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Summary

The cumulative dissertation is based on two original papers published in 2022 in the scientific journals
Journal of Neurotrauma (first authorship) and JAMA Network Open (co-authorship). The overall re-
search goal of the two studies is to assess microstructural brain alterations in veterans. The assessment
and visualization are performed using a particularly sensitive technique based on magnetic resonance
imaging (MRI), known as diffusion tensor imaging (DTT). Both studies use a specific advancement of
DTI, free-water diffusion tensor imaging, which corrects the DTI metrics for the effects of extracellular
free water and thus provides additional information compared to conventional diffusion measurements.
The studies both address the question, whether microstructural brain alterations in veterans are related
to neuropsychological function. In both studies, the influence of a common diagnosis in veterans, mild
traumatic brain injury (mTBI), is also considered. In addition, the two studies each address specific

aspects, that have not been adequately addressed in previous studies.

Original article 1 (First authorship)

This first project aims to address the question, whether neuroprotective and centrally acting hormones,
so-called neuroactive steroids, play a role in the pathophysiology of a variety of neuropsychiatric
symptoms in veterans. The research question is based on studies on the genesis of neuropsychiatric
diseases, which discuss not only the influence of microstructural brain alterations, but also the signif-
icance of neuroendocrine dysregulations in stress-associated diseases. Previous research on health out-
comes in veterans has focused primarily on the most common neuropsychiatric diagnoses, including
mTBI and post-traumatic stress disorder (PTDS). However, given the large overlap of multiple neuro-
psychiatric symptoms in veterans, our study pursues a novel approach by examining the overall psy-
chological functioning across veterans. Specifically, this study aims to determine whether associations
between serum levels of neuroactive steroids, whole brain white matter microstructure, and psycho-
logical functioning can be established. In addition, we determine whether these associations are influ-
enced by common and often comorbid diagnoses, mTBI and/or PTSD. 163 subjects from the INTRuST
consortium project were included in the study. Subjects underwent neuropsychological assessment
using clinical questionnaires, as well as MRI imaging and blood sampling to determine levels of the
neuroactive steroids allopregnanolone (ALLO) and pregnenolone (PREGNE). Based on selected psy-
chological questionnaires, factor analysis was performed. The analysis confirmed that the neuropsy-
chological symptoms measured by the questionnaires can be attributed to a common factor that cap-

tures psychological functioning. Regression analysis demonstrated that serum levels of ALLO are
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positively associated with whole brain white matter microstructure. A moderation analysis revealed
that this association was more pronounced in individuals with a comorbid mTBI and PTSD diagnosis.
In addition, a positive association was established between white matter microstructure and psycho-
logical functioning. Thus, this study shows that neuroactive steroids have a protective effect on white
matter microstructure. Moreover, the results suggest that a dysregulation of the endocrine stress re-

sponse plays a crucial role in the progression of widespread neuropsychiatric impairments in veterans.

Original article 2 (Co-authorship)

To date, research investigating brain function and structure in veterans has been conducted almost
exclusively in the context of war zone-related neuropsychiatric diagnoses such as PTSD and/or
mTBI. Considerably fewer studies have examined what likely constitutes a common, underlying con-
tributor to neuropsychiatric impairment in veterans: war zone-related traumatizing experiences. In
light of this research gap, this project addresses the question whether war zone-related stress is asso-
ciated with brain structural alterations and to what extent this association is influenced by a diagnosis
of mTBI. Since studies on macrostructural gray matter alterations after combat exposure have shown
a decrease in limbic and paralimbic volumes, this study focuses on 8 limbic and paralimbic regions
of the gray matter in each brain hemisphere. Expanding on previous studies, gray matter was ana-
lyzed using DTI, which enables the analysis of gray matter at a microstructural level. In addition, we
examined whether a link can be established between microstructural gray matter alterations and neu-
ropsychological function. Our sample consists of 168 male veterans from the INTRuST study. The
veterans underwent a neuropsychological examination based on clinical questionnaires as well as
MRI imaging. The findings indicated on the one hand, that greater war zone-related stress is associ-
ated with gray matter microstructural abnormalities in the bilateral cingulate, bilateral orbitofrontal,
and right parahippocampal gyrus. Altered gray matter microstructure in the cingulate/orbitofrontal
gyri was in turn associated with poorer response inhibition. On the other hand, greater war zone-re-
lated stress was related to altered gray matter microstructure in the amygdala-hippocampal complex.
The altered microstructure in the amygdala-hippocampal complex was linked to better short-term
memory and higher processing speed. In addition, a history of mTBI did not affect the relationship
between war zone-related stress and gray matter microstructure. The study is highly relevant because
it reveals pathophysiological mechanisms behind the adverse health effects of war zone-related
stress. Thus, microstructural alterations of the limbic gray matter microstructure were identified as a
major factor mediating the relationship between war zone-related stress and neuropsychological con-

sequences.
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Zusammenfassung

Die kumulative Dissertation basiert auf zwei Originalarbeiten, welche 2022 in den wissenschaftlichen
Fachzeitschriften Journal of Neurotrauma (Erstautorenschaft) und JAMA Network Open (Mitautoren-
schaft) veroffentlicht wurden. Das gemeinsame Forschungsziel der beiden Studien besteht darin, mik-
rostrukturelle Gehirnverdnderungen bei Kriegsveteranen darzustellen. Die Quantifizierung und Dar-
stellung erfolgt mittels einer besonders sensitiven, auf der Magnetresonanztomographie (engl. Magnet
resonance imaging, MRI) basierenden Technik, der sog. Diffusions-Tensor-Magnetresonanztomogra-
phie (engl. Diffusion tensor imaging, DTI). Beide Studien verwenden dabei eine spezielle Weiterent-
wicklung der DTI, die free-water Bildgebung, welche die DTI-Messwerte um die Effekte des extra-
zelluldren freien Wassers korrigiert und somit zusétzliche Informationen im Vergleich zu konventio-
nellen Diffusionsmessungen liefert. Die Studien gehen zudem beide der Fragestellung nach, inwieweit
die mikrostrukturellen Gehirnverdnderungen bei Kriegsveteranen mit neuropsychologischen Funktio-
nen zusammenhéngen. In beiden Studien wird auBerdem der Einfluss einer hdufigen kriegsassoziierten
Diagnose, das leichte Schéadel-Hirn-Trauma (engl. Mild traumatic brain injury, mTBI), beriicksichtigt.
Zusitzlich behandeln die beiden Arbeiten jeweils spezielle Teilaspekte, welche in bisherigen Studien

nicht hinreichend adressiert wurden.

1. Arbeit

Das erste Projekt mochte insbesondere die Fragestellung testen, inwieweit neuroprotektive und zentral
wirksame Hormone, sogenannte Neurosteroide, bei der Pathophysiologie vielféltiger neuropsychiatri-
scher Symptome bei Veteranen eine Rolle spielen. Die Fragestellung kniipft an Studien zur Genese
neuropsychiatrischer Erkrankungen an, welche neben dem Einfluss mikrostruktureller Gehirnverén-
derungen auch die Bedeutsamkeit neuroendokriner Dysregulationen bei stressassoziierten Erkrankun-
gen diskutieren. Bisherige Forschung zu den Gesundheitsfolgen bei Veteranen fokussierte sich haupt-
sdchlich auf die hiufigsten neuropsychiatrischen Diagnosen, wozu insbesondere das mTBI und die
Posttraumatische Belastungsstorung (engl. Posttraumatic stress disorder, PTSD) zdhlen. Da die viel-
faltigen neuropsychiatrischen Symptome bei Kriegsveteranen jedoch eine gro3e Schnittmenge aufwei-
sen, verfolgt unsere Studie den neuen Ansatz, die gesamte psychologische Funktionsfiahigkeit der Ve-
teranen zu untersuchen. Speziell soll untersucht werden, ob Zusammenhénge zwischen Serumspiegel
von Neurosteroiden, der Mikrostruktur der gesamten weillen Substanz (engl. White matter) und der

psychologischen Funktionsfihigkeit nachgewiesen werden konnen. Zudem soll beantwortet werden,
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ob diese Zusammenhinge durch die zentralen kriegsassoziierten Diagnosen, mTBI und/oder PTSD,
beeinflusst werden. 163 Probanden wurden in die Studie eingeschlossen. Bei den Probanden erfolgte
eine neuropsychologische Untersuchung mittels klinischer Fragebdgen, eine MRT-Bildgebung sowie
eine Blutabnahme zur Bestimmung der Neurosteroide Allopregnanolon (engl. Allopregnanolone,
ALLO) und Pregnenolon (engl. Pregnenolone, PREGNE). Basierend auf ausgewihlten psychologi-
schen Fragebogen fiihrten wir eine Faktorenanalyse durch. Diese bestitigte, dass die mithilfe der Fra-
gebogen gemessenen neuropsychologischen Symptome auf einen gemeinsamen Faktor zurlickgefiihrt
werden konnen, welcher die psychologische Funktionsfahigkeit erfasst. Mithilfe von Regressionsana-
lysen konnte nachgewiesen werden, dass die Serumspiegel von ALLO mit der Mikrostruktur der ge-
samten weiflen Substanz assoziiert sind. Eine Moderationsanalyse konnte zeigen, dass dieser Zusam-
menhang bei Personen mit einer komorbiden mTBI und PTSD Diagnose verstérkt ist. Zudem konnte
eine positive Assoziation zwischen der Mikrostruktur der weiflen Substanz und der psychologischen
Funktionsfdhigkeit hergestellt werden.

Diese Studie zeigt, dass Neurosteroide einen protektiven Effekt auf die Mikrostruktur der weiflen Sub-
stanz haben. Zudem deuten die Ergebnisse darauf hin, dass die Dysregulation der endokrinen Stress-
Antwort eine entscheidende Rolle bei der Entwicklung weitreichender neuropsychiatrischer Beein-

trachtigungen bei Kriegsveteranen spielt.

2. Arbeit

Die Erforschung verdnderter Gehirnfunktionen und Strukturen bei Kriegsveteranen erfolgte bisher fast
ausschlieBlich im Zusammenhang mit kriegsassoziierten neuropsychiatrischen Diagnosen wie PTSD
und/oder mTBI. Weitaus weniger Studien untersuchten dabei die gemeinsame, zugrundeliegende Ur-
sache der neuropsychiatrischen Beeintrachtigung bei Veteranen: den erlebten, kriegsbedingten Stress.
Vor dem Hintergrund dieser Forschungsliicke behandelt dieses Projekt die Teilfrage, inwieweit kriegs-
bedingter Stress mit verdnderten Gehirnstrukturen einhergeht und inwieweit diese Assoziation durch
die Diagnose eines mTBI beeinflusst wird. Da Studien zu makrostrukturellen Verdnderungen der
grauen Substanz nach Kriegsexposition eine Reduktion der Volumina limbischer und paralimbischer
Strukturen nachweisen konnten, konzentriert sich diese Studie auf 8 limbische und paralimbische Re-
gionen der grauen Substanz in jeder Gehirnhélfte. Als Erweiterung zu bisherigen Studien soll die graue
Substanz mithilfe der DTI untersucht werden, wodurch die Analyse der grauen Substanz auf mikro-

struktureller Ebene ermdglicht wird.
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Dartiber hinaus soll gepriift werden, ob eine Verbindung zwischen mikrostrukturellen Verdnderungen
der grauen Substanz und neuropsychologischen Funktionen hergestellt werden kann.

Unsere Stichprobe besteht aus 168 minnlichen Kriegsveteranen. Bei den Probanden wurde sowohl
eine neuropsychologische Untersuchung mittels klinischer Fragebogen als auch eine MRT-Bildge-
bung durchgefiihrt. Die Ergebnisse zeigen zum einen, dass groBerer kriegsbedingter Stress mit Ano-
malien der Mikrostruktur der grauen Substanz im bilateralen cinguldren, bilateralen orbitofrontalen
und rechten parahippocampalen Gyrus verbunden ist. Die verdnderte Mikrostruktur der grauen Sub-
stanz im cinguldren/orbitofrontalen Gyrus war wiederum mit einer schlechteren Reaktionshemmung
verbunden. Zum anderen konnte gezeigt werden, dass stirkerer kriegsbedingter Stress mit einer ver-
dnderten Mikrostruktur der grauen Substanz im Amygdala-Hippocampus-Komplex zusammenhéngt.
Die verdanderte Mikrostruktur im Amygdala-Hippocampus-Komplex war mit einem besseren Kurz-
zeitgedéchtnis und einer hoheren Verarbeitungsgeschwindigkeit verkniipft.

Zudem stellte sich heraus, dass ein mTBI in der Vorgeschichte keinen Einfluss auf den Zusammenhang
zwischen kriegsbedingtem Stress und der Mikrostruktur der grauen Substanz hatte.

Die Studie hat insofern eine grofle Relevanz, als sie pathophysiologische Mechanismen hinter den
gesundheitsschadlichen Auswirkungen von kriegsbedingtem Stress entschliisselt. So konnten mikro-
strukturelle Verdnderungen der grauen Substanz des limbischen Systems als ein wesentlicher Faktor
ausgemacht werden, welche den Zusammenhang zwischen kriegsbedingtem Stress und neuropsycho-

logischen Folgen vermitteln.
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I. Introduction
I.1. Background on the veteran population and military-related health outcomes

Mental health in the veteran population has been a neglected area of interest for a long time '
However, after the Vietnam War and with the inclusion of post-traumatic stress disorder (PTSD) in
the Diagnostic and Statistical Manual of Diseases (DSM) in 1980, the mental health of the veteran
population has received increasing attention in research 2. The subsequent wars in Afghanistan and
Iraq led to a further variety of studies examining the mental and behavioral health problems of veterans
and their contributing factors 2.

The wars in Afghanistan and Iraq differ from previous wars in many ways. They represent one of the
longest enduring U.S. military operations ever, and the United States has deployed more than 2.7 mil-
lion men and women in support of combat operations in Iraq and Afghanistan 2. Combat operations
included “Operation Enduring Freedom” (OEF), which is the official name for the war in Afghanistan
from October 2001 to December 2014 3. Subsequently, troops continued to be deployed in Afghanistan
until 2021, mainly helping to train and support Afghan security forces *. The war in Iraq is called
"Operation Iraqi Freedom" (OIF) and began in March 2003. Since September 2010, ongoing opera-
tions in Iraq have been given the new name "Operation New Dawn" (OND) due to reductions in U.S.
forces. OND ended with the termination of the war in Iraq in December 2011 3. In contrast to previous
wars, more women, parents of young children, and Reserve and National Guard soldiers have been
deployed. In some cases, deployed personnel were exposed to longer deployments and shorter periods
at home between deployments than in previous wars °.

By now, increasing evidence on OEF/OIF/OND veterans points to the long-term effects of deployment
to combat on psychological health, interpersonal and economic functioning ®®. The consequences for
society are devastating, as veterans are often unable to integrate into social and working life after
deployment ¥, Of note, veterans represent a clinically complex group with multiple comorbidities °.
Among the most prevalent and serious health sequelae affecting OEF/OIF/OND veterans are mTBI
and PTSD '®!!. The high incidence of these two diseases can be attributed to the use of improvised
explosive devices and the constant threat during these operations 2. Apart from mTBI and PTSD, a
variety of other health conditions have also been associated with combat exposure '"'*!*. These include
various psychiatric conditions such as depressive disorders, substance use disorders, suicidal attempts,
and anxiety disorders '*. Additionally, veterans are at increased risk for behavioral disorders such as

chronic pain '° and sleep disorders °.
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Symptoms of these above mentioned psychiatric and behavioral conditions often overlap, making it
difficult to diagnose and treat diseases in veterans !!. Given the far-reaching consequences and the
associated challenges of the veteran population, consortia have been established, particularly in the
United States, to develop new treatments or preventive measures that reduce the impact of military-

related psychological health problems.

1.2 Signature injuries of war: mTBI and PTSD
1.2.1 Prevalence and Diagnosis

Mild traumatic brain injury

Mild TBI is considered to be one of the leading causes of disability in veterans, with rates of around
15% among American service members 7,

Although there is a wide range of definitions regarding mTBI, consensus has been reached on the
diagnostic criteria as proposed by the Mild Traumatic Brain Injury Committee of the American Con-
gress of Rehabilitation Medicine '® (see table). There are three criteria that are consistently used to
diagnose mTBI, including the Glasgow Coma Scale (GCS) score, duration of loss of consciousness
and post-traumatic amnesia '®. Usually, symptoms that occur in the context of mTBI dissolve within
days to weeks '°. However, about one third of the affected individuals experience persistent post-con-
cussive symptoms (PPCS) that last beyond 5 months 2°. PPCS include somatic symptoms (e.g. nausea,
dizziness, headache, and light or sound sensitivity), cognitive impairment (e.g. concentration, attention
and memory deficits), and emotional alterations (e.g. irritability, frustration and depression) 2! (see

Table 1).

