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Zusammenfassung

Menschliches Blutplasma besteht aus einer komplexen Mischung von
Biomolekülen. Im Vergleich zu invasiven klinischen Tests, bei denen
die molekulare Abdeckung und die Analysetiefe oft begrenzt sind, stellt
die Infrarotspektroskopie komplexer Bioflüssigkeiten einen wertvollen,
minimal-invasiven diagnostischen Ansatz dar. In mehreren Studien wurde
die Wirksamkeit des blutbasierten molekularen Infrarot-Fingerabdrucks zur
Bestimmung des Gesundheitszustands einer Person untersucht. Hierbei
wurden hauptsächlich Fourier-Transform-Infrarotspektrometer eingesetzt.
Aufgrund der limitierten Sensitivität der aktuell verfügbaren Geräte gestaltet
sich die Detektion schwacher Infrarotabsorption schwierig. Daher wurde in
dieser Dissertation die Femtosekundenlasertechnologie zur Entwicklung eines
schnell scannenden, feldauflösenden Infrarot-Spektrometers mit Vorteilen
in Bezug auf Sensitivität, Zeitgenauigkeit und Durchsatz genutzt, um die
diagnostischen Möglichkeiten zu verbessern.

Ein zuvor entwickelter Yb:YAG-Scheibenlaseroszillator, welcher 16-fs-
Pulse mit einer Repetitionsrate von 28 MHz emittiert, wurde genutzt, um
60-fs-Pulse im mittleren Infrarotbereich zwischen 6,5 µm und 11 µm (-20 dB)
zu erzeugen. Es wurden zwei neue Methoden zur schnellen elektro-optischen
Abtastung mit kHz-Raten demonstriert. Bei der ersten Methode variierte
die optische Verzögerung mithilfe einer Sonotrode. Ein Teil der optischen
Leistung des 16-fs-Pulses wurde als Gate für die elektro-optische Abtastung
genutzt. Die Gate-Pulse wurden an der Sonotrode reflektiert, um schnelle
Verzögerungsscans zu ermöglichen, bei der 38.000 Spuren der mittleren
Infrarot-Wellenform pro Sekunde erfasst wurden. In einem einzigen Scan,
der in 26 µs durchgeführt wurde, wurde ein Dynamikumfang des elektrischen
Feldes von 150 mit einer zeitlichen Präzision von 34 Attosekunden an den
Nulldurchgangspunkten erreicht.

Bei der zweiten Methode wurden die Gate-Pulse für die elektro-optische
Abtastung von einem Er:Fiber-Laseroszillator geliefert. Eine elektronisch
gesteuerte Modulation der Repetitionsrate wurde verwendet, um die rela-
tive Verzögerung zwischen den Pulsen im mittleren Infrarotbereich und den
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Gate-Pulsen zu scannen. Die neue elektro-optische Verzögerungsverfolgung-
stechnik ermöglichte die genaue Abbildung der relativen Verzögerung, indem
eine schmalbandige Mittlere-IR-Wellenform mit einer bekannten optischen
Frequenz als Kalibrationssignal erzeugt und durch elektro-optisches Scannen
erfasst wurde. Die Er:Fiber-Laserpulse wurden in zwei geteilt, wobei ein Teil
als Gate für das Kalibrationssignal und der andere Teil als Gate für die bre-
itbandige mittlere IR-Wellenform diente, die aus der Probenküvette austrat.
Es werden 2.800 Wellenformspuren pro Sekunde erfasst.

In früheren Arbeiten über hochpräzise Dual-Oszillator-Spektrometer
wurde ein konstanter Offset zwischen den Repetitionsraten verwendet. Dies
entspricht bei Repetitionsraten im MHz-Bereich Verzögerungsbereichen
im Nanosekundenbereich, die für die Gasphasenspektroskopie geeignet
sind. Für die Kondensationsphasenspektroskopie hingegen sind deutlich
kürzere Verzögerungsbereiche in der Größenordnung von Pikosekunden
erforderlich. Das Dual-Oszillator-Schnellabtastungs-Spektrometer mit
elektro-optischer Verzögerungsnachführung ermöglicht eine präzise Abtas-
tung von Pikosekunden-Verzögerungen mit einem höheren Tastverhältnis
als bisherige Methoden. In einem einzigen Scan, der in 357 µs durchgeführt
wurde, wurde eine Zeitpräzision von 50 Attosekunden für die Nulldurchgänge
der Wellenform im Verzögerungsfenster mit der höchsten Signalstärke erre-
icht. Die schnelle Messung mit kHz-Raten "friert" das technische Rauschen
im sub-kHz-Bereich ein und ermöglicht die Erfassung dynamischer Prozesse,
z. B. in der Durchflusszytometrie. Bei statischen Proben wird die Sensitiv-
ität durch die Mittelung wiederholter Messungen der erfassten Wellenformen
erhöht.

Das Spektrometer wurde in der multizentrischen klinischen Studie
"Lasers4Life" getestet, um zu untersuchen, wie gut Personen mit Lungen-,
Prostata-, Brust- und Blasenkrebs im therapienaiven Zustand anhand
von molekularen Infrarot-Fingerabdrücken des Blutplasmas identifiziert
werden können. Die Studie wurde in Zusammenarbeit mit Spezialisten des
Universitätsklinikums der LMU durchgeführt. Die Blutplasmaproben von
mehr als 5.300 Probanden wurden mit dem beschriebenen feldauflösenden
Spektrometer analysiert. Das Spektrometer erwies sich als robust genug,
um reproduzierbare Messungen in großem Maßstab an klinischen Proben
durchzuführen und Personen mit Lungenkrebs von nicht symptomatischen
Kontrollpersonen mit einer Genauigkeit von 80% zu unterscheiden. Die
Ergebnisse für die anderen Krebsarten waren im Vergleich dazu weniger
vielversprechend. Der erfolgreiche Abschluss der ersten groß angelegten
klinischen Studie mit einem feldauflösenden Infrarotspektrometer ist
ein ermutigendes Zeichen für die Entwicklung eines neuen schnellen,
minimal-invasiven Ansatzes zur Überwachung der menschlichen Gesundheit.



Abstract

Human blood plasma comprises a complex mixture of biomolecules. Com-
pared to invasive clinical testing, which is often limited in molecular coverage
and depth of analysis, infrared spectroscopy of complex biofluids presents a
valuable, minimally invasive, single-measurement diagnostic approach. Sev-
eral recent studies have explored the efficacy of blood-based infrared molecu-
lar fingerprinting to determine the state of an individual’s health. Commer-
cially available Fourier transform infrared spectrometers were predominantly
applied. However, the limited sensitivity of currently available devices makes
it difficult to detect weak infrared absorption. In this thesis, the power of
femtosecond laser technology has been harnessed to develop a rapid-scanning
field-resolving infrared spectrometer with advantages in sensitivity, timing
precision, and throughput, in the hope of improving diagnostic capabilities.

To achieve this, a previously developed Yb:YAG thin-disk laser oscillator
emitting 16-fs pulses at a repetition frequency of 28 MHz was utilized to
generate few-cycle mid-infrared radiation spanning from 6.5 µm to 11 µm (-
20 dB). This thesis demonstrates two new techniques for rapid electro-optic
sampling at kHz rates. The first technique used an ultrasonic sonication
device called a sonotrode, which vibrates at 19 kHz, to vary optical delay.
A fraction of the optical power of the 16-fs pulse is picked off to act as
the gate for electro-optic sampling. The gate beam was reflected off the
sonotrode to facilitate ultra-rapid delay scanning, with 38,000 traces of the
mid-IR waveform acquired per second. In a single scan acquired in 26 µs, an
electric-field dynamic range of 150 was achieved, with a timing precision of
34 attoseconds at the zero-crossing points.

The second method involved a dual-oscillator approach, in which the
gate pulses for electro-optic sampling were sourced from a second Er:fiber
laser oscillator. The relative delay between the mid-infrared and gate pulses
was scanned by an electronically controlled modulation of the pulse repeti-
tion frequency of the second oscillator with respect to the first. The novel
electro-optic delay tracking technique facilitated precise mapping of the rela-
tive delay, wherein a narrowband mid-infrared waveform with a known opti-
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cal frequency was produced as a delay calibration signal and captured using
electro-optic sampling. The Er:Fiber laser pulses were split into two, with
one part serving as a gate for the delay calibration signal to track the rel-
ative delay with high precision and the other gating the broadband mid-IR
waveform that came out through the cuvette containing the sample. By
modulating the repetition frequency of the Er:Fiber laser at a frequency of
1.4 kHz, traces of the mid-IR waveform are acquired at a rate of 2,800 per
second.

Previously reported dual-oscillator spectrometers with sub-femtosecond
timing precision have applied a constant offset between the repetition fre-
quencies of the two oscillators. For MHz repetition rates, this corresponds to
nanosecond delay ranges well suited to gas phase spectroscopy. Condensed
phase spectroscopy, on the other hand, requires much smaller delay ranges
on the order of picoseconds due to the shorter dephasing times of the excited
molecular vibration states. The dual-oscillator rapid scanning spectrometer
with electro-optic delay tracking fills this space by enabling precise scanning
of picosecond delays with a much higher duty cycle. For a single scan ac-
quired in 357 µs, a timing precision of 50 attoseconds was achieved at the
zero-crossings of the waveform in the delay window with the strongest sig-
nal strength. Rapid measurement at kHz rates ’freezes’ technical noise in
the sub-kHz range and enables the capture of dynamic processes, such as in
flow cytometry. For static samples, averaging repeated measurements also
enhances the sensitivity of the captured waveforms. Nonlinear spectroscopy
techniques, such as pump-probe, photon echo, and coherent anti-stokes Ra-
man scattering, can benefit from the versatile method of electro-optic delay
tracking.

The developed instrument was put to the test in the "Lasers4Life"
multi-centric clinical study to evaluate how accurately individuals with
lung, prostate, breast, and bladder cancer could be identified at therapy
naïve states from infrared molecular fingerprints of blood plasma. The
study, which was conducted in collaboration with specialists at the LMU
University Hospital, involved more than 5300 individuals. The blood
plasma samples were analyzed over several months using the field-resolving
spectrometer described in this thesis. The newly developed device proved
robust enough to perform reproducible large-scale measurements on clinical
samples, classifying individuals with lung cancer from non-symptomatic
control individuals with an accuracy of 80 %. The results for the other
cancer types were less promising in comparison. The successful completion
of the first large-scale clinical study with a field-resolving infrared spec-
trometer is an encouraging sign for developing a rapid, minimally-invasive,
single-measurement approach to monitoring human health.
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Chapter 1

Introduction and Motivation

Health is an essential aspect of human development, and the quest for better
health care is universal. This quest requires progress on several fronts, from
new medical discoveries to the invention of new devices and tools for medical
diagnosis and treatment, new technological approaches that improve afford-
ability and accessibility, and socio-political efforts to break down the barriers
to universal health coverage [91, 11, 17]. In addition to the increasing range
of medical devices and tests, improvements in computing, data storage and
handling, and artificial intelligence are opening up possibilities to efficiently
use the information available from multiple diagnostic measurements to pro-
vide a more comprehensive description of an individual’s health state [18].
The emerging field of personalized medicine [32], which incorporates a per-
son’s genetic profile to make individually tailored medical decisions, could be
a significant step forward.

The work described in this thesis is part of a wider aim to develop a
minimally-invasive and affordable medical test to monitor the state of hu-
man health. Our chosen method is infrared spectroscopy of human blood
serum and plasma. Several studies in the past have explored the potential of
performing infrared spectroscopy on human biofluids for medical diagnostics
[6]. Among the biofluids studied are blood serum or plasma [5, 84, 55, 41],
urine [63], bile [93], sputum [53], saliva [88], and breath [61, 31]. Infrared
spectroscopy can also be extended to personalized clinical decision-making as
person-specific molecular fingerprints are stable over time [39]. Most studies
have used the well-established technique of Fourier transform infrared (FTIR)
spectroscopy.

Ultrafast-laser-based sources of few-cycle mid-infrared (MIR) pulses com-
bined with electric-field-sensitive electro-optic detection offer the advantages
of improved dynamic range of detection, as well as temporal confinement of
the excitation pulse to a few tens of femtoseconds [76]. This allows the reso-
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nant response of the coherently excited molecules to be recorded with reduced
noise since it is separated in time from the strong excitation pulse. My col-
league Marinus Huber, in his doctoral work [38], introduced the applicability
of electro-optic sampling (EOS)-based electric-field molecular fingerprinting
of human blood serum/plasma for disease detection. My former colleague
Theresa Buberl [13], in her doctoral thesis, developed a femtosecond laser-
based field-resolving infrared spectrometer that combines broadband infrared
spectral coverage with high dynamic range field-sensitive detection by EOS.

This thesis builds on the work in Ref. [13] by developing and imple-
menting two independent rapid delay-scanning techniques. This reduces the
noise, making the individual EOS traces, each acquired in less than a mil-
lisecond, immune to laser intensity fluctuations that occur on slower time
scales. In addition, rapid delay scanning makes the instrument suitable for
high-throughput applications. A first large-scale case-control study has been
performed with the instrument, bringing this method a step closer to clin-
ical implementation through the "Lasers4Life" clinical study, a prospective,
single-time-point, case-control study aimed at evaluating the potential of in-
frared spectroscopy of human blood plasma for the early detection of cancer.

The remainder of this chapter provides a brief description of spectroscopy
and an introduction to the technique of field-resolved spectroscopy used in
this work.

1.1 Spectroscopy
It was Sir Isaac Newton who, more than 350 years ago, reported the splitting
of white light into its distinct constituent colours, unveiling a ’spectrum’
of light for the first time [62]. Later on, in the 19th century, Joseph von
Fraunhofer invented the diffraction grating and studied the dark lines in the
spectrum of the sun. In the second half of the century, Robert Kirchoff,
Robert Wilhelm Bunsen, and Carl August von Steinheil built a spectroscope
with a flame acting as its own light source, using it to heat and study the
optical spectra arising from various chemical substances. Subsequently, An-
ders Jonas Ångström studied the spectrum of atomic Hydrogen, the result
of which contributed to the development of theories describing the atomic
spectral lines by Johann Jakob Balmer and Janne Robert Rydberg [27, 68].

The theories arising from the spectroscopic study of atomic hydrogen
proved instrumental in the development of Niels Bohr’s atomic model [29],
and consequently, together with the study of the spectral characteristics of
black body radiation by Max Planck, quantum mechanics began to develop.

Spectroscopy of the hydrogen atom deals with transitions between elec-
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tronic energy levels. Molecular vibrational spectroscopy relates to transitions
in the vibrational levels of molecules, which typically occur in the infrared
spectral range from 200 cm-1 to 5000 cm-1. A molecule comprising N items
has 3N degrees of freedom by virtue of the motion of atoms. Of this, three
correspond to the translational motion of the molecule as a whole and 3 to its
rotation. In the remaining 3N-6 cases, the molecule’s center of mass remains
the same, while the relative position and orientations of the atoms in the
molecule vary. These are the internal vibrations, the energy levels we seek
to measure by vibrational spectroscopy. A detailed account of the molecular
vibrational energy levels and the factors affecting them can be found in [65].
The three vibrational modes of a triatomic molecule are depicted in Fig. 1.1
(adapted from Fig. 6.1 in Ref. [65]).

Figure 1.1: Molecular vibrational degrees of freedom

1.1.1 Fourier transform infrared spectroscopy
Most FTIR are based on the Michelson interferometer, where a beam splitter
separates an optical beam into two parts. The two beams propagate in two
arms and are reflected by mirrors back to the beam splitter, where they are
combined by interference. Half of the interferometric signal returns to the
source, while a photodetector detects the other half. A movable mirror is used
in one of the interferometer’s two arms to change the relative delay between
the interfering beams. This results in a modulation of the interferometric
signal. For a monochromatic incident beam and mirror motion with a con-
stant velocity, the resulting interferometric signal will be sinusoidal, with the
modulation frequency of the interferogram being proportional to the optical
frequency of the source. For a polychromatic incident beam, the modulation
of the interferogram would resemble the superposition of multiple sinusoidal
oscillations. A Fourier transform of the interferogram and multiplication
by appropriate conversion coefficients would give out the spectrum of the
incoming light. This is the basic principle behind Fourier transform spec-
troscopy. A more detailed description of the instrumentation and properties
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of FTIR spectrometers can be found in [33]. Fig. 1.2 shows the example of
a Michelson interferometer.

Figure 1.2: Schematic diagram of a Michelson interferometer

Fourier transform spectroscopy has multiple advantages in comparison
with conventional spectroscopic methods, where a prism or a grating
monochromator is used to spatially split incident light into its spectral
components:

• Multiplexing (Felgett’s) advantage: This deals with the fact that
an interferometric measurement has the ability to capture all spectral
components simultaneously, while a monochromator with a single de-
tector captures the spectrum one component at a time. Let us say that
there are M spectral components that can be resolved. An FTIR spec-
trometer can capture a spectrum with the same signal-to-noise ratio
as a single-detector monochromator spectrometer M times faster. In
other words, for measurements taken over the same amount of time,
the signal-to-noise in the case of Fourier transform spectroscopy will be√
M times larger.

• Throughput (Jacquinot’s) advantage: The fact that a slit aper-
ture is not required to achieve spectral resolution as is the case for a
monochromator results in higher throughput and sensitivity.

While Fourier transform infrared spectrometers are widely used, their sensi-
tivity is still limited.
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1.1.2 Field-resolved spectroscopy
Advancements in femtosecond laser technology have helped develop broad-
band sources of infrared radiation with a brilliance that is orders of magnitude
higher than a globar®or even synchrotron beamlines. A comparison of the
brilliance and spectral coverage of laser-based sources of mid-infrared radi-
ation can be found in [46]. Laser-based sources also bring in the advantage
of spatially and temporally coherent light pulses. For waveform-stable fem-
tosecond infrared pulses, electro-optic sampling can be employed to capture
the full information enclosed in the electric field [77], containing the spectral
amplitude and the phase.

With a limited number of laser sources in the MIR, frequency down-
conversion of visible and near-infrared (NIR) radiation to the MIR by non-
linear optical processes such as difference-frequency generation (DFG) and
optical rectification has been a strategy that has been widely used [77, 57, 92].
The invention of the quantum cascade laser [23] brought about a new coher-
ent source of mid-infrared radiation. The further development of tunable
quantum cascade lasers has made them a useful tool for mid-infrared spec-
troscopy in liquid phase [52, 1] as well as gas phase [71, 31]. They, however,
have a limited spectral bandwidth.

Compared to direct detection in the mid-infrared, performing electro-
optic sampling with frequency conversion from the mid-infrared to the NIR
spectral range enables the use of more developed, sensitive, and low-noise
detectors widely available in the NIR range. Field-resolved spectroscopy
based on electro-optic sampling takes advantage of this fact [76].

Previously presented field-resolving infrared spectrometers [75, 13] require
1-2 seconds to capture a trace of the mid-infrared waveform by scanning
picosecond-level optical delays. Variations in laser intensity as well mechani-
cal fluctuations that occur within the time of a scan result in technical noise
that limits the sensitivity of a measurement. To tackle this, we introduce two
rapid delay-scanning approaches where a single scan is completed in less than
a millisecond. This enables sub-kHz noise contributions to be suppressed,
and in addition, opens up possibilities for probing dynamic processes. The
upgrade of the field-resolved spectrometer to perform rapid scanning is at
the heart of this work.

1.2 From concept to clinical study
This thesis demonstrates the upgrade of a proof-of-concept slow-scanning
field-resolving spectrometer to a rapid-scanning version. Rapid scanning en-
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ables the suppression of fluctuations that occur at a time-scale that is slower
than the time required for a single scan. By scanning at kHz rates, we ’freeze’
a significant amount of technical noise within each scan. By averaging scans
over time, the sensitivity can be increased by a factor of the square root of
the number of scans averaged.

Further progress is made in transforming the spectrometer into a device
that can be operated by a trained user, with the ability to function con-
sistently over a period of several months. The field-resolving spectrometer
is then employed the Lasers4Life, done in collaboration with medical spe-
cialists at the LMU University Hospital, to test the viability of the device in
detecting common cancer phenotypes from the electric-field molecular finger-
prints (EMFs) of human blood plasma. In the first phase of the study, blood
plasma samples from 5,300 individuals were collected, stored, measured, and
analyzed with infrared spectroscopy following a standardized procedure, as
will be discussed in Chapter 5.

To our knowledge, it is the first time that such a field-resolving spec-
troscopic technique has been utilized for a clinical study involving thou-
sands of individuals. This requires the newly developed device to operate
in a reproducible and consistent manner over months. The performance of
the field-resolved spectrometer is compared with a commercially available
Fourier-transform infrared spectrometer, which was previously reported as a
promising candidate for the task [41].

