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Zusammenfassung

Die Polarisation des kosmischen Mikrowellenhintergrunds (CMB) kann zur Erforschung der
kosmischen Inflation (durch Messung der primordialen B-Moden) und zur Untersuchung
der paritätsverletzenden Physik (durch Nachweis der kosmischen Doppelbrechung) beitra-
gen. Diese vielversprechenden Möglichkeiten treiben die Entwicklung einer Reihe neuer
boden-, ballon- und weltraumgestützter CMB-Experimente voran. Für den Erfolg dieser
ehrgeizigen Missionen müssen jedoch systematische Effekte genau kontrolliert und reduziert
werden.

Zu diesem Zweck werden einige CMB-Experimente der nächsten Generation (einschließ-
lich LiteBIRD) rotierende λ/2-Plättchen (engl. half-wave plates oder HWPs) als Polarisa-
tionsmodulatoren verwendet. Im Idealfall sollte diese Wahl die 1/f -Rauschkomponente in
der beobachteten Polarisation vollständig unterdrücken und den Intensitäts-Polarisations-
Leckstrom reduzieren, wodurch zwei wichtige systematische Effekte abgeschwächt werden.
Jede reale HWP hat jedoch Nichtidealitäten, die, wenn sie in der Analyse nicht richtig
behandelt werden, zu zusätzlichen systematischen Effekten führen können.

Nach einer kurzen Einführung in die wissenschaftliche Fragestellung diskutiert diese
Doktorarbeit die allgemeinen Charakteristika jedes CMB-Experiments, stellt die HWP vor
und präsentiert eine neue Simulationspipeline für zeitlich geordnete Daten (time-ordered
data, TOD), die auf ein LiteBIRD-ähnliches Experiment zugeschnitten ist und TOD und
Himmelskarten für realistische Detektoren und HWPs liefern kann.

Wir zeigen, dass die Simulationsmethode verwendet werden kann, um zu untersuchen,
wie nicht-ideale HWPs den gemessenen kosmischen Doppelbrechungswinkel beeinflussen,
was bei einer realistischen Wahl der HWP zu einer Abweichung von einigen Grad führt.
Wir leiten auch analytische Formeln her, die die beobachteten Temperatur- und Polarisa-
tionskarten modellieren, und validieren sie anhand der Simulationsergebnisse.

Schließlich stellen wir ein einfaches semi-analytisches Modell vor, um die HWP-Nichtide-
alitäten durch die Analyseschritte zu propagieren, die für jedes CMB-Experiment notwendig
sind (Beobachtung von Multifrequenzkarten, Vordergrundkorrektur und Schätzung von
Leistungsspektren), und berechnen die HWP-bedingte Veränderung des geschätzten Tensor-
zu-Skalar-Verhältnisses r, wobei wir feststellen, dass die HWP zu einer Unterschätzung von
r führt. Wir zeigen auch, wie die Kalibrierung der Signalverstärkung der CMB-Temperatur
verwendet werden kann, um die negative Auswirkungen der HWP teilweise zu kompen-
sieren, und geben eine Reihe von Empfehlungen für das HWP-Design, die dazu beitragen
können, die Vorteile der Verstärkungskalibrierung zu maximieren.
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Abstract

Polarization of the cosmic microwave background (CMB) can help probe cosmic inflation
(via the measurement of primordial B modes) and test parity-violating physics (via the
detection of cosmic birefringence). These promising opportunities are driving the develop-
ment of a number of new ground-based, balloon-borne and space-based CMB experiments.
However, for these ambitious missions to be successful, systematic effects must be precisely
controlled and accurately mitigated.

To this end, some next-generation CMB experiments (including LiteBIRD) will use
rotating half-wave plates (HWPs) as polarization modulators. Ideally, this choice should
completely remove the 1/f noise component in the observed polarization and reduce the
intensity-to-polarization leakage, thus mitigating two important systematic effects. How-
ever, any real HWP is characterized by non-idealities which, if not properly treated in the
analysis, can lead to additional systematics.

In this thesis, after briefly introducing the science case, we discuss the macro steps that
make up any CMB experiment, introduce the HWP, and present a new time-ordered data
(TOD) simulation pipeline tailored to a LiteBIRD-like experiment that can return TOD
and binned maps for realistic beams and HWPs.

We show that the simulation framework can be used to study how the HWP non-
idealities affect the measured cosmic birefringence angle, resulting in a bias of a few degrees
for a realistic choice of HWP. We also derive analytical formulae that model the observed
temperature and polarization maps and test them against the output of the simulation.

Finally, we present a simple, semi-analytical end-to-end model to propagate the HWP
non-idealities through the macro-steps that make up any CMB experiment (observation of
multi-frequency maps, foreground cleaning, and power spectra estimation) and compute the
HWP-induced bias on the estimated tensor-to-scalar ratio, r, finding that the HWP leads to
an underestimation of r. We also show how gain calibration of the CMB temperature can be
used to partially mitigate the non-idealities’ impact and present a set of recommendations
for the HWP design that can help maximize the benefits of gain calibration.
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Chapter 1

Introduction

Summary: In this chapter, we review some of the key results
obtained from observations of the cosmic microwave background
(CMB) since its discovery, discuss what kind of new physics can be
extracted from CMB polarization, and emphasize the importance of
controlling systematic effects in order to achieve this goal. Finally,
we outline the content of the rest of this thesis.

Over the past 60 years, observations of the cosmic microwave background (CMB) have been
an invaluable source of cosmological information and have played a key role in shaping our
understanding of the universe, helping to solidify three central ideas in modern cosmology:

Big Bang model: The Big Bang model describes an expanding universe that is homo-
geneous and isotropic on large scales. Because of the expansion, the density and
temperature of the universe increase as we go back in time, eventually leading to a
singularity at some early enough time, called the Big Bang.

ΛCDM model: According to the ΛCDM model, the universe is filled with three main
components: i) dark energy, a dark component with negative pressure typically mod-
eled by a cosmological constant, Λ, ii) cold dark matter (CDM), which has so far
only been detected by its gravitational interaction, and iii) ordinary matter. The
ΛCDM model is a particular Big Bang model and is often referred to as the standard
cosmological model.

Inflationary paradigm: Inflation is a postulated phase of accelerated expansion believed
to have occurred at very early times, immediately after the Big Bang. Originally pro-
posed to address some shortcomings of the Big Bang model (the horizon and flatness
problems), inflation provides a natural mechanism for generating initial conditions
for cosmological perturbations from primordial vacuum quantum fluctuations.

A rigorous mathematical description of the standard cosmological model and the inflation-
ary paradigm goes beyond the scope of this thesis, but some excellent references are [1–3].
In the next paragraph, we will instead focus on the observational features of the CMB
supporting this theoretical framework.



2 1. Introduction

Evidence supporting the Big Bang model In 1964, while attempting to remove all
spurious signals from a super-sensitive communications antenna, Penzias and Wilson were
left with an isotropic antenna temperature excess of 3.5±1.0K at 4080MHz. Their results
were published in 1965 [4], along with a companion letter by Dicke, Peebles, Roll, and
Wilkinson, who interpreted the excess as a signature of the Big Bang model [5]. They
argued that a homogeneous, isotropic and expanding universe should be filled by relic
black-body radiation coming from the high temperature stage.

To test their interpretation, a number of experiments attempted to measure the black-
body spectrum over a wide range of frequencies. Among them, the Far Infrared Absolute
Spectrophotometer (FIRAS) instrument, operated from 1989 to 1993 aboard the COsmic
Background Explorer (COBE) satellite, provided the best data, confirming that the CMB
spectrum is well explained by a black-body with temperature T0 = 2.72548± 0.00057K [6].

The observational evidence that the CMB is a (nearly) isotropic black-body is one of the
‘pillars’ of the Big Bang model, since it supports the idea that our universe is homogeneous
and isotropic on large scales, and that it is expanding.

Cosmological parameters from anisotropies Penzias and Wilson’s discovery was
followed by a series of crucial theoretical predictions about what cosmological signatures
might be imprinted in the CMB as temperature anisotropies (see for example [7–9]). The
measurement of the CMB anisotropies became an important observational goal, driving
the development of a number of experiments. The first full-sky observation was made in
1992, and better and better data followed over the next two decades.

1990s: In 1992, the Differential Microwave Radiometers (DMR) instrument aboard COBE
detected low-resolution (θres ∼ 7○) relative temperature fluctuations δT (n̂)/T0 ∼ 10−5
[10], that were compatible with the predictions from inflationary models [11–13].
COBE’s success led to the proposal of a follow-up mission in 1995: the Wilkinson
Microwave Anisotropy Probe (WMAP).

2000s: WMAP operated from 2001 to 2010 with significant improvements in both angular
resolution and noise level over COBE (see Table 1.1), resulting in better temperature
measurements and the observation of the polarized CMB. Overall, the WMAP data
fit a six-parameter1 ΛCDM model remarkably well [14–16].

2010s: The Planck Surveyor, launched in 2009, followed WMAP and provided us with the
most precise full-sky maps of CMB temperature and polarization to date. Planck ’s
technical improvements over WMAP (see again Table 1.1), made possible to constrain
the ΛCDM parameters with greater precision [17–19].

1The six parameters of the basic ΛCDM model are the physical baryon density, Ωbh
2; the physical CDM

density, Ωch
2; the dark energy density ΩΛ; the amplitude of primordial scalar curvature perturbations,

∆2
R

at k = 0.002Mpc−1; the power-law spectral index of primordial density (scalar) perturbations, ns; and
the reionization optical depth, τ [14].
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ndet nchan θres NET [mK
√
s]

COBE 6 3 7○ ∼ 30 @ 90GHz
WMAP 20 5 0.2○ ∼ 0.7 @ 94GHz
Planck 74 9 0.1○ ∼ 0.04 @ 100GHz

Table 1.1: Instrument specifics for COBE, WMAP
and Planck : number of detectors, ndet, number of fre-
quency channels, nchan, and angular resolution, θres,
together with noise equivalent temperature (NET) of
the channels centered at ∼ 100GHz. The NET is de-
fined in Appendix A, where we also show how to com-
pute the specific values for the three experiments.

Several ground-based and balloon-
borne experiments have provided valu-
able complementary temperature and
polarization data [20–28] that support
the observations from space by COBE,
WMAP and Planck. To date, we have
very precise measurements of the CMB
temperature at all angular scales and
good polarization data, especially on
small angular scales. This can be seen
in Figure 1.1, where past observations
are plotted together with the predic-

PTEP 2023, 042F01 E. Allys et al.

Fig. 1. CMB power spectra of the temperature anisotropy (top), E-mode polarization (middle), and B-
mode polarization (bottom). The solid lines show the angular power spectra for the best-fitting �CDM
model in the presence of a scale-invariant tensor (gravitational wave) perturbation with a tensor-to-scalar
ratio parameter of r = 0.004. The thin dashed line shows the contribution to the B-mode spectrum from
scale-invariant tensor perturbation with r = 0.004. A summary of present measurements of CMB power
spectra (colored points) [8–10,12,41–47] and the expected polarization sensitivity of LiteBIRD (black
points) are also shown.

To separate these primordial and foreground components, LiteBIRD will survey the full sky in
15 frequency bands from 34 to 448 GHz, with effective polarization sensitivity of 2 μK-arcmin
and angular resolution of 31 arcmin (at 140 GHz). Rapid polarization modulation, a densely
linked observation strategy, and the stable environment of an orbit around L2 (the second La-
grangian point for the Sun–Earth system) provide unprecedented ability to control systematic
errors, especially on the largest angular scales below � � 10. Taken together, the control of fore-
grounds and systematic errors gives LiteBIRD the ability to detect both the reionization and
recombination bumps in the B-mode power spectrum, giving much higher confidence that a
primordial signal has been uncovered. Importantly, if a hint of the recombination peak is seen
by a ground-based or balloon-borne experiment, LiteBIRD will make a definitive statement on
the detection of the signal and greatly improve the quantitative constraints on the physics of in-
flation. The forecast for LiteBIRD’s ability to measure the primordial B-mode power spectrum
is shown in Fig. 1, together with currently available measurements.

6/143

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2023/4/042F01/6835420 by guest on 07 D

ecem
ber 2023

Figure 1.1: CMB temperature, E modes and B modes angular power spectra. The gray
lines show theoretical spectra (assuming the best-fit ΛCDM parameters and r = 0.004),
the colored points represent past measurements [14, 15, 18, 22–28], and the black points
show LiteBIRD’s expected polarization sensitivity. Image and caption adapted from [29].
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tions for the polarization measurement by the future Lite (Light) satellite for the studies
of B-mode polarization and Inflation from cosmic background Radiation Detection (Lite-
BIRD) [29]. Together with several other future CMB experiments, LiteBIRD aims to
extract the valuable information still encoded in the polarization of the CMB.

1.1 New physics from CMB polarization

Future observations of the polarized CMB aim to shed light on some open questions in
modern cosmology and particle physics. A detection of the primordial B-mode signal could
help us constrain inflationary models, and a measurement of the cosmic birefringence angle
could help us test parity-violating physics. Here we briefly introduce these two possibilities
(see Sections 2.2 and 2.3 for a more detailed discussion).

Constraining inflationary models from primordial B modes Inflation is expected
to source initial conditions for scalar [30–34], vector, and tensor [35, 36] cosmological
perturbations. However, vector modes are expected to decay rapidly after horizon re-entry
and we therefore neglect them. As for scalar and tensor perturbations, many inflationary
models predict their power spectra to obey power laws: Ps(k) = Askns−1 and Pt(k) =
Atknt , respectively. The relative amplitude of scalar and tensor primordial perturbations is
quantified in terms of the tensor-to-scalar ratio, r = As/At, whose value is model dependent.

Since tensor perturbations [35, 36] would leave a distinct B-mode signature on the
CMB polarization [37–40], r could be inferred from the angular power spectrum of the
primordial B modes. To date, CMB observations have only placed upper bounds on r, the
tightest being r < 0.032 (95% CL) [41] (see also [28, 42, 43]), but future surveys, involving
both ground-based (Simons Observatory (SO) [44], South Pole Observatory [45] and CMB
Stage-4 [46]) and spaceborne (LiteBIRD [29] and the Probe of Inflation and Cosmic Origins
(PICO) [47]) missions, aim for unprecedentedly low overall uncertainties, which, depending
on the true value of r, would lead to a detection or a tightening of the upper bounds. Both
these outcomes would allow us to place strong constraints on inflationary models [48, 49].

Probing parity-violating physics from cosmic birefringence The unknown nature
of dark matter and dark energy is one of the most elusive mysteries in modern physics, and
some models consider the possibility that a parity-violating pseudoscalar field, χ, could be
responsible for both [50, 51]. If this is the case, and if χ has a parity-violating coupling
to the electromagnetic field, then the CMB photons would certainly be affected by χ. In
particular, if χ is time-dependent, the linear polarization plane of CMB photons would
rotate as they travel toward us [52–54].

Because of its similarity with photon propagation through a birefringent material, this
phenomenon is referred to as cosmic birefringence. The cosmic birefringence angle, β,
denotes the overall rotation angle from last scattering to today. Although the effect of β on
the observed CMB angular power spectra is degenerate with an instrumental miscalibration
of the polarization angle [55–58], the methodology proposed in [59–61], which relies on
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the polarized Galactic foreground emission to determine miscalibration angles, allowed to
infer β = 0.35 ± 0.14○ at 68% C.L. [62] from nearly full-sky Planck polarization data [63].
Subsequent works [64–66] reported more precise measurements of β.

The statistical significance of β is expected to improve with the next generation of
CMB experiments, given the high precision at which they aim to calibrate the absolute
position angle of linear polarization. This will make it unnecessary to rely on the Galactic
foreground to calibrate angles and measure β [49], thus avoiding the potential complications
highlighted in [67]. If the detection of a non-zero β were to be confirmed, it would directly
probe parity violation and would help constrain dark matter and dark energy models.

1.1.1 The need to study systematic effects

The unprecedented sensitivity goals of future surveys can only be achieved if systematic
effects are well understood and kept under control. For example, an unmitigated 1/f
noise component could prevent us from detecting the primordial B modes on large scales.
Another problematic effect is the miscalibration of the polarization angle which, being
degenerate with cosmic birefringence, would prevent us from measuring β directly.

A promising strategy to reduce some of these systematic effects is to employ a rotating
half-wave plate (HWP) as a polarization modulator. As shown by previous analyses [68–75],
a rotating HWP can both mitigate the 1/f noise component [68] and reduce a potential
temperature-to-polarization (I → P ) leakage due to the pair differencing of orthogonal
detectors’ readings [76, 77]. Because of these advantages, HWPs are used in the design
of some next-generation experiments, including SO [44] and LiteBIRD [29]. However,
non-idealities in realistic HWPs induce additional systematic effects which should be well
understood for future experiments to meet their sensitivity requirements.

In this thesis, we present two different approaches to study the systematic effects in-
duced by the HWP non-idealities. In one case, the effect of the HWP non-idealities is
accurately simulated at the level of the time-ordered data (TOD), and in the other, it is
instead approximately modeled in the observed maps. These two methods are both valu-
able and nicely complementary: realistic simulations can account for systematic effects in
their (at least partial) complexity, while approximate models are extremely helpful to gain
some intuition about the problem at hand and represents the first step to develop efficient
mitigation strategies.

1.2 Content of this thesis

We provide a brief overview of CMB polarization in Chapter 2, where we introduce E and
B modes, show how they can arise from scalar and tensor perturbations, and give a few
more details on the new physics that can be probed with CMB polarization (inflation and
cosmic birefringence). In Chapter 3 we review some of the main steps that make up any
CMB experiments (data acquisition, map-making, foreground cleaning and parameter es-
timation) and introduce the mathematical framework that we use in the rest of the thesis.
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Chapter 4 focuses on HWPs: we discuss the motivations that led to their use as polariza-
tion modulators and introduce the non-idealities. In Chapter 5 we present a simulation
pipeline to include HWP non-idealities at the level of the detected data for a LiteBIRD-
like experiment. In chapters 6 and 7, we study how the HWP non-idealities would affect
the measured cosmic birefringence angle and tensor-to-scalar ratio, respectively, employing
both TOD simulations and semi-analytical models. Conclusions and future perspectives
are presented in Chapter 8.

The content of this thesis is based on the following publications:

[78] M. Monelli, E. Komatsu, A. E. Adler, M. Billi, P. Campeti, N. Dachlythra, A. J.
Duivenvoorden, J. E. Gudmundsson and M. Reinecke: “Impact of half-wave plate
systematics on the measurement of cosmic birefringence from CMB polarization”.
Preprint: 2211.05685. Published in JCAP, Volume 2023, March 2023.

[79] M. Monelli, E. Komatsu, T. Ghigna, T. Matsumura, G. Pisano and R. Takaku:
“Impact of half-wave plate systematics on the measurement of CMB B-mode polar-
ization”. Preprint: 2311.07999. Sumbitted to JCAP.

https://arxiv.org/pdf/2211.05685.pdf
https://arxiv.org/pdf/2311.07999.pdf


Chapter 2

CMB polarization

Summary: In this chapter, we provide a brief introduction to
CMB anisotropies (focusing on polarization). We show how they
can be decomposed into spherical harmonics, introduce E and B
modes in harmonic space and how to visualize them in flat-sky
approximation. We discuss how CMB polarization can be produced
via Thomson scattering of quadrupole anisotropies and how pri-
mordial B modes are produced by gravitational waves. Finally, we
briefly review the new physics that can be extracted from CMB
polarization (inflation and parity violation).

Section 2.1 is loosely inspired by some lecture notes on physical cosmology I have contributed
drafting (the other authors are Andrea Ferrara and Luca Marchetti; front matter and sum-
mary are available at http://cosmology.sns.it/physical cosmology book.html; to be
published by Edizioni della Normale). Sections 2.2 and 2.3 are instead adapted from [49].

2.1 Introduction

The CMB was emitted about 380000 years after the Big Bang, when the temperature of
the universe became low enough to allow electrons and protons to recombine into hydrogen
atoms. As the number of free electrons decreased, the scattering rate of e− + γ → e− + γ
eventually fell below the expansion rate, causing the photons to stop interacting with the
other constituents of the cosmic fluid, i.e. to decouple. Since then, they have traveled
(almost) freely through space, their energy redshifting with the cosmic expansion.

This relic radiation fills all space in the observable universe and reaches us from all
directions. In particular, for a given direction of observation n̂, what we receive is linearly
polarized1 radiation, which can be characterized in terms of three quantities: Tcmb(n̂),
Qcmb(n̂), and Ucmb(n̂). These are related to the Stokes parameters introduced in Ap-
pendix B, with two main differences.

1The CMB is not expected to have significant circular polarization, so we neglect it.

http://cosmology.sns.it/physical_cosmology_book.html
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Figure 2.1: Coordinate systema in CMB
convention. For a given n̂, identified by θ
and φ, the z axis lies along n̂. The x and
y axes are taken along the increment direc-
tions of, respectively, θ and φ.

• In Appendix B, we adopted the usual op-
tics convention of defining the Stokes pa-
rameters in a right-handed coordinate sys-
tem with the z axis along the direction
of photon propagation, k̂. In CMB litera-
ture, Stokes parameters are also defined in
a right-handed coordinate system, but the
z axis is typically taken along the direction
of observation n̂ = −k̂, while the x and y
axes are taken along the increment direc-
tions of, respectively, θ and φ (see Figure
2.1). As a consequence, the Stokes U pa-
rameter flips sign as one switches from the
optics to the CMB convention.

• According to their definition in eq. (B.8),
Stokes parameters have units (N/C)2,
while Tcmb(n̂), Qcmb(n̂), and Ucmb(n̂) have
temperature units, often K or µK.

By integrating Tcmb(n̂) over the whole sky, one obtains the average CMB temperature T0:

T0 ≡ ∫
d2 n̂

4π
Tcmb(n̂) ≃ 2.725 K , (2.1)

while Qcmb(n̂) and Ucmb(n̂) average to zero. Anisotropies in temperature and polarization
contain a great wealth of cosmological information that can be compactly packed into the
angular power spectra, CXY

ℓ . In the remainder of this section, we briefly introduce the
CXY
ℓ , and discuss how scalar perturbations can generate CMB polarization. For the sake

of compactness, we will drop the cmb subscripts from now on.

2.1.1 Temperature anisotropies

Being a scalar field on the sphere, T (n̂) can be decomposed as sum of spherical harmonics,
Yℓm(n̂). These are the eigenfunctions of the Laplace operator on the sphere and form a
complete set of orthonormal functions, meaning that

∫ d2n̂ Yℓm(n̂)Y ∗ℓ′m′(n̂) = δℓℓ′δmm′ , (2.2)

where the ∗ denotes the complex conjugate. Each spherical harmonic is characterized by
two integer numbers: the degree ℓ and the order m. While ℓ can take any non-negative
integer value, m takes integer values between −ℓ and ℓ. Different values of ℓ represent
different ‘angular frequencies’ of the spherical harmonics: Yℓm draws ℓ positive-negative
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patterns on the sphere. Instead, different values of m represent different ‘orientations’ of
the ℓ positive-negative patterns. The spherical harmonics decomposition of T (n̂) reads

T (n̂) =
∞
∑
ℓ=0

ℓ

∑
m=−ℓ

aTℓmYℓm(n̂) , (2.3)

where the aTℓm are the coefficients of the decomposition, which can be computed by multi-
plying both sides of (2.3) by Yℓ′m′ and integrating over d2n̂:

aTℓm = ∫ d2n̂ T (n̂)Y ∗ℓm(n̂) . (2.4)

Angular power spectrum If we had an ensemble of universes, we could treat the
aTℓm coefficients as complex stochastic variables and take ensemble averages to summarize
their properties. Under the assumptions that CMB anisotropies are Gaussian, the aTℓm
would also be (complex) Gaussian variables and all their statistical information would be
encoded in ⟨aTℓmaT∗ℓ′m′⟩ covariances. In particular, assuming that temperature deviations are
statistically isotropic, such an ensemble average can be written as

⟨aTℓmaT∗ℓ′m′⟩ = CTT
ℓ δℓℓ′δmm′ , (2.5)

where CTT
ℓ is the temperature angular power spectrum. Since we can only observe our

own universe, we have no way of taking the ‘ensemble average’, but statistical isotropy
guarantees that all aTℓm coefficients for a given ℓ can be regarded as independent quantities
drawn from a statistical distribution. This means that the CTT

ℓ can be estimated by
replacing the ensemble average by an average over m:

CTT
ℓ = 1

2ℓ + 1

ℓ

∑
m=−ℓ

aTℓma
T∗
ℓm . (2.6)

Note that as ℓ decreases, the number of samples N = 2ℓ + 1 that we can use to estimate
the angular power spectrum becomes smaller and smaller. This introduces an uncertainty
known as the cosmic variance.

