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Summary 

The cumulative dissertation is based on two original papers published in 2022 in the scientific journals 

Journal of Neurotrauma (first authorship) and JAMA Network Open (co-authorship). The overall re-

search goal of the two studies is to assess microstructural brain alterations in veterans. The assessment 

and visualization are performed using a particularly sensitive technique based on magnetic resonance 

imaging (MRI), known as diffusion tensor imaging (DTI). Both studies use a specific advancement of 

DTI, free-water diffusion tensor imaging, which corrects the DTI metrics for the effects of extracellular 

free water and thus provides additional information compared to conventional diffusion measurements. 

The studies both address the question, whether microstructural brain alterations in veterans are related 

to neuropsychological function. In both studies, the influence of a common diagnosis in veterans, mild 

traumatic brain injury (mTBI), is also considered. In addition, the two studies each address specific 

aspects, that have not been adequately addressed in previous studies. 

 

Original article 1 (First authorship) 

 
This first project aims to address the question, whether neuroprotective and centrally acting hormones, 

so-called neuroactive steroids, play a role in the pathophysiology of a variety of neuropsychiatric 

symptoms in veterans. The research question is based on studies on the genesis of neuropsychiatric 

diseases, which discuss not only the influence of microstructural brain alterations, but also the signif-

icance of neuroendocrine dysregulations in stress-associated diseases. Previous research on health out-

comes in veterans has focused primarily on the most common neuropsychiatric diagnoses, including 

mTBI and post-traumatic stress disorder (PTDS). However, given the large overlap of multiple neuro-

psychiatric symptoms in veterans, our study pursues a novel approach by examining the overall psy-

chological functioning across veterans. Specifically, this study aims to determine whether associations 

between serum levels of neuroactive steroids, whole brain white matter microstructure, and psycho-

logical functioning can be established. In addition, we determine whether these associations are influ-

enced by common and often comorbid diagnoses, mTBI and/or PTSD. 163 subjects from the INTRuST 

consortium project were included in the study. Subjects underwent neuropsychological assessment 

using clinical questionnaires, as well as MRI imaging and blood sampling to determine levels of the 

neuroactive steroids allopregnanolone (ALLO) and pregnenolone (PREGNE). Based on selected psy-

chological questionnaires, factor analysis was performed. The analysis confirmed that the neuropsy-

chological symptoms measured by the questionnaires can be attributed to a common factor that cap-

tures psychological functioning. Regression analysis demonstrated that serum levels of ALLO are  
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positively associated with whole brain white matter microstructure. A moderation analysis revealed 

that this association was more pronounced in individuals with a comorbid mTBI and PTSD diagnosis. 

In addition, a positive association was established between white matter microstructure and psycho-

logical functioning. Thus, this study shows that neuroactive steroids have a protective effect on white 

matter microstructure. Moreover, the results suggest that a dysregulation of the endocrine stress re-

sponse plays a crucial role in the progression of widespread neuropsychiatric impairments in veterans. 

Original article 2 (Co-authorship) 

 
To date, research investigating brain function and structure in veterans has been conducted almost 

exclusively in the context of war zone-related neuropsychiatric diagnoses such as PTSD and/or 

mTBI. Considerably fewer studies have examined what likely constitutes a common, underlying con-

tributor to neuropsychiatric impairment in veterans: war zone-related traumatizing experiences. In 

light of this research gap, this project addresses the question whether war zone-related stress is asso-

ciated with brain structural alterations and to what extent this association is influenced by a diagnosis 

of mTBI. Since studies on macrostructural gray matter alterations after combat exposure have shown 

a decrease in limbic and paralimbic volumes, this study focuses on 8 limbic and paralimbic regions 

of the gray matter in each brain hemisphere. Expanding on previous studies, gray matter was ana-

lyzed using DTI, which enables the analysis of gray matter at a microstructural level. In addition, we 

examined whether a link can be established between microstructural gray matter alterations and neu-

ropsychological function. Our sample consists of 168 male veterans from the INTRuST study. The 

veterans underwent a neuropsychological examination based on clinical questionnaires as well as 

MRI imaging. The findings indicated on the one hand, that greater war zone-related stress is associ-

ated with gray matter microstructural abnormalities in the bilateral cingulate, bilateral orbitofrontal, 

and right parahippocampal gyrus. Altered gray matter microstructure in the cingulate/orbitofrontal 

gyri was in turn associated with poorer response inhibition. On the other hand, greater war zone-re-

lated stress was related to altered gray matter microstructure in the amygdala-hippocampal complex. 

The altered microstructure in the amygdala-hippocampal complex was linked to better short-term 

memory and higher processing speed. In addition, a history of mTBI did not affect the relationship 

between war zone-related stress and gray matter microstructure. The study is highly relevant because 

it reveals pathophysiological mechanisms behind the adverse health effects of war zone-related 

stress. Thus, microstructural alterations of the limbic gray matter microstructure were identified as a 

major factor mediating the relationship between war zone-related stress and neuropsychological con-

sequences. 
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Zusammenfassung 

 
Die kumulative Dissertation basiert auf zwei Originalarbeiten, welche 2022 in den wissenschaftlichen 

Fachzeitschriften Journal of Neurotrauma (Erstautorenschaft) und JAMA Network Open (Mitautoren-

schaft) veröffentlicht wurden. Das gemeinsame Forschungsziel der beiden Studien besteht darin, mik-

rostrukturelle Gehirnveränderungen bei Kriegsveteranen darzustellen. Die Quantifizierung und Dar-

stellung erfolgt mittels einer besonders sensitiven, auf der Magnetresonanztomographie (engl. Magnet 

resonance imaging, MRI) basierenden Technik, der sog. Diffusions-Tensor-Magnetresonanztomogra-

phie (engl. Diffusion tensor imaging, DTI). Beide Studien verwenden dabei eine spezielle Weiterent-

wicklung der DTI, die free-water Bildgebung, welche die DTI-Messwerte um die Effekte des extra-

zellulären freien Wassers korrigiert und somit zusätzliche Informationen im Vergleich zu konventio-

nellen Diffusionsmessungen liefert. Die Studien gehen zudem beide der Fragestellung nach, inwieweit 

die mikrostrukturellen Gehirnveränderungen bei Kriegsveteranen mit neuropsychologischen Funktio-

nen zusammenhängen. In beiden Studien wird außerdem der Einfluss einer häufigen kriegsassoziierten 

Diagnose, das leichte Schädel-Hirn-Trauma (engl. Mild traumatic brain injury, mTBI), berücksichtigt. 

Zusätzlich behandeln die beiden Arbeiten jeweils spezielle Teilaspekte, welche in bisherigen Studien 

nicht hinreichend adressiert wurden. 

