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Abstract v

Abstract

The ability to extract valuable information from data is becoming increasingly relevant
due to the growing number of available data sets. Since annotating data is very costly,
methods that provide this information without any annotations are of particular interest.
However, so-called clustering methods, which identify groups of objects with similar
characteristics, often run into problems when working with extensive data sets or data
sets with numerous features. Therefore, we require new methods that return high-quality
results even when working with large, high-dimensional data.

A common practice is to accompany the clustering process with a dimensionality re-
duction, leading to a simplified data set consisting only of those features that contain
valuable information for the cluster analysis. If this dimensionality reduction occurs
through a linear transformation, it is usually referred to as subspace clustering. Here,
intermediate clustering results can significantly influence the resulting features. This
ability is in contrast to a simple, preceding dimensionality reduction. When discussing
subspace clustering, one must distinguish between traditional methods that define a sep-
arate subspace for each cluster and those that create a common feature space for all
clusters. In this dissertation, we only deal with common subspace approaches, as they
preserve the comparability between the clusters. One can go one step further and cre-
ate multiple common subspaces for multiple clustering results, which is the case with
so-called non-redundant clustering methods. Applying those approaches is often chal-
lenging because suitable parameters for the dimensionalities of the subspaces and the
number of clusterings and clusters per clustering have to be defined. We tackle this
problem by using the current modes in each subspace to encode the data and apply the
Minimum Description Length principle. Here, the model with the minimum encoding
cost is assumed to be the best solution.

Existing modes are further analyzed by utilizing statistical modality tests, such as the
Dip-test of unimodality. The Dip-test outputs a Dip-value that describes the deviation
of an empirical cumulative distribution function to an arbitrary unimodal distribution.
Using a novel transformation function, we can further state how likely a unimodal or
multimodal distribution is to be present, which helps to interpret the Dip-value better.
Due to the differentiability of this function, it is used to identify projection axes that show
a high degree of multimodality within the clusters. Combining these axes, one obtains a
lower-dimensional feature space containing the main modes within the data set, where
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each mode defines a separate cluster.
For complex data sets, there is a need for more powerful processes than linear trans-

formations to obtain suitable feature spaces for clustering. Non-linear transformations
using neural networks are often applied in these cases. The combination of clustering
and neural networks is known as deep clustering. Such methods directly integrate the
clustering approach into the optimization function of, e.g., an autoencoder. Once again,
the problem arises of selecting a suitable value for the number of clusters. A solution
is to overestimate the initial number of clusters deliberately and, based on the current
modalities obtained by the Dip-test, decide whether two clusters can be merged. The
embedding then adapts to the existing clustering structure. As a result, the number of
clusters does not have to be known in advance but is learned by the algorithm. Fur-
ther analyses show that the Dip-test can be directly used to optimize an autoencoder.
For this purpose, we utilize the gradient of the Dip-test to train the parameters of an
autoencoder and identify high-quality clustering results. Thus, no specific distribution
function for the embedded data must be assumed apriori. The only assumption is that
each cluster adopts a unimodal and each pair of clusters a multimodal structure, which
is a relaxation compared to established methods.

The described approaches fulfill their goal of identifying informative structures in
large, high-dimensional data sets without requiring any annotations. Compared to
competitor methods, they achieve state-of-the-art results, while the parameterization is
greatly simplified. All methods presented in this thesis are provided in our open-source
package ClustPy.
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Zusammenfassung

Die Fähigkeit wertvolle Informationen aus Daten zu extrahieren, wird aufgrund der
wachsenden Anzahl an verfügbaren Datensätzen immer wichtiger. Da die Annota-
tion von Daten sehr kostspielig ist, sind insbesondere Methoden interessant, die diese
Informationen ohne vordefinierte Annotationen ausgeben. Sogenannten Clustering-
Methoden, die automatisiert Gruppen von Objekten mit ähnlichen Charakteristiken
identifizieren, stoßen jedoch häufig beim Arbeiten mit sehr großen Datensätzen oder
Datensätzen mit einer Vielzahl von Merkmalen auf Probleme. Es werden daher neue
Methoden benötigt, die auch bei großen, hochdimensionalen Daten qualitativ hochwer-
tige Ergebnisse liefern.

Eine gängige Praxis ist es, den Clustering-Prozess mit einer Dimensionsreduktion zu
kombinieren. Dies führt zu einem vereinfachten Datensatz, der nur aus denjenigen
Merkmalen besteht, die wertvolle Informationen für die Clusteranalyse enthalten. Er-
folgt diese Reduktion der Dimensionen durch eine lineare Transformation, so spricht
man vom Subspace Clustering. Im Gegensatz zu einer einfachen, vorangehenden Di-
mensionsreduktion können beim Subspace Clustering die Zwischenergebnisse des Clus-
terings die resultierenden Merkmale erheblich beeinflussen. Bei der Betrachtung vom
Subspace Clustering muss man zwischen traditionellen Methoden, die für jedes Clus-
ter einen eigenen Unterraum definieren, und solchen, die einen gemeinsamen Merk-
malsraum für alle Cluster erstellen, unterscheiden. In dieser Dissertation befassen wir
uns nur mit Subspace Verfahren, die einen einzelnen Unterraum erstellen, da sie eine
bessere Vergleichbarkeit zwischen den Clustern bieten. Man kann noch einen Schritt
weiter gehen und mehrere solcher Unterräume für mehrere Clustering-Ergebnisse er-
stellen. Dies ist bei sogenannten nicht-redundanten Clustering-Methoden der Fall. Die
Ausführung dieser Ansätze ist oft eine Herausforderung, da geeignete Parameter für die
Dimensionalität der Unterräume und die Anzahl der Clusterings und Cluster pro Clus-
tering definiert werden müssen. Wir gehen dieses Problem an, indem wir die aktuellen
Modi in jedem Unterraum zur Kodierung der Daten verwenden und das Minimum De-
scription Length Prinzip anwenden. Dabei wird angenommen, dass das Modell mit den
geringsten Kodierungskosten die beste Lösung darstellt.

Vorhandene Modi werden ebenfalls durch statistische Modalitätstests, wie dem Dip-
Test der Unimodalität, analyisert. Der Dip-Test liefert einen Dip-Wert, der den Ab-
stand zwischen einer empirische Verteilungsfunktion zu einer beliebigen unimodalen
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Verteilung angibt. Mithilfe einer neuartigen Transformationsfunktion können wir
außerdem angeben, wie wahrscheinlich es ist, dass eine unimodale oder multimodale
Verteilung vorliegt, wodurch der Dip-Wert besser interpretierbar ist. Aufgrund der Dif-
ferenzierbarkeit dieser Funktion wird sie weiter dazu verwendet, Projektionsachsen zu
identifizieren, die einen hohen Grad an Multimodalität innerhalb der vorhandenen Clus-
ter aufweisen. Kombiniert man diese Achsen, erhält man einen niedrigdimensionalen
Merkmalsraum, der die wesentlichen Modi innerhalb des Datensatzes enthält, wobei
jeder Modus ein eigenes Cluster definiert.

Für komplexe Datensätze benötigen wir leistungsfähigere Verfahren als lineare Trans-
formationen, um geeignete Merkmalsräume für das Clustering zu erhalten. Nichtlineare
Transformationen unter Verwendung neuronaler Netze werden häufig in diesen Fällen
angewandt. Diese Kombination aus Clustering und neuronalen Netzen wird als Deep
Clustering bezeichnet. Solche Methoden integrieren den Clustering-Vorgang direkt in
die Optimierungsfunktion bspw. eines Autoencoders. Auch hier stellt sich das Prob-
lem, einen geeigneten Wert für die Anzahl der Cluster zu wählen. Eine Lösung besteht
darin, die anfängliche Anzahl der Cluster bewusst zu überschätzen und auf der Grund-
lage der aktuellen Modalitäten, die durch den Dip-Test ermittelt werden, zu entscheiden,
ob zwei Cluster zusammengefasst werden können. Das Embedding passt sich dann an die
vorhandene Clusterstruktur an. Dadurch muss die Anzahl der Cluster nicht im Voraus
bekannt sein, sondern wird vom Algorithmus selbstständig erlernt. Weitere Analysen
zeigen, dass der Dip-Test direkt zum Optimieren eines Autoencoders verwendet werden
kann. Hierzu nutzen wir den Gradienten des Dip-Tests zum Trainieren der Parameter
eines Autoencoders und für die Identifikation hochwertiger Clustering-Ergebnisse. Es
muss keine spezifische Verteilungsfunktion für die transformierten Daten vorausgesetzt
werden. Die einzige Annahme ist, dass jedes Cluster eine unimodale und jedes Cluster-
paar eine multimodale Struktur annimmt. Dies stellt eine Reduzierung der Annahmen
gegenüber etablierten Methoden dar.

Die beschriebenen Ansätze erfüllen ihr Ziel, informative Strukturen in großen, hochdi-
mensionalen Datensätzen zu identifizieren, ohne dass Annotationen erforderlich sind.
Im Vergleich zu konkurrierenden Methoden erzielen sie sehr gute Ergebnisse, wobei die
Parametrisierung stark vereinfacht ist. Alle in dieser Arbeit vorgestellten Verfahren, wer-
den durch unser Open-Source-Paket ClustPy bereitgestellt.
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1 Introduction

“We are drowning in information but starved for knowledge”
- John Naisbitt (1982) [Nai82]

As the amount of available data is permanently growing, there is increasing interest in
data mining methods capable of extracting valuable knowledge from this data. In order
to grasp the potential offered by such approaches, one should consider that the amount
of data generated per day was about 2.5 exabytes1 in 2012 [MBD+12], and it is expected
to increase to 463 exabytes per day by 2025 [RMR21]. Scientists cannot investigate this
amount of data manually, so methods for automated data analysis are needed. Yet, even
when considering modern machine learning approaches, a large amount of data does
not automatically guarantee that valuable information is identified. Often, some amount
of annotated data is required. The annotation of samples must usually be done by hand
- often by domain experts - and can take multiple minutes per instance [SCF08]. Thus, it
can become a very costly operation. Even powerful deep learning applications like Chat-
GPT2 can only partially assist this manual work [ZZuH+23]. Therefore, unsupervised
learning methods that do not require annotations play an essential role in data mining.

Numerous unsupervised clustering methods have been introduced in the past few
decades [XT15]. “Clustering techniques attempt to group points in a multidimensional
space in such a way that all points in a single group have a natural relation to one an-
other and points not in the same group are somehow different” [DJ76]. These groups
are also referred to as clusters. Here, the type of objective an algorithm pursues defines
the kind of similarity measure, which leads to different categories of clustering methods.
Examples are approaches based on partitions, densities, or hierarchies [XT15].

A problem faced by many clustering procedures is that modern data sets like texts, im-
ages, and videos are often large-scale and have numerous features. These characteristics
can lead to the Curse of Dimensionality [Bel66]. This term describes the phenomenon that
the more dimensions there are, the smaller the difference in distance between objects.
As a result, the optimization functions of many clustering algorithms no longer produce
satisfactory results [AHK01]. For this reason, the research field of subspace clustering has
been established. Here, one tries to perform the clustering process in lower-dimensional

11 exabyte = 1018 bytes
2https://chat.openai.com/ (accessed 2024/01/10)

https://chat.openai.com/
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feature spaces by combining the clustering objective with a simultaneous reduction of di-
mensions [KKZ12]. In contrast to performing dimensionality reduction techniques, such
as Principal Components Analysis (PCA) [Pea01], as a preprocessing step, in subspace
clustering, intermediate clustering results can influence the resulting features. This fea-
ture selection can then lead to an improvement of the final clustering result. One can
distinguish between traditional subspace clustering and common subspace clustering algo-
rithms. The former define a separate subspace for each cluster, making a comparison
of the clusters more difficult [GHPB14]. For this reason, we only deal with common
subspace clustering in this thesis. Here, a single subspace is formed where the clustering
process takes place. This subspace can help to better interpret the resulting clustering
solution [MYPB17]. The idea of common subspace clustering can be taken a step fur-
ther by creating multiple subspaces for multiple clustering results that describe different
characteristics of the data. In this case, the term non-redundant clustering is often used.

While most subspace clustering methods employ linear transformations to define suit-
able subspaces, these operations are sometimes insufficient to analyze complex data sets
[YFSH17]. For this reason, the research field of deep clustering has significantly grown
in recent years. Here, a clustering objective is combined with the abstraction capabilities
of a neural network, often in the form of an autoencoder [Bal87]. Thereby, non-linear
relationships are recognizable by the clustering algorithm. In addition, batch-wise data
processing enables the handling of larger data sets [Scu10]. Early deep clustering meth-
ods such as DEC [XGF16] have already shown promising results on image and text data
sets. Since most deep clustering approaches define a single embedding for all clusters,
they can be seen as a deep learning-based version of common subspace clustering.

Unfortunately, applying common subspace, non-redundant, and deep clustering meth-
ods usually requires parameters that can only be set with prior knowledge. These pa-
rameters heavily influence both the clustering results and the resulting subspaces. One
example of such a parameter is the ‘best’ number of clusters, which is often unknown
[HE03]. However, a simple parameterization is essential in the unsupervised domain
as we want to avoid an expensive manual analysis of the given data set. The result is
a trade-off between the ability to extract meaningful patterns from complex data sets
and parameterization complexity, as illustrated in Fig. 1.1. Traditional clustering algo-
rithms like k-Means [Llo82] only need clustering-specific parameters, subspace methods
like FOSSCLU [GHPB14] often demand additional details regarding the feature reduc-
tion, and deep clustering approaches like DEC [XGF16] require information about the
architecture and the optimization strategy. This thesis addresses the complex parame-
terization of methods that use feature transformations to analyze complex data sets. For
this purpose, we are particularly interested in statistical modes. The modes of a data set
are equal to the values in the feature space that occur most frequently or, in the case of
continuous variables, the local maxima of the probability density function [Par62].
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Figure 1.1: When applying clustering methods that use feature transformations, it is crucial to rec-
ognize that while the ability to identify meaningful patterns in complex data increases,
the parameterization’s complexity increases simultaneously.

Main Research Question

How can the modes in lower-dimensional feature spaces help simplify the param-
eterization of clustering methods, which handle complex data sets through linear
or non-linear transformations?

1.1 Research Scope

This cumulative thesis tackles the stated research question by proposing novel common
subspace clustering, non-redundant clustering, and deep clustering methods. These per-
form either a linear or non-linear transformation and are characterized by a simplified
parameterization compared to competitor algorithms. We achieve this by analyzing the
modes present in the resulting subspaces.

First, we present the algorithm AutoNR [LMPB22]. While the execution of most non-
redundant clustering algorithms requires much prior knowledge, e.g., the number of
clusterings and clusters per clustering, AutoNR automatically identifies sufficient values
for the necessary parameters by utilizing the modes in each subspace to encode the
data using the Minimum Description Length (MDL) [Ris78]. MDL is an information-
theoretic strategy to choose the most sufficient model for a specific task. Employing a
greedy heuristic, in which subspaces and individual clusters are split and merged, various
models are obtained and evaluated based on their coding cost. The evaluated model with
the lowest MDL cost will finally be returned. In addition, the encoding strategy can be
used to identify samples not fitting the structures found, also referred to as outliers.

As an alternative to information-theoretic methods, modes can also be analyzed by
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statistical modality tests. A test frequently used for unsupervised machine learning ap-
proaches, e.g., in [KL12, MP16, CL17, CL18, SBBP20], is the Dip-test of unimodality by
Hartigan and Hartigan [HH85]. This test returns a so-called Dip-value that indicates how
prominent the multimodality of the input samples is. As it does not require complex in-
put parameters, it is of particular interest for clustering. Often, the Dip-value is not used
directly, but the corresponding probability value, which indicates the likelihood that the
input data shows a unimodal behavior. Precalculated look-up tables are usually used to
obtain this value [HH85]. In [BLBP23], we substitute these tables by introducing a trans-
formation function that calculates the corresponding probability value for each Dip-value
and sample size. Further, the gradient of the Dip-test regarding a projection axis, as pre-
sented in [KL05], can be extended by this new function. These advantageous properties
allow the development of the common subspace clustering algorithm Dip’n’Sub, which
identifies clusters and a suitable subspace only by considering modalities. Neither the
number of clusters nor the dimensionality of the subspace is needed as input parameter.

The number of clusters is not only a required parameter for clustering techniques that
apply linear transformations but also for most deep clustering methods. We present the
algorithm DipDECK [LBS+21], which offers a much simpler parameterization. Instead
of an exact number of clusters, only an upper bound has to be defined. For this purpose,
our method considers the modes present in the embedding of an autoencoder. Based on
the Dip-test, clusters are merged if they show a unimodal structure. Thus, the number
of clusters is successively reduced. The autoencoder is then able to adapt to the new
structure of clusters.

We propose another innovative application of the Dip-test in our work on the DipEn-
coder [LBN+22]. Here, we integrate the Dip-test even further into the optimization of
an autoencoder. For this purpose, we use the already mentioned differentiability of the
Dip-test [KL05] to generate an embedding in which all pairs of clusters show a high
degree of multimodality. At the same time, individual clusters should have a coherent,
i.e., unimodal, structure. This process ensures a clear separation of the clusters. Unlike
other methods, this approach does not require an assumption about the underlying data
distribution within the embedding.

The implementations of the described procedures and relevant comparable algorithms
are available via our open-source Python package ClustPy3. This package is used in
[LMPB23b] to benchmark various deep clustering algorithms using a consistent set-
ting. As a result, they can be compared in a meaningful way in order to highlight their
strengths and weaknesses. Here, various parameterizations and their effects on the clus-
tering result are examined. In the context of this benchmark, the DipEncoder [LBN+22]
outperforms its competitors in many scenarios, emphasizing its applicability.

3https://github.com/collinleiber/ClustPy (accessed 2024/01/10)

https://github.com/collinleiber/ClustPy
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1.2 Thesis Structure

The remainder of the thesis is structured as follows. In Chapter 2, we describe the
foundations of the proposed approaches, including the Minimum Description Length, the
Dip-test of unimodality, linear and non-linear feature transformations, as well as relevant
clustering strategies. Chapter 3 then introduces our main contributions. A conclusion
complemented by certain limitations and potential opportunities for future work is given
in Chapter 4. The original publications on which this cumulative dissertation is based
can be found in Appendix C. Appendix A and B contain additional experiments relating
to these publications.
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2 Foundations

In this thesis, we refer to several basics from the areas of information theory, statisti-
cal modality tests, linear transformations, non-linear transformations, and, in particular,
clustering. The necessary information will be briefly presented in the following. Note
that the details required to understand a specific topic are also discussed in the papers in
Appendix C.

Before explaining the actual foundations, we define some relevant symbols in Tab. 2.1.

Table 2.1: Definitions of the symbols used in this thesis.
Symbol Definition
N ∈ N Size of a data set
d ∈ N Dimensionality of a data set
D ⊂ Rd A data set
xi ∈ D A sample of data set D
k ∈ N The number of clusters
Cj ⊂ D Samples contained in cluster j
Dip ∈ (0, 0.25] The Dip-value
pDip ∈ [0, 1] The probability value associated with Dip
ρ ∈ Rd A projection axis
m ∈ N Dimensionality of the embedding/subspace
B ⊂ D A batch of data
enc(xi) = zi ∈ Rm Embedding of xi

dec(zi) = x̂i ∈ Rd Reconstruction of xi

λ1, λ2 ∈ R Weight of the reconstruction (Lrec) and clustering (Lclust) loss

2.1 Minimum Description Length

The Minimum Description Length (MDL) [Ris78] is a widespread information-theoretic
strategy to solve model selection problems. It has been frequently used in clustering
to identify outliers or a suitable number of clusters, amongst other purposes [BLS99,
BFPP06, KKMC07, BFP08, GHPB14].

MDL is based on the idea that the more regularities can be found in a data set, the more
it can be compressed [Grü05]. At the same time, a model achieving a higher compression
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equals a better model, which automatically prevents overly complex models. “As such,
MDL embodies a form of Occam’s Razor, a principle that is both intuitively appealing
and informally applied throughout all the sciences” [Grü05]. Usually, so-called two-
part codes are used to evaluate the quality of a model [Lee01]. This means the encoding
consists of the two terms L(H) and L(D|H). L(H) describes the number of bits necessary
to encode the hypothesis [Grü05]. In the clustering domain, this can include the cluster
centers, cluster assignments, and other cluster properties such as covariance matrices.
L(D|H), in turn, specifies the number of bits that are necessary to encode the data using
the described hypothesis [Grü05]. For this purpose, it is usually assumed that suitable
probability distributions can represent the data. Here, Shannon-Fano Coding [Sha48] can
be exploited to convert probabilities into code lengths, where a code length describes
the number of bits necessary to encode specific information. It states that the code
length L of a probability p equals L(p) = ⌈− log2(p)⌉. However, for a floating point
x ∈ R, often no probability but only a probability density π(x) is available. In this case,
the code length can only be specified to a precision δ, where the code length equals
L(x) = − log2(π(x))− log2(δ) [Lee01]. In addition, integer values can be encoded using
the Universal Prior for Integers [Ris83]. It implies that any integer n ∈ N can be encoded
using L(n) = log∗(n)+log2(c) bits, where log∗(n) recursively calculates log∗(n) = log2(n)+

log∗(log2(n)) until the term becomes negative and c ≃ 2.865064 is a constant. A good
overview of possibilities for encoding data is given in [Lee01] and [Grü05].

Let us consider an example: Suppose we have a two-dimensional data set, as shown
in Fig. 2.1a. We can see three modes suggesting different creation processes. Let us
consider three different models that we can use to encode the data:

• Model 1 - A single cluster (Fig. 2.1b): L(H) is very cheap as we only have to
encode a single cluster center - requiring the encoding of d = 2 values, one for each
feature - and no cluster assignments. On the other hand, it will be challenging to
find commonalities, i.e., a suitable distribution function with which to encode the
data. Therefore, L(D|H) will likely be very large.

• Model 2 - Three clusters (Fig. 2.1c): L(H) is expected to be of moderate size since
three cluster centers and the corresponding cluster assignments must be encoded.
The data within each cluster can be encoded using a Gaussian distribution with
an appropriate covariance matrix. This symmetric matrix requires d(d+1)

2
values to

encode. Since this model should fit well, L(D|H) is supposed to be very small.

• Model 3 - Six clusters (Fig. 2.1d): In this case, the clusters of ‘Model 2’ have been
split in two. Due to these additional clusters, L(H) approximately doubles. At the
same time, it is unlikely that a much better distribution function will be found.
Therefore, L(D|H) is supposed to be only slightly smaller.
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(a) The input data set consists of three Gaussian-distributed clusters. The histograms at
the top and the right indicate the data distribution on the x- and y-axis, respectively.

(b) Model 1: A single cluster. (c) Model 2: Three clusters. (d) Model 3: Six clusters.

Figure 2.1: The images show a synthetic data set consisting of 1000 samples. The samples are
distributed around three modes. (a) shows the raw data set, (b)-(d) show different
variants to cluster this data set. The coloring indicates the cluster assignments and the
red squares mark the positions of the cluster centers.

From these considerations, it can be deduced that ‘Model 2’ is correctly assumed to be
the best model. Further, we can see that MDL prevents overfitting [Grü05], as this would
lead to a high hypothesis cost L(H), as demonstrated by ‘Model 3’.

2.2 The Dip-test of Unimodality

The Dip-test of unimodality by Hartigan and Hartigan [HH85] is a statistical test that
rates the modality of one-dimensional samples. It returns a so-called Dip-value Dip ∈
(0, 0.25] that indicates the deviation from a unimodal distribution. Accordingly, a small
Dip represents a unimodal distribution, and a large Dip a rather multimodal distribution.
For the calculation of Dip, no target distribution function, e.g., a Gaussian or Laplacian
distribution, or other complex parameters need to be defined. This property distinguishes
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Figure 2.2: Exemplary calculation of the Dip-value using a data set with 10,000 samples drawn
from N (0, 1) ∪ N (9, 1.2) ∪ N (18, 0.9) ∪ N (27, 1.3). Here, N (a, b) describes a normal
distribution with mean a and standard deviation b. The upper part shows a histogram
of the data, and the lower part shows the calculation of the Dip-value using the ECDF
(blue line) and a fitted unimodal piece-wise linear function (yellow, green, and cyan
line). The resulting Dip-value is equal to Dip = 0.081.

the Dip-test from other statistical tests such as the Anderson–Darling Test [AD52] or the
Kolmogorov–Smirnov Test [MJ51]. In addition, for a sorted data set, the Dip-test has a
complexity of O(N) [HH85], where N corresponds to the number of samples, which
makes it attractive for applications concerning large data sets.

In order to calculate the Dip-value, the empirical cumulative distribution function
(ECDF) of the data is considered, and the unimodal piece-wise linear function with the
smallest maximum distance to the ECDF is determined. This distance is equal to two
times the Dip-value and is illustrated in Fig. 2.2. The figure shows a data set consisting
of four modes whose distribution is represented by the histogram shown in the upper
part and whose ECDF corresponds to the blue line in the lower part. In general, a uni-
modal distribution is characterized by an ECDF being convex at first, followed by the
steepest slope, and changing to a concave behavior afterward [MP16]. An example of a
fitted unimodal piece-wise linear function is also visualized in Fig. 2.2. Here, the yellow-
dashed line represents the convex part, the green line represents the steepest slope, and
the cyan-dashed line represents the concave part. The steepest slope is synonymous with
the primary mode of the data set [MP16]. A more detailed description of the computa-
tion of the Dip-value can be found in [HH85, KL05, MP16, LBN+22].

Despite the many good properties of the Dip-test, the resulting Dip-value Dip is of-
ten difficult to interpret since the magnitude depends heavily on the number of samples.
The more samples there are, the smaller the resulting Dip concerning unimodal data sets.
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This behavior can be observed, for example, in Fig. 2.3a and 2.3b. Although the same
distribution function is used for sampling in both cases and only the data size varies, the
Dip-values with 0.008 and 0.002 differ significantly. In addition, the maximum Dip-value
of 0.25 is a rather theoretical limit, which is rarely seen in practice. For example, nei-
ther the distribution in Fig. 2.3c nor Fig. 2.3d reaches such a high value, although a
multimodal distribution is clearly present. It is, therefore, necessary to make a sensible
assessment of a threshold to assume a multimodal distribution. For this purpose, one
often does not use the Dip-value directly but the corresponding probability value pDip.
This value indicates the likelihood of a unimodal distribution being present. It is calcu-
lated by sampling several times from a uniform distribution with the same sample size
as the input data. For each sampling, the corresponding Dip-value is determined. The
percentage of samplings with a larger Dip-value than that of the input data determines
the resulting pDip [HH85]. A low Dip, therefore, leads to a high pDip and a high Dip

to a low pDip. Fig. 2.3 shows that the probability value allows a clear and meaningful
assessment of multimodality in all four cases.

Let us consider an example: We have a data set of size N = 100 with a Dip-value of
Dip = 0.1 and want to obtain the corresponding probability value pDip. Therefore, we
create ten artificial sample sets of the same size N = 100 using the uniform distribution.
These have Dip-values of A = {0.04, 0.05, 0.07, 0.07, 0.08, 0.09, 0.11, 0.12, 0.13, 0.14} (arbi-
trary values). This results in the probability value pDip = |{Dipa|Dipa∈A∧Dipa>Dip}|

|A| = 0.4.
Note that the number of artificial sample sets would be much higher in a real scenario.

The uniform distribution is used for the sampling process as it is the “least-favorable”
[HH85] or “worst case” [CAS19] unimodal distribution. In other words, it can be seen
as a borderline case between unimodal and multimodal distributions. Note that when
using the Dip-test, a statement can only be made as to whether a unimodal distribution
is present or not. No conclusions can be drawn about the number of modes present. For
instance, the Dip-value of the distribution shown in Fig. 2.2 is lower than that from Fig.
2.3d, although there are two additional modes and the same sample size is used.

2.3 Feature Transformations

When working with complex, high-dimensional data sets, data mining methods can
struggle to produce high-quality results [AHK01]. This is due to computational issues
[LCW+18] and the Curse of Dimensionality [Bel66], which causes distances in high-
dimensional spaces to become increasingly similar. At the same time, the Empty Space
Phenomenon arises, which states that the proportion of empty space between the data
points increases as the number of dimensions increases [LCW+18, AHK01]. For these
reasons, data mining methods are often performed on a dimensionality-reduced version
of the original data set. This approach has “the advantages of improving learning per-
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(a) N (0, 1), N = 1,000
→ Dip = 0.008, pDip = 0.99

(b) N (0, 1), N = 10,000
→ Dip = 0.002, pDip = 1.0

(c) N (0, 1) ∪N (9, 1), N = 1,000
→ Dip = 0.134, pDip = 0.0

(d) N (0, 1) ∪N (9, 1), N = 10,000
→ Dip = 0.133, pDip = 0.0

Figure 2.3: Histograms of samplings from different distributions with a varying number of samples
N and their corresponding Dip-value Dip as well as the probability value pDip. Here,
N (a, b) describes a normal distribution with mean a and standard deviation b.

formance, increasing computational efficiency, decreasing memory storage, and building
better generalization models” [LCW+18]. Dimensionality reduction techniques can be
divided into linear and non-linear transformations. Linear methods preserve the linear
relationship of data points [CG15], which is not necessarily valid for non-linear methods.

Another possible categorization is into supervised and unsupervised techniques
[LCW+18, NH19]. One might assume that only unsupervised methods are relevant in
the context of clustering, as no predefined labels are known. While this is true for a
preprocessed dimensionality reduction, intermediate clustering labels can be used to ex-
ecute supervised transformation methods. This idea is taken up by subspace clustering
algorithms, which are discussed in Sec. 2.4.3.

2.3.1 Linear Transformations

Linear feature transformations are essential methods for data mining and are often used
for preprocessing a data set. Even simple methods such as random projections can be
beneficial for machine learning approaches [Das00, BM01]. The best-known techniques
are Singular Value Decomposition (SVD) and Principal Component Analysis (PCA) [Pea01].
These algorithms can determine the orthogonal projections on which the data exhibits
the most significant variance. Independent Component Analysis (ICA) [JH91] is another
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frequently used method. It identifies components that are statistically independent of
each other. The Dip-test has also been used to identify suitable transformations for clus-
tering [KL05, MP16, SP18, SBBP20]. For this purpose, the gradient of the Dip-value
regarding a projection axis ρ [KL05] is often exploited. This gradient allows the usage of
Stochastic Gradient Descent (SGD) to determine those projection axes on which the data
shows the greatest multimodality, indicating the essential structures for clustering within
the data set [KL05, MP16, SBBP20].

If the feature transformation should not take place as a preprocessing step, but during
the clustering process, it is advisable to use supervised dimensionality reduction tech-
niques instead of unsupervised ones. Such methods can make use of available label
information, known initially or determined by a clustering algorithm, to improve the re-
sulting feature space. A well-known representative is Linear Discriminant Analysis (LDA)
[Fis38]. Here, the intra-cluster variance is minimized while the inter-cluster variance
is maximized. Other supervised dimension reduction techniques are, for example, Par-
tial Least Squares [Wol66] or Neighborhood Component Analysis [GRHS04]. For more
information on linear transformations, see [CG15, LCW+18, NH19].

2.3.2 Non-linear Transformations Using Autoencoders

Non-linear transformations offer more flexibility to reduce the dimensionality of an in-
put data set than linear transformations. A well-known group of non-linear methods
are based on manifolds. These usually try to preserve the local neighborhoods of data
points in low-dimensional spaces [TSL00]. Known representatives are Isometric Feature
Mapping (ISOMAP) [TSL00], t-Stochastic Neighbour Embedding (t-SNE) [VdMH08], and
Uniform Manifold Approximation and Projection (UMAP) [MH18]. In the context of this
thesis, autoencoders (AEs) [Bal87] are of particular interest. These are unsupervised
neural networks, which consist of two sub-modules: the encoder and the decoder.

In order to obtain a high-quality representation of the data, AEs usually only use small
parts of the data at once [KMN+17], also referred to as batch-wise optimization. Assume
we have a batch B of the entire data set D, i.e., B ⊂ D ⊂ Rd. The encoder maps
each sample xi ∈ B into a latent space consisting of m features, where usually m <

d applies. This mapping yields the embedding zi = enc(xi), zi ∈ Rm, which equals
the lower-dimensional representation for subsequent tasks. The decoder then tries to
retrieve the original information from the embedded features x̂i = dec(enc(xi)), x̂i ∈
Rd. Often, the architecture of the decoder corresponds to the inverted architecture of
the encoder. The idea behind this neural network is to preserve sufficient information
in the embedding, which serves as the bottleneck of the architecture, to allow a high-
quality reconstruction. The quality of the transformation is assessed using an arbitrary
differentiable loss function Lrec - often, the Mean Squared Error (MSE) is used - and the
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Figure 2.4: Illustration of a typical feedforward autoencoder application. The input images (in
this case, from the grayscale Fashion-MNIST data set [XRV17]) are first converted to a
feature vector. The data is then mapped to a latent space representation consisting of
two features (m = 2) by the encoder and finally converted back to the original feature
space by the decoder. The similarity is evaluated by employing Lrec. Ultimately, the
resulting output images should be similar to the input images.

network is updated by backpropagating the error.

Lrec(B)
often
:= MSE(B) = 1

|B|
∑

xi∈B
||xi − x̂i||22, (2.1)

where |B| is the size of the batch B. Various optimization techniques, such as classical
SGD, ADAGRAD [DHS11], or ADAM [KB15], can be used for the backpropagation.

A schematic illustration of a simple feedforward AE is shown in Fig. 2.4. Due to
the lower-dimensional embedding, there is a loss of information, and the input images
cannot be fully recovered. This fact can be recognized, among other differences, by
the missing lettering ‘Lee’ on the second input image, showing a sweater. However,
this property is desired as it ensures the generalizability of the network. A variety of
extensions are available that offer different improvements. For example, Convolutional
Autoencoders [LBD+89] and Vision Transformers [DBK+21] are particularly suitable for
the analysis of image data. These architectures eliminate the need to convert images into
a vector representation, as displayed in Fig. 2.4. AEs can further be used for generative
tasks, e.g., in the form of Variational Autoencoders [KW14].

2.4 Clustering

Clustering refers to unsupervised machine learning methods that autonomously divide
data into groups, also called clusters. Consequently, unlike classification methods, no
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predefined labels are required to train the model. Clusters can be defined based on dif-
ferent characteristics like distances to prototypes (e.g., k-Means [Llo82] or the Expecta-
tion Maximization (EM) algorithm [DLR77]), neighborhood information (e.g., DBSCAN
[EKSX96] or Density Peak Clustering (DPC) [RL14]), or graph theory (e.g., spectral clus-
tering [vL07] or k-Multiple-Means [NWL19]). A good overview is given in [XT15]. Since
prototype-based methods are particularly relevant for this thesis, we discuss them in
more detail below.

2.4.1 Prototype-based Clustering

The importance of prototype-based methods can be well demonstrated by looking at the
top 10 “most influential data mining algorithms in the research community” [WKQ+08].
In this list, two clustering paradigms appear, namely k-means [Llo82] and fitting fi-
nite mixture distributions - usually Gaussian Mixture Models - using the EM algorithm
[DLR77]; both are prototype-based methods. Procedures that belong to this group as-
sign data points to clusters based on their position in relation to cluster centers. The
best-known representative is Lloyd’s variant of the k-Means algorithm [Llo82], which
tries to group the data into k clusters. Here, the first step is to select k ∈ N data points
randomly and use their coordinates to position the initial cluster centers µ ⊂ Rd, where
|µ| = k. Subsequently, all samples are assigned to the cluster corresponding to their clos-
est cluster center (‘assignment phase’). The cluster centers are then updated by setting
their position to the mean value of the assigned data points (‘update phase’). The assign-
ment and update phases are repeated until convergence is achieved. Thus, k-Means tries
to minimize the within-cluster sum of squares (WCSS) [Sch23], also called the sum of the
squared error (SSE) [Jai10], regarding all clusters, i.e., the global variance.

WCSS(D) =
k∑

j=1

∑

xi∈Cj
||xi − µj||2 (2.2)

The advantages of k-Means are versatile. The algorithm is easy to understand and
shows good runtime behavior [Jai10]. Furthermore, the parametrization process is
simple, as only the number of clusters k needs to be specified as an input parameter.
For these reasons, k-Means has already been extended by a variety of functionalities.
For example, there are extensions for an improved selection of initial cluster centers
[AV07, CKV13, XDLL15], the determination of outliers [CG13, GN17, HCK+05], fuzzy
cluster assignments [DUN74, Bez81], a deterministic execution [LVV03, LLZ15], or the
handling of mixed-type attributes [Hua97, AD07]. A disadvantage of k-Means is that
the clusters can only take spherical shapes [Jai10]. The EM algorithm overcomes this
limitation by using soft cluster assignments, which means that each point is not hard as-
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signed to a single cluster but belongs to each cluster with a certain probability. Further, it
optimizes cluster-specific covariance matrices rather than a single global variance. Thus,
each cluster can adopt an individual distribution, which allows greater flexibility. No ad-
ditional input parameters are required to achieve these advantages. However, the greater
flexibility is accompanied by a higher runtime [XT15]. Another problem with k-Means
and the EM algorithm is that they struggle to achieve good results on high-dimensional
data sets because of the Curse of Dimensionality [Ass12, DHZS02].

2.4.2 Estimating the Number of Clusters

In the following, we discuss yet another drawback of most prototype-based methods. As
already discussed, the number of clusters k is the only necessary input parameter for k-
Means and the EM algorithm. However, a suitable number of clusters is often unknown
in advance, so methods are necessary to determine this parameter automatically. Algo-
rithms based on neighborhoods between samples, such as DBSCAN [EKSX96] or OPTICS
[ABKS99], are able to do this. However, neighborhood-defining parameters, which are
also not trivial to choose, are required to achieve good results with those algorithms.

When considering our research question of analyzing modes, mode-seeking ap-
proaches like Mean-shift [Che95], Medoid-shift [SKK07], Quick-shift [VS08], or DPC
[RL14] represent another reasonable choice to estimate the number of clusters. Here,
dense regions are determined by considering all samples within a specific area and apply-
ing a kernel function. The points with the highest density are then considered the modes
of the data set, and the samples are assigned to the best matching mode. We want
to refrain from using kernels and range parameters, which are often difficult to spec-
ify, especially in transformed feature spaces. For this reason, instead of density-based
procedures, we investigate prototype-based methods that can intrinsically determine the
number of clusters k.

A popular strategy is to look at the WCSS of k-Means results with different values for
k and use the elbow method [Tho53] to pick the most appropriate solution. Here, the
WCSS results are plotted with ascending k, and the result at the location of the most
prominent kink is assumed to be the clustering result with the best number of clusters.
However, this approach has some drawbacks. For example, there is not necessarily a
distinct most prominent kink, so the final result depends on the selection procedure
[Sch23]. In addition, the elbow method struggles to detect a very high number of clusters
correctly [Sch23]. The Gap Statistic [TWH01] tackles these issues by comparing the k-
Means results against uniformly distributed samplings. This approach has the advantage
that the procedure directly provides a clear recommendation for the most appropriate
number of clusters.

There are also extensions of prototype-based clustering methods that integrate the
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estimation of k directly into their optimization strategy. An example is Bayesian k-Means
[WK06]. This algorithm uses a Maximization Expectation strategy to estimate the hidden
variables of a mixture model. By splitting and merging various clusters, it tries to identify
a model with optimal log model evidence.

