ARMA(p, q) model, going back to Box et al. (2015), describes
a univariate time series as a linear combination of its past values and past error terms. For
p, q ∈ N0, the model is defined as

xt = α +
p∑

i=1
βixt−i +

q∑
j=1

γjεt−j + εt,

with α, βi, and γj being the model parameters, and εt denoting the independent and identically
distributed (i.i.d.) error terms with variance σ2. This model captures both autoregressive and
moving average dynamics, making it versatile for various forecasting scenarios. Extending this
concept, the Vector Autoregressive Moving Average (VARMA) model adapts the ARMA principles
to multivariate time series, introducing matrix-valued parameters to model interactions between
multiple time series components. The VARMA(p, q) model is defined correspondingly as

xt = α +
p∑

i=1
Bixt−i +

q∑
j=1

Γjεt−j + εt,

20



6.2 The ARMA cell

with parameters α ∈ Rk, Bi ∈ Rk×k, Γj ∈ Rk×k, and error terms εt ∈ Rk again being i.i.d.
with covariance matrix Ω. It is further possible to extend the family of linear autoregressive
moving average models to tensor-variate time series, although less common in practice. A crucial
assumption of these models is that the time series is stationary, i.e., the mean and variance of the
time series do not change over time. This assumption is often violated in practice, motivating the
development of models that can handle non-stationary time series, like the ARIMA model, which
aims to achieve stationarity by applying differencing operations to the time series.

Recurrent neural networks. Recurrent neural networks (RNNs) are a class of neural networks
that are designed to process sequential data, making them particularly well-suited for applica-
tions in natural language processing, speech recognition, and time series forecasting. RNNs are
characterized by their recurrent structure, which allows them to access their internal state from
a previous time step and thus capture the temporal dependencies in the data. However, RNNs
are notoriously difficult to train, with the vanishing gradient problem being a common challenge.
While mitigated by the introduction of gated architectures like LSTMs (Hochreiter and Schmid-
huber, 1997) and GRUs (Cho et al., 2014), RNNs still remain comparatively difficult to train, as
demonstrated in the numerical experiments, with the simpler ARMA cell based model showing
more robust performance.

6.2. The ARMA cell

Building on the foundation of the ARMA model, the ARMA cell is a unique adaptation designed
for integration into neural networks, particularly RNN architectures. It is based on a reformu-
lation of the ARMA model dependent on previous observations and previous forecasts, instead
of previous observations and previous errors. We show that this reformulation is indeed only a
reparametrization of the ARMA model that is equivalent to the original formulation, but allows
for a more natural integration into existing deep learning frameworks.

Multi-unit and stacked cells. Much like a single unit in a neural network can be viewed as a linear
model with non-linear activation that, when combined with additional randomly initialized units
can approximate any continuous function (Cybenko, 1989), the ARMA cell is a linear time series
model with non-linear activation that, when combined accordingly, can model complex time series
dynamics. This key advantage is unlocked by implementing the ARMA cell as a neural network
component, allowing for easy integration into existing deep learning frameworks. Additionally,
using hyperparameter tuning techniques, this approach can be used to find an architecture that is
optimal for a given dataset, ranging from a prediction of only the intercept (ARMA(0,0) model),
to a model with multiple layers and units and hundreds or even thousands of parameters.

Implementation and extensions. The ARMA cell is implemented in Python using the Tensor-
Flow (Abadi et al., 2016) framework, and naturally handles uni-, multi-, and tensor-variate time
series data. It can be combined with other neural network components, such as convolutional
layers, dropout, batch normalization, and others, and can be trained using standard optimization
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6.2 The ARMA cell

techniques like (variants of) stochastic gradient descent. The implementation is available as open-
source software, with a syntax similar to that of TensorFlow’s native RNN cells, allowing for a
seamless integration into existing models.

In summary, this essay presents the ARMA cell, bridging the gap between traditional statistical
methods and modern deep learning techniques. It not only offers a model that is both effective in
its simplicity and versatile in application, but also exhibits robust performance across a variety of
numerical experiments.
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Abstract

More than seventy years ago Harry Markowitz formulated portfolio construction
as an optimization problem that trades off expected return and risk, defined as the
standard deviation of the portfolio returns. Since then the method has been extended
to include many practical constraints and objective terms, such as transaction cost
or leverage limits. Despite several criticisms of Markowitz’s method, for example its
sensitivity to poor forecasts of the return statistics, it has become the dominant quan-
titative method for portfolio construction in practice. In this article we describe an
extension of Markowitz’s method that addresses many practical effects and gracefully
handles the uncertainty inherent in return statistics forecasting. Like Markowitz’s orig-
inal formulation, the extension is also a convex optimization problem, which can be
solved with high reliability and speed.

∗Alphabetical order.
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1 Introduction

Harry Markowitz’s 1952 paper Portfolio Selection [Mar52] was a true breakthrough in our
understanding of and approach to investing. Before Markowitz there was (almost) no math-
ematical approach to investing. As a 25-year-old graduate student, Markowitz founded
modern portfolio theory, and methods inspired by him would become the most widely used
portfolio construction practices over the next 70 years (and counting).

Before Markowitz, diversification and risk were fuzzy concepts. Investors loosely con-
nected risk to the probability of loss, but with no analytical rigor around that connection.
Ben Graham, who along with David Dodd wrote Security Analysis [GD09], once commented
that investors should own “a minimum of ten different issues and a maximum of about
thirty” [Gra73].

There were a few precursors, such as an article by de Finetti, that contained some sim-
ilar ideas before Markowitz; see [dF40, Rub06] for a discussion and more of the history of
mathematical formulation of portfolio construction. Another notable precursor is John Burr
Williams’ 1938 Theory of Investment Value [Wil38]. He argued that the value of a company
was the present value of future dividends. His book is full of mathematics, and Williams pre-
dicted that “mathematical analysis is a new tool of great power, whose use promises to lead
to notable advances in investment analysis”. That prediction came true with Markowitz’s
work. Indeed, Markowitz considered Williams’ book as part of his inspiration. According to
Markowitz, “the basic concepts of portfolio theory came to me one afternoon in the library
while reading John Burr Williams’ Theory of Investment Value”.

For many years, the lack of data and accessible computational power [Mar19] rendered
Markowitz’s ideas impractical, despite his pragmatic approach. In 1963, William Sharpe
published his market model [Sha63], designed to speed up the Markowitz calculations. This
model was a one-factor risk model (the factor was the market return), with the assumption
that all residual returns are uncorrelated. His paper stated that solving a 100-asset problem
on an IBM 7090 computer required 33 minutes, but his simplified risk model reduced it to
30 seconds. He also commented that computers could only handle 249 assets at most with a
full covariance matrix, but 2000 assets with the simplified risk model. Today such a problem
can be solved in microseconds; we can routinely solve problems with tens of thousands of
assets and substantially more factors in well under one second.

Markowitz portfolio construction has thrived for many years in spite of claims of various
alleged deficiencies. These have included the method’s sensitivity to data errors and esti-
mation uncertainty, its single-period nature to handle what is fundamentally a multi-period
problem, its symmetric definition of risk, and its neglect of higher moments like skewness
and kurtosis. We will address these alleged criticisms and show that standard techniques in
modern approaches to optimization effectively deal with them without altering Markowitz’s
vision for portfolio selection.

In 1990 Markowitz was awarded the Nobel Memorial Prize in Economics for his work
on portfolio theory, shared with Merton Miller and William Sharpe. For more light on
the fascinating historic details we recommend an interview with Markowitz [Mar19], his
acceptance speech for the Nobel Prize [Mar23], and his remarks in the introduction to the
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Handbook of Portfolio Construction [Gue10].

1.1 The original Markowitz idea

Markowitz identified two steps in the portfolio selection process. In a first step, the investor
forms beliefs about the expected returns of the assets, expressed as a vector µ, and their
covariances, expressed as a covariance matrix Σ, which gives the volatilities of asset returns
and the correlations among them. These beliefs are the core inputs for the second step,
which is the optimization of the portfolio based on these quantities.

He introduced the expected returns–variance of returns (E–V) rule, which states that an
investor desires to achieve the maximum expected return for a portfolio while keeping its
variance or risk below a given threshold. Convex programming was not a well developed
field at that time, and Markowitz used a geometric interpretation in the space of portfolio
weights [Mar52] to solve the problem we would now express as

maximize µTw
subject to wTΣw ≤ (σtar)2,

1Tw = 1,
(1)

with variable w ∈ Rn, the set of portfolio weights, where 1 is the vector with all entries
one. The data in the problem are µ ∈ Rn, the vector of expected asset returns, and Σ, the
n× n covariance matrix of asset returns. The positive parameter σtar is the target portfolio
return standard deviation or volatility. (We define the weights and describe the problem
more carefully in §2.)

There are many other ways to formulate the trade-off of expected return and risk as an
optimization problem [BV04, ApS23]. One very popular method maximizes the risk-adjusted
return, which is the expected portfolio return minus its variance, scaled by a positive risk-
aversion parameter. This leads to the optimization problem [GK00]

maximize µTw − γwTΣw
subject to 1Tw = 1,

(2)

where γ is the risk-aversion parameter that controls the trade-off between risk and return.
Both problems (1) and (2) give the full trade-off curve of Pareto optimal weights, as σtar or γ
vary from 0 to∞ (although (1) can be infeasible when σtar is too small). One advantage of the
first formulation (1) is that the parameter σtar that controls the volatility is interpretable
as, simply, the target risk level. The risk-aversion parameter γ appearing in (2) is less
interpretable. We will have more to say about the parameters that control trade-offs in
portfolio construction in §4.

Both problems (1) and (2) have analytical solutions. For example the solution of (2) is
given by

w⋆ =
1

2γ
Σ−1(µ+ ν⋆1), ν⋆ =

2γ − 1TΣ−1µ

1TΣ−11
.
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(The scalar ν⋆ is the optimal dual variable [BV04, Chap. 5].) We note here the appearance
of the inverse covariance matrix. To compute w⋆ we would not compute the inverse, but
rather solve two sets of equations to find Σ−1µ and Σ−11 [BV18]. Still, the appearance of
Σ−1 in the expressions for the solutions give us a hint that the method can be sensitive to
the input data when the covariance matrix Σ is nearly singular. These analytical formulas
can also be used to back out so-called implied returns, i.e., the mean µ for which a given
portfolio is optimal. For example the market implied return µmkt is the return for which the
optimal weights are the market weights, i.e., proportional to asset capitalization.

Both formulations (1) and (2) are referred to as the basic Markowitz problem, or mean-
variance optimization, since they both trade off the mean and variance of the portfolio return.
In his original paper Markowitz also noted that additional constraints can be added to the
problem, specifically the constraint that w ≥ 0 (elementwise), which means the portfolio is
long-only, i.e., it does not contain any short positions. With this added constraint, the two
problems above do not have simple analytical solutions. But the formulation (2), with the
additional constraint w ≥ 0, is a quadratic program (QP), a type of convex optimization
problem for which numerical solvers were developed already in the late 1950s [Wol59]. In
that early paper on QP, solving the Markowitz problem (2) with the long-only constraint
w ≥ 0 was listed as a prime application. Today we can solve either formulation reliably,
with essentially any set of convex portfolio constraints.

Since the 1950s we have seen a truly stunning increase in computer power, as well as
the development of convex optimization methods that are fast and reliable, and high-level
languages that allow users to express complex convex optimization problems in a few lines
of clear code. These advances allow us to extend Markowitz’s formulation to include a
large number of practical constraints and additional terms, such as transaction cost or the
cost incurred when holding short positions. In addition to directly handling a number of
practical issues, these generalizations of the basic Markowitz method also address the issue
of sensitivity to the input data µ and Σ. This paper describes one such generalization of the
basic Markowitz problem, that works well in practice.

Out of respect for Markowitz, and because the more generalized formulation we present
here is nothing more than an extension of his original idea, we will refer to these more
complex portfolio construction methods also as Markowitz methods. When we need to
distinguish the extension of Markowitz’s portfolio construction that we recommend from
the basic Markowitz method, we refer to it as Markowitz++. (In computer science, the
post-script ++ denotes the successor.)

1.2 Alleged deficiencies

The frequent criticism of Markowitz’s work is a testament to its importance. These criticisms
usually fall into one or more of the following (related) categories.

It’s sensitive to data errors and estimation uncertainty. The sensitivity of Markowitz
portfolio construction to input data is well documented [Mul93, MM08, SH13, Bra10, CY16],
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and already hinted at by the inverse covariance that appears in the analytical solutions of
the basic Markowitz method. This sensitivity, coupled with the challenge of estimating the
mean and covariance of the return, leads to portfolios that exacerbate errors or deficiencies
in the input data to find unrealistic and poorly performing portfolios. Some authors argue
that choosing a portfolio by optimization, as Markowitz’s method does, is essentially an
estimation-error maximization method. This is still a research topic that draws much atten-
tion. In the recent papers [GPS22, Shk23] the authors quantify how the (basic) Markowitz
portfolio is affected by estimation errors in the covariance matrix.

This criticism is justified, on the surface. Markowitz portfolio construction can perform
poorly when it is näıvely implemented, for example by using empirical estimates of mean and
covariance on a trailing window of past returns. But the critical practical issues of taming
sensitivity and gracefully handling estimation errors are readily addressed using techniques
such as regularization and robust optimization, described in more detail in §1.3.

It implicitly assumes risk symmetry. Markowitz portfolio construction uses variance
of the portfolio return as its risk measure. With this risk measure a portfolio return well
above the mean is just as bad as one that is well below the mean, whereas the former is
clearly a good event, not a bad one. This observation should at least make one suspicious
of the formulation, and has motivated a host of proposed alternatives, such as defining
the risk taking into account only the downside [Mar59, Chap. IX]. This criticism is also
valid, on the surface. But when the parameters are chosen appropriately, and the data are
reasonable, portfolios constructed from mean-variance optimization do not suffer from this
alleged deficiency.

We should maximize expected utility. A more academic version of the previous criti-
cism is that portfolios should be constructed by maximizing the expected value of a concave
increasing utility function of the portfolio return [VNM47]. The utility in mean-variance
optimization (with risk-adjusted return objective) is U(R) = R− γR2, where R is the port-
folio return. This utility function is concave, but only increasing for R < 1/(2γ); above that
value of return, it decreases, putting us in the awkward position of seeming to prefer smaller
returns over larger ones.

This criticism is also valid, taken at face value; the quadratic utility above is indeed not
increasing. Markowitz himself addressed the issue in a 1979 paper with H. Levy that argued
that while mean-variance optimization does not appear to be the same as maximizing an
expected utility, it is a very good approximation; see [LM79] and [MB14, Chap. 2]. But in
fact it turns out that Markowitz portfolio construction does maximize the expected value of a
concave increasing utility function. Specifically if we model the returns as Gaussian, and use
the exponential utility U(R) = 1− exp(−γR), then the expected utility is the risk-adjusted
return, up to an additive constant [LB23]. In other words, Markowitz portfolio construction
does maximize expected utility of portfolio return, for a specific concave increasing utility
function and a specific asset return distribution.
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It considers only the first and second moments of the return. Mean-variance op-
timization naturally only considers the first two moments of the distribution. It would seem
that taking higher moments like skewness and kurtosis into account might better describe
investor preferences [Caj22, ZP21]. This, coupled with the fact that the tails of asset returns
are not well modeled by a Gaussian distribution [Fam65], suggests that portfolio construction
should consider higher moments than the first and second.

While it is possible to construct small academic examples where mean-variance optimiza-
tion does poorly due to its neglect of higher moments, simple mean-variance optimization
does very well on practical problems. In [LB23] the authors extend Markowitz by maximiz-
ing exponential utility, but with a more complex Gaussian mixture model of asset returns.
Such a distribution is general, in that it can approximate any distribution. Their method ev-
idently handles higher moments, but empirically gives no boost in performance on practical
problems.

Markowitz himself addressed the common misconception that he labeled the “Great Con-
fusion” [Mar19, MB14, Mar99, Mar09], stating that Gaussian returns are merely a sufficient
but not a necessary condition on the return distribution for mean-variance optimization to
work well and that mean and variance are good approximations for expected utility.

It’s a greedy method. Portfolios are generally not just set up and then held for one
investment period; they are rebalanced, and sometimes often. Problems in which a sequence
of decisions are made, based on newly available information, are more accurately modeled
not as simple optimization problems, but instead as stochastic control problems, also known
as sequential decision making under uncertainty [Koc15, KWW22, Bel66, Ber12]. In the
context of stochastic control, methods that take into account only the current decision and
not future ones are called greedy, and in some cases can perform very poorly. This criticism
is also, on its face, valid. Using Markowitz portfolio construction repeatedly, as is always
done in practice, is a greedy method.

We can readily counter this criticism. First, in the special case with risk-adjusted return
and quadratic transaction costs, and no additional constraints, the stochastic optimal policy
can be worked out, and coincides with a single-period Markowitz portfolio [GK20, BB21].
This suggests that when other constraints are present, and the transaction cost is not
quadratic, the (greedy) Markowitz method should not be too far from stochastic optimal.

Second, there are extensions of Markowitz portfolio construction, called multi-period
methods, that plan a sequence of trades over a horizon, and then execute only the first
trade; see, e.g., [BBD+17, LUM22]. These multi-period methods can work better than
so-called single-period methods, for example when a portfolio is transitioning between two
managers, or being set up or liquidated over multiple periods. But in almost all other cases,
single-period methods work just as well as multi-period ones.

The third response to this criticism more directly addresses the question. In the paper
Performance Bounds and Suboptimal Policies for Multi-Period Investment [BMOW13], the
authors develop bounds on how well a full stochastic control trading policy can do, and show
empirically that single-period Markowitz trading essentially does as well as a full stochastic
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control policy (which is impractical if there are more than a handful of assets). So while
there are applications where greedy policies do much more poorly than a true stochastic
control policy, it seems that multi-period trading is not one of them.

1.3 Robust optimization and regularization

Here we directly address the question of sensitivity of Markowitz portfolio construction to
the input data µ and Σ. As mentioned above, the basic methods are indeed sensitive to
these parameters. But this sensitivity can be mitigated and tamed using techniques that are
widely used in other applications and fields, robust optimization and regularization.

Robust optimization. Modifying an optimization-based method to make it more ro-
bust to data uncertainty is done in many fields, using techniques that have differing names.
When optimization is used in almost any application, some of the data are not known
exactly, and solving the optimization problem without recognizing this uncertainty, for ex-
ample by using some kind of mean or typical values of the parameters, can lead to very
poor practical performance. Robust optimization is a subfield of optimization that devel-
ops methods to handle or mitigate the adverse effects of parameter uncertainty; see, e.g.,
[BTEGN09, TK04, GMT14, BTN02, BBC11, Lob00]. These methods tend to fall in one of
two approaches: statistical or worst-case deterministic. In a statistical model, the uncertain
parameters are modeled as random variables and the goal is to optimize the expected value of
the objective under this distribution, leading to a stochastic optimization problem [SDR21],
[BV04, Chap. 6.4.1]. A worst-case deterministic uncertainty model posits a set of possible
values for parameters, and the goal is to optimize the worst-case value of the objective over
the possible parameter values [BS07], [BV04, Chap. 6.4.2]. Another name for worst-case ro-
bust optimization is adversarial optimization, since we can model the problem as us choosing
values for the variables to obtain the best objective, after which an adversary chooses the
values of the parameters so as to achieve the worst possible objective. Worst-case robust
optimization has many variations and goes by many names. For example when the set
of possible parameter values is finite, they are called scenarios or regimes, and optimizing
for the worst-case scenario is called worst-case scenario optimization. While these general
approaches sound quite different, they often lead to very similar solutions, and both can
work well in applications. Robust optimization methods work by modifying the objective or
constraints to model the possible variation in the data.

One very successful application of robust optimization is in robust control, where a control
system is designed so that the control performance is not too sensitive to changes in the
system dynamics [ZD98, KDG96]. So-called linear quadratic optimal control was developed
around 1960, and used in many applications. Its occasional sensitivity to the data (in this
case, the dynamic model of the system being controlled) was noted then; by the early 1990s
robust control methods were developed, and are now very widely used.
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Regularization. Regularization is another term for methods that modify an optimiza-
tion problem to mitigate sensitivity to data. It is almost universally used in statistics and
machine learning when fitting models to data. Here we fit the parameters of a model to
some given training data, accounting for the fact that the training data set could have been
different [TA77, HTF09]. This process of regularization can be done explicitly by adding
a penalty term to the objective, and also implicitly by adding constraints to the problem
that prevent extreme outcomes. Regularization can often be interpreted as a form of robust
optimization; see, e.g., [BV04, Chap. 6.3–6.4].

The high level story. Robust optimization and regularization both follow the same high
level story, and both can be applied to the Markowitz problem. The story starts with a
basic optimization-based method that relies on data that are not known precisely. We then
modify the optimization problem, often by adding additional objective terms or constraints.
Doing this worsens the in-sample performance. But if done well, it improves out-of-sample
performance. Roughly speaking, robustification and regularization tell the optimizer to not
fully trust the data, and this serves it well out-of-sample.

In portfolio construction a long-only constraint can be interpreted as a form of regulariza-
tion [JM03]. A less extreme version is to impose a leverage limit, which can help avoid many
of the data sensitivity issues. We will describe below some effective and simple robustification
methods for portfolio construction.

Regularization can (and should) also be applied to the forecasting of the mean and
covariance in Markowitz portfolio construction. The Black-Litterman approach to estimating
the mean returns regularizes the estimate toward the market implied return [BL90]. A
return covariance estimate can be regularized using shrinkage, another term for regularized
estimation in statistics [LW04].

1.4 Convex optimization

Over the same 70-year period since Markowitz’s original work, there has been a parallel
advance in mathematical optimization, and especially convex optimization, not to mention
stunning increases in available computer power. Roughly speaking, convex optimization
problems are mathematical optimization problems that satisfy certain mathematical proper-
ties. They can be solved reliably and efficiently, even when they involve a very large number
of variables and constraints, and involve nonlinear, even nondifferentiable, functions [BV04].

Shortly before Markowitz published his paper on portfolio selection, George Dantzig
developed the simplex method [Dan51], which allowed for the efficient solution of linear
programs. In 1959, Wolfe [Wol59] extended the simplex method to QP problems, citing
Markowitz’s work as a motivating application. This close connection between portfolio con-
struction and optimization was no coincidence, since Dantzig and Markowitz were colleagues
at RAND.

Since then, the field of convex optimization has grown tremendously. Today, convex
optimization is a mature field with a large body of theory, algorithms, software, and appli-
cations [BV04]. Being able to solve optimization problems reliably and efficiently is crucial
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for portfolio construction, especially for back-testing or simulating a proposed method on
historical or synthesized data, where portfolio construction has to be carried many times.
Thus, any extension of the Markowitz objective or additional constraints should be convex
to ensure tractability. As we will see, this is hardly a limitation in practice.

Solvers. The dominant convex optimization problem form is now the cone program, a
generalization of linear programming that handles nonlinear objective terms and constraints
[NN92, BV04, LVBL98a, VB96]. There are now a number of reliable and efficient solvers
for such problems, including open-source ones like ECOS [DCB13], Clarabel [GC24], and
SCS [OCPB16], and commercial solvers such as MOSEK [ApS20], GUROBI [Gur23], and
CPLEX [Cpl09]. A recent open-source solver for QPs is OSQP [SBG+20].

Domain-specific languages. Convex optimization is also now very accessible to practi-
tioners, even those without a strong background in the mathematics or algorithms of convex
optimization, thanks to high-level domain-specific languages (DSLs) for convex optimization,
such as CVXPY [AVDB18, DB16], CVX [GB14], Convex.jl [UMZ+14], CVXR [FNB17], and
YALMIP [Lof04]. These DSLs make it easy to specify complex, but convex, optimization
problems in a natural, human readable way. The DSLs transform the problem from the hu-
man readable form to a lower level form (often a cone program) suitable for a solver. These
DSLs make it easy to develop convex optimization based methods, as well as to modify, up-
date, and maintain existing ones. As a result, CVXPY is used at many quantitative hedge
funds today, as well as in many other applications and industries. The proposed extension
of Markowitz’s portfolio construction method that we describe below is a good example of
the use of CVXPY. It is a complex problem involving nonlinear and nondifferentiable func-
tions, but its specification in CVXPY takes only a few tens of lines of clear readable code,
given in appendix B. The overhead of translating the human readable problem specification
into a cone program is typically small. Additionally, in some DSLs, such as CVXPY, prob-
lems can be parametrized [AAB+19], such that they can be solved for a range of values of
the parameters, making the translation overhead negligible. Related to DSLs are model-
ing layers provided by some solver, such as MOSEK’s Fusion API [ApS20], which provides
a high-level interface to the solver. Less focused on convex optimization, there are other
modeling languages such as JuMP [LDD+23] and Pyomo [HWW11, BHH+21] that do not
verify convexity, but provide flexibility in modeling a wide range of optimization problems,
including nonconvex ones.

Code generators. Code generators like CVXGEN [MB12] and CVXPYgen [SBD+22] are
similar to DSLs. They support high level specification of a problem (family) but instead
of directly solving the problem, they generate custom low level code (typically C) for the
problem that is specified. This code can be compiled to a very fast and totally reliable solver,
suitable for embedded real-time applications. For example, CVXGEN-generated code guides
all of SpaceX’s Falcon 9 and Falcon Heavy first stages to their landings [Bla16].

10

38



1.5 Previous work

The literature on portfolio construction is vast, and focusing on the practical implementation
of Markowitz’s ideas, we do not attempt to survey it here in detail. Instead, we highlight
only a few major developments that are relevant to our work. For a detailed overview see,
e.g., [GK00, Chap. 14], [Nar09, Chap. 6], and [CT06, KTF14].

Building on Markowitz’s framework, the field of portfolio construction has undergone sub-
stantial evolution. Notable contributions include Sharpe’s Capital Asset Pricing Model [Sha63]
and the Black-Litterman model [BL90]. A pivotal figure in bringing the field to the fore-
front of the industry was Barr Rosenberg, whose research evolved to become the Barra risk
model [Ros84, She96], first used for risk modeling and then in portfolio optimization. The
introduction of risk parity models [MRT10] brought a focus on risk distribution. Addition-
ally, hierarchical risk parity, a recent advancement, offers a more intricate approach to risk
allocation, considering the hierarchical structure of asset correlations [DP16]. These devel-
opments reflect the field’s dynamic adaptation to evolving market conditions and analytical
techniques.

Software. Dedicated software helped practitioners access the solvers and DSLs mentioned
earlier, and has facilitated the wide acceptance of Markowitz portfolio construction. A
wealth of software packages have been developed for portfolio optimization, many (if not
most) with Python interfaces, both open-source and commercial. Examples range from
simple web-based visualization tools to complex trading platforms. Here we mention only a
few of these software implementations.

On the simpler end Portfolio Visualizer [Glo23] is a web-based tool that allows users to
back-test and visualize various portfolio strategies. PyPortfolioOpt [Mar21] and Cvxport-
folio [BBD+17] are Python packages offering various portfolio optimization techniques. Py-
PortfolioOpt includes mean-variance optimization, Black-Litterman allocation [BL90], and
more recent alternatives like the Hierarchical Risk Parity algorithm [DP16], while Cvx-
portfolio [BBD+17] supports multi-period strategies. The skfolio [Del23] package offers
similar functionality to PyPortfolioOpt, with a focus on interoperability with the scikit-
learn [PVG+11] machine learning library. Another Python implementation is proposed
in [SXD20], where the authors introduce an approach to multicriteria portfolio optimiza-
tion. Quantlib [The23] is an alternate open-source software package for modeling, trading,
and risk management.

The list of commercial software is also extensive. MATLAB’s Financial Toolbox [Bra13,
Mat23] includes functions for mathematical modeling and statistical analysis of financial
data, including portfolio optimization. Another example is Axioma, which on top of its
popular risk model offers a portfolio optimizer [Qon23].

Other software packages include Portfolio123 [Por23a], PortfoliosLab [Por23b], and Port-
folioLab by Hudson & Thames [Tha23]. Additionally, many solvers, such as MOSEK [ApS20,
ApS23], provide extensive examples of portfolio optimization problems, making them easy
to use for portfolio optimization.
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1.6 This paper

Our goal is to describe an extension of the basic Markowitz portfolio construction method
that includes a number of additional objective terms and constraints that reflect practical
issues and address the issue of sensitivity to inevitable forecasting errors. We give a mini-
mal formulation that is both simple and practical; we make no attempt to list all possible
extensions that a portfolio manager (PM) might wish to add.

While the resulting optimization problem might appear complex, containing nonlinear
nondifferentiable functions, it is convex, which means it can be solved reliably and efficiently.
It can also be specified in a DSL such as CVXPY in just a few tens of lines of clear simple
code. We can solve even large instances of the optimization problem very quickly, making
it practical to carry out extensive back-testing to predict performance or adjust parameter
values. One additional advantage of our formulation is that parameters that need to be
specified are generally more interpretable than those appearing in basic formulations. For
example a PM specifies a target risk and a target turnover instead of some parameters that
are less directly related to them.

Most of the material in this paper is not new but scattered across many sources, in
different formats, and indeed in different application fields. Some of our recommendations
are widely accepted and industry standard, but others are rarely discussed in the literature
and even less commonly used in practice.

The authors bring a diverse set of backgrounds to this paper. Some of us have applied
Markowitz portfolio construction day-to-day in research, writing, and real portfolios. Others
approach Markowitz’s method from the perspective of optimization and control in engineer-
ing. Control systems engineering has a long history and is widely applied in essentially all
engineering applications. Most applications of control engineering use methods based on
models that are either wrong or heavily simplified. While näıve implementations of these
methods do not work well (or worse), simple sensible modifications, similar to the ones we
describe later in this paper, work very well in practice.

These different backgrounds together can provide a new perspective and bring modern
tools to the endeavor Markowitz began. These techniques have made Markowitz’s method
even more applicable and useful to investors.

Software. We have created two companion software packages. One is designed for peda-
gogical purposes, uses limited parameter testing and checking, and very closely follows the
terminology and notation of the paper. It is available at

https://github.com/cvxgrp/markowitz-reference.

The second package is a robust and flexible implementation, which is better suited for prac-
tical use. It is available at

https://github.com/cvxgrp/cvxmarkowitz.
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Outline. In §2 we set up our notation, define weights and trades, and describe various
objective terms and constraints. Return and risk forecasts are covered in §3. In §4 we
pull together the material of the previous two sections to define the (generalized) Markowitz
trading problem, which we refer to as Markowitz++. In §5 we present some simple numerical
experiments that illustrate how the extra terms robustify the basic Markowitz trading policy,
and how parameters are tuned via back-testing to improve good performance.

2 Portfolio holdings and trades

This section introduces the notation and terminology for portfolio holdings, weights, and
trades, fundamental objects in portfolio construction independent of the trading strategy. We
follow the notation of [BBD+17], with the exceptions of handling the cash weight separately
and dropping the time period subscript.

2.1 Portfolio weights

Universe. We consider a portfolio consisting of investments (possibly short) in n assets,
plus a cash account. We refer to the set of assets we might hold as the universe of assets,
and n as the size of the universe. These assets are assumed to be reasonably liquid, and
could include, for example, stocks, bonds, or currencies.

Asset and cash weights. To describe the portfolio investments, we work with the weights
or fractions of the total portfolio value for each asset, with negative values indicating short
positions. We denote the weights for the assets as wi, i = 1, . . . , n, and collect them into
a portfolio weight vector w = (w1, . . . , wn) ∈ Rn. The weights are readily interpreted:
wi = 0.05 means that 5% of the total portfolio value is held in asset i, and wk = −0.01
means that we hold a short position in asset k, with value 1% of the total portfolio value.
The dollar value of asset i held is V wi, where V is the total portfolio value, assumed to be
positive.

We denote the weight for the cash account, i.e., our cash value divided by the portfolio
value, as c. If c is negative, it represents a loan. When c > 0 we say the portfolio is diluted
with cash; when c < 0, the portfolio is margined. The dollar value of the cash account is V c.

By definition the weights sum to one, so we have

1Tw + c = 1, (3)

where 1 is the vector with all entries one. The first term, 1Tw, is the total weight on the
non-cash assets, and we refer to it as the total asset weight. The cash weight is one minus
the total asset weight, i.e., c = 1− 1Tw.

Several portfolio types can be expressed in terms of the holdings. A long-only portfolio
is one with all asset weights nonnegative, i.e., w ≥ 0 (elementwise). A portfolio with c = 0,
i.e., no cash holdings, is called fully invested. In such a portfolio we have 1Tw = 1, i.e., the
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total asset weight is one. As another example, a cash-neutral portfolio is one with c = 1.
For a cash-neutral portfolio we have 1Tw = 0, i.e., the total (net) asset weight is zero.

Leverage. The leverage of the portfolio, denoted L, is

L =
n∑

i=1

|wi| = ∥w∥1.

(Several other closely related definitions are also used. Our definition is commonly referred
to as the gross leverage [AGv11].) The leverage does not include the cash account.

In a long-only portfolio, the leverage is equal to the total asset weight. The 130-30
portfolio [LEB09] refers to a fully invested portfolio with leverage L = 1.6. For such a
portfolio, the total weight of the short positions (i.e., negative wi) is −0.3 and the total
weight of the long positions (i.e., positive wi) is 1.3.

Benchmark and active weights. In some cases our focus is on portfolio performance
relative to a benchmark portfolio. We let wb ∈ Rn denote the weights of the benchmark.
Typically the benchmark does not include any cash weight, so 1Twb = 1. We refer to w−wb

as the active weights of our portfolio. A positive active weight on asset i, i.e., wi − wb
i > 0,

means our portfolio is over-weight (relative to the benchmark) on asset i; a negative active
weight, wi − wb

i < 0, means our portfolio is under-weight on asset i.

2.2 Holding constraints and costs

Several constraints and costs are associated with the portfolio holdings w and c.

Weight limits. Asset and cash weight limits have the form

wmin
i ≤ wi ≤ wmax

i , i = 1, . . . , n, cmin ≤ c ≤ cmax,

where wmin and wmax are given vectors of lower and upper limits on asset weights, and cmin

and cmax are given lower and upper limits on the cash weight. We write the asset weight
inequalities in vector form as wmin ≤ w ≤ wmax. We have already encountered a simple
example: a long-only portfolio has wmin = 0.

Portfolio weight limits can reflect hard requirements, for example that a portfolio must
(by legal or regulatory requirements) be long-only. Portfolio weight limits can also be used
to avoid excessive concentration of a portfolio, or limit short positions. For example, wmax =
0.15 means that our portfolio cannot hold more than 15% of the total portfolio value in
any one asset. (Here we adopt the convention that in a vector-scalar inequality, the scalar
is implicitly multiplied by 1.) As another example, wmin = −0.05 means that the short
position in any asset can never exceed 5% of the total portfolio value. For large portfolios it
is reasonable to also limit holdings relative to the asset capitalization, e.g., to require that
our portfolio holdings of each asset are no more than 10% of the asset capitalization.
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Weight limits can also be used to capture the portfolio manager’s views on how the
market will evolve. For example, she might insist on a long position for some assets, and a
short position for some others.

When a benchmark is used, we can impose limits on active weights. For example |w −
wb| ≤ 0.10 means that no asset in the portfolio can be more than 10% over-weight or
under-weight.

Leverage limit. In addition to weight limits, we can impose a leverage limit,

L ≤ Ltar, (4)

where Ltar is a specified maximum or target leverage value. (Other authors have suggested
including leverage as a penalty term in the objective, to model leverage aversion and identify
the optimal amount of leverage in the presence of leverage aversion [JL13].)

Holding costs. In general a fee is paid to borrow an asset in order to enter a short
position. Analogously we pay a borrow cost fee for a negative cash weight. We will assume
these holding costs are a linear function of the negative weights, i.e., of the form

ϕhold(w, c) = (κshort)T (−w)+ + κborrow(−c)+, (5)

where (a)+ = max{a, 0} denotes the nonnegative part, applied elementwise and in its first
use above. Here κshort ≥ 0 is the vector of borrow cost (rates) for the assets, and κborrow ≥ 0
is the borrow cost for cash.

Other holding constraints. There are many other constraints on weights that might
be imposed, some convex, and others not. A concentration limit is an example of a useful
constraint that is convex. It states that the sum of the K largest absolute weights cannot
exceed some limit. As a specific example, we can require that no collection of five assets can
have a total absolute weight of more than 30% [SR20, ApS23]. A minimum nonzero holding
constraint is an example of a commonly imposed nonconvex constraint. It states that any
nonzero weight must have an absolute value exceeding some given minimum, such as 0.5%.
(This one is easily handled using a heuristic based on convex optimization; see §4.3.)

2.3 Trades

Trade vector. We let wpre and cpre denote the pre-trade portfolio weights, i.e., the portfolio
weights before we carry out the trades to construct the portfolio given by w and c. We need
the pre-trade weights to account for transaction costs. We refer to

z = w − wpre, (6)

the current weights minus the previous ones, as the (vector of) trades or the trade list. These
trades have a simple interpretation: zi = 0.01 means we buy an amount of asset i equal in
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value to 1% of our total portfolio value, and zi = −0.03 means we sell an amount of asset i
equal to 3% of the portfolio value.

Since 1Twpre + cpre = 1, we have

c = cpre − 1T z, (7)

i.e., the post-trade cash weight is the pre-trade cash weight minus the net weight of the
trades. This does not include holding and transaction costs, discussed below.

Turnover. The quantity

T =
1

2

n∑

i=1

|zi| =
1

2
∥z∥1

is the turnover. Here too, several other different but closely related definitions are also
used, for example the minimum of the total weight bought and the total weight sold [GK00,
Chap. 16]. A turnover T = 0.01 means that the average of total amount bought and
total amount sold is 1% of the total portfolio value. The turnover is often annualized, by
multiplying by the number of trading periods per year.

2.4 Trading constraints and costs

We typically have constraints on the trade vector z, as well as a trading cost that depends
on z.

