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Summary

When designing machine learning (ML) models for scientific applications, a key point is to incor-
porate a priori domain-specific information in the model. Especially, when constructing reduced
complexity models as surrogates, we need to ensure that the mathematical and physical properties
of the underlying system are reflected correctly by the ML model.

The first part of this thesis focuses on physics-consistent Gaussian processes (GPs) that respect
laws of physics by design. This stands in contrast to so-called physics-informed regressors that in-
corporate physical constraints weakly through the loss function. In scenarios where data originate
from underlying linear partial differential equations (PDEs) with localized sources, the proposed
model is a superposition of a Gaussian process with a specialized kernel that is constructed to
exactly fulfill the homogeneous part of the PDE while a linear model is used for sources. The spe-
cialized kernel ensures an exact correspondence and physical interpretability of hyperparameters
allowing insights into the underlying physical characteristics.

Physics-consistent GPs are then extended to model mappings in the phase space of Hamiltonian
systems. Here, we propose a surrogate model based on multi-output GPs deploying derivative
information with a matrix-valued covariance function to fully preserve the symplecticity of the
Hamiltonian flow and thus conserve integrals of motion. The proposed method is related to
geometric integration methods, but models the flow map with larger time steps, accelerating long-
term computations. In chaotic systems, the symplectic surrogate model can not only be used for
faster computations but also for early classification of chaotic versus regular trajectories, based
on the calculation of Lyapunov exponents directly available from the surrogate model.

One particular challenge in applying ML models to problems in plasma physics is the lack of
labeled data for training larger models. Usually, physical experiments are extremely expensive
and with regard to future fusion reactors, sufficient data will not be available until operations
start. The second part of this thesis treats data augmentation via robust surrogate models of
multivariate time series data to mitigate this problem. We apply Student-t process regression in
a state space formulation to ensure reliable uncertainty estimates despite outliers. This reduces
computational complexity and allows us to use the model for high-resolution time series. We
are using different approaches in this regard. One approach assumes uncorrelated input signals
and induces correlations and cross-correlations via coloring transformations in a post-processing
step. Another technique immediately incorporates correlations by using a multivariate Matérn
kernel. Both approaches are found to be well-suited for data imputation and augmentation for
multichannel time series sensor data with outliers.





Zusammenfassung

Bei der Entwicklung von Modellen, die Methoden des maschinellen Lernens (ML) für natur-
wissenschaftliche Anwendungen verwenden, ist es wichtig, fachspezifische Informationen und
Gesetzmäßigkeiten in das Modell einzubeziehen. Insbesondere bei der Konstruktion von Sur-
rogatmodellen mit reduzierter Komplexität muss sichergestellt werden, dass die mathematischen
und physikalischen Eigenschaften des zugrundeliegenden Systems durch das ML-Modell korrekt
wiedergegeben werden.

Der erste Teil der Dissertation befasst sich mit physikalisch konsistenten Gauß-Prozessen, die so
konstruiert sind, dass sie physikalische Gesetze berücksichtigen. Dieser Ansatz steht im Gegensatz
zu physikalisch informierten Regressoren, die physikalische Randbedingungen über die Verlust-
funktion einbeziehen.

Für Daten aus zugrundeliegenden linearen partiellen Differentialgleichungen mit lokalisierten
Quellen wird ein Modell vorgeschlagen, das auf einer Superposition eines Gauß-Prozesses mit
spezialisierter Kovarianzfunktion, die den homogenen Teil der Differentialgleichung exakt erfüllt,
und einem linearen Modell für die lokalisierten Quellen basiert. Durch die spezialisierte Kovari-
anzfunktion werden exakte Konsistenz und physikalische Interpretierbarkeit der Hyperparameter
gewährleistet. Hierdurch werden auch Einblicke in die zugrundeliegenden physikalischen Charak-
teristika ermöglicht.

Hierauf aufbauend werden physikalisch konsistente Gauß-Prozesse entwickelt, um Abbildungen
im Phasenraum von Hamiltonischen Systemen zu modellieren. Dafür wird ein Surrogatmod-
ell vorgeschlagen, das auf multivariaten Gauß-Prozessen basiert und Gradienteninformationen
mittels einer matrixwertigen Kovarianzfunktion verwendet, um die Symplektizität des Hamilton-
schen Flusses exakt zu erhalten. Dadurch werden auch die Integrale der Bewegung erhalten. Das
vorgeschlagene Modell erlaubt es, Langzeitberechnungen durch die Abbildung des Flusses mit
großen Schrittweiten zu beschleunigen. Für chaotische Systeme kann das symplektische Surrogat-
modell nicht nur für schnellere Berechnungen verwendet werden, sondern auf Basis der Berechnung
der Lyapunovexponenten auch für eine frühzeitige Klassifizierung von chaotischen und regulären
Trajektorien.

Eine besondere Herausforderung bei der Anwendung von ML-Modellen auf Probleme der Plasma-
physik ist die geringe Menge an gelabelten Daten, um größere Modelle zu trainieren. Physikalische
Experimente sind in der Regel sehr teuer und im Hinblick auf zukünftige Fusionsreaktoren wer-
den bis zu deren Inbetriebnahme nicht genügend gelabelte Daten zur Verfügung stehen. Daher
beschäftigt sich der zweite Teil der Arbeit mit der Datenerweiterung mittels robuster Surrogat-
modelle für multivariate Zeitreihen. Wir verwenden Student-t-Prozesse in einer Zustandsraumfor-
mulierung, um einerseits zuverlässige Unsicherheitsvorhersagen trotz Ausreißern zu gewährleisten
und andererseits die Rechenkomplexität durch das Zustandsraummodell zu reduzieren. Damit ist
das vorgeschlagene Modell auch für hochaufgelöste Zeitreihen anwendbar. Es werden zwei Ansätze
vorgeschlagen: Ein Ansatz geht von unkorrelierten Eingangssignalen aus und induziert Korrelatio-
nen und Kreuzkorrelationen im Nachgang mittels Coloring-Transformationen. Das andere Modell
induziert Korrelationen direkt durch eine multivariate Matérn Kovarianzfunktion. Beide Mod-
elle eignen sich gut zur Datenerweiterung bzw. Datenimputation für multivariate Zeitreihen mit
Ausreißern.





Contents

1 Overview 1

2 Background 3
2.1 Hamiltonian systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Invariants of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Symplectic integration and generating functions . . . . . . . . . . . . . . . . . . 4
2.1.3 Hamiltonian chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Gaussian process regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Derivative observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Hyperparameter optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Covariance functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Contributions towards specialized kernel design . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Constrained Gaussian processes . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Incorporating symplectic geometry . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Student-t process regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 State space formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Introduction to Bayesian filtering and smoothing . . . . . . . . . . . . . . . . . 24
2.5.2 Filtering and smoothing for TP regression . . . . . . . . . . . . . . . . . . . . . 30

3 Contributions 33
3.1 Gaussian Process Regression for Data Fulfilling Linear Differential Equations with Localized

Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2 Symplectic Gaussian Process Regression of maps in Hamiltonian systems . . . . . . . . 51
3.3 Orbit Classification in Dynamical Systems Using Surrogate Models . . . . . . . . . . . . 77
3.4 Data augmentation for disruption prediction via robust surrogate models . . . . . . . . 88
3.5 Dependent state space Student-t processes for imputation and data augmentation in plasma

diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 Conclusion and Future Work 125

Contributing Publications 127

Further References 129

ix





1 Overview

Motivation Modeling complex real-world phenomena requires physically consistent algorithms
that ensure that predictions align with the fundamental laws of nature. Even though a purely
data-driven model may fit observations well, it might lead to physically inconsistent and even
wrong predictions if no physical knowledge is included. Hence, incorporating laws of physics in
machine learning (ML) models to ensure physically plausible predictions has been an active area
of research (e.g., Jin et al., 2020; Peng and Mohseni, 2016; Raissi et al., 2017; Swiler et al., 2020).
Different strategies can be employed to improve ML algorithms with a priori information (Kar-
niadakis et al., 2021):

(i) utilizing prior knowledge derived from observations (e.g., Fischer et al., 2003);

(ii) incorporating inductive biases via specialized alterations of the ML model architecture that
ensure that predictions satisfy given mathematical or physical constraints (e.g., Jin et al.,
2020; Burby et al., 2020; Greydanus et al., 2019);

(iii) by an appropriate choice of a physics-informed loss function that favors predictions corre-
sponding to the underlying physics (e.g., Raissi et al., 2017).

Stochastic processes like Gaussian and Student-t processes (GPs and TPs) offer great flexibility in
modeling complex physical systems. The probabilistic approach allows for uncertainty quantifica-
tion and prior information can be incorporated through the kernel function that encodes known
relationships in the data. They also allow a straightforward specification of hyperparameters as
they facilitate the definition of quantities like correlation length and smoothness.

There are numerous application fields in theoretical and experimental physics of physics-consistent
stochastic processes. In this thesis, we focus on problems in magnetic confinement fusion. Fusion
is a highly complex process that releases energy from merging atomic nuclei. Simulating and un-
derstanding the behavior of plasma in fusion reactors, such as tokamaks and stellarators, requires
accurate and physically consistent models.
In this realm, the accelerated computation of alpha particles, which are a product of the fusion
reaction, is a current topic of interest in optimizing reactor designs. Alpha particles should be
confined in a fusion reactor as they heat the plasma through collisions. When using fast surrogate
models to estimate the loss of alpha particles, it is important that they reflect the underlying laws
of physics.
Another area of application is the prediction of rapidly growing instabilities, so-called disruptions,
which lead to a sudden loss of thermal and magnetic energy and are potentially harmful for the
fusion reactor. To maintain a safe and stable operation, it is crucial to predict disruptions in order
to start disruption mitigation measures. Progress has been achieved in disruption prediction using
ML models (Rea and Granetz, 2018; Rea et al., 2019, 2020; Pau et al., 2019; Berkery et al., 2017).
However, labeled experimental data is limited and expensive to obtain. Also with regard to future
fusion reactor devices such as ITER or SPARC, insufficient data will be available to have a fully
trained model for predicting disruptions. A carefully designed data augmentation model could
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1. Overview

help to improve the imbalanced and restricted data situation by creating rare disruption events
and thereby robustify the prediction performance of ML models.

This thesis consists of five contributing articles that focus on two strategies for incorporating
physical knowledge into ML models for advancing fusion: (1) inductive bias via specialized model
architectures and (2) augmenting and imputing data in a way that the correlation structure of mul-
tivariate experimental signals is retained. Chapter 2 revisits fundamental physical concepts and
stochastic processes to provide a solid foundation for the contributions presented in Chapter 3.

Specialized model architectures The linear nature of GPs allows us to include physics infor-
mation in the form of partial differential equations (PDEs) within the model. In Section 3.1, we
present specialized kernels that exactly fulfill given homogenous PDEs with an additional linear
model accounting for potential source contributions. Section 3.2 introduces structure-preserving
surrogate models based on GPs. The presented approach can be employed to accelerate the com-
putation of alpha particle losses by serving as a fast emulator for orbit tracers. This model can be
combined with early orbit classification, as presented in Section 3.3, to assess whether particles
are confined or lost.

Data augmentation and imputation In order to augment the training data set for a disrup-
tion predictor with data that reflect the underlying physics, we propose fast local models based
on state space Student-t process regression. Section 3.4 introduces an uncorrelated model for
different input dimensions and imposes correlations afterward via coloring transformations. In
Section 3.5, we consider a fully multivariate model, which directly includes correlations between
input dimensions and is thus also capable of reconstructing gappy data with information from
other input dimensions.

2



2 Background

This chapter recalls the fundamentals of Hamiltonian mechanics and symplectic geometry and
discusses challenges regarding geometric integration. Then, we revisit Gaussian process regres-
sion, explain hyperparameter optimization and the incorporation of derivative observations, and
discuss suitable covariance functions. We consider the related Student-t processes and discuss
their advantages. Finally, we explain the relation of Gaussian and Student-t processes to stochas-
tic differential equations and introduce Bayesian filters and smoothers for sequentially solving
regression problems.

2.1 Hamiltonian systems

Hamiltonian systems are ubiquitous in physics and engineering as they allow us to describe numer-
ous dynamical systems in classical mechanics, electrodynamics, and plasma physics (Goldstein,
1980; Arnold, 1989; Lichtenberg and Lieberman, 1992; José and Saletan, 1998; Lee, 2003). Exam-
ples of Hamiltonian systems are the planetary system, the undamped pendulum, or the motion of
a charged particle in an electromagnetic field. The Hamiltonian formalism developed by William
Rowan Hamilton in 1834 is not only a convenient way of solving dynamical systems but has far-
reaching implications. For many systems, the entire information of how the system evolves is
encoded in the scalar function H. Geometric properties implied by the Hamiltonian structure led
to the development of symplectic geometry. Moreover, the concept of integrability allows insights
into stability and the formalism allows to include perturbations efficiently (Arnold, 1989).
In the following, Hamilton’s equations of motion are defined, along with an explanation of in-
variants of motion and an introduction to symplectic geometry. Then, we discuss how symplectic
integration schemes preserve invariants of motion. Finally, we will discuss Hamiltonian chaos and
ways of distinguishing regular from chaotic trajectories.

Here, we consider an f -dimensional, autonomous system characterized by a time-invariant scalar
function, the Hamiltonian H(q, p), depending on f generalized position coordinates q and f
generalized momenta p. The solutions of Hamilton’s canonical equations of motion,

q̇ = dq(t)
dt

= ∇pH(q(t), p(t)) , (2.1)

ṗ = dp(t)
dt

= −∇qH(q(t), p(t)) , (2.2)

define the system’s evolution and are integral curves of the Hamiltonian vector field XH . They
are called trajectories or orbits of the system. Using z = (q(t), p(t)), equations 2.1 and 2.2 can
be rewritten as

3



2. Background

XH(z) =
(

∇pH(z)
−∇qH(z)

)
= J−1∇zH(z) , (2.3)

where
J−1 =

(
0 I

−I 0

)
, (2.4)

with I being the f × f identity matrix.

2.1.1 Invariants of motion

The Hamiltonian H is constant along integral curves of XH . More generally, the total time
derivative of an arbitrary function F (q, p, t) can be written as,

dF

dt
= ∂F

∂t
+
∑

i

(
∂F

∂qi
q̇i + ∂F

∂pi
ṗi

)
= ∂F

∂t
+
∑

i

(
∂F

∂qi

∂H

∂pi
− ∂F

∂pi

∂H

∂qi

)
= ∂F

∂t
+ {F, H} , (2.5)

where we used Hamilton’s equation and the notation of a Poisson bracket {·, ·} (Arnold, 1989;
Lichtenberg and Lieberman, 1992). If F is not explicitly dependent on t and the Poisson bracket
vanishes, F commutes with the Hamiltonian and is an invariant of motion. As we are here only
considering autonomous systems with time-independent Hamiltonian, and {H, H} ≡ 0, the Hamil-
tonian is an invariant of motion and conserved. In many Hamiltonian systems, the Hamiltonian
corresponds to the energy of the system. This means that orbits with a given energy lie on a
(2f − 1)-dimensional constant-energy surface E = H(q, p).

The Hamiltonian vector field XH is divergence-free,

∇ · XH =
∑

i

(
∂q̇i

∂qi
+ ∂ṗi

∂pi

)
=
∑

i

(
∂

∂qi

∂H

∂pi
− ∂

∂pi

∂H

∂qi

)
= 0 . (2.6)

This is called Liouville’s theorem and implies that any closed volume of phase space is conserved,
although its shape may be deformed (Arnold, 1989). However, the underlying geometric structure
of Hamilton’s canonical equations implies much more than phase-space volume conservation or
incompressibility. Hamiltonian flows are symplectic maps and preserve symplecticity. Mikhael
Gromov strengthened Liouville’s theorem with the non-squeezing theorem (Tao, 2006), showing
that it is impossible to squeeze a ball into a cylinder of smaller radius with an Hamiltonian flow.
Gromov illustrated this concept with the symplectic camel: This camel cannot pass through the
eye of a needle (Stewart, 1987). This implies that the space of symplectic maps is much more
restrictive with restrictions on shape and symplectic width than the one of volume-preserving
ones.

2.1.2 Symplectic integration and generating functions

When integrating Hamilton’s equations of motion (see Eqs. 2.1 and 2.2) to calculate trajectories,
it is important to preserve the symplectic structure of phase space and thereby, conserve invariants
of motion within fixed bounds (Hairer et al., 2006; Goldstein, 1980). If this is not the case, the
numerically integrated Hamiltonian system can become dissipative, and results may show incorrect
long-time behavior (Hairer et al., 2006; Abdullaev, 2006). This can be avoided by employing
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2.1 Hamiltonian systems

canonical transformations and thereby restricting the possible maps to symplectic maps (Hairer
et al., 2006). A symplectic map g(q, p) preserves the Hamiltonian character of the differential
equation, and its Jacobian g′(q, p) satisfies

g′(q, p)⊤Jg′(q, p) = J , (2.7)

meaning it is symplectic for all q and p. This also holds for the Hamiltonian flow of time-invariant
systems, and hence, the Hamiltonian flow is a symplectic map for each time step t (Hairer et al.,
2006). Another perspective on symplectic maps is that any canonical change of coordinates is a
symplectic transformation (Lichtenberg and Lieberman, 1992; Hairer et al., 2006; Goldstein, 1980).
A canonical transformation from initial coordinates (q, p) to another set of canonical coordinates
(Q, P ) can be represented by a generating function, e.g., F2(q, P , t) depending on initial position
coordinates q and new momentum coordinates P . This leads to the following equations for the
remaining coordinates (Q, p):

Q = ∂F2(q, P , t)
∂P

, (2.8)

p = ∂F2(q, P , t)
∂q

, (2.9)

and the Hamiltonian is also transformed to

K(Q, P ) = H(q, p) + ∂F2(q, P , t)
∂t

. (2.10)

When we assume that those relations can be inverted, equations 2.8 and 2.9 give f relations for
new momenta P and new positions Q.

Splitting the generating function F2(q, P , t) into F2(q, P , t) = q · P + F (q, P , t), we get

Q = q + ∂F (q, P , t)
∂P

, (2.11)

p = P + ∂F (q, P , t)
∂q

, (2.12)

as the first part of the split generating function corresponds to the identity transformation (q, p) 7→
(Q, P ). Discretizing in time with mapping time step h and setting F (q, P , t) = hH(q, P , t),
Eqs. 2.11 and 2.12 are equivalent to the semi-implicit symplectic Euler scheme (Hairer et al.,
2006):

pn+1 = pn − h
∂H(qn, pn+1)

∂qn
, (2.13)

qn+1 = qn + h
∂H(qn, pn+1)

∂pn+1
, (2.14)

where (q(t), p(t)) are equivalent to (qn, pn) and (q(t + h), p(t + h)) = (Q, P ) to (qn+1, pn+1).
Each step of the integrator is a symplectic transformation.

5



2. Background

It can easily be shown that the symplecticity is preserved by Eqs. 2.13 and 2.14 by differentiating
with respect to (qn, pn):

(
I −h ∂2H

∂pn∂pn

0 I + h ∂2H
∂qn∂pn

)
︸ ︷︷ ︸

A

( ∂qn+1
∂qn

∂qn+1
∂pn

∂pn+1
∂qn

∂pn+1
∂pn

)
=
(

I + h ∂2H
∂qn∂pn

0
−h ∂2H

∂qn∂qn
I

)
︸ ︷︷ ︸

B

. (2.15)

This allows a direct calculation of ∂(qn+1,pn+1)
∂(qn,pn) = A−1B and straightforward matrix manipulations

show that
(

∂(qn+1,pn+1)
∂(qn,pn)

)⊤
J
(

∂(qn+1,pn+1)
∂(qn,pn)

)
= J.

In contrast to non-symplectic integration schemes, the geometric structure of the Hamiltonian
system is preserved with a symplectic integration scheme. Therefore, the results obtained are
more accurate, and invariants of motion are conserved within bounds. Besides the symplectic Euler
(see Eqs. 2.13 and 2.14), multiple symplectic integration schemes exist, also including higher-order
schemes such as the symplectic Störmer-Verlet scheme or symplectic Runge-Kutta schemes (Hairer
et al., 2006).

In Fig. 2.1, one pendulum orbit with initial conditions (q, p) = (0.3, 1.0) in phase space and its en-
ergy are shown for two cases: calculated with a symplectic and non-symplectic integration scheme.
Here, the same time step size is used for both integration schemes. While the orbit calculated
using the symplectic scheme stays close to the constant energy surface, the non-symplectic trajec-
tory gains energy and spirals outwards. When considering energy conservation for this case, the
error in energy is bounded and small for the symplectic Euler method, while it grows linearly for
the non-symplectic, explicit Euler (Hairer et al., 2006).

2.1.3 Hamiltonian chaos

In many Hamiltonian systems, chaos plays a vital role (Ott, 2002; Lichtenberg and Lieberman,
1992; José and Saletan, 1998; Zaslavsky, 2007). Although chaos in Hamiltonian systems is deter-
ministic, meaning that no random elements are involved and the initial conditions fully determine
the behavior of orbits, it is still not predictable (Werndl, 2009). The temporal evolution of the
Hamiltonian system, e.g., the movement of charged particles in a magnetic field, is highly sensitive
to the initial conditions. The chaotic system is not predictable in the sense that even tiny changes
in initial conditions can lead to vastly different outcomes. In other words, although the current
state uniquely defines future states, an approximation of the first does not approximately define
the latter.

If an integrable1 Hamiltonian system is perturbed and the perturbation is sufficiently small, there
are regular trajectories as well as regions of stochasticity in phase space, that are well separated by
regular trajectories. Due to the perturbation, the integrable system moves away from integrability
and invariant tori, which confine regular trajectories, are distorted or destroyed. With increasing
perturbation, more tori are destroyed, and the proportion of chaotic orbits increases.

1Integrability in Hamiltonian systems means that there exist enough independent Poisson commuting first integrals.
For an integrable Hamiltonian system, a specific set of coordinates can be defined, so-called action-angle variables,
in which the temporal evolution of the system is linear. They parametrize the motion on an invariant torus in
phase space (Lichtenberg and Lieberman, 1992).

6



2.1 Hamiltonian systems

(a) Symplectic Euler (b) Explicit Euler

(c) Energy conservation of the pendulum problem

Figure 2.1: Orbit of a pendulum with H(q, p) = p2

2 − cos(q) in phase space using symplectic Euler
and non-symplectic, explicit Euler integration schemes with step size h = 0.15 for
initial conditions (q, p) = (0.3, 1.0) and n = 2000 time steps. The black contours in
panels (a) and (b) depict orbits of constant energy.
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2. Background

A key challenge in analyzing chaotic Hamiltonian systems is the distinction between chaotic and
regular orbits. A commonly used tool for doing so are Poincaré sections. We choose a lower-
dimensional subspace of phase space and study the intersection of the trajectories with this surface
(see Fig. 1.3.a in Lichtenberg and Lieberman (1992)). The resulting curves on this subspace
allow insight into the dynamics of the underlying system as chaotic and regular orbits exhibit
entirely different behavior. Especially for high-dimensional systems, Poincaré sections allow the
visualization of properties of those dynamical systems.

The regular trajectories remain bounded on invariant (2f − 1)-dimensional tori of the 2f -
dimensional phase space. Those regular trajectories are associated with the first integrals of
motion. In the Poincaré plot, they appear as closed invariant curves, and when observed for a
long time, the intersections densely cover the curve. Further, regular resonant trajectories exist,
where all intersections with the distinct lower-dimensional subspace chosen for the Poincaré sec-
tions lie on several fixed points. An orbit near a resonant trajectory gives rise to islands that
encircle the fixed points.

The stochastic or chaotic trajectories fill a finite portion of the Poincaré section but stay confined
between two invariant curves stemming from regular trajectories. Depending on the strength of
the perturbation, chaotic orbits might spread over the whole phase space when all invariant tori
are destroyed. This is then called global stochasticity.

A very well-studied example to study chaos in Hamiltonian systems is the standard map (Chirikov,
1979):

pn+1 = (pn + Ksin(qn)) mod 2π , (2.16)
qn+1 = (qn + pn+1) mod 2π . (2.17)

K is the stochasticity parameter giving the intensity of the perturbation. Each mapping step of the
standard map corresponds to one Poincaré map of a kicked rotor with the following Hamiltonian

H(q, p, t) = p2

2 + Kcos(q)
∞∑

n=−∞
δ

(
t

T
− n

)
. (2.18)

The kicked rotor is a bar fixed at one end to a frictionless pivot and subject to T = 2π-periodic
kicks at the other end. The angular momentum p changes discontinuously at each kick but remains
constant between the kicks. q corresponds to the angular position of the bar. The standard map
allows the examination of (q, p) right after each kick. When K = 0, the system corresponds to a
free rotator.

In Figure 2.2, the standard map is shown for different values of the stochasticity parameter K.
Panel 2.2a shows a fairly regular phase space for K = 0.5, where small bands of stochasticity
are very well separated and confined by regular regions. Initial points stay bound to a surface,
which is indicated by the color scheme. In contrast, in panel 2.2b, the phase space is shown for
a higher value of K = 1.5. There are still regular regions and island chains. However, they are
surrounded by a global stochastic layer, which allows points with specific initial conditions within
this ”chaotic sea” to explore the whole phase space.

Distinguishing regular from chaotic orbits is a key challenge in analyzing chaotic Hamiltonian
systems. Several approaches have been developed, many of which are based on the calculation
of Lyapunov characteristic exponents λi. They measure the rate of exponential separation of
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2.1 Hamiltonian systems

(a) K = 0.5 (b) K = 1.5

Figure 2.2: Standard map with different values of K, the stochasticity parameter. Different
colours depict different initial values (q0, p0), where the RGB values are proportional
to (p0, p0 + q0, q0).

trajectories with initial conditions z(0) = (q(0), p(0)) with perturbation δz over time (Eckmann
and Ruelle, 1985; Benettin et al., 1980a,b; Skokos, 2009):

|δz(T )| = J (T )
z(T )δz(0) ≈ eT λ|δz(0)| . (2.19)

Here, J (T )
z(T ) is a time-ordered product of Jacobians Jz(T −1)Jz(T −2) . . . Jz(1)Jz(0) (Eckmann and

Ruelle, 1985). The spectrum of the Lyapunov characteristic exponents is then given as the loga-
rithm of the eigenvalues of the following matrix:

Λ = lim
T →∞

[J (T )⊤
z(T ) J (T )

z(T )]
1/(2T ) . (2.20)

The maximal value of the Lyapunov characteristic exponents indicates whether orbits are of
chaotic or regular nature as it gives the rate of exponential growth of an infinitesimal vector δz.
Hence, the corresponding orbit is chaotic if λ1 > 0. The sum of the two largest Lyapunov char-
acteristic exponents λ1 + λ2 gives the rate of exponential growth of a surface element. Generally,
for a D-dimensional system, there exist D Lyapunov characteristic exponents giving the rate of
growth of a D-volume element. This is equivalent to the rate of growth of the determinant of the
Jacobian det (J (T )

z(T )) (Eckmann and Ruelle, 1985).
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2. Background

In Hamiltonian systems, the phase space is symplectic and therefore volume-preserving. Hence,
the determinant of the Jacobian is constant and this implies that the Lyapunov characteristic
exponents exist in additive inverse pairs, thus

D∑
i

λi = 0 . (2.21)

Lyapunov characteristic exponents are global in the sense that they are a measure of long-time
phase space stability (in the limit T → ∞). They are independent of initial conditions. Because
computing the Lyapunov exponents would take a simulation over an infinite amount of time,
we here use the finite time local Lyapunov exponents to distinguish between regular and chaotic
orbits (Benettin et al., 1980a,b; Abarbanel et al., 1991). Local Lyapunov exponents depend on
the phase space position z and time. They allow us to determine the predictability of a specific
point in phase space for a finite time and to estimate the heterogeneity of phase space (Eckhardt
and Yao, 1993; Abarbanel, 1992). These characteristics make the local Lyapunov exponents very
well suited for characterizing stochastic and regular regions in Hamiltonian dynamical systems.

Another approach for orbit classification relies on box-counting fractal dimension of the set of
points given by Poincaré intersections (Theiler, 1990; Albert et al., 2020). The fractal dimension
depends on the number of boxes needed to cover all points in the set and is close to one in the
regular case as the number of boxes grows linearly with the inverse size of the boxes. For chaotic
orbits that spread over the whole phase space, the fractal dimension is well between one and
two.

Contributions In Section 3.3, we use a symplectic surrogate model based on Gaussian processes
with specialized covariance structure for early orbit classification based on local Lyapunov expo-
nents (Rath et al., 2021b,a). The necessary Jacobians for several time steps are directly available
from the symplectic surrogate model and can be inferred via the Hessian of the kernel function.
We investigate the predictive performance of the proposed approach using the standard map with
different values of the stochasticity parameter K and evaluate the distribution of the local Lya-
punov exponents depending on the number of time steps necessary to classify orbits. For K = 2.0,
where a large chaotic sea surrounds several islands of stability, we find that in the regular case,
the distribution exhibits a sharp peak moving closer to zero with an increasing number of time
steps. We investigate the rate of convergence of the block bias due to the finite number of mapping
iterations to estimate the necessary number of mapping steps. This box bias vanishes in the limit
T → ∞. The distribution has a median larger than zero for chaotic orbits and is more spread out
than in the regular case. In this case of K = 2.0, chaotic and regular regions can be distinguished
more easily and also with fewer mapping iterations than in the other test case with K = 0.9. Here,
several distinct stochastic layers are clearly separated by regular orbits. Orbits are weakly chaotic,
meaning they exhibit chaotic behavior but stay close to hyperbolic fixed points. Hence, there is
more variety in phase space and the transition between regular, weakly chaotic, and chaotic orbits
is continuous. We use a Bayesian classifier trained on results from a reference method (generalized
alignment index (Skokos et al., 2007)) to determine the probability of an orbit being regular based
on the obtained local Lyapunov exponents from the surrogate model. Again, for K = 2.0, the
rate of misclassification drops and stays constant at ≈ 1% after 100 mapping iterations, while for
K = 0.9 it remains constant at ≈ 10% also after 100 mapping iterations due to the continuous
transition between classes.
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2.2 Gaussian process regression

2.2 Gaussian process regression

Gaussian process (GP) regression is a non-parametric, Bayesian approach for representing smooth
functions while allowing the incorporation of prior information and providing uncertainty mea-
sures over predictions (Rasmussen and Williams, 2005; Schölkopf and Smola, 2018; MacKay, 2003;
Bishop, 2006; Murphy, 2022).
The following section introduces GPs and gives the key equations for predicting mean and co-
variance. The incorporation of derivative observations in the GP model and hyperparameter
optimization are explained. Different covariance functions are introduced, and, finally, contribu-
tions to a specialized kernel design are presented.

When considering linear regression from a Bayesian perspective, a non-linear function f(x) pa-
rameterized by weights w depends on input data x aggregated in matrix X. We observe noisy
data y(x) = f(x)+ε and adapting the model to the observations can be described as inferring the
underlying function f(x) based on the available data. The posterior distribution over the weights
is calculated via Bayes’ rule:

p(w|y, X) = p(y|X, w)p(w)
p(y|X) , (2.22)

where p(y|X, w) is the likelihood and p(w) the prior. The normalizing constant p(y|X) is the
marginal likelihood and independent of w. Assuming a prior distribution on the weights induces
a prior distribution over functions. From the posterior distribution over w, function values for
new input values y(x∗) can be predicted.

In GP regression, the GP prior is directly postulated on the space of functions without the
parameterization of y(x). This allows inference on the function directly. We can think of the
Gaussian process,

f(x) ∼ GP(m(x), k(x, x′)) , (2.23)

as a generalization of a Gaussian distribution over a finite vector space to a function space of infinite
dimension (Rasmussen and Williams, 2005; MacKay, 2003). While random variables from a uni-
or multivariate Gaussian distribution are scalars or vectors, respectively, random variables from a
Gaussian, or more generally, a stochastic process, are functions (A. Papoulis, 1991): A stochastic
process is a collection of random variables f(x) : x ∈ X , defined on a common probability space,
indexed by elements from some set X , the so-called index set. The finite-dimensional distributions
of the stochastic process, which entail the joint distribution of a finite number of random variables
from that process, satisfy the consistency property: the joint distributions of these variables
remain consistent when more random variables from the same stochastic process are considered.
This is also the basis for the definition of stochastic processes from the definition of a collection
of all finite-dimensional marginals that are consistent (see Kolmogorov Extension Theorem in
e.g. (Khoshnevisan, 2002)).

In the case of a GP, any finite number of random variables produced by the GP follows a multi-
variate normal distribution

p(f |m, K) = 1
(2π)(n/2) |K|−

1
2 exp

(
−1

2(f − m)⊤K−1(f − m)
)

. (2.24)

In most application cases, the mean m(x) will be set to zero without any loss of generality.
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2. Background

Analogously to a Gaussian distribution over a finite-dimensional vector space being fully defined
by its mean and covariance, a GP is fully characterized by its mean function m(x),

m(x) = E[f(x)] , (2.25)

and covariance function k(x, x′) that expresses the covariance between function values at x and
x′:

k(x, x′) = E[(f(x) − m(x))(f(x′) − m(x′))] . (2.26)
The covariance function determines the entries [K]ij = k(xi, xj) of the covariance matrix K.
Choices for valid covariance functions are given in section 2.2.3.

The marginalization property holds as a GP is a stochastic process and thus a collection of
random variables. This consistency requirement means that if the GP defines y ∼ N (m, K), it
also specifies y1 ∼ N (m1, K11), when y1 is a subset of y and K11 is a submatrix of K. This means
that the examination of a larger set leaves the distribution of a smaller subset unchanged.

In the context of regression, we usually work with noisy observations y of the latent function f
corrupted by Gaussian noise ε with variance σ2

n at n training points x. The input vector x is of
dimension D and all n training data points are aggregated in the (n × D) design matrix X. Here,
we assume that the noise is independent for each observation yi and not correlated. Given the
training data, we want to make predictions of the latent functions at n∗ new inputs x∗. Similarly
to the training points, test points are aggregated in the matrix X∗. The joint prior of y and the
test output f∗ = f(x∗) is given by:[

y
f∗

]
∼ N

(
0,

[
Ky(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
, (2.27)

Here, the matrix Ky(X, X) gives the covariance evaluated at the training points with an added
diagonal noise matrix Ky(X, X) = K(X, X) + σ2

nI. Due to the assumption that the noise is inde-
pendent, the noise term is diagonal.

The conditional distribution of the joint Gaussian prior distribution on the observations
p(f∗|X∗, X, y) is given as (see (Rasmussen, 2003, p. 200, Eq. A6))

f∗|X∗, X, y ∼ N (K(X∗, X)K(X, X)−1y, K(X∗, X∗) − K(X∗, X)K(X, X)−1K(X, X∗)) , (2.28)

which leads to the key predictive equations for GP regression: the predictive mean and covariance
for a test point x∗ are given by

f(x∗) = k⊤
∗ K−1

y y , (2.29)
cov(f(x∗)) = k∗∗ − k⊤

∗ K−1
y k∗ , (2.30)

where k∗ = K(X, X∗) denotes the covariance between n input points and the n∗ test points and Ky

includes the noise in the covariance matrix of the input points. k∗∗ = K(X∗, X∗) is the covariance
between two test points. It is important to note that the predictive covariance only depends on
the input and test points X and X∗ but not on the observed values y at these input points.