Other methods are based on information theory, with X-Means [PM00] being the most
prominent representative. This algorithm starts with a low number of clusters and suc-
cessively splits the current clusters into two. After each split, the result is evaluated
using the Bayesian Information Criterion (BIC) [Sch78] or the Akaike Information Crite-
rion (AIC) [Aka74] to decide whether the new clustering result is kept. BIC and AIC are
information-theoretic criteria for model selection, similar to the MDL principle [Ris78].
The splitting mechanism of X-Means is repeated until no split leads to a better BIC/AIC
score. The X-Means algorithm has been extended in [Ish05] to include a merging step
to fine-tune the final clustering result. Approaches that start with a small number of
clusters, which is successively increased, are also referred to as top-down methods. An-
other approach that uses information theory is presented in [BLS99]. It starts with an
initial clustering solution with a high number of clusters. MDL is then used to decide
which clusters to merge and which points to define as outliers. The process is repeated
until the MDL cost cannot be further reduced. In contrast to X-Means, this approach is
referred to as a bottom-up process.

Applying statistical tests is another strategy to intrinsically estimate the number of clus-
ters. There are two main characteristics that distinguish such clustering processes - the
type of statistical test and the strategy used to transform the data into a one-dimensional
representation. The second characteristic is required due to the limitation of most statis-
tical tests to one-dimensional data. The best-known algorithm that uses a statistical test
to determine the number of clusters is G-Means [HE03]. It uses the Anderson–Darling
statistical test [AD52] to check whether the data within a cluster is normally distributed.
For this purpose, k-Means with k = 2 is executed within each cluster, and the data is
projected onto the connecting line of the resulting cluster centers. If the test rejects a
normal distribution, the two new clusters are kept. Otherwise, the original cluster is re-
stored. The algorithm PG-Means [FH06] randomly creates several projection axes onto
which the Gaussian Mixture Model, obtained by the EM algorithm, is projected. From
these one-dimensional models, data is sampled and compared with the actual projected
data using the Kolmogorov–Smirnov statistical test [MJ51]. If the test rejects a single
projected model, a new cluster is added, and the process repeats.

DipMeans [KL12], ProjectedDipMeans [CL18], SkinnyDip [MP16], and the procedure
proposed in [CL17] all utilize the Dip-test of unimodality [HH85] to estimate the number
of clusters. The methods differ heavily in the one-dimensional transformation used. Dip-
Means [KL12] does not consider the coordinates of the data points, but for each sample,
the distances to other samples in the same cluster. For each of these sets of distances, the
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Dip-value and the associated probability value are obtained. If the proportion of objects
indicating a multimodal distribution is higher than a predefined threshold, the cluster
is split. ProjectedDipMeans [CL18] calculates the Dip-values concerning each feature of
the data set and each principal component of PCA applied to the samples within a clus-
ter. If a single projection indicates multimodality within a cluster, the most multimodal
cluster is split. SkinnyDip [MP16] also considers the samples projected onto certain pro-
jection axes. In the case of detected multimodality, the clusters are recursively split until
all of the sub-clusters are unimodally distributed on this axis. Here, the steepest slope,
as identified by the Dip-test, defines the cluster boundaries. In [CL17], the Dip-test is
utilized for image segmentation by initially overestimating the number of segments, i.e.,
clusters. Two neighboring cluster centers are then selected, and the distances between
these centers to all pixels, i.e., samples, assigned to either of them are computed. After-
ward, the Dip-test is used to decide whether these two sets are distributed unimodally.
In this case, the clusters are merged. This process repeats until convergence is achieved.
The employed transformation is thus similar to that proposed in [KL12].

In contrast to the methods mentioned above, M-Dip [CAS19] and SpecialK [HD19] are
not limited to convex cluster shapes. M-Dip [CAS19] computes the k-nearest neighbor
graph and splits a cluster if the path between two samples sees a significant drop in
density. The specific threshold is obtained by sampling multiple times from a uniform
distribution. This process is similar to calculating the probability value pDip of the Dip-
test. SpecialK [HD19] uses probability bounds defined by the Bernstein inequality to
decide whether data points are more likely to originate from one or two distributions.
This decision is used as a cluster-splitting criterion to identify an appropriate number of
clusters. Since SpecialK is not based on a prototype-based clustering approach but on
spectral clustering [vL07], non-convex clusters can also be detected.

As all the procedures based on statistical tests, except the one presented in [CL17],
start with a small number of clusters, they belong to the top-down approaches. Further,
unlike those based on information theory, all of these methods require a significance
threshold α as an input parameter that determines whether a hypothesis is accepted or
rejected. Therefore, the parameter k is substituted by α, where α is often more intuitive
to define than k.

2.4.3 Common Subspace Clustering

As pointed out in Sec. 2.3, many data mining techniques face issues processing high-
dimensional data. In order to circumvent this problem, the data can be converted to a
lower-dimensional feature space (subspace). In contrast to simply preprocessing the data
set using a feature transformation technique and executing an algorithm in the resulting
subspace, we want the objective function of the data mining approach to influence the
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resulting feature space. Accordingly, the resulting subspace should be tailored to the
specific clustering task. For example, the subspace should change depending on whether
the user wants to identify three or five clusters. This field of research is referred to as
subspace clustering. Such methods use intermediate cluster assignments to adjust the re-
sulting subspace, and the subspace, in turn, influences the resulting cluster assignments.

Here, a distinction can be made between traditional and common subspace clus-
tering. While traditional subspace clustering has been extensively studied (e.g., in
[PHL04, KKZ12, SGZC13]), common subspace clustering is often overlooked. In the
case of traditional methods, each cluster usually gets its own axis-parallel or arbitrarily
oriented subspace. Accordingly, a cluster is defined as (O, A), where O are the samples
in that cluster and A is the set of associated features [SGZC13]. With common subspace
clustering, a single shared subspace is defined for all clusters, which is usually hidden in
an arbitrarily orientated version of the data. This way, “we can study not only the intra-
cluster but also the inter-cluster relationships of objects” [GHPB14]. Thus, the common
subspace facilitates a subsequent analysis of the results; one can visualize the clusters
and examine the differences accordingly. Such visualizations are relevant in unsuper-
vised learning to evaluate whether meaningful patterns have been identified.

Let us consider an example: In Fig. 2.5 we can see a potential result of a traditional
(2.5a) and a common (2.5b) subspace clustering algorithm regarding a data set with
eight features and four clusters. While in traditional subspace clustering, each cluster is
assigned its specific features, e.g., features one and five for the purple cluster, in common
subspace clustering, the goal is to map all clusters into a common feature space. This
joint subspace makes the relationships between the clusters visible, allowing us to see in
Fig. 2.5b that we only require three features to distinguish all clusters.

The most straightforward way to define a common subspace for all clusters is to use
regular linear or non-linear dimensionality reduction techniques like PCA or ICA as a
preprocessing step (see Sec. 2.3). However, in this case, we do not utilize intermediate
clustering results and, therefore, ignore valuable information. For this reason, several
methods have been proposed that use interim cluster labels to improve the concurrent
optimization of the subspace. For example, ADR-EM [DHZS02] uses intermediate results
of k-Means or the EM algorithm to enhance the subspace identified by SVD or QR decom-
positions [Par94]. LDA-k-Means [DL07] follows a similar strategy by using intermediate
k-Means labels to execute LDA repeatedly. The algorithm FOSSCLU [GHPB14] combines
the EM algorithm with rigid transformations, and SubKmeans [MYPB17] optimizes a
k-Means-based loss through eigenvalue decompositions. For all these methods, the num-
ber of clusters k must be known beforehand. Additionally, apart from SubKmeans, they
all require the size of the resulting subspace m as an input parameter. In the case of
FOSSCLU, a procedure is proposed to determine these parameters automatically using
MDL [GHPB14]. However, this is based on a brute-force search of all parameter combi-
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(a) Traditional subspace clustering. The colored border indicates the cluster that is considered in the corresponding features.

(b) Common subspace clustering.

Figure 2.5: Scatter matrix plot for a potential result of (a) traditional and (b) common subspace
clustering on a synthetic data set with eight features and four clusters. The samples are
colored using the ground truth labels, and relevant features are highlighted.
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Figure 2.6: Example use case of non-redundant clustering. The images belong to a deck of playing
cards with 52 different cards that can be clustered by either rank (2, 3, . . . , 10, Jack,
Queen, King, Ace), suit (clovers, tiles, pikes, hearts), or color (black, red).

nations within a given range, which can notably increase the runtime. Therefore, in this
thesis (see Sec. 3.2), we analyze how a sophisticated common subspace algorithm can
automatically determine sufficient values for both parameters k and m.

2.4.4 Non-Redundant Clustering

In some cases, it is not sufficient to identify a single clustering solution, but one would
like to obtain several, each describing a different characteristic of the data set. Multi-
ple clustering solutions can be useful to get better insights into a complex topic. Non-
redundant clustering algorithms attempt to identify several clustering results that are as
different as possible. Therefore, they impose specific non-redundant constraints. We
want to show the benefit of such a constraint by means of an example. Assume we have
decks of playing cards as shown in Fig. 2.64. These cards can be clustered in multiple dif-
ferent ways, e.g., by rank (2, 3, . . . , 10, Jack, Queen, King, Ace), suit (clovers, tiles, pikes,
hearts), or color (black, red). Individually analyzing these clusterings is more accessible
than a single global clustering result, consisting of 52 clusters. However, it is only of
limited use to cluster by both suit and color since these results are partially redundant;
tiles and hearts are always red, and pikes and clovers are always black. Therefore, it
is sufficient to consider the ‘rank’ and the ‘suit’ clustering, which would be the desired
outcome in most non-redundant clustering settings.

Methods for identifying non-redundant clusterings differ particularly in how non-
redundancy is ensured. minCEntropy [NE10], for example, applies an optimization

4Source: https://acbl.mybigcommerce.com/52-playing-cards/ (accessed 2023/12/02)

https://acbl.mybigcommerce.com/52-playing-cards/
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strategy based on conditional entropy, where the different clusterings should share a
minimum amount of information. Dec-k-Means [JMD08] optimizes the k-Means loss of
two different clustering results, which are simultaneously showing a low correlation. In
the following, we focus on approaches that are based on feature transformations where
each clustering obtains its own feature space. Often, these feature spaces come in the
form of subspaces, where each feature belongs to one specific subspace. This process
ensures that each clustering describes different characteristics of the data and can be
interpreted as an extension of common subspace clustering.

Let us consider an example: If we execute a transformation-based non-redundant
clustering algorithm on the playing cards from Fig. 2.6, two subspaces are conceiv-
able; one for the rank, e.g., containing the information regarding the shown rank in the
upper-left and lower-right corner, and one for the suit, e.g., containing the information
regarding the color. A potential solution is illustrated in Fig. 2.7, where the two cluster-
ing results can be clearly distinguished. The first, capturing the information regarding
the rank, is mapped to features one and two (framed in red), and the second, captur-
ing the information regarding the suit, is mapped to features three and four (framed in
blue). Here, the points are colored based on the labels from the first clustering result.
Accordingly, the coloring of the clusters in the first subspace is homogeneous, while it
is heterogeneous in the second subspace. This behavior is desired as in the second sub-
space, each cluster represents a suit, and 13 distinct ranks exist for each suit. We can
look at the full-dimensional cluster centers to better understand the main characteristics
of the subspaces. Four cluster centers of the first subspace (5, 9, Queen, and Ace) are
shown on the left side. Here, the ranks of the cards are easily recognizable. The suit,
however, is difficult to identify, and the color is dark red in all cases. The cluster centers
of the second subspace are illustrated on the right side. Here, the ranks of the cards are
not recognizable, but one can identify which cluster represents which suit.

A non-redundant clustering algorithm that is based on feature transformations is Orth
[CFD07]. This procedure repeatedly executes k-Means within newly identified feature
spaces orthogonal to existing clustering solutions. ISAAC [YMHP16] is a transformation-
based method which uses Independent Subspace Analysis (ISA) [HH00], an extension
of ICA, to identify multiple subspaces for clustering and executes the EM algorithm in
those. ISA is also utilized by MISC [WWD+19], whereby kernel graph regularized semi-
nonnegative matrix factorization (KGSNMF), an extension of SNMF [DLJ10], is used in
the resulting subspaces to obtain the clustering solutions. The non-redundant clustering
algorithm mSC [NDJ10] can detect non-spherical clusters in multiple subspaces by us-
ing the Hilbert-Schmidt Independence Criterion (HSIC) [GBSS05] in combination with
spectral clustering [vL07].

Most of the existing transformation-based methods define the subspaces first and then
fit a clustering solution within those subspaces. However, in this case, the clustering does
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Figure 2.7: Scatter matrix plot of a potential subspace-based non-redundant clustering result re-
garding a data set consisting of images showing playing cards (see Fig. 2.6). The first
subspace consists of the first two features (framed in red) and represents the 13 distinct
ranks. The second subspace consists of the third and fourth features (framed in blue)
and represents the four different suits. The remaining features contain no relevant in-
formation and are not considered in detail. The playing cards next to the scatter matrix
plot display four exemplary cluster centers within the first subspace (left) and the four
cluster centers within the second subspace (right). All scatters are colored based on the
labels of the first subspace.

not influence the resulting features. In contrast, NrKmeans [MYPB18], which can be con-
sidered a generalization of the common subspace algorithm SubKmeans [MYPB17], up-
dates the subspaces during the clustering process. In each iteration, the clustering results
are obtained by running k-Means in each subspace. The subspaces are then optimized
by performing eigenvalue decompositions before the next iteration starts. This idea was
extended by NrDipMeans [MYPB20] to automatically identify an appropriate number of
clusters in each subspace using the Dip-test. This process greatly simplifies the param-
eterization since only the number of subspaces needs to be specified. Of the methods
mentioned, only ISAAC and MISC can automatically define the number of clusterings
and clusters by applying MDL and, in the case of MISC, Bayesian k-Means [WK06].

In summary, most methods exhibit at least one of the following problems. They cannot
simultaneously optimize the feature spaces and the clustering, which can have a negative
impact on the clustering quality, or they require the number of subspaces and the number
of clusters per subspace as input parameters, making applicability difficult. In this thesis
(see Sec. 3.1), we tackle these issues.
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2.4.5 Deep Clustering

Since the presentation of DEC [XGF16] in 2016, deep clustering (DC) has been an inte-
gral part of the data mining landscape. DC describes the combination of clustering and
deep learning and enables the processing of large and high-dimensional data sets. The
motivation is twofold. First, it has been shown that k-Means can be applied to large-scale
data sets when utilizing SGD and batch-wise optimization [BB94, Scu10]. Further, the
complexity of high-dimensional data can be reduced using the representation capabilities
of deep learning procedures, which can counteract the Curse of Dimensionality. These
advantages have led to the introduction of various DC approaches. A good overview is
given in the surveys [ZXZ+22] and [RPY+22].

A simple way to distinguish different DC methods is to look at the architecture
used. Commonly employed architectures are feedforward AEs (e.g., used by DEC
[XGF16], IDEC [GGLY17], DCN [YFSH17], DeepECT [MPB19], DKM [FTG20], ACe/DeC
[MBM+21]) and Convolutional AEs (e.g., used by DCEC [GLZY17], DEPICT [DHD+17],
ENRC [MMA+20]). In addition, there are procedures using encoder-only models (e.g.,
JULE [YPB16], DeepCluster [CBJD18]) or generative models such as Variational AEs
[KW14] (e.g., used by VaDE [JZT+17]) or Generative Adversarial Networks [GPM+14]
(e.g., used by ClusterGAN [MALK19]). Since, in the context of this thesis, we are only
dealing with approaches that use a simple feedforward AE, we limit ourselves to these
architectures in the following. Note that applications using a feedforward AE can usually
be combined with a Convolutional AE without major adjustments. For example, DCEC
[GLZY17] is an extension of IDEC [GGLY17] that substitutes the feedforward AE with a
Convolutional AE.

In addition to the reconstruction loss Lrec (see Sec. 2.3.2), AE-based DC methods
typically define a clustering loss Lclust. This loss is supposed to shape the embedding
so that ‘clustering-friendly’ [YFSH17] representations are obtained, where clustering-
friendly is synonymous with small distances between points within a cluster and large
distances between points from different clusters. The combined loss function Ltotal looks
as follows:

Ltotal(B) = λ1Lrec(B) + λ2Lclust(B), (2.3)

where λ1 ∈ R and λ2 ∈ R are variables to weight the reconstruction and clustering loss.
The purpose of this loss function is visualized in Fig. 2.8. Here, the general structure of
the neural network is the same as that of a regular AE (see Fig. 2.4). However, one can
see that the embedded data zi is closer to other objects from the same cluster, which is
achieved by the additional loss Lclust.

In terms of the workflow, most DC procedures are similar. First, an AE is pretrained for
a certain number of epochs, using only Lrec. Afterward, a traditional clustering algorithm
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Figure 2.8: Illustration of a typical deep clustering application. Compared to Fig. 2.4 (showing the
regular feedforward autoencoder architecture), a new loss Lclust is introduced, which
uses the embedded data zi as input and provides a clustering-friendly structure in the
embedding.

is executed in the resulting embedding to obtain initial cluster labels. These labels form
the starting point for the DC objective Lclust, which improves the embedding and the
final cluster labels. Therefore, DC algorithms can also be seen as deep learning methods
for refining a given clustering result.

There is a wide variety of options for choosing Lclust. DEC [XGF16] uses a loss function
based on the Kullback-Leibler divergence. Here, the data distribution within the embed-
ding, quantified by a kernel based on a Student’s t-distribution, is compared with an
auxiliary target distribution. An unique aspect is that DEC only uses Lrec for pretraining
and λ1 is set to 0 during the actual clustering process. The authors of IDEC [GGLY17]
note that this can lead to a distorted embedding. Therefore, they suggest to use the
objective of DEC, but setting λ1 > 0 during the clustering optimization. As a result, the
clusters obtained by DEC are typically much more compact than those identified by IDEC.
Another popular strategy for choosing Lclust is to employ optimization strategies inspired
by k-Means. For example, DCN [YFSH17] successively updates the data representation
and the clustering parameters, i.e., the cluster centers and assignments. Accordingly, the
clustering result and the embedding are not improved simultaneously but alternately.
This step-wise optimization allows hard cluster assignments even though the objective
function is not differentiable. DKM [FTG20] proposes a differentiable k-Means-like op-
timization. For this purpose, pseudo-hard labels are applied utilizing a parameterized
softmax function.

In addition to these objectives, numerous overlaps exist with the topics discussed in
the previous sections. For example, SCDE [DAMS19] can define a suitable number of
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clusters for its deep clustering procedure. For this purpose, it uses a separate AE with
a softmax layer at its core. ACe/DeC [MBM+21] combines DC and common subspace
clustering by only using a subset of the embedding for clustering. Here, the features are
softly assigned to the different subspaces, making the optimization differentiable. ENRC
[MMA+20] uses a similar approach to obtain non-redundant clustering results in a deep
learning setting. As for other DC algorithms, an initial - in this case non-redundant -
clustering result is required, which is refined during the optimization.

A primary concern regarding the mentioned methods is the necessity of strong as-
sumptions regarding the expected distributions within the embedding. In addition, the
application of deep learning processes is accompanied by a large number of hyperpa-
rameters that can have a strong influence on the final clustering result. Both issues are
addressed in this thesis (see Sec. 3.3, 3.4, and 3.5).
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3 Contributions

In the following, we briefly present the main publications that form the basis of this
cumulative thesis. Here, the essential contributions and their improvements compared
to competitor algorithms will be highlighted. A detailed description of the proposals can
be found in the corresponding papers in Appendix C. In addition, Appendix C contains a
detailed division of work among the authors.

The publications share several mutual features, the most prominent being the inclusion
of clustering. Moreover, all presented methods use a feature transformation to identify
suitable feature spaces for clustering. Both linear and non-linear transformations are
applied. Usually, such combinations of a feature transformation and a simultaneous
clustering process involve various parameters that are difficult to define. Our methods
show a simplified parameterization compared to other methods that pursue a similar
objective. In particular, in the case of algorithms based on linear transformations, we try
to identify a suitable number of relevant features and clusters automatically. Further, we
do not force specific cluster structures such as spherical or Gaussian-based cluster shapes
for algorithms based on non-linear transformations. In the case of DipDECK [LBN+22],
this also allows an automatic determination of a suitable number of clusters.

We obtain these capabilities by analyzing modes in the transformed feature spaces.
These modes are evaluated by using either the MDL principle (AutoNR [LMPB22])
or by employing the Dip-test (Dip’n’Sub [BLBP23], DipDECK [LBS+21], DipEncoder
[LBN+22]). Tab. 3.1 offers an overview of the presented methods and their specific
characteristics.

Table 3.1: The table shows the similarities and differences of the algorithms discussed in this thesis.
All methods use a feature transformation and can automatically analyze modes in the
resulting feature spaces. For this purpose, either the MDL principle or the Dip-test is
applied. This process can provide an automatic estimation of the number of clusters k.

Algorithm Linear transf. Non-linear transf. Estimates k Dip-test MDL

AutoNR [LMPB22] ✗ ✗ ✗

Dip’n’Sub [BLBP23] ✗ ✗ ✗

DipDECK [LBS+21] ✗ ✗ ✗

DipEncoder [LBN+22] ✗ ✗
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3.1 AutoNR

As mentioned in Sec. 2.4.4, non-redundant clustering methods allow a more intuitive
interpretation of a given data set, as instead of a single global clustering result, several
ones are provided. This variety allows the users to select the most relevant clustering
result regarding their task. In addition, many methods directly return associated sub-
spaces, which helps to interpret the characteristics of the clusters better. However, the
applicability becomes more complicated since the number of expected clusterings and
clusters per clustering must be known. In a real-life scenario, setting these parameters
requires extensive prior analysis.

We present the non-redundant clustering algorithm AutoNR [LMPB22], which can de-
termine appropriate values for these parameters automatically. It extends NrKmeans
[MYPB18] so that no input parameters are required to obtain the non-redundant cluster-
ing result and the associated subspaces. This simplified execution is achieved using the
MDL principle to evaluate various non-redundant clustering solutions and identify the
most suitable one. Our contribution consists of three main components: the encoding
strategy, search heuristic and outlier detection.

Encoding strategy. First, we introduce a sophisticated strategy to encode the hypoth-
esis and the data in a non-redundant setting. This strategy must fit the underlying clus-
tering algorithm; otherwise, the encoding would not be able to evaluate the clustering
result meaningfully. For example, it makes only limited sense to encode density-based
clusters identified by DBSCAN [EKSX96] with the help of a Gaussian distribution. For
clusters defined by the EM algorithm [DLR77], however, it would be a valid strategy.
Note that AutoNR is based on NrKmeans [MYPB18], which in turn is based on a k-
Means-like optimization. It has been shown that k-Means-based models can be encoded
using a simplified Gaussian Mixture Model, where all clusters share a single-variance co-
variance matrix Σ, i.e., Σ = σ2I, where I is the identity matrix [BLS99]. Although such
encodings have been studied intensively for traditional clustering, they are not trivially
applicable to non-redundant clustering problems. Here, the transformation and subspace
information must be encoded in addition to the clustering structures.

Search heuristic. The second component we propose is a suitable heuristic for search-
ing the parameter space. To look at all possible parameter combinations is not expedient
since the runtime would be too high. We present a heuristic that successively splits and
merges the subspaces and the individual clusters in the subspaces. The best result is then
determined based on the MDL encoding strategy.

Outlier detection. In addition to the number of clusterings and clusters per clus-
tering, AutoNR is also able to detect outliers. This feature is based on the presented
MDL encoding strategy, implying that no additional input parameters are necessary. To
identify outliers, we check for each sample in each subspace whether it is favorable to
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encode it as part of a cluster or as an isolated vector. Thus, we can recognize outliers
subspace-specifically. In other words, outliers in one subspace do not necessarily have
to be outliers in others. This property allows to fine-tune the individual clusters, leading
to high-quality clusterings. Experiments on real-world data confirm that this can lead to
improved clustering results.

Since AutoNR builds on NrKmeans [MYPB18], it can, unlike other parameter-free
methods, optimize the clustering results and the corresponding subspaces simultane-
ously. Moreover, it shows an advantageous runtime behavior compared to those com-
petitor algorithms.

Fig. 3.1 visualizes the result of AutoNR executed on the NrLetters data set [LMPB22],
with additional outliers added. The original data set consists of 10,000 7 × 9 colored
images, each showing a letter (‘A’, ‘B’, ‘C’, ‘X’, ‘Y’, ‘Z’) in the colors pink, cyan or yellow.
In addition, one corner of each image (top left, top right, bottom left, bottom right) is
highlighted in the same color as the letter, resulting in three clustering possibilities. The
figure indicates that AutoNR correctly identifies all desired structures and all outliers
after several splitting and merging steps. Details regarding the process by which this
result was obtained are given in Appendix A.

Due to its strengths, AutoNR is used in [MSL+23] to analyze images of medieval glass
beads. Here, although the deep clustering algorithm ENRC [MMA+20] obtains the fi-
nal clustering solution, an initial non-deep, non-redundant clustering result is required.
Since the parameters of the clusterings are initially unknown, and outliers are likely to
be present in the data set, AutoNR is chosen for this purpose.

3.2 Dip’n’Sub

Various clustering methods use the Dip-test to decide whether a data distribution is uni-
or multimodal (e.g., DipMeans [KL12], SkinnyDip [MP16], ProjectedDipMeans [CL18],
StrDip [LZD+18], NrDipMeans [MYPB20], or the procedure proposed in [CL17]). A fi-
nal statement is usually made by analyzing the probability value pDip. In order to obtain
this value, the mentioned methods generally use a predefined look-up table, which spec-
ifies a probability value for multiple combinations of Dip-value Dip and sample size N .
Hartigan and Hartigan introduced a table with 117 entries in [HH85]. This initial table
was later extended to 546 entries5. Values not contained in the table are interpolated
based on

√
NDip [HH85]. Nevertheless, even the enlarged table is constrained to data

sets with a maximum of 72,000 samples, which limits the applicability. In [BLBP23], we
compute 307 pairs of Dip and pDip for 68 sample sizes to fit a sigmoid function that can
determine valid probability values for all combinations of sample size N and Dip-value

5https://cran.r-project.org/package=diptest (accessed 2024/01/08)

https://cran.r-project.org/package=diptest
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Figure 3.1: Result of AutoNR regarding the NrLetters data set: The scatter matrix plots indicate
that AutoNR successfully recognizes the three clustering possibilities hidden in the data
set. These describe the shown letter (‘A’, ‘B’, ‘C’, ‘X’, ‘Y’, ‘Z’), the marked corner (top left,
top right, bottom left, bottom right), and the color of the letter (pink, cyan, yellow).
Furthermore, AutoNR identifies the subspace-specific outliers, which were added to the
data set and show a wrong letter, several marked corners, or a different color. No input
parameters are necessary to achieve these clustering results. The coloring of the scatters
corresponds to the labels in each subspace, and outliers are colored in purple.

Dip. The resulting function is defined as:

p̂(Dip, b̂(N)) = 1−
[
0.6(1 + 1.6e−b̂(N)Dip+6.5)

1
1.6 + 0.4(1 + 0.2e−b̂(N)Dip+6.5)

1
0.2

]−1

, (3.1)

where b̂(N) = 17.30784
√
N + 12.04918.

This function is continuously differentiable with respect to a projection axis ρ. There-
fore, not only the gradient concerning the Dip-value, as explained in [KL05], but also the
gradient regarding the probability value can be calculated. The following applies:

∇ρ(p̂(Dip, b̂(N))) = γ · ∇ρ(Dip), (3.2)
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where γ is a factor depending on N and Dip. In applications that consider the entire
data set, such as DipExt [SBBP20], this gradient has no major advantage over directly
applying ∇ρ(Dip). Yet, it can be beneficial if a gradient regarding multiple probability
values is to be calculated. In this case, the factor γ ensures that an intrinsic weighting of
the individual gradients takes place.

To emphasize the usefulness of this aspect, we introduce the common subspace cluster-
ing algorithm Dip’n’Sub [BLBP23]. It uses SGD to successively search for those projection
axes on which the existing clusters obtain the maximum average modality. The score Sp

is to be minimized by these axes:

Sp =
1

N

k∑

j=1

|Cj|p̂
(

dip(Cρ
j ), b̂(|Cj|)

)
, (3.3)

where Cj is the set of samples in cluster j, and dip(Cρ
j ) returns the Dip-value of Cj pro-

jected to ρ, i.e., Cρ
j = {ρTxi|xi ∈ Cj}. Subsequently, the clusters can be divided into

sub-clusters based on the modes present on these projection axes. Here, we use a similar
method as proposed in [MP16], which recursively executes the Dip-test to identify the
steepest slope and, thus, the main mode in the projected data. This mode is regarded as a
separate cluster and the process repeats without the newly identified cluster. In contrast
to the procedure presented in [MP16], our subroutine TailoredDip can better capture the
tails of distributions, leading to more precise cluster boundaries. The process terminates
if no additional axis can be found on which more than T% of the samples are contained
in a multimodal cluster. Here, T is a hyperparameter that the user has to set.

In summary, Dip’n’Sub automatically identifies a suitable subspace and the number of
clusters using only the Dip-test. Since only modes on the identified axes are considered,
and no further assumptions are made about the underlying distributions, our algorithm
can recognize various convex cluster shapes. This ability distinguishes Dip’n’Sub from
many comparison methods, which are often based on k-Means and can only recognize
spherical clusters. A visualization of Dip’n’Sub’s process is given in Fig. 3.2. Additionally,
an experiment is conducted in Appendix B that indicates how Dip’n’Sub benefits from
using the gradient regarding pDip.

3.3 DipDECK

While the automatic determination of a suitable number of clusters has been extensively
examined in traditional clustering (see Sec. 2.4.2), the topic has yet to be addressed
in deep clustering. Although it is easy to combine an AE with established k-estimation
techniques by running these algorithms on the resulting embedding, they often do not
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Figure 3.2: Process of Dip’n’Sub: Detecting relevant structures in the input data set (scatter ma-
trix plot - top left) is difficult. Dip’n’Sub performs SGD by using the gradient of Eq.
3.3 to identify a projection axis on which several modes and, thus, cluster-relevant
structures are recognizable (histogram - top right). The subroutine TailoredDip then
obtains the cluster assignments. The gradient of Eq. 3.3 is again used to find a sec-
ond projection axis on which a maximum number of clusters exhibit multimodality
(histograms - bottom right). As no further relevant projection axis can be identified,
the final clustering result is returned (scatter plot - bottom left) containing clusters of
various shapes. The first plot is colored according to the ground truth; the other three
plots are colored using the labels identified by Dip’n’Sub.

work satisfactorily on complex data sets. The main reason is that the optimization of
the embedding and the estimation of the number of clusters run isolated from each
other, which can lead to poor performance. If the initial embedding does not depict
the desired patterns, the algorithms cannot recover from this error. This problem also
applies to SCDE [DAMS19], one of the few clustering methods that uses a neural network
to estimate the number of clusters. This algorithm first trains a regular AE and then uses
the resulting embedding to determine the number of clusters by employing an additional
softmax-based AE. Afterward, spectral clustering [vL07] with the estimated number of
clusters is executed on the embedded data. Thus, the estimated number of clusters can
not influence the final embedding. The process of first training an AE and then executing
the actual clustering is also referred to as a multi-stage approach [ZXZ+22].

We propose the deep clustering algorithm DipDECK [LBS+21], which belongs to the
iterative approaches [ZXZ+22], meaning that the embedding and the clustering are up-
dated alternatingly. It starts with an overestimated number of so-called micro-clusters
obtained by running k-Means on the embedding of a pretrained AE. During the optimiza-
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Figure 3.3: Process of DipDECK: First, the input data set (top left) is used to pretrain the au-
toencoder. Afterward, the initial micro-clusters are obtained by running k-Means with
an overestimated number of clusters on the embedded data set (top right). For each
pair of micro-clusters, the Dip-value Dip and the corresponding probability value pDip

are calculated by projecting the samples onto the connecting line between their cluster
centers - the two red lines exemplify these projection axes, and the blue histograms
visualize the projected data. Cluster pairs with high pDip are attracted until a merge
occurs above a specified threshold. The third plot (bottom right) shows the embedding
after five merges. The embedding is optimized until all clusters are clearly separated
and no further merges occur (bottom left). The first plot is colored according to the
ground truth; the other three plots are colored using the labels identified by DipDECK.

tion process, DipDECK merges those micro-clusters likely to belong to a mutual structure.
Here, the Dip-test measures the similarity between each pair of micro-clusters. We cre-
ate the matrix P ∈ Rk×k, containing the probability values pDip of each pair of clusters
projected onto the connecting line between their centers. Individual clusters receive a
similarity value of 1, i.e., ∀1≤j≤k : Pj,j = 1. Finally, a k-Means-based loss function is used
to optimize the embedding:

Lclust(B) =
1 + std(DC)

mean(DC)

1

|B|
∑

xi∈B

k∑

j=1

P̂f(xi),j||enc(xi)− enc(µj)||22, (3.4)
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where DC is the set of Euclidean distances between each pair of cluster centers, the
function f(xi) returns the cluster label of sample xi, and P̂ is a row-wise normalized
version of P . The term mean(DC) is included in the loss to prevent the AE from shrinking
the scaling of the embedding to optimize Lclust, and std(DC) hinders the network from
pushing a single easily separable cluster far away from the other clusters to increase
mean(DC). After updating the embedding for an epoch, the cluster labels and centers
are updated in a k-Means-like fashion. These parameters are then used to update P .
If the probability value of two clusters exceeds a specified threshold, a cluster merge is
initiated and the AE can adapt to the new clustering structure in the following epoch.

The stated loss function uses the pair-wise probability values in P to strengthen the
similarity and dissimilarity of existing structures. Strengthening relevant similarities can
lead to subsequent merging operations. Thus, the clustering result and the embedding
can influence each other, improving the final clustering result. Additionally, by com-
bining several micro-clusters into one final cluster, DipDECK is more flexible regarding
cluster shapes than comparison methods such as DEC [XGF16], IDEC [GGLY17], DCN
[YFSH17], or DKM [FTG20]. This property can also be observed in Fig. 3.3, where
DipDECK detects the correct number of clusters, even though the clusters differ in their
shapes and extents.

By employing DipDECK, we can analyze complex data sets, e.g, Fashion-MNIST
[XRV17], with little prior knowledge. In some cases, the number of identified clusters
does not correspond to the number of classes contained in the ground truth. However,
this is not necessarily a disadvantage but offers room for subsequent analyses, as inter-
esting sub-structures may be identified. Note that “the task of clustering is to retrieve
any natural grouping of the points in the data set, not necessarily the one encoded in the
class label” [HD19]. It is reasonable that the algorithm returns unexpected solutions as it
does not know contexts a human would consider common knowledge. Fig 3.4 shows an
example regarding Fashion-MNIST, where DipDECK splits the ground truth class ‘sandal’
into the clusters ‘flat sandal’ (Fig. 3.4a) and ‘high-heel sandal’ (Fig. 3.4b) as they are
comprehensibly different objects for a computer.

3.4 DipEncoder

While the gradient of the Dip-test has already been applied to perform linear trans-
formations, e.g., in [KL05, MP16, SBBP20], it has yet to be considered for non-linear
transformations. Studies are necessary to explore such potential optimization options.
We introduce the DipEncoder [LBN+22], which combines the Dip-test’s gradient with an
AE to obtain an embedding in which all clusters are separated by adopting a multimodal
structure. Simultaneously, each cluster must indicate a unimodal distribution to ensure
no cluster is pulled apart. Since the Dip-test can only be applied to one-dimensional
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(a) Cluster ‘flat sandal’. (b) Cluster ‘high-heel sandal’.

Figure 3.4: The plots show two clusters of the Fashion-MNIST [XRV17] data set, as identified by
DipDECK, which should be combined into a single cluster according to the ground truth.
The cluster centers and ten samples from the clusters are illustrated.

data, each combination of clusters is assigned an individual projection axis ρ. The loss
function used to optimize the embedding looks as follows:

Lclust(B) =
2

k(k − 1)

k−1∑

a=1

k∑

b=a+1

1

2
(dip(Z

B
a,�b) + dip(Z

B
�a,b
))− dip(Z

B
a,b), (3.5)

where dip(Z
B
a,b) returns the Dip-value of all embedded samples of clusters a and b within

batch B projected onto their corresponding projection axis ρa,b, i.e., Z
B
a,b = {ρTa,b ·enc(xi) |

xi ∈ B ∩ (Ca ∪ Cb)}. This value should be maximized to ensure a highly multimodal
structure when considering both clusters. The term dip(Z

B
a,�b) returns the Dip-value of a

subset of Z
B
a,b by only considering the samples within cluster a, i.e., Z

B
a,�b = {ρTa,b · enc(xi) |

xi ∈ B ∩ Ca}, and dip(Z
B
�a,b
) is defined analogously. Accordingly, these two values should

be minimized to achieve a unimodal structure within the clusters.
When optimizing this loss function, not only the known gradient concerning the pro-

jection axis ∇ρ

(
dip({ρTxi | xi ∈ D})

)
[KL05] is used but also the gradient regarding the

data ∇xi

(
dip({ρTxi | xi ∈ D})

)
. Since in traditional applications, the feature space is

usually fixed, this gradient has so far remained unregarded. However, as the DipEncoder
operates within an adaptable embedding, this gradient can provide the AE with benefi-
cial information. By considering both gradients, the embedding can be improved in such
a way that the positioning of the data and the projection axes are optimized.

The DipEncoder can be applied without making a precise statement about the within-
cluster distribution of the data, which is in contrast to k-Means-based optimization func-
tions, as used by DCN [YFSH17] and DKM [FTG20], and Kullback-Leibler-based opti-
mization functions, as used by DEC [XGF16] and IDEC [GGLY17]. As a result, each
cluster can have a distinct data distribution with an individual spread, adding flexibility
to the resulting embedding.

As an iterative deep clustering approach, the clusters are adjusted after each epoch.
Here, the cluster labels are updated by considering each pair of clusters and defining the
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Figure 3.5: Process of the DipEncoder: First, the input data set (top left) is used to pretrain the
autoencoder. Afterward, the initial clusters are obtained by running k-Means on the
embedded data set and updated by applying the described labels updating procedure
of the DipEncoder (top right). The embedding is then updated by optimizing Eq. 3.5.
The red line in the upper right shows the projection axis for the combination of the
purple and yellow cluster, and the corresponding histogram visualizes its part of the
loss term. After 20 iterations, the multimodality of the two clusters has increased from
Dip = 0.084 to Dip = 0.111 (bottom right). After another 30 iterations, all clusters
are clearly separated (bottom left). The first plot is colored according to the ground
truth; the other three plots are colored using the labels identified by the DipEncoder.

midpoint between the modes of the corresponding clusters on their common projection
axis as the decision boundary. Thus, it is the first deep clustering algorithm whose clus-
tering objective exclusively depends on the Dip-test and no other assumptions. k-Means
is only required to obtain the initial cluster assignments, which can be directly updated
using the strategy described.

Fig. 3.5 illustrates the optimization process of the DipEncoder. In this simple example,
the algorithm is not only able to identify clusters of various shapes but also to preserve
the original structures in the embedding. The DipEncoder has this ability because only
modalities are taken into account, and the clusters are not forced into a predefined dis-
tribution.
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3.5 The ClustPy Package for Benchmarking (Deep)
Clustering Algorithms

All algorithms presented in this thesis are provided in our open-source Python package
ClustPy6. Furthermore, ClustPy offers implementations of relevant comparison algo-
rithms, methods for evaluating clustering techniques, and methods for loading certain
benchmark data sets. Using ClustPy, we can compare clustering algorithms fairly and
meaningfully, as the code base for all approaches is equivalent. This property is espe-
cially relevant for deep clustering algorithms as the implementations can vary heavily
depending on the chosen deep learning framework.