Trade limits. Trade limits impose lower and upper bounds on trades, as

zmin ≤ z ≤ zmax,

where zmin and zmax are given limits. These trade limits can be used to limit market par-
ticipation, defined as the ratio of the magnitude of each trade to the trading volume, using,
e.g.,

|z| ≤ 0.05v, (8)

where v ∈ Rn is the trading volumes of the assets, expressed as multiples of the portfolio
value. This constraint limits our participation for each asset to be less than 5%. (It cor-
responds to trade limits zmax = −zmin = 0.05v.) Since the trading volumes are not known
when z is chosen, we use a forecast instead of the realized trading volumes.

Turnover limit. In addition to trade limits, we can limit the turnover as

T ≤ T tar, (9)

where T tar is a specified turnover limit.
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Trading cost. Trading cost refers to the cost of carrying out a trade. For example, if we
buy a small quantity of an asset, we pay the ask price, while if we sell an asset, we receive
the bid price. Since the nominal price of an asset is the midpoint between the ask and bid
prices, we can think of buying or selling the asset as doing so at the nominal price, plus an
additional positive cost that is the trade amount times one-half the bid-ask spread. This
bid-ask spread transaction cost has the form

n∑

i=1

κspreadi |zi| = (κspread)T |z|,

where κspread ∈ Rn is the vector of one-half the asset bid-ask spreads (which are all positive).
This is the transaction cost expressed as a fraction of the portfolio value. For small trades
this is a reasonable approximation of transaction cost.

For larger trades we ‘eat through’ the order book. To buy a quantity of an asset, we
buy each ask lot, in order from lowest price, until we fill our order. An analogous situation
occurs when selling. This means that we end up paying more per share than the ask price
when buying, or receiving less than the bid price when selling. This phenomenon is called
market impact.

A useful approximation of transaction cost that takes market impact into account is

ϕtrade(z) = (κspread)T |z|+ (κimpact)T |z|3/2, (10)

where the first term is the bid-ask spread component of transaction cost, and the second
models the market impact, i.e., the additional cost incurred as the trade eats through the
order book. The vector κimpact has positive entries and typically takes the form

κimpact
i = asiv

−1/2
i ,

where si is the volatility of asset i over the trading period, vi is the volume of market trading,
expressed as a multiple of the portfolio value, and a is a constant on the order of one;
see [GK00, Loe83, TLD+11, MTB14] and [BBD+17, §2.3]. Evidently the transaction cost
increases with volatility, and decreases with market volume. Several other approximations
of transaction cost are used [AC00, RRJ12].

Liquidation cost. Suppose we liquidate the portfolio, i.e., close out all asset positions,
which corresponds to the trade vector z = −w. The liquidation cost is

ϕtrade(−w) = (κspread)T |w|+ (κimpact)T |w|3/2.

If the liquidation is carried out over multiple periods, the bid-ask term stays the same,
but the market impact term decreases. For this reason a common approximation of the
liquidation cost ignores the market impact term. A liquidation cost constraint has the form

(κspread)T |w| ≤ ℓmax, (11)
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where ℓmax is a maximum allowable liquidation cost, such as 1%. This is a weight constraint;
it limits our holdings in less liquid assets, which have higher bid-ask spreads. It can be
interpreted as a liquidity-weighted leverage (taking the bid-ask spread as a proxy for liquid-
ity). When all assets have the same bid-ask spread, the liquidation constraint reduces to a
leverage constraint. For example with all bid-ask spreads equal to 0.001 (i.e., 10 basis points
or bps) and a maximum liquidation cost ℓmax = 0.01 (i.e., 1% of the total portfolio value),
the liquidation cost limit (11) reduces to a leverage limit (4) with Ltar = 10.

Transaction cost forecasts. When the trades z are chosen, we do not know the bid-ask
spreads, the volatilities, or the volumes. Instead we use forecasts of these quantities in (8),
(10), and (11). Simple forecasts, such as a trailing average or median of realized values, are
typically used. More sophisticated forecasts take can into account calendar effects such as
seasonality, or the typically low trading volume the day after Thanksgiving.

3 Return and risk forecasts

3.1 Return

Gross portfolio return. We let ri denote the return, adjusted for dividends, splits, and
other corporate actions, of asset i over the investment period. We collect these asset returns
into a return vector r = (r1, . . . , rn) ∈ Rn. The portfolio return from asset i is riwi. We let
rrf denote the risk-free interest rate, so the return in the cash account is rrfc. The (gross)
total portfolio return is then

R = rTw + rrfc.

This gross return does not include holding or trading costs. A closely related quantity is the
excess return, the portfolio return minus the risk-free return, R− rrf = rTw + rrf(c− 1).

Net portfolio return. The net portfolio return is the gross return minus the holding costs
and transaction costs,

Rnet = R− ϕhold(w)− ϕtrade(z). (12)

Active return. The active portfolio return is the return relative to a benchmark portfolio,

rTw + rrfc− rTwb = rT (w − wb) + rrfc.

If we subtract holding and trading costs we obtain the net active portfolio return.

Cash as slack. Since we do not know but only forecast the bid-ask spread, volatility, and
volume, which appear in the transaction cost (10) (which is itself only an approximation)
we should consider the post-trade cash c in (7) as an approximation that uses a forecast of
holding and transaction costs, not the realized holding and transaction costs. We do not
expect the realized post-trade cash weight to be exactly c.
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3.2 Probabilistic asset return model

When we choose the trades z we do not know the asset returns r. Instead, we model r as a
multivariate random variable with mean µ ∈ Rn and covariance matrix Σ ∈ Sn

++ (the set of
symmetric positive definite n× n matrices),

E r = µ, E(r − µ)(r − µ)T = Σ.

The entries of the mean µ are often referred to as trading signals [Isi21]. The asset return
mean and covariance are forecasts, as described below. The asset return volatilities s ∈ Rn

appearing in the transaction cost model (10) can be expressed as s = diag(Σ)1/2, where the
squareroot is elementwise.

Expected return and risk. With this statistical model of r, the portfolio return R is a
random variable with mean R̄ = ER and variance σ2 = varR given by

R̄ = µTw + rrfc, σ2 = wTΣw.

The risk of the portfolio is defined as the standard deviation of the portfolio return, i.e., σ.
Similarly, the active return Ra is a random variable with mean and variance

R̄a = µT (w − wb) + rrfc = R̄− µTwb, (σa)2 = (w − wb)TΣ(w − wb),

and the active risk is σa. The risk and active risk are often given in annualized form, obtained
by multiplying them by the squareroot of the number of periods per year.

The parameters µ and Σ are estimates or forecasts of the statistical model of asset
returns, which is itself an approximation. For this reason the risk σ is called the ex-ante
risk, to distinguish it from the standard deviation of the realized portfolio returns when
trading, the ex-post risk. Similarly we refer to σa as the ex-ante active risk.

Optimizing expected return and risk. We have two objectives, high expected return
and low risk. Perhaps the most common method for combining these objectives is to form a
risk-adjusted return,

R̄− γσ2,

where γ > 0 is the risk aversion parameter. Maximizing risk-adjusted return (possibly with
other objective terms, and subject to constraints) gives the desired portfolio. Increasing
γ gives us a portfolio with lower risk and also lower expected return. The risk aversion
parameter allows us to explore the risk-return trade-off. This risk-adjusted return approach
became popular in part because the resulting optimization problem is typically a quadratic
program (QP), for which reliable solvers were developed even in the 1960s.

Another approach is to maximize expected return (possibly with other objective terms),
subject to a risk budget or risk target constraint

σ ≤ σtar. (13)
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(The corresponding optimization problem is not a QP, but is readily handled by convex
optimization solvers developed in the 1990s [LVBL98b, NN94, Stu99, TTT99].) This for-
mulation seems more natural, since a portfolio manager will often have a target risk in her
mind, e.g., 8% annualized. This is the basic formulation that we recommend.

There are many other ways to combine expected return and risk. For example, we can
maximize the return/risk ratio, called the Sharpe ratio (with no benchmark) or information
ratio (with a benchmark). This problem too can be solved via convex optimization, at least
when the constraints are simple [BV23].

3.3 Factor model

In practice, and especially for large universes, it is common to use a factor model for the
returns. The factor return model, with k factors (typically with k ≪ n), has the form

r = Ff + ϵ, (14)

where F ∈ Rn×k is the factor loading matrix, f ∈ Rk is the vector of factor returns, and
ϵ ∈ Rn is the idiosyncratic return. The term Ff is interpreted as the component of asset
returns explainable or predicted by the factor returns.

At portfolio construction time the factor loading matrix F is known, and the factor return
f and idiosyncratic return ϵ are modeled as uncorrelated random variables with means and
covariance matrices

E f = f̄ , cov f = Σf, E ϵ = ϵ̄, cov ϵ = D,

where D is diagonal (with positive entries). The entries ϵ̄, the means of the idiosyncratic
returns, are also referred to as the alphas, especially when there is only one factor which is
the overall market return. They are the part of the asset returns not explained by the factor
returns.

With the factor model (14) the asset return mean and covariance are

µ = F f̄ + ϵ̄, Σ = FΣfF T +D.

The return covariance matrix in a factor model has a special form, low rank plus diagonal.
The portfolio return mean and variance are

R̄ = (F f̄)Tw + ϵ̄Tw + rrfc, σ2 = (F Tw)TΣf(F Tw) + wTDw.

The factor returns are constructed to have explanatory power for the returns of assets
in our universe. For equities, they are typically the returns of other portfolios, such as the
overall market (with weights proportional to capitalization), industries, and style portfolios
like the celebrated Fama-French factors [FF92, FF93]. For bonds, the factors are typically
constructed from yield curves, interest rates, and spreads. These traditional factors are
interpretable.

Factors can also can be constructed directly from previous realized asset returns using
methods such as principal component analysis (PCA) [BN08, Bai03, LP20a, LP20b, PX22b,
PX22a]. Aside from the first principal component, which typically is close to the market
return, these factors are less interpretable.
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Factor and idiosyncratic returns. A factor model gives an alternative method to specify
the expected return as µ = F f̄ + ϵ̄, where f̄ is a forecast of the factor returns and ϵ̄ is a
forecast of the idiosyncratic returns, i.e., the asset alphas. One common method uses only
a forecast of the factor returns, with ϵ̄ = 0, so µ = F f̄ . A complementary method assumes
zero factor returns, so we have µ = ϵ̄, i.e., the mean asset returns are the same as the
idiosyncratic asset mean returns.

Factor betas and neutrality. Under the factor model (14), the covariance of the portfolio
return R with the factor returns f is the k-vector

cov(R, f) = ΣfF Tw.

The betas of the portfolio with respect to the factors divide these covariances by the variance
of the factors,

β = diag(sf)−2ΣfF Tw,

where sf = diag(Σf)−1/2 is the vector of factor return volatilities.
The constraint that our portfolio return is uncorrelated (or has zero beta) with the ith

factor return fi, under the factor model (14), is

cov(R, f)i = (ΣfF Tw)i = 0. (15)

This is referred to as factor neutrality (with respect to the ith factor). It is a simple linear
equality constraint, which can be expressed as aTw = 0, where a is the ith column of FΣf.
Factor neutrality constraints are typically used with active weights. In this case, factor
neutrality means that the portfolio beta matches the benchmark beta for that factor. This
also is a linear equality constraint that can be expressed as βi = βb

i , with β
b the benchmark

betas.

Advantages of a factor model. Especially with large universes, the factor model (spec-
ified by F , Σf, and D) can give a better estimate of the return covariance, compared to
methods that directly estimate the n × n matrix Σ [JOP+23]. Another substantial advan-
tage is computational. By exploiting the low-rank plus diagonal structure of the return
covariance with a factor model, we can reduce the computational complexity of solving the
Markowitz optimization problem from O(n3) flops (without exploiting the factor model) to
O(nk2) flops (exploiting the factor form). These computational savings can be dramatic,
e.g., for a whole world portfolio with n = 10000 and k = 100, where we obtain a 10000 fold
decrease in solve time; see §5.6.

3.4 Return and risk forecasts

Here we briefly discuss the forecasting of µ and Σ (or F , Σf, and D in a factor model).
Markowitz himself did not address the question of estimating µ and Σ; when asked by
practitioners how one should choose these forecasts, his reply was [SS23]
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“That’s your job, not mine.”

It is well documented that poor or näıve estimates of these, e.g., the sample mean and
covariance, can yield poor portfolio performance [Mic89]. But even reasonable forecasts
will have errors, which can degrade performance. We show some methods to mitigate this
forecast uncertainty in §3.5.

Asset returns estimate. The expected returns vector µ is by far the most important
parameter in the portfolio construction process, and methods for estimating it, or the factor
and idiosyncratic return means are for obvious reasons in general proprietary. It is also the
most challenging data to estimate. There is no consensus on how to estimate the mean
returns, and the literature is vast.

Regularization methods can improve mean estimates. As an example, the Black-Litterman
model [BL90] allows a portfolio manager to incorporate her views on how the expected re-
turns differ from the market consensus, and in essence acts as a form of regularization of the
portfolio toward the market portfolio. Another method that serves implicitly as regulariza-
tion is winsorization, where the mean estimates are clipped when they go outside a specified
range [WZ07], [GK00, Chap. 14]. Yet another method is cross-sectionalization, where the
preliminary estimate of returns µ is replaced with µ̃, the same values monotonically mapped
to (approximately) a Gaussian distribution [GK00, Chap. 14].

Return covariance estimate. There are many ways to estimate the covariance ma-
trix, with or without a factor model. Approaches that work well in practice include the
exponentially weighted moving average (EWMA) [OS96], dynamic conditional correlation
(DCC) [Eng02], and iterated EWMA [BB22]. For a detailed discussion on how to estimate
a covariance matrix for financial return data, see [JOP+23] and the references therein.

3.5 Making return and risk forecasts robust

In this section we address methods to mitigate the impact of forecast errors in return and
covariance estimation, which can lead to poor performance. This directly addresses one of
the main criticisms of the Markowitz method, that it is too sensitive to estimation errors.
Here, we briefly review how to address robust return mean and covariance estimation, and
refer the reader to [BBD+17, §4.3] and [FKPF07, TK04] for more detailed discussions.

Robust return forecast. We model our uncertainty in the mean return vector by giving
an interval of possible values for each return mean. We let µ ∈ Rn denote our nominal
estimate of the return means, and we take the nonnegative vector ρ ∈ Rn

+ to describe the
half-width or radius of the uncertainty intervals. Thus we imagine that the return can be
any vector of the form µ + δ, where |δi| ≤ ρi. For example µi = −0.0010 and ρi = 0.0005
means that the mean return for asset i lies in the range [−15,−5] bps.
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We define the worst-case mean portfolio return as the minimum possible mean portfolio
return consistent with the given ranges of asset return means:

Rwc = min{(µ+ δ)Tw | |δ| ≤ ρ}.

We can think of this as an adversarial game. The portfolio manager (PM) chooses the
portfolio w, and an adversary then chooses the worst mean return consistent with the given
uncertainty intervals. This second step has an obvious solution: We choose µi − ρi when
wi ≥ 0, and we choose µi + ρi when wi < 0. In words: For long positions the worst return is
the minimum possible; for short positions the worst return is the maximum possible. With
this observation, we obtain a simple formula for the worst-case portfolio mean return,

Rwc = R̄− ρT |w|. (16)

The first term is the nominal mean return; the second term, which is nonpositive, gives the
degradation of return induced by the uncertainty. We refer to ρT |w| as the portfolio return
forecast error penalty in our return forecast. The return forecast error penalty has a nice
interpretation as an uncertainty-weighted leverage.

When the portfolio is long-only, so w ≥ 0, the worst-case asset returns are obvious:
they simply take their minimum values, µ − ρ. In this case the worst-case portfolio mean
return (16) is the usual mean portfolio return, with each nominal asset return reduced by
its uncertainty.

The return forecast uncertainties ρ can be chosen by several methods. One simple method
is to set all entries the same, and equal to some quantile of the entries of |µ|, such as the
20th percentile. A more sophisticated method relies on multiple forecasts of the returns, and
sets µ as the mean or median forecast, and ρ as some measure of spread, such as standard
deviation, of the forecasts.

Robust covariance forecast. We can also consider uncertainty in the covariance matrix.
We let Σ denote our nominal estimate of the covariance matrix. We imagine that the
covariance matrix has the form Σ +∆ where ∆ ∈ Sn (the set of symmetric n× n matrices)
where the perturbation ∆ satisfies

|∆ij| ≤ ϱ(ΣiiΣjj)
1/2,

where ϱ ∈ [0, 1) defines the level of uncertainty. For example, ϱ = 0.04 means that the
diagonal elements of the covariance matrix can change by up to 4% (so the volatilites can
change by around 2%), and the asset return correlations can change by up to around 4%.
(You should not trust anyone who claims that his asset return covariance matrix estimate is
more accurate than this.)

We define the worst-case portfolio risk as the maximum possible risk over covariance
matrices consistent with our uncertainty set,

(σwc)2 = max{wT (Σ + ∆)w | |∆ij| ≤ ϱ(ΣiiΣjj)
1/2}.
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This can be expressed analytically as [BBD+17, §4.3]

(σwc)2 = σ2 + ϱ

(
n∑

i=1

Σ
1/2
ii |wi|

)2

. (17)

The second term is the covariance forecast error penalty. It has a nice interpretation as an
additive regularization term, the square of a volatility-weighted leverage. The worst-case
risk can be expressed using Euclidean norms as

σwc =
∥∥(σ,√ϱ(diag(Σ)1/2)T |wi|

)∥∥
2
. (18)

When the portfolio is long-only, the worst-case risk (17) can be simplified. In this case,
the worst-case risk is the risk using the covariance matrix Σ + ϱssT , where s = diag(Σ)1/2

is vector of asset volatilities, under the nominal covariance.

4 Convex optimization formulation

4.1 Markowitz problem

In this section we assemble the objective terms and constraints described in §2 and §3 into
one convex optimization problem. We obtain the Markowitz problem

maximize Rwc − γholdϕhold(w, c)− γtradeϕtrade(z)
subject to 1Tw + c = 1, z = w − wpre,

wmin ≤ w ≤ wmax, L ≤ Ltar, cmin ≤ c ≤ cmax,
zmin ≤ z ≤ zmax, T ≤ T tar,
σwc ≤ σtar,

(19)

with variables w ∈ Rn and c ∈ R, and positive parameters γhold and γtrade that allow us to
scale the holding and transaction costs, respectively. Despite the nonlinear and nondiffer-
entiable functions appearing in the objective and constraints, this is a convex optimization
problem, which can be very reliably and efficiently solved. We can add other convex objec-
tive terms to this problem, such as factor neutrality or liquidation cost limit, or work with
active risk and return with a benchmark.

The objective is our forecast of the (robustified, worst-case) net portfolio return, with
the holding and transaction costs scaled by the parameters γhold and γtrade, respectively.
The first line of constraints relate the pre-trade portfolio, which is given, and the post-trade
portfolio, which is to be chosen. The second line of constraints are weight limits, and the
third line contains the trading constraints. The last line of constraints is the (robustified,
worst-case) risk limit.

Data. We divide the constants that need to be specified in the problem (19) into two
groups, data and parameters, although the distinction is not sharp. Data are quantities we
observe (such as the previous portfolio weights) or forecast (such as return means, market
volumes, or bid-ask spreads):
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• Pre-trade portfolio weights wpre and cpre.

• Asset return forecast µ.

• Risk model Σ, or for a factor model, F , Σf, and D.

• Holding cost parameters κshort and κborrow.

• Trading cost parameters κspread and κimpact (which in turn depend on the forecast bid-
ask spreads, asset volatilities, and market volume).

Parameters. Parameters are quantities that we choose in order to obtain good investment
performance, or to reflect portfolio manager preferences, or to comply with legal requirements
or regulations. These are

• Target risk σtar.

• Holding and trading scale factors γhold and γtrade.

• Weight and leverage limits wmin, wmax, cmin, cmax, and Ltar.

• Trade and turnover limits zmin, zmax, and T tar.

• Mean and covariance forecast uncertainties ρ and ϱ.

We list the mean and covariance forecast uncertainties as parameters since they are closer to
being chosen than measured or estimated. When the mean return uncertainties are chosen
as described above from a collection of return forecasts, they would be closer to data.

Initial default choices for parameters. The target risk, and the weight, leverage, trade,
and turnover limits are interpretable and can be assigned reasonable values by the PM. The
return and risk uncertainty parameters ρ and ϱ can be chosen as described above. The hold
and trade scale factors can be chosen to be around one.

To improve performance the PM will want to adjust or tune these parameter values
around their natural or default values, as discussed in §5.4.

4.2 Softening constraints

The Markowitz problem (19) includes a number of constraints. This can present two chal-
lenges in practice. First, it can lead to substantial trading, for example to satisfy our lever-
age or ex-ante worst-case risk limits, even when they would have been violated only slightly,
which can lead to poor performance due to excessive trading. Second, the problem can be
infeasible, meaning there is no choice of the variables that satisfy all the constraints. This
can complicate back-tests or simulations, as well as running the trading policy in production,
where such infeasiblilities naturally occur most frequently during periods of market stress,
putting the PM under additional pressure.
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Soft constraints. Here we explain a standard method in optimization, in which some of
the constraints can be softened, which means we allow them to be somewhat violated, if
needed. In optimization, softness refers to how much we care about different values of an
objective. We can think of the objective as infinitely soft: We will accept any objective value,
but we prefer larger values (if we are maximizing). We can think of constraints as infinitely
hard: We will not accept any violation of them, even if it is only by a small amount. Soft
constraints, described below, are in between. They should normally act as constraints, but
when needed, they can be violated. When a soft constraint is violated, and by how much,
depends on our priorities, with high priority meaning that the constraint should be violated
only when absolutely necessary.

Consider a (hard) constraint such as f ≤ fmax. This means that we will not accept any
choice of the variables for which f > fmax. To make it a soft constraint, we remove the
constraint from the problem and form a penalty term

γ(f − fmax)+

which we subtract from the objective, when we are maximizing. The number (f − fmax)+
is the violation of the original constraint f ≤ fmax. The positive parameter γ is called the
priority parameter associated with the softened constraint. In this context, we refer to the
parameter fmax as a target for the value of f , not a limit. With the softened constraint, we
can accept variable choices for which f > fmax, but the optimizer tries to avoid this given the
penalty paid (in the objective) when this occurs. Softening constraints preserves convexity
of a problem.

Markowitz problem with soft constraints. A number of constraints in (19) should be
left as (hard) constraints. These include the constraints relating the proposed and previ-
ous weights, i.e., the first line of constraints in (19). When the portfolio is long-only, the
constraint w ≥ 0 should be left as a hard constraint, and similarly for a constraint such as
c ≥ 0, i.e., that we do not borrow cash. When a leverage limit is strict or imposed by a
mandate, it should be left as a hard constraint; when it is imposed by the portfolio manager
to improve performance, or more likely, to help her avoid poor outcomes, it can be softened.

The other constraints in (19) are candidates for softening. Weight and trade limits,
including leverage and turnover limits, should be softened (except in the cases described
above). The worst-case risk limit σ ≤ σtar should be softened, with a risk penalty term

γrisk(σ − σtar)+

subtracted from the objective. When the associated priority parameter γrisk is chosen ap-
propriately, this allows us to occasionally violate our risk limit a bit when the violation is
small. We refer to the softened Markowitz problem as the Markowitz++ problem.

One nice attribute of the Markowitz++ problem is that it is always feasible; the choice
z = 0, i.e., no trading, is always feasible, even when it is a poor choice. This means that the
softened Markowitz problem can be used to define a trading policy that runs with little or no
human intervention (with, however, any soft constraints that exceed their targets reported
to the portfolio manager).
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Priority parameters. When we soften the worst-case risk, leverage, and turnover con-
straints, we gain several more parameters,

γrisk, γlev, γturn.

Evidently the larger each of these priority parameters is, the more reluctant the optimizer
is to violate it. (Here we anthropomorphize the optimization problem solver.) When the
priority parameters are large, the associated soft constraints are effectively hard. Beyond
these observations, however, it is hard to know what values should be used.

Choosing priority parameters. Here we describe a simple method to obtain reasonable
useful initial values for the priority parameters associated with softened constraints. Our
method is based on Lagrange multipliers or dual variables. Suppose we solve a problem
with hard constraints, and obtain optimal Lagrange multipliers for each of the constraints.
If we use these Lagrange multipliers as priorities in a softened version of the problem, all
the original constraints will be satisfied. Roughly speaking, the Lagrange multipliers give us
values of priorities for which the soft constraints are effectively hard. We would want to use
priority values a bit smaller, so that the original constraints can occasionally be violated.

Now we describe the method in detail. We start by solving multiple instances of the
problem with hard constraints, for example in a back-test, recording the values of the La-
grange multipliers for each problem instance (when the problem is feasible). We then set the
priority parameters to some quantile, such as the 80th percentile, of the Lagrange multipliers.
With this choice of priority parameters, we expect (very roughly) the original constraints
to hold around 80% of the time. For hard constraints that are only occasionally tight, an-
other method for choosing the priority parameters is as a fraction of the maximum Lagrange
multiplier observed.

Using this method we can obtain reasonable starting values of the priority parameters.
The final choice of priority parameters is done by back-testing and parameter tuning, starting
from these reasonable values, as discussed in §4.4.

4.3 Nonconvex constraints and objectives

All objective terms and constraints discussed so far are convex, and the Markowitz problem
(19), and its softened version, are convex optimization problems. They can be reliably and
efficiently solved.

Some other constraints and objective terms are not convex. The most obvious one is that
the trades must ultimately involve an integer number of shares. As a few other practical
examples, we might limit the number of nonzero weights, or insist on a minimum nonzero
weight absolute value. When these constraints are added to (19), the problem becomes
nonconvex. Great advances have been made in solvers that handle so-called mixed-integer
convex problems [KBLG18], and these can be used to solve these portfolio construction
problems. The disadvantage is longer solve time, compared to a similar convex problem,
and sometimes, dramatically longer solve time if we insist on solving the problem to global
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optimality. A convex portfolio construction problem that can be solved in a small fraction
of a second can take many seconds, or even minutes or more, to solve when nonconvex
constraints are added.

For production, where the problem is solved daily, or even hourly, this is fine. The
slowdown incurred with nonconvex optimization is however very bad for back-testing and
validation, where many thousands, or hundreds of thousands, of portfolio construction prob-
lems are to be solved. One sensible approach is to carry out back-testing using a convex
formulation, so as to retain the speed and reliability of a convex optimization, and run a
nonconvex version in production. As a variant on this, back-tests using convex optimization
can be used for parameter search, and one final back-test with a nonconvex formulation can
be used to be sure the results are close. Running backtests using only convex constraints
works because the nonconvex constraints typically only have a small impact on the portfolio
and its performance.

Heuristics based on convex optimization. Essentially all solvers for nonconvex prob-
lems that attempt to find a global solution rely on convex optimization under the hood
[HT13]. The issue is that a very large number of convex optimization problems might need
to be solved to find a global solution.

But many nonconvex constraints can be handled heuristically by solving just a few convex
optimization problem. As a simple example we might simply round the numbers of shares
in a trade list to an integer. This rounding should have little effect unless the portfolio value
is very small.

Other nonconvex constraints are readily handled by heuristics that involve solving just a
handful of convex problems. One general method is called relax-round-solve [DTB18]. We
illustrate this method to handle the constraint that the minimum nonzero weight absolute
value is 0.001 (10 bps). First we solve the problem ignoring this constraint. If the weights
satisfy the constraint, we are done (and the choice is optimal). If not, we set a threshold
and divide the assets into those with absolute weight smaller than the threshold, those with
weights larger than the threshold, and those which are less than minus the threshold. We
then add constraints to the original problem, setting the weights to zero, more than 0.001,
and less than −0.001, depending on the weights found in the first problem. These are convex
constraints, and when we solve the second time we are guaranteed to satisfy the nonconvex
constraint. We thus solve two convex problems. In the first one, we essentially decide which
weights will be zero, which will be more than the minimum nonzero long weight, and which
will be short more than the minimum. In the second one we adjust all the weights, ensuring
that the minimum absolute nonzero weight constraint holds.

4.4 Back-testing and parameter tuning

Back-testing. Back-testing refers to simulating a trading strategy using historical data.
To do this we provide the forecasts for all quantities needed, including the mean return
and covariance, for Markowitz portfolio construction in each period. In each period these
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forecasts, together with the parameters, are sent in to the Markowitz portfolio construction
method, which determines a set of trades. We then use the realized values of return, volatility,
bid-ask spread, and market volume to compute the (simulated) realized net return Rnet

t ,
where the subscript gives the time period. Note that while the Markowitz trading engine uses
forecasts of various quantities, the simulation uses the realized historical values. This gives
a reasonably realistic approximation of what the result would have been, had we actually
carried out this trading. (It is still only an approximation, since it uses our particular
trading cost model. Of course a more complex or realistic trading cost model could be used
for simulation.) The back-test simulation can also include practical aspects like trading only
an integer number of shares or blocks of shares. The simulation can also include external
cash entering or leaving the portfolio, such as liabilities that must be paid each period.

In the simulation we log the trajectory of the portfolio. We can compute various quantities
of interest such as the realized return, volatility, Sharpe or information ratio, turnover,
and leverage, all potentially over multiple time periods such as quarters or years. We can
determine the portfolio value versus periods, given by

Vt = V1

t−1∏

τ=1

(1 +Rnet
τ ),

where V1 is the portfolio value at period t = 1. From this we can evaluate quantities like the
average or maximum value of drawdown over quarters or years.

Variations. The idea of back-testing or simulating portfolio performance can be used for
several other tasks. In one variation on a back-test called a stress test, we use historical data
modified to be more challenging, e.g., lower returns or higher costs than actually occurred.

Another variation called performance forecasting uses data that are simulated or gen-
erated, starting from the current portfolio out to some horizon like one year in the future,
or the end of current fiscal year. We generate some number of possible future values of
quantities such as returns, along with the corresponding forecasts of them, and simulate
the performance for each of these. This gives us an idea of what we can expect our future
performance to be, for example as a range of values or quantiles.

Yet another variation is a retrospective what-if simulation. Here we take a live portfolio
and go back, say, three months. Starting from the portfolio holdings at that time, we simulate
forward to the present, after making some changes to our trading method, e.g., modifying
some parameters. The fact that the current portfolio value would be higher (according to
our simulation) if the PM had reduced the target risk three months ago is of course not
directly actionable. But it still very useful information for the PM.

Parameter tuning. Perhaps the most important use of back-testing is to help the PM
choose parameter values in the Markowitz portfolio construction problem. While some pa-
rameters, like the target risk, are given, others are less obvious. For example, how should we
choose γtrade? The default value of one is our best guess of what the single period transaction
cost will be. But perhaps we get better performance with γtrade = 2, which means, roughly
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speaking, that we are exaggerating trading cost by a factor of two. The result, of course, is
a reduction in trading compared to the default value one. This will result in smaller realized
transaction costs, but also, possibly, higher return, or smaller drawdown. The back-test will
reveal what would happen in this case (to the limits of the back-test accuracy).

To choose among a set of choices for parameters, we carry out a back-test with each
set, and evaluate multiple metrics, such as realized returns, volatility, and turnover. Our
optimization problem contains target values for these, based on our forecasts and models; in
a back-test we obtain the ex-post or realized values of these metrics.

To make a final choice of parameters, we must scalarize our metrics, i.e., create one scalar
metric from them, so we can choose among different sets of parameter values. For example
we might choose to maximize Sharpe ratio, subject to other metrics being within specified
bounds. Or we could form some kind of weighted combination of the individual metrics.

At the very minimum, a PM should always carry out back-tests in which all of her chosen
parameters are, one by one, increased or decreased by, say, 20%. Even with 10 parameters,
this requires only 20 back-tests. If any of these back-tests results in substantially improved
performance, she will need to explain or defend her choices.

This simple method of changing one parameter at a time can be extended to carry out
a crude but often effective parameter search. We cycle over the parameters, increasing or
decreasing each and carrying out a back-test. When we find a new set of parameter values
that has better performance than the current set of values, we take it as our new values. This
continues until increasing or decreasing each parameter value does not improve performance.

Another traditional method of parameter tuning is gridding. We choose a small number
of candidate values for each parameter, and then carry out a back-test for each combina-
tion, evaluating multiple performance metrics. Of course this is practical only when we are
choosing just a few parameters, and we consider only a few candidate values for each one.
Gridding is often carried out with a first crude parameter gridding, with the candidate values
spaced by a factor of ten or so; then, when good values of these parameters are found, a
more refined grid search is used to focus in on parameters near the good ones found in the
first crude search. In any case there is no reason to find or specify parameter values very
accurately; specifying them to even 10% is not needed. For one thing, the back-test itself
is only an approximation. To put in a negative light, if a back-test reveals that γtrade = 2.1
works well, but that γtrade = 1.9 and γtrade = 2.3 work poorly, it is very unlikely that our
trading method will work well in practice. Similar to the way we want our trading policy
to be robust to variations in the input data, we also want it to be robust to variation in the
parameters.

More sophisticated parameter search methods can also be used. Many such methods
build a statistical model of the good parameter values found so far, and obtain new values
to try by sampling from the distribution; see, e.g., [MBK+22] for more discussion. Another
option is to obtain not just the value of some composite metric, but also its gradient with
respect to the parameters. This very daunting computation can be carried out by automatic
differentiation systems that can differentiate through the solution of a convex optimization
problem, such as CVXPYlayers [AAB+19, BAB20].
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5 Numerical experiments

In this section we present numerical experiments that illustrate the ideas and methods dis-
cussed above. In the first set of experiments, described in §5.2, we show the effect of several
constraints and objective terms that serve as effective regularizers and improve performance.
In §5.4 we illustrate how parameter tuning via back-tests can improve performance, and in
§5.6 we show how the methods we describe scale with problem size.

5.1 Data and back-tests

Data. Throughout the experiments we use the same data set, which is based on the stocks
in the S&P 100 index. We use daily adjusted close price data from 2000-01-04 to 2023-09-22.
We exclude stocks without data for the entire period, and acknowledge that this inherent
survivorship bias in the data set would make it unsuitable for a real portfolio construction
method, but it is sufficient for our experiment, which is only concerned with the relative
performance of the different methods. We end up with a universe of n = 74 assets. In
addition to the price data, we use bid-ask spread data to estimate the trading costs, as well
as the effective federal funds rate [Fed23] for short term borrowing and lending. We make
the data set available with the code for reproducibility and experimentation at

https://github.com/cvxgrp/markowitz-reference.

Mean prediction. Simple estimates of the means work poorly, so in the spirit of [BBD+17],
we use synthetic return predictions to simulate a proprietary mean prediction method. For
each asset, the synthetic returns for each day are given by

r̂t = α(rt + ϵt),

where ϵt is a zero-mean Gaussian noise term with variance chosen to obtain a specified
information coefficient and rt is the mean return of the asset in the week starting on day
t. We take the noise variance to be σ2(1/α − 1), where α is the square of the information
coefficient, and σ2 is the variance of the return. (These mean predictions are done for
each asset separately.) We choose an information coefficient of

√
α = 0.15. Using this

parameterization, the sign of the return is predicted correctly in 52.1% of all observations,
with this number ranging from 50.3% to 54.1% for the individual assets.

Covariance prediction. For the covariance prediction, we use a simple EWMA estimator,
i.e., the covariance matrix at time t is estimated as

Σ̂t = αt

t∑

τ=1

βt−τrτr
T
τ ,

where

αt =

(
t∑

τ=1

βt−τ

)−1

=
1− β

1− βt
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is the normalization constant, and β ∈ (0, 1) is the decay factor. (We use the second moment
as the covariance, since the contribution from the mean term is negligible.) We use a half-life
of 125 trading days, which corresponds to a decay factor of β ≈ 0.994. We note that the
specific choice of the half-life does not change the results of the experiments qualitatively.

Spread. Our simulations include the transaction cost associated with bid-ask spread. In
simulation we use the realized bid-ask spread; for the Markowitz problems we use a simple
forecast of spread, the average realized bid-ask spread over the previous five trading days.

Shorting and leverage costs. We use the effective federal funds rate as a proxy for
interest on cash for both borrowing and lending. When shorting an asset we add a 5%
annualized spread over the effective federal funds rate to approximate the shorting cost in
our simulation. For forecasting, we set κshort to 7.5% annualized, and κborrow to the effective
federal funds rate.

Back-tests. We use a simple back-test to evaluate the performance of the different meth-
ods. We start with a warm-up period of 500 trading days for our estimators leaving us with
5,686 trading days, or approximately 22 years of data. The first 1,250 trading days (five
years) are used to initialize the priority parameters. This leaves us with 4,436 out-of-sample
trading days, approximately 17 years. Starting with an initial cash allocation of $1,000,000,
we call the portfolio construction method each day to obtain the target weights. We then
execute the trades at the closing price, rebalancing the portfolio to the new target weights,
taking into account the weight changes due to the returns from the previous day. Buy and sell
orders are executed at the ask and bid prices, respectively, and interest is paid on borrowed
cash and short stocks, and received on cash holdings.

5.2 Taming Markowitz

In this first experiment we show how a basic Markowitz portfolio construction method can
lead to the undesirable behavior that would prompt the alleged deficiencies described in §1.2.
We then show how adding just one more reasonable constraint or objective term improves
the performance, taming the basic Markowitz method.

Basic Markowitz. We start by solving the basic Markowitz problem (1) for each day in
the data set, with the risk target set to 10% annualized volatility. Unsurprisingly the basic
Markowitz problem results in poor performance, as seen in the second line of table 1. It
has low mean return, high volatility (well above the target 10%), a low Sharpe ratio, high
leverage and turnover, and a maximum drawdown of almost 80%. This basic Markowitz
portfolio performs considerably worse than an equal-weighted portfolio, which we give as a
baseline on the top line of table 1.
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Return Volatility Sharpe Turnover Leverage Drawdown
Equal weight 14.1% 20.1% 0.66 1.2 1.0 50.5%
Basic Markowitz 3.7% 14.5% 0.19 1145.2 9.3 78.9%
Weight-limited 20.2% 11.5% 1.69 638.4 5.1 30.0%
Leverage-limited 22.9% 11.9% 1.86 383.6 1.6 14.9%
Turnover-limited 19.0% 11.8% 1.54 26.1 6.5 25.0%
Robust 15.7% 9.0% 1.64 458.8 3.2 24.7%
Markowitz++ 38.6% 8.7% 4.32 28.0 1.8 7.0%
Tuned Markowitz++ 41.8% 8.8% 4.65 38.6 1.6 6.4%

Table 1: Back-test results for different trading policies.