Mild traumatic brain injury (American Congress of Rehabilitation Medicine)

traumatically induced physiological disruption of brain function
(one of the following)
1. period of loss of consciousness
loss of memory for events immediately before or after the accident
3. alteration in mental state at the time of the accident (e.g. feeling dazed,
disoriented, or confused)
4. focal neurological deficit(s) that may or may not be transient

Mild severity - loss of consciousness < 30 minutes
- after 30 minutes, initial GCS: 13-15
- posttraumatic amnesia (PTA) < 24 hours
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Inclusion Criteria 1. the head being struck
2. the head striking an object
3. brain undergoing an acceleration/deceleration movement (i.e. whip-
lash) without direct external trauma to the head
Exclusion Criteria - stroke anoxia, tumor, encephalitis
Post-concussive 1. physical symptoms of brain injury
symptoms - nausea, vomiting, dizziness, headache, blurred vision,

sleep disturbance, quickness to fatigue, lethargy,
or other sensory loss
2. cognitive deficits
- e.g. involving attention, concentration, perception, memory,
speech/ language, or executive functions
3. behavioral changes /alterations in emotional responsivity
- e.g. irritability, quickness to anger, disinhibition, or emotional
lability

Table 1: Diagnostic criteria of mTBI according to the American Congress of Rehabilitation Medicine

Posttraumatic Stress Disorder

PTSD is defined by the development of characteristic symptoms following exposure to one or more
traumatic events 2. The current PTSD prevalence averages 1.1% 2*. However, the lifetime prevalence
is substantially higher and varies between 13.0-20.4% for women and 6.2-8.2% for men **.

In the population of OIF and OEF veterans, every 11-20 out of 100 veterans receives a diagnosis of
PTSD in a given year 2>,

Particularly characteristic of PTSD is the recurrent, involuntary, intrusive and distressing re-experi-
encing of aspects of the traumatic event, including flashbacks and nightmares ?>?’. A further core
symptom is the avoidance of situations, people or circumstances associated with the trauma (C-Crite-
rion).

Indicative for PTSD is also persistent hyperarousal, which manifests itself in irritable behavior, hyper-
vigilance, concentration problems, and sleep disorders. The 5™ edition of the DSM also includes a
symptom cluster of negative cognition (e.g. amnesia regarding important parts of the event, exagger-

ated negative beliefs) and emotional disruptions (e.g. negative emotions, loss of interest, sense of de-

tachment from others) (see Table 2).
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DSM-V ICD-10 research diagnostic criteria

Duration Symptoms present for at least 1 month Symptoms should usually arise within 6
months of the traumatic event

Stressor Criterion A. Exposure to actual or threatened A. Event or situation of exceptionally
death, serious injury, or sexual vio- threatening or catastrophic nature
lence likely to cause pervasive distress

in almost anyone

Symptoms B. Intrusion symptoms B. Persistent re-experiencing of the
- One of five stressor
C. Avoidance C. Avoidance
- One of two
D. Negative alterations in cognitions and D. Either
mood 1.) Inability to recall important
- Two of seven aspects of the stressor
2.) Persistent hyperarousal
- Two of five
E. Persistent hyperarousal E. Clinically significant functional
- Two of six impairment
Further criteria - Distress/ functional impairment (e.g. - Clinically significant functional
social, occupational) impairment
- No substance abuse/ general medical
condition

Table 2 : Diagnostic criteria of PTSD according to ICD-10 and DSM-5

Mild traumatic brain injury and Posttraumatic Stress Disorder

A large proportion of OEF/OIF/OND veterans with positive mTBI diagnosis also suffer from PTSD,
with prevalence rates between 26 and 44 % '”-*8, Further, the high comorbidity of mTBI and PTSD is
plausible given the bilateral risk of the two diseases. On the one hand, TBI is often associated with
potentially traumatic conditions ?° and may increase the risk of developing PTSD by causing neural
disruption **. On the other hand, PTSD is a predictive factor for the development of persistent symp-
toms following TBI, especially when the TBI is mild ''**!. In addition to the high comorbidity, PTSD
and mTBI also manifest in similar symptoms, making clinical distinctions and effective interventions
difficult '>'2. Whereas the somatic symptoms of brain injury are relatively distinctive of persistent
post-concussive symptoms 2, the non-specific symptoms associated with milder TBI show a large

overlap with the PTSD symptomatology '*!!-3? (Figure 1).
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Depression/
anxiety
PTSD Insomnia PPCS
Reexperiencing Irritability/anger Heac.la.cl_]e ‘
symptoms Trouble Sensitivity to light
Shame concentrating (and sound) .
Guilt Fatigue Memory deficit

Dizziness

* Hyperarousal
* Avoidance

Figure 1: Symptoms of PTSD and PPCS and their overlap '

Reprinted with permission from the American Journal of Psychiatry, Exploring the Convergence of Posttrau-
matic Stress Disorder and Mild Traumatic Brain Injury, Murray B Stein and Thomas W McAllister, Volume
166:7 (Copyright © 2009). American Psychiatric Association. All Rights Reserved.

1.2.2 Pathogenesis

Due to the development of in vivo functional neuroimaging and endocrinological studies, the under-
standing of the common diagnoses in veterans has evolved considerably in recent years. In the follow-
ing section, I will review the pathogenesis of the two most prevalent disorders in veterans: mTBI and
PTSD. The neuroendocrine and brain structural pathologies of military-related neuropsychiatric dis-

orders will be addressed in the following sections 1.3 and L.5.

Mild traumatic brain injury
Mild TBI is caused by shearing forces due to sudden acceleration-deceleration effects on the brain 3.

These shearing forces lead to diffuse injuries of axons within the white matter tracts of the brain 3*.

Axonal injury causes localized transport failure and might have the effect of local swelling 33,

In addition, the release of glutamate and other excitatory neurotransmitters from the synapse of dam-

aged axons causes a rapid ion shift across the cell membrane 3*%.
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Alterations in metabolic reactions affect glucose metabolism and oxygen levels and lead to increased
energy demands and a period of metabolic crisis. Furthermore, mTBI is associated with an initial de-
crease in cerebral blood flow followed by vasodilatation, which further exacerbates the mismatch be-
tween energy supply and demand **33-7,

This energy deficit may, in turn, result in structural and functional alterations in mTBI.

In addition to the acute pathomechanisms following mTBI, there are also chronic consequences that
emerge over the course of weeks and months. Inflammatory processes are viewed as important sec-
ondary mechanisms after mTBI *. The initial mechanical damage caused by the neurotrauma initiates
an immune response. Immune cells release pro-inflammatory cytokines and chemokines, leading to
cerebral edema and elevated intracranial pressure. As a result of mTBI, the blood-brain barrier may
also be damaged, facilitating the invasion of circulating immune regulators that further amplify the
inflammatory response ***°. Such a prolonged immune response may also favor neurodegenerative
processes *°. Neurodegenerative effects after brain trauma include the accumulation of beta-amyloid
precursors and tau proteins *'*2. The pathophysiological alterations also have clinical implications, as
mTBI is associated with neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease *.
The more progressive consequences of brain injury also include axonal demyelination and white mat-

ter atrophy as a result of primary axonal damage or the death of myelinating cells °.

Posttraumatic Stress Disorder
The pathogenesis of PTSD is a complex process that has been increasingly unraveled, primarily

through the findings of genetics, neuroendocrinology (section 1.3) and neuroimaging (section L.5). Ge-
netics research has shown that both environmental influences and hereditary factors play a role in the
development of PTSD #+4°,

As far as environmental influences are concerned, numerous studies have shown that the type, timing,
intensity and duration of the trauma are crucial factors in predicting the proneness to the disease *’.
Regarding genetic influences, twin and family studies revealed that the overall heritability of PTSD is
around 30% “®. The genetic vulnerability remains even after accounting for genetic factors (e.g., per-

sonality traits) that influence exposure to potentially traumatic events such as combat *°,
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I.3 Military associated neuropsychiatric disorders: Neuroendocrinological
processes

The vulnerability of veterans to multiple neuropsychiatric conditions can be attributed to the extreme
stress of the war experience and the corresponding dysregulations of various neuroendocrine processes

59 It is known that stress-related conditions lead to neuroendocrinological dysregulations, which in-

46,51,52

clude upregulations of the hypothalamic-pituitary-adrenal (HPA) axis and associated glucocor-

ticoid elevations **. In addition, alterations in neuroactive steroid levels in response to stress have also

been demonstrated **.

E 55-57

Neuroactive steroids, in particular ALLO and its precursor PREGN , are positive Gamma-ami-

56,58

nobutyric acid (GABA) receptor modulators and reveal many neuroprotective effects such as anti-

59-61 58,66-69

inflammatory , anti-apoptotic %2, anti-depressant %% anxiolytic and positive cognitive ef-

fects *77. In addition, the neuroactive steroid ALLO yields pronounced neuroprotective actions in

TBI. Animal models have shown that ALLO increases in several brain regions in response to a brain

59,61

injury 7%, leading to enhanced neurogenesis ’°, reduced neuroinflammation and ischemic infarct

volume *°. Importantly, both ALLO and PREGNE play a significant role in neuroendocrine stress
regulation by normalizing the hyper-activated HPA axis (Figure 2) 8. Thus, the neuroactive steroids

constitute an endogenous autoregulatory mechanism to restore homeostasis and produce neuroprotec-

66,81-86

tion in response to acute stress . However, in contrast to acute stress, it is proven that chronic

stress reduces neuroactive steroid levels %3793

the HPA axis °1:9%%4,

and leads to impaired negative feedback regulation of

Indeed, decreased levels of ALLO have been found in service members with a chronic stress-related
disorder such as PTSD, which were inversely correlated with re-experiencing and depressive symp-
toms of PTSD >, Correspondingly, reduced levels of neuroactive steroids such as pregnanolone
(PREGNA) and androsterone (ANDRO) have been documented in veterans with a history of blast-
related TBI compared to veterans without TBI *7.

However, the association between neuroactive steroids and structural brain alterations has been poorly
investigated so far. To date, only one recent study has shown the neuroprotective effect of neuroactive
steroids on gray matter in comorbid mTBI and PTSD *%. Additionally, there is evidence from one
research group presented as an abstract demonstrating that neuroactive steroids may also unfold neu-

roprotective effects on white matter .
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Figure 2: Summarized illustration of central neuroendocrinological processes in response to traumatizing stress
or brain trauma and the role of neuroactive steroids (ALLO and PREGNE)

1.4 Treatment needs of veterans

Regarding the treatment of the most common neuropsychiatric diseases in veterans, remarkable effi-
cacy has been demonstrated for psychotherapeutic interventions in combination with psychotropic
medication **71%2, Regarding the treatment of PTSD, there is particularly strong evidence for behavioral
therapies that involve cognitive restructuring and exposure to the trauma memory '!. On the pharma-
cological side, selective serotonin reuptake inhibitors (SSRIs), a class of antidepressants, are the only
drugs approved by the Food and Drug Administration (FDA) for the treatment of PTSD. However,

complete remission rates in patients only range between 20% and 30% '*

, and particularly low re-
sponse rates to SSRIs are reported in veterans %19, Furthermore, it must be taken into account that
PTSD is often comorbid and occurs especially with mTBI, depression, and substance abuse *°. Alt-
hough the psychological treatments were not initially directed at patients with an additional mTBI
diagnosis !, similarly high response rates to cognitive behavioral therapies are shown for patients with
PTSD and comorbid mTBI, compared to those with PTSD only '%¢197_ According to the Veterans Ad-
ministration/Department of Defense (VA/DoD) Clinical Practice Guidelines, comorbid conditions

should be treated simultaneously *°. The VA/DoD Clinical Practice Guidelines for Major Depressive



23

Disorder recommend cognitive behavioral therapy (CBT), interpersonal psychotherapy, problem-solv-
ing therapy, and client-centered counseling as psychotherapeutic interventions for moderate and major
depression '°°. Electroconvulsive shock therapy can be used for very severe, psychotic, and treatment-
resistant major depression. Moreover, the use of psychotropic medication (antidepressants) is recom-

mended for moderate and severe major depression %

1.5 Neuroimaging

1.5.1 Methods

Diffusion tensor imaging

MRI was developed in the mid-1980s '° and has become a fundamental tool for neurological diagno-
sis 19, MRI is more sensitive than computer tomography (CT) in detecting subtle abnormalities ''%!!!
as it has a better contrast resolution, especially for soft tissue. It is able to detect subacute hemorrhages
and macroscopic areas of gray and white matter damage '8,

A special type of MRI sequence that was introduced in 1994 ''? is DTI. Whereas CT and MRI only
reveal macroscopic brain alterations, DTI offers the most powerful tool for studying white matter and
microstructural alterations in vivo !%19:11213 “DTT provides information about tissue structure based
on the diffuse motion of water molecules (Brownian motion). It measures not only the rate but also the
directionality of diffusion %14, For each volume of a pixel (voxel) of the brain, a diffusion tensor
(three-dimensional vector) is calculated describing the diffusion characteristics. Eigenvectors (A1, A2,
A3) are the axes of the three-dimensional vector and describe the orientation of diffusion, while eigen-
values represent the length of their measure and thus describe the magnitude of diffusion. When the
diffusivity is the same in all directions (e.g., in cerebrospinal fluid), diffusion is called isotropic and
can be visualized as sphere !'*. The diffusion of water molecules in structured tissue such as white
matter is restricted, and water molecules diffuse most likely along the main direction of fibers and

H2.115 which is called anisotropic diffusion ''°. Anisotropic diffusion can

rarely perpendicular to them
be visualized as an ellipsoid (Figure 3). Diffusion parameters can be calculated from the diffusion
tensor based on the eigenvalues.

Relevant diffusion parameters are fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity
(AD), and radial diffusivity (RD). FA is an index of anisotropic diffusion or directionality, ranging

) 109,116

from O (isotropic diffusion) to 1 (anisotropic diffusion . It is the most commonly used diffusion

value, as it is assumed to be a summary measure of white matter organization ''’.
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MD represents the sum of all three eigenvalues, divided by three. It expresses the average diffusivity
of water molecules ''8. Typically, FA and MD are inversely related 1%,

AD is equal to the largest eigenvalue (A1), which is oriented parallel to the axonal structures ''*. It is
considered that AD is a measure of axon integrity ''°. The average of the diffusivities in the two minor
axes (A2, A3) is called RD and describes the diffusion perpendicular to the main diffusion direction
199 RD is an indicator of myelin integrity ''°.

However, even if DTI parameters provide important information about white matter microstructure, it
must be taken into account that they only represent an indirect and non-specific measure of white

matter microstructural properties '°®120. A reduced FA can be caused by different pathologies, includ-

121,122 12 124

ing demyelination , edema '3 or gliosis In 2009, Pasternak et al. presented a promising
advancement of the DTI method, which is called free-water imaging '*°. This two-compartment model
of water diffusion separately determines the amount of free water in the extracellular space and in the
vicinity of cellular tissue '%°. The two most relevant parameters that are obtained when using free-
water imaging are free water (FW) and fractional anisotropy of the tissue (FAt). The FW parameter
measures the fractional volume of unrestricted free water in the extracellular space. FAt represents the
diffusion tensor, which is corrected for the contribution of free water. Thus, free-water imaging im-
proves the specificity of DTI indices and provides additional information about white matter micro-

structure 123126,
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Isotropic diffusion Anisotropic diffusion
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Figure 3: Isotropic and anisotropic diffusion Figure modified after 114

Region of interest (ROI) analysis

The ROI analysis focuses on specific regions based on a priori formulated hypotheses ''*. The prede-
fined regions of interest can be obtained either manually or by (semi-)automated segmentation 14127,
For each subject, the diffusion values are extracted and averaged for the selected regions. Of note, the
method can be utilized for both white and gray matter studies '*®. Due to its high sensitivity, ROI
analysis is best applied when there is a clear hypothesis about the expected differences in white or gray

matter in a well-defined brain region 7.