In [LMPB23b], we use ClustPy to perform the first deep clustering benchmark using a
unified framework. We compare the performances of the deep clustering algorithms DEC
[XGF16], IDEC [GGLY17], DCN [YFSH17], ACe/DeC [MBM+21] and the DipEncoder
[LBN+22] on various image data sets. The benchmark focuses on procedures that are
comparable in their optimization goal, enabling us to make meaningful statements about
their performances in different settings. Here, the influence of different AE architectures,
hyperparameters, and augmentations is analyzed.

Some key findings are:

• In many scenarios, the commonly used AE architecture, as described in [XGF16],
can be substituted with a simpler architecture without significantly influencing the
clustering results.

• 5 and 10 are often good choices when setting the size of the AE’s embedding m.

• The learning rate should not be set too large when optimizing a deep clustering
loss, as this can negatively influence the final clustering result.

• As mentioned in Sec. 2.4.5, deep clustering algorithms require an initial clustering
result, usually obtained by running k-Means. In our experiments, we notice that in
the case of the MNIST data set [LBBH98], the EM algorithm can be a better choice,
leading to a higher clustering accuracy. This finding is potentially relevant for other
data sets as well.

• In general, deep clustering algorithms benefit notably from applying image aug-
mentation. This confirms the results of other studies, e.g., [MPB19, MBM+21].

• The DipEncoder shows good overall performance. Especially with a simple AE ar-
chitecture, the results are superior to those of most comparison algorithms. This

6https://github.com/collinleiber/ClustPy (accessed 2024/01/10)

https://github.com/collinleiber/ClustPy
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behavior confirms our hypothesis that an analysis of the modes present in the em-
bedding of an AE can lead to more flexible and high-quality clustering results.

In summary, we show that ClustPy offers a user-friendly way to evaluate novel clus-
tering methods fairly. To this end, a tutorial with best practices on deep clustering using
ClustPy was developed and presented at the 32nd ACM International Conference on
Information and Knowledge Management (CIKM 2023) [LMPB23a].
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4 Conclusion

In the following conclusion, we want to address some topics related to our contribu-
tions. First, we would like to discuss limitations to consider when working with the
presented methods. Afterward, we exhibit which new research opportunities arise from
these methods. Finally, we conclude the thesis with some last remarks.

4.1 Limitations

While the presented methods solve problems of existing approaches, they also suffer
from certain limitations. For example, methods based on the Dip-test generally struggle
to correctly detect modes when the number of points per cluster varies substantially. If
one cluster is significantly larger than another, the Dip-test will always indicate a uni-
modal distribution. Accordingly, the clusters cannot be correctly distinguished from each
other in an unsupervised manner. A Dip-test-based separation of the clusters would re-
quire a downsampling of the larger cluster. Such a strategy is discussed in [LBS+21].
Another challenge is the application of the Dip-test to non-continuous data. In this case,
each expression of an attribute can be recognized as a separate mode, which can lead
to undesirable effects during the clustering process. DipDECK [LBS+21] and the DipEn-
coder [LBN+22] avoid this problem by performing the Dip-test only on the embedded
data, which typically consists of continuous values.

The Dip-test is not the only procedure that has difficulties when analyzing data sets
with unbalanced cluster sizes. It is a general problem in deep learning applications since
not the entire data set is used, but only random batches [ZXZ+22]. Thus, in the case
of strongly varying cluster sizes, individual clusters may be underrepresented or even
entirely missing in a batch, which, in turn, can heavily influence the final clustering
result. This is also an issue when dealing with a large number of clusters. If the batch
size is too small, there is a high probability that specific clusters are not included in a
batch.

Another limitation is the parameterization of DipDECK [LBS+21] and the DipEncoder
[LBN+22]. Although the presented methods omit some parameters that are difficult to
choose, many hyperparameters are still necessary for all deep learning-based applica-
tions. For example, to train a neural network, a suitable architecture, optimizer, learning
rate, and an optional learning rate scheduler must be chosen. In addition, the weight λ1
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for the reconstruction loss Lrec and λ2 for the clustering loss Lclust are required for most
deep clustering methods. These values are not trivially optimizable in unsupervised
learning since - in contrast to supervised learning - no appropriate metric is available for
evaluating a model. Due to the powerful non-linear transformation of the feature space,
unsupervised metrics, such as the silhouette score [Rou87], which compares the within-
cluster distances with the distances to other clusters, cannot be applied in a meaningful
way. This results in a situation where it becomes difficult for domain experts to evaluate
a clustering result. For this reason, the cluster centers within the original representation
are often considered to analyze the identified clustering structure.

4.2 Future Work

The proposed approaches offer several opportunities for further research projects. We
want to present some ideas briefly.

Combining AutoNR with methods other than NrKmeans: Currently, the framework
described in [LMPB22] has been applied to NrKmeans [MYPB18] only. However, it is pos-
sible to transfer this to other non-redundant clustering algorithms, such as Orth [CFD07],
without major changes. It would be interesting to see how potential procedures would
perform and whether the findings would differ from those of AutoNR. In addition, the
MDL encoding strategy could also be applied to common subspace methods such as Sub-
Kmeans [MYPB17], ADR-EM [DHZS02], or LDA-k-Means [DL07]. In this case, input
parameters for the number of clusters and the dimensionality of the subspace would no
longer be necessary, which would greatly simplify the application.

Parameter-free common subspace clustering on mixed-type data: AutoNR can be
further extended by including the handling of mixed-type data sets. Currently, AutoNR is
only able to process numeric values. However, in [KLB23], we demonstrate how common
subspace clustering can work for mixed-type data sets. Since the numerical optimization
of the proposed k-SubMix algorithm is based on SubKmeans [MYPB17], it is possible to
extend our MDL encoding by a categorical part, which would allow an utterly parameter-
free execution.

Combining the gradient regarding pDip with deep learning: In [BLBP23], we in-
troduce a differentiable function to transform Dip-values to probability values. Further,
we show how this function can be utilized to calculate a gradient regarding pDip. This
gradient can be integrated into deep learning applications. For example, instead of max-
imizing the Dip-values between clusters, the DipEncoder [LBN+22] could also minimize
the probability values. This process could result in an intrinsic weighting of the gradients,
leading to improved clustering results.

Combining DipDECK with the clustering loss of the DipEncoder: Another re-
search opportunity would be the combination of DipDECK [LBS+21] and the DipEncoder
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[LBN+22]. Currently, the clusters in DipDECK are optimized using a k-Means-based loss
function. The Dip-values between the clusters are only used for the merging operation
and serve as a weighting of the Euclidean distances. It could be beneficial to integrate
the Dip-test deeper into the procedure by using a clustering loss similar to that of the
DipEncoder. An appropriate optimization could result in an increased flexibility of the
embedding since modalities are evaluated instead of distances.

Substituting the Dip-test: Another possibility for further research would be to re-
place the Dip-test with more modern modality tests. For example, the Folding Test of
Unimodality [SFTL18] or the UU-Test [CL22] could be used for this purpose. It would be
interesting to check whether a gradient concerning these tests can be formulated, which
could be integrated into appropriate subspace or deep learning applications. By substi-
tuting the Dip-test, the final clustering results can be compared with each other in order
to discuss which test is best suited in which scenarios.

4.3 Closing Remarks

This thesis presents four methods that combine complex transformation-based clustering
objectives, such as common subspace clustering, non-redundant clustering, or deep clus-
tering, with simplified parameterizations compared to competitor algorithms. Here, dif-
ferent techniques are used to analyze the distinct modes in the resulting feature spaces.
We want to emphasize that while the Dip-test has already been applied in various areas
of machine learning, e.g., in [LZD+18] for clustering streaming data or in [CL17] for
image segmentation, DipDECK and the DipEncoder are - to the best of our knowledge -
the first algorithms that combine the Dip-test with deep learning. We hope that the pre-
sented innovations in the field of data mining will result in new research opportunities
and that new, exciting insights can be gained. Furthermore, automatically determining
the number of clusters will hopefully lead to opportunities to extract knowledge from
previously unexamined data sources.

In order to accelerate the research progress, we further introduce the Python package
ClustPy. This package provides a good basis for comparing clustering procedures and
creating insightful benchmarks.
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Jointly clustering with k-means and learning representations. Pattern Recog-
nit. Lett., 138:185–192, 2020.

[GBSS05] Arthur Gretton, Olivier Bousquet, Alexander J. Smola, and Bernhard
Schölkopf. Measuring statistical dependence with hilbert-schmidt norms.
In Algorithmic Learning Theory, 16th International Conference, ALT 2005,
Singapore, October 8-11, 2005, Proceedings, volume 3734 of Lecture Notes in
Computer Science, pages 63–77. Springer, 2005.

[GGLY17] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Improved deep
embedded clustering with local structure preservation. In Proceedings of
the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJ-
CAI 2017, Melbourne, Australia, August 19-25, 2017, pages 1753–1759. ij-
cai.org, 2017.

[GHPB14] Sebastian Goebl, Xiao He, Claudia Plant, and Christian Böhm. Finding the
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Appendix

A Process of AutoNR on the NrLetters data set

To illustrate the process of AutoNR, we run the algorithm on the NrLetters data set
[LMPB22]. The expected clusterings describe the shown letter (‘A’, ‘B’, ‘C’, ‘X’, ‘Y’, ‘Z’),
the marked corner (top left, top right, bottom left, bottom right), and the color of the
letter (pink, cyan, yellow). We further add eleven outliers to the data set. These show
an incorrect letter (‘E’, ‘L’, ‘O’, ‘P’, ‘S’), several marked corners, or an incorrect color (red,
green, blue, white). All conditions apply to the outlier that illustrates a white ‘O’. The
final data set consists of 10,011 7× 9 colored images.

In this example, we apply AutoNR on a dimensionally reduced version of the data
set by utilizing PCA while keeping 90% of the data’s variance. The clustering process is
shown in Fig. A.1, where the main intermediate results are illustrated.

First, the input data set (Fig. A.1a) is split into two subspaces, the first containing six
clusters describing the six letters and the second a single cluster (Fig. A.1b). We refer
to subspaces with a single cluster as noise spaces. Next, the noise space is split into a
subspace with three clusters and a new noise space (Fig. A.1c). Here, the newly created
subspace contains information on whether the marked corner is on the left, top right, or
bottom right. Therefore, AutoNR is not yet able to distinguish all four corners. After-
ward, the noise space is split into a subspace containing three clusters and a new noise
space (Fig. A.1d). These three clusters perfectly capture the color information of the
images. Finally, AutoNR identifies another clustering with three clusters containing the
missing information regarding the marked corner (Fig. A.1e). AutoNR further improves
the clustering result by merging the second and the fourth subspaces (Fig. A.1f). The
resulting subspace contains one cluster for each corner of the images. This indicates that
AutoNR has the ability to ‘repair’ undesirable clustering results. In summary, AutoNR
successfully identifies all clustering possibilities contained in the data set. Further, in all
subspaces, the outliers are perfectly recognized.
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(a) The input data set.

(b) Result after the first subspace split. AutoNR identifies the information regarding the shown letter.
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(c) Result after the second subspace split. AutoNR only partially identifies the information regarding the marked corner.

(d) Result after the third subspace split. AutoNR identifies the information regarding the color of the letters.
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(e) Result after the fourth subspace split. AutoNR identifies the remaining information regarding the marked corner.

(f) Final result after merging subspaces 2 and 4. AutoNR combines the information regarding the marked corner contained in the two
subspaces.

Figure A.1: Process of AutoNR regarding the NrLetters data set: The visualizations illustrate
the identified subspaces through scatter matrix plots and the cluster centers and out-
liers within those subspaces. After four subspace splits (b) - (e) and one merging of
subspaces (f), AutoNR perfectly captures the clustering information contained in the
NrLetters data set. Furthermore, AutoNR identifies all outliers in the subspaces. The
coloring of the scatters corresponds to the labels in each subspace.
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B Gradient regarding pDip

To examine the effect of our gradient regarding pDip, we consider the data set shown in
Fig. B.2. We can see two clusters with 200 (purple) and 1000 (yellow) samples. Both
clusters consist of two separate Gaussian distributions. It is easy to define a proper
projection axis to split each cluster individually. This axis would be horizontal for the
purple cluster and vertical for the yellow cluster. However, to obtain fewer features in
the resulting subspace, we prefer to find a single projection axis that can be used to split
both clusters. To evaluate the gradient of our transformation function, we analyze the
difference between minimizing Sp, as defined in Eq. 3.3, and maximizing the score SD:

SD =
1

N

k∑

j=1

|Cj|Dip(Cρ
j ), (B.1)

where Dip(Cρ
j ) returns the Dip-value Dip of Cρ

j . The only difference is that Eq. 3.3
optimizes pDip while Eq. B.1 optimizes Dip. For the optimization of the projection axes,
we use SGD with a learning rate of 0.01 and momentum of 0.95.

The results shown in Fig. B.2 indicate that using the gradient of Eq. 3.3 leads to a
better, i.e., lower, Sp in all nine cases, and the gradient of Eq. B.1 leads to a better, i.e.,
higher, value of SD in six cases. It can be concluded that both gradients are capable
of improving their respective objective functions. However, Eq. 3.3 is better suited to
the clustering task of Dip’n’Sub [BLBP23] since we want to identify multimodal axes
regarding multiple clusters, which may vary heavily in size.
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(a) Horizontal starting axis - Iteration 1.
SD-grad: SD = 0.0309 , Sp = 0.3461
Sp-grad: SD = 0.0311 , Sp = 0.1444

(b) Horizontal starting axis - Iteration 10.
SD-grad: SD = 0.0285 , Sp = 0.7161
Sp-grad: SD = 0.0762 , Sp = 0.2459

(c) Horizontal starting axis - Iteration 100.
SD-grad: SD = 0.0788 , Sp = 0.2476
Sp-grad: SD = 0.0395 , Sp = 0.0001

(d) Vertical starting axis - Iteration 1.
SD-grad: SD = 0.0804 , Sp = 0.2299
Sp-grad: SD = 0.0818 , Sp = 0.1211

(e) Vertical starting axis - Iteration 10.
SD-grad: SD = 0.0808 , Sp = 0.2249
Sp-grad: SD = 0.0791 , Sp = 0.2024

(f) Vertical starting axis - Iteration 100.
SD-grad: SD = 0.0826 , Sp = 0.0581
Sp-grad: SD = 0.0379 , Sp = 0.0007

(g) Diagonal starting axis - Iteration 1.
SD-grad: SD = 0.0646 , Sp = 0.0009
Sp-grad: SD = 0.0646 , Sp = 0.0008

(h) Diagonal starting axis - Iteration 10.
SD-grad: SD = 0.0647 , Sp = 0.0012
Sp-grad: SD = 0.0636 , Sp = 0.0005

(i) Diagonal starting axis - Iteration 100.
SD-grad: SD = 0.0648 , Sp = 0.0011
Sp-grad: SD = 0.0569 , Sp = 0.0000

Figure B.2: Results of SGD using the gradient regarding Eq. 3.3 (Sp-grad) to update the red projec-
tion axis and the gradient regarding Eq. B.1 (SD-grad) to update the blue projection
axis after 1 (left), 10 (middle), and 100 (right) iterations. For each scenario, we start
with a horizontal (first row), a vertical (second row), and a diagonal (third row) pro-
jection axis. Values indicating a higher multimodality with respect to Eq. B.1 or Eq.
3.3 are underlined.
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Automatic Parameter Selection for Non-Redundant Clustering

Collin Leiber* Dominik Mautz∗ Claudia Plant� Christian Böhm∗

Abstract

High-dimensional datasets often contain multiple meaning-

ful clusterings in different subspaces. For example, objects

can be clustered either by color, weight, or size, revealing

different interpretations of the given dataset. A variety of

approaches are able to identify such non-redundant cluster-

ings. However, most of these methods require the user to

specify the expected number of subspaces and clusters for

each subspace. Stating these values is a non-trivial prob-

lem and usually requires detailed knowledge of the input

dataset. In this paper, we propose a framework that uti-

lizes the Minimum Description Length Principle (MDL) to

detect the number of subspaces and clusters per subspace au-

tomatically. We describe an efficient procedure that greed-

ily searches the parameter space by splitting and merging

subspaces and clusters within subspaces. Additionally, an

encoding strategy is introduced that allows us to detect out-

liers in each subspace. Extensive experiments show that our

approach is highly competitive to state-of-the-art methods.

1 Introduction

Several algorithms have been developed in order to clus-
ter objects under certain conditions. Typically, these
techniques deliver a single solution or multiple solutions
in a hierarchical setup. However, often various distinct
clusterings can be created by different characteristics of
the given dataset. Take Figure 1 as an example. These
low-resolution images can be grouped by the shown let-
ter, the color, or the marked corner. This indicates that
there are three different lower-dimensional subspaces,
each with a unique clustering. Further, these partition-
ings are mutually non-redundant, for each object be-
longs to different clusters in different subspaces [16].

This diversity of clustering possibilities emerges es-
pecially from datasets in high-dimensional spaces. Non-
redundant clustering algorithms can reveal coherences
within the data, which would not be visible by a sin-
gle clustering. Since each clustering has its individual
subspace, the analysis of the results is facilitated by the
lower dimensionality and usually also by to the lower
number of clusters. In addition, the user can choose the

*LMU Munich. {leiber, mautz, boehm}@dbs.ifi.lmu.de
�Faculty of Computer Science, ds:UniVie, University of Vi-

enna, Vienna, Austria. claudia.plant@univie.ac.at

Figure 1: Images of the letters ’A’, ’B’, ’C’, ’X’, ’Y’ and
’Z’ in the colors pink, cyan, and yellow. In each image,
one corner is highlighted in color. This results in three
different clusterings with 6, 3, and 4 clusters.

best partitioning based on his specific objective without
being limited to a single option. However, a problem
with most available methods is that the user needs a lot
of prior knowledge to set suitable input parameters.

In this paper, we describe a framework that utilizes
the Minimum Description Length (MDL) to overcome
the problem of specifying those parameters. MDL is
used to solve model selection problems and for example
is often applied in Boolean Matrix Factorization [18]. It
is based on the idea that any regularity in the data can
be used to compress the data [8]. The fewer bits are
required to describe a model, the better the model is.

Our framework performs a sophisticated search in
the parameter space to find a setting with which a high
compression of the input dataset is achieved. Thus, it
can automatically determine the number of subspaces
and clusters per subspace. Existing parameter-free ap-
proaches (e.g. [24, 26]) first identify all subspaces and
then the clusters within them. In contrast, we succes-
sively split and merge subspaces while simultaneously
searching for the best number of partitions within these
new subspaces. This gives us more flexibility in finding
meaningful structures. Additionally, we introduce a fea-
ture that can identify outliers in each of the found sub-
spaces. This feature is integrated into our MDL-based
cost function and does not require additional input pa-
rameters. To illustrate the effectiveness of our frame-
work we created the AutoNR algorithm which combines
our proposal with the recently presented Nr-Kmeans
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[16] approach. Our major contributions are:

• We present a general MDL encoding for non-
redundant clustering models that can be combined
with centroid-based clustering algorithms.

• A parameter-free, greedy approach efficiently
searches the parameter space to identify the num-
ber of subspaces and clusters within subspaces.

• Our procedure is extended to identify outliers in
each existing subspace.

2 Related Work

We want to briefly review three relevant areas of re-
search: non-redundant clustering, methods for deter-
mining the number of clusters and basic outlier detec-
tion extensions for Gaussian clustering approaches.

Non-Redundant Clustering: We only consider
methods that can find non-redundant clusterings with-
out knowing an initial clustering solution. Alterna-
tive clustering algorithms would require an additional
parameter-free clustering approach that provides the in-
put partitioning in a parameter-free setting.

Cui et al. [4] identify orthogonal clusterings by se-
quentially executing PCA and k-means. They propose
two strategies: orthogonal clustering (Orth1) and clus-
tering in orthogonal subspaces (Orth2). mSC [19] cre-
ates non-redundant partitionings by combining spectral
clustering with the Hilbert-Schmidt Independence Cri-
terion to penalize similarity between different subspaces.
Nr-Kmeans [16] is a generalization of the subspace clus-
tering algorithm SubKmeans [15]. It assumes that a
rotated feature space can be split into J axis-parallel
subspaces, each containing an individual k-means clus-
tering. An advantage of Nr-Kmeans is that it optimizes
all subspaces and clusters in the subspaces simultane-
ously. NrDipmeans [17] is an extension of this method.
Here, Hartigan’s dip test [10] is used to detect mul-
timodal structures in each subspace and thereby de-
termine the number of clusters. The five algorithms
mentioned so far all require the number of subspaces
and, except for NrDipmeans, the number of clusters per
subspace as input parameters. ISAAC [26] utilizes In-
dependent Subspace Analysis (ISA) and MDL to find
multiple subspaces in a parameter-free setting. It fits
Gaussian Mixture Models (GMMs) within those statis-
tically independent subspaces. The parameter-free al-
gorithm MISC [24] also uses ISA and MDL to identify
independent subspaces. Afterward, it performs kernel
graph regularized semi-nonnegative matrix factorization
to define clusters in each subspace.

Determine the Number of Clusters: A popu-
lar strategy to identify the number of clusters is the X-
means algorithm [20]. It uses the Bayesian Information

Criterion to rate different parametrizations of k-means.
Starting with a small number of clusters, it repeatedly
splits them up by creating two new centers along a ran-
domly chosen vector. Ishioka et al. [13] extend this ap-
proach by introducing the idea of merging clusters. The
G-means [9] algorithm exploits the Anderson-Darling
statistical hypothesis test to check whether the objects
within a cluster follow a Gaussian distribution. The
approach starts with a single cluster and iteratively in-
creases the number of clusters by splitting those whose
data appears non-Gaussian. PG-means [5] projects the
data and the learned model into a one-dimensional space
and applies the Kolmogorov-Smirnov test to check if the
projected model fits the projected data. This test is ex-
ecuted repeatedly with different projections. If any test
fails, a new cluster will be added, and the approach re-
peats. Bischof et al. [2] use MDL as a pruning criterion
by starting with a complex model and gradually reduc-
ing the number of clusters until optimal encoding costs
are reached. Additionally, they use MDL to identify
outliers in each iteration of their procedure. FOSSCLU
[7] is a subspace clustering algorithm optimizing an or-
thonormal transformation that projects the data into a
lower-dimensional subspace in which the EM algorithm
is executed. The dimensionality of the subspace and the
number of clusters are identified through MDL.

Most aboved-mentioned methods cannot be applied
easily to non-redundant clustering, since the subspaces
are constantly adapting to changing cluster structures.
This particularly affects the search heuristics.

Outlier Detection: The identification of outliers
usually requires additional input parameters. For exam-
ple, ODIN [12] first creates a k-nearest neighbor graph
and then counts the number of edges leading to a point.
If this amount is smaller than a threshold, the point is
an outlier. ORC [11] calculates the outlyingness of all
points as their distance to their corresponding cluster
centers divided by the maximum distance. If the out-
lyingness of a point is greater than a threshold, it will
be removed from the dataset. k-means-- [3] regards the
l points farthest away from their corresponding centers
as outliers in each iteration of k-means. These l points
will not be used for the subsequent assignment and up-
date step. ODC [1] and KMOR [6] both calculate the
average distance davg between the objects and the clus-
ter centers. If an object is at least y · davg away from
all centers, with y being a parameter set by the user,
it will be regarded as an outlier. One difference is that
KMOR allows outliers to become inliers again.

For our parameter-free approach, it is important
that no additional parameter for the outlier identifica-
tion is introduced. Therefore, we integrate the outlier
definition directly into our MDL-based cost function.
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3 Parameter-free Non-Redundant Clustering

While algorithms like Orth [4], mSC [19], and Nr-
Kmeans [16] work well in defining non-redundant clus-
terings, they still require extensive user knowledge of the
input dataset to define the correct number of subspaces
J and clusters per subspace kj .

In the following we want to use MDL to solve this
situation. All symbols used in this work are summarized
and described in the supplement.

Usually, the subspace of a non-redundant cluster-
ing algorithm can be defined using an orthogonal trans-
formation matrix V ∈ Rd×d that rotates the given
d-dimensional feature space and a projection matrix
Pj ∈ Nd×mj that specifies its corresponding mj dimen-
sions after rotation. Pj has a 1 in its i-th row if the
i-th dimension is contained in subspace j. All other
values are 0. In addition, the sum of each column must
be equal to 1. Consequently, in subspace j the input
dataset X ⊆ Rd of size N changes to

(3.1) Xj = {xV Pj |x ∈ X},
whereXj ⊆ Rmj . The actual clustering then takes place
in these subspaces. This is a common setting for many
subspace and non-redundant clustering algorithms, like
those presented in [4, 7, 15, 16, 19, 24, 26].

3.1 MDL Encoding First, we describe our MDL en-
coding strategy for non-redundant clusterings. In gen-
eral, MDL tries to minimize L(H)+L(D|H). L(H) indi-
cates the number of bits necessary to define the hypoth-
esis, which in our case equals the rotation, subspace, and
cluster parameters. L(D|H) is the code length needed
to encode the data under this hypothesis [8].

We can encode the natural numbers J , mj , and kj
with the universal prior for integers, L0(n) [21].

L0(n) = log∗(n) + log2(c),

where log∗(n) = log2(n) + log∗(log2(n)) only involves
the positive terms and c ≃ 2.865064.

The cluster centers in subspace j are generally
represented by a vector consisting of mj real values,
each corresponding to one coordinate of the rotated
feature space. To encode these values, we utilize a
uniform distribution and apply Shannon-Fano coding
[23]. By using the uniform distribution, no position in
the feature space is favored. To implement this, we first
calculate the maximum distance between all objects.
In combination with the minimum coordinate of each
rotated feature, we can form a hypercube that contains
all points with certainty, regardless of the final rotation.
The resulting probability density function (pdf) looks as
follows:

πuniform(r) =
1

max(distX)
,

where distX is the set of Euclidean distances between
all objects, distX = {

√
||x− y||22 | x ∈ X and y ∈ X}.

In order to correctly apply Shannon-Fano codes,
we need to transform the result of a pdf to an actual
probability. This can approximately be done by using a
precision δ [14]. We assume that each object origins
from a creation process that itself operates with a
finite precision. Note, that the creation process of each
feature can be different; therefore the precision can vary
greatly. Since the multiplication by V creates a new
space in which all features are mixed to some degree,
we approximate δ by using the mean of the minimum
feature-wise distances (ignoring zero values). The total
code length is a combination of the pdf and δ [14].

L(r) = − log2(π(r))− log2(δ)

We use this to get the coding costs of cluster center µj,i

in subspace j.

(3.2) L(µj,i) = −mj (log2(πuniform(µj,i)) + log2(δ))

To encode the cluster assignments, we assume that
the probability of belonging to a particular cluster in
subspace j is the same for all clusters, and therefore
equals 1

kj
. This way, we can again utilize Shannon–Fano

coding and receive a code length of − log2(
1
kj
)N [23].

Note that the costs of encoding N , d, V , and
the features of the hypercube are always the same,
regardless of which model we are analyzing. Therefore,
these constant costs can be ignored.

The objects in a dataset can be encoded by choosing
a suitable distribution function matching the clustering
procedure. This could, for example, be a Gaussian Mix-
ture Model (GMM) for EM -like algorithms. It is impor-
tant that the distribution fits the underlying clustering
algorithm, so that our parameter-search procedure does
not work against that algorithm by trying to optimize
something different. Once a suitable pdf (πobj) has been
identified, the coding costs of the objects in subspace j
are as follows:

(3.3) L(Xj) =
∑

x∈Xj

(− log2(πobj(x))−mj log2(δ))

Finally, the distribution-specific parameters have to
be encoded. For a GMM, for example, these would be
the kjd(d+1)/2 values for the symmetric covariance ma-
trices Σj,i of the clusters in subspace j. Let’s assume we
have pj such parameters in subspace j. Since we nor-
mally use a maximum likelihood estimator to calculate
those values, the code length can be approximated by
pj

2 log2(N) [22, 14]. We use N because it is a well-known
value that usually is sufficiently large.

In summary, the costs required to encode a complete
non-redundant clustering model in bits are:
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• number of subspaces: L0(J)
• for each subspace j:

– dimensionality: L0(mj)

– number of clusters: L0(kj)

– cluster centers:
∑kj

i=1 L(µj,i) (3.2)

– cluster assignments: − log2(
1
kj
)N

– objects: L(Xj) (3.3)

– distribution parameters:
pj

2 log2(N)

3.2 Determine the Subspace and Cluster Count
We use this encoding strategy to develop a greedy pro-
cedure that identifies the number of subspaces and clus-
ters within each subspace in a non-redundant clustering
setting. For this, multiple models have to be computed
and evaluated by their MDL costs. Theoretically, the
number of subspaces can range from 1 to d, and the
number of clusters within each subspace from 1 to N .
This results in an extremely large search space.

Our proposed strategy repeatedly splits the feature
space into smaller subspaces until the MDL costs cannot
be lowered anymore. Within those subspaces, we search
for the best amount of clusters. Since subspaces are
examined separately, the execution time drops signifi-
cantly due to the lower dimensionality of the analyzed
space. We differentiate between an optional subspace
with a single cluster, called noise space, and subspaces
with more than one cluster, called cluster spaces. The
pseudo-code of the process is shown in the supplement.

We start with a random V and a single noise space.
Each iteration begins by sorting the cluster spaces from
the best full-space result so far in descending order by
their MDL costs. An optional noise space is added last.
The ordering is used because costly subspaces offer the
greatest potential for cost reduction through successive
splitting operations. Only the corresponding subspace
j is used for these operations. This is done by changing
the input fromX to the lower-dimensionalXj as defined
in Eq. (3.1). Depending on the type of subspace, we
execute a noise or cluster space split.

3.2.1 Noise Space Split In case of a noise space
split, the first run is performed with a subspace con-
taining two clusters and a new lower-dimensional noise
space. In the following iterations, the number of clus-
ters within the cluster space is constantly raised by one.
Here, the projections Pj and the rotation matrix V from
the last result are used as input for the next iteration.
We also take the cluster with the largest dispersion and
divide it into two by creating two new centers. For clus-
ter i in subspace j, they are calculated as follows:

µj,new1 / 2
= µj,i ±

diag(Σj,i)

mj |Cj,i|
,

where |Cj,i| is the size of the cluster and Σj,i is its
covariance matrix. This allows us to use the centers
as input too.

In addition to the execution with reused parame-
ters, random parameterizations are applied to identify
previously not found structures in the noise space. In
the following, we consider only the outcome that pro-
duces the lowest MDL cost. If the newly created noise
space does not change in two consecutive iterations, we
can stop using random parameters. In this case, we as-
sume that a good structure in the cluster space has been
identified, but the number of clusters is yet uncertain.
The noise space splitting procedure repeats until the
MDL costs increase.

3.2.2 Cluster Space Split For cluster spaces, we
restrict the search space of possible splits. We assume
that no arising subspace may have more clusters than
the original space and that there cannot be more
clusters in the original space than the number of possible
combinations of clusters in the two resulting spaces.
This gives the following rules:

(3.4) max(ksplit1 , ksplit2) ≤ koriginal ≤ ksplit1 · ksplit2
In the beginning, both subspaces have a cluster

count equal to the original space. Subsequently, we
merge the two nearest cluster centers in both subspaces
by replacing them with their mean. Additionally, the
projections Pj and rotation matrix V are reused as
inputs for the following iteration. This approach repeats
until Eq. (3.4) is violated. The idea is that the
MDL costs reach a local minimum if the subspace with
the higher number of clusters is correctly identified.
Hereafter, we fix kj of the subspace that is more
responsible for the low costs and successively reduce
the number of clusters of the other subspace. This is
repeated until Eq. (3.4) is violated, or the MDL costs
increase. In the end, we output the result that produced
the lowest overall costs.

3.2.3 Full-space Execution When the subspace
splitting procedure converges, we check whether the
sum of the costs of the two new subspaces is smaller
than the costs of the original space. If this is not the
case, we start to split the next of the sorted subspaces
or, if there is no subspace left, we start the merging
operation. This cost-control mechanism avoids unnec-
essary expensive clustering executions in the full-space.
After a positive check, a full-space clustering execution,
which reuses the parameters of the last full-space re-
sult, is performed. Here, the parameters of the original
subspace are replaced with the ones from the two sub-
spaces found by the splitting procedure. The cluster
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centers can be brought to full dimensionality by using
the cluster labels to calculate the mean of the assigned
objects. The rotation matrix of the new subspaces can
be converted into the full-space by using the following
transformation formula [16]:

V F
sub[a, b] =





Vsub[n,m], if Psub maps a to n and b to m

1, if a = b and not the first case

0, otherwise

We update the rotation matrix V by calculating Vnew =
VoldV

F
sub. A single full-space execution is sufficient

because all input parameters are known.
Some non-redundant clustering methods are not

able to optimize all subspaces simultaneously. In this
case, the full-space clustering execution can be skipped,
and the model costs can be calculated directly using the
combined parameters.

If the full-space solution has lower MDL costs than
the best result found so far, a new iteration starts with
the ordering of the subspaces. Otherwise, the result
is discarded, and the next subspace is considered for
splitting, or if no subspace is left, the merging process
starts.

3.2.4 Cluster Space Merge The merging step is
executed for each possible combination of cluster spaces.
Again, the input dataset is transformed using Eq.
(3.1) with the combined projection matrices. Since we
analyze the merged space individually, no projection or
rotation matrices are needed. In the first iteration, we
divide the dataset into koriginal1 · koriginal2 clusters. We
use all combinations of centers of the two subspaces as
the input set of centers. In each iteration, the number of
clusters decreases by one. For this purpose, the nearest
centers are merged by replacing them with their mean.
The procedure stops if either the MDL costs rise or the
cluster count gets smaller than the maximum number
of clusters of the original subspaces. This equals the
reversed rules of the cluster space split from Eq. (3.4).
If the MDL costs of the merged space are lower than the
sum of the costs of the original subspaces, we perform
a full-space execution as described above.

If merging led to a better result, the merging
operation repeats with the newly defined subspaces.
Otherwise, our approach terminates.

An illustration of the described procedure is shown
in Figure 2. It visualizes the full-space results of
our exemplary algorithm AutoNR (see Section 4) on a
sample dataset. AutoNR first runs a noise space split
on the input dataset and finds a subspace with four
clusters. Next, it performs a cluster space split and
splits the subspace into two subspaces with two clusters

Figure 2: Example execution of AutoNR on a sample
dataset (d = 11). The arrows indicate which subspaces
are affected by an operation. After two noise space
splits, a cluster space split and a cluster space merge,
three cluster spaces are identified with four, three, and
two clusters.

each. Then another noise space split is performed, and
a cluster space with four clusters is found. The following
noise space split provides a subspace with three clusters.
Last, this is merged with one of the subspaces with
two clusters, resulting in three cluster spaces with four,
three, and two clusters.

3.3 Outlier Detection Many clustering approaches
suffer from outliers. For this reason, we introduce an
optional outlier detection by using the ability to rate
clustering results by their MDL costs. In the case of
non-redundant clusterings, it is crucial to re-determine
the outliers with each update of the cluster structure
because the definition can change significantly due to
an update of the rotation matrix or the projections.

The cluster assignment and center update steps can
be executed in the usual way. Afterward, we check
for each point if it is cheaper to encode it using the
distribution function of the corresponding cluster or
separately as an outlier. The following must hold for
each outlier oj in subspace j:

L(Xj \ oj) + Ltotal(oj) < L(Xj).

We can encode a single outlier oj in subspace j the
same way we encode the cluster centers in Section 3.1.

(3.5) L(oj) = −mj (log2(πuniform(oj)) + log2(δ))

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

76 Appendix



In addition, we must consider that although we save
one cluster assignment (requiring − log2(

1
kj
) bits), we

must specify the index of the specific outlier. This
requires log2(N) bits.

Alternatively, one could also specify for each point
whether it is an outlier or not (requiring N bits)
or interpret the outliers as an additional cluster and
therefore encode the cluster assignments using kj + 1
groups. However, since it can be assumed that there
are significantly fewer outliers than inliers, this would
greatly increase the MDL costs.

Overall, the following costs decide whether or not
it is worth interpreting a point as an outlier:

Ltotal(oj) = L(oj) + log2(N) + log2(
1

kj
).

After we identified all the outliers Oj in subspace
j, we update the cluster components (e.g. centers and
covariance matrices). Furthermore, we must slightly
adapt the MDL costs of our clustering model. For each
subspace j, we need to state the number of outliers,
requiring L0(|Oj |) bits. Next, we must use |Oj | log2(N)
bits to encode the indices, and Eq. (3.5) has to be
added |Oj | times to encode the actual points. In return,
only N −|Oj | points have to be regarded for the cluster
assignments. The differences compared to the encoding
summarized in Section 3.1 are for each subspace:

– number of outliers: L0(|Oj |)
– cluster assignments: − log2(

1
kj
)(N − |Oj |)

– indices of the outliers: |Oj | log2(N)

– outliers:
∑

oj∈Oj
L(oj) (3.5)

– objects: L(Xj \Oj) (3.3)

This outlier detection procedure is user-friendly
since no additional input parameters are necessary. The
effectiveness can be seen in Figure 3. The image on the
left clearly shows that many points are assigned to a
cluster whose center is far away from the actual point.
In contrast, our encoding strategy is able to correctly
identify most of the outliers (marked in purple), as
shown in the right image.

4 The AutoNR Algorithm

In this section, we create the example algorithm Au-
toNR. Therefore, we combine our parameter-free, non-
redundant clustering framework with a specific non-
redundant clustering algorithm. We exemplary choose
Nr-Kmeans [16], because it uses a relatively simple k-
means-based objective function. Furthermore, it up-
dates all subspaces simultaneously what supports our
idea of full-space clustering executions.

(a) Result without outlier de-

tection.

(b) Result with outlier detec-

tion (outliers in purple).

Figure 3: Clustering results of AutoNR with and with-
out outlier detection on the second subspace of syn3o.

With k-means-based clustering, we know that only
the distance to the nearest center matters. Here, we can
assume that all clusters have an identical sphere of in-
fluence, which is the same in all directions. Statistically,
this means that the data distribution in each subspace
follows a GMM with a tied single-variance covariance
matrix. This diagonal matrix has the same variance in
each dimension and is valid for all clusters within a sub-
space, Σj = σ2

j Imj . Therefore, we can simplify the pdf
of the multivariate normal distribution to obtain L(Xj).

πmvnd(x) =
exp

(
− 1

2 (x− µj,x)
TΣ−1

j (x− µj,x)
)

√
(2π)mj det(Σj)

Σj=σ2
j Imj
=

exp
(
− 1

2σ2
j
||x− µj,x||22

)

√
(2πσ2

j )
mj

,

where µj,x is the center to which the object x is assigned
to in subspace j. We utilize the maximum log-likelihood
estimation to determine the variance σ2

j .

ln


 ∏

x∈Xj

exp
(
− 1

2σ2
j
||x− µj,x||22

)

√
(2πσ2

j )
mj




=
∑

x∈Xj

ln



exp

(
− 1

2σ2
j
||x− µj,x||22

)

√
(2πσ2

j )
mj




(4.6) = −1

2

(
mjN ln(2πσ2

j ) +
1

σ2
j

∑

x∈Xj

||x− µj,x||22
)

By setting the derivative regarding σ2
j to zero we obtain:

(4.7) σ2
j =

1

mjN

∑

x∈Xj

||x− µj,x||22.