Markowitz with regularization. In a series of four experiments we show how adding
just one more reasonable constraint or objective term to the basic Markowitz method can
greatly improve the performance.

In the first experiment we add portfolio weight limits of 10% for long positions and -5%
for short positions. We limit the cash weight to lie between −5% and 100% (which guarantees
feasibility). Adding these asset and cash weight limits leads to a significant improvement in
the performance of the portfolio shown in the third row of table 1, with the Sharpe ratio
increasing to 1.69 (from 0.19), and the maximum drawdown decreasing to 30%. In addition
the realized volatility, 11.5%, is closer to the target value 10% than the basic Markowitz
trading policy. The turnover is still very high, however, and the maximum leverage is still
large at above 5.

In the second experiment we add a leverage limit to the basic Markowitz problem, with
Ltar = 1.6. This one additional constraint also greatly improves performance, as seen in the
fourth row of table 1, but with a lower turnover and (not surprisingly) a lower maximum
leverage, which is at our target value 1.6.

Our third experiment adds a turnover limit of T tar = 25 to the basic Markowitz problem.
This additional constraint drops the turnover considerably, to a value near the target, but
still achieves high return, Sharpe ratio, and even lower maximum drawdown.

Our fourth experiment adds robustness to the return and risk forecasts. As simple choices
we set all entries of ρ to the 20th percentile of the absolute value of the return forecast at
each time step, and use ϱ = 0.02. This robustification also improves performance. Not
surprisingly the realized risk comes in under our target, since we use the robust risk ex-ante;
we could achieve realized risk closer to our desired target 10% by increasing the target to
something like 11.5% (which we didn’t do).

5.3 Markowitz++

In the four experiments described above, we see that adding just one reasonable additional
constraint or objective term to the basic Markowitz problem greatly improves the perfor-
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mance. In our last experiment, we include all of these constraints and terms, with parameters

γhold = 1, γtrade = 1, σtar = 0.10

cmin = −0.05, cmax = 1.00, wmin = −0.05, wmax = 0.10, Ltar = 1.6

zmin = −0.10, zmax = 0.10, T tar = 25.

The mean uncertainty parameter ρ is chosen as the 20th percentile of the absolute value of
the return forecast, and ϱ = 0.02. We soften the risk target, leverage limit, and turnover
limit, using the priority parameters

γrisk = 5× 10−2, γlev = 5× 10−4, γturn = 2.5× 10−3.

These were chosen as the 70th percentiles for the corresponding Lagrange multipliers of the
hard constraints in the basic Markowitz problem for the risk and turnover limits, and as 25%
of the maximum Lagrange multiplier for the leverage limit, over the five years leading up to
the out-of-sample study. (We selected γlev this way since the corresponding constraint was
active very rarely in the basic Markowitz problem.)

With this Markowitz++ method, we obtain the performance listed in the second from
bottom row of table 1. It is considerably better than the performance achieved by adding just
one additional constraint, as in the four previous experiments, and very much better than
the basic Markowitz method. Not surprisingly it achieves good performance on all metrics,
with a high Sharpe ratio, reasonable tracking of our volatility target, modest turnover and
leverage, and very small maximum drawdown. When the parameters are tuned annually, as
detailed in the next section, we see even more improvement, as shown in the bottom row of
table 1.

The Sharpe ratios on the bottom two rows are high. We remind the reader that our
data has survivorship bias and uses synthetic (but realistic) mean return forecasts, so the
performance should not be thought of as implementable. But the differences in performance
of the different trading methods is significant.

5.4 Parameter tuning

In this section we show how parameter tuning can be used to improve the performance of
the portfolio construction method. We will tune the parameters γhold, γtrade, γlev, γrisk, and
γturn, keeping the other parameters fixed. We start from the values used in Markowitz++.

Experimental setup. We tune the parameters at the start of every year, on the previous
two years of data, and then fix the tuned parameters for the following year. To tune the
parameters we use the simple cyclic tuning method described in §4.4. We cycle through the
parameters one by one. Each time a parameter is encountered in the loop, we increase it
by 25%; if this yields an improvement in the performance (defined below), we keep the new
value and continue with the next parameter; if not, we decrease the parameter by 20% and
check if this yields an improvement. We continue this process until a full loop through all
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parameters does not yield any improvement. By improvement in performance we mean that
all the following are satisfied:

• The in-sample Sharpe ratio increases.

• The in-sample annualized turnover is no more than 50.

• The in-sample maximum leverage is no more than 2.

• The in-sample annualized volatility is no more than 15%.

Results. Tuning the parameters every year yields the performance given in the last row of
table 1. We see a modest but significant boost in performance over untuned Markowitz++.

The tuned parameters over time are shown in figure 1. We can note several intuitive
patterns in the parameter values. For example, γrisk increases during 2008 to account for the
high uncertainty in the market during this period. Similarly, γturn decreases during the same
period, likely to allow us to trade more freely to satisfy the other constraints; interestingly
γtrade increases during the same period, likely to push us toward more liquid stocks when
trading increases. During the same period γlev increases to reduce leverage. Similar patterns
can be observed in 2020.

Tuning evolution. Here we show an example of the evolution of tuning, showing both in-
and out-of-sample values of Sharpe ratio, turnover, leverage, and volatility. The in-sample
period is April 19, 2016 to March 19, 2018, and the out-of-sample period March 20, 2018
to March 4, 2019. These are shown in figure 2. This tuning process converged after 45
back-tests to the parameter values

γrisk = 4× 10−2, γhold = 0.64, γtrade = 0.64, γlev = 5× 10−4, γturn = 1.6× 10−3.

We can see that tuning increases the Sharpe ratio both in- and out-of-sample, while keeping
the leverage, turnover, and volatility reasonable. In this example we end up changing 4
of our 5 adjustable parameters, although not by much, which shows that our initial default
parameter values were already quite good. Still, we obtain a significant boost in performance.

5.5 Annual performance

The performance analyses described above and summarized in table 1 give aggregate metrics
over a 17 year out-of-sample period, long enough to include multiple distinct market regimes
as a well as a few market crashes. For such a long back-test, it is interesting to see how the
performance in individual years varies with different market regimes. The realized annual
return, volatility, and Sharpe ratio are shown in figure 3, for basic Markowitz, equal weights,
and tuned Markowitz++. Here we see that Markowitz++ not only gives the performance
improvements seen in table 1, but in addition has less variability in performance across
different market regimes.
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Figure 1: Tuned parameters over time.
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Figure 2: Parameter tuning results.
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Figure 3: Yearly annualized metrics for the equal weight portfolio, basic Markowitz,
and tuned Markowitz++.
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Figure 4: Timing results for the Markowitz problem with a single backtest setting.

5.6 Scaling

We now turn from the performance of the portfolios to the algorithmic performance of the
portfolio construction method itself.

Small problems. We start with the small problem used in the previous section, with
n = 74 assets, and without a factor risk model. Figure 4 shows the time required for each
of the 4,436 days in the back-test, broken down into updating and logging (shown in green),
CVXPY overhead (shown in blue, negligible), and solver time, the time required to solve the
resulting cone program. (We do not count factorizing the covariance matrix, or computing
the mean forecasts, since these are done ahead of time, and the time is amortized across all
back-tests.)

The 17 year back-test, which involve solving 4,436 problems, takes around 104 seconds on
a MacBook Pro with an M1 Pro processor, or about 23ms per day on average. About 63%
of the time is spent in the solver, which in this case is MOSEK [ApS20], with other solvers
giving similar results, including open-source solvers such as ECOS [DCB13], Clarabel [GC24],
and SCS [OCPB16]. Only 3% of the time is spent in the compilation step using CVXPY.
The averages for each component of the timings are indicated by the horizontal lines in the
figure.
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Assets n Factors k Solve time (s)
100 10 0.01
500 20 0.07
500 50 0.10

2,000 50 0.23
2,000 100 0.22
10,000 50 0.65
10,000 100 0.89
50,000 200 9.00
50,000 500 17.77

Table 2: Average solve times for Markowitz++ problem for MOSEK, for different
problem sizes.

For a small problem like this one, we can carry out a one-year back-test (around 250
trading days) in around six seconds, on a single thread. A single processor with 32 threads
can carry out around 20,000 one-year back-tests in an hour. There is little excuse for a PM
who does not carry out many back-tests, even if only to vary the parameters around their
chosen values.

Large problems. We now investigate the scaling of the method with problem size. As
outlined in §3.3, a factor model improves the scaling from O(n3) to O(nk2). To illustrate this,
we solve the Markowitz problem for different values of n and k using randomly generated
but realistic data. Table 2 shows the average solve time for each problem size across 30
instances using MOSEK. (Solve times with open-source solvers such as Clarabel were a bit
longer.) We can see that even very large problems can be solved with stunning speed.

We solved many more problems than those shown in table 2, and used the solve times
to fit a log-log model, approximating the solve time as anbkc, with parameters a, b, c. We
obtained coefficients b = 0.79 and c = 1.72, consistent with the theoretical scaling of O(nk2).

When the problems are even larger, generic software reaches its limits. In such cases,
users may consider switching to first-order methods like the Alternating Direction Method
of Multipliers (ADMM) [MGBK22, Fou23, FB18, PB13, BPC+11], which can offer better
scalability and efficiency for very large problems.
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6 Conclusions

It was Markowitz’s great insight to formulate the choice of an investment portfolio as an
optimization problem that trades off multiple objectives, originally just expected return and
risk, taken to be the standard deviation of the portfolio return. His original proposal yielded
an optimization problem with an analytical solution for the long-short case, and a QP for
the long-only case, both of which were tractable to solve (for very small problems) even in
the 1950s. Since then, stunning advances in computer power, together with advances in
optimization, now allow us to formulate and solve much more complex optimization prob-
lems, that directly handle various practical constraints and mitigate the effects of forecasting
errors. We can solve these problems fast enough that very large numbers of back-tests can
be carried out, to give us a good idea of the performance we can expect, and to help choose
good values of the parameters. It is hardly surprising that these methods are widely used in
quantitative trading today.

While we have vastly more powerful computers, far better software, and easier access to
data, than Markowitz did in 1952, we feel that the more complex Markowitz++ optimization
problem simply realizes his original idea of an optimization-based portfolio construction
method that takes multiple objectives into account.
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A Coding tricks

The problem described in §4.1 can essentially be typed directly into a DSL such as CVXPY,
with very few changes. In this section we mention a few simple tricks in formulating the
problem (for a DSL) that lead to better performance.

Quadratic forms versus Euclidean norms. Traditional portfolio construction opti-
mization formulations use quadratic forms such as wTΣw. Modern convex optimization
solvers can directly handle the Euclidean norm without squaring to obtain a quadratic form.
Using norm expressions instead of quadratic forms is often more natural, and has better
numerical properties. For example a risk limit, traditionally expressed using a quadratic
form as

wTΣw ≤ (σtar)2,

is better expressed using a Euclidean norm as

∥LTw∥2 ≤ σtar,

where L is the Cholesky factor of Σ, i.e., LLT = Σ, with L lower triangular with positive
diagonal entries.

Exploiting the factor model. To exploit the factor model, it is critical to never form
the covariance matrix Σ = FΣfF T +D. The first disadvantage of doing this is that we have
to (needlessly) store an n × n matrix, which can be a challenge when n is on the order of
tens of thousands. In addition, the solver will be slowed by a dramatic factor as mentioned
in §3.3.

To exploit the factor model, we introduce the data matrix F̃ = FL, where L is the
Cholesky factor of Σf, so F̃ F̃ T = FΣfF T . The portfolio variance is

σ2 = wT F̃ F̃ Tw + wTDw = ∥F̃ Tw∥22 + ∥D1/2w∥22,

so the risk can be expressed using Euclidean norms as

σ =
∥∥∥
(
∥F̃ Tw∥2, ∥D1/2w∥2

)∥∥∥
2
.

In this expression, the outer norm is of a 2-vector; the inner lefthand norm is of a k-vector,
and the inner righthand norm is of an n-vector. Here we should be careful to express D
as a diagonal matrix, or to express D1/2w as the elementwise (Hadamard) product of two
vectors.
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B CVXPY code listing

We provide a reference implementation for the problem described in §4. This implementation
is not optimized for performance, contains no error checking, and is provided for illustrative
purposes only. For a more performant and robust implementation, we refer the reader
to the cvxmarkowitz package [Gro23]. Below, we assume that the data and parameters
are already defined in corresponding data structures. The complete code for the reference
implementation is available at

https://github.com/cvxgrp/markowitz-reference.

1 import cvxpy as cp

2

3 w, c = cp.Variable(data.n_assets), cp.Variable()

4

5 z = w - data.w_prev

6 T = cp.norm1(z) / 2

7 L = cp.norm1(w)

8

9 # worst-case (robust) return

10 factor_return = (data.F @ data.factor_mean).T @ w

11 idio_return = data.idio_mean @ w

12 mean_return = factor_return + idio_return + data.risk_free * c

13 return_uncertainty = param.rho_mean @ cp.abs(w)

14 return_wc = mean_return - return_uncertainty

15

16 # worst-case (robust) risk

17 factor_risk = cp.norm2((data.F @ data.factor_covariance_chol).T @ w)

18 idio_risk = cp.norm2(cp.multiply(data.idio_volas, w))

19 risk = cp.norm2(cp.hstack([factor_risk, idio_risk]))

20 risk_uncertainty = param.rho_covariance**0.5 * data.volas @ cp.abs(w)

21 risk_wc = cp.norm2(cp.hstack([risk, risk_uncertainty]))

22

23 asset_holding_cost = data.kappa_short @ cp.pos(-w)

24 cash_holding_cost = data.kappa_borrow * cp.pos(-c)

25 holding_cost = asset_holding_cost + cash_holding_cost

26

27 spread_cost = data.kappa_spread @ cp.abs(z)

28 impact_cost = data.kappa_impact @ cp.power(cp.abs(z), 3 / 2)

29 trading_cost = spread_cost + impact_cost

30

31 objective = (

32 return_wc
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33 - param.gamma_hold * holding_cost

34 - param.gamma_trade * trading_cost

35 )

36

37 constraints = [

38 cp.sum(w) + c == 1,

39 param.w_min <= w, w <= param.w_max,

40 L <= param.L_tar,

41 param.c_min <= c, c <= param.c_max,

42 param.z_min <= z, z <= param.z_max,

43 T <= param.T_tar,

44 risk_wc <= param.risk_target,

45 ]

46

47 problem = cp.Problem(cp.Maximize(objective), constraints)

48 problem.solve()

We start by importing the CVXPY package in line 1 and define the variables of the
problem in line 3. The variable w is the vector of asset weights, and c is the cash weight.
We then define the trade vector z, turnover T, and leverage L in lines 5–7 to simplify the
notation in the remainder of the code.

In the next block we first define the mean return in lines 10–12, taking into account the
factor and idiosyncratic returns, as well as the risk-free rate. We then define the uncertainty
in the mean return in line 13, which then reduces the mean return to the worst-case return
in line 14.

Similarly, the robust risk is obtained in lines 17–21 by first defining the factor and id-
iosyncratic risk components, which are combined to the portfolio risk. The uncertainty in
the risk, which depends on the asset volatilities, is combined with the portfolio risk to obtain
the worst-case risk in line 21. The holding cost is defined in lines 23–25, followed by the
trading cost in lines 27–29.

We form the objective function in lines 31–35 by combining the worst-case return with
the holding and trading costs, weighted by the corresponding parameters. The constraints
are collected in lines 37–45, starting with the budget constraint, followed by the holding and
trading constraints, and ending with the risk constraint.

Finally, the problem is defined in line 47, combining the objective and constraints. It is
solved in line 48 by simply calling the .solve() method on the problem instance, with a
suitable solver being chosen automatically.

In only 48 lines of code we have defined and solved the Markowitz problem with all
the constraints and objectives described in §4. This underlines the power of using a DSL
such as CVXPY to specify convex optimization problems in a way that closely follows the
mathematical formulation.
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Parameters. Using parameters can provide both a convenient way to specify the problem,
as well as a way to reduce the overhead of CVXPY when solving multiple instances. To
obtain this speedup requires some restrictions on the problem formulation. For a precise
definition we refer the reader to [AAB+19]. Here we only mention that we require expressions
to additionally be linear, or affine, in the parameters. For example, we can use CVXPY
parameters to easily and quickly change the mean return by writing to the the .value

attribute of the mean and risk_free parameters.

1 mean = cp.Parameter(n_assets)

2 risk_free = cp.Parameter()

3

4 mean_return = w @ mean + risk_free * c

In some cases, it is necessary to reformulate the problem to satisfy the additional re-
strictions required to obtain the speedup, e.g., by introducing auxiliary variables. For con-
venience, we provide a parametrized implementation of the Markowitz problem in the code
repository, where these reformulations have already been carried out.
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Part III.

Disciplined Saddle Programming
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Abstract

We consider convex-concave saddle point problems, and more generally convex opti-
mization problems we refer to as saddle problems, which include the partial supremum
or infimum of convex-concave saddle functions. Saddle problems arise in a wide range
of applications, including game theory, machine learning, and finance. It is well known
that a saddle problem can be reduced to a single convex optimization problem by dual-
izing either the convex (min) or concave (max) objectives, reducing a min-max problem
into a min-min (or max-max) problem. Carrying out this conversion by hand can be
tedious and error prone. In this paper we introduce disciplined saddle programming
(DSP), a domain specific language (DSL) for specifying saddle problems, for which the
dualizing trick can be automated. The language and methods are based on recent work
by Juditsky and Nemirovski [JN22], who developed the idea of conic-representable sad-
dle point programs, and showed how to carry out the required dualization automatically
using conic duality. Juditsky and Nemirovski’s conic representation of saddle problems
extends Nesterov and Nemirovski’s earlier development of conic representable convex
problems; DSP can be thought of as extending disciplined convex programming (DCP)
to saddle problems. Just as DCP makes it easy for users to formulate and solve com-
plex convex problems, DSP allows users to easily formulate and solve saddle problems.
Our method is implemented in an open-source package, also called DSP.

∗Equal contribution.
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1 Introduction

We consider saddle problems, by which we mean convex-concave saddle point problems or,
more generally, convex optimization problems that include the partial supremum or infimum
of convex-concave saddle functions. Saddle problems arise in various fields such as game
theory, robust and minimax optimization, machine learning, and finance.

While there are algorithms specifically designed to solve some types of saddle point or
minimax problems, another approach is to convert them into standard convex optimization
problems using a trick based on duality that can be traced back to at least the 1920s. The
idea is to express the infima or suprema that appear in the saddle problem via their duals,
which converts them to suprema or infima, respectively. Roughly speaking, this turns a min-
max problem into a min-min (or max-max) problem, which can then be solved by standard
methods. Specific cases of this trick are well known; the classical example is converting a
matrix game, a specific saddle point problem, into a linear program (LP) [MVN53]. While
the dualizing trick has been known and used for almost 100 years, it has always been done
by hand, for specific problems. It can only be carried out by those who have a working
knowledge of duality in convex optimization, and are aware of the trick.

In this paper we propose an automated method for carrying out the dualizing trick. Our
method is based on the theory of conic representation of saddle point problems, developed
recently by Juditsky and Nemirovski [JN22]. Based on this development, we have designed
a domain specific language (DSL) for describing saddle problems, which we refer to as dis-
ciplined saddle programming (DSP). When a problem description complies with the syntax
rules, i.e., is DSP-compliant, it is easy to verify that it is a valid saddle problem, and more
importantly, automatically carry out the dualizing trick. We have implemented the DSL in
an open source software package, also called DSP, which works with CVXPY [DB16], a DSL
for specifying and solving convex optimization problems. DSP makes it easy to specify and
solve saddle problems, without any expertise in (or even knowledge of) convex duality. Even
for those with the required expertise to carry out the dualizing trick by hand, DSP is less
tedious and error prone.

DSP is disciplined, meaning it is based on a small number of syntax rules that, if followed,
guarantee that the specified problem is a valid saddle problem. It is analogous to disciplined
convex programming (DCP) [GBY06], which is a DSL for specifying convex optimization
problems. When a problem specification follows these syntax rules, i.e., is DCP-compliant, it
is a valid convex optimization problem, and more importantly can be automatically converted
to an equivalent cone program, and then solved. As a practical matter, DCP allows a large
number of users to specify and solve even complex convex optimization problems, with no
knowledge of the reduction to cone form. Indeed, most DCP users are blissfully unaware
of how their problems are solved, i.e., a reduction to cone form. DCP was based on the
theory of conic representations of convex functions and problems, pioneered by Nesterov
and Nemirovski [NN92]. Widely used implementations of DCP include CVXPY [DB16],
Convex.jl [Ude+14], CVXR [FNB20], YALMIP [Lof04], and CVX [GB14]. Like DCP did for
convex problems, DSP makes it easy to specify and solve saddle problems, with most users
unaware of the dualization trick and reduction used to solve their problems.
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1.1 Previous and related work

Saddle problems. Studying saddle problems is a long-standing area of research, resulting
in many theoretical insights, numerous algorithms for specific classes of problems, and a
large number of applications.

Saddle problems are often studied in the context of minimax or maximin optimization
[DM90; DP95], which, while dating back to the 1920s and the work of von Neumann and
Morgenstern on game theory [MVN53], continue to be active areas of research, with many
recent advancements for example in machine learning [Goo+14]. A variety of methods have
been developed for solving saddle point problems, including interior point methods [HT03;
Nem99], first-order methods [Kor76; Nem04; Nes07; NO09; CLO13], and second-order meth-
ods [NP06; Nes08], where many of these methods are specialized to specific classes of saddle
problems. Depending on the class of saddle problem, the methods differ in convergence rate.
For example, for the subset of smooth minimax problems, an overview of rates for different
curvature assumptions is given in [The+19]. Due to their close relation to Lagrange duality,
saddle problems are commonly studied in the context of convex analysis (see, for example,
[BV04, §5.4], [Roc70, §33–37], [RW09, §11.J], [BL06, §4.3]), with an analysis via monotone
operators given in [RY22].

The practical usefulness of saddle programming in many applications is also increas-
ingly well known. Many applications of saddle programming are robust optimization prob-
lems [BBC11; BTEGN09]. For example, in statistics, distributionally robust models can be
used when the true distribution of the data generating process is not known [DA19]. Another
common area of application is in finance, with [CPT18, §19.3–4] describing a range of finan-
cial applications that can be characterized as saddle problems. Similarly, [Boy+17; GI03;
LB00] describe variations of the classical portfolio optimization problem as saddle problems.

Disciplined convex programming. DCP is a grammar for constructing optimization
problems that are provably convex, meaning that they can be solved globally, efficiently
and accurately. It is based on the rule that the convexity of a function f is preserved
under composition if all inner expressions in arguments where f is nondecreasing are convex,
and all expressions where f is nonincreasing are concave, and all other expressions are
affine. A detailed description of the composition rule is given in [BV04, §3.2.4]. Using this
rule, functions can be composed from a small set of primitives, called atoms, where each
atom has known curvature, sign, and monotonicity. Every function that can be constructed
from these atoms according to the composition rule is convex, but the converse is not true.
The DCP framework has been implemented in many programming languages, including
MATLAB [GB14; Lof04], Python [DB16], R [FNB20], and Julia [Ude+14], and is used by
researchers and practitioners in a wide range of fields.

Well-structured convex-concave saddle point problems. As mentioned earlier, dis-
ciplined saddle programming is based on Juditsky and Nemirovski’s recent work on well-
structured convex-concave saddle point problems [JN22].
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1.2 Our contributions

We summarize our contributions as follows:

• We introduce disciplined saddle programming, a domain specific language for spec-
ifying and solving convex-concave saddle problems. To solve the saddle problems,
automated dualization is applied to the conic representation of the problem. We ex-
tend the existing literature by deriving a procedure that returns both the convex and
concave coordinates of the saddle point. This also guarantees that a valid saddle point
was found without the need to check for technical conditions (such as compactness).
These developments make the theory of conic representable saddle problems practically
applicable for the first time.

• We specify and implement the first DSL that encodes sufficient conditions for conic
representability of saddle problems. We develop an open-source Python package, also
called DSP, providing a user-friendly interface for specifying and solving saddle prob-
lems. Using this implementation, we demonstrate the effectiveness of the framework
by solving a variety of saddle problems from different application domains.

1.3 Outline

In §2 we describe saddle programming, which includes the classical saddle point problem, as
well as convex problems that include functions described via partial minimization or maxi-
mization of a saddle function. We describe some typical applications of saddle programming
in §3. In §4 we describe disciplined saddle programming, which is a way to specify saddle
programs in such a way that validity is easy to verify, and the reduction to an equivalent
cone program can be automated. We describe our implementation in §5, showing how sad-
dle functions, saddle extremum functions, saddle point problems, and saddle problems are
specified. We present numerical examples in §6.

2 Saddle programming

2.1 Saddle functions

A saddle function (also referred to as a convex-concave saddle function) f : X × Y → R
is one for which f(·, y) is convex for any fixed y ∈ Y , and f(x, ·) is concave for any fixed
x ∈ X . The argument domains X ⊆ Rn and Y ⊆ Rm must be nonempty closed convex. We
refer to x as the convex variable, and y as the concave variable, of the saddle function f .

Examples.

• Functions of x or y alone. A convex function of x, or a concave function of y, are
trivial examples of saddle functions.
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• Lagrangian of a convex optimization problem. The convex optimization problem

minimize f0(x)
subject to Ax = b, fi(x) ≤ 0, i = 1, . . . , m,

with variable x ∈ Rn, where f0, . . . , fm are convex and A ∈ Rp×n, has Lagrangian

L(x, ν, λ) = f(x) + νT (Ax− b) + λ1f1(x) + · · ·+ λmfm(x),

for λ ≥ 0 (elementwise). It is convex in x and affine (and therefore also concave) in
y = (ν, λ), so it is a saddle function with

X =
⋂

i=0,...,m

dom fi, Y = Rp ×Rm
+ ,

• Bi-affine function. The function f(x, y) = (Ax + b)T (Cy + d), with X = Rp and
Y = Rq, is evidently a saddle function. The inner product xT y is a special case of
a bi-affine function. For a bi-affine function, either variable can serve as the convex
variable, with the other serving as the concave variable.

• Convex-concave inner product. The function f(x, y) = F (x)TG(y), where F : Rp →
Rn is a nonnegative elementwise convex function and G : Rq → Rn is a nonnegative
elementwise concave function.

• Weighted ℓ2 norm. The function

f(x, y) =

(
n∑

i=1

yix
2
i

)1/2

,

with X = Rn and Y = Rn
+, is a saddle function.

• Weighted log-sum-exp. The function

f(x, y) = log

(
n∑

i=1

yi exp xi

)
,

with X = Rn and Y = Rn
+, is a saddle function.

• Weighted geometric mean. The function f(x, y) =
∏n

i=1 y
xi
i , with X = Rn

+ and Y =
Rn

+, is a saddle function.

• Quadratic form with quasi-semidefinite matrix. The function

f(x, y) =

[
x
y

]T [
P S
ST Q

] [
x
y

]
,

where the matrix is quasi-semidefinite, i.e., P ∈ Sn
+ (the set of symmetric positive

semidefinite matrices) and −Q ∈ Sn
+.
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• Quadratic form. The function f(x, Y ) = xTY x, with X = Rn and Y = Sn
+ (the set of

symmetric positive semidefinite n× n matrices), is a saddle function.

• As a more esoteric example, the function f(x, Y ) = xTY 1/2x, with X = Rn and
Y = Sn

+, is a saddle function.

Combination rules. Saddle functions can be combined in several ways to yield saddle
functions. For example the sum of two saddle functions is a saddle function, provided the
domains have nonempty intersection. A saddle function scaled by a nonnegative scalar is
a saddle function. Scaling a saddle function with a nonpositive scalar, and swapping its
arguments, yields a saddle function: g(x, y) = −f(y, x) is a saddle function provided f is.
Saddle functions are preserved by pre-composition of the convex and concave variables with
an affine function, i.e., if f is a saddle function, so is f(Ax+ b, Cx+ d). Indeed, the bi-affine
function is just the inner product with an affine pre-composition for each of the convex and
concave variables.

2.2 Saddle point problems

A saddle point (x⋆, y⋆) ∈ X × Y is any point that satisfies

f(x⋆, y) ≤ f(x⋆, y⋆) ≤ f(x, y⋆) for all x ∈ X , y ∈ Y . (1)

In other words, x⋆ minimizes f(x, y⋆) over x ∈ X , and y⋆ maximizes f(x⋆, y) over y ∈ Y .
The basic saddle point problem is to find such a saddle point,

find x⋆, y⋆ which satisfy (1). (2)

The value of the saddle point problem is f(x⋆, y⋆).
Existence of a saddle point for a saddle function is guaranteed, provided some technical

conditions hold. For example, Sion’s theorem [Sio58] guarantees the existence of a saddle
point when Y is compact. There are many other cases.

Examples.

• Matrix game. In a matrix game, player one chooses i ∈ {1, . . . , m}, and player two
chooses j ∈ {1, . . . , n}, resulting in player one paying player two the amount Cij. Player
one wants to minimize this payment, while player two wishes to maximize it. In a mixed
strategy, player one makes choices at random, from probabilities given by x and player
two makes independent choices with probabilities given by y. The expected payment
from player one to player two is then f(x, y) = xTCy. With X = {x | x ≥ 0, 1Tx = 1},
and similarly for Y , a saddle point corresponds to an equilibrium, where no player can
improve her position by changing (mixed) strategy. The saddle point problem consists
of finding a stable equilibrium, i.e., an optimal mixed strategy for each player.

• Lagrangian. A saddle point of a Lagrangian of a convex optimization problem is a
primal-dual optimal pair for the convex optimization problem.
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2.3 Saddle extremum functions

Suppose f is a saddle function. The function G : X → R ∪ {∞} defined by

G(x) = sup
y∈Y

f(x, y), x ∈ X , (3)

is called a saddle max function. Similarly, the function H : Y → R ∪ {−∞} defined by

H(x) = inf
x∈X

f(x, y), y ∈ Y , (4)

is called a saddle min function. Saddle max functions are convex, and saddle min functions
are concave. We will use the term saddle extremum (SE) functions to refer to saddle max
or saddle min functions. Which is meant is clear from context, i.e., whether it is defined by
minimization (infimum) or maximization (supremum), or its curvature (convex or concave).
Note that in SE functions, we always maximize (or take supremum) over the concave variable,
and minimize (or take infimum) over the convex variable. This means that evaluating G(x)
or H(y) involves solving a convex optimization problem.

Examples.

• Dual function. Minimizing a Lagrangian L(x, ν, λ) over x gives the dual function of
the original convex optimization problem.

• Maximizing a Lagrangian L(x, ν, λ) over y = (ν, λ) gives the objective function re-
stricted to the feasible set.

• Conjugate of a convex function. Suppose f is convex. Then g(x, y) = f(x)− xTy is a
saddle function, the Lagrangian of the problem of minimizing f subject to x = 0. Its
saddle min is the negative conjugate function: infx g(x, y) = −f ∗(y).

• Sum of k largest entries. Consider f(x, y) = xTy, with Y = {y | 0 ≤ y ≤ 1, 1Ty = k}.
The associated saddle max function G is the sum of the k largest entries of x.

Saddle points via SE functions. A pair (x⋆, y⋆) is a saddle point of a saddle function f
if and only if x⋆ minimizes the convex SE function G in (3) over x ∈ X , and y⋆ maximizes
the concave SE function H defined in (4) over y ∈ Y . This means that we can find saddle
points, i.e., solve the saddle point problem (2), by solving the convex optimization problem

minimize G(x)
subject to x ∈ X , (5)

with variable x, and the convex optimization problem

maximize H(y)
subject to y ∈ Y , (6)
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with variable y. The problem (5) is called a minimax problem, since we are minimizing a
function defined as the maximum over another variable. The problem (6) is called a maximin
problem.

While the minimax problem (5) and maximin problem (6) are convex, they cannot be
directly solved by conventional methods, since the objectives themselves are defined by max-
imization and minimization, respectively. There are solution methods specifically designed
for minimax and maximin problems [LJJ20; MB09], but as we will see minimax problems
involving SE functions can be transformed to equivalent forms that can be directly solved
using conventional methods.

2.4 Saddle problems

In this paper we consider convex optimization problems that include SE functions in the
objective or constraints, which we refer to as saddle problems. The convex problems that
solve the basic saddle point problem (5) and (6) are special cases, where the objective is an
SE function. As another example consider the problem of minimizing a convex function φ
subject to the convex SE constraint H(y) ≤ 0, which can be expressed as

minimize φ(x)
subject to f(x, y) ≤ 0 for all y ∈ Y , (7)

with variable x. The constraint here is called a semi-infinite constraint, since (when Y is not
a singleton) it can be thought of as an infinite collection of convex constraints, one for each
y ∈ Y [HK93].

Saddle problems include the minimax and maximin problems (that can be used to solve
the saddle point problem), and semi-infinite problems that involve SE functions. There are
many other examples of saddle problems, where SE functions can appear in expressions that
define the objective and constraints.

Robust cost LP. As a more specific example of a saddle problem consider the linear
program with robust cost,

minimize supc∈C c
Tx

subject to Ax = b, x ≥ 0,
(8)

with variable x ∈ Rn, with C = {c | Fc ≤ g}. This is an LP with worst case cost over the
polyhedron C [BBC11; BTEGN09]. This is a saddle problem with convex variable x, concave
variable y, and an objective which is a saddle max function.

2.5 Solving saddle problems

Special cases with tractable analytical expressions. There are cases where an SE
function can be worked out analytically. An example is the max of a linear function over a
box,

sup
l≤y≤u

yTx = (1/2)(u+ l)Tx+ (1/2)(u− l)T |x|,
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where the absolute value is elementwise. We will see other cases in our examples.

Subgradient methods. We can readily compute a subgradient of a saddle max function
(or a supergradient of a saddle min function) at a given input, by simply maximizing over the
concave variable (minimizing over the convex variable), which is itself a convex optimization
problem, and then obtaining a subgradient (supergradient) at that maximizer (minimizer).
We can then use any method to solve the saddle problem using these subgradients, e.g.,
subgradient-type methods, ellipsoid method, or localization methods such as the analytic
center cutting plane method. In [MB09] such an approach is used for general minimax
problems.

Methods for specific forms. Many methods have been developed for finding saddle
points of saddle functions with the special form

f(x, y) = xTKy + φ(x) + ψ(y),

where φ is convex, ψ is concave, and K is a matrix [BS15; Con13; CP11; Nes05a; Nes05b;
CP16]. Beyond this example, there are many other special forms of saddle functions, with
different methods adapted to properties such as smoothness, separability, and strong-convex-
strong-concavity.

2.6 Dual reduction

A well-known trick can be used to transform a saddle point problem into an equivalent prob-
lem that does not contain SE functions. This method of transforming an inner minimization
is not new; it has been used since the 1950s when Von Neumann proved the minimax the-
orem using strong duality in his work with Morgenstern on game theory [MVN53]. Using
this observation, he showed that the minimax problem of a two player game is equivalent
to an LP. Duality allows us to express the convex (concave) SE function as an infimum
(supremum), which facilitates the use of standard convex optimization. We think of this as
a reduction to an equivalent problem that removes the SE functions from the objective and
constraints.

Robust cost LP. We illustrate the dualization method for the robust cost LP (8). The
key is to express the robust cost or saddle max function supFc≤g c

Tx as an infimum. We first
observe that this saddle max function is the optimal value of the LP

maximize xT c
subject to Fc ≤ g,

with variable c. Its dual is

minimize gTλ
subject to F Tλ = x, λ ≥ 0,

10

94



with variable λ. With C = {c | Fc ≤ g}, and assuming C is nonempty, this dual problem
has the same optimal value as the primal, i.e.,

sup
c∈C

cTx = inf
λ≥0, FTλ=x

gTλ

Substituting this into (8) we obtain the problem

minimize gTλ
subject to Ax = b, x ≥ 0, F Tλ = x, λ ≥ 0,

(9)

with variables x and λ. This simple LP is equivalent to the original robust LP (8), in the
sense that if (x⋆, λ⋆) is a solution of (9), then x⋆ is a solution of the robust LP (8).

We will see this dualization trick in a far more general setting in §4.

3 Applications

In this section we describe a few applications of saddle programming.

3.1 Robust bond portfolio construction

We describe here a simplified version of the problem described in much more detail in [LSB22].
Our goal is to construct a portfolio of n bonds, giving by its holdings vector h ∈ Rn

+, where
hi is the number of bond i held in the portfolio. Each bond produces a cash flow, i.e., a
sequence of payments to the portfolio holder, up to some period T . Let ci,t be the payment
from bond i in time period t. Let y ∈ RT be the yield curve, which gives the time value
of cash: A payment of one dollar at time t is worth exp(−tyt) current dollars, assuming
continuously compounded returns. The bond portfolio value, which is the present value of
the total cash flow, can be expressed as

V (h, y) =

n∑

i=1

T∑

t=1

hici,t exp(−tyt).

This function is convex in the yields y and concave (in fact, linear) in the holdings vector h.
Now suppose we do not know the yield curve, but instead have a convex set Y of possible

values, with y ∈ Y . The worst case value of the bond portfolio, over this set of possible yield
curves, is

V wc(h) = inf
y∈Y

V (h, y).

We recognize this as a saddle min function. (In this application, y is the convex variable
of the saddle function V , whereas elsewhere in this paper we use y to denote the concave
variable.)

We consider a robust bond portfolio construction problem of the form

minimize φ(h)
subject to h ∈ H, V wc(h) ≥ V lim,

(10)
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where φ is a convex objective, typically a measure of return and risk, H is a convex set
of portfolio constraints (for example, imposing h ≥ 0 and a total budget), and V lim is a
specified limit on worst case value of the portfolio over the yield curve set Y , which has a
saddle min as a constraint.