There are many possibilities for choosing the covariance function k(x, x′) as discussed in Sec-
tion 2.2.3. For now, we use the squared exponential covariance function that defines the covari-
ances between pairs of random variables as

cov(f(x), f(x′)) = k(x, x′) = σ2
f exp

(
−(x − x′)2

2l2

)
, (2.31)
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2.2 Gaussian process regression

(a) Prior (b) Posterior

Figure 2.3: Comparison of prior and posterior. (a) depicts 10 samples drawn from the prior dis-
tribution with a squared exponential covariance function. (b) shows 10 samples drawn
from the inferred posterior distribution after observing 5 (noisy) data points (depicted
as red + with 5% Gaussian noise). The hyperparameters are l = 1.2 and σ2

f = 1.0 (see
Sections 2.2.2 and 2.2.3). The true underlying function f(x) = sin(x)cos(x) is shown
as a red solid line, while the estimated mean is depicted as a black solid line. The
shaded regions correspond to two standard deviations at each input point x.

where σf and l are tunable hyperparameters.

In Figure 2.3, a comparison between the samples drawn from the prior and from the posterior is
shown. In Figure 2.3a, we draw random Gaussian samples with the covariance matrix K(X∗, X∗)
and zero mean. After observing measurements at training data points, the prior is conditioned on
these observations, and we can calculate the predictive mean and covariance following Eqs. 2.29
and 2.30 for the same test points X∗.

Regarding numerical stability, it is not beneficial to directly invert the covariance matrix K in
Eqs. 2.29 and 2.30 (Murphy, 2022; Rasmussen and Williams, 2005). A better option is to use the
Cholesky decomposition, which decomposes a symmetric, positive definite matrix into a product
of a lower triangular matrix and its transpose:

K = LL⊤ . (2.32)

The Cholesky decomposition is a common strategy for solving linear systems with symmetric
positive semidefinite coefficient matrices Kx = b by first solving Ly = b by forward substitution
and afterwards L⊤x = y by back substitution. The solution can then be written as x = L⊤\y =
L⊤\(L\b), where the notation of the backslash operator is used. The Cholesky decomposition has
the advantage of being numerically stable ((Rasmussen, 2003, p. 202)). Its drawback is that its
computational complexity is O(n3) and is therefore not suitable for very big matrices. Then, the
posterior mean can be calculated using α = L⊤\(L\y) as

E(f(x∗)) = k⊤
∗ K−1

y y = k⊤
∗ L⊤(L−1y) = k⊤

∗ α . (2.33)
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2. Background

Similarly, we get the variance for each test point,

cov(f(x∗)) = k∗∗ − k⊤
∗ K−1

y k∗ = k∗∗ − k⊤
∗ L⊤L−1k∗ . (2.34)

To draw samples x ∼ N (m, K) from the estimated posterior, we use L and generate u ∼ N (0, I).
To get samples with the desired distribution, we calculate x = m+Lu (Rasmussen and Williams,
2005).

Multi-output Gaussian processes Up to now, we have only considered the modeling of scalar
functions f . However, it is also possible to work with vector-valued functions, meaning we are
interested in the relationship between an input space RP and an output space RD. Multi-output
GP regression is very similar to the single output case, with the only difference being that now the
random variables are associated with different processes evaluated at different values of x (Alvarez
et al., 2012). We take a vector-valued function f ∼ GP(m, K), where D mean functions are stacked
forming the mean function vector m. K is a positive matrix valued function and its entries
[K]d,d′(x, x′) correspond to the covariances between outputs fd(x) and fd′(x′). The predictive
mean and covariance are the same as in the single output case given in Eqs. 2.29 and 2.30.
Kernels for multi-output GPs will be discussed below.

2.2.1 Derivative observations

As the derivative of a Gaussian process still is a Gaussian process, the framework of GPs can
easily be extended to include derivative information to improve model accuracy or enforce known
constraints (Rasmussen and Williams, 2005; Solak et al., 2003; O’Hagan, 1992; Rasmussen, 2003;
Eriksson et al., 2018). Additionally, it also allows for inference based on derivative information.
An application case is the inference of position when data are available from sensors that measure
velocity or acceleration, which are employed in extensions of the observation vector and the
covariance matrix. The observation vector is augmented with derivative observations (y, ∇y).
The covariance matrix is defined as

k∇(x, x′) =
(

k(x, x′) ∇xk(x, x′)
(∇x′k(x, x′))⊤ ∇2k(x, x′)

)
. (2.35)

Now, the covariance matrix includes covariances between function observations yi and derivatives
∂yi
∂xi

as well as covariances between two derivative observations:

cov
(

yi,
∂yj

∂xj

)
= ∂k(xi, xj)

∂xj
, (2.36)

cov
(

∂yi

∂xi
,

∂yj

∂xj

)
= ∂2k(xi, xj)

∂xi∂xj
. (2.37)

Function values and derivative observations often have different noise levels, which can be ac-
counted for in a diagonal contribution with different hyperparameters.
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2.2 Gaussian process regression

(a) Posterior (b) Posterior with derivative observations

Figure 2.4: Comparison of posterior prediction (a) without and (b) with derivative observations.
Both panels show the predicted mean (black solid line) along with 10 samples drawn
from the estimated posterior distribution after observing 5 (noisy) data points (de-
picted as red + with 5% Gaussian noise). The hyperparameters are l = 1.2 and
σ2

f = 1.0. The true underlying function f(x) = sin(x)cos(x) is shown as a red solid
line. The shaded regions correspond to two standard deviations at each input point x.

In Figure 2.4, the same test case as in Figure 2.3 is depicted with the difference that now derivative
information at the observation points are included. The prediction is improved as the observations
of the derivatives have a constraining effect.

2.2.2 Hyperparameter optimization

Learning in GP regression means adapting the hyperparameters θ of the covariance function,
typically having a length scale l, noise variance σ2

n and amplitude parameter σ2
f , that controls

the vertical scale of the function. These hyperparameters usually have significant effects on the
predictions from the model. Finding the optimal values of the hyperparameters is based on the
maximization of the marginal likelihood

p(y|X, θ) =
∫

p(y|f , X)p(f |X, θ)df . (2.38)

The prior is Gaussian p(f |X, θ) = N (f |0, K), where we assume a zero mean function. The
likelihood is a factorized Gaussian p(y|f , X) = ∏n

i=1 N (yi|fi, σ2
n) = N (f , σ2

nI). Then the marginal
log-likelihood is given by

log p(y|X, θ) = −1
2y⊤K−1

y y − 1
2log|Ky| − n

2 log(2π) , (2.39)

where the covariance matrix K implicitly depends on the hyperparameters θ. The first term
depends on the observations y and is the data fit. The second term penalizes the model complexity
and the last term is a normalization constant. Optimization of the hyperparameters is a trade-off
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2. Background

between the first two terms: the data fit is good for small values of the length scale l. However,
the model complexity is high as K is close to being diagonal. In contrast, the data fit is worse
for large length scales as the model is less flexible, but there is less penalization in the model
complexity term.

Using the Cholesky decomposition of the covariance matrix, we also get a simplified form for the
marginal likelihood,

log p(y|X, θ) = −1
2y⊤α −

n∑
i=1

logLii − n

2 log(2π) , (2.40)

where α again is L⊤\(L\y). When using gradient-based methods for the optimization of the
marginal likelihood, its gradients are needed:

∂

∂θj
log p(y|X, θ) =1

2y⊤K−1
y

∂Ky

∂θj
K−1

y y − 1
2tr

(
K−1

y

∂Ky

∂θj

)
(2.41)

=1
2tr

(
(αα⊤ − K−1

y )
∂K−1

y

∂θj

)
. (2.42)

The computational complexity is still dominated by the inversion of the covariance matrix, as the
computational complexity for calculating the gradients is O(n2) for each hyperparameter. Hence,
the use of a gradient-based optimizer is recommended. However, the marginal log-likelihood is
generally a non-convex function, meaning optimization is non-trivial.

2.2.3 Covariance functions

The dynamics of a GP are entirely defined by the choice of the covariance function k, the kernel of
the stochastic process. The covariance function expresses the similarity between function values
evaluated at two data points:

cov(f(x), f(x′)) = k(x, x′). (2.43)

A valid covariance function produces a covariance matrix K with entries [K]ij = k(xi, xj) that is
positive semidefinite (PSD) for all possible entries of xi (Rasmussen and Williams, 2005). Below
some choices of covariance functions are discussed and random samples drawn from GP priors
with different covariance functions are shown in Fig. 2.5.

A widely used covariance function is the squared exponential covariance function (Fig. 2.5a),

kSE(x, x′) = σ2
f exp

(
−(x − x′)2

2l2

)
, (2.44)

where l and σf are hyperparameters defining the characteristic length scale and the vertical scale
of variations, respectively. This kernel is very smooth as it is infinitely differentiable. The squared
exponential covariance function is a stationary covariance function depending on x − x′ as it is
invariant to translations in the input space.
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Another choice is represented by a family of Matérn kernel functions (Fig. 2.5c) of the following
form

kM(τ) = σ2 21−ν

Γ(ν)

(√
2ν

τ

l

)ν

Kν

(√
2ν

τ

l

)
, (2.45)

where τ = x−x′ and Kν(·) is the modified Bessel function of the second kind. The hyperparameters
ν, l and σ2

f control the smoothness, length scale, and vertical magnitude, respectively. Higher
values of ν correspond to smoother functions. In the limit ν → ∞, we obtain the squared
exponential kernel (Eq. 2.44). For small values of ν, the Matérn kernel gives rise to rougher and
more wiggly functions, which are well suited for modeling data with local fluctuations without
decreasing the overall length scale. In Fig. 2.5c, random functions from a GP with a Matérn
covariance function are shown. We set ν = 3/2, where the covariance function becomes

kM,ν=3/2(τ) =
(

1 +
√

3τ

l

)
exp

(
−

√
3τ

l

)
. (2.46)

Furthermore, an interesting covariance function is the periodic kernel (Fig. 2.5d) capturing periodic
structures in the data,

kper(τ) = σ2
f exp

(
−

2sin2(πτ
p )

l2

)
, (2.47)

where p is the periodicity, σ2
f and l are the magnitude and length scale, respectively.

The linear kernel can be obtained from linear regression,

klin(x, x′) = σ2
b + σ2

f xx′ , (2.48)

where σ2
b gives the offset at zero. This is not a stationary kernel, but it is invariant to rotations

of coordinates around the origin.

The combination of valid kernel functions again results in valid kernel functions, e.g., via multi-
plication (Fig. 2.5i) (Rasmussen and Williams, 2005; Bishop, 2006),

k(x, x′) = k1(x, x′) · k2(x, x′) , (2.49)

or addition (Fig. 2.5g)

k(x, x′) = k1(x, x′) + k2(x, x′) . (2.50)
This allows to combine features of each kernel, e.g., periodicity with a linear trend.

Fig. 2.5 shows some examples of random functions sampled from GPs with different covariance
functions. When comparing Fig. 2.5a and b, the influence of the length scale l is immediately
recognizable: while l = 1.0 in panel (a) and the resulting samples are smooth and vary slowly
along x, the samples in panel (b) with l = 0.2 are more wiggly. Larger length scales imply
that even distant points have a higher degree of correlation and the covariance matrix has off-
diagonal elements that decrease more slowly with distance. The GP is then less sensitive to local
fluctuations and might fail to capture patterns in the data. In contrast, smaller values of l lead to
faster decaying off-diagonal elements in the covariance matrix and result in a flexible model that
might even be sensitive to noise in the data.
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(a) Squared exponential (b) Squared exponential (c) Matérn 3/2

(d) Periodic (e) Periodic (f) Linear

(g) Periodic + linear (h) Periodic · linear (i) Locally periodic

Figure 2.5: Examples of valid covariance functions and their combinations. Three samples drawn
from GPs with different covariance functions are shown in each panel. (a) and (b)
show both samples using a squared exponential kernel, but with different length scales
l ((a): l = 1, (b): l = 0.2). The smaller length scale produces samples that are more
wiggly and change faster. In (c), samples using a Matérn kernel with ν = 3/2 and
l = 1.0 are shown. (d) and (e) depict samples using periodic covariance functions
with different periodicity p ((d): p = π, (e): p = 1.0). GPs with a linear covariance
function allow to generate samples shown in (f). This kernel is particularly useful in
combination with other kernels. In (g), the covariance function is a periodic kernel
with an added linear trend. When multiplying a periodic with a linear kernel, we get
samples with increasing amplitude when moving from the origin as shown in (h). A
locally periodic kernel (i), whose periodicity can change over the input space, combines
a periodic kernel with a squared exponential kernel via multiplication.
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2.3 Contributions towards specialized kernel design

Covariance functions for multi-output Gaussian process regression When working with vector-
valued functions of dimension D, covariance functions have to be adapted to work in this set-
ting (Alvarez et al., 2012). When we assume that there are no correlations between the processes
and thus make the multiple outputs independent of each other, important information might be
lost. This situation corresponds to a covariance matrix K built from block matrices where the
diagonal blocks correspond to the covariance matrices from single output GPs and the off-diagonal
blocks equal to zero, implying there is no cross-correlation between the output processes. There
are several approaches to incorporate cross-correlations, e.g., based on separable kernels like the
intrinsic co-regionalization model (Alvarez et al., 2012) or via process convolutions where the
different output channels are assumed to share one underlying noise process but are subject to
different convolutions (Boyle and Frean, 2004).

2.3 Contributions towards specialized kernel design

2.3.1 Constrained Gaussian processes

When working with data that are known to fulfill a given differential equation, it is beneficial to
construct the GP in a way such that the predictions satisfy laws of physics by construction (Swiler
et al., 2020; Raissi et al., 2017; Särkkä, 2011). When dealing with a linear PDE, the respective
linear operator L can be included naturally in GP regression as a GP subject to L is still a
GP (Adler, 2010, Sec. 2.2):

Lf(x) ∼ GP(Lxm(x), LxK(x, x′)L⊤
x′) . (2.51)

As differentiation and integration are linear operators, they can be included seamlessly in GP
regression as well (Särkkä, 2011; Raissi et al., 2017; Mendes and da Costa Júnior, 2012; Cockayne
et al., 2017).

Contributions In the contribution presented in Section 3.1, we derive specialized kernels for
given linear differential equations with vanishing or localized sources (Albert and Rath, 2020).
The method is based on the superposition of a GP with a specialized kernel exactly fulfilling
the homogeneous part of the differential equation and a linear model for point source contribu-
tions. The construction of specialized kernels for homogeneous differential equations is based on
fundamental solutions via Mercer’s theorem. The superimposed model for localized sources is
constructed via a linear model over fundamental solutions. Specialized kernels are derived for
Laplace’s equation, the heat equation, and the Helmholtz equation. The hyperparameters of the
kernels have a direct correspondence with the parameters of the underlying equations. For the
application case of the Helmholtz equation, source position and strength are estimated. We com-
pare the presented kernels to a squared exponential kernel using the same number of training
data points. Results from the squared exponential kernel do not satisfy the underlying equations
exactly and are not as stable and accurate as those produced by the specialized kernels of our
approach. Additionally, the parameters of the specialized kernels allow physical interpretability,
e.g., diffusivity and wave number.
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2.3.2 Incorporating symplectic geometry

Other work regarding symplecticity in machine learning Recently, several attempts have been
made to incorporate symplectic geometry in machine learning models. Besides multiple approaches
based on GPs, there have also been several attempts to incorporate symplecticity into neural
networks (e.g. (Greydanus et al., 2019; Finzi et al., 2020; Jin et al., 2020; Burby et al., 2020;
Duruisseaux et al., 2023; Cranmer et al., 2020; Toth et al., 2019; Chen et al., 2019; Brantner
et al., 2023; Brantner and Kraus, 2023)).

Hamiltonian neural networks (HNNs) model a Hamiltonian H based on observations of phase
points (and their derivatives) by using a loss function based on Hamilton’s equations and then solve
the resulting differential equations (Greydanus et al., 2019). In contrast to HNNs, SympNets are
neural networks that directly learn the flow map as opposed to the Hamiltonian of the system (Jin
et al., 2020). A SympNet is a composition of many, relatively simple layers. Each of these layers
enforces symplecticity separately. As the composition of symplectic maps is again symplectic, the
entire SympNet also has this property.

HénonNets are similar in architecture, their input-output mapping is a canonical symplectic map
and they are designed to learn Poincaré maps of symplectic systems (Burby et al., 2020; Duruis-
seaux et al., 2023). In contrast to traditional field-line following, modeling Poincaré maps is orders
of magnitude faster.

Using GPs for Hamiltonian systems has the advantage that uncertainties present in the training
data can be considered. Several approaches aim to learn directly from (noisy) state trajectories
(Tanaka et al., 2022; Ross and Heinonen, 2023) by placing a GP prior over the Hamiltonian
H. The Hamiltonian GP can directly be embedded in a symplectic integrator (Ensinger et al.,
2023). In Offen and Ober-Blöbaum (2022), symplectic shadow integration is proposed where an
inverse modified Hamiltonian is learned from data to compensate for discretization errors. Another
approach is based on the direct identification of the Hamiltonian from data via derivatives of the
flow map (Bertalan et al., 2019).

Contributions In the contribution presented in Section 3.2, we introduce Symplectic Gaussian
Processes (SympGPR) that are based on learning the generating function of the flow map of
the underlying Hamiltonian system (Rath et al., 2021b). In contrast to traditional numerical
integration schemes that approximate orbits based on the knowledge of the Hamiltonian H, the
training data for the GP are given orbit data over a (possibly large) mapping time step, which
might even be a full Poincaré section. Based on the given observations, SympGPR should then
find an approximation of the flow map without the knowledge of H. Once the flow map is learned,
it can be applied subsequently to calculate the dynamics of the model over many periods. As the
mapping time step where the orbit data is given does not have to be small compared to the
dynamics of the model under investigation, SympGPR can be used as a fast surrogate model for
orbit tracing. Depending on the complexity of the Hamiltonian system under investigation, it is
even possible to directly interpolate Poincaré sections without the calculation of the full orbit.

SympGPR is a multi-output GP that includes derivative observations of the generating function
and is equipped with a particular covariance structure. The covariance function is constructed so
that the learned flow map is guaranteed to be symplectic. Depending on the choice of the kernel,
two methods are presented: a product kernel results in an accurate implicit scheme, whereas a

20



2.4 Student-t process regression

sum kernel gives a fast explicit scheme. The latter case corresponds to a separable Hamiltonian,
which leads to the symplectic Euler becoming fully explicit. Although the generating function
F is not observed directly, it can be inferred from the derivative observations ∇F . For general
Hamiltonian systems, F is approximately hH (up to a constant) for sufficiently small mapping
steps h, and thus, the Hamiltonian can also be inferred by the SympGPR.

The method is tested on several non-chaotic Hamiltonian systems: flow maps of the pendulum
with different mapping time steps and Poincaré sections of the perturbed pendulum and the
Hénon-Heiles system. Finally, chaotic systems, such as the standard map and magnetic field
lines in a tokamak with non-axisymmetric perturbations are investigated. Despite the small
number of training data points, SympGPR can capture the dynamics in phase space in all test
cases. Also, in chaotic systems, the onset of chaos and accelerator mode islands are reproduced
correctly. Investigations on the diffusion of chaotic orbits in the standard map show that the
obtained diffusion rates with SympGPR match the theoretical predictions. For higher energies
in the Hénon-Heiles system, the generating function becomes multi-valued, and therefore, future
states are not predictable without further measures. For the test case of magnetic field line
tracing, we present a split SympGPR, where the Poincaré map for a full turn 2π is split into
several sub-steps to ensure that the generating function is sufficiently smooth and unique. For
each of the m sub-steps, we introduce an independent SympGPR map that represents a leap
of 2π/m of the full Poincaré map. This produces more stable and reliable results, but comes
with higher computational costs in training as four independent GPs have to be trained and
m-times more operations have to be carried out when applying the SympGPR map. However,
due to the small number of training data points (≈ 100) the necessary CPU time for evaluating
2000 Poincaré maps is still reduced significantly when compared to a symplectic Euler integrator.
However, splitting is not always possible as for the Hénon-Heiles system, no additional surfaces
for splitting can be identified. One possibility to approach the non-unique generating function is
to consider an unwinding transformation of the generating function to allow a unique prediction
by the GP. Compared to alternative methods based on symplectic neural networks, the number
of training data points needed for training the SympGPR is considerably smaller and SympGPR
is competitive with respect to run time and accuracy.

As outlined in Section 2.1.3, where the contribution of Section 3.3 is summarized, the symplec-
tic surrogate model allows the direct calculation of the Jacobians needed for the estimation of
Lyapunov exponents, which are then used for orbit classification (Rath et al., 2021a).

2.4 Student-t process regression

GP regression struggles when dealing with data with many outliers or heavy noise tails. In these
cases, working with Student-t process regression instead can be beneficial (Shah et al., 2014;
Roth et al., 2017). Student-t processes (TPs) generalize GPs with an additional hyperparameter
ν controlling the distribution’s kurtosis. Hence, depending on ν, outliers and heavier noise are
assigned higher probability by the posterior distribution. While the estimated posterior covariance
of a GP solely relies on the input data points X, a TP takes the scattering of observations into
account when estimating the covariance. This also leads to more realistic uncertainty estimates
in case of severe outliers. TP regression shares the advantages of GP regression: the compu-
tational complexity is the same and there is a closed-form expression for the posterior distribution.
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A Student-t process is defined similarly to a GP. Let f be a Student-t process with degrees of
freedom ν > 2, mean µ, and covariance matrix K:

f ∼ T P(ν, µ, K) . (2.52)

Any finite collection of functions follows a joint multivariate Student-t distribution, where the
multivariate density function is given by

MVT(y|µ, K, ν) =
Γ
(

ν+n
2
)

Γ
(

ν
2
) 1

((ν − 2)π) n
2

|K|−1/2
(

1 + 1
ν − 2(y − µ)⊤K−1(y − µ)

)− ν+n
2

. (2.53)

In TP regression, the posterior mean and covariance are given by

E[f(t∗)] = k⊤
∗ K−1

y y , (2.54)

cov(f(t∗)) =
ν − 2 + y⊤K−1

y y

ν − 2 + n
(k∗∗ − k⊤

∗ K−1
y k∗) . (2.55)

The posterior mean is equivalent to the posterior mean estimated by GP regression (Eq. 2.30),
assuming the same hyperparameters. However, the posterior covariance differs from the posterior
covariance estimated by a GP (Eq. 2.30) in the leading term and depends on the observations y. If
the observed data come from an underlying Gaussian distribution, then the squared Mahalanobis
distance y⊤K−1

y y is distributed like a χ2-distribution with mean |n| (Slotani, 1964). Hence, in
this case, the posterior covariance estimated by Eq. 2.55 is approximately the same as estimated
with GP regression. However, when the observed data scatter significantly more or less than
expected under a Gaussian assumption, the estimated posterior covariance is larger or lower using
a TP. The smaller ν is, the bigger is the difference of the estimated covariance compared to GP
regression. For increasing ν, the effect becomes smaller and in the limit ν → ∞, TP regression is
equivalent to GP regression (Tracey and Wolpert, 2018).

In Fig. 2.6, a comparison between GP and TP regression for a synthetic test case with 9 observa-
tions is shown. For illustration purposes the same hyperparameters (l = 1.2, σ2

f = 1.0, σ2
n = 0.05)

for the squared exponential kernel are used for both regression models. The additional hyperpa-
rameter ν in the TP is set to 2.7. As both models use the same hyperparameters, the estimated
mean is identical. However, the TP estimates a larger covariance as the observed data scatter
more than expected under a Gaussian assumption.

The hyperparameters θ of the model can be optimized by minimizing the negative log-likelihood,

L(θ) = −log p(y|θ, ν, X)

= n

2 log((ν − 2)π) + 1
2log(|K|) − log Γ

(
ν + n

2

)
+ log Γ

(
ν

2

)
+ ν + n

2 log
(

1 + β

ν − 2

)
,

(2.56)

where β = (y − µ)⊤K−1(y − µ). Since the TP marginal likelihood (Eq. 2.56) differs from the
marginal likelihood coming from a GP (Eq. 2.42), different hyperparameters are to be expected.
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2.4 Student-t process regression

(a) Gaussian process regression (b) Student-t process regression

Figure 2.6: Comparison between (a) Gaussian process and (b) Student-t process regression. Both
models use the same hyperparameters. Both panels show the true underlying function
f(x) = sin(x)cos(x) (red solid line), the mean (black solid line) predicted by the
respective model along with 10 samples drawn from the inferred posterior distribution
after observing 9 noisy data points (depicted as red + with 5% Student-t distributed
noise with ν = 3). The shaded regions correspond to two standard deviations at each
input point x.

In Rath et al. (2022) in Fig. 1 a synthetic test case with outliers is shown to illustrate the behavior
of GPs and TPs in the presence of outliers. The different marginal likelihoods lead to different
estimations of the hyperparameters and allow a more robust prediction of the mean using the
TP.
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2.5 State space formulation

A challenge when working with GPs is the computational complexity in the traditional formulation
that scales cubically with the number of observations. However, several approaches exist to reduce
the computational complexity by using, e.g., inducing variables in sparse GPs (Hensman et al.,
2013; Csató and Opper, 2002), or representing the covariance matrix in Toeplitz form (Zhang
et al., 2005).

There is also a different perspective on GPs. It is well established that solutions to linear stochastic
differential equations (SDEs) are always GPs (Särkkä, 2013; Särkkä and Solin, 2019; O’Hagan,
1978). This perspective offers new possibilities, especially in analyzing time-series data and solving
regression problems using methods from signal processing for solving SDEs, e.g., Kalman filter
and Rauch-Tung-Striebel smoother (Särkkä, 2013).

To use Bayesian filtering and smoothing to solve the filtering problem, the GP regression problem
has to be reformulated as a time-invariant linear SDE. For several classes of stationary covariance
functions, this transformation can be done analytically without any approximations and hence
allows a representation of the GP regression as a solution to an m-th order linear SDE. For
covariance functions that do not possess a rational spectral density, a simple Taylor series approx-
imation is sufficient to approximate the covariance function (Hartikainen and Sarkka, 2010). The
computational complexity scales as O(nm3), where n is the number of observations and m the
state dimensionality of the linear SDE. As m is typically very small (usually less than 10) and
hence the scaling is linear in the number of observations, the state space approach is also very well
suited for high-resolution multivariate time series and can also be extended to spatio-temporal
models (Wilkinson et al., 2020; Särkkä et al., 2013; Särkkä and Hartikainen, 2012).

The following section will discuss stochastic differential equations and their spectral density. Then,
the reformulation of a GP regression problem into its corresponding state space form is explained.
The discrete form of linear SDEs is introduced, followed by a short introduction to Bayesian filters
and smoothers.

2.5.1 Introduction to Bayesian filtering and smoothing

An m-th order linear SDE is given by

a0f(t) + a1
df(t)

dt
+ · · · + am

dmf(t)
dtm

= w(t) , (2.57)

where w(t) is a zero-mean white noise process2 and a0, . . . , am are known constants. The solution
f(t) is a GP, as w(t) is Gaussian, and under linear operations, a GP stays a GP (Adler, 2010, Sec.
2.2).

Rewriting Eq. 2.57 in its state space form, defining a vector-valued function f(t) =
(f(t), df(t)/dt, . . . , dm−1f(t)/dtm−1), we get

2A white noise process w(t) is usually modeled as Gaussian and w(t) and w(t′) are uncorrelated for all t ̸= t′. The
spectral density of a white noise process is constant over all frequencies (Särkkä and Solin, 2019).
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df(t)
dt

=


0 1

. . . . . .
0 1

−a0 −a1 . . . −am−1


︸ ︷︷ ︸

F

f(t) +


0
...
0
1


︸ ︷︷ ︸

L

w(t) . (2.58)

We are still only observing the noise-corrupted values yk of the first component of f(tk) at times
tk and can therefore define a measurement model,

yk =
(
1 0 . . . 0

)
︸ ︷︷ ︸

H

f(tk) + εk , (2.59)

where εk is i.i.d. Gaussian noise εk ∼ N (0, σ2
n). Combining Eqs. 2.58 and 2.59 allows us to

formulate a linear state space model with a linear measurement model

df(t)
dt

= Ff(t) + Lw(t) , (2.60)

yk = Hf(tk) + εk , (2.61)

where k = 1, . . . , T . Here, f(t) ∈ Rm contains m stochastic processes. The feedback matrix
F ∈ Rm×m and the noise effect matrix L ∈ Rm×s define the model. Here, we allow a vector of
white noise processes w(t) with a spectral density matrix Qc ∈ Rs×s (Solin, 2016). Generally,
the driving white noise process can be multi-dimensional, which generalizes the class of linear
time-invariant SDEs (Solin, 2016). For a one-dimensional white noise process w(t) that we use in
the following, the spectral density matrix becomes a constant qc.

To find the corresponding covariance function C(t) of the SDE, we take the Fourier transform of
Eq. 2.57 to calculate the spectral density of the process, which is the square of the absolute value
of the Fourier transform f̂(iω) of f(t):

S(ω) = |f̂(iω)|2 = f̂(iω)f̂(−iω) . (2.62)

For general time-invariant linear SDEs of the form given in Eqs. 2.60 and 2.61, we get

S(ω) = H(F + iωI)−1LqcL[(F + iωI)−1]⊤H⊤ . (2.63)

The Wiener-Khinchin theorem states that the inverse Fourier transform of the spectral density is
the covariance function:

C(t, t′) = F−1[S(ω)] = 1
2π

∫
S(ω)exp(iωt)dω . (2.64)

We now assume that we have a given GP regression problem with covariance function k(t, t′)
that we want to transform into its corresponding state space form. This means that we want the
output f(t) of the m-th order time-invariant linear SDE to have a specific covariance function
C(t, t′). Hence, we have to find matrices F and L and the spectral density of the driving white
noise process qc such that f(t), i.e. the first component of f(t), has the desired covariance function
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C(t, t′). The spectral density of the covariance function (i.e. the Fourier transform of C(t)) must
be of the form (Särkkä et al., 2013)

S(ω) = m-th order polynomial in ω2

n-th order polynomial in ω2 , (2.65)

where m < n. If this is not the case, e.g., for the squared exponential covariance function, an
approximation with, e.g., Taylor series expansion of the denominator, is needed to get the rational
form (Hartikainen and Sarkka, 2010). Then, we need to find a stable3 transfer function G(iω) via
spectral factorization4 of the form

G(iω) = bm(iω)m + bm−1(iω)m−1 + · · · + b1(iω) + b0
an(iω)n + an−1(iω)n−1 + · · · + a1(iω) + a0

, (2.66)

where again m < n and an ̸= 0. This transfer function is needed to rewrite the spectral density
as

S(ω) = G(iω)qcG(−iω) . (2.67)

To build the matrices that define the dynamics F and L, we bring the transfer function G(iω) into
the controller canonical form (Glad and Ljung, 2000):

df(t)
dt

=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

0 0 1 . . . 1
−a0 −a1 . . . . . . −an

f(t) +


0
0
...
0
1

w(t) . (2.68)

y(t) =
(
b0 b1 . . . bn−1 bn

)
f(t) . (2.69)

For illustration of the procedure outlined above, we use the class of Matérn covariance functions
given as

k(τ) = σ2 21−ν

Γ(ν)

(√
2ν

τ

l

)ν

Kν

(√
2ν

τ

l

)
, (2.70)

where τ = t − t′ , Kν(·) is the modified Bessel function of the second kind and parameters ν, l, σ
control the smoothness, length scale, and magnitude, respectively. We first compute the spectral
density by using the Fourier transform of k(τ):

S(ω) = F [k(τ)] = σ2 2π1/2Γ(ν + 1/2)
Γ(ν) λ2ν(λ2 + ω2)−ν+1/2 , (2.71)

where λ =
√

2ν/l. Here, the spectral density is of the desired rational form (Eq. 2.65). The
spectral density can be factored as

S(ω) ∝ (λ + iω)−(p+1)(λ − iω)−(p+1) , (2.72)
3A stable transfer function G(iω) has all poles in the upper half of the complex plane (Särkkä et al., 2013).
4One possibility for spectral factorization is the computation of the roots of the numerator and denominator

polynomials of S(ω) that will appear in complex conjugate pairs (Särkkä et al., 2013).
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where ν = p + 1/2.

The next step is to use spectral factorization S(ω) = G(iω)qcG(−iω) to find a stable transfer
function G(iω) and the corresponding spectral density qc of the driving white noise process, which
are in the case of a Matérn function

G(iω) = (λ + iω)−(p+1) , (2.73)

and
qc = 2σ2π1/2λ(2p+1)Γ(p + 1)

Γ(p + 1/2) . (2.74)

Using Eqs. 2.68 and 2.69) we get for the current application case of the Matérn covariance function
with p = 1 (ν = 3/2):

df(t)
dt

=
(

0 1
−λ2 −2λ

)
︸ ︷︷ ︸

F

f(t) +
(

0
1

)
︸ ︷︷ ︸

L

w(t) , (2.75)

where the vector valued function f(t) contains the state f(t) and its first derivative df(t)/dt. In
this case, the state dimensionality m is equal to 2. The spectral density qc of the white noise
process reduces to qc = 4λ3σ2.

The continous-time linear SDE (Eqs. 2.60 and 2.61) is equivalent to the following discrete-time
system:

f(tk+1) = Akf(tk) + qk , (2.76)
yk = Hkf(tk) + εk , (2.77)

with initial state f(t) ∼ N (0, P0) and qk ∼ N (0, Qk). Ak is the discrete transition matrix between
tk and tk+1 and Qk is the discrete process noise covariance matrix given by

Ak = Φ(∆tk) , (2.78)

Qk =
∫ ∆tk

0
Φ(∆tk − τ)L Qc L⊤Φ(∆tk − τ)⊤dτ , (2.79)

where we use the matrix exponential Φ(τ) = exp(Fτ) and ∆tk = tk+1 − tk. The initial state
covariance P0 is the steady-state covariance P∞ given by the solution of the Lyapunov equation:

dP∞
dt

= FP∞ + P∞F⊤ + L Qc L⊤ = 0 . (2.80)

When P∞ is known, the process noise covariance matrix can be calculated as (Solin, 2016)

Qk = P∞ − AkP∞A⊤
k . (2.81)

The continuous-time and discrete-time system distributions coincide at tk.

This discrete-time system can now be solved by estimating the joint posterior distribution of the
hidden states f0:T given all observed measurements y1:T (Särkkä, 2013):
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p(f0:T |y1:T ) = p(y1:T |f0:T )p(f0:T )
p(y1:T ) , (2.82)

where p(f0:T ) is the prior distribution, p(y1:T |f0:T ) is the likelihood of the measurements and
p(y1:T ) is the normalization. With an increasing number of measurements, the dimensionality
of the full posterior distribution also increases, making its full calculation for each time step
computationally infeasible. Therefore, we restrict the computation to marginal distributions given
by the Bayesian filter and smoother:

• Filtering distribution p(fk|y1:k) = N (mk|1:k, Pk|1:k): marginal distribution of fk taking the
current and previous measurements into account.

• Prediction distribution p(fk+n|y1:k) = N (mk+n|1:k, Pk+n|1:k): prediction of a future state
fk+n.

• Smoothing distribution p(fk|y1:T ) = N (mk|1:T , Pk|1:T ): marginal distribution of fk given
measurements y1:T with T > k.

The state space model is defined by a prior probability distribution of the hidden state f0, a
dynamic model that describes the dynamics of the systems via a transition probability distribution
p(fk|fk−1) and the measurement model giving the conditional probability of the measurement
given the hidden state p(yk|fk). For linear Gaussian filtering problems, the applicable Bayesian
filter and smoother are the Kalman filter and the RTS smoother, providing a closed-form solution
of the distribution (Särkkä, 2013; Särkkä and Solin, 2019).