To receive the encoding costs of all objects in a subspace,
we sum up the negative binary logarithm of the pdf of
each point.
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Lmvnd(Xj) =
∑

x∈Xj

− log2



exp

(
− 1

2σ2
j
||x− µj,x||22

)

√
(2πσ2

j )
mj




= − 1

ln(2)

∑

x∈Xj

ln



exp

(
− 1

2σ2
j
||x− µj,x||22

)

√
(2πσ2

j )
mj




(4.6)
=

1

2 ln(2)

(
mjN ln(2πσ2

j ) +
1

σ2
j

∑

x∈Xj

||x− µj,x||22
)

(4.7)
=

mjN

2 ln(2)

(
1 + ln

( 2π

mjN

)
+ ln

( ∑

x∈Xj

||x− µj,x||22
))

The final step is to include δ.

(4.8) L(Xj) = Lmvnd(Xj)−mjN log2(δ)

Using this encoding, the only distribution-specific
parameter is σ2

j , thus pj = 1. Furthermore, we can
use Eq. (4.8) to calculate the threshold of the distance
between a point and its cluster center that determines
whether it is an outlier. For clarity, we set Y =∑

x∈Xj
||x− µj,x||22 and Z = ||oj − µj,oj ||22.

Ltotal(oj) < L(Xj)− L(Xj \ oj)
(4.8)⇒ Ltotal(oj) <

mjN

2 ln(2)

(
1 + ln

( 2π

mjN

)
+ ln

(
Y
))

−mj(N − 1)

2 ln(2)

(
1 + ln

( 2π

mj(N − 1)

)
+ ln

(
Y − Z

))

⇒

=:A︷ ︸︸ ︷
1

(N − 1)

(
2 ln(2)Ltotal(oj)

mj
− 1− ln

( 2π

mjN

)
− ln

(
Y
))

< − ln
(
N
)
+ ln

(
Y
)
+ ln

(
N − 1

)
− ln

(
Y − Z

)

⇒ Z > Y
(
1− N − 1

N
exp(−A)

)

This formulation tells us: If the squared euclidean
distance between a point and its center in subspace j is
greater than Y

(
1− N−1

N exp(−A)
)
, then it is an outlier.

Another essential property of our encoding strategy
is that it is scaling invariant. Assume that the entire
dataset is multiplied by a factor f . Then, the precision
δ naturally changes to fδ. The following applies:

L(fXj) = L(Xj) +
mjN

2 ln(2)
ln(f2)−mjN log2(f)

= L(Xj) +
mjN

ln(2)
ln(f)− mjN

ln(2)
ln(f)

Since max(distX) changes analogously to δ, L(fµj,i) =
L(µj,i) is also valid. All other costs are trivially
independent of factor f .

The code, supplement and datasets can be down-
loaded at https://dmm.dbs.ifi.lmu.de/downloads.

5 Experiments

We conduct experiments on synthetic and real-world
datasets. The information regarding the datasets and
comparison algorithms can be found in the supplement.
An analysis of the runtime can also be found there.

5.1 Quantitative Analyses Wemeasure the perfor-
mance of the algorithms using the ground truth labels
of the datasets. In the non-redundant case, the predic-
tion labels (Rp ∈ NN×Jp) and the ground truth labels
(Rgt ∈ NN×Jgt) consist of multiple sets. Therefore, we
report the prediction labels that best match the ground
truth of each subspace. For subspace j this equals:

scorej(R
gt, Rp) = max({metric(Rgt

j , Rp
i ) | 1 ≤ i ≤ Jp})

We use the Normalized Mutual Information (NMI) and
the F1 score as metrics. Both produce values between 0
and 1 with an optimum result of 1. Most competitor
algorithms are not able to process high-dimensional
datasets in an acceptable time (<24h). Therefore,
we conduct PCA to reduce the number of features
while keeping 90% of the data’s variance if d > 50.
Furthermore, we apply standardization (zero mean and
unit variance for all features) for Wine.

The results of the different experiments are shown
in Table 1. We repeated each experiment ten times
and added the average NMI and F1 scores ± the
standard deviation. The NMI and F1 results often
differ significantly. This is because the F1 score is more
generous if the number of clusters is low.

From these results, we observe that AutoNR out-
performs the other algorithms on almost all datasets. In
particular, the comparison methods seem to have prob-
lems identifying additional good clusterings after a first
high-quality subspace has been found. An example of
this situation is NRLetters. All algorithms find a first
clustering with an average NMI of > 0.89. However,
the quality of the further clusterings decreases more
and more for all methods except AutoNR. This shows
the value of not initially fixing the subspaces. It is im-
portant to note that we are not influencing the order
in which the algorithms identify the subspaces. If Au-
toNR does not achieve the best results, we are usually
in second place (see Fruits, ALOI and Optdigits).

Outliers negatively affect the clustering results of
AutoNR without outlier detection. This can clearly be
seen in the case of syn3o. While we achieve perfect re-
sults for syn3, the quality suffers significantly due to the
additional outliers added. Here, our outlier detection
significantly improves the results in all three subspaces.
This effect also applies to real-world datasets. For ex-
ample, for Wine, the average NMI increases from 0.76
to 0.85 and the average F1 score from 0.81 to 0.90.

Copyright © 2022 by SIAM
Unauthorized reproduction of this article is prohibited

78 Appendix



Table 1: Experimental results of our method without (AutoNR-) and with (AutoNR+) outlier detection against
other algorithms on various datasets. The left side shows the NMI results in %, the F1 results in % are shown
on the right. All experiments were run ten times, and the average result ± the standard deviation is stated. The
best algorithm for each subspace is marked in bold. The † indicates that that algorithm could not process the
dataset due to runtime constraints (†R) or memory issues (†M ).

NMI (%) F1 (%)
Dataset Subspace AutoNR- AutoNR+ NrDipmeans ISAAC MISC FOSSCLU AutoNR- AutoNR+ NrDipmeans ISAAC MISC FOSSCLU

syn3 1st (kj=4) 100 ± 0 100 ± 0 96± 7 93± 15 89± 19 81± 1 100 ± 0 100 ± 0 94± 10 92± 18 86± 24 70± 2
(N=5000, d=11) 2nd (kj=3) 100 ± 0 100 ± 0 87± 13 95± 12 92± 17 65± 9 100 ± 0 100 ± 0 85± 16 94± 15 89± 24 60± 5

3rd (kj=2) 100 ± 0 100 ± 0 80± 21 100 ± 0 92± 27 59± 9 100 ± 0 100 ± 0 79± 23 100 ± 0 92± 25 69± 7

syn3o 1st (kj=4) 86± 10 97 ± 0 85± 10 86± 19 75± 18 78± 2 83± 18 99 ± 0 86± 12 86± 22 75± 22 69± 1
(N=5150, d=11) 2nd (kj=3) 90± 10 96 ± 0 84± 12 90± 13 75± 14 62± 8 91± 17 99 ± 0 85± 16 89± 17 75± 19 59± 5

3rd (kj=2) 77± 20 94 ± 0 66± 17 77± 31 69± 30 55± 6 80± 27 99 ± 0 69± 21 81± 29 78± 27 66± 2

Fruits Species (kj=3) 85± 9 83± 7 82± 6 21± 24 56± 14 90 ± 9 89± 9 87± 7 87± 7 56± 8 59± 16 93 ± 8
(N=105, d=6) Color (kj=3) 17± 2 18± 1 17± 2 6± 3 13± 5 19 ± 2 47± 3 44± 5 47± 2 49 ± 3 42± 5 40± 3

ALOI Shape (kj=2) 62± 4 64± 3 65± 3 70 ± 8 38± 8 58± 4 65± 2 65± 1 67± 1 86 ± 6 59± 5 60± 4
(N=288, d=611) Color (kj=2) 62± 4 64± 3 65 ± 3 16± 11 36± 9 61± 6 65± 2 65± 1 66 ± 2 55± 5 58± 6 62± 9

DSF Body-up (kj=3) 100 ± 0 100 ± 0 100 ± 0 71± 2 100 ± 0 73± 1 100 ± 0 100 ± 0 100 ± 0 60± 3 100 ± 0 65± 2
(N=900, d=400) Body-low (kj=3) 100 ± 0 100 ± 0 71± 6 71± 2 100 ± 0 42± 0 100 ± 0 100 ± 0 73± 5 60± 3 100 ± 0 39± 1

CMUface Identity (kj=20) 68 ± 4 64± 4 55± 0 20± 4 42± 10 57± 7 38 ± 4 34± 3 29± 0 12± 4 19± 5 29± 5
(N=624, d=960) Pose (kj=4) 35 ± 3 33± 1 20± 0 3± 4 3± 3 21± 12 45 ± 4 42± 4 45 ± 0 34± 1 30± 5 41± 9

WebKB Category (kj=4) 32± 2 34 ± 3 16± 4 †R †R †M 50± 5 58 ± 7 51± 4 †R †R †M
(N=1041, d=323) University (kj=4) 56± 4 57 ± 3 24± 13 †R †R †M 51± 2 52 ± 3 45± 5 †R †R †M
NRLetters Letter (kj=6) 100 ± 0 100 ± 0 95± 7 87± 9 92± 8 82± 0 100 ± 0 100 ± 0 91± 12 78± 13 85± 11 67± 2
(N=10000, d=189) Color (kj=3) 100 ± 0 100 ± 0 60± 30 89± 18 87± 18 54± 18 100 ± 0 100 ± 0 66± 22 86± 24 82± 25 53± 16

Corner (kj=4) 100 ± 0 100 ± 0 58± 28 71± 11 70± 11 100 ± 0 100 ± 0 100 ± 0 59± 23 70± 11 70± 11 100 ± 0

Wine
(N=178, d=13)

Type (kj=3) 76± 5 85 ± 3 34± 11 0± 0 32± 23 84± 4 81± 6 90 ± 4 59± 5 0± 0 42± 29 90 ± 4

Optdigits
(N=5620, d=64)

Digit (kj=10) 73± 1 74± 1 39± 14 74± 7 79 ± 1 51± 2 54± 4 58± 4 39± 10 59± 10 64 ± 4 40± 2

Another positive aspect of AutoNR with outlier
detection is its stability. While the other methods
often have a high standard deviation (up to 0.30), the
maximum standard deviation of AutoNR+ across all
tested datasets is 0.07. Overall, it can be seen that the
outlier detection seldom leads to worse results. This
means that only rarely are points wrongly identified as
outliers. Therefore, we recommend always activating
the outlier detection feature, which is essential for our
claim that the procedure is parameter-free.

Based on the results on Wine and Optdigits, it can
be assumed that AutoNR can also be used for datasets
in which no non-redundant clusterings are suspected.

5.2 Qualitative Analyses First, we want to men-
tion the high interpretability of the results. For this,
we look at the cluster centers found in each subspace of
NRLetters by AutoNR. These are illustrated in Fig. 4.

It can be seen that the first subspace describes the
individual letters (4(a)). Here one should note that the
colors have been completely extracted from the sub-
space. The colors are individually described in the sec-
ond subspace (4(b)). In this case, however, the indi-
vidual letters are no longer recognizable. The corner
markings also receive their individual subspace (4(c)).
Here, neither the colors nor the letters are represented.
However, only one corner is highlighted, while all cor-
ners are slightly tagged in the other subspaces.

(a) ’Letter’ subspace.

(b) ’Color’ subspace. (c) ’Corner’ subspace.

Figure 4: The cluster centers in the three subspaces of
NRLetters as identified by AutoNR.

Our method shows some problems in clustering
ALOI correctly. Instead of identifying one subspace
each for the shape and color, AutoNR finds a subspace
with the clusters ’red box’, ’green box’, ’red ball’, and
’green ball’. This is also the case with most competitor
algorithms. Splitting this space into two would increase
the MDL costs. However, if only a single clustering with
four clusters is desired, AutoNR gives very good results.

The opposite is the case with the Identity subspace
of CMUface. Here, splitting the subspace into two
spaces reduces the MDL costs. Thus, AutoNR finds
additional substructures in the data that can be used
to increase the compression. If we were to merge the
two subspaces again, we would get NMI values of over
0.85 and F1 values of over 0.72.
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6 Conclusion

In this work, we introduced a framework to automat-
ically determine the number of subspaces and clusters
within subspaces in a non-redundant clustering setting.
Additionally, we enhanced the quality of the clustering
results by identifying outliers in each of the subspaces.
Our framework is easily combinable with different non-
redundant clustering approaches.

Experiments show that our exemplary algorithm
AutoNR achieves state-of-the-art results. In particular,
the outlier detection feature leads to results outperform-
ing other parameter-free approaches. Since most opera-
tions are executed in lower-dimensional subspaces, it is
significantly faster than most competitor algorithms for
high-dimensional datasets.

At the moment, our framework is only able to han-
dle orthogonal subspaces. Future efforts may attempt
to combine our method with multi-view clustering al-
gorithms (e.g. [25]). In this setting, dimensions can be
used multiple times for several clustering solutions.
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Supplement - ’Automatic Parameter Selection for Non-Redundant Clustering’

Collin Leiber* Dominik Mautz∗ Claudia Plant� Christian Böhm∗

1 Symbols

We use the following symbols in our paper as well as in
the supplement:

Table 1: Description of the used symbols.
Symbol Interpretation
N ∈ N Number of objects
d ∈ N Dimensionality of the feature space
J ∈ N Number of subspaces

V ∈ Rd×d Orthogonal (rotation) matrix
δ ∈ R The precision of the encoding

Imj
∈ Nmj×mj mj ×mj identity matrix

X ⊆ Rd Set of all objects
kj ∈ N Number of clusters in subspace j
mj ∈ N Dimensionality of subspace j

Pj ∈ Nd×mj Projection matrix of subspace j

pj ∈ N Number of distribution-specific parameters
in subspace j

Xj ⊆ Rmj X projected to subspace j
Oj ⊆ Xj Set of outliers in subspace j

µj,i ∈ Rmj Center of cluster i in subspace j
Σj,i ∈ Rmj×mj Covariance matrix of cluster i in subspace j

Cj,i ⊆ Xj Objects of cluster i in subspace j
Jp ∈ N Number of predicted subspaces

Jgt ∈ N Number of true subspaces
Rp ∈ NN×Jp Prediction labels matrix

Rgt ∈ NN×Jgt Ground truth labels matrix

2 Encoding the Constant Values

At this point, we would like to give a brief intuition on
how the constant components of the encoding strategy
we present in the paper could be handled.

The number of objects N and dimensionality d can
again be encoded using the natural prior for integers.
Therefore, we need L0(N) + L0(d) bits to encode these
values.

In general real values r can be encoded by sepa-
rately encoding the integer part ⌊r⌋ and the decimal
places [5]. Here, the precision δ is required for the dec-
imal places. Hence, the following applies:

L(r) = L0(⌊r⌋)− log2(δ).

This can be used to encode the d + 1 values
needed to define the hypercube. It can also be used

*LMU Munich. {leiber, mautz, boehm}@dbs.ifi.lmu.de
�Faculty of Computer Science, ds:UniVie, University of Vi-

enna, Vienna, Austria. claudia.plant@univie.ac.at

(a) Subspace with 4 clusters. (b) Subspace with 3 clusters.

Figure 1: Histograms of two 1-dimensional subspaces.

to encode V . Since all the column vectors of V are
orthonormal, they all have a length of 1. Therefore, all
values of a column are less than or equal to 1 and we
can consequently ignore L0(⌊r⌋). Moreover, since the
orientation is indifferent, the last entry can be calculated
using the first d− 1 entries. Thereby each column loses
one degree of freedom. Furthermore, the orthogonal
property means that each following column loses an
additional degree of freedom. Therefore, we can encode
the first column using − log2(δ)(d− 1) bits, the second
with − log2(δ)(d − 2) bits, and so forth. All in all, the

code length of V is − log2(δ)
d(d−1)

2 .
From these encodings, it is very easy to see that the

values are actually constants that are independent of a
particular clustering result.

3 Search Space Restrictions

In this section, we would like to justify our restrictions
on the search space with an example.

In the paper, we say that we restrict the number of
clusters in case of a cluster space split as follows:

max(ksplit1 , ksplit2) ≤ koriginal ≤ ksplit1 · ksplit2 .
Also, we restrict the number of clusters for a cluster
space merge with the inverted rule.

max(koriginal1 , koriginal2) ≤ kmerge ≤ koriginal1 · koriginal2
To better understand these rules, assume that we

have the 1-dimensional subspaces shown in Figure 1
with 4 and 3 clusters, respectively. If we want to
merge these subspaces, we will always get at least 4
clusters, since 4 clusters are already contained in the
first subspace. Moreover, there are a maximum of 12
cluster combinations that can occur. Both extreme
situations are illustrated in Figure 2.
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(a) Combination with the mini-

mum number of 4 clusters.

(b) Combination with the max-

imum number of 12 clusters.

Figure 2: Two possible combinations of the two sub-
spaces from Figure 1.

With a cluster space split, essentially the same
applies, but in reverse. Here, no subspace may be
created that already has more than the original number
of clusters. Furthermore, ksplit1 · ksplit2 must be greater
than or equal to the original number of clusters. If one
of these two rules is not met, subspaces would be created
that do not fit the structure of the original subspace.

These rules can also be applied to higher dimen-
sional subspaces.

4 Pseudo-code

In order to determine the number of subspaces and
clusters within subspaces for non-redundant clustering,
the following steps are executed:

� Noise Space Split

� Cluster Space Split

� Cluster Space Merge

Additionally, we regularly combine model parame-
ters to perform a full-space execution. To better under-
stand how all these steps are linked, Algorithm 1 can be
analyzed.

5 Implementation Details of AutoNR

We want to give additional information regarding the
implementation of AutoNR.

Unfortunately, Nr-Kmeans introduced another pa-
rameter that has to be set by the user. The algorithm
optimizes V and Pj through eigenvalue decompositions.
Here, the eigenvectors represent the direction, and the
signs of the eigenvalues E determine to which subspace
the dimensions are assigned. Dimensions not matching
the structure of any cluster space are assigned to the
noise space. Consequently, the noise space will capture
all dimensions corresponding to eigenvalues ≥ 0. Yet,
the supplementary of [6] states that eigenvectors with a
negative eigenvalue close to zero should also be assigned
to the noise space. An example value is given in the re-
spective publication. However, the optimal threshold

changes depending on the input dataset. We want to
avoid such hard thresholds in our approach. Therefore,
we utilize the described encoding strategy to determine
which dimensions should be contained in the cluster and
which in the noise space.

The rotation matrix V can be updated indepen-
dently of the new subspace dimensionalities. Therefore,
V can be calculated a priori and used in the process
to define the new mcluster and mnoise. The parame-
ters present in the current iteration of Nr-Kmeans can
be used to calculate the temporary MDL costs of the
model. Since the cluster assignments, cluster centers,
and scatter matrices stay constant during this opera-
tion, only those costs that depend on the subspace di-
mensionalitiesmj and the projections Pj need to be con-
sidered. We start with a cluster space that only obtains
the dimension corresponding to the lowest eigenvalue
and a noise space containing the other |E| − 1 dimen-
sions. The approach is repeated with a rising number
of cluster space dimensions until the MDL costs exceed
the result from the previous iteration or the dimension-
ality of the cluster space equals the number of negative
eigenvalues. This means that an initial threshold is no
longer necessary

We further utilize the initialization procedure of k-
means++ [1] to seed the cluster centers.

6 Evaluation Setup

Datasets: syn3 is a synthetic dataset with three
subspaces containing 4, 3, and 2 clusters. Each cluster
was created using a Gaussian distribution. For syn3o,
we randomly added 150 uniformly distributed outliers in
each subspace. We additionally created the NRLetters
dataset. It consists of 10000 9 × 7 RGB images
of the letters ’A’, ’B’, ’C’, ’X’, ’Y’, and ’Z’ in the
colors pink, cyan, and yellow. Moreover, in each
image, a corner pixel is highlighted in the color of
the letter. This results in three possible clusterings.
An extract of this dataset can be seen in the paper
in Figure 1. Wine is a real-world dataset from the
UCI1 repository with three clusters. The UCI dataset
Optdigits consists of 5620 8×8 images, each representing
a digit. The Fruits [4] dataset was created using
105 images of apples, bananas, and grapes in red,
green, and yellow. The images have been preprocessed,
resulting in six attributes. The Amsterdam Library
of Object Image2 dataset (ALOI ) contains images of
1000 objects recorded from different angles. For our
analysis, we use a common subset of this data consisting
of 288 images illustrating the objects ’box’ and ’ball’

1https://archive.ics.uci.edu/ml/index.php
2http://aloi.science.uva.nl/
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(a) Increasing N (d = 6, J = 3). (b) Increasing d (N = 5000, J = 3). (c) Increasing J (N = 5000, d = 2J). (d) Legend.

Figure 3: Scalability of AutoNR without (-) and with (+) outlier detection compared to its competitors. All tests
are repeated ten times and the mean is stated.

in the colors green and red. Dancing Stick Figures [3]
(DSF ) is a dataset containing 900 20 × 20 images. It
comprises two subspaces describing three upper- and
three lower-body motions. CMUface is again taken
from the UCI repository and is composed of 640 30×32
gray-scaled images showing 20 persons in four different
poses (up, straight, left, right). Among those images,
16 show glitches resulting in 624 useful objects. The
WebKB3 dataset contains 1041 Html documents from
four universities. These web pages belong to one of four
categories. We preprocessed the data using stemming
and removed stop words and words with a document
frequency < 1%. Afterward, we removed words with a
variance < 0.25, resulting in 323 features.

Comparison Methods: We compare the results
of AutoNR without (AutoNR-) and with (AutoNR+)
outlier detection against the parameter-free algorithms
ISAAC [9] and MISC [8] as well as NrDipmeans [7].
Furthermore, we extend the subspace clustering ap-
proach FOSSCLU [2] to iteratively identify new sub-
spaces by removing the subspaces found in previous it-
erations. For NrDipmeans and FOSSCLU we have to
state the desired number of subspaces. In case of FOS-
SCLU we need to define limits for mj and kj . We set
those to 1 ≤ mj ≤ 3 and 2 ≤ kj ≤ 10. We wanted to set
the upper bound of kj to 20 for CMUface, so FOSSCLU
would be able to determine all parameters correctly.
Unfortunately, this leads to memory issues. Where re-
quired, AutoNR runs 15 executions of Nr-Kmeans. The
significance for NrDipmeans is set to 0.01.

Experiments are conducted using the Scala imple-
mentations of Nr-Kmeans and NrDipmeans and the
Matlab implementations of ISAAC and MISC as ref-
erenced in [6], [7], [9] and [8] respectively. Regarding
FOSSCLU, we extend the Java version referenced in [2]
as described above. AutoNR is implemented in Python.

3http://www.cs.cmu.edu/ webkb/

7 Runtime Analysis

We conduct runtime experiments on datasets with a
rising number of objects N , dimensions d, and sub-
spaces J . The created cluster spaces are always two-
dimensional and contain three Gaussian clusters each.

All experiments are performed on a computer with
an Intel Core i7-8700 3.2 GHz processor and 32GB
RAM. The runtime results again correspond to the
average of ten consecutive executions. The outcomes
are illustrated in Figure 3.

The charts show that our approach is well appli-
cable to high-dimensional datasets. The runtime in-
creases only slightly with additional noise space dimen-
sions (3(b)). ISAAC and MISC have to conduct an ISA
which does not scale well to high-dimensional datasets.
FOSSCLU has to perform Givens rotations multiple
times, which is an expensive operation. On the other
hand, our framework performs most steps in lower-
dimensional subspaces where the overall dimensionality
has no significant influence. If additional cluster spaces
accompany a higher dimensionality, the runtimes of all
algorithms behave similarly (3(c)). For large datasets,
the differences in runtime are also much less prominent
(3(a)). Only MISC needs significantly more time be-
cause a kernel graph regularized semi-nonnegative ma-
trix factorization has to be performed.

Due to the additional operations required to cal-
culate the outlier distance threshold for each subspace
in each iteration, the execution of AutoNR with out-
lier detection expectably takes more time than without.
Furthermore, the cluster centers and covariance matri-
ces are updated after each outlier detection procedure.

NrDipmeans is the fastest in all experiments. How-
ever, it must be noted that NrDipmeans knows the cor-
rect number of subspaces and therefore does not need
to run tests to identify J . Furthermore, in the case
of J = 11, it settles with the initial two clusters in
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Algorithm 1: Parameter search algorithm.

1 Function main(dataset X)

2 V = initialize randomly
3 Rbest = Initial result (single noise space)
4 // Sort by MDL costs, add noise space last
5 sortedSpaces = sortSubspaces(Rbest)
6 for j ∈ sortedSpaces do
7 Xj = {xV Pj |x ∈ X}
8 if j is cluster space then
9 // Split space into two cluster spaces

10 js1 , js2 = clusterSpaceSplit(Xj , kj)

11 else if j is noise space then
12 // Split space into cluster and noise

space
13 js1 , js2 = noiseSpaceSplit(Xj)

14 // Check MDL costs
15 if cost(js1) + cost(js2) < cost(j) then
16 // Join parameters for full-space

execution
17 Vtmp, Ptmp, µtmp =

joinParams(Rbest, V, js1 , js2)
18 Rtmp, Vtmp =

fullSpace(X,Vtmp, Ptmp, µtmp)
19 // Check full-space MDL costs
20 if cost(Rtmp) < cost(Rbest) then
21 Rbest = Rtmp; V = Vtmp

22 go to line 5

23 Rbest, V = merging(Rbest, V )

24 if merging was successful then
25 go to line 5

26 return Rbest

27 Function merging(Rbest, V )

28 for each pair (j1, j2) of cluster spaces do
29 Xj1,j2 = {xV Pj1,j2 |x ∈ X}
30 jm = clusterSpaceMerge(Xj1,j2 , kj1 , kj2)
31 // Check MDL costs
32 if cost(jm) < cost(j1) + cost(j2) then
33 // Join parameters for the full-space

execution
34 Vtmp, Ptmp, µtmp =

joinParams(Rbest, V, jm)
35 Rtmp, Vtmp =

fullSpace(X,Vtmp, Ptmp, µtmp)
36 // Check full-space MDL costs
37 if cost(Rtmp) < cost(Rbest) then
38 Rbest = Rtmp; V = Vtmp

39 if better result found then
40 go to line 28

41 return Rbest, V

Figure 4: Results of various parametrizations of Nr-
Kmeans on NRLetters. k1 is set to 6. The left image
shows the NMI, and the right the F1 results.

each subspace and does not invest time in finding better
structures. Therefore, it seems to have problems run-
ning with a high J . AutoNR, on the other hand, almost
always correctly identifies all clusters in all subspaces.

Our procedure could be further accelerated by, for
example, parallelizing the multiple executions of Nr-
Kmeans with identical parameters.

8 Comparison to Nr-Kmeans

We perform additional experiments using the original
Nr-Kmeans algorithm, to show that the good experi-
mental results are based on our proposal and not merely
on the integration of Nr-Kmeans. The new results are
shown in Table 2. As in the paper, we repeated each
experiment ten times and added the average score ± the
standard deviation to the table.

AutoNR returns superior results in most experi-
ments, even though Nr-Kmeans already knows the cor-
rect number of subspaces and clusters for each subspace.
Only for the non-redundant dataset ALOI does the orig-
inal Nr-Kmeans perform better regarding the F1 score.
This case, however, has already been mentioned in the
paper. The biggest advantage of our application is the
fact that it discovers structures one by one while pre-
serving the ability to adjust already found subspaces.
This gives great flexibility, so that possible errors can
be compensated in a following iteration. Another ad-
vantage is the definition of the noise space using MDL
(see supplement Section 5), as it can be seen with the
datasets CMUface, WebKB, NRLetters, Wine and Opt-
digits.

One could argue that the multiple repetitions of Nr-
Kmeans included in each run of AutoNR strongly favor
our algorithm. However, we would like to counter this
by stating that Nr-Kmeans by itself is often unable to
achieve a perfect result just once (e.g., for syn3 ). In
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Table 2: Results of AutoNR- and AutoNR+ compared to our Nr-Kmeans version, where the dimensionality of the
noise space is determined through MDL (see supplement Section 5), and the original Nr-Kmeans implementation
on various datasets. The left side shows the NMI results in %, the F1 results in % are shown on the right. All
experiments were run ten times, and the average result ± the standard deviation is stated. The best algorithm
for each subspace is marked in bold.

NMI (%) F1 (%)

Dataset Subspace AutoNR- AutoNR+
Nr-Kmeans

(MDL-based noise space)
Nr-Kmeans
(Original)

AutoNR- AutoNR+
Nr-Kmeans

(MDL-based noise space)
Nr-Kmeans
(Original)

syn3 1st (kj=4) 100 ± 0 100 ± 0 73± 20 59± 16 100 ± 0 100 ± 0 72± 18 61± 11
(N=5000, d=11) 2nd (kj=3) 100 ± 0 100 ± 0 81± 13 75± 17 100 ± 0 100 ± 0 82± 12 78± 16

3rd (kj=2) 100 ± 0 100 ± 0 72± 22 75± 17 100 ± 0 100 ± 0 79± 16 81± 14

syn3o 1st (kj=4) 86± 10 97 ± 0 62± 17 54± 13 83± 18 99 ± 0 64± 14 57± 10
(N=5150, d=11) 2nd (kj=3) 90± 10 96 ± 0 67± 15 69± 11 91± 17 99 ± 0 73± 14 75± 9

3rd (kj=2) 77± 20 94 ± 0 56± 10 68± 13 80± 27 99 ± 0 63± 10 77± 13

Fruits Species (kj=3) 85 ± 9 83± 7 70± 14 74± 11 89 ± 9 87± 7 78± 11 78± 11
(N=105, d=6) Color (kj=3) 17± 2 18 ± 1 15± 2 16± 2 47 ± 3 44± 5 42± 3 44± 3

ALOI Shape (kj=2) 62± 4 64 ± 3 47± 26 54± 30 65± 2 65± 1 73± 13 77 ± 15
(N=288, d=611) Color (kj=2) 62± 4 64 ± 3 34± 0 31± 10 65± 2 65± 1 66 ± 0 66 ± 0

DSF Body-up (kj=3) 100 ± 0 100 ± 0 70± 20 81± 26 100 ± 0 100 ± 0 77± 16 85± 20
(N=900, d=400) Body-low (kj=3) 100 ± 0 100 ± 0 63± 22 56± 30 100 ± 0 100 ± 0 70± 17 68± 22

CMUface Identity (kj=20) 68± 4 64± 4 78 ± 6 75± 7 38± 4 34± 3 57 ± 9 52± 9
(N=624, d=960) Pose (kj=4) 35 ± 3 33± 1 28± 8 26± 6 45 ± 4 42± 4 41± 10 37± 10

WebKB Category (kj=4) 32± 2 34 ± 3 32± 3 30± 2 50± 5 58 ± 7 48± 3 48± 2
(N=1041, d=323) University (kj=4) 56± 4 57 ± 3 47± 8 45± 7 51± 2 52± 3 54 ± 7 52± 3

NRLetters Letter (kj=6) 100 ± 0 100 ± 0 85± 9 83± 9 100 ± 0 100 ± 0 78± 13 72± 12
(N=10000, d=189) Color (kj=3) 100 ± 0 100 ± 0 52± 29 39± 25 100 ± 0 100 ± 0 61± 22 52± 18

Corner (kj=4) 100 ± 0 100 ± 0 57± 26 48± 25 100 ± 0 100 ± 0 61± 23 51± 19

Wine
(N=178, d=13)

Type (kj=3) 76± 5 85± 3 87 ± 2 79± 15 81± 6 90± 4 92 ± 2 87± 10

Optdigits
(N=5620, d=64)

Digit (kj=10) 73± 1 74 ± 1 72± 2 70± 2 54± 4 58± 4 66 ± 3 64± 3

contrast, AutoNR often assigns the points to the correct
clusters every time. This shows that the iterative
identification of subspaces can be beneficial, with the
effect becoming stronger the more subspaces there are.

9 Importance of Correct Parametrization

To better assess the importance of a correct
parametrization of non-redundant clustering ap-
proaches, we perform another experiment. Suppose
that we know that NRLetters comprises six different
letters. We know nothing about the other clustering
possibilities. Therefore, we try different parameters
for Nr-Kmeans using a brute-force search. Here,
we assume that no subspace contains more than six
clusters. The NMI and F1 results can be seen in
Figure 4. To arrive at a single number that indicates
the quality of a non-redundant clustering result, we
compute the average result over all three subspaces.

score(Rgt, Rp) =
1

Jgt

∑

1≤j≤Jgt

scorej(R
gt, Rp),

where scorej(R
gt, Rp) is the evaluation method as de-

scribed in the paper and Jgt is the number of label sets
in the ground truth. Each run is repeated ten times and
the best result is added to the heatmap.

We see that the quality of the results deteriorates
away from the optimum (k2 = 4, k3 = 3) even though
we know the correct number of clusters in the first
subspace. This shows the value of our framework, which
achieved a perfect result in all ten iterations and that,
without prior knowledge.
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* First authors with equal contribution

Abstract:
Over the last decade, the Dip-test of unimodality has gained increasing interest in
the data mining community as it is a parameter-free statistical test that reliably rates
the modality in one-dimensional samples. It returns a so called Dip-value and a
corresponding probability for the sample’s unimodality (Dip-p-value). These two values
share a sigmoidal relationship. However, the specific transformation is dependent
on the sample size. Many Dip-based clustering algorithms use bootstrapped look-up
tables translating Dip- to Dip-p-values for a certain limited amount of sample sizes. We
propose a specifically designed sigmoid function as a substitute for these state-of-the-art
look-up tables. This accelerates computation and provides an approximation of the Dip-
to Dip-p-value transformation for every single sample size. Further, it is differentiable
and can therefore easily be integrated in learning schemes using gradient descent. We
showcase this by exploiting our function in a novel subspace clustering algorithm called
Dip’n’Sub. We highlight in extensive experiments the various benefits of our proposal.

Venue:
Proceedings of the 2023 SIAM International Conference on Data Mining (SDM). Society
for Industrial and Applied Mathematics, 2023.
CORE ranking: A (http: // portal. core. edu. au/ conf-ranks/ 1727/ )
Acceptance rate: 27.4%

DOI:
https://doi.org/10.1137/1.9781611977653.ch13

Thesis-Reference:
[BLBP23]

http://portal.core.edu.au/conf-ranks/1727/
https://doi.org/10.1137/1.9781611977653.ch13


C Appended Papers 87

Division of Work:

Joint work of the first authors
Development of the idea; Constant discussions on the procedure; Designing the experi-
ments; Co-writing large parts of the paper

Lena G. M. Bauer
Main development of the function fit; Implementing the fitting functionality; Executing
most experiments to evaluate the quality of the function fit and its runtime behaviour;
Writing the majority of the related work regarding the Dip-test and bootstrapping,
the methodology section regarding the table extension and the function fit, and the
experiments section regarding reliable computation and computing time; Creating the
visualizations regarding the function fit and Dip-p-value

Collin Leiber
Main development of the clustering procedure; Implementing the clustering algorithm;
Creating the enlarged Dip-p-value table; Executing most experiments regarding the
clustering algorithms; Writing the majority of the related work regarding Dip-test re-
lated data mining and common subspace clustering, the methodology section regarding
Dip’n’Sub, and the experiments section regarding the Dip’n’Sub evaluation; Creating the
visualizations regarding the clustering procedure; Creating the presentation slides and
poster; Presenting at the conference

Christian Böhm
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Extension of the Dip-test Repertoire - Efficient and Differentiable p-value
Calculation for Clustering

Lena G. M. Bauer∗,†,‡ Collin Leiber∗,§ Christian Böhm† Claudia Plant†

Abstract

Over the last decade, the Dip-test of unimodality has gained

increasing interest in the data mining community as it is a

parameter-free statistical test that reliably rates the modal-

ity in one-dimensional samples. It returns a so called Dip-

value and a corresponding probability for the sample’s uni-

modality (Dip-p-value). These two values share a sigmoidal

relationship. However, the specific transformation is depen-

dent on the sample size. Many Dip-based clustering algo-

rithms use bootstrapped look-up tables translating Dip- to

Dip-p-values for a certain limited amount of sample sizes.

We propose a specifically designed sigmoid function as a

substitute for these state-of-the-art look-up tables. This ac-

celerates computation and provides an approximation of the

Dip- to Dip-p-value transformation for every single sample

size. Further, it is differentiable and can therefore easily be

integrated in learning schemes using gradient descent. We

showcase this by exploiting our function in a novel subspace

clustering algorithm called Dip’n’Sub. We highlight in ex-

tensive experiments the various benefits of our proposal.

1 Introduction

One of the major goals in data mining is to automat-
ically find meaningful patterns and structures in data.
This is ideally done fast and with as few hyperparame-
ters as possible. Here, the definition of statistical modes
plays a decisive role in many approaches. Clustering
methods like Meanshift [6] or Quickshift [28] try to find
modes with the help of a predefined influence area and
assign objects to these modes. Other procedures focus
on evaluating whether a data set has a single or multi-
ple modes. Examples are Hartigan’s Dip-test [11], the
Silverman test [27], the Folding Test [26] or the recently
presented UU-test [5]. In clustering the assumption for
these methods is that multiple modes indicate multiple
clusters, while unimodality is a sign for a single clus-
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(a) Bootstrapped (Dip,p)-pairs and our fitted functions.

(b) X ∼ N (0, 1), N = 500. (c) X ∼ N (0, 1), N = 20k.

Figure 1: (a) Bootstrapped (Dip, p)-pairs for sample
sizes N = 500 (purple) and N = 20k (blue) and our
fitted functions (green). The transformation function
from Dip- to Dip-p-value strongly depends on the
sample size. (b) and (c) Histograms of samples from a
N (0, 1) normal distribution with sample size N = 500
and N = 20k. When applying the Dip-test on the two
samples, their Dip-values differ with a factor of 10. The
respective Dip-p-values are, however, 0.99 in both cases.

ter. The tests are basically parameter-free, which makes
them particularly interesting for the data mining com-
munity. The most commonly used unimodality test in
the clustering domain is probably the Dip-test. The in-
put for the Dip-test is a one-dimensional sample and
the test outputs a Dip-value Dip ∈ (0, 0.25] that can be
converted to a p-value, which we will term Dip-p-value
throughout this work. The latter represents a proba-
bility for the sample to be unimodal and it is high for
Dip-values close to zero and low for Dip-values close to
its maximum of 0.25. Its benefits have already been
exploited by several data mining techniques.

DipMeans [13], projected DipMeans [4], SkinnyDip
[18], M-Dip [7], NrDipMeans [20] and DipDECK [16],
for example, are all algorithms that use the Dip-test to
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estimate the number of clusters. Other algorithms like
DipTransformation [25], DipExt [24] or the DipEncoder
[15] utilise the Dip-test to create cluster-friendly lower-
dimensional spaces. When executing these algorithms,
a precise and efficient determination of the Dip- and
Dip-p-value is of high relevance. In general, the Dip-
value translates sigmoidal to the Dip-p-value. Figure
1a clearly shows the pattern. Importantly, we can
observe that the specific curvatures and positions of
the sigmoidal functions are heavily dependent on the
number of samples N . Figures 1b and 1c show that the
Dip-p-values p of a normal distribution N (0, 1) with
N = 500 and N = 20k are both 0.99. This is in
accordance to the expectation of the normal distribution
to be unimodal irrespective of the sample size. The
Dip-values Dip, however, differ by a factor of 10. Thus,
considering the Dip-p-value is a far more robust choice
when optimising for uni- or multimodality.