2.1.2 E- and B-mode polarization

Describing CMB polarization in terms of the Stokes Q and U parameters is problematic,
as they are not invariant under rotations of the x-y coordinate system. Under a counter-
clockwise rotation of the basis vectors of an angle ψ, Q(n̂) and U(n̂) transform according
to eq. (B.13), or equivalently

Q(n̂) ± iU(n̂)→ [Q(n̂) ± iU(n̂)] e∓2iψ . (2.7)
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The combinations Q± iU are clearly still coordinate-dependent, but they transform as the

±2Yℓm spin-weighted spherical harmonics2, which allows us to decompose

Q(n̂) ± iU(n̂) =
∞
∑
ℓ=0

ℓ

∑
m=−ℓ

±2aℓm ±2Yℓm(n̂) , (2.8)

with coefficients

±2aℓm = ∫ d2n̂ [Q(n̂) ± iU(n̂)] ±2Y ∗ℓm(n̂) . (2.9)

It turns out that the linear combinations

aEℓm ≡ −
+2aℓm + −2aℓm

2
, (2.10a)

aBℓm ≡ i
+2aℓm − −2aℓm

2
, (2.10b)

are the spherical harmonic coefficients of two fields, E(n̂) and B(n̂), which are invariant
under rotations, and therefore well suited to describe polarization.

E and B under parity In spherical coordinates (r, θ,φ), the parity transformation
n̂ → −n̂ maps r → r, θ → π − θ and φ → π + φ, which causes U to flip sign while leaving Q
unchanged. Instead, the spin-weighted spherical harmonics transform according to sYℓm →
−sYℓm(−1)ℓ+s. By plugging these transformations into eq. (2.9), we find that, under parity,
the spin-2 spherical harmonics coefficients change according to

±2aℓm → ∓2aℓm(−1)ℓ . (2.11)

In turn, by plugging this transformation rule into eqs. (2.10), we find that

aEℓm → aEℓm(−1)ℓ , (2.12a)

aBℓm → aBℓm(−1)ℓ+1 , (2.12b)

implying that E and B have opposite parity.

Visualizing E and B Although they are straightforward to define in harmonic space,
understanding how E(n̂) and B(n̂) are related to the values of the Stokes parameters on
the sphere can be tricky. They are a bit easier to visualize in flat-sky approximation.

Consider a small portion of the sky around the North pole. In flat-sky approximation,
instead of using (θ,φ) pairs, points are identified by a vector θ on the tangent plane to the
sphere at the North pole (see Figure 2.2). The vector has length θ and forms an angle φ with
the x axis of the tangent plane. Deriving the expressions for E(θ) and B(θ) goes beyond
the scope of this thesis, but the interested reader can take a look at [80]. They show that

2In general, under a counter-clockwise rotation of the basis vectors of an angle ψ, a spin-weighted
spherical harmonic sYℓm transform as sYℓm → sYℓme

−isψ.
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Figure 2.2: A small enough neighborhood of the North pole is approximately flat. The
direction n̂ identifies therefore a vector θ on the plane tangent to the North pole. The
modulus of the vector is given by θ, while its direction is determined by φ.
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Figure 2.3: Definition of φϵ.

E(θ) =∫ d2ϵω(ϵ)[−Q(θ+ϵ) cos 2φϵ−U(θ+ϵ) sin 2φϵ], (2.13a)

B(θ) =∫ d2ϵω(ϵ)[−U(θ+ϵ) cos 2φϵ+Q(θ+ϵ) sin 2φϵ], (2.13b)

where ϵ is a displacement vector, ω(ϵ) ≡ −1/(πϵ2), Q ≡ Q/(4I)
and U ≡ U/(4I) are dimensionless Stokes parameters, and φϵ
denotes the angle between ϵ and the x axis (see Figure 2.3).
The quantities in square brackets

Qr(θ + ϵ) ≡ −Q(θ + ϵ) cos 2φϵ − U(θ + ϵ) sin 2φϵ , (2.14a)

Ur(θ + ϵ) ≡ −U(θ + ϵ) cos 2φϵ +Q(θ + ϵ) sin 2φϵ , (2.14b)

are dimensionless Stokes parameters evaluated in a rotated coordinate system (x, y)r, where
xr and yr are tangential and radial to ϵ, respectively. The integrals in (2.13) can then be
interpreted as follows: at θ, the quantity E(θ) gets (weighted) contributions by Qr at any
point in space, while Ur contributes to B(θ).

θ

E < 0

θ

E > 0

Figure 2.4: Examples of polarization pat-
terns around a point resulting in pure E(θ).

Consider, for instance, the left polarization
pattern of Figure 2.4. How does this pattern
contribute to E and B in θ? According to the
above interpretation, each polarization rod in
the figure is parallel to ŷr, hence correspond-
ing to a negative value of Qr. Summing all the
contributions together, E(θ) ends up to be neg-
ative, while B(θ) = 0. On the contrary, the
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θ

B < 0

θ

B > 0

Figure 2.5: Examples of polarization pat-
terns around a point resulting in pure B(θ).

right pattern of Figure 2.4 has E(θ) > 0 and
B(θ) = 0, since all the polarization rods are
characterized by a positive Qr and vanishing Ur.

With similar considerations one can show
that the left (right) pattern of Figure 2.5 is char-
acterized by vanishing E(θ) and negative (pos-
itive) B(θ).

The opposite parity of E and B is clear from
Figures 2.4 and 2.5.

Angular power spectra As for the power spectra, we can generalize eq. (2.6) to

CXY
ℓ = 1

2ℓ + 1

ℓ

∑
m=−ℓ

aXℓma
Y ∗
ℓm , (2.15)

where X and Y can be T , E, or B. The information encoded in the temperature and
polarization of the CMB is therefore summarized in six angular power spectra: three auto-
correlations (TT,EE,BB), and three cross-correlations (TE,EB,TB). Since the aEℓm and
aBℓm transform under parity according to eqs. (2.12), the TT , EE, BB and TE correlations
are parity-even while TB and EB are parity-odd, and can therefore be used to probe new
parity-violating physics [81].

2.1.3 Origin of CMB polarization

Although radiation in the early universe is generally unpolarized, Thomson scatterings
between low-energy photons and electrons, e−+γ → e−+γ, provide a natural way to induce
some degree of polarization at the time of photon decoupling. In fact, free electrons can
act as polarizers, converting unpolarized radiation into linearly polarized radiation. As a
concrete example, consider a coordinate system with a free electron in the origin. If some
unpolarized radiation traveling along the x axis gets deflected by the electron along an
orthogonal direction, say along the z axis, the outgoing radiation will be polarized, as only
the y-component of the incoming electric field survives the scattering.

In general, the radiation that last scatters off of a free electron comes from all directions
and whether the scattered radiation is polarized or not depends on the local intensity
pattern around the electron itself. To understand why this is the case, consider a free
electron in the origin which is hit by radiation coming from four different directions at the
same time, ±x̂ and ±ŷ, and assume the scattered radiation to travel along ẑ.

Monopole pattern In this case, the intensity of the incoming unpolarized radiation is
isotropic around the free electron. As shown in the left panel of Figure 2.6, the
outgoing radiation is constituted by the components of the incoming rays that are
transverse to the z-axis, i.e. the y-component for the light coming from ±x̂ and the
x-component for the light coming from ±ŷ. Since their intensity is identical, the
outgoing radiation is unpolarized.
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Figure 2.6: Comparison of the polarization state of Thomson-scattered radiation for three
different local intensity patterns. Monopole and dipole (left and central panels, respec-
tively), result in unpolarized radiation. For a quadrupole pattern, the incoming radiation
is characterized by higher (lower) intensity from ±x̂ (±ŷ), and the scattered radiation
shows some linear polarization.

Dipole pattern In this first example of anisotropic pattern the intensity is higher (lower)
from +ŷ (−ŷ), and average from ±x̂. As sketched in the central panel of Figure 2.6,
the y-component of the incoming radiation from ±x̂ is transmitted, which has average
intensity. The outgoing intensity along the x-direction is also average, since it comes
from a colder spot (−ŷ-direction) and a hotter spot (+ŷ-direction). As a result, we see
that this pattern does not induce any polarization either, despite being anisotropic.

Quadrupole pattern Again, radiation is anisotropic in this case: less intense from ±x̂
and more intense from ±ŷ. The y-component of the scattered light will therefore be
less intense than its x-component, as shown in the right panel of Figure 2.6. The
outgoing radiation is linearly polarized along the y-axis.

Although these situations are not realistic (one should consider radiation incoming from
all directions and being deflected along an arbitrary outgoing direction), they give us an
intuitive understanding of why polarization can arise only if the local intensity distribution
has a non-vanishing quadrupole moment.

CMB polarization from scalar modes Scalar perturbations to the metric and energy-
momentum tensor result in perturbations, δT , to the temperature of the photon fluid at
decoupling, which can be written as

T (x) = T̄ + δT (x) , (2.16)

where T̄ denotes the photon background temperature. Our goal here is to gain some
intuition about what polarization patterns can be induced by scalar perturbations. To
keep things simple and use the definitions of E and B modes provided in eqs. (2.13), we
will work in flat-sky approximation.

Given an arbitrary direction of observation, n̂, we can always define a flat-sky coordinate
system (x̂, ŷ) such that the point (0,0) corresponds to the point on the sphere identified
by n̂. Consider a temperature monochromatic plane wave with wavenumber k along x̂:
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Figure 2.7: Framework to study the polarization
pattern induced by an energy density monochro-
matic plane wave with k along x in flat sky ap-
proximation. Darker (lighter) regions correspond
to higher (lower) temperatures.

δTk(x) = Ak cos(kx + ϕk) , (2.17)

where A is the wave’s amplitude and ϕk

represents its phase. Given a point near
the origin identified by the vector ϵ, the
temperature at ϵ will only depend on xϵ ≡
ϵ cos(φϵ) (see Figure 2.7), i.e.

δTk(ϵ) = Ak cos(kϵ cosφϵ + ϕk) . (2.18)

Since δT (ϵ) only depends on x, the inten-
sity coming from the ±ŷ directions will al-
ways be identical. Whether there is a non-
zero local quadrupole then only depends
on the intensity coming from the ±x̂ direc-
tions. In points where δTk(ϵ) = 0, the lo-
cal quadrupole vanishes and no polarization
is produced. In points corresponding to a
maximum (minimum) of the cosine, polar-
ization oriented along the x (y) axis can be produced. Overall, the polarization induced
by the δTk mode can be described as

Q(ϵ) = f(ϵ cosφϵ) , U(ϵ) = 0 , (2.19)

where f is some function of x = ϵ cosφϵ. To see how this polarization pattern contribute to
E and B, we use the pair of eqs. (2.13), and write E(n̂) and B(n̂) in terms of Q(ϵ) as in
eq. (2.19). Since Q is an even function of φϵ, regardless of the specific functional form of
f in eq. (2.19), when we plug it in eq. (2.13), only the terms multiplied by even functions
survive, i.e. B(θ) = 0. Scalar perturbations cannot produce B modes at decoupling.

This result can be easily generalized to arbitrary k, as long as they are orthogonal
to the direction of observation n̂. If k forms an angle α with the x̂ axis, one can use a
new coordinate system (x̂′, ŷ′) with x̂′ parallel to k and repeat the same steps as before,
obtaining again a vanishing B(n̂). More general k, i.e. non orthogonal to n̂, can only be
studied beyond the flat-sky approximation, but they still confirm our intuition [2].

The only mechanism that can indirectly produce B modes from scalar perturbations
in the ΛCDM model is gravitational lensing [82]. As the CMB photons travel toward us,
their trajectory can be deflected by the gravitational potential of large scale structures.
This results in a warping of the temperature and polarization maps, which can cause E
modes becoming B modes, and vice versa. This is shown for instance in Figure 1.1, where
the lensing BB correlation, CBB,lens

ℓ , is shown (dash-dotted gray line).
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2.2 New physics: constraining inflationary models

Inflation is expected to source initial conditions for both density fluctuations (scalar pertur-
bations [30–34]) and primordial gravitational waves (tensor perturbations [35, 36]). Grav-
itational waves are a propagating disturbance in the metric tensor:

gµν(x) = ḡµν + hµν(x) , (2.20)

where ḡµν is the background metric tensor, and hµν(x) denotes the perturbation to the

+ ×

Figure 2.8: Stretching and compression pat-
terns caused by + (left) and × (right) gravi-
tational waves. Red dots indicate configura-
tions of noninteracting inertial test masses.

metric tensor caused by the gravitational wave.

Given a gravitational wave with wavenum-
ber k, its effect is to periodically stretch and
compress space in the two directions orthogonal
to k̂. Gravitational waves have two linear polar-
izations, usually called plus (+) and cross (×),
with reference to the pattern of stretching and
compression they cause (see Figure 2.8).

Primordial gravitational waves leave their
signatures imprinted on the CMB temperature
anisotropies [83–87], as well as on polarization
[87–92]. The spin-2 nature of gravitational
waves leads to both E and B modes.

CMB polarization from tensor modes Here we consider a framework similar to what
we used to discuss scalar modes: a primordial gravitational wave that propagates with
wavenumber k parallel to the x axis of a flat-sky coordinate system. The gravitational
wave can be decomposed into h+ and h×, which result in a pure Q and pure U polarization
pattern, respectively, as sketched in Figures 2.9 and 2.10. As for the scalar case, the
resulting Stokes parameters will only depend on x = ϵ cosφϵ and counterparts of eq. (2.19)
read

Q+(ϵ) = f+(ϵ cosφϵ) , U+(ϵ) = 0 , (2.21a)

Q×(ϵ) = 0 , U×(ϵ) = f×(ϵ cosφϵ) . (2.21b)

By plugging the expressions for Q+ and U+ into eq. (2.13) and using that Q+ is an even
function of φϵ, we see that B+ identically vanishes, as for the scalar modes case. However,
by repeating the same steps for the Q× and U×, one can see that B× does not identically
vanish! While scalar modes can only produce E modes in CMB polarization, tensor modes
can result in B-mode polarization3.

3As for the scalar case, generalizing these results to arbitrary wavenumbers goes beyond the scope of
this thesis. The interested reader can take a look at [2].
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Figure 2.9: Polarization pattern induced by a h+ tensor mode with k along the x axis.

x̂

ŷ

Figure 2.10: Polarization pattern induced by a h× tensor mode with k along the x axis.

Extracting r from primordial B modes As mentioned in Section 1.1, many inflation-
ary models predict the scalar and tensor power spectra to obey power laws: Ps(k) = Askns−1

and Pt(k) = Atknt , respectively. The amplitude of gravitational waves relative to that of
density fluctuations is model-dependent and is usually quantified in terms of the tensor-
to-scalar ratio, r ≡ At/As. The BB angular power spectrum can then be modeled as

CBB
ℓ = CBB,lens

ℓ + rCBB,GW
ℓ . (2.22)

where CBB,GW
ℓ is the primordial B-mode power spectrum with r = 1 [39, 40], and CBB,lens

ℓ

is the lensed B-mode power spectrum [82]. By inferring r from CMB obsevations, one
can constrain inflationary theories and hope to learn something about inflationary physics,
which is one of the major open questions in modern cosmology [48, 49].

2.3 New physics: probing parity-violating physics

As mentioned in Section 1.1, a time-dependent parity-violating pseudoscalar, χ, would
cause the plane of CMB photons’ linear polarization to rotate as they travel toward us, a
phenomenon known as cosmic birefringence. In this section, we start by studying light
propagation in an expanding vacuum, then add a homogeneous parity-violating pseu-
doscalar and see how it affects light propagation. Finally, we discuss the signatures in
the observed CMB angular power spectra that are imprinted by cosmic birefringence.
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EM field propagating in expanding vacuum Under the assumptions of flatness,
homogeneity and isotropy, one can choose a set of coordinates where the metric gµν takes
the simple Friedmann-Lemâıtre-Robertson-Walker (FLRW) form [93–95]:

ds2 = gµνdxµdxν = a2(η)(−dη2 + dx2) , (2.23)

where η is the conformal time, x denotes comoving coordinates, and a(η) is the scale factor.
In this coordinate system, the action for the free electromagnetic field, Aµ, reads

S = ∫ d4x′
√
−gLA = −

1

4 ∫
d4x′
√
−g FµνF µν , (2.24)

where g = −a8(η) is the determinant of the FLRW metric, and Fµν ≡ ∂µAν − ∂νAµ is the
antisymmetric electromagnetic tensor. Given the action, S, one can derive the equations
of motion for Aµ by imposing

δS

δAρ
= −1

2 ∫
d4x′
√
−g F µν δFµν

δAρ
= 0 , (2.25)

where δ/δAµ denotes the functional derivative with respect to the electromagnetic field
and satisfies δAµ(x)/δAν(y) = δνµδ(x − y). The functional derivative at the right-hand side
of eq. (2.25) then reads

δFµν(x′)
δAρ(x)

= ∂µ
δAν(x′)
δAρ(x)

− ∂ν
δAµ(x′)
δAρ(x)

= (∂µδρν − ∂νδρµ) δ(x′ − x) , (2.26)

which, when plugged back into eq. (2.25), gives

0 = −1
2 ∫

d4x′
√
−g F µν (∂µδρν − ∂νδρµ) δ(x′ − x) = ∂µ (

√
−gF µρ) . (2.27)

Given the FLRW metric of eq. (2.23), the last equality reads

∂µ (
√
−g F µρ) = ∂µ (

√
−g gµνgρσFνσ) = ηµνηρσ∂µFνσ = 0 , (2.28)

where ηµν is the Minkowski metric tensor. With gauge conditions A0 = 0 and ∇ ⋅A = 0, eq.
(2.28) translates into an equation of motion for A:

A′′ −∇2A = 0 , (2.29)

where ∇ ≡ ∂/∂x and the prime denotes ∂/∂η. In Fourier space, eq. (2.29) becomes

A′′k + k2Ak = 0 , (2.30)

where k is the comoving wavenumber of the Fourier mode Ak.
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Adding a homogeneous parity-violating pseudoscalar field A pseudoscalar can
couple to the electromagnetic field via a Chern-Simons term in the Lagrangian

LCS = −
α

4f
χFF̃ ≡ − α

4f
χFµν

εµνρσ

2
√−g

Fρσ , (2.31)

where α is a coupling constant, f is a decay constant with dimensions of energy and εµνρσ

is a totally antisymmetric symbol with ε0123 = 1. We can see how the presence of χ affects
light propagation by repeating the same steps as before, now starting from the action
S = ∫ d4x′

√−g (LA +LCS). The counterpart of eq. (2.27) then reads

∂µ [
√
−g (F µρ + α

f
χ
εµρνσ

2
√−g

Fνσ)] = 0 , (2.32)

where the first term on the left-hand side is the same as for the vacuum case, while the
second one can be written as4

α

2f
εµρνσ∂µ(χFνσ) =

α

2f
εµρνσFνσ∂µχ +

α

2f
χεµρνσ∂µFνσ = δρi

α

f
χ′ε0ijk∂jAk . (2.33)

Thus, the equations of motion for Aµ read ηµνηρσ∂µ∂νAσ + δρi αf χ′ε0ijk∂jAk = 0 or, equiva-
lently, in terms of A (again with gauge conditions A0 = 0 and ∇ ⋅A = 0),

A′′ −∇2A − α
f
χ′∇ ×A = 0 . (2.34)

Projecting on helicity components It is interesting to project the above equation
into components of ± helicity. Consider a Fourier mode Ak with comoving wavenumber k
along ẑ. We can introduce the vectors ϵ+ ≡ (x̂ − iŷ)/

√
2 and ϵ− ≡ (x̂ + iŷ)/

√
2, and define

the components of Ak with positive and negative helicity, respectively, by A± ≡ Ak ⋅ ϵ±.
Using that

ϵ± ⋅∇ ×Ak =
1√
2
(ε132ikA2

k ± ε231kA1
k) = ±

k√
2
(A1

k ∓ iA2
k) = ±kA± , (2.35)

we can project equation (2.34) into helicity components to obtain

A′′± + (k2 ∓
α

f
χ′k)A± = 0 . (2.36)

Eq. (2.36) tells us the two helicity components of the electromagnetic field have different
dispersion relations, i.e. the plane of linear polarization rotates by the angle

β = α

2f
(χ0 − χdec) , (2.37)

where χ0 is today’s value of the χ field, while the subscript dec specifies χ at the time
of photon decoupling, when the CMB was emitted. We usually refer to β as the cosmic
birefringence angle.

4In the last equality, we have used that α
2f
χεµρνσ∂µFνσ = α

f
χεµρνσ∂µ∂νAσ = 0 by symmetry and that,

since χ depends only on time, α
2f
εµρνσ∂µ(χFνσ) = δρi

α
f
χ′ε0ijk∂jAk.
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Figure 2.11: Cosmic birefringence causes the plane of linear polarization (orange line) to
rotate by an angle β between last scattering and the present day. In turn, this leads to
the mixing of E and B modes. Image credit: Yuto Minami

Effects on the angular power spectra With the plane of linear polarization rotating
by an angle β, the Stokes parameters transform according to (2.7) with ψ = −β:

Qobs(n̂) ± iUobs(n̂) = [Q(n̂) ± iU(n̂)] e±2iβ . (2.38)

Retracing the steps to get to eqs. (2.10), one can write the observed spherical harmonic
coefficients in terms of the intrinsic ones and the cosmic birefringence angle:

aE,obsℓm = aEℓm cos(2β) − aBℓm sin(2β) , (2.39)

aB,obsℓm = aBℓm cos(2β) + aEℓm sin(2β) , (2.40)

and, by plugging these expressions in eq. (2.15), the observed angular power spectra read

CEE,obs
ℓ = CEE

ℓ cos2(2β) +CBB
ℓ sin2(2β) , (2.41)

CBB,obs
ℓ = CBB

ℓ cos2(2β) +CEE
ℓ sin2(2β) , (2.42)

CEB,obs
ℓ = CEB

ℓ cos(4β) +
CEE
ℓ −CBB

ℓ

2
sin(4β) . (2.43)

From the above equations is it clear that a non-zero cosmic birefringence mixes E and
B modes, as also shown schematically in Figure 2.11. Interestingly, even if CEB

ℓ = 0 at
the surface of last scattering, cosmic birefringence can produce a non-zero observed EB
correlation, which can be written in terms of observed CEE,obs

ℓ and CBB,obs
ℓ :

CEB,obs
ℓ = tan(4β)

2
(CEE,obs

ℓ −CBB,obs
ℓ ) . (2.44)
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Measuring the cosmic birefringence angle Although the observed EB correlation
is a sensitive probe of cosmic birefringence, inferring β from CEB,obs

ℓ is not as simple as eq.
(2.44) suggests. Unless we know exactly how the incoming polarization is rotated by the
elements of the telescope’s optical chain and how the polarization-sensitive orientations of
the detectors are related to the sky coordinates, the polarization angle we measure will
not be the intrinsic one, but will be shifted by a non-zero miscalibration angle, α. The
problem is that the effect of a non-zero α on the observed CEB,obs

ℓ is completely degenerate
with cosmic birefringence, since they both shift the polarization angle. As a result, in the
absence of any other information, we can only determine the sum of the two angles, α+β.

The methodology proposed in [59–61] solves this issue by calibrating α with Galactic
foreground emission. Their idea is that, as Galactic photons are not affected by cosmic
birefringence, they are only rotated by α and can therefore used to measure α, which can be
then substracted from the overall rotation angle of the CMB signal. This strategy allowed
to infer β = 0.35± 0.14○ at 68% C.L. [62] from nearly full-sky Planck polarization data [63]
and obtain more precise measurements in subsequent works [64–66].

The problem with these approaches is that α can be calibrated from the foregrounds
only if we know the intrinsic EB and TB correlations of the foreground signal, which
is not the case. More robust estimates of β can then be achieved if we have a better
understanding of foreground emission, or if we have a better calibration strategy which
makes it possible not to rely on foreground emission altogether.



Chapter 3

CMB experiments: end-to-end

Summary: Data acquisition and data analysis are the two macro-
steps in any CMB experiment. The output of data acquisition is
the time-ordered data (TOD), and the goal of data analysis is to
process the TOD to extract relevant cosmological information. This
is usually done by

○ making temperature and polarization maps from the TOD,

○ performing some foreground cleaning routine,

○ estimating the angular power spectra,

○ inferring the cosmological parameters.

In this chapter, we discuss data acquisition and data analysis
separately, providing a concise review of the building blocks of any
end-to-end CMB experiment.