Tractography

Fiber tractography represents another post-processing method that enables the 3D visualization and
quantification of an entire white matter tract 19114129 Thys, it provides important information about
the connectivity of different brain regions. Connectivity between the voxels can be determined based
on the anisotropic diffusion of water '*°. Fiber tracking uses the diffusion tensor of each voxel to follow
the main diffusion direction from voxel to voxel through the brain '?°. Similar to ROI-approaches, a
region of interest is defined as a starting point. In addition, inclusion and exclusion regions can be
assigned to describe the trajectory of the fibers more precisely ''*. However, in contrast to ROI ap-

proaches, tractography can only be used for white matter analysis.
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Fiber Clustering

Common methods for extracting fiber bundles based on tractography require the manual determination
of multiple regions of interest. Instead of this manual method, fiber clustering approaches have been
proposed 3!, Fiber clustering is a fully automatic and unguided method that groups white matter fibers
according to their shape and spatial position, thus avoiding the application of an inflexible geometric
scheme 3”133 The fiber clustering approach uses an algorithm that applies a pre-generated whole-
brain white matter atlas of the entire brain to processed cerebral MRI images in order to identify sub-
ject-specific white matter tracts '*#!%3. The atlas was trained using 100 MRI images of healthy subjects
from the Human Connectome Project and provides a whole brain white matter parcellation into 800
fiber clusters '**. This approach does not require an a priori hypothesis about the location of the pa-
thology, as it is entirely data-driven '*°. Recent findings have shown that clustering approaches extract
the most consistent white matter tracts across all subjects compared to multiple ROI- and atlas-based

approaches 7.

1.5.2 Previous findings

Neuroimaging findings in mTBI

Advanced neuroimaging has been widely utilized to study common neuropsychiatric disorders in vet-

erans, including PTSD and mTBI 33147 [n mTBI, several gray matter regions such as the thalamus

148,149

148150 " hippocampus , putamen '* and insula ** have shown to be affected. In addition to gray

matter findings in mTBI, white matter alterations were observed in various regions, including the cor-

151-156 54

pus callosum , centrum semiovale °>153_ forceps major 7, internal capsule '°>!%, fornix ** and
cingulum bundle '*®. These white matter changes are predominantly characterized by reduced FA and
increased MD and AD values, although some studies indicate deviating alterations in diffusion values
108,158 ' Among the large number of affected white matter regions in mTBI, the corpus callosum seems
to be the most commonly impaired structure '%°. Interestingly, studies have shown that white matter

microstructure of the corpus callosum is also associated with cognitive outcome after mTBI '*°.

Neuroimaging findings in PTSD

In PTSD, reduced gray matter volume has been found particularly in frontal and limbic regions '°*16!

162,163 163,166

such as the anterior cingulate cortex , medial prefrontal cortex '®4!95 hippocampus or
amygdala '%7. Furthermore, studies have shown that posttraumatic stress symptoms in veterans are

inversely correlated with limbic gray matter volumes %,
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Considering white matter changes in PTSD, FA decreases and MD increases are present in several

139,169 139,170

regions, such as the cingulum bundle , superior longitudinal fascicle , corpus callosum 7!
and uncinate fascicle 2. Further, diffusion measures of the uncinate fascicle were associated with
anxiety symptoms and amygdala activity !”?>. However, results are even more inconsistent than mTBI
findings, with some studies showing higher FA in the anterior cingulate cortex !”3, temporal cortex !’

and higher generalized FA in the right frontotemporal pathways !*% in patients compared to controls.

Neuroimaging findings in comorbid mTBI and PTSD

The comorbid condition of mTBI and PTSD is associated with a particularly high risk of white matter
abnormalities '**!%°. One MRI study of OEF/OIF/OND veterans with comorbid PTSD and mTBI
found a reduction in bilateral anterior amygdala volume in the comorbid group compared to veterans
with neither condition. Interestingly, the reduced amygdala volume was linked to poorer inhibitory
behavioral control !”°. Further studies have found altered white matter microstructure in the uncinate
fascicle '® and CB '*® in veterans with mTBI and PTSD relative to those with mTBI only. Additionally,
diffusion measures in the bilateral uncinate fascicle were associated with PTSD symptoms !, indicat-
ing poorer recovery in patients with a comorbid mTBI and PTSD diagnosis '%°.

Moreover, to date, only one study has used the more sensitive method of free-water imaging to exam-
ine gray matter alterations in the context of comorbid mTBI and PTSD !”7. However, the free-water

imaging method has not been used to assess alterations in white matter microstructure in patients with

comorbid mTBI and PTSD so far.

1.6 Motivation for this work

The overall aim of this work is to investigate neuropsychological, endocrine, and brain structural al-
terations in a population of OEF/OIF/OND veterans. Our study is intended to provide a better under-
standing of the complex endocrine and brain structural pathomechanisms underlying the various neu-
ropsychiatric symptoms in veterans and ultimately pave the way for targeted biology-based treatments.
Veterans are a highly vulnerable cohort and present with multiple comorbidities above and beyond the
main diagnoses mTBI and PTSD >!*!178, The influence of the various conditions and their interaction
has not yet been sufficiently disentangled, therefore focusing solely on diagnoses does not capture the
complexity of the cohort.

Against this background, the aim of our first study was to apply a transdiagnostic approach to assess
the overall psychological health of veterans and link it to neuroendocrine and brain structural corre-

lates.
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As research increasingly points to the importance of neuroendocrine processes in connection with
stress-related conditions *%3117%:180 this new and important aspect was also part of our research interest.
Based on the previous literature, we examined the hypotheses that:

1. Serum neuroactive steroids are positively associated with psychological functioning.

2. Serum neuroactive steroids are associated with whole brain white matter microstructure.

3. White matter microstructure is associated with psychological functioning.

4. The associations between serum neuroactive steroids, whole brain white matter microstructure,

and psychological functioning are moderated by an mTBI and/or PTSD diagnosis.
To address these hypotheses, state-of-the-art methods of fiber clustering and free-water imaging were
chosen to obtain an accurate understanding of the white matter alterations in veterans. Given the in-

108,181

consistencies of previous imaging studies in veterans , we examined the whole brain white matter

to get a comprehensive picture.

Similar to our first study, our second study also follows a transdiagnostic approach by focusing on the

common risk factor and associated microstructural pathomechanisms underlying veterans' increased

vulnerability for neuropsychiatric disorders. Specifically, in our second study, we hypothesized that:
1. War zone-related stress is associated with microstructural alterations in the limbic gray matter.
2. Alterations in limbic gray matter microstructure are linked to neuropsychological functioning.
3. Associations between war zone-related stress and limbic gray matter microstructure are modu-
lated by a history of mTBI.

To address these hypotheses, we applied free-water imaging, as we did in our first study. In contrast

to our first study, we examined gray matter microstructure, looking specifically at the classic limbic

and paralimbic brain regions. Importantly, studies examining the microstructure of gray matter are

quite rare and enable the detection of previously unnoticed gray matter alterations in veterans.
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II Paper 1

I1.1 Background

OEF/OIF/OND veterans are at increased risk for far-reaching neuropsychological health impairments

t 182 impeding their social and work reintegration 7. The predominant diagnoses in

after deploymen
veterans are PTSD and mTBI !83!% but a variety of other neuropsychiatric diagnoses are also associ-
ated with war experiences >!°. These different comorbidities all interact with each other and share a
large number of common symptoms '*°. However, research has mainly focused on the most common
diagnoses in this cohort, thereby failing to address the complexity of neuropsychological symptom

burden. Thus, there is an urgent need to examine the overall psychological functioning of veterans at

risk for extensive mental health issues.

Regarding the potential factors influencing poor psychological functioning in veterans, there is evi-
dence that neuroendocrine dysregulations play an important role *”-'*¢. As major contributors to neu-
roendocrinological stress regulation, the neuroactive steroids ALLO and its precursor PREGNE >’
exert many neuroprotective effects and play a critical role in regulating the stress-response
S8.68.81.82.86.187 * Another way to further investigate the pathophysiological basis of adverse health out-
comes in veterans is to examine brain structure and function. For this purpose, MRI is used, and spe-
cifically DTI is sensitive enough to detect subtle microstructural changes in white matter 93188,
Taken together, there is evidence of psychological, neuroendocrine, and structural brain alterations in
veterans at risk for mental health issues and comorbidities. However, previous studies have not linked
the different research fields together to examine the underlying pathomechanisms in a more compre-
hensive way.

In order to fill this gap, we have chosen a comprehensive approach to investigate potential associations
between neuroactive steroid levels, whole-brain white matter microstructure, and psychological func-
tioning by using a highly sensitive method. Additionally, effects of mTBI and PTSD on these associ-

ations will be assessed.

I1.2 Methods

We examined 163 subjects in our study, based on data collection by the Injury and Traumatic Stress
(INTRuST) Clinical Consortium at six sites in the United States.
Psychological questionnaires were used to assess the diagnoses of PTSD, mTBI, and alcohol or drug

addiction and to assess psychological functioning of the participants.
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The questionnaires were collected as part of a comprehensive neuropsychiatric test battery as part of
the INTRuST data collection. For our study, we included all subjects with both high-quality MRI data
and neuroactive steroid measurements available. Quantification of the neuroactive steroids ALLO and
PREGNE was performed in serum.

The subjects' dMRI sequences were acquired using 3 Tesla scanners (GE 750, General Electric, Chi-
cago, USA; Achieva, Philips Healthcare, Best, Netherlands; Tim Trio, Siemens Healthineers, Erlan-
gen, Germany). The dMRI data obtained by the different scanners were harmonized using a validated
algorithm to adjust for scanner-specific differences. We performed the fiber clustering method and
extracted subject-specific average whole-brain FAt values (Figure 4). Statistical analyses were per-
formed using SPSS, and a Bonferroni-corrected value of <.05 was considered statistically significant.
We performed factor analysis using the Anderson-Rubin method to derive an underlying psychological
functioning factor based on the psychological questionnaires. Regression models were used to examine
associations between serum neuroactive steroid levels, psychological functioning, and whole brain
white matter microstructure. Moderation models tested the influence of mTBI and comorbid post-

traumatic stress disorder (PTSD) and mTBI on these associations.

Figure 4: Whole-Brain White Matter of one participant as modeled by the fiber clustering method 2d2pted from paper
1

I1.3 Results

Psychological functioning
Factor analysis revealed one underlying psychological functioning factor based on the selected tests

of psychological symptoms, functional impairment, and health-related quality of life.
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Association Between Serum Neuroactive Steroids and Psychological Functioning

We did not detect any association between ALLO or PREGNE and the psychological functioning fac-

tor.

Association Between Serum Neuroactive Steroids and Whole-Brain FAt
Serum ALLO was associated with whole brain FAt. This association was significantly modulated by
a comorbid diagnosis of PTSD and mTBI, whereas an mTBI diagnosis alone had no significant effect

on this association (Figure 5). However, serum PREGNE was not significantly associated with whole
brain FAt.

e Total Sample
0.650 e PTSD+mTBI
0.625
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Whole-brain FA+
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Figure S: Scatter plot illustrating the association between ALLO and whole-brain FAt in the total sample and
the moderating effect of PTSD+mTBI comorbidity on this association 2dapted from paper I,

Association Between Whole-Brain FAt and Psychological Functioning

A lower whole-brain FAt score was linked to poorer psychological functioning. In this case, an mTBI

or a comorbid PTSD and mTBI diagnosis did not affect the association.

I1.4 Discussion

The aim of the study was to examine the relationship between serum levels of neuroactive steroids,
psychological functioning, and whole-brain white matter microstructure and the additional influence

of mTBI and PTSD on these associations. The three main results are presented below and summarized

in Figure 6.
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Figure 6: Summary of Findings 242pted from paper I

Association Between Serum Neuroactive Steroids and Psychological Functioning

As hypothesized, factor analysis revealed that the various psychological dimensions assessed in our
study can be explained by one common factor. This finding confirmed that symptoms of common
psychiatric diagnoses in veterans do not reflect distinct constructs '8, but rather share a common
origin.

However, contrary to our hypothesis, we did not detect direct associations between serum neuroactive
steroids and psychological functioning. This result contradicts the majority of previous research, which
has been able to establish a link between neuroactive steroids and various psychological outcomes
91,92,94,95,189-194 However, these studies are not directly comparable to ours due to differences in study

design and a focus on specific facets of psychological functioning.

Association Between Serum Neuroactive Steroids and Whole-Brain White Matter

We confirmed an association between white matter microstructure and psychological functioning.
The beneficial effects of ALLO on white matter may likely be explained by neuroprotective processes
179 increasing the integrity of the fiber protecting myelin sheath and axonal density.

In addition to the first result, we also showed that the association between ALLO and white matter

microstructure was strengthened by a comorbid PTSD and mTBI diagnosis.
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This result demonstrates that decreased ALLO levels may have a more pronounced detrimental impact
on white matter in individuals with comorbid PTSD and mTBI, compared to individuals with mTBI
only or healthy individuals, which is also supported by various studies 43147,

In contrast to individuals with mTBI only, individuals with an additional PTSD diagnosis tend to have
particularly pronounced stress and trauma related endocrine dysregulations, which in turn lead to

stronger impairments of white matter microstructure.

Association Between Whole-Brain White Matter Microstructure and Psychological Functioning

In our study, we found an association between decreased white matter microstructure and poorer psy-
chological functioning. This association may be explained by a disruption of myelinated pathways in
the brain leading to altered white matter connectivity and thus to a functional disruption of networks
involved in emotion regulation '*>!%°. Our result is consistent with the literature, indicating that differ-

ent neuropsychiatric disorders are linked to white matter impairments in veterans '4%176.197.198

Conclusion

This study is a first step towards understanding the structural and functional pathomechanisms in vet-
erans at risk for various psychiatric conditions and suggests that by protecting white matter micro-
structure, neuroactive steroids may have a therapeutic role in the treatment of psychological symptoms
in veterans. Future research should focus on studying the causal and dynamic relationships between

neuroactive steroids, white matter, and psychological functioning.

I1.5 Own contribution

My contribution to work 1 is composed of the following parts:

Literature research and formulation of working hypotheses, data curation, assessment, and statistical
analysis of the data, writing the manuscript of the publication, critical revision of the manuscript.

I participated in work 1 as a shared first author with Ms. Philine Rojczyk.

Based on an extensive literature review and the identification of research gaps, I developed the hy-
potheses of the study. During data preparation, I validated the data sets and checked for completeness,

selected subjects with complete data sets, and integrated multiple data sets.
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Processing of the dMRI data to generate diffusion parameters as well as statistical analysis were ac-
complished with consultation and validation from Yorghos Tripodis, Professor of Biostatistics at Bos-
ton University. Processing of the dMRI data was also assisted by the Psychiatry Neuroimaging Labor-
atory (PNL) team at Harvard Medical School in Boston.

The critical discussion and interpretation of the data were done in close exchange with Philine Rojzyk.
I wrote the manuscript together with Philine Rojzyk and critically revised it with the help of several
authors, mainly of the cBRAIN team at Ludwig-Maximilians-University in Munich. I wrote the first
draft of the manuscript and then focused on finalizing the introduction and discussion parts, while
Philine Rojzyk was involved in the method and result parts. In addition, I prepared the paper for sub-
mission and answered the queries in the review process. The entire process from hypothesis generation
to the completion of the manuscript, as well as the review process, was supervised by Prof. Dr. med.

Inga K. Koerte.
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III Paper 2

II1.1 Background

There is substantial evidence linking combat exposure to poor mental health in veterans returning from
war 210019 'In particular, psychiatric disorders in veterans '* and their far-reaching consequences for
social and personal life ® have been well studied. However, the pathomechanism behind the high
prevalence of psychiatric disorders in veterans has not been sufficiently explored so far. An established
risk factor for the development of psychiatric illness is the intense psychological stress in relation to
combat exposure 2%, In addition, veterans who sustained an mTBI also have an increased risk of suf-
fering from psychiatric illness and neurocognitive impairment for several reasons ', Nevertheless,
very few studies have focused on the influence of war zone-related stress on brain structure and func-
tion, and in particular, no validated questionnaires have been applied. Moreover, the impact of an
mTBI diagnosis on the relationship between war zone-related stress and brain structure and neuropsy-
chological functioning remains to be elucidated.

In particular, dMRI, a specific MRI sequence, is able to detect microstructural alterations and has been
mainly used to study white matter %1% Although microstructural white matter alterations have been

138-147 "studies on the im-

demonstrated in the common neuropsychiatric disorders affecting veterans
pact of war zone-related stress on white matter microstructure are scarce. Notably, the microstructure
of gray matter has not been studied in this context at all.

Therefore, the aim of this study was to investigate whether war zone-related stress is associated with
microstructural alterations in gray matter and whether this association is modulated by an mTBI diag-
nosis. Additionally, we aimed to examine whether gray matter changes are associated with neuropsy-

chological functioning.