The Kalman filter recursively solves state space models where the dynamic model and the mea-
surement model are linear Gaussian as in Eqs. 2.76 and 2.77. We assume an initial Gaussian
distribution f0 = N (m0, P0). For each k = 1, . . . , T , the prediction step is calculated using

m−
k = Ak−1mk−1 , (2.83)

P−
k = Ak−1Pk−1A⊤

k−1 + Qk−1 . (2.84)

If a measurement is available for time step tk, the prediction is updated via the update step:

vk = yk − Hkm−
k , (2.85)

Sk = HkP−
k H⊤

k + Rk , (2.86)
Kk = P−

k H⊤
k S−1

k , (2.87)
mk = m−

k + Kkvk , (2.88)
Pk = P−

k − KkSkK⊤
k . (2.89)

Here, the innovation mean vk is estimated by using the difference between the observation yk and
the Kalman filter prediction m−

k . Similarly, the innovation covariance Sk is calculated with R,
the observation noise. Kk is the Kalman gain used to update the mean and covariance prediction.
Whenever no measurement is available, we skip the update step.
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2.5 State space formulation

The corresponding smoothing algorithm is the RTS smoother, which computes the smoothing
distribution recursively backwards, taking all measurements into account. Here, we start with the
filter output at k = T , initialize the smoother with (mT , PT ) and move backwards to k = 0:

m−
k+1 = Akmk , (2.90)

P−
k+1 = AkPkA⊤

k + Qk , (2.91)
Gk = PkA⊤

k [P−
k+1]−1 , (2.92)

ms
k = m + Gk(ms

k+1 − m−
k+1) , (2.93)

Ps
k = Pk + Gk(Ps

k+1 − Pk+1−)G⊤
k , (2.94)

where Gk is the smoother gain.

While the prediction of the Kalman filter is an optimal estimate of the underlying state at each
time step with respect to the available information, the solution provided by the RTS smoother is
conditioned on all observations. This allows a refinement of the prediction from the Kalman filter,
which is subject to fluctuations, especially when working with noisy data. The RTS smoother also
considers future observations and this allows more stable and smoothed estimates as underlying
trends can be distinguished from random fluctuations. The smoothing solution is identical to the
prediction of mean and covariance using GP regression with the same covariance function and
hyperparameters used for building the state space model.

To include the prediction of test points f(t∗), they are included in the filtering algorithm and
the smoothing algorithm. The prediction for mean and covariance at the test point t∗ is then
calculated by using the smoother output:

f(t∗) = Hms
∗ , (2.95)

cov[f(t∗)] = HPs
∗H⊤ . (2.96)

In contrast to traditional GP regression that scales cubically with the number of observations, the
Kalman filter and RTS smoother allow inference in linear time.

In Fig. 2.7, the predictive filtering and smoothing distributions for a synthetic test case in direct
comparison with usual GP regression are shown. Here, a Matérn kernel with ν = 3/2 and
hyperparameters l = 1, σ2

f = 1, σn = 0.05 is used. The covariance function with the same
hyperparameters is transformed using its spectral density to build the corresponding linear SDE
model (see Eq. 2.75). In Fig. 2.7a, one can see that the filtering solution is a sequential solution
that is corrected whenever a measurement is observed. The marginal variance grows until there
is a new observation and is corrected with the innovation covariance, taking the observation noise
into account. The smoother solution depicted in Fig. 2.7b coincides with the solution obtained
via GP regression up to machine precision.

Similar to GP regression, the parameters θ of the state space model have to be estimated. Here,
we minimize the negative log-likelihood, where all necessary computations are available as a side
product in the filtering algorithm (Särkkä, 2013):

L(θ) =
∑

k

(
−1

2log|2πSk| − 1
2v⊤

k S−1
k vk

)
. (2.97)
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(a) Filtering solution (b) Smoothing solution

Figure 2.7: Comparison between usual GP regression and the sequential solution via Kalman
filter (a) and RTS smoother (b) for 8 observations with 5% Gaussian noise from the
underlying function f(x) = sin(x)cos(x). The 95% confidence band calculated by
Kalman filtering and RTS smoothing is depicted as a shaded area, while the results
coming from GP regression are shown as dashed lines.

For optimization with gradient information, the corresponding gradients can be computed straight-
forwardly by differentiating every equation in the Kalman filter algorithm. Then these get evalu-
ated in the optimization routine, besides the standard Kalman filter equations.

2.5.2 Filtering and smoothing for TP regression

Similar to GPs (as described in Section 2.5), there also exists a state space formulation for Student-
t processes (Solin and Särkkä, 2015). Based on the analytical transformation of certain classes
of covariance functions into solutions of m-th order linear SDEs, a state space Student-t process
can be constructed in the form of Eq. 2.60 and 2.61. Here, a scale mixture of state space form
SDEs is needed. This is achieved by setting the spectral density to γQc and using the initial
state f(0) ∼ N (0, γP0), where γ is a random variable distributed according to the inverse gamma
distribution γ ∼ IG(ν/2, (ν − 2)/2). This can be understood when defining a Student-t process
as a scale mixture of Gaussians: we consider a Gaussian with mean µ and covariance K and scale
the covariance of the Gaussian with γ. Then, the scale mixture form of the probability density
becomes equivalent to the Student-t density. This gives the same result as placing an inverse
Wishart process prior on the kernel function of a GP (Shah et al., 2014).

The sequential inference algorithm is very similar to the Kalman filter and RTS smoother with
the difference of the scaling factor. However, an additional step in the filter update is necessary
to estimate the scaling factor γk. Below, differences to the Kalman filter and RTS smoother are
highlighted in red.
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The filtering prediction distribution gives the next state based on previous observations,

m−
k = Ak−1mk−1 , (2.98)

P−
k = Ak−1Pk−1A⊤

k−1 + γk−1Qk−1 . (2.99)

The filter update is needed whenever there is a measurement at time step tk:

vk = yk − Hkm−
k , (2.100)

Sk = HkP−
k H⊤

k + Rk , (2.101)

γk = γk−1
νk − 2(νk−1 − 2 + v⊤

k S−1
k vk) , (2.102)

Kk = P−
k H⊤

k S−1
k , (2.103)

mk = m−
k + Kkvk , (2.104)

Pk = γk

γk−1
(P−

k − KkSkK⊤
k ) . (2.105)

The filter is initialized using ν0 = ν and γ0 = 1. ν is updated whenever there is a filter update
with νk = νk−1 + 1. The RTS smoother becomes

m−
k+1 = Akmk , (2.106)

P−
k+1 = AkPkA⊤

k + γkQk , (2.107)
Gk = PkA⊤

k [P−
k+1]−1 , (2.108)

ms
k = m + Gk(ms

k+1 − m−
k+1) , (2.109)

Ps
k = γn

γk
(Pk + Gk(Ps

k+1 − Pk+1−)G⊤
k ) . (2.110)

The marginal log-likelihood is directly available from the filtering algorithm and can be used to
optimize the hyperparameters θ:

L(θ) =
n∑

k=1

[1
2log((ν − 2)π) + 1

2log(|Sk|) + log Γ
(

νk−1
2

)

−log Γ
(

νk

2

)
+ 1

2log
(

νk−1 − 2
ν − 2

)
+ νk

2 log
(

1 + v⊤
k S−1

k vk

νk−1 − 2

)]
, (2.111)

where vk and Sk are the innovation mean and covariance.

Equivalently to GP and TP regression, Kalman and Student-t filters give the same mean prediction
when using the same hyperparameters. They differ, however, in the estimation of the state
covariance.
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2. Background

Contributions Section 3.4 and 3.5 present the application of TP regression for data augmentation
for disruption prediction and data imputation in plasma diagnostics (Rath et al., 2022, 2023). In
both cases, we work with very few labeled multivariate time series measurements that we aim
to augment to produce a comprehensive training database for training large machine learning
models for disruption prediction. In addition to the small training data set, there are different
causes for disruptions, making the data set highly imbalanced. In Rath et al. (2022), we use
state space Student-t process regression via Bayesian filtering to overcome challenges posed by
possible outliers and noise in the training data set. The state space formulation reduces the
computational complexity allowing inference in linear time, and the model is thus also usable for
high-resolution time series. Here, we work with a multi-output state space model that, in the
first step, neglects signal interdependencies. All dimensions use a Matérn 3/2 kernel but have
their own set of hyperparameters to handle dynamics on different time scales. Due to the limited
training data, hyperparameter optimization for all dimensions is practically unfeasible. However,
in a post-processing step, signal correlations and cross-correlations are introduced via coloring
transformations.

Our data augmentation approach is based on working with several fast local models – one for each
disruption class with similar operating conditions – that estimate the posterior distribution from
a small set of multivariate time series. We apply the model to three different disruption types
and use 5 signals with which we want to produce data for training a neural network for disruption
prediction. In general, the method is not limited to a specific number or types of signal. After
a data preprocessing step, where signals from different measurements are aligned according to
their end time and missing data points are interpolated linearly, each local model is trained by
minimizing the negative log-likelihood and the predictive posterior is estimated using a Student-t
filter and corresponding smoother. From the estimated posterior for each class, we draw samples
and perform coloring transformations to account for signal interdependencies. Different methods
from time series analysis, statistics, and clustering are used to assess the quality of the generated
data and evaluate whether the generated samples are indistinguishable from the original data to
be used in a comprehensive training database. For all three test cases, we find that the artificially
generated data resembles the original data sufficiently well within the scope of the used metrics.

The contributing article presented in Section 3.5 focuses on imputing gappy data due to sensor
failures or non-converging calculation routines. While this issue was addressed in Rath et al.
(2022) via linear interpolation, we now use the correlations between input signals to reconstruct
missing data points. Here, we include correlations directly in the surrogate model. Again, we use
a state space Student-t process but employ a Matérn cross-covariance kernel. Two synthetic test
cases are considered to evaluate the performance, where the latter is inspired by two correlated
flux loop signals during an edge localized mode. Two input signals are considered in both test
cases, and measurements are removed from one signal to artificially create missing values. We
compare the performance of the proposed dependent model with an independent model. In both
cases, the predicted mean of the signal with missing values is better captured and more accurately
reproduced by the dependent model as correlations are taken into account. This model can also be
used for data augmentation to generate quasi-realistic training data. Its performance is evaluated
by assessing the distributions of generated and original data using metrics from time series analysis
and statistics.
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3. Contributions

3.1 Gaussian Process Regression for Data Fulfilling Linear Differential
Equations with Localized Sources

Main novelty:
The paper introduces Gaussian processes with specialized kernels to exactly fulfill linear partial
differential equations with localized sources.

Contributing article:
Albert, C. G. and Rath, K. (2020). Gaussian Process Regression for Data Fulfilling Linear Differ-
ential Equations with Localized Sources. Entropy, 22(2)

Author contributions:
Christopher Albert devised the project, implemented the code and drafted the initial version.
Katharina Rath added the hyperparameter optimization, comparisons to existing methods and
the estimations of the source positions and helped to finalize the manuscript.
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Abstract: Specialized Gaussian process regression is presented for data that are known to fulfill a
given linear differential equation with vanishing or localized sources. The method allows estimation
of system parameters as well as strength and location of point sources. It is applicable to a wide
range of data from measurement and simulation. The underlying principle is the well-known
invariance of the Gaussian probability distribution under linear operators, in particular differentiation.
In contrast to approaches with a generic covariance function/kernel, we restrict the Gaussian process
to generate only solutions of the homogeneous part of the differential equation. This requires
specialized kernels with a direct correspondence of certain kernel hyperparameters to parameters
in the underlying equation and leads to more reliable regression results with less training data.
Inhomogeneous contributions from linear superposition of point sources are treated via a linear model
over fundamental solutions. Maximum likelihood estimates for hyperparameters and source positions
are obtained by nonlinear optimization. For differential equations representing laws of physics the
present approach generates only physically possible solutions, and estimated hyperparameters
represent physical properties. After a general derivation, modeling of source-free data and parameter
estimation is demonstrated for Laplace’s equation and the heat/diffusion equation. Finally, the
Helmholtz equation with point sources is treated, representing scalar wave data such as acoustic
pressure in the frequency domain.

Keywords: Gaussian process regression; physics-informed methods; kernel methods; field
reconstruction; source localization; partial differential equations; meshless methods

1. Introduction

The larger context of the present work is the goal to construct reduced complexity models as
emulators or surrogates that retain mathematical and physical properties of the underlying system. In
recent terminology, such approaches are examples of “physics informed machine learning”. Similar to
usual numerical models, the aim here is to represent infinite systems by exploiting finite information
in some optimal sense. In the spirit of structure preserving numerics, one tries to move errors to the
“right place” to retain laws such as conservation of mass, energy, or momentum. Here, we treat data
known to fulfill a given linear differential equation. This article is an extended version of a conference
paper [1] presented at the MaxEnt workshop 2019. The revised text adds hyperparameter optimization,
results for the heat equation and detailed comparisons to existing methods.

This article deals with Gaussian process (GP) regression on data with additional information
known in the form of linear, generally partial differential equations (PDEs). An illustrative example is

Entropy 2020, 22, 152; doi:10.3390/e22020152 www.mdpi.com/journal/entropy
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the reconstruction of an acoustic sound pressure field and source parameters from discrete microphone
measurements. GPs, a special class of random fields, are used in a probabilistic rather than a stochastic
sense: estimate a fixed but unknown field from possibly noisy local measurements. Uncertainties in
this reconstruction are modeled by a normal distribution.

Using GPs to fit data from PDEs has been a topic of research for some time, especially in the
field of geostatistics [2]. A general analysis for deterministic source densities including a number of
important properties is given by [3]. In these earlier works GPs are usually referred to as “Kriging”
and covariance functions/kernels as “covariograms”. A number of more recent works from various
fields [4–8] use the linear operator of a PDE to relate the kernels of source and response field. One of
the two is usually modeled by a generic squared exponential kernel. Although the authors of [4,6,7]
use such a kernel for the response field and a kernel modified by a differential operator for the source
field, [5] models the source field by a generic kernel and applies the inverse (integral) operator to
obtain a kernel for the measured response. In contrast to the present approach such methods are
suited best for source fields that are non-vanishing across the whole domain. In terms of deterministic
numerical methods, one could say that these approaches with volumetric charge densities correspond
to meshless variants of the finite element method (FEM).

The approach in the present work instead relies on Gaussian processes that generate exact solutions
of the homogeneous part of the differential equation [9–11]. This is efficient for problems with mostly
source-free domains and requires specialized kernels where possible singularities (virtual sources) are
moved outside the domain of interest. In particular, boundary conditions on a finite domain can be
either supplied or reconstructed in this fashion. Localized internal point sources are then superimposed
as a linear model, using again fundamental solutions in the free field. One can thus interpret this
approach as a probabilistic variant of a procedure related to the boundary element method (BEM),
known as the method of fundamental solutions (MFS) or regularized BEM [12–14]. As in the BEM, the
MFS also builds on fundamental solutions, but allows to place sources outside the boundary rather
than localizing them on a layer. Thus, the MFS avoids singularities in boundary integrals of the BEM,
while retaining a similar ratio of numerical effort and accuracy for smooth solutions. To the best of
the author’s knowledge, the probabilistic variant of the MFS via GPs has first been introduced by [9]
to solve the boundary value problem of the Laplace equation and dubbed Bayesian boundary elements
estimation method ((BE)2M). This work also provides a detailed treatment of kernels for the 2D Laplace
equation. A more extensive and general treatment of the Bayesian context as well as kernels and their
connection to fundamental solutions is available in [10] under the term probabilistic meshless methods
(PMM).

Although the authors of [9] treat boundary data of a the homogeneous Laplace equation and the
authors of [10] provides a detailed mathematical foundation, the present work aims to extend
the recent work on added point sources in [11], unify the derivation of specialized kernels, and
demonstrate usefulness in applications. First, a general derivation is given on how to model PDE data
by superposing a GP and a linear model for localized sources. Then, the construction of kernels for the
homogeneous part of partial differential equations via according fundamental solutions is described
in general. Finally, concrete application examples are given for Laplace/Poisson, heat/diffusion and
Helmholtz equation for which the derivation of several kernels is presented. Performance is compared
to regression with a generic squared exponential kernel, including hyperparameter optimization in
all cases. For the Helmholtz equation we estimate strength and positions of sources by nonlinear
optimization.

2. GP Regression for Data from Linear PDEs

Gaussian process (GP) regression [15] is a tool to represent and update incomplete information
on scalar fields u(x), i.e., a real number u depending on a (multidimensional) independent variable x
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(the more general case of complex valued fields and vector fields is left open for future investigations
in this context). A GP with mean m(x) and covariance function or kernel k(x, x′) is denoted as

u(x) ∼ G(m(x), k(x, x′)). (1)

The choice of an appropriate kernel k(x, x′) restricts realizations of (1) to respect regularity properties
of u(x) such as continuity or characteristic length scales. Often regularity of u does not appear by
chance, but rather reflects an underlying law. We will exploit such laws in the construction and
application of GPs describing u for the case described by linear (partial) differential equations:

L̂u(x) = q(x). (2)

where L̂ is a linear differential operator and q(x) is a source term. In the laws of physics, dimensions
of x usually consist of space and/or time. Physical scalar fields u include, e.g., electrostatic potential
Φ, temperature T, or pressure p. Corresponding laws include Gauss’ law of electrostatics for Φ with
weighted Laplacian L̂ = ε∆, thermodynamics for T with heat/diffusion operator L̂ = ∂

∂t − D∆ and
frequency-domain acoustics for p with Helmholtz operator L̂ = ∆ + k 2

0 . These operators contain free
parameters, namely, permeability ε, wavenumber k0, and diffusivity D, respectively. While ε may be
absorbed inside q in a uniform material model of electrostatics, estimation of parameters such as D or
k0 is useful for material characterization.

Consider first the source-free (homogeneous) case

L̂uh(x) = 0. (3)

An unknown field uh(x) that fulfills (3) shall be modeled by the Gaussian process

uh(x) ∼ G(0, k(x, x′)). (4)

Application of a linear operator L̂ yields a modified Gaussian process

L̂uh(x) ∼ G(0, L̂k(x, x′)L̂′), (5)

where L̂′ acts from the right side with respect to x′. In order to fulfill (3) we require (5) to vanish
identically, i.e., yield a deterministic zero. Consequently, the kernel k(x, x′) needs to satisfy

L̂k(x, x′)L̂′ = 0. (6)

A discussion on derivation of such kernels is found in Section 2.
For the general case (2), with unknown source density q(x), we introduce a linear model

q(x) = ∑
i

ϕi(x)qi = ϕT(x)q, (7)

with basis functions ϕi(x) and a normally distributed prior

q ∼ N (q0, Σq), (8)

with mean q0 and prior covariance Σq for coefficients qi representing source strengths.
For a particulary solution up(x) fulfilling the inhomogeneous Equation (2) with source model (8),

a linear model induced by the operator L̂ follows as

up(x) = h(x)Tq, with L̂hi(x) = ϕi(x). (9)

3.1 Gaussian Process Regression for Data Fulfilling Linear Differential Equations with Localized
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Here, coefficients qi remain the same as in (8) and new basis functions hi(x) fulfil the differential
equation with source density ϕi(x). In case of point monopole sources ϕi(x) = δ(x− xq

i) placed at
positions xq

i , each hi(x) represents a fundamental solution evaluated for the respective source, so

hi(x) = G(x, xq
i), (10)

where G(x, xq
i) is a Green’s function for operator L̂. In the remaining work with localized sources

we take this approach. As G(x, xq
i) is usually only available for simple geometries and boundary

conditions the discussed linear model alone is limited in its application. We can however represent
much more general fields by a superposition of a locally source-free background uh(x) and point
source contributions up(x). Boundary conditions induced by external sources are then covered by
uh(x), and internal sources entering up(x) are treated via simple free-field Green’s functions. Following
the technique of [16] discussed in [15] (Chapter 2.7), the superposition u(x) = uh(x) + up(x) of the GP
uh(x) and the linear model up(x) is distributed according to the Gaussian process

u(x) ∼ G(h(x)Tq0, k(x, x′) + h(x)TΣqh(x′)). (11)

We will now verify that (11) indeed models the original differential Equation (2) correctly, thereby
generalizing the analysis for a deterministic source density in [3]. With L̂k(x, x′)L̂′ = 0, we obtain

L̂u(x) ∼ G(L̂h(x)Tq0, L̂h(x)TΣqh(x′)L̂′) = G(ϕ(x)Tq0,ϕ(x)TΣqϕ(x)). (12)

This is indeed the GP representing the linear source model (8) that we assumed and yields a consistent
representation of u(x) and q(x) inside (2).

Using the limit of a vague prior with q0 = 0 and |Σ−1
q | → 0, i.e., minimum information / infinite

prior covariance [15,16], posteriors for mean ū and covariance matrix cov(u, u) based on given training
data y = u(X) + σn with measurement noise variance σ2

n are

ū(X?) = KT
? K−1

y (y− HTq̄) + HT
? q̄ = KT

? K−1
y y + RTq̄, (13)

cov(u(X?), u(X?)) = K?? − KT
? K−1

y K? + RT(HK−1
y HT)−1R. (14)

where X = (x1, x2, . . . xN) contains the training points and X? = (x?1, x?2, . . . , x?N?) the evaluation or
test points. Functions of X and X? are to be understood as vectors or matrices resulting from evaluation
at different positions, i.e., ū(X?) ≡ (ū(x?1), ū(x?2), . . . , ū(x?N?)) is a tuple of predicted expectation
values. The matrix K ≡ k(X, X) is the covariance of the training data with entries Kij ≡ k(xi, xj). Entries
of the predicted covariance matrix for u evaluated at the test points x?i are cov(u(X?), u(X?))ij ≡
cov(u(x?i), u(x?j)). Furthermore, Ky ≡ K + σ2

n I, K? ≡ k(X, X?), K?? ≡ k(X?, X?), R ≡ H? − HK−1
y K?,

and entries of H are Hij ≡ hi(xj), H?ij ≡ hi(x?j). Posterior mean and covariance of source strengths
are given from the linear model [16] in the limit of a vague prior,

q̄ = (HK−1
y HT)−1HK−1

y y, (15)

cov(q, q) = (HK−1
y HT)−1. (16)

In the absence of sources, the matrix R vanishes, and (13) and (14) reduce to posteriors of a GP with
zero prior mean and are directly used to model homogeneous solutions uh(x) of (3).

Construction of Kernels for Homogeneous PDEs

For the representation of solutions uh(x) of homogeneous differential Equations (3), the
weight-space view ([15] Chapter 2.1) of Gaussian process regression is useful. There the kernel k
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is represented via a tuple φ(x) = (φ1(x), φ2(x), . . . ) of basis functions φi(x) that underlie a linear
regression model

u(x) = φ(x)Tw = ∑
i

φi(x)wi. (17)

Bayesian inference starting from a Gaussian prior with covariance matrix Σp for weights w yields a
Mercer kernel

k(x, x′) ≡ φT(x)Σpφ(x′) = ∑
i,j

φi(x)Σ
ij
pφj(x′). (18)

The existence of such a representation is guaranteed by Mercer’s theorem in the context of reproducing
kernel Hilbert spaces (RKHS) [14]. More generally one can also define kernels on an uncountably
infinite number of basis functions in analogy to (17) via

f (x) = (φ̂w)(x) = 〈φ(x, ζ), w(ζ)〉 =
∫

φ(x, ζ)w(ζ)dζ, (19)

where φ̂ is a linear operator acting on elements w(ζ) of an infinite-dimensional weight space
parametrized by an auxiliary index variable ζ, that may be multidimensional. We represent φ̂ via
an inner product 〈φ(x, ζ), w(ζ)〉 in the respective function space given by an integral over ζ. The
infinite-dimensional analog to the prior covariance matrix is a prior covariance operator Σ̂p that
defines the kernel as a bilinear form

k(x, x′) ≡
〈
φ(x, ζ), Σ̂pφ(x′, ζ′)

〉
≡
∫

φ(x, ζ)Σp(ζ, ζ′)φ(x′, ζ′)dζ dζ′. (20)

Kernels of the form (20) are known as convolution kernels. Such a kernel is at least positive semidefinite,
and positive definiteness follows in the case of linearly independent basis functions φ(x, ζ) [14].

For treatment of PDEs, the possible choices of index variables in Equation (18) or Equation
(20) include separation constants of analytical solutions, or the frequency variable of an integral
transform. In accordance with [10], using basis functions that satisfy the underlying PDE, a probabilistic
meshless method (PMM) is constructed. In particular, if ζ parameterizes positions of sources, and
φ(x, ζ) = G(x, ζ) in (20) is chosen to be a fundamental solution/Green’s function G(x, ζ) of the PDE,
one may call the resulting scheme a probabilistic method of fundamental solutions (pMFS). In [10], sources
are placed across the whole computational domain, and the resulting kernel is called natural. Here,
we will instead place sources in the exterior to fulfill the homogeneous interior problem, as in the
classical MFS [12–14]. Technically, this is also achieved by setting Σp(ζ, ζ′) = 0 for either ζ or ζ′ lies
in the interior. For discrete sources localized at ζ = ζ i one obtains again discrete basis functions
φi(x) = G(x, ζ i) for (18).

3. Application Cases

Here, the general results described in the previous sections are applied to specific equations. First,
a specialized kernel fulfilling the given linear differential equation is constructed according to (18),
and second, numerical experiments on physical examples are performed comparing the specialized
kernel to a squared exponential kernel. Regression is performed based on values measured at a set of
sampling points xi and may also include optimization of hyperparameters θ appearing as auxiliary
variables inside the kernel k(x, x′; θ). The optimization step is, as usually, performed such that the
marginal likelihood of the GP is maximized (maximum likelihood or ML values). In the Bayesian
sense, this corresponds to a maximum a-posteriori (MAP) estimate for a flat prior. Accordingly, θML is
fixed rather than providing a joint probability distribution function including θ as random variables.
We note that depending on the setting this choice may lead to underestimation of uncertainties in the
reconstruction of u(x), in particular for sparse, low-quality measurements.
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3.1. Laplace’s Equation in Two Dimensions

First, we explore construction of kernels fulfilling (5) for a homogeneous problem in a finite and
infinite dimensional index space, depending on the mode of separation. Consider Laplace’s equation:

∆u(x) = 0. (21)

In contrast to the Helmholtz equation, Laplace’s equation has no scale, i.e., permits all length scales in
the solution. In the 2D case using polar coordinates the Laplacian becomes

1
r

∂

∂r

(
r

∂u(r, θ)

∂r

)
+

1
r2

∂2u(r, θ)

∂θ2 = 0. (22)

A well-known family of solutions for this problem based on the separation of variables is

u(r, θ) = r±me±imθ , (23)

with separation constant m, leading to real-valued combinations

rm cos(mθ), rm sin(mθ), r−m cos(mθ), r−m sin(mθ). (24)

As our aim is to work in bounded regions, we discard the solutions with negative exponent that
diverge at r = 0. Choosing a diagonal prior that weights sine and cosine terms equivalently [9] and
introducing a length scale ` as a free parameter we obtain a kernel according to (18) with

k(x, x′; `, σm) =
∞

∑
m=0

(
rr′

`2

)m

σ 2
m (cos(mθ) cos(mθ′) + sin(mθ) sin(mθ′))

=
∞

∑
m=0

(
rr′

`2

)m

σ 2
m cos

(
m(θ − θ′)

)
. (25)

A flat prior σ 2
m = σ 2

u for all polar harmonics and a characteristic length scale ` as another
hyperparameter yields

k(x, x′; `, σu) = σ 2
u

1− rr′
`2 cos(θ − θ′)

1− 2 rr′
`2 cos(θ − θ′) + (rr′)2

`4

= σ 2
u

1− x·x′
`2

1− 2 x·x′
`2 + |x|2|x′ |2

`4

. (26)

This kernel is not stationary, but isotropic around a fixed coordinate origin. Introducing a mirror point
x̄′ with polar angle θ̄′ = θ′ and radius r̄′ = `2/r′ we notice that (26) can be written as

k(x, x′; `, σu) = σ 2
u
|x̄′|2 − x · x̄′
(x− x̄′)2 , (27)

making a dipole singularity apparent at x = x̄′. In addition, k is normalized to 1 at x = 0. Choosing
` > R0 larger than the radius R0 of a circle centered in the origin and enclosing the computational
domain, we have r̄′ > `2/` = ` > R0. Thus, all mirror points and the according singularities are
moved outside the domain. This behavior is illustrated in Figure 1 where computing the covariance
kernel with respect to point x′ = (0.8, 0) leads to distances > 1 everywhere inside the unit circle.
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Choosing a slowly decaying σ 2
m = σ 2

u /m, excluding m = 1 and adding a constant term yields a
logarithmic kernel instead [9] with

k(x, x′; `, σu) = σ 2
u

(
1− 1

2
ln
(

1− 2
x · x′
`2 +

|x|2|x′|2
`4

))

= σ 2
u

(
1− ln

( |x− x̄′|
|x̄′|

))
. (28)

Instead of a dipole singularity that expression features a monopole singularity at x− x̄′ that is again
avoided by placing it outside the domain for any pair of x and x′ (Figure 1).

Figure 1. Kernels k(x, x′) evaluated at x = (x, y) and x′ = (0.8, 0). Left: dipole response of (27), right:
monopole response of (28). Singularities are moved outside the domain of interest.

Using instead Cartesian coordinates x, y to separate the Laplacian provides harmonic
functions like

u(x, y) = e±κxe±iκy. (29)

Here, all solutions yield finite values at x = 0, so we do not have to exclude any of them a priori.
Introducing, again, a diagonal covariance operator in (20) and taking the real part yields

k(x, x′; σ2(κ)) =
∫

ϕ(x, κ)σ 2(κ)ϕ(x′, κ)dκ = Re
∫ ∞

−∞
σ 2(κ)eκ(x±x′)eiκ(y±y′) dκ. (30)

Setting σ 2(κ) ≡ e−2κ2
and choosing a characteristic length scale ` together with a possible rotation

angle θ0 of the coordinate frame yields the kernel

k(x, x′; `, θ0, σu) =
σ 2

u
2

Re exp
(
((x + x′)± i(y− y′)) 2ei2θ0)

`2

)
. (31)

Other sign combinations do not yield a positive definite kernel – similar to the polar kernel (27) before
we couldn’t obtain an fully stationary expression that depends only on differences between coordinates
of x and x′.

For demonstration purposes we consider an analytical solution to a boundary value problem of
Laplace’s equation on a square domain Ω with corners at (x, y) = (±1,±1). The reference solution is

uref(x, y) =
1
2

(
ey cos(x) + e2x cos(2y)

)
(32)

and depicted in the upper left of Figure 2 together with the extension outside the boundaries. This
figure also shows results from a GP fitted based on data with artificial noise of σn = 0.1 measured
at 8 points using kernel (27) with optimized maximum-likelihood (ML) values for hyperparameters
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` and σu but fixed σn. Inside Ω the solution is represented with errors below 5%. This is also
reflected in the error predicted by the posterior variance of the GP that remains small in the region
enclosed by measurement points. The analogy in classical analysis is the theorem that the solution of a
homogeneous elliptic equation is fully determined by boundary values.

In comparison, a reconstruction using a generic squared exponential kernel

k(x, x′; `, σu) = σ2
u exp

(−(x− x′)2

2`2

)
(33)

yields a much worse approximation quality in Figures 2 and 3. This is in contrast to earlier
investigations [1] where a fixed length scale hyperparamter ` = 2 was used. Although the specialized
GP with kernel (27) could identify this length scale during hyperparameter optimization, using a
generic kernel (33) leads to an underestimation of ` and requires twice the number of training points
to achieve a similar fit quality and profits from scattered training points, as it has no information about
the nature of the boundary value problem (Figures 4 and 5).

In addition, the posterior covariance of that reconstruction is not able to capture the vanishing
error inside the enclosed domain due to given boundary data. More severely, in contrast to the
specialized GP, the posterior mean ū does not satisfy Laplace’s equation ∆ū = 0 exactly. This leads
to a violation of the classical result that (differences of) solutions of Laplace’s equation may not have
extrema inside Ω, showing up in the difference to the reconstruction in Figures 3 and 4. This kind of
error is quantified by computation of the reconstructed charge density q̄ = ∆ū. This is fine if data from
Poisson’s equation ∆u = q with distributed charges should be fitted instead. However, to keep ∆u = 0
exact in Ω, one requires more specialized kernels such as (27).

Figure 2. GP reconstruction of Laplace’s equation with specialized locally source-free Mercer kernel (27)
(top left) and generic squared exponential kernel (top right). Sources lie outside the black square
region and 8 measurement positions are marked by black dots. Reference analytical solution (bottom
left). Source density q̄ = ∆ū of prediction via a generic squared exponential kernel (bottom right).
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Figure 3. Absolute error (top left) and predicted 95% confidence interval (bottom left) with specialized
locally source-free Mercer kernel (27) in comparison to absolute error (top right) and predicted 95%
confidence interval (bottom right) with generic squared exponential kernel for 8 training points.
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Figure 4. Absolute error as in Figure 3 for 15 training points on a circle (top) and for quasi-random
points (bottom). As the generic squared exponential kernel does not fulfill the given differential
equation, even for a larger number of training points, the source density doesn’t vanish in the domain.
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Figure 5. (Left) Comparison of relative L2 error in u for specialized kernel (solid line) and squared
exponential kernel (dashed line) for Laplace’s equation for N quasi-random training points. (Right)
Negative log likelihood from 8 training data of Figure 2 with optimum at ` = 1.52 for specialized
kernel (solid line) and at ` = 0.78 for the squared exponential kernel (dashed line).

3.2. Heat Equation: Physical Parameter Estimation

Let us now consider the 1D homogeneous heat/diffusion equation over position x and time t,

∂u(x, t)
∂t

− D∆u(x, t) = 0 (34)

for (x, t) ∈ R×R+. Here, the diffusivity D is a physical parameter determining how fast solutions
spread in space. Integrating the fundamental solution

G(x, t, ξ, τ) =
1√

4πD(t− τ)
exp

(
− (x− ξ)2

4D(t− τ)

)
(35)

from ξ = −∞ to ∞ at τ = 0, i.e., placing sources everywhere in space at a single initial time, and
adding a scale hyperparameter σu leads to the convolution kernel

kn(x, t, x′, t′; D, σu) =
σ 2

u√
4πD(t + t′)

exp
(
− (x− x′)2

4D(t + t′)

)
. (36)

In terms of x, this is a stationary squared exponential kernel and the natural kernel over the domain
x ∈ R. The kernel broadens with increasing t and t′. Nonstationarity in time can also be considered
natural to the heat equation, as its solutions show a preferred time direction on each side of the
singularity t = 0. The only difference of (36) to the fundamental solution (35) is the positive sign
between t and t′. As both t and t′ are positive, k is guaranteed to take finite values and, in contrast
to (35), does not become singular at (x, t) = (x′, t′).

As for the Laplace equation it is also convenient to define a non-stationary kernel by cutting out
a domain that is known to be free of sources. In case heat sources are known to exist only left of the
origin we evaluate the integral over the fundamental solution over (−∞, 0) to

k(x, t, x′, t′; D, σu) = kn(x, t, x′, t′; D, σu)

[
1 +

g(x, t, x′, t′; D)

2

]
, (37)

where

g(x, t, x′, t′; D) ≡ erf
(
− x/t + x′/t′

2
√

D
√

1/t + 1/t′

)
(38)
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is defined via the error function erf. Choosing instead a source-free region domain interval (a, b) we
integrate over R\(a, b) and obtain

k(x, t, x′, t′; D, σu) = kn(x, t, x′, t′; D, σu)

[
1− g(x− b, t, x′ − b, t′; D)− g(x− a, t, x′ − a, t′; D)

2

]
. (39)

Incorporating the prior knowledge that there are no domain sources is expected to improve the
reconstruction.