This is an adaptation of some personal notes I took during the course of my PhD. Section
3.3 follows [96, 97]. The method of maximum likelihood is introduced in 3.4 following [98].

3.1 Data acquisition

Data acquisition is the first macro-step in any CMB experiment and its output consists
of the time-ordered data (TOD), i.e. the collection of the signals detected by all detectors
during the entire duration of the mission. For an instrument with ndet detectors, each of
which takes nobs measurements during the mission, we represent the TOD as the vector

d =

⎛
⎜⎜⎜⎜⎜
⎝

⋮

⎞
⎟⎟⎟⎟⎟
⎠

nobs

nobs

(3.1)
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where each rectangle represents the signals collected by a single detector. One can think
of the TOD as the superposition of a noiseless and a noise-only component:

d = dnoiseless + n . (3.2)

Various effects can contribute to n: intrinsic thermal noise of detectors and amplifiers;
detectors, amplifiers, and readout electronics instabilities; as well as environmental effects
and atmospheric fluctuations (for sub-orbital experiments) [99]. Accurately modeling the
noise is very complicated and goes beyond the scope of this thesis. However, if the noise is
Gaussian with zero mean and stationary, its statistical properties are fully captured by its
frequency power spectrum, which we introduce in Section 3.1.1. In Section 3.1.2 we will
instead focus on the noiseless TOD.

3.1.1 Noise frequency power spectrum

Typically, CMB detectors take samples regularly over time, say every 1/fsamp interval
starting from some initial time, t0. For a single detector, the j-th element of the noise
TOD, nj, corresponds then to the noise measured at the time tj = t0 + j/fsamp. The index
j takes integer values in the [0, nobs − 1] interval.

We can define the discrete Fourier transform of nj as

ñk =
nobs−1
∑
j=0

nj e
−i2π k

nobs
j
, (3.3)

where the index k also takes integer values in the [0, nobs −1] interval. Each k corresponds
to a physical frequency fk = kfsamp/nobs.

Because of stationarity, each ñk can be treated as a complex independent random
variable and, assuming the noise to be Gaussian with zero mean, we can write its probability
density function (p.d.f.) as

p.d.f. (ñk) =
1

σk
√
2π

exp [−1
2

ñkñ∗k
σ2
k

] , (3.4)

where σ2
k ≡ ⟨ñkñ∗k⟩ is the variance of the distribution. Note that, because the ñk variables

are independent from each other, ⟨ñkñ∗k′⟩ = 0 for k ≠ k′. In other words ⟨ñkñ∗k′⟩ = σ2
kδkk′ .

The frequency power spectrum, P (f), is the counterpart of the variance σ2
k for contin-

uous physical frequencies, i.e.

⟨ñ(f)ñ∗(f ′)⟩ = P (f)δ(f − f ′) . (3.5)

As the p.d.f. in eq. (3.4) only depends on the variance, the power spectrum P (f) fully
captures the statistical properties of the noise.
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Modeling the power spectrum Typically in CMB experiments, the noise power spec-
trum, P (f), is accurately modeled as a superposition of a white and a 1/f term [99]:

P (f) = σ2
0 [1 + (

f 2
knee

f 2
)
α

] . (3.6)

Here f denotes a temporal frequency; σ0 quantifies the white noise level of the TOD; α
is the slope of the 1/f noise spectrum (typically positive); and the knee frequency, fknee,
denotes the frequency at which the variance of the 1/f noise is equal to the white noise
variance. If α is positive in eq. (3.6), the noise power spectrum diverges for f = 0, which is
however impossible to observe1. When simulating a noise realization, it is then customary
to add an additional parameter, fmin, such that the power spectrum flattens for f < fmin.
The noise power spectrum can then be modeled as

P (f) = σ2
0 [
f 2 + f 2

knee

f 2 + f 2
min

]
α

. (3.7)

The power spectra of eqs. (3.6) and (3.7), together with a white-only P (f), are shown in
Figure 3.1 for an arbitrary choice of the parameters.

10−5 10−3 10−1 101

f [Hz]
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107
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P
(f

)
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2
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as eq. (3.6)

as eq. (3.7)

white-only

Figure 3.1: Noise power spectrum, P (f), from eqs. (3.6) and (3.7) (solid yellow and
dashed red lines, respectively), together with the white-only term (black dotted line).
The parameters have been set to σ0 = 10µK

√
s, fmin = 10−5Hz, fknee = 20mHz and α = 1.

1The lowest observable frequency is given by the inverse of the lifetime of the Universe [100]:

(14 × 109 years)−1 ∼ (4 × 1017 s)−1 ∼ 10−17 Hz .
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3.1.2 Modeling the noiseless TOD

In first approximation, it is safe to assume that the noiseless TOD depends only linearly
on the sky signal. Depending on how the sky signal is described, i.e. whether one works
in pixel or harmonic space, this results in two different modeling approaches. We discuss
both in the following two paragraphs.

Pixel space approach By defining a pixelization scheme on the sphere, we can describe
the sky signal as a (npix ⋅nStokes)-vector, m, where nStokes is the number of Stokes parameters
considered and npix is the total number of pixels on the sphere. The elements of m are the
values of the sky Stokes parameters at each pixel:

m =

⎛
⎜⎜⎜⎜⎜
⎝

⋮

⎞
⎟⎟⎟⎟⎟
⎠

nStokes

nStokes

(3.8)

One can then use the linearity assumption to write

dnoiseless ≡ A ⋅m , (3.9)

where A is a ndet ⋅ nobs by npix ⋅ nStokes matrix and is usually referred to as the response
matrix. Modeling the noiseless TOD then amounts to modeling the response matrix. To
do that, we need information about the scanning strategy and the instrument specifics.

• As the name suggests, the scanning strategy
tells us how the telescope scans the sky as
it observes. The relevant information can be
summarized in three sets of angles, θt, φt, and
ψt, where the index t takes integer values in
the [0, nobs − 1] interval2. The first two iden-
tify the telescope’s boresight direction, n̂bore,t,
i.e. the direction normal to the focal plane at
its center. In turn, n̂bore,t identifies a pixel
pbore,t on the sphere. Instead, ψt denotes the
angle between the sky and the telescope co-
ordinates on the plane orthogonal to the di-
rection of observation (see Figure 3.2).

xsky

ysky

ψ

x

y

Figure 3.2: The telescope angle, ψ is
defined as the angle between the sky and
telescope coordinates.

Note that knowing pbore,t is not the same as knowing where each detector is pointing:
detectors that are not located at boresight could be observing some other pixel.

• The ‘instrument specifics’, are all the characteristics that determine the detectors’
pointings (i.e. the position of the detectors on the focal plane), and encode how the

2Note that we changed notation from Section 3.1.1, where we denoted the time index with j.
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incoming sky signal, Ssky, is converted into detected signal. For example, information
about the beams, the frequency bands, and the detectors’ orientation.

In the remaining of this section, we will provide some more concrete information that can
help to better understand how the response matrix is structured. To keep things simple,
we start by restricting ourselves to pencil beams only and single-frequency.

First, note that A is a sparse matrix. In fact, at the time sample t, the detector i will be
pointing to some pixel pit, implying that the (i ⋅nobs + t) row of A will be filled with zeros,
except for the nStokes elements corresponding to the pixel pit. Schematically, the response
matrix then looks something like

A =

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯
⋯

⎞
⎟⎟⎟⎟⎟⎟
⎠

npix⋅nstokes

nobs⋅ndet (3.10)

where the black rectangles represent the sets of nStokes non-zero elements, while the empty
rectangles represent the vanishing elements. The position of the non-zero elements depends
on the scanning strategy and the detector’s displacements, which determines pit given the
time sample and detector indices.

Since each of the black rectangles has nStokes elements, we can think of it as a (trans-
posed) Stokes vector, SSST . The values of SSST encode how the sky signal, Ssky is translated
into detected signal, and they can be modeled, provided that we have a good understanding
of the instrument’s characteristics. This means that we should know the physical proper-
ties of the elements that make up the telescope’s optical chain, and be able to transform
between their coordinate systems.

As a first concrete example, consider an ideal detector oriented along the x axis in the
telescope’s coordinate system. The action of an ideal detector on a Stokes vector is to take
the arithmetical average of the I and Q parameters, which can be modeled as d = aT Ssky,
where d is the detected signal and aT = 1

2
(1 1 0 0). Writing d = aT Ssky, however, only

makes sense if both aT and Ssky are defined in the same coordinate system, which is not
necessarily the case. To fix this, one has to rotate the incoming Stokes vector from sky to
telescope’s coordinates, and this can be done by knowing the angle between them, i.e. the
telescope angle, ψt, as shown in Figure 3.2:

SSSTit =
1

2
(1 1 0 0)Rψt . (3.11)

If the detector is not oriented along the x axis in telescope coordinates, but forms an angle
ξi with it, this rotation should also be included in the data model:

SSSTit =
1

2
(1 1 0 0)Rξi+ψt . (3.12)
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Harmonic space approach Instead of describing the sky signal as a set of pixelized
maps, we can encode all the relevant information into spherical harmonic coefficients: aIℓm,

+2aPℓm, and −2a
P ∗

ℓm, where P ≡ Q + iU . These coefficients are the same as the ones defined
in eqs. (2.4) and (2.9), although we are using a slightly different notation to match [101].
One could also include information about circular polarization by introducing the aVℓm
coefficients, defined as in eq. (2.4) since V is a scalar. In a given reference frame (say
the instrument frame), the beams can also be described in terms of spherical harmonic
coefficients, which we will denote bIℓm, +2b

P

ℓm, −2b
P
∗

ℓm, and b
V

ℓm.
By assuming that the only difference between the optical response at samples t and t′

is the direction and orientation of the telescope with respect to the sky, one can write the
beam-convolved TOD as (equation 10 of [101]):

dt = ∑
sℓm

[bIℓs aIℓm +
1

2
(−2bP

∗

ℓs +2a
P
ℓm + +2bPℓs −2aP

∗

ℓm) + bVℓs aVℓm]
√

4π

2ℓ + 1
e−isψt

sYℓm(θt, φt) , (3.13)

where θt and φt determine the direction of the telescope, and ψt its orientation.

3.2 Map-making

The map-making step translates the raw TOD3, d, into a set of pixelized maps, m̂, with the
goal of recovering the sky maps, m. The estimated map, m̂, can then be further analyzed
to extract cosmological information. Many different map-making methods have been used
in the past decades [102], the simplest being linear methods:

m̂ =M ⋅ d , (3.14)

where M is some matrix that specifies the method. The scalar product on the right-hand
side spans all detectors and all observations.

3.2.1 Bin-averaging

The bin-averaging (or binning) is the simplest map-maker one can use and the only one we
will discuss in this thesis4. It is a linear method specified by the matrix M = (ÂT Â)−1ÂT ,
so that

m̂ = (ÂT Â)−1ÂT ⋅ d , (3.15)

where Â is the response matrix assumed by the map-maker. When Â = A, one is able to
recover the sky maps, up to a noise term:

m̂ =M ⋅ d = (ATA)−1AT ⋅ (A ⋅m + n)
=m + (ATA)−1AT ⋅ n . (3.16)

3Often, the TOD is pre-processed (for example, it may be calibrated, or filtered) before it goes through
the map-maker. These intermediate steps are extremely important for the overall performance of the
experiment, but we will neglect them here for the sake of simplicity.

4The interested reader can take a look at [102], where other methods are also discussed.
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Regardless of the specific model used for Â, it will have a similar structure to the one
shown in eq. (3.10):

Â =

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯
⋯

⎞
⎟⎟⎟⎟⎟⎟
⎠

Ð→ ÂT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮

⋯

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.17)

which means that the ÂT Â scalar product and its inverse, (ÂT Â)−1, will be block-diagonal:

ÂT Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮

⋯

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜
⎝

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯
⋯

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⋯

⋯

⋮ ⋮ ⋱ ⋮
⋯

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (3.18)

In particular, the non-zero block corresponding to the pixel p is given by

∑
it∈{it}p

ŜSSitŜSS
T

it = ∑
it∈{it}p

⎛
⎜⎜⎜⎜
⎝

Î2 Î Q̂ ÎÛ ÎV̂

Q̂Î Q̂2 Q̂Û Q̂V̂

Û Î ÛQ̂ Û2 ÛV̂

V̂ Î V̂ Q̂ V̂ Û V̂ 2

⎞
⎟⎟⎟⎟
⎠
it

, (3.19)

where {it}p denotes the set of detectors i that are observing the pixel p at the time t.
Explicitly, the reconstructed Stokes parameters at the pixel p then read

⎛
⎜⎜⎜⎜
⎝

Î

Q̂

Û

V̂

⎞
⎟⎟⎟⎟
⎠
p

= ∑
it∈{it}p

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
i′t′∈{it}p

⎛
⎜⎜⎜⎜
⎝

Î2 Î Q̂ ÎÛ ÎV̂

Q̂Î Q̂2 Q̂Û Q̂V̂

Û Î ÛQ̂ Û2 ÛV̂

V̂ Î V̂ Q̂ V̂ Û V̂ 2

⎞
⎟⎟⎟⎟
⎠
i′t′

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1
⎛
⎜⎜⎜⎜
⎝

Î

Q̂

Û

V̂

⎞
⎟⎟⎟⎟
⎠
it

dit . (3.20)

Eq. (3.20) is equivalent to eq. (3.15), albeit less compact. It can however help to understand
what performing a bin-averaging actually means.
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3.3 Foreground cleaning

The presence of Galactic foregrounds is particularly problematic for observations of primor-
dial B modes, since they are expected to be at least ∼ 100 times fainter than the foreground
emission [96, 97]. The brightest polarized contaminants are synchrotron and thermal dust
emission5, which dominate at lowest and highest frequencies, respectively (see Figure 3.3,
where the spectral energy distributions (SEDs) of CMB, dust and synchrotron are shown;
see also Figure 3.4, where we show the total intensity and polarization maps for several
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Figure 3.3: Polarization brightness temperature
rms as a function of frequency and astrophys-
ical component. Each component is smoothed
to an angular resolution of 40 arcmin full-width-
at-half-maximum (FWHM), and the lower and
upper edges of each line are defined by masks
retaining 73 and 93 % of the sky, respectively.
Image and caption adapted from [103].

Planck frequency channels). From Figure
3.3, it is clear that the brightness of each
component depends on frequency in a spe-
cific way. In particular, the specific inten-
sity of CMB anisotropies follows a differen-
tial black-body, while dust and synchrotron
can be modeled as a modified black-body
and a power law, respectively [104]

δICMB,ν =
2ν2

c2
x20e

x0

(ex0 − 1)2
kB δT, (3.21a)

δIdust,ν = Adust (
ν

ν★
)
βdust

Bν(Tdust), (3.21b)

δIsync,ν = Async (
ν

ν☆
)
βsync

. (3.21c)

where x0 ≡ hν/(kBT0) with T0 the aver-
age temperature of the CMB, and Bν(T ) =
2hν3/[c2(ex − 1)] is a black-body spectrum
with x ≡ hν/(kBT ) [6]. The fact that the
SEDs of CMB and foreground emission de-
pend on frequency in different ways can be used to disentangle these two signals and many
methods have been proposed so far to achieve this goal. These different methods can
however be classified into three main classes which we present next (following [97]).

Template fitting Template fitting is one of the simplest foreground cleaning methods,
based on the assumption that the spatial distribution Xi(n̂) of the i foreground
component is known. The overall observed signal is then modeled as

T (n̂, ν) =∑
i

αi(ν)Xi(n̂) + n(n̂, ν) , (3.22)

where the αi(ν) are the template coefficients, encoding the frequency dependence
of the template emission Xi. Template fitting was used successfully to remove the

5Synchrotron radiation is emitted by relativistic cosmic ray electrons that are accelerated by magnetic
fields and start spiraling. As for thermal dust emission, it consists of radiation re-emitted by interstellar
dust grains which are heated by the interstellar radiation field [96, 97].
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15

Planck Collaboration: LFI data processing

−400 1200µKCMB

−20 20µKCMB

−20 20µKCMB

Fig. 10. LFI maps at 30 GHz: top, total intensity I; middle: Q polarization component; bottom, U polarization component. Stokes I
is shown at instrument resolution and at Nside = 1024, while Q and U are smoothed to 1◦ resolution and at Nside = 256. Units are
µKCMB. The polarization components have been corrected for bandpass leakage (Sect. 7)

15

Planck Collaboration: LFI data processing

−400 1200µKCMB

−20 20µKCMB

−20 20µKCMB

Fig. 10. LFI maps at 30 GHz: top, total intensity I; middle: Q polarization component; bottom, U polarization component. Stokes I
is shown at instrument resolution and at Nside = 1024, while Q and U are smoothed to 1◦ resolution and at Nside = 256. Units are
µKCMB. The polarization components have been corrected for bandpass leakage (Sect. 7)

15

Planck Collaboration: LFI data processing

−400 600µKCMB

−20 20µKCMB

−20 20µKCMB

Fig. 11. Same as Fig. 10, for the 44-GHz channel.
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Planck Collaboration: Planck 2018 results. HFI DPC.
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Fig. 5: Planck-HFI Solar dipole-removed maps at 100 to 857 GHz (in rows), for Stokes I, Q, and U (in columns).

a self-consistent separation of residual time-transfer effects
and the optical response was performed to build the scanning
beams using planet observations (as described in appendix B of
Planck Collaboration VII 2016). These have not been updated
for this 2018 release.

Effective beams for frequency maps are built with the
10′′ resolution scanning beams, taking into account the
scanning strategy, detector weighting, and sky area. As in

(Planck Collaboration VII 2014), FEBeCoPwas used to compute
the 100′-cut-off effective beams for each pixel at Nside=2048, in-
corporating all the dependencies just listed.

Mean values of the effective beam properties, averaged
across the entire sky, are given in Table 12. These are identical
to those provided in table 3 of Planck Collaboration VII (2016),
since the only change to the input TOI information was the omis-
sion of the last 1000 pointing periods (see Sect. 2.1.3), which

10

Figure 3.4: Planck -LFI maps at 30, 44 and 70 GHz [105] (first three rows), and HFI maps
at 100, 143, 217, and 353 GHz [63] (last four rows), for Stokes I, Q, and U (in columns).
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foreground emission in WMAP data. The main issue with this method is that it
assumes the SEDs of the foreground components to be uniform throughout the sky,
which is not the case.

Parametric methods The general assumption behind all parametric methods is that
the functional form of the frequency scalings is known, and our ignorance can be
quantified by means of relatively few spectral parameters, which can be determined
by a fitting procedure. Parametric methods are widely used in CMB analyses and
perform very well as long as the sky signal is modeled correctly. In case the assumed
frequency scalings are wrong, however, one ends up with biased estimates for the
spectral parameters, which can translate into foreground contamination.

Blind methods This class of methods is useful when we have poor knowledge about the
SEDs of the foreground emission, since it does not make any assumption about their
spatial distribution nor frequency dependence. The simplest blind methods are the
internal linear combination (ILC) and its implementation in harmonic space, the
harmonic ILC (HILC), which we will briefly present in Section 7.2.2.

Regardless of what method one chooses, the output of the foreground cleaning step will
be an estimate of the CMB signal, in the form of a set of Stokes I, Q, and U maps, or
their spherical harmonics coefficients. The last step of any CMB analysis pipeline then is
to analyze the resulting maps (or aXℓm, or C

XY
ℓ ) to constrain cosmological parameters.

3.4 Parameter inference

Likelihood approaches are the most widespread methods used for statistical inference in
CMB analyses [106]. In this section we provide an intuitive description of the maximum
likelihood method following [98], and then move to a more concrete example of likelihood
function to estimate the tensor-to-scalar ratio, r, from the observed CBB

ℓ .

The method of maximum likelihood Consider a random variable x distributed ac-
cording to the p.d.f. f(x; θ) and assume that the functional form of f(x; θ) is known,
while the value of the parameter θ is unknown. The method of maximum likelihood is a
technique for estimating the unknown parameter from a finite sample of data.

Suppose that the random variable x has been measured n times, yielding the values
x1, x2, . . . , xn. Given the hypothesis f(x; θ), including the value of θ, the probability P
that xi ∈ [xi, xi + dxi] for all i is given by

P =
n

∏
i=1
f(xi, θ)dxi . (3.23)

If the hypothesized p.d.f. and the parameter value are correct, one expects a high proba-
bility for the measured data. On the contrary, a parameter value far from the true value
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should give a low probability for the measurements obtained. The same reasoning applies
to the likelihood function

L(θ) ≡
n

∏
i=1
f(xi, θ) . (3.24)

Then the maximum likelihood (ML) estimators for the parameter θ, often denoted by a
hat, θ̂, are defined as those that maximize the likelihood function. As long as the likelihood
function is a differentiable function of θ and the maximum is not at the boundary of the
parameter range, the estimator satisfies

∂L

∂θ
∣
θ̂

= 0 . (3.25)

If more than one local maximum exists, the highest one is taken. Note that the motivation
of the ML principle presented above does not necessarily guarantee any optimal properties
for the resulting estimators.

3.4.1 Concrete example: likelihood for the tensor-to-scalar ratio

Given a theoretical model for the BB angular power spectrum as a function of the tensor-
to-scalar ratio, CBB

ℓ (r), the probability to observe the aB,obsℓm coefficient reads

P (aB,obsℓm ∣CBB
ℓ (r)) =

1√
2πCBB

ℓ (r)
exp [−1

2

aB,obsℓm aB,obs∗ℓm

CBB
ℓ (r)

] , (3.26)

where we have used that aB,obsℓm is a complex Gaussian variable with zero mean and CBB
ℓ (r)

variance. The probability of observing a whole set of {aB,obsℓm } coefficients with the same ℓ
then satisfies

logP ({aB,obsℓm }∣CBB
ℓ (r)) = log [

ℓ

∏
m=−ℓ

P (aB,obsℓm ∣CBB
ℓ (r))]

= −2ℓ + 1
2

logCBB
ℓ (r) +

ℓ

∑
m=−ℓ
[−1

2

aB,obsℓm aB,obs∗ℓm

CBB
ℓ (r)

] + const.

= −1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2ℓ + 1) logCBB
ℓ (r) +

ℓ

∑
m=−ℓ
(aB,obsℓm aB,obs∗ℓm )

CBB
ℓ (r)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ const. . (3.27)

Note that the right-hand side depends on the observed spherical harmonic coefficients
only via the combination aB,obsℓm aB,obs∗ℓm = r2ℓm, where rℓm denotes the modulus of the com-

plex number aB,obsℓm = rℓmeiθℓm . This makes straightforward to translate eq. (3.27) into a
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probability of observing CBB,obs
ℓ = (2ℓ + 1)−1∑m r2ℓm given the model6:

logP (CBB,obs
ℓ ∣CBB

ℓ (r)) = −
2ℓ + 1
2
[logCBB

ℓ (r) +
CBB,obs
ℓ

CBB
ℓ (r)

− 2ℓ − 1
2ℓ + 1

logCBB
ℓ,obs] + const.. (3.28)

The likelihood function, L(r), can then be obtained by evaluating P for a set of values of
the tensor-to-scalar ratio.

6To change variables from the set {rℓm} to the angular power spectra CBB,obsℓ , one has to compute

P (CBB,obsℓ ∣CBBℓ (r)) = ∫ drℓ,−ℓ . . .drℓ,ℓP ({rℓm}∣CBBℓ (r)) δ (CBB,obsℓ − 1

2ℓ + 1

ℓ

∑
m=−ℓ

r2ℓm)

= ∫ R2ℓ
ℓ dRℓ dΩ2ℓ+1P (Rℓ∣CBBℓ (r)) δ (CBB,obsℓ −

R2
ℓ

2ℓ + 1
) ,

where R2
ℓ ≡ ∑m r2ℓm and dΩ2ℓ+1 represents the (2ℓ + 1)-dimensional angular line element. Now, since the

integrand does not depend on Ω2ℓ+1, it will only result in a multiplicative factor. The δ function can be
expressed in terms of Rℓ itself by using that δ(g(x)) = δ(x − x0)/g′(x0), where x0 is a root of g, i.e.

δ (CBB,obsℓ − Rℓ2

2ℓ + 1
) = −2ℓ + 1

2Rℓ
δ (Rℓ −

√
(2ℓ + 1)CBB,obsℓ ) .

Plugging this in the expression above returns

P (CBB,obsℓ ∣CBBℓ (r))∝∫ R2ℓ−1
ℓ dRℓP (Rℓ∣CBBℓ (r)) δ [Rℓ −

√
(2ℓ + 1)CBB,obsℓ ] .