To the best of our knowledge, however, there ex-
ists no elegant method for the translation from Dip-
to Dip-p-value. The state-of-the-art procedure is to
utilise a look-up table with a limited amount of pairs
of Dip- and Dip-p-values and use

√
N -interpolation to

provide the missing pairs in between table values. While
this approach has been used in multiple procedures
(e.g., [4,13,16,18,20]), it shows drawbacks in several as-
pects. First, it is not differentiable and therefore harder
to integrate into strategies such as stochastic gradient
descent (SGD) and second, it is limited to the maxi-
mum bootstrapped sample size in the table. To resolve
these shortcomings we propose a differentiable trans-
formation function which - provided with a Dip-value
and the number of samples - automatically calculates
the corresponding Dip-p-value (see green lines in Fig.
1a). We showcase the practical value of our proposal for
data mining research by developing a subspace cluster-
ing algorithm, that exploits the differentiability of our
transformation function to identify a common subspace
for all clusters in the data set. This helps to analyse
relationships between clusters [10,19] and distinguishes
us from ‘classical’ subspace clustering algorithms (e.g.,
ORCLUS [1] or 4C [2]) which find a separate subspace
for each cluster. Our idea uses the gradient of the Dip-p-
value to identify projection axes where all clusters show
a high degree of multimodality by performing SGD. This
approach makes it particularly apt to rely on the Dip-p-
value instead of the Dip-value as different cluster sizes
bias the latter. Further, we present TailoredDip, an
extended version of the one-dimensional clustering pro-
cedure UniDip [18], to cluster the data on those axes.

Our contributions can be summarised as follows:

• We provide a fully automatic translation from Dip-
to Dip-p-value via an analytical function (Sec. 3.2)

• The translation is available for any data size N
and provides reliable Dip-p-values irrespective of
the underlying distribution (Sec. 4.1)

• Analyses show that our novel calculation is faster
than previously used methods, in particular boot-
strapping (Sec.4.2)

• We showcase how the differentiability of our func-
tion is useful for practical data mining applications
by introducing our subspace clustering algorithm
Dip’n’Sub (Sec. 3.3 and 4.3)

2 Related Work

2.1 The Dip-test The Dip-test is a statistical test
for modality in a one-dimensional sample developed by
Hartigan and Hartigan [11]. The test returns a so-called
Dip-value Dip that specifies the distance between the
Empirical Cumulative Distribution Function (ECDF) of
the sample to an unimodal piece-wise linear function,
i.e., a function that is convex up to the beginning of the
steepest slope and concave thereafter. In this context,
the area of steepest slope is often called modal interval.
By definition Dip ∈ (0, 0.25], where a Dip close to
0 indicates a unimodal distribution and a Dip ≫ 0
indicates a multimodal distribution. The exact value
not only depends on the specific distribution but also
on the sample size (see Fig. 1b and 1c). For this
reason, Dip-values are often not used directly, but
the associated Dip-p-values. Here, the null hypothesis
H0 states that the sample set is unimodal and the
alternative hypothesis H1 is that there are at least two
modes present in the data. The test does not make
any assumptions about the data generating distribution.
For any distribution with a single mode, whether it is
Gaussian, Laplacian or t-distributed the test will not
reject H0. The Dip-test can be calculated efficiently in
O(N) [11] on a sorted input of size N . Furthermore, [14]
showed that the Dip-value is differentiable with respect
to a projection axis. This enables the use of SGD. Due
to these several benefits, the Dip-test has successfully
been integrated in several data mining applications over
the last decade.

2.2 Bootstrapping The Dip-test can convert a Dip-
value to a p-value representing an evidence measure
for the credibility of the null hypothesis. The original
work by Hartigan and Hartigan [11] provides a table
with bootstrapped Dip-values and corresponding Dip-
p-values for samples of different sizes N . The table lists
the relationships for 13 different sample sizes ranging
between 4 and 200 with 9 (Dip, p)-pairs each. These
were calculated by drawing N random samples from a
uniform distribution several times. The Dip-test was
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then performed on each of these sample sets. The
percentage of sets with a Dip-value smaller than the
input Dip-value thus gives the respective Dip-p-value.
The idea is that the uniform distribution represents
a borderline case between unimodal and multimodal
distributions [11]. In previous publications authors used
bootstrapping to enlarge Hartigan and Hartigan’s table
to a total of 21 sample sizes up to 72, 000 data points
with 26 (Dip, p)-pairs for each sample size. They use
interpolation of

√
N to get intermediate Dip-p-values.

To the best of our knowledge this approach is the state-
of-the-art when transforming Dip- to Dip-p-value.

2.3 Dip-test Related Data Mining Most cluster-
ing methods utilising the Dip-test are dedicated to the
estimation of the number of clusters in a data set. Here,
an essential component is the transformation of the data
into a one-dimensional space where the Dip-test can be
applied. One of the first approaches is DipMeans [13],
which uses the Dip-test to determine if the distances
between data points within a cluster are distributed
unimodally. For projected DipMeans [4] the input for
the Dip-test are the data points itself, after they have
been projected onto projection axes. Another transfor-
mation is applied by M-Dip [7]. Here, the Dip-test is
executed on the path of closely located points between
two clusters. NrDipMeans [20] estimates the number
of clusters in a non-redundant clustering setting by em-
ploying a Dip-based splitting strategy. The first clus-
tering and k-estimation technique using the Dip-test in
a deep learning context is DipDECK [16], which uses
the test to decide whether clusters should be merged or
not. SkinnyDip [18] determines clusters in highly noisy
data sets by running its subroutine UniDip on each fea-
ture of each cluster. UniDip recursively executes the
Dip-test to identify modal intervals (see Sec. 2.1) in the
one-dimensional data set until all intervals themselves
and the areas left and right (until the next interval)
are considered unimodal. Finally, each modal interval
is considered a cluster and all objects that do not fall
within such an area are classified as noise. The idea of
SkinnyDip is later used to cluster streaming data with
StrDip [17]. All of the mentioned procedures need to
decide whether samples are distributed unimodally or
not and, therefore, use the same bootstrapped look-up
table to convert Dip-values into probabilities.

An example for a Dip-based pre-processing algo-
rithm is DipTransformation [25]. It scales and trans-
forms a data set, such that the resulting feature space
is suitable for k-means. In DipExt [24] this idea is ex-
tended by making use of the differentiability of the Dip-
value with respect to the projection axis. Structure-rich
features are extracted from the data by searching for

suitable projection axes with SGD. The DipEncoder [15]
uses the gradient of the Dip-value to train an autoen-
coder in such a way that each combination of clusters
projected onto their specific projection axis is highly
multimodal in the embedding.

2.4 Common Subspace Clustering Traditional
subspace clustering algorithms like 4C [2] or ORCLUS
[1] define an individual subspace for each cluster. In
this setting, however, the inter-cluster relationships are
difficult to analyse [10]. We would therefore like to
identify a common subspace for all clusters. A sim-
ple possibility to find such subspaces are dimensional-
ity reduction techniques such as Principal Component
Analysis (PCA) [21], Independent Component Analysis
(ICA) [12], Linear Discriminant Analysis (LDA) [9] or
the already mentioned DipExt [24] algorithm. Since in
these cases possible cluster assignments do not influence
the final subspace, special common subspace clustering
algorithms like LDA-k-means [8], FOSSCLU [10] and
SubKmeans [19] have been developed. LDA-k-means
and SubKmeans utilise LDA or an eigenvalue decom-
position, respectively, in combination with the k-means
objective to determine the subspaces. FOSSCLU com-
bines the EM algorithm with rigid transformations.

3 Methods

In this section, we design a special sigmoid function con-
verting Dip- to Dip-p-values. This function’s differen-
tiability is then exploited by our subspace clustering
algorithm Dip’n’Sub.

3.1 Table Extension To increase the granularity
level of the look-up table previously used in literature,
we also use bootstrapping as proposed by [11]. We sam-
ple from uniform distributions with 100,000 repetitions
to obtain a Dip-p-value table containing 307 (Dip, p)-
pairs for 63 sample sizes up to a sample size of 150,000
data points. This look-up table provides a good ba-
sis, but it does not cover all values of sample sizes N .
Therefore, we fit a logistic function p(·) to provide a
differentiable solution for this issue. Fig. 3 visually
captures Sec. 3.1 and Sec. 3.2.

3.2 Function Fit A good fitting function provides
high flexibility to fit the different sigmoidal relationships
between Dip- and Dip-p-value for all sample sizes N
while using the smallest possible number of parameters.
Due to the sigmoidal behaviour it is reasonable to
approximate it with a generalised logistic function [22].

l(Dip) = d+
a− d

(c+ h · e−b·Dip)
1/g
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The parameters a and d represent the upper and lower
asymptote, respectively, and need to be fixed as a = 1
and d = 0 in our application as we model probability
values. In addition, c = 1 must hold for the function
to actually be constrained by 1. Further, often h = g
applies (see e.g. [3]). To obtain a negative slope, b
needs to be positive. Another requirement is that
g > 0 holds. This essentially leaves the parameters
h = g and b, which mainly determine the curvatures.
However, we also need to adjust the scale for the
x-axis since the Dip-value is limited within (0, 0.25].
Therefore, we have to include a shift parameter in the
exponential function. Finally, we want to account for
highly different curvatures at the two asymptotes and
therefore include a weighting, which is partly inspired
by the work of [23]. Our final fitting function reads as
follows:

p(x, θN ) = 1−
[
wN · (1 + hN · e−qN ·x+sN )

1/hN

+ (1− wN ) · (1 + kN · e−rN ·x+uN )
1/kN

]−1

,

with the independent variable x and where θN =
(wN , hN , kN , qN , rN , sN , uN ) is the set of parameters.
We then optimise θN with respect to the mean squared
error between the fitting function and our enlarged table
values for each sample size N separately. We find
that most of the parameters are approximately constant
across sample sizes N . Thus, we set them to the mean
value across all N to reduce the number of parameters.
Hence, it is sufficient to set wN , hN , kN , sN and uN

as constants and further set qN = rN = bN as the
one remaining parameter depending on the sample size
N . The resulting optimal values for bN are shown in
Fig. 2 (teal stars). As they visually resemble a square
root function of N , we model the parameter bN as the
following function of N :

b(N) =b1 ·
√
N + b2.

Note, that b1 and b2 are parameters independent of N .
The final optimisation is to find b1 and b2 such that

E(b1, b2) =
1

|S|L
∑

N∈S

L∑

i=1

(pDipi,N − p̂(Dipi, b̂(N)))2

is minimal. Here, S is the set of all sample sizes N ,
where |S| = 63 in the case of our enlarged table, and L is
the number of (Dip, p)-pairs in the extended table, here
L = 307. The optimal function within our optimisation
scheme with respect to the mean squared error and with

Figure 2: Our fitted function for the parameter bN .

our bootstrapped table as data to be fitted is given by

p̂(x, b̂(N)) = 1−
[
0.6 · (1 + 1.6 · e−b̂(N)·x+6.5)

1/1.6

+ 0.4 · (1 + 0.2 · e−b̂(N)·x+6.5)
1/0.2

]−1

,

and

b̂(N) = 17.30784 ·
√
N + 12.04918

where values for b̂1 = 17.30784, b̂2 = 12.04918 are
rounded to five decimal places and correspond to the
optimal estimators for b1 and b2. The concatenated
function p̂(x, b̂(N)) is smooth and well-defined for all
N ∈ N+ and all x ∈ (0, 0.25].

Derivation: One of the benefits of our proposal is,
that the fitted function is differentiable. This property
is exploited in our later discussed subspace clustering
algorithm. The Dip-test can only be applied to a one-
dimensional sample, which is why we always consider
a projection axis ρ for d-dimensional data sets X.
Further, the data has to be sorted. Thus, the Dip-value
is returned for the sorted and projected data Xρ. From
[14] we know that we can calculate the gradient vector
of the Dip-value on Xρ with respect to the projection
axis ρ. We will term this gradient ∇ρ(Dip(Xρ)).
Details about the calculation of this gradient can be
found in [14, 15, 18, 24]. By using our differentiable
sigmoid function to calculate the Dip-p-value of theDip,
the Dip-p-value is also continuously differentiable as a
concatenation of differentiable functions. The gradient
is the following, where we define D := Dip(Xρ) and

b := b̂(N) for easier readability:

∇ρ(p̂(D, b)) =
(
− b∇ρ(D)

)
e−bD+6.5·

[
0.6(1 + 1.6e−bD+6.5)

1
1.6 + 0.4(1 + 0.2e−bD+6.5)

1
0.2

]−2

·
[
0.6(1 + 1.6e−bD+6.5)

−0.6
1.6 + 0.4(1 + 0.2e−bD+6.5)

0.8
0.2

]
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(a) Examples of (Dip, p)-pairs from the
original table [11] and an example of
an extensions for N = 500

(b) We bootstrap with larger granular-
ity for N as well as (Dip, p)-pairs.

(c) Our differentiable fitted function
closes the remaining granularity
gaps for all N and all (Dip, p)-pairs.

Figure 3: (a) Hartigan and Hartigan’s original bootstrapped table only provides pairs of Dip- and Dip-p-values
for 13 different sample sizes. This table has been extended to values of N ≥ 500. (b) We enlarge the table
for even more values of N as well as a larger granularity regarding (Dip, p)-pairs (for better visualisation, we
down-sampled our table to every third point). (c) We close the remaining gaps by providing our fitted function,
such as for N = 72, for which we do not have bootstrapped values.

3.3 Dip’n’Sub We aim to show with a proof-of-
concept that our differentiable Dip-p-value function has
great value for the data mining community. Therefore,
we present the subspace clustering algorithm Dip’n’Sub
which is solely based on the Dip-test. It is able to
automatically define a lower-dimensional subspace and
also to derive the number of clusters. For this, only
a significance threshold is necessary, which indicates
whether a distribution is unimodal. We first propose
TailoredDip, a new extension of UniDip [18].

A problem with UniDip is that the tails of distribu-
tions are very generously identified as outliers. Tailored-
Dip is able to better capture those tails. We achieve this
by checking the spaces between the clusters for addi-
tional structures after the regular UniDip algorithm has
terminated. Therefore, we mirror the respective area
between two clusters and calculate the Dip-p-value. If
this indicates multimodal structures, we identify appro-
priate modes and assign those points to the best fitting
neighbouring cluster. Further, if outlier detection is not
desired we use the following strategy to assign them ei-
ther to the left or the right cluster: Instead of simply
defining the mid point between neighbouring clusters
as a decision boundary, we choose the point that cor-
responds to the intersection of the ECDF and the line
between the right limit of the left cluster and the left
limit of the right cluster. This handles different tails
more accurately. Details about TailoredDip as well as a
pseudocode are given in the supplement (Sec. 1).

Now that we can find clusters in one-dimensional
samples, let us consider the multidimensional case.
Here, we use the fact that SGD can be used to find a pro-

jection axis on which a data set shows a minimum Dip-
p-value. A naive approach would be to recursively select
each cluster and, using the points of that cluster, find
the projection axis on which those samples exhibit the
greatest multimodality. The problem here is twofold.
First, there is almost always some degree of multimodal-
ity in a set of objects, which means that one will identify
a very high number of clusters. Second, the individual
clusters are difficult to compare with each other, since
each cluster forms its own subspace. Therefore, we want
to successively identify those features in which as many
objects as possible are contained in highly multimodal
clusters. Thus, we recursively search for projection axes
ρ that minimise the following term:

(3.1)
1

N

k∑

i=1

|Ci|p̂
(
Dip(Cρ

i ), b̂(|Ci|)
)
,

where Ci are the samples in cluster i and Cρ
i are the

same samples projected to ρ and sorted afterwards,
i.e. Cρ

i = sort{ρT c|c ∈ Ci}. To find these axes,
we are inspired by [24]. We start with the q features
that show the lowest sum of Dip-p-values weighted by
their cluster sizes and use them as starting points for
SGD with momentum. Further, we start at the first q
components of a PCA. [24] has shown that q = log(d)
is sufficient, where d is the original number of features.
Using these 2q starting axes, we iteratively calculate
the gradient with respect to all clusters. Here, we
exploit that our fitted function enables us to directly
calculate the gradient of Eq. 3.1. Having identified
the best projection axis, we check whether more than
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(a) The input dataset. (b) The two projections
identified by Dip’n’Sub.

(c) The final clustering result of Dip’n’Sub.

Figure 4: (a) Scatter matrix plot of an 8-dimensional synthetic data set (colours correspond to ground-truth
labels). (b) The horizontal histogram below illustrates the first projection identified by Dip’n’Sub. The data is
highly multimodal and therefore divided into 4 clusters. Dip’n’Sub now uses these cluster assignments to identify
a second projection in which all clusters are as multimodal as possible. The second projection is shown vertically
in the upper histograms, with respect to each existing cluster individually. It is easy to see that the first two
clusters (purple and blue) are subdivided into 3 and 2 clusters, respectively. Thereafter, no multimodal third
projection can be found. (c) The final clustering result of Dip’n’Sub reveals a clear separation of the clusters.

T% of the objects are contained in clusters considered
multimodal on this axis, where T has to be set by
the user. If this is the case, we apply TailoredDip to
this axis. Each cluster is considered individually and
divided into several sub-clusters. The clusters thereby
form hypercubes in the final feature space. Our method
Dip’n’Sub is presented in Algorithm 1 and an example
of the subspace identification process is shown in Fig. 4.

4 Experiments and Results

We will show the several benefits of our proposal in
three main experimental sections. First, we show,
that our calculated Dip-p-values are as reliable as the
ones with the look-up table. Then we present runtime
experiments that prove our method to be efficient, not
only in ‘laboratory conditions’, but also in practice
when integrated in existing methods using Dip-p-values.
Finally, we evaluate our subspace clustering algorithm
Dip’n’Sub to showcase the integration of the gradient of
the Dip-p-value in a practical data mining application.

Our supplement, codes, enlarged (Dip, p)-pairs
table and the used data sets are available at: https:

//dx.doi.org/10.6084/m9.figshare.21916752.

4.1 Reliable Computation One important advan-
tage of our fitted function is, that it provides Dip-p-
values for all sample sizes N . Table 1 shows that our
‘function’ method is consistent with the look-up ‘table’
and ‘bootstrap’ methods as we produce basically the
same Dip-p-values, not only for different unimodal dis-
tributions (N (4, 1) = normal distribution with centre
4 and variance 1; Tnc(4, 2, 0, 1) = non central student’s
t-distribution with 4 degrees of freedom, non-centrality

parameter 2, centre 0 and scaling 1; L(0, 2) = Laplace
distribution with centre 0 and scaling 2), but also for
multimodal distributions, which we create by combin-
ing samples of the same unimodal distribution, but with
a different centre. In the supplement (Sec. 2.3) we show
tables with a total of 23 distributions, where we observe
the same behaviour.

Comparing to the enlarged bootstrapped table de-
scribed in Sec. 3.1 our function performs better than
the ‘table’ method, with the quality of both methods
being measured in mean squared error (MSE). In this
case, bootstrapping can be seen as some kind of ground
truth, however it is not practical as runtime is a ma-
jor issue, especially for large N . We will see this in
more detail in the next section. Regarding the ‘table’
method, errors for sample sizes greater than 72, 000 had
to be ignored for the calculation of this MSE, because
it cannot provide any Dip-p-values in that case. While
we achieve an MSE of 3.43 · 10−6 for all N , the ‘table’
results in an MSE of 7.92 · 10−6. To check how well our
function generalises with respect to N , we calculate the
MSE for a set of N chosen as the mean values between
each two N of our enlarged table. Those 62 values were
not used for our function fit. The result is an MSE
of 3.14 · 10−6 for ‘function’ and 8.12 · 10−6 for ‘table’.
Hence, we outperform the ‘table’ method in both cases.

4.2 Computing Time In the first experiment, we
sum up the runtimes of all the Dip-p-value calculations
for the 23 distribution cases shown in the supplement
(Table 1 is a selection of six of them). These are shown
in Fig. 5. Note, that the y-scale is logarithmic. Note
also the missing value for N = 100k for the ‘table’
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Algorithm 1: The Dip’n’Sub algorithm

Input: data set X, significance α, threshold T
Output: labels

1 k = 1; labels = [0, . . . , 0];Xfin = []
2 while True do

3 s = 1; ρ = 0⃗
4 Q = log(d) features with lowest weighted

p-values ∪ first log(d) components of PCA
5 for each ρtmp ∈ Q do
6 Update ρtmp with SGD using Eq. 3.1
7 stmp = value of Eq. 3.1 using ρtmp

8 if stmp < s then
9 s = stmp; ρ = ρtmp

10 P = {p-value(Dip(Cρ
i ), |Cρ

i |) | i ∈ [1, k]}
11 if sum{|Ci| | i∈[1,k]∧Pi<α}

N ≥ T then
12 for each cluster i with Pi < α do

13 labelsnew = TailoredDip(Cρ
i , α)

14 update labels using labelsnew

15 Xfin = combine Xfin and {ρTx|x ∈ X}
16 X = keep features orthogonal to ρ

17 else
18 break

19 return labels,Xfin

method as here the calculation of Dip-p-values is not
possible. We can observe, that the calculation of Dip-p-
values is fastest with our function, although it should be
noted that the speed-up relative to the ‘table’ method
is only marginal and could be due to implementation
details. The differences concerning the calculation time
become of practical value, when the number of Dip-p-
values to be calculated gets larger. In Table 2 we can see
how the algorithms DipMeans, projected DipMeans and
SkinnyDip have decreasing runtime, when our method
is used instead of the look-up table or bootstrapping.
Information about the data sets are given in the sup-
plement (Sec. 2.2). As expected, our function method
does not degrade the clustering performance. Across all
three algorithms and all data sets, the normalised mu-
tual information (NMI) remains stable with an average
difference between ‘table’ and ‘function’ of 9.00 · 10−3

and 1.17·10−2 between ‘function’ and ‘bootstrap’. Run-
time is comparable to the ‘table’ method and improves
notably compared to ‘bootstrapping’ as we save 50%,
92% and 99% for DipMeans, projected DipMeans and
SkinnyDip, respectively.

4.3 Dip’n’Sub Evaluation We evaluate our algo-
rithm Dip’n’Sub and competitors in terms of cluster-

Figure 5: Runtime in seconds [s] on a logarithmic scale
for the calculations of 100 Dip-p-values per sample
size with the three methods ‘bootstrap’, ‘table’ and
‘function’ summed up over all 23 distribution scenarios
as described in the supplement (Sec. 2.3).

ing performance using the normalised mutual informa-
tion (NMI). This score attains values between 0 and 1,
where 0 indicates a purely random label assignment and
a value close to 1 is a perfect clustering result.

Comparison Methods: We compare to multiple
approaches that define a common subspace for all clus-
ters. This includes dimensionality reduction methods
like PCA, ICA or DipExt, which we combine with k-
means, and the algorithms LDA-k-means, FOSSCLU
and SubKmeans. Furthermore, since Dip’n’Sub is able
to estimate the number of clusters, we compare with the
Dip-based k-estimation methods DipMeans, projected
DipMeans and SkinnyDip.

For PCA, we set the number of components such
that 90% of the variance is preserved, and for ICA, it
equals k. The significance level is set to 0.01 for all
Dip-based methods. The range in which FOSSCLU
can determine the number of subspace dimensions with
MDL is defined as [1, 5]. All other parameters were
set as described in the respective papers. Regarding
Dip’n’Sub we set T = 0.15 and the significance to 0.01.
For SGD, we choose a momentum of 0.95 and a step-
size of 0.1 (for USER, ALOI, AIBO, SYMB, OLIVE)
or 0.01 (for SYNTH, BANK, HTRU2, MICE, MOTE).
Since none of the above data sets contains outliers, we
assign all points to the best matching cluster by using
the strategy described in Sec. 3.3.

Quantitative Analyses: Table 3 shows the results
of our algorithm Dip’n’Sub and our competitors on a
wide range of data sets (see supplement Sec. 2.2 for
details). Note, that compared to the other subspace
algorithms we do not know the ground truth number
of clusters. Nevertheless, we are competitive compared
to subspace and Dip-based k-estimation methods as we
rank first 4 times and second 5 times in terms of NMI.
On ALOI, we are slightly inferior, but we only need a
single feature for our result. Overall, Dip’n’Sub achieves
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Table 1: Dip-p-values for different unimodal (left) and multimodal (right) distributions with varying sample sizes
N . All given values are averages for 100 random samples ± standard deviation. Respective first, second and third
rows per distribution show Dip-p-values calculated with methods ‘table’ (T), ‘function’ (F) and ‘bootstrapping’
(B, 1000 repetitions). Dip-p-values for multimodal distributions are multiplied by 100; ∗: values obtained by√
N− interpolation, †: values not available.

unim. Distr. Method N = 50 N = 234 N = 2345 N = 100k multim. Distr. N = 50 N = 234 N = 2345 N = 100k

N (4, 1)
T 0.77± 0.24 0.86± 0.19∗ 0.97± 0.07∗ † N (4, 1) 8.94± 15.0 0.06± 0.23∗ 0.00± 0.00∗ †
F 0.77± 0.24 0.86± 0.19 0.97± 0.07 1.00± 0.02 ∪ 8.83± 14.9 0.09± 0.25 0.00± 0.00 0.00± 0.00
B 0.77± 0.24 0.86± 0.19 0.97± 0.07 1.00± 0.02 N (0, 1) 8.78± 15.0 0.06± 0.21 0.00± 0.00 0.00± 0.00

Tnc(4, 2, 0, 1)
T 0.80± 0.21 0.89± 0.14∗ 0.98± 0.03∗ † Tnc(4, 2, 0, 1) 0.79± 2.20 0.00± 0.00∗ 0.00± 0.00∗ †
F 0.80± 0.21 0.90± 0.14 0.98± 0.03 1.00± 0.00 ∪ 0.83± 2.07 0.00± 0.00 0.00± 0.00 0.00± 0.00
B 0.80± 0.21 0.90± 0.14 0.99± 0.03 1.00± 0.00 Tnc(4, 2, 7, 1) 0.74± 2.17 0.00± 0.00 0.00± 0.00 0.00± 0.00

L(0, 2)
T 0.85± 0.19 0.95± 0.11∗ 0.99± 0.04∗ † L(0, 2) 24.1± 24.9 2.36± 7.87∗ 0.00± 0.00∗ †
F 0.85± 0.19 0.95± 0.11 0.99± 0.04 1.00± 0.00 ∪ 23.9± 25.1 2.37± 7.82 0.00± 0.00 0.00± 0.00
B 0.85± 0.19 0.95± 0.11 0.99± 0.04 1.00± 0.00 L(7, 2) 23.8± 24.8 2.34± 8.06 0.00± 0.00 0.00± 0.00

Table 2: Average NMI and runtime (RT - in seconds) results for DipMeans, p. DipMeans and SkinnyDip using
the Dip-p-value calculation methods ‘table’ (T), ‘function’ (F) and ‘bootstrap’ (B) after 10 runs.

Dataset
DipMeans p. DipMeans SkinnyDip

NMI RT NMI RT NMI RT
T F B T F B T F B T F B T F B T F B

SYNTH 0.64 0.64 0.64 6.87 5.82 8.92 0.86 0.86 0.85 0.76 0.74 9.03 0.16 0.16 0.16 0.02 0.01 14.66
BANK 0.31 0.31 0.30 13.00 6.93 43.71 0.30 0.31 0.30 7.70 5.46 69.81 0.13 0.13 0.13 0.01 0.00 2.56
USER 0.00 0.00 0.00 0.05 0.02 0.08 0.34 0.34 0.35 1.54 1.13 11.37 0.15 0.15 0.15 0.00 0.00 0.68
HTRU2 0.00 0.00 0.00 28.87 28.32 29.03 0.17 0.17 0.17 2.20 2.18 19.05 0.08 0.08 0.08 0.04 0.04 40.78
ALOI 0.96 0.96 0.92 0.43 0.22 0.84 0.49 0.51 0.49 9.03 6.68 54.36 0.17 0.15 0.17 0.06 0.04 3.68
MICE 0.00 0.00 0.00 0.19 0.12 0.27 0.53 0.54 0.53 91.47 50.21 607.21 0.00 0.00 0.00 0.01 0.01 3.76
AIBO 0.00 0.00 0.00 0.09 0.04 0.14 0.28 0.33 0.27 20.02 5.33 129.60 0.02 0.02 0.02 0.02 0.01 3.29
MOTE 0.35 0.35 0.35 0.85 0.62 1.21 0.00 0.00 0.00 0.03 0.02 0.37 0.00 0.00 0.00 0.03 0.02 8.73
SYMB 0.82 0.82 0.82 1.50 1.15 2.23 0.70 0.74 0.70 36.70 5.64 73.69 0.02 0.02 0.02 0.11 0.10 5.16
OLIVE 0.50 0.50 0.50 0.06 0.04 0.16 0.64 0.52 0.64 1.26 0.15 3.08 0.04 0.04 0.04 0.03 0.02 0.39

a good ratio of NMI to the identified number of cluster-
relevant features. Our method identifies rather small
subspaces (maximum number of features is 3 for BANK,
MICE and SYMB), which in combination with the good
NMI values suggests that those features are particularly
relevant for clustering. This can be interesting for
a visual evaluation of the results especially in the
unsupervised domain. Furthermore, our estimation of k
is notably better than that of other Dip-based methods
(which we outperform every time with regard to NMI
except for OLIVE). While those procedures identify the
correct number of clusters only once, we manage it in
50% of the cases. Especially projected DipMeans seems
to heavily overestimate the number of clusters. This
confirms our hypothesis that in many cases one can
detect additional multimodal structures when looking at
a single cluster. Therefore, we benefit from considering
only those projection axes relevant to all clusters.

5 Conclusion

In this paper, we propose a differentiable function to
translate Dip-values to Dip-p-values. This provides an

automatic and fast translation for any desired sample
size. We show that our method is effective as our
Dip-p-values show lower squared errors than previously
used look-up tables. Further, it is efficient regarding
computing time. Finally, we underpin its practical
relevance by integrating our function in the subspace
clustering algorithm Dip’n’Sub. Here, we show how our
proposal enables the use of gradient descent for the Dip-
test’s p-value. Future efforts may attempt to integrate
those ideas into deep learning applications.
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Table 3: Maximum NMI results of different common subspace and Dip-based k-estimation algorithms after 10
runs. The resulting number of clusters and dimensions is given in brackets. Best result in bold, runner-up dotted.
(k = number of clusters, d = data set dimensionality, KM = k-means, †: no results due to non-trivial errors).

Dataset (k/d)
Common Subspace Algorithms Dip-based k-estimation Algorithms

Dip’n’Sub PCA+KM ICA+KM DipExt+KM LDA-KM SubKM FOSSCLU DipMeans p. DipMeans SkinnyDip

SYNTH (7/8) 0.97 (7/2) 0.87 (7/4) 0.38 (7/7) 0.69 (7/1) 0.88 (7/6) 0.87 (7/6) 0.90 (7/5) 0.64 (3/8) 0.92.. . . (6/8) 0.16 (2/8)

BANK (2/4) 0.41.. . . (7/3) 0.03 (2/2) 0.01 (2/2) 0.83 (2/1) 0.01 (2/1) 0.03 (2/1) 0.01 (2/4) 0.32 (41/4) 0.32 (36/4) 0.13 (2/4)

USER (4/5) 0.52.. . . (10/1) 0.43 (4/5) 0.03 (4/4) 0.40 (4/2) 0.49 (4/3) 0.46 (4/3) 0.65 (4/2) 0.00 (1/5) 0.36 (33/5) 0.15 (2/5)

HTRU2 (2/8) 0.38 (3/2) 0.03 (2/2) 0.30 (2/2) 0.03 (2/1) 0.28 (2/1) 0.03 (2/1) 0.32.. . . (2/5) 0.00 (1/66) 0.18 (7/66) 0.08 (1/66)
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Supplement to ‘Extension of the Dip-test Repertoire - Efficient and
Differentiable p-value Calculation for Clustering’

Lena G. M. Bauer∗,†,‡ Collin Leiber∗,§ Christian Böhm† Claudia Plant†

1 TailoredDip

In the following we explain TailoredDip, which adds two
extensions to the UniDip [7] algorithm. First, we show
how a cluster can be expanded to include the tails of
a distribution and then how outliers can be assigned to
an appropriate cluster.

1.1 Capturing the Tails As mentioned in the pa-
per, UniDip has problems correctly identifying the tails
of distributions. These are usually labeled as noise.
This behavior can be observed in Fig. 1a. The Gaussian
clusters are not completely captured, but only the dens-
est parts of the distributions. The same applies when
uniformly distributed noise is added to the data (see
Fig. 1c). TailoredDip is superior in capturing the tails
of the distributions in both cases. This is also confirmed
by the normalised mutual information (NMI) score and
can be seen in Fig. 1b and 1d. We achieve this im-
provement by checking the spaces between the clusters
for additional structures after the regular UniDip algo-
rithm has terminated. Although these structures are no
longer significant enough to be regarded as independent
clusters by UniDip, they can still be part of a cluster.
Therefore, we mirror the respective area between two
clusters and calculate the Dip-p-value. If this indicates
that there are still multimodal structures left, we again
search for appropriate modes. In order to check whether
a found structure matches the adjacent clusters, we ap-
ply a strategy that has been described in [6]. Here, the
closest 2|S| samples of the respective cluster combined
with the newly found structure S are used to calculate
the Dip-p-value. If this value indicates unimodality, the
structure will be added to that cluster and the process
is repeated. The described procedure is shown in Al-
gorithm 1. Since in our case a lot of Dip-p-values have
to be calculated, a fast calculation of Dip-p-values is
favourable.

∗Authors contributed equally.
†Faculty of Computer Science, ds:UniVie, University of Vi-

enna, Vienna, Austria. {lena.bauer, christian.boehm, clau-

dia.plant}@univie.ac.at
‡UniVie Doctoral School Computer Science.
§LMU Munich & MCML, Munich, Germany.

leiber@dbs.ifi.lmu.de

(a) Result of UniDip
NMI = 0.81.

(b) Result of TailoredDip
NMI = 0.96.

(c) Result of UniDip
NMI = 0.70 (noisy data).

(d) Result of TailoredDip
NMI = 0.78 (noisy data).

Figure 1: Results of TailoredDip and UniDip on a
sample data set consisting of three Gaussian clusters.
The identified clusters are coloured in blue, green, and
yellow respectively. Outliers are shown in purple.

1.2 Assigning Noise We also present a strategy for
assigning outliers to clusters, paying attention to the dif-
ferent tails of the surrounding distributions. In terms of
one-dimensional data, it makes sense to define a thresh-
old between every two clusters, indicating whether an
outlier is more likely to belong to the left or right clus-
ter. A naive approach would now be to simply set the
midpoint between the end of the left and the start of
the right cluster. This strategy was chosen in [5], for
example. However, this approach completely ignores
the existing structures, since it is irrelevant whether a
cluster ends abruptly (e.g. in case of an uniform dis-
tribution) or fades out slowly (e.g. in case of a normal
distribution). To pay attention to these properties, we
consider the Empirical Cumulative Distribution Func-
tion (ECDF), which is also used to calculate the Dip-
value. Here, we draw a straight line from the last point
of the left cluster to the first point of the right cluster.
In Fig. 2 this is represented by the dotted red line. We
now define the intersection of this line with the ECDF of
the data as the cluster boundary. Looking at this point
in Fig. 2 (left vertical line) we can see that it separates

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

C Appended Papers 97



Algorithm 1: The TailoredDip algorithm

Input: one-dimensional data set X,
significance α

Output: labels
1 // Get initial clusters by running UniDip
2 labels, k = UniDip(X,α)
3 for i = 0; i ≤ k; i += 1 do
4 if i == 0 then
5 Xsub = samples left of first cluster

6 else if i == k then
7 Xsub = samples right of last cluster
8 else
9 Xsub = samples between cluster i and

i+ 1

10 // Is Xsub uniformly distributed (only
noise)?

11 Xmirror = mirror Xsub

12 p =p-value(Dip(Xmirror), |Xmirror|)
13 if p < α then
14 labelsnew, knew =UniDip(Xsub, α)
15 Xfirst = combine cluster i with the first

new cluster // (ignore if i == 0)
16 pfirst = p-value(Dip(Xfirst), |Xfirst|)
17 Xlast = combine cluster i+ 1 with the

last new cluster // (ignore if i == k)
18 plast = p-value(Dip(Xlast), |Xlast|)
19 if i ̸= 0 and pfirst ≥ α and (knew ̸= 1 or

pfirst ≥ plast) then
20 Update labels by adding all entries

with labelsnew == 1 to cluster i

21 else if i ̸= k and plast ≥ α and
(knew ̸= 1 or plast > pfirst) then

22 Update labels by adding all entries
with labelsnew == knew to cluster
i+ 1

23 if Cluster i or i+ 1 was updated then
24 go to line 4

25 return labels

the tails of the two distributions much better than the
naive strategy (right vertical line) since it better cap-
tures the higher standard deviation of the right cluster.
If more than one intersection occurs, we choose the one
closest to the midpoint between the clusters.

2 Additional Information for the Experiments

2.1 Computational Setup Dip’n’Sub as well as the
algorithms DipMeans [4], projected DipMeans [1], Skin-
nyDip [7], DipExt [9], LDA-k-means [2] and SubKmeans
[8] are all implemented in Python. Regarding FOSS-

Figure 2: Visualisation of our strategy to assign outliers
to the neighbouring clusters. [Top] A histogram of
the data. The left (teal) cluster originates from a
N (0, 1) distribution with 700 samples, the right (yellow)
cluster originates from a N (10, 2.5) distribution with
900 samples. The outliers are shown in purple. [Bottom]
The ECDF of the data is shown in blue. The areas of the
clusters are highlighted in their respective colours. The
dotted red line indicates the connection line between
the end of the teal and the beginning of the yellow
cluster. The right vertical brown line marks the position
of a naive cluster boundary, which corresponds to the
centre of the red line. Our boundary corresponds to the
intersection of the red line with the ECDF and captures
the different tails of the two cluster much better.

CLU [3] we use the Java implementation as referenced
in the paper. We conduct all runtime experiments
on a machine with an Intel Core i7-5600U CPU with
2.60GHz and 8GB RAM. Further, we use Python 3.7
and in case of FOSSCLU, we use Java 8 due to compat-
ibility issues.

2.2 Data Sets We conduct experiments on 9 real
world data sets and one synthetic data set (the latter
can be seen in the main paper in Fig. 4). Banknotes
(BANK), User Knowledge (USER), HTRU2 and Mice
Protein (MICE) are numerical data sets from the UCI
repository1. SonyAIBO (AIBO), MoteStrain (MOTE),
Symbols (SYMB) and OliveOil (OLIVE) are time series
data sets2, and ALOI3 is an image data collection.
ALOI was preprocessed as described in [10], resulting
in 288 samples devided into 4 clusters. Other than
ALOI, no data set did receive any pre-processing, except
that features with a variance of 0 were removed. Note,
that TailoredDip only works with continuous features,
otherwise each value can be recognized as a separate
mode. A summary of the data sets is given in Table 1.

1https://archive.ics.uci.edu
2https://www.timeseriesclassification.com
3https://aloi.science.uva.nl/
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Table 1: Summary of the data sets (N = number of data
points, d = dimensionality, k = number of clusters).