 

1. Arbeit 

 
Das erste Projekt möchte insbesondere die Fragestellung testen, inwieweit neuroprotektive und zentral 

wirksame Hormone, sogenannte Neurosteroide, bei der Pathophysiologie vielfältiger neuropsychiatri-

scher Symptome bei Veteranen eine Rolle spielen. Die Fragestellung knüpft an Studien zur Genese 

neuropsychiatrischer Erkrankungen an, welche neben dem Einfluss mikrostruktureller Gehirnverän-

derungen auch die Bedeutsamkeit neuroendokriner Dysregulationen bei stressassoziierten Erkrankun-

gen diskutieren. Bisherige Forschung zu den Gesundheitsfolgen bei Veteranen fokussierte sich haupt-

sächlich auf die häufigsten neuropsychiatrischen Diagnosen, wozu insbesondere das mTBI und die 

Posttraumatische Belastungsstörung (engl. Posttraumatic stress disorder, PTSD) zählen. Da die viel-

fältigen neuropsychiatrischen Symptome bei Kriegsveteranen jedoch eine große Schnittmenge aufwei-

sen, verfolgt unsere Studie den neuen Ansatz, die gesamte psychologische Funktionsfähigkeit der Ve-

teranen zu untersuchen. Speziell soll untersucht werden, ob Zusammenhänge zwischen Serumspiegel 

von Neurosteroiden, der Mikrostruktur der gesamten weißen Substanz (engl. White matter) und der 

psychologischen Funktionsfähigkeit nachgewiesen werden können. Zudem soll beantwortet werden, 
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ob diese Zusammenhänge durch die zentralen kriegsassoziierten Diagnosen, mTBI und/oder PTSD, 

beeinflusst werden. 163 Probanden wurden in die Studie eingeschlossen. Bei den Probanden erfolgte 

eine neuropsychologische Untersuchung mittels klinischer Fragebögen, eine MRT-Bildgebung sowie 

eine Blutabnahme zur Bestimmung der Neurosteroide Allopregnanolon (engl. Allopregnanolone, 

ALLO) und Pregnenolon (engl. Pregnenolone, PREGNE). Basierend auf ausgewählten psychologi-

schen Fragebögen führten wir eine Faktorenanalyse durch. Diese bestätigte, dass die mithilfe der Fra-

gebögen gemessenen neuropsychologischen Symptome auf einen gemeinsamen Faktor zurückgeführt 

werden können, welcher die psychologische Funktionsfähigkeit erfasst. Mithilfe von Regressionsana-

lysen konnte nachgewiesen werden, dass die Serumspiegel von ALLO mit der Mikrostruktur der ge-

samten weißen Substanz assoziiert sind. Eine Moderationsanalyse konnte zeigen, dass dieser Zusam-

menhang bei Personen mit einer komorbiden mTBI und PTSD Diagnose verstärkt ist. Zudem konnte 

eine positive Assoziation zwischen der Mikrostruktur der weißen Substanz und der psychologischen 

Funktionsfähigkeit hergestellt werden. 

Diese Studie zeigt, dass Neurosteroide einen protektiven Effekt auf die Mikrostruktur der weißen Sub-

stanz haben. Zudem deuten die Ergebnisse darauf hin, dass die Dysregulation der endokrinen Stress-

Antwort eine entscheidende Rolle bei der Entwicklung weitreichender neuropsychiatrischer Beein-

trächtigungen bei Kriegsveteranen spielt. 

 

2. Arbeit 

 

Die Erforschung veränderter Gehirnfunktionen und Strukturen bei Kriegsveteranen erfolgte bisher fast 

ausschließlich im Zusammenhang mit kriegsassoziierten neuropsychiatrischen Diagnosen wie PTSD 

und/oder mTBI. Weitaus weniger Studien untersuchten dabei die gemeinsame, zugrundeliegende Ur-

sache der neuropsychiatrischen Beeinträchtigung bei Veteranen: den erlebten, kriegsbedingten Stress. 

Vor dem Hintergrund dieser Forschungslücke behandelt dieses Projekt die Teilfrage, inwieweit kriegs-

bedingter Stress mit veränderten Gehirnstrukturen einhergeht und inwieweit diese Assoziation durch 

die Diagnose eines mTBI beeinflusst wird. Da Studien zu makrostrukturellen Veränderungen der 

grauen Substanz nach Kriegsexposition eine Reduktion der Volumina limbischer und paralimbischer 

Strukturen nachweisen konnten, konzentriert sich diese Studie auf 8 limbische und paralimbische Re-

gionen der grauen Substanz in jeder Gehirnhälfte. Als Erweiterung zu bisherigen Studien soll die graue 

Substanz mithilfe der DTI untersucht werden, wodurch die Analyse der grauen Substanz auf mikro-

struktureller Ebene ermöglicht wird. 
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Darüber hinaus soll geprüft werden, ob eine Verbindung zwischen mikrostrukturellen Veränderungen 

der grauen Substanz und neuropsychologischen Funktionen hergestellt werden kann.  

Unsere Stichprobe besteht aus 168 männlichen Kriegsveteranen. Bei den Probanden wurde sowohl 

eine neuropsychologische Untersuchung mittels klinischer Fragebögen als auch eine MRT-Bildge-

bung durchgeführt. Die Ergebnisse zeigen zum einen, dass größerer kriegsbedingter Stress mit Ano-

malien der Mikrostruktur der grauen Substanz im bilateralen cingulären, bilateralen orbitofrontalen 

und rechten parahippocampalen Gyrus verbunden ist. Die veränderte Mikrostruktur der grauen Sub-

stanz im cingulären/orbitofrontalen Gyrus war wiederum mit einer schlechteren Reaktionshemmung 

verbunden. Zum anderen konnte gezeigt werden, dass stärkerer kriegsbedingter Stress mit einer ver-

änderten Mikrostruktur der grauen Substanz im Amygdala-Hippocampus-Komplex zusammenhängt. 

Die veränderte Mikrostruktur im Amygdala-Hippocampus-Komplex war mit einem besseren Kurz-

zeitgedächtnis und einer höheren Verarbeitungsgeschwindigkeit verknüpft. 

Zudem stellte sich heraus, dass ein mTBI in der Vorgeschichte keinen Einfluss auf den Zusammenhang 

zwischen kriegsbedingtem Stress und der Mikrostruktur der grauen Substanz hatte.  

Die Studie hat insofern eine große Relevanz, als sie pathophysiologische Mechanismen hinter den 

gesundheitsschädlichen Auswirkungen von kriegsbedingtem Stress entschlüsselt. So konnten mikro-

strukturelle Veränderungen der grauen Substanz des limbischen Systems als ein wesentlicher Faktor 

ausgemacht werden, welche den Zusammenhang zwischen kriegsbedingtem Stress und neuropsycho-

logischen Folgen vermitteln. 
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I. Introduction 

I.1. Background on the veteran population and military-related health outcomes  

 
Mental health in the veteran population has been a neglected area of interest for a long time 1. 

However, after the Vietnam War and with the inclusion of post-traumatic stress disorder (PTSD) in 

the Diagnostic and Statistical Manual of Diseases (DSM) in 1980, the mental health of the veteran 

population has received increasing attention in research 2. The subsequent wars in Afghanistan and 

Iraq led to a further variety of studies examining the mental and behavioral health problems of veterans 

and their contributing factors 2.  