Eq. (3.28) follows after replacing P (Rℓ∣CBBℓ (r)) with the expression on the right-hand side of eq. (3.27).



Chapter 4

HWPs as polarization modulators

Summary: Some of the next-generation CMB experiments will
use rotating half-wave plates (HWPs) as polarization modulators.
In this chapter, we show how this choice can help to achieve better
polarization measurements by mitigating the systematic effects
due to the presence of 1/f noise and induced by pair-differencing
the readings of orthogonal detectors. We also introduce the HWP
non-idealities and briefly discuss some of the reasons why they
should be carefully studied.

This is an adaptation of some personal notes I took during the course of my PhD. In
particular, Section 4.1.1 is based on a project that I started during my time at MPA that
did not result in a publication.

4.1 The ideal half-wave plate

waveplate

Figure 4.1: Schematic rep-
resentation of a waveplate
with the fast and slow axes
represented by a green and
a red line, respectively.

A waveplate, or retarder, is a polarization-altering device made
of a birefringent material whose index of refraction depends on
the polarized state of the incoming radiation. Light polarized
along the fast axis has a lower index of refraction and travels
faster through the waveplate, while light polarized along the
slow axis (orthogonal to the fast axis) has a higher index of
refraction. Graphically, we represent the fast (slow) axis with a
green (red) line on the face of the waveplate, as shown in Figure
4.1. The difference in the index of refraction, ∆n, results in
a phase shift between the polarization components, Γ, that
also depends on the thickness of the crystal, L, and the light’s
wavelength, λ0, via the relation

Γ = 2π∆nL

λ0
. (4.1)
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Figure 4.2: Close-up of how an HWP works. The green and red lines on the HWP faces
represent the fast and slow axis, respectively. Light polarized along the fast axis has a
refraction index nf , while light polarized along the slow axis has ns > nf , resulting in
a π phase shift between the two orthogonal components. The incoming and outgoing
polarization vectors are then one the reflection of the other with respect to the fast axis.

For a half-wave plate (HWP), the relationship between L, ∆n, and λ0 is chosen so that
the phase shift between polarization components is Γ = π. As shown in Figure 4.2, this
phase shift causes the incoming and outgoing polarization vectors to be one the reflection
of each other with respect to the fast axis. At the level of Stokes parameters, this amounts
to keeping I and Q fixed, while flipping the sign of U and V . The effect of an HWP can
therefore be described by the Mueller matrix (see Appendix B for its definition)

M =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠
. (4.2)

Rotating HWPs are used in CMB experiments as polarization modulators, since they
help mitigate systematic effects. In Sections 4.1.1 and 4.1.2 we will discuss their two
main advantages: the suppression of the 1/f noise component and the mitigation of pair-
differencing systematic effects.

4.1.1 Suppression of 1/f noise

If unmitigated, a 1/f noise component constitutes a critical problem for the detection of
primordial B modes. This is because a frequency power spectrum as the one in eqs. (3.6)
or (3.7) translates in a 1/ℓ angular power spectrum:

Nℓ ∝ 1 + (
ℓ2knee
ℓ2
)
αℓ

, (4.3)

where ℓknee and αℓ depend on the noise properties, the scanning strategy specifics and
the map-maker used to analyze the data. Regardless of the specific values taken by the
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incoming
polarization

outgoing
polarization

HWP

analyzer

Figure 4.3: The incoming light first meets the HWP, that (in the ideal case) rotates
the polarization direction. Then, an analyzer projects the polarized light along a given
direction and the light is detected.

parameters, Nℓ is larger at lower multipoles, and it could therefore keep us from detecting
the primordial B modes, which are best constrained at low multipoles. In the following of
this section, we will see how the HWP can help in this direction.

We start by writing the observed noise angular power spectra as N̂XY
ℓ = ⟨n̂Xℓmn̂Y ∗ℓm′⟩,

where n̂Xℓm denotes the spherical harmonics coefficients of the (̂I, Q̂, Û) maps reconstructed
from the noise TOD, n. If we assume the simple binning map-maker introduced in Section
3.2, the reconstructed Stokes parameters at the pixel p can be modeled explicitly as

(Î , Q̂, Û)p =∑
it

[(ATA)−1AT ]
pit
nit , (4.4)

where A is the response matrix, and the indices i and t span the detectors and time
samples, respectively. Note that each element of [(ATA)−1AT ]pit is a 3-vector, which we
denote (I ,Q,U)pit, following the same notation as in Section 3.1.2. Eq. (4.4) then reads

(̂I, Q̂, Û) =∑
it

(III,QQQ,UUU)itnit , (4.5)

where the boldface quantities represent pixelized maps. Again, nit represents the noise
observed by the detector i at the time sample identified by the index t, and can therefore
be written as1

nit =∑
f

ñife
i2π f

nobs
t
, (4.6)

where nobs denotes the total number of observations, f takes values in the interval [0, nobs−
1], and ñif is the discrete Fourier transform of nit. Eq. (4.5) then becomes

(̂I, Q̂, Û) =∑
i

∑
f

ñif [
1

nobs
∑
t

(III,QQQ,UUU)it e
−i2π f

nobs
t] . (4.7)

1The inverse discrete Fourier transform is defined compatibly with eq. (3.3).
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By taking the spherical harmonics coefficients of both sides, we find

n̂Xℓm =∑
i

∑
f

ñif [aXℓm]if . (4.8)

where the [aXℓm]if denote the spherical harmonics coefficients of the term in square brack-
ets in eq. (4.7). To compute the angular power spectra from the spherical harmonics
coefficients, one has to first take the product

n̂Xℓmn̂
Y ∗
ℓm′ =∑

ii′
∑
ff ′
ñif ñ

∗
i′f ′[aXℓm]if [aY∗ℓm ]i′f ′ , (4.9)

which takes a more compact form if we average over the noise variables. In particular, as-
suming the noise to be stationary and uncorrelated between detectors, the product ñif ñi′f ′
averages to

ñif ñ
∗
i′f ′ → Pifδff ′ δii′ , (4.10)

where Pif is the noise power spectrum for the detector i. Plugging this expression into eq.
(4.9), we get

n̂Xℓmn̂
Y ∗
ℓm′ →∑

i

∑
f

Pif [aXℓm]if [aY∗ℓm ]if . (4.11)

The noise angular power spectra, N̂XY
ℓ then read

N̂XY
ℓ =∑

i

∑
f

Pif [CXYℓ ]if , (4.12)

where [CXYℓ ]if are the angular power spectra of the term in square brackets in eq. (4.7).
In the following two paragraphs, we will use eq. (4.12) to show how the presence of

the HWP affects the reconstructed angular power spectra in a simple case: mock noise
properties, low resolution input maps, mock scanning strategy, and only a few detectors2.

In particular, given a nside = 32 resolution healpy3 pixelization on the sphere, we set
fsamp = 20Hz and assume to scan the sky from the 0th to the npix pixel (one observation per
pixel), with four detectors located at boresight with 0, 90, 45, and 135 degrees orientations.
We assume the telescope coordinates to be aligned with the sky ones at all time, i.e. ψt = 0,
and the noise parameters to be σ0 = 10 µK

√
s, fmin = 10−3Hz, fknee = 4mHz and α = 1.

Without HWP When no HWP is present, the data model is specified by eq. (3.12),
and since we are assuming ψt = 0, it takes the even simpler form

SSSTit =
1

2
(1 1 0 0)Rξi . (4.13)

2The implementation for this simplistic case can be found at https://github.com/martamonelli/

Pf2Nl. The idea behind this project was to test the formalism in this simple case and then move to more
realistic scanning strategies and focal planes. The code, however, turned out to be too computationally
expensive to be generalized efficiently, and ended up not to result in a publication.

3https://github.com/healpy/healpy.

https://github.com/martamonelli/Pf2Nl
https://github.com/martamonelli/Pf2Nl
https://github.com/healpy/healpy
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Figure 4.4: Reconstructed noise angular power spectra, N̂TT
ℓ , N̂EE

ℓ and N̂BB
ℓ (gray, orange

and red, respectively), in the case without HWP. The dashed lines are obtained assuming
white noise in input, while the solid lines correspond to a noise power spectrum as in eq.
(3.7). The reconstructed spectra have a non-vanishing 1/ℓ component.

Given SSSTit, we compute the noise angular power spectra N̂XY
ℓ according to eq. (4.12). The

TT , EE and BB spectra are shown in Figure 4.4, with and without the 1/f component.
The EE and BB spectra overlap, and they are twice as large as their TT counterpart,
as expected. When the 1/f term is considered, the angular power spectra show a 1/ℓ
behaviour.

With HWP To include a rotating HWP, the model of eq. (4.13) has to be changed into

SSSTit =
1

2
(1 1 0 0)Rξi−ϕtMhwpRϕt . (4.14)

where ϕt represents the HWP angle, which is assumed to be rotating four times per second.
By repeating the same analysis we discussed in the no-HWP case, we end up with the noise
angular power spectra shown in Figure 4.5. The EE and BB spectra still overlap, and
they are still twice as strong as the TT ones, but the 1/ℓ behaviour completely disappeared
from the polarized signal.

With this simple analysis we were able to see how effectively the HWP mitigates the 1/f
noise component in the polarized signal, in a concrete case. The intuitive reason for this
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Figure 4.5: Reconstructed noise angular power spectra, N̂TT
ℓ , N̂EE

ℓ and N̂BB
ℓ (gray, or-

ange and red, respectively), in the case with (ideal) HWP. The dashed lines are obtained
assuming white noise in input, while the solid lines correspond to a noise power spectrum
as in eq. (3.7). The HWP modulation completely suppresses the 1/ℓ component in the
polarized angular power spectra.

behaviour is that the fast rotation of the HWP modulates the signal to high frequencies,
where the 1/f noise is not as strong, effectively mitigating it.

4.1.2 Pair-differencing systematics

Without HWP, the simplest method of measuring polarization (used for example by both
WMAP and Planck) is to take the difference of the readings of pairs of orthogonal detectors,
which can however induce some I → P leakage. These kind of effects are often referred to
as pair-differencing systematics, and a rotating HWP can help mitigate them. Here we will
show how pair-difference systematics can arise and how a rotating HWP can help mitigate
them.
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Measuring polarization w/o HWP Consider two ideal polarimeters, oriented along
the x and y axes, respectively. Their readings, d0 and d90, can be modeled as

d0 = aT ⋅ S = (12
1
2 0)

⎛
⎜
⎝

I
Q
U

⎞
⎟
⎠
= I +Q

2
, (4.15a)

d90 = aT ⋅R90 ⋅ S = (12
1
2 0)

⎛
⎜
⎝

1 0 0
0 −1 0
0 0 −1

⎞
⎟
⎠

⎛
⎜
⎝

I
Q
U

⎞
⎟
⎠
= I −Q

2
. (4.15b)

By taking the difference of the two readings, we recover Q. Similarly, we can use two
detectors oriented along the 45○ and 135○ directions to measure U . This works perfectly
as long as the detectors are identical. If the responses of the two detectors are not per-
fectly identical, however, one could end up with spurious polarization. For example, if the
detector oriented along the x axis has a slightly higher gain than the other, the difference
d0−d90 will have some leftover total intensity, resulting in I → P leakage, which is extremely
problematic given the smallness of the primordial B-mode signal.

Measuring polarization w/ HWP If the first element in the telescope optical chain
is an HWP, the signal measured by a detector oriented along the x axis reads

d0,t = aT ⋅R−ϕtMhwpRϕt ⋅ S

= (12
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= 1

2
[I +Q cos(4ϕt) +U sin(4ϕt)] . (4.16)

If the HWP is continuously rotating with angular frequency ω, the polarized signal is
modulated to 4ω, while the total intensity has no modulation. This can help discrimi-
nate between intrinsic and spurious polarization. For example, consider two orthogonal
detectors with gains g0 and g90, respectively, the difference of their readings is

d0,t − d90,t =
g0
2
[I +Q cos(4ωt) +U sin(4ωt)] − g90

2
[I −Q cos(4ωt) −U sin(4ωt)]

= g0 − g90
2

I + g0 + g90
2

Q cos(4ωt) + g0 − g90
2

U sin(4ωt) , (4.17)
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and the leaked I can be easily removed by measuring only the 4ω component.

4.2 HWP non-idealities

From the arguments we just provided, it would seem that HWPs are extremely positive
objects that have no drawbacks. However, the considerations we just made only hold for
ideal HWPs, i.e. which are described by the simple Mueller matrix of eq. (4.2). No real
HWP is ideal, because of a number of effects. For instance [107]:

• Waveplates have the incorrect retardance. Thus, there will be some deviation from
a quarter-wave or a half-wave of retardance because of fabrication errors or a change
in wavelength.

• Waveplates usually have some diattenuation because of differences in absorption co-
efficients (dichroism) and due to different transmission and reflection coefficients at
the interfaces. For example, birefringent waveplates have diattenuation due to the
difference of the Fresnel coefficients at normal incidence for the two eigenpolarizations
since n1 ≠ n2. This can be reduced by antireflection coatings.

• The polarization properties vary with angle of incidence. Birefringent waveplates
commonly show a quadratic variation of retardance with angle of incidence; the
retardance increases along one axis and decreases along the orthogonal axis.

• The polarization properties vary with wavelength.

In general, therefore, the Mueller matrix associated to a HWP has no zero components,
which depend both on the frequency, ν, and angle of incidence, θ:

MHWP(ν, θ) =
⎛
⎜⎜⎜
⎝

mii(ν, θ) miq(ν, θ) miu(ν, θ) miv(ν, θ)
mqi(ν, θ) mqq(ν, θ) mqu(ν, θ) mqv(ν, θ)
mui(ν, θ) muq(ν, θ) muu(ν, θ) muv(ν, θ)
mvi(ν, θ) mvq(ν, θ) mvu(ν, θ) mvv(ν, θ)

⎞
⎟⎟⎟
⎠
, (4.18)

and we refer to the deviationsMhwp(ν, ϕ) − diag(1,1,−1,−1) as HWP non-idealities.
While the use of rotating (perfectly ideal) HWPs as polarization modulators can cer-

tainly reduce systematic effects (due to 1/f noise and pair-differencing of orthogonal de-
tectors), it is worth asking whether the non-idealities can induce ‘secondary’ systematics
and, if so, how to keep them under control. To answer these questions, one must propagate
the effect of the non-idealities through the various steps that make up a CMB experiment
(which we discussed in chapter 3), and try to understand how they ultimately affect the
scientific information we are trying to extract from the data.

This is the focus of this thesis, and we have approached the problem with two nicely
complementary classes of tools: realistic simulations and approximate models. The simu-
lation framework used for the former will be discussed in the next chapter.



Chapter 5

A beamconv-based simulation
framework for LiteBIRD

Summary: Realistic TOD simulations are key to the study of
systematic effects, because they can account for them in their (at
least partial) complexity. In this chapter, we present a simulation
framework that returns beam-convolved TOD and binned maps
for a LiteBIRD-like space mission. The code is heavily based on
a modified version of the beamconv library, which was the first
publicly available implementation of a beam convolution code
capable of handling realistic beams and non-ideal HWPs. Here we
present the changes we have made to beamconv to tailor its output
to a LiteBIRD-like experiment.

This is an adaptation of some personal notes I took during the course of my PhD. Section
5.1 summarizes some of the information presented in [29], Section 5.2 is a short summary
of section 4.4 of [108], and section 5.3.2 is adapted from qpoint’s documentation [109].

5.1 The LiteBIRD experiment

LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation
from cosmic background Radiation Detection, is a space mission for primordial cosmology
and fundamental physics. In May 2019, LiteBIRD was selected by the Japan Aerospace
Exploration Agency (JAXA) as a strategic large-class mission, and its launch is currently
expected by the end of the Japanese fiscal year 2032. LiteBIRD is planned to orbit the
second Sun-Earth Lagrangian point (L2), where it will remain in a Lissajous orbit for three
years, while mapping the CMB polarization across the entire sky. The basic structure of
the spacecraft is shown in Figure 5.1.

In the current baseline design, LiteBIRD’s focal plane will host ∼ 4000 bolometers, dis-
tributed in 15 partially overlapping frequency bands over a wide frequency range: from 34
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Figure 5.1: Conceptual design of the LiteBIRD spacecraft. The payload module houses
the low-frequency telescope (LFT), the mid-frequency telescope (MFT), and the high-
frequency telescope (HFT). Image and caption adapted from [29].

GHz to 448 GHz. The large number of detectors (compare e.g. with Planck ’s specifications,
listed in Table 1.1) will significantly reduce LiteBIRD’s noise levels, while the large number
of frequency bands (compare again with Table 1.1) and their frequency distribution will
help to achieve a good characterization of the polarized dust and synchrotron emission.

In addition, LiteBIRD will use rotating HWPs as polarization modulators, which will
help to mitigate the 1/f noise component and reduce pair-differencing systematics (see
Chapter 4, Sections 4.1.1 and 4.1.2 in particular). Due to the limitations of current tech-
nology, it is impossible to design an HWP that operates in a controlled manner over the
entire 34 - 448 GHz frequency range. Instead, LiteBIRD will use three different HWPs,
each associated with a different telescope:

• The low-frequency telescope (LFT), operating between 34 and 161 GHz, will use
a Pancharatnam-type [110, 111] multi-layer sapphire stack as an achromatic HWP
with laser machined sub-wavelength structures anti-reflection coating [112];

• The mid-frequency telescope (MFT), operating between 89 and 224 GHz, will use a
metamaterial refractive HWPs developed with metal-mesh technology [113, 114];

• The high-frequency telescope (HFT), operating between 166 and 448 GHz, will also
use a metal-mesh HWP.
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Thanks to these (and many other) choices, LiteBIRD is expected to achieve the unprece-
dented total sensitivity of 2.2µK-arcmin, with a typical angular resolution of 0.5○ at 100
GHz [29]. This will result in extremely precise polarization measurements at low mul-
tipoles, ℓ between 2 and 200, optimized to measure primordial B-modes and constrain
inflationary models. LiteBIRD data is also promising for constraining cosmic birefringence
and therefore probing new parity-violating physics.

In the remaining of this chapter, we will provide a brief introduction to beamconv1

[101, 115] and show how we optimized it to run simulations for a LiteBIRD-like experiment.

5.2 Introduction to beamconv

In Section 3.1.2 we introduced two different approaches to model the noiseless TOD, one
in pixel space and the other in harmonic space. For the latter, eq. (3.13) shows how to
model the observed TOD, dt, given the sky spherical harmonics coefficients, (aIℓm, +2a

P
ℓm,

−2aP
∗

ℓm and aVℓm), the beam spherical harmonics coefficients (bIℓm, +2b
V

ℓm, −2b
P
∗

ℓm and bVℓm), and
the detector pointings (specified by θt, φt and ψt):

dt = ∑
sℓm

[bIℓs aIℓm +
1

2
(−2bP

∗

ℓs +2a
P
ℓm + +2bPℓs −2aP

∗

ℓm) + bVℓs aVℓm]
√

4π

2ℓ + 1
e−isψt

sYℓm(θt, ϕt) , (5.1)

which is the data model at the core of the beam-convolution algorithm implemented in
beamconv. The scanning strategy can be specified by initializing the ScanStrategy class:

1 S = ScanStrategy(duration=None , sample_rate=None ,

2 external_pointing=False , ...)

where we show only some arguments, with their default values in blue. Depending on the
value of external pointings, the boresight pointings can be loaded or, in some cases,
calculated internally. Another important class of objects to specify are the beams, which
can be loaded as a set of spherical harmonics coefficients or, in some cases, calculated
internally. For example, a simple Gaussian beam located at boresight can be defined by

3 single_beam = Beam(btype='Gaussian ', fwhm=None , lmax=None)

Once a beam (or beams) is defined, we can associate a focal plane with the ScanStrategy
object by calling

4 S.add_to_focal_plane(single_beam , combine=True)

The information about the sky signal should instead be provided as an argument to the
scan instrument mpi function in the form of spherical harmonics coefficients:

5 S.scan_instrument_mpi(slm , ...)

After running scan instrument mpi, we can recover the observed TOD and binned maps.
Because of its ability to handle realistic optics, beamconv is a promising framework for

developing TOD simulations for the next-generation CMB experiments. In particular, it

1https://github.com/AdriJD/beamconv.

https://github.com/AdriJD/beamconv
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supports parallel computation through the Message Passing Interface (MPI) protocol2 and
relies on fast compiled code (libsharp, qpoint, and numpy) to perform critical operations,
making it suitable for simulating long missions with a large number of detectors.

HWP modulation Besides being able to handle complex beams, beamconv can deal
with HWP modulation in both the ideal and non-ideal cases. To model the HWP modu-
lation, we can generalize eq. (5.1) to

dt = ∑
sℓm

[bIℓs aIℓm +
1

2
(−2BPℓs 2a

P
ℓm + 2B

P

ℓs −2a
P
ℓm) + bVℓs aVℓm]

√
4π

2ℓ + 1
e−isψt

sYℓm(θt, ϕt) , (5.2)

where the effective polarized beams, +2BPℓs and −2BP
∗

ℓs , depend on whether the HWP is
ideal or not. For an ideal HWP,

+2BPℓs ≡ 2b
P

ℓse
4iϕ , (5.3)

where ϕ is the angle between HWP and telescope coordinates (equation 20 of [101]). In
the non-ideal case, instead

+2BPℓs =
√
2 (CIP bIℓs+2 + CV P bVℓs+2) e−2iϕ + CP ∗P −2bPℓs+4e−4iϕ + CPP 2b

P

ℓs , (5.4)

where the C matrix is a complex representation of the standard HWP Mueller matrix:

C ≡ TMhwpT † , (5.5)

where the dagger denotes the transpose conjugate, Mhwp is the HWP Mueller matrix in
its coordinate system, and T is given by

T =

⎛
⎜⎜⎜⎜
⎝

1 0 0 0
0 1√

2
i√
2

0

0 1√
2
− i√

2
0

0 0 0 1

⎞
⎟⎟⎟⎟
⎠

. (5.6)

The generalized data model of eq. (5.2) has been implemented in beamconv in 2020 [115].
The code needs information about the HWP Mueller matrix, which should be specified
after the beam is initialized, and about its rotation, which should be provided after the
beam is added to the focal plane. For example, to specify an ideal HWP that rotates
continuously completing two rotations per second, we can run

4 single_beam.hwp_mueller = np.diag([1, 1, -1, -1])

5 S.add_to_focal_plane(single_beam)

6 S.set_hwp_mod(mode='continuous ', freq =2)

7 S.scan_instrument_mpi(slm , ...)

In the following we only discuss the modifications we made to the code to tailor it to a
LiteBIRD-like mission. The modified code is available in a GitHub repo3, along with the
LiteBIRD-like.ipynb notebook which can reproduce all the plots shown in this chapter.

2Given multiple processors, the code distributes the boresight pointing computations and assigns a
subset of the detectors to each processor.

3https://github.com/martamonelli/beamconv_again/tree/LiteBIRD-like.

https://github.com/martamonelli/beamconv_again/tree/LiteBIRD-like
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Figure 5.2: Schematic representation of LiteBIRD’s set up. The antisun direction (in
gray) forms an angle α = 45○ with the spin axis which, in turn, forms an angle β = 50○

with the boresight. The spacecraft completes a precession every 192.348 minutes and a
rotation around the spin axis every 20 minutes [29].

5.3 LiteBIRD’s pointings

Although beamconv can read pointings in input, we preferred defining a new scanning.py

module that could compute them on the fly for a LiteBIRD-like experiment. We also
implemented the possibility of reading quaternion offsets in input, which makes it easier
to interface with LiteBIRD’s Instrument MOdule database (IMO).

5.3.1 Boresight pointings

LiteBIRD will observe the sky from L2, where it will remain in (Lissajous) orbit for the
whole duration of the mission. As sketched in Figure 5.2, the spacecraft precesses around
the anti-Sun direction, n̂as, while spinning around an axis that forms an angle α = 45○

with n̂as. LiteBIRD’s boresight is tilted by an angle β = 50○ with respect to the spin axis.
This choice of the precession and boresight angles ensures that the main beam scans the
entire sky without leaving any gaps, and without ever pointing at the Sun, the Earth or
the Moon.

We implemented a new module in beamconv to compute the boresight pointings on
the fly, given α, β and their respective angular frequencies (or periods). We used the
same algorithm as pyscan4: we first compute the anti-Sun direction at a given time, and
then apply some appropriate rotations to transform it into the boresight direction. In the
current version of beamconv (this has been merged in the parent GitHub repository), this
can be done on the fly by setting use l2 scan to True when calling scan instrument mpi:

7 S.scan_instrument_mpi(slm , use_l2_scan=True ,

8 ctime_kwargs=dict(), q_bore_kwargs=dict())

This returns a LiteBIRD-like scanning strategy as the one shown in Figure 5.3.