Dataset N d k

SYNTH 6,300 8 7
BANK 1,372 4 2
USER 403 5 4
HTRU2 17,898 8 2
ALOI 288 66 4
MICE 1,077 68 8
AIBO 621 70 2
MOTE 1,272 84 2
SYMB 1,020 398 6
OLIVE 60 570 4

2.3 Interpolate Look-up Table We would like to
briefly explain how missing values in the state-of-the-art
look-up table are interpolated. Basically two interpola-
tions must be performed. First, the values for the num-
ber of samples that lie below and above the input N
must be searched for in the table. By using these two
values we are able to interpolate all relevant (Dip,p)-
pairs in relation to

√
N . In this interpolated array we

search for the Dip-values that are below and above our
input Dip to interpolate the Dip-p-value linearly.

2.4 Large Distribution Table In Tables 2 and
3 we show Dip-p-value calculations with the three
methods ‘table’ (T), ‘function’ (F) and ‘bootstrap’ (B)
for samples of 15 different sample sizes and a total of 23
distribution scenarios. In all cases, we can observe that
our fitted function produces basically the same Dip-p-
values as the other two methods. For this evaluation we
first consider 8 different unimodal distributions:

• N (a, b) . . . normal distribution with mean a and
standard deviation b

• T (d, a, b) . . . students-t distribution with d degrees
of freedom, centre a and scaling b

• L(a, b) . . . Laplace distribution with centre a and
scaling b

• U(a, b) . . . uniform distribution between a and b

• G(s, a, b) . . . Gamma distribution with shape pa-
rameter s, centre a and scaling b

• E(a, b) . . . exponential distribution with centre a
and scaling b

• B(s, r, a, b) . . . Beta distribution with shape param-
eters s and r, centre a and scaling b

• Tnc(d, c, a, b) . . . non central students-t distribution
with d degrees of freedom, non centrality c, centre
a and scaling b

First, Table 2 shows results for these distributions,
with only the listed distributions involved individually.
We then generate 8 multimodal distributions by com-
bining N

2 samples from one distribution with N
2 sam-

ples from the same distribution with a different centre.
Additionally, we consider 7 cases, where we generate
samples by choosing half the points from N (4, 1) and
the other half from one of the other unimodal distri-
butions. These combinations always show multimodal
structure. An exception is the case of samples from
N (4, 1)∪Tnc(4, 2, 0, 1). We include this combination to
have a relatively unambiguous case between unimodal
and multimodal. Our function performs reliably in all
cases as can be seen in Table 3.
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ABSTRACT
The combination of clustering with Deep Learning has gained much
attention in recent years. Unsupervised neural networks like au-
toencoders can autonomously learn the essential structures in a
data set. This idea can be combined with clustering objectives to
learn relevant features automatically. Unfortunately, they are often
based on a 𝑘-means framework, from which they inherit various
assumptions, like spherical-shaped clusters. Another assumption,
also found in approaches outside the 𝑘-means-family, is knowing
the number of clusters a-priori. In this paper, we present the novel
clustering algorithm DipDECK, which can estimate the number
of clusters simultaneously to improving a Deep Learning-based
clustering objective. Additionally, we can cluster complex data
sets without assuming only spherically shaped clusters. Our algo-
rithm works by heavily overestimating the number of clusters in
the embedded space of an autoencoder and, based on Hartigan’s
Dip-test - a statistical test for unimodality - analyses the resulting
micro-clusters to determine which to merge. We show in extensive
experiments the various benefits of our method: (1) we achieve
competitive results while learning the clustering-friendly represen-
tation and number of clusters simultaneously; (2) our method is
robust regarding parameters, stable in performance, and allows for
more flexibility in the cluster shape; (3) we outperform relevant
competitors in the estimation of the number of clusters.

CCS CONCEPTS
• Information systems → Clustering; • Computing method-
ologies→ Cluster analysis; Dimensionality reduction and mani-
fold learning; Neural networks.
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Figure 1: Main idea of our Dip-based clustering. The de-
picted two moons data set contains two true clusters. We
overestimate the number of clusters by executing 𝑘-means
with𝑘init = 8. If we drawa straight line between two𝑘-means
centroids (red) and project the data points assigned to either
one of the clusters onto this line, the Dip-test can be applied
to the projected points. The blue histograms show the dis-
tribution of the projected points of clusters 0 and 1 on the
left side and clusters 5 and 7 on the right side. High Dip-p-
values indicate unimodality. Thus, according to the Dip-test,
clusters 0 and 1 should be merged, while 5 and 7 should not.
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1 INTRODUCTION
Finding patterns in large amounts of unlabelled data is one of the
major data mining research branches. The goal is to partition the
data into groups of similar data points. However, in practice, it is
often not known how many clusters there are.

There is a (wide) range of potential methods for traditional clus-
tering algorithms to address this problem. Many of them are based
on the 𝑘-means framework like X-means [23] or Dip-means [16].
Some approaches like PG-Means [8] are EM-based, which allows for
more flexibility in the cluster shape. However, in these frameworks,
they automatically inherit the Gaussian cluster assumption. While
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this might be accurate for some data sets, it is too restrictive for oth-
ers, resulting in an arbitrary clustering. There are, of course, other
clustering approaches that are able to determine the number of clus-
ters in a data set automatically and are not limited to a Gaussian
cluster shape. One of the best known is the density-based method
DBSCAN [7]. It can, just like some variants of Spectral Clustering-
based approaches [31], estimate the number of clusters and is very
flexible regarding the cluster shape. These approaches, however,
trade a comparably easy to understand parameter - the number
of clusters - for more complicated parameters (e.g., the neighbour-
hood range or the number of neighbours). The detected number of
clusters is, to a large extent, controlled by these parameters. Thus,
these methods substitute one parameter with others.

The major drawback for all of the mentioned methods is that
their performance becomes unsatisfactory for modern data sets
consisting of large and high dimensional data such as images, videos,
and text. While run time and memory issues could be resolved with
high-performance implementations, other problems such as the
curse of dimensionality remain since many methods are based
on the Euclidean distance. The trend for these types of data sets
has become to cluster them with Deep Learning (DL) approaches.
For this task, most methods use an autoencoder to learn a cluster-
friendly lower-dimensional representation of the data such that the
clustering can be executed in sufficient run time and to overcome
the curse of dimensionality. Thus, methods to estimate the correct
number of clusters should ideally be integrated into these types
of approaches such that they are compatible and can exploit the
benefits of DL.

Until now, to the best of our knowledge, there is no DL-based
method to cluster a data set while simultaneously estimating the
correct number of clusters. All existing strategies are built on
traditional clustering approaches that do not scale well to high-
dimensional and/or large data sets.

To address the above problems, we propose DipDECK - Dip-
based Deep Embedded Clustering with k-estimation. It simulta-
neously improves the estimation of the number of clusters 𝑘 , the
cluster assignments, and the data embedding. We overestimate the
number of clusters in the embedded space of an autoencoder by 𝑘init
and use Hartigan’s Dip-test [12], a statistical test for modality in
one-dimensional samples, to identify clusters that share structural
similarities. It returns a Dip-value, which translates to a p-value that
is equal to the probability of a sample’s unimodality. We define a
clustering loss that forces the autoencoder to push clusters sharing
a high Dip-p-value together, resulting in compact cluster shapes.
These can then be combined into a common cluster. We induce
the assumption that 𝑘 ≤ 𝑘init. However, this is a significant relax-
ation compared to when 𝑘 needs to be given as a fixed value. Fig. 1
serves as an illustration of the idea behind our Dip-based cluster-
ing. Assume the depicted data points represent a two-dimensional
autoencoder embedding of a higher-dimensional data set. We can
see how the Dip-test indicates which sub-clusters are connected.
Additionally, it shows that we can even use this strategy to identify
non-convex cluster shapes.

Our contributions can be summarised as follows:

• We introduce a novel deep clustering method that operates
oblivious of the correct number of clusters 𝑘 in the data.

Despite being at the disadvantage of not knowing 𝑘 , we
achieve competitive clustering results regarding NMI on a
wide range of benchmark and additional data sets.

• Although partly centroid-based by implicitly taking a 𝑘-
means like loss term into account, our method is more flexi-
ble regarding the cluster shape.

• We exploit the Dip-test, a statistical test for unimodality,
which quantifies the structure within a data set. The Dip-test
is introduced for the first time to DL.

• Since we outperform relevant competitors in estimating the
number of clusters on various data sets, our method can also
be used merely to estimate this value. This estimation can
then be used in combination with other clustering methods.

2 RELATEDWORK
We introduce DipDECK, a method for 𝑘-estimation in a DL context.
Thus, we have two relevant research branches: DL approaches for
clustering and estimation methods for 𝑘 . Since our method is based
on the Dip-test, we also describe it in more detail in this section.

Deep Clustering. The first branch consists of DL methods cre-
ated for clustering. For this, we focus on the essential and founda-
tional methods which have been established as some of the most
important Deep Clustering (DC) methods. These include DEC [28],
IDEC [10] and DCN [29], which are all centroid-based approaches
without excessive tuning of the autoencoder or exploitation of
domain knowledge such as augmentation for images. These are
closely relatable to us; the same autoencoder can be used for com-
parisons, and they also have a degree of kinship to 𝑘-means. VaDE
[15] embeds the probabilistic clustering problem into a variational
autoencoder framework. Although this strategy is different to the
other mentioned methods, there is still a relation because it models
the data generative procedure by a Gaussian Mixture Model and is
therefore also Gaussian-based. Other DC approaches like Cluster-
GAN [22], JULE [30], DEPICT, [9] or DTI [21] are already rather
distant or partly use extensive techniques (e.g. CNNs or augmenta-
tion). In our work, we do not focus on topics such as autoencoder
architecture optimisation or exploitation of domain knowledge in,
e.g., the form of augmentation. These directions of research are
orthogonal to our approach of optimising the clustering objective
and simultaneous 𝑘-estimation.

Estimating k. The second, more important, branch is 𝑘- estima-
tion methods. Most of them are based on 𝑘-means and proceed in
the following way: They start with a low initial number of clusters
𝑘init (usually a single cluster) and then apply a criterion to determine
whether a cluster should be split. Thus, theirmost significant distinc-
tion is the applied criterion, for which they use, e.g., the Bayesian
Information Criterion (X-means [23]), the Dip-test (Dip-means [16],
respectively its continuation pDip-means [3]), Anderson-Darling
hypothesis test (G-means [11]) or the Kolmogorov-Smirnov test
(PG-means [8]). They either stop determined by their criterion, or
the value of themaximal accepted𝑘max is reached. Some approaches
(e.g. [1]) start with 𝑘max and merge clusters until the termination
condition is reached, i.e. the applied criterion is satisfied, or 𝑘 equals
𝑘min (usually a single cluster). Our approach also follows the route
of merging clusters to find a suitable value of 𝑘 . The advantage of
starting with a large 𝑘 is that each micro-cluster can preserve some
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Table 1: Description of the used symbols.

Symbol Interpretation
𝑑 ∈ N Dimensionality of the original feature space
𝑚 ∈ N Dimensionality of the embedded space
𝑘 ∈ N Number of clusters

𝑋 ⊆ R𝑑 Set of all objects
𝐶𝑖 ⊆ 𝑋 Objects assigned to cluster 𝑖
B ⊆ 𝑋 A mini-batch
𝜇𝑖 ∈ 𝐶𝑖 Cluster centre of cluster 𝑖

𝜇km
𝑖 ∈ R𝑚 𝑖−th 𝑘-means cluster centre
𝑥 ∈ 𝑋 A single object of the data set

𝑑𝑖, 𝑗 ∈ [0, 0.25] Dip-value of the combined clusters 𝑖 and 𝑗
𝑝𝑖, 𝑗 ∈ [0, 1] Dip-p-value of 𝑑𝑖, 𝑗 (0 if 𝑑𝑖, 𝑗 ≈ 0.25; 1 if 𝑑𝑖, 𝑗 ≈ 0)
𝑇 ∈ [0, 1] Dip-p-value threshold

underlying structure in the embedded space. With our approach,
the shape of the Dip-connected micro-clusters is - with the help
of the autoencoder - transformed, and they start to merge depend-
ing on the Dip-test until we have only clearly separated clusters
transformed into roughly spherical shapes.

Another research branch covers postprocessing methods that
can be used to enhance an existing clustering solution. An example
is RIC [2] which utilises MDL to purify and improve the given
clustering structures. This improvement includes a refinement of
the number of clusters. These methods are, however, orthogonal to
our goal of optimising the initial clustering objective.

The only DC-related approach that includes a strategy for cluster
number estimation is SCDE [6]. However, they use an additional
softmax autoencoder network for the cluster estimation and do not
integrate the estimation as an automated process during DC. In-
stead, they use the estimated amount of clusters to execute Spectral
Clustering on the embedded samples. Furthermore, the embedded
space dimension of this additional softmax network is systemati-
cally chosen as twice the number of ground truth clusters - precisely
the number we are trying to estimate. Another DC approach that
does not need 𝑘 as an input parameter is DeepECT [20]. In contrast
to SCDE and DipDECK, DeepECT does not estimate a concrete 𝑘
but returns a hierarchical clustering structure which can be further
analysed to choose an appropriate number of clusters afterwards.

Dip-test. In order to identify coherent patterns, our approach
makes use of the Dip-test [12]. The Dip-test is a statistical test de-
veloped in the 1980s by Hartigan and Hartigan to measure modality.
It returns a Dip-value 𝐷𝑖𝑝 ∈ [0, 0.25], which, when close to zero,
indicates unimodality. The corresponding Dip-p-value, which indi-
cates how likely it is that a sample set is unimodal, is then close to
1. Larger Dip-values indicate that the data set contains at least two
modes, which will yield a Dip-p-value almost equal to zero. The
advantages are the run time and the fact that it is parameter-free. It
has, until now, never been used in DL. There are some approaches
in traditional clustering that make use of it [16], and it has recently
gained interest in the data mining community [3, 19, 24, 25].

3 DIP-BASED DEEP EMBEDDED CLUSTERING
In this section, we describe our method Dip-based Deep Embedded
Clustering with 𝑘-estimation (DipDECK). It utilises an autoencoder
[17] to simultaneously estimate the number of clusters and define

Figure 2: Autoencoder network architecture. The clustering
is performed on the data points 𝑧 = enc(𝑥).

cluster assignments in the embedded space. All symbols used in
this work are described in Table 1.

An autoencoder is a two-part unsupervised neural network that
consists of an encoder and a decoder network. The encoder embeds
the input data into a latent, usually lower-dimensional space. The
decoder, on the other hand, tries to reconstruct the embedded data
into its original state. The autoencoder can learn the properties of
the embedded space by minimising the reconstruction loss L𝑟𝑒𝑐 .
Usually, the mean squared error is used for this. For a mini-batch
B, this loss reads as follows:

L𝑟𝑒𝑐 =
1
|B|

∑
𝑥 ∈B

| |𝑥 − dec(enc(𝑥)) | |22, (1)

where enc(·) describes the data after applying the encoder, dec(·) is
the result of the decoder, and | | · | |22 denotes the squared Euclidean
distance. Fig. 2 illustrates the autoencoder architecture.

In general, our method requires two main parameters: First, an
initial number of clusters 𝑘init, which should be significantly larger
than the expected value, and a threshold 𝑇 for the Dip-p-value,
which determines whether two clusters should be merged.

In our experiments, we use a simple feed-forward network ar-
chitecture. However, other domain-specific architectures may be
used as well. Afterwards, we execute 𝑘-means in the embedded
space with the overestimated number of clusters to get the initial
cluster centres and cluster assignments. Since we want to optimise
the positions of the cluster centres simultaneously to the data em-
bedding, we use the objects within the data set that are closest to
the 𝑘-means centres (𝜇km) as actual cluster centres.

𝜇𝑖 = argmin
𝑥 ∈𝐶𝑖

(����enc(𝑥) − 𝜇km
𝑖

����2
2

)
(2)

We apply the Dip-test to obtain the Dip-values for each pairwise
combination of clusters 𝑖 and 𝑗 in the embedded space. Since the
input of the Dip-test must be one-dimensional, we use the dot
product (·) to project each point assigned to either one of the two
clusters onto the connection line of the corresponding centres 𝜇𝑖
and 𝜇 𝑗 . Normalisation is not necessary because the Dip-test is scale-
invariant.

𝐶1𝑑
𝑖,𝑗 = {enc(𝑥) · (enc(𝜇𝑖 ) − enc(𝜇 𝑗 )) | 𝑥 ∈ 𝐶𝑖 ∪𝐶 𝑗 }

This one-dimensional (1𝑑) data set can then be used to calculate
the Dip-value and consequently the Dip-p-value. Fig. 1 illustrates
this idea.
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(a) Synthetic data set
with 4 ground truth
clusters.

(b) Initial embedding (c) Train until 𝑝 > 𝑇 (d) After first (14) merges (e) Training until 𝑝 > 𝑇

(f) After (2) more merges (g) Training until 𝑝 > 𝑇 (h) After (5) more merges (i) Final result

Figure 3: (a) A synthetic 3d data set to visualise our method. (b) 𝑘-means is executed on the 2d-embedding with 𝑘init ≫ 𝑘true.
(c) The autoencoder is trained until a Dip-p-value is found larger than the threshold 𝑇 leading to (d) merging of clusters. (e)
Training resumes, and the autoencoder repositions the clusters according to their Dip-p-value until𝑇 is reached again and (f)
merging is instantiated. This process repeats itself in (g) and (h) until training finds nomore clusters which need to be merged.
The final result i) shows four almost perfectly separated clusters (NMI=0.99) in the embedded space.

The Dip-test might sometimes identify two groups as unimodal
even though there is a large spatial distance between them if they
differ greatly in size. To account for this, we calculate a second
Dip-value that includes only the closest points of the larger cluster
to the centre of the smaller cluster and the complete smaller cluster.
Ultimately, the larger of the two Dip-values (and therefore the
smaller Dip-p-value) is used. The intuition is that the transition
between the clusters must also be unimodal. This idea is described
in detail in Appendix C.

Furthermore, we define that each cluster with itself receives a
Dip-value of 0 and therefore a Dip-p-value of 1. Since 𝑝𝑖, 𝑗 = 𝑝 𝑗,𝑖 ,
we get the following symmetric Dip-p-value matrix:

𝑃 =

©­­­­«

1 𝑝1,2 · · · 𝑝1,𝑘
𝑝2,1 1 · · · 𝑝2,𝑘

...
...

. . .
...

𝑝𝑘,1 𝑝𝑘,2 · · · 1

ª®®®®¬
We normalise 𝑃 by dividing each entry of the i-th row by the

sum of the respective i-th row. The resulting matrix is termed 𝑃 .
Now we can start to optimise the autoencoder in a mini-batch

fashion. We first encode all contained objects and all the cluster
centres for each batch B in the data set. Then, we update the cluster
assignments in a 𝑘-means fashion by assigning each point to the
closest centre.

We define our novel clustering objective L𝑐𝑙𝑢 as

L𝑐𝑙𝑢 =
(1 + std(𝐷𝐶 ))
mean(𝐷𝐶 )

1
|B|

∑
𝑥 ∈B

𝑘∑
𝑖=1

𝑃𝑐𝑥 ,𝑖 | |enc(𝑥) − enc(𝜇𝑖 ) | |22, (3)

where 𝑐𝑥 is the label of the cluster 𝑥 is assigned to, std(·) and mean(·)
are the standard deviation and the mean of a set, respectively. 𝐷𝐶

is the set of Euclidean distances between all cluster centres,

𝐷𝐶 =

{√
| |enc(𝜇𝑖 ) − enc(𝜇 𝑗 ) | |22 | 𝑖 ∈ [1, 𝑘 − 1] and 𝑗 ∈ [𝑖 + 1, 𝑘]

}
.

The row-wise normalisation of 𝑃 ensures that the innermost
sum of Eq. 3 is an affine sum. This means that the weights 𝑃𝑐𝑥 ,𝑖
sum up to 1 over all clusters 𝑖 for a fixed 𝑥 . The intuition is to force
the network to strongest push a data point enc(𝑥) to the centre it is
assigned to - because 1 is the maximal possible Dip-p-value- but also
proportionately pushing it in the direction of those centres 𝜇𝑖 whose
points - according to the Dip-test- share a unimodal distribution
with the points of the cluster of enc(𝑥). Since the respective Dip-p-
value 𝑃𝑐𝑥 ,𝑖 will then be large, the network will try to minimise the
loss by reducing the respective distances to these centres.

The division by mean(𝐷𝐶 ) is used to hinder the autoencoder
of just reducing the embedding scale in order to minimise L𝑐𝑙𝑢 .
However, mean(𝐷𝐶 ) could still be kept sufficiently large even if the
network reduces the scale if it simultaneously pushes individual
clusters far away. To prevent this, we include the term std(𝐷𝐶 ).

Finally, we calculate L𝑟𝑒𝑐 using Eq. 1 and define the full loss
function of DipDECK as

L = L𝑟𝑒𝑐 + L𝑐𝑙𝑢𝑠 .

After each epoch, we update all labels by assigning each embed-
ded point to its closest embedded centre to acknowledge the new
autoencoder structure. Furthermore, we update the cluster centres
similar to Eq. 2, but this time, we choose the points closest to the
embedded cluster means instead of the 𝑘-means centres.
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Algorithm 1: Pseudocode of DipDECK
Input: data set 𝑋 , starting number of clusters 𝑘init,

Dip-p-value threshold 𝑇 , number of epochs 𝑛
Output: 𝑙𝑎𝑏𝑒𝑙𝑠 , 𝑘

1 𝑘 = 𝑘init
2 𝐴𝐸 = pretrained autoencoder
3 (𝑘𝑚𝐶𝑒𝑛𝑡𝑟𝑒𝑠, 𝑙𝑎𝑏𝑒𝑙𝑠) = K-Means(𝐴𝐸.encode(𝑋 ), 𝑘)
4 𝑐𝑒𝑛𝑡𝑟𝑒𝑠 = find closest points to 𝑘𝑚𝐶𝑒𝑛𝑡𝑟𝑒𝑠 (Eq. 2)
5 𝐷𝑖𝑝𝑀𝑎𝑡𝑟𝑖𝑥 = calculate pairwise Dip-p-values of the clusters

in the embedded space
6 𝑖 = 0
7 while 𝑖 < 𝑛 do
8 for B in 𝑋 do
9 if 𝑖 ≠ 0 then
10 update 𝑙𝑎𝑏𝑒𝑙𝑠 of B
11 calculate L = L𝑟𝑒𝑐 (Eq. 1) + L𝑐𝑙𝑢 (Eq. 3) for B
12 optimise 𝐴𝐸 using L
13 update all 𝑙𝑎𝑏𝑒𝑙𝑠 , 𝑐𝑒𝑛𝑡𝑟𝑒𝑠 (Eq. 4) and the 𝐷𝑖𝑝𝑀𝑎𝑡𝑟𝑖𝑥

14 𝑖++
15 // Start merging process
16 while max(𝐷𝑖𝑝𝑀𝑎𝑡𝑟𝑖𝑥) ≥ 𝑇 do
17 𝑘--
18 merge clusters with highest Dip-p-value→ add the

new centre (Eq. 5) to 𝑐𝑒𝑛𝑡𝑟𝑒𝑠 and overwrite 𝑙𝑎𝑏𝑒𝑙𝑠
19 update the 𝐷𝑖𝑝𝑀𝑎𝑡𝑟𝑖𝑥

20 𝑖 = 0

21 return 𝑙𝑎𝑏𝑒𝑙𝑠 , 𝑘

𝜇𝑖 = argmin
𝑥 ∈𝐶𝑖

(����
����enc(𝑥) − 1

|𝐶𝑖 |
∑
𝑦∈𝐶𝑖

enc(𝑦)
����
����
2

2

)
(4)

Afterwards, the Dip-p-value matrices 𝑃 and 𝑃 are updated, and
the cluster merging process starts.

3.1 Merging Process
To merge two clusters, we first check whether the maximum Dip-p-
value in 𝑃 is larger than a specified Dip-p-value threshold 𝑇 . If so,
the number of clusters will be reduced by one and the two clusters
𝑖 and 𝑗 that produce the corresponding Dip-p-value will be merged.
Therefore, we assign the same label to all points assigned to these
clusters, and a new centre will be created by using the closest point
to the weighted mean of the old centres.

𝜇𝑛𝑒𝑤 = argmin
𝑥 ∈𝐶𝑖∪𝐶 𝑗

(����
����enc(𝑥) − |𝐶𝑖 |enc(𝜇𝑖 ) + |𝐶 𝑗 |enc(𝜇 𝑗 )

|𝐶𝑖 | + |𝐶 𝑗 |

����
����
2

2

)
(5)

With this new centre, we can then update the Dip-p-value matrices
𝑃 and 𝑃 . In the end, we again check if the maximum Dip-p-value
in 𝑃 is larger than our threshold. If this is the case, we repeat the
merging process. Otherwise, we reset the epoch counter and start
optimising the autoencoder. In the first following epoch, we will not
update the labels of the batches to allow the autoencoder to adjust

to the new cluster structures and compress clusters that occupy a
large space due to the prior merging.

Algorithm 1 shows the complete procedure of DipDECK.
Fig. 3 shows the procedure applied to a three-dimensional data

set with four true clusters - two arbitrarily oriented moons and
two arbitrarily oriented elongated Gaussian clusters. While this
data set could probably be clustered successfully without the help
of an autoencoder (e.g., with Spectral Clustering), it serves as a
good illustration example to follow our clustering process in a
visualisable two-dimensional embedded space.

4 EXPERIMENTAL EVALUATION
We evaluate our approach regarding several aspects. In Sec. 4.1,
we compare DipDECK to various 𝑘-estimation methods while also
considering the quality of the resulting clustering. Additionally,
we compare the performance of related DC approaches. We then
explore the interpretability of our found clusters in more detail (Sec.
4.2). In several robustness tests, we investigate the influence of our
parameters on the results (Sec. 4.3).

Evaluation Metrics. For the quantitative evaluation, we con-
sider the estimated number of clusters 𝑘 and the normalised mutual
information (NMI) [26]. NMI ranges in [0, 1], where 1 indicates
a perfect and 0 an arbitrary result. It is commonly used in the
evaluation of unsupervised tasks.

Data sets. We conduct experiments on the image data sets
USPS [14], MNIST [18], Fashion-MNIST (F-MNIST) [27], Kuzushiji-
MNIST (K-MNIST) [4], Optdigits [5] and GTSRB [13], as well as
the numerical data sets Pendigits [5] and Letterrecognition [5]. A
detailed description of the data sets can be found in the Appendix A.
All image data sets are reshaped into a one-dimensional vector and
preprocessed by a channel-wise z-transformation. The numerical
data sets are preprocessed using a feature-wise z-transformation.

Experimental Setup. We set the autoencoder dimensions to
𝑑-500-500-2000-𝑚-2000-500-500-𝑑 . This is equal to the settings de-
scribed in [28]. For the Dip-test, we have to project the data from
dimension 𝑚 to 1. The larger m, the more information gets lost
due to this projection. Therefore, we choose𝑚 = 5. Furthermore,
we use the ADAM optimiser and a constant learning rate of 0.001
for the pre-training as well as 0.0001 for the actual clustering pro-
cess in all experiments. We set the initial 𝑘init in all cases to 35, as
this value is an overestimation for all correct 𝑘 in the considered
data sets. The batch size is set to 256, the Dip-p-value threshold
to 0.9, the number of epochs for the pre-training to 100 and for
the clustering process to 50. Our implementation of DipDECK is
based on PyTorch (https://pytorch.org/) and can be downloaded at
https://dmm.dbs.ifi.lmu.de/downloads.

We use the same parameters as for DipDECK if possible for the
DC algorithms DEC, IDEC, DCN and VaDE. One exception is𝑚,
which we set to 10 since this is the dimensionality used in their
respective papers. Additionally, we set the number of epochs for
the clustering process to 150. All algorithm-specific parameters,
including those for the non-DC algorithms, are set using the rec-
ommended values specified in the respective papers. For the algo-
rithms X-means, G-means, PG-means, Dip-means, pDip-means in
combination with an autoencoder (AE+), we use the same network
architecture as for DipDECK, including𝑚 = 5. As these methods
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Table 2: The resulting NMI values of various methods on different data sets. Additionally, for algorithms that can determine
the number of clusters, this value is given. Best estimation of clusters and best NMI are highlighted in bold. Values marked
with † could either not be executed due tomemory constraints or aborted after 24h. All results aremean ± std of 10 executions.

Method USPS MNIST F-MNIST K-MNIST

k NMI k NMI k NMI k NMI
Ground truth 10 - 10 - 10 - 10 -
DipDECK (ours) 9.4 ± 0.47 0.846 ± 0.02 11.2 ± 0.50 0.889 ± 0.01 12.2 ± 0.75 0.679 ± 0.01 15.8 ± 0.94 0.658 ± 0.01
X-means 35.0 ± 0.00 0.607 ± 0.01 35.0 ± 0.00 0.551 ± 0.00 35.0 ± 0.00 0.512 ± 0.00 35.0 ± 0.00 0.505 ± 0.00
G-means 35.0 ± 0.00 0.608 ± 0.00 35.0 ± 0.00 0.550 ± 0.00 35.0 ± 0.00 0.511 ± 0.00 35.0 ± 0.00 0.503 ± 0.00
PG-means 2.4 ± 0.63 0.136 ± 0.07 2.1 ± 0.79 0.175 ± 0.09 4.1 ± 1.93 0.312 ± 0.11 2.4 ± 0.76 0.135 ± 0.05
Dip-means 4.0 ± 0.00 0.438 ± 0.00 † † † † † †
pDip-means 35.0 ± 0.00 0.617 ± 0.01 35.0 ± 0.00 0.554 ± 0.00 35.0 ± 0.00 0.511 ± 0.00 35.0 ± 0.00 0.502 ± 0.00
AE+X-means 2.0 ± 0.00 0.293 ± 0.01 18.1 ± 18.1 0.620 ± 0.10 24.4 ± 3.57 0.570 ± 0.01 2.1 ± 0.29 0.072 ± 0.05
AE+G-means 35.0 ± 0.00 0.669 ± 0.01 35.0 ± 0.00 0.686 ± 0.01 35.0 ± 0.00 0.550 ± 0.01 35.0 ± 0.00 0.569 ± 0.01
AE+PG-means 3.9 ± 1.24 0.379 ± 0.12 3.6 ± 1.22 0.453 ± 0.10 2.8 ± 0.71 0.387 ± 0.05 2.6 ± 0.76 0.103 ± 0.07
AE+Dip-means 6.8 ± 0.57 0.617 ± 0.02 † † † † † †
AE+pDip-means 4.9 ± 1.31 0.519 ± 0.07 8.0 ± 1.60 0.705 ± 0.04 5.8 ± 0.57 0.522 ± 0.01 12.4 ± 3.05 0.474 ± 0.09
DEC - 0.805 ± 0.02 - 0.847 ± 0.01 - 0.607 ± 0.03 - 0.551 ± 0.01
IDEC - 0.811 ± 0.02 - 0.867 ± 0.01 - 0.641 ± 0.02 - 0.553 ± 0.02
DCN - 0.748 ± 0.02 - 0.844 ± 0.02 - 0.617 ± 0.02 - 0.522 ± 0.04
VaDE - 0.749 ± 0.03 - 0.806 ± 0.03 - 0.642 ± 0.02 - 0.558 ± 0.01

Optdigits Pendigits Letterrecognition GTSRB

k NMI k NMI k NMI k NMI
Ground truth 10 - 10 - 26 - 5 -
DipDECK (ours) 10.4 ± 0.76 0.858 ± 0.02 14.0 ± 0.85 0.817 ± 0.00 20.6 ± 1.80 0.491 ± 0.03 5.2 ± 0.87 0.612 ± 0.06
X-means 35.0 ± 0.00 0.709 ± 0.01 35.0 ± 0.00 0.703 ± 0.01 35.0 ± 0.00 0.406 ± 0.01 35.0 ± 0.00 0.426 ± 0.01
G-means 35.0 ± 0.00 0.715 ± 0.01 35.0 ± 0.00 0.702 ± 0.01 35.0 ± 0.00 0.404 ± 0.01 35.0 ± 0.00 0.420 ± 0.01
PG-means 1.1 ± 0.29 0.024 ± 0.07 3.0 ± 1.41 0.335 ± 0.18 1.7 ± 0.61 0.068 ± 0.06 † †
Dip-means 1.0 ± 0.00 0.000 ± 0.00 10.4 ± 0.47 0.691 ± 0.02 1.0 ± 0.00 0.000 ± 0.00 1.0 ± 0.00 0.000 ± 0.00
pDip-means 35.0 ± 0.00 0.709 ± 0.01 35.0 ± 0.00 0.705 ± 0.01 35.0 ± 0.00 0.418 ± 0.01 35.0 ± 0.00 0.427 ± 0.01
AE+X-means 12.8 ± 1.40 0.804 ± 0.01 35.0 ± 0.00 0.719 ± 0.01 2.0 ± 0.00 0.104 ± 0.02 2.2 ± 0.38 0.296 ± 0.01
AE+G-means 35.0 ± 0.00 0.730 ± 0.01 35.0 ± 0.00 0.711 ± 0.01 35.0 ± 0.00 0.476 ± 0.01 35.0 ± 0.00 0.455 ± 0.01
AE+PG-means 2.6 ± 1.61 0.290 ± 0.13 4.9 ± 1.93 0.534 ± 0.09 1.8 ± 0.93 0.048 ± 0.07 1.4 ± 0.47 0.048 ± 0.07
AE+Dip-means 1.0 ± 0.00 0.000 ± 0.00 9.4 ± 0.63 0.689 ± 0.01 1.0 ± 0.00 0.000 ± 0.00 1.0 ± 0.00 0.000 ± 0.00
AE+pDip-means 1.0 ± 0.00 0.000 ± 0.00 10.4 ± 1.36 0.695 ± 0.03 1.0 ± 0.00 0.000 ± 0.00 1.0 ± 0.00 0.000 ± 0.00
DEC - 0.885 ± 0.02 - 0.763 ± 0.01 - 0.404 ± 0.03 - 0.555 ± 0.02
IDEC - 0.864 ± 0.02 - 0.753 ± 0.01 - 0.443 ± 0.03 - 0.577 ± 0.06
DCN - 0.857 ± 0.02 - 0.723 ± 0.02 - 0.450 ± 0.02 - 0.528 ± 0.04
VaDE - 0.743 ± 0.04 - 0.718 ± 0.02 - 0.108 ± 0.02 - 0.200 ± 0.02

expect a maximal value of 𝑘 , we set it to 35 to allow a fair com-
parison with our method, which starts with 𝑘init = 35. We can not
compare to SCDE because no source code is available.

4.1 Quantitative Experiments
The evaluation results can be seen in Table 2 (ARI results in Ap-
pendix B). Classical approaches like X-means often have trouble
estimating a reasonable value for 𝑘 . In most cases, they either stop
close to their starting value of 1, i.e. they cannot find a decent clus-
ter structure at all, or continue splitting clusters until they reach
their termination condition, i.e. have found more than 35 clusters.
In fact, their estimation of 𝑘 deviates by more than 5 from the
ground truth in all but 10 out of 73 experiments (excluding the
𝑘=1-estimations on GTSRB). Another drawback is that some ex-
periments were stopped because they exceeded 24 hours, and for
many approaches, a single run still took more than an hour. The

autoencoder embedding does not lead to a notable improvement for
our 𝑘-estimation competitors. Since the embedding here needs to
be learned oblivious of the respective method, this shows that it is
crucial to simultaneously integrate cluster number estimation into
the actual DC process. DipDECK gives reliably good estimations
for 𝑘 and, at the same time, impressive clustering results, which
rival, if not also surpass, other DC approaches.

We wish to discuss two cases in more detail to highlight the
characteristics of our approach.

4.1.1 Number of clusters. There are two cases where DipDECK’s
estimations do not seem to be the best ones at first glance. The first
is Pendigits. Here, we estimate an average of 𝑘 = 14.0, which does
not seem impressive compared to the results of, e.g. Dip-means
which estimates 𝑘 = 10.4. However, one has to consider the quality
of the found clusters as well. While our 𝑘-estimation is worse, our
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(a) Subclasses in Optdigits (b) Subclasses in MNIST (c) Subclasses in F-MNIST

Figure 4: Meaningful substructures as found by DipDECK. Ground truth labels are equal for all top and all bottom images
respectively in each subfigure (a), (b), (c). (a) Optdigits: [top] The digit ’9’ can be written with a round or a straight lower part
and [bottom] ’1’ either as a straight line or with an additional skewed serif on top. (b) MNIST: [top] The digit ’2’ is either
written with a loop or as a mirrored ’S’. [bottom] Without augmentation strategies, straight digits and rotated digits are split.
(c) [top] For Fashion-MNIST, the class ’bags’ can be split into bags with and without straps and the class ’sandal’ [bottom] into
flat sandals and such with high heels.

(a) DipDECK result (b) Dip-means result

Figure 5: Confusion matrices of DipDECK and Dip-means
applied to Pendigits. The rows stand for the ground truth,
while columns show the predicted clusters. Darkness of a
square represents the number of data points in the cluster.

NMI is by far better with 0.817 vs 0.691. This shows that while we
find more clusters, the ones we find better represent the ground
truth. An obvious hypothesis follows: our approach partitions the
ground truth clusters into multiple parts, while Dip-means splits
the data set contrary to the ground truth. We verify this with the
confusion matrices. A typical result of DipDECK with an NMI of
0.807 and 13 found clusters can be seen in Fig. 5a. The last two rows
of the confusion matrix show that two ground-truth clusters are
split into two. Furthermore, column 10 shows us a cluster consisting
of less than 100 points, which can be easily dismissed. There are, of
course, various data points assigned to the wrong clusters, but a
comparison to the confusion matrix of Dip-means (Fig. 5b) shows
us how much more helpful the result of DipDECK is.

We assume that DipDECK’s overestimation of 𝑘 on Pendigits
is due to the structure found in a cluster, i.e. it splits clusters into
meaningful sub-clusters. For example, in MNIST, digits are written
in distinct styles. Splitting a cluster along these lines is reasonable,
although not corresponding to the ground truth. In Pendigits, we
can observe that clusters are split. However, we cannot verify that
this split is based on a particular style since the data points are
not images that can be visualised in a natural way. It is, however,

possible for data sets as the mentioned MNIST. In Sec. 4.2, we take
a closer look and see that DipDECK does indeed split along the
lines of such meaningful sub-clusters.

4.1.2 Variance. The second result, where DipDECK does not seem
too impressive at first glance, is K-MNIST. The estimated 𝑘 is rela-
tively large compared to AE+pDip-means, but here again, the NMI
(0.658 vs 0.474) shows us that the result of DipDECK consists of
far purer clusters. Besides the NMI, there is a second factor to con-
sider here. The variance of the 𝑘-estimation of AE+pDip-means is
surprisingly large (> 3), with 𝑘-values in the range from 5 to 16.
Contrary to that, DipDECK’s standard deviation on K-MNIST is
below 1, as it is on all data sets (except Letterrecognition with 1.80).
DipDECK is very stable in this regard, and its results are reliable.

To substantiate the claim that our found clusters are very close
to the ground truth, we tested against various DC approaches, in
particular those comparable in their architecture. The results can
be seen in Table 2. These methods are given the correct number of
clusters as a parameter, which is usually unknown in unsupervised
settings. DipDECK only needs a rough estimate of the cluster num-
ber but still performs better than all of these methods on all but one
data set. This supports our claim that more initial micro-clusters
are beneficial for the training of the autoencoder. DipDECK is the
only tested DC procedure that utilises this idea.