The thesis is structured as follows: Chapter 2 is meant to serve as a back-
ground for the main concepts and techniques used in this thesis. In Chapter
3, starting with the existing slow-scanning spectrometer, we transition to an
ultra-rapid delay scanning scheme that uses an ultrasonic sonication device
called a sonotrode. Results of a test experiment with the sonotrode delay-
scanning are presented. Chapter 4 describes the concept and experimen-
tal implementation of a dual-oscillator approach for electro-optic sampling,
where the mid-infrared and gate pulses are sourced from 2 different laser
oscillators. The repetition rates of the two oscillators are carefully controlled
using an electronic feedback loop. The novel technique of electro-optic de-
lay tracking, which enables precise calibration of the relative delay between
the two laser pulse-trains, is presented. In Chapter 5, the field-resolved spec-
trometer is put to the test in carrying out measurements for the multi-centric
case-control clinical study called Lasers4Life. The workflow and measures
taken to ensure the reliable functioning of the field-resolving spectrometer
are highlighted. The results of the case-control study shed light on the ro-
bustness of the new spectroscopic approach, guiding future efforts to develop
the method further for potential real-world clinical application.



Chapter 2

Background

This chapter aims to bring up physical phenomena, mathematical methods,
and previous work in the field that have been utilized or contributed to this
thesis. Starting with a brief description of linear and basic non-linear optics,
applications of non-linear optics central to this work are introduced, namely
intra-pulse difference frequency generation and electro-optic sampling, for
the generation and field-resolved detection of mid-infrared optical radiation,
respectively. This leads to the topic of infrared spectroscopy, touching on
the well-established technique of Fourier Transform Infrared Spectroscopy,
as well as femtosecond-laser-based field-resolved infrared spectroscopy, which
our research group has been working on over the past few years.

This work applies infrared spectroscopy of human blood plasma for dis-
ease detection, using machine-learning-based pattern recognition to classify
the spectra. The remaining part of the chapter introduces concepts used to
build or train a binary classifier and the parameters used to quantify classi-
fication efficiency.

2.1 Maxwell’s equations

The nature of light has been a topic of study over centuries. In the latter
part of the 19th century, James Clerk Maxwell proposed the nature of light
as we know it today, as an electromagnetic wave. Building upon observations
made in the past generations on light’s properties and connecting them to
more recent discoveries in electricity and magnetism, Maxwell came up with
an elegant set of equations relating the electric field (E) and magnetic field
(H), that accurately describe the propagation of light in vacuum, which is
highly significant and useful even today. The equations are represented as
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follows:
∇ × E = −µ0

∂H

∂t
, (2.1)

∇ ×H = ϵ0
∂E

∂t
, (2.2)

∇ · E = 0, (2.3)
∇ ·H = 0. (2.4)

Here, ϵ and µ refer to the permittivity and permeability of the medium
of propagation, with the subscript 0 referring to vacuum.

To obtain an equation with solely the electric field, we take the curl of
Eq. 2.1:

∇ × (∇ × E) = ∇ ×
(

−µ0
∂H

∂t

)
. (2.5)

Making use of the following vector identity [22]:

∇ × (∇ × A) = ∇(∇ · A) − ∇2A, (2.6)

,
and substituting it in 2.5, we obtain:

∇(∇ · E) − ∇2E = ϵ0
∂(∇ ×H)

∂t
. (2.7)

Now, substituting for ∇ · E and ∇ ×H using Eq. 2.3 and 2.2, we have:

−∇2E = −µ0ϵ0
∂2E

∂t2

=⇒ ∇2E − µ0ϵ0
∂2E

∂t2
= 0. (2.8)

Eq. 2.8 represents the electromagnetic wave equation, also know as the
Helmholtz wave equation in vacuum. Any function in the form E(z − c0t)
with a constant factor c would solve the equation, from which we obtain the
speed of light in vacuum,

c0 = 1
√
ϵ0µ0

= 2.998 × 108m/s (2.9)

In a real medium, the Maxwell equations, accounting for current (J) and
charge densities (ρ) in the medium, as well as its electromagnetic properties,
become the following:

∇ × E = −µ∂H
∂t

, (2.10)
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∇ ×H = J + ϵ
∂E

∂t
(2.11)

∇ · E = ρ

ϵ
. (2.12)

∇ ·H = 0. (2.13)

Here, µ refers to the magnetic permeability of the medium, and ϵ, to the
permittivity of the medium of propagation. The speed of light in any medium
depends on the value of these parameters.

c = 1
√
ϵµ

≜
c0

n
, (2.14)

where the refractive index of a medium is calculated as the ratio of the speed
of light in vacuum to the speed of light in the medium.

For non-magnetic materials, µ = µ0. Thus we get:

n =
√
ϵ

ϵ0
=

√
κ, (2.15)

where κ is the dielectric constant, which will be discussed in the following
section.

2.2 Linear optics
As a precursor to Maxwell, Michael Faraday had developed the concept of the
electric field lines of force. He also famously studied the effect that inserting
different insulating materials between the charged capacitor plates has on
the capacitance. He observed that the capacitance increased by a material-
dependent factor, which came to be called the dielectric constant, κ. This
increase in capacitance was explained to be due to the formation of electric
dipoles within the dielectric. The dipoles aligned in an opposing manner to
the electric field induced by the charged plates. This decreased the effective
electric field inside the dielectric, allowing a higher charge to be stored in the
capacitor when a fixed voltage was assigned.

The electric polarization vector, P , is defined as the electric dipole mo-
ment per unit volume generated in the dielectric material by the external
electric field.

P = Nqδ, (2.16)

where N is the density of atoms, and a charge q is separated by a distance δ
in each atom.
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In the simplest case, P is assumed to be linearly proportional to E, i.e,

P = ϵ0χE, (2.17)

where χ is the constant of proportionality. This implies that adding a dielec-
tric increases capacitance by a factor (1 + χ), where:

κ = 1 + χ (2.18)

This assumption holds in most cases in everyday life. The induced polariza-
tion, P , and hence the optical response, scales linearly with the strength of
the applied electric field. This describes linear optics.

Combining Eq. 2.9 with Eq. 2.8, we get:

∇2E − 1
c2

0

∂2E

∂t2
= 0, (2.19)

for light propagating in vacuum.
For a dielectric medium, assuming that linear optics holds true, we obtain

a similar equation:

∇2E − 1
c2
∂2E

∂t2
= 0, (2.20)

with the only difference being an adjustment in the speed of light:

c = c0√
1 + χ

(2.21)

In truth, however, P does not have a linear relationship with E. The
deviation from the linear approximation is usually noticed only for an electric
field strength >106V/cm when it becomes comparable to the atomic field
strength, Eat, given by:

Eat = e

4πϵ0a2
0

= 5.14 × 109V/cm. (2.22)

Here, e refers to the charge of an electron, ϵ0, the permittivity of free space,
and a0, the Bohr radius of the Hydrogen atom. The invention of the laser and
advances in laser technology in the second half of the last century [19] made
it possible to observe various effects relating to this nonlinear relationship,
hence opening up the field of nonlinear optics.
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2.3 Nonlinear optics
Soon after the conception [79] and first demonstration [60] of a laser, re-
searchers started observing new phenomena, such as the generation of optical
harmonics[26], resulting in the realization that the electric polarization is not
linearly dependent on the electric field. This proved wrong the assumption of
the susceptibility (χ) being a constant linear coefficient, implying a complex
relationship with the electric field, which, in the simplified assumption of an
instantaneous response, can be expressed as a Taylor series:

P = ϵ0(χ(1)E + χ(2)E2 + χ(3)E3 + ...) (2.23)

Eq. 2.23 can be represented in the following form as well:

P = P (1) + P (2) + P (3) + ... = P (1) + PNL, (2.24)

where P (1) corresponds to the linear part, and PNL to the non-linear part of
the polarization.

˜P (1) = ϵ0χ
(1)Ẽ, (2.25)

˜P (NL) = ϵ0(χ(2)Ẽ2 + χ(3)Ẽ3 + ...) (2.26)

The Helmholtz wave equation changes to the following:

∇2E − n2

c2
0

∂2E

∂t2
= 1
ϵ0c2

0

∂2P (NL)

∂t2
. (2.27)

Here, n represents the linear refractive index. In the following sections, we
shall describe a few nonlinear optical processes, following the flow of thought
and notation in Ref. [10].

2.3.1 Second-order nonlinear processes
Let us represent the electric field strength of a laser beam at a particular
point in space as follows:

Ẽ(t) = Ee−iωt + c.c., (2.28)

where c.c. stands for complex conjugate.
If we now consider the leading (second-order) term of the non-linear po-

larization, P̃ (NL)(t), which we shall call P̃ (2)(t), we get:

P̃ (2)(t) = 2ϵ0χ
(2)Ẽ2(t) = ϵ0χ

(2)|E|2+(ϵ0χ
(2)E2e−2iωt + c.c). (2.29)
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Thus, the second-order polarization term transforms a single incident fre-
quency of electromagnetic radiation into a static electric field and a field
oscillating at twice the frequency. These processes are called optical rectifi-
cation and second harmonic generation (SHG), respectively. The formation
of the second harmonic of a laser beam was the first reported nonlinear op-
tical effect six decades ago [26]. The SHG process can be pictured as two
photons of the same frequency being converted into a single photon with
twice the frequency, thus conserving energy. Having already considered the
case of a single frequency of incident light, we shall look into the case of
having radiation at two frequencies.

Consider an incident electric field strength given by:

Ẽ(t) = E1e
−iω1t + E2e

−iω2t + c.c., (2.30)

This gives us:

P̃ (2)(t) = ϵ0χ
(2)[2|E1|2+2|E2|2+(E2

1e
−2iω1t + E2

2e
−2iω2t

+ 2E1E2e
−i(ω1+ω2)t + 2E1E

∗
2e

−i(ω1−ω2)t + c.c)]. (2.31)

While the first four terms refer to optical rectification (static electric
fields) and second harmonic generation (ω1 and ω2) as described above, two
terms have newly emerged, the generation of the sum (ω1 + ω2) and differ-
ence (ω1 − ω2) frequencies. The two processes referred to as sum-frequency
generation (SFG) and DFG are of great interest to us and have been applied
in this thesis.

2.3.2 Third-order nonlinear processes
In the previous subsection, we looked at the leading term of the nonlinear
polarization, which is proportional to E2. If we now look at the next term,
where the polarization scales with E3, many new possibilities arise. For
simplicity, we consider the case where the incident light is monochromatic.
This gives us the following expression for the third-order polarization.

P (3) = ϵ0χ
(3)(E3e−i3ωt + 3|E|2Ee−iωt + c.c) (2.32)

Here, the first term represents the third harmonic generation (THG), where
a new frequency component thrice the incident radiation frequency emerges
from the crystal. The second term consists of radiation at the same fre-
quency as the incident but with the extent of polarization proportional to
the intensity of incident radiation. This leads to an intensity-dependent re-
fractive index, n2. Substituting for P (1) and P (3) in Eq. 2.23, and collecting
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the terms that oscillate at the same frequency as the incident radiation, we
get:

P = ϵ0(χ(1) + 3χ(3)|E|2) (2.33)
Combining Eq. 2.15 and Eq. 2.18, we obtain the following:

n2 = 1 + χ(1) + 3χ(3)|E|2 (2.34)

If we represent n as a sum of the constant linear refractive index and an
intensity-dependent non-linear refractive index, as,

n = n0 + n2|E|2, (2.35)

Eq. 2.34 implies,

n2
0 + 2n0n2|E|2+n2

2|E|4= 1 + χ(1) + 3χ(3)|E|2. (2.36)

Assuming the value of n2
2 to be insignificant compared to n0, we neglect the

last term to obtain:
n2 = 3χ(3)

2n0
(2.37)

The value of χ(3) for Si is around 10−18m2/V 2, and that for glass is
even lower, of the order of 10−22m2/V 2 [10]. Although relatively small, the
intensity-dependent change in the refractive index can have significant effects.

Self-focusing:

When a sufficiently intense light beam with a non-uniform spatial profile
passes through a material, the intensity-dependent refractive index caused by
the χ(3) susceptibility results in transverse sections of the beam experiencing
different refractive indices. Light travels at different speeds along the sections
of the beam profile. In a beam that is more intense at the centre than at the
edges, this results in a converging effect. The fact that light travels slower
at the centre than at the edges causes the beam to focus, as if it was passing
through a convex lens. This phenomenon is called self-focusing [47, 66].

Self-phase modulation:

Another effect of an intensity-dependent refractive index is observed when
working with ultrashort pulses of intense laser light. Here, let us consider the
non-uniform temporal distribution of electric field strength. The temporal
variation in the intensity envelope of a short pulse results in a different re-
fractive index at different points in time as the pulse propagates through the
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medium. This works out as an effective time-dependent shift in the optical
phase of the pulse and is referred to as self-phase modulation. These phase
shifts result in changes in the instantaneous frequency of oscillation along
the temporal profile of an ultra-short pulse, leading to the generation of new
spectral components and the suppression of existing ones [85, 67]. Thus,
self-phase modulation becomes a useful technique to broaden the spectrum
of an ultra-short laser pulse.

2.3.3 Phase-matching
We have seen above how multiple potential non-linear optical processes could
take place from the effect of the second and third-order optical susceptibility.
All of the processes described above conserve energy. Take the case of SHG,
for example. Two photons of frequency ω1 are converted to a single photon of
frequency ω2 = 2ω1, which has twice the energy as each of the two absorbed
photons. The energy conservation can be shown as follows:

h̄ω2 = 2h̄ω1 (2.38)

For the nonlinear process to take place efficiently, momentum should also be
conserved, that is,

h̄k⃗2 = 2h̄k⃗1, (2.39)

where k⃗1 and k⃗2 represent the wave-vectors for the incident and generated
second harmonic radiation, respectively. Assuming the same direction of
propagation, let us look at only the magnitude of the wave-vector, |⃗k| for
simplicity.

|⃗k|= n(ω)ω
c0

, (2.40)

where n(ω) is the refractive index, and c0 is the speed of light in vacuum.
Combining Eq. 2.39 and Eq. 2.40, momentum conservation boils down

to the refractive index n(ω) remaining a constant. Due to dispersion, this
turns out not to be the case.

One way to obtain phase-matching makes use of the property of birefrin-
gence, wherein the refractive index depends on the polarization direction.
For demonstration purposes, let us consider the crystal to portray negative
birefringence, that is, the refractive index of extraordinary (e) light is lower
than that of ordinary (o) polarized light. Let light travel along the z-axis
in the crystal, and let the horizontal (x-z) plane represent the plane of in-
cidence. We place the birefringent nonlinear crystal in such a way that the
optic axis lies in the x-z plane and can be rotated about the vertical (y) axis.
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Figure 2.1: Type-I (left) and type-II (right) birefringent phase-matching for
second harminic generation in a non-linear crystal exhibiting negative bire-
fringence and normal dispersion.

Figure 2.1 depicts type-I (left) and type-II (right) birefringent phase
matching for SHG, taking the example of a negative birefringent crystal
showcasing normal dispersion. Normal dispersion implies that the refractive
index increases monotonically with the optical frequency. In type-I phase-
matching, the two interacting photons of frequency ω have the same polar-
ization (s-polarization, in this case), while the generated second harmonic is
orthogonally (p-) polarized. S-polarized light experiences the higher ordinary
refractive index, (n0). The p-polarized light experiences an angle-dependent
refractive index, ne that lies between the ordinary and nominal extraordinary
indices, no and n̄e, given by:

1
n2

e(θ)
= sin2(θ)

n̄e
2 + cos2(θ)

n2
o

. (2.41)

Here, θ represents the angle between the optic axis of the crystal and the
z-axis. The ordinary refractive index for light at the fundamental frequency,
no(ω) is shown in red, and the extraordinary refractive index for the second
harmonic, ne(2ω) is shown in blue. By rotating the crystal, we tune the
refractive index of the p-polarized light until the system is phase-matched.
Phase matching occurs for the angle at which the equation, ne(2ω, θ) = no(ω)
is satisfied, represented by θpm in Fig. 2.1.
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In type-II phase-matching, the two interacting photons have orthogonal
polarization directions. The refractive indices, no(ω) and ne(ω, θ) are shown
in red and green on the right panel of Fig. 2.1. In the case of a negative
birefringent crystal, as is in our example, the generated second-harmonic
experiences the extraordinary refractive index, ne(2ω), shown in blue. Phase
matching occurs at the angle where the following equation holds:

ne(2ω, θ) = 1
2 [ne(ω, θ) + no(2ω)] . (2.42)

2.3.4 Applications of non-linear optics
Intra-pulse difference frequency generation

The second-order non-linear process of difference frequency generation is a
useful technique for generating mid-infrared optical radiation. In the special
case where we have a broadband NIR pulse whose spectrum spans thousands
of wavenumbers, there exists the possibility of different frequency compo-
nents from the same pulse from the two ends of the spectrum interacting
to generate their difference frequency in the mid-infrared. This process is
referred to as intra-pulse difference frequency generation (IPDFG) [77], or
optical rectification [44]. Fig. 2.2 is a simplified schematic showing the pro-
cess of IPDFG, with the green bar representing the incident spectrum from
which the DFG spectrum depicted by the grey bar is created. A pair of
spectral components within the incident spectrum, which we shall represent
by ω2 and ω3 interact to generate a new spectral commponent ω1, in the grey
bar. The DFG spectrum potentially spans from the origin to a frequency
or wavenumber characterised by the largest difference obtained between the
spectral components ω2 and ω3 in the incident spectrum. We thus represent
this as:

ω1,max = ω3,max − ω2,min, (2.43)

where ω3,max and ω2,min represent the ends of the incident spectrum, denoting
the maximum and minimum wavenumber/frequency values for ω2 and ω3.
In reality, the generated DFG spectrum is further restricted in range due to
limitations in phase matching, as well as in transparency of the non-linear
crystal.

In DFG, the frequency and the phase of two spectral components are
subtracted. When the two spectral components originate from a single mode-
locked laser, the phase of the two spectral components vary by the same
amount from pulse to pulse, causing the newly generated pulse to have a
passively stabilized waveform [14, 81, 45], which is key in our application.
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Figure 2.2: Simplified schematic diagram showing intra-pulse difference fre-
quency generation. Spectral components from the two ends of the incident
spectrum (green) interact by a second-order nonlinear process to generate
frequency components corresponding to their frequency difference (grey)

Electro-optic Sampling

The technique of EOS, which makes use of the second-order non-linear opti-
cal process of either sum or difference frequency generation, enables optical
waveforms to be measured with high sensitivity. By sequentially sampling
the infrared waveform using a sub-infrared-cycle gate beam that is variably
delayed, the field-sensitive detection of the temporal evolution of the sam-
pled waveform is achieved. The sampled waveform must have a stable optical
phase. The infrared and gate beams are spatially overlapped to perform EOS
and focused onto a nonlinear crystal with a second-order nonlinear suscepti-
bility. The incident infrared pulse is polarized orthogonal to the gate pulse.
The sum frequency of the gate and the infrared pulses is created, with polar-
ization orthogonal to the gate pulse. The part of the frequency signal that
overlaps spectrally with the gate signal superposes to cause a rotation in its
polarization. This polarization rotation on the gate signal, which acts as a
local oscillator (LO), is measured using a balanced optical heterodyne detec-
tion setup to obtain an output that is proportional to the infrared electric
field. The setup comprises a quarter-wave plate (QWP), Wollaston prism,
and balanced photodetectors after the nonlinear crystal, as shown in Fig.
2.3. A mathematical description is detailed below, following from Ref. [37].

To describe the polarization rotation and heterodyne detection process,
we make use of Jones calculus. It is a very convenient and useful formalism
discovered by R. Clark Jones in 1941 to express the polarization of light in
the form of a normalized 2-component vector with horizontal and vertical
linear polarization states as basis vectors. Table 2.1 represents the Jones
vectors for common polarization states (adapted from Table 2.1 in Ref. [7]).
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Figure 2.3: (a) EOS setup (b) Interaction between SFG and LO spectra in
the overlap region

In Jones calculus, the effect of optical elements on the polarization of a
beam that passes through is compared to multiplication by the Jones matrix
corresponding to the optical element. The Jones matrix depends on the
orientation of the optical element. A few of the most commonly used Jones
matrices are depicted in Table 2.2, which has been adapted from Table 2.2
in Ref. [7].