For some simple choices of Y the worst case value can be found analytically. One example
is when Y has a maximum element. In this special case, the maximum element is the
minimizer of the value over Y (since V is a monotone decreasing function of y). For other
cases, however, we need to solve the saddle problem (10).

3.2 Model fitting robust to data weights

We wish to fit a model parametrized by θ ∈ Θ ⊆ Rn to m observed data points. We do this
by minimizing a weighted loss over the observed data, plus a regularizer,

m∑

i=1

wiℓi(θ) + r(θ),

where ℓi is the convex loss function for observed data point i, r is a convex regularizer
function, and the weights wi are nonnegative. The weights can be used to adjust a data
sample that was not representative, as in [BAB21], or to ignore some of the data points (by
taking wi = 0), as in [BGM20]. Evidently the weighted loss is a saddle function, with convex
variable θ and concave variable w.

We consider the case when the weights are unknown, but lie in a convex set, w ∈ W. The
robust fitting problem is to choose θ to minimize the worst case loss over the set of possible
weights, plus the regularizer,

max
w∈W

m∑

i=1

wiℓi(θ) + r(θ).

We recognize the first term, i.e., the worst case loss over the set of possible weights, as a
saddle max function.

For some simple choices of W the worst case loss can be expressed analytically. For
example with

W = {w | 0 ≤ w ≤ 1, 1Tw = k},
(with k ∈ [0, n]), the worst case loss is given by

max
w∈W

m∑

i=1

wiℓi(θ) = φ(ℓ1, . . . , ℓm),

where φ is the sum-of-k-largest entries [BV04, §3.2.3]. (Our choice of symbol k suggests that
k is an integer, but it need not be.) In this case we judge the model parameter θ by its worst
loss on any subset of k of data points. Put another way, we judge θ by dropping the m− k
data points on which it does best (i.e., has the smallest loss) [BGM20].
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CVXPY directly supports the sum-of-k-largest function, so the robust fitting problem
can be formulated and solved without using DSP. To support this function, CVXPY carries
out a transformation very similar to the one that DSP does. The difference is that the
transformation in CVXPY is specific to this one function, whereas the one carried out in
DSP is general, and would work for other convex weight sets. One such case would be to
constrain the Wasserstein distance of the weights to a nominal distribution.

3.3 Robust production problem with worst case prices

We consider the choice of a vector of quantities q ∈ Q ⊆ Rn. Positive entries indicate goods
we buy, and negative quantities are goods we sell. The set of possible quantities Q is our
production set, which is convex. In addition, we have a manufacturing cost associated with
the choice q, given by φ(q), where φ is a convex function. The total cost is the manufacturing
cost plus the cost of goods (which includes revenue), φ(q) + pT q, where p ∈ Rn is vector of
prices.

We consider the situation when we do not know the prices, but we have a convex set
they lie in, p ∈ P. The worst case cost of the goods is maxp∈P pT q. The robust production
problem is

minimize φ(q) + maxp∈P pT q
subject to q ∈ Q, (11)

with variable q. Here too we can work out analytical expressions for simple choices of P,
such as a range for each component, in which case the worst case price is the upper limit
for goods we buy, and the lower limit for goods we sell. In other cases, we solve the saddle
problem (11).

3.4 Robust Markowitz portfolio construction

Markowitz portfolio construction [Mar52] chooses a set of weights (the fraction of the total
portfolio value held in each asset) by solving the convex problem

maximize µTw − γwTΣw
subject to 1Tw = 1, w ∈ W,

where the variable is the vector of portfolio weights w ∈ Rn, µ ∈ Rn is a forecast of the
asset returns, γ > 0 is the risk aversion parameter, Σ ∈ Sn

++ is a forecast of the asset return
covariance matrix, and W is a convex set of feasible portfolios. The objective is called the
risk adjusted (mean) return.

Markowitz portfolio construction is known to be fairly sensitive to the (forecasts) µ and
Σ, which have to be chosen with some care; see, e.g., [BL91]. One approach is to specify
a convex uncertainty set U that (µ,Σ) must lie in, and replace the objective with its worst
case (smallest) value over this uncertainty set. This gives the robust Markowitz portfolio
construction problem

maximize inf(µ,Σ)∈U
(
µTw − γwTΣw

)

subject to 1Tw = 1, w ∈ W,

13

97



with variable w. This is described in, e.g., [Boy+17; GI03; LB00]. We observe that this is
directly a saddle problem, with a saddle min objective, i.e., a maximin problem.

For some simple versions of the problem we can work out the saddle min function explic-
itly. One example, given in [Boy+17], uses U = M×S, where

M = {µ+ δ | |δi| ≤ ρi, i = 1, . . . , n},
S = {Σ +∆ | Σ +∆ � 0, |∆ij| ≤ η(ΣiiΣjj)

1/2, i, j = 1, . . . , n},

where ρ > 0 is a vector of uncertainties in the forecast returns, and η ∈ (0, 1) is a parameter
that scales the perturbation to the forecast covariance matrix. (We interpret δ and ∆ as
perturbations of the nominal mean and covariance µ and Σ, respectively.) We can express
the worst case risk adjusted return analytically as

inf
(µ,Σ)∈U

(
µTw − γwTΣw

)
= µTw − γwTΣw − ρT |w| − γη

(
n∑

i=1

Σ
1/2
ii |wi|

)2

.

The first two terms are the nominal risk adjusted return; the last two terms (which are
nonpositive) represent the cost of uncertainty.

4 Disciplined saddle programming

4.1 Saddle function calculus

We use the notation φ(x, y) : X ×Y ⊆ Rn×m → R to denote a saddle function with concave
variables x and convex variables y. The set of operations that, when performed on saddle
functions, preserves the saddle property are called the saddle function calculus. The calculus
is quite simple, and consists of the following operations:

1. Conic combination of saddle functions. Let φi(xi, yi), i = 1, . . . , k be saddle functions.
Let θi ≥ 0 for each i. Then the conic combination, φ(x, y) =

∑k
i=1 θiφi(xi, yi), is a

saddle function.

2. Affine precomposition of saddle functions. Let φ(x, y) be a saddle function, with x ∈ Rn

and y ∈ Rm. Let A ∈ Rn×q, b ∈ Rn, C ∈ Rm×p, and d ∈ Rm. Then, with u ∈ Rq and
v ∈ Rp, the affine precomposition, φ(Au+ b, Cv + d), is a saddle function.

3. Precomposition of saddle functions. Let φ(x, y) : X × Y ⊆ Rn×m → R be a saddle
function, with x ∈ Rn and y ∈ Rm. The precomposition with a function f : Rp → Rn,
φ(f(u), y), is a saddle function if for each i = 1, . . . , n one of the following holds:

• fi(u) is convex and φ is nondecreasing in xi for all y ∈ Y and all x ∈ X .

• fi(u) is concave and φ is nonincreasing in xi for all y ∈ Y and all x ∈ X .

Similarly, the precomposition with a function g : Rq → Rm, φ(x, g(v)), is a saddle
function if for each j = 1, . . . , m one of the following holds:
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• gj(v) is convex and φ is nonincreasing in yj for all x ∈ X and all y ∈ Y .

• gj(v) is concave and φ is nondecreasing in yj for all x ∈ X and all y ∈ Y .

4.2 Conic representable saddle functions

Nemirovski and Juditsky propose a class of conic representable saddle functions which fa-
cilitate the automated dualization of saddle problems [JN22]. We will first introduce some
terminology and notation, and then describe the class of conic representable saddle functions.

Notation. We use the notation φ(x, y) : X ×Y ⊆ Rn×m → R to denote a saddle function
which is convex in x and concave in y. Let Kx, Ky and K be members of a collection K
of closed, convex, and pointed cones with nonempty interiors in Euclidean spaces such that
K contains a nonnegative ray, is closed with respect to taking finite direct products of its
members, and is closed with respect to passing from a cone to its dual. We denote conic
membership z ∈ K by z �K 0. We call a set X ⊆ Rn K-representable if there exist constant
matrices A and B, a constant vector c, and a cone K ∈ K such that

X = {x | ∃u : Ax+Bu �K c}.

CVXPY [DB16] can implement a function f exactly when its epigraph {(x, u) | f(x) ≤ u}
is K-representable.

Conic representable saddle functions. Let X and Y be nonempty and possessing K-
representations

X = {x | ∃u : Ax+Bu �K c}, Y = {y | ∃v : Cy +Dv �K e}.

A saddle function φ(x, y) : X × Y → R is K-representable if there exist constant matrices
P , Q, R, constant vectors p and s and a cone K ∈ K such that for each x ∈ X and y ∈ Y ,

φ(x, y) = inf
f,t,u

{fTy + t | Pf + tp +Qu+Rx �K s}.

Here f is a vector of the same dimension as y, t is a scalar, and u is a vector. This definition
generalizes simple class of bilinear saddle functions. See [JN22] for much more detail.

Automated dualization. Suppose we have a K-representable saddle function φ as above.
The conic form allows us to derive a dualized representation of the saddle extremum function

Φ(x) = sup
y∈Y

φ(x, y)
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which again admits a tractable conic form, meaning that it can be represented in a DSL like
CVXPY. Specifically,

Φ(x) = sup
y∈Y

φ(x, y)

= sup
y∈Y

inf
f,t,u

{
fTy + t

∣∣ Pf + tp+Qu+Rx �K s
}

= inf
f,t,u

{
sup
y∈Y

(
fTy + t

) ∣∣∣∣ Pf + tp +Qu+Rx �K s

}
(12)

= inf
f,t,u

{
sup
y∈Y

(
fTy

)
+ t

∣∣∣∣ Pf + tp+Qu+Rx �K s

}

= inf
f,t,u

{
inf
λ

{
λTe

∣∣∣∣
CTλ = f, DTλ = 0
λ �K∗ 0

}
+ t

∣∣∣∣ Pf + tp+Qu+Rx �K s

}
(13)

where in (12) we use Sion’s minimax theorem [Sio58] to reverse the inf and sup, and in (13)
we invoke strong duality to replace the supremum over y with an infimum over λ. Concretely,
strong duality and the conic structure allow us to equate

sup
y

{
fTy

∣∣ Cy +Dv �K e
}
= inf

λ

{
λT e

∣∣ CTλ = f, DTλ = 0, λ �K∗ 0
}
,

where K∗ is the dual cone of K. This is exactly the automated dualization made possible
by the conic representable form of φ (which DSP provides). Given the conic representation
of φ, the dualized form is obtained via the explicit formula given in (13).

The final line implies a conic representation of the epigraph of Φ(x),

{(x, u) | Φ(x) ≤ u} =



(x, u)

∣∣∣∣∣∣
∃λ, f, t, u :

λT e + t ≤ u
CTλ = f, DTλ = 0, λ �K∗ 0
Pf + tp+Qu+Rx �K s



 ,

which is tractable and can be implemented in a DSL like CVXPY. This transformation is
exact, and so there is no notion of approximation error or optimality gap arising from the
dualization procedure.

A mathematical nuance. Switching the inf and sup in (12) requires Sion’s theorem to
hold. A sufficient condition for Sion’s theorem to hold is that the set Y is compact. However,
the min and max can be exchanged even if Y is not compact. Then, due to the max-min
inequality

max
y∈Y

min
x∈X

f(x, y) ≤ min
x∈X

max
y∈Y

f(x, y),

the equality in (13) is replaced with a less than or equal to, and we obtain a convex restriction.
Thus, if a user creates a problem involving an SE function (as opposed to a saddle point
problem only containing saddle functions in the objective), then DSP guarantees that the
problem generated is a restriction. This means that the variables returned are feasible and
the returned optimal value is an upper bound on the optimal value for the user’s problem.
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Obtaining convex and concave saddle point coordinates. One challenge that arises
in transforming the mathematical concept of conic representable saddle functions into a
practical implementation is that the automated dualization removes the concave variable
from the problem. Additionally, the procedure relies on the technical conditions such as
compactness, which we believe should not be exposed in a user interface. We now address
these points.

In our implementation, a saddle problem with an SE function in the objective is solved by
applying the above automatic dualization to both the objective φ and −φ and then solving
each resulting convex problem. Note that φ(x, y) is convex in x and concave in y, while
−φ(x, y) is concave in x and convex in y. We do so in order to obtain both the convex and
concave components of the saddle point, since the dualization removes the concave variable.
To see this, note that (13) contains x but not y (and the opposite holds for the negated
problem). The saddle problem is only reported as solved if the optimal value of the problem
with objective φ, u, is within a numerical tolerance of the negated optimal value of the
problem with objective −φ, −l. If this holds, this actually implies that

max
y∈Y

min
x∈X

φ(x, y) = min
x∈X

max
y∈Y

φ(x, y),

i.e., (12) was valid, even if for example Y is not compact. To see this, note that solving for
φ as well as −φ results in an upper and a lower bound on the optimal value of the saddle
point problem,

max
y∈Y

min
x∈X

φ(x, y) ≤ min
x∈X

max
y∈Y

φ(x, y) ≤ u, and max
x∈X

min
y∈Y

−φ(x, y) ≤ min
y∈Y

max
x∈X

−φ(x, y) ≤ −l.

Using symmetry and combining the above inequalities, we obtain

l ≤ max
y∈Y

min
x∈X

φ(x, y) ≤ min
x∈X

max
y∈Y

φ(x, y) ≤ u.

Suppose now that l = u. Note that since

φ(x⋆, y⋆) ≤ max
y∈Y

φ(x⋆, y) = u, and φ(x⋆, y⋆) ≥ min
x∈X

φ(x, y⋆) = l,

we have that φ(x⋆, y⋆) = l = u. That is, the pair (x⋆, y⋆) obtains the optimal value of the
saddle point problem. All that remains is to verify that this pair satisfies the saddle point
property. We have that φ(x⋆, y) ≤ φ(x⋆, y⋆) for all y ∈ Y , since otherwise u = φ(x⋆, y⋆) <
maxy∈Y φ(x⋆, y) = u, a contradiction. Similarly, φ(x, y⋆) ≥ φ(x⋆, y⋆) for all x ∈ X . Taken
together, these inequalities state that (x⋆, y⋆) is a saddle point, since

φ(x⋆, y) ≤ φ(x⋆, y⋆) ≤ φ(x, y⋆), ∀x ∈ X , y ∈ Y .

Thus, a user need not concern themselves with the compactness of Y (or any other suffi-
cient condition for Sion’s theorem) when using DSP to find a saddle point; if a saddle point
problem is solved, then the saddle point property is guaranteed to hold. This mathematical
insight extends the work of [JN22], which assumes compactness of Y , allowing users who
might be unfamiliar with this technical restriction to use DSP.
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5 Implementation

In this section we describe our Python implementation of the concepts and methods described
in §4, which we also call DSP. It can be accessed online under an open source license at
https://github.com/cvxgrp/dsp. DSP works with CVXPY [DB16], an implementation of
a DSL for convex optimization based on DCP. We use the term DSP in two different ways.
We use it to refer to the mathematical concept of disciplined saddle programming, and also
our specific implementation; which is meant should be clear from the context. The term
DSP-compliant refers to a function or expression that is constructed according to the DSP
composition rules given in §5.2. It can also refer to a problem that is constructed according
to these rules. In the code snippets below, we use the prefix cp to indicate functions and
classes from CVXPY. (We give functions and classes from DSP without prefix, whereas they
would likely have a prefix such as dsp in real code.)

5.1 Atoms

Saddle functions in DSP are created from fundamental building blocks or atoms. These
building blocks extend the atoms from CVXPY [DB16]. In CVXPY, atoms are either jointly
convex or concave in all their variables, but in DSP, atoms are (jointly) convex in a subset of
the variables and (jointly) concave in the remaining variables. We describe some DSP atoms
below. The listing is not exhaustive, and additional atoms can be added as necessary.

Inner product. The atom inner(x,y) represents the inner product xTy. Since either
x or y could represent the convex variable, we adopt the convention in DSP that the first
argument of inner is the convex variable. According to the DSP rules, both arguments to
inner must be affine, and the variables they depend on must be disjoint.

Saddle inner product. The atom saddle_inner(F, G) corresponds to the function
F (x)TG(y), where F and G are vectors of nonnegative and respectively elementwise convex
and concave functions. It is DSP-compliant if F is DCP convex and nonnegative and G is
DCP concave. If the function G is not DCP nonnegative, then the DCP constraint G >= 0

is attached to the expression. This is analogous to how the DCP constraint x >= 0 is added
to the expression cp.log(x). As an example consider

f = saddle_inner(cp.square(x), cp.log(y)).

This represents the saddle function

f(x, y) = x2 log y − I(y ≥ 1),

where I is the {0,∞} indicator function of its argument.
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Weighted ℓ2 norm. The weighted_norm2(x, y) atom represents the saddle function

(
∑n

i=1 yix
2
i )

1/2
, with y ≥ 0. It is DSP-compliant if x is either DCP affine or both convex and

nonnegative, and y is DCP concave. Here too, the constraint y >= 0 is added if y is not
DCP nonnegative.

Weighted log-sum-exp. The weighted_log_sum_exp(x, y) atom represents the saddle
function log (

∑n
i=1 yi exp xi), with y ≥ 0. It is DSP-compliant if x is DCP convex, and y is

DCP concave. The constraint y >= 0 is added if y is not DCP nonnegative.

Quasi-semidefinite quadratic form. The quasidef_quad_form(x, y, P, Q, S) atom
represents the function

f(x, y) =

[
x
y

]T [
P S
ST Q

] [
x
y

]
,

where the matrix is quasi-semidefinite, i.e., P ∈ Sn
+ and −Q ∈ Sn

+. It is DSP-compliant if x
is DCP affine and y is DCP affine.

Quadratic form. The saddle_quad_form(x, Y) atom represents the function xTY x,
where Y is a PSD matrix. It is DSP-compliant if x is DCP affine, and Y is DCP PSD.

5.2 Calculus rules

The atoms can be combined according to the calculus described below to form expressions
that are DSP-compliant. For example, saddle functions can be added or scaled. DCP-
compliant convex and concave expressions are promoted to saddle functions with no concave
or convex variables, respectively. For example, with variables x, y, and z, the expression

f = 2.5 * saddle_inner(cp.square(x), cp.log(y)) + cp.minimum(y,1) - z

is DSP-compliant, with convex variable x, concave variable y, and affine variable z.
Calling the is_dsp method of an expression returns True if the expression is DSP-

compliant. The methods convex_variables, concave_variables, and affine_variables,
list the convex, concave, and affine variables, respectively. The convex variables are those
that could only be convex, and similarly for concave variables. We refer to the convex
variables as the unambiguously convex variables, and similarly for the concave variables.
The three lists of variables gives a partition of all the variables the expression depends on.
For the expression above, f.is_dsp() evaluates as True, f.convex_variables() returns the
list [x], f.concave_variables() returns the list [y], and f.affine_variables() returns
the list [z]. Note that the role of z is ambiguous in the expression, since it could be either
a convex or concave variable.

No mixing variables rule. The DSP rules prohibit mixing of convex and concave vari-
ables. For example if we add two saddle expressions, no variable can appear in both its
convex and concave variable lists.
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DSP-compliance is sufficient but not necessary to be a saddle function. Re-
call that if an expression is DCP convex (concave), then it is convex (concave), but the
converse is false. For example, the expression cp.sqrt(1 + cp.square(x)) represents
the convex function

√
1 + x2, but is not DCP. But we can express the same function as

cp.norm2(cp.hstack([1, x])), which is DCP. The same holds for DSP and saddle func-
tion: If an expression is DSP-compliant, then it represents a saddle function; but it can
represent a saddle function and not be DSP-compliant. As with DCP, such an expression
would need to be rewritten in DSP-compliant form, to use any of the other features of DSP
(such as a solution method). As an example, the expression x.T @ C @ y represents the
saddle function xTCy, but is not DSP-compliant. The same function can be expressed as
inner(x, C @ y), which is DSP-compliant. While this restrictive syntax is an inherent
limitation of disciplined convex programming in general, it is required for any parser based
on the DSP composition rules.

When there are affine variables in a DSP-compliant expression, it means that those
variables could be considered either convex or concave; either way, the function is a saddle
function.

Example. The code below defines the bi-linear saddle function f(x, y) = xTCy, the ob-
jective of a matrix game, with x the convex variable and y the concave variable.

Creating a saddle function.

1 from dsp import * # notational convenience

2 import cvxpy as cp

3 import numpy as np

4

5 x = cp.Variable(2)

6 y = cp.Variable(2)

7 C = np.array([[1, 2], [3, 1]])

8

9 f = inner(x, C @ y)

10

11 f.is_dsp() # True

12

13 f.convex_variables() # [x]

14 f.concave_variables() # [y]

15 f.affine_variables() # []

Lines 1–3 import the necessary packages (which we will use but not show in the sequel).
In lines 5–7, we create two CVXPY variables and a constant matrix. In line 9 we construct
the saddle function f using the DSP atom inner. Both its arguments are affine, so this
matches the DSP rules. In line 11 we check if saddle_function is DSP-compliant, which
it is. In lines 13–15 we call functions that return lists of the convex, concave, and affine
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variables, respectively. The results of lines 13–15 might seem odd, but recall that inner

marks its first argument as convex and its second as concave.

5.3 Saddle point problems

Saddle point problem objective. To construct a saddle point problem, we first create
an objective using

obj = MinimizeMaximize(f),

where f is a CVXPY expression. The objective obj is DSP-compliant if the expression
f is DSP-compliant. This is analogous to the CVXPY contructors cp.Minimize(f) and
cp.Maximize(f), which create objectives from expressions.

Saddle point problem. A saddle point problem is constructed using

prob = SaddlePointProblem(obj, constraints, cvx_vars, ccv_vars)

Here, obj is a MinimizeMaximize objective, constraints is a list of constraints, cvx_vars
is a list of convex variables and ccv_vars is a list of concave variables. The objective must
be DSP-compliant for the problem to be DSP-compliant. We now describe the remaining
conditions under which the constructed problem is DSP-compliant.

Each constraint in the list must be DCP, and can only involve convex variables or concave
variables; convex and concave variables cannot both appear in any one constraint. The list
of convex and concave variables partitions all the variables that appear in the objective or
the constraints. In cases where the role of a variable is unambiguous, it is inferred, and does
not need to be in either list. For example with the objective

MinimizeMaximize(weighted_log_sum_exp(x, y) + cp.exp(u) + cp.log(v) + z),

x and u must be convex variables, and y and v must be concave variables, and so do not need
to appear in the lists used to construct a saddle point problem. The variable z, however,
could be either a convex or concave variable, and so must appear in one of the lists.

The role of a variable can also be inferred from the constraints: Any variable that appears
in a constraint with convex (concave) variables must also be convex (concave). With the
objective above, the constraint z + v <= 1 would serve to classify z as a concave variable.
With this constraint, we could pass empty variable lists to the saddle point constructor, since
the roles of all variables can be inferred. When the roles of all variables are unambiguous,
the lists are optional.

The roles of the variables in a saddle point problem prob can be found by calling
prob.convex_variables() and prob.concave_variables(), which return lists of vari-
ables, and is a partition of all the variables appearing in the objective or constraints. This is
useful for debugging, to be sure that DSP agrees with you about the roles of all variables. A
DSP-compliant saddle point problem must have an empty list of affine variables. (If it did
not, the problem would be ambiguous.)
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Solving a saddle point problem. The solve()method of a SaddlePointProblem object
canonicalizes and solves the problem. This involves checking the objective and constraints
for DSP-compliance. The conic representation of the problem is obtained, which involves
setting up an auxiliary problem and compiling it using CVXPY. Then, the dualization is
carried out, which results in another CVXPY problem which is then solved to yield the
objective value. This has the side effect of setting all convex variables’ .value attribute. To
also obtain the values of the concave variables, the saddle point problem is solved again with
a negated objective and the roles of the minimization and maximization variables reversed.
We emphasize that as DSP acts as a compiler, it does not implement any optimization
algorithms itself, but rather relies on the solvers accessible through CVXPY.

Example. Here we create and solve a matrix game, continuing the example above where
f was defined. We do not need to pass in lists of variables since their roles can be inferred.

Creating and solving a matrix game.

1 obj = MinimizeMaximize(f)

2 constraints = [x >= 0, cp.sum(x) == 1, y >= 0, cp.sum(y) == 1]

3 prob = SaddlePointProblem(obj, constraints)

4

5 prob.is_dsp() # True

6 prob.convex_variables() # [x]

7 prob.concave_variables() # [y]

8 prob.affine_variables() # []

9

10 prob.solve() # solves the problem

11 prob.value # 1.6666666666666667

12 x.value # array([0.66666667, 0.33333333])

13 y.value # array([0.33333333, 0.66666667])

5.4 Saddle extremum functions

Local variables. An SE function has one of the forms

G(x) = sup
y∈Y

f(x, y) or H(y) = inf
x∈X

f(x, y),

where f is a saddle function. Note that y in the definition of G, and x in the definition of
H , are local or dummy variables, understood to have no connection to any other variable.
Their scope extends only to the definition, and not beyond.

To express this subtlety in DSP, we use the class LocalVariable to represent these
dummy variables. The variables that are maximized over (in a saddle max function) or
minimized over (in a saddle min function) must be declared using the LocalVariable()

constructor. Any LocalVariable in an SE function cannot appear in any other SE function.
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Constructing SE functions. We construct SE functions in DSP using

saddle_max(f, constraints) or saddle_min(f, constraints).

Here, f is a CVXPY scalar expression, and constraints is a list of constraints. We now
describe the rules for constructing a DSP-compliant SE function.

If a saddle_max is being constructed, f must be DSP-compliant, and the function’s con-
cave variables, and all variables appearing in the list of constraints, must be LocalVariables,
while the function’s convex variables must all be regular Variables. A similar rule applies
for saddle_min.

The list of constraints is used to specify the set over which the sup or inf is taken. Each
constraint must be DCP-compliant, and can only contain LocalVariables.

With x a Variable, y_loc a LocalVariable, z_loc a LocalVariable, and z a Variable,
consider the following two SE functions:

1 f_1 = saddle_max(inner(x, y_loc) + z, [y_loc <= 1])

2 f_2 = saddle_max(inner(x, y_loc) + z_loc, [y_loc <= 1, z_loc <= 1])

Both are DSP-compliant. For the first, calling f_1.convex_variables() would return
[x, z], and calling f_1.concave_variables() would return [y_loc]. For the second,
calling f_2.convex_variables() would return [x], and f_2.concave_variables() return
[y_loc, z_loc].

Let y be a Variable. Both of the following are not DSP-compliant:

1 f_3 = saddle_max(inner(x, y_loc) + z, [y_loc <= 1, z <= 1])

2 f_4 = saddle_max(inner(x, y) + z_loc, [y_loc <= 1, z_loc <= 1])

The first is not DSP-compliant because z is not a LocalVariable, but appears in the
constraints. The second is not DSP-compliant because y is not a LocalVariable, but
appears as a concave variable in the saddle function.

SE functions are DCP. When they are DSP-compliant, a saddle_max is a convex func-
tion, and a saddle_min is a concave function. They can be used anywhere in CVXPY that a
convex or concave function is appropriate. You can add them, compose them (in appropriate
ways), use them in the objective or either side of constraints (in appropriate ways).

Examples. Now we provide full examples demonstrating construction of a saddle_max,
which we can use to solve the matrix game described in §5.3 as a saddle problem involving
an SE function.

Creating a saddle max.

1 # Creating variables

2 x = cp.Variable(2)

3
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4 # Creating local variables

5 y_loc = LocalVariable(2)

6

7 # Convex in x, concave in y_loc

8 f = saddle_inner(C @ x, y_loc)

9

10 # maximizes over y_loc

11 G = saddle_max(f, [y_loc >= 0, cp.sum(y_loc) == 1])

Note that G is a CVXPY expression. Constructing a saddle_min works exactly the same
way.

5.5 Saddle problems

A saddle problem is a convex problem that uses SE functions. To be DSP-compliant, the
problem must be DCP (which implies all SE functions are DSP-compliant). When you
call the solve method on a saddle problem involving SE functions, and the solve is suc-
cessful, then all variables’ .value fields are overwritten with optimal values. This includes
LocalVariables that the SE functions maximized or minimized over; they are assigned to
the value of a particular maximizer or minimizer of the SE function at the value of the
non-local variables, with no further guarantees.

Example. We continue our example from §5.4 and solve the matrix game using either a
saddle max.

Creating and solving a saddle problem using a saddle max to solve the matrix game.

1 prob = cp.Problem(cp.Minimize(G), [x >= 0, cp.sum(x) == 1])

2

3 prob.is_dsp() # True

4

5 prob.solve() # solving the problem

6 prob.value # 1.6666666666666667

7 x.value # array([0.66666667, 0.33333333])

6 Examples

In this section we give numerical examples, taken from §3, showing how to create DSP-
compliant problems. The specific problem instances we take are small, since our main point
is to show how easily the problems can be specified in DSP. But DSP will scale to far larger
problem instances. Again, code and data for these examples are available at https://

github.com/cvxgrp/dsp.
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6.1 Robust bond portfolio construction

Our first example is the robust bond portfolio construction problem described in §3.1. We
consider portfolios of n = 20 bonds, over a period T = 60 half-years, i.e., 30 years. The
bonds are taken as representative ones in a global investment grade bond portfolio; for more
detail, see [LSB22]. The payments from the bonds are given by C ∈ R20×60, with cash flow
of bond i in period t denoted ci,t. The goal is to choose holdings h ∈ R20

+ , with the portfolio
constraint set H given by

H = {h | h ≥ 0, pTh = B},
i.e., the investments must be nonnegative and have a total value (budget) B, which we take
to be $100. Here p ∈ R20

+ denotes the price of the bonds on September 12, 2022. The
portfolio objective is

φ(h) =
1

2
‖(h− hmkt) ◦ p‖1,

where hmkt ∈ R20
+ is the market portfolio scaled to a value of $100, and ◦ denotes Hadamard

or elementwise multiplication. This is called the turn-over distance, since it tells us how
much we would need to buy and sell to convert our portfolio to the market portfolio.

The yield curve set Y is described in terms of perturbations to the nominal or current
yield curve ynom ∈ R60, which is the yield curve on September 12, 2022. We take

Y =

{
ynom + δ

∣∣∣∣∣ ‖δ‖∞ ≤ δmax, ‖δ‖1 ≤ κ,
T−1∑

t=1

(δt+1 − δt)
2 ≤ ω

}
.

We interpret δ ∈ R60 as a shock to the yield curve, which we limit elementwise, in absolute
sum, and in smoothness. The specific parameter values are given by

δmax = 0.02, κ = 0.9, ω = 10−6.

In the robust bond portfolio problem (10) we take V lim = 90, that is, the worst case value
of the portfolio cannot drop below $90 for any y ∈ Y .

We solve the problem using the following code, where we assume the cash flow matrix
C, the price vector p, the nominal yield curve y_nom, and the market portfolio h_mkt are
defined.

Robust bond portfolio construction.

1 # Constants and parameters

2 n, T = C.shape

3 delta_max, kappa, omega = 0.02, 0.9, 1e-6

4 B = 100

5 V_lim = 90

6

7 # Creating variables

8 h = cp.Variable(n, nonneg=True)
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9

10 delta = LocalVariable(T)

11 y = y_nom + delta

12

13 # Objective

14 phi = 0.5 * cp.norm1(cp.multiply(h, p) - cp.multiply(h_mkt, p))

15

16 # Creating saddle min function

17 V = 0

18 for i in range(n):

19 t_plus_1 = np.arange(T) + 1 # Account for zero-indexing

20 V += saddle_inner(cp.exp(cp.multiply(-t_plus_1, y)), h[i] * C[i])

21

22 Y = [

23 cp.norm_inf(delta) <= delta_max,

24 cp.norm1(delta) <= kappa,

25 cp.sum_squares(delta[1:] - delta[:-1]) <= omega,

26 ]

27

28 V_wc = saddle_min(V, Y)

29

30 # Creating and solving the problem

31 problem = cp.Problem(cp.Minimize(phi), [h @ p == B, V_wc >= V_lim])

32 problem.solve() # 15.32

We first define the constants and parameters in lines 2–5, before creating the variable
for the holdings h in line 8, and the LocalVariable delta, which gives the yield curve
perturbation, in line 10. In line 11 we define y as the sum of the current yield curve y_nom

and the perturbation delta. The objective function is defined in line 14. Lines 17–20 define
the saddle function V via the saddle_inner atom. The yield uncertainty set Y is defined in
lines 22–26, and the worst case portfolio value is defined in line 25 using saddle_min. We use
the concave expression saddle_min to create and solve a CVXPY problem in lines 31–32.

Table 1 summarizes the results. The nominal portfolio is the market portfolio, which
has zero turn-over distance to the market portfolio, i.e., zero objective value. This nominal
portfolio, however, does not satisfy the worst-case portfolio value constraint, since there are
yield curves in Y that cause the portfolio value to drop to around $87, less than our limit
of $90. The solution of the robust problem has turn-over distance $15.32, and satisfies the
constraint that the worst-case value be at least $90.

6.2 Model fitting robust to data weights

We consider an instance of the model fitting problem described in §3.2. We use the well
known Titanic data set [HC17], which gives several attributes for each passenger on the ill-
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Nominal portfolio Robust portfolio
Turn-over distance $0.00 $15.32
Worst-case value $86.99 $90.00

Table 1: Turn-over distance and worst-case value for the nominal (market) portfolio and the
robust portfolio. The nominal portfolio does not meet our requirement that the worst-case value
be at least $90.

fated Titanic voyage, including whether they survived. A classifier is fit to predict survival
based on the features sex, age (binned into three groups, 0–26, 26–53, and 53–80), and class
(1, 2, or 3). These features are encoded as a Boolean vector ai ∈ R7. The label yi = 1 means
passenger i survived, and yi = −1 otherwise. There are 1046 examples, but we fit our model
using only the m = 50 passengers who embarked from Queenstown, one of three ports of
embarkation. This is a somewhat non-representative sample; for example, the survival rate
among Queenstown departures is 26%, whereas the overall survival rate is 40.8%. This is a
common situation in machine learning, where the distribution of labels in the training data
does not match that of the test dataset (known as label shift), for which we seek a robust
solution.

We seek a linear classifier ŷi = sign(aTi θ + β0), where θ ∈ R7 is the classifier parameter
vector and β0 ∈ R is the bias. The hinge loss and ℓ2 regularization are used, given by

ℓi(θ) = max(0, 1− yia
T
i θ), r(θ) = η‖θ‖22,

with η = 0.05.
The data is weighted to partially correct for the different survival rates for our training

set (26%) and the whole data set (40.8%). To do this we set wi = z1 when yi = 1 and
wi = z2 when yi = −1. We require w ≥ 0 and 1Tw = 1, and

0.408− 0.05 ≤
∑

yi=1

wi ≤ 0.408 + 0.05.

Thus W consists of weights on the Queenstown departure samples that correct the survival
rate to within 5% of the overall survival rate.

The code shown below solves this problem, where we assume the data matrix is already
defined as A_train (with rows aTi ), the survival label vector is defined as y_train, and the
indicator of survival in the training set is defined as surv.

Model fitting robust to data weights.

1 # Constants and parameters

2 m, n = A_train.shape

3 inds_0 = surv == 0

4 inds_1 = surv == 1

5 eta = 0.05

6
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Nominal classifier Robust classifier
Train accuracy 82.0% 80.0%
Test accuracy 76.0% 78.6%

Table 2: Nominal and worst-case objective values for classification and robust classification models.

7 # Creating variables

8 theta = cp.Variable(n)

9 beta_0 = cp.Variable()

10 weights = cp.Variable(m, nonneg=True)

11 surv_weight_0 = cp.Variable()

12 surv_weight_1 = cp.Variable()

13

14 # Defining the loss function and the weight constraints

15 y_hat = A_train @ theta + beta_0

16 loss = cp.pos(1 - cp.multiply(y_train, y_hat))

17 objective = MinimizeMaximize(saddle_inner(loss, weights)

18 + eta * cp.sum_squares(theta))

19

20 constraints = [

21 cp.sum(weights) == 1,

22 0.408 - 0.05 <= weights @ surv,

23 weights @ surv <= 0.408 + 0.05,

24 weights[inds_0] == surv_weight_0,

25 weights[inds_1] == surv_weight_1,

26 ]

27

28 # Creating and solving the problem

29 problem = SaddlePointProblem(objective, constraints)

30 problem.solve()

After defining the constants and parameters in lines 2–5, we specify the variables for the
model coefficient and the weights in lines 8–9 and 10–12, respectively. The loss function
and regularizer which make up the objective are defined next in lines 15–18. The weight
constraints are defined in lines 20–26. The saddle point problem is created and solved in
lines 29 and 30.

The results are shown in table 2. We report the test accuracy on all samples in the
dataset with a different port of embarkation than Queenstown (996 samples). We see that
while the robust classification model has slightly lower training accuracy than the nominal
model, it achieves a higher test accuracy, generalizing from the non-representative training
data better than the nominal classifier, which uses uniform weights.
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6.3 Robust Markowitz portfolio construction

We consider the robust Markowitz portfolio construction problem described in §3.4. We take
n = 6 assets, which are the (five) Fama-French factors [FF15] plus a risk-free asset. The
data is obtained from the Kenneth R. French data library [Fre22], with monthly return data
available from July 1963 to October 2022. The nominal return and risk are the empirical
mean and covariance of the returns. (These obviously involve look-ahead, but the point of
the example is how to specify and solve the problem with DSP, not the construction of a
real portfolio.) We take parameters ρ = 0.02, η = 0.2, and risk aversion parameter γ = 1.

In the code, we use mu and Sigma for the mean and covariance estimates, respectively,
and the parameters are denoted rho, eta, and gamma.

Robust Markowitz portfolio construction.