II1.2 Methods

Our study used data from 168 male veterans with available high-quality MRI’s and clinical data col-
lected as part of the TRACTS (Translational Research Center for TBI and Stress Disorders) study. The
clinical assessment of this study comprised the assessment of psychiatric disorders (Mood Disorders,
Substance Use Disorders, Anxiety Disorders, Eating Disorders, Adjustment Disorders), mTBI, war
zone-related stress, as well as functional and neurocognitive outcome using validated questionnaires.

Study participants were scanned on a 3-Tesla Siemens TIM Trio MRI scanner (Siemens Healthcare,
Erlangen, Germany) and Diffusion MRI were acquired using a single-shot echo-planar sequence with

a twice refocused spin-echo pulse.
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The average of the free water corrected FA measure (FAt) was derived for eight preselected limbic
and paralimbic gray matter regions in each hemisphere (16 regions of interest in total). Statistical anal-
yses were conducted utilizing SPSS, and a p-value of <0.05 was considered statistically significant. A
false discovery rate (FDR?’!) of 5% was determined to adjust for multiple comparisons. Generalized
linear models (GLM) were applied to assess the link between war zone-related stress and diffusion
measures. We added the number of lifetime mTBIs both as a fixed effect and as a modifier of the main
effect to investigate whether mTBI has an influence on the relationship between war zone-related stress
and gray matter diffusion. The diffusion measures that were significantly associated with war zone-
related stress were analyzed post-hoc to examine the association between these diffusion measures and

functioning.

1I1.3 Results

Effects of War zone-related Stress on Limbic Gray Matter Diffusion

We established a negative association between greater war zone-related stress and FAr in the bilateral
cingulate gyri, bilateral orbitofrontal gyri and right parahippocampal gyrus. As opposed to our first
finding, war zone-related stress was positively associated with FAtin the right amygdala-hippocampus

complex.

Impact of mTBI on the Association of war zone-Related Stress and Limbic Gray Matter Diffusion
The diagnosis of mTBI did not impact the relationship between war zone-related stress and limbic gray

matter FAT,

Association of Limbic Gray Matter Diffusion and Functional OQutcome

Decreased FAt in the cingulate and orbitofrontal gyri was related to reduced response inhibition but to
enhanced fronto-temporal functions, i.e., verbal short-term memory performance and processing
speed. At the opposite, decreased FAr in the amygdala-hippocampal region was associated with better
response inhibition and impaired performance of verbal short-term memory and processing speed (Fig-
ure 7). A link between limbic gray matter FArand neurobehavioral symptoms or clinical functioning

could not be confirmed.
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111.4 Discussion

Our study demonstrates that greater war zone-related stress is related to decreased FAT in the bilateral
cingulate, bilateral orbitofrontal , and right parahippocampal gyrus. Decreased FAT in the cingulate/or-
bitofrontal gyrus was in turn linked to impaired response inhibition.

In contrast, greater war zone-related stress was associated with higher FAT in the amygdala-hippocam-
pus complex, which in turn was related to better short-term memory and processing speed. Of note,
mTBI did not significantly alter the relationship between war zone-related stress and limbic gray mat-

ter structure.

orbitofrontal gyrus

amygdala-hippo. complex

Figure 7: Effects of war zone-related stress on limbic and paralimbic brain areas and associated cognitive func-
tions adapted from paper 2

War zone-related Stress and Limbic Gray Matter Diffusion

Our study is one of the rare ones investigating the microstructure of gray matter, and accordingly, there
has been little research that elucidates the pathophysiological basis of gray matter microstructural al-
terations. However, a reasonable explanation for the association between war zone-related stress and

decreased FAT in the cingulate, orbitofrontal, and right parahippocampal gyrus might be a decrease in

202 203

astrocytes <2 and/or neurons “%°, which are the major components of gray matter.
In contrast, the positive association between higher war zone-related stress and FAr in the amygdala-
hippocampus complex might be grounded in neuroplastic remodeling processes, as indicated by pre-

vious research 2%,
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Association between Limbic Gray Matter Diffusion and Functional Outcome

Increased FAT in the amygdala-hippocampus complex was not only associated with greater war zone-
related stress but also with better fronto-temporal brain functions. This may be due to chronic excessive
activation of fronto-temporal brain functions such as short-term memory and processing speed 2°4208,
This overactivation leads to improved function of fronto-temporal regions by triggering neuroplastic
processes 2%°, A potential clinical manifestation could be, for example, a hypervigilant state and read-
iness to respond, which is an advantageous adaptation mechanism in combat situations, but a disad-
vantage if persisting in civilian life.

Furthermore, an association between impaired prefrontal/cingulate functions (response inhibition) and
reduced FAr in prefrontal regions was found, which may be due to the phenomenon of interference.
In this case, the predominant use of certain brain functions, such as fronto-temporal functions, results

in worse functioning of other cognitive tasks, such as response inhibition 2'9-212,

Conclusion
The findings indicate that the adverse health consequences of experienced war zone-related stress may
be attributed to alterations in limbic gray matter microstructure. The importance of early preventive

treatment for veterans is demonstrated.

II1.5 Own contribution

Concerning this second paper, I contributed to the analysis, interpretation, and editing of the data.
Based on my extensive literature review of brain alterations in veterans, [ provided suggestions for the
analysis and interpretation of the data.

Further, I was involved in editing the manuscript. I read through the manuscript several times, and
provided critical revisions by making suggestions for content, the figures, as well as formal improve-

ments throughout the text. I was particularly involved in the revision of the introduction.
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White Matter Microstructure is Associated with Serum Neuroactive
Steroids and Psychological Functioning
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Abstract

Military service members are at increased risk for mental health issues, and comorbidity with mild traumatic
brain injury (mTBI) is common. Largely overlapping symptoms between conditions suggest a shared
pathophysiology. The present work investigates the associations among white matter microstructure, psy-
chological functioning, and serum neuroactive steroids that are part of the stress-response system.
Diffusion-weighted brain imaging was acquired from 163 participants (with and without military affiliation)
and free-water-corrected fractional anisotropy (FA) was extracted. Associations between serum neuroste-
roid levels of allopregnanolone (ALLO) and pregnenolone (PREGNE), psychological functioning, and whole-
brain white matter microstructure were assessed using regression models. Moderation models tested the
effect of mTBI and comorbid post-traumatic stress disorder (PTSD) and mTBI on these associations. ALLO is
associated with whole-brain white matter FA1 (f=0.24, t=3.05, p=0.006). This association is significantly
modulated by PTSD+mTBI comorbidity (f=0.00, t=2.50, p=0.027), although an mTBI diagnosis alone

"Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
2cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig-Maximilians-Universitét, Munich, Germany.
3Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany.

“Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.
*TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.

“Department of Neurology, Epilepsy Center, Ludwig-Maximilians-Universitat, Munich, Germany.

’Laboratory of Mathematics in Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
®Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.

VA Mid-Atlantic Mental lliness Research and Clinical Center (MIRECC) and Durham VA Medical Center, Durham, NorthCarolina, USA.

"°Department of Psychiatry and Behavior Sciences, Duke University School of Medicine, Durham, North Carolina, USA.

"Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina, USA.

2Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA.

"3Boston University Alzheimer’s Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA.

“psychiatry Department, Medical University of South Carolina, Charleston, South Carolina, USA.

|5Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA.

"®Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA.

""Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
8Department of Physical Medicine and Rehabilitation, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
"°Department of Psychiatry, University of California San Diego, La Jolla, California, USA.
2%School of Public Health, University of California San Diego, La Jolla, California, USA.
2'psychiatry Service, VA San Diego Healthcare System, San Diego, CA, USA.
2?Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
23Graduate School of Systemic Neuroscience, Ludwig-Maximilians-Universitat, Munich, Germany.
**These authors contributed equally.
**These authors contributed equally.

*Address correspondence to: /n%a K. Koerte, MD, Psychiatry Neuroimaging Laboratory, Brigham and Women'’s Hospital, Harvard Medical School, 1249 Boylston Street, Boston,
MA 02215, USA E-mail: ikoerte@bwh.harvard.edu

649



41

Downloaded by University of Frankfurt from www liebertpub.com at 05/22/23. For personal use only.

650

UMMINGER ET AL.

did not significantly impact this association (p=0.088). There was no significant association between PRE-
GNE and FA7 (p=0.380). Importantly, lower FA; is associated with poor psychological functioning (f=-0.19,
t=-2.35, p=0.020). This study provides novel insight into a potential common pathophysiological mecha-
nism of neurosteroid dysregulation underlying the high risk for mental health issues in military service
members. Further, comorbidity of PTSD and mTBI may bring the compensatory effects of the brain’s stress
response to their limit. Future research is needed to investigate whether neurosteroid regulation may be a
promising tool for restoring brain health and improving psychological functioning.

Keywords: diffusion tensor imaging; mild traumatic brain injury; military service members; neuroactive steroids;

post-traumatic stress disorder; psychological functioning

Introduction

Military personnel returning from Operation Enduring
Freedom (OEF), Operation Iraqi Freedom (OIF), or
Operation New Dawn (OND) show high rates of health
problems in general'* and mental health problems in par-
ticular.® Post-traumatic stress disorder (PTSD) and mild
traumatic brain injury (mTBI) are the most common diag-
noses and have therefore been described as ‘‘signature
wounds” of military service members.*> Further, comor-
bidity with other mental disorders such as depression, sub-
stance abuse, or anxiety disorder is common.®™ In fact, up
to 30% of veterans™ are diagnosed with a mental disorder
compared with 4-12% among the general population,lO

Importantly, even those service members who do not
meet the diagnostic criteria for a mental disorder are at
risk for experiencing low quality of life and psychological
distress, which may lead to problems in their social and
work life.!"!? The largely overlapping symptoms of vari-
ous psychiatric conditions in veterans, including general
distress, exaggerated startle, sleep disturbances, depressed
mood, anxiety, and impaired social functioning,® suggest a
common underlying pathophysiology.'*!* However, to
date, most research has been focused on specific psychiat-
ric diagnoses according to categorical diagnostic criteria,
neglecting the complexity of comorbidity as well as the
overlap in clinical features across diagnoses."

Given the high overlap of symptoms among various
conditions, a second approach that has become more pop-
ular is to investigate psychosocial functioning on a con-
tinuum.' In fact, there is evidence that impairments in
psychological functioning — the interplay of an individu-
al’s overall mental health, behavior, and social skills'® —
underlies almost all mental disorders,'” suggesting a
shared common pathomechanism.15 Shared underlying
symptom clusters can be identified using factor analysis,
which has been widely used to facilitate the interpreta-
tion of multiple related variables of interest by reducing
multico]linearity,'5'17’19 Summarizing the clinical char-
acteristics of military service members into one common
factor that explains the majority of symptoms could relate
them to objective measures of brain structure and func-
tion, thereby elucidating potentially common pathophys-
iological processes.

A major common feature underlying many psychiatric
conditions is the dysregulation of the stress response sys-
tem®>?' which may explain similar symptom clusters
among various mental disorders. Military service mem-
bers in particular commonly face extended periods of
stress associated with deployment, which activates their
stress response system.”” It is of note here that the neu-
rosteroid allopregnanolone (ALLO) and its precursor
pregnenolone (PREGNE) are involved in the neuroendo-
crinological stress regulation®~° to normalize the hyper-
activation in the hypothalamic—pituitary—adrenal (HPA)
axis.?®® In response to traumatizing stress or brain
trauma, ALLO and PREGNE exert neuroprotective effects
by promoting anti-inflammatory,?>2°~* anti-apoptotic,>***
and pro-myelinating processes.>> Moreover, ALLO binds
to y-aminobutyric acid type A (GABA,) receptors,
which leads to a positive receptor modulation and in-
duces anxiolytic and analgesic effects.?®3¢

Although acute stress stimulates an upregulation of
neuroactive steroids, chronic stress has been shown to re-
sult in downregulation of ALLO levels.>’~** This may be
explained by the fact that GABA receptor sensitivity de-
creases following repeated stress exposure as a result of
excessive neurosteroid binding.*® Therefore, it is possi-
ble that neurosteroid levels are compensatorily downre-
gulated during chronic stress, to restore GABA receptor
sensitivity.36 Indeed, service members with TBL?> PTSD,*
or comorbid mTBI and PTSD*® exhibit decreased neuro-
steroid levels compared with healthy controls. In turn, the
chronic stress-induced decrease in neurosteroid concen-
trations leads to hypersensitivity to new stressors,*>*>#7
dysfunctional behavior,*® memory deficits,* sleep prob-
lems,**? and depressive symptoms,>® thereby perpetu-
ating the endocrine dysregulations.

Although neurosteroid dysregulations have been shown
to lead to poor psychological outcome and impaired behav-
jor, 434347485053 their underlying pathomechanisms remain
largely unknown. There is initial evidence to suggest that
brain structure likely plays a crucial mediatory role between
neurosteroid dysregulation and psychological functioning.
In fact, we recently revealed an association between neuro-
steroid levels and cortical thickness in veterans.*® Addition-
ally, animal studies of neurodegenerative diseases have
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reported an association between increased ALLO levels
with markers of myelin and white matter regeneration.>*
The brain’s white matter may in this way be responsible
for some of the deficits in psychological functioning ob-
served in service members.> Further, dense myelination
is associated with faster signal transmission,”® whereas im-
pairments in myelination have been linked to impaired
stimulus conduction. The latter translates into impair-
ments in psychological functioning, as seen in various
neuropsychiatric disorders.>®

Diffusion-weighted magnetic resonance imaging MRI
(dMRI) has been used to study white matter microstructure
in the most common diagnoses in military service members,
including mTBI and PT SD."% Most dMRI studies report
widespread abnormalities of fractional anisotropy (FA),%”¢®
suggesting demyelination or axonal degeneration.*® How-
ever, the relationship between serum neurosteroid levels
and white matter microstructure and its association with
psychological functioning remains to be elucidated.

The aims of this study are to investigate (1) whether
serum levels of ALLO and PREGNE are associated
with psychological functioning, (2) whether serum levels
of ALLO and PREGNE are associated with white matter
microstructure, and (3) whether changes in white matter
microstructure are associated with psychological func-
tioning. Moreover, we will assess whether these associa-
tions are moderated by the most common diagnoses in
military service members, mTBI and/or PTSD.

Methods

Ethics approval

This study was approved by the institutional review boards
of all involved sites and conducted in accordance with the
Declaration of Helsinki. Written informed consent was
obtained from all study participants before enrollment.

Study design and participants
Participants were recruited as part of the Injury and Trau-
matic Stress (INTRuST) Clinical Consortium (W81XWH-
08-2-0159, intrust.sdsc.edu), which was funded by the
Department of Defense and consists of 10 sites across
the United States. The overarching aim of the consortium
was to improve both understanding and treatment of
PTSD and mTRBI 2345-:46:64.70-75

To be included in the INTRuST study, participants had
to be between 18 and 70 years old and have English as
their primary language. Exclusion criteria were English
as a second language acquired after the age of 5 years;
history of a learning disability; uncontrolled hyperten-
sion; taking more than one antihypertensive medication;
diagnosis of bipolar I disorder, psychotic, delirium, or
dementing disorders; uncontrolled chronic disease; his-
tory of moderate to severe TBI; oral or intramuscular ste-
roid use within the last 4 months; or currently taking
medication affecting brain function (other than psycho-

tropic medications). Exclusion criteria specific to par-
ticipants who underwent MRI included general MRI
contraindications, disorders of the central nervous system
affecting the brain, and pregnancy/lactation.

Study enrollment was open from 2008 to 2013, and a
total of 771 participants (both with and without military
affiliation) were included. Four hundred and twenty-six
participants underwent cranial MRI at 6 of the 10 study
sites. In the present study, we included participants
with both available MRI and serum neurosteroid data,
resulting in a sample of 205 participants. MRI data was
excluded from another 42 participants because of insuffi-
cient MRI data quality, yielding a final sample of 163
participants. Participants were to complete self-report
questionnaires and imaging as well as blood draw within
30 days. The final sample did not differ significantly from
the excluded participants in demographics (age, sex, race,
education, income, employment status), PTSD and mTBI
diagnosis, and psychological functioning (PTSD and
depressive symptoms, insomnia, alcohol and drug use,
functional disability, and health-related quality of life).