Let us come back to describing the EOS process. We shall be following
the treatment in [37]. Let ẼLO and ẼMIR represent the s- and p-polarized
gate (local oscillator) and mid-infrared waveforms. Second order non-linear
interaction in the EOS crystal generates a p-polarized sum frequency signal,
ẼSF G. For simplicity, let us assume that the fields have a constant amplitude
and phase across the entire spectral range, giving:

ẼLO = ALOe
−iφLO , (2.44)

ẼMIR = AMIRe
−iφMIR , (2.45)

ẼSF G = ASF Ge
−iφSF G ,with (2.46)

ASFG ∝ ALO · AMIR, and (2.47)
φSFG = φLO + φMIR (2.48)

The Jones vectors can be represented as follows:

ẼLO =
(

0
ẼLO

)

ẼSFG =
(
ẼSFG

0

)
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Polarization Jones vector

Horizontal
(

1
0

)

Vertical
(

0
1

)

+45°linear 1√
2

(
1
1

)

-45°linear 1√
2

(
1

−1

)

θ◦ linear
(

cosθ
sinθ

)

Left circular 1√
2

(
1
i

)

Right circular 1√
2

(
1

−i

)

Table 2.1: Jones vectors

The superposition of the two is represented by:

Ẽhet =
(
ẼSFG
ẼLO

)

The beam superposition is then passed through a λ
4 plate with its fast axis

set at 45 °with respect to the horizontal to project the polarizations onto a
common axis. Applying the Jones matrix for the λ

4 plate, from Table 2.2, we
get the following:

Ẽhet,mix = 1√
2

(
1 −i

−i 1

)
·
(
ẼSFG
ẼLO

)
= 1√

2

(
ẼSFG − iẼLO

−iẼSFG + ẼLO

)
(2.49)

Optical element Jones matrix

Horizontal polarizer
(

1 0
0 0

)

Vertical polarizer
(

0 0
0 1

)

Polarizer at angle θ
(

cos2θ cosθsinθ
cosθsinθ sin2θ

)

λ/4 plate with fast axis at 45° 1√
2

(
1 −i

−i 1

)

Table 2.2: Jones matrices
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The two polarization components are split into two separate beams by the
Wollaston prism with the electric field strengths given by:

|Ẽ1|= |Ẽhet,mix,x|= 1√
2

|ẼSFG − iẼLO| (2.50)

|Ẽ2|= |Ẽhet,mix,x|= 1√
2

|−iẼSFG + ẼLO| (2.51)

The intensity of the two beams I1 = |Ẽ1|2 and I2 = |Ẽ2|2 are given as follows:

I1 = 1
2
(
A2

SFG + A2
LO + ASFGALO(e−iφSFG+iφLO+i π

2 + e+iφSFG−iφLO−i π
2 )
)
.

(2.52)
Substituting for φSFG from Eq. 2.48, we get

I1 = 1
2
(
A2

SFG + A2
LO + ASFGALO(e−iφMIR+i π

2 + e+iφMIR−i π
2 )
)

=⇒ I1 = A2
SFG + A2

LO + ASFGALOcos(π2 − φMIR)

=⇒ I1 = A2
SFG + A2

LO + ASFGALOsin(φMIR) (2.53)

Similarly, we get

I2 = 1
2
(
A2

SFG + A2
LO + ASFGALO(e−iφSFG−iφLO+i π

2 + e+iφSFG+i π
2 −iφLO)

)
.

(2.54)
=⇒ I2 = 1

2
(
A2

SFG + A2
LO + ASFGALO(e−iφMIR−i π

2 + e+iφMIR+i π
2 )
)

=⇒ I2 = A2
SFG + A2

LO + ASFGALOcos(π2 + φMIR)

=⇒ I1 = A2
SFG + A2

LO − ASFGALOsin(φMIR) (2.55)

The balanced photodetector performs subtraction of the intensities, giving:

∆I = I1 − I2 = 2ASFGALOsin(φMIR). (2.56)

Comparing with Eq. 2.47, we get

∆I ∝ A2
LOAMIRsin(φMIR), (2.57)

thus resulting in an intensity measurement that is proportional to the infrared
waveform.
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2.4 Statistics: Allan variance
The Allan variance is a statistical quantity developed by David W. Allan in
the 1960s to estimate the frequency stability of atomic clocks[2]. In measuring
the frequency fluctuations of an atomic clock, he realized that the standard
variance does not always converge, especially in the presence of drifts or a
random-walk process. The standard deviation of a variable y, measured in
an adjacent series is given as follows:

σ2
y,std = 1

N − 1

N∑
i=1

(yi − ȳ)2, (2.58)

where N is the total number of samples, yi denotes an individual sample,
and ȳ, the mean value of y. In the case of drifts, the mean value does not
remain constant for an infinitely long period of time, resulting in the σ2

y, std
degrading for an increasing number of samples.

Allan’s idea was to look at differences in the adjacent spectrum instead
of comparing it with the mean. The Allan variance is represented as follows:

σ2
y,Allan = 1

2(M − 1)

M-1∑
j=1

(ȳj+1 − ȳj)2. (2.59)

Here, the N samples have been divided into M sets with an equal number of
samples, with ȳj representing the mean of the y values in set j. The square
root of the Allan variance is called the Allan deviation, σy,Allan. The Allan
deviation is calculated for different values of M, that is different sizes of the
set over which y is averaged. Fig. 2.4 shows a schematic of the Allan variation
calculated for different numbers of samples to be averaged.

The concept of the Allan deviation will be used in evaluating the stability
of the infrared waveforms measured using two different rapid-scanning field-
resolved spectroscopic approaches in Chapters 3 and 4.

2.5 Machine learning and classification
Statistical learning involves gaining insight or understanding from the avail-
able data. Mankind has come far in this over the centuries, performing
varied experiments, and making meaningful inferences from available data.
There is however a limit on how much data a human can take in and make
inferences from, in a time-bound scenario. The advent of computers has
enabled humans to process larger amounts of data, by outsourcing mathe-
matical operations to be performed on the data to a computer, in the form
of well-defined steps.
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Figure 2.4: Allan variance for different averaging sets. In the single sample
case ( top left), differences are calculated between adjacent pairs of individual
samples. For the 2-sample averaging case (top right), a set of 2 samples
are averaged, and the mean is subtracted from the mean of the next set.
For the case of n-sample averaging (bottom), the same is performed, taking
the average of n samples in each batch, before subtracting the means of
subsequent batches.

In many real-life situations, however, it is not easy to explicitly describe
the solution of the problem in a series of clear steps. Let us consider cooking
food as an example. An aspiring cook can follow an explicitly described recipe
to create something delicious. However, the author of a recipe cannot write
a new recipe by following a set of instructions. It is years of experience, and
a vivid imagination, of what kind of tastes match well together, that enable
them to come up with a culinary marvel. Similarly, if a computer’s task goes
beyond performing predefined steps, to making inferences from previously
recorded data, that is if the data enables the computer to solve a problem
better, the machine is said to have ‘learned’ from it. This is referred to as
‘machine learning’

We shall look into the simplest form of learning from data, that is a linear
model, where the output or inference is made from a linear combination of
the input parameters or input data. Starting with a recap on linear regres-
sion, we shall take a look at two linear techniques used to perform binary
classification. The receiver operating characteristic curve is presented as a
tool to evaluate the performance of a binary classifier. Later on, in Chapter
5, the receiver operating characteristic will be used to test the accuracy of
the binary classifier for categorizing infrared spectra of human blood plasma
for the most widely prevalent cancer phenotypes.
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2.5.1 Linear regression
A linear regression task aims to develop a linear relationship between one
or more input parameters and an output parameter in a way that most
accurately describes a given data set. Thus, we express the output parameter
as a linear superposition of the input parameters. The role of the model is to
determine the coefficients of the linear combination, and the quality of fit is
determined by how much the predicted values from the linear superposition
deviate from the actual values of the output parameter. If we have m data
points of the form

zi = (x1,i, x2,i, ..., xn,i, yi) (2.60)

, with i going from 1 to m, the linear regression model can be represented as
follows:

ypred(z) = a1x1 + a2x2 + a3x3 + ...+ anxn + b, (2.61)

where a1, a2, a3, ..., an, b are the coefficients describing the regression model.
A commonly used measure of how well the model corresponds to the data
is the mean squared error, which we shall call the cost (C), and is given as
follows:

C =
m∑

i=1
[yi − ypred(zi)]2 . (2.62)

The linear regression task is then simplified to adjusting the values of
coefficients a1, a2, a3, ..., an, and b, so as to minimize C.

For simplicity in visualization, let us consider the case where there is just
one input parameter, i.e., m = 1. Fig. 2.5(a) shows a sample data set (blue
squares) and the fit obtained by linear regression (red line). The line is given
by:

ypred(x) = ax+ b (2.63)

There are several ways to obtain values for the slope and intercept of the
regression line, a and b. We shall look into one method, known as gradi-
ent descent, which is widely used as an optimization technique in machine
learning.

Gradient Descent

As the name suggests, the gradient descent optimization technique involves
updating the values of the model parameters or coefficients in the direction
of decreasing gradient, that is, the route of fastest change. The step size or
rate at which the values of the coefficients are updated is called the learning
rate, and is denoted as α. In our one-dimensional example, the update steps
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Figure 2.5: (a) Sample data points (blue squares) and the linear fit for the
data obtained by least squares fitting. (b) The effect of the learning rate,
α, in the gradient descent optimization technique. Here, α1 (red) leads to
a converging result with minimum error, while α2 (grey) is too large in this
case.

can be represented as follows:

anew = a− α
∂C

∂a
(2.64)

bnew = b− α
∂C

∂b
(2.65)

In a scenario with more input parameters, the same is followed for all the
corresponding coefficients.

Care must be taken when choosing the learning rate, α, for optimal per-
formance. If too large, the algorithm might miss the real minima and run
off to higher values. If chosen too small, finding the minimum may take a
lot of time or computational effort due to the large number of iterations that
would be required. This is shown in Fig. 2.5(b).

2.5.2 Logistic regression
In linear regression, the output parameter is free to take on any value from
−∞ to +∞. While this proves useful, there are scenarios where the range of
output values is limited, to say between zero and 1. Another set of problems
may have it such that the output is limited to an integer number of pos-
sibilities, the extreme case of which being the binary classification problem
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where the output is limited to 2 possibilities. Logistic regression is a useful
technique for the case of binary classification, working as follows.

Similar to before, let us consider a simple linear relation on a single input
parameter, x, given by:

z = ax+ b (2.66)
Let the two possible outcomes in a binary classification problem be 0 and
1. To perform logistic regression, we first squeeze the range of the output to
the interval (0, 1) using a mathematical function called the Sigmoid function,
which is represented as follows:

σ(z) = 1
1 + e−z

(2.67)

We define σ(ax+ b) to be the output parameter, i.e,

ypred(x) = σ(ax+ b) + 1
1 + e−(ax+b) (2.68)

Having obtained the predicted output values, the cost (C) that quantifies
the error in predicting the value of the output, y, is defined as follows:

C =

−log(ypred) if y = 1
−log(1 − ypred) if y = 0

(2.69)

Fig. 2.6(a) depicts the Sigmoid function. The cost function described
above is shown for the two cases of y = 0 and y = 1 in (b). Using gradient
descent in a similar way as before, the model for effective binary classification
is developed.

2.5.3 Linear support vector machine
A linear support vector machine is a powerful tool for separating linearly
separable data belonging to two classes. A detailed description of support
vector machines can be found in Ref. [16]. Fig 2.7 shows an example of
linearly separable (left) and nonlinearly separable (right) classes, for the case
where there are two independent input parameters or features, x1 and x2.
This means that, in the first case, we can construct a line that separates
the space into two sub-spaces, each corresponding to a class. In the second
case, a line would not be sufficient to correctly separate the two classes. One
would need a curve, which is a nonlinear expression in x1 and x2 to do the
same.

Let us now consider the linearly separable case. The question arises, as
to how to construct select the line that best separates the two classes. Let
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Figure 2.6: (a) The Sigmoid function which maps an input in the interval
(−∞,∞) to an output in the interval (0, 1) (b) The cost function for logistic
regression as a function of the predicted output for the two outcomes in a
binary classification problem.

us take a step back, and consider the case where there is a single classifying
parameter, instead of two, as shown in Fig. 2.8(a). The two classes repre-
sented in red and blue can be separated by setting a threshold value anywhere
between x = 2 and x = 4.25. The threshold point can more generally be
referred to as a decision boundary, to encompass cases with multiple param-
eters. One possible choice fro the decision boundary, so as to maximize the
distance from the decision boundary to the data points closest to it. This
can be done by calculating the mid-point of the two closest points, one each
from the two distinct classes.

Fig. 2.8(b) shows a sample case with two parameters or variables, x1 and
x2. In the 2-dimensional case, a linear decision boundary implies a line. Now
the task lies to determine the slope and position of the line. We, again, try
to maximize the margin, that is, the distance of the decision boundary to the
data points closest to it on either side. The data points closest to the decision
boundary are called support vectors. They are responsible for determining
the maximum-margin decision boundary. The fact that the orientation of the
decision boundary is determined by the support vectors, and not the entire
set of data points reduces the number of computations required. This is a
major reason behind the popularity of support vector machines.



2.5 Machine learning and classification 27

Figure 2.7: Linearly separable (left) and nonlinearly separable (right) distri-
butions with respect to parameters x1 and x2

2.5.4 Quantifying classification accuracy
Once a classifier is created, the next step is to evaluate how well the classifica-
tion works. Let us assume that the input parameters have been transformed
into a single classifying parameter. We consider the simplest of a binary clas-
sification, where there are two output classes. Fig. 2.9 displays two distinct
distributions of the occurrences over the classifying parameter, with the two
classes, positive and negative, shown in green and blue respectively in each
case.

In (a), there is a clear separation between the two classes with respect to
the classification parameter. By setting an appropriate value of the parame-
ter as the classification threshold, the two classes can be accurately separated,
with the positive class having values of the classification parameter that are
lower, and the negative, higher than the threshold. In (b), the separation is
not as clear, as there is a range of values that could correspond to either class.
Thus one can say that (a) represents a better classifier than (b). Next, we
shall introduce some parameters that are used to quantify the effectiveness
of a binary classifier.

The Confusion Matrix

This is a matrix that quantifies the effectiveness of a classification model by
displaying the actual and predicted number of items in each class, thereby
showing how many have been correctly and incorrectly classified. Table 2.3
represents the confusion matrix for a binary classification.

Fig. 2.10 represents a distribution involving two outcomes plotted as a
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Figure 2.8: Choosing the decision boundary for binary classification using
support vectors

Predicted value Actual value
True False

True True Positive (TP) False Positive (FP)
False False Negative (FN) True Negative (TN)

Table 2.3: Confusion matrix for binary classification.

function of a classifying parameter. The dotted black represents a classifica-
tion threshold. Cases where the classifying parameter has a lower value than
the threshold are predicted to be positive, and those with a higher value are
predicted to be negative. With reference to the confusion matrix depicted in
Table 2.3, the true positive, false positive, false negative, and true negative
portions of the distribution have been marked in light shades of green, red,
grey and blue, respectively.

Two quantities that are used to rate the classification are sensitivity and
specificity. Sensitivity refers to the fraction of symptomatic individuals who
have been classified as positive, and is given by:

Sensitivity = TP
TP + FN . (2.70)

Specificity refers to the fraction of symptom-free individuals that were
correctly classified as negative, and is given by:

Specificity = TN
TN + FP . (2.71)
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Figure 2.9: (a) The classifying parameter enables clear separation between
positive and negative classes using a classification threshold. (b) The sepa-
ration between the positive and negative classes is not clear or obvious.

Alternatively, the following two terms could be used:

True Positive Rate (TPR) = TP
TP + FN = Sensitivity. (2.72)

False Positive Rate (FPR) = FP
FP + TN = 1 − Specificity. (2.73)

In a binary classification scenario, the values of sensitivity and specificity
depend on the selection of the classification threshold, as shown in Fig. 2.10.
It is common practice to use as a performance metric, the sensitivity of a
classifier at 95% specificity. In the following section, we shall look into a
graphical representation, called the Receiver Operating Characteristic, to
get a measure for the effectiveness of a classifier, independent of the value
chosen for the classifier threshold.

In the intended application of this work, the positive class refers to symp-
tomatic individuals for a particular type of cancer, and the negative class, to
non-symptomatic individuals.

Receiver Operating Characteristic

To generate the graphical representation called the receiver operating char-
acteristic (ROC), we scan the classifier threshold across the entire range of
values of the classifying parameter. Fig. 2.10(b) to (e) displays four sample
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Figure 2.10: (a) Dependence of sensitivity and specificity on the selection
of the classification threshold. (b-e) Shifting the classification threshold to
construct the ROC curve

snapshots of the distribution of true positive, false negative, true negative
and true positive predictions, on shifting the classification threshold from
left to right. Fig. 2.10(b) shows how at one extreme, the TPR and FPR. In
most real life cases of binary classification, there is a region of overlap where
the actual positive and negative cases are not distinguished accurately, giving
rise to false positive and false negative cases. This can be seen in 2.10(c) and
(d), with false positive and false negative cases coming up to different ex-
tents. Sub-plot (e) shows the other extreme where all occurrences have been
classified as positive. The True Positive Rate (TPR), as well as the False
Positive Rate (FPR), is calculated at every point, and the TPR is plotted as
a function of the FPR to generate the ROC curve for the distribution.

Fig. 2.11(a,c,e) displays three sample distributions as a function of the
classifying parameter, and their corresponding ROC curves (b,d,f respec-
tively). The area under an ROC curve, abbreviated as AUC, is a measure of
the ability of a test to discriminate members of two classes. The AUC has
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Figure 2.11: Example ROC curves for 3 different distributions

a minimum value of 0 and a maximum value of 1. An AUC of 1 describes
correct classification by the classifier model. The AUC represents the prob-
ability that a pair of samples, one from either class, is classified correctly
[34].

Fig. 2.11(a) represents an ideal scenario where the two classes are clearly
separated in the distributions over the classifying parameter. The corre-
sponding ROC curve, as shown in Fig. 2.11(b) is a rectangle with the area
under it being 1. In the example in Fig. 2.11(c), the two distributions have
an overlapping region with respect to the classifying parameter. As a result,
the area under the ROC curve shown in Fig. 2.11 (d) is lower than 1. Fig.
2.11(e) displays a situation with greater overlap or ambiguity. The devia-
tion of the area under the ROC curve (Fig. 2.11(f)) is stronger in this case,
coming to 0.81. An AUC of 0.5 corresponds to the situation of pure chance,
that is, there is a 50% probability of 2 samples belonging to different classes
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being identified correctly.



Chapter 3

Ultra-rapid electro-optic
sampling using a sonotrode

3.1 Slow-scanning field-resolving spectrometer

Our group previously demonstrated field-resolved infrared spectroscopy of
liquid samples, highlighting the technique’s superior sensitivity compared to
Fourier transform infrared spectroscopy [76, 13]. The impulsive excitation of
molecules in the sample by a short mid-infrared pulse that lasts just a few
optical cycles enables background-free detection of the coherent electric-field
response of the excited molecules.

Fig. 3.1 shows the experimental scheme for a slow-scanning field-resolving
spectrometer, as in Ref. [13]. The setup consists of a mode-locked Yb:YAG
oscillator generating NIR pulses centered at a wavelength of 1030 nm, with
an average power of 90 W, pulse duration of 250 fs, and a repetition rate of
28 MHz. The pulses are spectrally broadened and temporally compressed to
a pulse duration of 16 fs in a Herriott-type multipass cell [28]based on self-
phase modulation in bulk silica. A beam splitter splits off a small portion
of the power of the 16-fs pulses to act as a gate pulse with variable delay
for electro-optic sampling. A major portion of the 60 W of average power is
focused onto a non-linear optical crystal for intra-pulse difference frequency
generation, generating few-cycle mid-infrared pulses with an average power
in the range of tens of mW.

The MIR pulses are collimated and focused onto the liquid sample in a
cuvette. The MIR and gate beams are later combined for the infrared wave-
forms to be measured by EOS. Shown in green is a beam from a continuous
wave (CW) laser used for delay calibration. The beam is split at the beam
splitter so that its two branches trace the mid-infrared and gate pulses. The
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Figure 3.1: Schematic diagram for field resolved spectroscopy with slw me-
chanical delay scanning. CW: Continuous wave; BS: Beam splitter; DM:
dispersive mirror; FS: Fused Silica; BC: Beam combiner.

two branches are later combined to obtain an interferometric signal that is
measured and enables precise delay tracking [83]. To capture the infrared
waveform, the gate pulse scans the mid-infrared waveform by varying the
optical delay. This is done using a retroreflector mirror placed on a mo-
torized linear translation stage that changes the length of the optical path
traversed by the gate beam. A single scan of the optical delay covering 5-10
picoseconds takes 1-2 seconds.