All of this shows us how important it is to evaluate 𝑘 together
with NMI. 𝑘 alone only gives the number of clusters, while NMI
estimates how ’correct’ these clusters are. In Table 2, one can see
that DipDECK has the best estimate of 𝑘 in most cases and the
best NMI results in all but one case. More importantly, DipDECK
shows the best results in the combined evaluation of both - the
𝑘-estimation and the clustering task.

4.2 Qualitative Experiments
On some data sets (e.g. Pendigits), there is a slight tendency for
DipDECK to overestimate the correct number of clusters (see Table
2). As stated in Sec. 4.1.1, this might be due to meaningful sub-
clusters. In the case of data sets like Optdigits, MNIST or Fashion-
MNIST, the resulting clusters might reveal substructures within the
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(a) 𝑘final with increasing 𝑘init (𝑇 = 0.9) (b) NMI with increasing 𝑘init (𝑇 = 0.9)

(c) 𝑘final with increasing𝑇 (𝑘init = 35) (d) NMI with increasing𝑇 (𝑘init = 35)

Figure 6: The robustness tests show the flexibility of the main input parameters of DipDECK. All tests are repeated 10 times,
and all data sets contain 10 ground truth clusters. Points indicate themean value, while the coloured area displays the standard
deviation.

data set that appear reasonable to human perception. In Fig. 4, the
clustering results of DipDECK on these data sets are shown. As can
be observed, we indeed find certain meaningful sub-clusters.

Such a run of DipDECK, where the 𝑘 for Optdigits was estimated
as 12, is shown in Fig. 4a. Our algorithm extracted substructures
that show two styles for the digits ’1’ and ’9’, respectively.

Fig. 4b shows a similar case for MNIST. The top panel shows that
two styles for the digit ’2’ could be detected. The lower panel shows
a well-known effect in the MNIST data set. The digit ’1’ is written
as a straight line in both sub-clusters but with a different rotation.
The same could sometimes be observed for the digit ’5’. However,
this can be easily overcome with augmentation strategies, where
the network structure learns explicitly to be invariant regarding
certain functions such as rotation or shifts.

F-MNIST is the most complex of the three considered data sets.
Clustering results with DipDECK- as with other methods - often
are mixed clusters containing objects of two to three ground truth
classes. Apart from that, also meaningful substructures separating
a ground truth cluster can be found. Fig. 4c shows how DipDECK
separates ’bags’ and ’sandals’ into subclasses.

In Appendix D we show a similar analysis for K-MNIST.

4.3 Robustness Experiments
An essential aspect of every method is its stability regarding its
(hyper-)parameters. For our method, this entails the DipDECK-
specific parameters of the starting value 𝑘init and its Dip-p-value
threshold 𝑇 . The correct number of clusters for the data sets in our
experiments in Sec. 4.1 range from 𝑘true = 5 to 𝑘true = 26. For all
experiments, we used a starting value of 𝑘init = 35, and DipDECK

Table 3: DipDECK on different subsets of USPS. The first 𝑖
digits were extracted fromUSPS (e.g. 0, 1, 2 and 3 for 4-USPS).
The average of 10 runs is given (mean ± std).

Data set k NMI Data set k NMI
1-USPS 1.0 ± 0.00 1.000 ± 0.00 6-USPS 5.9 ± 0.67 0.859 ± 0.02
2-USPS 2.0 ± 0.00 0.978 ± 0.00 7-USPS 6.7 ± 0.63 0.858 ± 0.02
3-USPS 3.1 ± 0.29 0.895 ± 0.04 8-USPS 7.4 ± 0.47 0.866 ± 0.02
4-USPS 4.2 ± 0.570 0.862 ± 0.06 9-USPS 8.7 ± 0.44 0.862 ± 0.01
5-USPS 5.0 ± 0.00 0.887 ± 0.02 10-USPS 9.4 ± 0.47 0.851 ± 0.02

could successfully estimate the correct 𝑘 , thus making a solid first
point for DipDECK’s stability regarding 𝑘init.

4.3.1 kinit. To further investigate the stability regarding 𝑘init, we
conducted the following experiment. We executed DipDECK on all
subsets of the USPS data set consisting of the first 𝑖 digits, i.e., 𝑖-USPS
consists of the digits 0, 1, . . . , 𝑖 − 1. If 𝑘init significantly influences
DipDECK, it will have problems estimating the correct number
of clusters for data sets with similar characteristics but different
correct 𝑘 . The results can be seen in Table 3. DipDECK finds exactly
as many clusters as there are in the data set. For 5-USPS as an
example, it finds the correct 𝑘 in 10 out of 10 runs with an average
NMI of 0.89. The only difference in these data sets is the number of
clusters. The characteristics of the data sets are the same, as well
as the starting value of 𝑘init = 35. Independently of 𝑘init, DipDECK
managed to estimate the correct 𝑘 , whether it was 1 or 10.

Further stability results can be taken from Fig. 6a. We chose four
of the data sets from our main experiments in Table 2 and executed
DipDECK with a starting 𝑘init ranging from 15 to 50. Despite this
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wide range of values, DipDECK shows almost no difference regard-
ing the final 𝑘 it converges to, with only a very slight increase in
𝑘 with increased 𝑘init. Optdigits, as an example, ranges from an
average found 𝑘final from 10.0 to 10.7 and USPS from 8.4 to 9.6. In
earlier sections, we have already seen how important it is to keep
the NMI score in mind when evaluating 𝑘-estimates. These can be
seen in Fig. 6b and are consistently good. DipDECK finds reliable
estimates for 𝑘 while keeping NMI stable, showing us its capability
of finding the correct 𝑘 independently of the chosen 𝑘init.

4.3.2 Dip-p-value threshold T. The second parameter set by us
is the Dip-p-value threshold chosen as 90%. This value is a com-
monly used threshold regarding significance, but we, nevertheless,
also tested DipDECK for different thresholds. The results can be
seen in Fig. 6c. Following the experiments, the merging process and
the final number of clusters is relatively unaffected by this value.
When evaluating various runs of DipDECK in more detail, it be-
comes evident that the Dip-test is rarely close to a medium value. If
two separate clusters are tested, the Dip-p-value is often no higher
than 10%, but if a cluster is cut in two and its parts are tested to-
gether, the Dip-p-value often surges above 99%. This, again, shows
the impressive stability of DipDECK regarding its parameters.

5 CONCLUSION
In this paper, we introduced DipDECK, a novel DC algorithm with
an implicit estimation of the number of clusters. To the best of
our knowledge, we are the first DC approach with a simultaneous
𝑘-estimation. Existing methods in this field heavily rely on the
given number of clusters in a data set. In this regard, our algorithm
offers considerable relaxation, as one can heavily overestimate this
number. Based on the Dip-test connecting structures are identified,
and the corresponding clusters are merged.

Furthermore, DipDECK is more flexible regarding the shape of
the clusters, while most of the previously proposed DC methods
are 𝑘-means based and inherit the Gaussian cluster assumption.
This is also true for many classical 𝑘-estimation methods such
as X-means or Dip-means. Additionally, they are limited in their
scalability and are, therefore, no longer adequate for modern large
and high-dimensional data sets.

In extensive experiments, we demonstrate that our cluster perfor-
mance and our 𝑘-estimation results most often outperform relevant
𝑘-estimation and DC baselines on various data sets. We further
show that our results are highly stable across multiple runs and
robust regarding our two parameters.

DipDECK offers several possibilities to extend this work. The
bottom-up like cluster number estimation provides a reasonable
basis for a hierarchical clustering algorithm, especially since we
could observe that our substructures in case of overestimation are
often meaningful for human perception and pure in terms of NMI.
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APPENDIX
In the appendix, we present details about the data sets used in the
experiments (Appendix A), add ARI results for our quantitative
experiments (Appendix B) and give a detailed explanation of how
we deal with imbalanced micro-cluster sizes (Appendix C). We
also take a closer look at the sub-structures found in K-MNIST
(Appendix D).

A DATA SETS
A summary of our used data sets is given in Table 4.

Table 4: Information regarding the used data sets.

Data set # Samples # Features # Classes
USPS 9298 256 10
MNIST 70000 784 10
F-MNIST 70000 784 10
K-MNIST 70000 784 10
Optdigits 5620 64 10
Pendigits 10992 16 10
Letterrecognition 20000 16 26
GTSRB 7860 3072 5

USPS [14]: Greyscale image data set consisting of 9298 hand-
written digits (0 to 9) with a size of 16 × 16 pixels.

MNIST [18]: Greyscale image data set consisting of 70000 hand-
written digits (0 to 9) with a size of 28 × 28 pixels.

Fashion-MNIST (F-MNIST) [27]: Greyscale image data set con-
sisting of 70000 articles from the Zalando online store. Each sample
belongs to one of 10 product groups and has a size of 28× 28 pixels.

Kuzushiji-MNIST (K-MNIST) [4]: Greyscale image data set
consisting of 70000 Kanji characters (10 different characters, each
representing one column of hiragana) with a size of 28 × 28 pixels.

Optdigits [5]: This 8× 8 image data set consists of 5620 samples,
each representing a digit (0 to 9). Each pixel depicts the number of
marked pixels within a 4 × 4 block of the original 32 × 32 bitmaps.

Pendigits [5]: This data set consists of 10992 vectors of length
16, representing 8 coordinates. The coordinates were taken from
the task of writing digits (0 to 9) on a tablet.

Letterrecognition [5]: This data set consists of 20000 data sam-
ples whereby each sample represents one of the 26 capital letters
in the English alphabet. All samples are composed of 16 numerical
stimuli describing the respective letter.

GTSRB [13]: Image data set containing 32×32 images of German
traffic signs. Each image contains 3 colour channels. We used a
subset of 5 different signs (’Speed limit (50)’, ’No passing’, ’Ahead
only’, ’Right of way’, ’Attention’), resulting in 7860 images.

B ARI RESULTS
In addition to the quantitative evaluation via NMI, we calculated
the corresponding ARI values. ARI also ranges from 0 to 1, where 1
marks a perfect result. The results can be seen in Table 5.

Figure 7: Synthetic data set consisting of threeGaussian clus-
ters containing 500 (brown), 50 (grey) and 150 (green) ob-
jects. The left histogram shows the distribution of clusters 0
(brown) and 1 (grey) projected to the connection line (red) be-
tween their respective centres. The lower histogram shows
the analogous distribution of clusters 1 (grey) and 2 (green).
The Dip-p-values of those distributions are 0.69 for clusters
0 and 1 and 0.23 for clusters 1 and 2.

C IMBALANCED CLUSTERS
We mentioned in Sec. 3 that there are problems applying the Dip-
test if two clusters are very different in size. To analyse this, we
created a two-dimensional data set with three Gaussian clusters
of different sizes as an example. The setting is displayed in Fig. 7.
Cluster 0 (brown) contains 500, cluster 1 (grey) 50 and cluster 2
(green) 150 points. It can be seen that cluster 1 lies relatively close
to cluster 2. It is conceivable that these two clusters belong together.
Cluster 0 and cluster 1, on the other hand, should not be merged,
as a clear separation can be observed. However, the Dip-p-values
indicate the opposite. With a value of 0.69, cluster 1 is said to have
a higher affiliation with cluster 0 than with cluster 2 (Dip-p-value
of 0.23). This means that in the case of DipDECK, contrary to the
natural perception, the autoencoder is more likely to move cluster
1 closer to cluster 0 than to cluster 2. This is because cluster 1 is so
small relative to cluster 0 that it is perceived merely as outliers and
not as a second mode. In the histogram of cluster 1 and cluster 2,
on the other hand, two distinct modes can be seen, which prevents
a higher value. When the autoencoder starts moving the clusters
towards each other, these effects are amplified.

To counteract this behaviour, in addition to the Dip-value of the
fully combined clusters, we calculate the Dip-value of the transition
from one cluster to another if the sizes differ significantly. For this,
we define a threshold 𝑆 . If |𝐶 𝑗 | > 𝑆 |𝐶𝑖 |, we calculate a second
Dip-value by only taking the 𝑆 |𝐶𝑖 | points closest to 𝜇𝑖 from 𝐶 𝑗 in
combination with all points from 𝐶𝑖 . This gives us two different
Dip-values, from which we choose the maximum.
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Table 5: The resulting ARI values of the experiments as described in the Sec. 4

Method USPS MNIST F-MNIST K-MNIST Optdigits Pendigits Letterrec. GTSRB

DipDECK (ours) 0.834 ± 0.05 0.860 ± 0.02 0.494 ± 0.02 0.519 ± 0.02 0.833 ± 0.02 0.740 ± 0.01 0.221 ± 0.03 0.518 ± 0.09
X-means 0.315 ± 0.01 0.271 ± 0.01 0.230 ± 0.01 0.263 ± 0.01 0.415 ± 0.01 0.430 ± 0.02 0.155 ± 0.01 0.150 ± 0.01
G-means 0.313 ± 0.00 0.270 ± 0.01 0.232 ± 0.01 0.259 ± 0.01 0.432 ± 0.02 0.423 ± 0.02 0.154 ± 0.01 0.148 ± 0.01
PG-means 0.041 ± 0.05 0.008 ± 0.04 0.139 ± 0.06 0.067 ± 0.02 0.007 ± 0.02 0.189 ± 0.11 0.011 ± 0.01 †
Dip-means 0.292 ± 0.00 † † † 0.000 ± 0.00 0.537 ± 0.02 0.000 ± 0.00 0.000 ± 0.00
pDip-means 0.333 ± 0.02 0.261 ± 0.00 0.227 ± 0.00 0.248 ± 0.01 0.391 ± 0.01 0.409 ± 0.01 0.161 ± 0.01 0.148 ± 0.00
AE+X-means 0.143 ± 0.00 0.409 ± 0.09 0.362 ± 0.03 0.030 ± 0.03 0.752 ± 0.01 0.517 ± 0.02 0.023 ± 0.01 0.239 ± 0.01
AE+G-means 0.436 ± 0.02 0.430 ± 0.02 0.300 ± 0.02 0.327 ± 0.01 0.460 ± 0.02 502 ± 0.01 0.217 ± 0.01 0.178 ± 0.01
AE+PG-means 0.157 ± 0.09 0.142 ± 0.27 0.206 ± 0.05 0.055 ± 0.04 0.09 ± 0.06 0.347 ± 0.11 0.003 ± 0.08 0.022 ± 0.04
AE+Dip-means 0.537 ± 0.04 † † † 0.000 ± 0.00 0.564 ± 0.01 0.000 ± 0.00 0.000 ± 0.00
AE+pDip-means 0.395 ± 0.10 595 ± 0.07 0.304 ± 0.10 0.348 ± 0.08 0.000 ± 0.00 0.581 ± 0.04 0.000 ± 0.00 0.000 ± 0.00
DEC 0.716 ± 0.02 0.755 ± 0.04 0.441 ± 0.04 0.411 ± 0.01 0.850 ± 0.05 0.621 ± 0.03 0.152 ± 0.02 0.489 ± 0.02
IDEC 0.733 ± 0.03 0.807 ± 0.02 0.475 ± 0.03 0.410 ± 0.03 0.811 ± 0.04 0.634 ± 0.02 0.197 ± 0.03 0.520 ± 0.07
DCN 0.642 ± 0.03 0.790 ± 0.03 0.449 ± 0.03 0.360 ± 0.05 0.829 ± 0.04 0.587 ± 0.04 0.209 ± 0.02 0.437 ± 0.05
VaDE 0.605 ± 0.08 0.716 ± 0.05 0.480 ± 0.02 0.401 ± 0.02 0.621 ± 0.06 0.586 ± 0.05 0.023 ± 0.01 0.102 ± 0.02

Table 6: Impact of different choices of 𝑆 on the Dip-p-values
from the example displayed in Fig. 7.

𝑆 1 2 3 4 5 ∞
𝑝0,1 0.0012 0.0082 0.0240 0.0544 0.1039 0.6892
𝑝1,2 0.0196 0.0879 0.2307 0.2307 0.2307 0.2307

In total, there are three possible cases to determine the Dip-value:

𝑑𝑖, 𝑗 =




max{Dip(𝐶1𝑑
𝑖,𝑗 ),Dip(𝐶1𝑑

𝑖,𝑗𝑆
)}, if |𝐶 𝑗 | > 𝑆 |𝐶𝑖 |

max{Dip(𝐶1𝑑
𝑖,𝑗 ),Dip(𝐶1𝑑

𝑖𝑆 , 𝑗
)}, if |𝐶𝑖 | > 𝑆 |𝐶 𝑗 |

Dip(𝐶1𝑑
𝑖,𝑗 ), otherwise

Here 𝐶1𝑑
𝑖𝑆 , 𝑗

only contains the 𝑆 |𝐶 𝑗 | nearest points of 𝐶𝑖 to 𝜇 𝑗 in the
embedded space, and 𝐶1𝑑

𝑖,𝑗𝑆
is defined analogously.

To see the impact of the choice of 𝑆 , Table 6 can be inspected,
which shows the effects using the example data set described above.
2 seems to be a good compromise to solve the described problem
while not preventing interesting cluster connections, like the one
between clusters 1 and 2. Note, however, that all of the 𝑆 values
(except ∞) lead to Dip-p-values that correspond to our perception
of the relative connections between the clusters 0, 1 and 2.

D K-MNIST QUALITATIVE EXPERIMENTS
K-MNIST seems to be one of the data sets where DipDECK does
not perform too well, as the average estimated number of clusters
is with 15.8 significantly larger than the desired amount of 10. How-
ever, as with MNIST, F-MNIST, and Optdigits, we can again show

that DipDECK finds meaningful subdivisions within the ground
truth clusters. For example, consider the letter ’tsu’ (displayed in
Fig. 8a). We can see that the first identified cluster in the top well
represents the modern counterpart. The lower cluster on the other
hand looks very different. In this case it seems reasonable to per-
form a separation. The same applies to the character ’ha’ (displayed
in Fig. 8b). Here, the objects from the upper cluster show certain
similarities to the second sign of the modern counterpart. The ob-
jects of the lower cluster, on the contrary, often consist of two single
dashes. The examples show once again that splitting ground truth
clusters can lead to additional insights into a data set in some cases.

(a) The character ’tsu’ (b) The character ’ha’

Figure 8: Found substructures of DipDECK within the char-
acters ’tsu’ and ’ha’ in the K-MNIST data set. The single char-
acters on the left show the modern hiragana counterparts.
On the right we see two different styles of writing found by
DipDECK.
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ABSTRACT
Hartigan’s Dip-test of unimodality gained increasing interest in un-
supervised learning over the past few years. It is free from complex
parameterization and does not require a distribution assumed a pri-
ori. A useful property is that the resulting Dip-values can be derived
to find a projection axis that identifies multimodal structures in the
data set. In this paper, we show how to apply the gradient not only
with respect to the projection axis but also with respect to the data
to improve the cluster structure. By tightly coupling the Dip-test
with an autoencoder, we obtain an embedding that clearly separates
all clusters in the data set. This method, called DipEncoder, is the
basis of a novel deep clustering algorithm. Extensive experiments
show that the DipEncoder is highly competitive to state-of-the-art
methods.
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1 INTRODUCTION
The interest in analyzing large amounts of high-dimensional data
such as images, videos or texts increased significantly in recent
years. Since such data sets are highly complex both in terms of their
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Figure 1: Architecture of the DipEncoder. The illustration
shows the two-dimensional result of the DipEncoder on a
subset of the Optdigits data set. We can see that each com-
bination of clusters receives its own projection axis within
the DipModule. The histogram depicts the purple and yellow
clusters projected onto their corresponding projection axis
𝑝1. In addition, the figure shows the Dip-values of the purple
cluster (0.012), the yellow cluster (0.014), and the combination
of the two (0.179). From this, we can conclude that both clus-
ters are unimodal while the combination is multimodal.

interpretability and the time it takes to process them, particular
analysis methods are usually required.

An established strategy to handle high-dimensional data is to run
a dimensionality reduction technique before the desired analysis
method. The most common technique is probably the Principal
Component Analysis (PCA) [10]. With the growing availability
of computing power, Neural Networks (NNs) have also become
more popular. Due to their high abstraction capabilities, they offer
a range of powerful analysis options. Special architectures can
even favor the performance concerning certain data types (e.g.,
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Convolutional Neural Networks (CNNs) [23] for image data). A
strategy that combines dimensionality reduction with NNs is to
make use of an autoencoder (AE) [1]. This feed-forward NN learns
a lower-dimensional embedding of the input data set. One can then
execute further analysis procedures on this embedding.

In recent years, the field of clustering has increasingly taken
up this idea. Corresponding procedures, also referred to as Deep
Clustering (DC) methods, usually use an AE to learn an embedding
in which the actual clustering procedure is applied, allowing the
clustering objective to be updated simultaneously to the embedding.
Hereby, the runtime can drop significantly due to the lower dimen-
sionality and we counteract the curse of dimensionality while at
the same time using the abstraction capabilities of the AE.

In this paper, we present the DipEncoder. This NN combines
an AE with Hartigan’s Dip-test of unimodality [14]. The Dip-test
is a parameter-free statistical test that returns a Dip-value within
the interval (0, 0.25], which specifies the multimodality of a one-
dimensional data set. Dip-values close to 0 indicate unimodality
of the input samples, while larger values indicate that the samples
contain at least two modes. Our goal is to use this test to create
an embedding that clearly separates different groups of data. In
other terms, we want to achieve an embedding that shows high
modality between each combination of clusters. Figure 1 illustrates
this idea by the high Dip-value of 0.179 between the purple and
yellow cluster. However, we cannot simply maximize the Dip-value
since we have to be careful that this process does not pull one of
the clusters apart to achieve a multimodal structure. Therefore, we
also want to minimize the modality within the separate clusters. In
Figure 1 this corresponds to the small Dip-values of 0.012 for the
purple and 0.014 for the yellow cluster. Since the Dip-test can only
process one-dimensional samples, we create individual projection
axes for each combination of clusters and store them within the
so-called DipModule. These axes are represented in Figure 1, for
example, by the red line 𝑝1 between the purple and yellow cluster.
Using this architecture, we can leverage the gradient of the Dip-test
to optimize the projection axes simultaneously to the embedding.
We further use this idea to show how we can use the Dip-test
to update the cluster labels. Building on this, we present a novel
DC algorithm based solely on the Dip-test which does not require
clustering-specific parameters other than the number of clusters 𝑘 .

Our main contributions can be summarized as follows:

• First, we present the previously unused gradient of the Dip-
value with respect to the data.

• We show how to use the gradients of the Dip-value in combi-
nation with an AE for supervised dimensionality reduction.

• Based on this, we develop a procedure that updates the clus-
ter labels using only the Dip-test.

• This method is extended to create a novel Deep Clustering al-
gorithm that does not require clustering-specific parameters
apart from the number of clusters.

2 RELATEDWORK
In the following, we describe a few methodologies that underlie our
proposal. First, we describe the Dip-test in detail as it is an essential
part of our procedure. Then, we briefly discuss dimensionality
reduction techniques and basic Deep Clustering algorithms.

TheDip-test:TheDip-test [14] of unimodality is a statistical test
that measures how multimodal a given one-dimensional data set is.
It returns a Dip-value dip ∈ (0, 0.25], which indicates unimodality
if it is close to zero. Since the Dip-test is parameter-free, we do
not have to state any underlying distribution function. Therefore,
dip ≈ 0 regardless of whether we execute the Dip-test on samples
from a single Gaussian, Laplacian, uniform, or any other unimodal
distribution. On the other hand, 0 ≪ dip ≤ 0.25 if we have samples
from distributions with multiple distinctive modes. Hartigan and
Hartigan showed how to efficiently calculate the Dip-value on a
sorted data set of size 𝑁 with a complexity of 𝑂 (𝑁 ) [14]. For this
purpose, a modal interval is used, which indicates the steepest
slope in the empirical cumulative distribution function (ECDF).
These characteristics make the Dip-test very interesting for the
Data Science community, which is why it has already been used
for various purposes.

Since no distribution of the data has to be assumed, it is particu-
larly suitable for unsupervised learning. One of the first clustering
algorithms using the Dip-test is Dip-means [19] which aims at iden-
tifying the number of clusters. Here, the Dip-test is calculated on
the distances between all objects within a cluster. A new cluster is
added if the distances do not show a unimodal distribution. Pro-
jected Dip-means [2] pursues the same objective but projects the
data onto projection axes and applies the Dip-test on these projected
one-dimensional values. SkinnyDip [28] recursively analyzes the
features of a data set by interpreting each modal interval returned
by the Dip-test as a cluster. This idea is continued by StrDip [27] to
cluster streaming data. Nr-Dipmeans [30] attempts to determine
the number of clusters in a non-redundant clustering setting. There-
fore, each cluster is split into two, and the objects are projected
onto the line connecting the two new centers. The initial cluster is
kept if the Dip-test indicates unimodality; otherwise, the procedure
continues with the two new clusters. The first clustering algorithm
that combines the Dip-test with Deep Learning is DipDECK [25].
Here, clustering is done in the embedded space of an AE. Initially,
the technique heavily overestimates the number of clusters. If the
data points within two microclusters show high unimodality, they
are merged, and the embedding can be further updated.

DipTransformation [34] shows that the Dip-test can also be used
for data preprocessing. It uses the Dip-test to transform and scale a
data set so that its most important features are highlighted. [28] and
[33] go one step further. They take advantage of the fact that we can
deduce the gradient of the Dip-value with respect to the projection
axis, as shown in [22]. This allows them to identify cluster-friendly
subspaces by picking out those projections which yield the highest
multimodality. The differentiability is a convenient feature of the
Dip-test. We want to extend this idea by additionally using the
gradient with respect to the data.

Dimensionality reduction techniques:Methods that reduce
the dimensionality of a data set fall into two main categories: unsu-
pervised and supervised.

Principal Component Analysis (PCA) [10] is probably the best-
known dimensionality reduction technique and is a common pre-
processing step when analyzing a data set. It rotates the features
space such that only the components with the highest variances
remain. Independent Component Analysis (ICA) [18] is not a di-
mensionality reduction technique per definition. However, it also
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finds a lower-dimensional basis of the data by searching for statis-
tically independent components. t-Distributed Stochastic Neighbor
Embedding (t-SNE) [35] tries to preserve local structures in high-
dimensional data sets while reducing the dimensionality. Therefore,
it converts distances in the original feature space into probabilities
of whether an object would pick another as a neighbor. Uniform
Manifold Approximation and Projection (UMAP) [31] pursues a
similar goal. However, it uses a more extensive mathematical basis
by leveraging Riemannian geometry. Another way to perform a
dimensional reduction is to use an autoencoder (AE) [1]. This unsu-
pervised NN consists of two parts, an encoder enc(·) that transforms
the input to the embedding and a decoder dec(·) that tries to restore
the data from the embedding to its original state. This basic idea
is also presented in Figure 1, where we have a two-dimensional
embedding. The AE is usually trained by a batch-wise optimization
of the reconstruction loss L𝑟𝑒𝑐 .

L𝑟𝑒𝑐 (B) = 1
|B|

∑︁
𝑥 ∈B

| |𝑥 − dec(enc(𝑥)) | |22, (1)

where B ⊆ 𝑋 is one batch of the data set𝑋 ⊆ R𝑑 and | | · | |22 denotes
the squared Euclidean distance.

Until now, we only discussed unsupervised techniques. However,
some methods use known cluster labels to achieve a lower dimen-
sionality. One such supervised approach is the Linear Discriminant
Analysis (LDA) [9]. LDA identifies a subspace by minimizing the
intra-cluster variance while maximizing the inter-cluster variance.
Another approach is Partial Least Squares (PLS) [36]. This method
searches for structures in the data set that maximize the covariance
with the labels.

We present the DipEncoder, which also falls into the group of
supervised dimensionality reduction techniques since we want to
improve the embedding of an AE by arranging objects of a common
group unimodally and those of different groups multimodally.

Many of the mentioned methods have already been successfully
combined with data-mining approaches to, for instance, create
subspace or non-redundant clustering algorithms. Examples are
Orth [5] (using PCA), LDA-k-means [6] (using LDA) or generally
DC algorithms (using AEs).

Deep Clustering: Since our final product is a Deep Clustering
(DC) algorithm, we want to briefly discuss corresponding proce-
dures. One of the first methods that combine a simple AE with
a centroid-based clustering objective is DEC [38] and its succes-
sor IDEC [13]. They optimize their network by minimizing the
Kullback-Leibler divergence between soft cluster labels and an aux-
iliary target distribution. While DEC uses the reconstruction loss
of the AE only for pretraining, IDEC integrates it into the cost func-
tion of the primary clustering method. DCN [39] is more oriented
towards the original k-means algorithm and therefore uses hard
cluster labels. The hierarchical clustering algorithm DeepECT [29]
provides multiple levels of labels, which can then be analyzed at
a later stage. Other methods introduce specific AE architectures
to better handle certain types of data. For example VaDE [17] uses
a Variational Autoencoder (VAE) [21] to solve a probabilistic clus-
tering objective. DEKM [12], JULE [40] and DEPICT [7] all use
CNNs, which greatly increases their processing power on image
data. ClusterGAN [32] applies yet another clustering strategy by
employing Generative Adversarial Networks (GANs) [11].

Figure 2: The figure shows the calculation of the Dip-value
using an exemplary data set with four modes. [Top] His-
togram of the data set. The colors indicate the underlying
creation process. [Bottom] The blue line shows the ECDF
of the samples. Between 𝑧𝑙 and 𝑧𝑢 , the green line indicates
the region of the maximum slope within the ECDF and thus
the main mode(s) of the data set. There must be a convex
distribution to the left of 𝑧𝑙 and a concave distribution to the
right of 𝑧𝑢 . The vertical height of the modal triangle (in red),
formed by (𝑧𝑚1 ,

𝑚1
𝑁 ), (𝑧𝑚2 ,

𝑚2
𝑁 ) and (𝑧𝑚3 ,

𝑚3
𝑁 ), shows the maxi-

mum deviation between the ECDF and a convex distribution
and ultimately specifies the Dip-value.

We want to avoid such architecture-based extensions to show
that our good results are based only on our core idea. However,
extensions like convolutional layers could still be added to later
evolutions of our technique.

3 THE DIPENCODER
The DipEncoder is an extension of an ordinary AE, which is able
to process the gradients of the Dip-value. Therefore, we would like
to discuss the mathematical foundation of those gradients first. An
overview of the used symbols can be found in appendix A.

Typically, the objects within a data set are fixed, which is why so
far, only the gradient with respect to the projection axis was used
(e.g., in [22, 28, 33]). Since we are working within the embedding
of an AE, we can also process the gradient regarding the data. To
the best of our knowledge, we are the first who use the gradient of
the Dip-value in a Deep Learning environment and generally the
first who use the gradient with respect to the data.

For the computation of the Dip-value, we need to transform
the embedded data set 𝑍 = enc(𝑋 ) into a one-dimensional space.
Therefore, we assign distinct projection axes to each pair of clusters.
These axes are stored in a separate shallow NN we call DipModule.
It consists of 𝑘 (𝑘 − 1)/2 ×𝑚 neurons, where 𝑘 is the number of
clusters and𝑚 the dimensionality of the embedding. We can now
project the embedded samples of clusters 𝑎, denoted by 𝑋𝑎 ⊆ 𝑋 ,
and b, denoted by 𝑋𝑏 ⊆ 𝑋 , onto their corresponding axis 𝑝𝑎,𝑏 . We
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define 𝑋𝑎,𝑏 = 𝑋𝑎 ∪ 𝑋𝑏 as the set of all objects assigned to either
cluster 𝑎 or cluster 𝑏 and consequently 𝑍𝑎,𝑏 = enc(𝑋𝑎 ∪ 𝑋𝑏 ). Then
the projection is performed as 𝑝𝑇

𝑎,𝑏
· 𝑧, where 𝑧 ∈ 𝑍𝑎,𝑏 . Afterwards,

we sort our projected embedded data to receive 𝑍𝑎,𝑏 ⊆ R1.
To calculate the Dip-value, as described in [14], we interpret𝑍𝑎,𝑏

as a probability distribution function and generate the correspond-
ing empirical cumulative representation (ECDF). Next, we start to it-
erate over the ECDF to find the modal interval [𝑧𝑙 , 𝑧𝑢 ], 𝑧𝑙 , 𝑧𝑢 ∈ 𝑍𝑎,𝑏 ,
as well as the modal triangle Δ = ((𝑧𝑚1 ,

𝑚1
𝑁 ), (𝑧𝑚2 ,

𝑚2
𝑁 ), (𝑧𝑚3 ,

𝑚3
𝑁 )),

where𝑚1 ≤ 𝑚2 ≤ 𝑚3 are the indices of 𝑧𝑚1 , 𝑧𝑚2 , 𝑧𝑚3 ∈ 𝑍𝑎,𝑏 respec-
tively, i.e. the indices when considering the sorted projected data.
The modal interval is the area within which the maximum slope of
the ECDF lies. This corresponds to the most significant mode(s) of
the underlying distribution. While the modal interval iteratively
shrinks, the modal triangle introduced by [22] is the triangle formed
by (𝑧𝑚1 ,

𝑚1
𝑁 ), (𝑧𝑚2 ,

𝑚2
𝑁 ) and (𝑧𝑚3 ,

𝑚3
𝑁 ) that, given the modal inter-

val, has the largest distance between the ECDF and a piecewise
linear function that satisfies the conditions of unimodality (convex
until 𝑧𝑙 and concave after 𝑧𝑢 ). A visualization of this process is
given in Figure 2. The modal triangle fulfills height(Δ) = 2 · dip
(the details can be found in [22]). Therefore, the Dip-value can be
calculated as follows:

dip(𝑍𝑎,𝑏 ) =
1
2𝑁

(����
C𝐴︷                                        ︸︸                                        ︷

(𝑚3 −𝑚1) (𝑧𝑚2 − 𝑧𝑚1 )
𝑧𝑚3 − 𝑧𝑚1

+𝑚1 −𝑚2

���� + 1
)

Using this formulation we can deduce the gradient regarding each
feature 𝑖 of the projection axis [22].

𝜕dip(𝑍𝑎,𝑏 )
𝜕𝑝𝑎,𝑏 [𝑖]

= 𝑐

(
𝑧𝑚2 [𝑖] − 𝑧𝑚1 [𝑖]

𝑧𝑚3 − 𝑧𝑚1
+ (𝑧𝑚1 − 𝑧𝑚2 ) (𝑧𝑚3 [𝑖] − 𝑧𝑚1 [𝑖])

(𝑧𝑚3 − 𝑧𝑚1 )2
)
,

(2)

where 𝑐 = 𝑚3−𝑚1
2𝑁 if 𝐴 > 0, else 𝑐 = −(𝑚3−𝑚1

2𝑁 ). Here, 𝑧𝑚 𝑗 is the
(unprojected)𝑚-dimensional embedded data point corresponding
to 𝑧𝑚 𝑗

, i.e. 𝑝𝑇
𝑎,𝑏

· 𝑧𝑚 𝑗 = 𝑧𝑚 𝑗
, and [𝑖] indicates its 𝑖-th coordinate.

Furthermore, we can calculate the gradient regarding each feature
𝑖 of the samples.

𝜕dip(𝑍𝑎,𝑏 )
𝜕𝑧 [𝑖] =




𝑝𝑎,𝑏 [𝑖]𝑐
𝑧𝑚2−𝑧𝑚3

(𝑧𝑚3−𝑧𝑚1 )2
if 𝑧 = 𝑧𝑚1 ,

𝑝𝑎,𝑏 [𝑖]𝑐 1
𝑧𝑚3−𝑧𝑚1

if 𝑧 = 𝑧𝑚2 ,

𝑝𝑎,𝑏 [𝑖]𝑐
𝑧𝑚1−𝑧𝑚2

(𝑧𝑚3−𝑧𝑚1 )2
if 𝑧 = 𝑧𝑚3 ,

0 else,

(3)

where the definitions are the same as above. The derivations of
these equations can be found in appendix D.

In order to clearly separate the clusters, we need to maximize
the modality with respect to these samples. In mathematical terms
this equals max(dip(𝑍𝑎,𝑏 )) or, since we use gradient descent, we
minimize the negative value, i.e. min(−dip(𝑍𝑎,𝑏 )).

However, we must be careful that high modality is not achieved
by tearing a cluster apart. Therefore, we need another term support-
ing a unimodal structure within the clusters on this projection axis.
This is given by min(dip(𝑍

𝑎, �𝑏
) + dip(𝑍

�𝑎,𝑏
)), where 𝑍

𝑎, �𝑏
⊆ 𝑍𝑎,𝑏

only contains the samples of cluster 𝑎. 𝑍
�𝑎,𝑏

is defined analogously.
We consider these two optimizations to be equally important, which
is why we multiply the unimodal constraint by 1

2 .
Applying these terms to the batch-wise optimization of the

DipEncoder yields the loss terms L𝑢𝑛𝑖 and L𝑚𝑢𝑙𝑡𝑖 .

L𝑢𝑛𝑖 (B, 𝑎, 𝑏) =12
(
dip(𝑍 B

𝑎, �𝑏
) + dip(𝑍 B

�𝑎,𝑏
)
)
,

L𝑚𝑢𝑙𝑡𝑖 (B, 𝑎, 𝑏) = − dip(𝑍 B
𝑎,𝑏 ),

where 𝑍 B
𝑎,𝑏 = sort{𝑝𝑇

𝑎,𝑏
· 𝑧 |𝑧 ∈ enc(𝑋𝑎,𝑏 ∩ B)}. 𝑍 B

𝑎, �𝑏
and 𝑍

B
�𝑎,𝑏

are
defined analogously. Combined we get the dip loss L𝑑𝑖𝑝 .

L𝑑𝑖𝑝 (B) = 2
𝑘 (𝑘 − 1)

(𝑘−1)∑︁
𝑎=1

𝑘∑︁
𝑏=𝑎+1

L𝑢𝑛𝑖 (B, 𝑎, 𝑏) + L𝑚𝑢𝑙𝑡𝑖 (B, 𝑎, 𝑏)

With the previously defined gradients (Eq. 2 and 3), we can now
optimize the DipEncoder by backpropagation based on these Dip-
values. Here the gradient from the projection axes feeds into the
DipModule, and the gradient with respect to the data is used to
update the neurons of the AE.

One problem with the current loss function is that it does not
generalize very well since the embedding is optimized based only
on the modal triangle. That is, we only get a non-zero gradient for
three samples per execution of the Dip-test. For this reason, we also
include the reconstruction loss (Eq. 1) into our final loss term.

L𝑓 𝑖𝑛𝑎𝑙 (B) = L𝑑𝑖𝑝 (B) + 𝜆L𝑟𝑒𝑐 (B) (4)

We would like the reconstruction loss to be weighted similarly
to L𝑢𝑛𝑖 and L𝑚𝑢𝑙𝑡𝑖 . Due to the nature of the Dip-value these are
limited to (0, 0.25] and [−0.25, 0) respectively. To constrain L𝑟𝑒𝑐 ,
we need to define a hypothetical maximum value. For this we
assume that the AE initially, i.e. before the backpropagation is
executed for the first time, is in its worst state. We therefore set
𝜆 = 1

4L𝑟𝑒𝑐 (B𝑖𝑛𝑖𝑡 ) , where B𝑖𝑛𝑖𝑡 is the first batch of data. This makes
0 ≤ 𝜆L𝑟𝑒𝑐 (B) ≤ 0.25 approximately valid for all B.