As a physical example, we consider a rod with temperatures held fixed at two ends and a given
initial temperature distribution. We model this as an initial-boundary value problem for (34) on the
interval x ∈ (0, 1) with Dirichlet boundary data u(0) = 1 and u(1) = 0. As initial conditions, we set
u(x, 0) = 0 everywhere except at the left end where u(0, 0) = 1. The actual diffusivity is chosen as
D = 0.1, and we let u(x, t) evolve from t0 = 0 until t1 = 1. With increasing t the initial conditions
are smoothed out as u approaches the stationary solution u(x, t → ∞) = 1− x. Measurements of u
are performed at three positions x = 0, 0.1, 1 at four times t = 10−5, 0.25, 0.5, 0.75, yielding 12 training
points in total. In Figure 6 the resulting reconstruction of u(x, t = 0.125) is plotted for each of the three
kernels defined above. Kernel (39) allowing initial sources on both sides of the interval yields the best
reconstruction. Furthermore, it is the only one that reproduces meaningful uncertainty bands based on
the 95% confidence interval ū± 1.96σ, whereas the ones for (36) and (36) span the whole plot domain.
Estimation of diffusivity D is also most reliable with kernel (39). The according negative log likelihood
can be seen on the right plot in Figure 6. Although all three kernels produce well posed optimization
problems, only (39) has the minimum at the correct position D = 0.1.

The reason for the requirement of kernel (39) is clear from the statement of the problem: keeping
u fixed on both sides of the interval can only be achieved by restricting the heat flux in a predefined
way that requires sources on both sides at t = 0. However, the domain itself should not contain any
heat sources at any time. If we had placed an open boundary condition on the right side, kernel (37)
would have been the more natural choice instead.
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Figure 6. (Left) GP reconstruction of u(x, t = 0.125) for 1D heat equation Dirichlet problem based
on measurement points (�) at x = 0, 0.1, 1, reference in red. Kernels (36), (37) and (39) marked by
dashed, dash-dotted and solid lines, respectively. 95% confidence interval bands shown only for (39),
producing the best fit. (Right) negative log likelihood over diffusivity D.
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3.3. Helmholtz Equation: Source and Wavenumber Reconstruction

Finally, to demonstrate the full method, we consider the Helmholtz equation with sources:

∆u(x) + k 2
0 u(x) = q(x). (40)

In 1D, solutions for the homogeneous equation with x = x are given by linear combinations of
cos(k0x), sin(k0x). Choosing a diagonal prior in (18) leads to a stationary kernel

k(x, x′; k0, σu) = cos(k0x)σu cos(k0x′) + sin(k0x)σu sin(k0x′) = σu cos(k0(x− x′)), (41)

as presented in [11]. For the two-dimensional case in polar coordinates, a family of solutions based on
the separation of variables is

cos(mθ), sin(mθ), Jm(k0r), Ym(k0r), (42)

where Jm and Ym are Bessel functions of first and second kind, respectively. Similar to the simpler 1D
case, by applying Neumann’s addition theorem, we obtain a specialized kernel

k(x, x′; k0, σu) = σ2
u J0(k0|x− x′|). (43)

In the 3D case, one would proceed in a similar fashion with spherical Bessel functions, which yields the
kernel that was already postulated in [11]. In contrast to the case of Laplace’s equation in the previous
section, these source-free Helmholtz kernels do not possess singularities at any finite distance from
the origin, i.e., no virtual exterior sources in the Mercer kernel (20). As a consequence they provide
smoothing regularization on the order of the wavelength λ0 = 2π/k0 to reconstructed fields and
boundary conditions that may or may not be desired. Internal sources at positions xq

k are linearly
modeled according to (10) with basis

hi(x) = G(x, xq
i ) = H(2)

0 (k0|x− xq
i |), (44)

where H(2)
0 is the Hankel function of the second kind. The method of source strength reconstruction is

improved compared to [11], as it constitutes a linear problem according to (15). Nonlinear optimization
is instead applied to σu and wavenumber k0 as free hyperparameters to be estimated during the GP
regression. The set-up is the same as in [11]: a 2D cavity with various boundary conditions and two
sound sources of strengths 0.5 and 1.0, respectively. Results for sound pressure fulfilling (40) are
normalized to have a maximum p/p0 = 1. We compare three variants of GP regression for these data:

(1) Superposition of specialized kernel GP for homogeneous part uh and linear source model for up.
(2) Superposition of generic squared-exponential kernel GP for uh and linear source model for up.
(3) Generic squared-exponential kernel GP model for the full field u.

Naturally, after the presented analysis, only (1) can be the “correct” way of regression for this
kind of data from a PDE with point sources. Variant (2) is a “hybrid” that should be able to identify
point sources, while polluting the source-free part with volumetric contributions. Considering that (2)
helps to separate the effect from this pollution from the effect of adding a linear source model. Variant
(3) is expected to show worse performance compared to (1) and (2), as neither source-free part nor
singularities of u at point source positions can be modeled correctly.

Figure 7 shows the local absolute field reconstruction error based on 12 training data points with
artificial noise of σn = 0.01. Hyperparameters k0 and σu are set to optimized ML values, and σn is
fixed to its actual value. The upper left plot shows results for variant (1) with the specialized kernel
(43). Variant (3) with a generic squared exponential kernel (33) of length scale ` = π/(

√
2k0) to model

u yields a much higher field reconstruction error as depicted in the lower left of Figure 7. The field
reconstruction using the generic kernel is improved when a linear model for the inhomogeneous term
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is included (variant (2)), as shown in the upper right of Figure 7. However, the original differential
Equation (40) is only fulfilled exactly when using a specialized kernel with L̂k(x, x′)L̂′ = 0. As expected,
variant (1) produces the best reconstruction at a given number of training points (Figure 8). There the
first 12 points are chosen as marked in Figure 7, and more points are generated from a quasi-random
Halton sequence. The obtained negative log-likelihood (Figure 7, lower right) depending on k0 and
σu at its ML value demonstrates the well-posedness of estimating k0 having the physical meaning of
a wavenumber. Variants (2) and (3) lead to a slightly less peaked estimate for a spatial length scale
hyperparameter without a direct physical interpretation.
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Figure 7. Reconstruction error for the Helmholtz equation from 12 training points for specialized kernel
(top left), squared exponential kernel with linear source model (top right) and squared exponential
kernel (bottom right); reconstructed source strengths q with 95% confidence interval via posterior (15)
and (16). Negative log likelihood (bottom right) with optimum kML

0 = 9.19 for specialized kernel (solid
line), sq.exp. kernel with linear source model (dashed), and sq.exp. kernel alone (dash-dotted).

For estimation of source positions, nonlinear optimization is applied to source positions as free
hyperparameters within the given boundaries, employing an evolutionary algorithm CMA-ES [17].
The results of source strength and position estimation using (15) and (16) in the configuration with
12 training points is given in Table 1. Both estimates match the exact values reasonably well. At an
increasing number of training data the reconstruction becomes more accurate, stagnating at an error
between 0.1% and 1% and showing the advantage of the specialized kernel more clearly (Figures 8
and 9). The relative L2 error in source positions for specialized and generic squared exponential kernel
with linear source model is depicted in the left plot of Figure 9. Again, results from the specialized
kernel are usually more accurate and stable compared to using a squared-exponential kernel for the
source-free part of the field at a given number of training points.
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Table 1. Comparison and results for estimation of source strength q and source position xq
i for 12

training data points for specialized and squared exponential kernel with linear source model.

Exact Values Specialized Kernel sq. exp. Kernel

q = (1.0, 0.5) q = (0.97, 0.52) q = (1.03, 0.53)
xq

1 = (4.3, 0.85) xq
1 = (4.31, 0.85) xq

1 = (4.30, 0.82)
xq

2 = (4.5, 0.85) xq
2 = (4.65, 0.90) xq

2 = (4.61, 0.84)
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Figure 8. Comparison of relative L2 error in u (left) and q (right) for specialized kernel (solid line),
squared exponential kernel (dash-dotted) and squared exponential kernel with linear source model
(dashed) for Helmholtz equation with N quasi-random training points. As the squared exponential
kernel alone (without linear source model) cannot reproduce point sources, no result is shown for the
point source strength estimation in the right plot for this case.
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Figure 9. (Left) Comparison of relative L2 error in source position for specialized kernel (solid line)
and squared exponential kernel with linear source model (dashed) for Helmholtz equation with N
quasi-random training points. (Right) reconstructed field using specialized kernel (43) and showing
convergence of estimated source location for N = (12, 15, 20, 30) quasi-random training points.

4. Summary and Outlook

A framework for application of Gaussian process regression to data from underlying linear
partial differential equations with localized sources has been presented. The method is based on
superposition of a Gaussian process that generates exact solutions of the homogeneous equation,
complemented by a linear model for sources. For the homogeneous part, specialized kernels are
constructed from fundamental solutions via Mercer’s theorem. For source contributions, fundamental
solutions are used as basis functions in the linear model. Examples for suitable kernels have been
given for Laplace’s equation, heat equation and Helmholtz equation. Regression has been shown to
yield better results compared to using a squared exponential kernel at the same number of training
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points in the considered application cases. Advantages of the specialized kernel approach are the
possibility to represent exact absence of sources as well as physical interpretability of hyperparameters.
This comes at the cost of requiring non-standard, possibly nonstationary kernels. The presented
method has been demonstrated to be able to accurately estimate system parameters such as diffusivity
and wavenumber, as well as position and strength of point sources using only around 10 training data
points in two-dimensional domains.

In a next step, reconstruction of vector fields via GPs could be formulated, taking laws such
as Maxwell’s equations or Hamilton’s equations of motion into account. A starting point could be
squared exponential kernels for divergence- and curl-free vector fields [18]. Such kernels have been
used in [19] to perform statistical reconstruction, and [20] apply them to GPs for source identification
in the Laplace/Poisson equation. To model Hamiltonian dynamics in phase-space, vector-valued GPs
could possibly be extended to represent not only volume-preserving (divergence-free) maps but retain
full symplectic properties, conserving all integrals of motion such as energy or momentum.
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valued kernel.
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ABSTRACT

We present an approach to construct structure-preserving emulators for Hamiltonian flow maps and Poincaré maps based directly on orbit
data. Intended applications are in moderate-dimensional systems, in particular, long-term tracing of fast charged particles in accelerators
and magnetic plasma confinement configurations. The method is based on multi-output Gaussian process (GP) regression on scattered
training data. To obtain long-term stability, the symplectic property is enforced via the choice of the matrix-valued covariance function. Based
on earlier work on spline interpolation, we observe derivatives of the generating function of a canonical transformation. A product kernel
produces an accurate implicit method, whereas a sum kernel results in a fast explicit method from this approach. Both are related to symplectic
Euler methods in terms of numerical integration but fulfill a complementary purpose. The developed methods are first tested on the pendulum
and the Hénon–Heiles system and results compared to spectral regression of the flow map with orthogonal polynomials. Chaotic behavior
is studied on the standard map. Finally, the application to magnetic field line tracing in a perturbed tokamak configuration is demonstrated.
As an additional feature, in the limit of small mapping times, the Hamiltonian function can be identified with a part of the generating
function and thereby learned from observed time-series data of the system’s evolution. For implicit GP methods, we demonstrate regression
performance comparable to spectral bases and artificial neural networks for symplectic flow maps, applicability to Poincaré maps, and correct
representation of chaotic diffusion as well as a substantial increase in performance for learning the Hamiltonian function compared to existing
approaches.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0048129

Discrete representations of Hamiltonian systems require
structure-preserving properties in order to preserve invariants of
motion and the orbit topology in the phase space. Here, we inves-
tigate techniques based on Gaussian process regression to learn
such a representation of flow maps and Poincaré maps from orbit
data without explicit knowledge of the Hamiltonian function. The
approach supports unstructured data on irregular domains as
well as non-canonical coordinates if an implicit transformation to
canonical ones is available. Similarly to existing work on interpo-
lated flow maps, the method relies on canonical transformations
and their generating functions and is related to first order sym-
plectic integrators. After the construction of the map, it can be
used to compute evolving system states over long periods of time.
A single mapping time step can cover the time that the system
spends between two Poincaré sections. Besides the use to charac-
terize Hamiltonian systems from observational data, the method

can thus be used to construct fast emulators for numerical orbit
tracers.

I. INTRODUCTION
Hamlitonian mechanics form the basis for a large num-

ber of models for dynamical systems in physics and engineering.
This includes systems with negligible dissipation found in classi-
cal mechanics, electrodynamics, continuum mechanics, and plasma
physics1–3 as well as artificial systems created for numerical purposes
such as hybrid-Monte-Carlo algorithms4 for sampling from prob-
ability distributions. A specific feature of Hamiltonian systems is
their long-term behavior with conservation of invariants of motion
and lack of attractors to which different initial conditions con-
verge. Alternatively, a diverse spectrum of resonant and stochastic
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features emerges that has been extensively studied in the field of
chaos theory.5 These particular properties are a consequence of the
symplectic structure of the phase space together with equations of
motion based on derivatives of a scalar field—the Hamiltonian H.

Numerical methods that partially or fully preserve this struc-
ture in a discretized system are known as geometric or symplectic
integrators.6–10 Most importantly, such integrators do not accumu-
late energy or momentum and remain long-term stable at relatively
large time steps compared to non-geometric methods.11 Symplectic
integrators are generally (semi-)implicit and formulated as (par-
titioned) Runge–Kutta schemes that evaluate derivatives of H at
different points in time.

Here, we investigate mapping techniques12–16 that serve a pur-
pose complementary to numerical integration. Numerical integra-
tors yield approximate orbits from the knowledge of (derivatives
of) H. Mapping techniques instead rely on given orbit data over a
period of time and find an approximation of the flow over this map-
ping time step in a functional basis. Training data can come from
numerical integration or from experiment. Conversely to numerical
integration, this allows one to learn the dynamics, i.e., the Hamil-
tonian of a system under investigation.17 In contrast to time steps
of numerical integrators, the mapping time step is not necessarily
required to be small compared to periods of motion of a system.
On the contrary, a map can be constructed between Poincaré sec-
tions of interest.18 Once the map is learned, it can be applied to
traverse time in such “giant” steps as long as orbits remain in the
training region. Hence, the constructed map allows one to trace a
system over many periods based on data from numerical integra-
tion or experiment of only a single period. This is especially useful
to accelerate long-term computations and to study chaos in systems
with a broken symmetry.

Naively interpolating a map in both, position and momen-
tum variables, destroys the symplectic property of the Hamiltonian
flow. In turn, all favorable properties of symplectic integrators are
lost, and subsequent applications of the map become unstable very
quickly. This problem is illustrated in Fig. 1, where the flow map of a

pendulum is interpolated in a symplectic and a non-symplectic man-
ner, respectively. If one enforces symplecticity of the interpolated
map by some means, structure-preservation and long-term stability
are again natural features of the approximate map. Here, this will be
realized via generating functions introduced by Warnock et al.13,16

in this context. This existing work relies on a tensor-product basis
of Fourier series and/or piecewise spline polynomials. This choice of
basis has two major drawbacks: rapid decrease of efficiency in higher
dimensions and limitation to box-shaped domains. One possibility
to overcome these limitations would be the application of artificial
neural networks with symplectic properties.18–26 Here, we rather use
a kernel-based method as a new way to construct approximate sym-
plectic maps via Gaussian process (GP) regression. In contrast to
other existing works27,28 on learning dynamical systems using GPs,
the present method is specialized to symplectic Hamiltonian flow
and Poincaré maps. An important limitation of the use of mixed-
variable generating functions is the possibility that these functions
or their derivatives may become non-unique-valued. This issue will
be pointed out in the text and can in certain cases be overcome by
composition of multiple maps with shorter step lengths (“deep” GP).

GP regression,29 also known as Kriging, is a flexible method
to represent smooth functions based on covariance functions (ker-
nels) with tunable parameters. These kernel hyperparameters can
be directly optimized in the training process by maximizing the
marginal likelihood. Predictions, in particular, posterior mean and
(co-)variance for function values are then made via the inverse
kernel covariance matrix. Observation of derivatives required to
fit Hamiltonian flow maps is possible via correlated multi-output
Gaussian processes.30–33

We apply the developed method to toy models as well as an
application case on magnetic field line tracing that represents a sim-
plified variant of tracing plasma particles. Details on this problem
are found in Appendix B. Tracing field lines of magnetic confine-
ment devices over many periods is an important task on its own,
in particular, near the device wall and in the presence of non-
axisymmetric perturbations.12,34 Charged particle orbits in strongly

(a) (b)

FIG. 1. Illustration of a pendulum orbit in the phase space (a) and relative energy error (b) using symplectic Euler (solid line) and non-symplectic explicit Euler (dotted line)
schemes with step size h = 0.01 for initial conditions (q, p) = (1, 0.5). The horizontal axis is given by t/τb, where τb is the bounce time.
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magnetized plasmas are commonly represented by their center of
gyration around magnetic field lines: the guiding-center.34–37 In the
limiting case of zero energy and magnetic moment, guiding-centers
coincide with magnetic field lines and can be treated in a similar
formalism.38 This feature is used here to demonstrate the mapping
technique on magnetic field perturbations while already keeping
the more general case of guiding-center motion in mind for future
application. The main difference here lies in the variety of orbit
classes rather than fundamental features of the system. In all cases,
we treat systems without explicit time dependencies. Within the
guiding-center formalism, the rapidly changing gyrophase becomes
an ignorable variable, thereby reducing the effective phase space
dimension from 6 to 4. This reduction comes at the cost of a switch
to non-canonical variables. Nevertheless, it is possible34,39–41 to iden-
tify canonical variables q, p as functions of non-canonical variables z.
The inverse coordinate transformation is then given implicitly. The
availability of such a transformation makes canonical symplectic
methods, in particular, the ones developed in this work, applicable
despite a non-canonical formulation.

The paper is structured as follows: First, Hamiltonian systems
and canonical transformations that preserve the symplectic struc-
ture of the phase space are briefly reviewed (Sec. II). In Sec. III,
general derivations of multi-output Gaussian processes with deriva-
tive observations are given. The analogous derivation for linear
regression in a spectral basis is found in Appendix A. Then, two
algorithms to construct and apply symplectic mappings using Gaus-
sian processes are introduced. The presented methods are tested on a
simple pendulum and compared to linear regression using an expan-
sion in Hermite polynomials combined with a periodic Fourier basis
(Sec. IV). Poincaré maps are studied starting with the perturbed
pendulum and the more complex Hénon–Heiles system. Then, the
correct reproduction of chaotic diffusion is tested based on the
standard map. Finally, the method is applied to the magnetic field
in a tokamak with non-axisymmetric perturbations, again show-
ing a transition from regular to chaotic behavior with increasing
perturbation strength.

II. DYNAMICAL HAMILTONIAN SYSTEMS AND
SYMPLECTIC FLOW MAPS

A. Hamiltonian systems
It is well known1,69 that an f-dimensional classical mechanical

system is fully characterized by its Hamiltonian function H(q, p, t),
which depends on f generalized coordinates q, f generalized
momenta p, and time t. Here, we restrict ourselves to autonomous
systems with H(q, p) having no explicit time-dependence and con-
ceptually treat non-autonomous systems in an extended phase space
with t as an additional position coordinate. Derivatives of H define
a Hamiltonian vector field being

XH(q, p) =
( ∇pH(q, p)

−∇qH(q, p)

)

(1)

in a canonical representation. The time evolution of orbit’s canoni-
cal coordinates (q(t), p(t)) is given as integral curves of XH(q, p), i.e.,

a solution to Hamilton’s canonical equations of motion,

q̇(t) =
dq(t)

dt
= ∇pH(q(t), p(t)), (2)

ṗ(t) =
dp(t)

dt
= −∇qH(q(t), p(t)). (3)

The evolution of a system along XH(q, p) over finite time
intervals is described by the Hamiltonian flow map ϕH. This map
preserves the symplectic structure of the phase space,2 resulting in
important properties such as conservation of phase volume (Liou-
ville’s theorem) and invariants such as energy along orbits.

B. Canonical transformations
One is usually interested in the temporal evolution according

to Eq. (3), that is, position Q and momentum P of a system at time
t = h that has been initialized with position q and momentum p at
time t = 0. Motion (or a shift in time) in a Hamiltonian system is
conveniently represented by a canonical transformation.1,70 Due to
the canonical structure of equations of motion, the mapping rela-
tions linking q, p, Q, and P are not independent from each other
but linked via the symplectic property

∂Q(q, P)

∂q
−
∂p(q, P)

∂P
= 0. (4)

Equation (4) is analogous to divergence- or curl-freeness of vector
fields, which is seen in a formulation using differential forms.2 Simi-
lar to using a scalar or vector potential to guarantee such properties,
symplecticity [Eq. (4)] can be automatically fulfilled by introducing
a mixed-variable generating function F(q, P) that links old coor-
dinates (q, p) to new coordinates (Q, P). For a type 2 generating
function, the associated canonical transformation is given by

Q(q, P) =
∂F(q, P)

∂P
, (5)

p(q, P) =
∂F(q, P)

∂q
. (6)

For the intended application of kernel regression, representing a lin-
ear term is not favorable. This is why we split the generating function
into a sum,

F(q, P) = q · P + F̃(q, P). (7)

The first part q · P in Eq. (7) describes the identity transformation
q → Q, p → P. The relation between (q, p) and (Q, P) can then be
written as

(

∇qF̃(q, P)
∇PF̃(q, P)

)

=
(

p(q, P)− P
Q(q, P)− q

)

=
(

−1p(q, P)
1q(q, P)

)

. (8)

In the limit of small mapping times, the Hamiltonian H can be
identified (up to a constant) with F̃, as the time evolution of canon-
ical coordinates can be represented by an infinitesimal canonical
transformation. Specifically, from Eq. (8), we obtain the following
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expressions for (Q, P):

Q = q +
∂ F̃

∂P
, (9)

P = p −
∂ F̃

∂q
. (10)

This can be compared by the equations of motion in Eq. (3), where
the first order approximation yields a symplectic Euler integration
step,

Q ≈ q + h
∂H

∂P
, (11)

P ≈ p − h
∂H

∂q
. (12)

Comparing those sets of equations yields the relation F̃ = Hh up to
an irrelevant constant shift, where h is the mapping time step.

III. REGRESSION OF HAMILTONIAN FLOW MAPS

A. Multi-output GPs and derivative observations
A Gaussian process (GP)29 is a stochastic process with the

convenient property that any finite marginal distribution of the
GP is Gaussian. For x ∈ Rd, a GP with mean m(x) and kernel or
covariance function K(x, x′) is denoted as

f(x) ∼ GP(m(x), K(x, x′)), (13)

where we allow vector-valued functions.33 In contrast to the single
output case, where the random variables are associated with a sin-
gle process for f(x) ∈ R, a multi-output GP for f(x) ∈ RD consists
of random variables associated with different and generally corre-
lated processes. The covariance function is a positive semidefinite
matrix-valued function whose entries (K(x, x′))ij express the covari-
ance between the output dimensions i and j of f(x). In case a linear
model for the mean m with some functional basis ϕi and unknown
coefficients is used, a modified Gaussian process follows according
to Chap. 2.7 of Rasmussen and Williams.29

For regression via a GP, we assume that the observed function
values Y ∈ RD×N may contain local Gaussian noise ε; i.e., the noise
is independent at different position x but may be correlated between
components of y = f(x)+ ε. The input variables are aggregated in
the d × N design matrix X, where N is the number of training data
points. After observing Y, the posterior mean F∗ ≡ E(F(X∗)) and
covariance evaluated for test data X∗ are given analytically by

F∗ = K(X∗, X)(K(X, X)+6n)
−1Y, (14)

cov(F∗) = K(X∗, X∗)− K(X∗, X)(K(X, X)+6n)
−1K(X, X∗), (15)

where 6n ∈ RND×ND is the covariance matrix of the multivariate
output noise for each training data point. In the simplest case, it
is diagonal with entries σ 2

n . Estimation of kernel parameters and
σ 2

n given the input data are usually performed via optimization or
sampling according to the marginal log-likelihood.29

When a linear operator L, e.g., differentiation, is applied to the
Gaussian process, this yields a new Gaussian process,28,30,31

Lf(x) ∼ GP(l(x), L(x, x′)). (16)

Here, the mean l(x) is given by l(x) = Lm(x) and a matrix-valued
gradient kernel

L(x, x′) = (Lx ⊗ Lx′)K(x, x′) = LxK(x, x′)LT
x′ (17)

follows, where LT
x′ is applied from the right to yield an exterior

product.42

As differentiation is a linear operation, in particular the gra-
dient of a Gaussian process over scalar functions g(x) with kernel
k(x, x′) remains a Gaussian process. The result is a multi-output GP
where the covariance matrix is the Hessian of K(x, x′) containing all
second derivatives in (x, x′). A joint GP describing both values and
gradients is given by

(

g(x)
∇g(x)

)

∼ GP(n(x), K(x, x′)), (18)

with n(x) = (m(x), l(x))T and where

K(x, x′) =
(

k(x, x′) k(x, x′)∇T
x′

∇xk(x, x′) ∇xk(x, x′)∇T
x′

)

(19)

contains L(x, x′) as the lower-right block. In the more general case
of a linear operator L in place of ∇ , one may use the joint GP in
Eq. (19) as a symmetric meshless formulation43,44 to find approximate
solutions of the according linear (partial differential) equation.

B. Symplectic GP regression
To apply GP regression on symplectic maps, we use Eq. (19) for

the joint distribution of the generating function and its gradients in
Eq. (8),





F̃(q, P)
∂qF̃(q, P)
∂PF̃(q, P)



 ∼ GP(n(q, P), K(q, P, q′, P′)), (20)

with

K(q, P, q′, P′) =





k ∂q′k ∂P′k
∂qk ∂qq′k ∂qP′k
∂Pk ∂Pq′k ∂PP′k



 . (21)

We cannot observe the generating function F̃(q, P), but it is deter-
mined up to an additive constant via the predictor

F̃∗ =
(

∂qk(X∗, X)
∂Pk(X∗, X)

)

(L(X, X)+6n)
−1Y, (35)

where column i of X for the ith training orbit is composed of rows

x1...f, i = qi and x(f+1)...2f, i = Pi (36)

and similarly for X∗ and test points. Columns of Y contain

y1...f, i = −1pi = ∂qF̃(qi, Pi), (37)

y(f+1)...2f, i = 1qi = ∂PF̃(qi, Pi). (38)
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The matrix L denotes the lower block

L(q, P, q′, P′) =
(

∂qq′k ∂qP′k
∂Pq′k ∂PP′k

)

. (39)

This also allows one to learn the Hamiltonian H from Eq. (22) as for
sufficiently small mapping times H can be approximated by F̃ (up to
a constant).

For further investigations on temporal evolution of the Hamil-
tonian system and the construction of symplectic maps, we are
interested in the gradients of F̃ via the block L. The predictive mean
for this GP’s output is given by

(

−1p∗
1q∗

)

= L(X∗, X)(L(X, X)+6n)
−1

(

−1p
1q

)

. (40)

The symplecticity condition for predictors p∗ = P∗ −1p∗
(q∗, P∗) and Q∗ = q∗ +1q∗(q∗, P∗) holds according to Eq. (4): The
derivatives of linear terms P∗ and q∗ vanish, and by using Eq. (27),
the remaining derivatives enter upper and lower rows of L(X∗, X),
respectively,

∂1q∗
∂q∗

−
∂1p∗
∂P∗

∝
∂

∂q∗

(

∂2k

∂P∗∂q
,
∂2k

∂P∗∂P

)

−
∂

∂P∗

(

∂2k

∂q∗∂q
,
∂2k

∂q∗∂P

)

. (41)

Due to symmetry of partial derivatives, the expected value of the
symplecticity condition in Eq. (28) is identically zero; therefore, the
predictive mean of Eq. (27) produces a symplectic map. Due to the
mixing of initial and final coordinates by the generating function of
the canonical transformation, we can generally not predict Q∗ and
P∗ for a given q∗, p∗ right away. In the symplectic GP regression of
this map, depending on the choice of the kernel, two cases have to
be considered:

a. (Semi-)implicit method. In the general case with a generating
function F̃(q, P), equations for P∗ in Eq. (27) are implicit and
have to be solved iteratively as indicated in Algorithm 1. This
corresponds to the implicit steps of a symplectic Euler integrator
in a non-separable system.6

b. Explicit method. When considering a generating function in a
separable form F̃(q, P) = V(q)+ T(P), the resulting transfor-
mation equations reduce to

p(q, P) =
∂ F̃(q, P)

∂q
=
∂V(q)

∂q
, (42)

Q(q, P) =
∂ F̃(q, P)

∂P
=
∂T(P)

∂P
, (43)

resulting in a simplified lower block L(q, P, q′, P′) with off-
diagonal elements equal to 0,

L(q, P, q′, P′) =
(

∂qq′k 0
0 ∂PP′k

)

. (44)

This choice of generating function results in a simplified con-
struction and application of the symplectic map as explained in
Algorithm 2. This corresponds to the case of a separable Hamilto-
nian where the symplectic Euler method becomes fully explicit.

In Fig. 2, we illustrate training data for an application exam-
ple of the standard map. Initial conditions at t = 0 [Fig. 2(a)] and
final conditions at t = h [Fig. 2(b)] are displayed on a regular grid
(q, p). Those serve as input data for the regular GP used in Algorithm
1 whose prediction is needed for the initial guess for the Newton
iterations. In Figs. 2(c) and 2(d), the training data are displayed on
a mixed grid (q, P) and (Q, p). In both algorithms, (q, P) data are
assembled in the design matrix, and (Q, p) data serve as observations

Algorithm 1: (Semi-)implicit symplectic GP map

Construction:
Step 1: Usual GP regression of P over initial (q, p)
Step 2: Symplectic GP regression of −1p and1q over mixed variables (q, P) according to

(

−1p
1q

)

∼ GP(l(q, P), L(q, P, q′, P′)) (32)

Application:
Step 3: Initial guess P∗(q∗, p∗) from GP of Step 1
Step 4: Solve implicit equation in P∗ via

1p∗(q∗, P∗)− (P∗ − p∗) = 0, (33)

predicting1p∗ via Eq. 27 from symplectic GP of Step 2.
Step 5: Explicitly evaluate

Q∗ = q∗ +1q∗(q∗, P∗), (34)

predicting1q∗ via Eq. 27 from symplectic GP of Step 2.
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Algorithm 2: Explicit symplectic GP map

Construction:
Step 1: GP regression of −1p and1q over mixed variables (q, P) according to

(

−1p
1q

)

∼ GP(l(q, P), L(q, P, q′, P′)) (35)

Application:
Step 2: Solve explicit equation in P∗ via

P∗ = p∗ +1p∗(q∗), (36)

with1p∗(q∗) predicted from GP of Step 1.
Step 3: Evaluate

Q∗ = q∗ +1q∗(P∗), (37)

with1q∗(P∗) predicted from GP of Step 1.

(a) (b)

(c) (d)

FIG. 2. Example of training data for a standard map: For illustration purposes, the training data points (N = 144) are sampled on a grid [0, 2π ] × [0, 2π ] for a stochasticity
parameter K = 6.6—initial and final conditions shown in panels (a) and (b) serve as input and observations for the GP regression of P. Mixed variables in (c) serve as input
and in (d) take the role of observations for the symplectic GP regression.
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for the GP regression. Once the model is fitted and the covariance
matrix is calculated, it is used to predict subsequent time steps.

Remarks on universality
Due to the universal approximation property of radial basis

function expansions,45 one may expect that in principle any flow that
can be represented by a generating function can be approximated
arbitrarily well by a symplectic GP. Indeed, for a number of ker-
nel functions, especially the squared exponential kernel, GPs with
scalar output are universal approximators.46 However, the matrix-
valued kernel L(x, x′) of Eq. (19) cannot approximate arbitrary
vector fields47 in dimensions higher than one. Equation (26) shows
this in an alternative manner for even-dimensional vector fields. The
used GP can at most be a universal approximator for vector fields
with a vanishing exterior derivative that are locally given as gradi-
ent fields. In particular, this includes curl-free vector fields in 3D
and Hamiltonian vector fields in even dimensions with sign-flipped
canonical components flipped by a symplectic matrix. Universal-
ity of a kernel approximation is equivalent46 to universality of the
underlying feature set {φi(x)} in the Mercer representation,

k(x, x′) =
∞

∑

i=1

φi(x)φ̄i(x
′). (38)

It is easy to see that the matrix kernel L(x, x′) = ∇xk(x, x′)∇T
x′ for

gradient observations has the equivalent representation in features
ψ i(x) = ∇φi(x) in case of sufficient convergence. In the extended
framework of matrix-valued multi-task kernels,47 L(x, x′) should
therefore be able to represent any vector field in the span of this
gradient feature set required for Hamiltonian vector fields in the
present application. Regarding convergence of regression results
with an increasing number of training points, and theoretical errors
are quickly masked by numerical accuracy due to bad conditioning
of the kernel matrix.43 This limits the practical use of theoretical
estimates on this topic. As we will see below, non-unique-valued
generating functions put additional limits on learning the flow maps
even when gradient fields are approximated well.

IV. NUMERICAL EXPERIMENTS
In this section, we present the application of implicit and

explicit symplectic Gaussian process regression (SympGPR) to
unperturbed and perturbed Hamiltonian systems. We consider sep-
arable and non-separable autonomous Hamiltonian systems and use
SympGPR to approximate Hamiltonian flows as well as Poincaré
maps. We show the applicability of the proposed method to chaotic
systems for the standard map and finally apply it to the magnetic
field in a tokamak with a non-axisymmetric perturbation. In all
application examples, the kernel hyperparameters are adjusted by
maximizing the likelihood29 of the training data using the L-BFGS-
B routine implemented in Python.48 Only for the more sophisti-
cated application example of magnetic field line tracing in a non-
axisymmetric perturbed tokamak, CMA-ES49,50 is used to optimize
the hyperparameters.

A. Hamiltonian flow maps: Pendulum
The pendulum is a nonlinear oscillator with position q and

momentum p and exhibits two kinds of motion: libration and rota-
tion, which are separated by the separatrix in the phase space.
The system of a pendulum corresponds to a particle in a cosine
potential.5 The Hamiltonian is given by

H(q, p) =
p2

2
+ U0(1 − cos(q)), (39)

where we fix U0 = 1. The underlying periodic topology sug-
gests the choice of a periodic kernel function, which is univer-
sal for periodic functions, in q with periodicity 2π , kq(q, qi) ∝

exp

(

− sin2((q−qi)/2)

2l2q

)

and a squared exponential kernel function in

p, kP(P, Pi) ∝ exp
(

− (P−Pi)
2

2l2P

)

. For the product kernel k(q, qi, P, Pi)

= σ 2
f kq(q, qi)kP(P, Pi) used in the implicit method, the noise in

observations σ 2
n [Eq. (15)] is set to 10−16, whereas for the sum ker-

nel k(q, qi, P, Pi) = σ 2
f (kq(q, qi)+ kP(P, Pi)) for the explicit method,

we set σ 2
n = 10−10 for numerical stability. The hyperparameters, lq

and lP that correspond to the length scales in q and p, respectively,
are set to optimized maximum likelihood values by minimizing the
negative log-likelihood.29 The scaling of the kernel σ 2

f that quantifies
the amplitude of the fit is set in accordance with the observations to
2 max(|Y|)2, where Y corresponds to the training output. We note
here that in the following, we assume that the periodicity of the sys-
tem is known. If this is not the case, the periodic kernel can easily be
equipped with another hyperparameter to estimate the periodicity
that is optimized during the training of the GP. Initial investigations

showed that when assuming that kq(q, qi) ∝ exp

(

− sin2((q−qi)τ )

2l2q

)

,

where τ is the periodicity hyperparameter, the implicit SympGPR
is able to estimate integer multiples of the period accurately, leading
to results of similar quality as shown in Fig. 3.