3.2 Sonotrode scanning: Experimental setup
Building on the slow-scanning field-resolving spectrometer setup, we in-
troduced an industrial sonication device called a sonotrode, with a mirror
mounted on its vibrating surface to act as an ultra-rapid optical delay
line. The idea of using a sonotrode to vary optical delays was previously
demonstrated in Ref. [89] for time-resolved FTIR spectroscopy. Results from
the sontrode-based ultra-rapid EOS experiment performed with Alexander
Weigel have been published in Ref. [96]. The delay scanning setup comprises
an ultrasonic generator (Hielscher UIP100hd) connected to a piezo-electric
transducer, a mechanical booster, a sonotrode, and a mirror glued onto
the sonotrode’s front surface. The piezo-electric transducer, powered by
the fast-oscillating voltage of the 500W generator, induced vibrations at
kHz rates. The booster and sonotrode are designed to act together as an
acoustic wave-guide, with either part being half the resonance wavelength
corresponding to an oscillation frequency of 19 kHz, thus amplifying the
piezo-induced oscillations to over 40 µm.

The experimental scheme for sonotrode-based ultra-rapid EOS is shown
in Fig. 3.2. The setup is similar to the field-resolved spectroscopy scheme
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Figure 3.2: Experiental setup for ultra-rapid EOS using a sonotrode. BS:
Beam splitter; LPF: Lowpass filter; DM: Dispersive mirror; FS: Fused silica;
PM: Pickoff mirror; M: Mirror; R: Retroreflector; BC: Beam combiner.

with slow delay scanning described in Fig. 3.1 but with the addition of the
sonotrode in the path of the NIR gate beam. Phase-stable few-cycle mid-IR
pulses with a pulse duration of 60 fs, an average power of 60 mW, covering a
spectral range from 7 - 10.5 µm in wavelength are generated in a 1-mm-thick
crystal of LiGaS2 by IPDFG.

The sonotrode now does the delay scanning by varying the path length of
the EOS gate beam. The oscillation amplitude of the sonotrode was tuned
to 70 percent of the maximum, coming to 30 µm. The amplitude was set
at a level lower than the maximum to prevent the glued mirror from getting
detached from the sonotrode surface. The gate beam was reflected 4 times
on the mirror to increase the corresponding total delay range by a factor of
4, from 0.4 ps to 1.6 ps. A linear delay stage was used to match the path
length of the gate pulses to that of the mid-IR pulses, that is to find time-
zero (τ0). This was done before acquiring EOS traces, and the stage was
kept stationary during each measurement, as the sonotrode carried out the
delay scan. The optical path from after the Herriott-cell compression stage,
till after the GaSe EOS crystal lies in vacuum-compatible chambers, with
the sonotrode introduced from one of the walls of the chamber by a KF-40
flange.

Fig. 3.3 shows views of the sonotrode from inside and outside the cham-
ber. A retroreflector ’roof’ mirror is used to change the height of the gate
beam after two bounces on the sonotrode. The beam is reflected off the
sonotrode two more times, before being picked off by mirror PM1, which is
placed at a lower height than the incoming beam. The CW laser beam is
separated from the mid-IR beam at the Germanium beam combiner, and
from the gate beam by pick-up mirror PM2.

Marked in green in Fig. 3.2 is an auxiliary continuous-wave (CW) laser
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Figure 3.3: Photographic images showing views of the sonotrode from inside
and outside the vacuum-compatible experimental chamber

that was used to precisely calibrate the relative delay of the gate pulses with
respect to the mid-IR pulses interferometrically. This auxiliary beam was
split into two, tracing both the mid-IR and gate pulse beam paths before
they were recombined to obtain the interferometric calibration signal. The
EOS signal was recorded using a balanced heterodyne detection setup, using
100MHz-bandwidth balanced photodetector (Femto HBPR-100M-60K-IN)
with a built-in transimpedence amplifier. The signals were then channeled
to a high-speed 2-channel 14-bit digitizer card (Gage RazorExpress 1422
CompuScope) and stored digitally.

The acquisition of the digitizer card was synchronized with the fourth
harmonic of the repetition frequency of the laser oscillator to capture data at
a rate of 112 Megasamples/second. Sampling was done at this high rate to
ensure that the Nyquist sampling criterion was satisfied for the calibration
signal. While the EOS signal was also sampled in synchrony with the cali-
bration signal at 112 MHz, only one in every 4 of the acquired data points
corresponded to a mid-IR laser shot. Data from the calibration channel and
the relevant quarter of the data from the EOS channel were then analyzed
to extract the delay axis for each scan in post-processing, the algorithm for
which will be described in the following section.

3.3 Sonotrode scanning: Delay extraction
Electro-optic sampling with sonotrode-based ultra-rapid delay scanning en-
ables the capture of 38,000 scans per second, capturing every single laser shot.
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For precision spectroscopic applications, however, the relative delay between
the gate and mid-IR pulses is to be determined with sub-femtosecond preci-
sion. To effectively average scans acquired over multiple seconds would mean
that hundreds of thousands of acquired scans would have to align on top of
each other perfectly. Accurate extraction of the delay information turns out
to be an important task. This section describes the delay extraction algo-
rithm developed for this purpose with Alexander Weigel and Michael Tru-
betskov. Knowledge of the approximate motion of the sonotrode was taken
into account in developing a sequential predictor-corrector algorithm. The
steps of the algorithm are described below.

3.3.1 Data preparation
The interferometric calibration signal was normalized to the range [-1,1],
considering segments of 170 points each. The turning points of the inter-
ferometric signal, that is, the points where the direction of motion of the
sonotrode switched, were identified by exploiting the symmetry of the signal
around the turning points. Fig. 3.4 shows a section of the raw (top) and
normalized (bottom) interferometric calibration signal. The inset zooms into
a turning point. The data index of each turning point, ntp was obtained by
locating the points of minimal asymmetry in an interval where the turning
point was expected, as follows:

ntp = min
n

[
m∑

i=1
(Iraw(n+ i) − Iraw(n− i))2

]
. (3.1)

Here, n represents the data index, Iraw, the intensity of the raw calibration
signal, and m, the size of the segment chosen for evaluating the symmetry.
We use the value of the turning point indices to later cut the measured signals
into forward and backward scans. The distance between the turning point
gives an estimate to the period of the oscillatory motion of the sonotrode.

3.3.2 First estimation
Th optical delay, τ , follows the motion of the sonotrode, which is approxi-
mately sinusoidal, and can be estimated as follows:

τ(n) = Aτcos
(2π
T

(n− ntp0)
)

+ τ0, (3.2)

where n represents the data index, ntp0, the data index corresponding to
the first turning point, τ0, the optical delay at the first turning point, T is the
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Figure 3.4: Segments of the raw (top) and normalized (bottom) interfero-
metric calibration signal. The inset in the top panel zooms into an interval
surrounding a turning point of the calibration signal.

period of oscillation of the sonotrode in terms of nuber of data points, and
Aτ is the amplitude of oscillation in terms of optical delay. Aτ is proportional
to the amplitude of oscillation of the sonotrode in space, As, as well as the
number of times the beam is reflected off the sonotrode, Nref , as follows:

Aτ = As ·Nref

c
. (3.3)

Here, c represents the speed of light in air.
We use the approximation given by Eq. 3.2 to predict the change in

delay from data point n to (n + 1). We shall call the increment ∆τpred(n),
and obtain it by taking the derivative.

∆τpred(n) = τ(n+ 1) − τ(n)

∆τpred(n) = −Aτ
2π
T

sin
(2π
T

(n+ 0.5 − ntp0) + τ0

)
(3.4)

We take the derivative at the midpoint of n and n+1, hence n+0.5.Thus
starting at the very first data, we take a step in predicting the optical delay
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of the next point. We then translate the predicted delay into a corresponding
value for the normalized interferometric signal given by:

I(n) = sin
(2πc
λ

(τ) + ϕ0

)
(3.5)

Here, c is the speed of light in air, lambda is the optical wavelength of the
calibration laser, which is 1560 nm, and ϕ0 is the optical phase associated
with the geometric setup of the interferometer.

3.3.3 Initial conditions
For simplicity, let npt0 = 0. Let us set τ0 as −Atau such that τ(n = 0) = 0.
τ0 is adjusted later, in post processing, such that zero delay matches with
the peak of the excitation pulse.

We take the difference between the first and third turning points as an
initial estimate for the period of oscillation of the sonotrode (T ) in terms of
data points, i.e,

Test = ntp2 − ntp0.

The offset in the interferometric phase, ϕ0, is given by,

ϕ0 = sin−1 (I(n = 0)) .

We can estimate the total delay range, Aτ by evaluating the number of
oscillations of the interferometric signal between subsequent turning points.
WIth the signal crossing zero twice every oscillation, we have,

Aτ = 1
4
Nzc · λ
c

, (3.6)

where Nzc is the number of zero crossings in the interferometric signal en-
countered between a pair of turning points, and c is the speed of light in
air.

3.3.4 Sequential prediction and correction
The next step involves point-by-point sequential prediction and correction.
From a data point n, we predict the value of the interferometric signal at the
next data point, n + 1, compare it to the actual signal, and correct for the
deviation in the optical delay.

1. Prediction: Taking note of delay and interferometric signal values at
acquisition index n, i.e, τ(n) and I(n), the predicted change in delay
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in moving to the next acquisition index, ∆τpred is evaluated using Eq.
3.4. The predicted value of the interferometric signal, Ipred, is then
obtained using Eq. 3.5:

Ipred(n+ 1) = sin
(2πc
λ

[τ(n) + ∆τpred(n)] + ϕ0

)
(3.7)

2. Correction: The predicted interferometric signal at acquisition index
n + 1, Ipred(n + 1) is compared with the actual interferometric signal
I(n+ 1). The difference between the two,

δI(n+ 1) = I(n+ 1) − Ipred(n+ 1)

.
Fig. 3.5 shows the motion of the sonotrode over a short segment in time
(top panel), and the corresponding normalized calibration signal (bot-
tom). The zoomed-in inset on the right shows the actual and predicted
data points at a particular acquisition index, along with the difference
δI.
This difference is translated to a corresponding change in the optical
delay, δτ which is used to correct for ∆τpred:

δτ = δI
∆τpred

Ipred(n+ 1) − I(n) , (3.8)

so that τ(n+ 1) is given by:

τ(n+ 1) = τ(n) + ∆τpred + δτ, (3.9)

3. Update parameters: After each oscillation of the sonotrode, that is
after advancing by a pair of turning points, the period, T, amplitude
(in terms of optical delay), Aτ of the next oscillation (m+1) of the
sontrode are updated as follows.

T (m+ 1) = ntp(2m+2) − ntp(2m)

form ∈ N,

Aτ (m+ 1) = max
n

(τ(n)) − min
n

(τ(n)) ,

for n ∈ {ntp(2m) , ntp(2m) + 1 , ntp(2m) + 2 , ..., ntp(2m+2) − 1 , ntp(2m+2)}

4. Repeat steps 1-3 till the end of a measurement
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Figure 3.5: A segment showing the motion of the sonotrode with time (top)
and the corresponding interferometric calibration signal (bottom). The inset
zooms into a few data points, showing the measured (green) and predicted
(black) values of the interferometric signal at a time point. The difference
between the two, δI is used to make corrections to the predicted delay axis,
for accurate calibration.

3.3.5 Post-processing
After the delay axis is extracted for a continuously recorded dataset, a series
of post-processing steps are performed to improve the accuracy of the delay
axis, using known information regarding the motion of the sonotrode, as well
as to prepare the data, separating a single stream of data into individual
scans for further analysis.

1. Low-pass filtering the delay axis: A second-order Butterworth
low pass filter with a cut-off frequency of 2.24 MHz was applied on
the extracted delay axis, τ(n). Fluctuations at higher frequencies, far
beyond the scan frequency of the sonotrode, do not originate from the
motion of the sonotrode, and were attributed to the detection noise.
Hence, these frequency components were removed from the delay axis.

2. Downsampling the signal and the delay axis: Data acquisition
was carried out at 112 MHz from the balanced photodetector capturing
the EOS signal, as well as from the photodiode capturing the delay
calibration signal. The mid-IR pulses are generated at a lower rate of
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28 MHz. To separate out meaningful data, we downsample the data
recorded by EOS by factor of 4. The delay extraction used all data
captured from the calibration signal, at a rate of 112 MHz. Once the
delay extraction is done, downsampling the extracted, low-pass-filtered
delay axis, gives us the delay axis corresponding to down sampled EOS
signal, while keeping the information provided by the excluded data
points of the delay axis.

3. Baseline correction: Variations in beam pointing associated with the
motion of the sonotrode cause fluctuations in the baseline of the raw
EOS signal. A 140-kHz high-pass filter(in laboratory time) was applied
to mitigate the variations in the baseline, as shown in Fig. 3.6(a).

Figure 3.6: Sonotrode delay extraction: post-processing steps. (a) Baseline
correction using a 140-kHz hugh-pass filter. (b) Delay correction for indi-
vidual scans obtained by finding a linear combination of basis functions B1
and B2 from the first EOS scan (bottom panel) that best fits the ith scan
(EOS signal of ith scan shown in black in the top panel, fit shown in red. (c)
Extracted delay shift for each individual forward (black) and backward (red)
scan over a 9.5-s-long measurement comprising of 365,800 scans

4. Separation into individual scans: The continuosly acquired EOS
signal, as well as the extracted delay axis was split into individual
forward and backward scans, using the turning points described earlier.
Each individual scan corresponds to an acquisition time of 263 µs.

5. Delay shift correction: The calibration beams and the mid-IR and
gate beams for EOS share common beam paths, except when the signals
are spatially separated at the end, for independent detection. In order
to compensate for drifts between the calibration and EOS signals that
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may occur over the course of a measurement, a delay shift correction
was performed for each individual EOS scan. Let the delay drift in
the forward and backward scans be represented by δτi,F W and δτi,BW ,
where i represents the trace index. Si,F W and Si,BW be the EOS signal
corresponding to the ith forward and backward delay scan, respectively.
We use the first forward EOS scan, S0,F W to define a pair of basis
functions B1,FW(τ) and B2,FW(τ), such that:

B1,FW(τ) = S0,FW(τ),

B2,FW(τ) = S0,FW

(
τ + 1

4νc

)
.

Here, νc represents the carrier frequency of the mid-IR waveform (33.3
THz in our case). This implies that B2 and B1 have a relative phase
difference of π/2.

Fig. 3.6(b) depicts the shift correction procedure. The top panel shows
the ith scan on which the shift correction needs to be applied (black).
The bottom panel shows the basis functions B1 and B2 obtained from
the first EOS scan. Any signal, S0,FW(τ + δτ), obtained by shifting
S0,FW(τ) by a constant phase, can exactly be expressed as a linear
combination of B1,FW(τ) and B2,FW(τ) as follows:

S0,FW(τ + δτ) = p0,FWB1,FW + q0,FWB2,FW. (3.10)

By finding the linear combination of the two basis functions that best
fits the ith scan, as shown by the red line on the top panel of Fig. 3.6(b),
the delay shift, δτ , is extracted using the following relation:

δτ = atan2(p0,FW, q0,FW). (3.11)

The atan2(x,y) function returns the two-argument arc tangent, which
is the angle made by the line connecting the origin to point (x,y), with
the x-axis. Fig 3.6(c) shows the delay shifts for each individual forward
and backward scan, for a 9.5 s long measurement, which lies in the
sub-fs range.

6. Interpolation to a common delay axis: Each individual trace, after
the delay shift correction, was interpolated with a common, uniformly
spaced delay-axis.The uniform spacing would make it easier to perform
Fourier transformation.
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With the measured data having been post-processed and arranged as EOS
traces corresponding to individual delay scans, it is ready to be analyzed,
involving evaluations of the sensitivity, reproducibility and stability of the
measured infrared waveform. This will be the focus of the following section.

3.4 Sonotrode scanning: Results

3.4.1 Sensitivity and dynamic range
Fig. 3.7(a) shows an individual-scan (black) and an averaged-scan (orange)
EOS trace acquired over 26 µs and 9.5 s respectively, overlaid on top of each
other. The orange trace, which is an average of 365,800 scans including scans
in both forward and backward directions, resembles the individual-scan trace
in shape as well as amplitude, such that the two are hardly distinguishable in
the plot. This bears witness to the accuracy of the delay extraction process,
as well as the intrinsic stability of the MIR waveforms generated by IPDFG
[95, 77, 45, 76]. A deviation in either the delay axis, or in the stability of
the shape of the mid-IR waveforms would have caused a reduction in the
amplitude of the EOS trace on averaging several scans.

Each data point in the individual-scan trace represents a single laser shot.
A 1000 times zoomed-in version of a section of the averaged-scan signal is
shown as an inset, demonstrating the enhanced ability of averaged scans to
capture weaker signals. The lower panel shows the detection baseline, mea-
sured with the mid-IR beam blocked. Here again, an inset zooming into the
averaged scan shows how the detection noise level decreases by close to three
orders of magnitude on averaging 365,800 scans. Defining the time-domain
electric-field dynamic range as the ratio of the maximum amplitude of the
EOS trace to the root-mean-squared (RMS) detection-noise level obtained
by blocking the mid-IR beam, we obtained a value of 150 and of 8 × 104

for individual-scan and averaged-scan traces respectively, with the increase
roughly approaching the square-root of the number of scans averaged.

Performing a Fourier transform on the EOS traces in Fig. 3.7(a) gives us
the corresponding spectra, which are shown in Fig. 3.7(b). The spectrum
of the mid-IR radiation is centered at 1100 cm-1 in wavenumber, which cor-
responds to a wavelength of 9 µm, and spans from 940 cm-1 to 1420 cm-1

(8.9 µm - 10.6 µm) at -20dB. The top panel shows the spectra for the signal
(blue shaded region) and detection noise (grey shaded region) for an individ-
ual scan, while the bottom panel shows the same for an average of 365,800
scans. We define the intensity dynamic range in the frequency domain as the
ratio of the peak intensity of the EOS signal spectrum to the RMS value of
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Figure 3.7: (a)Individual-scan (black) and averaged-scan (pink) EOS traces
obtained by sonotrode ultra-rapid scanning, as a function of delay in the time
domain. The detection noise obtained by blocking the mid-IR beam is shown
in the bottom panel. (b) Spectra obtained by performing a Fourier transform
on an individual scan (top) and an average of 365,800 scans (bottom) are
plotted as function of wavenumber in the frequency domain. The shaded
grey plots represent the detection noise in the frequency domain.

the detection noise. This corresponds to a value 1.6 × 105 for an individual
scan, which increases by more than 5 orders of magnitude to 4.0 × 1010 on
averaging 365,800 scans, which are acquired in 9.5 seconds.

In the next subsection, we will look into the timing precision of the delay
extraction process in more detail.

3.4.2 Waveform reproducibility
Timing precision

We chose the delay positions where the mid-IR waveform crosses zero, in the
region with the strongest EOS signal, as the points of reference to determine
the timing precision of our EOS measurements. The top panel of Fig. 3.8(a)
shows a section of an exemplary EOS trace (black line), centered around the
negative peak of the trace, and spanning 80 femtoseconds in the positive as
well as the negative direction. The zero crossing points are marked by solid
black circles.

In the bottom panel, the standard deviation, σZC in the position of the
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Figure 3.8: (a) The top panel shows a section of an individual EOS scan in
the delay range where the amplitude is maximum. Zero-crossing points are
marked by black circles. The bottom panel displays the standard deviation
in the position of zero crossings σZC, for a batch of individual scans (black),
as well as for batches of averaged scans, with 256 scans averaged (blue), and
38,000 scans averaged (grey). (b) The value of σZC for the zero-crossing at
-21 as of delay (black vertical line in (a)) is plotted for a batch of 9 individual
scans (black), as well as for batches of averaged scans (blue), as a function
of the averaging time.

zero-crossings over 10 individual delay scans is plotted as a black line. The
same is performed for a set of 256-scan averages (blue), as well as for 38,000-
scan averages (grey). For individual scans, the mean value of σZC for the 11
displayed zero crossings is 34 attoseconds. On averaging traces in sets of 256,
the value goes down to 2.2 attoseconds. On further averaging, however, the
value of σZC increases to 7.2 attoseconds corresponding to batches of 38,000
traces, each acquired over 1 s. In Fig. 3.8(b), σZC for the zero crossing
at -21 as, represented by the vertical dashed line in Fig. 3.8(a), is plotted
for a batch of 9 individual scans (solid black square), and for batches of
averaged scans (solid blue square), for different averaging times/ numbers
of traces averaged. It was observed that the precision increases with the
square root of the averaging time, up until 10 ms, after which there was a
deviation from the trend. We attribute this to infrared waveform distortions
by laser fluctuations at sub-kHz timescales, mechanical vibrations and drifts.
One possible reason for the mechanical effects is the fact that the EOS and
delay calibration signals do not follow exactly identical paths. While we
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corrected for shifts in the entire delay axis for each individual delay scan in
post-processing, as described in section 3.3.5, establishing a common path
for both the EOS and delay calibration signals could help further.