1 # Constants and parameters

2 n = len(mu)

3 rho, eta, gamma = 0.2, 0.2, 1

4

5 # Creating variables

6 w = cp.Variable(n, nonneg=True)

7

8 delta_loc = LocalVariable(n)

9 Sigma_perturbed = LocalVariable((n, n), PSD=True)

10 Delta_loc = LocalVariable((n, n))

11

12 # Creating saddle min function

13 f = w @ mu + saddle_inner(delta_loc, w) \

14 - gamma * saddle_quad_form(w, Sigma_perturbed)

15

16 Sigma_diag = Sigma.diagonal()

17 local_constraints = [

18 cp.abs(delta_loc) <= rho, Sigma_perturbed == Sigma + Delta_loc,

19 cp.abs(Delta_loc) <= eta * np.sqrt(np.outer(Sigma_diag, Sigma_diag))

20 ]

21

22 G = saddle_min(f, local_constraints)

23

24 # Creating and solving the problem

25 problem = cp.Problem(cp.Maximize(G), [cp.sum(w) == 1])

26 problem.solve() # 0.076

We first define the constants and parameters, before creating the weights variable in
line 6, and the local variables for the perturbations in lines 8–10. The saddle function for
the objective is defined in line 13, followed by the constraints on the perturbations. Both
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Nominal portfolio Robust portfolio
Nominal objective .295 .291
Robust objective .065 .076

Table 3: Nominal and worst-case objective for the nominal and robust portfolios.

are combined into the concave saddle min function, which is maximized over the portfolio
constraints in lines 25–26.

The results are shown in table 3. The robust portfolio yields a slightly lower risk adjusted
return of 0.291 compared to the nominal optimal portfolio with 0.295. But the robust
portfolio attains a higher worst-case risk adjusted return of 0.076, compared to the nominal
optimal portfolio which attains 0.065.
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Abstract

The minimum (worst case) value of a long-only portfolio of bonds, over a convex
set of yield curves and spreads, can be estimated by its sensitivities to the points
on the yield curve. We show that sensitivity based estimates are conservative, i.e.,
underestimate the worst case value, and that the exact worst case value can be found
by solving a tractable convex optimization problem. We then show how to construct
a long-only bond portfolio that includes the worst case value in its objective or as a
constraint, using convex-concave saddle point optimization.
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1 Introduction

We consider a long-only portfolio of bonds, and address the problem of robust analysis and
portfolio construction, under a worst case framework. In this framework we have a set
of possible yield curves and bond spreads, and consider the worst change in value of the
portfolio over this uncertainty set.

In the analysis problem, considered in §3, we fix the portfolio, and ask what is the worst
case change in portfolio value. We observe that this is a convex optimization problem,
readily solved using standard frameworks or domain specific languages (DSLs) for convex
optimization. We also consider the linearized version of the same problem, where the true
portfolio value is replaced with its first order Taylor approximation. This approximation can
be interpreted as using standard methods to analyze bond portfolio value using durations.
We show that this is also a convex optimization problem, and is always conservative, i.e.,
predicts more of a decrease in portfolio value than the exact method.

In the robust portfolio construction problem, considered in §4, we seek a portfolio of bonds
that minimizes an objective that includes a robustness term, i.e., the worst case change in
value of the portfolio over the set of possible yield curves and spreads. We show that
this problem, and its linearized version, can be formulated as convex-concave saddle point
problems, where we identify the worst case yield and spread and at the same time, the optimal
portfolio. One interesting ramification of the convex-concave saddle point formulation is that,
unlike in general worst case (minimax) optimization problems, where there are generally
multiple worst case parameters, we need to consider only one worst case yield curve and set
of bond spreads.

In §5 we show how the convex-concave saddle point problem can be solved by solving one
convex optimization problem. This is done using the well known technique of expressing the
worst case portfolio value as the optimal value of the dual problem, which converts a min-
max problem into a min-min problem which we directly solve. We illustrate the method for a
specific case, and in a companion paper [SLB23] explain how the reformulation technique can
be automated, using methods due to Juditsky and Nemirovski [JN21]. Using our disciplined
saddle point programming framework, we can pose the robust bond portfolio construction
problem in just a few lines of simple and natural code, and solve it efficiently.

We present several variations and extensions in §6, including cases where the bond portfo-
lio contains bonds with different base yield curves, per-period compounding is used to value
bonds, and a formulation with a robustness constraint as opposed to an objective term.

Identifying the convex-concave structure of the robust bond portfolio construction prob-
lem is a novel theoretical contribution, and allows us to use the powerful theory of convex
duality to extract insights such as the existence of a single worst case yield curve, or construct
a robust bond portfolio. In addition, while this paper was under review the importance of
properly managing risk in a bond portfolio became quite apparent with the collapse of Silicon
Valley Bank, where a major factor was the bank’s exposure to interest rate risk.
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1.1 Previous and related work

Bond portfolio construction and analysis. Portfolio construction and analysis are
well studied problems in finance, however, most of the literature focuses on equity portfolios.
These approaches often can not be directly applied to bond portfolios, as there are important
differences between the asset classes, such as the finite maturity of bonds. Yet, by making
assumptions about the re-investment rate, bond portfolios can be constructed and analyzed
via modern portfolio theory (MPT) [Mar52]. For example, assuming that the re-investment
rate is given by the current spot rate, standard MPT can be applied to bond portfolios,
where the mean and covariance of the bonds can be derived from sample moments or factor
models [Puh08]. Similarly, [KK06] use a factor model for the term structure in an MPT
setting.

Other approaches for bond portfolio construction that are not based on MPT include
exact matching and immunization [EGBG09]. Exact matching is a method for constructing
a bond portfolio that minimizes the required investment amount while ensuring that cash
flows arising from liabilities are being met. Immunization refers to matching the duration of
assets and liabilities, so that the portfolio value is insensitive to (small) changes in interest
rates. Both of these problems can be formulated as linear programs and so tractably solved.

Likewise, the factors influencing bond (portfolio) values are well understood, given the
practical implications of the problem [FM12, EGBG09]. However, most of the existing
literature focuses on parallel shifts in yield curves and spreads, leading to a trivial worst case
scenario. Thus the literature is sparse when it comes to robust bond portfolio construction
as it relates to possible changes in yield curves and spreads. Instead, most existing work
focuses on the problem of robust portfolio construction under parameter uncertainty in an
MPT framework (see, e.g., [TK04, KKF14]).

Convex-concave saddle point optimization. Convex-concave saddle point problems
are a class of optimization problems with objective functions which are convex in a subset
of the optimization variables, and concave in the remaining variables. The goal in such
problems is to find a saddle point, i.e., values of the convex variables that minimize the ob-
jective, and values of the concave variables that maximize it. Convex-concave saddle point
problems have been studied for decades. Indeed, much of the theory of game theory is based
on solving convex-concave saddle point problems, with early descriptions dating back to the
1920s [VN28], and solutions based on solving them as a single convex problem via duality
dating back to the 1950s [VNM53]. In their 1983 book, Nemirovski and Yudin [NY83] de-
scribe the oracle complexity of first order optimization methods for convex-concave saddle
point problems, based on their previous work on the convergence of the gradient method for
convex-concave saddle point problems [NY78]. Since then, existing work either requires a spe-
cific structure of the problem such as convex and concave variables only being coupled via a
bilinear term [BS16], or only under strong assumptions on the functions’ properties [Nem04].

More recently, Juditsky and Nemirovski [JN21] proposed a general framework for solving
convex-concave saddle point problems with a particular conic structure as a single convex
minimization via dualization. Building on Juditsky and Nemirovski’s work, the authors
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of this paper developed disciplined saddle programming (DSP) [SLB23]. The associated
DSL makes it easy to express a wide class of convex-concave saddle point problems in a
natural way; the problem is then transformed to a single convex optimization problem using
Juditsky and Nemirovski’s methods. This is analogous to disciplined convex programming
(DCP), which makes it easy to specify and solve a wide variety of convex optimization
problems [DB16]. The authors’ DSP software package allows our formulation of the robust
portfolio construction problem to be specified in just a few lines of clear code.

2 Bond portfolio value

2.1 Yield curve and spreads

A bond is a financial contract that obligates the issuer to make a series of specified payments
over time to the bond holder. We let t = 1, . . . , T denote time periods, with t = 0 representing
now. (The periods are usually six months, a typical time between bond coupon payments.)
We represent the bond payments as a vector c ∈ RT

+, where T is the number of periods, and
R+ denotes the set of nonnegative reals. For each t = 1, . . . , T , ct is the payment in period
t to the bond holder. A bond has a maturity, which is the period of its last payment; for t
larger than the maturity, we have ct = 0. The cash flows ct include coupon payments as well
as the payment of the face value at maturity.

We consider a portfolio of n bonds, with quantities (also called holdings) h = (h1, . . . , hn) ∈
Rn

+ of each bond, assumed nonnegative (i.e., only long positions). We assume that all bonds
in the portfolio mature at or before time period T . We first review some basic facts about
bonds, for completeness and also to fix our notation.

Each bond has a known cash flow or sequence of payments, given by ci ∈ RT
+, i = 1, . . . , n.

We write ci,t to denote the cash flow from bond i in period t. We have ci,t = 0 for t larger
than the maturity of bond i. We let p ∈ Rn

+ denote the price of the bonds. The portfolio
value is V = pTh. The bond prices are modeled using a base yield curve and spreads for
each bond, explained below.

Yield curve. The yield curve is denoted by y ∈ RT . The yield curve gives the discount
of a future payment, i.e., the current value of a payment of $1 received in period t, denoted
Pt. These are given by

Pt = exp(−tyt), t = 1, . . . , T.

We will work with per-period yields, to simplify the formulas, but following convention, we
present all final numerical results as annualized. (For example, if the periods represent six
months, the associated annualized yields are given by 2yt.) We use continuous compounding
for simplicity of notation, but all our results readily extend to period-wise compounding,
where Pt = (1 + yt)

−t (see §6).
The yield curve gives the discount of future payments, and captures market expectations

with respect to macroeconomic factors, fiscal and monetary policy interactions, and the
vulnerability of private consumption to future (unexpected) shocks.
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Bond spreads. Bond i has spread si ≥ 0, which means that the bond is priced at its net
present value using the yield curve y+ si1, where 1 is the vector with all entries one. This is
referred to as a ‘parallel shift’ applied to the base yield curve. We will work with per-period
spreads, to simplify the formulas, but will give final results as annualized.

The spread captures the uncertainty in the cash flow associated with the bond, such as
default or other optionality, which means that we value a payment of $1 from the bond at
period t as exp(−t(yt + si)), which is less than or equal to Pt = exp(−tyt). The riskier the
bond, the larger the spread, which means future payments are discounted more heavily.

Bond price. The price of a bond is modeled as the net present value of its cash flow using
these discounts,

pi =
T∑

t=1

ci,t exp(−t(yt + si)), i = 1, . . . , n. (1)

Portfolio value. The portfolio value can be expressed as

V = pTh =
n∑

i=1

T∑

t=1

hici,t exp(−t(yt + si)). (2)

For reasons mentioned below, it will be convenient to work with the log of the portfolio
value,

log V = log

(
n∑

i=1

T∑

t=1

hici,t exp(−t(yt + si))

)
. (3)

The portfolio value and log portfolio value are functions of the holdings h, the yield curve
y, and the spreads s, but we suppress this dependence to keep the notation light. (The cash
flows ci,t are fixed and given.)

Convexity properties. The portfolio value V is a linear function of h, the vector of
holdings, for fixed yield curve and spreads. If we fix the holdings, V is a convex function of
(y, s), the yield curve and spreads [BV04, Chap. 3]. The log value log V is a concave function
of h, for fixed y and s, since it is a concave function of a linear function. The log value is a
convex function of (y, s), for fixed h, since it can be expressed as

log V = log

(
n∑

i=1

T∑

t=1

exp(−t(yt + si) + log hi + log ci,t)

)
,

which is the log-sum-exp function of an affine function of (y, s) [BV04, §3.1.5]. Thus log V
is a convex-concave function, concave in h and convex in (y, s).
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2.2 Change in bond portfolio value

We are interested in the change in portfolio value when the yield curve and spreads change
from their current or nominal values (ynom, snom) to the values (y, s), with the holdings fixed
at hnom. We let V denote the portfolio value with yield curve and spreads (y, s), and V nom

the portfolio value with yield curve and spreads (ynom, snom), both with holdings hnom. The
relative or fractional change in value is given by V/V nom − 1. It is convenient to work with
the change in the log value,

∆ = log(V/V nom) = log V − log V nom. (4)

The relative change in value can be expressed in terms of the change in log value as exp∆−1.
Both ∆ and the relative change in value are readily interpreted. For example, ∆ = −0.15
means the portfolio value decreases by the factor exp(−0.15) = 0.861, i.e., a relative decrease
of 13.9%.

Since log V is a convex function of (y, s), ∆ is also a convex function of (y, s).

First order Taylor approximation. The first order Taylor approximation of change in
log value, denoted ∆̂, is

∆̂ = DT
yld(y − ynom) +DT

spr(s− snom) ≈ ∆, (5)

where

Dyld = (∇y log V )|y=ynom, s=snom ∈ RT , Dspr = (∇s log V )|y=ynom, s=snom ∈ Rn

are the gradients of the log value with respect to the yield curve and spreads, respectively,
evaluated at the current value (ynom, snom). These are given by

(Dyld)t = −(1/V nom)
n∑

i=1

thnomi ci,t exp(−t(ynomt + snomi )),

(Dspr)i = −(1/V nom)
T∑

t=1

thnomi ci,t exp(−t(ynomt + snomi )).

(In the first expression we sum over the bonds, while in the second we sum over the periods.)
The affine approximation (5) is very accurate when (y, s) is near (ynom, snom).

The gradients Dyld and Dspr can be given traditional interpretations. When n = 1, i.e.,
the portfolio consists of a single bond, Dspr is the duration of the bond. When n = 1 and t
is one of the 12 Treasury spot maturities, (Dspr)t is a key rate duration of the bond. (We use
the symbol D since the entries of the gradients can be interpreted as durations.) We refer
to the Taylor approximation (5) as the duration based approximation.
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A global lower bound. Since ∆ is a convex function of (y, s), its Taylor approximation
∆̂ is a global lower bound on ∆ (see, e.g., [BV04, §3.1.3]): For any (y, s) we have

∆̂ = DT
yld(y − ynom) +DT

spr(s− snom) ≤ ∆. (6)

Note that this inequality holds for any (y, s), whereas the approximation (5) is accurate
only for (y, s) near (ynom, snom). Thus the duration based approximation of the change
in log portfolio value is conservative; the true change in log value will be larger than the
approximated change in log value.

We can easily obtain a bound on the relative change in portfolio value. Exponentiating
the inequality (6) and using the inequality expu ≥ 1 + u, we have

V/V nom − 1 = exp∆− 1 ≥ exp ∆̂− 1 ≥ ∆̂.

Therefore ∆̂ is also a lower bound on the relative change in portfolio value using the duration
based approximation; the actual fractional change in value will always be more (positive)
than the prediction.

3 Worst case analysis

In this section we assume the portfolio holdings are known and fixed as hnom, and consider a
nonempty compact convex set U ⊂ RT ×Rn of possible yield curves and spreads. (We will
say more about choices of U in §3.3.) We define the worst case portfolio value as

V wc = min
(y,s)∈U

V,

i.e., the smallest possible portfolio value over the set of possible yield curves and spreads. It
will be convenient to work with the worst case (i.e., most negative) change in log portfolio
value, defined as

∆wc = min
(y,s)∈U

∆ = log V wc − log V nom.

When (ynom, snom) ∈ U , the worst case log value change is nonpositive.

3.1 Worst case analysis problem

We can evaluate ∆wc by solving the convex optimization problem

minimize ∆
subject to (y, s) ∈ U , (7)

with variables y and s. The optimal value of this problem is ∆wc (from which we can obtain
V wc); by solving it, we also find an associated worst case yield curve and spread, which are
themselves interesting. We refer to (7) as the worst case analysis problem.
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Implications. One consequence is that we can evaluate ∆wc very efficiently using stan-
dard methods of convex optimization [BV04]. Depending on the uncertainty set U , the
problem (7) can be expressed very compactly and naturally using domain specific languages
for convex optimization, such as CVXPY [DB16], CVX [GB14], Convex.jl [UMZ+14], or
CVXR [FNB20]. Appendix A gives an example illustrating how simple and natural the full
CVXPY code to solve the worst case analysis problem is.

Maximum element. We mention here a special case with a simple analytical solution.
The objective ∆ is monotone nonincreasing in its arguments, i.e., increasing any yt or si
reduces the portfolio value. It follows that if U has a maximum element (ymax, smax), i.e.,

(ymax, smax) ≥ (y, s) for all (y, s) ∈ U
(with the inequality elementwise), then it is the solution of the worst case analysis problem.
As a simple example, consider

U = {(y, u) | ymin ≤ y ≤ ymax, smin ≤ s ≤ smax},
i.e., we are given a range of possible values for each point in the yield curve, and for each
spread. This uncertainty set, which is a hyper-rectangle or box, has maximum element
(ymax, smax), which is (obviously) the choice that minimizes portfolio value.

More interesting choices of uncertainty sets do not have a maximum element; for these
cases we must numerically solve the worst case analysis problem (7).

3.2 Linearized worst case analysis problem

We can replace the objective in (7) with the lower bound (6) to obtain the linearized worst
case portfolio value problem

minimize ∆̂ = DT
yld(y − ynom) +DT

spr(s− snom)
subject to (y, s) ∈ U , (8)

with variables y and s. Here the objective is affine, whereas in (7) the objective is nonlinear
(but convex). From the inequality (6), solving this linearized worst case analysis problem
gives us a lower bound on ∆wc, as well as a very good approximation when the changes in
yield curve and spreads are not large. We refer to (8) as the linearized worst case analysis
problem, and we denote its optimal value, the worst case change in log value predicted by
the linearized approximation, by ∆̂wc. This estimate of ∆wc is conservative, i.e., we have
∆̂wc ≤ ∆wc. The linearized problem is commonly used in practice, and therefore provides a
baseline for comparison.

3.3 Yield/spread uncertainty sets

In this section we describe some possible choices of the yield/spread uncertainty set U ,
described as a list of constraints. Before getting to specifics, we make some comments about
high level methods one might use to construct uncertainty sets.
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From all historical data. Here we construct U from all historical data. This conservative
approach measures the sensitivity of the portfolio to the yield and spread changing to any
previous value, or to a value consistent with some model of the past that we build.

From recent historical data. Here we construct U from recent historical data, or create
a model that places higher weight on recent data. The idea here is to model plausible changes
to the yield curve and spreads using a model based on recent historical values.

From forecasts of future values. Here we construct U as a forecasted set of possible
values over the future, for example a confidence set associated with some predictions.

From current yield and spread estimation error. Here U represents the set of possible
values of the current yield and spreads, which acknowledges that the current values are only
estimates of some true but unknown value. See, for example, [FPY22] for a discussion of
yield curve estimation and a method that can provide uncertainty quantification.

3.3.1 Scenarios

Here U is the convex hull of a set of yield curves and spreads,

U = conv{(y1, s1), . . . , (yK , sK)},

which is a polyhedron defined by its vertices. In this case we can think of (yk, sk) as K
economic regimes or scenarios. In the linearized worst case analysis problem, we minimize
a linear function over this polyhedron, so there is always a solution at a vertex, i.e., the
worst case yield curve and spread is one of our scenarios. In this case we can solve the worst
case analysis problem by simply evaluating the portfolio value for each of our scenarios, and
taking the smallest value. When using the true portfolio value, however, we must solve the
problem numerically, since the worst case scenario need not be on the vertex; it can be a
convex combination of multiple vertices.

3.3.2 Confidence ellipsoid

Another natural uncertainty set is based on a vector Gaussian model of (y, s), with mean
µ ∈ RT+n and covariance Σ ∈ ST+n

++ , where Sk
++ denotes the set of symmetric positive definite

k × k matrices. We take U as the associated (1− α)-confidence ellipsoid,

U = {(y, s) | ((y, s)− µ)TΣ−1((y, s)− µ) ≤ F−1(1− α)},

where F is the cumulative distribution function of a χ2 distribution with T + n degrees of
freedom.
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3.3.3 Factor model

A standard method for describing yield curves and spreads is via a factor model, with

(y, s) = Zf + v,

where f ∈ Rk is a vector of factors that drive yield curves and spreads, and v represents
idiosyncratic variation, i.e., not due to the factors. (In a statistical model, the entries of v
are assumed to be uncorrelated to each other and the factor f .) The matrix Z ∈ R(T+n)×k

gives the factor loadings of the yield curve values and spreads.
Typical factors include treasury yields with various maturities, as well as other economic

quantities. A simple factor model for yields can contain only two or three factors, which
are the first few principal components of historical yield curves, called level, slope, and
curvature [LS91, CP05].

Using a factor model, we can specify U by giving an uncertainty set F ⊂ Rk for the
factors, for example as

U = {Zf + v | f ∈ F , ∥D−1v∥22 ≤ 1},

where D is a positive diagonal matrix with its entries giving the idiosyncratic variation of
individual yield curve and spread values. We note that while a factor model is typically
used to develop a statistical model of the yield curve and spreads, we use it here to define a
(deterministic) set of possible values.

3.3.4 Perturbation description

The uncertainty set U can be described in terms of possible perturbations to the current
values (ynom, snom). We describe this for the yield curve only, but similar ideas can be used
to describe the spreads as well. We take y = ynom + δ, where δ ∈ RT is the perturbation to
the yield curve. We might impose constraints on the perturbations such as

δmin ≤ δ ≤ δmax,

T∑

t=1

δ2t ≤ κ,

T−1∑

t=1

(δt+1 − δt)
2 ≤ ω, (9)

where δmin, δmax, κ, and ω are given parameters, and the first inequalities are elementwise.
The first constraint limits the perturbation in yield for any t; the second limits the mean
square perturbation, and the third is a smoothness constraint, which limits the roughness of
the yield curve perturbation. This is of course just an example; one could add many further
constraints, such as insisting that the perturbed yield have nonnegative slope, is concave, or
that the perturbation is plausible under a statistical model of short term changes in yields.

3.3.5 Constraints

We can add any convex constraints in our description of U . For example, we might add
the constraints (9) to a factor model, or confidence ellipsoid. As an example of a constraint
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related to spreads, we can require that the spreads are nonincreasing as a function of the
bond rating, i.e., we always have si ≤ sj if bond i has a higher rating than bond j. This is
a set of linear inequalities on the vector of spreads s.

4 Robust portfolio construction

In the worst case analysis problem described in §3, the portfolio is given as hnom. Here we
consider the case where the portfolio is to be chosen. We denote the new portfolio as h, with
hnom denoting the nominal or current portfolio. Our goal is to choose h, which we do by
minimizing an objective function, subject to some constraints.

4.1 Nominal portfolio construction problem

We first describe the nominal bond portfolio construction problem. We are given a nominal
objective function ϕ : Rn → R which is to be minimized. The nominal objective function
might include tracking error against a benchmark, a risk term, and possibly a transaction
cost term if the portfolio is to be constructed from the existing portfolio hnom (see, e.g.,
[BBD+17]). We will assume that the nominal objective function is convex.

We also have a set of portfolio constraints, which we denote as h ∈ H, where H ⊂ Rn
+.

The constraint set includes the long-only constraint h ≥ 0, as well as a budget constraint,
such as pTh = pThnom, which states that the new portfolio has the same value as the original
one. (This can be extended to take into account transaction costs if needed.) The constraint
set H can include constraints on exposures to regions or sectors, average ratings, duration, a
limit on risk, and so on. We will assume thatH is convex. The nominal portfolio construction
problem is

minimize ϕ(h)
subject to h ∈ H,

with variable h. This is a convex optimization problem.

4.2 Robust portfolio construction problem

To obtain the robust portfolio construction problem we add one more penalty term to the
nominal objective function, which penalizes the worst case change in value over the given
uncertainty set U .

The term, which we refer to as the robustness penalty, is −λ∆wc(h), where λ > 0 is a
parameter used to trade off the nominal objective ϕ and the worst case change in log portfolio
value −∆wc(h). Here we write the worst case change in log value with argument h, to show
its dependence on h.

We arrive at the optimization problem

minimize ϕ(h)− λ∆wc(h)
subject to h ∈ H, (10)
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with variable h. We refer to this as the robust bond portfolio construction problem. The
objective is convex since ϕ is convex and ∆wc is a concave function of h. This means that
the robust bond portfolio construction problem is convex.

However, the robustness penalty term −∆wc(h) is not directly amenable to standard
convex optimization, since it involves a minimization (over y and s) itself. We will address
the question of how to tractably handle the robustness penalty term below using methods
for convex-concave saddle point optimization.

A different framing of the robust bond portfolio construction problem is to minimize ϕ
subject to a constraint on ∆wc. This is readily handled, but we defer the discussion to §6.

4.3 Linearized robust portfolio construction problem

As in the worst case analysis problem we can use the linearized approximation of the worst
case log value instead of the true log portfolio value, which gives the problem

minimize ϕ(h)− λ∆̂wc(h)
subject to h ∈ H, (11)

with variable h. Here ∆̂wc is the worst case change in log portfolio value predicted by the
linearized approximation, i.e., the optimal value of (8), as a function of h. We note that
∆̂wc is, like ∆wc, a concave function of h.

4.4 Convex-concave saddle point formulation

We can write the robust portfolio construction problem (10) as

minimize
h∈H

max
(y,s)∈U

(ϕ(h)− λ∆(h, y, s)) . (12)

(Maximizing −λ∆(h, y, s) over (y, s) ∈ U gives −λ∆wc(h).) The objective in (12) is convex
in h and concave in (y, u), so this is a convex-concave saddle point problem. Replacing ∆
with ∆̂ yields the saddle point version of the linearized robust portfolio construction problem.

Sion’s minimax theorem [Sio58] tells us that if H is compact, when we reverse the order
of the minimization and maximization we obtain the same value, which implies that there
exists a saddle point (h⋆, y⋆, s⋆), which satisfies

ϕ(h⋆)− λ∆(h⋆, y, s) ≤ ϕ(h⋆)− λ∆(h⋆, y⋆, s⋆) ≤ ϕ(h)− λ∆(h, y⋆, s⋆)

for all h ∈ H and (y, s) ∈ U . The left hand inequality shows that ϕ(h⋆)−λ∆(h⋆, y, s) is max-
imized over (y, s) ∈ U by (y⋆, s⋆); the right hand inequality shows that ϕ(h)− λ∆(h, y⋆, s⋆)
is minimized over h ∈ H by h⋆. It follows that ϕ(h⋆)− λ∆(h⋆, y⋆, s⋆) is the optimal value of
the robust portfolio construction problem, h⋆ is an optimal portfolio, and (y⋆, s⋆) is a worst
case yield curve and spread.
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5 Duality based saddle point method

The robust bond portfolio construction problem (12) is convex, but unfortunately not im-
mediately representable in a DSL. In this section we use a well known trick to transform the
problem to one that can be handled directly in a DSL. Using duality we will express ∆wc as
the maximum of a concave function over some variables that lie in a convex set. This method
of transforming an inner minimization is not new; it has been used since the 1950s when Von
Neumann proved the minimax theorem using strong duality in his work with Morgenstern
on game theory [VNM53].

We now describe the dualization method for the case when U is a polyhedron of the form

U = {(y, s) | A(y, s) ≤ b},

with A ∈ Rp×(T+n) and b ∈ Rp, and the inequality is elementwise, but similar derivations
can be carried out for other descriptions of U .

5.1 Dual form of worst case change in log value

We assume Slater’s condition hold, since any uncertainty set in practice will have a nonempty
relative interior. From strong duality, it follows that

∆wc(h) = max
µ≥0, ν

g(h, µ, ν), (13)

where

g(h, µ, ν) =





− log(pTh)− µT b−
n∑

i=1

T∑
t=1

ζ(ci,thi,
νi,t
t
) if ATµ− F Tν = 0, 1Tν = 1, ν ≥ 0

−∞ otherwise,
(14)

with
ζ(x, t) = −t log(x/t) = t log(t/x) = t log(t)− t log(x),

which is the relative entropy. Here µ ∈ Rp and ν ∈ RnT are variables, and the matrix
F ∈ RnT×(T+n) will be defined below. The relative entropy is convex (see, e.g., [BV04,
§3.2.6]), which implies that g is jointly concave in (h, µ, ν). A full derivation of (13) is given
in §C.

5.2 Single optimization problem form

Using (14) we can write the robust bond portfolio construction problem as a single optimiza-
tion problem compatible with DSLs, with variables h, µ, and ν:

minimize ϕ(h) + λ

(
µT b+

n∑
i=1

T∑
t=1

ζ(ci,t,
νi,t
t
) + log(pTh)

)

subject to µ ≥ 0, ATµ− F Tν = 0, ν ≥ 0, 1Tν = 1
h ∈ H.
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This is a convex optimization problem because the objective is convex and the constraints
are linear equality and inequalities. This form is tractable for DSLs.

5.3 Automated dualization via conic representation

While for many uncertainty sets explicit dual forms can be derived by hand, this process
can be tedious and error-prone. In recent work, Juditsky and Nemirovski [JN21] present a
method for transforming general structured convex-concave saddle point problems to a single
minimization problem via a generalized conic representation of convex-concave functions.
Similar to disciplined convex programming (DCP) [GBY06], the method introduces some
basic atoms of known convex-concave saddle functions, as well as a set of rules for combining
them to form composite problems, making it extremely general.

Juditsky and Nemirovski define a general notion of conic representability for convex-
concave saddle point problems

min
x∈X

max
y∈Y

ψ(x, y). (15)

If the convex-concave ψ can be written in this general form, then (15) can be written as a
single minimization problem, with variables comprising x together with additional variables.
See [JN21] for details on conic representability, which is beyond the scope of this paper.
The set of conically representable convex-concave functions is large and includes generalized
inner products of the form F (x)TG(y) where F is elementwise convex and nonnegative and
G(y) is elementwise concave and nonnegative, and special atoms like weighted log-sum-exp,
log(

∑
i xi exp(yi)), which appears in the robust bond portfolio construction problem.

The authors have developed a package for disciplined saddle point programming called
DSP, described in [SLB23]. DSP automates the dualization, following the ideas of Juditsky
and Nemirovski, and allows users to easily express and then solve convex-concave saddle
point problems, including as a special case the robust bond portfolio construction problem.
Roughly speaking DSP hides the complexity of dualization from the user, who expresses
the saddle point problem using a natural description. We refer the reader to [SLB23] for a
(much) more detailed description of DSP and its associated domain specific language.

5.4 DSP specification

To illustrate the use of DSP for robust bond portfolio construction, we give below the code
needed to formulate and solve it. We assume that several objects have already been defined:
C is the cash flow matrix, H and U are DCP compliant descriptions of the portfolio and
yield/spread uncertainty set, phi is a DCP compliant convex nominal objective function,
and lamb is a positive parameter.
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1 import cvxpy as cp

2 import dsp

3
4 y = cp.Variable(T)

5 s = cp.Variable(n)

6 h = cp.Variable(n, nonneg=True)

7
8 exponents = []

9 weights = []

10 for i in range(n):
11 for t in range(T):
12 if C[i, t] > 0:

13 exponents.append(-(t + 1) * (y[t] + s[i]))

14 weights.append(h[i] * C[i, t])

15
16 Delta = dsp.weighted_log_sum_exp(cp.hstack(exponents), cp.hstack(weights))

17
18 obj = dsp.MinimizeMaximize(phi - lamb * Delta)

19
20 constraints = H + U

21
22 saddle_problem = dsp.SaddleProblem(obj, constraints)

23 saddle_problem.solve()

In lines 8–16 we construct an expression for ∆, where in line 16 we use the convex-concave
DSP atomic function weighted_log_sum_exp. In line 20 the addition symbol concatenates
H and U, which are lists of CVXPY constraints that define H and U , respectively. In line 22
we construct the saddle point problem, and in line 23 we solve it. The optimal portfolio can
then be found in h.value, and the worst case yield and spreads in y.value and s.value,
respectively.

6 Variations and extensions

Periodically compounded growth. To handle periodically compounded interest, simply
observe that in this case,

yt = p
−1/t
t − 1, t = 1, . . . , T,

and the portfolio value is f(y) =
∑T

t=1 ct(1 + yt)
−t. This is a convex function of y because

ct ≥ 0 and xa is convex for any a < 0 and nonnegative argument.

Multiple reference yield curves. We can immediately extend to the case where each
bond has its own reference yield curve yi ∈ RT for i = 1, . . . , n. This effectively means the
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spread can be time varying for each bond. All the convexity properties are preserved; in fact
this just corresponds to an unconstrained z variable in §C.

Constrained form. It is natural and interpretable to pose (10) in constrained form, that
is,

minimize ϕ(h)
subject to ∆wc(h) ≥ −η

h ∈ H,
for some η > 0. For example, one could consider minimizing the tracking error to a reference
bond portfolio, subject to the constraint that the worst case change in bond portfolio value
does not exceed a given tolerance. Using the conic representability method in §5.3, we can
immediately include ∆wc(h) ≥ −η as a DCP compliant constraint. See our recent paper on
DSP [SLB23] for details.

7 Examples

In this section we illustrate worst case analysis and robust portfolio construction with numer-
ical examples. The examples all use the data constructed as described below. We emphasize
that we consider a simplified small problem only so the results are interpretable, and not due
to any limitation in the algorithms used to carry out worst case analysis or robust portfolio
construction, which readily scale to much larger problems.

The full source code and data to re-create the results shown here is available online at

https://github.com/cvxgrp/robust_bond_portfolio.

7.1 Data

We work with a simpler and smaller universe of bonds that is derived from, and captures
the main elements of, a real portfolio.

Bond universe. We start with the bonds in the iShares Global Aggregate Bond UCITS
ETF (AGGG), which tracks the Bloomberg Global Aggregate Bond Index [Blone], a market-
cap weighted index of global investment grade bonds. As of 2022-09-12, AGGG held 10,564
bonds, which we partition into 20 groups by rating and maturity. We consider the four
ratings AAA, AA, A, and BBB, and five buckets of maturities, 0–3, 3–5, 5–10, 10–20, and
20–30 years. From each of the 20 rating-maturity groups, we select the bond in AGGG with
the highest market capitalization. These 20 bonds constitute the universe we consider. They
are listed in table 1, with data as of 2022-09-12.

For each bond we construct its cash flow based on the coupon rate, maturity, and fre-
quency of coupon payments, assuming the cash flows are paid at the end of each period. All
bonds in the universe distribute either semi-annual or annual coupons, so we use a period
length of six months. The longest term to maturity in our universe is 30 years, so we take
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Ticker Rating Term to maturity Coupon rate Distribution Price

T 2 5/8 03/31/25 AAA 2.46 2.625 semi-annual 101.86
T 1 1/4 12/31/26 AAA 4.21 1.250 semi-annual 92.63
T 0 5/8 12/31/27 AAA 5.21 0.625 semi-annual 85.43
T 3 1/4 05/15/42 AAA 19.58 3.250 semi-annual 128.96
T 3 08/15/52 AAA 29.84 3.000 semi-annual 130.55
FHLMC 0 3/8 09/23/25 AA 2.94 0.375 semi-annual 89.13
NSWTC 3 05/20/27 AA 4.60 3.000 semi-annual 106.66
WATC 3 1/4 07/20/28 AA 5.77 3.250 semi-annual 110.63
NSWTC 2 1/4 05/07/41 AA 18.56 2.250 semi-annual 99.64
BGB 3 3/4 06/22/45 AA 22.69 3.750 annual 88.60
JGB 0.4 09/20/25 #340 A 2.93 0.400 semi-annual 88.35
JGB 0.1 09/20/27 #348 A 4.93 0.100 semi-annual 79.62
JGB 0.1 06/20/31 #363 A 8.68 0.100 semi-annual 67.39
JGB 1 12/20/35 #155 A 13.18 1.000 semi-annual 72.75
JGB 1.7 09/20/44 #44 A 21.94 1.700 semi-annual 80.12
SPGB 3.8 04/30/24 BBB 1.54 3.800 annual 96.39
SPGB 2.15 10/31/25 BBB 3.05 2.150 annual 90.01
SPGB 1.45 10/31/27 BBB 5.05 1.450 annual 81.71
SPGB 2.35 07/30/33 BBB 10.79 2.350 annual 75.07
SPGB 2.9 10/31/46 BBB 24.05 2.900 annual 66.14

Table 1: The 20 bond universe used for numerical examples. The prices are computed as of
2022-09-12.
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Figure 1: The nominal portfolio weights.

T = 60. We assemble the cash flows into a matrix C ∈ R20×60. We price the bonds according
to (1), using US treasury yield curve data and spreads that depend on the rating, with data
as of 2022-09-12, as listed in table 1.

Nominal portfolio. Our nominal portfolio hnom puts weight on each of our 20 bonds equal
to the total weight of all bonds in the corresponding rating-maturity group in AGGG. The
weights are shown in figure 1.

7.2 Uncertainty sets

We create uncertainty sets using historical daily yield curves and spreads. Data for the
yield curve is obtained from the US Treasury [U.Sne], and the spreads are obtained from the
Federal Reserve Bank of St. Louis [Fedne], spanning the period 1997-01-02 to 2022-09-12, for
a total of 5,430 observations. As our period length is 6 months, we only consider the 9 key
rate durations of 6 months, as well as 1, 2, 3, 5, 7, 10, 20, and 30 years. Joining the 9 rates
with the 4 ratings, our total data is represented as a 5, 430× 13 matrix. The mean value of
each column, denoted µhist, as well as the nominal, i.e., most recent, yields and spreads are
shown in figure 2. We use simple linear interpolation to obtain the full yield curve y ∈ R60.

We model the uncertainty set as a (degenerate) ellipsoid. We compute the empirical
mean and covariance of the historical data, denoted µhist and Σhist, respectively. We define
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Figure 2: Historical mean values of (annualized) yield and spreads. The nominal yield and spreads,
date 2022-9-12, are also shown.

Z ∈ R80×13 as the matrix that maps the key rates and ratings, (yk, sr) ∈ R13 to the yields
and spreads, (y, s) ∈ R80, i.e.,

(y, s) = Z(yk, sr).

The matrix Z encodes linear interpolation between key rates; other linear mappings like
spline interpolation could also be used.