4https://github.com/tmatsumu/LB_SYSPL_v4.2.

https://github.com/tmatsumu/LB_SYSPL_v4.2
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0 1699

Figure 5.3: Hit map for a one detector 7-days LiteBIRD-like scanning strategy obtained
by setting ctime0 = 1510000000 and use l2 scan = True.

5.3.2 Detectors’ pointings

Knowing the boresight pointings is not the same as knowing the pointings of a given
detector: detectors that are offset (i.e. not located in the center of the telescope) point
in different directions than the boresight. In our version of beamconv, we introduced the
possibility of feeding the detectors offsets directly to the input focal plane function, in
the form of quaternions5.

In Figure 5.4, we show a similar hit map to Figure 5.3, but with four detectors, one at
boresight and the other three with non-zero offsets. By comparing the two figures, we can
clearly see the difference in the detector pointings.

5A quaternion q is composed of a scalar component q0 and a vector component q = (q1, q2, q3). Quater-
nions are generalized complex numbers in three dimensions, where the scalar component is real and the
vector components are orthogonal imaginary quantities: q = (q0,q) = q0 + q1i + q2j + q3k. The imaginary
axes, i, j and k, satisfy i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, and ki = −ik = j. A unitary
quaternion, q, provides a compact representation of a rotation around some arbitrary axis. To apply the
rotation associated to q to the vector v, we treat the vector as a purely imaginary quaternion, v = (0,v),
and calculate v′ = qvq−1. This is equivalent to multiplying v by the matrix

Mq =
⎛
⎜
⎝

q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

⎞
⎟
⎠
.
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Figure 5.4: Same as Figure 5.3, but with one boresight and three offset detectors.

5.4 Adding noise and dipole signal

Another functionality we have added to beamconv is the possibility to generate noise- and
dipole-only TODs on the fly and add them to the beam-convolved sky signal.

Noise term If the noise tod parameter is set to True when initializing the ScanStrategy
class, a noise-only component is added to the TOD, chunk by chunk6. To generate it, we
used the OofaNoise function from ducc07, that returns a realization of the noise TOD
given the frequency power spectrum parameters of eq. (3.7): sigma, f min, f knee and
slope= 2α. In Figure 5.5, we plot the noisy TOD (lighter teal), together with the noiseless
signal (darker teal). To check if the noise term is doing what it is supposed to do, we can
look at Figure 5.6, where we plot the frequency power spectrum P (f) of the simulated
noise together with its theoretical expectation. As expected, the agreement between the
two increases with the number of realizations.

Dipole term LiteBIRD’s reference frame is not at rest with respect to the CMB, but it
will have a non-zero velocity due to the motion of the spacecraft around L2, the motion
of the L2 point in the Ecliptic plane, the motion of the Solar System around the Galactic
Centre, and the motion of the Milky Way.

6By using the partition mission function of the ScanStrategy class, it is possible to divide up the
mission in equal-sized chunks. This can be helpful when simulating long missions.

7https://gitlab.mpcdf.mpg.de/mtr/ducc.

https://gitlab.mpcdf.mpg.de/mtr/ducc
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Figure 5.5: Simulated TOD with and with-
out noise (lighter and darker teal lines, re-
spectively) for 2000 observations.
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Figure 5.6: Frequency power spectrum of the
simulated noise (gray line) compared with
the theoretical expectation (red line).

If, at some time t the spacecraft is moving with a total velocity v(t) with respect to the
CMB rest frame, the radiation coming from n̂ = v̂(t) will be blueshifted, while the radiation
coming from n̂ = −v̂(t) will be redshifted due to the Doppler effect. As a consequence, the
CMB temperature monopole will translate into an observed dipole anisotropy. Because of
its apparent nature, the dipole signal is usually removed before any cosmological analysis
is performed. However, the fact that it is bright and well known, makes this signal the
most important photometric calibrator for balloon-borne and space-based missions.

In our version of beamconv, the dipole signal can be generated on the fly by setting
dipole tod = True when initializing the ScanStrategy class. What this does is to run a
slightly modified version of the dipolemodule of LiteBIRD-sim framework8, which returns
the dipole TOD, given the time and direction of observation. The velocity is computed
per chunk and a warning is issued whenever the chunk is too long (more than one day).
In Figure 5.7 we show the simulated TOD, with and without the dipole signal, for 20000
observations.

8https://github.com/litebird/litebird_sim.

https://github.com/litebird/litebird_sim
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Figure 5.7: Simulated TOD with and without the dipole component (darker and lighter
teal lines, respectively) for 20000 observations.
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Chapter 6

HWP impact on cosmic birefringence

Abstract: Polarization of the CMB can probe new parity-violating
physics such as cosmic birefringence (CB), which requires exquisite
control over instrumental systematics. The non-idealities of the
HWP represent a source of systematics when used as a polarization
modulator. We study their impact on the CMB angular power
spectra, which is partially degenerate with CB and miscalibration
of the polarization angle. We use full-sky beam convolution simula-
tions including HWP to generate mock noiseless time-ordered data,
process them through a bin averaging map-maker, and calculate
the power spectra including TB and EB correlations. We also
derive analytical formulae which accurately model the observed
spectra. For our choice of HWP parameters, the HWP-induced
miscalibration angle amounts to a few degrees, which could be
misinterpreted as CB. Accurate knowledge of the HWP is required
to mitigate this. Our simulation and analytical formulae will
be useful for deriving requirements for the accuracy of HWP
calibration.

This chapter is an adaptation of [78].

6.1 Introduction

Temperature anisotropies in the cosmic microwave background (CMB) are an invaluable
source of cosmological information [16, 19, 20]. Polarization anisotropies also contain a
great wealth of complementary information [15, 17, 21, 22, 25, 27, 28, 116, 117], which
has yet to be fully explored. A promising opportunity driving the development of a major
experimental effort, involving both ground-based observatories (Simons Observatory [44],
South Pole Observatory [45] and CMB Stage-4 [46]) and space missions (LiteBIRD [29] and
PICO [47]), is to probe cosmic inflation [11–13]. Inflationary models predict the existence
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of a stochastic background of gravitational waves [35, 36] which would leave a distinctive
B-mode signature on the CMB polarization [37–40].

The CMB polarization can also probe new parity-violating physics [49]. For example, in
the presence of a time-dependent parity-violating pseudoscalar field, the linear polarization
plane of CMB photons would rotate while they travel toward us [52–54]. Because of its
similarity with photon propagation through a birefringent material, this phenomenon is
referred to as cosmic birefringence (CB). The so-called CB angle, β, denotes the overall
rotation angle from last scattering to present times. Although the effect of β on the
observed CMB angular power spectra is degenerate with an instrumental miscalibration
of the polarization angle [55–58], the methodology proposed in [59–61], which relies on
the polarized Galactic foreground emission to determine miscalibration angles, allowed
to infer β = 0.35 ± 0.14○ at 68% C.L. [62] from nearly full-sky Planck polarization data
[63]. Subsequent works [64–66] reported more precise measurements for β. The statistical
significance of β is expected to improve with the next generation of CMB experiments,
given the high precision at which they aim to calibrate the absolute position angle of linear
polarization. This will make it unnecessary to rely on the Galactic foreground to calibrate
angles and measure β [49], hence avoiding the potential complications highlighted in [67].

The unprecedented sensitivity goals of future surveys, aiming to detect faint primordial
B modes, can only be achieved if systematics are kept under control. To this end, a promis-
ing strategy is to employ a rotating half-wave plate (HWP) as a polarization modulator. As
shown by the previous analyses [68–75], a rotating HWP can both mitigate the 1/f noise
component [68] and reduce a potential temperature-to-polarization (I → P ) leakage due to
the pair differencing of orthogonal detectors [76, 77]. Because of these advantages, HWPs
are used in the design of some next-generation experiments, including LiteBIRD [29]. How-
ever, non-idealities in realistic HWPs induce additional systematics which should be well
understood in order for future experiments to meet their sensitivity requirements. This
necessity motivated a number of recent works, from descriptions of HWP non-idealities
[70, 113, 118, 119] and their impact on measured angular power spectra [120] to mitigation
strategies [121–124].

In this chapter we study how HWP non-idealities can affect the estimated CMB angular
power spectra if overlooked in the map-making step. We employ a modified version of the
publicly available beam convolution code beamconv1 [101, 115] and simulate two sets of
noiseless time-ordered data (TOD). The two simulations make different assumptions on the
HWP behavior. In the first case the HWP is assumed to be ideal, while non-idealities are
included in the second case. We then process the two TOD sets with a map-maker assuming
the ideal HWP and compare the output power spectra. We also derive a set of analytic
expressions for the estimated angular power spectra as functions of the input spectra and
the elements of the HWP Mueller matrix. These formulae accurately model the output
power spectra. Finally, we show that neglecting the non-idealities in the map-maker affects
the observed spectra in a way that is partially degenerate with the CB and instrumental
miscalibration of the polarization angle. This effect is evident in the simulations and the

1https://github.com/AdriJD/beamconv

https://github.com/AdriJD/beamconv
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analytical formulae.

The rest of this chapter is organized as follows. In section 6.2 we present a simple data
model for the signal measured by a single detector; generalize it to a larger focal plane and
a longer observation time; and introduce the bin averaging map-making method we employ
to convert the TOD to maps. In section 6.3 we discuss the instrument specifics we have
implemented in the simulation and show the output angular power spectra. The interpre-
tation of the result is the topic of section 6.4, where we derive some analytical formulae
modeling it with good precision. In section 6.5 we show how the effect of the HWP non-
idealities is partially degenerate with an instrumental miscalibration of the polarization
angle, and can therefore be misinterpreted as CB. We quantify the HWP-induced miscal-
ibration angle, which amounts to a few degrees for our choice of the HWP parameters.
Conclusions and outlook are presented in section 6.6.

6.2 Data model and map-maker

Data model for a single detector Polarized radiation can be described by the Stokes I,
Q, U and V parameters or, more compactly, by a Stokes vector, S ≡ (I,Q,U,V ). Here, we
use the “CMB convention” for the sign of Stokes U [125] and define the Stokes parameters
in right-handed coordinates with the z axis taken in the direction of the observer’s line of
sight (telescope boresight). The Stokes vector is transformed as S→ S′ =RφS by rotating
the coordinates by an angle φ, where

Rφ=
⎛
⎜⎜⎜
⎝

1 0 0 0
0 cos 2φ sin 2φ 0
0 − sin 2φ cos 2φ 0
0 0 0 1

⎞
⎟⎟⎟
⎠
. (6.1)

Defining the position angle of the plane of linear polarization, θ, by Q ± iU = Pe±2iθ with
P =
√
Q2 +U2 and 2θ = arctan(U/Q), the rotation of coordinates shifts the position angle

as θ → θ′ = θ − φ.
The action of any polarization-altering device on S can be encoded in a Mueller matrix

M, so that the outgoing Stokes vector reads S′ = MS [107]. In our case of interest, S
represents the incoming CMB radiation and M the Mueller matrix of a telescope that
employs a rotating HWP as a polarization modulator, i.e.

S′ =MdetRξ−ϕMhwpRϕ+ψS , (6.2)

where Rφ is given in eq. (6.1). The meaning of each angle appearing in eq. (6.2) is clarified
in Figure 6.1. For example, Rϕ+ψ rotates the sky coordinates by an angle ψ to the telescope
coordinates (the left panel) and further rotates by ϕ to the HWP coordinates (the middle
panel). Here, Mdet and Mhwp are the Mueller matrices of a detector along xdet and of a
general HWP:
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Figure 6.1: The S vector is defined in sky coordinates, forming an angle ψ with the
telescope ones (left panel). The HWP optical axis and the detector’s sensitive direction
are rotated with respect to the telescope coordinates by angles ϕ and ξ, respectively
(center and right panels). The angles are defined in right-handed coordinates with the z
axis taken in the direction of the telescope boresight.

Mdet=
1

2

⎛
⎜⎜⎜
⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
, Mhwp=

⎛
⎜⎜⎜
⎝

mii miq miu miv

mqi mqq mqu mqv

mui muq muu muv

mvi mvq mvu mvv

⎞
⎟⎟⎟
⎠
. (6.3)

We can then model the signal d measured by one detector as

d = aTMdetRξ−ϕMhwpRϕ+ψS + n , with aT = (1 0 0 0) , (6.4)

where n represents an additional noise term.

Modeling the TOD In a realistic CMB experiment, ndet detectors collect data by
scanning the sky for an extended period of time, resulting in nobs observations for each
detector. All together, these ndet × nobs measurements constitute the TOD. We represent
the TOD as a vector d given by

d = Am + n , (6.5)

where m denotes the {I,Q,U,V } pixelized sky maps, A the response matrix, and n the
noise component. Eq. (6.5) generalizes eq. (6.4) to larger nobs and ndet.

Bin averaging map-maker To extract physical information from the TOD, we con-
vert them to the map domain via some map-making procedure. A simple method often
employed in the CMB analysis is the bin averaging [102], that estimates the sky map as

m̂ = (ÂT Â)−1 ÂTd , (6.6)

where Â is the response matrix assumed by the map-maker. As long as the beam is
axisymmetric and purely co-polarized, and the correlated component of the noise, such as
1/f , is negligible, the bin averaging can, in principle, recover the input {I,Q,U,V } maps.
Whether the reconstructed maps actually reproduce the sky signal or not depends on how
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Scanning strategy parameters

Precession angle 45○

Boresight angle 50○

Precession period 192.348 min
Spin rate 0.05 rpm
B

Instrument properties

Number of detectors 160
MFT frequency channel 140 GHz
Sampling frequency 19 Hz
HWP rotation rate 39 rpm
Beam FWHM 30.8 arcmin

Table 6.1: Simulation parameters used in this work. All values are taken from [29], except
for the number of detectors and the central frequency, which we choose arbitrarily.

well the instrument specifics are encoded in the map-maker or, in other words, how close
Â is to A. When Â = A and n is uncorrelated in time, m̂ is the optimal (unbiased and
minimum-variance) estimator of m.

6.3 Simulation setup and output

We generate statistically isotropic random Gaussian {I,Q,U} CMB maps with HEALPix2

[126] resolution of nside = 512 (high enough to avoid aliasing effects) by feeding the best-fit
2018 Planck power spectra [19] to the synfast function of healpy3 (the Python imple-
mentation of HEALPix). We choose to neglect V here4.

The observation of the input maps is simulated by a modified version of the publicly
available library beamconv. This choice is motivated by beamconv’s ability to simulate
TOD with realistic HWPs, scanning strategies and beams, which makes it a promising
framework to develop simulations for, among others, LiteBIRD-like experiments. The
changes we have implemented to the library all aim to better tailor the simulations to
LiteBIRD-like specifics. In particular:

Scanning strategy We implement a LiteBIRD-like scanning strategy by mimicking the
relevant functionalities of pyScan5. The values of the telescope boresight and preces-
sion angles, together with their rotation parameters, are specified in Table 6.1. We
simulate one year of observations to cover the full sky (see Figure 6.2).

Instrument We work with 160 detectors from the 140 GHz channel of LiteBIRD’s Medium
Frequency Telescope (MFT) and read the relevant parameters from [29]: the HWP
rotation rate, the full-width-at-half-maximum (FWHM) of the (Gaussian and co-
polarized) beam, the instrument sampling frequency and the detectors’ pointing off-
sets. See Table 6.1 for their numerical values.

2http://healpix.sf.net
3https://github.com/healpy/healpy
4In the standard cosmological model, no circular polarization can be produced at last scattering. A

number of models that could source V have been proposed (see for instance [127–135]), but none of them
predicts a strong signal, making V ≡ 0 a good first approximation.

5https://github.com/tmatsumu/LB_SYSPL_v4.2

 http://healpix.sf.net
https://github.com/healpy/healpy
https://github.com/tmatsumu/LB_SYSPL_v4.2
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1 700

yone-month simulationy

1 2000

one-year simulation

Figure 6.2: Simulated boresight hit maps for one-month (left) and one-year (right) obser-
vations. The two panels share the same logarithmic color map, although the range shown
is truncated for the one-month case. Unobserved pixels appear gray.

HWP Mueller matrix The Mueller matrix elements for the MFT’s HWP at 140 GHz
are taken from [120], up to a coordinate change from International Astronomical
Union (IAU) to CMB standards that flips the sign of the miu, mqu, mui and muq

elements (see Section C.1):

Mhwp =
⎛
⎜
⎝

9.80 × 10−1 1.81 × 10−2 −9.81 × 10−3
1.81 × 10−2 9.71 × 10−1 −1.21 × 10−1
−9.81 × 10−3 −1.21 × 10−1 −8.40 × 10−1

⎞
⎟
⎠
. (6.7)

This is the HWP Mueller matrix we assume when including non-idealities6. Since
the elements ofMhwp are frequency-dependent, choosing a different frequency would
result in slightly different output spectra.

We run two simulations for one-year observations. Noise is not included in either simulation
to isolate the effect of HWP non-idealities in the signal; thus, using a different ndet is almost
free from consequences and our results do not change using fewer detectors. In the first
simulation we assume the ideal HWP by setting Mhwp =Mideal ≡ diag(1,1,−1), while we
account for non-idealities in the second one. We convert both TODs to {I,Q,U} maps by
the bin averaging map-maker (see eq. (6.6)) whose response matrix Â assumes the ideal
HWP described by Mideal. We then calculate two sets of full-sky angular power spectra
using the anafast function of healpy. We denote the first (second) set of output spectra
with CXY

ℓ,ideal (C
XY
ℓ,hwp), where X,Y = {T,E,B}. The rescaled DXY

ℓ,ideal ≡ ℓ(ℓ + 1)CXY
ℓ,ideal/2π

and DXY
ℓ,hwp spectra are plotted in Figure 6.3, together with the input spectra multiplied

by the Gaussian beam transfer functions, DXY
ℓ,in . The simple map-maker recovers the input

spectra with average deviations less than 0.1% in the plotted range when processing the
TOD generated withMideal, while important discrepancies arise for the non-ideal case.

6Doing so, we neglect the dependence of the HWP properties on the angle of incidence. The conse-
quences of such approximation have not been tested yet.



6.3 Simulation setup and output 57

0

1000

2000

3000

D
T
T

`
[µ

K
2

]

input

ideal

input avg

ideal avg

hwp

−40

−20

0

20

40

D
T
E

`
[µ

K
2

]

0

1

2

3

D
E
E

`
[µ

K
2

]

0.0

0.1

0.2

0.3

D
E
B

`
[µ

K
2

]

0 200 400 600 800

`

0.00

0.02

0.04

0.06

D
B
B

`
[µ

K
2

]

0 200 400 600 800

`

−5.0

−2.5

0.0

2.5

5.0

D
T
B

`
[µ

K
2

]

Figure 6.3: Comparison of the input angular power spectra DXY
ℓ,in (light gray) with the

ones computed from the outputs of the TOD simulations with ideal (DXY
ℓ,ideal, in dark gray)

and non-ideal HWP (DXY
ℓ,hwp, in orange). The inputs are hard to see, since they almost

perfectly overlap with the DXY
ℓ,ideal, while the D

XY
ℓ,hwp show clear deviations from the inputs.

For clarity, we also show the simple moving average over 7 multipoles of DXY
ℓ,in (lighter teal)

and DXY
ℓ,ideal (darker teal, dashed): D

XY
ℓ,avg ≡

1
7 ∑

ℓ+3
ℓ′=ℓ−3D

XY
ℓ′ . The beam transfer function is

not deconvolved.

We do not account for photometric calibration, although it represents a crucial step
in any CMB analysis pipeline. Gain calibration, if perfect, would ensure intensity to be
recovered exactly, hence compensating the lack of power in DTT

ℓ visible in Figure 6.3.
The discrepancies in DTE

ℓ and DTB
ℓ would also be reduced, although not removed. The

discussion and results presented in the following would however not change, reason why
we omit the step.
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6.4 Analytical estimate of the output spectra

To understand the simulation results, we derive approximate analytical formulae for the
angular power spectra affected by HWP non-idealities. Since we are neglecting any circu-
larly polarized component, the Stokes vector is given by S = (I,Q,U). To obtain analytical
formulae we apply the bin averaging map-maker of eq. (6.6) to a minimal TOD consisting
of the signals measured by four detectors with different polarization sensitivity directions7

(with 0○, 90○, 45○ and 135○ offsets) observing the same sky pixel. By expressing the sig-
nals observed by each of the four detectors as functions of the input Stokes parameters
according to eq. (6.4), we obtain (see Section C.2 for the derivation)

Î =miiIin + (miqQin +miuUin) cos(2α) + (miqUin −miuQin) sin(2α) , (6.8a)

Q̂ = 1

2
{(mqq −muu)Qin + (mqu +muq)Uin + 2mqiIin cos(2α) + 2muiIin sin(2α)

+ [(mqq +muu)Qin + (mqu −muq)Uin] cos(4α)

+ [−(mqu −muq)Qin + (mqq +muu)Uin] sin(4α)} , (6.8b)

Û = 1

2
{(mqq −muu)Uin − (mqu +muq)Qin − 2muiIin cos(2α) + 2mqiIin sin(2α)

+ [−(mqq +muu)Uin + (mqu −muq)Qin] cos(4α)

+ [(mqu −muq)Uin + (mqq +muu)Qin] sin(4α)} , (6.8c)

where mss′ (s, s′ = i,q,u) are the elements of non-idealMhwp and α denotes the sum of the
HWP’s (ϕ) and the telescope’s (ψ) angles8: α ≡ ϕ + ψ. The quantities with the subscript
“in” on the right hand side denote the sky signals, whereas Ŝ = (Î , Q̂, Û) on the left hand
side are maps recovered by the map-maker. These formulae are applicable to our case as
long as eq. (6.4) accurately models the TOD simulated by beamconv, which is the case for
an axisymmetric and purely co-polarized beam.

Eqs. (6.8) model Ŝp reconstructed from four observations of the pixel p, one for each
detector. If each of those 4 detectors were to observe that same pixel np times, the change
in eqs. (6.8) would amount to substituting

cos(nα)→ 1

np

tnp

∑
t=t1

cos(nαt) , sin(nα)→ 1

np

tnp

∑
t=t1

sin(nαt) , (6.9)

for n = {2,4}. If p is observed with a uniform enough sample of αt values and np is large

7This is the minimal configuration that can reconstruct linearly polarized radiation.
8For the simple 4-detector configuration we are considering, the response matrix can be expressed as

A = BRξ−ϕMhwpRϕ+ψ, where B accounts for the different ξ angles of the four detectors and happens

to satisfy BTB = diag(1,1/2,1/2). As for the map-maker response matrix, Â = BRξ−ϕMidealRϕ+ψ. All

BRξ−ϕ terms cancel out in eq. (6.6) and we are left with Ŝ =RTϕ+ψMidealMhwpRϕ+ψSin. The discrepancies

between Ŝ and Sin can therefore only depend on ϕ + ψ.



6.5 Impact on cosmic birefringence 59

enough, these terms can be neglected, resulting in

Ŝ ≃
⎛
⎜
⎝

miiIin
[(mqq −muu)Qin + (mqu +muq)Uin]/2
[(mqq −muu)Uin − (mqu +muq)Qin]/2

⎞
⎟
⎠
. (6.10)

We expect this to be a good approximation, given the presence of a rapidly spinning
HWP and the good coverage of the simulation (see Figure 6.2). Note that eq. (6.10) can
be derived even without assuming the four-detector configuration discussed here (see the
alternative derivation in Section C.3).

By expanding eq. (6.10) in spherical harmonics, we write the corresponding angular
power spectra as a mixing of the input ones weighted by combinations of the non-ideal
HWP’s Mueller matrix elements:

ĈTT
ℓ ≃m2

iiC
TT
ℓ,in, (6.11a)

ĈEE
ℓ ≃

(mqq −muu)2
4

CEE
ℓ,in +

(mqu +muq)2
4

CBB
ℓ,in +

(mqq −muu)(mqu +muq)
2

CEB
ℓ,in , (6.11b)

ĈBB
ℓ ≃

(mqq −muu)2
4

CBB
ℓ,in +

(mqu +muq)2
4

CEE
ℓ,in −

(mqq −muu)(mqu +muq)
2

CEB
ℓ,in , (6.11c)

ĈTE
ℓ ≃

mii(mqq −muu)
2

CTE
ℓ,in +

mii(mqu +muq)
2

CTB
ℓ,in , (6.11d)

ĈEB
ℓ ≃

(mqq−muu)2−(mqu+muq)2
4

CEB
ℓ,in −

(mqq−muu)(mqu+muq)
4

(CEE
ℓ,in −CBB

ℓ,in ), (6.11e)

ĈTB
ℓ ≃

mii(mqq −muu)
2

CTB
ℓ,in −

mii(mqu +muq)
2

CTE
ℓ,in . (6.11f)

These analytical formulae explain quite well the non-ideal output spectra CXY
ℓ,hwp (see Figure

6.4). They are especially accurate on large scales, ℓ ≲ 500, where average deviations
between CXY

ℓ,hwp and Ĉℓ are less than 0.1%. Larger deviations on smaller scales are due to
the approximate nature of eq. (6.10). Cosine and sine terms do not average out exactly,
resulting in pixel-by-pixel fluctuations on smaller scales.