Time-domain differences

The reproducibility of acquired EOS signal waveforms can be tested by look-
ing at the difference between consecutive traces. The difference signal is
expected to come to the level of the detection noise multiplied by

√
2. Fig.

3.9(a) displays the time-domain difference signals for three different scenarios
as described in Fig. 3.9(b). The top panel shows the difference between two
consecutive scan pairs, each being the mean of the EOS signals of a forward
and the subsequent backward delay scan. Taking the mean of the two scans
decreases the difference signal by a factor of

√
2 to bring it to the level of the

detection noise of an individual scan. The RMS values of the two quantities
are indeed similar, with the RMS value of the difference signal amounting
to 8.5 × 10−3, and that of the detection noise of an individual scan being
6.7 × 10−3.

The middle panels of Fig. 3.9(a) and (b) simulate the difference between
two EOS traces acquired by a conventional slow delay scanning technique,
where a single scan is acquired over a few seconds. We call this slow refer-
encing. In this case, 91,400 forward-backward scan pairs have been averaged
(acquired in 4.75 s) and subtracted from the mean of the next set of 91,400
pairs (black plot in the middle panel of Fig. 3.9(a)).

There is a significant difference signal coming up to 10−2 in the region
around 0 delay, where the EOS signal is strongest, which can be attributed
to slow laser fluctuations and mechanical defects, as seen in Fig. 3.8 in
the previous section. In order to check whether the large residual is due to
fluctuations in the overall signal level, we scaled the second averaged trace
before subtraction (orange). The large residue remained, indicating slow
changes or fluctuations in the shape of the waveform in a time frame of
seconds.

In the bottom panel in 3.9(a) and (b), another approach is adopted, where
one forward-backward scan pair is subtracted from the subsequent pair, and
the differences are added. This approach is only possible with rapid-delay
scanning methods, such as the sonotrode. On doing this, what we call fast
referencing, the difference signal goes down to the expected level in the order
of 10−5, on averaging over 9.5 seconds of acquired data.

Fast and slow referencing for various averaging times are compared in
3.9(c), where the RMS value of the difference signal across all delays is plotted
as a function of the total measurement time, from 104 µs to 9.5 s. In the
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Figure 3.9: Time-domain referencing. The top panels in (a) and (b) show
the difference between two subsequent signal scans. The middle panels (slow
referencing) show the difference signals between two averaged scans, acquired
over 4.75 s each, with and without scaling the averaged scans before subtrac-
tion (orange and black, respectively). The bottom panels represent pairwise
difference signals of subsequent individual scans summed up over the entire
measurement time of 9.5 s. (c) The difference signals for slow and fast refer-
encing shown in the middle and bottom panels of (a) and (b) are plotted as
a function of the measurement time, from 104 µs to 9.5 s.

case of slow referencing, we see a deviation from the statistical square-root
dependence around the 10 ms mark. Scaling the averaged traces before
subtration results in a minor improvement, but the trend remains the same.
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Fast referencing on the other hand, results in the RMS relative difference
going down with the square root of the number of traces averaged for the
whole length of the measurement, which is 9.5 s.

3.4.3 Referencing in the frequency domain
In this section, we explore the reproducibility of spectra obtained by perform-
ing a Fourier transform on the EOS traces by taking ratios of consecutive
spectra in the Fourier domain. In comparison to differences in the time
domain, spectral ratios provide an instrument-independent quantity, which
is broadly used in conventional Fourier transform spectroscopy. EOS goes
beyond intensity-based spectroscopic techniques by providing information of
the spectral phase, in addition. We thus obtain the complex sample response.

Figure 3.10: Referencing in the frequency-domain. (a) Top panel: Spectral
magnitude (black) and phase (orange) of obtained by performing a Fourier
transform of the time-domain EOS signal. Middle panel: Magnitude (black)
and phase (orange) of a single transfer function (TF), obtained by taking
a ratio between two consecutive complex spectra (shown in (b)). The blue
lines show the mean value, the shaded regions, and the standard deviation,
calculated over 9 Single TFs. Bottom panel: Averaged TFs were obtained
from 19,000 spectra by taking the ratio between all odd-numbered spectra
and all even-numbered spectra, as shown on the bottom panel of (b). Again,
the blue lines and the shaded regions show the mean and standard deviation
calculated over 9 Average TFs. (c) Mean calculated over the wavelength
range from 900 cm-1 to 1300 cm-1 for the standard deviation of the magnitude
(black) and phase (orange) average TFs, as a function of the number of scans
averaged.
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Fig. 3.10(a), on the top panel, shows the spectral magnitude and phase
obtained by performing a Fourier transform on a time-domain EOS trace.
The middle panel shows the magnitude (black line) and phase (orange line)
of the ratio of two subsequent forward-backward scan pairs. We refer to this
as a single transfer function transfer function (TF). The blue lines and the
shaded regions display the mean and standard deviation obtained from 9
such single TFs.

In the absence of any sample, the ratio of spectra in the frequency domain
equals unity, corresponding to a magnitude of 1 and phase of 0 in polar
coordinates. The black and orange lines in the bottom panel of 3.10(a) show
what we refer to as an average TF. Here, the sum of the spectra of odd-
numbered scans (forward-backward scan pairs) is divided by the sum of the
spectra of even-numbered scans, measured over 1 second. Again, the blue
lines and shaded regions mark the mean and standard deviation calculated
for 9 average TFs, measured over 1 second each.

Placing scans in the numerator and denominator of the formula for cal-
culating the average TF is possible only with rapid scanning. In the mea-
surement shown, there is no sample in that all measurements correspond to
the same substance, pure water. The idea is to simulate a rapid referencing
procedure, that is, to obtain measurements of a sample of interest and a
reference liquid in an ultra-rapid manner, such that every odd scan corre-
sponds to the sample and every even scan to a reference. This idea will be
brought up again in the next chapter, in section 4.5.1, where its experimental
implementation is described.

Fig. 3.10(c) shows the standard deviation in the magnitude (⟨σ|H|⟩, black)
and phase (⟨σϕ⟩, orange) of average TFs, averaged across the spectral range
displayed in 3.10(a), from 900 cm-1 to 1100 cm-1 as a function of the total
measurement time. In each case, the measurement was split into 9 segments,
and the average TFs and the standard deviation were calculated.

Both ⟨σ|H|⟩ and ⟨σϕ⟩ are observed to decrease monotonically with the
square root of the number of spectra averaged for the entire available mea-
surement time of 9.5 s. This proof of concept experiment suggests the possi-
bility of an ultra-rapid referencing technique combined with the sonotrode-
based ultra-rapid delay scanning for EOS being able to perform spectro-
scopic measurements with a sensitivity that scales with the square root of
the measurement time, thus suppressing the effects of laser fluctuations and
mechanical noise at the sub-kHz level.

We have looked at one method of rapid delay-scanning for EOS by using
a sonotrode to act as an optical delay line in the gate beam path before it
is combined with the MIR field to be sampled. The mirror attached to the
front surface of the sonotrode, vibrating back and forth at a rate of 19 kHz,
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replaced a conventional optical delay line. The delay range and the scanning
frequency were determined by the amplitude and frequency of vibration of
the sonotrode, respectively. On the one hand, this restricted the possibilities
for tailoring the delay scan to our needs. On the other hand, the rapid back
and forth motion of the sonotrode potentially introduces variations in beam
pointing. The gate laser beam for EOS was obtained by splitting off a part
of the few-cycle NIR beam before generating MIR radiation. The delay was
scanned by changing the optical path length of the gate beam with respect
to the MIR beam.

In the next chapter, a dual-oscillator implementation of rapid electro-
optic sampling is presented, where the delay scanning is done by means of
electronically controlled detuning of the repetition rates of two laser oscilla-
tors. The gate pulse is sourced from a second laser system with a different
central wavelength. By precisely calibrating the relative delay between the
two lasers, we demonstrate rapid delay scanning with flexible delay ranges,
scanning rates, and attosecond-level timing precision.
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Chapter 4

Dual-oscillator electro-optic
sampling

The idea of using two pulsed laser sources with detuned repetition rates to
scan optical delay is not new. Paul A. Elzinga and co-workers introduced
the concept of asynchronous optical sampling (ASOPS) for pump-probe spec-
troscopy more than three decades ago [20, 21]. In pump-probe experiments
using the ASOPS technique, the pump and the probe pulses originate in two
different mode-locked oscillators with a constant offset in their repetition fre-
quencies instead of in the same laser. This results in a relative phase walk-off
at a fixed speed, as shown by the expressions below, which have been adapted
from Ref. [49]. Let f1 and f2 represent the repetition frequencies of the two
lasers. The scan frequency ∆f , time taken to acquire a single scan, tscan,
number of data points per scan, nscan and the temporal resolution, ∆t, are
given as follows:

∆f = |f1 − f2| (4.1)

tscan = 1
∆f (4.2)

nscan = f1

∆f (4.3)

∆t =
∣∣∣∣∣ 1
f1

− 1
f2

∣∣∣∣∣ = |f1 − f2|
f1f2

= ∆f
f1f2

(4.4)

Fig. 4.1 shows a simplified setup scheme for dual-oscillator electro-optic
sampling. Here, one out of two mode-locked femtosecond laser sources gener-
ates a phase-stable MIR pulse that is transmitted through the sample. The
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Figure 4.1: Simplified scheme for dual-oscillator EOS. The gate pulse is
generated by a second mode-locked laser, whose repetition frequency locked
to the first laser, but with a constant offset. LPF: low-pass filter.

MIR pulse excites molecular vibrations in the sample. A second mode-locked
femtosecond laser generates pulses shorter than a half-cycle of the generated
mid-infrared radiation to act as a probe, also called the gate, for EOS.

When the repetition rate of the second laser differs from that of the
first laser by a constant offset, each subsequent gate pulse interacts with
a different part of the mid-infrared pulse. If we start with the gate pulse
overlapping with one end of the mid-infrared pulse and offset the repetition
frequency in the right direction, the gate pulse will gradually move through
to the other end of the mid-infrared pulse, after which the delay scanning
continues, reaching the subsequent mid-infrared pulse in due time. The delay
range of the scan is fixed as the reciprocal of the laser repetition rate, i.e.,
τscan = 1

f1
.

Fig. 4.2 (a) shows the EOS signal measured by asynchronous optical
sampling over an acquisition time of 1 second. In our case, the laser repetition
rate, f1, is 28 MHz, thus resulting in a scan range,τscan of 35.7 ns. Each data
point corresponds to a single laser shot. In liquid samples, the homogenous
linewidth lies in the order of a THz, leading to picosecond level decay times.
Considering the delay range of interest to be 10 picoseconds, the duty cycle
with ASOPS with a 28 MHz laser system is less than one in a thousand. Fig.
4.2 (b) zooms into such a 15 picosecond delay range. Fig. 4.2 (c) shows a
spectrum obtained by performing a Forier transform on a single delay scan.

To maximize the scan rate and minimize the dead time for the measure-
ment, we limit the total delay range, restricting it to our range of interest.
With the ASOPS technique, one would have to increase the repetition rates
of the lasers to GHz levels. Such a change in the repetition rate is not easy
to implement in all scenarios due to the resulting reduction in pulse energy.
There is another solution to limit the total delay range to a few picoseconds:
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Figure 4.2: (a) Waveform measurement acquired in 1 second by asynchronous
optical sampling (b) An enlarged view of the few-picosecond delay interval
surrounding the peak of the EOS signal in a delay scan. (c) Spectrum ob-
tained by performing a Fourier transform on a single delay scan.

switching the repetition frequency of the gate pulses back and forth between
values that are slightly higher and lower than that of the mid-infrared driving
laser. Fig. 4.3 shows a representation of the same. The mid-infrared pulses
are depicted in orange, and the gate in green. The figure demonstrates the
pulse slippage on detuning the repetition frequency of the gate pulse laser
source initially with a higher value and later with a lower value than that of
the MIR driving laser.

The technique of scanning a user-defined delay range by switching the
relative repetition frequency between two lasers using an electronic feedback
loop is referred to as electronically controlled optical sampling (ECOPS)[90].
Micrometer level changes are made in the length of the laser cavity by con-
trolling the position of a cavity end mirror using a piezoelectric transducer.
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Figure 4.3: A representative scheme for restricting the delay range scanned
by the gate pulse to the duration of the mid-infrared pulse (top). This is
done by switching the repetition frequency of the gate pulses between values
higher and lower than that of the mid-infrared pulses.

Instead of switching the cavity length abruptly, we vary the position of the
corresponding end-mirror in a sinusoidal fashion, resulting in a frequency-
modulated repetition rate.

In ECOPS, the frequency of switching or modulation (fscan) directly
translates as the scan rate, and the magnitude of the offset in repetition
frequency, ∆f determines the range of the delay scan. This is depicted in
Fig. 4.4. The delay range is obtained by integrating ∆f over time. Switch-
ing the value of ∆f between two constant values like a square-wave function
leads to a saw-tooth form for the scanned delay, as shown in the top panel of
Fig. 4.4. The time taken to acquire a scan, tscan = (2fscan)−1. A sine-wave
modulation, on the other hand, leads to a cosine waveform for the scanned
delay, as shown in the bottom panel.

In the following section, we shall look into how the repetition rates are
synchronized for dual-oscillator EOS.

4.1 Electronically controlled optical sampling
For our dual oscillator electro-optic sampling, we use the Yb:YAG thin-disk
laser with Herriott-cell type pulse compression mentioned in Section 3.1 to
generate the mid-infrared pulses, and a commercial femtosecond Erbium fiber
laser (Menlo Systems C-Fiber) with a highly nonlinear fiber (HNF)-based
broadening stage [12] for the gate pulses. The group of Prof. Alfred Leit-
enstorfer at the University of Konstanz provided the HNF. The spectrally
broadened pulses from the Er:fiber laser were compressed to 12 fs, shorter
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Figure 4.4: Switching the sign of the repetition frequency difference period-
ically (top, left) leads to a piece-wise linearly varying delay axis (top, right).
Sinusoidally modulating the repetition frequency difference (bottom, left),
leads to a sinusoidal delay axis with a π/2 phase-shift (bottom, right).

than a half-cycle of the mid-IR field using custom dispersive optics. Let us
call the Yb:YAG thin-disk oscillator as Laser 1 and the Er:fiber oscillator as
Laser 2. Laser 2 has a piezo-controlled end mirror to adjust the length of the
laser resonator cavity, thereby controlling the repetition frequency. In addi-
tion to the piezoelectric transducer, a stepper motor connected to the same
end mirror makes coarser adjustments to correct for drifts. Laser 1 acted as
the master oscillator and Laser 2 as the slave. We tuned and modulated the
repetition rate of Laser 2 using the RRE-SYNCRO (Menlo Systems GmbH)
repetition rate locking electronic system.

4.1.1 Fundamental and harmonic frequency feedback
To measure rapidly, and to limit the scanned delay range to within 10 ps, the
ECOPS mode was implemented.We used higher harmonics of the laser pulse
signals for the repetition frequency feedback control loop for more precise
frequency control. However, on the ECOPS technique, one has to consider
that only a small fraction of the total delay between the mid-IR pulses is
scanned. On locking on to the nth harmonic of the repetition frequency,
we get n possible ranges within the 35.7 ns delay range where the scanning
occurs. As a result, instead of locking onto and scanning a limited range of
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delay around the mid-IR pulse peak, the gate pulse now has the possibility to
lock onto and scan the delay range around (n− 1) virtual pulses that emerge
in addition to the real pulse. This is shown in Fig. 4.5.

Figure 4.5: An example showing three potential scenarios of locking the third
harmonic of the laser repetition rate for ECOPS. Only one among them scans
the intended delay range.

We adopted the following procedure to ensure the consistency of the fre-
quency lock. We set up two feedback loops, one working at the fundamental
repetition rate of the Er:fiber laser of 56 MHz, to first synchronize the two
lasers without any frequency offset and a second modulated harmonic loop
for ECOPS. We first engaged the fundamental synchronization lock and then
switched to the harmonic ECOPS lock while the lasers remained locked. This
ensured that the delay range was reproducible.

The RRE-SYNCRO proportional, integral, and derivative (PID) con-
troller has two locking channels, enabling the smooth switching from the
fundamental to the harmonic lock. Fig. 4.6 shows the frequency locking
schemes for ECOPS, including the fundamental (a) and the harmonic (b)
frequency-based feedback loops. In the fundamental loop, the two lasers
were locked to each other at the fundamental frequency of laser 2, which is
at 56 MHz. The signals were mixed to form the error signal for the funda-
mental loop and fed into Channel 1 of the PID controller. The PID controller
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Figure 4.6: ECOPS frequency locking scheme. (a) Fundamental loop oper-
ating at 56 MHz. (b) Harmonic loop operating at 2072 MHz.

adjusted the position of the end mirror of the Laser 2 cavity, thus regulating
the repetition frequency.

In the harmonic loop shown in Fig. 4.6(b), the 74th and 37th harmonic
signals of Laser 1 and Laser 2 respectively, at 2072 MHz, were filtered out and
amplified. Each of the two signals was mixed with the output signals from 2
channels of a digital signal generator (Siglent SDG6052X). One output was
a sinusoidal wave at 300 MHz. A 1.4 kHz frequency modulation was applied
to the second output of the digital signal generator, also centered at 300
MHz, which served as the repetition frequency difference, ∆fh. These signals
were filtered to remove unwanted frequency components and amplified, before
being mixed together to obtain a preliminary error signal.
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Fig. 4.6(b) displays an additional step, where this error signal is fed
into a differential amplifier in combination with another signal for enhanced
stability. The following subsection describes this step.

4.1.2 Optical feedback for delay stabilization

Figure 4.7: Optical-signal-based feedback for ECOPS. (a) EOS signal ob-
tained by ECOPS with frequency modulation at 1.4 kHz (orange), and a
1.4 kHz reference pulse from a synchronized digital signal generator. (b)
Time interval between reference pulses and subsequent EOS pulses with
solely electronic-signal-based feedback. (c) The same time-interval, but in
the case with additional optical-signal-based feedback.

The orange plot in Fig. 4.7(a) shows a few scans of the EOS signal mea-
sured using the ECOPS technique. The modulation frequency of 1.4 kHz
implies that 2,800 delay scans (1,400 in the forward direction and 1,400 in
the backward direction) are performed each second, implying an acquisition
time of 367 µs for a single scan. To measure the reproducibility of the delay
scans, we introduced a pulsed signal at the scanning frequency of 1.4 kHz,
generated using a digital signal generator(Agilent 33250A) with a clock that
is synchronized to the two-channel digital signal generator mentioned pre-
viously. This pulsed reference signal at 1.4 kHz is displayed in blue in Fig.
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4.7(a).
To quantify the reproducibility of the scans, the time interval from each

reference pulse to a threshold point near the peak of the EOS signal in the
subsequent scan was measured using a counter card(National Instruments
PXIe 6612). This quantity is plotted in black Fig. 4.7(b). This corresponds
to the case of using the preliminary (electronic) error signal mentioned in
Section 4.1.1 to lock the harmonic feedback loop.

We used the output of the counter card as an additional optical-signal-
based feedback for the harmonic loop. The digital signal from the counter
card was converted to an analogue voltage using an analogue-to-digital con-
vertor (BMCM USB-AD 16f). The signal level was then adjusted using
attenuators, and using only the proportional component of a PID Controller
(Vescent D2-125). The output of the Vescent D2-125, which can be engaged
and disengaged at will, was fed into a differential amplifier, along with the
preliminary error signal mentioned before. On engaging the optical-signal-
based feedback, the output of the counter card transforms to a more stable
one, as shown in 4.7(c).

4.2 Electro-optic delay tracking
In our implementation of ECOPS the optical delay was scanned by varying
the repetition rate of the laser oscillator generating the gate pulses for EOS
at a rate of 1.4 kHz, thus giving 2,800 delay scans per second, 1,400 in one
direction and 1,400 in the reverse direction. The jitter of the pulses along the
delay axis is on the order of tens of femtoseconds. For sensitive spectroscopic
measurements, we require the delay axis to have attosecond-level precision.

For the case of the sonotrode, delay tracking was done interferometrically,
with one arm of the Mach-Zehnder interferometer tracing the path of the MIR
pulse and the other, that of the gate pulse, both of which originated from the
very same laser source. The sonotrode, or a conventional translation stage
for that matter, changes the path length of the gate beam, thus affecting the
interferometric signal.

In the current scenario, we have two different mode-locked lasers as the
sources for the mid-infrared and the EOS gate pulses, with the delay being
scanned by means of a relative difference in the repetition rates. This requires
interferometry with two optical frequencies, as the interferometric signals
depend on the relative optical delay and the relative phase determined by
the carrier-envelope-phase. Even in a case where we would have a stable
phase relationship between the pulses, the delay range would be restricted
to the region where the pulses overlap in a sufficiently strong way.