To evaluate the implicit and explicit SympGPR for the pendu-
lum flow map, we use N = 20 initial data points sampled from a
Halton sequence51 within the range q ∈ [0, 2π] and p ∈ [−3, 3] and
integrate them until t = h using an RK45 integrator52 with an adap-
tive step size and a relative tolerance of 10−13, leading to results
at machine accuracy. Each pair of initial and final conditions (as
shown in Fig. 2) constitutes one sample of the training data set. The
results for n = 2000 subsequent applications of the map are shown
in Figs. 3 and 4 for a step size of h = 0.2 and h = 0.07, respec-
tively, in direct comparison with reference data calculated using
an RK45 integrator with an adaptive step size and a relative toler-
ance of 10−13, leading to results at machine accuracy. The 15 test
data points are randomly selected nodes of a regular grid within
the range q ∈ [π − 2.8,π + 1.5] and p ∈ [−2.3, 1.8] with1q = 0.31
and1p = 0.29. Even for a small number of training data points, two
kinds of motion can be perfectly distinguished by both methods;
also, the motion near the separatrix is stable in the presented test
cases. The obtained results for the implicit SympGPR (Fig. 3) gener-
alize to similar step sizes as shown later in the numerical benchmark.
As apparent in Fig. 4, the orbits produced by the explicit SympGPR
are slightly deformed even for a very small step size, indicating a
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FIG. 3. Pendulum orbits in the phase space. Implicit SympGPR trained withN = 20 training data points for a step size h = 0.2 (a), reference orbits (b), and direct comparison
of both flows (c) for 15 test data points and n = 2000 subsequent applications of the map.

lower accuracy. This effect becomes more severe for larger step sizes
as shown later in the numerical benchmark (see Sec. IV B).

In Fig. 5, three different symplectic integration methods using
a larger step size h = 0.9 are compared to reference orbits gener-
ated with an RK45 integrator at machine accuracy [Fig. 5(a)]. As
the implicit SympGPR (as presented in Algorithm 1) mimics an
implicit–explicit symplectic Euler, we use a symplectic Euler inte-
grator and the Störmer–Verlet scheme with the same step size to
calculate orbits for the same 15 test data points. When using the
implicit SympGPR [Fig. 5(b)], large-scale features in the phase space
can still be reproduced, and small stochastic layers and islands
emerging due to the perturbation from numerical errors remain
confined. There is no tilt in the phase space apparent contrary to
forward integration by a usual symplectic Euler scheme [Fig. 5(c)].
Here, the distinction between trapped and passing orbits is not as
clear as for the implicit SympGPR. In Fig. 5(d), the results obtained
by using the Störmer–Verlet scheme are shown. As this is a sym-
metric scheme, there is no tilt in the phase space observable. Also,
small islands are apparent. By comparing the obtained orbits, it is
evident that the presented method, which is of order 1, can compete

with symplectic integration methods of order 2. However, we have
to point out once more that the explicit knowledge of the Hamilto-
nian or its derivatives is not needed when using (explicit or implicit)
SympGPR in contrast to forward integration using a symplectic
Euler scheme. Alternatively, observations of the initial conditions
(q, p) at t = 0 and final conditions (Q, P) at time t = h are used to
construct the Hamiltonian flow map over the finite time step h.

Due to the enforced symplecticity of the SympGPR map, we
benefit from structure-preservation, long-term stability, and conser-
vation of invariants of motion within fixed bounds. This is shown
by calculating the total energy given in Eq. (39) over n = 10 000
subsequent mapping applications for one test orbit. It may be seen
in Fig. 6 that the energy is conserved and varies within restricted
bounds.

The Hamiltonian function H given in Eq. (39) can be learned
from the initial (q, p) and final state (Q, P) using Eq. (22). In con-
trast to earlier proposed methods,17 derivatives of H are not needed
explicitly as the training data consist only of observable states of the
dynamical system in time. In Fig. 7, the Hamiltonian function calcu-
lated exactly from Eq. (39) is compared to the approximation using

FIG. 4. Phase space plot of the pendulum comparing explicit SympGPR trained with N = 20 training data points for a step size h = 0.07 (a), reference orbits (b), and direct
comparison of both flows (c) for 15 test data points and n = 2000 subsequent applications of the map.
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FIG. 5. Phase space plot of the pendulum for 15 test data points and n = 2000 subsequent applications of the map comparing reference orbits (a), implicit SympGPR
(b) trained with N = 50 training data points with step size h = 0.9, symplectic Euler integrator (c), and Störmer–Verlet integrator (d) with step size h = 0.9.

FIG. 6. Relative energy error log10 | H(t)−H(0)

H(0)
| of the pendulum for one test data point (q, p) = (1, 0) and 1000 bounce times calculated via the implicit SympGPRmap [panel

(b): detailed zoom]. The model was trained using N = 20 training data points with h = 0.5. The horizontal axis is given by t/τb, where τb is the bounce time. A similar quality
of energy conservation within fixed bounds is generally realized.
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FIG. 7. Upper: Hamiltonian function of the pendulum [Eq. (39)]. Middle: Approximation using implicit SympGPR of the generating function via Eq. (22) for h = 0.01. The
25 training points are denoted by ×. Lower: Absolute difference between the analytical solution and approximation. Excellent interpolation performance (a) and surprisingly
good extrapolation (b) are observed.

the implicit symplectic GP method for h = 0.01 trained with 25 ini-
tial and the corresponding final conditions sampled from a Halton
sequence51 within the range q ∈ [−2π , 2π] and p ∈ [−1.0, 1.0]. The
approximation is validated using 5625 random points within the
same range. Using the mean squared error to evaluate the losses, we
get for the training loss 1.3 × 10−5 and for the test loss 6.3 × 10−5.
As evident in Fig. 7, a certain degree of extrapolation is possible in
areas close to the range of the training data in p, whereas evaluation
at arbitrary q is possible without extrapolation due to periodicity of
the system and the kernel function. For bigger step sizes h = 0.2, the
training loss is 1.5 × 10−3 and the test loss 2.3 × 10−3 producing still
valid results within the training region.

B. Numerical benchmark
We compare implicit SympGPR (Algorithm 1), explicit

SympGPR (Algorithm 2), implicit symmetric regression with a spec-
tral basis (see Appendix A), and semi-implicit symplectic Euler inte-
gration for the test case of a pendulum. Non-symplectic regression

of flow maps is not compared, as it is inherently unstable over the
considered time intervals (see Fig. 1).

To assess the quality and stability of the proposed mapping
methods, two quality measures are used. The geometric distance is
computed to compare the first application of the constructed map
step to the respective time step of a reference orbit in the phase space.
This phase space distance is given by

gd =
√

(q − qref)
2 + (p − pref)

2, (40)

where qref and pref denote the reference orbits and q and p the
mapped orbits. The reference orbits are calculated using an adap-
tive step size RK45 scheme with relative tolerance 10−13 and absolute
tolerance 10−16.

Even though energy is preserved on average, we can measure
normalized oscillations given by

Eosc =
Std(H̄)

H̄
, (41)
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FIG. 8. Pendulum: Comparison of the geometrical distance [Eq. (40)] (a) and normalized energy oscillations [Eq. (41)] (b) of implicit and explicit SympGPR, standard
symplectic Euler and Fourier–Hermite basis functions for a fixed number of training points N = 15 and a variable step size h. Gray areas correspond to the standard
deviation for 100 test points.

where H̄ is the mean, to serve as a criterion for mapping qual-
ity. Here, periodic energy oscillations are averaged over n = 300
subsequent applications of the map.

In Fig. 8, the four methods are compared for the one dimen-
sional pendulum using the quality criteria given in Eqs. (40) and (41)
for a fixed number of training points N = 15 but a variable step size
h. As expected, the geometric distance gd as well as the energy oscil-
lation Eosc are increasing for a increasing step size. Since no Newton
iterations are needed, the explicit SympGPR method is faster than
the implicit method in its region of validity. As for the first guess for
Newton’s method, a separate GP is used as indicated in Algorithm 1;
less than five Newton iterations are typically necessary in the implicit
case.

As discussed above, the orbits in the phase space result-
ing from the explicit SympGPR are deformed, which explains the
bad performance regarding the geometrical distance. For smaller
mapping times, the deformation and, therefore, also the energy
oscillation reduce. This is in accordance with similar behavior of
explicit–implicit Euler integration schemes.

Spectral linear regression produces very accurate results for
very small mapping times, as the interpolated data (the change in
coordinates) are almost 0, and the generating function inherits the
polynomial structure of the Hamiltonian H that can be fitted exactly.
At larger mapping times, implicit SympGPR and spectral methods
perform similarly.

To investigate the behavior with increasing number of train-
ing data points N, in Fig. 9, the quality measures are compared for
fixed step size h but with a variable number of training points. The
implicit methods improve considerably with N. The visible steps for
the implicit method with a spectral basis arise from the used num-
ber of modes that depends on N. The explicit SympGPR does not
improve with N due to the deformation of orbits in the phase space,

which is an inherent structural feature of the forced splitting into a
sum kernel that cannot be fixed by adding more training data. This
unstable behavior is also observable in other application systems (see
Appendix C) (separable and non-separable) for step sizes h > 0.1.
We conclude that a separable approximation via a sum kernel is not
competitive when compared to the implicit SympGPR that is able to
deal with much larger step sizes.

Also, from the comparison with an usual symplectic Euler
integrator, we conclude that the implicit SympGPR reaches a sig-
nificantly higher accuracy, whereas the explicit SympGPR performs
worse when trying to represent the flow map. This is why we use
the implicit SympGPR when fitting Poincaré maps rather than flow
maps in the subsequent investigations. Depending on the applica-
tion, desired accuracy, and also the cost of generating training data,
Figs. 8 and 9 in connection with Tables I and II serve as guidance
on how to choose step size h and training data N. Additionally, for
large N, also, the conditioning of the covariance matrix has to be
considered that usually gets worse with increasing number of N.
Hence, more regularization is necessary. For the application case of
the unperturbed pendulum, the square root of machine precision
is reached at h = 0.5 and N ≈ 20. Certainly, also other combina-
tions of those parameters result in highly accurate predictions; e.g.,
N = 15 and h = 0.1 or N = 30 and h = 0.6 achieve results of similar
quality. For the estimation of computational complexity and run-
time, we compared the performance of implicit SympGPR with a
standard symplectic Euler scheme at a similar prediction quality.
Hence, we chose N = 20 training data points with a step size of
h = 0.1 for the prediction using the implicit SympGPR, whereas for
the symplectic Euler, a step size of h = 0.002 is needed to achieve
a similar geometrical distance of 10−12. To predict the trajectory of
one orbit with initial conditions (q, p) = (0.35, 0.5) for 20 bounce
times, the implicit SympGPR takes (after training) 1.3 s, whereas the
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FIG. 9. Pendulum: Comparison of the geometrical distance [Eq. (40)] (a) and normalized energy oscillations [Eq. (41)] (b) of implicit and explicit SympGPR, standard
symplectic Euler and Fourier–Hermite basis functions for a variable number of training points N and a fixed step size of h = 0.5. Gray areas correspond to the standard
deviation for 100 test points.

symplectic Euler integrator needs 0.3 s. One should keep in mind
that in this special application case, Hamilton’s equations are avail-
able in a (simple) analytical form, which is not the case in usual
practical applications (see Sec. IV C 4).

C. Poincaré maps

1. Perturbed pendulum
To show the applicability of the proposed method for a more

complicated system and also larger step sizes, we consider approxi-
mating Poincaré maps between surface sections in the phase space.
For this purpose, we consider the Hamiltonian of a perturbed
pendulum

H(q, p,φ) =
1

2
p2 − ω2cos(q)− ε(0.3qpsin(2φ)+ 0.7qpsin(3φ)),

(42)

where ω = 0.5 and ε = 0.5. This system has been used by Burby
et al.18 to demonstrate the interpolation of Poincaré maps by
structure-preserving artificial neural networks. Here, we use a sim-
ilar training setup with a much lower number of N = 50 initial
conditions sampled from a Halton sequence within a disk of r ≤ 0.9
meaning that we consider only orbits inside the separatrix. The
Poincaré map to obtain the corresponding final conditions for the
section at φ = 2π is generated by a RK4 approximation used by
Burby et al.18 with 1500 steps. Again, we use a periodic kernel
function in q and a squared exponential kernel function in p. The
hyperparameters lq, lP are set to optimized maximum likelihood val-
ues. The noise in observations σ 2

n is set to 10−12 and σ 2
f is set in

accordance with the observations to 2 max(|Y|)2, where Y corre-
sponds to the change in coordinates. 20 test points along the x axis
and 10 test points with constant q = π are chosen. Applying the

implicit SympGPR map n = 2000 times results in the plot of Fig. 10
with reference orbits from RK4 with 100 steps.18 Despite the small
number of training data points, the dynamics in the phase space
are extremely well captured. Also, the structure of the islands is
preserved.

2. Hénon–Heiles potential
The Hénon–Heiles system is a classical example of a nonlinear

Hamiltonian system with f = 2 degrees of freedom and a 4D phase
space.5,53 The corresponding Hamiltonian is given by

H(q, p) =
1

2

(

q2
1 + q2

2

)

+
1

2

(

p2
1 + p2

2

)

+ λ

(

q2
1q2 −

1

3
q3

2

)

, (43)

where usually λ = 1. The underlying potential continuously varies
from a harmonic potential for small values of q1 and q2 to triangular
equipotential lines on the edges. For energies lower than the limiting
potential energy Hesc = 1/6, the orbit is trapped within the poten-
tial. However, for larger energies, three escape channels appear due
to the special shape of the potential, through which the orbit may
escape.54 Therefore, the training and test data are set to a restricted
area in the phase space in order to keep the motion bounded within
the potential.

Here, a squared exponential kernel function is used in all
dimensions, where the hyperparameter l is set to its optimized max-
imum likelihood value. The noise in observations σ 2

n [Eq. (15)] is set
to 10−8 for the implicit SympGPR. As in the pendulum case, σ 2

f is

set in accordance with the observations to 2 max(|Y|)2, where Y cor-
responds to the change in coordinates. The Hamiltonian function
[Eq. (43)] is learned from 50 initial conditions sampled from a Hal-
ton sequence51 in the range q1, q2, p1, p2 ∈ [−0.5, 0.5] and the corre-
sponding final states (Q, P) calculated using an RK45 integrator with
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FIG. 10. Poincaré plot of the perturbed pendulum at φ = 2nπ comparing implicit SympGPR trained with N = 50 training data points (a), reference orbits (b), and direct
comparison of both Poincaré maps (c) for 30 test data points and n = 2000 subsequent applications of the map.

(a) (b)

FIG. 11. Upper: Hamiltonian function of the Hénon–Heiles system [Eq. (43)]. Middle: Approximation using implicit SympGPR of the generating function via Eq. (22) for
h = 0.01. The projection of the 50 training points onto the plane p = 0 is denoted by ×. Lower: Absolute difference between the analytical solution and the approximation.
As in the pendulum case, the Hamiltonian function H is interpolated well (a) and even extrapolated well (b) relatively far from the training region.
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FIG. 12. Poincaré plots (q1 = 0, p1 > 0) of the Hénon–Heiles system for E = 1/100 comparing implicit SympGPR trained with N = 55 training data points (a), reference
orbits calculated using a RK4 integrator (b), and a direct comparison of both Poincaré plots (c) for 37 test data points and n = 2000 subsequent applications of the map.

an adaptive step size and a relative tolerance of 10−13 using Eq. (22)
for a fixed step size h = 0.01. In Fig. 11, the Hamiltonian function
calculated from Eq. (43) is compared to the approximation using
GPs. The approximation is validated using 46 656 points within the
same range as the training points. Using the mean squared error
to evaluate the losses, we get for the training loss 6.9 × 10−5 and
for the test loss 8.1 × 10−5. Similarly to the pendulum, the result
within the training region generalizes also to bigger step sizes up to
h = 0.2.

When observing particles for a fixed, sufficiently small energy
in the Hénon–Heiles potential with various initial conditions
crossing the p2 − q2 surface of section, invariant curves can be
observed.5 When fixing the energy, the dimensionality of the prob-
lem is reduced to 3, and only the intersections of the trajectories
for q1 = 0 are plotted (for p1 > 0). In the following numerical
experiments, q1 = 0, and, as the energy is fixed, p1 is given by

p1 =
√

2E − q2
2 − p2

2 + 2
3 q2

2. Here, we consider Poincaré sections for

E = 1/100 of N = 55 initial conditions sampled from a Halton
sequence within q2 ∈ [−0.15, 0.15] and p2 ∈ [−0.15, 0.15] that are
calculated using an adaptive ODE integrator at machine accuracy.
The initial conditions are integrated until q1 = 0 is satisfied, which
results in a step size h (bounce time) in the range of [6.18, 6.34].
Therefore, we do not use the same step size h but the same surface
of section. For better convergence in the optimization routine of the
hyperparameters, where the Python implementation of L-BFGS-B48

is used, the training data are rescaled by a factor 102 in order that
the input to the optimizer is of order 1. For the approximation of
the Poincaré plot using the implicit SympGPR, the noise in obser-
vations σ 2

n is fixed to 10−12 and σ 2
f is set in accordance with the

observations to 2 max(|Y|)2. The hyperparameter l is set to its opti-
mized maximum likelihood value. The 37 test points are randomly
selected nodes on a grid within q2 ∈ [−0.1, 0.1] and p2 ∈ [−0.1, 0.1]
with1q2 = 1p2 = 0.0055. The map is applied n = 2000 times, pro-
ducing the Poincaré plot shown in Fig. 12. Again, the comparison
to the reference Poincaré plot shows that the dynamics of the sys-
tem are well captured by the symplectic GP. As expected, four stable
elliptic points are reproduced by the implicit SympGPR.

For energies E > 1/50, the generating function is multival-
ued as illustrated in Fig. 13, and therefore, it is not possible to
uniquely predict points in the phase space without further measures.
This problem occurs for highly non-linear systems for large time
steps, e.g., when mapping between Poincaré sections that are too far
apart. It is possible to split one mapping step into several sub-steps,
which will be demonstrated for magnetic field lines in a tokamak in
Sec. IV C 4. This, however, is not possible for Poincaré sections for
the Hénon–Heiles system as no additional surfaces for the splitting
can be identified. This results from the fact that turning points of
the orbit can be arbitrarily close to the surface of section q1 = 0. To
tackle the non-uniqueness in this case, an unwinding transforma-
tion for the generating function onto a subspace has to be identified
that allows a unique prediction by the GP. This possibility will be
investigated in future work.

3. Standard map
The standard map,55

In+1 = (In + Ksinθn)mod 2π , θn+1 = (θn + In+1)mod 2π , (44)

in action-angle variables (I, θ) is a well studied model to investigate
chaos in Hamiltonian systems. The mapping steps correspond to the
Poincaré sections of a periodically kicked rotator. The stochasticity
parameter K represents the intensity of the perturbation. Here, the
action appears as the momentum, and the angle corresponds to the
position in the presented Algorithms 1 and 2. The behavior in the
phase space suggests a periodic kernel function in θ but a squared
exponential kernel function in I. Here, we consider the mapping
of one iteration of the standard map only. This case is well-suited
for validation purposes, as the availability of a closed-form expres-
sion permits analytical estimates of chaotic diffusion but does not
influence the GP’s performance. The initial conditions (N = 20) are
sampled from a Halton sequence in the range [0, 2π] × [0, 2π]. The
noise in observations is set to σ 2

n = 10−8, σ 2
f is set in accordance

with the observations to 2 max(|Y|)2, where Y corresponds to the
change in coordinates, and the hyperparameters lI, lθ are set to their
maximum likelihood value. The 18 test data points are randomly
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(a) (b)

FIG. 13. Multivalued change in coordinates (a) 1q = ∂P F̃(q, P) and (b) −1p = ∂qF̃(q, P) for Hénon–Heiles Poincaré sections for E = 1/12. The twisted non-unique
surfaces cannot be interpolated by the presented regression methods without modifications. The colors are scaled via the function |q| + |P| in order to indicate the
multivaluedness in a way where same coordinates (q, P) show the same color.

selected nodes on a grid within the range [0, 2π] × [0, 2π] with
1I = 1θ = 0.37. Here, we give results for individual values of K,
whereas a more detailed analysis of K-dependent chaotic diffusion
is presented below.

In Fig. 14, the resulting phase space plots are shown for dif-
ferent values of K and n = 1000 subsequent applications of the
implicit SympGPR map. When compared to the reference solution,
the GP map reproduces the essential features of the standard map:
the fixed points and contractible periodic orbits are clearly visible,
and the regions of stochasticity are confined and only occur near
separatrices [Fig. 14, panels (a)–(c)]. The onset of global stochas-
ticity is reproduced accurately for increased perturbation strength
for K < Kcrit ≈ 0.971635 . . . [Fig. 14, panels (d)–(f)]. With increas-
ing K shown in Fig. 14, panels (g)–(i), the chaotic region covers
progressively more phase space.5 Also, for higher values of K = 6.6
and a very limited number of training data points (N = 30) in the
whole range [0, 2π] × [0, 2π], the SympGPR map is able to repro-
duce accelerator mode islands55 around a period-4 periodic orbit at
(θ , I) ≈ (4.4,π). Accelerator modes occur within some intervals of
K ≥ 2π and are stable regions in the phase space, where I is chang-
ing monotonically with time. Orbits trapped within those islets of
stability55 are ballistically transported and contribute to the peri-
odic variation of the diffusion rate as examined below. As shown
in Fig. 15 for 18 test points sampled from a Halton sequence within
[4.46, 4.52] × [3.20, 3.39] and n = 1000 applications of the map, the
island is surrounded by four accelerator mode islands that remain
confined in the phase space and do not drift into the chaotic region
surrounding the island.

As the standard map is given in an explicit form, the explicit
SympGPR performs better than the implicit SympGPR. Especially

for high values of K, the implicit SympGPR needs more training data
than the explicit SympGPR to perform similarly well. However, the
required number of training data points for the implicit SympGPR
does not exceed N = 30 for the considered perturbations.

To evaluate the quality of the presented model for chaotic sys-
tems such as the standard map, it is crucial that the diffusion of
chaotic orbits is reproduced correctly. As studied analytically and
numerically,56–63 the standard map exhibits anomalous (ballistic)
diffusion (with a diffusion exponent of 1 < β < 2) due to islands
of stability surrounding accelerator mode fixed points in addition
to normal (Brownian) diffusion with β = 1. Also, the diffusion
coefficient D,

D = lim
n→∞

〈(In − I0)
2〉

2n
, (45)

where the average is taken over a large ensemble of initial conditions,
is oscillating for K > Kcrit, where the last KAM surface is destroyed.5

The theoretical diffusion rate5,56 to order K−1 is

D =
K2

2

(

1

2
− J2(K)− J 2

1 (K)+ J 2
2 (K)+ J 2

3 (K)

)

, (46)

where Ji is the Bessel function of the first kind. In Fig. 16, the
observed values of the diffusion coefficient given in Eq. (45) result-
ing from n = 300 subsequent applications of the map are presented.
The initial conditions for N = 5000 particles are sampled from a
uniform distribution in the range [0, 2π] × [0, 2π]. As expected, the
presence of accelerator modes in some intervals of the stochasticity
parameter K leads to anomalous diffusion resulting in sharp peaks.

To investigate the transport in time, the mean displacement
of a particle ensemble near an accelerator mode island for K = 6.8
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 14. Standard map for K = 0.5 [(a)–(c)], K = 1.0 [(d)–(f)], and K = 2.0 [(g)–(i)]. Implicit SympGPR trained with N = 20 [(a), (d), and (g)], reference solution [(b), (e),
and (h)], and direct comparison of implicit SympGPR and reference solution [(c), (f), and (i)] for 18 test data points and n = 1000 subsequent applications of the map.

is simulated61 to examine the type of diffusion. For K = 6.8, there
exist two accelerator mode islands in the phase space surrounded
by an extreme sticky region. For N = 5000 initial conditions, uni-
formly distributed in a box of size (10−5 × 10−5) at (θ , I) = (0.3 ·
2π , 0.1123), within the sticky region of one stable island, the mean
displacement in the action coordinate is calculated. As illustrated in
the right plot in Fig. 16, the diffusion exponentµ ≈ 2 corresponds to
anomalous diffusion as long as the orbits are dragged by the acceler-
ator mode in a ballistic motion. Then, the type of diffusion changes
to normal diffusion (µ = 1) for a large number of map applica-
tions. This behavior is reproduced accurately by the implicit and also
explicit SympGPR map.

4. Magnetic field lines in a perturbed tokamak
As a final application example, we consider motion along

magnetic field lines in a toroidal magnetic configuration with vec-
tor potential A. By a special choice (see Appendix B) of spatial
coordinates (r,ϑ ,ϕ), it is possible to identify equations of motion
according to Eq. (B7) as

dϑ

dϕ
= −

∂Aϕ(ϑ , pϑ ,ϕ)

∂pϑ
= −

∂Aϕ(r,ϑ ,ϕ)

∂r

(

∂Aϑ (r,ϑ ,ϕ)

∂r

)−1

,

(47)

Chaos 31, 053121 (2021); doi: 10.1063/5.0048129 31, 053121-16

© Author(s) 2021

 31 O
ctober 2023 09:45:37

3. Contributions

68



Chaos ARTICLE scitation.org/journal/cha

FIG. 15. Accelerator mode for K = 6.6 around (θ , I) ≈ (4.4,π). Implicit SympGPR trained withN = 30 training data points within the range [0, 2π ] × [0, 2π ] (a), reference
solution (b), and direct comparison of implicit SympGPR and reference solution (c) for 18 test data points and n = 1000 subsequent applications of the map.

dpϑ

dϕ
=
∂Aϕ(ϑ , pϑ ,ϕ)

∂ϑ
=
∂Aϕ(r,ϑ ,ϕ)

∂ϑ

−
∂Aϕ(r,ϑ ,ϕ)

∂r

(

∂Aϑ (r,ϑ ,ϕ)

∂r

)−1
∂Aϑ (r,ϑ ,ϕ)

∂ϑ
. (48)

The equations above are written in both canonical and non-
canonical phase space variables. Interpolation and application of the
map are performed in canonical coordinates (ϑ , pϑ ), while evalu-
ation points of A require non-canonical (r,ϑ). This means that in
addition to usual computations, the relation

pϑ = Aϑ (r,ϑ ,ϕ) (49)

has to be solved implicitly in r.41 For numerical tests, we consider an
axisymmetric model field

Aϑ (r,ϑ) = B0

(

r2

2
−

r3

3R0
cosϑ

)

, Aϕ(r) = −ι0B0

(

r2

2
−

r4

4a2

)

(50)

to which we apply a non-axisymmetric perturbation with an addi-
tional dependency on ϕ. This is modeled as a Hamiltonian pertur-
bation in a similar manner to Eder et al.,64

δAϕ(r,ϑ ,ϕ) = εAϕ(r) cos(mϑ + nϕ). (51)

For the numerical experiments, the perturbation mode m = −3,
n = 2 was used as this corresponds to the main mode of a resonant

FIG. 16. (a) Theoretical diffusion rate [Eq. (46)] normalized with the quasi-linear approximation Dql = K2/4 (solid line) compared with simulations for implicit and explicit
SympGPR (trained with N = 20) and the reference solution for 5000 test data points and n = 300 map applications. (b) Mean displacement in the action variable I as a
function of the number of map applications n for a set of 50 initial conditions near an accelerator mode island for K = 6.8.
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FIG. 17. Poincaré maps of magnetic field lines in a tokamak with non-axisymmetric perturbations in the phase space at ϕ = 2nπ for a perturbation strength of ε = 0.001
comparing implicit SympGPR trained with N = 80 training data points (a), reference orbits calculated using a symplectic Euler integrator with h = 0.01 (b), and direct
comparison of both Poincaré maps (c) for 30 test data points and for n = 1000 map applications.

magnetic perturbation. Due to the dynamics of the system, a squared
exponential kernel is used in pϑ , whereas ϑ is modeled by a periodic
kernel function. We sampled N = 80 initial conditions in non-
canonical coordinates from a Halton sequence from r ∈ [0.1, 0.36]
and ϑ ∈ [0, 2π]. The Poincaré map for ϕ = 2nπ with integer n
was numerically calculated using a symplectic Euler scheme with
h = 0.01. Using Eq. (49), the training data points were transformed
into canonical coordinates (pϑ ,ϑ) to which the implicit SympGPR
is applied. For better convergence in the optimization routine, pϑ
is rescaled by 102. The noise in observations is set to σ 2

n = 10−12;
the hyperparameters, lq, lP, σ 2

f , are set to their optimized maximum
likelihood value. The implicit SympGPR map is evaluated for 30
test data points and are randomly selected on a regular grid within
the range r ∈ [0.15, 0.25] and ϑ ∈ [0, 2π] with 1r = 0.003 and
1ϑ = 0.22 at ϕ = 0. For a perturbation strength ε = 0.001, the
generating function is smooth and uniquely valued in the training
region and can, therefore, be grasped by the implicit SympGPR.
However, the derivatives of the generating function are infinitely
steep for r > 0.37 and, therefore, cannot be represented by the
SympGPR map as the Newton solver does not converge. Therefore,
it is only possible to use a restricted region in the phase space to
which the SympGPR map can be applied as apparent in Fig. 17.

For more stable results in a larger phase space region and also
for higher perturbation strengths, e.g., ε = 0.01, it is favorable to
split the Poincaré map into several sub-steps to obtain more sta-
ble results and also to circumvent multivalued generating functions.
We introduced four independent implicit SympGPR maps corre-
sponding to four sub-steps, each representing a leap of ϕ = π/2.
Each GP was trained with N = 70 training data points whose ini-
tial conditions (r,ϑ) were sampled from a Halton sequence from
r ∈ [0.1, 0.48] and ϑ ∈ [0, 2π] and integrated for a leap of ϕ = π/2.
The hyperparameters are set to their optimized maximum likeli-
hood value for each GP separately; the noise in observations is
set to σ 2

n = 10−8. We validate the map using 30 test data points
randomly selected on a grid within the range r ∈ [0.16, 0.31] and
ϑ ∈ [0, 2π] with 1r = 0.005 and 1ϑ = 0.22 at ϕ = 0. The result
of each sub-step, corresponding to a leap of ϕ = π/2, was then con-
sequently used as input for the next sub-step. While this approach

leads to a greater number of needed training data and more (offline)
training time as four independent GPs and also the corresponding
GPs for the first guess of the Newton iteration have to be trained, the
gained results are more stable and accurate. This approach is appli-
cable to higher perturbation strengths where the generating function
is not sufficiently smooth or non-unique for a full Poincaré section.
As shown in the upper plots in Fig. 18 for ε = 0.001, the dynam-
ics in the phase space are accurately captured by the split implicit
SympGPR map. The three stable elliptic points are grasped correctly.
The stochastic layer surrounding the island chain is represented
accurately, and also, other periodic orbits close to the magnetic axis
are not broken up into island chains.

For a higher perturbation strength, ε = 0.01 [Figs. 18(d)–18(f)],
where the region of stochasticity covers a large region in the phase
space, the dynamics of the system are correctly reproduced by the
split implicit SympGPR map. Again, three islands are visible, each
of which is surrounded by five smaller islands. Here, the implicit
SympGPR map is trained with N = 110 training data points whose
initial conditions (r,ϑ) were sampled from a Halton sequence from
r ∈ [0.1, 0.48] and ϑ ∈ [0, 2π]. The hyperparameters are set to their
optimized maximum likelihood value for each GP separately; the
observation noise is set to σ 2

n = 10−8. We validate the map on 30
test data points selected randomly on a grid with r ∈ [0.16, 0.31] and
ϑ ∈ [0, 2π] with1r = 0.005 and1ϑ = 0.22 at ϕ = 0.

To estimate the influence of the number of sub-steps and the
number of training data points N on the performance, an anal-
ysis was carried out using the example of ε = 0.001 with train-
ing data sampled from a Halton sequence from r ∈ [0.1, 0.48] and
ϑ ∈ [0, 2π] and test data in the range r ∈ [0.16, 0.31] and
ϑ ∈ [0, 2π] and using up to six sub-steps. Again, perturbation
modes m = −3 and n = 2 were used. As shown in Fig. 19(a), the
geometrical distance decreases with increasing N up to a fivefold
split. A sixfold split does not improve the obtained accuracy. The
geometrical distance saturates at a relatively small number N ≈ 50
for the three- and sixfold split. This is also apparent in the energy
oscillations [Fig. 19(b)]. However, when splitting the SympGPR into
four or five sub-steps, increasing N still improves the geometric
distance. Naturally, the number of sub-steps influence the efficacy
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FIG. 18. Poincaré maps of magnetic field lines in a tokamak with non-axisymmetric perturbations in the phase space at φ = 2nπ for a perturbation strength of ε = 0.001
(upper) and ε = 0.01 (lower) comparing fourfold split implicit SympGPR trained with N = 70 [(a)–(c)] and N = 110 [(d)–(f)] initial conditions [(a) and (d)], reference orbits
calculated using a symplectic Euler scheme with h = 0.01 [(b) and (e)], and direct comparison of both Poincaré maps [(c) and (f)] for 30 test data points and for n = 1000
map applications.

(a) (b)

FIG. 19. Poincaré maps of magnetic field lines in a tokamak with non-axisymmetric perturbations in the phase space at ϕ = 0 for a perturbation strength of ε = 0.001:
Comparison of the geometrical distance [Eq. (40)] (a) and normalized energy oscillations [Eq. (41)] (b) of l-fold split implicit SympGPR and usual symplectic Euler for a
variable number of training points N. Colored areas in (b) correspond to the standard deviation for 100 test points. The standard deviation of log10 gd in (a) is roughly 1 (one
order of magnitude) and omitted in the plot for better visibility.
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and run time as for a l-fold split SympGPR, where l denotes the
number of sub-steps, l-times more operations have to be carried
out for a full turn. Compared to a symplectic Euler integrator on a
tensor-product basis with Fourier modes in angles (nϕ = 3, nϑ = 2)
and third order splines in the radius (nr = 32), the fivefold split
SympGPR still reduces the CPU time to evaluate n = 2000 Poincaré
maps of a test orbit at similar accuracy from 22 s to 4 s.

V. DISCUSSION AND COMPARISON OF
PERFORMANCE

Here, the performance of SympGPR on the given examples is
summarized, and a comparison to alternative methods is drawn.
All benchmarks have been run on an Intel Core i7-7500U CPU.
In Table I, typical values for the required training time for the
application examples are given.

To assess the efficacy of the method proposed in this paper,
we provide a comparison with three existing methods: HNN,21

SympNets,24 and HénonNet.18 Those methods rely on artificial neu-
ral networks (ANNs) instead of the present GP regression. The HNN
approach covers only flow maps. In a similar manner to SympGPR,
it also relies on (nonlinear) regression via a generating function F.
There, F is, however, immediately identified with H without dis-
cussing the connection to canonical transformations. In contrast,
SympNet and HénonNet, respectively, mimic time steps of a sym-
plectic Euler scheme and a simplified dynamical system in a deep
multilayer ANN. In contrast, the structure of SympGPR is shallow,
with only few splittings realized and directly trained with data in
each sub-step. HénonNet also puts emphasis on Poincaré maps also
treated here. The mentioned methods are explicit in their appli-
cation, while SympGPR is used in its implicit form. The implicit
scheme still reaches competitive performance due to a smaller model
size.

For a detailed comparison, the system of a non-perturbed pen-
dulum is chosen, as this model was discussed in all publications.
A performance overview is given in Table II, where the number of
training data and some estimation of training and run time for the
prediction of one orbit with initial conditions (q, p) = (0.35, 0.5) for
20 bounce times are given. Similarly to linear regression, the compu-
tational complexity for training a Gaussian process is of orderO(N3)

due to necessary matrix operations. Regression of the flow map in
a spectral basis (Figs. 8 and 9) is not considered here due to the
lack of an optimized implementation but is expected to reach sim-
ilar performance. The training data points for training HénonNet
are sampled randomly in the domain of [−

√
2,

√
2] × [−π/2,π/2]

with a step size of h = 0.1; for SympNets, the 40 training data points
are selected on a single trajectory starting from (q, p) = (1, 0) with
step size h = 0.1, whereas for HNN, a training set consisting of 25
trajectories with each 30 observations was used. For a similar test

TABLE II. Performance comparison of flow map interpolation for an unperturbed

pendulum.