6.5 Impact on cosmic birefringence

Next generation CMB experiments are expected to measure the CMB polarization with
unprecedented sensitivity and improve the constraints on the CB angle, β, recently ob-
tained from the Planck data [62, 64–66]. Here we discuss how HWP non-idealities can
impact such constraints in the particular case of a LiteBIRD-like mission discussed so far.

First, we recall that the sign of β reported in the literature is also chosen to follow
the CMB convention and a positive β corresponds to a clockwise rotation on the sky [49].
The isotropic CB angle, β, and a miscalibration of the instrument polarization angle, ∆α,
affect the observed spectra identically, since both rotate the observed Stokes parameters
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Figure 6.4: Comparison of the spectra computed from the output of the TOD simulation
with non-ideal HWP, DXY

ℓ,hwp (dark orange), with the D̂XY
ℓ from the analytical formulae

given in eqs. (6.11) (light orange). The non-ideal outputs are hard to see, since they
almost perfectly overlap with the analytical curves. For clarity, we also show the simple
moving average over 7 multipoles of DXY

ℓ,hwp (dark red) and D̂XY
ℓ (light red, dashed):

DXY
ℓ,avg ≡

1
7 ∑

ℓ+3
ℓ′=ℓ−3D

XY
ℓ′ . The beam transfer function is not deconvolved.

in the same way. The observed spectra then satisfy the equations [81, 136]

CEB
ℓ,obs =

tan(4θ)
2

(CEE
ℓ,obs −CBB

ℓ,obs) , CTB
ℓ,obs = tan(2θ)CTE

ℓ,obs , (6.12)

where θ represents rotation in the position angle of the plane of linear polarization including
β, ∆α, or their sum. Not accounting for the HWP non-idealities in the map-maker step is
degenerate with θ, as it is evident from both our simulations and the analytical formulae
given in eq. (6.11). We will refer to this additional rotation of the polarization plane as
the HWP-induced miscalibration.
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Figure 6.5: Comparison ofDEB
ℓ,hwp andD

TB
ℓ,hwp computed from the outputs of the TOD simu-

lation with non-ideal HWP (dark orange) with the best-fit estimates of tan(4θEB)(DEE
ℓ,hwp−

DBB
ℓ,hwp)/2 and tan(2θTB)DTE

ℓ,hwp, respectively.

HWP-induced miscalibration from the simulated output spectra We separately
fit the simulated CEB

ℓ,hwp and CTB
ℓ,hwp for the angles θEB and θTB, respectively, using the

least-squares method with variance given by (see Section C.4 for the derivation)

Var(CXY
ℓ,hwp) =

1

2ℓ + 1
[CXX

ℓ,hwpC
Y Y
ℓ,hwp + (CXY

ℓ,hwp)
2] , (6.13)

for XY = {EB,TB}, respectively. The best-fit values, θEB = 3.800○ ± 0.007○ and θTB =
3.79○ ± 0.02○, are compatible with each other in agreement with eqs. (6.12). The observed
and best-fit spectra are plotted in Figure 6.5 and are in good agreement.

HWP-induced miscalibration from the analytical formulae Using the fact that
both CEB

ℓin
and CTB

ℓin
simply fluctuate around zero, eqs. (6.11) can be rearranged to express

ĈEB
ℓ and ĈTB

ℓ similarly to the CXY
ℓ,obs of eqs. (6.12):

ĈEB
ℓ ≃ tan(4θ̂)

2
(ĈEE

ℓ − ĈBB
ℓ ) , ĈTB

ℓ ≃ tan(2θ̂)ĈTE
ℓ , (6.14)

where

θ̂ = −1
2
arctan(mqu +muq

mqq −muu

) ≃ 3.8○ , (6.15)

in agreement with the best-fit values reported above.

If we were to relax all the underlying assumptions at once, we could not write θ̂ this
compactly. However, controlled generalizations do not necessarily spoil the simplicity of
the analytical formulae. For instance, accounting for the frequency dependence of both the
HWP Mueller matrix elements and the CMB signal, θ̂ can be expressed as (see appendix
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C.5 for the derivation):

θ̂ = −1
2
arctan(∫

dν SCMB(ν) [mqu +muq] (ν)
∫ dν SCMB(ν) [mqq −muu] (ν)

) , (6.16)

where SCMB(ν) denotes the CMB spectral energy distribution (SED).
Another assumption that can be relaxed without spoiling the simplicity of the analytical

formulae is the absence of miscalibration angles in the map-maker. When the telescope,
HWP, and detector angles are not exactly known, ψ = ψ̂ + δψ, ϕ = ϕ̂ + δϕ, and ξ = ξ̂ + δξ,
where the hat denotes the values assumed by the map-maker. As long as we neglect the
frequency dependence of δψ, δϕ and δξ, we find (see appendix C.6 for the derivation)

θ̂ = −1
2
arctan(∫

dν SCMB(ν) [mqu +muq] (ν)
∫ dν SCMB(ν) [mqq −muu] (ν)

) + δξ − δψ − 2δϕ . (6.17)

The sign difference between the contributions from δξ and δψ + 2δϕ is due to the presence
of the HWP. Ideally, the HWP acts on a polarization vector by reflecting it over its fast
axis. This causes counterclockwise rotations applied before the HWP to look clockwise
after, meaning that δϕ + δψ should be subtracted from δξ − δϕ (see eq. (6.2)).

6.6 Conclusions and outlook

In this work, we studied how overlooking HWP non-idealities during map-making can affect
the reconstructed angular power spectra of CMB temperature and polarization fields. We
focused on the impact of non-idealities on the measurement of the CB angle, β.

As a concrete working case, we considered a single frequency channel (140 GHz) of a
space CMB mission with LiteBIRD-like specifics: scanning strategy, sampling frequency,
detectors’ pointing offsets and their polarization sensitivity directions, FWHM of the Gaus-
sian beam and HWP specifics (rotation frequency and Mueller matrix elements). We em-
ployed the publicly available beam-convolution code beamconv to simulate the noiseless
TOD for the above instrument and scanning specifications. We ran two different simu-
lations: the HWP has been assumed to be ideal in the first simulation, while a realistic
Mueller matrix has been employed in the second. We then converted both TODs to maps
by a bin averaging map-maker that neglects the HWP non-idealities. As expected, the
output spectra computed from the ideal simulation faithfully recovered the input spectra,
while the spectra of the non-ideal maps showed a very different behavior (Figure 6.3). We
also derived a set of analytical formulae (see eq. (6.11)) that accurately model the recon-
structed angular power spectra as functions of the input spectra and the HWP Mueller
matrix elements.

We studied the impact of the HWP non-idealities on β. We found that neglecting
them in the map-making step induces an additional miscalibration of the polarization
angle which might be erroneously interpreted as CB. For the concrete case we studied, the
miscalibration angle induced by the HWP non-idealities amounts to θ ≃ 3.8○. This value,
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obtained by fitting the output angular power spectra from the simulation, is compatible
with the prediction from the analytical formulae (see eq. (6.15)).

Definitive confirmation of the current hint of CB [62, 64–66] requires the systematic
uncertainty in the absolute position angle of linear polarization to be well below 0.1○

[49]. We must therefore acquire accurate knowledge of the Mueller matrix elements via
calibration, so that the systematic uncertainty in θ due to HWP non-idealities is well below
0.1○. With such knowledge, one can take into account HWP non-idealities either during
the map-making step or when interpreting the angular power spectra. As one cannot know
the Mueller matrix elements perfectly, any remaining mismatch between the true Mueller
matrix and the matrix assumed by the map-maker still affects the power spectra. Our
simulation and analytical formulae will be useful for deriving the required accuracy of
HWP calibration to meet specific science goals.

The situation we considered in this analysis is still simplistic: we simulated a single
frequency channel in the absence of noise, and we used a Gaussian beam and a simple bin
averaging map-maker. However, a similar analysis can be carried out for more complex
cases. It is of utmost importance to make better predictions about how HWP non-idealities
realistically affect the data collected by CMB experiments and, therefore, the cosmological
information extracted from them. In this direction, we plan to carry on the following steps:
i) drop the single frequency approximation, generalizing the results discussed here to a finite
frequency bandwidth; ii) add a noise component to the TOD; iii) study the combined effect
of beam asymmetries and HWP non-idealities; iv) include non-idealities in the map-maker
and study how the uncertainties in our knowledge of non-idealities might propagate to
the observed angular power spectra; and v) derive requirements for the accuracy of HWP
calibration. We leave these topics for future work.
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Chapter 7

HWP impact on B-mode polarization

Abstract: Polarization of the cosmic microwave background
(CMB) can help probe the fundamental physics behind cosmic
inflation via the measurement of primordial B modes. As this
requires exquisite control over instrumental systematics, some
next-generation CMB experiments plan to use a rotating half-
wave plate (HWP) as polarization modulator. However, the
HWP non-idealities, if not properly treated in the analysis, can
result in additional systematics. In this chapter, we present a
simple, semi-analytical end-to-end model to propagate the HWP
non-idealities through the macro-steps that make up any CMB
experiment (observation of multi-frequency maps, foreground
cleaning, and power spectra estimation) and compute the HWP-
induced bias on the estimated tensor-to-scalar ratio, r. We find
that the effective polarization efficiency of the HWP suppresses the
polarization signal, leading to an underestimation of r. Laboratory
measurements of the properties of the HWP can be used to
calibrate this effect, but we show how gain calibration of the CMB
temperature can also be used to partially mitigate it. On the
basis of our findings, we present a set of recommendations for the
HWP design that can help maximize the benefits of gain calibration.

This chapter is an adaptation of [79].
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7.1 Introduction

Observations of temperature anisotropies in the cosmic microwave background (CMB)
have been crucial in shaping our current understanding of cosmology [16, 19, 20]. Valuable
complementary information is encoded in polarization anisotropies, which have only been
partially explored [15, 17, 21, 22, 25, 27, 28, 116, 117]. The main goal of the next generation
of CMB experiments, involving both ground-based (Simons Observatory [44], South Pole
Observatory [45] and CMB Stage-4 [46]) and spaceborne (LiteBIRD [29] and PICO [47])
missions, is to probe the fundamental physics behind cosmic inflation [11–13] by measuring
primordial B-mode polarization [48, 49].

Inflation sources initial conditions for cosmological perturbations via primordial vac-
uum quantum fluctuations [30–33]. The relative amplitude of the resulting scalar and
tensor perturbations is quantified in terms of the tensor-to-scalar ratio, r. Since tensor
perturbations [35, 36] would leave a distinct B-mode signature on the CMB polarization
[37–40], r can be inferred from the angular power spectrum of the primordial B modes. To
date, CMB observations have only placed upper bounds on r, the tightest being r < 0.032
(95% CL) [41] (see also [28, 42, 43]). Future surveys aim for unprecedentedly low overall
uncertainties, which, depending on the true value of r, would lead to a detection or a
tightening of the upper bounds, both of which would allow us to place strong constraints
on inflationary models.

Such an ambitious goal can only be achieved through an exquisite control over sys-
tematics. To this end, some next-generation CMB experiments, including LiteBIRD, are
planning to employ a rapidly spinning half-wave plate (HWP) as a polarization modulator,
which can mitigate 1/f noise and reduce temperature-to-polarization leakage [68–77]. How-
ever, any realistic HWP is characterized by non-idealities [113, 118, 119] that can induce
additional systematics if not properly accounted for in the analysis [78, 120–124, 137].

In this chapter, we present a simple framework to propagate the HWP non-idealities
through the three macro-steps that characterize any CMB experiment: observation of
multi-frequency maps, foreground cleaning, and power spectra estimation. We exploit
the simplicity of the harmonic internal linear combination (HILC) foreground cleaning
method [138] to keep the treatment semi-analytical. This choice, along with our working
assumptions, makes the analysis computationally inexpensive1 and reflects our intention
to develop an intuitive understanding of how the HWP affects the observed CMB.

The remainder of this chapter is organized as follows. In section 7.2 we generalize the
arguments presented in [78] and provide a simple model for multi-frequency maps observed
through a rapidly spinning HWP. We then introduce the HILC foreground cleaning method
and present the procedure we will use to infer r. In section 7.3, we discuss the specific
choices we make to model sky, noise, and beams, and present the results of the analysis in
two cases. First, we assume that the HWP is ideal and verify that the pipeline recovers
the input CMB signal. Second, we consider LiteBIRD-like instrument specifics and assume
realistic HWPs. We find that, for our choice of HWPs and rtrue = 0.00461 in input, the HWP

1The analysis presented here takes less than three minutes to run on a 32 GB RAM laptop computer.
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non-idealities introduce an effective polarization efficiency that suppresses the polarization
signal, resulting in r̂ = 0.0043± 0.0005. We also show how including gain calibration of the
CMB temperature in the map model can partially mitigate this effect. In section 7.4, we
derive a set of design recommendations that can help maximize the benefits of the gain
calibration step. We also review the simplifying assumptions underlying the model and
briefly discuss how they might be relaxed. Conclusions and perspectives are presented in
section 7.5.

7.2 Mathematical framework

In this section we present a simple model for multi-frequency maps observed through a
rapidly spinning HWP. We also introduce the HILC foreground cleaning method and derive
an explicit expression for the B-mode angular power spectrum of its solution, CBB

ℓ,hilc, given
the modeled multi-frequency maps. Finally, we present the methodology we use to estimate
the tensor-to-scalar ratio parameter, r, from CBB

ℓ,hilc.

7.2.1 Modeling the observed maps

We describe linearly polarized radiation2 by the Stokes I, Q and U parameters defined in
right-handed coordinates with the z axis taken in the direction of the observer’s line of sight
(telescope boresight), according to the “CMB convention” [125]. Given an incoming Stokes
vector S ≡ (I,Q,U), the effect of a polarization-altering device on S can be described by
a Mueller matrixM, so that S′ =MS [107]. Assuming azimuthally symmetric and purely
co-polarized beams, we can approximate the entire telescope’s optical chain by means of a
Mueller matrix acting on appropriately smoothed input Stokes parameters.

This setup allows us to write the telescope response matrix3, A, analytically, and to
obtain simple expressions for both time-ordered data (TOD), d, and binned maps, m̂ [102]:

d = Am + n , m̂ = (ÂT Â)−1 ÂTd , (7.1)

where m denotes the pixelized {I,Q,U} sky maps smoothed to the resolution of the in-
strument, n the noise contribution to the TOD, and Â the response matrix assumed by
the map-maker.

If the telescope’s first optical element is a rapidly rotating HWP with Mueller matrix

Mhwp =
⎛
⎜
⎝

mii miq miu

mqi mqq mqu

mui muq muu

⎞
⎟
⎠
, (7.2)

2The standard cosmological model predicts that no circular polarization is produced at the surface of
last scattering. Even beyond standard cosmology, none of the models that have been proposed to source
circular polarization (see, for instance, [127–135]) allows for a significant signal. We therefore consider
only linear polarization.

3The response matrix, A, relates the sky maps to the time-ordered data, i.e. the collection of signals
observed by all the instrument’s detectors. A encodes information about the telescope’s pointings and the
instrument specifics, such as the HWP Mueller matrix and the detectors’ orientations.
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the maps reconstructed from the TOD of the i channel’s detectors by an ideal binning
map-maker that assumes M̂hwp = diag(1,1,−1) read4

m̂i≃∑
λ
∫

νimax

νimin

dν

∆νi

⎛
⎜
⎝

mii(ν) 0 0
0 [mqq(ν) −muu(ν)]/2 [mqu(ν) +muq(ν)]/2
0 −[mqu(ν) +muq(ν)]/2 [mqq(ν) −muu(ν)]/2

⎞
⎟
⎠
m i

λ(ν) + ni,

(7.3)
where the sum over λ spans different sky components (CMB, dust, and synchrotron emis-
sion), the integral represents a top-hat bandpass with a bandwidth of ∆νi ≡ νimin − νimax,
the superscript i in m i

λ stresses that the input map is smoothed with the beam of the
frequency channel i, and ni denotes the noise maps.

Eq. (7.3) approximates the observed maps well when the cross-linking is good, that is,
when each sky pixel is observed with a variety of scan angles. This condition is ensured
by the rapid HWP rotation and the good LiteBIRD sky coverage, which guarantee that
the scan angles are sampled uniformly enough for each pixel [78]. As a consequence, our
model neglects intensity-to-polarization leakage, the effects of which have been shown to
be correctable [137].

If we also make the simplifying assumption that the spectral energy distribution (SED)
of each component is uniform throughout the sky, we can rewrite each sky map as mλ(ν) ≡
aλ(ν)mλ(ν∗), where ν∗ is some reference frequency. This is equivalent to using the s0d0
option in the Python Sky Model (PySM) package [139], which has often been used in the
literature for the study of systematics (e.g., [58, 140]). The reason for this assumption is
twofold. First, it is often useful to separate the effects of systematics from the complexity
of the foreground emission. Second, as shown in [58], the study of systematics is strongly
influenced by the specific class of component separation methods, that is, whether it is a
blind method, such as HILC [138], or a parametric method, such as FGbuster [141]. Here,
we use HILC and leave the study based on a parametric method for future work.

The factorization, mλ(ν) = aλ(ν)mλ(ν∗), allows us to rewrite eq. (7.3) as

m̂i ≃∑
λ

⎛
⎜
⎝

giλ 0 0
0 ρiλ ηiλ
0 −ηiλ ρiλ

⎞
⎟
⎠
m i

λ + ni , (7.4)

where we have dropped the ν∗ dependence for the sake of simplicity and defined

giλ ≡ ∫
νimax

νimin

dν

∆νi
aλ(ν)mii(ν) , (7.5a)

ρiλ ≡
1

2 ∫
νimax

νimin

dν

∆νi
aλ(ν) [mqq(ν) −muu(ν)] , (7.5b)

ηiλ ≡
1

2 ∫
νimax

νimin

dν

∆νi
aλ(ν) [mqu(ν) +muq(ν)] . (7.5c)

4Eq. (7.3) follows from eq. (4.3) of [78] [i.e. eq. (6.10)] by relaxing the single frequency, CMB only, and
no-noise assumptions.
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The coefficients in these equations have a clear physical interpretation: giλ is an effective
gain for the temperature data, ρiλ and ηiλ are effective polarization gain (or polarization
efficiency) and cross-polarization coupling, respectively, caused by the non-idealities of the
HWP.

Including photometric calibration Photometric calibration is a crucial step in any
CMB analysis pipeline that allows us to map the instrumental output to the incoming
physical signal [142]. Here, we assume that the CMB temperature dipole [143, 144] is used
as a calibrator, as is commonly done in CMB experiments, and we neglect any imperfections
in calibration. In other words, we assume to know g̃i = giCMB exactly after calibration. The
photometrically calibrated counterpart of eq. (7.4) reads

m̂i ≃ 1

giCMB

⎡⎢⎢⎢⎢⎢⎣
∑
λ

⎛
⎜
⎝

giλ 0 0
0 ρiλ ηiλ
0 −ηiλ ρiλ

⎞
⎟
⎠
m i

λ + ni
⎤⎥⎥⎥⎥⎥⎦
. (7.6)

Spherical harmonics coefficients To apply the HILC method to the modeled maps,
we expand eq. (7.6) in spin-0 and spin-2 spherical harmonics and write the corresponding
B-mode spherical harmonics coefficients as

âB,iℓm =
1

giCMB

[∑
λ

Bi
ℓ (ρiλa

B,i
ℓm − η

i
λa

E,i
ℓm) + n

B,i
ℓm] , (7.7)

where aEℓm,λ and a
B
ℓm,λ are the E- and B-mode coefficients of the unsmoothed maps at some

reference frequency ν∗ (implicit here), and Bi
ℓ is the beam transfer function of the channel

i.

7.2.2 Harmonic internal linear combination

The internal linear combination (ILC) [145] is a blind foreground cleaning method. It
can be implemented in both map and multipole space, the latter case being referred to
as HILC [138]. Given the spherical harmonics coefficients, aX,iℓm with X = (T,E,B) and
i ∈ {1, . . . , nchan}, of the maps observed by each of the nchan frequency channels, the HILC
solution is given by [138]

aXℓm,hilc =
nchan

∑
i=1

wiℓa
X,i
ℓm , with weights wℓ =

C−1ℓ e

eTC−1ℓ e
, (7.8)

where Cℓ is the nchan × nchan covariance matrix of the observed maps: Cij
ℓ = ⟨ai∗ℓma

j
ℓm⟩.

By construction, the weights minimize the variance of the final map and add to unity,

∑iwiℓ = 1, preserving the frequency independence of the CMB black-body spectrum. How-
ever, the frequency dependence of giCMB, ρ

i
CMB, and η

i
CMB can violate this sum rule. This

is the main point we study in this anlysis.
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Modeling the HILC solution To apply the HILC to the analytical predictions dis-
cussed in section 7.2.1, we could simply use eq. (7.7); however, since different channels
are characterized by different beams, it is preferable to perform the HILC on unsmoothed
spherical harmonic coefficients, aiℓm ≡ â

B,i
ℓm /Bi

ℓ and write the covariance matrix as

CB,ij
ℓ = 1

giCMBg
j
CMB

{∑
λ

[ρiλρ
j
λC

BB
ℓ,λ + ηiλη

j
λC

EE
ℓ,λ − (ρiλη

j
λ + η

i
λρ

j
λ)C

EB
ℓ,λ ] +

NBB,ij
ℓ

Bi
ℓB

j
ℓ

} . (7.9)

We use eq. (7.9) to compute the HILC weights, wℓ, and the spherical harmonics coefficients
of the HILC solution according to eq. (7.8). The corresponding angular power spectrum
reads

CBB
ℓ,hilc =

nchan

∑
i,j=1

wiℓw
j
ℓ

giCMBg
j
CMB

{∑
λ

[ρiλρ
j
λC

BB
ℓ,λ + ηiλη

j
λC

EE
ℓ,λ − (ρiλη

j
λ + η

i
λρ

j
λ)C

EB
ℓ,λ ] +

NBB,ij
ℓ

Bi
ℓB

j
ℓ

} . (7.10)

This is the main equation from which we derive all of our results.
Even at this early stage, we can make some educated guesses about which terms will

contribute the most to the final angular power spectrum. By construction, the HILC tries
to select the component λ whose ρiλ and/or ηiλ are nearly constant across all frequency
channels, i.e., a black-body spectrum. For example, if mqq(ν)−muu(ν) or mqu(ν)+muq(ν)
depended on frequency as the inverse of the SED of the foreground emission, the foreground
would leak into the HILC solution. However, the Mueller matrix elements of realistic HWPs
do not exhibit such behavior. We therefore expect foreground-to-CMB leakage to be small
in the final angular power spectrum.

Focusing on the CMB, eq. (7.10) tells us that there are two potential contaminations:
E-to-B leakage, which can occur if the effective cross-polarization coupling, ηiCMB, is nearly
constant across the frequency channels, and suppression of the B modes, which is instead
driven by the effective polarization efficiency, ρiCMB. The relative importance of these effects
depends on the specific design choice of the HWP.

7.2.3 Maximum likelihood estimate of the tensor-to-scalar ratio

The modeled angular power spectrum is

CBB
ℓ (r,Alens) = rCGW

ℓ +AlensC
lens
ℓ +NBB

ℓ , (7.11)

where CGW
ℓ is the primordial B-mode power spectrum with r = 1 [39, 40], C lens

ℓ is the
lensed B-mode power spectrum [82], Alens is its amplitude with Alens = 1 being the fiducial
value, and NBB

ℓ is the HILC solution for the total noise power spectrum [the last term in
eq. (7.10)].