62 4. Dual-oscillator electro-optic sampling

For mapping electric fields by EOS, we require the sampled waveforms
to have a stable phase but not the gate pulse. Our mid-infrared pulses are
inherently phase-stable due to the fact that in intrapulse difference frequency
generation, the two frequencies contributing to DFG interact to cancel away
the carrier-envelope phase, as in the interaction of two comb-lines from the
same frequency comb[81, 75].

The pursuit of an effective technique for the calibration of the optical
delay, combined with the knowledge of the inherent waveform stability of the
IPDFGn process led to the conception of a new idea in the team I am part
of, one we refer to as electro-optic delay tracking (EODT). Our strategy to
track the delay involves generating a quasi-monochromatic mid-IR waveform
that covers a 10-picosecond delay range, capturing this waveform by dual-
oscillator EOS simultaneously with the spectroscopic mid-IR waveform, and
using the oscillations of the delay tracking waveform at the known, constant
frequency to track the delay corresponding to each acquired data point.

The few-cycle NIR pulse used to generate mid-infrared radiation for field-
resolved spectroscopy was recycled and recompressed using custom-designed
dispersive mirrors. The recompressed NIR pulse is focused into a second
crystal of LGS for IPDFG. We used a thicker crystal here, prioritizing higher
dynamic range over bandwidth. We obtained few-cycle mid-infrared pulses
with an average power of 50 mW.

Co-workersspecializingg in designing custom dispersive optics developed
a Fabry-Pérot etalon that filters out a narrow spectral range centered at 8.33
µm[3] from the few-cycle mid-infrared pulse. On transmission through the
etalon, the pulse is elongated by two orders of magnitude to cover 12 picosec-
onds of delay. To characterize the newly generated waveforms, we recorded
the electric field by EOS with a previous version of the instrument[76] where
the delay is scanned using a conventional translation stage and tracked
interferometrically[83]. This is shown in Fig 4.8.

Fig. 4.8(a) shows the designed (top panel) and measured (bottom panel)
curves for transmission and group delay, for a pair of Fabry-Pérot filters
(FPFs). The measured transmission wavelength, which we shall represent
by λEODT , is slightly shifted from design, at 8.53 µm, which might be due
to possible discrepancies in the thickness of the layers of Ge and ZnS that
make up the filter. Fig. 4.8(b) shows the effect of the filter, transforming the
few-cycle mid-IR pulse shown in black to the multi-picosecond delay-tracking
waveform shown in orange. Taking the Fourier transform of the waveforms
in Fig. b gives us the spectra shown in Fig. 4.8(c). Fig 4.8(d) zooms in onto
three sections of the delay-tracking waveform, spanning across 12 ps. The
carrier frequency of oscillation remains constant across the entire delay range
which has been shown.
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Figure 4.8: Characterizing the delay tracking waveform. (a) Design curve
and measured values of transmittance (dashed black) and group delay on re-
flection (orange) of the Fabry-Pérot-type filter. (b) Time-domain EOS traces
of the broadband unfiltered mid-IR waveform (black) and narrowband delay-
tracking waveform (orange) obtained by transmission of the broadband pulse
through two Fabry-Pérot-type filters (c) Normalized spectral amplitude of the
broadband (black) and filtered (orange) pulses (d) Magnified view of three
120-fs long sections of the delay-tracking waveform shown in (b), marked in
red, green and blue. The black dotted curves represent a sinusoidal waveform
with a single frequency of 35.2 THz, multiplied by the pulse envelope of the
experimental delay-tracking waveform.

For the delay extraction process, which will be described in Section 4.4,
we assume a constant frequency of oscillation of the delay-tracking wave-
form. We simulated the waveform by multiplying a sinusoidal oscillation at
a frequency of 35.1806 THz with the experimentally measured envelope of
the delay-tracking waveform. The envelope, a(n) was obtained by applying
the Hilbert transform on the delay-corrected waveform as follows:

a(n) =
√

(IEODT(n))2 + H (IEODT(n))2 (4.5)

The simulated waveform is plotted as black dashed lines in Fig. 4.8d. The
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simulated waveform overlaps with each of the sections of the measured wave-
form across the 12 ps delay range, validating the single-frequency approx-
imation. After characterizing the manufactured filters and extracting the
transmission frequency, they were implemented in the dual-oscillator EOS
setup for electro-optic delay-tracking.

4.3 Dual-oscillator scanning: Experimental
setup

The experimental scheme for dual-oscillator EOS with EODT is shown in
Fig. 4.9, with (a) showing a simplified version of the scheme, and (b), a
more detailed representation of the same. In addition to the Yb:YAG thin-
disk oscillator with Herriott-cell pulse compression stages, as shown in 3.1,
we introduce a second oscillator, a commercial Er:Fiber laser (Menlo Systems
C-Fiber), whose pulse repetition rate is actively controlled. The two laser
oscillators are referred to as Laser 1 and Laser 2 respectively.

Figure 4.9: Experimental Scheme: (a) Simplified scheme for dual-oscillator
EOS. FPF: Fabry-Pérot Filter; LPF: Lowpass filter. (b) Detailed experimen-
tal scheme. HN: highly nonlinear; DM: dispersive mirrors.
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After the compression stages, the pulses have a duration of 16 fs, with an
average power of 60 W. These compressed pulses with a spectrum ranging
from 935 nm to 1145 nm (-20 dB) are focused using a lens with a focal length
of 900 mm into a 1 mm thick LiGaS2 crystal to create broadband few-cycle
mid-infrared pulses by the process of intra-pulse difference frequency genera-
tion (IPDFG). The generated mid-IR pulses cover a spectral range spanning
from 6.4µm to 11.3µm, with an average power of 30 mW. The mid-IR beam
is collimated by an off-axis parabolic mirror (OAPM) and subsequently fo-
cused using a 40 mm OAPM into a 30 µm liquid sample cell with 1 mm
thick ZnSe windows (MIRA eCell, CLADE GmbH). The transmitted light
is recollimated using a second OAPM. A set of 4 custom dispersive mirrors
(DM) designed and manufactured in-house then compress the mid-IR pulse,
compensating for the dispersion acquired on passing through the windows
of the sample cell, and half the thickness of the mid-IR generating LiGaS2
crystal, down to 60 fs, before EOS detection. The entire mid-IR beam path
from MIR generation to EOS, lies inside nitrogen-filled chambers to prevent
infrared absorption by water vapour.

The gate pulses for EOS originate in Laser 2. The Er:fiber oscillator
directly outputs pulses centered at a wavelength of 1.56 µm with a duration
of 90 fs, at a 56 MHz repetition rate, and with an average power of 300
mW. The pulses were passed through a prism compressor to fine-tune the
dispersion before being coupled into a highly non-linear fiber, where they
were spectrally broadened to span from 1.25 µm to 1.79 µm (20 dB), with an
average power of 165 mW. The pulses were temporally compressed to 11 fs
using a pair of custom dispersive mirrors and transmitted through 20 mm of
fused silica. The s-polarized gate beam was combined with the p-polarized
MIR beam originating from Laser 1 at a 0.8 mm thick wedged ZnSe substrate
with a diameter of 50.8 mm, which acts as a beam combiner. The MIR beam,
which is incident at an angle of 65 degrees on the ZnSe beam combiner, was
transmitted, while the gate beam was reflected in a to trace the path of the
MIR beam. The co-propagating beams were focused by an OAPM with a
principal focal length of 25.4 mm to a 250 µm thick z-cut GaSe crystal for
EOS. The θ and ϕ angles of the GaSe crystal were adjusted for optimum
phase matching in the spectral range of the mid-IR pulse.

In the LiGaS2 crystal for mid-IR generation, only a small part of the 60
W NIR beam was converted into the mid-IR. The remaining power (>40 W)
was reflected off a custom dichroic mirror, recompressed using 3 mm of fused
silica and custom dispersive mirrors, and focused using a 450 mm focal length
concave mirror into a 2mm-thick LiGaS2 crystal for again generating mid-
IR radiation by IPDFG. The NIR radiation that remained after the second
LiGaS2 crystal was directed to a water-cooled beam dump. MIR radiation
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spanning a spectral range from 970 cm-1 to 1270 cm-1, with an average power
of 50 mW was collimated by a concave mirror and transmitted through two
Fabry-Pérot filters to generate a long-lasting, narrowband waveform that
spanned the entire multi-picosecond delay range for delay-tracking.

A part of the gate beam (38 mW) was transmitted through the ZnSe beam
combiner mentioned earlier, to be used as the gate for the delay-tracking
waveform. The gate pulse was temporally compressed using a pair of custom
dispersive mirrors and transmission through 12mm of fused silica to com-
pensate for the dispersion acquired in the ZnSe beam combiner. The path
length of the gate beam is carefully adjusted for temporal overlap with the
delay-tracking mid-IR pulses. The delay-tracking MIR and gate beams were
combined at a holographic wire grid polarizer (Thorlabs WP25H-Z), through
which the MIR beam was transmitted and off which the gate was reflected
at a low angle of incidence. The co-propagating beams were focused using
an OAPM with a principal focal length of 50.8 mm into a 500 µm thick EOS
crystal of z-cut GaSe.

Figure 4.10: (Top) Simultaneous acquisition of EOS traces in the sample
(black) and delay-tracking (orange) arms. The turning points, where the
scan direction switches, are marked as solid red circles. (Bottom) The plots
zoom into sections around two turning points
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In both the EOS crystals, i.e., in the sample and delay tracking channels,
mid-IR light interacts with the gate and was up-converted to the NIR by
SFG. The up-converted light is polarized perpendicular to the gate pulses,
resulting in a change in the polarization state in the overlap region. A convex
lens was used to collimate the NIR beam after the EOS crystal. Short-pass
filters with a cut-off frequency of 1350 nm and 1550 nm were used to filter
away the non-interacting spectral components of the gate and hence reduce
their contribution to the shot-noise[74]. The waveforms were then measured
in an ellipsometric setup using a λ/4 plate, a Wollaston prism, and balanced
detection.

We measured the infrared waveforms in both the EOS channels simulta-
neously, using a 4-channel digitizer (GaGe Razor Express CSE 1642) with a
bandwidth of 125 MHz. We connect an additional photodiode output of the
gate-pulse to the digitizer, using it as an external clock to capture every laser
shot. Although generated in different crystals, the two mid-infrared pulses
originated from the same driving NIR pulses and were gated by the same
gate pulses during EOS. The modulation frequency for ECOPS of 1.4 kHz,
which corresponds to 2,800 scans per second, 1,400 in the forward direction,
and 1,400 in the reverse direction. Each single scan thus contained roughly
10,000 data points. Fig 4.10 depicts the continuous acquisition of EOS traces
with a sinusoidally varying optical delay.

Having obtained the raw EOS signals and the calibration signal, the next
task is to combine the information from both channels to obtain the sample
EOS signal as a function of the delay for each scan.

To quantify the stability of the ECOPS modulation scheme, in terms of
optical delay, the fluctuations in the delay position of the turning points were
evaluated for 560,000 EOS traces (i.e., 280,000 forward and 280,000 backward
scans) acquired in 200 seconds. The interval/distance between consecutive
pairs of turning points, which corresponds to the delay range of a scan, was
also calculated. The two quantities are plotted in 4.11.

In the next section, we shall describe the algorithm that tracks the optical
delay of the gate pulses with respect to the mid-IR pulses in post-processing.

4.4 Dual-oscillator scanning: Delay extraction
Precise knowledge of the delay corresponding to each single data point is
required to perform sensitive spectroscopic measurements. Electronic mod-
ulation of the repetition frequency for ECOPS results in multi-femtosecond
jitter in optical delay from one scan to the next[64]. This turns out to be
larger than the period of oscillation of the mid-IR electric fields. The in-
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Figure 4.11: Fluctuations in turning point (left) and delay range (right)
across 560,000 scans acquired in 200 seconds. The insets zoom into 0.8-
second segments

tention here, is to use the optical electric-field information of a narrowband
phase-stable mid-IR waveform to calibrate the relative delay between the
sample mid-IR and gate pulses.

The fact that the mid-IR and gate pulses for both sample and delay
tracking EOS channels originate from the same two lasers, with a fixed optical
delay in the optical setup, ensure that the delay will be scanned in both
channels identically, with mechanical disturbances and fluctuations in the
beam path being the remaining potential sources of error. In the case of
the sonotrode, which was described before, an interferometric signal from an
auxiliary laser was used to track the delay.

The knowledge of the amplitude and frequency of the sinusoidal oscil-
lation of the delay-scanning sonotrode mirror was utilized in the described
predictor-correcter algorithm. In the current scenario, we similarly put the
knowledge of the sinusoidal modulation of the repetition frequencies to use,
for EODT. Here, the narrow-band delay tracking EOS signal replaces the
auxiliary monochromatic laser. The steps of the delay-calibration algorithm
are described below.

The first task is to cut the continuously acquired signals into individual
scans. To do this, we identify the turning points where the direction of
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the scan changes. This is done by locating the points of mirror symmetry,
by minimizing the least square error, just as was done in the case of the
sonotrode. A zoom-in of the two turning points is shown in the bottom
panels in Fig 4.10. Assuming the modulation of the repetition rates to be
perfectly sinusoidal, we estimate the optical delay, τest, corresponding to the
data index, n, as follows:

τest(n) = Aτ cos
(2π
T

(n− ntp1)
)

+ τ0 (4.6)

Here, Aτ represents the delay amplitude, which is determined by the
frequency modulation depth in ECOPS, ntp1 is the data index of the closest
instance of turning point 1(TP1), T represents the period of the modulation,
which is the reciprocal of the modulation frequency, and τ0 is a constant
delay offset. T can quite accurately be estimated by subtracting the indices
corresponding to every second turning point. The total delay range scanned
corresponds to twice of Aτ .

The delay tracking MIR signal, I has a narrow spectral range, which can
be estimated to a single wavelength, λEODT . I can, thus, be described by a
pulse envelope multiplied by the sine as a function of delay, τ with a constant
carrier frequency of ωEODT, and a constant phase offset, ϕ0.

ωEODT = 2πc
λEODT

= 2.21 × 1014 rad/s (4.7)

I(n) = a(n) sin (ωEODTτ(n) + ϕ0) (4.8)
Let us define the delay-dependent argument of the sine function as ψ(τ), i.e.,

ψ(n) = (ωEODTτ(n) + ϕ0). (4.9)

Let H (I(n)) represent the Hilbert transform of I(n). Then:

a(n) =
√
I2(n) + (H (I(n)))2 (4.10)

ψ(n) = atan2 (I(n),H (I(n))), (4.11)
where atan2 is the 2-argument tangent function that gives the argument of
x+ iy in the interval (−π, π]. The delay can be calculated as:

τ(n) = ψ(n) − ϕ0

ωEODT
= atan2 (I(n),H (I(n))) − ϕ0

ωEODT
(4.12)

We obtain an initial estimate for the delay range as follows:

Aτ = max(τ(n)) − min(τ(n))
2 (4.13)
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Eq 3.11 describes that the delay tracking EOS signal, I, oscillates sinu-
soidally with a constant frequency ωEODT w.r.t the optical delay τ . When
we look at the evolution of I w.r.t the data index, n, however, the frequency
of oscillation, which we shall call ώEODT , is no longer constant, and is given
by:

ώEODT (n) =
∣∣∣∣∣dψ(τ)
dn

∣∣∣∣∣ =
∣∣∣∣∣dψ(τ)
dτ

dτ(n)
dn

∣∣∣∣∣
=
∣∣∣∣2πAτωEODT

T
sin

(2π
T

(n− ntp1)
)∣∣∣∣

(4.14)

The delay-tracking waveform can be described as follows:

I(n) = a(n) sin (ώEODT(n)n+ ϑ(n)) (4.15)

Here, ϑ(n) is the data-index-dependent phase offset. If we take a small
section of the trace, such as half the oscillation period of the delay-tracking
waveform, we can approximate the amplitude and frequency of oscillation to
be a constant in each section , which we denote by i, as follows:

I(n) = ai sin (ώi,EODTn+ ϑi) , (4.16)

where ai denotes the average amplitude of the section of the signal, ώi,EODT ,
the oscillation frequency at the mid-point of the section, and φi, the constant
offset. We obtain the section-wise values of ai and φi from an experimentally
measured trace by numerical fitting. To minimize computational complexity,
a linear fit was used:

Ifit(n) = Asin (ώi,EODTn) +Bcos (ώi,EODTn) (4.17)

ai =
√
A2 +B2 (4.18)

ϑi = atan2(A,B) (4.19)
The envelope (a(n)) and correction phase ϑ(n) for the delay-tracking wave-
form are obtained by interpolating ai and ϑi respectively. The measured
(I(n)) and reconstructed (Ifit) delay tracking signals are plotted in Fig 4.12,
and overlap well . Equation 4.12 is applied to extract the delay axis from
Ifit(n) and its Hilbert transform.

After extracting the delay axis for the EOS traces, post-process was per-
formed analogously to the case of the sonotrode in Section 3.3.5. As part of
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Figure 4.12: Reconstruction of delay tracking signal(left), and the extracted
delay axis (right)

this, a delay shift correction was performed on the individual traces. This
has been plotted in Fig. 4.13, for the case of 280,000 forward and 280,000
backward scans acquired over 200 seconds. The inset on the bottom zooms
into a 0.8-second section of the plot. The maximum amplitude of correction
applied on the 200-second measurement was 4 femtoseconds. We attribute
this to shifts between the paths of the sample and delay calibration arms of
the spectrometer.

Waveform reconstruction

The strength of the full EOS signal impinging on a balanced photodetector is
beyond the working limits of the inbuilt 200 MHz-bandwidth transimpedance
amplifier, causing the measured waveform to be clipped due to signal satura-
tion. With the high bandwidth and dynamic range, technical limitations call
for a compromise. We realized this by detecting stronger and weaker parts
of the signal separately. This is depicted in Fig. 4.14(a).

The two beams of light were each split off by a beam sampler, a fused silica
substrate with anti-reflection coating on one face, before being directed to the
diodes of the balanced photodetector. The beams reflected off of the beam
sampler are directed to a second balanced photo-detector which is identical
to the first one. The signal from the second detector, being considerably
weaker, lies within the working range of the amplifier, and does not exhibit
a saturation effect. Fig. 4.14(b) and Fig. 4.14(c) show the EOS signal as
a function of the optical delay, which is obtained by post-processing using
the algorithm mentioned in section 4.4, measured using balanced detectors 1
and 2.
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Figure 4.13: The delay shift applied as a correction to each scan to com-
pensate for mechanical drifts between the Sample and delay-tracking EOS
waveforms plotted as a function of time, or the number of delay scans, for
a measurment lasting 200 s. The inset on the bottom zooms into a segment
comprising of 1000 forward scans and 1000 backward scans.

The plots correspond to a single delay scan performed in 357 µs, with each
data point corresponding to a single laser gate pulse and a single MIR pulse.
To precisely combine signals from balanced detectors 1 and 2 to reconstruct
the signal, we identified the maximum level of the saturated signal from
Detector 1 and set a fraction of it as the threshold. In this case, the fraction
was chosen to be 0.5. The signal reconstruction was done as follows.

In the optical delay region before the onset of the excitation, that is, to
the left of the first crossing of the threshold, the signal from Detector 1 was
selected. The same was done for the region beyond the excitation pulse, to the
right of the last crossing below the threshold. In the region in between, where
the signal strength is strong and often saturated, the signal from Detector 2
was considered. The signals from both detectors were compared in regions
of weaker signal-strength to obtain the scaling factor that would match the
two signals. The signal measured using Detector 2 was scaled, and ’stitched’
on either side with signals from Detector 1 to obtain a reconstructed trace
as shown in Fig. 4.14(d).
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Figure 4.14: Reconstruction of EOS trace from the unattenuated and atten-
uated signals acquired using two balanced photodetectors

Noise - radio frequency analysis

To study the spectral distribution of the detection noise, the mid-IR sample
beam was blocked, and the balanced output of the balanced photodetector
measuring the sample was sent to a radio frequency spectrum analyzer. The
voltage spectral density of the balanced output is plotted as a function of
frequency in 4.15. For frequencies from 100 Hz to 100 kHz, the measurements
were taken using a fast Fourier transform (FFT) spectrum analyzer (Stan-
ford Research SR 760), and for higher frequencies, a GHz spectrum analyzer
(Agilent E4447A) was used. The detection noise, measured by blocking the
MIR beam (orange), approaches the calculated shot-noise (black-dashed) for
frequencies above 40 kHz. There are spikes in the signal between 100 and 500
kHz, the origin of which is yet to be understood. The dark noise of the mea-
surement scheme(grey) suggests a measuring error or artifact at frequencies
below 2 kHz.