SympGPR HénonNet18 SympNets24 HNN21

Training data 20 10 000 40 725
Training time 0.8 s 106 s 107 s 50 s
Run time 1.8 s 1.2 s 1.2 s 3 s

loss, (implicit) SympGPR needs only N = 20 training data points
with step size h = 0.1 and is also competitive with respect to run
time. Considering the interpolation of the pendulum flow map, 20
training data points are sufficient to accurately predict both kinds of
motion (inside and outside the separatrix).

A substantial increase in performance for learning the Hamil-
tonian H is observable compared to existing work,17 where H is
estimated from either 625 (with GPs) or 20 000 (with a neural
network) training points and requiring additional gradient informa-
tion. Using the implicit SympGPR, a similar training and test loss is
achieved with only 25 training samples and no gradient data (Fig. 7).

VI. CONCLUSION AND OUTLOOK
In this paper, we have presented a novel approach to represent

flow and Poincaré maps of Hamiltonian dynamical systems using
Gaussian process regression. A considerable advantage compared
to existing methods in a spline or spectral basis is the possibility
of using input data of arbitrary geometry with GPs. Conservation
of invariants is ensured due to the construction of the SympGPR
map. The concept was validated on several Hamiltonian systems for
interpolation of flow maps and Poincaré maps. An implicit approach
was shown to yield similar accuracy to linear regression in a spec-
tral basis, whereas an explicit mapping requires no iterations in
application of the map at the cost of accuracy and stability. Obser-
vation of training data within a short period of time allows for
an accurate interpolation and even extrapolation of the Hamilto-
nian function H using substantially less training points compared
to existing methods.

We conclude that interpolation of the flow map, while use-
ful to characterize systems without known Hamiltonian, is not very
promising to construct emulators that replace direct symplectic inte-
gration. While the accuracy is somewhat better than symplectic
Euler for the same step size h, there is no substantial advantage
in the step size that can be reached in these cases. The method
becomes more attractive in cases where either the Hamiltonian is
unknown or for the interpolation of Poincaré maps between sections
of interest. In this case, the presented method uses considerably less
training data than neural networks. Here, a natural limitation is the
uniqueness of the generating function. This may be circumvented by

TABLE I. Overview of needed training data and training time.

Pendulum Pert. pendulum Hénon–Heiles Standard map Tokamak (fourfold split, ε= 0.001)

Training data 20 50 55 30 70
Training time 0.8 s 4 s 6 s 1 s 40 s
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splitting the GP into several sub-steps, which was successful in the
tokamak case, but not for the Hénon–Heiles system, where no inter-
mediate cuts can be identified. If data at intermediate time steps are
available, this deep GP can be trained directly at these time steps
and hence can keep the regression linear. This could also improve
performance of composite neural networks.18 Vice versa, a possi-
ble extension of a split SympGPR to systems where no intermediate
cuts or data are available could consist of training a composite deep
GP in a nonlinear manner using only the loss at the output as a
fit criterion. Another option to handle the non-uniqueness of the
generating function is to consider an unwinding transformation to
reduce the amount of needed training data and will be investigated
in future work.

To increase the accuracy of symplectic mappings as well as the
prediction of H, higher order implicit methods analogous to sym-
plectic schemes such as midpoint, Gauss–Legendre, or higher order
RK schemes could be investigated in the future. Particularly, the
explicit method in combination with a Verlet scheme seems promis-
ing to leverage fast computation and the possible higher accuracy.
Another interesting direction could be the incorporation of the
available variance of predictions from the SympGPR for uncertainty
quantification.
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APPENDIX A: DERIVATIVE OBSERVATION IN
(SYMMETRIC) LINEAR REGRESSION

Collocation and regression via basis functions approximate
observed function values g(x) ∈ R for x ∈ Rd by fitting a linear
combination of the chosen basis ϕi(x),

g(x) =
n

∑

i=1

αiϕi(x), (A1)

where αi are the weights and n is the number of basis functions.
Suitable bases are, e.g., orthogonal polynomials, splines, trigonomet-
ric functions (Fourier series), or radial basis functions with kernels
ϕi(x) ≡ ϕ(x, xi). In order to obtain a directly invertible positive
definite system, one may use a symmetric least-squares regression
method.71 Here, we use a product basis, i.e., an univariate basis for
each dimension of x. Multiplying Eq. (A1) by ϕj(x) and swapping
indexes i and j yields

g(x)ϕi(x) =
n

∑

j=1

ϕi(x)ϕj(x)αj. (A2)

Subsequently summing over N observations,

N
∑

k=1

g(xk)ϕi(xk) =
N

∑

k=1

n
∑

j=1

ϕi(xk)ϕj(xk)αj, (A3)

we arrive at a linear equation system corresponding to Aα = b, with

Aij =
N

∑

k=1

ϕi(xk)ϕj(xk), (A4)

bi =
N

∑

k=1

ϕi(xk)g(xk). (A5)

When derivative observations are considered, the basis changes to
ψi = Lϕi, again resulting in a linear system of the form A′α = b′,
with

A′
ij =

N
∑

k=1

ψi(xk) · ψj(xk), (A6)

b′
i =

N
∑

k=1

ψi(xk) · Lg(xk). (A7)

Here, A and A′ are symmetric positive definite matrices that are
directly invertible.

APPENDIX B: GUIDING-CENTER AND FIELD LINE
LAGRANGIAN

The guiding-center Lagrangian35,36

Lgc(z) =
e

c

3
∑

k=1

A?
k(z)ż

k + J⊥φ̇ − H(z) (B1)

contains covariant components A?
k(z) of the modified magnetic

vector potential

A? ≡ A + mv‖
c

e

B

B
, (B2)

the ignorable pair of gyrophase φ and perpendicular invariant
J⊥ = mcµ/e, and the Hamiltonian

H =
mv2

‖

2
+ µB + e8e, (B3)

where A is the original vector potential, B the magnetic field with
modulus B, v‖ the guiding-center velocity parallel to B, 8e the elec-
tric scalar potential, µ the guiding-center magnetic moment, and
e, m, c particle charge, mass, and speed of light, respectively.

We use three spatial variables z1 = r, z2 = ϑ , z3 = ϕ, and
z4 = v‖ as phase space coordinates. Spatial coordinates describe
nested toroidal surfaces r = const. parameterized by a toroidal angle
ϕ and a poloidal angle ϑ . By a specific choice of (r,ϑ ,ϕ), one
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component A?
r of A? vanishes, and Lgc appears in a canonical form,

Lgc(z) =
e

c
A?
ϑ (z)ϑ̇ +

e

c
A?
ϕ(z)ϕ̇ − H(z). (B4)

In Eq. (B4), we have omitted the term associated with the ignor-
able gyrophase. The two canonical momenta are directly identified
as e

c
A?
ϑ and e

c
A?
ϕ .

For the subsequent limiting case of magnetic field lines and
for the convenient definition of step size and Poincaré sections, we
switch from time t to ϕ as the orbit parameter. This results in the
new Lagrangian

Lϕgc(z) ≡ Lgc(z)
dt

dϕ
=

e

c
A?
ϑ (z)ϑ

′ − H(z)t′ +
e

c
A?
ϕ(z), (B5)

where f′ ≡ df/dϕ. The original canonical toroidal momentum
pϕ = e

c
A?
ϕ has now switched roles to become the new Hamiltonian,

and

pϑ =
e

c
A?
ϑ (z), pt = −H(z) (B6)

are the transformation equations from non-canonical coordinates
(r,ϑ , t, v‖) to canonical coordinates (ϑ , t, pϑ , pt). Physical time t
appears now as a cyclic dynamical variable and pt is an integral of
motion, corresponding to conservation of total energy. For vanish-
ing electric potential 8e and in the limiting case of strongly passing
guiding-centers whereµ vanishes, as well as zero kinetic energy with
v‖ → 0, the definition for pϑ reduces to the usual (non-modified)
vector potential component Aϑ . This means that orbits just follow
magnetic field lines. We consider this case to study magnetic geome-
try without reference to physical time t; therefore, we can completely
drop the ignorable pair (t, pt) from Lϕgc, as we did with (φ, J⊥) before.
Dropping the constant factor e/c, we obtain the canonical variant of

the magnetic field line Lagrangian

LB = Aϑ (r,ϑ ,ϕ)ϑ ′ + Aϕ(r,ϑ ,ϕ) (B7)

with position ϑ , momentum pϑ = Aϑ , orbit parameter ϕ, and
Hamiltonian Aϕ . The Lagrangian (B7) is also directly obtained by
treating the magnetic field arising from the vector potential A with
vanishing Ar as a Hamiltonian system.34,67,68

APPENDIX C: NUMERICAL BENCHMARK: FLOW MAP
OF THE HÉNON–HEILES SYSTEM

Similarly to the numerical benchmark of the unperturbed pen-
dulum, we have performed an analysis for the interpolation of the
flow map for the Hénon–Heiles system. As stated in Sec. IV C 2,
a squared exponential kernel was used with l set to its optimized
maximum likelihood value and σ 2

n = 10−16 (implicit SympGPR) and
10−10 (explicit SympGPR). As for the pendulum, σ 2

f is set in accor-

dance with the observations to 2max(|Y|)2, where Y corresponds
to the change in coordinates. In the four dimensional phase space,
the training area is restricted to q1, q2, p1, p2 ∈ [−0.5, 0.5], where
initial conditions are sampled from a Halton sequence51 and inte-
grated until t = h using a RK45 integrator with an adaptive step size
and a relative tolerance of 10−13. Consequently, we consider here
the flow map of initial conditions resulting in energies in a range
of [0.02, 0.29]. We used 100 randomly sampled test data points in
the range q1, q2, p1, p2 ∈ [−0.2, 0.2] and evaluated the performance
of n = 300 subsequent mapping applications. The results shown in
Figs. 21 and 20 are similar to the findings for the pendulum (Figs. 8
and 9): with increasing step size h, the geometrical distance also
increases (Fig. 20). More severely, explicit SympGPR loses long-term
stability at increasing step size h in the Hénon–Heiles system due
to certain orbits that escape the trapped state after a few 10-100

FIG. 20. Hénon–Heiles system: Comparison of geometrical distance [Eq. (40)] (a) and normalized energy oscillations [Eq. (41)] (b) of implicit and explicit SympGPR, standard
symplectic Euler and Hermite basis functions for a fixed number of training points N = 20 at a variable step size h. The gray areas surrounding the mean correspond to the
standard deviation for 100 test points.
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(a) (b)

FIG. 21. Hénon–Heiles system: Comparison of the geometrical distance [Eq. (40)] (a) and normalized energy oscillations [Eq. (41)] (b) of implicit and explicit SympGPR,
standard symplectic Euler and Hermite basis functions for a variable number of training points N, and a fixed step size h = 0.5. Gray areas correspond to the standard
deviation for 100 test points.

applications of the map. This severely limits the applicability range
of explicit SympGPR in its current state. The quality measures for
fixed step size h and increasing N show better accuracy of implicit
SympGPR compared to the symplectic Euler and for N > 30 also
compared to spectral linear regression, reaching the square root of
machine precision at N ≈ 40 with h = 0.5.

DATA AVAILABILITY
The data and source code that support the findings of this study

are openly available65 and maintained on https://github.com/red
mod-team/SympGPR. The numerical benchmark was performed
using the proFit66 toolkit, which is maintained on https://github.
com/redmod-team/profit.
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Abstract: Dynamics of many classical physics systems are described in terms of Hamilton’s equations.
Commonly, initial conditions are only imperfectly known. The associated volume in phase space is
preserved over time due to the symplecticity of the Hamiltonian flow. Here we study the propagation
of uncertain initial conditions through dynamical systems using symplectic surrogate models of
Hamiltonian flow maps. This allows fast sensitivity analysis with respect to the distribution of
initial conditions and an estimation of local Lyapunov exponents (LLE) that give insight into local
predictability of a dynamical system. In Hamiltonian systems, LLEs permit a distinction between
regular and chaotic orbits. Combined with Bayesian methods we provide a statistical analysis of
local stability and sensitivity in phase space for Hamiltonian systems. The intended application is
the early classification of regular and chaotic orbits of fusion alpha particles in stellarator reactors.
The degree of stochastization during a given time period is used as an estimate for the probability
that orbits of a specific region in phase space are lost at the plasma boundary. Thus, the approach
offers a promising way to accelerate the computation of fusion alpha particle losses.

Keywords: Gaussian process regression; surrogate model; Lyapunov exponent; sensitivity analysis;
Hamiltonian systems

1. Introduction

Hamilton’s equations describe the dynamics of many classical physics systems such as
classical mechanics, plasma physics or electrodynamics. In most of these cases, chaos plays
an important role [1]. One fundamental question in analyzing these chaotic Hamiltonian
systems is the distinction between regular and chaotic regions in phase space. A commonly
used tool are Poincaré maps, which connect subsequent intersections of orbits with a
lower-dimensional subspace, called Poincaré section. For example, in a planetary system
one could record a section each time the planet has made a turn around the Sun. The
resulting pattern of intersection points on this subspace allow insight into the dynamics
of the underlying system: regular orbits stay bound to a closed hyper-surface and do not
leave the confinement volume, whereas chaotic orbits might spread over the whole phase
space. This is related to the breaking of KAM (Kolmogorov-Arnold-Moser) surfaces that
form barriers for motion in phase space [2]. The classification of regular versus chaotic
orbits is performed, e.g., via box-counting [3] or by calculating the spectrum of Lyapunov
exponents [4–6]. Lyapunov exponents measure the asymptotic average exponential rate of
divergence of nearby orbits in phase space over infinite time and are therefore invariants
of the dynamical system. When considering only finite time, the obtained local Lyapunov
exponents (LLEs) for a specific starting position depend on the position in phase space
and give insight into the local predictability of the dynamical system of interest [7–10].
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Poincaré maps are in most cases inefficient to compute as their computation involves
numerical integration of Hamilton’s equations even though only intersections with the
surface of interest are recorded. When using a surrogate model to interpolate the Poincaré
map, the symplectic structure of phase space arising from the description in terms of the
Hamiltonian description has to be preserved to obtain long-term stability and conservation
of invariants of motion, e.g., volume preservation. Additional information on Hamiltonian
systems and symplecticity can be found in [2,11]. Here, we use a structure-preserving
Gaussian process surrogate model (SympGPR) that interpolates directly between Poincaré
sections and thus avoids unnecessary computation while achieving similar accuracy as
standard numerical integration schemes [12].

In the present work, we investigate how the symplectic surrogate model [12] can be
used for early classification of chaotic versus regular trajectories based on the calculation
of LLEs. The latter are calculated using the Jacobian that is directly available from the
surrogate model [13]. As LLEs also depend on time, we study their distribution on
various time scales to estimate the needed number of mapping iterations. We combine the
orbit classification with a sensitivity analysis based on variance decomposition [14–16] to
evaluate the influence of uncertain initial conditions in different regions of phase space.
The analysis is carried out on the well-known standard map [17] that is well suited for
validation purposes as a closed form expression for the Poincaré maps is available. This,
however, does not influence the performance of the surrogate model that is applicable also
in cases where such a closed form doesn’t exist [12].

The intended application is the early classification of regular and chaotic orbits of
fusion alpha particles in stellarator reactors [3]. While regular particles can be expected to
remain confined indefinitely, only chaotic orbits have to be traced to the end. This offers a
promising way to accelerate loss computations for stellarator optimization.

2. Methods
2.1. Hamiltonian Systems

A f−dimensional system (with 2 f−dimensional phase space) described by its Hamil-
tonian H(q, p, t) depending on f generalized coordinates q and f generalized momenta p
satisfies Hamilton’s canonical equations of motion,

q̇(t) =
dq(t)

dt
= ∇p H(q(t), p(t)), ṗ(t) =

dp(t)
dt

= −∇qH(q(t), p(t)), (1)

which represent the time evolution as integral curves of the Hamiltonian vector field.
Here, we consider the standard map [17] that is a well-studied model to investigate

chaos in Hamiltonian systems. Each mapping step corresponds to one Poincaré map of a
periodically kicked rotator:

pn+1 = (pn + Ksin(qn)) mod 2π, qn+1 = (qn + pn+1) mod 2π, (2)

where K is the stochasticity parameter corresponding to the intensity of the perturbation.
The standard map is an area-preserving map with detJ = 1, where J is its Jacobian:

J =

( ∂qn+1
∂qn

∂qn+1
∂pn

∂pn+1
∂qn

∂pn+1
∂pn

)
=

(
1 + Kcos(qn) 1

Kcos(qn) 1

)
(3)

2.2. Symplectic Gaussian Process Emulation

A Gaussian process (GP) [18] is a collection of random variables, any finite number
of which have a joint Gaussian distribution. A GP is fully specified by its mean m(x) and
kernel or covariance function K(x, x′) and is denoted as

f (x) ∼ GP(m(x), K(x, x′)), (4)
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for input data points x ∈ Rd. Here, we allow vector-valued functions f (x) ∈ RD [19].
The covariance function is a positive semidefinite matrix-valued function, whose entries
(K(x, x′))ij express the covariance between the output dimensions i and j of f (x).

For regression, we rely on observed function values Y ∈ RD×N with entries y = f (x)+
ε. These observations may contain local Gaussian noise ε, i.e., the noise is independent at
different positions x but may be correlated between components y. The input variables are
aggregated in the d× N design matrix X, where N is the number of training data points.
The posterior distribution, after taking training data points into account, is still a GP with
updated mean F∗ ≡ E(F(X∗)) and covariance function allowing to make predictions for
test data X∗:

F∗ = K(X∗, X)(K(X, X) + Σn)
−1Y, (5)

cov(F∗) = K(X∗, X∗)− K(X∗, X)(K(X, X) + Σn)
−1K(X, X∗), (6)

where Σn ∈ RND×ND is the covariance matrix of the multivariate output noise for each
training data point. Here we use the shorthand notation K(X, X) for the block matrix
assembled over the output dimension D in addition to the number of input points as in a
single-output GP with a scalar covariance function k(x, x′) that expresses the covariance of
different input data points x and x′. The kernel parameters are estimated given the input
data by minimizing the negative log-likelihood [18].

To construct a GP emulator that interpolates symplectic maps for Hamiltonian systems,
symplectic Gaussian process regression (SympGPR) was presented in [12] where the
generating function F(q, P) and its gradients are interpolated using a multi-output GP
with derivative observations [20,21]. The generating function links old coordinates (q, p) =
(qn, pn) to new coordinates (Q, P) = (qn+1, pn+1) (e.g., after one iteration of the standard
map Equation (2)) via a canonical transformation such that the symplectic property of phase
space is preserved. Thus, input data points consist of pairs (q, P). Then, the covariance
matrix contains the Hessian of an original scalar covariance function k(q, P, q′, P′) as the
lower block matrix L(q, P, q′, P′) (denoted with the red box):

K(q, P, q′, P′) =




k ∂q′k ∂P′k
∂qk ∂qq′k ∂qP′k
∂Pk ∂Pq′k ∂PP′k


. (7)

Using the algorithm for the (semi-)implicit symplectic GP map as presented in [12], once
the SympGPR model is trained and the covariance matrix calculated, the model is used to
predict subsequent time steps or Poincaré maps for arbitrary initial conditions.

For the estimation of the Jacobian (Equation (3)) from the SympGPR, the Hessian of the
generating function F(q, P) has to be inferred from the training data. Thus, the covariance
matrix is extended with a block matrix C containing third derivatives of k(q, P, q′, P′):

C =

(
∂q,q′ ,qk ∂q,P′ ,qk ∂P,q′ ,qk ∂P,P′ ,qk
∂q,q′ ,Pk ∂q,P′ ,Pk ∂P,q′ ,Pk ∂P,P′ ,Pk

)
. (8)

The mean of the posterior distribution of the desired Hessian of the generating function
F(q, P) is inferred via

∇2F = (∂2
qqF, ∂2

qPF, ∂2
PqF, ∂2

PPF)> = CL−1Y. (9)

As we have a dependence on mixed coordinates Q(q̄(q, p), P(q, p)) and P(Q(q, p), p̄(q, p)),
where we used q̄(q, p) = q and p̄(q, p) = p to correctly carry out the inner derivatives, the
needed elements for the Jacobian can be calculated employing the chain rule. The Jacobian
is then given as the solution of the well-determined linear set of equations:
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∂Q
∂q

=
∂Q
∂q̄

∂q̄
∂q

+
∂Q
∂P

∂P
∂q

,
∂Q
∂p

=
∂Q
∂q̄

∂q̄
∂p

+
∂Q
∂P

∂P
∂p

, (10)

∂P
∂q

=
∂P
∂Q

∂Q
∂q

+
∂P
∂ p̄

∂ p̄
∂q

,
∂P
∂p

=
∂P
∂Q

∂Q
∂p

+
∂P
∂ p̄

∂ p̄
∂p

, (11)

where we use the following correspondence to determine all factors of the SOEs:

(
∂Q
∂q̄

∂Q
∂P

∂ p̄
∂q̄

∂ p̄
∂P

)
=

(
∂q̄
∂Q

∂P
∂Q

∂q̄
∂ p̄

∂P
∂ p̄

)>
=

(
1 + ∂2F

∂q∂P − ∂2F
∂P∂P

− ∂2F
∂q∂q 1 + ∂2F

∂P∂q

)
. (12)

2.3. Sensitivity Analysis

Variance-based sensitivity analysis decomposes the variance of the model output
into portions associated with uncertainty in the model inputs or initial conditions [14,15].
Assuming independent input variables Xi, i = 1, ..., d, the functional analysis of variance
(ANOVA) allows a decomposition of the scalar model output Y from which the decomposi-
tion of the variance can be deduced:

V[Y] =
d

∑
i=1

Vi + ∑
1≤i<j≤d

Vij + ... + V1,2,...,d (13)

The first term describes the variation in variance only due to changes in single variables
Xi, whereas higher-order interactions are depicted in the contributions of the interaction
terms. From this, first-order Sobol’ indices Si are defined as the corresponding fraction of
the total variance, whereas total Sobol’ indices STi also take the influence of Xi interacting
with other input variables into account [14,15]:

Si =
Vi

Var(Y)
, STi =

EX∼i (VarXi (Y|X∼i)

Var(Y)
(14)

Several methods for efficiently calculating Sobol’ indices have been presented, e.g., MC
sampling [14,16] or direct estimation from surrogate models [22,23]. Here, we use the MC
sampling strategy presented in [16] using two sampling matrices A, B and a combination
of both A(i)

B , where all columns are from A except the i-th column which is from B:

SiVar(Y) =
1
N

N

∑
i=1

f (B)j( f (A(i)
B )j − f (A)j), STi Var(Y) =

1
2N

N

∑
i=1

( f (A)j − f (A(i)
B )j)

2, (15)

where f denotes the model to be evaluated.

2.4. Local Lyapunov Exponents

For a dynamical system in RD, D Lyapunov characteristic exponents λn give the expo-
nential separation of trajectories with initial conditions z(0) = (q(0), p(0)) of a dynamical
system with perturbation δz over time:

|δz(T)| = J (T)
z(T)δz(0) ≈ eTλ|δz(0)|, (16)

where J (T)
z(T) is a time-ordered product of Jacobians Jz(T−1)Jz(T−2)...Jz(1)Jz(0) [4]. The

Lyapunov exponents are then given as the logarithm of the eigenvalues of the positive and
symmetric matrix.

Λ = lim
T→∞

[J (T)>
z(T) J

(T)
z(T)]

1/(2T), (17)

where > denotes the transpose of J (T)
z(T).

For a D-dimensional system, there exist D Lyapunov exponents λn giving the rate
of growth of a D-volume element with λ1 + ... + λD corresponding to the rate of growth
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of the determinant of the Jacobian det(J (T)
z(T)). From this follows that for a Hamiltonian

system with a symplectic (e.g., volume-preserving) phase space structure, Lyapunov
exponents exist in additive inverse pairs as the determinant of the Jacobian is constant,
λ1 + ... + λD = 0. In the dynamical system of the standard map with D = 2 considered
here, the Lyapunov exponents allow a distinction between regular and chaotic motion. If
the Lyapunov exponents λ1 = −λ2 > 0, neighboring orbits separate exponentially which
corresponds to a chaotic region. In contrast, when λ1 = −λ2 ≈ 0 the motion is regular [1].

As the product of Jacobians is ill-conditioned for large values of T, several algorithms
have been proposed to calculate the spectrum of Lyapunov exponents [13]. Here, we
determine local Lyapunov exponents (LLE) that determine the predictability of an orbit of
the system at a specific phase point for finite time. In contrast to global Lyapunov exponents
they depend on T and on the position in phase space z. We use recurrent Gram-Schmidt
orthonormalization procedure through QR decomposition [5,6,24], where we follow the
evolution of D initially orthonormal deviation vectors wn

0 . The Jacobian is decomposed
into Jz(0) = Q(1)R(1), where Q(1) is an orthogonal matrix and R(1) is an upper triangular
matrix yielding a new set of orthonormal vectors wi. At the next mapping iteration, the
matrix product Jz(1)Q(1) is again decomposed. This procedure is repeated T times to

arrive at J (T)
z(t) = Q(T)R(T)R(T−1)...R(0). The Lyapunov exponents are then estimated from

the diagonal elements of R(t)

λn =
1
T

T

∑
t=1

lnR(t)
nn . (18)

3. Results and Discussion

In the following we apply an implicit SympGPR model with a product kernel [12].
Due to the periodic topology of the standard map we use a periodic kernel function to
construct the covariance matrix in Equation (7) with periodicity 2π in q, whereas a squared
exponential kernel is used in P:

k(q, qi, P, Pi) = σ2
f exp

(
− sin2((q− qi)/2)

2l2
q

)
exp

(
− (P− Pi)

2

2l2
P

)
. (19)

Here σ2
f specifies the amplitude of the fit and is set in accordance with the observations

to 2 max(|Y|)2, where Y corresponds to the change in coordinates. The hyperparameters
lq, lP are set to their maximum likelihood value by minimizing the negative log-likelihood
given the input data using the L-BFGS-B routine implemented in Python [18]. The noise in
observations is set to σ2

n = 10−16. 30 initial data points are sampled from a Halton sequence
to ensure good coverage of the training region in the range [0, 2π]× [0, 2π] and Equation (2)
is evaluated once to obtain the corresponding final data points. Each pair of initial and
final conditions constitutes one sample of the training data set. Once the model is trained,
it is used to predict subsequent mapping steps for arbitrary initial conditions and to infer
the corresponding Jacobians for the calculation of the local Lyapunov exponents. Here,
we consider two test cases of the standard map with different values of the stochasticity
parameter K = 0.9 and K = 2.0 (Equation (2)). For each of the test cases, a surrogate model
is trained. While in the first case the last KAM surface is not yet broken and therefore the
region of stochasticity is still confined in phase space, in the latter case the chaotic region
covers a much larger portion of phase space. However, there still exist islands of stability
with regular orbits [2]. For K = 0.9 the mean squared error (MSE) for the training data is
1.4× 10−6, whereas the test MSE after one mapping application is found to be 2.4× 10−6.
A similar quality of the surrogate model is reached for K = 2.0, where the training MSE is
1.6× 10−7 and the test MSE 2.4× 10−7.
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3.1. Local Lyapunov Exponents and Orbit Classification

For the evaluation of the distribution of the local Lyapunov exponents with respect to
the number of mapping iterations T and phase space position z = (q, p), 1000 points are
sampled from each orbit under investigation. In the following, we only consider the maxi-
mum local Lyapunov exponent as it determines the predictability of the system. For each
of the 1000 points, the LLEs are calculated using Equation (18), where the needed Jacobians
are given by the surrogate model by evaluating Equation (9) and solving Equation (11).

Figure 1 shows the distributions for K = 2.0, T = 50, T = 100 and T = 1000 for two
different initial conditions resulting in a regular and a chaotic orbit. In the regular case the
distribution exhibits a sharp peak and with increasing T moves closer to 0. This bias due to
the finite number of mapping iterations decreases with O(1/T) as shown in Figure 2 [25].
For the chaotic orbit, the distribution looks smooth and its median is clearly >0 as expected.
For a smaller value of K = 0.9 the dynamics in phase space exhibit larger variety with
regular, chaotic and also weakly chaotic orbits that remain confined in a small stochastic
layer around hyperbolic points. Hence, the transition between regular, weakly chaotic and
chaotic orbits is continuous due to the larger variety in phase space. For fewer mapping
iterations, possible values of λ are overlapping, thus preventing a clear distinction between
confined chaotic and chaotic orbits.
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Figure 1. Distribution of local Lyapunov exponents for a (a) regular orbit (q, p) = (1.96, 4.91) and
(b) chaotic orbit (q, p) = (0.39, 2.85) in the standard map with K = 2.0

0 500 1000 1500 2000
T

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0 500 1000 1500 2000
T

0.00

0.05

0.10

0.15

0.20

(b)
Figure 2. Rate of convergence of the block bias due to finite number of mapping iterations for (a)
K = 2.0 with a regular orbit (q, p) = (1.96, 4.91) (diamond) and a chaotic orbit (q, p) = (0.39, 2.85)
(x) and (b) K = 0.9 with a regular orbit (q, p) = (1.76, 0.33) (diamond), a confined chaotic orbit
(q, p) = (0.02, 2.54) (circle) and a chaotic orbit (q, p) = (0.2, 5.6) (x). The graphs show λ̃T , the
median of λT for each T, with λ̃T = λ + c/T fitted by linear regression of Tλ̃T on T. The gray areas
correspond to the standard deviation for 1000 test points.

When considering the whole phase space with 200 orbits with initial conditions
sampled from a Halton sequence in the range [0, π]× [0, 2π], already T = 50 mapping
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iterations provide insight in the predictability of the standard map (Figure 3). If for a region
in phase space the obtained LLE is positive, the predictability in this region is restricted
as the instability there is relatively large. If, however, the LLE is close to zero, we can
conclude that this region in phase space is governed by regular motion and is therefore
highly predictable. For K = 2.0 the orbits constituting the chaotic sea have large positive
LLEs, whereas islands of stability built by regular orbits show LLEs close to 0. A similar
behavior can be observed for K = 0.9, where again regions around stable elliptic points
feature λ ≈ 0 while stochastic regions exhibit a varying range of LLEs in accordance to
Figure 2.

Based on the estimation of the LLEs, a Gaussian Bayesian classifier [26] is used
to determine the probability of an orbit being regular, where we assume that LLEs are
normally distributed in each class. First, the classifier is trained on LLEs resulting from
200 different initial conditions for T mapping iterations with the corresponding class labels
resulting from the chosen reference being the generalized alignment index (GALI) [27].
Then, 104 test orbits are sampled from a regular grid in the range [0, π] × [0, 2π] with
∆q = ∆p = 2π/10, their LLE is calculated for T mapping iterations and the orbits are then
classified. The results for K = 0.9 and K = 2.0 with T = 50 are shown in Figure 4, where
the color map indicates the probability that the test orbit is regular. While for K = 2.0
the classifier provides a very clear distinction between regular and chaotic regions, the
distinction between confined chaotic and regular orbits for K = 0.9 is less clear. With
increasing number of mapping iterations, the number of misclassifications reduces as
depicted in Figure 5. If the predicted probability that an orbit belongs to a certain class
is lower than 70%, the prediction is not accepted and the orbit is marked as misclassified.
With K = 0.9, the percentage of misclassified orbits does not drop below approximately
10%, because the transition between regular and chaotic motion is continuous.
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Figure 3. Local Lyapunov exponents in phase space of the standard map calculated with T = 50
mapping iterations for (a) K = 2.0, (b) K = 0.9 .
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Figure 4. Orbit classification in standard map, (a) K = 2.0, (b) K = 0.9 for T = 50. The color map
indicates the probability that the orbit is regular.
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Figure 5. Percentage of misclassified orbits using a Bayesian classifier trained with 200 orbits for (a)
K = 2.0 and (b) K = 0.9. 100 test orbits on an equally spaced grid in the range of [0, π]× [0, 2π] are
classified as regular or chaotic depending on their LLE.

3.2. Sensitivity Analysis

The total Sobol’ indices are calculated for the outputs from the symplectic surrogate
model (Q, P) using Equation (15) with N = 2000 uniformly distributed random points
within a box of size [10−3 × 10−3] for each of the T = 100 mapping iterations as we are
interested in the temporal evolution of the indices. For the standard map at K = 0.9 with
d = 2 input and D = 2 output dimensions, 4 total Sobol’ indices are obtained: SQ

q and SP
q

denoting the influence of q and SQ
p and SP

p marking the influence of p on the output. We
obtain good agreement with an MSE in the order of 10−6 between the indices obtained by
the surrogate model and those using reference data.

As shown in Figure 6 for three different initial conditions for K = 0.9 depending on
the orbit type, either chaotic or regular, the sensitivity indices behave differently. In case of
a regular orbit close to a fixed point, Si

j are oscillating, indicating that both input variables
have similar influence on average. Getting further from the fixed point, closer to the border
of stability, the influence of q gets bigger. This, however, is in contrast to the behavior in
the chaotic case, where initially the variance in p has larger influence on the model output.
However, when observing the indices over longer periods of time, both variables have
similar influence. In Movie S01 in the supplemental material, the time evolution of all four
total Sobol’ indices obtained for the standard map are shown in phase space. Each frame is
averaged over 10 subsequent mapping iterations. One snapshot is shown in Figure 7. The
observation of the whole phase space sustains the findings in Figure 6.
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Figure 6. Total Sobol’ indices as a function of time for three orbits of the standard map with K = 0.9—
upper: chaotic orbit (q, p) = (0.2, 5.6), middle: regular orbit (q, p) = (1.76, 0.33), lower: regular orbit
very close to fixed point (q, p) = (π, 0.1).
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Figure 7. Total Sobol’ indices (Equation (15)) for the standard map with K = 0.9 averaged from
t = 20 to t = 30.

4. Conclusions

We presented an approach for orbit classification in Hamiltonian systems based on
a structure preserving surrogate model combined with early classification based on local
Lyapunov exponents directly available from the surrogate model. The approach was
tested on two cases of the standard map. Depending on the perturbation strength, we
either see a continuous transition from regular to chaotic orbits for K = 0.9 or a sharp
separation between those two classes for higher perturbation strengths. This also impacts
the classification results obtained from a Bayesian classifier. The presented method is
applicable to chaotic Hamiltonian systems and is especially useful when a closed form
expression for Poincaré maps is not available. Also, the accompanying sensitivity analysis
provides valuable insight: in transition regions between regular and chaotic motion the
Sobol’ indices for time-series can be used to analyze the influence of input variables.
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3. Contributions

3.4 Data augmentation for disruption prediction via robust surrogate
models

Main novelty:
We introduced a robust Student-t process regression model in state space formulation via Bayesian
filtering to augment the database for training large ML-models for disruption prediction. The
model neglects signal interdependecies but accounts for signal correlations and cross-correlations
via coloring transformations in a post-processing step.

Contributing article:
Rath, K., Rügamer, D., Bischl, B., von Toussaint, U., Rea, C., Maris, A., Granetz, R., and Albert,
C. G. (2022). Data augmentation for disruption prediction via robust surrogate models. Journal
of Plasma Physics, 88(5):895880502
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Udo von Toussaint, Cristina Rea and Robert Granetz devised the conceptual idea of the project.
Katharina Rath designed the model, implemented the algorithms, identified suitable training data,
performed the numerical experiments, designed the validation and evaluation routines and wrote
the paper. Andrew Maris helped with the retrieval of training data. David Rügamer, Christopher
Albert, Udo von Toussaint, Bernd Bischl, Cristina Rea, Robert Granetz and Andrew Maris gave
valuable input throughout the project and suggested several notable modifications.
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The goal of this work is to generate large statistically representative data sets to train
machine learning models for disruption prediction provided by data from few existing
discharges. Such a comprehensive training database is important to achieve satisfying and
reliable prediction results in artificial neural network classifiers. Here, we aim for a robust
augmentation of the training database for multivariate time series data using Student t
process regression. We apply Student t process regression in a state space formulation via
Bayesian filtering to tackle challenges imposed by outliers and noise in the training data
set and to reduce the computational complexity. Thus, the method can also be used if the
time resolution is high. We use an uncorrelated model for each dimension and impose
correlations afterwards via colouring transformations. We demonstrate the efficacy of our
approach on plasma diagnostics data of three different disruption classes from the DIII-D
tokamak. To evaluate if the distribution of the generated data is similar to the training
data, we additionally perform statistical analyses using methods from time series analysis,
descriptive statistics and classic machine learning clustering algorithms.