To speed up the separation of the individual clusters, we multiply
the gradients originating from the Dip-tests within L𝑢𝑛𝑖 by 𝑑𝑖𝑝 ,
where 𝑑𝑖𝑝 equals the corresponding Dip-value, and the gradient
originating from the Dip-test within L𝑚𝑢𝑙𝑡𝑖 by (0.25 − 𝑑𝑖𝑝). This
strategy reduces, for example, the weighting of L𝑢𝑛𝑖 concerning
clusters that already indicate a unimodal structure. Thus, we shift
the focus of the optimization towards structures that do not yet
show the desired characteristics.

Note that the Dip-test only gives meaningful values if a certain
amount of samples is present. Since our samples are divided into
several clusters, we need larger batches with more clusters present.
Based on an experimental analysis (appendix B), we recommend a
minimum batch size of 25 · 𝑘 , where 𝑘 is the number of clusters.

As already shown in [25], the Dip-test struggles to notice a
mode as such if it is significantly smaller than another one. Thus, a
cluster containing many points together with a cluster containing
significantly fewer points is still considered unimodal. This, in
particular, weakens the significance of the modal triangle in L𝑚𝑢𝑙𝑡𝑖
and thus the usability of the gradient. To avoid this, [25] suggests to
use only the 𝑆 |𝑋𝑏 | samples from cluster 𝑎 that are closest to cluster
𝑏 if |𝑋𝑎 | > 𝑆 |𝑋𝑏 |. Since we want to preserve the general structure of
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both clusters as much as possible, we utilize a variation of this idea
by randomly sampling 3|𝑍 B

�𝑎,𝑏
| objects from 𝑍

B
𝑎, �𝑏

if |𝑍 B
𝑎, �𝑏

| > 3|𝑍 B
�𝑎,𝑏

|.
Figure 3 shows an execution of the DipEncoder (3(a) - 3(d)) on

the Optdigits data set using the ground truth labels. We see that the
clusters within the embedding of the DipEncoder adopt a unimodal
structure that is clearly separated from other clusters. Compared
to a regular AE (3(e) - 3(h)), the structures stand out much better.

One advantage of the DipEncoder is that we do not have to
assume a distribution in advance. We only want to achieve a uni-
modal structure within a cluster and a multimodal structure be-
tween clusters. This is a perfect starting point for unsupervised
learning algorithms since the inter- and intra-cluster dependencies
are often unknown a priori.

3.1 Update the cluster labels
We use the components of the DipEncoder to develop a parameter-
free method to update the cluster labels. For this, we utilize the
property that the Dip-test does not only return the Dip-value and
the modal triangle but also the modal interval [𝑧𝑙 , 𝑧𝑢 ]. This interval
shows the area of the steepest slope in the ECDF and thus describes
the most significant mode(s) within our samples. We use the inter-
vals returned by L𝑢𝑛𝑖 to determine the areas of influence of the two
clusters on their corresponding projection axis. This information
can then be applied to define a threshold that indicates whether
an object should be assigned to the left or the right cluster. The
threshold 𝑇 is simply the center point between the upper limit 𝑧𝑢,𝐿
of the left cluster 𝐿 and the lower limit 𝑧𝑙,𝑅 of the right cluster 𝑅.

𝑇 = (𝑧𝑢,𝐿 + 𝑧𝑙,𝑅)/2 (5)

An example of this process can be seen in Figure 4. Initially, some
objects to the right of 𝑇 still belong to the yellow cluster. However,
our procedure indicates that these should rather match the purple
cluster. The same applies analogously to objects from the purple
cluster that lie to the left of 𝑇 .

If we want to update the cluster labels, we project each sample
onto each projection axis 𝑝𝑎,𝑏 and determine whether it belongs
rather to the left or the right cluster. In the end, each object is as-
signed to the cluster with which it has most frequently matched.
Usually, one cluster always matches, making the assignment un-
ambiguous. If a tie does occur, the sample is assigned to the cluster
with the lower ID.

The described method has one major shortcoming. Since the
modal interval specifies the area of the steepest slope in the ECDF
while satisfying the unimodality constraints (first convex, then con-
cave), this range turns out to be very small in the case of an already
unimodal distribution. This behavior is reasonable by definition,
but it does not fully reflect our human understanding of the most
significant mode. Therefore, we apply a strategy introduced in the
implementation of [28]. By mirroring the data set, we can assume
quite reliably that we obtain a multimodal structure. It follows that
the resulting modal interval has a higher significance with respect
to our application. Since we do not change the structure of the sam-
ples, we can transfer the mirrored interval to the non-mirrored case.
A visual representation of this strategy is presented in Figure 5. We
can see that the modal interval of the mirrored samples captures
our natural perception of the mode much better.

Algorithm 1: Pseudocode of the DipEncoder
Input: data set 𝑋 , number of clusters 𝑘 , number of epochs 𝐸
Output: 𝑙𝑎𝑏𝑒𝑙𝑠

1 // Pretrain AE; save the reconstruction loss of B𝑖𝑛𝑖𝑡 as 𝜆
2 (𝐴𝐸, 𝜆) = pretrain autoencoder on 𝑋 using L𝑟𝑒𝑐 (Eq. 1)
3 // Get initial labels and projection axes
4 𝑙𝑎𝑏𝑒𝑙𝑠 = k-means(𝐴𝐸.encode(𝑋 ), 𝑘)
5 𝐷𝑀 = DipModule(𝑋,𝐴𝐸, 𝑙𝑎𝑏𝑒𝑙𝑠) (Eq. 6)
6 for 𝑒𝑝𝑜𝑐ℎ = 0; 𝑒𝑝𝑜𝑐ℎ ≤ 𝐸; 𝑒𝑝𝑜𝑐ℎ += 1 do
7 // Update 𝑙𝑎𝑏𝑒𝑙𝑠 as described in Section 3.1
8 for 𝑥 ∈ 𝐴𝐸.encode(𝑋 ) do
9 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑀𝑎𝑡𝑐ℎ𝑒𝑠 = [0, ..., 0] ∈ R𝑘

10 for 𝑎 = 1; 𝑎 ≤ 𝑘 − 1; 𝑎 += 1 do
11 for 𝑏 = 𝑎 + 1; 𝑏 ≤ 𝑘 ; 𝑏 += 1 do
12 𝑝𝑎,𝑏 = 𝐷𝑀.getProjectionAxis(𝑎, 𝑏)
13 𝑍

𝑎, �𝑏
= sort{𝑝𝑇

𝑎,𝑏
· 𝑧 |𝑧 ∈ 𝐴𝐸.encode(𝑋𝑎)}

14 𝑍
�𝑎,𝑏

= sort{𝑝𝑇
𝑎,𝑏

· 𝑧 |𝑧 ∈ 𝐴𝐸.encode(𝑋𝑏 )}
15 [𝑧𝑙,𝑎, 𝑧𝑢,𝑎], [𝑧𝑙,𝑏 , 𝑧𝑢,𝑏 ] = dip(𝑍

𝑎, �𝑏
), dip(𝑍

�𝑎,𝑏
)

16 𝑐𝐿, 𝑐𝑅 = ids of left and right cluster on 𝑝𝑎,𝑏
17 𝑇 = center between the clusters (Eq. 5)
18 if (𝑝𝑇

𝑎,𝑏
· 𝑥) < 𝑇 then

19 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑀𝑎𝑡𝑐ℎ𝑒𝑠 [𝑐𝐿] += 1
20 else
21 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑀𝑎𝑡𝑐ℎ𝑒𝑠 [𝑐𝑅] += 1

22 set label of 𝑥 to argmax(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑀𝑎𝑡𝑐ℎ𝑒𝑠)
23 if 𝑒𝑝𝑜𝑐ℎ == 𝐸 then
24 break
25 // Train the DipEncoder
26 for B in 𝑋 do
27 L𝑓 𝑖𝑛𝑎𝑙 = L𝑑𝑖𝑝 (B) + 𝜆L𝑟𝑒𝑐 (B) (Eq. 4)
28 optimize 𝐴𝐸 and 𝐷𝑀 using L𝑓 𝑖𝑛𝑎𝑙

29 return 𝑙𝑎𝑏𝑒𝑙𝑠

3.2 Clustering algorithm
Next, we utilize the concepts described above to develop a novel
clustering algorithm. A pseudocode version of our approach is
given in Algorithm 1.

Since the DipEncoder calculates the Dip-values based on known
labels, initial clusters are required first. For this, we pretrain an AE
using the reconstruction loss and then run an arbitrary clustering
algorithm in the resulting embedding. For simplicity, we use k-
means for this. We want to emphasize that other algorithms are
easily applicable since we do not make any assumptions about
distributions and only analyze modalities. The requirement of an
initial clustering is often found in DC (for example in [7, 13, 17, 25,
38, 39]). Therefore, these methods can also be seen as AE-based
cluster refinement methods.

Once we have initial cluster labels, we can create the DipModule.
To obtain initial projection axes 𝑝𝑎,𝑏 , we calculate the distances
between each combination of cluster centers within the embedding
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(a) DipEncoder after 1 epoch. (b) DipEncoder after 10 epochs. (c) DipEncoder after 50 epochs. (d) DipEncoder after 100 epochs.

(e) AE after 1 epoch. (f) AE after 10 epochs. (g) AE after 50 epochs. (h) AE after 100 epochs.

Figure 3: The images show the embeddings (𝑚 = 10) of the DipEncoder (3(a) - 3(d)) and a regular AE (3(e) - 3(h)) for the Optdigits
data set after 1, 10, 50 and 100 epochs. The colors indicate the clusters of the samples. To create a three-dimensional plot, we
use the first three components of a PCA.

Figure 4: Illustration of our label update method using two
clusters projected onto their corresponding projection axis.
A threshold 𝑇 is determined by calculating the center point
between 𝑧𝑢 of the yellow cluster (left) and 𝑧𝑙 of the purple
cluster (right). For each object, the relative position with
respect to 𝑇 is used to check which cluster fits better.

of the pretrained AE.

𝑝𝑎,𝑏 =

∑
𝑥 ∈𝑋𝑎

enc(𝑥)
|𝑋𝑎 | −

∑
𝑥 ∈𝑋𝑏

enc(𝑥)
|𝑋𝑏 |

(6)

Now we start the iterative optimization of our clustering. First,
for each cluster combinationwe compute the Dip-valuewith respect
to 𝑝𝑎,𝑏 and update the labels as described in Section 3.1. Next, we
use the updated labels to calculate the loss function L𝑓 𝑖𝑛𝑎𝑙 (Eq. 4)
in a batch-wise fashion and thus optimize the AE and DipModule.
This procedure repeats for a predefined number of iterations.

4 EXPERIMENTS
To verify the quality of our approach, we conduct experiments on
a variety of real-world data sets. Therefore, we compare our results
to those of competitor algorithms.

(a) Non-mirrored samples. (b) Mirrored samples.

Figure 5: The images show the modal interval of an example
distribution. [Top] Histogram of the data set. [Bottom] The
corresponding ECDF. The modal interval is represented by a
red line. 5(a) shows the original samples, while 5(b) shows
the samples mirrored to the left.

Data sets: First, we would like to briefly describe the used data
sets. The general information (𝑁 , 𝑑 , 𝑘) can be found in the header
of Table 1. To present the wide application field of our method, we
use data sets from different domains. Optdigits [8], USPS [16] and
MNIST [24] are image data sets containing the digits 0-9. The image
data set Fashion-MNIST (F-MNIST) [37] shows items from the
zalando online store and Kuzushiji-MNIST (K-MNIST) [3] consists
of various Kanji characters. Human Activity Recognition (HAR) [8],
Pendigits [8] and Letterrecognition (Letters) [8] are numerical data
sets representing sensor records of human activity, coordinates of
handwritten digits and letter stimuli, respectively. Furthermore, we
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Table 1: NMI results of the DipEncoder against the comparison algorithms on various data sets. Each experiment is repeated
ten times, and the average result ± standard deviation as well as the maximum result (in brackets) are stated in %. The best
average and maximum result per data set are underlined, the runner-up is dotted.

Method Optdigits (𝑘 = 10) USPS (𝑘 = 10) HAR (𝑘 = 6) Pendigits (𝑘 = 10) Reuters10k (𝑘 = 4)
(𝑁 = 5620, 𝑑 = 64) (𝑁 = 9298, 𝑑 = 256) (𝑁 = 10299, 𝑑 = 561) (𝑁 = 10992, 𝑑 = 16) (𝑁 = 10000, 𝑑 = 2000)

DipEncoder 88.6 ± 3.0 (92.0) 81.9 ± 0.8 (83.6) 73.5 ± 6.9 (82.4) 75.2. . . . . ± 2.1 (78.2) 36.8 ± 4.2 (41.9)
AE+k-means 80.1 ± 2.4 (83.8) 69.6 ± 0.9 (71.2) 67.5 ± 4.2 (73.2) 70.0 ± 0.8 (72.2) 37.2 ± 6.3 (47.3)
DEC 88.5. . . . . ± 2.5 (91.9. . . . .) 80.7. . . . . ± 0.6 (81.4. . . . .) 66.3 ± 4.8 (76.8) 76.9 ± 1.1 (77.9. . . . .) 37.9. . . . . ± 7.1 (51.6. . . . .)
IDEC 80.4 ± 2.4 (84.0) 69.3 ± 1.0 (70.9) 69.9 ± 2.9 (74.1) 69.8 ± 1.3 (72.2) 39.1 ± 6.7 (51.9)
DCN 84.8 ± 2.3 (84.8) 74.6 ± 1.3 (76.1) 73.4. . . . . ± 4.8 (80.9. . . . .) 73.5 ± 0.5 (74.4) 35.1 ± 7.1 (45.4)
DipDECK 83.5 ± 2.3 (86.7) 68.5 ± 1.3 (70.5) 70.8 ± 1.3 (72.1) 72.8 ± 1.2 (74.7) 15.6 ± 18.1 (45.8)

Method 20Newsgroups (𝑘 = 20) Letters (𝑘 = 26) MNIST (𝑘 = 10) F-MNIST (𝑘 = 10) K-MNIST (𝑘 = 10)
(𝑁 = 18846, 𝑑 = 2000) (𝑁 = 20000, 𝑑 = 16) (𝑁 = 70000, 𝑑 = 784) (𝑁 = 70000, 𝑑 = 784) (𝑁 = 70000, 𝑑 = 784)

DipEncoder 30.8. . . . . ± 0.6 (31.6. . . . .) 47.1 ± 0.9 (48.2. . . . .) 85.8 ± 1.6 (87.8) 60.6 ± 2.2 (63.5) 52.2. . . . . ± 3.2 (57.0. . . . .)
AE+k-means 31.2 ± 0.8 (32.4) 42.3 ± 0.9 (43.4) 74.4 ± 1.5 (77.0) 54.2 ± 0.5 (55.1) 46.3 ± 2.4 (49.7)
DEC 15.8 ± 1.0 (17.1) 46.0. . . . . ± 2.0 (48.0) 85.2. . . . . ± 1.2 (86.6. . . . .) 59.7. . . . . ± 1.4 (62.5. . . . .) 54.2 ± 2.1 (58.0)
IDEC 28.1 ± 1.3 (30.2) 45.1 ± 1.4 (47.6) 75.3 ± 1.2 (77.8) 54.3 ± 0.7 (55.3) 46.7 ± 1.8 (49.1)
DCN 28.6 ± 1.5 (30.7) 43.7 ± 2.4 (48.4) 82.0 ± 1.7 (84.2) 56.0 ± 0.9 (58.3) 48.2 ± 2.0 (51.7)
DipDECK 00.1 ± 0.0 (00.1) 34.5 ± 3.6 (38.2) 75.8 ± 2.0 (79.4) 53.9 ± 2.9 (57.2) 38.7 ± 4.1 (43.0)

consider the document data sets Reuters [26] and 20Newsgroups1.
For 20Newsgroups we convert the documents to vectors with TF-
IDF, using only the most common 2000 features. We preprocess
Reuters as described in [38], using a subset of 10000 objects, called
Reuters10k.

Apart from TF-IDF on the document data sets, we do not use
other preprocessing steps. Since all DC algorithms are based on an
AE, they should be able to learn relevant transformations on their
own.

AE setup:We choose the same structure of the AE as presented
in [38]. This corresponds to the AE dimensions 𝑑 − 500 − 500 −
2000 − 𝑚 − 2000 − 500 − 500 − 𝑑 , where 𝑚 = 10, which have
already been used by other DC algorithms, like [13] or [17]. We
would like to have a starting situation as similar as possible in
our experiments. Therefore, ten AEs are pretrained for each data
set, forming the initial setting for all DC algorithms. These AEs
are trained for 100 epochs using the ADAM [20] optimizer with a
constant learning rate of 0.001 and a batch size of 256. The actual
clustering optimization then follows.

During clustering, the DipEncoder uses a learning rate of 0.0001
with a batch size of 25 · 𝑘 (as described in Section 3). The other DC
algorithms use a learning rate of 0.0001 with a batch size of 256.
All optimizations were run for another 100 epochs.

The DipEncoder was implemented using PyTorch2 and can be
downloaded at: https://dmm.dbs.ifi.lmu.de/downloads.

Comparison algorithms:As comparison algorithms, we choose
those comparable by architecture since only these can load the pre-
trained AEs naturally. These algorithms are DEC, IDEC, DCN and
DipDECK. In addition, we execute k-means on the pretrained AEs
(AE+k-means). All parameters are set as described in the respective
papers. The only exception is DipDECK, where we set 𝑚 = 10
instead of 5. By comparing to the AE+k-means results, one can see
1http://qwone.com/~jason/20Newsgroups/
2https://pytorch.org/

how much the results have improved since all the procedures start
from the same initial situation. An exception is DipDECk, since
there the initial k-means execution is run with a highly overesti-
mated number of clusters (𝑘𝑖𝑛𝑖𝑡 = 35).

Metrics: We evaluate our approaches using the normalized mu-
tual information (NMI) and the adjusted rand index (ARI). Both are
established metrics in clustering that can take values between 0
and 1, where 1 indicates a perfect result. We report all results in %.

Evaluation: The NMI results of the experiments can be found
in Table 1 (ARI results in appendix C). We can see that our method
performs best in 12 out of 20 experiments (mean and max). In
addition, we take second place six times. We generally show good
results on both image and numerical data sets. Only concerning
text data do the comparison algorithms perform slightly better. In
this case, the other Dip-based clustering method, DipDECK, also
seems to have significant problems. For example, it identifies only 1
or 2 clusters for 20Newsgroups, which explains the inferior results.
From this, it can be concluded that text data sets, possibly due to
the sparse structure, show less multimodal features.

Figure 6 illustrates the results of the compared DC algorithms on
MNIST. It is easy to see that the procedures operate with different
degrees of rigor as far as the shifting of data is concerned. DEC
offers the greatest flexibility since it does not apply any regular-
ization term such as the reconstruction loss. Therefore, one can
clearly notice the compressed clusters as identified by DEC. The
DipEncoder seems to be the second most flexible algorithm in this
regard. AE+k-means, on the other hand, is by definition not able
to separate clusters from each other. IDEC and DipDECK limit the
ability to push clusters apart by integrating the reconstruction loss
into the cost function using a fixed weighting factor. This factor
equals 10 compared to the cluster loss for IDEC and 1 for DipDECK.

We want to elaborate on these differences a bit more. When
we compare our results from Table 1 with the results from other
publications, some comparison methods seem to have problems
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(a) DipEncoder. (b) AE+k-means. (c) DEC.

(d) IDEC. (e) DCN. (f) DipDECK.

Figure 6: Images of the final embeddings (𝑚 = 10) of MNIST as created by different Deep Clustering algorithms. The colors
depict the ground truth labels of the clusters. Features correspond to the first three components of a PCA.

Table 2: DC results on a standardized version of MNIST (zero
mean and unit variance). Each experiment is again repeated
ten times. Representation corresponds to Table 1.

Method
MNIST-Standardized (𝑘 = 10)

(𝑁 = 70000, 𝑑 = 784)

NMI ARI
DipEncoder 85.3 ± 2.3 (88.2) 78.7 ± 4.8 (85.0)
AE+k-means 70.9 ± 2.7 (74.8) 63.4 ± 4.6 (70.1)
DEC 82.1 ± 2.6 (85.5) 75.7 ± 5.4 (82.4)
IDEC 85.2. . . . . ± 2.0 (87.4. . . . .) 78.6. . . . . ± 4.4 (84.2. . . . .)
DCN 81.8 ± 2.4 (84.8) 73.9 ± 5.0 (81.2)
DipDECK 81.6 ± 2.3 (86.0) 67.8 ± 6.2 (80.7)

if the data sets have not been standardized (zero mean and unit
variance) as a preprocessing step. This concerns, in particular, those
methods that use a constant factor for weighting the reconstruc-
tion loss without considering the scaling of the original space. To
illustrate this, we conduct another experiment where we rerun all
algorithms on a standardized version of MNIST. The experiments
were performed as described above. The results are displayed in
Table 2. We can see that while the results from the DipEncoder
are almost unchanged, DipDECK and, in particular, IDEC perform
significantly better. This shows the benefit of weighting the recon-
struction loss depending on the scaling of the data set to achieve a
value similar to the clustering loss.

An additional experiment is performed to verify that our method
is able to generalize. Therefore, we apply the DipEncoder in a super-
vised manner. For this, we use the provided test-training partitions
of MNIST and use the known training labels to optimize the DipEn-
coder. Here, we can skip the pretraining of the AE and the initial
k-means execution. In this supervised version of the DipEncoder,
the update of the labels is executed only for the test data, after the
optimization of the training data is finished after 100 epochs. We

compare our results with those of a support vector machine (SVM)
[4] in combination with different dimension reduction techniques.
SVM is a machine learning algorithm that tries to place planes in
the feature space to separate the classes as well as possible. This
procedure compares well with our approach as described in Section
3.1. We run SVM in combination with PCA, as the probably most
used dimensionality reduction technique, LDA, as a frequently used
supervised method, and an AE, as it is the basis of our approach. All
methods reduce the number of features to 10 (using the implementa-
tions from scikit-learn3). Furthermore, we also perform SVM in the
embedding created by the DipEncoder. This gives us conclusions
about the quality of our label update method. To evaluate these
supervised experiments, we use the test data not used for the prior
optimization. We use the accuracy (ACC) as a common metric in
supervised learning to quantify the results. It ranges from 0 (poor)
to 1 (perfect). Additionally, the NMI values are given, so we are able
to compare with the previous clustering results. The supervised
results are shown in Table 3.

The analysis indicates that the DipEncoder generalizes very well,
assigning even previously unknown samples into the correct groups
in most cases. Since the supervised DipEncoder also produces bet-
ter results than SVM in combination with the embedding of the
DipEncoder, we can assume that our procedure to update the cluster
labels defines reasonable bounds for the clusters.

5 CONCLUSION
In this paper, we have shown for the first time how to calculate the
gradient of the Dip-value with respect to the data. To demonstrate
how this can practically be used, we developed the DipEncoder. It
is an extension of an autoencoder that uses the Dip-test to separate
samples from different clusters in an embedding. The only condition
is that samples of one cluster show a unimodal structure while the

3https://scikit-learn.org/stable/index.html
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Table 3: Results of a supervised version of the DipEncoder
against SVM in combination with different dimensionality
reduction techniques. Each experiment is again repeated ten
times. Representation corresponds to Table 1.

Method
MNIST (𝑘 = 10)

( 𝑁train = 60000
𝑁test = 10000 , 𝑑 = 784)

ACC NMI
DipEncoder𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 94.2 ± 3.9 (97.2) 90.5 ± 2.3 (92.7)
DipEncoder+SVM 92.9. . . . . ± 4.3 (97.1. . . . .) 88.1. . . . . ± 3.1 (92.5. . . . .)
SVM 86.6 ± 1.1 (87.5) 74.5 ± 1.1 (75.5)
PCA+SVM 58.5 ± 4.9 (67.7) 45.9 ± 3.4 (53.9)
LDA+SVM 87.7 ± 0.0 (87.7) 74.7 ± 0.0 (74.7)
AE+SVM 89.1 ± 1.7 (91.2) 79.4 ± 2.0 (81.8)

combined samples of two clusters show a multimodal structure. A
previously defined distribution or other cluster properties are not
necessary.

Further, we developed a Dip-based method that can update the
labels within each iteration of the DipEncoder. The resulting deep
clustering algorithm shows state-of-the-art results on various real-
world data sets.

We think that the gradient of the Dip-value with respect to the
data allows for a series of new research opportunities. In particular,
we expect further research to integrate established Dip-based clus-
tering methods to determine the number of clusters automatically.
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APPENDIX
In the appendix, we give an overview of the used symbols, add ARI
results for our quantitative experiments, justify our chosen batch
size, and present the derivations of the Dip-value and its gradients.

A SYMBOLS
All symbols used in the paper are explained in Table 4.

Table 4: Overview of the used symbols.

Symbol Description
𝑁 ∈ N Size of the data set
𝑑 ∈ N Dimensionality of the original feature space
𝑚 ∈ N Dimensionality of the embedded space
𝑘 ∈ N Number of clusters
𝑇 ∈ R Threshold of the label update method

𝑋 ⊆ R𝑑 Set of all objects
B ⊆ 𝑋 One batch of data
𝑋𝑎 ⊆ 𝑋 Objects assigned to cluster 𝑎
𝑍 ⊆ R𝑚 Embedded set of all objects

⇒ 𝑍 = enc(𝑋 )
𝑍𝑎,𝑏 ⊆ R𝑚 Embedded objects assigned to cluster 𝑎 or 𝑏

⇒ 𝑍𝑎,𝑏 = enc(𝑋𝑎 ∪ 𝑋𝑏 )
𝑝𝑎,𝑏 ∈ R𝑚 Projection axis of cluster 𝑎 and 𝑏
𝑍𝑎,𝑏 ⊆ R1 Sorted version of 𝑍𝑎,𝑏 projected to 𝑝𝑎,𝑏

⇒ 𝑍𝑎,𝑏 = sort{𝑝𝑇
𝑎,𝑏

· 𝑧 |𝑧 ∈ 𝑍𝑎,𝑏 }
𝑍
𝑎, �𝑏

⊆ 𝑍𝑎,𝑏 Subset of 𝑍𝑎,𝑏 , ignoring samples from cluster 𝑏
𝑑𝑖𝑝 ∈ (0, 0.25] Dip-value (result of the Dip-test)

Δ The modal triangle
𝑧𝑙 , 𝑧𝑢 ∈ 𝑍𝑎,𝑏 Lower and upper bound of the modal interval

𝑧𝑚1 , 𝑧𝑚2 , 𝑧𝑚3 ∈ 𝑍𝑎,𝑏 x-coordinates of the modal triangle in the ECDF
𝑚1,𝑚2,𝑚3 ∈ N Indices of 𝑧𝑚1 , 𝑧𝑚2 , 𝑧𝑚3

𝑧𝑚1 , 𝑧𝑚2 , 𝑧𝑚3 ∈ 𝑍𝑎,𝑏 Non-projected representations of 𝑧𝑚1 , 𝑧𝑚2 , 𝑧𝑚3
⇒ 𝑧𝑚 𝑗

= 𝑝𝑇
𝑎,𝑏

· 𝑧𝑚 𝑗

B INFLUENCE OF THE BATCH SIZE
We would like to demonstrate by an experiment why an increasing
batch size is necessary for the DipEncoder when the number of
clusters increases. For this purpose, we execute the DipEncoder
with batch sizes between 5 · 𝑘 and 50 · 𝑘 on different data sets. One
should keep in mind that the number of clusters in the data sets
ranges from 4 (Reuters10k) to 26 (Letters). The results can be seen
in Figure 7.

Here we can observe that most records reach a plateau at around
15 · 𝑘 . Above 25 · 𝑘 , almost no improvements take place, which is
why we select this factor as the default value.

C ARI RESULTS
In addition to the NMI results as shown in Table 1, we evaluate the
experiments using the adjusted rand index (ARI). Those values are
shown in Table 5.

D DERIVATIONS
To consolidate the understanding of our methods, we would like to
present some derivations. First, we will deal with the calculation
of the Dip-value before we take a closer look at the gradients with

Figure 7: Results of the DipEncoder using different batch
sizes on multiple data sets. Each entry corresponds to the
average of 10 executions. The black vertical line illustrates
the selected default value for the DipEncoder.

respect to the projection axis and the modal triangle. All symbols
are defined as described above.

D.1 Derivation of the Dip-value
It has already been described in Section 3 that the Dip-value is
determined based on the height of the modal triangle Δ on the
ECDF. Following holds:

height(Δ) = 2 · dip(𝑍 )
To solve this equation we determine the intersection between the
vertical line towards (𝑧𝑚2 ,

𝑚2
𝑁 ) and the line between (𝑧𝑚1 ,

𝑚1
𝑁 )

and (𝑧𝑚3 ,
𝑚3
𝑁 ). Note that the intersection can be above or below

(𝑧𝑚2 ,
𝑚2
𝑁 ).

(
𝑧𝑚2
𝑚2
𝑁

)
± 𝛼

(
0
1

)
=

(
𝑧𝑚1
𝑚1
𝑁

)
+ 𝛽

(
𝑧𝑚3 − 𝑧𝑚1
𝑚3−𝑚1

𝑁

)
,

where 𝛼 = height(Δ).

⇒ 𝛽 =
𝑧𝑚2 − 𝑧𝑚1

𝑧𝑚3 − 𝑧𝑚1

⇒ 𝛼 = ± 1
𝑁
(𝑚1 −𝑚2 +

(𝑚3 −𝑚1) (𝑧𝑚2 − 𝑧𝑚1 )
𝑧𝑚3 − 𝑧𝑚1

)

This yields:

dip’(𝑍 ) = 1
2𝑁

���� (𝑚3 −𝑚1) (𝑧𝑚2 − 𝑧𝑚1 )
𝑧𝑚3 − 𝑧𝑚1

+𝑚1 −𝑚2

����
Krause et al. [22] add another 1

2𝑁 to this formula. This value was
also used in the implementation outline from [15]. We assume a
regularization purpose in the case of a degenerate triangle resulting
in a Dip-value of 0, which is out of the bounds for the Dip-value.
Note that this additional value has only a small influence on the
final Dip-value and, as a constant, no impact on the gradients.

dip(𝑍 ) = 1
2𝑁

(����
C𝐴︷                                        ︸︸                                        ︷

(𝑚3 −𝑚1) (𝑧𝑚2 − 𝑧𝑚1 )
𝑧𝑚3 − 𝑧𝑚1

+𝑚1 −𝑚2

���� + 1
)
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Table 5: ARI results of the DipEncoder against the comparison algorithms on various data sets. Each experiment is repeated ten
times. Representation corresponds to Table 1 (showing the NMI results).

Method Optdigits (𝑘 = 10) USPS (𝑘 = 10) HAR (𝑘 = 6) Pendigits (𝑘 = 10) Reuters10k (𝑘 = 4)
(𝑁 = 5620, 𝑑 = 64) (𝑁 = 9298, 𝑑 = 256) (𝑁 = 10299, 𝑑 = 561) (𝑁 = 10992, 𝑑 = 16) (𝑁 = 10000, 𝑑 = 2000)

DipEncoder 85.6 ± 5.8 (91.4) 74.2 ± 1.1 (76.2) 63.4 ± 7.4 (73.5) 64.7. . . . . ± 4.2 (70.2) 35.4 ± 4.5 (43.4)
AE+k-means 76.7 ± 4.5 (83.0) 59.7 ± 1.4 (61.6) 58.7 ± 5.4 (65.1) 60.5 ± 1.9 (63.9) 39.9 ± 10.7 (56.7. . . . .)
DEC 84.9. . . . . ± 5.2 (91.1. . . . .) 72.7. . . . . ± 0.9 (74.1. . . . .) 53.4 ± 7.7 (71.8) 66.7 ± 2.6 (68.6. . . . .) 35.3 ± 10.6 (57.6)
IDEC 77.1 ± 4.6 (83.1) 59.3 ± 1.3 (60.9) 58.1 ± 2.8 (62.5) 60.2 ± 2.9 (63.9) 36.4. . . . . ± 10.1 (56.4)
DCN 81.1 ± 5.0 (86.2) 64.4 ± 2.3 (67.0) 62.7. . . . . ± 5.8 (71.9. . . . .) 62.6 ± 2.0 (64.7) 29.6 ± 10.1 (49.8)
DipDECK 79.6 ± 5.5 (85.7) 58.7 ± 2.8 (63.1) 49.9 ± 1.1 (50.9) 61.7 ± 2.6 (65.4) 12.1 ± 14.3 (36.9)

Method 20Newsgroups (𝑘 = 20) Letters (𝑘 = 26) MNIST (𝑘 = 10) F-MNIST (𝑘 = 10) K-MNIST (𝑘 = 10)
(𝑁 = 18846, 𝑑 = 2000) (𝑁 = 20000, 𝑑 = 16) (𝑁 = 70000, 𝑑 = 784) (𝑁 = 70000, 𝑑 = 784) (𝑁 = 70000, 𝑑 = 784)

DipEncoder 18.0 ± 0.9 (19.2) 22.8 ± 0.9 (24.0) 81.0. . . . . ± 3.0 (84.5) 44.8 ± 2.8 (47.4. . . . .) 37.7. . . . . ± 3.7 (43.9)
AE+k-means 16.9. . . . . ± 0.7 (17.9. . . . .) 18.8 ± 0.6 (19.9) 69.1 ± 2.3 (73.2) 38.3 ± 1.1 (39.9) 32.4 ± 3.1 (37.9)
DEC 5.4 ± 0.6 (6.1) 20.5 ± 2.3 (23.4) 81.6 ± 2.1 (83.5. . . . .) 44.0. . . . . ± 2.8 (48.9) 39.0 ± 2.3 (42.3. . . . .)
IDEC 12.8 ± 1.1 (14.8) 21.3. . . . . ± 1.5 (23.6) 70.3 ± 2.0 (74.2) 38.1 ± 1.1 (39.9) 32.5 ± 2.2 (36.5)
DCN 15.1 ± 1.1 (17.4) 18.9 ± 2.5 (23.9. . . . .) 77.1 ± 3.5 (80.8) 38.5 ± 1.2 (41.3) 31.5 ± 2.9 (37.5)
DipDECK 00.0 ± 0.0 (00.0) 7.2 ± 1.8 (9.1) 70.7 ± 2.5 (74.4) 32.8 ± 3.3 (37.6) 22.1 ± 4.0 (29.0)

D.2 Derivation of the gradients
Let us assume that𝐴 > 0 and consolidate factors that are irrelevant
for the calculation of the gradients (if 𝐴 < 0, all gradients must be
multiplied by −1.). Following holds:

dip(𝑍 ) = (𝑚3 −𝑚1)
2𝑁

(
𝑧𝑚2

𝑧𝑚3 − 𝑧𝑚1
− 𝑧𝑚1

𝑧𝑚3 − 𝑧𝑚1

)
+ const

=
(𝑚3 −𝑚1)

2𝑁

(
𝑝𝑇 𝑧𝑚2

𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1
− 𝑝𝑇 𝑧𝑚1

𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

)
+ const

D.2.1 Gradient regarding the projection axis.

𝜕

𝜕𝑝 [𝑖] dip(𝑍 ) =
(𝑚3 −𝑚1)

2𝑁(( 𝑧𝑚2 [𝑖]
𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

− 𝑝𝑇 𝑧𝑚2 (𝑧𝑚3 [𝑖] − 𝑧𝑚1 [𝑖])
(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1 )2

)
−

( 𝑧𝑚1 [𝑖]
𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

− 𝑝𝑇 𝑧𝑚1 (𝑧𝑚3 [𝑖] − 𝑧𝑚1 [𝑖])
(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1 )2

))

=
(𝑚3 −𝑚1)

2𝑁

(
𝑧𝑚2 [𝑖] − 𝑧𝑚1 [𝑖]
𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

+

(𝑝𝑇 𝑧𝑚1 − 𝑝𝑇 𝑧𝑚2 ) (𝑧𝑚3 [𝑖] − 𝑧𝑚1 [𝑖])
(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1 )2

)

=
(𝑚3 −𝑚1)

2𝑁

(
𝑧𝑚2 [𝑖] − 𝑧𝑚1 [𝑖]

𝑧𝑚3 − 𝑧𝑚1
+ (𝑧𝑚1 − 𝑧𝑚2 ) (𝑧𝑚3 [𝑖] − 𝑧𝑚1 [𝑖])

(𝑧𝑚3 − 𝑧𝑚1 )2
)

D.2.2 Gradient regarding the modal triangle.
Considering 𝑧𝑚1 :

𝜕

𝜕𝑧𝑚1 [𝑖]
dip(𝑍 ) = (𝑚3 −𝑚1)

2𝑁

( (−𝑝𝑇 𝑧𝑚2 ) (−𝑝 [𝑖])
(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1 )2

−
( 𝑝 [𝑖]
𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

+ (−𝑝𝑇 𝑧𝑚1 ) (−𝑝 [𝑖])
(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1 )2

))

=𝑝 [𝑖] (𝑚3 −𝑚1)
2𝑁

(
𝑝𝑇 𝑧𝑚2 − 𝑝𝑇 𝑧𝑚1

(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1 )2
− 1
𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

)

=𝑝 [𝑖] (𝑚3 −𝑚1)
2𝑁

(
𝑝𝑇 𝑧𝑚2 − 𝑝𝑇 𝑧𝑚1 − 𝑝𝑇 𝑧𝑚3 + 𝑝𝑇 𝑧𝑚1

(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1 )2
)

=𝑝 [𝑖] (𝑚3 −𝑚1)
2𝑁

(
𝑧𝑚2 − 𝑧𝑚3

(𝑧𝑚3 − 𝑧𝑚1 )2
)

Considering 𝑧𝑚2 :

𝜕

𝜕𝑧𝑚2 [𝑖]
dip(𝑍 ) = (𝑚3 −𝑚1)

2𝑁

(
𝑝 [𝑖]

𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

)

=𝑝 [𝑖] (𝑚3 −𝑚1)
2𝑁

(
1

𝑧𝑚3 − 𝑧𝑚1

)

Considering 𝑧𝑚3 :

𝜕

𝜕𝑧𝑚3 [𝑖]
dip(𝑍 ) = (𝑚3 −𝑚1)

2𝑁

( (−𝑝𝑇 𝑧𝑚2 )𝑝 [𝑖]
(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1 )2

− (−𝑝𝑇 𝑧𝑚1 )𝑝 [𝑖]
(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1 )2

)

=𝑝 [𝑖] (𝑚3 −𝑚1)
2𝑁

(
𝑝𝑇 𝑧𝑚1 − 𝑝𝑇 𝑧𝑚2

(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1 )2
)

=𝑝 [𝑖] (𝑚3 −𝑚1)
2𝑁

(
𝑧𝑚1 − 𝑧𝑚2

(𝑧𝑚3 − 𝑧𝑚1 )2
)

In summary:

𝜕

𝜕𝑧 [𝑖] dip(𝑍 ) =




𝑝 [𝑖] (𝑚3−𝑚1)
2𝑁

𝑧𝑚2−𝑧𝑚3
(𝑧𝑚3−𝑧𝑚1 )2

if 𝑧 = 𝑧𝑚1 ,

𝑝 [𝑖] (𝑚3−𝑚1)
2𝑁

1
𝑧𝑚3−𝑧𝑚1

if 𝑧 = 𝑧𝑚2 ,

𝑝 [𝑖] (𝑚3−𝑚1)
2𝑁

𝑧𝑚1−𝑧𝑚2
(𝑧𝑚3−𝑧𝑚1 )2

if 𝑧 = 𝑧𝑚3 ,

0 else
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