4.5 Dual-oscillator scanning: Results

4.5.1 Sensitivity and timing precision
We obtain the EOS signal for a 1 mg/ml aqueous solution of DMSO2 as
a function of optical delay, by calibrating each delay scan in a continuous
measurement to the extracted delay axis. The EOS signal as a function of
the delay is plotted in Fig 4.16(a), for a single scan acquired in 357 µs (gray),
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Figure 4.15: The detection noise of the field-resolving spectrometer measured
using radio frequency spectrum analyzers, by blocking the MIR beam, is plot-
ted as a function of frequency(orange). The noise approaches the calculated
shot-noise (dashed black line) at frequencies higher than 40 kHz, except for
a few spikes at frequencies between 100 kHz and 500 kHz. The dark noise of
the measurement setup, obtained by blocking all beams, is plotted in grey.
The spikes at lower frequencies are attributed to the measurement setup.

and an average of 560,000 scans (black). DMSO2 is a polar molecule with
two strong absorption bands within the spectral region covered by our mid-
IR pulses, at 1140 cm-1 and 1290 cm-1, which correspond to the symmetric
and asymmetric stretching vibrations of the SO2 group, respectively.

Fig. 4.16(a) shows individual-scan (black) and averaged-scan (gray) EOS
traces. The traces overlap each other. The left inset in Fig 4.16(a) zooms into
a delay segment preceding the excitation pulse, where the signal is expected
to be zero. The fluctuations in the averaged trace cancel out, resulting in
a much lower value in comparison to the individual scan. This behaviour is
expected and validates the delay extraction process.

The inset on the right in Fig. 4.16 zooms in to a section of the EOS trace,
spanning from 600 to 1000 fs in delay. The EOS signal clearly shows the
resonant response of the sample, formed by a beating of the two strongly ab-
sorbing bands mentioned earlier. The field-resolved measurement performed
using EOS makes it possible to separate the resonant response of the DMSO2
from the strong excitation pulse

The spectral amplitude obtained by performing a Fourier transform
on the EOS traces, is plotted in Fig 4.16(b). Here again, the solid gray
line represents an individual trace, and the black line represents the 200-s-
averaged trace. The spectral amplitude is normalized to the peak value of
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Figure 4.16: (a) Individual scan (grey) and averaged scan (black) EOS traces
(b)Spectra corresponding to a single scan (grey) acquired in 357 µs and to
an average of 560,000 scans (black) acquired over 200 s (c) Dynamic range
as a function of the no.of scans averaged. (d) Timing precision represented
by the standard deviation in the position of zero-crossings along the delay
axis, for individual, as well as averaged scans

the averaged-trace spectrum. The noise of the EOS detection, obtained by
blocking the mid-IR beam, is plotted as gray and black dashed lines for the
case of the individual scan and 200-s-averaged scan, respectively. We define
the dynamic range as the ratio of the peak spectral amplitude to the average
spectral amplitude in the case where the MIR beam has been blocked. The
field dynamic range as a function of the number of scans averaged is plotted
in Fig 4.16(c). The dynamic range increases from 103 for an individual scan
to 106 for a 200-s-averaged trace, strictly following a square-root relationship
with the no. of scans averaged.

In order to showcase the timing precision of the EOS signals, we zoom
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Figure 4.17: Ratio of the spectral amplitude for DMSO2 solution to water
for individual scans (left) and 3-s-averaged scans (right) corresponding to
two pairs of concentrations, 1000 (blue) and 200 µg/ml (orange), and 100
(yellow) and 10 µg/ml (pink) respectively. Using the case of 1000 µg/ml as a
reference, the deviation in the spectral ratio from unity are scaled down and
plotted for the lower concentrations in both panels, as a black dashed line

into a 150-fs long segment of the EOS traces, around the excitation pulse
where the signal is strongest. Each scan is aligned to the first scan using a
constant delay shift that minimizes the squared-error between the trace, and
the first trace, as mentioned before. The top panel in Fig 4.16(d) shows an
exemplary section of an individual scan, with the zero-crossings being marked
by black solid circles. The temporal position of each of the 11 zero-crossing
shown in the plot is compared for 20 consecutive scans, and the standard
deviation is calculated and plotted in the lower panel of Fig. 4.16(d). The
same is done for a set of 20 averaged scans, for two cases, that is, averaging
over 2-s and 20-s for each trace. This is depicted by the blue solid plot and
the red dashed line respectively.

Fig. 4.17 the absorption by aqueous solutions of DMSO2 with varying
concentrations. In a step to standardize the spectrum, we divide the spectral
amplitude of the DMSO2 solution sample, by that of pure water. We then
perform a polynomial baseline correction as in [98]. We plot the ratio of
spectral amplitudes for DMSO2 solution and water, for the case of individual
scans (left panel), as well as 4-s averaged scans (right panel). In the case
of individual scans, a solution of DMSO2 in water with concentrations of
1 mg/ml and 200 µg/ml are plotted. Calibrating to the case of 1 mg/ml
solution of aqueous DMSO2, we estimate the spectral ratios for the case of
the lower concentrations in each of the panels, of 200 µg/ml and 10 µg/ml,
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by downscaling the deviation from unity linearly w.r.t the concentration of
DMSO2.

Individual-scan referencing

Referencing the electric field or the corresponding spectral information from
a sample measurement to that of a reference measurement without the sam-
ple of interest would help cancel out contributions in the signal, and the
noise, of the excitation pulse, and separate the coherent molecular response
of the sample. In past attempts within the group, this was done sequentially,
where a measurement with the sample in the liquid cuvette was captured
over multiple seconds, followed by a measurement with distilled water in the
cuvette.

Figure 4.18: Simplified experimental scheme for dual-oscillator EOS with
individual-scan referencing. DW - Diamond window, BC - Beam combiner

To harness the advantage of rapid acquisition of EOS traces enabled by
the dual-oscillator ECOPS approach, the idea of a potential fast referencing
scheme, working at the individual-scan-level, was introduced. The fact that
the pulse repetition frequency of Laser 2, which provides the gate pulses for
EOS, is twice that of Laser 1 is a key enabling feature. A simplified ver-
sion of the experimental scheme for dual-oscillator EOS with individual scan
referencing is shown in 4.18 A wedged chemical-vapour-deposition (CVD)
diamond window (Diamond Materials GmbH) with a thickness of 500 µm
was used to create a copy of the few-cycle mid-IR pulse, before the liquid
cuvette, by reflection. While the transmitted beam passes through the liquid
cuvette, the reflected beam is made to propagate through an additional 5.3
m of path length before the beams are combined with the help of a second
wedged diamond window, which corresponds to 17.8 ns of optical delay, just
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the right amount for the next gate pulse to arrive. Thus, the gate pulses,
arriving at 56 MHz interact with the Sample and Reference mid-IR pulses
in an alternating manner in the same EOS crystal, and are subsequently
detected using the same detection scheme.

Figure 4.19: Crosstalk between the sample and reference channels for indi-
vidual scan referencing is clearly seen in both channels

Individual-scan referencing would thus work on a pulse-to-pulse basis. A
single laser shot of a Sample mid-IR pulse would be followed by a single laser
shot of the Reference mid-IR pulse. Both these pulses originate from the same
laser pulse but are now separated temporally by the additional propagation
distance in the Reference arm. The recorded signal is thus an interspersed
string of data, the odd and even data points of which need to be separated to
obtain the signal in the Sample and Reference EOS signals. While the idea
worked as planned, a setback was encountered due to the limited bandwidth
of the amplification in the balanced photodetector, resulting in traces of the
signal from the Sample EOS trace emerging in the Reference EOS trace and
vice-versa. This is shown in Fig. 4.19, where the Sample and Reference EOS
signals, obtained by averaging 14,000 scans each have been plotted in the top
and bottom plots respectively
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4.5.2 Capturing dynamics
The rapid scanning of delays with the dual-oscillator ECOPS approach taken
here makes it possible to monitor sub-second dynamics. As a test to demon-
strate this, a dynamic injection event was measured by injecting an aqueous
solution of DMSO2 into a water-filled liquid cuvette, while continuously ac-
quiring EOS traces. The DMSO2 solution had a concentration of 1 mg/ml.
A custom sample delivery system by CLADE GmbH was used to inject the
sample into the liquid cuvette.

Figure 4.20: Spectral evolution of an injection process, where water is re-
placed by a 1-mg/ml aqueous solution of DMSO2 (heatmap). The right panel
shows the absorbance and spectral phase at the start- (0s) and end- (4.4 s)
points of the injection event shown. In the bottom plot, the absorbance at
two specific wavenumbers, i.e., 1140 and 1290cm-1 is plotted as a function of
the laboratory time in dark blue and cyan respectively.

We depict the spectral dynamics of the injection in Fig 4.20 in the form
of a 2-dimensional heatmap, with the x-axis corresponding to time, the y-
axis, to wavenumber, and the colourbar, to absorbance in units of optical
density. The plot shows 4.4 seconds of laboratory time, within which the
injection is completed. The spectral amplitude and phase at the start (0 s)
and end (4.4 s) are plotted on the panels to the right of the heatmap in grey
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and blue, respectively. The two absorption peaks at 1140 and 1290 cm-1,
corresponding to the symmetric and asymmetric stretching vibrations of the
SO2 group[24] are clearly visible, both in the absorbance and in the spectral
phase. The temporal evolution at these two wavenumbers is plotted on the
panel below the heatmap in dark blue and cyan. On considering the first
100 ms of time, i.e., well before the injection, the absorbance has a standard
deviation of 0.8 and 1.1 mOD, respectively. The total absorption increases
during the injection to settle at 16 mOD and 18 mOD.

4.5.3 Working with biological samples
As a first step towards biomedical application, we recorded EOS traces with
human blood serum as the sample in the liquid cuvette. We then replaced the
sample with distilled water, to take a reference measurement. The envelope
of the EOS signals for the serum sample and the water reference are plotted
in Fig. 4.21. Comparing the signal envelopes, one can see the resonant
vibrational response of the serum sample that stays above that of the water
reference, once the excitation pulse dies down. The field-sensitive nature of
EOS enables the separation of the resonant vibrational response of samples,
from the strong excitation.

Figure 4.21: The envelope of the electric-field response of a sample of human
blood serum is compared with that of water

The ability of the EOS-based dual-oscillator spectrometer to rapidly
record the molecular fingerprints of coherently vibrating samples in the
condensed phase across picosecond delay ranges with attosecond timing
precision at kHz rates for a broad spectral range make it a viable candidate
for new applications in infrared spectroscopy. Previous demonstrations of
dual-oscillator[80] and dual-comb spectroscopy[51] with attosecond precision
involved a constant repetition rate offset between two laser oscillators.
In this case, the total delay range is determined by the pulse repetition
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frequency. The scanned delay range is on the order of nanoseconds for MHz
repetition rates, often limiting their application to gas-phase spectroscopy.
The new approach of EODT makes it possible to scan much smaller delay
ranges, on the order of picoseconds, without comprising timing precision,
opening up new avenues, for condensed-phase spectroscopy. The applica-
bility of dual-oscillator scanning with EODT extends beyond field-resolved
infrared spectroscopy, to other techniques such as pump-probe spectroscopy,
and coherent anti-Stokes Raman spectroscopy. In the next chapter, this
dual-oscillator spectrometer is employed for a case-control study, using
infrared spectroscopy as a diagnostic tool for the detection of cancer.
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Chapter 5

Application: Infrared
phenotype diagnostics

In the previous chapter, I described the development of a novel rapid electric-
field-resolved infrared spectrometer to analyze liquid samples. In this chap-
ter, I will expand on the steps taken in translating the newly developed
device towards clinical use. This was done through a case-control clinical
study called Lasers4Life (German Clinical Trial Register: DRKS00019844,
www.lasers4life.de) which aims at testing the effectiveness of field-resolved
infrared spectroscopy in diagnosing common cancer phenotypes from infrared
spectra of human blood plasma. The study involving more than 5300 partic-
ipants was done in collaboration with medical specialists at the LMU Uni-
versity Hospital.

The study has four major sub-parts, corresponding to four common can-
cers: that of the lung, breast, bladder, and prostate. In each case, electric-
field molecular fingerprints (EMFs) of venous blood plasma were acquired for
a matched group of case and control subjects. A machine-learning model was
used to develop a binary classifier to successfully distinguish between finger-
prints obtained from cases and controls. The classifiers were then tested on
newly acquired fingerprints to evaluate their accuracy. Kosmas V. Kepesidis
performed the matching of the cases and controls, and the optimization of
parameters for the binary classifier.

The performance of the field-resolved spectrometer was benchmarked
against a commercial Fourier-Transform infrared spectrometer (MIRA Ana-
lyzer by CLADE GmbH). The following section shows the workflow for the
study initiated in 2017.

www.lasers4life.de
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Figure 5.1: Lasers4Life workflow (adapted from Fig. 1 in Ref. [41]): Indi-
viduals were recruited in total, including lung, breast, bladder and prostate
cancer phenotypes and non symptomatic references and individuals with a
non-malignant pathology. Blood samples were collected, processed, trans-
ported, and stored according to standardized procedures. Infrared electric-
field molecular fingerprints of the samples were captured by the technique of
electro-optic sampling. For each phenotype, the case and control groups were
matched for age, gender distribution, and body mass index before developing
a machine-learning-based binary classifier for each of the cancer phenotypes

5.1 Lasers4Life: Workflow

Fig. 5.1 displays the workflow for the Lasers4Life clinical study. The steps
are described below.
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5.1.1 Sample collection, transport and storage
Human blood samples were collected in the different sites following the stan-
dardized procedure described in [41]. The blood samples were drawn into 7.5
plasma monovettes (Sarstedt) and placed in an upright position for at least
20 minutes before centrifugation at 2000g for 10 minutes, at a temperature
of 20°. The supernatant was divided into 0.5 ml aliquots and placed in a
-80°C freezer within 5 hours from the blood draw. Samples were transported
to the location of the spectroscopic analysis, where they would be placed
again in -80 °freezers. Transportation from the collection facility to the site
of analysis was done under dry ice conditions.

5.1.2 Preparation for measurement
Prior to spectroscopic measurement, the 0.5 ml aliquots of blood plasma were
thawed, centrifuged again at 2000g for 10 minutes, distributed into measure-
ment tubes, such that each tube contained 100 µl of blood plasma. The
measurement tubes were placed again in the - 80 °freezer, such that each
sample hence passes through 2 freeze-thaw cycles between blood draw and
spectroscopic measurement. The samples were measured in a randomized
order and in a blinded fashion, i.e, with the measurement technician not
knowing the phenotype corresponding to the a sample being measured. The
spectroscopic measurements were performed in batches of 32, containing 25
blood plasma samples, 5 samples of quality control serum (pooled human
serum, BioWest, Nuaillé, France), with one quality control serum being mea-
sured after 5 samples of blood plasma, and 2 samples of aqueous dimethyl
sulfone with a concentration of 1 mg/ml, measured at the start and end of
each batch. An automated sample delivery system (CLADE GmbH, Esslin-
gen, Germany) with a 30 µm thick liquid cuvette with ZnSe windows was
used.

5.1.3 Measurement and data management
The EOS-based spectroscopic measurement was performed using InfraSam-
pler 1.5, which has a dual-oscillator setup that is capable of capturing 2,800
traces per second. When a measurement is started, the liquid cuvette is
filled with water. A measurement control program that manages both the
data acquisition and the sample delivery systems was developed in-house by
colleagues Patrik Karandusovsky, Wolfgang Schweinberger, and Alexander
Weigel.

Before measuring each sample, the liquid cuvette is cleaned and filled with
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de-ionized water. The acquisition of the EOS traces is started when the water
is in the cuvette. The measurement control program triggers the injection
of the following sample into the cuvette after 40 seconds of measurement. A
10- second window is considered to ensure complete injection of the sample,
after which there is another 40 seconds of measurement. Each sample thus
involves a total of 90 seconds of continuous acquisition, starting with water in
the cuvette, capturing the injection until the cuvette is filled with the sample
of interest. After the measurement of the sample, the cuvette is cleaned by an
automated procedure, lasting close to 2 minutes, in preparation to measure
the next sample.

The raw data acquired in a measurement involving the injection of a sin-
gle sample, is recorded over a total of 70 seconds and takes up 28 GB of hard
disk space. In the 2 minute interval between subsequent measurements, the
sample is transferred from the measurement computer to a second computer
where the data is processed, using a 5 Gigabit/s direct network connection.
On a typical day, 3 batches, i.e., 96 measurements are done in a day, cor-
responding to 75 clinical study samples. The raw data is pre-processed to
extract the delay axis, as mentioned in Section 4.4. The individual EOS
traces, after delay extraction, shift correction and interpolation, are batch-
averaged in sets of 128. This, and the removal of every alternate gate-laser
shot where a mid-IR pulse is absent, reduces the size of a 90 second mea-
surement to 150 MB. The raw data is archived, and the data which has been
processed and averaged, is transferred to a server for storage and analysis.

The measurement of the samples occur in a randomized fashion, in order
to avoid bias or systematic errors that may arise, for example, from acquir-
ing all samples of a particular phenotype sequentially before the samples of
another type. This improves reliability for training the binary classifier.

5.1.4 Standardization
Electro-optic sampling of the molecular response of few-cycle mid-infrared
pulses enables the possibility to temporally separate the molecular response
from the intense short-lived excitation. Efforts were taken in our research
group, initiated by Marinus Huber [43, 42], to design a procedure to stan-
dardize electric-field resolved molecular fingerprints. Taking Fourier trans-
forms of field-resolved fingerprints of the measured liquid samples, they were
transferred to the spectral domain. These spectra were referenced with mea-
surements taken with pure water in the liquid cell, and a time filter was
applied to separate out the noise brought about by the impulsive excitation.
The sequence of steps involved is breifly described below.

The EOS signal in the time domain, S(t) is expressed as a convolution of
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the electric field, E(t), with the instrument response function, IRF (t).

Sref (t) = E(t) ⊛ IRF (t) (5.1)

We model the change in the signal on introducing a sample by convolution
with another term H(t), such that the new signal is given by:

Ssam(t) = E(t) ⊛ IRF (t) ⊛H(t). (5.2)

H(t) is referred to as the sample response in the time domain. On performing
a Fourier transform, convolution corresponds to multiplication, giving us the
relation:

FT (Ssam(t)) = FT (E(t) ⊛ IRF (t) ⊛H(t)) = Ẽ(ω) · ˜IRF (ω)H̃(ω). (5.3)

In the absence of the sample, we have:

FT (Sref (t)) = FT (E(t) ⊛ IRF (t)) = Ẽ(ω) · ˜IRF (ω). (5.4)

Now taking a ratio of spectra, with and without the sample in the beam
path,

FT (Ssam(t))
FT (Sref (t)) = Ẽ(ω) · ˜IRF (ω)H̃(ω)

Ẽ(ω) · ˜IRF (ω)
= H̃(ω), (5.5)

we get the Fourier transform of the linear sample response in the frequency
domain. To make the assumption of a linear, instrument independent sample
response as close to reality as possible, we perform an additional step to min-
imize technical noise contributions. Since a major portion of the measured
optical signal, and the associated noise is contained in the short and intense
excitation pulse, we filter this portion out in the time domain, such that the
obtained filtered sample response is devoid of this noise. The time-filtering
is done by transforming H̃(ω) back to the time domain. After the time-
filter is applied, it is transformed once again to the frequency domain, for
compatibility with time-integrating approaches such as FTIR spectroscopy.

H̃(ω) F T−→ H(t) time−domainfilter−−−−−−−−−−−→ H(t)w(t) F T−→ H̃filtered(ω) (5.6)

The measurement of a sample involves 70 seconds of continuous acquisi-
tion, 30 seconds with water, a 10 second interval within which the sample is
injected, and 30 seconds of sample measurement. Fig. 5.2(left) shows exem-
plary averaged EOS traces of a water reference (blue) and a blood plasma
sample (red). The inset on the bottom right corner zooms into a section of
the trace, clearly showing how the signal corresponding to water diminishes
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Figure 5.2: The left panel shows EOS traces measured with water (blue)
and blood plasma (red) in the liquid cuvette. The inset zooms into the
delay range between 0.6 ps and 1.2 ps, showing the resonant oscillations
following the excitation. The time-domain filter was applied following the
standardisation procedure to obtain the filtered spectrum shown on the right
panel (purple). Time-domain filtered spectra were used for further analysis.

quicker than that of the plasma sample, which shows strong oscillations even
at delays beyond 1 picosecond after the peak of the excitation. EOS traces
are averaged over the entire 30 seconds and the time-domain filter is applied,
to obtain a single averaged result with the response plotted as a function
of wavenumber, depicted in the right panel of Fig. 5.2. The time-filtered
spectrum is used for analysis and classification.