Clinical assessments and questionnaires

Assessment of PTSD.  PTSD diagnosis was based on the
Mini-International Neuropsychiatric Interview (MINI)’®
in 22 subjects, the PTSD Checklist (PCL)”” in 21 sub-
jects, the Clinician-Administered PTSD Scale for DSM-
5 (CAPS)"® in 9 subjects, and the Structured Clinical
Interview for DSM-4 (SCID)” in 1 subject.

Assessment of mTBI.  History of mTBI was assessed with
a self-report mTBI screening instrument consisting of three
items assessing (1) past brain injury, (2) immediate loss or
alteration of consciousness or unawareness of the event, and
(3) amnesia before or after the event. The INTRuST mTBI
Screening Instrument was developed following the diag-
nostic criteria by the American Congress of Rehabilitation
Medicine®® and has been used in previous publications of
the INTRuST Clinical Consortium.*®6+717475

Assessment of addiction. Alcohol or drug addiction
was assessed according to the Drug Abuse Screening
Test (DAST-20)®! and the Alcohol Use Identification
Test (AUDIT-10).*?

Assessment of psychological functioning. From the
comprehensive INTRuST Clinical Consortium psycho-
logical test battery, questionnaires assessing psychiatric
symptoms, functional impairment, and health-related
quality of life were chosen in the present study (Table 1).

Neurosteroid quantification

Serum neurosteroid quantifications were performed by
gas chromatography/mass spectrometry (GC/MS) preceded
by high-performance liquid chromatography (HPLC) as
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Table 1. Psychological Functioning

PCL-C  Assessing the presence and severity of post-traumatic stress
disorder (PTSD) symptoms within the last month

PHQ-9  Assessing depressive symptoms

BSI-18  Assessing psychological distress

ISI Assessing nature, severity, and impact of insomnia

SDS Assessing functional impairment in work, social and family life

SF-12 Assessing health-related quality of life

PCL-C, PTSD Checklist Civilian;*> PHQ-9, 9-Item Patient Health Ques-
tionnaire;** BSI-18, Brief Symptom Inventory;®> ISI, Insomnia Severity
Index;*® SDS, Sheehan Disability Scale;*” SF-12, Short Form Health Survey.™®

reported elsewhere.*® Neurosteroids were run in one
batch and quantified blind to condition. Serum samples
had been frozen between 6 and 42 months prior to neuro-
steroid quantification. One milliliter of serum was
extracted three times in ethyl acetate prior to HPLC pu-
rification using tetrahydrofuran, ethanol, and hexane in
the mobile phase. Heptafluorobutyric acid anhydride
(HFBA) was used to derivatize the samples. The samples
were injected onto an Agilent 5973 MS coupled to an
Agilent 6890N GC equipped with an Agilent HP-5SMS
30mx0.250mm x 0.25 um capillary column, and ana-
lyzed in the positive ion-electron impact ionization
mode with helium as the carrier gas. The definitive struc-
tural identification of each neurosteroid was provided
by both its GC/MS retention time and unique mass frag-
mentation pattern. MS single ion monitoring was used to
focus on the most abundant ion fragment for each HFBA
derivative (ALLO 496.2, PREGNE 298.2). Twenty per-
cent of serum samples were run in duplicate. Intra-
assay coefficients of variation were 4.4% for ALLO
and 2.0% for PREGNE. The inter-assay coefficient of
variation (CV) for batch-to-batch runs was 14.0% for
ALLO and 13.9% for PREGNE. Deuterated internal stan-
dards were utilized: D4-allopregnanolone for ALLO and
D4-pregnenolonenolone for PREGNE.

A constant amount of deuterated internal standard
was combined with varying known quantities of steroids
(Steraloids) to prepare the standard curve for the steroid
of interest. Identical to the experimental samples, each
standard curve sample was extracted three times in
ethyl acetate prior to HPLC purification and GC/MS in-
jection; standard curve #=0.99 for each neurosteroid.
The area under the peak of a known quantity of each ste-
roid was divided by the area under the peak of the internal
standard. The resulting ratio was plotted on the y-axis
against known quantities of each steroid, generating a
standard curve. Only integrated peaks with a signal-
to-noise ratio >5:1 were integrated. The limit of neuro-
steroid quantification with this methodology is 1pg for
ALLO and PREGNE (femtomolar sensitivity).

MRI

Image acquisition. The current study used dMRI
sequences acquired on three different types of 3-Tesla

Table 2. Acquisition Parameters for Diffusion-Weighted
Magnetic Resonance Imaging (AMRI)

GE Siemens Philips
Orientation Axial Axial Axial
Phase encoding direction Left/right Anterior/ Posterior/

posterior anterior

Field of view (in mm) 256 256 256
TE 83ms 87ms 73 ms
TR 10s 10s 10sec
Number of directions 64 64 64
b-value 900 900 900
Number of b0 7 7 7
Resolution matrix 128x128 128x128 128x128
Voxel size (in mmg) 2x2x2 2x2x2 2x2x2
Number of slices 73 73 73
Acquisition time (in min) 14:40 14:08 14:21

Multi-site study; dMRI data acquisition on Tim Trio, Siemens Healthi-
neers, Erlangen, Germany; GE 750, GE Healthcare, Chicago, IL, USA;
Achieva, Philips Healthcare, Best, The Netherlands.

TE, echo time; TR, repetition time.

scanners (Tim Trio, Siemens Healthineers, Erlangen,
Germany; GE 750, GE Healthcare, Chicago, IL, USA;
or Achieva, Philips Healthcare, Best, The Netherlands)
at 6 out of the 10 INTRuST acquisition sites (for imaging
sequence details for each MRI system see Table 2).

Image processing. Image harmonization and pre-
processing. Data harmonization is indispensable when
attempting to accurately analyze a large data sample ac-
quired through different types of MRI scanners. There-
fore, dMRI data were harmonized across the six data
acquisition sites using a validated harmonization al-
gorithm.”> The harmonization approach accounts for
scanner-specific differences such as spatial variability
of the diffusion signal in different brain areas, while at
the same time, the inter-subject variability is maintained
at each site and scanner.”® Pre-processing of the harmo-
nized dMRI data was performed using scripts of our in-
house image processing pipeline (https://github.com/
pnlbwh/pnlutil/blob/master/pipeline/README.md).
First, the images were axis-aligned, centered, and motion-
corrected. Next, eddy current correction was applied with an
affine registration of each gradient-weighted image to the
baseline using FMRIB Software Library, version 5.1 (FSL;
The Oxford Centre for Functional MRI of the Brain,
Oxford, UK; http:/fsl.fmrib.ox.ac.uk). Images were visu-
ally inspected for artifacts, such as motion artifacts, ringing,
or ghosting of the skull or eyeballs, using 3D Slicer (version
4.5, http://www.slicer.org),xg leading to the exclusion of 42
participants. Diffusion masks covering the entire brain were
created from the dMRI data and manually corrected in
3D Slicer where necessary (e.g., in case of incomplete
coverage of the brain) by a trained PhD level researcher.

White matter fiber clustering. White matter fiber clus-
tering was conducted according to an open-source
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pipeline of the whitematteranalysis software (https://
github.com/SlicerDMRI/whitematteranalysis). The white
matter fiber clustering groups fibers according to their
anatomical shape and spatial position and extracts a large
number of fiber tracts from the entire brain. This is a
major advantage over previous automated fiber tracking
approaches, which are limited to the extraction of only
the major fiber tracts, thereby failing to cover the entire
brain’s white matter (including the cerebellum, brain-
stem, and superficial tracts).”

The white matter fiber clustering bases the white mat-
ter parcellation of each subject on a pre-provided fiber
clustering atlas: a neuroanatomist-curated set of tracts
covering the white matter (http://dmri.slicer.org/atlases/).90
First, unscented Kalman filter (UKF) tractography (https://
github.com/pnlbwh/ukftractography)®! was performed in
all subjects using established fiber tracking parameters as
follows. Fiber tracking was seeded in all voxels within
the brain mask where FA was >0.18 (default). Tracking
stopped in voxels where the FA value fell <0.15 (default)
or the sum of the normalized signal across all gradient
directions fell <0.1 (default) (a parameter to distinguish
between white/gray matter and cerebrospinal fluid [CSF]
regions). In addition to these major parameters, the UKF
method uses other parameters to fine tune the fiber
tracking result, including: Qm to control process noise
for angles/direction, QI to control process noise for ei-
genvalues, and Rs to control for expected noise in the
diffusion signal. These three parameters were well ad-
justed according to the dMRI data properties under study
and set to 70, 0.001, and 0.015, respectively. Visual and
quantitative quality control of the generated tractography
data for all subjects under study was performed using
a semi-automated quality control tool in the white-
matteranalysis software (https://github.com/SlicerDMRI/
whitematteranalysis).

Next, each subject’s tractography was registered with
the pre-provided atlas tractography. By following up
with this step we were able to largely reduce the known
tractography issue of false-positive tracking.”® False-
positive fiber tracking is a contributing factor affecting
white matter parcellation reproducibility.”? With our ap-
proach, false positive fibers in the atlas have been anno-
tated and rejected via expert judgment.”® Usage of the
atlas therefore can ameliorate potential subject-specific
false-positive fibers that are inconsistent with respect
to known neuroanatomical knowledge. In this study,
subject-specific fibers that had improbable fiber geomet-
ric trajectories were automatically removed.

For each subject, we performed atlas-based white mat-
ter parcellationgo’%‘94 using a robust machine learning
approach that has been shown to consistently identify
white matter tracts across the full human lifespan, across
health conditions including brain tumors, and across dif-
ferent image acquisitions.”® This approach produces con-

sistent tracts across subjects,95 is reproducible in test-

retest data sets”® and is robust to anatomical variability.”*
The approach has also been employed for quantitative
tractography analyses’’ in many recent studies.”®10°
Subject-specific anatomical fiber tract identification
was conducted for both hemispheres by linking the regis-
tered tractography to the annotated atlas clusters for each
tract. Fiber tracts of the entire brain (Fig. 1) were com-
bined into one whole-brain white matter variable, given
that we aimed to investigate global white matter effects
in association with neuroactive steroids and psychologi-
cal functioning and did not specify hypothesis for indi-
vidual tracts. A quantitative quality assessment of the
number of streamlines (NoS) and FA was performed to
make sure that there were not individual subjects with
outlier values. A visual quality assessment of each
subject’s whole-brain white matter tracts was also per-
formed to ensure anatomical correctness. These qual-
ity check processes follow best practices in recent
studies.”®102106-109 AJ] data passed quality checks.

Diffusion parameter extraction. Diffusivity of the
extracted whole-brain white matter tracts was calculated
and corrected for the relative contribution of extracellular
free water in each voxel using free-water modeling.“0
The resulting diffusivity represents the tissue compart-
ment in each voxel from which the tissue’s free-water-
corrected FA (FArigue, 1.€., FA1) was calculated.
Compared with FA, FAr serves as a more accurate
marker for cellular white matter microstructure that is
less susceptible to partial volume effects with CSF, and
is thus more sensitive to the degree of myelinization of
fiber tracts, axonal density, and fiber orientation.'!" Subject-
specific average whole-brain FAr values were extracted
from the whole brain’s white matter fiber clustering output.

Statistical analysis

SPSS software (version 25.0; IBM Statistics for Mac,
Armonk, NY, USA) was used for all statistical analyses.
A Bonferroni-corrected p value of <0.05 was considered
statistically significant.

Psychological functioning

Given the variety of psychological symptoms among vet-
erans, we investigated whether a common psychological
functioning construct was underlying the different psy-
chological dimensions present in the current sample
(assessed with the questionnaires presented in Table 1).
A factor analysis using the Anderson—Rubin method to
extract one or more underlying psychological functioning
factors was performed. Varimax rotation was applied to
ensure the orthogonality of the estimated factors. Only
factors with an eigenvalue >1 were extracted. The as-
sumptions for the conduction of a factor analysis were in-
vestigated using Bartlett’s tests of sphericity.
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FIG. 1. Whole-brain white matter tractography. This figure shows the whole-brain white matter of one
participant derived from the fiber clustering output (in the sagittal and coronal plane).

Association between serum neuroactive

steroids and psychological functioning

The association between serum neurosteroid levels and
psychological functioning was assessed using two multi-
ple regression models with independent variable serum
ALLO/PREGNE and dependent variable psychologi-
cal functioning (p <0.025, Bonferroni-corrected for two
tests). Age, sex, and alcohol and drug use were included
as covariates. In case of a statistically significant associ-
ation, we additionally assessed the effect of mTBI and
PTSD+mTBI comorbidity on the association between
serum neurosteroid levels and psychological functioning
using Hayes PROCESS''? (double moderation model —
Model 2). Bonferroni correction was applied for two
tests (p <0.025). PTSD diagnosis without mTBI comor-
bidity was not investigated as an individual effect be-
cause of the small number of participants with PTSD
only (n=10).

Association between serum neuroactive

steroids and whole-brain FA

The association between serum neurosteroid levels and
whole-brain FAt was analyzed by conducting two multi-
ple regression models with independent variable serum
ALLO/PREGNE and dependent variable whole-brain
FAt (p<0.025, Bonferroni-corrected for two tests).
Age, sex, and alcohol and drug use were included as
covariates. In case of a statistically significant associa-
tion, we additionally assessed the effect of mTBI and
PTSD+mTBI comorbidity on the association between
serum neurosteroid levels and whole-brain white mat-
ter FA1 using Hayes PROCESS''? (double moderation
model — Model 2). Bonferroni correction was applied
for two tests (p <0.025).

Association between whole-brain FA;

and psychological functioning

The association between psychological functioning and
whole-brain FA1 was investigated using a multiple re-
gression model with whole-brain FAr as independent
variable and psychological functioning as dependent var-
iable. Age, sex, and alcohol and drug use were included
as covariates. In case of a statistically significant associ-
ation, we additionally assessed the effect of mTBI and
PTSD+mTBI comorbidity on the association between
whole-brain FAy and psychological functioning using
Hayes PROCESS''? (double moderation model — Model 2).

Results

Sample characteristics

A sample of 163 participants from the INTRuST study
were included. The demographic characteristics of the
participants are displayed in Table 3. Neuropsychiatric
comorbidities among the sample are visualized in Figure 2.

Psychological functioning

Bartlett’s test of sphericity was used to test the overall
significance of all correlations within the matrix, which
was statistically significant (°[15]=1010.27, p <0.001).
As significant correlations between all variables were
shown, conducting a factor analysis to identify the underly-
ing factor behind the correlating variables is statistically
justified. The factor analysis revealed one underlying psy-
chological functioning factor based on PTSD symptoms
(PCL-C); depression (Patient Health Questionnaire
[PHQI-9); psychological distress (Brief Symptom Inven-
tory [BSI]); insomnia (Insomnia Severity Index [ISI]);
functional impairment of work, social, and family life
(SDS), and health-related quality of life (Short Form 12
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FIG. 2. Neuropsychiatric comorbidities. (a) (Venn diagram) and (b) (UpSet plot) display the comorbid
neuropsychiatric disorders in the present sample (n=163). Particularly, participants with both PTSD and
mTBI have high numbers of comorbidity with alcohol/drug addiction and depression. mTBI, Mild traumatic

brain injury; PTSD, Post-traumatic stress disorder..

Health Survey, General Health [SF12-GH]), with factor
loadings between -0.75 and 0.96, and an eigenvalue of
4.97, accounting for 82.85% of the variance in the data
(Table 4). The next factors had an eigenvalue of 0.41 and
0.24 and explained 6.8% and 4% of the total variance.

Association between serum neuroactive

steroids and psychological functioning

There was no significant association between serum ALLO
(p=0.193) or PREGNE (p=0.703) and the psychologi-
cal functioning measure derived by the factor analysis.
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FIG. 3. Association between allopregnanolone
(ALLO) and whole-brain FAr. This figure
illustrates the significant moderating effect of
PTSD+mTBI comorbidity on the association
between ALLO (pg/mL) and whole-brain FA;.
mTBlI, Mild traumatic brain injury; PTSD, Post-
traumatic stress disorder; FA+, Fractional
aniSOtl’OPy Tissue

Association between serum neuroactive

steroids and whole-brain FA;

The multiple regression analyses revealed a significant
positive association between serum ALLO and whole-
brain FAy (f=0.24, t=3.05, p=0.006). There was no
statistically significant association between serum PRE-
GNE and whole-brain FAt (p=0.380).

The moderation analysis showed that the association
between serum ALLO and whole-brain FA was signifi-
cantly moderated by PTSD+mTBI comorbidity (b=0.00,
t=2.50, p=0.027, Figs. 3 and 4), whereas an mTBI diag-
nosis alone did not impact this relationship (p=0.088).