Key words: fusion plasma, plasma instabilities

1. Introduction

Disruptions pose serious challenges to the operation and design of tokamaks. Due
to rapidly growing instabilities, thermal and magnetic energy is rapidly lost during a
disruption, the magnetic confinement of the plasma is destroyed and energy is deposited
into the confining vessel, potentially causing serious damages. Hence, to maintain a
reliable fusion operation, disruption mitigation mechanisms should be triggered with
sufficient warning time prior to the disruption. Recent advances on real-time disruption
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prediction have been made using machine learning (Berkery et al. 2017; Rea & Granetz
2018; Kates-Harbeck, Svyatkovskiy & Tang 2019; Pau et al. 2019; Rea et al. 2019, 2020;
Aymerich et al. 2022). Disruption prediction is a challenging task for various reasons.
One of them is the imbalanced data situation; for some disruption classes, only a few
measurements are available, making it difficult to obtain robust results. This is challenging,
especially when working with neural networks, as they require a large training data set in
order to give satisfying results and to avoid overfitting (see e.g. Aggarwal 2018). However,
generating such an amount of training data from additional discharges is expensive and
also potentially harmful for the reactor. Particularly with regard to future reactors such as
ITER or SPARC, a sufficient data set will not be available at the time these reactors start
operating.

Data augmentation is one possibility to balance the training data set by creating rare
disruption events and thereby improving the prediction performance of machine learning
models. The aim of data augmentation is to produce an arbitrarily large number of artificial
samples that have the same statistical properties as the original small data set. Especially
in the context of image classification, data augmentation is a widely used technique
to improve the prediction accuracy and avoid overfitting (Shorten & Khoshgoftaar
2019). Commonly used methods are random transformation-based approaches, such as
cropping or flipping. However, these methods are not expedient for the task at hand,
as time dependencies and the causal structure of physical signals are destroyed by such
transformations (Iwana & Uchida 2021; Wen et al. 2021). More elaborate methods for
multivariate time series generation using neural networks (Yoon, Jarrett & van der Schaar
2019) require substantially more samples per class than usually available for disruption
prediction. Other advanced data augmentation methods are based on decomposition into
trend, seasonal/periodic signal and noise (Cleveland et al. 1990; Wen et al. 2019) or involve
statistical modelling of the dynamics using, e.g. mixture autoregressive models (Kang,
Hyndman & Li 2020).

Here, we tackle the above-mentioned challenges by relying on a non-parametric
Bayesian approach to design the multivariate surrogate model based on Student t process
regression (Shah, Wilson & Ghahramani 2014; Roth et al. 2017) to generate additional
data. This model is closely related to the more commonly used Gaussian process
regression (Williams & Rasmussen 1996). One drawback of standard Gaussian processes
regression is the assumption of Gaussian noise, which is inaccurate due to outliers in
the present application case. This results in unreliable uncertainty estimates. There have
been attempts to make Gaussian process regression robust against outliers by using a
Student t distributed noise model and relying on approximate inference (Neal 1997;
Vanhatalo, Jylanki & Vehtari 2009). However, our approach rather builds on Student t
processes with an analytic inference scheme (Shah et al. 2014) that also allows a heavy
tailed noise distribution and gives robust results even for noisy data corrupted by outliers.

Another challenge imposed by high-resolution time series data is the computational
complexity of multivariate Gaussian or Student t process regression of O(N3), where
N = DT is the number of training data points given by the product of dimensions D and
time steps T of the multivariate time series. For typical values of N > 1000, traditional
regression requires too much computing time. We instead use the state space formulation
of a Student t process as a linear time invariant stochastic differential equation, which
can be solved using a corresponding filter and smoother (Solin & Särkkä 2015). In the
case of a Gaussian process, the analogous approach is the well-known Kalman filter and
Rauch–Tung–Striebel (RTS) smoother (Särkkä 2013; Särkkä & Solin 2019). This ansatz
reduces the computational complexity to O(N), making it also suitable for high-resolution
time series.
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Here, we are working with a multi-output state space model to generate multivariate
time series. We first assume that dimensions of the multivariate time series are not
correlated. This is done to avoid the requirement of optimizing all hyperparameters at
the same time, which is practically unfeasible due to the limited amount of available
data. To still account for signal interdependencies, we then induce correlations and
cross-correlations via colouring transformations in a post-processing step.

To balance the training data set, we use several local surrogate models to generate data
coming from different disruption classes. From a small set – usually less than 10 discharges
– of multivariate time series with D measurement signals coming from one disruption class
with similar operating conditions, we estimate the posterior distribution. We then sample
from the trained model in order to generate similar data that enlarge the training database.
To evaluate if the generated samples are from the same distribution as the training data,
we use several methods from time series analysis, descriptive statistics and clustering
algorithms to show that generated and training samples are almost indistinguishable.

2. Methods
2.1. Student t processes

Student t processes (TPs) are a generalization of the widely used Gaussian processes
(GPs) (Williams & Rasmussen 1996; Shah et al. 2014). TPs allow for a heavy tailed
noise distribution (estimated by an additional hyperparameter ν > 2) and therefore put
less weight on outliers compared with GPs (Shah et al. 2014; Roth et al. 2017). This is
illustrated in figure 1 for a test case of synthetic data corrupted by outliers. As in GP
regression, we consider a set of N training observations D = {(ti, yi)}T

i=1 of scalar function
values yi = f (ti) plus measurement noise at training points ti with i = 0, 1, . . . , T (in our
case, time). We model these data points using a TP with zero mean and covariance function
k(t, t′),

f (t) ∼ T P(0, k(t, t′), ν). (2.1)

Similar to the GP, a kernel function k(t, t′) quantifies the covariance between values of f at
times (t, t′) and yields an N × N covariance matrix K with components K ij = k(ti, tj) for
the random vector of all observed yi. Kernel hyperparameters determine further details,
e.g. a length scale l quantifies how fast correlations vanish with increasing distance in t.
The additional hyperparameter ν > 2 corresponds to the degrees of freedom that specify
the noise distribution. The predicted distribution of a scalar output f (t∗) at test point t∗ is
given in closed form by

E[ f (t∗)] = k�
∗ K−1

y y, (2.2)

V[ f (t∗)] = ν − 2 + y�K−1
y y

ν − 2 + N
(k∗∗ − k�

∗ K−1
y k∗), (2.3)

where K y = K + σ 2
n I is the measurement noise parametrized by the noise variance σ 2

n .
Here, k∗ is an N-dimensional vector with the ith entry being k(t∗, ti); k∗∗ = k(t∗, t∗)
describes the covariance between training and test data and the variance at the test point
t∗. In contrast to GP regression, the posterior variance V[ f (t∗)] of the prediction explicitly
depends on training observations by taking data variability into account and results in
more reliable uncertainty estimates. An analogous expression to (2.3) is obtained for the
covariance matrix between predictions at multiple t∗ (Shah et al. 2014).
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(b)(a)

FIGURE 1. Predicted mean and 95 % confidence band with (a) GP and (b) TP trained on
N = 100 training data points following f (t) = sin(2t) cos(0.4t) corrupted by Gaussian noise
0.1N (0, 1), with several outliers.

2.2. State space formulation
As in GP regression, the computational complexity increases with O(N3), as an inversion
of the covariance matrix via Cholesky factorization is necessary to train TPs (Williams &
Rasmussen 1996). This makes GP and also TP regression unfavourable for high-resolution
time series data. However, as shown by Solin & Särkkä (2015), the TP regression problem
can be reformulated as an mth-order linear time invariant stochastic differential equation
(SDE)

df̂ (t)
dt

= F f̂ (t) + Lw(t), (2.4)

f (ti) = H f̂ (ti), (2.5)

where f̂ (t) = ( f (t), df (t)/dt, . . . , dm−1f (t)/dtm−1)�, the feedback matrix F and noise
effect matrix L are derived from the underlying TP, H = (1, 0, . . . , 0) is the measurement
or observation matrix and w(t) is a vector of white noise processes with spectral density
γ Q, where γ is a scaling factor (Solin & Särkkä 2015).

To solve this SDE for discrete points in time by estimating the posterior distribution
p(ŷ0:T |y1:T) of the latent state ŷ0:T given noisy observations y1:T , we use the corresponding
Student t filter and smoother as outlined in Solin & Särkkä (2015). Here, the posterior is
estimated by using marginal distributions: (i) filtering distribution p(ŷt|y1:t) given by the
update step in Algorithm 1, (ii) prediction distribution p(ŷt+k|y1:t) given by the prediction
step in Algorithm 1 for k steps after the current time step t and (iii) smoothing distributions
p(ŷt|y1:T) for t < T given by Algorithm 2 (Särkkä 2013). The initial distribution is
determined by the prior state mean given by the measurements at t = 0 and prior state
covariance P0 given by the stationary covariance (Solin & Särkkä 2015). The augmented
states df /dt that are not measured and noise are initialized with 0.

For example, the state space formulation of the Matérn 3/2 kernel is given by the
following expressions for feedback, noise effect matrix and spectral density (Särkkä &
Solin 2019):

F =
⎛
⎝ 0 1 0

−λ2 −2λ 0
0 0 −∞

⎞
⎠ , P0 =

⎛
⎝σ 2 0 0

0 σ 2λ2 0
0 0 σ 2

n

⎞
⎠ , H = (

1 0 0
)
, L =

⎛
⎝0

1
0

⎞
⎠ ,

(2.6a–d)
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where λ = √
3/l. Hyperparameters l, σ 2, σ 2

n and ν needed in the Student t filter algorithm
are estimated by minimizing the negative log likelihood (Solin & Särkkä 2015). The
log likelihood is sequentially calculated using the Student t filter (Algorithm 1). When
the hyperparameters are optimized, the predictive distribution is first calculated via
Algorithm 1 and then smoothed using Algorithm 2. In order to include the noise model
with σ 2

n corresponding to K y = K + σ 2
n I in traditional TP regression, the SDE is directly

augmented by the entangled noise model. As the model is not only augmented with the
noise model, but also with the first derivative of the target function we want to predict, we
can immediately infer df (t)/dt from the given observations y.

Here, the task at hand concerns multivariate time series Y with multiple measurements
n with D dimensions where the ith row is yi = f (ti) at every time step ti. To facilitate
the training of the model, we consider an uncorrelated model, such that the associated
random processes are not correlated. In traditional GP/TP regression, this corresponds to a
multi-output model with a block-diagonal covariance matrix. The multi-output state space
model to estimate p(Ŷ 0:T |Y 1:T) is built by stacking the univariate SDE models resulting in a
block-diagonal structure for feedback and covariance matrices. Then, the dynamics of yi is
independent. We sample uncorrelated multivariate time series from this model and apply
colouring transformations in a following post-processing step to account for correlations
(§ 2.4). Each dimension has its own set of hyperparameters in order to grasp the dynamics
that happen on different time scales. The measurement covariance matrix R (Algorithm 1)
is estimated using the covariance of n measurements for each dimension at every time
step.

2.3. Student t sampler
To sample from the estimated posterior distribution, we employ a Student t sampler, which
is a modified version of the sampling technique presented by Durbin & Koopman (2002).
First, we draw a t distributed random sequence X̂ 0:T = x̂i,0:T from the prior estimated
by the trained Student t model. These sequences are initialized by T (0, P0) and then
filtered using Algorithm 1 and smoothed via Algorithm 2, which yields E(X̂ 0:T |Y +

1:T)

where Y +
1:T = HX̂ 0:T , with the stacked measurement matrix H = (I, 0, 0) that extracts only

the first component of x̂t in every time step t. Here, Y +
1:T are data associated with the

filtered and smoothed sequence X̂ 0:T given by (A2). Finally, to obtain a random sequence
Ȳ 0:T = ȳi,0:T ∼ p(Ŷ 0:T |Y 1:T), we combine

Ȳ 1:T = H(E(Ŷ 0:T |Y 1:T) + X̂ 0:T − E(X̂ 0:T |Y +
1:T)), (2.7)

where H extracts the first component of ŷt in every time step t. This procedure gives a
D-dimensional multivariate time series for T time steps.

2.4. Post-processing
Given the trained model, we sample data Ȳ 1:T from the estimated posterior, where rows
are dimensions ȳi and columns are time steps; Ȳ 1:T can be split into a mean given by
the smoothing distribution and deviations due to the sampling. Correlations between
dimensions D of the generated data are not reproduced correctly with the uncorrelated
model. However, with three different post-processing methods of increasing complexity
compared in the results, we aim to handle correlations.

We thus want to inscribe the average covariance Σ over all samples empirically
observed in the training data Y 1:T into the generated data Ȳ 1:T . However, the covariance
matrix Σ̄ of Ȳ 1:T has small non-zero off-diagonal elements. Therefore, we first perform a
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Zero Components Analysis (ZCA) whitening (also known as Mahalanobis) transformation
(see e.g. Kessy, Lewin & Strimmer 2018):

Z = Σ̄
−1/2

Ȳ . (2.8)

The transformed data Z have a diagonal covariance matrix ΛZ, with unit variances on the
diagonal. We then colour the generated data via a colouring transformation (Kessy et al.
2018)

Ỹ = Σ1/2Z = Σ1/2Σ̄
−1/2

Ȳ , (2.9)

obtaining data Ỹ , which now have the same (temporally local) covariance as the training
data Y .

Another possibility is to directly take the distribution of the training data covariance
matrix Σ over samples into account by using samples from a corresponding multivariate
Gaussian distribution as data covariance matrices. This generates variation in the
covariance of the generated data, especially if there are local differences between the
samples. However, on average for a large enough sample size, we recover the training
data covariance matrix Σ .

To also take time-lagged correlations into account, we must adjust not only covariances
but also cross-covariances in our generated data. Therefore, we use the cross-covariance
matrix given by

Σ̄ c,rs(t1, t2) = E[(ȳr,t1 − μr,t1)(ȳs,t2 − μs,t2)], (2.10)

where the expected value E[·] is estimated by averaging over all combinations of lags
t1 − t2 in addition to the sample mean. Here, μi,t is the expected value of ȳi,t. To decorrelate
and colour the data in the way described above, we formally use a global covariance matrix
Σg of size DT × DT involving correlations both over time and across dimensions of the
multivariate time series. The global covariance matrix is a periodic block matrix given by

Σg,(t1D+r)(t2D+s) = Σ c,rs(t1, t2) (2.11)

for the cross-covariance Σ c with lag. The generated data is coloured using the global
covariance matrix:

Ỹ = Σ1/2
g Z = Σ1/2

g Σg
−1/2

Ȳ . (2.12)

This incorporates the empirical cross-covariance for all time lags and between all
dimensions D of the generated data.

3. Evaluation of generated data

As the generated data serve as augmented training data for later analyses, statistical
properties of the original training data should be reflected in the generated data. Therefore,
we perform statistical tests to check if training and generated share key statistical
properties.

3.1. Distribution and Wasserstein distance
To measure the distance between the distribution of the training and the generated data,
we use the Wasserstein-1 metric (Villani 2008)

W1(P, V) = inf
γ∈Γ (P,V)

∫
R×R

|x − y| dγ (x, y), (3.1)

where Γ (P, V) denotes the set of all probability distributions on R × R, with P, V being
its marginals. The minimizer γ of (3.1) denotes the optimal transport plan to transport
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P to V . We compare each signal separately and average the corresponding Wasserstein
distances. Although the problem concerns time series data, we discard all time information
and only consider the global distribution of the data due to the small amount of available
training data samples.

3.2. Maximum mean discrepancy two-sample test
In addition to the Wasserstein distance, we perform the kernel two-sample test (Gretton
et al. 2012) for each signal (again discarding time information). The null hypothesis we
want to test is that both n training data yi,1:T and m generated data samples ỹi,1:T follow the
same distribution P. We use the maximum mean discrepancy (MMD) test statistic via a
kernel g

MMD2 = 1
n(n − 1)

n∑
i,j=1

g(yi,1:T, yj,1:T) + 1
m(m − 1)

m∑
i,j=1

g(ỹi,1:T, ỹi,1:T)

− 2
nm

n∑
i=1

m∑
j=1

g(yi,1:T, ỹi,1:T), (3.2)

where g(x, y) = exp(−||x − y||2/(2σ 2)) with σ = Median(|Υi − Υj|)/2 and Υ is the
combined sample of yi,1:T and ỹi,1:T . To estimate a threshold for the acceptance of the null
hypothesis for a given confidence level, bootstrapping is performed via mixing samples
yi,1:T and ỹi,1:T , which generates a distribution with 10 000 samples that satisfies the
null hypothesis. Finally, we can estimate a p-value for the MMD of the generated data
distributions.

3.3. Auto- and cross-correlation
To evaluate if the generated data reflect the temporal dependencies of the training data, we
calculate auto- and cross-correlations ρrs for training and generated data by normalizing
the cross-covariance Σ c in (2.10) by 1/(σr,t1σs,t2). Here, σs,t is the standard deviation of
ỹs,t. If r = s, this diagnostic becomes the auto-correlation – see, e.g. Park (2017). For
t1 = t2, the local correlation matrix follows. We evaluate the mean squared error (MSE)
to the auto- and cross-correlation of the training data. Evidently, the global colouring
transformation (2.10) produces a perfect match in this diagnostic.

3.4. Power spectral density
All frequencies that are present in the training data set should also appear in the generated
data. This can be evaluated using the power spectral density (PSD), which provides an
estimate of power distribution across the frequency of a signal. We evaluate the mean
squared error between the PSD of the training data and generated data.

3.5. Embedding via kernel principal component analysis
We apply two-dimensional (2-D) kernel principal component analysis (PCA) on the
training data with flattened temporal dimension and project the generated data onto the first
two principal components of the training data to evaluate the embedding and visualize if
both training and generated data lie on the same submanifold (Schölkopf, Smola & Müller
1998). In all test cases, a polynomial kernel of degree 3 with optimized kernel coefficient
(minimization of the reconstruction error) is used.

The distance between the embedded distributions of training and generated data is
measured by using the sliced Wasserstein distance that takes advantage of the very efficient
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calculation of 1-D Wasserstein distances (Bonneel et al. 2015; Flamary et al. 2021).
The multivariate distribution is sliced and randomly projected on a 1-D subspace, and
the corresponding 1-D Wasserstein distances are averaged to obtain an estimation for the
multivariate distribution. With an increasing number of projections, the sliced Wasserstein
distance converges. Here, we use 103 projections to estimate the distance Wemb between the
embedded distributions.

3.6. Multivariate functional PCA
For the evaluation of the correctly represented temporal evolution of the generated data, we
apply multivariate functional principal component analysis (mfPCA) on the training data
and project the generated data onto the eigenbasis of the training data (Happ & Greven
2018). Then, we reconstruct both training and generated data with the same eigenbasis and
evaluate the variance of the residuals.

3.7. Dynamic time warping
For time series comparison, dynamic time warping (DTW) is widely used to measure the
similarity between two temporal sequences yi,1:T and ỹj,1:T (Berndt & Clifford 1994). This
metric is formulated as an optimization problem

DTW(yi,1:T, ỹj,1:T) = min
γ

√ ∑
(i,j)∈γ

d(yi, ỹj)
2, (3.3)

where γ is the alignment path such that the Euclidean distance between yi,1:T and ỹj,1:T is
minimal. Hence, DTW gives the distance between two time series with the best temporal
alignment. We compare each training data sample with each generated data sample and
use the mean to compare different post-processing methods.

3.8. Self-organizing maps on time series
Finally, we apply time series clustering based on DTW self-organizing maps (SOMs) on
both the training and generated data (Vettigli 2018). If the generated data are a potentially
useful extension of the training data, the clustering should show similar results. Therefore,
we compute a clustering model on the training data and use the trained model to predict
cluster labels of both the training and generated data. From the predicted labels, we
evaluate the F1 score (harmonic mean of precision and recall) (Murphy 2022) with the
ground truth.

4. Numerical experiments

We evaluate the performance of the proposed model using disruption data from
several discharges from the DIII-D tokamak taken from the 2016 experimental campaign.
These disruptions were already included in previously published papers on data-driven
applications in fusion (Montes et al. 2021).

We cluster the available data sets depending on the similarity of the conditions and on
the occurring instability. Here, we use the model to augment five signals of the training
data set (referred to as βn, the normalized β given by βn = βaBT/Ip, where β is the ratio of
plasma pressure to magnetic pressure, BT is the toroidal magnetic field, a the minor radius
and Ip the plasma current; normalized internal inductance li; plasma elongation κ; safety
factor q95; Greenwald fraction n/nG) for different disruptions: (i) disruptions due to locked
modes (LMs) in high β, low torque plasmas with n = 1 resonant magnetic perturbations
(RMPs) applied (shots 166463, 166464, 166465, 166466, 166468, 166469), (ii) disruptions
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FIGURE 2. Data processing flow.

due to LMs during an RMP edge localized mode (ELM) suppression experiment applied
to an ITER-like plasma shape (shots 166452, 166454, 166457, 166460) and (iii) density
accumulation events during detachment studies of helium plasmas (shots 166933, 166934,
166937).

For each disruption class, the model is trained on these few available training samples.
The choice of signals is influenced by the use case of augmenting the training database for
a neural network for disruption prediction, but in general, the method is extendable to any
number and any kind of signals.

Following the flow shown in figure 2, preprocessing is performed on the training data.
As we are primarily interested in the behaviour close to a disruption, we align the samples
according to their end time and only consider the stable flat-top phase. Additionally,
all data are rescaled via min–max scaling to a range of [−0.5, 0.5]. This stabilizes the
optimization of the hyperparameters in the Student t filter algorithm, as the input to
the optimizer is of order 1. Missing data points are interpolated linearly. All discharges
are sampled every 25 ms. Then, we set up the state space Student t surrogate model.
In all experiments, a Matérn 3/2 kernel as in (2.6a–d) is used. We train the surrogate
model by optimizing its hyperparameters by minimizing the negative log likelihood using
the Scipy implementation of L-BFGS-B (Virtanen et al. 2020), and resulting values for
all experiments can be found in Appendix B, table 4. Each signal has its own set of
hyperparameters in order to be able to handle the dynamics that happen on different time
scales. Subsequently, we apply the Student t filter and smoother (Algorithms 1 and 2)
with optimized hyperparameters to our data. From the estimated distribution, we draw
1000 samples from the posterior using the Student t sampler and perform the colouring
transformations in the post-processing. Finally, after rescaling the samples to the original
data range, we evaluate the generated data sets by using the defined metrics. In general,
the generation of the time series samples is of O(N), but some of the metrics used to
evaluate the generate data are not. Therefore, we limited the number of samples in the
given analysis to 1000.

5. Results and analysis

For each disruption class, we draw 1000 samples from the posterior estimated by the
trained model and compare four available post-processing methods: (I) uncorrelated model
(here, no post-processing is performed), (II) colouring transformation with the empirical
covariance matrix, (III) colouring transformation with the empirical cross-covariance
matrix to account for lagged correlations and (IV) colouring transformation with the
sampled covariance matrix. The results for test cases (i) and (ii) are presented in Appendix
in C.1 and C.2.

In figure 3, a visual comparison is given between training data and generated data for
the colouring transformation with empirical cross-covariance matrix, together with the
estimated mean and 95 % confidence intervals for the disruption data from DIII-D for test
case (i). The model is able to capture the general trend given by the training data and can
also reproduce outliers. In general, the generated data fit the distribution of the training
data.

We continue with a thorough statistical analysis, which allows a ranking of the different
post-processing methods following the metrics outlined in § 3. The results are given in
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(b)(a)

FIGURE 3. (a) Training data and (b) 10 generated data sets from the state space Student t
surrogate model together with the estimated mean (black solid line) and 95 % confidence (grey
shaded region) for test case (i). Different colours correspond to different shots of training data
and different samples of the generated data, respectively.

Metric Uncorrelated Emp. cov Emp. crosscov Sample cov

W1 0.035 ± 0.013 0.035 ± 0.011 0.038 ± 0.012 0.036 ± 0.01
MMD p-value 0.68 ± 0.35 0.82 ± 0.18 0.92 ± 0.06 0.85 ± 0.13
MSE ρrs 0.019 ± 0.009 0.018 ± 0.009 0.0011 ± 0.0004 0.017 ± 0.009
Wemb 0.0592 ± 0.0006 0.0682 ± 0.0006 0.0766 ± 0.0007 0.0682 ± 0.006
MSE PSD [10−6] 5 ± 4 4 ± 3 3 ± 3 4 ± 3
DTW 0.8 ± 0.5 0.8 ± 0.4 0.7 ± 0.3 0.85 ± 0.4
MSE mfPCA 0.137 0.015 0.011 0.022

TABLE 1. Post-processing method comparison for test case (i). Mean and standard deviation over
five dimensions and N = 1000 samples generated from the trained model for statistical metrics
described in § 3. Best values are highlighted in bold.

table 1 for test case (i). Other experiments give similar results, as indicated in Appendix
in C.1 (table 5), and C.2 (table 7) for test cases (ii) and (iii), respectively.

To put the calculated metrics into context, we identify nearby non-disruptive shots
coming from the same specific campaign with similar operating conditions for test
case (ii). Then, we evaluate the Wasserstein distance between nearby non-disruptive and
disruptive discharges to compare the obtained Wasserstein distances for the generated
data for this disruption class. For test case (ii), we identify five nearby non-disruptive
shots 166433, 166434, 166442, 166444, 166455 and found W1 = 0.31 ± 0.12 between
non-disruptive and disruptive discharges. Additionally, the 2-D kernel PCA embedding
of nearby non-disruptive and disruptive discharges evaluated by the estimation of the 2-D
sliced Wasserstein distance is estimated. We observe Wemb = 0.74 ± 0.01 for test case (ii).
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Test case Uncorrelated Emp. cov Emp. crosscov Sample cov

(i) stable 0.03 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.03 ± 0.01
(i) unstable 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01
(ii) stable 0.02 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01
(ii) unstable 0.07 ± 0.02 0.07 ± 0.02 0.08 ± 0.02 0.08 ± 0.02
(iii) stable 0.08 ± 0.08 0.03 ± 0.02 0.02 ± 0.01 0.03 ± 0.02
(iii) unstable 0.07 ± 0.08 0.03 ± 0.03 0.02 ± 0.02 0.04 ± 0.03

TABLE 2. Post-processing method comparison for disruption data from DIII-D. Mean and
standard deviation of the Wasserstein metric between training and generated data for stable
and unstable phases of the disruptive discharges. The Wasserstein metric is averaged over five
dimensions and N = 1000 samples generated from the trained model.

The achieved Wasserstein distance between training and generated data for this disruption
class is significantly smaller in all post-processing methods, as given in table 5. The same
holds for the Wasserstein distance of the 2-D kernel PCA embedding. This is promising,
as it implies that the augmented data are much more similar to disruptive discharges
within their proper class than to non-disruptive discharges from the same campaign in
these measures.

For test cases (i) and (iii), non-disruptive discharges from those specific campaigns are
not available. Therefore, we investigate the distributions in stable and unstable phases
of the training and generated disruptive discharges in more detail. Using the average
time stamp of the manually labelled training data, this information about the stable
and unstable phase was propagated to label the generated data. Then we calculate the
Wasserstein distance averaged over all features between training and generated data for
both phases separately. The obtained results for all test cases are given in table 2. For
comparison, we also estimate the Wasserstein distances between stable and unstable
phases and found W1 = 0.36 ± 0.07 for test case (i), W1 = 0.37 ± 0.08 for test case (ii)
and W1 = 0.24 ± 0.1 for test case (iii). The obtained distances between training and
generated data within the different phases lie sufficiently below the distances between
stable and unstable parts of the discharges.

The superiority of the post-processing with the empirical cross-covariance is apparent
in figure 4, where the auto- (on the diagonal) and cross-covariance for all estimated signals
are shown. As we are inscribing the empirical cross-covariance into the uncorrelated
generated data from the model, the cross-covariance fits exactly, and the cross-covariances
lie on top of each other. When using either the empirical covariance or the sample
covariance, only the cross-covariance at lag 0 matches the cross-covariance of the training
data. Both post-processing methods give on average the same cross-covariance for 1000
generated samples. Additionally, the difference in covariance at lag 0 is shown in figure 5.

Figure 6 displays the kernel density of the 2-D kernel PCA embedding of the generated
data in the eigenspace of the training data. All four methods generate data that lie on the
same submanifold as the training data. However, when cross-covariances are included, the
shape of the training data is better reproduced. In test case (i) shown in figure 6, one of
the three extrema is not reproduced by the generated data. By evaluating the embedding
for different combinations of input signals, a likely explanation is that βn causes this
extremum. The reason why the generated data are not able to reproduce this extremum
in the eigenspace is due to the multi-modality of the distribution around the drop in βn
in the range 2.75–3.00 s. This is also one limitation of the presented model as it is not
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FIGURE 4. Comparison of the cross-covariance in the training and generated data with
cross-covariance (solid lines on top of each other, numerical error of order 10−16), covariance or
sampled covariance post-processing (dashed lines) and uncorrelated model (dotted line) for test
case (i).

(e)(b)(a) (c) (d )

FIGURE 5. Comparison of the covariance of training data (a) and the difference from the
generated data (b) with uncorrelated model, (c) empirical covariance, (d) cross-covariance and
(e) sampled covariance post-processing for test case (i). Note the different scaling in the colour
scale.

able to represent multi-modality of a cluster correctly. One possibility is to further refine
the considered clusters to augment the data base (in the extreme case, down to one single
discharge). In general, the number of available training data samples is very limited, as
we are working with manually labelled disruptive data from DIII-D. Therefore, the results
here only give an idea of whether the features apparent in the training data are also apparent
in the generated data.

Besides the Wasserstein distance, DTW is difficult to interpret without context. Again,
we calculate the metric between nearby non-disruptive and disruptive discharges for test
case (ii) and obtain DTW = 2.9 ± 1.6. The large error is due to averaging over all signals.
Overall, the distances between the generated and training data for this disruption class lie
below the distance between nearby non-disruptive and disruptive discharges for this test
case. In test cases (i) and (iii), where non-disruptive data from the same campaigns are not
available, DTW distances between generated and training data with included correlations
are of the same order as in test case (ii).

The training data were also reconstructed using the multivariate functional PCA with 5
components. We observe the following reconstruction mean squared errors for test case (i)
0.006, (ii) 0.003 and (iii) 0.008. We use the first five eigenfunctions of the training data
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(e)(b)(a) (c) (d )

FIGURE 6. Kernel density estimation of the 2-D kernel PCA embedding of the (a) training data
and generated data via (b) uncorrelated model, (c) empirical covariance, (d) cross-covariance
and (e) sampled covariance post-processing for test case (i). The embedded training data are
shown in grey in all plots. The colour scale representing the density is the same in all plots.

Train Test Training Uncorrelated Emp. cov Emp. crosscov Sample cov

original generated 0.75 0.74 0.75 0.74 0.78
generated original 0.88 0.86 0.90 0.90 0.89
mix mix 0.89 0.89 0.89 0.89 0.89

TABLE 3. The F1 score for DTW SOM clustering of different post-processing methods for test
case (i).

as a basis to project the generated data of each test case. The reconstruction error of the
generated data with included correlations in the post-processing is still of the same order.

Finally, we use SOMs for time series clustering to evaluate if the label prediction works
similarly well for the generated data. Here, we only use three classes, as the training data
look quite similar for different signals. The results for three different experiments are given
in table 3. Between the four post-processing methods, no significant difference is evident.
The clustering algorithm performs as well on all methods as on the original training data.

6. Conclusion and outlook

We applied Student t process regression in a state space formulation to introduce robust
data augmentation for multivariate time series. The state space formulation reduces the
computational complexity and is thus suitable for high-resolution time series. We used
the model to learn the distribution of time series coming from a given disruption class.
From the estimated posterior, time series were generated to augment the training database.
To evaluate if the original and generated data share key statistical properties, multiple
statistical analyses and classic machine learning clustering algorithms have been carried
out. We found that, within the scope of the used metrics, the generated time series
resemble the training data to a sufficient extent. An important limitation of the method
is multi-modality in the training data set which a Student t process cannot reproduce. In
this case, the training data sets can be further split.

When the method is applied to augment the training database for the neural network
disruption predictor, a thorough analysis of the existing (labelled) training database is
necessary to decide which disruption classes are not available in sufficient quantity. For
each of those classes, we will train the surrogate model and then be able to generate
data to balance the data set. Subsequently, the performance of the neural network trained
with the augmented training database will be evaluated. Due to the broad range of
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evaluation metrics, we are optimistic that the generated data will improve and robustify
the performance.

Another perspective regards disruption prediction of future devices, where little data
will be available to train machine learning-based approaches. In this case, the surrogate
model could be used and updated, as more data are being collected and can therefore
update machine learning-driven models.

To improve the proposed method, the integration of correlations and cross-correlations
on the level of a multivariate surrogate model instead of the colouring in post-processing
will be investigated in future work (Boyle & Frean 2004; Vandenberg-Rodes & Shahbaba
2015). Another possible extension of the current method could also take spatial
information of profiles into account (Wilkinson et al. 2020).

However, the approach developed here is sufficiently generic to be used for data
augmentation in a broad range of applications, e.g. time series in climate research.
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Appendix A. Algorithm

Algorithm 1 Multivariate Student-t filter (Solin & Särkkä 2015)
Init:

ŷ0|0 = y0, P0|0 = P0, ν0 = ν, γ0 = ID (A 1)

for t = 1, 2, ..., T do
Filter prediction:

ŷt|t−1 = At−1ŷt−1 (A 2)

P t|t−1 = At−1P t−1A�
t−1 + γt−1Qt−1, (A 3)

where At = exp(F
t) and Qt = P0 − AtP0A�
t .

Filter update (if measurement yt with mean ȳt is available):

vt = ȳt − H tŷt (A 4)

St = H tP t|t−1H�
t + R (A 5)

γt = γt−1

νt − 2
(νt−1 − 2 + vtS

−1
t vt) (A 6)

K t = P t|t−1H�
t S−1

t (A 7)

ŷt|t = ŷt|t−1 + K tvt (A 8)

P t|t = γt

γt−1
(P t|t−1 − K tStK

�
t ) (A 9)

end for
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Algorithm 2 Multivariate Student-t smoother (Solin & Särkkä 2015)
Init:

ŷT = ŷT|t, PT = PT|t (A 10)

for t = T − 1, T − 2, ..., 1 do
Smoother prediction:

ŷt+1|t = Atŷt|t (A 11)

P t+1|t = AtP t|tA�
t + γtQt (A 12)

Smoother update:

Gt = P t|tA�
t P−1

t+1|t (A 13)

ŷt|T = ŷt|t + Gt(ŷt+1|T − ŷt+1|t) (A 14)

P t|T = γT

γt
(P t|t − GtP t+1|TG�

t ) + GtP t+1|TG�
t (A 15)

end for

Appendix B. Hyperparameters

For the different test cases, we used the hyperparameters given in table 4.

Test case hyp βn li κ q95 n/nG

(i) ν 2.19 2.58 2.15 2.21 2.1
σ 2

n 0.024 0.01 0.056 0.029 0.02
σ 2 1.74 1.76 1.96 1.60 1.60
l 19.6 28.3 20.3 20.1 15.7

(ii) ν 3.4 2.57 2.36 2.49 2.7
σ 2

n 0.023 0.032 0.036 0.033 0.022
σ 2 1.65 0.53 1.36 1.87 1.91
l 17.7 19.8 9.63 19.1 16.8

(iii) ν 2.14 2.12 2.01 2.71 2.55
σ 2

n 0.163 0.044 0.493 0.016 0.011
σ 2 0.62 1.73 1.24 1.21 0.58
l 17.6 11.5 4.5 12.8 10.0

TABLE 4. Optimized hyperparameters for the state space Student t surrogate model for all test
cases.
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(b)(a)

FIGURE 7. (a) Training data and (b) 10 generated data sets from the state space Student t
surrogate model together with the estimated mean (black solid line) and 95 % confidence (grey
shaded region) for test case (ii). Different colours correspond to different shots of training data
and different samples of the generated data, respectively.