Our uncertainty set is then defined in terms of key rates and ratings,

U = {Z(yk, sr) |
(
(yk, sr)− µhist

)T (
Σhist

)−1 (
(yk, sr)− µhist

)
≤ F−1(1− α)},

where F is the CDF of a χ2 random variable with 13 degrees of freedom, and α ∈ (0, 1) is a
confidence level. This uncertainty set is a degenerate ellipsoid, with affine dimension 13.

To represent a modest uncertainty set, we use confidence levels 50%. We also consider
a more extreme uncertainty set, with confidence level 99%. These two uncertainty sets are
meant only to illustrate our method; in practice, we would likely create uncertainty sets that
change over time, and are based on more recent yield curves and spreads, as opposed to a
long history of yields and spreads.

7.3 Worst case analysis

Table 2 shows worst case change in portfolio value for the 50% and 99% confidence levels,
each using both the exact and linearized methods. The values are given as relative change
in portfolio value, i.e., we have already converted from log returns. For α = 50%, the exact
method gives a worst case change in portfolio value of around −29%, and the linearized
method predicts a change in portfolio value around four percentage points lower. For α =
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α Worst case Linearized
50% -29.34% -33.43%
99% -39.64% -45.95%

Table 2: Worst case change in portfolio value, for two uncertainty sets, using both the exact and
linearized methods.
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Figure 3: Worst (annualized) yield curve and spreads for the two uncertainty sets, using the exact
and linearized methods.

99% the approximation error of the linearized method is greater, more than six percentage
points. We can see that in both cases the linearized method is conservative, i.e., predicts a
change in value that is lower than the exact method.

Figure 3 shows the corresponding annualized worst case yields and spreads. For the
modest uncertainty case, the linearized and exact methods produce similar results, while
for the extreme case, the linearized method deviates more for shorter yields and across all
spreads.

7.4 Robust portfolio construction

We now consider the case where instead of holding the nominal portfolio hnom exactly, we try
to track it, with a penalty term on the worst case change in portfolio value, as described in
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Figure 4: Turnover distance to the nominal portfolio, for two uncertainty sets, using both the
exact and linearized methods.

§4.2. Our nominal objective is the turnover distance between our holdings and the nominal
portfolio, given by

ϕ(h) = (1/2)∥h− hnom∥1.
Figure 4 shows the turnover distance for both uncertainty sets and both the exact and

linearized methods. For small values of λ, the nominal portfolio is held exactly. As expected,
the turnover distance increases with λ, but more rapidly so for the extreme uncertainty set.
We also see that the linearized method gives very similar results. For some values of λ, the
resulting portfolio obtains the same turnover distance as the exact method, but for other
values it is slightly worse due to the conservative linear approximation.

Figure 5 shows the resulting portfolio holdings for the two uncertainty sets across varying
values of λ. For λ = 1, the weights are exactly the nominal weights. For λ = 5, the weights
have shifted to shorter maturities, reducing the worst case change in portfolio. However,
this shift is more pronounced for the extreme uncertainty set, where the weights are only
allocated up to the 3–5 year bucket, whereas for the modest uncertainty set the weights
include bonds up to the 5–10 year bucket. A similar observation can be made for λ = 15,
where the optimization under the modest uncertainty set still allocates in bonds across all
ratings in the bucket containing bonds with less than 3 years to maturity. In contrast, under
the extreme uncertainty set the weights are only allocated to two bonds in this bucket.
Specifically, the highest weight is assigned to the bond with BBB rating, and a smaller
weight to the AAA bond. This is explained by the much shorter maturity of the BBB bond
(see table 1), which outweighs the lower risk due to the higher rating of the AAA bond.
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Figure 5: Portfolio holdings, for both uncertainty sets for λ ∈ {1, 5, 15}.

Indeed, when manually setting the maturities of these bonds to the same value, we find that
weights would be assigned to the AAA bond for large values of λ instead.
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8 Conclusions

We have observed that the greatest decrease in value of a long-only bond portfolio, over
a given convex set of possible yield curves and spreads, can be found exactly by solving a
tractable convex optimization problem that can be expressed in just a few lines using a DSL.
Current practice is to estimate the worst case decrease in value using key rate durations,
which is equivalent to finding the worst case change in portfolio value using a linearized
approximation of the portfolio value. We show that this estimate is always conservative.
Numerical examples show that it is a good approximation of the actual worst case value for
modest changes in the yield curve and spread, but less good for large uncertainty sets.

We also show that the problem of constructing a long-only bond portfolio which includes
the worst case value over an uncertainty set in its objective or constraints can be tractably
solved by formulating it as a convex-concave saddle point problem. Such problems can also
be specified in just a few lines of a DSL.

Acknowledgements

We thank Dr. Baruch Gliksberg for his thoughtful comments and suggestions.
This research was partially supported by ACCESS (AI Chip Center for Emerging Smart

Systems), sponsored by InnoHK funding, Hong Kong SAR, and by ONR N000142212121.
P. Schiele is supported by a fellowship within the IFI program of the German Academic
Exchange Service (DAAD).

24

144



References

[BBD+17] S. Boyd, E. Busseti, S. Diamond, R. Kahn, K. Koh, P. Nystrup, and J. Speth.
Multi-period trading via convex optimization. Foundations and Trends in Opti-
mization, 3(1):1–76, 2017.

[Blone] Bloomberg. Bloomberg fixed income indices fact sheets and publications, Nov.
16, 2022 [Online].

[BS16] K. Bredies and H. Sun. Accelerated Douglas-Rachford methods for the solution
of convex-concave saddle-point problems. arXiv preprint arXiv:1604.06282, 2016.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[CP05] J. Cochrane and M. Piazzesi. Bond risk premia. American Economic Review,
95(1):138–160, 2005.

[DB16] S. Diamond and S. Boyd. CVXPY: A python-embedded modeling language for
convex optimization. The Journal of Machine Learning Research, 17(1):2909–
2913, 2016.

[EGBG09] E. Elton, M. Gruber, S. Brown, and W. Goetzmann. Modern Portfolio Theory
and Investment Analysis. John Wiley & Sons, 2009.

[Fedne] Federal Reserve Bank of St. Louis. Data: [BAMLC0A1CAAA, BAMLC0A2CAA,
BAMLC0A3CA, BAMLC0A4CBBB], Nov. 16, 2022 [Online].

[FM12] F. Fabozzi and S. Mann. The Handbook of Fixed Income Securities. McGraw-Hill
Education, 2012.

[FNB20] A. Fu, B. Narasimhan, and S. Boyd. CVXR: An R package for disciplined convex
optimization. Journal of Statistical Software, 94(14):1–34, 2020.
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A Worst case analysis CVXPY code

1 import numpy as np

2 import cvxpy as cp

3
4 y = cp.Variable(T)

5 s = cp.Variable(n)

6
7 V = h @ p

8
9 exponents = []

10 for i in range(n):
11 for t_idx in range(T):
12 t = t_idx + 1 # account for 0-indexing

13 w_it = h[i] * C[i,t_idx]

14 if w_it > 0:

15 exponents.append(-t * (y[t_idx] + s[i]) + np.log(w_it))

16
17 Delta = cp.log_sum_exp(cp.hstack(exponents)) - np.log(V)

18 obj = cp.Minimize(Delta)

19 prob = cp.Problem(obj, [A @ cp.hstack([y,s]) <= b])

20 prob.solve()
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B Explicit dual portfolio construction CVXPY code

1 import numpy as np

2 import cvxpy as cp

3
4 F_1 = np.tile(np.eye(T), (n, 1))

5 F_2 = np.repeat(np.eye(n), repeats=T, axis=0)

6 F = np.hstack([F_1, F_2])

7
8 lam = cp.Variable(len(b), nonneg=True)

9 nu = cp.Variable(n * T, nonneg=True)

10
11 h = cp.Variable(n, nonneg=True)

12
13 B = 1

14
15 term = 0

16 for i in range(n):
17 for t in range(1, T):

18 nu_i_t = nu[i * T + t]

19 term -= cp.rel_entr(C[i, t] * h[i], nu_i_t / t)

20
21 obj = cp.Maximize(-lam @ b + term - np.log(B))

22 constraints = [

23 A.T @ lam == F.T @ nu,

24 cp.sum(nu) == 1,

25 p @ h == B,

26 ]

27 prob = cp.Problem(obj, constraints)

28 prob.solve()
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C Derivation of dual form

We now derive the dual form of the worst case portfolio construction problem for the case
where the uncertainty set in polyhedral. We note that the worst case log change in portfolio
value for a fixed h, ∆wc(h) is given by the optimal value of the optimization problem

minimize log
(∑n

i=1

∑T
t=1 hici,t exp(−t(yt + si))

)
− log(pTh)

subject to A(y, s) ⪯ b.

We have written this problem with (y, s) explicitly, instead of with x, to emphasize the
objective’s dependence on each component. We note that due to our budget constraint,
log(V (y, s)) = log(pTh).

In order to obtain a closed form dual, we introduce a new variable z ∈ RnT , where we
think of zi,t as corresponding to yt+ si. This is a very general formulation which allows each
bond to be associated with its own yield curve yi ∈ RT , with zi,t corresponding to the t’th
entry of the i’th bond’s yield curve. Since we model each bond as having its own yield curve,
this formulation generalizes the earlier treatment with yields and spreads handled separately.
We can recover the original structure with the linear constraints

zi,t = yt + si, t = 1, . . . , T, i = 1, . . . , n, (16)

which are representable as z = Fx for an appropriate F ∈ RnT×(T+n). As such, the problem
is equivalent to

minimize log
(∑n

i=1

∑T
t=1 hici,t exp(−tzi,t)

)
− log(pTh)

subject to Ax ⪯ b, z = Fx.
(17)

Strong duality tells us that ∆wc(h) is equal to the optimal value of the dual problem of (17)
[BV04, §5.2].

Dual problem. We derive the dual of the problem

minimize log
(∑n

i=1

∑T
t=1 hici,t exp(−tzi,t)

)
− log(pTh)

subject to Ax ⪯ b, z = Fx.
(18)

First, with f the log-sum-exp function f(x) = log (
∑

expxi), we observe that our problem
can be rewritten as

minimize f(Cz + d)− log(pTh)
subject to Ax ⪯ b, z = Fx.

We define C to be the diagonal matrix with Ci,t = −t, where we are using unwound vectorized
indexing for z, and d ∈ RnT to be the vector with di,t = log(ci,thi). Then, the Lagrangian is
given by

L(z, x, µ, ν) = f(Cz + d) + µT (Ax− c) + νT (z − Fx)− log(pTh).
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The Lagrange dual function is given by

g(µ, ν) = inf
z,x
L(z, x, µ, ν) = inf

z

(
f(Cz + d) + νT z

)
+ inf

x

(
µTAx− νTFx

)
− µT c− log(pTh).

The second term is equal to −∞ unless ATµ + F Tν = 0, so this condition will implicitly
restrict the domain of g. Now, note that with g(z) = f(Cz + d), the first term can be
rewritten as

inf
z

(
f(Cz + d) + νT z

)
= inf

z

(
g(z) + νT z

)

= −max
z

(
−νT z − g(z)

)

= −g∗(−ν),

where g∗(y) = max yyT z − g(z) is the conjugate of g. [BV04, §3.3.1].
We now use two facts from [BV04, §3.3.2]. First, in general the conjugate of the linear

precomposition ϕ(z) = ρ(Cz + d) can be written in terms of the conjugate of ρ as ϕ∗(y) =
ρ∗(C−Ty)− dTC−Ty. Second, the dual of the log-sum-exp function f is

f ∗(y) =

{ ∑
i yi log(yi) if y ≥ 0, 1Ty = 1

∞ otherwise.

Combining these two facts, and expanding terms, we find that

g(µ, ν) =





− log(pTh)− µT b−
n∑

i=1

T∑
t=1

ζ(ci,thi,
νi,t
t
) if ATµ− F Tν = 0, 1Tν = 1, ν ≥ 0

−∞ otherwise,

with
ζ(x, t) = −t log(x/t) = t log(t/x) = t log(t)− t log(x).

Thus the robust bond portfolio problem can be written as

minimize ϕ(h)− λmax
µ,ν

g(µ, ν)

subject to µ ≥ 0, ATµ− F Tν = 0, 1Tν = 1, ν ≥ 0
h ∈ H,

where we have moved the implicit constraints in the definition of g to explicit constraints in
the optimization problem. Note this equivalent optimization problem has new variables µ
and ν. By using that −λmaxµ,ν g(µ, ν) = minµ,ν −λg(µ, ν) and collecting the minimization
over h, µ, and ν, we obtain the form in §5.2.
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Part V.

Portfolio Optimization with Cumulative
Prospect Theory Utility via Convex

Optimization
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Abstract

We consider the problem of choosing a portfolio that maximizes the cumulative
prospect theory (CPT) utility on an empirical distribution of asset returns. We show
that while CPT utility is not a concave function of the portfolio weights, it can be ex-
pressed as a difference of two functions. The first term is the composition of a convex
function with concave arguments and the second term a composition of a convex func-
tion with convex arguments. This structure allows us to derive a global lower bound, or
minorant, on the CPT utility, which we can use in a minorization-maximization (MM)
algorithm for maximizing CPT utility. We further show that the problem is amenable
to a simple convex-concave (CC) procedure which iteratively maximizes a local ap-
proximation. Both of these methods can handle small and medium size problems, and
complex (but convex) portfolio constraints. We also describe a simpler method that
scales to larger problems, but handles only simple portfolio constraints.

∗Equal contribution.
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1 Introduction

1.1 Cumulative prospect theory

Analysis of decision-making under uncertainty has long been dominated by von Neumann-
Morgenstern (VNM) utility maximization [vMR44], which takes rational behavior as a fun-
damental assumption. Kahneman and Tversky [KT79] observed that the VNM theory fails
to explain actual human decision-making behavior in many settings. The subsequently intro-
duced prospect theory (PT) formalizes loss aversion and the overweighting of small probabil-
ity events, which are inconsistent with VNM utility maximization. To overcome a violation
of first-order stochastic dominance in prospect theory, cumulative prospect theory (CPT)
was introduced [TK92], which replaces probabilities of outcomes with their rank-dependent
cumulative probability distribution. This change leads to an overweighting of extreme low-
probability outcomes, instead of all low-probability outcomes. Maximizing CPT utility yields
more realistic predictions of actual human decision-making behavior than maximizing VNM
utility.

1.2 Portfolio optimization

Our focus is portfolio optimization, i.e., choosing a mix of investments in a set of assets. One
approach is based on VNM utility, where the expected value of a concave increasing utility
function (which is also concave) is maximized subject to the constraints on the portfolio.
Another approach, introduced by Markowitz [Mar52], poses the problem as a bi-criterion
optimization problem, with the goal of trading off the maximization of expected return with
minimization of risk, taken to be the variance of the portfolio return. The standard approach
is to combine the return and risk, scaled by a risk aversion factor, into a risk-adjusted re-
turn, and maximize this concave quadratic objective subject to the constraints. For this
reason Markowitz portfolio optimization is also referred to as mean-variance (MV) portfolio
optimization. These two approaches are not the same, since the MV utility function is not
increasing, but they are closely related. For example, with a Gaussian asset return model
and exponential utility, VNM portfolio optimization is the same as MV portfolio optimiza-
tion [Mer69]. In other cases, MV portfolio optimization was shown to be approximately
optimal for other forms of utility functions [LM79].

One advantage of the MV formulation is that the objective can be expressed explicitly
as a quadratic function, without an expectation over the asset returns. (The MV objective
is the expected value of a function of the return, but one with a simple analytical expres-
sion.) This enables it to be solved analytically for special cases [GK99], and very efficiently
using numerical methods for convex optimization when the constraints are convex [BV04].
Leveraging convex optimization, many extensions were developed, such as the inclusion of
transaction and holding costs, or multi-period optimization [BBD+17],

VNM portfolio optimization generally uses sample based stochastic convex optimiza-
tion [SDR21]. Here we use samples of the asset returns, which can be historical or generated
from a stochastic model of asset returns (presumably fit to historical data). While these

3

155



methods solve the problem globally, they are substantially slower than MV methods for
similar problems.

We now describe these portfolio optimization methods in more detail. We consider a set
of n assets. A portfolio is characterized by its asset weights w = (w1, . . . , wn), where wi is
the fraction of the total portfolio value (assumed to be positive) invested in asset i, with
wi < 0 denoting a short position. The goal in portfolio optimization is to choose w. The
general portfolio optimization problem is

maximize U(w)
subject to 1Tw = 1, w ∈ W ,

(1)

with variable w ∈ Rn. Here U : Rn → R is a utility function, W ⊆ Rn is the set of allowable
portfolio weights, and 1 is the vector with all entries one. The data in this problem are the
utility function U and the portfolio constraint set W , which we assume is convex.

When U is a concave function the portfolio optimization problem (1) is convex, and
so readily solved globally [BV04]. When U is not concave, the problem is not convex,
and in general difficult to solve globally. In this case, we typically resort to heuristic or
local methods, which attempt to solve (1), but cannot guarantee that the globally optimal
portfolio is found.

MV portfolio optimization uses the concave quadratic utility function

Umv(w) = wTµ− γwTΣw,

the risk-adjusted expected return, where µ is the expected asset return, Σ is the covariance
matrix of the asset returns, and γ > 0 is the risk aversion parameter, used to control the
trade-off of the mean and variance of the portfolio return. This yields a convex optimization
problem that is efficiently solved.

VNM utility maximization uses a utility function of the form

Uvnm(w) = Eu(rTw),

where r is the random asset return vector, and u : R → R is a concave increasing utility
function. Since expectation preserves concavity, U is a concave function of w and this too
leads to a convex portfolio optimization problem. In a few cases, the expectation can be
worked out analytically, but in most cases one substitutes a sample or empirical average for
the expected value, leading to the approximation

Uvnm(w) ≈ 1

N

N∑

i=1

u(rTi w),

where r1, . . . , rN are samples of returns. Maximizing this approximation results in a convex
portfolio optimization problem.
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1.3 This paper

We consider portfolio optimization under the CPT utility, which we denote U cpt, defined
later in §2. It is well known that CPT utility is not a concave function, so the problem of
choosing portfolio weights so as to maximize it is not a convex optimization problem, as
VNM utility maximization and MV portfolio optimization are. This makes it a challenge to
carry out CPT utility maximization in practice.

While CPT utility is not concave, we will show that it does have some convexity structure.
Specifically, it is the composition of a convex increasing function of concave functions for
positive returns, and the composition of a concave increasing function of convex functions
for negative returns. This observation allows us to construct a concave lower bound, or
minorant, for the CPT utility, and leads immediately to a simple algorithm for maximizing
it by repeatedly maximizing the constructed minorant (which is a convex problem, and
thus readily solved). This simple minorization-maximization (MM) method leads to a local
maximum of the CPT utility [LB15].

Our MM method scales to medium size problems, with perhaps tens of assets and hun-
dreds of return samples. For larger problems, we give two other algorithms. One algorithm
uses a simpler optimization of a minorant to the approximation given by fixing the proba-
bility weights that arise in CPT in each step, again relying on iterations that involve solving
convex optimization problems. As a result, this method can handle complex portfolio con-
straints, as long as they are convex. The second additional algorithm scales to very large
problems, but handles only simple portfolio constraints. It relies on modern frameworks for
automatic differentiation and first-order optimization methods.

Open-source Python implementations of all three methods can be found in the code
repository https://github.com/cvxgrp/cptopt.

We do not address questions such as whether or when one should choose a portfolio that
maximizes CPT utility. We only address the question of how it can be done, algorithmically
and computationally. We provide methods to solve the CPT portfolio optimization problem,
but we emphasize that the conceptual framework behind the method is more general. Across
computational economics and finance, nonconvex problems frequently arise. The framework
for decomposing the problem into convex and concave parts can be extended to such other
problems.

1.4 Previous and related work

Limited prior work exists on portfolio optimization with CPT utility. Analytical solutions
exist for special cases such as single-period settings with one risk-free and one risky as-
set [BG10, HZ11, ZZ17] or for two-fund separation under elliptical distributions [PS12].
Extensions of these special cases to a multi-period setting are considered in [SCL15]. For
the general multi-asset cases, heuristics such as particle swarm simulation [BCN20], or grid
search methods [HM14] are employed, which have been extended to the multi-period case
using dynamic programming [DL12, BH09]. While grid search can accommodate constraints,
the particle swarm method used in [BCN20] cannot, and requires a hyperparameter to be
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chosen to turn constraints into penalties.
The evaluation of CPT utility along the mean-variance frontier is a commonly used

heuristic [LL04, HM14]. Some authors (e.g., [SAM22]) use numerical methods to maximize
CPT utility on small problems, do not explicitly mention the numerical solve method, sug-
gesting the use of generic nonlinear optimizers. In contrast, we focus on custom methods
that exploit the special structure of the CPT utility maximization problem.

After the initial release of this manuscript, Yan et al. [YJSC22] proposed a method
for optimizing a portfolio using CPT utility based on the alternating direction method of
multipliers (ADMM) (see, e.g., [BPC+11]). This work is closely related to ours, in that
they consider general multi-asset portfolios, and exploit convexity structure, although in
a different way than we do. It is the only other method we are aware of that exploits
the convexity structure of the CPT utility and can handle constraints. While we make an
approximation about the monotonicity of the weights, they employ a method which does
not globally solve one of their sub-problems in order to obtain tractable speeds. Carrying
out a direct comparison of the methods is not immediately possible

1.5 Outline

We start in §2 by defining CPT utility, fixing our notation. The CPT utility extends prospect
theory (PT) utility, described in §2.1, by adding a reweighting function, described in §2.2.
In §2.3 we explore the convexity structure of CPT utility, followed by a description of the
CPT utility portfolio optimization problem in §2.4. In §3 we describe algorithms that can
be used to find a portfolio that maximizes CPT utility. The first method, presented in
§3.1, is a minorization-maximization method that relies on the convexity structure described
in the previous section. The second method, described in §3.2, uses the convex-concave
procedure, a method for maximizing the sum of a convex and concave function, and iterates
over the probability weights that appear in the CPT utility. The last method, given in §3.3,
is a projected gradient type method, which can scale to large problem sizes. Numerical
experiments are presented in §4, where we evaluate all methods on a toy problem with three
assets, a medium-sized problem with more assets, and a large-scale problem, all based on
historical asset class data. We give some conclusions in §5.

2 Cumulative prospect theory utility

2.1 Prospect theory utility

In this section we introduce PT utility, the first building block of CPT utility. Like VNM
utility, it is monotonically increasing, but PT utility is not concave. PT utility has an
inflection point at the origin, which represents a reference wealth. It is concave for positive
arguments, i.e., investors are risk averse for gains, and convex on for negative arguments,
i.e., investors are risk seeking for losses. Exponential utility functions are commonly used
for both the convex and the concave sections of the PT utility function. We thus define the
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positive and negative exponential utilities as

u+(x) = 1− exp(−γ+x), u−(x) = −1 + exp(γ−x),

where γ+, γ− > 0 are parameters. Here and throughout the paper, functions with a subscript
plus sign are applied to gains, and functions with a subscript minus sign are applied to losses.
Combining both functions yields the exponential prospect theory utility for a single return

uprosp(x) =

{
u+(x) if x ≥ 0
u−(x) otherwise

,

which is S-shaped. Prospect theory further accounts for loss aversion, which requires γ− >
γ+, i.e., a marginal decrease in wealth would decrease the utility more than a marginal
increase in wealth would increase the utility.

2.2 Probability reweighting

The second building block of CPT utility is a reweighting function that assigns higher weights
to more extreme outcomes. As is common in the CPT literature, we first define the weighting
functions w(p) : [0, 1] → [0, 1]. We take the specific weighting functions

w+(p) =
pδ+

(pδ+ + (1− p)δ+)1/δ+
, w−(p) =

pδ−

(pδ− + (1− p)δ−)1/δ−
,

where δ+, δ− > 0 are parameters. We now specify the notion of extreme outcomes. Let
r1, . . . , rN ∈ Rn be the empirical distribution of realized returns on n assets. Consider a
vector of portfolio weights w ∈ Rn, with 1Tw = 1, where 1 is the vector with all entries one.
The associated portfolio returns are rT1 w, . . . , r

T
Nw ∈ R. Without reweighting, all returns

would have equal weight. Let N− denote the number of negative returns, and N+ the number
of nonnegative returns, with N−+N+ = N . We let ρi denote the returns re-ordered or sorted
by the portfolio returns, with index value i = 1, . . . , N ,

wTρ1 ≤ · · · ≤ wTρN− < 0 ≤ wTρN−+1 ≤ · · · ≤ wTρN ,

i.e., wTρ1 is the largest loss and w
TρN is the largest gain. We define the positive and negative

decision weights respectively as

π′
+,j =

{
w+((N+ − j + 1)/N)− w+((N+ − j)/N) j = 1, . . . , N+ − 1
w+(1/N) j = N+,

π′
−,j =

{
w−((N− − j + 1)/N)− w−((N− − j)/N) j = 1, . . . , N− − 1
w−(1/N) j = N−.

We would argue that π′
+ and π′

− should be nondecreasing, i.e., we should put higher
weight on more extreme events. This occurs for most reasonable choices of parameters, but
there are choices for which monotonicity is (slightly) violated. Thus, we force monotonicity
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by replacing π′
+,j with min(π′

+) for all j < argmin(π′
+), and likewise for π′

−. We zero-pad
π′
+ and π′

− from the left to be length N , i.e., π+ = (0N− , π
′
+) and π− = (0N+ , π

′
−), where

the subscript on the vector zero denotes its dimension. We define for a monotone increasing
probability vector π

fπ(x) =
N∑

i=1

πix(i),

which is sometimes called the weighted-ordered-sum or dot-sort function. (The notation x(i)
means the ith smallest element of the vector x.) Then, with

ϕ+(x) = max(x, 0), ϕ−(x) = −min(x, 0),

we have the total CPT utility given by

U cpt(w) = fπ+ (ϕ+ (u+(Rw)))− fπ− (ϕ− (u−(Rw))) .

2.3 Convexity properties

In this section we describe some convexity properties of the CPT utility function. PT utility
is convex for negative arguments and concave for positive arguments by definition. CPT
utility, i.e., with reweighting, is a difference of two structured terms

U cpt(w) = fπ+(ϕ+(︸ ︷︷ ︸
convex

u+(Rw)︸ ︷︷ ︸
concave

))− fπ−(ϕ−(︸ ︷︷ ︸
convex

u−(Rw)︸ ︷︷ ︸
convex

)).

The first term is a composition of dot-sort-positive, fπ ◦ ϕ+, and the concave exponential
utility for gains, u+. The dot-sort-positive function is convex, because dot-sort is convex
and increasing for positive weights π, and ϕ+ is convex. The weighted sum in the CPT
utility is consistent with dot-sort whenever the weights in the dot-sort function are monotone
nondecreasing, i.e., π1 ≤ π2 · · · ≤ πN . Similarly, fπ ◦ ϕ− is convex following the same
reasoning, making −fπ ◦ϕ− concave, which is in turn composed with the convex exponential
utility for losses, u−. We note that for each return, only one argument of the difference
contributes to the CPT utility, as ϕ+(x)ϕ−(x) = 0. These convexity properties motivate
principled algorithmic approaches to maximizing the CPT utility, which we explore in §3.1
and §3.2.

2.4 CPT utility portfolio optimization problem

The CPT utility portfolio optimization problem is

maximize U cpt(w)
subject to 1Tw = 1, w ∈ W ,

(2)

with variable w, where W is the set of feasible portfolio weights. It is not a convex opti-
mization problem, so we will seek approximate solution methods.
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We mention some simple methods for solving or approximately solving the CPT utility
portfolio optimization problem (2). If the number of assets is very small (say, 3 or 4), we
can solve it by brute force computation, by evaluating U cpt over a fine grid of values.

A reasonable heuristic for approximately solving the CPT utility portfolio optimization
problem, motivated by [LL04], leverages our ability to efficiently solve the MV portfolio
optimization problem. We find the so-called efficient frontier, by solving the MV problem
for a number of different values of the risk aversion parameter γ. (This gives the MV
efficient frontier.) We evaluate the CPT utility of each of these portfolios, and choose the
one with the largest value. While this does not in general solve the problem (2), it often
produces a very good, i.e., nearly optimal, portfolio. It can be used as an initial guess for
the iterative methods described below. We refer to this method as the MV heuristic for CPT
maximization.

3 Optimization methods

3.1 Minorization-maximization method

The CPT utility has the composition form

U cpt(w) = (fπ+ ◦ ϕ+)(u+(Rw))− (fπ− ◦ ϕ−)(u−(Rw)).

We denote a general linearization of a convex (concave) function h(w) at the point ŵ as

ĥ(w, ŵ) = h(ŵ) + gT (w − ŵ),

where g is a subgradient (supergradient) of the function h. As all linearizations that follow
occur at ŵ, we suppress the second argument.

At ŵ, we create a concave approximation of the first term of U cpt(w) by linearizing
(fπ+ ◦ϕ+). We approximate the second term in the difference by linearizing the inner convex
utility u−. To linearize dot-sort-positive, we observe that a subgradient is given by the vector
gx with entries

gx,i =

{
0 if xi < 0
π+σx(i)

otherwise,

where σx is the permutation which maps i to the rank of xi in x. The minorant at ŵ is
therefore given by

Ũ cpt(w) = ( ̂fπ+ ◦ ϕ+)(u+(Rw))− (fπ− ◦ ϕ−)(û−(Rw)).

The minorization-maximization (MM) algorithm (also called the majorization-minimization
algorithm when solving a minimization problem) simply iterates between creating the mi-
norant at the current iterate and then maximizing it to find the next iterate [HL00]. Our
minorant is concave, so maximizing it is efficient. Here W can be any DCP convex constraint
set, since each iteration requires solving a general convex optimization problem.

9
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Algorithm 1 Minorization-maximization method

given w0, let ŵ := w0.
repeat:

1. Let wnext be a maximizer of Ũ cpt(w), subject to w ∈ W.

2. break if wnext = ŵ.

3. Update ŵ = wnext.

return ŵ.

3.2 Iterated convex-concave method

Though the CPT portfolio optimization objective is non-convex, we know the curvature
and sign properties of the component functions which are composed to form the utility.
In particular, PT utility is convex on the negative reals, and concave on the nonnegative
reals. Thus, it is amenable to optimization via the convex-concave procedure (CCP) [LB15,
SDGB16, YR03, LS09]. The convex-concave procedure for maximization iteratively linearizes
the second term in the sum of a concave and a convex function, and maximizes this surrogate
objective. While the PT utility has this clear curvature, the CPT utility does not, due
to reweighting. Our heuristic approach is to fix the probability weights in each iteration,
and then solve the fixed weight CPT utility optimization problem with the convex-concave
procedure. Once the weights have been fixed, we can write the PT utility as a concave
function

f ccv(x) =

{
1− exp(−γ+x) if x ≥ 0
γ−x otherwise,

plus a convex function,

f cvx(x) = inf
z≤0, z≤x

(−1 + exp(γ−z)− γ−z) .

Here “cvx” and “ccv” denote convex and concave, respectively. (See §A for a derivation of
these functions in disciplined convex programming (DCP) form.) Unlike the MM algorithm
in §3.1 which maximizes a global lower bound, this approximation is only local, so we include
a trust region constraint, which we omit from the algorithm description for brevity. Note
that as before, W can be any DCP convex constraint set.
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Algorithm 2 Convex-concave procedure

given w0, let ŵ := w0.
repeat:

1. Let π be the concatenation of the reversed vector π′
− followed by π′

+, where π′
− and π′

+

are the decision weights associated with ŵ (see §2).

2. Let Lcvx
i be the linearization of f cvx at (Rŵ)(i)

3. Let wnext be a maximizer of
∑

i πi
(
f ccv

(
wTρi

)
− Lcvx

i

(
wTρi

))
, subject to w ∈ W, where

ρi is the row of R associated with (Rŵ)(i).

4. break if wnext = ŵ.

5. Update ŵ = wnext.

return ŵ.

3.3 Projected gradient ascent

We first consider maximizing the CPT utility using gradient ascent (GA). While the CPT
utility is not differentiable everywhere, we can use an automatic differentiation package such
as PyTorch [PGM+19] to specify the computation chain for the problem and automatically
compute the gradient at points where the utility is differentiable, and a reasonable surrogate
for the gradient (such as a subgradient for convex functions) at points where it is not. Such
libraries are extremely fast and optimized for use on GPUs. We can then perform gradient
ascent, together with a method to enforce the portfolio constraints. Projected gradient ascent
consists of the iterations

wk+1 = Π
(
wk + ηk∇f(wk)

)
,

where k denotes iteration, ηk > 0 is a stepsize and Π is ℓ2 or Euclidean projection onto the
constraint set W , i.e., Π(w) = argminw′∈W ∥w′ − w∥2.

Using these computation frameworks requires the projection to be expressed as a simple
computation chain, which can be done in simple cases such as a long-only portfolio, i.e., W =
Rn

+. Another option to handle long-only portfolio constraints is to parametrize nonnegative
portfolio weights via a multinomial logistic map,

wi =
expxi∑
j expxj

, i = 1, . . . , n,

where x is an unconstrained variable.
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Asset class Region GFD symbol
Equity US SPXTRD
Equity Europe STOXXER
Equity Japan TOPXDVD
Equity Emerging markets TRGFDEM

Government Bonds US TRUSG10M
Corporate Bonds US TRCCRBD
Government Bonds Europe TREUROGM
Government Bonds Japan TRJPNGVM

Bills US TRUSABIM
Bills Europe TREUROBM
Bills Japan TRJPNBIM

Commodities Global TRUSACOM
Gold Global XAU BD
Silver Global XAG HD

Table 1: Asset classes and regions in the data set.

4 Numerical examples

To evaluate the efficiency and performance of the proposed methods, we compare them in
a series of numerical experiments with increasing data size. We first compile a data set
consisting of N = 600 monthly returns, covering the 50-year period from 07–1972 to 06–
2022. The n = 14 assets consist of equities and fixed income securities from different regions,
as well as commodities, as displayed in table 1. The data was obtained from Global Financial
Data (GFD) [Dat22]. The indices are total return indices, i.e., they include dividends and
interest payments. The GFD index methodology extends the index history back in time by
combining multiple single indices where necessary. We provide the GFD symbol for each
asset class for reference.

4.1 Toy example

Our first small example uses n = 3 assets: US stocks, 10-year US Treasury bonds, and
3-month US Treasury T-bills. We choose the CPT function with parameters

γ+ = 8.4, γ− = 11.4, δ+ = 0.77, δ− = 0.79,

which are reasonable, and at the same time exhibit clear non-convexity and even multimodal-
ity of the CPT utility. (Many other reasonable choices of the parameters lead to unimodal
CPT utility, which makes the portfolio optimization problems easy; our goal is to evaluate
the methods on more challenging problem instances.)

Figure 1 gives a plot of this utility function for W = R2
+, i.e., long-only portfolios.

The horizontal axis is w1, the fraction invested in stocks; the vertical axis is w2, the fraction

12

164



0.0 0.2 0.4 0.6 0.8 1.0
w1

0.0

0.2

0.4

0.6

0.8

1.0
w

2

w

w

w Global optimum
w Local optimum

0.0232

0.0244

0.0256

0.0268

0.0280

0.0292

0.0304

0.0316

0.0328

Figure 1: CPT utility surface for a long-only portfolios of stocks (w1), bonds (w2), and T-bills
(w3 = 1− w1 − w2).

invested in bonds. The fraction invested in T-bills is w3 = 1−w1−w2. Thus, the point (0, 0)
represents a portfolio fully invested in T-bills. Any portfolio on the diagonal connecting (1, 0)
and (0, 1) represents portfolios invested in a convex combination of only stock and bonds.
Since there are only two portfolio weights to optimize over, we can find the global maximum
using brute-force evaluation of the utility over a fine grid. The global maximum is attained
at w⋆ = (0.14, 0.3), yielding U cpt(w⋆) = 0.0334. In addition, there is a local optimum with
slightly lower utility at w̄ = (0.37, 0.63), which yields U cpt(w̄) = 0.0332.

MV frontier. A simple heuristic is to evaluate U cpt on portfolios along the mean-variance
efficient MV frontier and choosing the maximizing portfolio among them. Based on the
sample mean and covariance of the returns, we first find the return-maximizing and risk-
minimizing portfolios, and then sample 100 points that are equidistant in volatility space
along the efficient MV frontier. Figure 2 (a) shows the efficient MV frontier, and the portfolio
with the highest CPT utility along it, wmv, associated with risk aversion parameter γ = 3.2.
It achieves CPT utility of U cpt(wmv) = 0.0328. Figure 2 (b) shows Umv for the choice γ = 3.2.
It should be noted that the MV frontier is independent of the parameter choice of the CPT
utility function, and in general the MV optimum can be far away from a local optimum of
CPT.
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Figure 2: (a) Maximizing U cpt along the MV frontier, resulting in wmv. (b) Utility surface of Umv

for the choice of λ that results in wmv.

Iterative methods. As all remaining methods depend on initialization, we compare the
convergence from equal weights, three points close to a full investment in each single asset,
as well as the MV optimum in figure 3. The MM algorithm terminates at a local maximum
from all starting points within fewer than 30 iterations. Likewise, CC converges to a local
optimum or a point where the numerical stopping criterion is reached in all cases within
at most 11 iterations, albeit on a visually more erratic path. Lastly, the GA method also
converges to a point close to a local optimum in all cases. Thus, all iterative methods appear
to perform equally well on the toy example.

Diversification. To see the effect of the CPT utility on diversification, as well as to under-
stand how the different methods alter the portfolio weights, we run a backtest using a sliding
window of 100 observations along our previously described data set of 600 monthly returns.
Following [GK08] and [YJSC22], we compute the sum of squared portfolio weights (SSPW),
∥w − 1

n
∥22, as a measure of diversification. We compare the MM, CC, and GA methods to

the MV heuristic in figure 4. We observe that the MM and CC methods all result in a
lower SSPW than the MV heuristic, i.e., the portfolios are more diversified. In addition, we
explore how the assumptions of probability reweighting and loss aversion that are inherent
to the CPT utility affect the portfolio weights. For this, we change set γ+ = γ− = 11.4 in the
no loss aversion setting, and δ+ = δ− = 1 in the no probability reweighting setting. We find
that both cases result in a much higher median SSPW, indicating that the portfolio weights
are less diversified.
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Figure 5: Comparison of wall-time across methods for the multi-asset example, started from
(a) equal-weight portfolio and (b) the best MV portfolio.