Association between whole-brain FA;

and psychological functioning

There was a significant negative association between
whole-brain FAt and psychological functioning (f=
-0.19, t=-2.35, p=0.020, Fig. 4). Lower scores on the
psychological functioning scale represent better function-
ing. Mild TBI (p=1.000) or PTSD+mTBI comorbidity
(p=1.000) did not significantly alter this relation, suggest-
ing that psychological functioning is associated with white
matter structure independently of these diagnoses.
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FIG. 4. Summary of findings. This figure illustrates the significant associations between allopregnanolone
(ALLO) and whole-brain white matter and between whole-brain white matter and psychological
functioning. Comorbidity of PTSD and mTBI significantly alters the strength of the observed relation
between ALLO and whole-brain white matter. PTSD, Post-traumatic stress disorder; mTBI, Mild traumatic
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Discussion
This study investigated the association among serum levels
of the neuroactive steroids ALLO and PREGNE, psycho-
logical functioning, and whole-brain white matter micro-
structure. Moreover, effects of mTBI and comorbidity of
PTSD and mTBI on these associations were assessed.
Higher serum levels of ALLO were associated with in-
creased white matter FAr. This suggests that higher lev-
els of ALLO may have neuroprotective effects on white
matter microstructure. Further, our results demonstrate
that the association between ALLO and white matter
FAr is stronger in individuals with PTSD and mTBI
comorbidity (Figs. 3 and 4), indicating that a decrease
in ALLO leads to a stronger decrease in FAr in these in-
dividuals. We suspect that these clinically highly bur-
dened individuals are more sensitive to alterations in
neuroactive steroids. Importantly, lower FAr is associ-
ated with poor overall psychological functioning in the
entire sample and independent of mTBI or PTSD diagno-
sis (Fig. 5).

Association between serum neuroactive

steroids and psychological functioning

We demonstrate that a common factor is underlying the
different symptom domains of psychological functioning.

0.62

o
@
et

o
@
o

Whole-brain FAy

b
o
©

-0 -05 200 25

00 05 10 15
Psychological Functioning
FIG. 5. Association between psychological
functioning and whole-brain FAt. This figure
shows the association between the
psychological functioning and whole brain FAT
(f=-0.20, t=-2.38, p=0.019). Lower scores on
the psychological functioning scale represent
better functioning. Scores are standardized
z-scores with a mean of 0 and a standard
deviation of 1.

This result suggests that the different psychological ques-
tionnaires measure a common overall construct. This
result is also in line with previous research showing
that psychological symptoms in military service mem-
bers assessed with different diagnostic tools are strongly
correlated,'> emphasizing further the shared nature of
symptoms.

Contrary to previous findings,
however, we did not detect a statistically significant asso-
ciation between serum neuroactive steroids and psycho-
logical functioning. Although most research studies to
date have shown a link between neuroactive steroids
and several dimensions of psychological functioning,
one other study also did not find a direct influence of neu-
roactive steroids on psychological symptoms.''> It
should be noted that many of the previously published
studies were conducted in animal models and that most
studies examined group comparisons rather than corre-
lations.*****” Moreover, previous research has focused
only on specific facets of psychological functioning
(such as in PTSD,!!3:114 depression,116 or s]eepso'sz),
whereas studies on overall psychological functioning
in relation to neuroactive steroids are currently missing.
Further, the few studies with human subjects examined
either men'"* or women''? and included much smaller
sample sizes than those in our study.>''*'!*

It is not yet clear to what extent sex might have af-
fected the association between neuroactive steroids and
psychological functioning. Therefore, future research
should specifically investigate whether the measured val-
ues are affected by sex, using larger sample sizes.

42,43,47.48.50-53.113.114

Association between serum neuroactive

steroids and whole-brain white matter
microstructure

We demonstrate an association between serum levels
of the neurosteroid ALLO and white matter micro-
structure. Previous research has attributed the positive
effects of ALLO on white matter microstructure to
anti-inflammatory,?***=*! anti-apoptotic,***** and pro-
myelinating®® effects previously reported for ALLO. In
fact, ALLO increases markers of myelinaltionI 17 and re-
duces inflammatory cytokines in the brains of mice.?
Moreover, ALLO promotes proliferation of neural pro-
genitor cells and regulates cell-cycle gene and protein
expression,''® thereby further benefitting white matter
microstructure.

Notably, the association between ALLO and white
matter microstructure was significantly stronger in partic-
ipants with the comorbidity of PTSD and mTBI, indicat-
ing that a decrease in ALLO levels may potentially lead
to a stronger negative effect on white matter microstruc-
ture in these clinically highly burdened individuals. This
is in line with previous research demonstrating that white
matter abnormalities are more severe in those with PTSD
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and mTBI than in those with either or neither condi-
tion.%37¢ Additionally, a study in this same cohort found
an association between neuroactive steroids and cortical
thickness only among individuals with PTSD and mTBI
comorbidity, but not in those with mTBI only or in
healthy controls.*®

In contrast to comorbid PTSD and mTBI, mTBI alone
did not show a statistically significant effect on the asso-
ciation between neuroactive steroids and white matter
alterations. It is of note that although most of the partic-
ipants with mTBI alone in our study still had prolonged
post-concussive symptoms, those who additionally had
PTSD were more severely impacted. Service members
with an additional current diagnosis of PTSD face ongo-
ing stress-related endocrine dysregulations, which adds
to their brain trauma sustained a decade ago.

Our findings thus support the hypothesis that neuro-
active steroids reveal their neuroprotective effects partic-
ularly in stress-related conditions. Stress and trauma
cause a variety of acute responses, such as upregulation
of the HPA axis''®'*® or neurodegenerative process-
es.'?122 In an attempt to regulate the stress response,
neuroactive steroids counteract these dysregulations by
promoting neuroregeneration and release neuroprotective
effects on white matter microstructure.?”-2%123-127 Thys,
the association between neuroactive steroids and white
matter microstructure may be most apparent in individu-
als with PTSD and mTBI comorbidity, as endocrine dys-
regulation46 and consequently brain alterations®>~%¢ are
most pronounced in these individuals.

Moreover, there could potentially be a threshold effect
of neuroactive steroids, meaning that they only exert ad-
verse brain effects when concentrations are at a critical
level."*® Individuals with a PTSD diagnosis in addition
to mTBI may be more likely to reach a critically low
level of neuroactive steroids than individuals with a dis-
tant history of mTBI or healthy individuals,*® so that neu-
roprotective mechanisms are no longer effective enough.
Additionally, individuals with a comorbid mTBI and
PTSD diagnosis also have a high prevalence of other
comorbidities, such as depressions’lzg’131 and alcohol-
ism,3%133 which may further increase the overall stress
burden and consecutive stress response and possible en-
docrine dysregulation.''>13*

Association between whole-brain white matter
microstructure and psychological functioning

In the present study, we found an association between
greater white matter microstructure alteration (decrease
in FAT) and worse psychological functioning. Our find-
ing is in line with previous studies, showing that various
psychopathological conditions such as depression® or
PTSD'*1%¢ are related to alterations in white matter
tracts in military service members.5*0%133136 Moreover,
our comprehensive approach adds to the existing litera-

ture by showing that whole-brain white matter micro-
structure is associated with overall psychological
functioning, independent of mTBI or PTSD diagnosis.
This association highlights the essential role of white
matter microstructure for psychological functioning in
general and, more importantly, suggests a common path-
ophysiology of psychological symptoms in military ser-
vice members.

There is a growing research interest in redefining neu-
ropsychiatric diseases as symptomatic expressions of cel-
lular and molecular dysfunctions of brain circuits.'” The
association between white matter changes and psycho-
logical functioning can be attributed to the fact that
white matter fiber tracts connect various nodes of brain
networks involved in psychological functioning.'*%'%*
Therapeutics that enhance white matter microstructural
integrity may thus also facilitate intra- and inter-
communication of brain networks and consequently
benefit psychological functioning.

Initial evidence of neuroactive steroids as a favor-
able treatment option for service members comes from
a pilot randomized controlled trial with an 8-week course
of exogeneous PREGNE administration after mTBI that
reported enhanced psychological functioning compared
with administration of a placebo.*> The findings suggest
that exogenous supplementation with neuroactive ste-
roids after trauma may benefit brain health and ultimately
also benefit psychological outcome. Future research is
needed to further investigate the therapeutic potential of
neuroactive steroids in the context of brain trauma by
also relating the effects of therapeutically administered
neuroactive steroids to neuroimaging findings.

Limitations
We acknowledge several limitations of this study. We
were not able to separately examine the effect of PTSD
because of the very small number of participants with
PTSD only (n=10). Therefore, we cannot entirely rule
out that PTSD and not the comorbidity of PTSD and
mTBI accounted for some of our findings. Moreover,
we were not able to assess differences between partici-
pants with PTSD+mTBI and those with PTSD+mTBI+
depression given the limited sample sizes. Future re-
search should consider depressive disorders in the rela-
tionship between neurosteroids and brain structure.
Similarly, we were not able to assess the effect of cur-
rent or past military service (e.g., active duty or veteran,
branch, deployment, and combat exposure) on our out-
come measures because of missing information. Future
studies are, therefore, needed to compare neuroactive ste-
roid levels, brain structure, and psychological functioning
between military and civilian PTSD and mTBI samples.
Moreover, although the INTruST mTBI screening tool
is a validated instrument, the newest gold standard for
retrospective TBI assessment post-combat is the Boston
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Assessment of Traumatic Brain Injury-Lifetime (BAT-L)'%

and the Ohio State University Identification TBI
Method (OSU-TBI-ID)'*! for both civilian and mili-
tary TBI.

Further, we note that diffusion weighted imaging pro-
vides only an approximation of neural pathology. How-
ever, the correction for extracellular free-water adds to
the specificity of diffusion tensor imaging (DTI) metrics.
FAr is a more accurate marker of cellular processes than
the conventional FA and, therefore, an improved index of
white matter health in the living.

It should also be noted that we measured serum levels
of ALLO and PREGNE and not CSF levels. Although
studies in mice suggest that peripheral markers of neuro-
active steroids are adequate proxies for central process-
es,142’144 additional research is needed. Further, ALLO
and PREGNE levels might be influenced by factors that
we are not accounting for, such as the time point of
blood draw, the menstrual cycle phase,'*>'%® or oral con-
traception use in women.''>'*7 It is of note that there is
some evidence that basal neurosteroid concentrations
are higher in women than in men and that neurosteroid
concentrations in women are more impacted by stress.'*®
The limited female sample size in our study, however,
prevented us from examining the sexes independently
and should be targeted in future studies. Psychiatric med-
ication use was not consistently assessed. We were there-
fore not able to control for this potential confounder.

Finally, although we report a relationship between
neurosteroid levels and white matter microstructure, the
interpretation of causal relationships is limited, given
the cross-sectional study design. However, it should be
noted that the present study represents one of the most ex-
tensive studies investigating the association between neu-
roactive steroids and brain structural alterations and is
consistent with previous research regarding additive
effects of mTBI and PTSD on brain structure.””6>'4°
Longitudinal research is needed to further explore the re-
lationship among neuroactive steroids, white matter mi-
crostructure, and psychological functioning.

Conclusion

We report that higher neurosteroid levels are associated
with increased FAt of the whole brain’s white matter.
This result underscores previous reports on the neuropro-
tective effect of neuroactive steroids. Importantly, white
matter alterations are associated with worse psychologi-
cal functioning.

Further, results from this study suggest that comorbid-
ity of PTSD and mTBI may bring the compensatory ef-
fects of the brain’s stress response to their limit, where
lower levels of neuroactive steroids are associated with
an even steeper increase in alterations of white matter mi-
crostructure. Thus, this study provides insight into what
could potentially be a common pathophysiological mech-

anism underlying the high risk for various psychiat-
ric symptoms and diagnoses in those with PTSD and
mTBI: a dysregulated stress response system. Future re-
search is needed to investigate whether neurosteroid
regulation may be a promising tool for preserving or re-
storing brain health and for improving psychological
functioning in veterans.
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Abstract

IMPORTANCE Military service members returning from theaters of war are at increased risk for
mental illness, but despite high prevalence and substantial individual and societal burden, the
underlying pathomechanisms remain largely unknown. Exposure to high levels of emotional stress in
theaters of war and mild traumatic brain injury (mTBI) are presumed factors associated with risk for
the development of mental disorders.

OBJECTIVE To investigate (1) whether war zone-related stress is associated with microstructural
alterations in limbic gray matter (GM) independent of mental disorders common in this population,
(2) whether associations between war zone-related stress and limbic GM microstructure are
modulated by a history of mTBI, and (3) whether alterations in limbic GM microstructure are
associated with neuropsychological functioning.

DESIGN, SETTING, AND PARTICIPANTS This cohort study was part of the TRACTS (Translational
Research Center for TBI and Stress Disorders) study, which took place in 2010 to 2014 at the Veterans
Affair Rehabilitation Research and Development TBI National Network Research Center. Participants
included male veterans (aged 18-65 years) with available diffusion tensor imaging data enrolled in
the TRACTS study. Data analysis was performed between December 2017 to September 2021.
EXPOSURES The Deployment Risk and Resilience Inventory (DRRI) was used to measure exposure
to war zone-related stress. The Boston Assessment of TBI-Lifetime was used to assess history of
mTBI. Stroop Inhibition (Stroop-IN) and Inhibition/Switching (Stroop-IS) Total Error Scaled Scores
were used to assess executive or attentional control functions.

MAIN OUTCOMES AND MEASURES Diffusion characteristics (fractional anisotropy of tissue [FA{])
of 16 limbic and paralimbic GM regions and measures of functional outcome.

RESULTS Among 384 male veterans recruited, 168 (mean [SD] age, 31.4 [7.4] years) were analyzed.
Greater war zone-related stress was associated with lower FA; in the cingulate (DRRI-combat left:
P =.002, partial r = -0.289; DRRI-combat right: P = .02, partial r = -0.216; DRRI-aftermath left:

P = .004, partial r = -0.281; DRRI-aftermath right: P = .02, partial r = -0.219), orbitofrontal (DRRI-
combat left medial orbitofrontal cortex: P = .02, partial r = -0.222; DRRI-combat right medial
orbitofrontal cortex: P = .005, partial r = -0.256; DRRI-aftermath left medial orbitofrontal cortex:

P =.02, partial r = -0.214; DRRI-aftermath right medial orbitofrontal cortex: P = .005, partial

r = -0.260; DRRI-aftermath right lateral orbitofrontal cortex: P = .03, partial r = -0.196), and
parahippocampal (DRRI-aftermath right: P = .03, partial r = -0.191) gyrus, as well as with higher FA;
in the amygdala-hippocampus complex (DRRI-combat: P = .005, partial r = 0.254; DRRI-aftermath:
P = .02, partial r = 0.223). Lower FA in the cingulate-orbitofrontal gyri was associated with impaired

(continued)
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Key Points

Question Is war zone-related stress
associated with limbic gray matter (GM)
microstructure?

Findings In this cohort study of US
veterans, exposure to war zone-related
stress was associated with alterations
in limbic GM microstructure,
independent of the diagnosis of mental
disorder or mild traumatic brain injury.
Furthermore, GM microstructure was
associated with cognitive functioning.

Meaning These findings suggest that
war zone-related stress may lead to
limbic GM microstructure alterations,
which may underlie the deleterious
outcomes of war zone-related stress on
brain health and that military service
members may benefit from early
therapeutic interventions following
deployment.
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Abstract (continued)

response inhibition (Stroop-IS left cingulate: P < 001, partial r = -0.440; Stroop-IS right cingulate:

P <.001, partial r = -0.372; Stroop-IS left medial orbitofrontal cortex: P < .001, partial r = -0.304;
Stroop-IS right medial orbitofrontal cortex: P < .001, partial r = -0.340; Stroop-IN left cingulate:

P < .001, partial r = -0.421; Stroop-IN right cingulate: P < .001, partial r = -0.300; Stroop-IN left
medial orbitofrontal cortex: P = .01, partial r = -0.223; Stroop-IN right medial orbitofrontal cortex:
P < 001, partial r = -0.343), whereas higher FA; in the mesial temporal regions was associated with
improved short-term memory and processing speed (left amygdala-hippocampus complex: P < .001,
partial r = =0.574; right amygdala-hippocampus complex: P < .001, partial r = 0.645; short-term
memory left amygdala-hippocampus complex: P < .001, partial r = 0.570; short-term memory right
amygdala-hippocampus complex: P < 1001, partial r = 0.633). A history of mTBI did not modulate the
association between war zone-related stress and GM diffusion.