The wars in Afghanistan and Iraq differ from previous wars in many ways. They represent one of the 

longest enduring U.S. military operations ever, and the United States has deployed more than 2.7 mil-

lion men and women in support of combat operations in Iraq and Afghanistan 2,3. Combat operations 

included “Operation Enduring Freedom” (OEF), which is the official name for the war in Afghanistan 

from October 2001 to December 2014 3. Subsequently, troops continued to be deployed in Afghanistan 

until 2021, mainly helping to train and support Afghan security forces 4. The war in Iraq is called 

"Operation Iraqi Freedom" (OIF) and began in March 2003. Since September 2010, ongoing opera-

tions in Iraq have been given the new name "Operation New Dawn" (OND) due to reductions in U.S. 

forces. OND ended with the termination of the war in Iraq in December 2011 3. In contrast to previous 

wars, more women, parents of young children, and Reserve and National Guard soldiers have been 

deployed. In some cases, deployed personnel were exposed to longer deployments and shorter periods 

at home between deployments than in previous wars 5.  

By now, increasing evidence on OEF/OIF/OND veterans points to the long-term effects of deployment 

to combat on psychological health, interpersonal and economic functioning 6–8. The consequences for 

society are devastating, as veterans are often unable to integrate into social and working life after 

deployment 7,8. Of note, veterans represent a clinically complex group with multiple comorbidities 9. 

Among the most prevalent and serious health sequelae affecting OEF/OIF/OND veterans are mTBI 

and PTSD 10,11. The high incidence of these two diseases can be attributed to the use of improvised 

explosive devices and the constant threat during these operations 12. Apart from mTBI and PTSD, a 

variety of other health conditions have also been associated with combat exposure 1,13,14. These include 

various psychiatric conditions such as depressive disorders, substance use disorders, suicidal attempts, 

and anxiety disorders 14. Additionally, veterans are at increased risk for behavioral disorders such as 

chronic pain 15 and sleep disorders 16.   
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Symptoms of these above mentioned psychiatric and behavioral conditions often overlap, making it 

difficult to diagnose and treat diseases in veterans 11. Given the far-reaching consequences and the 

associated challenges of the veteran population, consortia have been established, particularly in the 

United States, to develop new treatments or preventive measures that reduce the impact of military-

related psychological health problems. 

 

I.2 Signature injuries of war: mTBI and PTSD 

1.2.1 Prevalence and Diagnosis  

Mild traumatic brain injury 

Mild TBI is considered to be one of the leading causes of disability in veterans, with rates of around 

15% among American service members 17. 

Although there is a wide range of definitions regarding mTBI, consensus has been reached on the 

diagnostic criteria as proposed by the Mild Traumatic Brain Injury Committee of the American Con-

gress of Rehabilitation Medicine 18 (see table). There are three criteria that are consistently used to 

diagnose mTBI, including the Glasgow Coma Scale (GCS) score, duration of loss of consciousness 

and post-traumatic amnesia 18. Usually, symptoms that occur in the context of mTBI dissolve within 

days to weeks 19. However, about one third of the affected individuals experience persistent post-con-

cussive symptoms (PPCS) that last beyond 5 months 20. PPCS include somatic symptoms (e.g. nausea, 

dizziness, headache, and light or sound sensitivity), cognitive impairment (e.g. concentration, attention 

and memory deficits), and emotional alterations (e.g. irritability, frustration and depression) 21 (see 

Table 1).   

 

Mild traumatic brain injury (American Congress of Rehabilitation Medicine) 
 

 traumatically induced physiological disruption of brain function  

(one of the following) 

1. period of loss of consciousness 

2. loss of memory for events immediately before or after the accident  

3. alteration in mental state at the time of the accident (e.g. feeling dazed, 

disoriented, or confused) 

4. focal neurological deficit(s) that may or may not be transient 

 

Mild severity - loss of consciousness < 30 minutes 

- after 30 minutes, initial GCS: 13–15  

- posttraumatic amnesia (PTA) < 24 hours 
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Inclusion Criteria 1. the head being struck 

2. the head striking an object  

3. brain undergoing an acceleration/deceleration movement (i.e. whip-

lash) without direct external trauma to the head 

 

Exclusion Criteria - stroke anoxia, tumor, encephalitis  

 

Post-concussive 

symptoms 
1. physical symptoms of brain injury 

- nausea, vomiting, dizziness, headache, blurred vision,       

sleep disturbance, quickness to fatigue, lethargy,                     

or other sensory loss 

2. cognitive deficits  

- e.g. involving attention, concentration, perception, memory, 

speech/ language, or executive functions 

3. behavioral changes /alterations in emotional responsivity  

- e.g. irritability, quickness to anger, disinhibition, or emotional 

lability 

 

Table 1: Diagnostic criteria of mTBI according to the American Congress of Rehabilitation Medicine 

 

Posttraumatic Stress Disorder 

PTSD is defined by the development of characteristic symptoms following exposure to one or more 

traumatic events 22. The current PTSD prevalence averages 1.1% 23. However, the lifetime prevalence 

is substantially higher and varies between 13.0‐20.4% for women and 6.2‐8.2% for men 24.  

In the population of OIF and OEF veterans, every 11-20 out of 100 veterans receives a diagnosis of 

PTSD in a given year 25,26. 

Particularly characteristic of PTSD is the recurrent, involuntary, intrusive and distressing re-experi-

encing of aspects of the traumatic event, including flashbacks and nightmares 22,27. A further core 

symptom is the avoidance of situations, people or circumstances associated with the trauma (C-Crite-

rion).  

Indicative for PTSD is also persistent hyperarousal, which manifests itself in irritable behavior, hyper-

vigilance, concentration problems, and sleep disorders. The 5th edition of the DSM also includes a 

symptom cluster of negative cognition (e.g. amnesia regarding important parts of the event, exagger-

ated negative beliefs) and emotional disruptions (e.g. negative emotions, loss of interest, sense of de-

tachment from others) (see Table 2). 
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 DSM-V ICD-10 research diagnostic criteria 

 

Duration Symptoms present for at least 1 month  Symptoms should usually arise within 6 

months of the traumatic event 

 

Stressor Criterion A. Exposure to actual or threatened 

death, serious injury, or sexual vio-

lence 

A. Event or situation of exceptionally 

threatening or catastrophic nature 

likely to cause pervasive distress 

in almost anyone 

 

Symptoms B. Intrusion symptoms 

- One of five 

C. Avoidance 

- One of two 

 
D. Negative alterations in cognitions and 

mood 

- Two of seven 

 

 
E. Persistent hyperarousal 

- Two of six 

B. Persistent re-experiencing of the 

stressor 

C. Avoidance  

 

 
D. Either  

1.) Inability to recall important 

aspects of the stressor 

2.) Persistent hyperarousal 

- Two of five 

E. Clinically significant functional 

impairment 

 

Further criteria - Distress/ functional impairment (e.g. 

social, occupational) 

- No substance abuse/ general medical 

condition  

 

- Clinically significant functional 

impairment  

 

Table 2 : Diagnostic criteria of PTSD according to ICD-10 and DSM-5 

 

Mild traumatic brain injury and Posttraumatic Stress Disorder 

A large proportion of OEF/OIF/OND veterans with positive mTBI diagnosis also suffer from PTSD, 

with prevalence rates between 26 and 44 % 17,28. Further, the high comorbidity of mTBI and PTSD is 

plausible given the bilateral risk of the two diseases. On the one hand, TBI is often associated with 

potentially traumatic conditions 29 and may increase the risk of developing PTSD by causing neural 

disruption 30. On the other hand, PTSD is a predictive factor for the development of persistent symp-

toms following TBI, especially when the TBI is mild 11,31. In addition to the high comorbidity, PTSD 

and mTBI also manifest in similar symptoms, making clinical distinctions and effective interventions 

difficult 10–12. Whereas the somatic symptoms of brain injury are relatively distinctive of persistent 

post-concussive symptoms 12,  the non-specific symptoms associated with milder TBI show a large 

overlap with the PTSD symptomatology 10,11,32 (Figure 1).  
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Figure 1: Symptoms of PTSD and PPCS and their overlap 10 

Reprinted with permission from the American Journal of Psychiatry, Exploring the Convergence of Posttrau-

matic Stress Disorder and Mild Traumatic Brain Injury, Murray B Stein and Thomas W McAllister, Volume 

166:7 (Copyright © 2009). American Psychiatric Association. All Rights Reserved.  