The probability density function (p.d.f.) of the observed B-mode power spectrum for
a given value of r and Alens, P (CBB

l,obs ∣ r,Alens), is given by [see eq. (3.28) and, e.g., [146]]

logP (CBB
ℓ,obs ∣ r,Alens) = − fsky

2ℓ + 1
2
[

CBB
ℓ,obs

CBB
ℓ (r,Alens)

+ logCBB
ℓ (r,Alens) −

2ℓ − 1
2ℓ + 1

logCBB
ℓ,obs]

+ const. , (7.12)
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where fsky is the sky fraction used to evaluate CBB
ℓ,obs. We use fsky = 0.78, for which our sky

model is defined (see Table 7.1 for details). Given the p.d.f., the likelihood function is

L(r,Alens)∝
ℓmax

∏
ℓ=ℓmin

P (CBB
ℓ,obs ∣ r,Alens) . (7.13)

We use ℓmax = 200, which is the fiducial value for LiteBIRD [29]. Using Bayes’ theorem,
the posterior p.d.f. of r with Alens marginalized over a flat prior is

Lm(r)∝ ∫ dAlensL(r,Alens) . (7.14a)

The frequentist profile likelihood is given instead by maximizing the bidimensional likeli-
hood with respect to Alens for a set of values {r0, . . . , rn}

Lp(ri)∝max[L(ri,Alens)] . (7.14b)

Regardless of whether L(r) ≡ Lm(r) or L(r) ≡ Lp(r) is chosen, we define r̂ as the maximum-
likelihood estimate (MLE), i.e., the value of r that maximizes L(r). We compute the
corresponding uncertainty as [146]

σ2
r = ∫

∞

0
dr L(r)r2 − [∫

∞

0
dr L(r)r]

2

, (7.15)

where L(r) is normalized as ∫
∞
0 dr L(r) = 1. Eq. (7.15) defines the variance associated

with a Gaussian random variable. We use eq. (7.15) whenever we compute σr, but we have
also compared it with asymmetric 68% CL intervals. In our case, they are equal to the
first significant digit.

7.3 Analysis

We apply the framework presented in section 7.2 to extract the bias on r caused by a
particular choice of HWP design. GivenMhwp, our code5 performs the following steps:

1. Compute the covariance matrix, CB,ij
ℓ , as in eq. (7.9),

2. Invert CB,ij
ℓ to obtain the HILC weights, wiℓ, as in eq. (7.8),

3. Use wiℓ to compute the BB spectrum of the HILC solution, CBB
ℓ,hilc, as in eq. (7.10),

4. Compute the two-dimensional likelihood L(r,Alens) from CBB
ℓ,hilc, using eq. (7.13),

5. Obtain the one-dimensional posterior p.d.f., Lm(r), by marginalizing over Alens, and
the profile likelihood, Lp(r), by maximization,

6. Return r̂ and σr, defined as in eq. (7.15), computed from Lm(r) and Lp(r).
5https://github.com/martamonelli/HWP_end2end.

https://github.com/martamonelli/HWP_end2end
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Spectral parameters

CMB temperature T0 2.725 K
Dust temperature Tdust 19.6 K
Dust spectral index βdust 1.55
Dust reference frequency ν★ 353 GHz
Synchrotron spectral index βsync −3.1
Synchtrotron reference frequency ν☆ 30 GHz

CXX
ℓ parameters q [µK2] α

Dust EE 323 −0.40
Dust BB 119 −0.50
Synchrotron EE 2.3 −0.84
Synchrotron BB 0.8 −0.76
B
B

Table 7.1: Left panel: SED parameters entering in eqs. (7.16) for each component as
reported in [104]. Right panel: The power-law parameters for the angular power spectra
of synchrotron and thermal dust emission entering in eq. (7.17) as reported in [104] for
the Commander [147] analysis with fsky = 0.78.

To validate our end-to-end model and code, we first perform the analysis for an ideal HWP
and then move on to more realistic cases. However, before presenting our results, we review
the additional assumptions that go into the explicit computation of the HILC covariance
matrix CB

ℓ , with the exception of the HWP choice.

CMB, dust and synchtrotron spectral responses For maps in thermodynamic units,
the aλ(ν) functions entering in eqs. (7.5) read (see appendix A.2.2 for a complete derivation)

aCMB(ν) = 1 , (7.16a)

adust(ν) = (
ν

ν★
)
βdust Bν(Tdust)

Bν★(Tdust)
ν2★
ν2
x2★ex★

x2ex
(ex − 1)2
(ex★ − 1)2

, (7.16b)

async(ν) = (
ν

ν☆
)
βsync ν2☆

ν2
x2☆ex☆

x2ex
(ex − 1)2
(ex☆ − 1)2

, (7.16c)

where Bν(T ) denotes a black-body spectrum at temperature T , x ≡ hν/(kBT0) and T0 =
2.725 K is the average temperature of the CMB [6]. The values of the remaining parameters
entering in eqs. (7.16) are specified in Table 7.1.

CMB, dust and synchtrotron angular power spectra The CMB angular power
spectrum is computed with CAMB [148] assuming the best-fit 2018 Planck values for the
cosmological parameters [19], except for the tensor-to-scalar ratio, which is set to rtrue =
0.00461. This is the same fiducial value as assumed in [29], and corresponds to Starobinsky’s
R2 inflationary model [149] with the e-folding value of N∗ = 51.

As for the polarized foreground emission, we parameterize their angular power spectra
as a power law [104]

Dℓ ≡
ℓ(ℓ + 1)Cℓ

2π
= q ( ℓ

80
)
α

. (7.17)
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Specific values of the parameters are reported in Table 7.1 for both dust and synchrotron.
Note that we neglect any intrinsic EB correlation in the input, which is inaccurate (po-
larized dust emission has been observed to have non-zero TB correlation [150, 151], which
implies the presence of a EB correlation [67, 152], and cosmic birefringence [49] would
also result in a non-zero EB). When presenting our results in section 7.3.2, we comment
on this assumption and argue that allowing non-zero EB in input would not dramatically
affect the analysis.

Instrument specifics To simulate LiteBIRD’s design, we consider an instrument that
mounts three different telescopes at low (LFT), medium (MFT), and high frequency (HFT).
The specific frequency ranges of each telescope and frequency channel are taken from [29].

Noise covariance matrix Using a rotating HWP as polarization modulator suppresses
the polarized 1/f noise component [68]. Being left with white noise only, we parameterize
NBB,i
ℓ as [146]

NBB,i
ℓ = [ π

10800

nip
µKarcmin

]
2

µK2 str , (7.18)

where nip is the noise in Stokes parameters Q or U per pixel with solid angle Ωpix = 1
arcmin2. The specific values assumed for each nip are taken from [29].

Beams Since we assume the beams to be Gaussian and perfectly co-polarized, the Bi
ℓ

coefficients only depend on the beam’s full width at half maximum (FWHM). Specific
FWHM values for each channel are taken from [29].

7.3.1 Validation: ideal HWP

An ideal HWP is described by a frequency-independent Mueller matrix with elements

Mideal = diag(1,1,−1) . (7.19)

In this case, the coefficients giλ and ρiλ reduce to the average of the correspondent aλ(ν)
function over the band i [eq. (7.5)], which we will denote aiλ. The η

i
λ coefficients go instead

to zero. According to eq. (7.6), the multi-frequency maps reduce to

m̂i ≃m i
CMB +

1

aiCMB

[ ∑
λ≠CMB

aiλm
i
λ + ni] . (7.20)

While the CMB component is not affected by the presence of the ideal HWP, the foreground
emission suffers from a color correction, and the noise term is rescaled channel-by-channel.
In this simple situation, the HILC should perform well and recover the CMB signal plus
some noise bias given by

NBB
ℓ,hilc =

nchan

∑
i=1
(

wiℓ
aiCMBB

i
ℓ

)
2

NBB,ii
ℓ . (7.21)
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We should therefore check that, for Mideal = diag(1,1,−1), the HILC output is in good
agreement with the input CMB angular power spectrum, once the noise bias is removed.

In Figure 7.1, we show the angular B-mode power spectrum of the HILC solution,
together with the input angular power spectra of CMB, dust, and synchrotron. For com-
pleteness, we also show the foreground residual and the noise bias. The noise bias has
been removed from both the HILC solution and the foreground residual. The agreement
between the HILC solution and the input CMB power spectrum is excellent up to ℓ ≃ 325,
roughly corresponding to LiteBIRD’s beam resolution.

In Figure 7.2 we show the HILC weights for the three telescopes. All MFT channels
have positive weights, consistent with them being CMB channels. On the other hand,
some of LFT and HFT channels (at very low and very high frequencies, respectively) have
negative weights, resulting in foreground subtraction.

The code returns the MLE r̂ = 0.0047 ± 0.0005, which is compatible with the fiducial
value of rtrue = 0.00461. This is what we expect, given the good agreement between the
debiased HILC solution and the input CMB shown in Figure 7.1.

7.3.2 More realistic HWPs

For this analysis, we consider more realistic HWPs for each telescope. For LFT, we consider
the Pancharatnam-type multi-layer sapphire symmetric stack design described in [153],
provided with an anti-reflection coating (ARC) as presented in [112]. For the metal-mesh
HWPs of MFT and HFT, we use the same input simulations and working assumptions as
in [120].

We manipulate each set of Mueller matrices by performing a rotation of the angle θt
that minimizes the integral

∫
t
dν {[mqq(ν) −muu(ν)] cos(4θt) + [mqu(ν) +muq(ν)] sin(4θt)}2 , (7.22)

over the entire frequency band of each telescope, specified by t = {l,m,h}. This choice is
ultimately motivated by the specific design we assume for LFT, since there is no unique
way to determine the position of the HWP’s optical axes for a symmetric stack. Rotating
Mhwp,l of θl then amounts to calibrate the HWP Mueller matrix and express it in a
coordinate system aligned with the optical axes. Instead, the HWPs of MFT and HFT
employ mesh-filter technology [154], for which optical axes can be more easily identified.
However, for the sake of consistency, we choose to perform analogous rotations on the
Mueller matrices of MFT and HFT metal-mesh HWPs. Rotation angles that minimize eq.
(7.22) are 55.02○ for LFT and 0.29○ for M-HFT. The rotated Mueller matrix elements of
each HWP are shown as a function of frequency in Figure 7.3.

Given the elements of the Mueller matrix, we compute the coefficients ρiλ and η
i
λ accord-

ing to eq. (7.5) and repeat all the steps outlined at the beginning of section 7.3. The HILC
solution, DBB

ℓ,hilc, is shown in Figure 7.4. Although the foreground residual (red dotted line)

shows more features than in the ideal case of Figure 7.1, its contribution to DBB
ℓ,hilc is still

subdominant. This confirms our intuition that reasonably optimized HWPs do not cause
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Figure 7.1: For an ideal HWP, the rescaled angular power spectrum, DBB
ℓ , of the HILC

solution (dashed teal line) overlaps the input CMB spectrum (black solid line) for a wide
range of multipoles. For large ℓ, the two spectra begin to diverge as we approach the
instrumental resolution. This can be seen by looking at the dotted gray line, representing
the residual noise, which intersects the input spectrum at ℓ ∼ 325. For completeness, we
also plot the input dust and synchrotron DBB

ℓ (orange and yellow, respectively) and the
foreground residual (red dotted line). The noise bias has been removed from both the
HILC solution and the foreground residual spectra. The wiℓ weights corresponding to the
HILC solution are shown in Figure 7.2.
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Figure 7.2: HILC weights, wiℓ, for each of the three telescopes with an ideal HWP. The
corresponding BB angular power spectrum is shown in Figure 7.1 (dashed teal line).
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Figure 7.3: HWPMueller matrix elements for LFT (purple), MFT (red) and HFT (orange)
as function of frequency. For LFT, we consider a symmetric stack design [153] provided
with ARC [112], compute its Mueller matrix elements, and rotate them of 55.02○, to ex-
press them in a reference frame with the x axis parallel to the HWP optic axis. Instead,
the Mueller matrix elements for MFT and HFT are obtained by following the same pro-
cedure and input simulations as done in [120], and rotating them of 0.29○. The dashed
gray lines represent the ideal values of each element.
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strong foreground leakage in the HILC solution [see the discussion below eq. (7.10)]. Note
that, given the negligible foreground leakage, taking CEB

ℓ,dust = CEB
ℓ,synch = 0 in input is not

such a strong assumption. Even if we allowed non-zero EB correlations, they would not
contribute significantly to the HILC solution.

In Figure 7.5 we also show the HILC weights for the three telescopes. The weights look
qualitatively similar to their ideal counterparts shown in Figure 7.2.

To give more precise considerations, Figure 7.6 shows the power spectra on large angular
scales in more detail. We show the two independent terms that contribute to DBB

ℓ,hilc

component-by-component: ρ-only (polarization efficiency) and η-only (cross-polarization
coupling). These were obtained using the full covariance matrix Cℓ given in eq. (7.9) to
compute the HILC weights, while neglecting some of the terms entering in eq. (7.10). For
instance, the ρ-only dust contribution reads

CBB,dust,ρ
ℓ,hilc =

nchan

∑
i,j=1

wiℓw
j
ℓ

giCMBg
j
CMB

ρidustρ
j
dustC

BB
ℓ,dust . (7.23)

Intuitively, it makes sense for the effective polarization efficiency component to dominate
in the CMB contribution. While ηiCMB can be both positive and negative, all ρiCMB are
constrained to be smaller than 1. This means that, while the average ⟨ηiCMB⟩ across all
frequency channels can be close to zero, ⟨ρiCMB⟩ cannot be arbitrarily close to 1. The HILC,
which looks for the solution that minimizes the variance, may then be able to get rid of
all cross-polarization coupling, while it cannot undo the average suppression due to the
polarization efficiency. As a consequence of the smallness of the cross-polarization coupling
component relative to the polarization efficiency, we argue that relaxing the CEB

ℓ,CMB = 0
assumption for the input spectra would not significantly change our results.

Interestingly, the HILC solution approximately satisfies

ĈBB
ℓ,hilc ≃

1

nchan

nchan

∑
i=1
[
ρiCMB

giCMB

]
2

⋅ CBB
ℓ,CMB , (7.24)

with 10−5 relative tolerance and 10−8 absolute tolerance for a wide range of multipoles,
25 ≤ ℓ ≤ 372. The upper limit has a simple interpretation: it roughly corresponds to the
instrumental resolution.

Bias on the tensor-to-scalar ratio We finally employ the methodology introduced in
section 7.2.3 to propagate the small discrepancy between the input CMB and the HILC
solution shown in Figure 7.4 into a bias on r. We compare the marginalized posterior
p.d.f., Lm(r), with the profile likelihood, Lp(r) [as defined in eqs. (7.14a) and (7.14b),
respectively], and find that they are identical up to relative discrepancies of ≲ 10−3.

We show L(r) = Lp(r) in Figure 7.7 (teal solid line), together with a red vertical line
corresponding to the input value, rtrue = 0.00461. The MLE is r̂ = 0.0043±0.0005. This bias
is caused by the HWP polarization efficiency being lower than one. The B-mode signal is
suppressed and r is underestimated.
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The weight of gain calibration The inclusion of the gain calibration for the CMB
temperature in the modeling of multi-frequency maps may seem inconsequential, but it
has strong implications. We repeat the analysis of section 7.3.2, except that we now
skip the gain calibration, i.e., we model the m̂i as in eq. (7.4) instead of eq. (7.6). The
corresponding spherical harmonic coefficients read

âB,i
ℓm,w/o

=∑
λ

Bi
ℓ (ρiλa

B,i
ℓm − η

i
λa

E,i
ℓm) + n

B,i
ℓm , (7.25)

where the w/o subscript stresses that we are not calibrating the maps. By retracing the
same steps as presented in section 7.2.2, we end up with an expression for the BB angular
power spectrum of the HILC solution that reads

CBB
ℓ,hilc =

nchan

∑
i,j=1

wiℓ,w/ow
j
ℓ,w/o
{∑
λ

[ρiλρ
j
λC

BB
ℓ,λ + ηiλη

j
λC

EE
ℓ,λ − (ρiλη

j
λ + η

i
λρ

j
λ)C

EB
ℓ,λ ] +

NBB,ij
ℓ

Bi
ℓB

j
ℓ

} , (7.26)

where the wi
ℓ,w/o

are the HILC weights corresponding to the spherical harmonic coefficients

of eq. (7.25). The corresponding normalized profile likelihood is shown in Figure 7.7 (dotted
light teal line). We now find a much lower MLE of the tensor-to-scalar ratio, r̂ = 0.0039 ±
0.0005, which is incompatible with rtrue.

7.4 Discussion

Clearly, gain calibration can partially mitigate the suppression of primordial B modes
caused by the HWP. Of course, one can characterize the non-idealities in laboratory mea-
surements and correct for them in the data. However, if HWPs are properly designed,
gain calibration for the CMB temperature allows us to mitigate the effects of non-idealities
on polarization in-flight for space missions. The ability to perform in-flight calibration is
always valuable.

To this end, we derive some realistic recommendations that can help maximize its
benefits. In section 7.4.2, we also discuss the assumptions underlying our end-to-end model
and comment on the possibility of relaxing some of them.

7.4.1 HWP design recommendations

We express the relevant combinations of Mueller matrix elements in terms of a set of 7 inde-
pendent values that uniquely determine the components ofMhwp: the HWP Jones param-
eters, h1,2, β, ζ1,2 and ξ1,2 (see appendix B.4 for their definitions). The loss parameters h1,2
describe the deviation from the unitary transmission of Ex,y; β parametrizes the deviation
from π of the phase shift between Ex and Ey; ζ1,2 and ξ1,2 describe the amplitude and phase
of the cross-polarization coupling. We write g(ν) ≡ mii(ν), ρ(ν) ≡ [mqq(ν) −muu(ν)]/2,
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and η(ν) ≡ [mqu(ν) +muq(ν)]/2 as [120]

g = 1

2
[(1 + h1)2 + (1 + h2)2 + ζ21 + ζ22] , (7.27a)

ρ = 1

2
{1
2
[(1 + h1)2 + (1 + h2)2 − ζ21 − ζ22] + (1 + h1)(1 + h2) cosβ − ζ1ζ2 cos(χ1 − χ2)},(7.27b)

η = 1

2
{(1 + h1)(ζ1 cosχ1 + ζ2 cosχ2) + (1 + h2) [ζ2 cos(β − χ2) + ζ1 cos(β − χ1)]} , (7.27c)

where any dependence on ν is kept implicit for the sake of compactness. Designing a
perfectly ideal HWP with identically vanishing Jones parameters is technically impossible.
However, some parameters are easier to minimize than others.

For example, ζ1,2(ν) ∼ 10−2 can be achieved for both metal-mesh and multi-layer HWPs.
If that is the case, the Taylor expansion of the above expressions for small ζ1,2(ν) yields,
up to first order,

g = 1

2
[(1 + h1)2 + (1 + h2)2] +O(10−4) , (7.28a)

ρ = 1

2
{1
2
[(1 + h1)2 + (1 + h2)2] + (1 + h1)(1 + h2) cosβ} +O(10−4) , (7.28b)

η = 1

2
{(1 + h1)(ζ1 cosχ1 + ζ2 cosχ2) + (1 + h2) [ζ2 cos(β − χ2) + ζ1 cos(β − χ1)]} . (7.28c)

We can further simplify these expressions by requiring h1,2 ∼ 10−2, which implies ρ(ν) =
g(ν) cos2[β(ν)/2] up to relative corrections of O(10−4). Alternatively, by keeping h1,2 free
while requiring ∣h1 −h2∣ to be small, we ensure that ρ(ν) = g(ν) cos2[β(ν)/2] still holds up
to relative corrections of O(∣h1 − h2∣). On the other hand, we cannot require β(ν) to be
arbitrarily small due to the limitation of current technology. Keeping β(ν) free, we have

giCMB ≃ ∫
νimax

νimin

dν

∆νi
[1 + h1(ν) + h2(ν)] , (7.29a)

ρiCMB ≃ ∫
νimax

νimin

dν

∆νi
[1 + h1(ν) + h2(ν)] cos2[β(ν)/2] . (7.29b)

If at least one of h1(ν)+h2(ν) and cos2[β(ν)/2] = [1+ cosβ(ν)]/2 is slowly varying within
the band, we find that ρiCMB ≃ Ai giCMB, where A

i is an appropriate factor that depends on
β. Then, if we know Ai with good precision, its effect can be undone by multiplying each
multi-frequency polarization map by 1/Ai. In this way, the gain calibration for the CMB
temperature can partially mitigate the impact of the HWP polarization efficiency.

Regarding cross-polarization coupling, we argue that there are two strategies to keep
its effects under control. First, we could simply require η(ν) ≲ 10−3 so that the E → B
leakage is negligible. However, this might be technically challenging. Another strategy
is to exploit the fact that the HILC weights minimize the variance. Even if η(ν) is not
vanishing small, as long as the ηiCMB fluctuate around zero, the HILC should be able to
mitigate their effect.
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HWP angle miscalibration An imperfect calibration of the HWP angle can dramat-
ically affect the considerations we have presented so far. If an HWP with giCMB ≃ ρiCMB

and ⟨ηiCMB⟩ ≃ 0, is rotated by some angle θ, its effective gain, polarization efficiency, and
cross-polarization coupling are transformed as

g′ = g , ρ′ = ρ cos 4θ − η sin 4θ , η′ = η cos 4θ + ρ sin 4θ . (7.30)

On the one hand, this causes the cross-polarization coupling coefficients to fluctuate around
some non-zero value, making it impossible for the HILC to filter them out. On the other
hand, the polarization efficiency and gain coefficients might strongly deviate from each
other, reducing the benefits of gain calibration.

Therefore, a good calibration of the HWP position angle, θ, is crucial to ensure the
validity of our considerations and recommendations. Derotating the polarization maps by
θ prior to the foreground cleaning step, as suggested in [58], would allow us to account for
potential differences in the miscalibration angles of the HWPs.

7.4.2 Reviewing the underlying assumptions

We derived the model for multi-frequency maps and their spherical harmonics coefficients
[eqs. (7.6) and (7.7), respectively] under several assumptions. We list them in order of
appearance:

1. We assumed axisymmetric and perfectly co-polarized beams,

2. We assumed the maps to be obtained from an ideal bin averaging map-maker,

3. We considered a top-hat bandpass,

4. We assumed the SED of each component to be uniform throughout the sky,

5. We assumed a perfect gain calibration for the CMB temperature.

Assumptions 1 and 2 cannot be relaxed while maintaining the semi-analytical treatment,
since more complex beams and more refined map-makers can only be included in nu-
merical simulations. On the other hand, assumptions 3 and 5 can be straightforwardly
relaxed within our simple analytical model (given our focus on the HWP non-idealities,
however, we chose not to play around with the bandpass shape or imperfect temperature
gain calibration).

Assumption 4 can also be relaxed easily, but allowed us to analytically model the
foreground cleaning step. Indeed, as soon as the SED of the foreground emission becomes
anisotropic, the simple implementation of the HILC presented in section 7.2.2 is no longer
able to recover the CMB signal accurately, and more elaborate methods such as Needlet ILC
[155] and its moment [156] and Multiclustering [157] extensions will be needed. Although
our quantitative results may be affected, qualitative conclusions will remain valid as long
as the method is still based on ILC.

It would be interesting to relax some of these assumptions and check whether the
recommendations presented in section 7.4.1 still ensure that gain calibration for the CMB
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temperature can mitigate polarization systematics due to the HWP non-idealities. We
leave this analysis for future work.

7.5 Conclusions and perspectives

In this work, we presented a simple framework to propagate the HWP non-idealities
through the three macro-steps of any CMB experiment: observation of multi-frequency
maps, foreground cleaning, and power spectra estimation. We focused on the impact of
non-idealities on the tensor-to-scalar ratio parameter, r.

We generalized the formalism presented in [78] to include the polarized Galactic fore-
ground emission (dust and synchrotron), foreground cleaning using a blind method (HILC),
bandpass integration, noise, beam smoothing, and gain calibration for the CMB tempera-
ture. As a concrete working case, we considered a full-sky CMB mission with LiteBIRD-like
specifics [29].

We validated the code against an ideal HWP and confirmed that the MLE r̂ was
compatible with the input value, r = 0.00461, within the uncertainty. Then, we employed
more realistic Mueller matrix elements for each of the three telescopes of LiteBIRD and
found r̂ = 0.0043 ± 0.0005. We showed how the suppression is mostly due to the effective
polarization efficiency of the HWP, which averages to a value lower than 1. The effective
cross-polarization coupling and the foreground residual are found to be subdominant in
our output B-mode power spectrum.