4.2 Multi-asset example

We now extend our example to use all n = 14 assets, comparing the achieved utilities, as well
as the required computation time. While comparing the absolute wall-times across different
implementations can only approximate the computational efficiency of the algorithms, it is
relevant to the practicality of the presented methods. The best portfolio on the efficient MV
frontier attains a utility of 0.0395 in only 0.6 seconds. Starting all iterative methods from the
equal-weight portfolio, CC terminates first, yielding a utility of 0.0403 in 4.1 seconds. MM
also attains the same utility, but it takes substantially longer, terminating after about 650
seconds. GA also results in approximately the same utility, being slower than CC, but still
dominating MM. When optimizing a single portfolio, we find that GA converges faster using
the CPU. However, simultaneous optimization of many portfolios, which is naturally handled
by this method, scales better when using a GPU. We use this observation to simultaneously
optimize from 10,000 starting points. These weights are sampled from a symmetric Dirichlet
distribution with concentration parameter α = 1, i.e., w0 ∼ Dir(1n), which is equivalent to
a uniform distribution over the open standard (n− 1)-simplex. The best resulting utility is
denoted as the approximate global optimum, and is not higher than the utilities achieved
by all iterative methods when started from equal weights. All methods, as well as the
approximate global optimum, are visualized in figure 5 (a). In practice, it would likely be
beneficial to leverage the fast computation of the MV portfolio as a starting point for the
iterative methods. Indeed, as shown in figure 5 (b), this reduces the time to convergence
substantially for all methods, with the GA method now converging in approximately ten
seconds. MM is also faster, but still takes about 400 seconds to converge.

Investigating the sensitivity to the starting point, we sample 30 starting weights and
compare the attained utilities. We find that MM and CC converge to a utility of 0.0403
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Figure 6: Convergence of the GA method for N = 6, 000 starting from wmv.

in all cases. GA, however, displays a higher variance. Its best utility is close to the values
obtained by MM and CC. The median utility is 0.0401, which is higher than MV at 0.0395.
The worst case utility is 0.0386, which is worse than all other methods.

4.3 Scaling to many return samples

To investigate the scalability of the methods to more return samples, we extend the 600
observations of our data set with synthetic returns. For this, we sample from a Gaussian
mixture model with three components that was fit to the return data. We find that GA
scales best, handling data sets of hundreds of thousands of observations. For such large data
sets, MM and CC did not converge in a reasonable time. Further, as the GA implementation
naturally handles optimizing multiple starting points simultaneously, the problem of high
variance observed in §4.2 is alleviated. Figure 6 shows an example where we extend the
original data set by a factor of ten, i.e., we consider the case where N = 6, 000. We choose
wmv as a principled starting point for the GA method. We observe that GA does improve over
its starting point, however, looking at the axis scale reveals that the improvement over MV
is marginal. We observe that the numerical value of the highest utility is different compared
to the original data set in §4.2. This is expected, however, as the observed data only makes
up 10% of the extended data set, and the data generating process for the synthetic returns is
only an approximation of the true data generating process, which may not be fully described
by any single distribution.
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5 Conclusions

While the CPT utility is nonconvex and can even be multimodal, we identify some simple
convexity properties. Specifically, the CPT utility is a difference of two structured functions,
with the first term given by a composition of a convex function with concave arguments and
the second term given by a composition of a convex function with convex arguments. This
structure allows us to construct locally tangent concave minorants, which we use to develop
a minorization-maximization algorithm to maximize the CPT utility numerically. While the
analysis was restricted to the CPT utility, we believe that it motivates similar analyses for
other nonconvex objectives commonly used in finance and economics. We provide several
practical methods to maximize the CPT utility, including one massively scalable method,
and two methods which can easily handle arbitrary convex portfolio constraints. To the
best of our knowledge, previous work on maximizing CPT utility considered only simple
analytical cases or small problem instances with generic nonlinear optimizers.

As a practical matter, for small problems with arbitrary convex constraints, the MM
method has shown smooth convergence and is thus the recommended default method. If
this method is too slow, but the portfolio constraints are complex, the CC method should
be used instead. For large problems with simple constraints, the GA method appears to
be the best choice. As there is low scaling overhead, one should optimize many portfolios
simultaneously, including the MV optimal portfolio, an equal weight portfolio, as well as
randomly sampled starting points. As all methods are readily available in the accompanying
code, it is easy to experiment for the given use case.

Lastly, it is worth noting that the simple method of approximately maximizing the CPT
utility by restricting the feasible set to the MV frontier seems to closely approximate the
optimal CPT utility in many problem instances.
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A DCP form of CCP objective

A.1 DCP form of f ccv

To obtain the piecewise definition of f ccv, we split up its argument into a positive and
negative part,

x = x+ + x−, x+ ≥ 0, x− ≤ 0.

Now, we observe that
f ccv(x) = 1− exp(−γ+x+) + γ−x

−

is concave, because γ− > γ+ ≥ ∂(1−exp(−γ+x))
∂x

for x ≥ 0. We implement f ccv in DCP form via
its hypograph,

{(x, t) | f(x) ≥ t} = {(x, t) | ∃ x+ ≥ 0, x− ≤ 0, x = x++x−, 1− exp(−γ+x+)+γ−x− ≥ t},

which in practice means that to add this function to an optimization problem, we introduce
new variables t, x+, and x−, replace f ccv with t, and add the constraints

t ≤ 1− exp(−γ+x+) + γ−x
−, x = x+ + x−, x+ ≥ 0, x− ≤ 0.

A.2 DCP form of f cvx

To see that f cvx is convex, we can equivalently represent it as a partial minimization of the
convex function (of z and x jointly)

−1 + exp(γ−z)− γ−z + 1{z ≤ x}

over the convex set {(z, x) | z ≤ 0}. The function can be used in DCP frameworks that
provide the indicator function and partial minimization. Alternatively, the indicator function
can be omitted when adding the explicit constraints

z ≤ x, z ≤ 0.
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B Code snippets

1 from scipy.stats import multivariate_normal as normal

2
3 from cptopt.optimizer import *

4 from cptopt.utility import CPTUtility

5
6 # Generate returns

7 corr = np.array([

8 [1, -.2, -.4],

9 [-.2, 1, .5],

10 [-.4, .5, 1]

11 ])

12 sd = np.array([.01, .1, .2])

13 Sigma = np.diag(sd) @ corr @ np.diag(sd)

14
15 np.random.seed(0)

16 r = normal.rvs([.03, .1, .193], Sigma, size=100)

17
18 # Define utility function

19 utility = CPTUtility(

20 gamma_pos=8.4, gamma_neg=11.4,

21 delta_pos=.77, delta_neg=.79

22 )

23
24 initial_weights = np.array([1/3, 1/3, 1/3])

25
26 # Optimize

27 mv = MeanVarianceFrontierOptimizer(utility)

28 mv.optimize(r, verbose=True)

29
30 mm = MinorizationMaximizationOptimizer(utility)

31 mm.optimize(r, initial_weights=initial_weights, verbose=True)

32
33 cc = ConvexConcaveOptimizer(utility)

34 cc.optimize(r, initial_weights=initial_weights, verbose=True)

35
36 ga = GradientOptimizer(utility)

37 ga.optimize(r, initial_weights=initial_weights, verbose=True)
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Berninger. Philipp Schiele also developed the software for the ARMA cell and conducted the
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Neural Autoregressive Modeling
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Abstract

The autoregressive moving average (ARMA) model is a classical, and arguably
one of the most studied approaches to model time series data. It has compelling
theoretical properties and is widely used among practitioners. More recent deep learn-
ing approaches popularize recurrent neural networks (RNNs) and, in particular, Long
Short-Term Memory (LSTM) cells that have become one of the best performing and
most common building blocks in neural time series modeling. While advantageous for
time series data or sequences with long-term effects, complex RNN cells are not always
a must and can sometimes even be inferior to simpler recurrent approaches. In this
work, we introduce the ARMA cell, a simpler, modular, and effective approach for time
series modeling in neural networks. This cell can be used in any neural network archi-
tecture where recurrent structures are present and naturally handles multivariate time
series using vector autoregression. We also introduce the ConvARMA cell as a natural
successor for spatially-correlated time series. Our experiments show that the proposed
methodology is competitive with popular alternatives in terms of performance while
being more robust and compelling due to its simplicity.
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1 Introduction

Despite the rapidly advancing field of deep learning (DL), linear autoregressive models re-
main popular for time series analysis among academics and practitioners. Especially in
economic forecasting, datasets tend to be small and signal-to-noise ratios low, making it
difficult for neural network approaches to effectively learn linear or non-linear patterns. Al-
though research in the past has touched upon autoregressive models embedded in neural
networks (e.g., [CAM91, CMA94]), existing literature in fields guided by linear autoregres-
sive models such as econometrics mainly focuses on hybrid approaches (see Section 2). These
hybrid approaches constitute two-step procedures with suboptimal properties and often can-
not even improve over the pure linear model. The DL community took a different route for
time-dependent data structures, popularizing recurrent neural networks (RNNs), as well as
adaptions to RNNs to overcome difficulties in training and the insufficient memory prop-
erty [HS97] of simpler RNNs. In particular, methods like the Long Short-Term Memory
(LSTM) cell are frequently used in practice, whereas older recurrent approaches such as
Jordan or Elman networks seem to have lost ground in the time series modeling commu-
nity [Jor86, Elm90]. This can be attributed to the more stable training and the insensitivity
to information lengths in the data of more recent recurrent network approaches such as the
LSTM cell.

While often treated as a gold standard, we argue that these more complex RNN cells
(such as the LSTM cell) are sometimes used only because of the lack of modular alternatives
and that their long-term dependencies or data-driven forget mechanisms might not always
be required in some practical applications. For example, in econometrics, including a small
number of lagged time series values or lagged error signals in the model is usually sufficient
to explain most of the variance of the time series. Similar, sequences of images (i.e., tensor-
variate time series) such as video sequences often only require the information of a few
previous image frames to infer the pixel values in the next time step(s). In addition, current
optimization routines allow practitioners to train classical RNN approaches without any
considerable downsides such as vanishing or exploding gradients.

Our contributions. In this work, we propose a new type of RNN cell (cf. Figure 1) that
can be seen as a natural connection between the classical time series school of thoughts
and DL approaches. To analyze how the ARMA modeling philosophy can improve neural
network predictions, we

• embed ARMA models in a neural network cell, which has various advantages over
classical approaches (see Section 4);

• further exemplify how this proposal can be extended to convolutional approaches to
model tensor-variate time series such as image sequences (Section 4.4);

• demonstrate through various numerical experiments that our model is on par with
or even outperforms both its classical time series pendant as well as the LSTM cell
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Model

Inputs

Predictions

Figure 1: Left: Graphical visualizations of how predictions are computed in a univariate
ARMA(2,2) cell using the time series values x from the current and previous time points as well as
past model predictions x̂. Right: Zooming in on the rightmost model cell from the left picture to
show the computations of the ARMA cell with parameters as defined in (3).

in various settings, with architectures ranging from shallow linear to deep non-linear
time series models;

• provide a fully-tested, modular and easy-to-use TensorFlow [ABC+16] implementa-
tion with a high-level syntax almost identical to existing RNN cells to foster its us-
age and systematic comparisons. It is available at https://github.com/phschiele/
armacell.

The goal of this paper is further to make practitioners aware of an alternative to com-
monly used RNN cells, highlight that short-term recurrence can be sufficient in various time
series applications, and that a simpler parameterized lag structures can even outperform
data-driven forget mechanisms.

We start by discussing related literature in the following section. A short mathematical
background is given in Section 3, followed by our proposed modeling approach in Section 4.
We investigate practical aspects of our method in Section 5 and summarize all ideas and
results in Section 6.

2 Related literature

Recent advancements in (deep) time series modeling merge statistical autoregressive ap-
proaches with DL, specifically in building larger modeling frameworks with multiple com-
ponents, including appropriate preprocessing [SFGJ20, HZL+19]. We emphasize literature
synthesizing classical time series analysis with fundamental building blocks of RNN model-
ing.
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Traditional autoregressive approaches. Building upon the foundational contributions
of Box et al. [BJRL15], Autoregressive Integrated Moving Average (ARIMA) models have
been popularized due to their simple design coupled with practical effectiveness. They remain
widely used in statistics, econometrics, and many other fields. In instances where the mean
stationarity of a time series is attained without necessitating an integration step, the Au-
toregressive Moving Average (ARMA) model, a special case of ARIMA, becomes applicable.
A spectrum of specialized variants has been developed to adeptly model certain nonlinear
series. Notable examples include the bilinear models by Granger & Andersen [GA78, Rao81]
and threshold models by Tong & Lim [TL09]. In addition, Seasonal ARIMA (SARIMA)
models can include seasonal patterns, and the ARIMAX models have been extended to in-
corporate exogenous variables [BJRL15]. Analogies between ARMA models and RNNs have
been discussed by various authors [CAM91, CMA94, Sax97], which we will discuss in the
following.

Recurrent neural network approaches. RNNs naturally extend traditional models
by incorporating previous states into current predictions. Notable variants such as El-
man [Elm90] and Jordan [Jor86] networks have been developed, but suffer from issues
like vanishing or exploding gradients (e.g., [GBC16]) Advances like Gated Recurrent Units
(GRU) [CMBB14] and Long Short-Term Memory cells (LSTM) [HS97] have been instru-
mental in mitigating these challenges, facilitating the modeling of long-term dependencies.

Combining classical time series approaches with neural networks. Hybrid models
combining classical and neural network approaches have been explored, often involving a
two-stage process where a neural network refines the residuals of a preceding AR(I)MA
model [Zha03]. While several combinations, such as state space models with RNNs, have
been proposed, they tend to lack modularity and general applicability [RP96].

Recurrent convolutional approaches. Spatio-temporal sequence forecasting benefits
from the incorporation of convolutional operations into RNN cells, as seen in models like
ConvLSTM and convolutional GRU which handle spatially distributed information efficiently
[SCW+15, TLY+19].

3 Background and notation

In the following, we introduce our notation and the general setup for modeling time series.
We will address univariate time series xt ∈ R for time points t ∈ Z as well as multi- and
tensor-variate time series, which we denote as xt and X t, respectively.

ARMA model. The ARMA(p, q) model [BJRL15] for p, q ∈ N0 is defined as

xt = α +

p∑

i=1

βixt−i +

q∑

j=1

γjεt−j + εt, (1)
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where xt represents the variable of interest defined for t ∈ Z and is observed at time points

t = 1, . . . , T , T ∈ N1. Here, α, β1, . . . , βp, γ1, . . . , γq are real valued parameters and εt
iid∼

F(σ2) is an independent and identically distributed (iid) stochastic process with pre-specified
distribution F and variance parameter σ2 > 0. By setting q = 0 or p = 0, the ARMA
model comprises the special cases of a pure autoregressive (AR) and a pure moving average
(MA) model, respectively. The class of ARMA models is, in turn, a special case of ARIMA
models, where differencing steps are applied to obtain a stationary mean function before
fitting the ARMA model. As stationarity is also a fundamental assumption for RNNs to
justify parameter sharing [GBC16], we focus on the class of ARMA models in this work,
i.e., assume that differencing has already been applied to the data. A stationary time
series is characterized by a constant mean and variance and a time invariant autocorrelation
structure. α0, . . . , αp and β1, . . . , βq are model parameters and p and q characterize the
number of lags of the dependent variable and the forecasting errors included in the model,
respectively.

VARMA model. The univariate ARMA model can be generalized to a multivariate ver-
sion – the vector autoregressive moving average (VARMA) model – by adapting the princi-
ples of the ARMA model for multivariate time series. The VARMA(p, q) model [TB81] for
p, q ∈ N0 is defined as

xt = α+

p∑

i=1

Bixt−i +

q∑

j=1

Γjεt−j + εt (2)

where xt, t ∈ Z represents a vector of time series observed at time points t = 1, . . . , T . Bi

and Γj are time-invariant (k×k)-matrices, where k ∈ N represents the number of individual
time series. εt is a k-dimensional iid stochastic process with pre-specified k-dimensional
distribution F(Ω) and covariance matrix Ω. Furthermore, the error term εt needs to satisfy
the following three conditions:

1. E[εt] = 0 for all t ∈ T

2. E[εtε
T
t ] = Ω is a (k x k) positive semi-definite covariance matrix

3. E[εtε
T
t−c] = 0 for any non-constant c ∈ N.

By setting q = 0, the VARMA model comprises the special cases of a pure autoregressive
(VAR) model, which is the most common VARMA model used in applications. Similar to
the ARMA model being a special case of the ARIMA model class, the VARMA model is a
special case of the VARIMA model class, representing only stationary time series.

1It is common to define a time series for time points t = 1, . . . , T to describe its current value and recent
history, while time series dynamics are assumed to originate from time points prior to t = 1, hence t ∈ Z
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4 ARMA-based neural network layers

ARMA models have been successfully used in many different fields and are a reasonable
modeling choice for time series in many areas. This section introduces a neural network
cell version of the ARMA mechanism. While very similar to Elman or Jordan networks,
the proposed cell exactly resembles the ARMA computations and can be used in a modular
fashion in any neural network architecture where recurrent structures are present. Emulating
the ARMA logic in a recurrent network cell has various advantages. It allows to 1) recover
estimated coefficients of classical ARMA software (see Supplementary Material B.1 for an
empirical investigation of the convergence), but can also be used to fit ARMA models for
large-scale or tensor-variate data (which is otherwise computationally infeasible), 2) mod-
ularly use the ARMA cell in place for any other RNN cell, 3) combine ARMA approaches
with other features from neural networks such as regularization and thereby seamlessly ex-
tend existing time series models, and 4) model hybrid linear and deep network models that
were previously only possible through multi-step procedures. As shown in our numerical
experiments section, an ARMA cell can further lead to comparable or even better prediction
performance compared to modern RNN cells.

4.1 ARMA cell

An alternative formulation of the ARMA model can be derived by incorporating the observed
(or estimated) residual term ε̂ through the predictions x̂t := xt − ε̂t, t ∈ Z. Thus, (1) can be
defined in terms of its intercept, the model predictions x̂t and the actual time series values
xt as

x̂t = α +

max(p,q)∑

i=1

β̆ixt−i −
q∑

j=1

γjx̂t−j, (3)

where

β̆i =





βi + γi for i ≤ min(p, q),

βi for i > q and p > q,

γi for i > p and p < q.

A detailed derivation of (3) is given in A. Using (3), we can implement the ARMA
functionality as an RNN cell. More specifically, the recurrent cell processes the p lagged
time series values as well as the q predicted outputs of the previous time steps and computes
a linear combination with parameters β̆i and γj. After adding a bias term, the final output x̂t
is given by a (non-linear) activation function σ of the sum of all terms. Figure 1 gives both a
higher-level view of how predictions are computed in the ARMA cell as well as a description
of how the cell is defined in detail. In addition to the classical ARMA computations in the
cell, the activation function σ allows to straightforwardly switch between a linear ARMA
model and a non-linear version.

The above-mentioned ARMA cell has the same hypothesis space as the classical ARMA
model when using a single-unit ARMA cell with a linear activation function. While using
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a non-linear activation for the outputs, in this case, is equivalent to using a link function
(as done in generalized linear models) for the classical ARMA model, extensions using mul-
tiple units or stacking ARMA cells (see below) increase the model’s expressiveness. As for
regular multi-layer perceptrons, where each node is a simple regression model with an ac-
tivation function and the combination of multiple units makes the models more expressive,
these extensions combine simpler ARMA models and therefore allow modeling more complex
relationships.

Advantages and comparison to other cells. Modeling a classical ARMA model in
a neural network can be more stable in the estimation of coefficients due to the use of a
stochastic first-order method (less vulnerable to ill-conditioning and numerical instabilities),
which is also confirmed in our numerical experiments in numerous settings. Training the
ARMA model using mini-batch optimization, further allows scaling to large data sets, which
is especially beneficial when modeling multivariate time series where the complexity of clas-
sical models increases substantially with the number of parameters and the multivariate time
series dimension.

In contrast to the standard RNN cell, the ARMA cell internally can access multiple
previous states and lagged features, making it potentially easier to learn time dependencies
and recurrences. The standard RNN cell, in contrast, only relies on the current input and the
previous cell state. In other words, the ARMA cell allows for a more complex autoregressive
structure and, in contrast to the simple RNN, provides a way to model moving averages.
This can also be explained using Figure 1, where the standard RNN cell can represent the
black arrows, but not the red and green connections.

Last but not least, the ARMA cell can be used to seamlessly model hybrid models end-to-
end in one holistic network, which historically has always been implemented using two-step
approaches [Zha03], yielding potentially inferior performance as the models in both steps are
not jointly optimized. This is also confirmed by our numerical results in Section 5.3.

4.2 Training procedure

The ARMA cell is trained as follows. For a given sequence, it creates predictions by re-
cursively applying (3). This is done in one forward pass. To also allow predictions for the
first q time points in each sequence, we need to pad the sequence of previous predictions
with 0-values. Further details on the input sizes of the ARMA cell can be found in Supple-
mentary Material. We then differentiate the loss of these outputs given the current weights
back through the whole sequence, i.e., the network is trained exactly as done for the LSTM,
GRU, and simple RNN cell via backpropagation through time. Note that our ARMA cell
also supports returning sequences, which we can use to stack cells or for training a model on
multiple steps simultaneously.

9

187



Figure 2: Visualization of an ARMA cell with multiple units representing a mixture of linear and
non-linear ARMA models by using different activation functions (left) and a network with stacked
ARMA cells creating a more complex model class by transforming inputs by subsequent ARMA
cells (right).

4.3 Extensions

The ARMA cell in Figure 1 can be used in a modular fashion similar to an LSTM or GRU
cell. In the following, we will thus present how this idea can be used to generate more
complex architectures using multiple units or by stacking cells. Both options also allow
bypassing the linearity assumptions of ARMA models.

Multi-unit ARMA cell. Similar to feedforward neural networks, an RNN layer can also
contain multiple units. Each unit receives the same input but can capture different effects
due to the random initialization of weights. The outputs of each unit are then concatenated.
A multi-unit architecture allows combining different activation functions, e.g., to simulta-
neously capture linear and non-linear effects, and is depicted in Figure 2 (left). Using a
multi-unit ARMA cell thereby seamlessly provides the possibility to combine a linear with a
non-linear ARMA model. We refer to models having a single hidden ARMA layer with one
or more units as ShallowARMA models.

Stacked ARMA. To allow for higher levels of abstraction and increased model complexity,
the ARMA modeling strategy does not only allow for multiple units in a single layer, but
users can also stack multiple layers in series, as shown in Figure 2 (right). This is achieved
by returning a sequence of lagged outputs from the previous layer. Models with more than
one hidden ARMA layer are referred to as DeepARMA models in the following.
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Figure 3: Exemplary visualization of a single-filter ConvARMA cell processing matrix-variate
time series (with a single channel) with three lags (upper left) and matrix-variate predictions with
three lags (bottom left) using convolutions and combining the results into a single matrix prediction
(bottom/top right) with additional bias term b and activation function σ (center right).

4.4 ConvARMA

Similar to the ConvLSTM network [SCW+15], it is possible to model spatial dependencies
and process tensor-variate time series X t ∈ Rn1×...×nd , n1, . . . , nd ∈ N, d ∈ N by using
convolution operations within an ARMA cell. The resulting ConvARMA(p, q) cell for p, q ∈
N0 and t ∈ Z is defined as

I t =

p∑

i=1

W i ∗X t−i,

Ct =

q∑

j=1

U j ∗ X̂ t−j, (4)

X̂ t = σ (I t +Ct + b) ,

where ∗ represents the convolution operator, W i ∈ Rk1×...×kd−1×nd×c, i = 1, . . . , p and
U j ∈ Rk1×...×kd−1×c×c, j = 1, . . . , q are the model’s kernels of size k1 × . . . × kd−1, b ∈ Rc is
a bias term broadcasted to dimension n1 × . . .× nd−1 × c and σ an activation function. By
convention, the last dimension of the input represents the channels, and c denotes the num-
ber of filters of the convolution. The inputs of the convolution are padded to ensure that the
spatial dimensions of the prediction X̂ t and the state remain unchanged. In other words, the
ConvARMA cell resembles the computations of an ARMA model, but instead of simple mul-
tiplication of the time series values with scalar-valued parameters, a convolution operation
is applied. Figure 3 shows an abstract visualization of the computations in a ConvARMA
cell. To follow the AR(I)MA modeling logic in the spatial dimensions, a ConvARMA cell
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can further incorporate spatial differences in all directions. A possible extension of the cell
proposed in (4) could further be to allow for non-linear recurrent activations as done for,
e.g., the ConvLSTM cell.

As for the ConvLSTM or ConvGRU cell, the ConvARMA cell can be included in an
autoencoder architecture for sequence-to-sequence modeling or extended to e.g., allow for
warping, rotation, and scaling [SGL+17].

4.5 Limitations

As for other autoregressive approaches, our approach is limited in its application if the time
series are very short or if a large number of lags p is required to approximate the underlying
data generating process well. We note, however, that due to the model’s recurrent definition,
past time points t − i for i > p also influence the model’s predictions. It is therefore often
not necessary to define a large lag value p, even if autocorrelation is high. Despite the
ARMA cell’s simplicity, this also shows that its predictions are not always straightforward
to interpret.

5 Numerical experiments

In this section, we examine the performance of our ARMA cell in a variety of synthetic and
benchmark experiments. We examine how it compares to classical time series approaches
as well as to similar complex neural architectures. Note that our experiments are not de-
signed to be a benchmark comparison with current state-of-the-art time series forecasting
frameworks. These rather complex architectures include many different components, such as
automated pre-processing and feature generation, and thus do not necessarily allow making
a statement about the performance of a single recurrent cell therein. Instead, we aim for a
comparison with other fundamental modeling building blocks 2. Yet, in order to emphasize
our cell’s modularity and demonstrate its efficacy when used as part of a larger state-of-the-
art network, we also present results on real-world benchmark data sets when replacing RNN
cells within a DeepAR model [SFGJ20] with the ARMA cell.

Methods. For (multivariate) time series, we compare a shallow and a deep variant of the
ARMA cell against the respective (V)ARMA model and neural models. For the latter, we
consider LSTM, GRU, and simple RNN cells, again each in their shallow and deep variants.
Hyperparameter optimization is done using a grid search with predefined parameter spaces
for the number of units for all network layers and lags for ARMA-type models. All other
hyperparameters of network layers are kept fixed with defaults that do not favor one or the
other method. Further details on the specification of the architectures can be found in the
Supplementary Material.

2We provide code to reproduce all experiments at https://github.com/phschiele/armacell_paper
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Table 1: Comparisons of different methods (rows) and different data generating processes
(columns) using the average RMSE ± the standard deviation of 30 independent runs. The best
performing method is highlighted in bold, the second-best in italics.

Univariate Multivariate
ARMA TAR SGN NAR Heterosk. VARMA EXP SQ

(V)ARMA 2.04±0.35 2.92±3.20 2.36±2.67 2.67±4.92 1.19±0.15 1.00±0.03 3.35±0.69 1.90±0.14
ShallowARMA 1.96±0.09 1.09±0.12 1.10±0.07 1.02±0.05 1.11±0.06 1.00±0.03 3.14±0.74 1.75±0.12
DeepARMA 1.97±0.10 1.24±0.47 1.05±0.06 1.02±0.04 1.11±0.06 1.01±0.03 3.10±0.75 1.76±0.11
LSTM 1.98±0.10 1.38±0.42 1.19±0.16 1.02±0.04 1.15±0.09 1.01±0.04 3.26±0.73 1.83±0.16
DeepLSTM 2.02±0.10 1.46±0.55 1.17±0.13 1.02±0.04 1.16±0.08 1.03±0.04 3.35±0.68 1.86±0.14
GRU 1.96±0.10 1.28±0.31 1.09±0.08 1.02±0.04 1.13±0.07 1.02±0.04 3.19±0.75 1.80±0.13
DeepGRU 1.99±0.09 1.24±0.36 1.09±0.12 1.02±0.04 1.12±0.06 1.01±0.04 3.22±0.80 1.82±0.18
Simple 1.99±0.09 1.29±0.31 1.14±0.09 1.04±0.04 1.13±0.08 1.02±0.03 3.29±0.70 1.80±0.12
DeepSimple 2.01±0.11 1.47±0.57 1.15±0.10 1.03±0.04 1.16±0.10 1.02±0.03 3.30±0.84 1.83±0.13

Performance measures. We compare time series predictions using the root mean squared
error (RMSE) for both the uni- and multivariate time series forecasts. We provide further
performance measures for our comparisons in the Supplementary Material.

Comparison between classical and first-order optimization. In the case where the
data generating process is in fact a (V)ARMA process, we expect the classical (V)ARMA
model and the ARMA cell to perform similarly, but note that the optimization using stochas-
tic gradient descent can sometimes yield better estimations of this process and hence out-
perform these classical models despite having the exact same hypothesis space.

5.1 Simulation study.

We start with a variety of synthetic data examples using time series models defined in Lee et
al. [LWG93]. Simulations include linear and non-linear, as well as uni- and multivariate time
series. All time series are of length 1000 and split into 70% train and 30% test data. The
data generating processes follow Lee et al. [LWG93] and include an ARMA process (ARMA),
a threshold autoregressive model (TAR), an autoregressive time series which is transformed
using the sign operation (SGN), a non-linear autoregressive series (NAR), a heteroscedastic
MA process (Heteroscedastic), a vector ARMA (VARMA), a non-linear multivariate time
series with quadratic lag structure (SQ), and an exponential multivariate autoregressive time
series (EXP). The exact specification of the data generating processes can be found in the
Supplementary Material.

Results. The results in Table 1 suggest that the ShallowARMA approach emulating an
ARMA model in a neural network works well for all linear- and non-linear datasets. In
terms of robustness, the lower RMSE and high standard deviation of the ARMA model on
the ARMA process shows that fitting an ARMA model in a neural network with stochastic
gradient descent can, in fact, be more robust than the standard software [HK08, SP10].
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While the classical ARMA did match the performance of its neural counterpart it some
cases, the average RMSE is worse, as it did not converge in all runs, even for the linear
time series. The performance of the DeepARMA approach is slightly worse compared to the
ShallowARMA in most cases. The performance of LSTM, GRU, and the Simple RNN are all
similar, with all methods matching the ARMA cells in some cases, and falling slightly behind
in others. As expected, the classical ARMA approach does not work well for non-linear data
generating processes (TAR, SGN, NAR) and yields unstable predictions underpinned by the
large standard deviations in RMSE values.

For multivariate time series results of the simulation are summarized in Table 6. The
results again show that the ShallowARMA model matches the performance of the classical
VARMA model for a dataset that is also based on a VARMA process. For other types
of data generation, the ShallowARMA model and DeepARMA model work similarly well.
Both outperform the other neural cells, which in turn yield better results than the VARMA
baseline.

In summary, the findings suggest that ARMA cells work well both for simpler linear as
well as non-linear data generating processes while being much more stable than a classical
ARMA approach. In the Supplementary Material, we further study the empirical conver-
gence of a single unit single hidden layer ARMA cell, which is mathematically equivalent to
an ARMA model for given values of p and q, and present another comparison showing the
equivalence of the ARMA cell and an Elman network.

5.2 Ablation studies

To explore the validity of our presented results, we perform a series of ablation studies.
Two important influence factors on the performance of time series models are the length of
the time series and the forecasting horizon, which we subsequently assess in the controlled
setting of our simulation study.

5.2.1 Time series length

In order to investigate the influence of the time series length on the performance reported in
previous simulations, we vary T ∈ {200, 1000, 10000} and re-run the experiments reported
in Table 1. The full results are given in the Supplementary Material. In summary, the rank
of the different methods is similar to the aforementioned results, and ShallowARMA yields
the best results in most settings. There is, however, a clear trend in that the performance
differences between the different cell types become irrelevant for an increase in T . For ex-
ample, for the multivariate time series study setting SQ, the ShallowARMA yields a notably
better MSE for T = 200 compared to the DeepSimple cell (1.97± 0.41 vs. 3.00± 3.95), the
performances are almost identical for T = 10, 000 observations (1.78± 0.05 vs. 1.80± 0.07).
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ARMA TAR SGN NAR Heteroskedastic

End2End 2.021 ± 0.105 1.134 ± 0.127 1.128 ± 0.055 1.002 ± 0.044 1.142 ± 0.062
Hybrid 2.014 ± 0.112 1.264 ± 0.811 1.138 ± 0.051 3.009 ± 8.869 1.147 ± 0.062

Table 2: Comparisons of the End2End and Hybrid approach on different data generating pro-
cesses (columns) for univariate time series using the average RMSE ± the standard deviation of 30
independent runs. The best-performing method is highlighted in bold.

5.2.2 Forecasting horizon

Similar to the previous ablation study, we reran the experiments but now alter the forecasting
horizon by comparing a one-step, 10-step, and 20-step forecast for T = 1000. The full results
can again be found in the Supplementary Material. In the univariate case for forecasting
horizons greater one, the different ARMA variations do not outperform other approaches
anymore and DeepLSTM, GRU, or DeepGRU yield the best results in many cases. The
performance values, however, are in most cases within one standard deviation of those by
the Shallow- or DeepARMA approach. For the multivariate case, the classical VARMA
model provides the best forecast for all multi-step ahead forecast scenarios, closely followed
by the Shallow- and DeepARMA models.

5.3 Comparison to hybrid models

We now investigate the differences between a standard hybrid approach following [Zha03]
and an end-to-end approach using the ARMA cell. The hybrid model first trains a classical
model, in this case, an ARMA(2,2) model. Then, an LSTM model is fit on the residual.
The final prediction is obtained as the sum of the ARMA and LSTM predictions. We also
implement an end-to-end version of this model using the ARMA cell, which we refer to
as End2End. Here, we train a linear ARMA cell, also specified with p = 2 and q = 2,
and sum its output with the output from an LSTM cell. Both model approaches have
the same hypothesis space, however, training a single model simplifies the training process
and optimized the parameters jointly. We run both approaches on the simulated univariate
time series, as shown in Table 2. We see that the End2End model performs similarly to
the hybrid model in most cases. However, for the NAR dataset, we find that the two-step
hybrid approach does not converge in all cases, leading to a substantially worse average
RMSE and a high corresponding standard deviation, indicating that this approach is less
robust compared to the End2End model.

5.4 Benchmarks

In order to investigate the performance of our approach for real-world time series with a
potentially more complex generating process, we compare the previously defined models on
various time series benchmark datasets.
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Table 3: Comparison of different univariate and multivariate forecasting approaches (rows) for
different datasets (columns) based on the average RMSE± the standard deviation of 10 independent
runs. The best performing method is highlighted in bold, the second-best in italics.

m4 traffic elec.

u
n
iv
.

ARMA 1.58±0.00 0.98±0.00 1.19±0.00
ShallowARMA 1.57±0.01 0.97±0.00 1.14±0.01
DeepARMA 1.57±0.01 0.94±0.01 1.10±0.02
LSTM 1.71±0.14 0.96±0.01 1.15±0.07
DeepLSTM 1.96±0.38 0.97±0.02 1.12±0.05
GRU 1.61±0.03 0.97±0.02 1.11±0.02
DeepGRU 1.61±0.02 0.97±0.02 1.11±0.03
Simple 1.72±0.15 1.00±0.01 1.12±0.01
DeepSimple 1.76±0.17 1.00±0.02 1.11±0.02

m
u
lt

iv
.

ARMA 1.72±0.00 1.06±0.00 1.46±0.00
ShallowARMA 1.68±0.01 1.06±0.00 1.37±0.03
DeepARMA 1.67±0.01 1.08±0.01 1.32±0.03
LSTM 1.92±0.15 1.15±0.01 2.07±1.12
DeepLSTM 2.11±0.25 1.15±0.02 1.26±0.05
GRU 1.91±0.25 1.15±0.00 1.25±0.04
DeepGRU 1.88±0.12 1.15±0.01 1.23±0.02
Simple 1.89±0.06 1.16±0.00 1.25±0.03
DeepSimple 1.90±0.08 1.16±0.01 1.22±0.01

5.4.1 Univariate and multivariate time series

We use the m4 [MSA18], traffic [YRD16], and electricity [YRD16] dataset, all openly acces-
sible and commonly used in time series forecast benchmarks. Further background on every
dataset and details on pre-processing can be found in the Supplementary Material. As all
datasets come with multiple time series, we use these datasets both for testing the perfor-
mance on univariate and multivariate time series. For univariate time series, this is done
by training a local model for every dimension and averaging the results over the different
multivariate dimensions. The multivariate comparison is based on the predictions of a single
global model.

Univariate time series. Results of univariate benchmarks are summarized in Table 3.
The comparisons suggest that ARMA cells, either in the shallow or deep variant, outperform
on all studied datasets. The classical ARMA model is competitive for the m4 dataset, but
again worse than its neural pendant on Traffic, and Electricity.

Multivariate time series. For the multivariate time series benchmarks, we observe that
model performance is in general worse than when performing hyperparameter optimization
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and model training for each time series individually, as done for the univariate time se-
ries benchmark. Finding architectures better suited to the individual time series seems to
outweigh the additional information from observing the comovement of multiple time series
simultaneously. In the comparison of different forecasting approaches for multivariate dimen-
sions, the performance of the ARMA cells is either notably better than the other neural cells
but on par with the classical ARMA model (Traffic), or outperforms all other approaches
(m4). Only for the Electricity dataset, the ARMA cells yield a slightly worse MSE compared
to the DeepSimple cell.