 

 

1.2.2 Pathogenesis 

Due to the development of in vivo functional neuroimaging and endocrinological studies, the under-

standing of the common diagnoses in veterans has evolved considerably in recent years. In the follow-

ing section, I will review the pathogenesis of the two most prevalent disorders in veterans: mTBI and 

PTSD. The neuroendocrine and brain structural pathologies of military-related neuropsychiatric dis-

orders will be addressed in the following sections I.3 and I.5. 

 

Mild traumatic brain injury 

Mild TBI is caused by shearing forces due to sudden acceleration-deceleration effects on the brain 33. 

These shearing forces lead to diffuse injuries of axons within the white matter tracts of the brain 34.  

Axonal injury causes localized transport failure and might have the effect of local swelling 33,34. 

In addition, the release of glutamate and other excitatory neurotransmitters from the synapse of dam-

aged axons causes a rapid ion shift across the cell membrane 33,35.  



 20 

Alterations in metabolic reactions affect glucose metabolism and oxygen levels and lead to increased 

energy demands and a period of metabolic crisis. Furthermore, mTBI is associated with an initial de-

crease in cerebral blood flow followed by vasodilatation, which further exacerbates the mismatch be-

tween energy supply and demand 33,35–37.   

This energy deficit may, in turn, result in structural and functional alterations in mTBI. 

In addition to the acute pathomechanisms following mTBI, there are also chronic consequences that 

emerge over the course of weeks and months. Inflammatory processes are viewed as important sec-

ondary mechanisms after mTBI 38. The initial mechanical damage caused by the neurotrauma initiates 

an immune response. Immune cells release pro-inflammatory cytokines and chemokines, leading to 

cerebral edema and elevated intracranial pressure. As a result of mTBI, the blood-brain barrier may 

also be damaged, facilitating the invasion of circulating immune regulators that further amplify the 

inflammatory response 39,40. Such a prolonged immune response may also favor neurodegenerative 

processes 39.  Neurodegenerative effects after brain trauma include the accumulation of beta-amyloid 

precursors and tau proteins 41,42. The pathophysiological alterations also have clinical implications, as 

mTBI is associated with neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease 43. 

The more progressive consequences of brain injury also include axonal demyelination and white mat-

ter atrophy as a result of primary axonal damage or the death of myelinating cells 39. 

 
Posttraumatic Stress Disorder 

The pathogenesis of PTSD is a complex process that has been increasingly unraveled, primarily 

through the findings of genetics, neuroendocrinology (section I.3) and neuroimaging (section I.5). Ge-

netics research has shown that both environmental influences and hereditary factors play a role in the 

development of PTSD 44–46. 

As far as environmental influences are concerned, numerous studies have shown that the type, timing, 

intensity and duration of the trauma are crucial factors in predicting the proneness to the disease 47. 

Regarding genetic influences, twin and family studies revealed that the overall heritability of PTSD is 

around 30% 48. The genetic vulnerability remains even after accounting for genetic factors (e.g., per-

sonality traits) that influence exposure to potentially traumatic events such as combat 49. 
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I.3 Military associated neuropsychiatric disorders: Neuroendocrinological 

processes 

 
The vulnerability of veterans to multiple neuropsychiatric conditions can be attributed to the extreme 

stress of the war experience and the corresponding dysregulations of various neuroendocrine processes 

50.  It is known that stress-related conditions lead to neuroendocrinological dysregulations, which in-

clude upregulations of the hypothalamic-pituitary-adrenal (HPA) axis 46,51,52 and associated glucocor-

ticoid elevations 53. In addition, alterations in neuroactive steroid levels in response to stress have also 

been demonstrated 54.  

Neuroactive steroids, in particular ALLO and its precursor PREGNE 55–57, are positive Gamma-ami-

nobutyric acid (GABA) receptor modulators and reveal many neuroprotective effects 56,58 such as anti-

inflammatory 59–61, anti-apoptotic 62, anti-depressant 63–65, anxiolytic 58,66–69 and positive cognitive ef-

fects 70–77. In addition, the neuroactive steroid ALLO yields pronounced neuroprotective actions in 

TBI. Animal models have shown that ALLO increases in several brain regions in response to a brain 

injury 78, leading to enhanced neurogenesis 79, reduced neuroinflammation 59,61 and ischemic infarct 

volume 80. Importantly, both ALLO and PREGNE play a significant role in neuroendocrine stress 

regulation by normalizing the hyper-activated HPA axis (Figure 2) 81. Thus, the neuroactive steroids 

constitute an endogenous autoregulatory mechanism to restore homeostasis and produce neuroprotec-

tion in response to acute stress 66,81–86  . However, in contrast to acute stress, it is proven that chronic 

stress reduces neuroactive steroid levels 68,87–93 and leads to impaired negative feedback regulation of 

the HPA axis 91,92,94. 

Indeed, decreased levels of ALLO have been found in service members with a chronic stress-related 

disorder such as PTSD, which were inversely correlated with re-experiencing and depressive symp-

toms of PTSD 95,96. Correspondingly, reduced levels of neuroactive steroids such as pregnanolone 

(PREGNA) and androsterone (ANDRO) have been documented in veterans with a history of blast-

related TBI compared to veterans without TBI 97. 