Metric Uncorrelated Emp. cov Emp. crosscov Sample cov

W1 0.027 ± 0.013 0.020 ± 0.006 0.022 ± 0.007 0.020 ± 0.006
MMD p-value 0.617 ± 0.335 0.869 ± 0.153 0.885 ± 0.107 0.876 ± 0.15
MSE ρrs 0.013 ± 0.017 0.013 ± 0.017 0.005 ± 0.005 0.014 ± 0.017
Wemb 0.0458 ± 0.0003 0.0496 ± 0.0004 0.0466 ± 0.0004 0.0539 ± 0.0004
MSE PSD [10−6] 7 ± 9 3 ± 4 1 ± 2 3 ± 4
DTW 0.86 ± 0.37 0.78 ± 0.32 0.65 ± 0.31 0.83 ± 0.39
MSE mfPCA 0.011 0.009 0.007 0.011

TABLE 5. Post-processing method comparison for test case (ii). Mean and standard deviation
over five dimensions and N = 1000 samples generated from the trained model for statistical
metrics described in § 3. Best values are highlighted in bold.

Appendix C. Results for other test cases

In the following sections, the results for test cases (ii) and (iii) are presented.

C.1. Test case (ii): disruption due to MHD instability during RMP ELM control
A visual comparison of the training and the generated data for test case (ii) is shown
in figure 7. Here, the disruption occurs due to magnetohydrodynamic (MHD) instability
induced by RMPs applied to control ELMs (shots 166452, 166454, 166457, 166460).
The results of the statistical analysis are given in table 5 and are of the same order as
for test case (i). Figures 8 and 9 show the cross-covariance and the covariance of the
training and generated data. Figure 10 displays the kernel density of 2-D PCA embedding
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FIGURE 8. Comparison of cross-covariance of training data and generated data with
cross-covariance (solid lines on top of each other, numerical error of order 10−16), covariance or
sampled covariance (dashed lines) post-processing and uncorrelated model (dotted line) for test
case (ii).

(e)(b)(a) (c) (d )

FIGURE 9. Comparison of covariance of training data (a) and difference of generated data
(b) with uncorrelated model, (c) empirical covariance, (d) cross-covariance and (e) sampled
covariance post-processing for test case (ii). Note the different scaling in the colour scale.

(e)(b)(a) (c) (d )

FIGURE 10. Kernel density estimation of the 2-D kernel PCA embedding of the (a) training data
and generated data via (b) uncorrelated model, (c) empirical covariance, (d) cross-covariance and
(e) sampled covariance post-processing for test case (ii). The embedded training data are shown
in grey in all plots. The colour scale representing the density is the same in all plots.

of the generated data. Again, the results show that the generated data lives on the same
submanifold for all four post-processing methods. In table 6, the F1 score for DTW SOM
clustering is given.
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Train Test Training Uncorrelated Emp. cov Emp. crosscov Sample cov

original generated 1.0 1.0 1.0 0.94 1.0
generated original 1.0 0.91 1.0 1.0 1.0
mix mix 1.0 1.0 1.0 0.96 1.0

TABLE 6. The F1 score for DTW SOM clustering of different post-processing methods for test
case (ii).

(b)(a)

FIGURE 11. (a) Training data and (b) 10 generated data sets from the state space Student t
surrogate model together with the estimated mean (black solid line) and 95 % confidence (grey
shaded region) for test case (iii). Different colours correspond to different shots of training data
and different samples of the generated data, respectively.

Metric Uncorrelated Emp. cov Emp. crosscov Sample cov

W1 0.071 ± 0.088 0.030 ± 0.026 0.025 ± 0.019 0.03 ± 0.028
MMD p-value 0.43 ± 0.32 0.86 ± 0.17 0.84 ± 0.09 0.87 ± 0.13
MSE ρrs 0.0083 ± 0.0075 0.0076 ± 0.007 0.0019 ± 0.0019 0.0070 ± 0.007
Wemb 0.1808 ± 0.0034 0.0621 ± 0.0011 0.0517 ± 0.0008 0.0656 ± 0.0012
MSE PSD [10−6] 240 ± 33 11 ± 19 0.8 ± 0.5 79 ± 13
DTW 1.7 ± 2.2 0.9 ± 0.6 0.8 ± 0.6 0.9 ± 0.6
MSE mfPCA 0.138 0.021 0.010 0.025

TABLE 7. Post-processing method comparison for test case (iii). Mean and standard deviation
over five dimensions and N = 1000 samples generated from the trained model for statistical
metrics described in § 3. Best values are highlighted in bold.

https://doi.org/10.1017/S0022377822000769 Published online by Cambridge University Press

3.4 Data augmentation for disruption prediction via robust surrogate models

107



20 K. Rath and others

FIGURE 12. Comparison of cross-covariance of training data and generated data with
cross-covariance (solid lines on top of each other, numerical error of order 10−16), covariance or
sampled covariance (dashed lines) post-processing and uncorrelated model (dotted line) for test
case (iii).

(e)(b)(a) (c) (d )

FIGURE 13. Comparison of covariance of training data (a) and difference of generated data
(b) with uncorrelated model, (c) empirical covariance, (d) cross-covariance and (e) sampled
covariance post-processing for test case (iii). Note the different scaling in the colour scale.

(e)(b)(a) (c) (d )

FIGURE 14. Kernel density estimation of the 2-D kernel PCA embedding of the (a) training data
and generated data via (b) uncorrelated model, (c) empirical covariance, (d) cross-covariance and
(e) sampled covariance post-processing for test case (iii). The embedded training data are shown
in grey in all plots. The colour scale representing the density is the same in all plots.

C.2. Test case (iii): density accumulation
For the third test case with a disruption occurring due to density accumulation (shots
166933, 166934, 166937), the visual comparison is given in figure 11 followed by the
results of the statistical analysis in table 7. The cross-covariance and covariance are
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Train Test Training Uncorrelated Emp. cov Emp. crosscov Sample cov

original generated 0.81 0.98 1.0 0.85 0.99
generated original 0.99 0.92 0.93 0.93 0.93
mix mix 0.96 0.96 0.96 0.94 0.97

TABLE 8. The F1 score for DTW SOM clustering of different post-processing methods for test
case (iii).

displayed in figures 12 and 13, respectively. The embedding is shown in figure 14. Here, the
skew of the embedding caused by the broad distribution of κ is not perfectly reproduced
by the generated data. However, the results should be regarded with caution as only 3
training data samples are available in this test case. This presents also a limit to this
metric. However, when looking at samples of the generated data shown in figure 11, this
broad range present in the training data is still well reproduced by the generated data. In
this test case, the uncorrelated model performs worst as correlations are not reproduced.
The results for generated data with included correlations are again of the same order of
magnitude as for test cases (i) and (ii). The results obtained for the F1 score for DTW
SOM clustering are given in table 8.
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3.5 Dependent state space Student-t processes for imputation and
data augmentation in plasma diagnostics

Main novelty:
We introduce a fully multivariate state space Student-t process model for imputing and augmenting
time-series data in plasma diagnostics. Correlations between input signals are directly included
in the model.
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Abstract
Multivariate time series measurements in plasma diagnostics present several
challenges when training machine learning models: the availability of only a few
labeled data increases the risk of overfitting, and missing data points or outliers
due to sensor failures pose additional difficulties. To overcome these issues, we
introduce a fast and robust regression model that enables imputation of miss-
ing points and data augmentation by massive sampling while exploiting the
inherent correlation between input signals. The underlying Student-t process
allows for a noise distribution with heavy tails and thus produces robust results
in the case of outliers. We consider the state space form of the Student-t pro-
cess, which reduces the computational complexity and makes the model suitable
for high-resolution time series. We evaluate the performance of the proposed
method using two test cases, one of which was inspired by measurements of flux
loop signals.

K E Y W O R D S
data augmentation, data imputation, Gaussian processes, multivariate time series, state space
models, Student-t processes, surrogate models

1 INTRODUCTION

Artificial neural networks[1] are a flexible machine learning tool applied in many areas to solve tasks such as nonlinear
regression and classification. To produce robust predictions and avoid overfitting, neural networks require a sufficient
amount of training data. In common applications of these networks such as image classification, data sets usually contain
tens or hundreds of thousands of training samples. This number is then increased artificially by shifted and distorted
versions of the existing images—a process known as data augmentation.[2,3] In fusion plasma experiments, diagnostic
data consist of correlated high-resolution time series for each discharge. However, the number of discharges of a certain
class is small (usually much less than 100). For the straightforward application of artificial neural networks and other
“big-data” machine learning methods in this area, it is thus even more important to augment training data by statistically
equivalent artificial samples. One possible method has been presented based on the application of Student-t process (TP)
surrogates to correlated multi-channel diagnostics data.[4]

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
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An important practical issue has remained unresolved in this previous work; when working with plasma diag-
nostics data, otherwise regularly spaced data points are partially missing due to sensor failures or non-converging
calculation routines and outliers caused by, for example, neutron impact on sensors. Up to now, basic imputation
by linear interpolation has been used to insert these points. Due to correlations, signal channels can be recon-
structed more intelligently. A multivariate surrogate model should include the solution to this problem naturally:
it can capture the dynamics of these series data, impute missing data points, and could serve as a model for data
augmentation to generate quasi-realistic training data. So far, the correlation between signal channels has only been
accounted for in post-processing via coloring transformations.[4] The present aim is to include correlations directly in
the surrogate.

Here, we rely on stochastic processes—of which, the Gaussian process (GP) is the most widely used.[5] In regression
with GPs, the posterior distribution of unknown values is inferred, making it a powerful tool for nonlinear multivari-
ate interpolation.[6] Correlations over time are captured by a covariance function or kernel, which may be designed
for specific tasks (e.g., to fulfill laws of physics[7,8]). A generalization of GPs are TPs[9] allowing a more robust estima-
tion of mean and variance for data with outliers. Regression with usual GPs or TPs suffers from extensive computing
times—scaling cubically in the number of samples—thus making regression with high-resolution time series pro-
hibitively expensive. However, this computational complexity can be reduced when using the state space formulation of
the stochastic process by solving a resulting stochastic differential equation via Bayesian filtering and smoothing.[10,11]

Previous work on multivariate time series inference with stochastic processes already uses GPs in a state space
formulation.[12]

In this paper, we present a state space formulation of a full multivariate TP model using a Matérn cross-covariance
kernel[13] and its application to data representative for typical plasma diagnostics signals. Due to the particular structure
of the kernel, the underlying correlations of the training data are directly included in the model. Thus, information from
other input signals can be used to impute missing data points, resulting in more reliable posterior estimates.

2 METHODS

2.1 Multivariate Gaussian and Student-t processes

A multivariate function f(t) ∈ Rd that follows a multivariate GP with zero mean is given by[5,6]

f ∼  (
0,K

(
t, t′

))
, (1)

where K
(

t, t′
)

is the positive semidefinite matrix-valued covariance function. Its entries give the covariance between the
dimensions of f(t). When performing regression, we aggregate input values into a d × n design matrix T. Using n observed
function values in each dimension d, Y ∈ Rd×n with components y(t) = f (t) + 𝝐 that contain local uncorrelated noise 𝝐,
the posterior mean and covariance for a test data point at t∗ are given by

E
[
f (t∗)

]
= k⊤∗K−1

n Y, (2a)

V
[
f (t∗)

]
= k∗∗ − k⊤∗K−1

n k∗, (2b)

where k∗ = K (T, t∗), k∗∗ = K (t∗, t∗), and Kn = K(T,T) + 𝚺n, where 𝚺n ∈ Rnd×nd is the output noise covariance matrix
(in the simplest case, diagonal with entries 𝜎2

n).
A generalization of multivariate GP regression is given via the Student-t process (TP),[9,14–16]

f ∼   (
0,K

(
t, t′

)
, �̃�
)
, (3)

where the additional hyperparameter �̃� > 2 controls the tail of the process. When �̃� → ∞, we recover a GP, whereas small
values of �̃� correspond to heavy tails.
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Realizations y(t) = f(t) + 𝝐 are multivariate Student-t distributed with the density

T(y ∣ 0,K, �̃�) =
Γ
(
�̃�+d

2

)

Γ
(
�̃�
2

) 1
((�̃� − 2)𝜋)d∕2

1
|K|1∕2

(
1 + 1

�̃� − 2 yK−1y
)− �̃�+d

2 , (4)

with K evaluated at the respective t values. In TP regression, the prediction is given in closed form similar to GP
regression,[14]

E
[
f (t∗)

]
= k⊤∗K−1

n Y, (5a)

V
[
f (t∗)

]
=
�̃� − 2 + Y⊤K−1

n Y
�̃� − 2 + d

(
k∗∗ − k⊤∗K−1

n k∗
)
. (5b)

For both stochastic processes, the choice of the covariance function is crucial, as it defines the process’ behavior.[6]

Here, we use a form of multivariate covariance functions,[13]

C =
⎛
⎜⎜⎜⎝

C11 · · · C1d

⋮ ⋱ ⋮

Cd1 · · · Cdd

⎞
⎟⎟⎟⎠
, (6)

where each Cii is a univariate covariance function and Cij is the cross-covariance function between dimensions. Each
univariate covariance between measurements taken at two points separated by distance h is given by a Matérn function
M(⋅),

Cii = 𝜎2
iiM (h|𝜈ii, lii) , (7)

with variance parameter 𝜎2
ii, smoothness parameter 𝜈ii, and length scale lii. The Matérn function M(⋅) reads

M𝜈ii(h) = 𝜎2
ii

21−𝜈ii

Γ (𝜈ii)

(√
2𝜈ii

h
lii

)𝜈ii

K𝜈ii

(√
2𝜈ii

h
lii

)
, (8)

where Γ(⋅) is the gamma function and K𝜈ii(⋅) is the modified Bessel function (second kind). For 𝜈ii →∞, we obtain the
squared exponential covariance function. The cross-covariances are of the following form:

Cij = Cji = 𝜌ij𝜎i𝜎jM
(

h|𝜈ij, lij
)
, (9)

where 𝜌ij is the correlation between input dimension i and j. The choice of the hyperparameters 𝜈ij and lij is crucial, as it is
necessary to ensure that the covariance matrix is positive definite.[13] In the following, we set 𝜈ij fixed for all input dimen-
sions to 3∕2. This simplifies the transformation into a stochastic differential equation (discussed in Section 2.2) as there
exists an exact representation for half-integer values of 𝜈ii.[10] In the present case of plasma diagnostic data with individ-
ual and complicated physical processes, abrupt changes can happen over short times. We still want to retain first-order
differentiability over time in the results.

This choice simplifies the expression in Equation (8) as now the covariance function can be written as a product of an
exponential and polynomial of order p = 1:

M𝜈ii=3∕2(h) =
(

1 +
√

3h
lii

)
exp

(
−
√

3h
lii

)
. (10)

In addition, the smoothness of the individual input channels is similar. Therefore, 𝜈ii is the same for all dimensions. In
general, however, it is possible to use different smoothness parameters for different dimensions in the presented frame-
work as long as the validity conditions are satisfied to generate a valid covariance matrix. This is explained in detail
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in Gneiting et al.[13] Further, we choose l2
ij =

1
2

(
l2
i + l2

j

)
. This choice reduces the computational effort of the hyper-

parameter optimization while still producing satisfying results. In general, however, it is also possible to optimize the
cross-covariance lengthscale parameters individually. This choice of hyperparameters in the bivariate full Matérn model
simplifies the validity conditions as outlined in Theorem 4 in Gneiting et al.[13] The resulting covariance matrix is valid
if the correlation 𝜌12 satisfies[13]

∣ 𝜌12 ∣≤ l𝜈1
1 l𝜈2

2

l𝜈1+𝜈2
12

Γ
(

1
2 (𝜈1 + 𝜈2)

)

Γ(𝜈1)1∕2Γ(𝜈2)1∕2 . (11)

All other hyperparameters are optimized by minimizing the negative log-likelihood.

2.2 Dependent state space Student-t processes

It is possible to represent the multivariate random processes f of Equation (1) with covariance K
(

t, t′
)

as the solution of
a linear time invariant stochastic differential equation,[10,11,17]

d̂f(t)
dt = F f̂ (t) + Lw(t), (12)

f (ti) = H f̂ (ti) , (13)

with f̂(t) =
(

f1(t), df1(t)
dt , … , dm−1f1(t)

dtm−1 , … , fd(t), dfd(t)
dt , … , dm−1fd(t)

dtm−1

)⊤
containing d processes and their corresponding first m

derivatives. In the following part, Q is the spectral density of a white noise process w(t). H = (1, 0, … , 0)⊗ Id is the
observation matrix, L = (0, 1, … , 0)⊗ Id is the noise effect matrix (where ⊗ denotes the Kronecker product), and Id
is the d-dimensional identity matrix. Applying Hf̂ (ti) yields the observed measurements (f1(t), … , fd(t)). F is the state
transition matrix, which is derived from the underlying TP we want to transform.[10,11,18]

For discrete time points tk, the closed-form solution of Equation (13) is[10]

f (tk) = fk = Ak−1 fk−1 + qk−1, (14)

with normally distributed f0 ∼ (0, 𝛾P0) and qk−1 ∼ (0, 𝛾Qk−1), and with 𝛾 being an inverse gamma random
variable.[14] The state transition covariance matrix is given by Qk = P0 −AkP0A⊤

k and Ak = exp(FΔtk), where Δtk is the
time between subsequent measurements. The initial state covariance P0 is given by the stationary covariance, which is
given in turn by the Lyapunov equation FP0 + P0F⊤ + LQkL⊤ = 0.

For the choice of covariance function as described in Equation (6) with 𝜈ii = 3∕2, the state transition and the initial
covariance matrices are composed of block matrices Fij and P0,ij, respectively, and are of the following forms:

Fij = 𝜌ij

⎛
⎜⎜⎜⎝

0 1 0
− 𝜆2

ij −2𝜆ij 0
0 0 −∞

⎞
⎟⎟⎟⎠
, (15)

P0,ij = 𝜌ij

⎛
⎜⎜⎜⎝

𝜎i𝜎j 0 0
0 𝜎i𝜎j𝜆i𝜆j 0
0 0 𝜎n,i𝜎n,j

⎞
⎟⎟⎟⎠
, (16)

with 𝜆ij =
√

6√
l2
i +l2

j

. The measurement noise 𝜎n,i is augmented into the state as an additional component.[14] The current

choice of the covariance function allows to immediately infer df(t)∕dt from the given observations.[11] It is also possible to
use derivative observations to regularize the regression. In this case, the observation matrix H changes to (1, 1, … , 0)⊗ Id.
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Equation (14) can be solved recursively using a Bayesian filter and smoother that estimates the joint posterior
distribution given all (noisy) measurements using Bayes’ rule[10]:

p
(

f0∶n|Y1∶n
)
=

p
(
Y1∶n|f0∶n

)
∣ p

(
f0∶n

)
p (Y1∶n)

. (17)

Since the calculation of the full posterior is not computationally feasible, we consider marginal distributions estimated
by the Bayesian filter and smoother[10,11,14]:

• filtering distribution p
(

fk|Y1∶k
)

estimated by a Bayesian filter taking into account the current and all previous
measurements;

• predictive distribution of the future state fk+n estimated by a Bayesian filter taking into account all previous measure-
ments: p

(
fk+n|Y1∶k

)
;

• smoothing distribution p
(

fk|Y1∶n
)

estimated by a Bayesian smoother taking into account all measurements.

The marginal distributions for GPs and TPs are calculated as closed-form solutions via a Kalman filter and
Rauch–Tung–Striebel smoother[10,11,18] and Student-t filter and smoother,[14] respectively. The smoothing distribution is
equivalent to the prediction of a GP or TP given in Equations (2a) and (2b) and Equations (5a) and (5b), respectively.

The advantage of reformulating Equation (1) into Equation (14) is the reduction of computational complexity, as
the GP regression scales with  (

N3), where N = nd is the total number of observations, while Bayesian filtering and
smoothing is only of complexity  (

m3N
)
, where m is the number of included derivatives (m ≫ N).[14]

3 NUMERICAL EXPERIMENTS

We apply the presented method to two synthetic test cases and evaluate its performance in comparison to an independent
state space TP.

The state space TP is trained by optimizing the hyperparameters lii, 𝜎2
ii, 𝜎

2
n,ii for each univariate Matérn process indi-

vidually by minimizing the negative log-likelihood.[12,14] The correlation 𝜌ij as in Equation (9) is the empirical correlation
calculated from the training data. Equation (11) is satisfied. Estimated hyperparameters for both test cases are given in
Table 1.

3.1 Synthetic example

We first apply the presented method to 100 data points sampled from two identical time series,

f (t + Δt) = sin(0.04𝜋t) + sin(0.07𝜋t) + 0.2 (3), (18)

T A B L E 1 Optimized hyperparameters for the state space Student-t surrogate model for both test cases.

Test case Hyp f1 f2

(1) 𝜈ii 3.08 3.08

𝜎2
n,ii 0.15 0.15

𝜎2
ii 1.61 1.61

lii 18.08 18.08

(2) 𝜈ii 3.0 3.0

𝜎2
n,ii 0.09 0.09

𝜎2
ii 2.06 2.06

lii 27.08 25.08
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with t ∈ [0,100] that are shifted in time with an offset of Δt = −0.15. Both functions are corrupted by individually
randomly sampled Student-t distributed noise,  (3). The correlation between the observed function values is 𝜌12 = −0.57.
To create artificial missing values, 15 measurements are removed from signal 2 in range t ∈ [40, 65].

3.2 Plasma diagnostics data

The second test case is inspired by two correlated flux loop signals during an edge localized mode[19] (ELM). Here, we use
a function similar to the plotted signals in the reference, which is overlayed with t-distributed noise: f(t) = (f1(t), f2(t))⊤ =
f̃(t) + 𝜎n (3), where 𝜎n = 0.2. The correlation between f1 and f2 is given by 𝜌12 = −0.68. In this test case, measurements are
missing for f1 in the range t ∈ [8.4,33.6] (60 missing points) and for f2 in the range t ∈ [117.6,168.0] (120 missing points).

4 RESULTS AND ANALYSIS

4.1 Data imputation

For test case (1), the mean and 95% confidence band estimated by the dependent state space TP together with the training
data and the true underlying function is shown in the left panels in Figure 1. In comparison to the independent model
shown in the right panels in Figure, the mean of f2 is better captured as the correlation is taken into account. As the

F I G U R E 1 Independent (left) and dependent (right) state space TP model applied to test case (1). Vertical bars indicate regions where
measurements are missing.
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RATH et al. 7 of 12

F I G U R E 2 Independent (left) and dependent (right) state space TP model applied to test case (2). Vertical bars indicate regions where
measurements are missing.

independent model does not have any information in the range t ∈ [40, 65] where measurements are missing, the esti-
mation of the mean is not as accurate as in the correlated model. We evaluate the mean absolute error (MAE) to the
underlying ground truth for both models and find MAEf1 = 0.04 and MAEf2 = 0.06 when using the dependent model,
whereas we obtain MAEf1 = 0.06 and MAEf2 = 0.22 for the independent model. The very different results for f1 and f2 of
the independent model can be explained by the missing measurements in f2, as the independent model only interpolates
between existing measurement points.

The results for test case (2) are shown in Figure 2. For the missing measurements for f1, the results are similar to test
case (1): the independent model is not able to capture the oscillating behavior of the underlying ground truth, and this
behavior is only correctly represented by the dependent model. However, in the range t ∈ [8.4,33.6]where measurements
are missing in f2, the independent model seems to outperform the dependent model, as the overall function behavior is
almost linear in this region. Additionally, the local correlation between f1 and f2 in this time span seems to be smaller than
the overall correlation. Therefore, the dependent model overestimates the correlation. However, the underlying ground
truth still lies within the 95% confidence bands estimated by the dependent model. Again, we evaluate the MAE and
obtain MAEf1 = 0.18 and MAEf2 = 0.16 when using the dependent model and MAEf1 = 0.46 and MAEf2 = 0.08 for the
independent model.

4.2 Data augmentation

For the two test cases, we further evaluate the performance of the presented method for data augmentation by drawing
1000 samples from the estimated posterior distribution.[20] One sample is shown in Figure 3. We then perform statistical
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F I G U R E 3 Data augmentation using the independent (left) and dependent (right) state space TP for test case (2). Mean and 95%
covariance are shown as a black solid line and grey shaded regions, respectively. One sample drawn from the estimated posterior is depicted
as a solid line in magenta.

F I G U R E 4 Noise distribution of training and generated data for test case (2). The probability density function of a Student-t
distribution with �̃� = 3 is shown as a solid black line.

analyses similar to those performed by Rath et al.[4] to evaluate the quality of the generated data. This is done by comparing
the auto- and cross-correlation,

𝜌rs (t1, t2) =
E
[(

yr,t1
− 𝜇r,t1

) (
ys,t2

− 𝜇s,t2

)]
𝜎r,t1𝜎s,t2

, (19)

where 𝜇i,ti is the mean and 𝜎i,ti is the standard deviation of yi,ti
between the training and generated data using the mean

squared error (MSE).
Additionally, we calculate the power spectral density (PSD) that estimates the power distribution across the frequency

of a signal. Again, the MSE of the PSD of the training data is calculated.
To compare the distributions of training and generated data, we use the Wasserstein-1 (W1) metric[21] for each dimen-

sion individually and globally over time. We use the W1 metric also to assess the noise distribution ϵ of training and
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T A B L E 2 Data augmentation: model comparison for test case (1) for 1000 samples generated from the trained model for statistical
metrics described in Section 4

Independent Dependent

Metric f1 f2 f1 f2

W1 0.03 0.19 0.03 0.05

noise distr. W1 0.08 0.06 0.04 0.03

MSE 𝜌rs 0.0012 0.0012

MSE PSD
[
10−6] 6 14 6 9

Note: Best values are highlighted in bold.

T A B L E 3 Data augmentation: model comparison for test case (2) for 1000 samples generated from the trained model for statistical
metrics described in Section 4.

Independent Dependent

Metric f1 f2 f1 f2

W1 0.43 0.11 0.10 0.08

noise distr. W1 0.49 0.11 0.18 0.02

MSE 𝜌rs 0.012 0.003

MSE PSD
[
10−5] 1494 24 11 2

Note: Best values are highlighted in bold.

F I G U R E 5 Data augmentation using the independent (left) and dependent (right) state space TP for test case (2) with different
hyperparameters. Mean and 95% covariance are shown as a black solid line and grey shaded regions, respectively. One sample drawn from
the estimated posterior is depicted as a solid line in magenta.
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F I G U R E 6 Independent (left) and dependent (right) state space TP models applied to test case (2) with different set of
hyperparameters. Vertical bars indicate regions where measurements are missing.

generated data in order to see whether the latter follows a Student-t distribution. Additionally, a visual comparison is
given in Figure 4 for test case (1). The noise distribution for f1 has heavier tails, as there are missing measurements and the
covariance is larger in this range. Therefore, the drawn samples contain more noise in comparison to the training data.

The results for test cases (1) and (2) are given in Tables 2 and 3, respectively. The local correlation achieved by the
dependent model is −0.68 for test case (1) and −0.60 for test case (2). The independent model generates data with a
correlation of −0.47 for test case (1) and −0.09 for test case (2). A similar analysis with an independent GP model yields
a comparable mean, but overestimates the variance due to outliers. Overall, the dependent TP model outperforms the
independent one.

The current choice of hyperparameters produces a quite extensive confidence band due to the estimated combination
of noise covariance and length scale. This can be suppressed by a different choice of hyperparameters (𝜈11 = 𝜈22 = 3.0,
𝜎2

n,ii = 0.5, 𝜎2
ii = 2.0, l11 = l22 = 4) as depicted in Figure 5. Here, the mean is not captured as well as before when there are

missing measurements (shown in Figure 6). In addition, it is possible to use time derivatives in the current framework
to further regularize the regression if independent observations by diagnostics dedicated to derivative observation are
available.

5 CONCLUSION

In this paper, we have presented a dependent state space Student-t process model, which directly includes the corre-
lation of multivariate time series by using a multivariate Matérn kernel. The heavy-tailed noise distribution of the TP
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allows more robust results when challenging outliers are present in the measurements. The advantage over traditional
TP regression is the reduced computational complexity. On the basis of two test cases inspired by real-world problems
in plasma diagnostics, we have shown that the dependent model is more accurate for missing data points in comparison
to an independent model that does not take correlations between input signals into account. The included correlations
do not cause any additional computational effort with the presented choice of hyperparameters. One detail left open
for possible future work is the global optimization of hyperparameters without the simplifications of using each signal
independently for this purpose. Depending on the complexity of the application, it could be beneficial also to optimize
cross-covariance hyperparameters. Here, the trade-off between accuracy and increased computational effort has to be con-
sidered. In addition, more complex kernels could be incorporated, for example, different smoothness for different input
channels in the Matérn kernel if necessary for the considered application. Overall, we consider the presented approach
to be well-suited for data imputation as well as data augmentation in multichannel time series sensor data, in particu-
lar for plasma diagnostics. The next step would be to incorporate the augmented samples in the training of black-box
machine learning routines for disruption prediction. Another application could be as a tool to augment shot databases
by typical samples to be used for uncertainty quantification and their propagation to numerical models that rely on
these data.
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4 Conclusion and Future Work

This thesis comprises five contributing publications addressing different problems for incorporating
physical knowledge into machine learning models. Three contributions addressed the direct incor-
poration of laws of physics into GP regression models using a specialized kernel. The construction
of specialized kernels exactly fulfilling underlying PDEs with singular sources is presented in Al-
bert and Rath (2020). The surrogate model representing Hamiltonian flow and Poincaré maps has
an exact symplectic property and can be used as a fast orbit emulator and for early classification
of chaotic orbits, especially when a closed form expression for Poincaré maps is not available (Rath
et al., 2021b,a). The contributions on data augmentation and imputation address the challenge
of few (labeled) training data for disruption prediction by presenting two approaches for learning
(noisy) multivariate time-series data (Rath et al., 2022, 2023).

While the presented publications answer some questions, there still remain open points that require
further exploration and are worth addressing in future work. Several of these have already been
mentioned in the respective contributions. In the following, we will examine them further.

Specialized model architectures As discussed in Rath et al. (2021b), SympGPR is naturally
limited in the sense that the generating function might be non-unique. We addressed this by
splitting the GP into several sub-steps which requires more training but leads to satisfying and
stable results in the presented case of field line following in a tokamak with a non-axisymmetric
perturbation. However, these intermediate sub-steps can not be identified easily for some Hamil-
tonian systems. A possibility to tackle the non-uniqueness of the generating function is to consider
an unwinding transformation in order to get a unique generating function allowing predictions by
the SympGPR. Another path could be the utilization of local experts in phase space: for different
regions in phase space, local models are trained to make predictions. However, the combination
with symplecticity is non-trivial.
A natural further development is the extension to higher-order integration schemes, e.g., Störmer-
Verlet, midpoint, or Gauss-Legendre to improve the prediction accuracy of orbits as well as the
Hamiltonian H. Especially, the fast explicit SympGPR scheme in combination with a Störmer-
Verlet scheme seems promising to improve the obtained accuracy while still leveraging the fast
computation.
The predictive variance is directly available from the SympGPR and could be used for uncertainty
quantification. The variance should be considered especially when it comes to orbit classification
to distinguish regular from chaotic orbits. In future work, the application case is the distinction
between confined and lost alpha particles in fusion devices. Here, a thorough investigation of the
transition barrier is needed for different device geometries, similar as in Albert et al. (2023). Ad-
ditionally, benchmarking the presented approach against existing methods such as the topological
classifier (Albert et al., 2023), using the fractal dimension (Albert et al., 2020) or level set learning
method (Ruth and Bindel, 2023) provides insight into its performance.

125



4. Conclusion and Future Work

Data augmentation and imputation Both contributions on data augmentation and imputation
consider only temporal data. A promising path to extend the proposed model is to consider spa-
tial information of profiles. The state space model can be extended seamlessly to spatio-temporal
models (Wilkinson et al., 2020; Aymerich et al., 2022).
The proposed models could further be improved by globally optimizing hyperparameters and also
numerically optimizing cross-correlation parameters in the dependent model. The possibly higher
accuracy comes, however, with increased computational complexity.
Depending on the application case, another possibility to enhance the flexibility of the model is
the incorporation of more complex kernel functions, e.g., Matérn kernels with different smoothness
parameters for different input dimensions.
As the training database is imbalanced, especially with regard to different disruption classes, a
thorough analysis is crucial for assessing which disruption classes are not available in sufficient
quantity. Then, different local models are trained on the input channels under investigation for
the different disruption classes. If incoming data is gappy, the correlated model should be used
first to impute missing data. From the trained local models, samples are then drawn that augment
the database. A limitation of the proposed method is that it cannot handle multi-modality in the
training data. This is circumvented by further splitting the training data set.
For the final analysis of the performance of the proposed data augmentation algorithm, the gen-
erated samples should be incorporated in the training of black-box ML models for disruption
prediction. Here, the robustness of the predictions is the driving criterion.
With regard to future fusion devices such as ITER or SPARC, only little data will be available to
train machine learning-based approaches for disruption prediction when operation starts. How-
ever, it is of utter importance to mitigate disruptions as they are potentially harmful for the
devices. Here, the presented data augmentation model could be utilized to generate samples to
train ML models. Whenever new measurement data are available, the local models could be
updated.
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Offen, C. and Ober-Blöbaum, S. (2022). Symplectic integration of learned Hamiltonian systems.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(1):013122.

O’Hagan, A. (1978). Curve fitting and optimal design for prediction. Journal of the Royal
Statistical Society. Series B (Methodological), 40(1):1–42.

O’Hagan, A. (1992). Some Bayesian numerical analysis. Bayesian Statistics, 4(345–363):4–2.

Ott, E. (2002). Chaos in Dynamical Systems. Cambridge University Press, 2 edition.

Pau, A., Fanni, A., Carcangiu, S., Cannas, B., Sias, G., Murari, A., and and, F. R. (2019). A
machine learning approach based on generative topographic mapping for disruption prevention
and avoidance at JET. Nuclear Fusion, 59(10):106017.

Peng, L. and Mohseni, K. (2016). Symplectic Model Reduction of Hamiltonian Systems. SIAM
Journal on Scientific Computing, 38(1):A1–A27.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017). Inferring solutions of differential equa-
tions using noisy multi-fidelity data. Journal of Computational Physics, 335:736 – 746.

Rasmussen, C. E. (2003). Gaussian Processes to Speed up Hybrid Monte Carlo for Expensive
Bayesian Integrals. In Bayesian Statistics 7: Proceedings of the Seventh Valencia International
Meeting. Oxford University Press.

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learning. The
MIT Press.

Rath, K., Albert, C. G., Bischl, B., and von Toussaint, U. (2021a). Orbit Classification and
Sensitivity Analysis in Dynamical Systems Using Surrogate Models. Physical Sciences Forum,
3(1).

Rath, K., Albert, C. G., Bischl, B., and von Toussaint, U. (2021b). Symplectic Gaussian process
regression of maps in Hamiltonian systems. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 31(5):053121.
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Särkkä, S. (2011). Linear operators and stochastic partial differential equations in gaussian process
regression. In Honkela, T., Duch, W., Girolami, M., and Kaski, S., editors, Artificial Neural
Networks and Machine Learning – ICANN 2011, pages 151–158, Berlin, Heidelberg. Springer
Berlin Heidelberg.
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