CONCLUSIONS AND RELEVANCE This study revealed an association between war zone-related
stress and alteration of limbic GM microstructure, which was associated with cognitive functioning.
These results suggest that altered limbic GM microstructure may underlie the deleterious outcomes
of war zone-related stress on brain health. Military service members may benefit from early
therapeutic interventions after deployment to a war zone.

JAMA Network Open. 2022;5(9):e2231891. doi:10.1001/jamanetworkopen.2022.31891

Introduction

Military personnel serving in theaters of war are at increased risk for physical and mental health
problems following deployment.’ Mental health-related disorders are pervasive; up to 30% of
service members returning from Operation Enduring Freedom (OEF), Operation Iragi Freedom (OIF),
or Operation New Dawn (OND) receive a diagnosis of a mental iliness, such as posttraumatic stress
disorder (PTSD), anxiety, or depression.*® Known factors associated with postdeployment mental
disorders include combat exposure and associated psychosocial stressors.”® Importantly, service
members exhibit symptoms related to war zone stress and experience low quality of life even if they
do not meet the diagnostic criteria for a mental disorder.'® Furthermore, despite the prevalence and
adversity of war zone-related stress, the majority of previous studies have not specifically
investigated the impact of war zone-related stress, and even fewer have used quantitative
questionnaires such as the Deployment Risk and Resilience Inventory (DRRI) to quantify perceived
war zone-related stress." " Although mental health problems are highly prevalent in postdeployed
military service members'® and war zone-related stress has been discussed as a risk factor, the
underlying pathomechanisms remain poorly understood.

Furthermore, approximately 12% to 35% of OEF, OIF, and OND veterans have sustained a mild
traumatic brain injury (mTBI).'"® Evidence suggests that mTBl is not only a highly prevalent
comorbidity but is also considered a potential risk factor for the development of mental disorders. In
fact, service members who have sustained mTBI have a significantly increased risk for developing
PTSD''62922 and depression."?** Moreover, they exhibit poorer neurocognitive functioning, worse
long-term recovery,?* and more severe neurological impairment®52” compared with those who have
not sustained mTBI. However, itis unknown whether comorbidity with mTBI modulates a possible
association between war zone-related stress and alterations of brain structure and
neuropsychological functioning. A better understanding of the outcomes of war zone-related stress
on brain microstructure and function is critical for improving long-term health and quality of life of
military service members returning from theaters of war.

Magnetic resonance imaging (MRI) provides a noninvasive way to study brain alterations as it
allows for the in vivo, 3-dimensional investigation of brain macrostructure and microstructure.2®
Neuroimaging studies have linked neuropsychiatric disorders, including PTSD and mTBI, to

|£ JAMA Network Open. 2022:5(9):e2231891. doi:101001/jamanetworkopen.2022.31851 September 16,2022 217
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macrostructural brain alterations.?® However, although an association between diagnoses and
abnormal brain structure has been established, research on the outcomes of war zone-related stress
on brain structure is sparse. Combat exposure has been found to be associated with lower volume
of limbic or limbic-associated gray matter (GM) regions, such as the amygdala,>° hippocampus,"32
orbitofrontal gyrus,® posterior insula,®* ventromedial prefrontal cortex, and dorsal anterior
cingulate cortex.3> Of note, although lower limbic GM volumes have been associated with PTSD
symptom severity and extent of alcohol use, other disorders commonly seen in this population have
previously not been considered.

Diffusion-weighted MRI (dMRI) has been shown to be sensitive to subtle microstructural brain
alterations associated with neuropsychiatric disorders, such as PTSD and mTBI.2° Complementary to
volumetric measures, dMRI has the potential to reveal alterations in tissue composition (eg, glial
changes®-38 and atrophy>®) and tissue morphologic changes (eg, alterations in dendritic
arborization*©-42), thereby providing insight into underlying pathomechanisms. Although most
research to date has focused on the microstructure of connecting white matter (WM) fiber
tracts,****¢ studies on the limbic GM microstructure are sparse. Importantly, to our knowledge, no
study to date has investigated the association between combat exposure and limbic GM diffusion,
although limbic GM constitutes an essential neuroanatomical correlate of mental and

neuropsychological functioning as suggested previously by volumetric studies>"3247

of limbic system
structures in postdeployed veterans. The aim of this study is to investigate (1) whether war zone-
related stress is associated with microstructural alterations in limbic GM independent of mental
disorders, (2) whether associations between war zone-related stress and limbic GM microstructure
are modulated by a history of mTBI, and (3) whether alterations in limbic system GM microstructure

are associated with neuropsychological functioning.

Methods

This cohort study was approved by the institutional review board of human studies research at the
Veterans Affair Boston Healthcare System and all participants provided written informed consent.
The study follows the Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE) reporting guideline for observational studies.

Participants

The Translational Research Center for TBI and Stress Disorders (TRACTS) study is a longitudinal
prospective cohort study that aims to assess and track the potential outcomes of psychologically and
physically traumatic experiences related to military deployment over time. Inclusion criteria for
enroliment into the TRACTS study were (1) age 18 to 65 years, (2) male sex, and (3) service in OEF,
OIF, or OND, or scheduled deployment.“® Exclusion criteria were (1) history of neurological illness
other than TBI; (2) current diagnosis of schizophrenia spectrum or other psychotic disorders; (3)
current diagnosis of bipolar or related disorders; (4) active suicidal and/or homicidal ideation, intent,
or plan requiring crisis intervention; and (5) cognitive disorder due to general medical condition other
than TBI. Parameters with potential impact on cerebral microstructure and resilience such as
eduction, socioeconomic status, race and ethnicity were collected via interview.

Of the first 384 consecutively recruited veterans, 273 consented to share their data with
investigators outside of TRACTS. Of these 273 veterans, several had to be excluded from the present
study for the following reasons: predeployment status (ie, military service members who had not yet
been deployed to combat zones) (15 participants), postenroliment report of neurological disorders
(ie, history of meningitis, or brain surgery; 4 participants), history of moderate or severe TBI (15
participants), and exposure to neurotoxic chemicals or anoxia (30 participants). Another 26 cases did
not pass the rigorous quality control of the MRI data, and 15 cases had missing clinical variables
required for this study. The selection process is summarized in Figure 1.
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Diagnostic and Clinical Assessment

Assessment of Psychiatric Disorders

The nonpatient edition of the Structured Clinical Interview for DSM-IV Axis | Disorders (SCID-I/NP)*°
was used to detect the presence of psychopathological disorders. The following modules were
administered: module D, mood disorders; module E, substance use disorders; module F, anxiety
disorders (except PTSD); module H, eating disorders; and module |, adjustment disorders. Presence
and history of PTSD were determined according to the Clinician-Administered PTSD Scale (CAPS)>°
using the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition) (DSM-1V) standard
scoring rule.”

Assessment of mTBI

The Boston Assessment of TBI-Lifetime (BAT-L)'” was conducted to diagnose lifetime history of TBI.
Specifically, mTBI was defined by the following criteria: loss of consciousness for 30 minutes or less,
posttraumatic amnesia for 24 hours or less, or altered mental status for 24 hours or less.”

Assessment of War Zone-Related Stress

Stressors associated with deployment to war zones were assessed via selected scales from the
DRRI.>2 The combat experiences and aftermath of battle scales were used to assess perceived war
zone-related stress. Both DRRI subscales (called hereafter DRRI-combat and DRRI-aftermath)
consist of 16 questions concerning combat or war zone-related events. The DRRI-combat uses a
5-point Likert frequency scale (O = never; 4 = daily or almost daily), yielding a maximum possible
score of 64 points. The DRRI-aftermath scale uses a binary response (O = no and 1 = yes), resulting
in @ maximum score of 16 points. Higher scores on both the DRRI-combat and DRRI-aftermath scale
reflect greater exposure to deployment-related stressors.

Assessment of Functional Outcome

The World Health Organization Disability Assessment Schedule Il (WHODAS 11)°3 is a 36-item self-
report questionnaire that was designed to measure disability associated with all physical and mental
disorders including cognition, mobility, self-care, getting along, life activities, and participation.
Functional impairments within the last 30 days are rated on a 5-point scale (O = no disability;

Figure 1. Flowchart of the Cohort Selection Process

‘ 384 Veterans enrolled in TRACTS ‘

111 Excluded did not agree to share the data with

‘ investigators outside of VA

‘ 273 Veterans available for study ‘

64 Excluded
15 Predeployment status
—> 4 Postenrollment report of neurological disorders
30 Exposure to neurotoxic chemicals or anoxia
15 History of moderate or severe TBI

‘ 209 Clinically preselected cohort ‘

—>‘ 15 Missing clinical variables required for the study analyses ‘

‘ 194 Full data sets ‘

‘ MRI indicates magnetic resonance imaging; TBI
traumatic brain injury; TRACTS, Translational Research
Center for TBI and Stress Disorders; VA,
‘ Veterans Affairs.

*,‘ 26 Excluded insufficient MRI quality

‘ 168 Final study cohort
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4 = extreme disability/cannot do). A total disability score is calculated by summing the scores across
all subscales. Higher scores reflect greater disability.

The Neurobehavioral Symptom Inventory (NSI) is a 22-item self-report questionnaire used to
assess postconcussion symptoms following TBI.>* Tested symptoms include sensory, affective,
vestibular, and cognitive symptoms, rated on a 5-point Likert scale (O = none; 4 = very severe).
Higher scores reflect more severe neurobehavioral symptoms.

According to identified limbic regions with GM diffusion alterations, the Digit Span Total Score
(DSTot) and the Coding Raw Scores® were chosen from the comprehensive neuropsychological test
battery,*® as they reflect functions of the frontal and temporal lobe (ie, verbal short-term memory
performance and processing speed). In addition, Stroop Inhibition (Stroop-IN) and Inhibition/
Switching (Stroop-1S) Total Error Scaled Scores™® were selected to assess more specifically executive
or attentional control functions associated with the prefrontal and cingulate cortex,>”-%2
higher Total Error Scaled Scores reflect impaired response inhibition and vice versa.

whereby

Assessment of Hypervigilance

The CAPS criterion D was used to assess the frequency and intensity of symptoms of hypervigilance
at postdeployment, including difficulty sleeping, irritability, difficulty concentrating, hypervigilance,
and exaggerated startle response. Answers were rated on a 5-point Likert scales ranging from O to 4
and summarized in a total score, resulting in a maximum score of 40 points.

Effort Testing

Performance validity was assessed via the Verbal Multiple Symptom Validity Test (MSVT).%3 The
MSVT evaluates verbal learning, memory, and response consistency. It is composed of the subtests
immediate recall, delayed recognition, consistency of responding across immediate recall, and
delayed recognition, as well as paired associates and free recall. Study participants who failed the
MSVT (8 participants) were excluded from the post hoc analyses as they were suspected of potential
reduced effort or malingering.

MRI Acquisition and Data Processing

MRI of the brain was performed using a 3-Tesla TIM Trio scanner (Siemens Healthineers) located at
the VA Medical Center in Boston, Massachusetts. T1-weighted (T1w) gradient-echo sequence
parameters were field of view, 256 mm; 256 sections; inversion time, 1.000 ms; repetition

time, 2.530 ms; echo time, 3.32 ms; flip angle, 7°; and isotropic resolution, 1x 1x 1mm?>. dMRI was
acquired using a single-shot, echo-planar sequence with a twice-refocused spin-echo pulse and the
following parameters: field of view, 256 mm; 64 axial sections with no intersection gap; 60 gradient
directions with a b-value of 700 seconds/mm?; 10 b = O volumes; repetition time, 10 000 ms; echo
time, 103 ms; and isotropic resolution, 2 x 2 x 2 mm?.

dMRI data were corrected for motion and eddy current distortions via affine registration to the
first b = O volume using FMRIB Software Library, version 5.1 (The Oxford Centre for Functional MRI
of the Brain).®* Brain masks were created and manually edited in 3D Slicer, version 4.5 (Surgical
Planning Laboratory, Brigham and Women s Hospital).®> Automated segmentation of brain regions
from the Tlw data was performed using FreeSurfer®® (version 5.1.0).%”

Free water (FW)-corrected diffusion tensor measures were derived from dMRI using in-house
software.®® FW imaging separates the dMRI signal into 2 compartments: a FW and a tissue
compartment. FW in the brain is expected where water molecules are free to diffuse, such as in
cerebrospinal fluid, and large extracellular spaces. We calculated a fractional anisotropy of tissue
(FA7) map from the FW-corrected diffusion tensor, which serves as a more accurate marker of
anisotropy in brain tissue than the conventional FA measure. To obtain diffusion metrics for selected
regions, FreeSurfer parcellation label maps were nonlinearly registered from the individual T1w space
to the respective dMRI space to obtain diffusion metrics for selected regions. Eight limbic and
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paralimbic GM regions in each hemisphere were evaluated—that is, cingulate gyrus, amygdala-
hippocampus complex, parahippocampal gyrus, entorhinal cortex, lateral and medial orbitofrontal
cortex, insula, and temporal pole. Amygdala and hippocampus were combined into 1 region of
interest to ensure higher parcellation accuracy.®® For each of these 8 bihemispheric regions of
interest (16 in total), the mean of the diffusion measure (FA;) was calculated.

Statistical Analysis

Statistical analyses were performed using SAS statistical software version 9.4 (SAS Institute). Means
and SDs are displayed for continuous parameters, while absolute and relative frequencies are
provided for noncontinuous variables. Generalized linear models for repeated measures using the
restricted maximum likelihood approach and an unstructured covariance matrix across brain regions
were used to evaluate the association of war zone-related stress with regional diffusion measures.
The following parameters were selected a priori as covariates: age, diagnosis of current PTSD, mood,
anxiety, substance use disorder, and weight-corrected lifetime drinking history (LDH). To test the
outcomes of mTBI on the association between war zone-related stress and limbic GM diffusion, the
number of lifetime mTBIs was added as fixed effect as well as modifier to the main effect.

Post hoc analyses were conducted to test for associations between diffusion measures that
were significantly associated with war zone stress and neurobehavioral symptoms (NSI), cognitive
(DSTot, Coding Raw Score, and Stroop IN/IS Total error scaled score), and disability (WHODAS).
Participants who failed error testing (MSVT) were excluded from the post hoc analyses. Age,
diagnosis of current PTSD, mood, anxiety, and substance use disorder, and LDH were included as
covariates.

A false discovery rate”® was set at 5% to correct for multiple comparisons, using the Benjamini-
Hochberg method. A corrected 2-tailed P < .05 was considered significant. Data were analyzed
December 2017 to September 2021.

Results

The final study cohort encompassed 168 male veterans with a mean (SD) age of 31.4 (7.4) years.
Sample demographic characteristics are summarized in Table 1. The vast majority of participants
were White (130 participants [77%]), followed by 24 Hispanic participants (14%) and 11 Black
participants (6%) (Table 1). Although the level of education was balanced across the cohort (mean
[SD] 13.9 [1.9] school years), potentially relevant differences were observed for the family status as
only 38% (64 participants) were married or cohabiting.

Associations of War Zone-Related Stress With Limbic GM Diffusion
In the cohort of 168 veterans, greater war zone-related stress as assessed by DRRI-combat and DRRI-
aftermath was negatively associated with FA; in the bilateral cingulate gyri (DRRI-combat left:
P =.002, partial r = -0.289, df = 167; DRRI-combat right: P = .02, partial r = -0.216, df = 167; DRRI-
aftermath left: P = .004, partial r = -0.281, df = 167; DRRI-aftermath right: P = .02, partial r = -0.219,
df = 167) and bilateral medial orbitofrontal gyri (DRRI-combat left medial orbitofrontal cortex:
P = .02, partial r = -0.222, df = 167; DRRI-combat right medial orbitofrontal cortex: P = .005, partial
r =-0.256, df = 167; DRRI-aftermath left medial orbitofrontal cortex: P = .02, partial r = -0.214,
df = 167; DRRI-aftermath right medial orbitofrontal cortex: P = .005, partial r = -0.260, df = 167;
DRRI-aftermath right lateral orbitofrontal cortex: P = .03, partial r = -0.196, df = 167). Notably, these
associations were observed while controlling for age, PTSD diagnosis, mood disorder, anxiety
disorder, and substance use disorder as well as LDH.