However, the association between neuroactive steroids and structural brain alterations has been poorly 

investigated so far. To date, only one recent study has shown the neuroprotective effect of neuroactive 

steroids on gray matter in comorbid mTBI and PTSD 98. Additionally, there is evidence from one 

research group presented as an abstract demonstrating that neuroactive steroids may also unfold neu-

roprotective effects on white matter 96. 
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Figure 2: Summarized illustration of central neuroendocrinological processes in response to traumatizing stress 

or brain trauma and the role of neuroactive steroids (ALLO and PREGNE) 

 

I.4 Treatment needs of veterans 

Regarding the treatment of the most common neuropsychiatric diseases in veterans, remarkable effi-

cacy has been demonstrated for psychotherapeutic interventions in combination with psychotropic 

medication 99–102. Regarding the treatment of PTSD, there is particularly strong evidence for behavioral 

therapies that involve cognitive restructuring and exposure to the trauma memory 11. On the pharma-

cological side, selective serotonin reuptake inhibitors (SSRIs), a class of antidepressants, are the only 

drugs approved by the Food and Drug Administration (FDA) for the treatment of PTSD. However, 

complete remission rates in patients only range between 20% and 30% 103, and particularly low re-

sponse rates to SSRIs are reported in veterans 104,105. Furthermore, it must be taken into account that 

PTSD is often comorbid and occurs especially with mTBI, depression, and substance abuse 99. Alt-

hough the psychological treatments were not initially directed at patients with an additional mTBI 

diagnosis 11, similarly high response rates to cognitive behavioral therapies are shown for patients with 

PTSD and comorbid mTBI, compared to those with PTSD only 106,107. According to the Veterans Ad-

ministration/Department of Defense (VA/DoD) Clinical Practice Guidelines, comorbid conditions 

should be treated simultaneously 99. The VA/DoD Clinical Practice Guidelines for Major Depressive 
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Disorder recommend cognitive behavioral therapy (CBT), interpersonal psychotherapy, problem-solv-

ing therapy, and client-centered counseling as psychotherapeutic interventions for moderate and major 

depression 100. Electroconvulsive shock therapy can be used for very severe, psychotic, and treatment-

resistant major depression. Moreover, the use of psychotropic medication (antidepressants) is recom-

mended for moderate and severe major depression 100. 

 

I.5 Neuroimaging 

 

I.5.1 Methods 

Diffusion tensor imaging 

MRI was developed in the mid-1980s  108 and has become a fundamental tool for neurological diagno-

sis 109. MRI is more sensitive than computer tomography (CT) in detecting subtle abnormalities 110,111 

as it has a better contrast resolution, especially for soft tissue. It is able to detect subacute hemorrhages 

and macroscopic areas of  gray and white matter damage 108. 

A special type of MRI sequence that was introduced in 1994 112 is DTI. Whereas CT and MRI only 

reveal macroscopic brain alterations,  DTI offers the most powerful tool for studying white matter and 

microstructural alterations in vivo 108,109,112,113.  DTI provides information about tissue structure based 

on the diffuse motion of water molecules (Brownian motion). It measures not only the rate but also the 

directionality of diffusion 108,114. For each volume of a pixel (voxel) of the brain, a diffusion tensor 

(three-dimensional vector) is calculated describing the diffusion characteristics. Eigenvectors (λ1, λ2, 

λ3) are the axes of the three-dimensional vector and describe the orientation of diffusion, while eigen-

values represent the length of their measure and thus describe the magnitude of diffusion. When the 

diffusivity is the same in all directions (e.g., in cerebrospinal fluid), diffusion is called isotropic and 

can be visualized as sphere 114. The diffusion of water molecules in structured tissue such as white 

matter is restricted, and water molecules diffuse most likely along the main direction of fibers and 

rarely perpendicular to them 112,115 which is called anisotropic diffusion 115. Anisotropic diffusion can 

be visualized as an ellipsoid (Figure 3). Diffusion parameters can be calculated from the diffusion 

tensor based on the eigenvalues.  

Relevant diffusion parameters are fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity 

(AD), and radial diffusivity (RD). FA is an index of anisotropic diffusion or directionality, ranging 

from 0 (isotropic diffusion) to 1 (anisotropic diffusion) 109,116. It is the most commonly used diffusion 

value, as it is assumed to be a summary measure of white matter organization 117.  
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MD represents the sum of all three eigenvalues, divided by three. It expresses the average diffusivity 

of water molecules 118. Typically, FA and MD are inversely related 108.  

AD is equal to the largest eigenvalue (λ1), which is oriented parallel to the axonal structures 114. It is 

considered that AD is a measure of axon integrity 119. The average of the diffusivities in the two minor 

axes  (λ2, λ3) is called RD and describes the diffusion perpendicular to the main diffusion direction 

109. RD is an indicator of myelin integrity 119. 

However, even if DTI parameters provide important information about white matter microstructure, it 

must be taken into account that they only represent an indirect and non-specific measure of white 

matter microstructural properties  108,120.  A reduced FA can be caused by different pathologies, includ-

ing demyelination 121,122, edema 123 or gliosis 124.  In 2009, Pasternak et al. presented a promising 

advancement of the DTI method, which is called free-water imaging 125. This two-compartment model 

of water diffusion separately determines the amount of free water in the extracellular space and in the 

vicinity of cellular tissue 125. The two most relevant parameters that are obtained when using free-

water imaging are free water (FW) and fractional anisotropy of the tissue (FAt). The FW parameter 

measures the fractional volume of unrestricted free water in the extracellular space. FAt represents the 

diffusion tensor, which is corrected for the contribution of free water. Thus, free-water imaging im-

proves the specificity of DTI indices and provides additional information about white matter micro-

structure 125,126. 
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Figure 3: Isotropic and anisotropic diffusion Figure modified after 114 

 

Region of interest (ROI) analysis  

The ROI analysis focuses on specific regions based on a priori formulated hypotheses 114. The prede-

fined regions of interest can be obtained either manually or by (semi-)automated segmentation 114,127.  

For each subject, the diffusion values are extracted and averaged for the selected regions. Of note, the 

method can be utilized for both white and gray matter studies 128. Due to its high sensitivity, ROI 

analysis is best applied when there is a clear hypothesis about the expected differences in white or gray 

matter in a well-defined brain region 127. 

 

Tractography 

Fiber tractography represents another post-processing method that enables the 3D visualization and 

quantification of an entire white matter tract 108,114,129. Thus, it provides important information about 

the connectivity of different brain regions. Connectivity between the voxels can be determined based 

on the anisotropic diffusion of water 130. Fiber tracking uses the diffusion tensor of each voxel to follow 

the main diffusion direction from voxel to voxel through the brain 129. Similar to ROI-approaches, a 

region of interest is defined as a starting point. In addition, inclusion and exclusion regions can be 

assigned to describe the trajectory of the fibers more precisely 114. However, in contrast to ROI ap-

proaches, tractography can only be used for white matter analysis. 
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Fiber Clustering 

Common methods for extracting fiber bundles based on tractography require the manual determination 

of multiple regions of interest. Instead of this manual method, fiber clustering approaches have been 

proposed 131. Fiber clustering is a fully automatic and unguided method that groups white matter fibers 

according to their shape and spatial position, thus avoiding the application of an inflexible geometric 

scheme 131–133. The fiber clustering approach uses an algorithm that applies a pre-generated whole-

brain white matter atlas of the entire brain to processed cerebral MRI images in order to identify sub-

ject-specific white matter tracts 134,135. The atlas was trained using 100 MRI images of healthy subjects 

from the Human Connectome Project and provides a whole brain white matter parcellation into 800 

fiber clusters 134. This approach does not require an a priori hypothesis about the location of the pa-

thology, as it is entirely data-driven 136. Recent findings have shown that clustering approaches extract 

the most consistent white matter tracts across all subjects compared to multiple ROI- and atlas-based 

approaches 137.   