5.4.2 Integration with state-of-the-art forecasting frameworks

To demonstrate the modularity aspect of the ARMA cell, we use it to replace the LSTM
cell in a DeepAR model [SFGJ20]. We then train a larger global model on the previously
studied benchmark data sets for multivariate time series (as this is the application area
where DeepAR model excels in performance) and examine to what extent the change in
RNN cell influences the results. The experimental details can be found in Supplementary
Material B.12.3. Results (Table 4) indicate that it is possible to successfully replace the

Table 4: Comparison of different DeepAR-based models (rows) for different datasets (columns)
based on the average negative log-likelihood ± its standard deviation of 30 independent runs. The
best performing method is highlighted in bold.

m4 Traffic Elec.

DeepAR ARMA single 2.444 ± 0.137 1.323 ± 0.033 5.236 ± 0.398
DeepAR LSTM single 2.306 ± 0.056 1.362 ± 0.054 10.236 ± 9.242

DeepAR ARMA stacked 2.513 ± 0.157 1.332 ± 0.056 5.639 ± 0.461
DeepAR LSTM stacked 2.266 ± 0.049 1.381 ± 0.053 9.607 ± 5.630

LSTM with an ARMA cell in the DeepAR model and to receive a similar performance. We
further observe that the LSTM-based DeepAR does not always converge for the electricity
dataset, indicating that the training of the ARMA cell is more robust.

6 Conclusion and Outlook

We provided a modular and flexible neural network cell to model time series in a simply
parameterized fashion and as an alternative to commonly used RNN cells such as the LSTM
cell. We further extended this approach to vector autoregression and autoregressive models
for tensor-variate applications. Our numerical experiments show that the ARMA cell 1)
performs well on univariate, multivariate, and tensor-variate time series; 2) matches or even
outperforms the LSTM, GRU, and a simple RNN cell in linear and non-linear settings, and;
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3) shows more robust convergence for classical ARMA formulations compared to a standalone
implementation.

Outlook. An interesting future research direction is to make use of the theoretical results
for ARMA models known from classical statistical literature and transfer these to the appli-
cation of ARMA as a cell with multiple units or in its stacked variant. A directly available
result, e.g., would be last-layer uncertainty quantification (see, e.g., [IKB21]) in a stacked
RNN model where the last cell is an ARMA cell with one unit. Although this neglects the
variance in previous layers, it allows a first assessment of the RNN’s uncertainty. Further,
when merging multiple linearly activated ARMA cells, the combination is an ensemble of
ARMA models, for which some form of uncertainty quantification method could be derived.
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A Derivation of ARMA reparametrization

This shows how to rewrite the ARMA model. We start with

xt = α +

p∑

i=1

βixt−i +

q∑

j=1

γjεt−j + εt

and use the definition of x̂t := xt − εt to get

x̂t = α +

p∑

i=1

βixt−i +

q∑

j=1

γjεt−j.

We now replace each εt−j with xt−j − x̂t−j

x̂t = α +

p∑

i=1

βixt−i +

q∑

j=1

γj(xt−j − x̂t−j) = α +

p∑

i=1

βixt−i +

q∑

i=1

γixt−i −
q∑

j=1

γjx̂t−j.

We see that for all indices i ≤ min(p, q) the common factor of xt−i is βi + γi, if p > q and
i > q the factor is βi and if q > p and i > p then the factor is γi, yielding the desired result.

B Additional experimental details

B.1 ARMA parameter recovery

In order to investigate if the implemented cell recovers parameters of an arbitrary ARMA
model with coefficients estimated in a standard ARMA software [SP10], we simulate (V)ARMA
processes for 25, 000 time steps and all possible combinations of p, q ∈ {0, 1, . . . , 5}. We then
train a neural network defined by a single linear ARMA cell on the data and check the
convergence against the values obtained by maximum likelihood estimation. Results confirm
that the ARMA cell can recover the coefficients for different values of p and q, and also in
the multivariate setting. Figure 4 visualizes one exemplary learning process.

B.2 Elman parameter recovery

We now demonstrate the equivalence of a network based on the ARMA cell and an Elman
network when only one MA lag is considered, i.e., when the ARMA cell is restricted to
q = 1. For this, we take the ARMA(1,1) time series process used also in our simulation
studies and fit linearly activated single-unit models based on both the ARMA cell and the
Elman network. As shown in Figure 5, both models converge to the same parameters when
applying the ARMA coefficient reparametrization as in (3).
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Figure 4: Exemplary optimization paths for a single linear ARMA(2,1) cell using stochastic
gradient descent. After around 30 iterations, the models converge to the maximum likelihood
coefficients.
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Figure 5: The ARMA cell and the Elman model converging to the same coefficients for an
ARMA(1,1) process.
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B.3 Simulation study

Comparison between classical and first-order optimization. In the case where the
data generating process is in fact a (V)ARMA process, we expect the classical (V)ARMA
model and the ARMA cell to perform similarly, but note that the optimization using stochas-
tic gradient descent can sometimes yield better estimations of this process and hence out-
perform these classical models despite having the exact same hypothesis space.

We start with a variety of synthetic data examples using time series models defined
in [LWG93]. Simulations include linear and non-linear, as well as uni- and multivariate
time series. All time series are of length 1000 and split into 70% train and 30% test data.
The data generating processes follow [LWG93] and include an ARMA process (ARMA), a
threshold autoregressive model (TAR), an autoregressive time series which is transformed
using the sign operation (SGN), a non-linear autoregressive series (NAR), a heteroscedastic
MA process (Heteroscedastic), a vector ARMA (VARMA), a non-linear multivariate time
series with quadratic lag structure (SQ), and an exponential multivariate autoregressive time
series (EXP). The exact specification of the data generating processes are given below.

Description of simulated data generating processes. All error terms are a Gaussian
white noise εt ∼ N (0, 1). The data generating processes were defined as follows:

• ARMA(2,1)
xt = 0.1xt−1 + 0.3xt−2 − 0.4εt−1 + εt

• Threshold autoregressive (TAR)

xt =

{
0.9xt−1 + εt for |xt−1| ≤ 1,

−0.3xt−1 + εt for |xt−1| > 1

• Sign autoregressive (SGN)
xt = sgn(xt−1) + εt,

with

sgn(x) =





1 for x > 0,

0 for x = 0,

−1 for x < 0

• Non-linear autoregressive (NAR)

xt =
0.7|xt−1|
|xt−1 + 2| + εt

• Heteroskedastic MA(2)

xt = εt − 0.4εt−1 + 0.3εt−2 + 0.5εtεt−2

23

201



Table 5: Comparisons of different methods (rows) and different data generating processes
(columns) for univariate time series using the average RMSE ± the standard deviation of 30 inde-
pendent runs. The best performing method is highlighted in bold, the second-best in italics.

ARMA TAR SGN NAR Heteroskedastic
model

ARMA 2.04±0.35 2.92±3.20 2.36±2.67 2.67±4.92 1.19±0.15
ShallowARMA 1.96±0.09 1.09±0.12 1.10±0.07 1.02±0.05 1.11±0.06
DeepARMA 1.97±0.10 1.24±0.47 1.05±0.06 1.02±0.04 1.11±0.06
LSTM 1.98±0.10 1.38±0.42 1.19±0.16 1.02±0.04 1.15±0.09
DeepLSTM 2.02±0.10 1.46±0.55 1.17±0.13 1.02±0.04 1.16±0.08
GRU 1.96±0.10 1.28±0.31 1.09±0.08 1.02±0.04 1.13±0.07
DeepGRU 1.99±0.09 1.24±0.36 1.09±0.12 1.02±0.04 1.12±0.06
Simple 1.99±0.09 1.29±0.31 1.14±0.09 1.04±0.04 1.13±0.08
DeepSimple 2.01±0.11 1.47±0.57 1.15±0.10 1.03±0.04 1.16±0.10

• VARMA
[
xt,1
xt,2

]
=

[
0.1 −0.2
−0.2 0.1

] [
xt−1,1

xt−1,2

]
+

[
−0.4 0.2
0.2 −0.4

] [
εt−1,1

εt−1,2

]
+

[
εt,1
εt,2

]

• Square multivariate (SQ)

xt,1 = 0.6xt−1 + εt,1

xt,2 = x2t,1 + εt,2

• Exponential multivariate (EXP)

xt,1 = 0.6xt−1 + εt,1

xt,2 = exp(xt,1) + εt,2

For the multivariate time series (VARMA, SQ, EXP), the second index of xt,i, i ∈ {1, 2},
refers to the individual components.

Results. The results in Table 5 suggest that the ShallowARMA approach emulating an
ARMA model in a neural network works well for all linear- and non-linear datasets. In
terms of robustness, the lower RMSE and high standard deviation of the ARMA model on
the ARMA process shows that fitting an ARMA model in a neural network with stochastic
gradient descent can, in fact, be more robust than the standard software [HK08, SP10].
While the classical ARMA did match the performance of its neural counterpart it some
cases, the average RMSE is worse, as it did not converge in all runs, even for the linear
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Table 6: Comparisons of different methods (rows) and different data generating processes
(columns) for multivariate time series using the average RMSE ± the standard deviation of 30
independent runs. The best performing method is highlighted in bold, the second-best in italics.

VARMA EXP SQ

VARMA 1.00±0.03 3.35±0.69 1.90±0.14
ShallowARMA 1.00±0.03 3.14±0.74 1.75±0.12
DeepARMA 1.01±0.03 3.10±0.75 1.76±0.11
LSTM 1.01±0.04 3.26±0.73 1.83±0.16
DeepLSTM 1.03±0.04 3.35±0.68 1.86±0.14
GRU 1.02±0.04 3.19±0.75 1.80±0.13
DeepGRU 1.01±0.04 3.22±0.80 1.82±0.18
SIMPLE 1.02±0.03 3.29±0.70 1.80±0.12
DeepSimple 1.02±0.03 3.30±0.84 1.83±0.13

time series. The performance of the DeepARMA approach is slightly worse compared to the
ShallowARMA in most cases. The performance of LSTM, GRU, and the simple RNN are all
similar, with all methods matching the ARMA cells in some cases, and falling slightly behind
in others. As expected, the classical ARMA approach does not work well for non-linear data
generating processes (TAR, SGN, NAR) and yields unstable predictions underpinned by the
large standard deviations in RMSE values.

For multivariate time series results of the simulation are summarized in Table 6. The
results again show that the ShallowARMA model matches the performance of the classical
VARMA model for a dataset that is also based on a VARMA process. For other types
of data generation, the ShallowARMA model and DeepARMA model work similarly well.
Both outperform the other neural cells, which in turn yield better results than the VARMA
baseline.

In summary, findings suggest that ARMA cells work well for simpler linear and non-linear
data generating processes while being much more stable than a classical ARMA approach.

B.4 Ablation studies

To explore the validity of our presented results, we perform a series of ablation studies.
Two important influence factors on the performance of time series models are the length of
the time series and the forecasting horizon, which we subsequently assess in the controlled
setting of our simulation study.

B.4.1 Time series length

In order to investigate the influence of the time series length on the performance reported in
previous simulations, we vary T ∈ {200, 1000, 10000} and re-run the experiments reported
in Table 5 and 6. The results are given in Tables 7 and 8. In summary, the rank of the
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different methods is similar to the aforementioned results, and ShallowARMA yields the best
results in most settings. There is, however, a clear trend in that the performance differences
between the different cell types become irrelevant for an increase in T . For example, for the
multivariate time series study setting SQ, the ShallowARMA yields a notably better MSE
for T = 200 compared to the DeepSimple cell (1.97± 0.41 vs. 3.00± 3.95), the performances
are almost identical for T = 10, 000 observations (1.78± 0.05 vs. 1.80± 0.07).
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ARMA TAR SGN NAR Hetero

ARMA 2.19±0.97 1.77±0.86 1.80±1.54 1.04±0.15 1.38±0.56
ShallowARMA 2.00±0.21 1.51±0.46 1.29±0.10 1.03±0.13 1.17±0.15
DeepARMA 2.04±0.22 1.71±0.43 1.32±0.16 1.03±0.13 1.21±0.17
LSTM 2.08±0.24 2.05±0.98 1.40±0.16 1.03±0.14 1.22±0.17
DeepLSTM 2.09±0.24 2.03±0.51 1.46±0.17 1.03±0.13 1.24±0.17
GRU 2.08±0.24 1.71±0.49 1.34±0.16 1.03±0.13 1.23±0.17
DeepGRU 2.08±0.22 1.77±0.43 1.38±0.15 1.03±0.13 1.23±0.18
SIMPLE 2.32±0.69 2.14±0.91 1.43±0.22 1.16±0.53 1.34±0.36
DeepSIMPLE 2.30±0.87 2.34±1.47 1.70±0.81 1.10±0.29 1.25±0.18

(a) 200 observations

ARMA TAR SGN NAR Hetero

ARMA 2.07±0.29 1.98±1.98 1.71±1.80 1.94±3.46 1.48±1.60
ShallowARMA 2.02±0.11 1.12±0.14 1.12±0.05 1.00±0.05 1.11±0.06
DeepARMA 2.04±0.11 1.18±0.29 1.07±0.05 1.00±0.05 1.12±0.06
LSTM 2.06±0.12 1.22±0.25 1.16±0.10 1.00±0.05 1.15±0.06
DeepLSTM 2.11±0.14 1.18±0.20 1.16±0.11 1.00±0.05 1.17±0.09
GRU 2.06±0.13 1.29±0.30 1.14±0.09 1.00±0.05 1.13±0.06
DeepGRU 2.08±0.13 1.21±0.26 1.11±0.09 1.00±0.05 1.13±0.07
SIMPLE 2.07±0.13 1.31±0.25 1.18±0.11 1.01±0.05 1.15±0.08
DeepSIMPLE 2.09±0.12 1.43±0.45 1.16±0.11 1.01±0.06 1.15±0.08

(b) 1000 observations

ARMA TAR SGN NAR Hetero

ARMA 2.04±0.23 1.60±0.94 1.94±3.10 1.05±0.14 1.16±0.11
ShallowARMA 2.00±0.03 1.01±0.01 1.06±0.03 1.00±0.01 1.06±0.02
DeepARMA 2.00±0.04 1.06±0.23 1.02±0.03 1.00±0.01 1.05±0.02
LSTM 2.00±0.03 1.06±0.23 1.03±0.01 1.00±0.01 1.04±0.02
DeepLSTM 2.02±0.06 1.11±0.33 1.06±0.12 1.01±0.01 1.04±0.04
GRU 2.01±0.04 1.19±0.45 1.07±0.12 1.00±0.01 1.04±0.02
DeepGRU 2.01±0.04 1.19±0.44 1.04±0.10 1.00±0.01 1.03±0.02
SIMPLE 2.02±0.04 1.02±0.02 1.08±0.08 1.00±0.01 1.06±0.02
DeepSIMPLE 2.02±0.06 1.15±0.37 1.04±0.08 1.00±0.01 1.05±0.02

(c) 10000 observations

Table 7: Comparisons of different methods (rows) and different data generating processes
(columns) across different time series lengths (200 (a), 1000 (b), 10000 (c)) for univariate time
series using the average RMSE ± the standard deviation of 30 independent runs. The best per-
forming method is highlighted in bold, the second-best in italics.
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VARMA 200 EXP 200 SQ 200
VARMA 1.02±0.08 3.11±1.67 2.07±0.44
ShallowARMA 1.01±0.06 2.97±1.68 1.97±0.41
DeepARMA 1.02±0.07 3.02±1.68 2.04±0.47
LSTM 1.01±0.06 3.24±1.77 2.17±0.57
DeepLSTM 1.02±0.06 3.12±1.70 2.16±0.56
GRU 1.02±0.07 3.12±1.72 2.06±0.47
DeepGRU 1.02±0.06 3.15±1.73 2.14±0.55
SIMPLE 1.09±0.13 3.60±2.04 2.79±1.59
DeepSIMPLE 1.06±0.09 3.32±1.83 3.00±3.95

(a) 200 observations

VARMA 1k EXP 1k SQ 1k
VARMA 1.00±0.03 2.92±0.61 1.88±0.17
ShallowARMA 1.01±0.04 2.70±0.63 1.75±0.16
DeepARMA 1.01±0.04 2.71±0.63 1.75±0.15
LSTM 1.02±0.04 2.80±0.65 1.81±0.17
DeepLSTM 1.04±0.04 2.86±0.63 1.84±0.17
GRU 1.02±0.04 2.76±0.61 1.78±0.17
DeepGRU 1.02±0.04 2.81±0.66 1.81±0.18
SIMPLE 1.03±0.04 3.18±1.67 1.82±0.19
DeepSIMPLE 1.04±0.04 2.89±0.72 1.85±0.18

(b) 1000 observations

VARMA 10k EXP 10k SQ 10k
VARMA 1.00±0.01 3.04±0.39 1.94±0.06
ShallowARMA 1.00±0.01 2.80±0.41 1.78±0.05
DeepARMA 1.00±0.01 2.81±0.41 1.78±0.05
LSTM 1.00±0.01 2.84±0.46 1.79±0.06
DeepLSTM 1.01±0.01 2.90±0.46 1.81±0.07
GRU 1.00±0.01 2.82±0.41 1.79±0.06
DeepGRU 1.00±0.01 2.87±0.43 1.80±0.06
SIMPLE 1.00±0.01 2.83±0.42 1.79±0.05
DeepSIMPLE 1.01±0.01 2.86±0.41 1.80±0.07

(c) 10000 observations

Table 8: Comparisons of different methods (rows) and different data generating processes
(columns) across different time series lengths (200 (a), 1000 (b), 10000 (c)) for multivariate time
series using the average RMSE ± the standard deviation of 30 independent runs. The best per-
forming method is highlighted in bold, the second-best in italics.
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B.4.2 Forecasting horizon

Similar to the previous ablation study, we reran the experiments but now alter the forecasting
horizon by comparing a one-step, 10-step, and 20-step forecast for T = 1000. The results can
be found in Table 9 and 10. In the univariate case for forecasting horizons greater one, the
different ARMA variations do not outperform other approaches anymore and DeepLSTM,
GRU, or Deep GRU yield the best results in many cases. The performance values, however,
are in most cases within one standard deviation of those by the Shallow- or DeepARMA
approach. For the multivariate case, the classical VARMA model provides the best forecast
for all multi-step ahead forecast scenarios, closely followed by the Shallow- and DeepARMA
models.

B.5 Description of benchmark datasets

M4. Stemming from the Makridakis Competitions [MSA18] (see https://en.wikipedia.
org/wiki/Makridakis_Competitions for more information), the M4 dataset contains 414
time series of hourly data. Every time series has a different starting point and a length of
748 hours. To allow for multivariate prediction, we take a subset of ten times series starting
at the same time and ending at the same time. We further take differences with a period of
one and 24 hours to improve stationarity and reduce seasonal effects, respectively.

Traffic. The traffic dataset can be downloaded from https://archive.ics.uci.edu/ml/

datasets/PEMS-SF. It consists of 963 car lane occupancy rates with values between 0 and 1
taken from freeways in the San Francisco Bay Area. Time series start on the first of January
2008 and last until March 30 2009 with an observation frequency of 10 minutes. To condense
the information, an hourly aggregation is used [YRD16], yielding time series of length 10,560.
We use the first ten time series and observations until ’2008-06-22 23:00:00’, yielding a total
of 4,167 observations per lane. We further apply seasonal differencing with a seasonal period
of 24 hours and take first differences to reduce non-stationary behavior.

Electricity. The electricity dataset can be downloaded from https://archive.ics.uci.

edu/ml/datasets/ElectricityLoadDiagrams20112014. The dataset consists of electricity
consumption (kWh) time series of 370 customers [Tri15]. Values correspond to electricity
usage in a frequency of 15 minutes. In our benchmarks, we aggregate the values to hourly
consumption (see also [YRD16] for justification of this approach). We use a subset of ten
customers and a time range from ’2014-01-01 00:00:00’ to ’2014-09-07 23:00:00’, yielding a
total of 6,000 observations per customer . We further apply seasonal differencing with a
period of 24 hours to reduce seasonal effects and take the first differences for stationarity
reasons.
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B.6 Architectures and search space

For uni- and multivariate time series, all neural networks contain one to two RNN layers of
the respective RNN cell, yielding the shallow and deep versions of the models, respectively.
The cells in each layer contain one to five units with a rectified linear activation function.
In the ShallowARMA model, one cell is activated linearly as shown in Figure 2, resembling
a hybrid model. A final fully connected layer with linear activation and appropriate output
shape is used to match the dimensions of the time series. The lag values p and q are chosen
from the interval [1, 4]. The loss function of all models is the mean squared error function.
For training, the Adam [KB14] optimizer is used in combination with an early stopping
callback to prevent overfitting. For all other model properties, the default values are used.
For tensor-variate time series, batch normalization layers are added between the RNN layers,
and adaptive learning is added to improve convergence. Each layer contains 64 filters, so a
2D convolution is added to reduce the number of channels appropriately.

B.7 Computational environment

All experiments and benchmarks were carried out on an internal cluster. Uni- and multi-
variate time series were trained on a server with 10 vCPUs, running on an Intel(R) Xeon(R)
Gold 6148 CPU @ 2.40GHz physical CPU and 48Gb allocated memory. Tensor-variate time
series were trained on a server with 16 vCPUS, running on an Intel(R) Xeon(R) Gold 6226R
CPU @ 2.90GHz, 32Gb allocated memory, and a Nvidia GeForce RTX 2080 Ti (11Gb).

B.8 Additional details on experimental setup

We now give additional details about our experimental setup, clarifying the preprocessing
steps as well as the training routines.

B.9 General setup and optimization

Across all simulations and benchmarks, we use the Adam [KB14] optimizer with a learning
rate of 1e-3, and momentum parameters β1 = 0.9 and β2 = 0.999. We use a batch size of 32,
early stopping with patience 10 iterations, and run the model for a maximum of 100 epochs.

B.10 Competitor architectures

The following abbreviations are used for the methods we compare the ARMA cell against:

• LSTM/GRU/SIMPLE: A single LSTM/GRU/SIMPLE cell with ReLU activation func-
tion and a sigmoid recurrent activation function. The kernel, recurrent, and bias ini-
tializers are chosen to be uniform, orthogonal, and zero, respectively. The number of
units is chosen via hyperparameter optimization in the range of one to five.

• DeepLSTM/DeepGRU/DeepSIMPLE: This setup stacks two of the cells in their non-
deep counterparts, with the first layer set to return sequences.
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B.11 Input and out formats of RNNs

The input of the RNN cells are subsequences of the time series X. For a sequence length s,
the input shape for a non-ARMA cell RNN is given by s× k. The input of the ARMA cell
has an additional dimension for the lagged inputs, i.e., s× k × p.

The non-ARMA cell RNN with u units returns an s×u time series. In order to allow the
ARMA cell to be stacked, we have an additional dimension in the output. Specified by the
keyword argument return_lags, we either return s× (d ∗ u)× 1 if False, or s× (d ∗ u)× q
if True. The factor d ensures that a single unit ARMA cell returns the same number of
dimensions as its input, allowing it to capture a classical VARMA model.

B.12 Specific setups

B.12.1 Simulation study

For the simulated time series, no preprocessing was necessary, as the data generating pro-
cesses are all stationary and also of the same magnitude.

B.12.2 Benchmarks

For the real-world datasets, preprocessing was performed to improve the convergence of all
models. In particular, we first apply differencing to remove trends in the time series. We
define ∆k to be the difference to the k’th lag of the time series. For M4, traffic, and electricity,
we use ∆1∆24X. We then standardize the resulting time series with their empirical mean
and variance.

B.12.3 Integration with state-of-the-art forecasting frameworks

For the DeepAR benchmark, we use a larger dataset by looking at the first 100 columns of
the M4, traffic, and electricity datasets.

Architectures. We use the following two types of DeepAR architectures:

• SINGLE: The SINGLE DeepAR model consists of one RNN block (either LSTM or
ARMA) with 4(1 + log(d)) units for the LSTM and one unit for the ARMA cell,
a dropout rate of 0.2, and returns a sequence that is further processed by a fully-
connected layer with s(1+log(d)) number of units where s ∈ {1, 4} is a hyperparameter
and tanh activation. The resulting output is then fed into a Gaussian distribution
layer that multiplies the number of input units by two to define both a mean and
standard deviation for all output units by multiplying the inputs with a weight matrix
of respective size. For the ARMA cell-based DeepAR model, we have the additional
hyperparameters p and q, which we optimize over the range from 1 to 4, again only
considering p = q for computational reasons.
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Figure 6: Logarithmic RMSE values (y-axis) for different models (colors) and their respective
parameter numbers (x-axis) separated by the time series length (columns) and data sets (rows).

• STACKED: The STACKEDmodel uses the same architecture as SINGLE but combines
two of the RNN cells specified by the SINGLE model.

B.13 Investigation of parameter influence

In the following, we investigate the influence of the number of parameters on the performance
and provide a summary of the resulting hyperparameter optimization results.

Relation between number of parameters and performance. In Figure 6 we compare
the logarithmic RMSE values of different models to the (logarithmic) number of parameters
in the case of a one-step forecasting horizon. Whereas performance values are very similar
for all models for the linear time series (ARMA, TAR), the ShallowARMA model yields
better results than the SIMPLE, GRU, and LSTM models while having fewer parameters
compared to the latter two architectures. The DeepARMA model often yields a similar or
larger number of parameters compared to the other deep architectures, while also yielding
smaller RMSE values, in particular for non-linear time series (NAR, SGN).

A similar result can be observed for different forecasting horizons (Figure 7). When
comparing only the two ARMA-variants (Figure 8), the improvement using a deep instead
of a shallow ARMA becomes apparent, but – as expected – only on the non-linear data sets
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Figure 7: Logarithmic RMSE values (y-axis) for different models (colors) and their respective
parameter numbers (x-axis) separated by the forecasting horizon (columns) and data sets (rows).

33

211



length: 200 length: 1000 length: 10000

A
R

M
A

TA
R

S
G

N
N

A
R

H
eteroskedastic

2 4 6 2 4 6 2 4 6

0.5

0.6

0.7

0.8

0.9

0.0

0.4

0.8

0.0

0.1

0.2

0.3

0.4

0.5

−0.2

−0.1

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

log. #Parameters

lo
g.

 R
M

S
E

DeepARMA

ShallowARMA

Figure 8: Logarithmic RMSE values (y-axis) for the two different ARMA models (colors) and
their respective parameter numbers (x-axis) separated by the time series length (columns) and data
sets (rows).

(TAR, SGN) and larger time series (1000, 10000).
We now further investigate the chosen number of lags p and q in the hyperparameter

optimization routine. Figure 9 summarizes the result of this analysis by plotting the number
of runs in which a given value for p or q was chosen. As we have the simplifying assumption
of only considering p = q in the ShallowARMA and DeepARMA models, only one bar is
given for each model. We find that the classical ARMA model chooses the correct value of
p = 2 in the majority of cases. We further find that the DeepARMA model tends to use a
lower number of lags compared to the ShallowARMA model, indicating that the second layer
facilitates more complex model spaces that are otherwise captured by a longer lag structure.

Influence of the non-linearity. To assess the influence of the non-linear activation, we
check how often a purely linear activation was chosen by the hyperparameter optimization
for the ShallowARMA model in the univariate simulations. We find that the hyperparameter
optimization opted to use non-linear activations in almost all cases, only using linear models
3 times for NAR, 1 time for Heteroskedastic, and 0 times for TAR and SGN. For the ARMA
time series, however, a purely linear activation was selected more often, in 9 out of 30 cases.
This indicates that the non-linearity contributes to the performance improvement of the cell.
By contrast, we did not find substantial differences based on the number of units, as shown
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Figure 9: Aggregated lag choices (number of counts on the y-axis for p and q for the classical
ARMA model, as well as the ShallowARMA and DeepARMA for each of the 5 data sets (different
plots)).

in Figures 6-8. Note that while these figures show the number of parameters, this implicitly
groups them by the number of units.

B.14 Additional simulation and benchmark results

In the following, we provide additional results on numerical experiments by including com-
parisons based on the mean absolute error (MAE).

Results. The results for simulated data suggest that either the ShallowARMA or DeepARMA
cell perform best in most cases while on par with the GRU cell for the ARMA and NAR
dataset. For the simulated multivariate time series, none of the existing neural methods out-
performs the ARMA cells. For the time series benchmark datasets, the ARMA approaches
outperform all other RNN approaches on M4 and Traffic. On the Electricity dataset the
ARMA cells remain competitive for the univariate case, but yield larger RMSE values com-
pared to GRU and Simple in the multivariate setting.

Overall the rankings of methods do not change notably when using the MAE instead of
the RMSE as comparison measure.
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ARMA TAR SGN NAR Hetero

ARMA 2.07±0.29 1.98±1.98 1.71±1.80 1.94±3.46 1.48±1.60
ShallowARMA 2.02±0.11 1.12±0.14 1.12±0.05 1.00±0.05 1.11±0.06
DeepARMA 2.04±0.11 1.18±0.29 1.07±0.05 1.00±0.05 1.12±0.06
LSTM 2.06±0.12 1.22±0.25 1.16±0.10 1.00±0.05 1.15±0.06
DeepLSTM 2.11±0.14 1.18±0.20 1.16±0.11 1.00±0.05 1.17±0.09
GRU 2.06±0.13 1.29±0.30 1.14±0.09 1.00±0.05 1.13±0.06
DeepGRU 2.08±0.13 1.21±0.26 1.11±0.09 1.00±0.05 1.13±0.07
SIMPLE 2.07±0.13 1.31±0.25 1.18±0.11 1.01±0.05 1.15±0.08
DeepSIMPLE 2.09±0.12 1.43±0.45 1.16±0.11 1.01±0.06 1.15±0.08

(a) 1 step ahead

ARMA TAR SGN NAR Hetero

ARMA 2.12±0.06 2.58±0.64 1.44±0.08 1.03±0.04 1.28±0.06
ShallowARMA 2.16±0.14 2.33±0.34 1.41±0.04 1.00±0.05 1.24±0.08
DeepARMA 2.17±0.13 2.26±0.33 1.41±0.04 1.00±0.05 1.24±0.08
LSTM 2.17±0.13 2.48±1.22 1.41±0.04 1.00±0.05 1.24±0.08
DeepLSTM 2.16±0.13 2.30±0.37 1.41±0.04 1.00±0.05 1.24±0.08
GRU 2.17±0.13 2.25±0.30 1.41±0.05 1.00±0.05 1.24±0.08
DeepGRU 2.16±0.13 2.29±0.35 1.41±0.04 1.00±0.05 1.24±0.08
SIMPLE 2.18±0.14 2.28±0.28 1.42±0.05 1.01±0.06 1.29±0.15
DeepSIMPLE 2.22±0.23 2.34±0.42 1.43±0.07 1.02±0.06 1.25±0.08

(b) 10 step ahead

ARMA TAR SGN NAR Hetero

ARMA 2.10±0.07 3.25±1.38 1.43±0.08 1.02±0.02 1.24±0.05
ShallowARMA 2.17±0.13 2.33±0.32 1.42±0.05 1.00±0.04 1.24±0.09
DeepARMA 2.17±0.13 2.32±0.33 1.42±0.05 1.00±0.04 1.23±0.09
LSTM 2.17±0.13 2.59±1.45 1.43±0.06 1.00±0.04 1.24±0.09
DeepLSTM 2.17±0.13 2.33±0.35 1.43±0.05 1.00±0.04 1.23±0.09
GRU 2.17±0.13 2.32±0.31 1.44±0.06 1.01±0.04 1.24±0.09
DeepGRU 2.17±0.13 2.32±0.32 1.43±0.06 1.00±0.04 1.24±0.09
SIMPLE 2.18±0.14 2.44±0.45 1.44±0.06 1.01±0.04 1.26±0.10
DeepSIMPLE 2.18±0.13 2.42±0.43 1.44±0.07 1.07±0.23 1.24±0.09

(c) 20 step ahead

Table 9: Comparisons of different methods (rows) and different data generating processes
(columns) across different forecasting horizons (1 (a), 10 (b), 20 (c)) for univariate time series
using the average RMSE ± the standard deviation of 30 independent runs. The best performing
method is highlighted in bold, the second-best in italics.
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VARMA EXP SQ

VARMA 1.00±0.03 2.92±0.61 1.88±0.17
ShallowARMA 1.01±0.04 2.70±0.63 1.75±0.16
DeepARMA 1.01±0.04 2.71±0.63 1.75±0.15
LSTM 1.02±0.04 2.80±0.65 1.81±0.17
DeepLSTM 1.04±0.04 2.86±0.63 1.84±0.17
GRU 1.02±0.04 2.76±0.61 1.78±0.17
DeepGRU 1.02±0.04 2.81±0.66 1.81±0.18
SIMPLE 1.03±0.04 3.18±1.67 1.82±0.19
DeepSIMPLE 1.04±0.04 2.89±0.72 1.85±0.18

(a) 1 step ahead

VARMA EXP SQ

VARMA 1.05±0.03 2.98±0.80 1.89±0.19
ShallowARMA 1.05±0.03 3.03±0.81 1.91±0.19
DeepARMA 1.05±0.04 3.02±0.81 1.91±0.20
LSTM 1.05±0.04 3.08±0.83 1.93±0.20
DeepLSTM 1.05±0.04 3.06±0.81 1.93±0.21
GRU 1.05±0.03 3.06±0.82 1.92±0.20
DeepGRU 1.05±0.04 3.06±0.83 1.91±0.19
SIMPLE 1.06±0.04 3.09±0.83 1.98±0.22
DeepSIMPLE 1.06±0.04 3.19±1.01 1.95±0.20

(b) 10 step ahead

VARMA EXP SQ

VARMA 1.05±0.04 2.88±0.88 1.97±0.20
ShallowARMA 1.06±0.04 2.91±0.90 2.00±0.20
DeepARMA 1.05±0.04 2.91±0.89 2.00±0.20
LSTM 1.05±0.04 2.93±0.90 2.04±0.27
DeepLSTM 1.05±0.04 2.97±0.95 2.01±0.20
GRU 1.05±0.04 2.98±1.06 2.01±0.20
DeepGRU 1.05±0.04 2.93±0.88 2.01±0.21
SIMPLE 1.06±0.04 3.06±0.93 2.09±0.27
DeepSIMPLE 1.06±0.04 2.98±0.89 2.11±0.50

(c) 20 step ahead

Table 10: Comparisons of different methods (rows) and different data generating processes
(columns) across different forecasting horizons (1 (a), 10,(b) 20 (c)) for multivariate time series
using the average RMSE ± the standard deviation of 30 independent runs. The best performing
method is highlighted in bold, the second-best in italics.
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Table 11: Comparisons of different methods (rows) and different data generating processes
(columns) for univariate time series using the average MAE ± the standard deviation of 10 in-
dependent runs. The best performing method is highlighted in bold, the second-best in italics.

ARMA TAR SGN NAR Heteroskedastic
model

ARMA 1.62±0.29 2.39±2.66 1.98±2.35 2.28±4.42 0.95±0.11
ShallowARMA 1.55±0.07 0.84±0.06 0.88±0.06 0.81±0.04 0.88±0.05
DeepARMA 1.57±0.08 0.96±0.38 0.84±0.05 0.81±0.04 0.88±0.05
LSTM 1.57±0.07 1.08±0.36 0.96±0.15 0.81±0.04 0.92±0.08
DeepLSTM 1.60±0.08 1.12±0.42 0.94±0.12 0.81±0.04 0.92±0.07
GRU 1.56±0.09 0.98±0.22 0.88±0.07 0.81±0.04 0.90±0.06
DeepGRU 1.58±0.07 0.95±0.26 0.87±0.10 0.81±0.04 0.90±0.05
Simple 1.58±0.08 0.99±0.22 0.91±0.08 0.83±0.04 0.90±0.06
DeepSimple 1.60±0.08 1.15±0.46 0.92±0.08 0.82±0.04 0.92±0.08

Table 12: Comparisons of different methods (rows) and different data generating processes
(columns) for multivariate time series using the average MAE ± the standard deviation of 10
independent runs. The best performing method is highlighted in bold, the second-best in italics.

VARMA EXP SQ
model

VARMA 0.80±0.02 1.61±0.13 1.22±0.07
ShallowARMA 0.80±0.03 1.48±0.13 1.19±0.06
DeepARMA 0.81±0.03 1.48±0.13 1.20±0.06
LSTM 0.81±0.03 1.55±0.13 1.25±0.09
DeepLSTM 0.82±0.03 1.63±0.16 1.29±0.10
GRU 0.81±0.03 1.53±0.14 1.23±0.07
DeepGRU 0.81±0.03 1.54±0.13 1.23±0.09
SIMPLE 0.82±0.02 1.56±0.15 1.23±0.07
DeepSimple 0.82±0.03 1.56±0.17 1.25±0.08
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Table 13: Comparison of different univariate and multivariate forecasting approaches (rows) for
different datasets (columns) based on the average MAE ± the standard deviation of 10 independent
runs. The best performing method is highlighted in bold, the second-best in italics.

M4 traffic electricity

u
n
iv
.

ARMA 0.82±0.00 0.48±0.00 0.77±0.00
ShallowARMA 0.83±0.00 0.48±0.00 0.74±0.01
DeepARMA 0.84±0.01 0.45±0.01 0.70±0.02
LSTM 0.88±0.03 0.45±0.00 0.72±0.03
DeepLSTM 0.98±0.10 0.45±0.00 0.69±0.02
GRU 0.86±0.02 0.45±0.01 0.70±0.02
DeepGRU 0.86±0.02 0.45±0.01 0.70±0.01
Simple 0.91±0.06 0.46±0.00 0.71±0.01
DeepSimple 0.93±0.07 0.46±0.01 0.70±0.01

m
u
lt

iv
.

ARMA 0.82±0.00 0.48±0.00 0.77±0.00
ShallowARMA 0.82±0.01 0.53±0.01 0.78±0.01
DeepARMA 0.83±0.00 0.53±0.02 0.77±0.03
LSTM 0.97±0.04 0.49±0.01 0.93±0.20
DeepLSTM 1.06±0.08 0.49±0.02 0.74±0.03
GRU 0.97±0.09 0.48±0.00 0.73±0.02
DeepGRU 0.97±0.06 0.48±0.01 0.72±0.02
Simple 0.99±0.03 0.47±0.01 0.73±0.02
DeepSimple 1.01±0.05 0.47±0.01 0.70±0.01
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