Moreover, a negative association was observed between DRRI-aftermath and the right lateral
orbitofrontal gyrus FA; and right parahippocampal gyrus FA; (P = .03, partial r = -0.191, df = 167). In
contrast, a positive association was found for both measures of war zone-related stress and FA; in
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the right amygdala-hippocampus complex (DRRI-combat: P=.005, partial r = 0.254, df = 167; DRRI-
aftermath: P = .02, partial r = 0.223, df = 167). Results are summarized in Table 2.

Outcomes of mTBI on the Association of War Zone-Related Stress
and Limbic GM Diffusion

The majority of veterans (109 of 168 [64.9%]) sustained at least 1 mTBI before or during deployment.

They reported having experienced a mean (SD) of 1.38 (2.23) mTBlIs throughout life with a maximum
number of 18 mTBIs. Number of lifetime mTBIs was not associated with limbic GM diffusion and did
not mediate the association between war zone-related stress and limbic GM FA.

Table 1. Demographics, Deployment-Related Factors,
and Postdeployment Characteristics of Study Cohort

Participants,

No. (%)
Variable (N = 168)
Demographics
Age, mean (SD), y 31.36 (7.43)
Race and ethnicity
Asian 2(1.19)
Black 11 (6.55)
Hispanic 24(14.29)
Unknown 1 (0.60)
White 130(77.38)
Education mean (SD), school years 13.86(1.93)
Married or cohabitating 64 (38.10)
Deployment factors
OEF, OIF, or OND deployments, mean (SD), No. 1.4(0.7)
Other stressful deployments, mean (SD), No. 0.41(0.79)
Duration of OEF, OIF, or OND deployments, 13.82(8.45)
mean (SD), mo
Service in army branch 101 (60.12)

DRRI total score, mean (SD)

Combat experience (DRRI-combat)

17.31(12.02)

Aftermath exposure (DRRI-aftermath) 7.65 (4.7)
Military mTBIs, mean (SD), No. 0.63(1.53)
Wounded or injured in combat 35(20.83)

Postdeployment characteristics

Time since last deployment, mean (SD), mo

40.07 (29.98)

Disorder

Mood 35(20.83)

Anxiety 28 (16.67)
PTSD diagnosis 112 (66.67)
Clinician-Administered PTSD Scale, mean (SD)? 78.35(22.9)
Substance use disorder 25(14.88)
Lifetime drinking history, weight corrected, 1790.6
mean (SD) (2092.7)
Lifetime TBIs, mean (SD) 1.38(2.23)

Abbreviations: DRRI, Deployment Risk and Resilience Inventory; mTBI, mild
traumatic brain injury; OEF, Operation Enduring Freedom; OIF, Operation Iraqi
Freedom; OND, Operation New Dawn; PTSD, posttraumatic stress disorder; TBI,
traumatic brain injury.

2 Clinician-Administered PTSD Scale score was evaluated for 112 veterans who
met diagnostic criteria for postdeployment PTSD.
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Association of Limbic GM Diffusion and Functional Outcome

Results of the post hoc analysis of diffusion and associated functioning are shown in Table 3.
Decreased FA; in the cingulate gyri and the medial orbitofrontal cortex was associated with impaired
response inhibition (Stroop-IS left cingulate: P < .001, partial r = -0.440, df = 151; Stroop-IS right
cingulate: P < .001, partial r = -0.372, df = 151; Stroop-IS left medial orbitofrontal cortex: P < .001,
partial r = -0.304, df = 151; Stroop-IS right medial orbitofrontal cortex: P < .001, partial r = -0.340,
df = 151; Stroop-IN left cingulate: P < .001, partial r = -0.421, df = 151; Stroop-IN right cingulate:

P <.00]1, partial r = -0.300, df = 151; Stroop-IN left medial orbitofrontal cortex: P = .01, partial

r =-0.223; df =151; Stroop-IN right medial orbitofrontal cortex: P < .001, partial r = -0.343, df = 151),
but with better frontotemporal functions (DSTot left amygdala-hippocampus complex: P < .001,
partial r = -0.574, df = 159; DSTot right amygdala-hippocampus complex: P < .001, partial r = 0.645,
df =159; short-term memory left amygdala-hippocampus complex: P < .001, partial r = 0.570,

df = 156; short-term memory right amygdala-hippocampus complex: P < .001, partial r = 0.633,

df = 156). In contrast, impaired response inhibition and improved verbal short-term memory

Table 2. Association of War Zone-Related Stress and Limbic Gray Matter Diffusion Using Fractional Anisotropy of Tissue

Combat exposure (DRRI-combat) Aftermath exposure (DRRI-aftermath)
Left hemisphere Right hemisphere Left hemisphere Right hemisphere
FDR corrected FDR corrected FDR corrected FDR corrected
Region Partial r* P value Partial r* P value Partial r* P value Partial r* P value
Amygdala-hippocampus complex ~ 0.158 .09 0.254 .005° 0.136 .14 0.224 .02°
Cingulate gyrus -0.289 .002° -0.216 .02° -0.281 .004° -0.219 .02°
Entorhinal cortex 0.020 .80 0.121 21 -0.023 .88 0.049 .65
Insular cortex -0.058 .52 -0.057 .52 -0.138 .14 -0.061 .57
Lateral orbitofrontal cortex -0.081 43 -0.151 .10 -0.083 41 -0.196 .03°
Medial orbitofrontal cortex -0.222 .02° -0.256 .005° -0.214 .02° -0.260 .005°
Parahippocampal gyrus -0.059 .52 -0.166 .08 -0.009 .97 -0.191 .03
Temporal pole -0.089 .40 0.053 .52 -0.224 .39 -0.003 .97
Abbreviations: DRRI, Deployment Risk and Resilience Inventory; FDR, false ® Denotes significant results.

discovery rate.

2 The higher the partial r, the stronger the linear association between 2 variables.
Positive values represent positive correlations, and negative values represent negative
orinverse correlations.

Table 3. Association of Limbic Gray Matter Diffusion Using Fractional Anisotropy of Tissue and Cognitive Functioning

Stroop inhibition

Total error Switching total error
Digit Span Total Score Coding Raw Score scaled score scaled score
FDR corrected FDR corrected FDR corrected FDR corrected

Region Partial r P value Partial r* P value Partial r P value Partial r* P value

Left amygdala-hippocampus comp ~ 0.574 <.001° 0.570 <.001° 0.443 <.001° 0.483 <.001°

Left cingulate gyrus -0.393 <.001° -0.330 <.001° -0.421 <.001° -0.440 <.001°

Left lateral orbitofrontal cortex -0.058 74 -0.006 .94 -0.036 .79 -0.044 .78

Left medial orbitofrontal cortex -0.202 .02° -0.193 .03° -0.223 .01° -0.304 <.001°

Left parahippocampal gyrus 0.042 .80 0.007 .94 0.059 .79 0.013 .95

Right amygdala-hippocampus comp  0.645 <.001° 0.633 <.001° 0.500 <.001° 0.518 <.001°

Right cingulate gyrus -0.290 <.001° -0.237 .007° -0.300 <.001° -0.372 <.001°

Right lateral orbitofrontal cortex 0.041 .80 0.024 .76 -0.038 .79 0.005 .95

Right medial orbitofrontal cortex -0.263 .002° -0.262 .003° -0.343 <.001° -0.340 <.001°

Right parahippocampal gyrus -0.001 .99 -0.021 .79 -0.032 .79 -0.103 .35
Abbreviation: FDR false discovery rate. ® Denotes significant results.
2 The higher the partial r, the stronger the linear association between 2 variables.

Positive values represent positive, and negative values represent negative or inverse

correlations.
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performance and processing speed were associated with increased FA; in the amygdala-
hippocampal region (Figure 2). No significant associations were revealed for limbic GM diffusion and
(postconcussion) neurobehavioral symptoms or disability (eTable 1in the Supplement).

Association of Limbic GM Diffusion and Hypervigilance State

Hypervigilance at postdeployment was positively associated with FA; in the amygdala-hippocampal
region (left: P < .001, partial r = 0.325, df = 165; right: P <.001, partial r = 0.309; df = 165) and
negatively associated with FA in the cingulate gyri (left: P < .01, partial r = -0.253 df = 165; right: P <
.01; partial r = -0.261 df = 165). The results are summarized in eTable 2 in the Supplement.

Discussion

This cohort study found an association between war zone-related stress and microstructure of limbic
GM in veterans. Importantly, these findings were observed while accounting for common
comorbidities, including PTSD, mood, anxiety, and substance use disorder. Furthermore, mTBI had
no significant effect on the association between war zone-related stress and limbic GM
microstructure. Finally, characteristics of limbic GM microstructure were associated with cognitive
performance including verbal short-term memory, processing speed, and response inhibition, while
no associations with overall disability and neurobehavioral symptoms were found.

War Zone-Related Stress and Limbic GM Diffusion
This study revealed a co-occurring decrease and increase in limbic GM FA;. More specifically, the
greater the experienced war zone-related stress, the lower FA; was in the cingulate gyri, the medial
orbitofrontal gyri, the right lateral orbitofrontal gyrus, and the right parahippocampal gyrus.
Moreover, the greater the experienced war zone-related stress, the higher the FA; in the amygdala-
hippocampus complex. Importantly, associations described previously were independent of
diagnosis of mental disorders as well as mTBI.

The interpretation of diffusion measures in GM is challenging as data linking diffusion to
histologic profile is sparse.3”7”74 FA in GM likely reflects diffusion properties of the main GM
components (ie, astroglia, neurons, and axons). For example, a study in mice reveals an association

Figure 2. Model of Structural Brain Alterations and Associated Cognitive Function in the Context
of War Zone-Related Stress

War zone-related stress was associated with
decreased fractional anisotropy of tissue (FA;) in
cingulate and orbitofrontal cortex, as well as increased
FA; in the amygdala-hippocampus complex. Limbic
gray matter FA; measures were further associated
with cognitive function (ie, impaired response
inhibition as well as improved verbal short-term
memory and processing speed). Taken together with
the current literature on functional imaging in
posttraumatic stress disorder, we propose that the
observed diffusion alterations may result from a
functional shift from frontolimbic toward mesial
temporal structures (shift of functional demand from
cingulate and orbitofrontal regions toward mesial
temporal regions).

War zone-related

Cingulate gyrus
Decrease in FA; and response inhibition

Orbitofrontal gyrus

Decrease in FA;

Increase in FA; and processing
speed and verbal short-term memory

Amygdala-hippocampus complex
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between decreased FA and decreased astrocyte density in the hippocampus.”' Astrocytes play a
crucial role in complex brain functions, such as neurotransmitter homeostasis and blood-brain barrier
maintenance.”® Moreover, a decrease in astrocytes predisposes the brain to inflammatory states.”>7”®
Another dMRI study”” in a murine model of Parkinson disease found an association between
decreased FA; in the substantia nigra and neuronal loss. Taken together, the association between war
zone-related stress and decreased FA; in the cingulate, orbitofrontal gyri, and right parahippocampal
gyrus may potentially be due to a decrease in astrocytes and/or neurons.

Interestingly, a positive association was found for greater war zone-related stress and higher
FA; in the amygdala-hippocampus complex. Increased FA; in GM and WM has been associated with
neuroplastic remodeling.”2”* In rodents, long-term learning and memory tasks induced an FA
increase, particularly in limbic system structures such as the amygdala, the parahippocampal gyrus,
and the cingulate cortex, which correlated with an increase in a myelin marker (myelin basic protein)
in the histological analysis.”?” The authors’>”3 hypothesized that oligodendrocytes, which form
the myelin sheaths in the central nervous system, produced more myelin basic protein postlearning
to allow for the required flow of information. Taken together, findings of our study suggest regional
differences in the association between war zone-related stress and alterations in GM microstructure
that may be due to neurodegenerative and neuroplastic processes.

Association Between Limbic GM Diffusion and Functional Outcome

We observed improved frontotemporal brain functions (ie, short-term memory and processing
speed) in association with increased FA; in the amygdala-hippocampal complex (Figure 2), which is
in line with previous studies that report a link between processing speed and hippocampal FA.”8-80
Our study results further suggest an association between improved frontotemporal brain functions
with war zone-related stress.®' It has been hypothesized that hypervigilance and readiness to
respond to combat-related challenges may be advantageous adaptations to the highly stressful
environment. However, it may be challenging to transition back to normal states of alertness when
returning from deployment. The chronic activated state may consequently lead to a functional
overuse of frontotemporal brain functions. This overuse may induce neuroplastic changes as
suggested by the increased FA; in the amygdala-hippocampal complex”® found in this study. This
hypothesis is supported by our finding of a significant association between hypervigilance state at
postdeployment and increased FA+ in the amygdala-hippocampal complex.

At the same time, we observed impaired prefrontal-cingulate functions (response inhibition) in
association with lower FA; in prefrontal regions. This is thought to result from functional (emotional
or stress) overuse of mesial temporal structures, as described previously, which may, in turn, lead to
poorer performance in other cognitive tasks, a phenomenon called interference.®284 Interference
or shift of emotion and cognition has previously been described in patients with PTSD®° as well as in
veterans. More specifically, impaired memory consolidation and reduced learning speed were
observed in veterans returning from OEF, OIF, or OND.8%87 Of note, those functions are typically
associated with the prefrontal-cingulate cortex,6-8° regions that have been found to have lower FA;
in association with war zone stress in the current study.

Taken together, we hypothesize that the outcomes of war zone-related stress outlast
deployment, leading to attentional interference with increased functional use of mesial temporal
structures and decreased use or impaired retrieval of prefrontal-cingulate functions. This hypothesis
is further supported by functional MRI studies,®° which have reported a hypoconnectivity of mesial
temporal and prefrontal brain regions under conditions of stress. The functional interference may, in
turn, lead to microstructural adaptations, reflected by increased FA; in the amygdala-hippocampus
complex and decreased FA; in the cingulate and orbitofrontal gyri (Figure 2). This biological adaptive
response may potentially, in addition to preexisting biological predisposition for deployment, mean
that service members with outstanding processing speed and verbal short-term memory might be
more likely to join the military and to be deployed.
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No significant associations were found between limbic GM diffusion and more general
measures of functional outcome following mTBI (ie, the WHODAS and NSI). We thus speculate that
abnormalities in the limbic system may need to be more severe to cause impairments in everyday
functioning. Furthermore, the observed limbic alterations may represent a minor contributor to
everyday functioning as assessed using WHODAS and NSI, whereas the individual comorbidities may
be the main drivers of the functional impairment.

Limitations

Our study has limitations. We investigated a representative subsample of OEF, OIF, or OND
veterans*® and we accounted for common comorbidities in the statistical analysis. However, we used
dichotomous variables based on the DSM-1V classifications to account for the presence of
psychopathologic disorders. Future studies should consider using dimensional assessments of
psychopathologic disorders, to further investigate the spectrum of psychopathologic disorders.
Furthermore, we did not account for service branch, race, or socioeconomic status,®"*® which might
be of importance for resilience, stress exposure, management, and rehabilitation and should be
considered in future analyses. The vast majority of participants were White, followed by Hispanic and
Black participants (Table 1). Although the level of education was balanced across the cohort,
potentially relevant differences were observed for the family status as only 38% were married or
cohabiting. A further limitation is that this study was limited to male participants only. The cross-
sectional design of this study further limits the interpretation of our findings as well as the
identification of additional factors associated with risk and causal relationship between war zone-
related stress and alterations in limbic GM may not be drawn. Moreover, we did not differentiate
between the amygdala and hippocampus as we aimed for the highest possible accuracy in the
segmentation. Previous research of imaging data has demonstrated that the use of the combined
amygdala-hippocampus complex represents a methodologically more rigorous and accurate
approach of segmentation using FreeSurfer.®® Against the background of our study findings, future
studies should strive to retest our hypothesis on manually segmented limbic GM. Additionally,
although all interviews were conducted by doctoral level psychologists, their administration at long-
term follow-up might have been inevitably biased by participant subjective memory and reporting.
Of further note, multishell dMRI data would have improved the FW model fit but was not available in
the study. In addition, the analysis of GM is highly sensitive to misalignment of the diffusion space
and T1space, which may have caused inflation in the FW measure. Despite the FW-correction, the
FA; measures remain unspecific and can only serve as a gross estimation of the underlying
microstructure.

Conclusions

In this study, war zone-related stress was associated with alterations in limbic GM microstructure,
which, in turn, were associated with cognitive function independent of the diagnosis of mental
disorders and mTBI commonly observed in this population. Taken together, findings from this study
suggest that alterations in limbic GM microstructure may underlie the deleterious outcomes of
exposure to war zone-related stress. Thus, military service members exposed to war zone-related
stress may benefit from early therapeutic intervention even in the absence of a diagnosed mental
disorder.
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