  

I.5.2 Previous findings 

 

Neuroimaging findings in mTBI  

Advanced neuroimaging has been widely utilized to study common neuropsychiatric disorders in vet-

erans, including PTSD and mTBI 138–147. In mTBI, several gray matter regions such as the thalamus 

148–150, hippocampus 148,149,  putamen 149 and insula 150 have shown to be affected. In addition to gray 

matter findings in mTBI, white matter alterations were observed in various regions, including the cor-

pus callosum 151–156, centrum semiovale 152,153, forceps major 157, internal capsule 152,153, fornix 154 and 

cingulum bundle 156. These white matter changes are predominantly characterized by reduced FA and 

increased MD and AD values, although some studies indicate deviating alterations in diffusion values 

108,158. Among the large number of affected white matter regions in mTBI, the corpus callosum seems 

to be the most commonly impaired structure 109. Interestingly, studies have shown that white matter 

microstructure of the corpus callosum is also associated with cognitive outcome after mTBI 159. 

 

Neuroimaging findings in PTSD  

In PTSD, reduced gray matter volume has been found particularly in frontal and limbic regions 160,161 

such as the anterior cingulate cortex 162,163, medial prefrontal cortex 164,165, hippocampus 163,166 or 

amygdala 167. Furthermore, studies have shown that posttraumatic stress symptoms in veterans are 

inversely correlated with limbic gray matter volumes 168. 
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Considering white matter changes in PTSD, FA decreases and MD increases are present in several 

regions, such as the cingulum bundle 139,169, superior longitudinal fascicle 139,170, corpus callosum 171 

and uncinate fascicle 172. Further, diffusion measures of the uncinate fascicle were associated with 

anxiety symptoms and amygdala activity 172.  However, results are even more inconsistent than mTBI 

findings, with some studies showing higher FA in the anterior cingulate cortex 173, temporal cortex 174 

and higher generalized FA in the right frontotemporal pathways 138 in patients compared to controls. 

 

Neuroimaging findings in comorbid mTBI and PTSD  

The comorbid condition of mTBI and PTSD is associated with a particularly high risk of white matter 

abnormalities 144,145. One MRI study of OEF/OIF/OND veterans with comorbid PTSD and mTBI 

found a reduction in bilateral anterior amygdala volume in the comorbid group compared to veterans 

with neither condition. Interestingly, the reduced amygdala volume was linked to poorer inhibitory 

behavioral control 175. Further studies have found altered white matter microstructure in the uncinate 

fascicle 176 and CB 146 in veterans with mTBI and PTSD relative to those with mTBI only. Additionally, 

diffusion measures in the bilateral uncinate fascicle were associated with PTSD symptoms 176, indicat-

ing poorer recovery in patients with a comorbid mTBI and PTSD diagnosis 146.  

Moreover, to date, only one study has used the more sensitive method of free-water imaging to exam-

ine gray matter alterations in the context of comorbid mTBI and PTSD 177. However, the free-water 

imaging method has not been used to assess alterations in white matter microstructure in patients with 

comorbid mTBI and PTSD so far. 

 

I.6 Motivation for this work 

The overall aim of this work is to investigate neuropsychological, endocrine, and brain structural al-

terations in a population of OEF/OIF/OND veterans. Our study is intended to provide a better under-

standing of the complex endocrine and brain structural pathomechanisms underlying the various neu-

ropsychiatric symptoms in veterans and ultimately pave the way for targeted biology-based treatments. 

Veterans are a highly vulnerable cohort and present with multiple comorbidities above and beyond the 

main diagnoses mTBI and PTSD 2,14,178. The influence of the various conditions and their interaction 

has not yet been sufficiently disentangled, therefore focusing solely on diagnoses does not capture the 

complexity of the cohort.  

Against this background, the aim of our first study was to apply a transdiagnostic approach to assess 

the overall psychological health of veterans and link it to neuroendocrine and brain structural corre-

lates.  
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As research increasingly points to the importance of neuroendocrine processes in connection with 

stress-related conditions 58,81,179,180, this new and important aspect was also part of our research interest. 

Based on the previous literature, we examined the hypotheses that: 

1. Serum neuroactive steroids are positively associated with psychological functioning. 

2. Serum neuroactive steroids are associated with whole brain white matter microstructure. 

3. White matter microstructure is associated with psychological functioning. 

4. The associations between serum neuroactive steroids, whole brain white matter microstructure, 

and psychological functioning are moderated by an mTBI and/or PTSD diagnosis. 

To address these hypotheses, state-of-the-art methods of fiber clustering and free-water imaging were 

chosen to obtain an accurate understanding of the white matter alterations in veterans. Given the in-

consistencies of previous imaging studies in veterans 108,181, we examined the whole brain white matter 

to get a comprehensive picture. 

 

Similar to our first study, our second study also follows a transdiagnostic approach by focusing on the 

common risk factor and associated microstructural pathomechanisms underlying veterans' increased 

vulnerability for neuropsychiatric disorders. Specifically, in our second study, we hypothesized that: 

1. War zone-related stress is associated with microstructural alterations in the limbic gray matter.  

2. Alterations in limbic gray matter microstructure are linked to neuropsychological functioning. 

3. Associations between war zone-related stress and limbic gray matter microstructure are modu-

lated by a history of mTBI. 

To address these hypotheses, we applied free-water imaging, as we did in our first study. In contrast 

to our first study, we examined gray matter microstructure, looking specifically at the classic limbic 

and paralimbic brain regions. Importantly, studies examining the microstructure of gray matter are 

quite rare and enable the detection of previously unnoticed gray matter alterations in veterans. 
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II Paper 1 

II.1 Background  

OEF/OIF/OND veterans are at increased risk for far-reaching neuropsychological health impairments 

after deployment 6,182, impeding their social and work reintegration 7,8. The predominant diagnoses in 

veterans are PTSD and mTBI 183,184, but a variety of other neuropsychiatric diagnoses are also associ-

ated with war experiences 2,13. These different comorbidities all interact with each other and share a 

large number of common symptoms 185. However, research has mainly focused on the most common 

diagnoses in this cohort, thereby failing to address the complexity of neuropsychological symptom 

burden. Thus, there is an urgent need to examine the overall psychological functioning of veterans at 

risk for extensive mental health issues.  

Regarding the potential factors influencing poor psychological functioning in veterans, there is evi-

dence that neuroendocrine dysregulations play an important role 97,186. As major contributors to neu-

roendocrinological stress regulation, the neuroactive steroids ALLO and its precursor PREGNE 55–57 

exert many neuroprotective effects and play a critical role in regulating the stress-response 

58,68,81,82,86,187. Another way to further investigate the pathophysiological basis of adverse health out-

comes in veterans is to examine brain structure and function. For this purpose, MRI is used, and spe-

cifically DTI is sensitive enough to detect subtle microstructural changes in white matter 108,188. 

Taken together, there is evidence of psychological, neuroendocrine, and structural brain alterations in 

veterans at risk for mental health issues and comorbidities. However, previous studies have not linked 

the different research fields together to examine the underlying pathomechanisms in a more compre-

hensive way. 

In order to fill this gap, we have chosen a comprehensive approach to investigate potential associations 

between neuroactive steroid levels, whole-brain white matter microstructure, and psychological func-

tioning by using a highly sensitive method. Additionally, effects of mTBI and PTSD on these associ-

ations will be assessed. 