5.1.5 Analysis and classification
The sequence of steps described in the previous section show the journey
of the spectroscopic data, from the moment it is recorded, capturing each
individual laser pulse as a separate data point at 300 MB/s, followed by
delay extraction, interpolation, averaging and standardization, to obtain the
spectral response as a 100-kB spreadsheet. Now that the data is prepared,
we set out to take a deep look, to answer biological questions, among which
is the capacity to detect diseases such as cancer. We seek to use a linear
machine learning classification model to identify systematic patterns that
are characteristic to individuals that share a common phenotype. To do this
with the highest efficiency, while at the same time ensuring that the patterns
that are learnt do not arise from confounding variables. We perform careful
statistical matching to ensure this.

When using machine learning algorithms for regression or classification,
care needs to be taken that models that are developed do not describe solely
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Figure 5.3: The flow diagram shows the various steps involved from mea-
suring the molecular fingerprints using the field-sensitive spectrometer, to
obtaining the time-filtered sample response which is the final outcome. The
steps involve the extraction of delay axis and processing of the EOS traces
as mentioned in 4.4, followed by standardization as described in 5.1.4

the original dataset, but are generally applicable to new data of the same
time, that is, overfitting needs to be avoided. To do this, it is important to
have a large enough dataset. The parameters of the classifier model need to
be chosen wisely. Validation and testing on sets of data that are different
from the one used for training reveal how widely these can be applied.

Matching of individuals enrolled in the clinical study In a case-
control medical diagnostic study, the effect of confounding factors is one that
is significant. Let us take the example of lung cancer. The average age
of diagnosis is 70[86]. Thus, age is a confounding factor, with a higher age
suggesting a higher risk of cancer being detected. Unless special care is taken,
it is to be expected that the cases have a higher mean age than the control
participants. The machine learning model trained to detect cancer may also
attribute age-related patterns to the model to diagnose cancer. This can be
circumvented by matching the age of the cases and controls such that the
mean and standard deviation is as close as possible to each other for the
cases and controls. A similar effect could stem from factors such as gender
and body mass index.
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Case and control sample groups were matched considering the three ob-
servables of age, sex, body mass index (BMI), and number of participants,
for all training sets (described below). A subset of samples is excluded from
the case set, as well as the control set, to match the mean and standard
deviation to as much an extent as reasonably feasible. Examples are shown
in the Results section 5.2.1.

Training and testing the classifier model For the different cases
studied, involving different types of cancer, the samples were split into train-
ing and test sets. Around 20 percent of the samples were set aside to form
an independent test set to evaluate the performance of the classifier. The
remaining set of matched clinical samples were labelled as the training set,
to develop the binary classifier model.

Figure 5.4: Splitting of the entire set of blood plasma samples into a training
set and a test set (top), and the timeline for performing the measurements
of the training and test sets (bottom).

Samples from the training set were measured first, in a randomized fash-
ion. Training of the binary classification models based on a linear support
vector machine was performed using the scikit-learn [69] open-source machine
learning package in Python, and was implemented by Kosmas V. Kepesidis.
The accuracy of the training process is first estimated by means of a 5-fold
cross-validation performed on measurements of samples in the training set.
In order to evaluate the final performance of the classifier model in an unbi-



5.2 Lasers4Life: Results 91

ased manner, the test set is locked away during the whole process of training
and optimizing the model [78].

For the developed instrument and the whole approach to be deemed use-
ful, it is important to also evaluate the robustness of the classifier model
subject to slowly accumulating physical changes in the measurement system.
A necessary condition is that a trained classifier model should be able to
effectively classify measurements performed in the future, and that it is not
limited to a time-frame of a single campaign covering a few weeks. To do
this, a 10-week time-gap was introduced between measurements of the train-
ing set and the test set. Fig. 5.4 shows the distribution of samples into the
training and test sets, and the timeline for performing the measurements.

5.2 Lasers4Life: Results

5.2.1 Distribution of samples in the training and test
sets

From the >5,300 samples that were successfully measured, a subset of around
3̃200 samples was selected to constitute matched case and control groups for
four common cancers: lung cancer, prostate cancer, breast cancer, and blad-
der cancer. The distribution of phenotypes for the overall training set is
shown in Table 5.1. In addition to the four cancer phenotypes and non-
symptomatic references, samples of individuals with benign prostatic hyper-
plasia (BPH) and benign disease were measured as well.

Phenotype # Samples
Non-symptomatic 571
Prostate cancer 600

Benign prostatic hyperplasia 554
Lung cancer 419

Benign disease 321
Bladder cancer 166
Breast cancer 137

Total 2768

Table 5.1: Lasers4Life training set

The groups of non-symptomatic reference individuals and individuals
with one of the four types of cancer are expected to be the easiest to classify.
Classifying these two phenotypes should indeed be the first step in developing
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a new diagnostic test, but is however not a sufficient condition. A meaning-
ful diagnostic test must also be able to differentiate between individuals with
another disease of the same organ, or any physiology that is not malignant,
and a case of the particular cancer phenotype of interest. This was the mo-
tive behind the inclusion of samples of individuals with BPH and benign
disease. In this thesis, which describes the study’s first phase, these samples
have been excluded, thus utilizing only those samples from non-symptomatic
individuals and individuals with cancer. The distribution of samples in the
test set is shown in Table 5.2.

Phenotype # Samples
Non-symptomatic 181
Prostate cancer 132

Lung Cancer 56
Bladder cancer 30
Breast cancer 24

Total 423

Table 5.2: Lasers4Life test set

Case and control groups were matched according to age, sex, and BMI
to create the training set for each of the 4 cases. Our matching procedure is
described in Table 5.3, taking the example of bladder cancer. Out of all non-
symptomatic control samples (>500), 166 were chosen so as to best match
the observable parameters. The mean and standard deviation of the age, sex
(represented as 0 and 1), and BMI are shown, before and after matching.

Observables Cases Unmatched controls Matched controls
Age 71.99 ± 10.36 50.85 ± 16.23 71.07 ± 9.44
Sex 0.21 ± 0.41 0.65 ± 0.48 0.19 ± 0.40
BMI 25.86 ± 4.29 25.31 ± 5.06 26.28 ± 3.97

Table 5.3: Matching case and control groups of individuals for bladder cancer

5.2.2 Infrared fingerprint-based cancer classification
The performance of the developed binary classifiers in correctly categorizing
the EMFs of samples of human blood plasma was tested for four common
cancer types, lung cancer, prostate cancer, bladder cancer and breast cancer.
The outcome is expressed in terms of the area under the receiver operating
characteristic (ROC) curve, as discussed in section 2.5.4. Fig. 5.5 shows the
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ROC curves for each of the 4 cancer phenotypes measured using the field-
resolved spectrometer described in the thesis, for both the training and test
sets.

Figure 5.5: ROC curves for the classification of 4 cancer phenotypes from
non-symptomatic references are shown for measurements performed using
the developed field-resolved spectrometer for lung cancer, prostate cancer,
bladder cancer and breast cancer. The ROC for the training sets, obtained
by performing a 5-fold cross validation, are plotted in black. The ROC for
the independent set, samples of which were measured after a 10-week chrono-
logical gap, are plotted in red, blue, light brown, and purple, respectively.
The area under the curve is specified in each case.

The ROC for the training sets are obtained by a 5-fold cross validation.
This involves dividing the training dataset into 5. The model classifier is
trained using data from 4 out of 5 parts, and the classification accuracy is
evaluated on the remaining subset of the training set. This is repeated 5
times by cycling the subset that is used for evaluation. This leads to 5 ROC
curves, plotted as solid black lines in Fig. 5.5. The mean and standard
deviation of the area under the ROC curve are mentioned for each case.

For the case of lung cancer versus non-symptomatic references using FRS,
the area under the ROC curve is 0.89 for the training set, with a standard
deviation of 0.02 on performing the 5-fold cross validation. For the case of
the test set measured after a chronological gap of 10 weeks, the area under
the curve (AUC) reduces to 0.80, implying an 80 percent chance of a sample
being correctly classified into case or control. We attribute this decrease
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mainly to the changes accumulated in the measuring apparatus over the gap
period decrease the effectiveness of the learnt classifier in its performance.
Other factors such as biological randomness, as well as the lower number of
samples in the test set could lead to differences in the obtained AUC values.

This lung cancer detection capability is promising. A previously reported
lung cancer screening approach involving a collection of four serum-based
markers [9] boasted of an AUC of 0.83, among syptomatic individuals. The
individual markers, however resulted in lower AUCs ranging from 0.69 to
0.76. Infrared fingerprints provide the advantage of providing a fairly high
classification accuracy with just a single test. The low-dose CT technique in
the National Lung Screening Trial in the United States of America showcased
an AUC of 0.93 [73].

For the classification of prostate cancer cases from non-symptomatic ref-
erences, the same general behaviour can be seen, though with a lower values
of the AUC: 0.69 ± 0.03 and 0.65 for the training and test sets, respectively.
In the first phase of the study, as described in this thesis, analysis was limited
to prostate cancer cases and non-symptomatic controls, excluding samples
from individuals with a benign pathology. As prostate cancer grows slowly,
with typical tumour doubling times of two years or more [82], in compari-
son to the exponential growth at the early stages of lung cancer [35] with
doubling times of 5-6 months [4], it is not surprising that the EMFs classify
prostate cancer cases from controls less accurately than for lung cancer. The
ROC curves for the case of bladder cancer show areas that are smaller in
comparison to the previous cases of lung cancer and prostate cancer, with
a test set AUC of 0.61. For the case of breast cancer, the AUC obtained
for the test set was 0.58. The classification accuracy for bladder cancer and
breast cancer are close to pure chance, and do not look promising at the
moment. This needs to be further investigated, as the search continues for
robust blood-based biomarkers for the detection of bladder cancer [59, 54],
and breast cancer [58].

5.2.3 Stability of infrared fingerprints
The reproducible functioning of the entire molecular fingerprinting apparatus
is a prerequisite for any practical applications to probe materials. Contribu-
tors to noise and errors in measurement are manyfold. Technical variability
associated with the fingerprinting process is based on multiple factors: Fluc-
tuations in the laser source, the mid-infrared generation, the injection of the
sample fluid into the liquid cuvette, detection by electro-optic sampling, and
the cleaning of the liquid cuvette in between samples. These are however, not
the only source of variation. Biological variabilty is defined by variations in
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the spectral features of samples of blood plasma from person to person. This
interpersonal biological variability has been found to be higher than the tech-
nical variability for infrared spectroscopy [40] as well as mass spectroscopy
[15].

Before tackling the medical problem of biological variability in the prop-
erties of biofluid samples across individuals, we sought to estimate the tech-
nical variability of the newly developed field-resolved fingerprinting approach
across different timescales, such as days, weeks and months. Over the course
of the entire measurement campaign, a practice of measuring samples of com-
mercially available quality control(QC) serum (pooled human serum, BioW-
est, Nuaillé, France) repeatedly at regular intervals was adopted. All QC
serum samples are nominally identical. Thus, there is no biological variabil-
ity across these samples, and variations in their fingerprints are attributed to
technical variability, and possible variations in sample handling. In practice,
one sample of QC serum was measured after measuring five plasma samples
from the study cohort.

The top panel Fig. 5.6 shows the averaged time-filtered spectra of quality
control serum (black), and of all study plasma samples (red), along with the
standard deviation (shaded region) over the entire training data set which was
acquired over a timespan of 10 weeks. The filtered spectra were normalized to
the peak at 1143 cm-1. The bottom panel displays the wavenumber-averaged
standard deviation for all QC serum and study plasma measurements over
timescales of a day, week, month, and the entire training and test sets, lasting
20 and 2 weeks respectively.

The standard deviation of QC serum samples represents the stability of
the molecular fingerprinting process, as a measure of how reproducible the
measuring apparatus along with technical workflow of sample handling is, in
its ability to capture the molecular fingerprint of nominally identical sam-
ples.The standard deviation in the study plasma samples encompasses, in
addition, the biological variability in the makeup of blood plasma across in-
dividuals, across different phenotypes, as well as differences in the acquisition
and processing of samples in the multi-centric study. The standard deviation
of the study samples surpasses the fingerprinting reproducibilty indicated by
standard deviation of the QC serum samples by 110 %, 90 %, and 70 % over
the timescale of a day, week and month respectively. In each case, e.g, the
timescale of a day, the standard deviation of all measurements acquired in
each day was calculated, following which I took the mean across all days.
Both the QC serum and study plasma samples show a rising trend with the
length of the timescale involved. The standard deviation of all measurements
across the training and test sets is also shown.

Outliers, with spectral components that deviated from the mean by
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Figure 5.6: (Top) Time-domain filtered sample response for quality control
serum (black), and blood plasma study samples(red), averaged over all mea-
surements acquired across 10 weeks. This corresponds to the entire training
set of the first phase of the Lasers4Life campaign. The shaded area around
each line represents the standard deviation over the entire training set. (Bot-
tom) Wavenumber-averaged standard deviation in the time-domain-filtered
spectra of quality control serum (black) and study plasma samples (red) over
different timescales from within a day to the entire training and test data
sets.

3 times the standard deviation were excluded from the stability analysis.
Wrong labeling of samples and improper injection into the liquid cuvette
are considered to be the main cause for these outliers, which amount to 2
percent of the measured samples.

The fact that the standard deviation for the QC serum samples are clearly
lower than that for the study samples confirms the fact that the sensitivity of
our fingerprinting is higher than the level of biological noise involved in such a
blood plasma based case-control study. The training set, which was acquired
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over 20 weeks, however, shows a significant increase in the standard deviation
for the QC serum samples, with the value for the study plasma samples being
only 40 % higher. We attribute this increase in variation to changes made
in the optical setup of the spectrometer for maintenance and upkeep, within
the 20-week time-frame of measuring the samples in the training set. This
needs to be further investigated, and reveals scope for improvement for the
instruments to be developed in the future.

5.2.4 Capacity of spectroscopic fingerprinting to de-
tect cancer

In order to benchmark the performance of the newly developed field-resolved
spectrometer, an identical measurement campaign with all the > 5300 sam-
ples was undertaken, with a commercial Fourier-transform infrared (FTIR)
spectrometer (MIRA Analzer, CLADE GmbH). An identical sample deliv-
ery system with a robotic arm, as in the MIRA analyzer, was used with the
field-resolved spectrometer. The measurements were performed in the same
’randomized’ order, with a gap between the training and test sets.

Figure 5.7: The ROC curves corresponding to classifying the infrared finger-
prints of blood plasma samples from individuals with lung cancer, prostate
cancer, bladder cancer, and breast cancer from that of non-symptomatic ref-
erence individuals, acquired using a commercial Fourier-transform infrared
spectrometer. The solid black lines represent ROC curves for the training
sets, while the coloured lines represent the test.
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Fig. 5.7 shows the ROC curves for the measurements taken with the
FTIR spectrometer. The AUC values are comparable to those obtained with
the field-resolved spectrometer, as shown in Fig. 5.5, with marginally higher
values obtained with the FTIR. That this newly developed spectrometer
matches the performance of the state-of-the art commercial FTIR spectrom-
eter sends an encouraging message to pursue further development of the
technique.

Overall, we were able to test the newly developed field-resolved spectrom-
eter in a clinical study involving thousands of individuals, to detect common
cancer phenotypes. The results of the binary classification between individu-
als with a cancer phenotype and non-symptomatic controls showed promising
results, especially for the cases of lung and prostate cancer, reinforcing the ef-
ficacy of infrared molecular fingerprinting in identifying these phenotypes in a
minimally invasive manner, from blood plasma. While the FTIR spectrome-
ter and the field-resolving spectrometer are completely different instruments,
the fact that the classification accuracy of both approaches are similar can be
seen as a supporting argument for the robustness of infrared molecular fin-
gerprinting. While the current device is on par with FTIR, improved versions
with a broader bandwidth in the shorter wavelength range of the molecular
fingerprinting region [46, 87] combined with higher stability [50] sensitivity
and better engineering are expected to go far beyond.



Chapter 6

Conclusions and Outlook

This thesis described the development path of a rapid field-resolving infrared
spectrometer for probing human blood plasma samples, exploring its poten-
tial as a single-measurement medical diagnostic tool. The device measured
the waveforms of mid-infrared pulses transmitted through a cuvette filled
with a liquid sample of interest by rapid electro-optic sampling. Demonstrat-
ing two approaches to perform this, sensitive measurement of mid-infrared
waveforms across picosecond delay ranges with attosecond timing precision
was performed, enabling condensed-phase spectroscopy with high throughput
and suppressed technical noise.

Chapter 3 described a first attempt at rapid scanning using a sonotrode,
which is a sonification device vibrating at an ultrasonic frequency, as an
optical delay line. A part of the few-cycle near-IR pulses that drove mid-IR
generation was split off at an earlier stage to serve as the gate for electro-optic
sampling [77]. Equipped with interferometric delay tracking to precisely track
relative delay fluctuations of the gate and mid-IR beam paths, we achieved
sensitive detection of mid-IR waveforms at 38,000 scans per second for a total
delay range of 1.6 ps with 34-attosecond timing precision. Here, the delay
range for the scan and the scanning rate were determined by the dimensions
and mechanical properties of the sonotrode.

Chapter 4 showcased a dual-oscillator setup with electronically modulated
repetition frequencies for field-resolved spectroscopy with rapid-delay scan-
ning. Here, the gate for electro-optic sampling was sourced from a second
laser oscillator. The repetition frequency of this laser was carefully con-
trolled with respect to that of the first laser which generated the infrared,
by means of an active feedback loop. In a previously demonstrated dual-
oscillator spectrometer with sub-femtosecond timing precision approach for
electro-optic sampling[51], a constant offset was maintained between the two
repetition frequencies of the two lasers. In such a scenario, the scanned delay
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range equals the reciprocal of the pulse repetition frequency. For a 100 MHz
repetition frequency, this corresponds to 10 nanoseconds.

Using the novel technique of electro-optic delay tracking, combined with
the electronic modulation of the repetition frequency, we demonstrated scan-
ning over picosecond delays suited to condensed-phase spectroscopy with
attosecond-level timing precision. By limiting the scanned delay range, wave-
forms could be captured at kHz rates, thus opening a door for field-resolved
spectroscopy to applications such as label-free flow cytometry [30, 36], mon-
itoring reaction kinetics[56, 72, 48] and protein conformational changes[89].
Rapid scanning also allowed suppressing technical noise contributions and
fluctuations at sub-kHz frequencies by freezing their effect within a scan.

Finally, Chapter 5 described using the field-resolving spectrometer in a
large-scale case-control clinical study to identify individuals with one of four
common cancers from field-resolved infrared molecular fingerprints of their
blood plasma. The newly developed system displayed robust functioning
over more than half a year, which was the time required to complete the first
phase of measurements in the Lasers4Life study involving sample investiga-
tion over 5300 human individuals. With the help of machine-learning-based
pattern recognition, individuals with lung cancer and non-symptomatic con-
trol individuals could be classified with 80 % accuracy. The results were not
as promising for the other types of cancers studied, namely prostate cancer,
breast cancer, and bladder cancer. We obtained comparable results for both
techniques by measuring identical samples with a state-of-the-art commercial
FTIR spectrometer. We consider this as supporting the diagnostic capacity
of infrared molecular fingerprints, seeing how completely different techniques
within infrared spectroscopy lead to the same result.

While FTIR spectroscopy has been a well-established technique for sev-
eral decades, we believe that field-resolved spectroscopy is at an early stage
with great potential for development in the future. Efforts have been under-
way in extending the bandwidth [46, 87], stability[50], and sensitivity. On
other fronts, studies in the recent past have helped better understand the
dynamics of coherent energy transfer between broadband infrared light and
molecular vibration states [70], the relationship between the structure of a
protein and its infrared fingerprints[97], as well as the link between infrared
fingerprints and disease-induced molecular changes in the blood [94]. Po-
tential biomedical applications of infrared spectroscopy of biofluids are not
limited to cancer detection. With first demonstrations that an individual’s
blood-based infrared molecular fingerprint is stable over timescales of several
months [40], the technique could benefit the emerging field of personalized
medicine. The application of infrared spectroscopy imaging in investigating
the chemical makeup of biological tissues in histopathology is also being pur-
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sued intensely [8]. With great potential on many fronts [25], infrared molec-
ular fingerprinting is at a crucial development phase in its journey toward
real-world application in medical facilities. As researchers across locations
and disciplines focus on the right questions and the best approaches to push
forward this goal [25], I believe it is only a matter of time till this great
potential breaks through to benefit mankind.
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Appendix A

Data Archiving

All data presented in this thesis, all figures and program code used to generate
them are stored on the data archive server of the Laboratory of Attosecond
Physics at the Max Planck Institute of Quantum Optics.
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