 

II.2 Methods 

We examined 163 subjects in our study, based on data collection by the Injury and Traumatic Stress 

(INTRuST) Clinical Consortium at six sites in the United States.  

Psychological questionnaires were used to assess the diagnoses of PTSD, mTBI, and alcohol or drug 

addiction and to assess psychological functioning of the participants.  
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The questionnaires were collected as part of a comprehensive neuropsychiatric test battery as part of 

the INTRuST data collection. For our study, we included all subjects with both high-quality MRI data 

and neuroactive steroid measurements available. Quantification of the neuroactive steroids ALLO and 

PREGNE was performed in serum.  

The subjects' dMRI sequences were acquired using 3 Tesla scanners (GE 750, General Electric, Chi-

cago, USA; Achieva, Philips Healthcare, Best, Netherlands; Tim Trio, Siemens Healthineers, Erlan-

gen, Germany). The dMRI data obtained by the different scanners were harmonized using a validated 

algorithm to adjust for scanner-specific differences. We performed the fiber clustering method and 

extracted subject-specific average whole-brain FAt values (Figure 4). Statistical analyses were per-

formed using SPSS, and a Bonferroni-corrected value of <.05 was considered statistically significant. 

We performed factor analysis using the Anderson-Rubin method to derive an underlying psychological 

functioning factor based on the psychological questionnaires. Regression models were used to examine 

associations between serum neuroactive steroid levels, psychological functioning, and whole brain 

white matter microstructure. Moderation models tested the influence of mTBI and comorbid post-

traumatic stress disorder (PTSD) and mTBI on these associations. 

 

 

Figure 4: Whole-Brain White Matter of one participant as modeled by the fiber clustering method adapted from paper 

1 . 

 

II.3 Results 

Psychological functioning 

Factor analysis revealed one underlying psychological functioning factor based on the selected tests 

of psychological symptoms, functional impairment, and health-related quality of life. 
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Association Between Serum Neuroactive Steroids and Psychological Functioning 

We did not detect any association between ALLO or PREGNE and the psychological functioning fac-

tor.  

 

Association Between Serum Neuroactive Steroids and Whole-Brain FAt 

Serum ALLO was associated with whole brain FAt. This association was significantly modulated by 

a comorbid diagnosis of PTSD and mTBI, whereas an mTBI diagnosis alone had no significant effect 

on this association (Figure 5). However, serum PREGNE was not significantly associated with whole 

brain FAt. 

 

Figure 5: Scatter plot illustrating the association between ALLO and whole-brain FAt in the total sample and 

the moderating effect of PTSD+mTBI comorbidity on this association adapted from paper 1. 

 

Association Between Whole-Brain FAt and Psychological Functioning 

A lower whole-brain FAt score was linked to poorer psychological functioning. In this case, an mTBI 

or a comorbid PTSD and mTBI diagnosis did not affect the association. 

 

II.4 Discussion 

The aim of the study was to examine the relationship between serum levels of neuroactive steroids, 

psychological functioning, and whole-brain white matter microstructure and the additional influence 

of mTBI and PTSD on these associations. The three main results are presented below and summarized 

in Figure 6. 
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Figure 6: Summary of Findings adapted from paper 1. 

 
 
Association Between Serum Neuroactive Steroids and Psychological Functioning 

As hypothesized, factor analysis revealed that the various psychological dimensions assessed in our 

study can be explained by one common factor. This finding confirmed that symptoms of common 

psychiatric diagnoses in veterans do not reflect distinct constructs 185, but rather share a common 

origin.  

However, contrary to our hypothesis, we did not detect direct associations between serum neuroactive 

steroids and psychological functioning. This result contradicts the majority of previous research, which 

has been able to establish a link between neuroactive steroids and various psychological outcomes 

91,92,94,95,189–194. However, these studies are not directly comparable to ours due to differences in study 

design and a focus on specific facets of psychological functioning. 

 

Association Between Serum Neuroactive Steroids and Whole-Brain White Matter 

We confirmed an association between white matter microstructure and psychological functioning.  

The beneficial effects of ALLO on white matter may likely be explained by neuroprotective processes 

179, increasing the integrity of the fiber protecting myelin sheath and axonal density. 

In addition to the first result, we also showed that the association between ALLO and white matter 

microstructure was strengthened by a comorbid PTSD and mTBI diagnosis.  
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This result demonstrates that decreased ALLO levels may have a more pronounced detrimental impact 

on white matter in individuals with comorbid PTSD and mTBI, compared to individuals with mTBI 

only or healthy individuals, which is also supported by various studies 145–147.  

In contrast to individuals with mTBI only, individuals with an additional PTSD diagnosis tend to have 

particularly pronounced stress and trauma related endocrine dysregulations, which in turn lead to 

stronger impairments of white matter microstructure. 

 

Association Between Whole-Brain White Matter Microstructure and Psychological Functioning 

In our study, we found an association between decreased white matter microstructure and poorer psy-

chological functioning. This association may be explained by a disruption of myelinated pathways in 

the brain leading to altered white matter connectivity and thus to a functional disruption of networks 

involved in emotion regulation 195,196. Our result is consistent with the literature, indicating that differ-

ent neuropsychiatric disorders are linked to white matter impairments in veterans 145,176,197,198.  

 

Conclusion 

 

This study is a first step towards understanding the structural and functional pathomechanisms in vet-

erans at risk for various psychiatric conditions and suggests that by protecting white matter micro-

structure, neuroactive steroids may have a therapeutic role in the treatment of psychological symptoms 

in veterans. Future research should focus on studying the causal and dynamic relationships between 

neuroactive steroids, white matter, and psychological functioning. 

 

II.5 Own contribution 

My contribution to work 1 is composed of the following parts:  

Literature research and formulation of working hypotheses, data curation, assessment, and statistical 

analysis of the data, writing the manuscript of the publication, critical revision of the manuscript.  

I participated in work 1 as a shared first author with Ms. Philine Rojczyk.  

Based on an extensive literature review and the identification of research gaps, I developed the hy-

potheses of the study. During data preparation, I validated the data sets and checked for completeness, 

selected subjects with complete data sets, and integrated multiple data sets. 
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Processing of the dMRI data to generate diffusion parameters as well as statistical analysis were ac-

complished with consultation and validation from Yorghos Tripodis, Professor of Biostatistics at Bos-

ton University. Processing of the dMRI data was also assisted by the Psychiatry Neuroimaging Labor-

atory (PNL) team at Harvard Medical School in Boston.  

The critical discussion and interpretation of the data were done in close exchange with Philine Rojzyk.  

I wrote the manuscript together with Philine Rojzyk and critically revised it with the help of several 

authors, mainly of the cBRAIN team at Ludwig-Maximilians-University in Munich. I wrote the first 

draft of the manuscript and then focused on finalizing the introduction and discussion parts, while 

Philine Rojzyk was involved in the method and result parts. In addition, I prepared the paper for sub-

mission and answered the queries in the review process. The entire process from hypothesis generation 

to the completion of the manuscript, as well as the review process, was supervised by Prof. Dr. med. 

Inga K. Koerte. 
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III Paper 2 

III.1 Background  

There is substantial evidence linking combat exposure to poor mental health in veterans returning from 

war 2,101,199. In particular, psychiatric disorders in veterans 14 and their far-reaching consequences for 

social and personal life 6–8 have been well studied. However, the pathomechanism behind the high 

prevalence of psychiatric disorders in veterans has not been sufficiently explored so far. An established 

risk factor for the development of psychiatric illness is the intense psychological stress in relation to 

combat exposure 200. In addition, veterans who sustained an mTBI also have an increased risk of suf-

fering from psychiatric illness and neurocognitive impairment for several reasons 11,29. Nevertheless, 

very few studies have focused on the influence of war zone-related stress on brain structure and func-

tion, and in particular, no validated questionnaires have been applied. Moreover, the impact of an 

mTBI diagnosis on the relationship between war zone-related stress and brain structure and neuropsy-

chological functioning remains to be elucidated. 

In particular, dMRI, a specific MRI sequence, is able to detect microstructural alterations and has been 

mainly used to study white matter 108,188. Although microstructural white matter alterations have been 

demonstrated in the common neuropsychiatric disorders affecting veterans 138–147, studies on the im-

pact of war zone-related stress on white matter microstructure are scarce. Notably, the microstructure 

of gray matter has not been studied in this context at all. 

Therefore, the aim of this study was to investigate whether war zone-related stress is associated with 

microstructural alterations in gray matter and whether this association is modulated by an mTBI diag-

nosis. Additionally, we aimed to examine whether gray matter changes are associated with neuropsy-

chological functioning. 

 

III.2 Methods 

Our study used data from 168 male veterans with available high-quality MRI’s and clinical data col-

lected as part of the TRACTS (Translational Research Center for TBI and Stress Disorders) study. The 

clinical assessment of this study comprised the assessment of psychiatric disorders (Mood Disorders, 

Substance Use Disorders, Anxiety Disorders, Eating Disorders, Adjustment Disorders), mTBI, war 

zone-related stress, as well as functional and neurocognitive outcome using validated questionnaires. 

Study participants were scanned on a 3-Tesla Siemens TIM Trio MRI scanner (Siemens Healthcare, 

Erlangen, Germany) and Diffusion MRI were acquired using a single-shot echo-planar sequence with 

a twice refocused spin-echo pulse.  
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The average of the free water corrected FA measure (FAt) was derived for eight preselected limbic 

and paralimbic gray matter regions in each hemisphere (16 regions of interest in total). Statistical anal-

yses were conducted utilizing SPSS, and a p-value of <0.05 was considered statistically significant. A 

false discovery rate (FDR201) of 5% was determined to adjust for multiple comparisons. Generalized 

linear models (GLM) were applied to assess the link between war zone-related stress and diffusion 

measures. We added the number of lifetime mTBIs both as a fixed effect and as a modifier of the main 

effect to investigate whether mTBI has an influence on the relationship between war zone-related stress 

and gray matter diffusion. The diffusion measures that were significantly associated with war zone-

related stress were analyzed post-hoc to examine the association between these diffusion measures and 

functioning.   

 

III.3 Results 

Effects of War zone-related Stress on Limbic Gray Matter Diffusion 

We established a negative association between greater war zone-related stress and FAT in the bilateral 

cingulate gyri, bilateral orbitofrontal gyri and right parahippocampal gyrus. As opposed to our first 

finding, war zone-related stress was positively associated with FAT in the right amygdala-hippocampus 

complex. 

  

Impact of mTBI on the Association of war zone-Related Stress and Limbic Gray Matter Diffusion 

The diagnosis of mTBI did not impact the relationship between war zone-related stress and limbic gray 

matter FAT.  

 

Association of Limbic Gray Matter Diffusion and Functional Outcome 

Decreased FAt in the cingulate and orbitofrontal gyri was related to reduced response inhibition but to 

enhanced fronto-temporal functions, i.e., verbal short-term memory performance and processing 

speed. At the opposite, decreased FAT in the amygdala-hippocampal region was associated with better 

response inhibition and impaired performance of verbal short-term memory and processing speed (Fig-

ure 7). A link between limbic gray matter FAT and neurobehavioral symptoms or clinical functioning 

could not be confirmed. 
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III.4 Discussion 

Our study demonstrates that greater war zone-related stress is related to decreased FAT in the bilateral 

cingulate, bilateral orbitofrontal , and right parahippocampal gyrus. Decreased FAT in the cingulate/or-

bitofrontal gyrus was in turn linked to impaired response inhibition. 

In contrast, greater war zone-related stress was associated with higher FAT in the amygdala-hippocam-

pus complex, which in turn was related to better short-term memory and processing speed. Of note, 

mTBI did not significantly alter the relationship between war zone-related stress and limbic gray mat-

ter structure. 

 

Figure 7: Effects of war zone-related stress on limbic and paralimbic brain areas and associated cognitive func-

tions adapted from paper 2 

 
War zone-related Stress and Limbic Gray Matter Diffusion 

Our study is one of the rare ones investigating the microstructure of gray matter, and accordingly, there 

has been little research that elucidates the pathophysiological basis of gray matter microstructural al-

terations. However, a reasonable explanation for the association between war zone-related stress and 

decreased FAT in the cingulate, orbitofrontal, and right parahippocampal gyrus might be a decrease in 

astrocytes 202 and/or neurons 203, which are the major components of gray matter. 

In contrast, the positive association between higher war zone-related stress and FAT in the amygdala-

hippocampus complex might be grounded in neuroplastic remodeling processes, as indicated by pre-

vious research 203. 
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Association between Limbic Gray Matter Diffusion and Functional Outcome 

Increased FAT in the amygdala-hippocampus complex was not only associated with greater war zone-

related stress but also with better fronto-temporal brain functions. This may be due to chronic excessive 

activation of fronto-temporal brain functions such as short-term memory and processing speed 204–208. 

This overactivation leads to improved function of fronto-temporal regions by triggering neuroplastic 

processes 209. A potential clinical manifestation could be, for example, a hypervigilant state and read-

iness to respond, which is an advantageous adaptation mechanism in combat situations, but a disad-

vantage if persisting in civilian life. 

Furthermore, an association between impaired prefrontal/cingulate functions (response inhibition) and 

reduced FAT in prefrontal regions was found, which may be due to the phenomenon of interference. 

In this case, the predominant use of certain brain functions, such as fronto-temporal functions, results 

in worse functioning of other cognitive tasks, such as response inhibition 210–212. 

 

Conclusion 

The findings indicate that the adverse health consequences of experienced war zone-related stress may 

be attributed to alterations in limbic gray matter microstructure. The importance of early preventive 

treatment for veterans is demonstrated. 

 

III.5 Own contribution 

Concerning this second paper, I contributed to the analysis, interpretation, and editing of the data.  

Based on my extensive literature review of brain alterations in veterans, I provided suggestions for the 

analysis and interpretation of the data. 

Further, I was involved in editing the manuscript. I read through the manuscript several times, and 

provided critical revisions by making suggestions for content, the figures, as well as formal improve-

ments throughout the text. I was particularly involved in the revision of the introduction.  
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