We found that the bias in r significantly worsens if gain calibration for the CMB tem-
perature is not included in the modeled multi-frequency maps: r̂ = 0.0039 ± 0.0005, which
is incompatible with the input value. Gain calibration would perfectly remove the HWP
effects if ρiCMB = giCMB and ηiCMB = 0, which are, however, unrealistic requirements. Still, we
showed that an effective mitigation can be achieved if we can factorize ρiCMB ≃ AigiCMB, we
have good knowledge of the Ai coefficients, and ⟨ηiCMB⟩ ≃ 0. These considerations helped
us to formulate some recommendations on the HWP design in terms of the HWP Jones
parameters:

▷ Cross-polarization coupling should be small, ζ1,2 ≲ 10−2, which can be achieved for
both metal-mesh and multi-layer HWPs;

▷ The loss parameters should also be small, h1,2 ≲ 10−2, or, alternatively, ∣h1−h2∣ ≲ 10−3;
▷ At least one of h1(ν)+h2(ν) and [1+cosβ(ν)]/2 should be slowly varying within the

band, so that ρiCMB ≃ Ai giCMB;

▷ Cross-polarization coupling can be kept under control by requiring ζ1,2 to be even
smaller, or alternatively, by ensuring that ηiCMB fluctuates around zero.

One can characterize the non-idealities of the HWP in laboratory measurements, and a
requirement for the smallness of a bias in r gives a requirement for the accuracy of the
calibration in the laboratory. However, if the above recommendations are implemented in
the design of the HWP used for space missions, the in-flight gain calibration for the CMB
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temperature can also be used to check and correct for the effects of HWP non-idealities in
the data, complementing the laboratory calibration.

Some of the recommendations above depend strongly on the class of foreground cleaning
methods we used in our end-to-end model. We used a blind method (HILC), but if one
were to use a parametric component separation method to derive design recommendations,
they would likely be different from those listed above. This highlights the importance of
developing analysis strategies together with hardware designs.

This work represents a first generalization of the model presented in [78] toward a
more realistic account of how the HWP non-idealities affect the observed CMB. However,
being semi-analytical, this framework still relies on several simplifying assumptions (see
section 7.4.2). One of the most crucial is the isotropy of the foreground SED. It would be
interesting to relax this assumption and repeat the analysis carried out here, using more
elaborate ILC-based methods (e.g., [156, 157]). This would help us test the robustness of
our recommendations for the design of HWPs in a more realistic context. We leave this
study for future work.
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Conclusions

8.1 Summary

In this thesis, we studied systematic effects in CMB polarization experiments using real-
istic simulations and analytical methods. We focused on HWP non-idealities and studied
how they propagate through the main analysis steps of any CMB experiment (data ac-
quisition, reconstruction of multi-frequency maps, foreground cleaning, and power spectra
estimation) and how they ultimately impact the observed CMB polarization.

In Chapter 2 we outlined the broader scientific context of this thesis. We briefly dis-
cussed CMB anisotropies in both temperature and polarization, and introduced E and B
modes. We showed how inhomogeneities at the time of photon decoupling can source po-
larization via Thomson scattering, and provided an intuitive understanding of why scalar
modes do not produce B modes at linear order. We discussed the possibility of extracting
new physics from CMB polarization: constraining inflationary theories from B modes, and
testing parity violation from EB correlation.

In Chapter 3 we described the macro steps that make up any CMB experiment. First,
we provided a simple data model for the TOD and then discussed data analysis. We
introduced map-making (focusing on bin-averaging), foreground cleaning and parameter
inference. All these concepts and concrete examples are used extensively in the rest of this
thesis.

Chapter 4 is a brief introduction to the HWP, its advantages and disadvantages. We
first considered the ideal limit, and presented a concrete example to show the HWP’s ability
to mitigate 1/f noise and reduce pair-differencing systematics. We then emphasized the
inevitable presence of non-idealities in any real HWP and the importance of carefully
studying them to ensure that they do not induce crucial systematic effects.

In Chapter 5, we presented a framework for simulating TOD and binned maps given
realistic HWPs, arbitrary beams, and noise specifics (including 1/f). We discussed the
functionalities we added to beamconv [101, 115] to tailor its output to a LiteBIRD-like
mission: the implementation of a new scanning strategy, the option to read detector offsets
as quaternions, and the possibility to produce noise and dipole TOD at the chunks level.
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We discussed a concrete application of the simulation framework in Chapter 6, where
we simulated binned maps for 160 detectors of a single frequency channel (140 GHz) for
a LiteBIRD-like experiment (under the CMB-only and no noise assumptions). We used
a realistic Mueller matrix to simulate the TOD, but neglected the non-idealities in the
map-maker. This allowed us to study how overlooking HWP non-idealities in the analysis
can affect the reconstructed CMB angular power spectra. We focused on the measured
cosmic birefringence angle, β, and found that the non-idealities induce a bias on β of a few
degrees. This large miscalibration highlights the importance of having a good knowledge of
the non-idealities to mitigate their effect at the data analysis level. Another important new
result presented in Chapter 6 is a simple analytical formula that models the effect of the
HWP non-idealities on the observed maps. After testing it against the simulation output,
we highlighted the importance of such analytical tools, which can help tremendously in
gaining intuition about the problem at hand.

In Chapter 7, we generalized the analytical model to include the polarized Galactic
foreground emission (dust and synchrotron), foreground cleaning using a blind method
(HILC), bandpass integration, noise, beam smoothing, and gain calibration for the CMB
temperature. We used this framework to study the impact of non-idealities on the observed
tensor-to-scalar ratio, r, and found a suppression of ∼ 5%. We showed how the bias on r
significantly worsens when the gain calibration for the CMB temperature is not included
in the modeled multi-frequency maps. We provided some recommendations on the HWP
design to maximize the benefits of gain calibration, which would allow to mitigate the
effects of non-idealities in flight.

8.2 Outlook and future perspectives

Given the number of new CMB experiments that will see their first light in the next few
years, studying systematic effects is now as timely as vital. The work presented in this
thesis lays the foundations in this direction and opens up to a few generalizations that will
help refine the tools and results discussed here.

Optimizing the simulation framework The simulation framework presented in Chap-
ter 5, based on a modified version of beamconv, could be extended and optimized
even further. It would be interesting to include additional instrumental effects, such
as the detector non-idealities and the polarization wobble of the sinuous antennas.
It would be also important to develop an efficient strategy to perform integrations
over the frequency bands (this is a crucial issue in CMB simulations, as both the
sky maps and the instrumental response are frequency-dependent). Finally, the code
should be optimized to run on a computer cluster, which would allow simulating full-
scale missions. Implementing all these changes would allow us to run realistic CMB
simulations, which is essential for studying systematic effects in their complexity.

Refining HWP design recommendations The semi-analytical end-to-end model pre-
sented in Chapter 7 allowed us to derive a set of recommendations for the HWP
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design that can help maximize the benefits of gain calibration. To keep the treat-
ment semi-analytical, however, we took a number of simplifying assumptions. One
of the most crucial was the isotropy of the foreground SEDs, which allowed us to
use the HILC foreground cleaning method. However, foregrounds are known to have
anisotropic SEDs, making this approximation invalid. It would be interesting to relax
this assumption and study how this affects the HWP design recommendations.

As a concrete path forward, we plan to consider realistic sky models generated with
PySM [139, 158], together with a more sophisticated foreground cleaning method: the
multi-clustering needlet ILC (MCNILC) [157]. Our expectation is that the results
obtained in Chapter 7 will remain (at least qualitatively) valid, since the MCNILC
belongs to the same class of foreground cleaning methods as the ILC. Regardless of
whether this analysis will confirm our previous results or not, this work will be crucial
for optimizing the HWP design for LiteBIRD, as it will provide a concrete strategy
to perform in-flight calibration of the non-idealities.

Beyond HWPs Although the work discussed in this thesis focused on HWP-induced
systematics, the tools we have presented here (TOD simulation pipeline and semi-
analytical framework) could also be used to study other instrumental effects. Specif-
ically, we plan to investigate how the observed angular power spectra are affected
by the polarization wobble of the sinuous antennas, which is a frequency-dependent
rotation of the transmitted polarization vector due to the antennas’ geometry. Al-
though this effect can be removed by pairing the signal from sinuous antennas with
opposite orientations, limitations of the focal plane could prevent us from achieving
perfect cancellation. Also, one cannot exclude that one of the detector wafers could
malfunction, nulling the signal from one orientation (but not the other). These sce-
narios might result in some E → B leakage, which should be absolutely avoided to
be able to measure B modes. It is therefore essential to fully understand the impli-
cations of the polarization wobble, and work to develop concrete mitigation strategy.
This study, will be relevant for both LiteBIRD and SO, as sinuous antennas are used
in the designs of both experiments.

Finally, we would like to emphasize the importance of the work presented in this thesis
for the search for new physics from CMB polarization. Finding new physics requires new
strategies for controlling systematics and instrumental effects, which must be carefully
studied to achieve the ambitious observational goals of the next-generation CMB experi-
ments. This work takes a step in that direction by providing two complementary tools for
understanding the impact of HWP non-idealities on new physics.
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Appendix A

On unit conversion

Summary: In this appendix, we introduce some of the units of
measurement commonly used in the CMB literature and show
how to convert between them. We give two concrete examples:
we convert COBE (DMR), WMAP and Planck noise levels to the
same units to compare them, and we derive dust and synchrotron
spectral properties in thermodynamic units.

Section A.1 is inspired by some personal notes that Eiichiro Komatsu shared with me at
the beginning of my PhD. Section A.2.2 is adapted from the appendix of [79].

A.1 Definitions

For a given ν, the specific intensity of the sky signal at that frequency, Iν , has units of
J s−1m−2 str−1Hz−1 and can be decomposed as

Iν = Bν(T0) + δIν , (A.1)

where Bν(T ) = 2hν3/[c2(ex − 1)] is a black-body spectrum, x ≡ hν/(kBT ) and T0 = 2.725
K is the average temperature of the CMB [6]. The term δIν represents any excess signal
over the isotropic CMB, such as CMB temperature fluctuations or foreground emission.

In radio astronomy, the specific intensity δIν is often expressed in terms of some kind
of temperature in units of K (or its multiples, often µK). Here we discuss a few examples.

Brightness (or Rayleigh-Jeans) temperature fluctuations The brightness temper-
ature (also called Rayleigh-Jeans temperature), TB, is defined by

Iν ≡
2ν2

c2
kBTB(ν) . (A.2)

Similarly, the brightness temperature fluctuations, δTB, can be defined as the brightness
temperature associated to the excess intensity, δIν :

δIν =
2ν2

c2
kBδTB(ν) . (A.3)
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Working with brightness temperatures was convenient in the the past, when CMB exper-
iments were only sensitive to relatively low frequencies, ν ≪ 100GHz, corresponding to
x ≪ 1. In this regime, TB for a black-body approximates the thermodynamic tempera-
ture1, making it easy to interpret. However, this nice interpretation does not hold at higher
frequencies. Also, most sources in the sky do not have a black-body spectrum, in which
case TB has no thermodynamic interpretation.

Temperature fluctuation in thermodynamic units As CMB experiments began to
operate at higher frequencies, ν ≳ 100 GHz, where TB /≈ T , it became necessary to define
the temperature fluctuation in thermodynamic units as

δIν =
dBν(T̄ )
dT̄

δT (ν) = 2ν2

c2
x2ex

(ex − 1)2
kBδT (ν) . (A.4)

Since δIν can include non-CMB components (foreground emission), δT (ν) does not refer
only to the CMB temperature anisotropies, but also to the other components. Note that
δT (ν) is actually frequency independent for CMB anisotropies, while it depends on ν for
the other components. By comparing eqs. (A.3) and (A.4), we obtain the formula to
convert thermodynamic units to brightness temperature units and vice versa:

δTB(ν) =
x2ex

(ex − 1)2
δT (ν) . (A.5)

Antenna temperature The antenna temperature, TA, measures the power, P , received
by an antenna and is defined by

P ≡ kB ∫
ν+∆ν/2

ν−∆ν/2
dν′ TA(ν′) ≈ kBTA(ν)∆ν , (A.6)

where P has units of J s−1 and ∆ν is the bandwidth. This definition holds when we distin-
guish between two polarization states of incoming photons. If P includes both polarization
states, instead, the relationship is modified to P ≈ 2kBTA∆ν.

To see how the antenna temperature is related to the brightness temperature of the sky
signal, we start by writing the power P received by a telescope with aperture A as2

P = A
2 ∫

ν+∆ν/2

ν−∆ν/2
dν′∫ dΩ Beam(θ,φ, ν′)Iν′(θ,φ) , (A.7)

where dΩ = dcos θ dφ is the solid angle element on the sphere and “Beam” represents the
beam response of the antenna. We can rewrite eq. (A.7) in terms of the beam-averaged
brightness temperature, ⟨TB(ν)⟩beam:

⟨TB(ν)⟩beam =
2ν2

c2
⟨Iν⟩beam ≡

2ν2

c2
∫ dΩ Beam(θ,φ, ν)Iν′(θ,φ)

ΩA

, (A.8)

1By taking the low-frequency (Rayleigh-Jeans) limit of Bν(T ), i.e. x≪ 1, we get Bν(T )→ 2ν2

c2
kBT .

2Here, we distinguish between two polarization states of incoming photons.
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where ⟨Iν⟩beam denotes the beam-averaged intensity, and ΩA is the beam solid angle:

ΩA(ν) ≡ ∫ dΩ Beam(θ,φ, ν) . (A.9)

By combining eqs. (A.7) and (A.8), we get

P = A
2 ∫

ν+∆ν/2

ν−∆ν/2
dν′ ΩA(ν′)

2ν′2

c2
kB⟨TB(ν′)⟩beam . (A.10)

Now, since an ideal antenna has the property that ΩA = λ2/A = c2/(ν2A), the above
equation simplifies to

P = kB ∫
ν+∆ν/2

ν−∆ν/2
dν′ ⟨TB(ν′)⟩beam ≈ kB⟨TB(ν)⟩beam∆ν . (A.11)

We thus conclude that the antenna temperature is equal to the beam-averaged brightness
temperature of the sky intensity:

TA = ⟨TB⟩beam . (A.12)

Noise-equivalent power The noise-equivalent power (NEP) is a measure of noise power
with 1 Hz bandwidth, or noise power with 0.5 second of integration time, in units of
J s−1 Hz−1/2. When we observe noise power of P (with no sky signal) over some bandwidth
∆ν, the NEP is defined by

NEP ≡ P√
∆ν

, (A.13)

where ∆ν is in units of Hz. Using the definition of the antenna temperature given in
eq. (A.6), we obtain

NEP = kBTNEP
A

√
∆ν , (A.14)

which is the expression for the equivalent antenna temperature for noise power.

Noise equivalent temperature The noise equivalent temperature (NET) is also a mea-
sure of noise power with 1 Hz bandwidth, in units of K Hz−1/2. In the low-frequency limit
(Rayleigh-Jeans limit), we define it as

kBNETRJ ≡ NEP = kBTNEP
A

√
∆ν . (A.15)

Often, the NET is expressed in units of CMB thermodynamic temperature. This can be
done by using the relationships δTA = ⟨δTB⟩beam = x2ex/(ex − 1)2⟨δT ⟩beam. As noise does
not care about antenna response, we can remove ⟨. . . ⟩beam. We write

NETRJ =
x2ex

(ex − 1)2
NETCMB . (A.16)

If we write the band average explicitly,

NETRJ = NETCMB × ∫
ν+∆ν/2

ν−∆ν/2
dν′

∆ν

x′2ex′

(ex′ − 1)2
. (A.17)
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A.2 Concrete examples

Here we discuss two concrete examples of unit conversion. In Section A.2.1, we show
how to convert COBE, WMAP and Planck noise levels to the same units and compare
them, while in Section A.2.2, we write the spectral properties of dust and synchtrotron in
thermodynamic units.

A.2.1 Comparing noise levels of COBE, WMAP and Planck

We choose to consider the channels with central frequency around 100GHz, i.e. the 90 GHz
DMR channel for COBE, the W-band for WMAP (centered at 94GHz), and the HFI 100
GHz channel for Planck.

Planck The NETCMB of the 100GHz Planck -HFI frequency channel is 40.0µK
√
s [159].

WMAP The W-band has 8 radiometers, and its sensitivity per radiometer is 1.48mK
√
s,

in brightness temperature3. The total channel sensitivity can be estimated by divid-
ing the sensitivity per radiometer by the square root of the number of radiometers,
obtaining ≃ 0.52mK

√
s. To compare this value with Planck ’s, we must convert it

from brightness temperature to thermodynamic units. Making use of eq. (A.5) with
ν = 94GHz, we obtain NETCMB ≃ 0.65mK

√
s.

COBE The noise levels in units of antenna temperature per 0.5 sec measurement of the
90A and 90B DMR channels, NETRJ,90A and NETRJ,90B, amount to 39.10mK

√
s and

30.76mK
√
s, respectively4. We compute the combined noise level of the 90A and

90B channels by taking their inverse-variance average:

NETRJ =

¿
ÁÁÁÀ( 1

NET2
RJ,90A

+ 1

NET2
RJ,90A

)
−1
≃ 24mK

√
s . (A.18)

To convert those values in thermodynamic units, we can use again eq. (A.5) with
ν = 90GHz and obtain NETCMB ≃ 30mK

√
s.

A.2.2 Spectral properties in thermodynamic units

As shown in eq. (3.21), the specific intensity of CMB anisotropies follows a differential
black-body, while dust and synchrotron can be modeled as a modified black-body and
a power law, respectively [104]. By making use of eq. (A.4), we can write the relation
between the thermodynamic temperatures at ν and at some other reference frequency ν⋆:

δT (ν) = δIν
δIν∗

ν2∗
ν

x2∗ex∗

(ex∗ − 1)2
(ex − 1)2
x2ex

δT (ν∗) . (A.19)

3See Table 1.3 of WMAP Nine–Year Explanatory Supplement available at https://lambda.gsfc.

nasa.gov/product/wmap/dr5/pub_papers/nineyear/supplement/WMAP_supplement.pdf.
4See Table 1 of COBE-DMR Four-Year Explanatory Supplement available at https://lambda.gsfc.

nasa.gov/data/cobe/dmr/doc4/dmr_explanatory_supplement_4yr.pdf.

https://lambda.gsfc.nasa.gov/product/wmap/dr5/pub_papers/nineyear/supplement/WMAP_supplement.pdf
https://lambda.gsfc.nasa.gov/product/wmap/dr5/pub_papers/nineyear/supplement/WMAP_supplement.pdf
https://lambda.gsfc.nasa.gov/data/cobe/dmr/doc4/dmr_explanatory_supplement_4yr.pdf
https://lambda.gsfc.nasa.gov/data/cobe/dmr/doc4/dmr_explanatory_supplement_4yr.pdf
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By plugging these expressions in eq. (A.19), we obtain the SED of CMB, dust, and syn-
chrotron in terms of the CMB thermodynamic temperature:

δTCMB(ν) = δTCMB , (A.20a)

δTdust(ν) = (
ν

ν★
)
βdust Bν(Tdust)

Bν★(Tdust)
ν2★
ν2
x2★ex★

x2ex
(ex − 1)2
(ex★ − 1)2

δTdust(ν★) , (A.20b)

δTsync(ν) = (
ν

ν☆
)
βsync ν2☆

ν2
x2☆ex☆

x2ex
(ex − 1)2
(ex☆ − 1)2

δTsync(ν☆) . (A.20c)
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Appendix B

Polarized light

Summary: In this appendix, we define polarization and provide a
brief introduction to Jones and Mueller calculus.

Section B.4 is adapted from the appendix of [79].

B.1 Definitions

Electromagnetic fields can be described by a pair of three-dimensional vector and pseu-
dovector fields: the electric and magnetic fields, E(x, y, z, t) and B(x, y, z, t). These fields
depend on charges, currents and each other according to the Maxwell’s equations which, in

z

B

E

Figure B.1: Electric and magnetic
fields for a wave propagating along z.

SI units, read

∇ ⋅E = ρ
ε
, (B.1a)

∇ ⋅B = 0 , (B.1b)

∇×E = −∂B
∂t

, (B.1c)

∇×B = µj + µε∂E
∂t

, (B.1d)

where ρ is the charge density, ε is the electric constant, µ is the magnetic constant, and j
is the current density. In general, ρ and j can depend on both time and position. Solutions
to the Maxwell equations in vacuum can be expressed as a superposition of plane waves

E(r, t) =Aem cos(k ⋅ r − ωt + ϕ) , (B.2a)

B(r, t) = (k̂ ×Aem) cos(k ⋅ r − ωt + ϕ) , (B.2b)

with ω = kc ≡ k√µ0ε0 and Aem ⋅ k = 0, over all possible values of amplitude Aem, phase ϕ,
and wave vector k. These plane wave solutions consist of oscillating electric and magnetic
fields perpendicular to each other and to k (see Fig. B.1).
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Instead of the most general solution, consider the superposition of plane waves (B.2)
with the same k. Depending on the behavior of the resulting electric field Etot, defined as
the sum of the electric fields of all the superposed waves, the radiation is said to be

Unpolarized if Etot changes randomly in time at some point in space;

Lineraly polarized if Etot is constant in time (this is the case for a single plane wave);

Circularly polarized if Etot draws a circle on the plane perpendicular to k;

Elliptically polarized if Etot draws an ellipse on the plane perpendicular to k.

Unpolarized pLinearp pCircularp Elliptical

Figure B.2: Two orthogonal rods denote no po-
larization. Linear polarization is represented by
a rod directed as Etot. For circular and elliptical
polarization, an arrow specifies if Etot is rotating
clock- or counterclock-wise.

These pure polarization states are often
represented as in Figure B.2. If the radi-
ation has a polarized and an unpolarized
component, it is partially polarized.

In problems involving polarized light, it
is often necessary to determine the effect of
various types of polarizers (linear, circular,
elliptical, etc.), rotators, retardation plates,
and other optical elements on the state of
polarization of a light beam. Rather than
using Maxwell’s equations to study how the electromagnetic field propagates through an
optical element, it is often more convenient to use matrix methods, which are based on
the fact that the effect of a polarizer or retarder is to perform a linear transformation
(represented by a matrix) on the vector representation of a polarized light beam. The
advantage of these methods over conventional techniques is that problems are reduced to
simple matrix operations.

B.2 Jones calculus

The Jones calculus is one of the most common matrix methods. To define the Jones vector
representation, consider a plane wave given by a superposition of solutions (B.2) with the
same k∝ ẑ. At a given z, the electric fields has components

Ex(t) = Aem,x cos[kz − ωt + ϕx] , (B.3a)

Ey(t) = Aem,y cos[kz − ωt + ϕy] . (B.3b)

We define the complex electric field, E(t), with components Ei(t) = Aem,i ei(kz−ωt+ϕi), such
that Ei = ReEi. The complex electric field can be factorized as

E(t) = (Ex(t)Ey(t)
) = (Aem,xei(kz−ωt+ϕx)

Aem,yei(kz−ωt+ϕy)
) = (Aem,xeiϕx

Aem,yeiϕy
) ei(kz−ωt) ≡ Jei(kz−ωt) , (B.4)

where J is the Jones vector, representing the amplitude and phase of the electric field in
the x and y directions.
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The effect of optical elements on the Jones vector is described by a Jones matrix, J .
For instance, the Jones matrix for an ideal HWP is

Jhwp = (
1 0
0 −1) . (B.5)

B.3 Mueller calculus

Another widely used matrix method is the Mueller calculus, where the polarization state
is described by a Stokes vector, S, and the effect of an optical element is expressed as a
Mueller matrix,M.

B.3.1 Stokes vectors

Again, consider a plane wave given by a superposition of solutions (B.2) with the same
k∝ ẑ. At a given z, the components of the complex electric can be written as

Ex(t) = Aem,xe
i(kz−ωt+ϕx) , (B.6a)

Ey(t) = Aem,ye
i(kz−ωt+ϕy) . (B.6b)

We define the 2 × 2 Hermitian tensor ⟨EiE∗j ⟩, where the angle brackets denote a temporal
average over some periods of the wave, and decompose it as a combination of the identity
matrix and the Pauli matrices

⟨EiE∗j ⟩ =
1

2
Iδij +

1

2
(Uσ1 + V σ2 +Qσ3)ij =

1

2
( I +Q U − iV
U + iV I −Q )

ij

, (B.7)

x

y

Q > 0

x

y

Q < 0

x

y

U > 0

100%U

x

y

U < 0

100%Q

Figure B.3: Pure Q and
U polarization states for a
wave propagating along z.

where I, Q, U and V are the Stokes parameters:

I = Tr(⟨EiE∗j ⟩) = ⟨∣Ex∣2⟩ + ⟨∣Ey ∣2⟩
= A2

em,x +A2
em,y , (B.8a)

Q = Tr(⟨EiE∗j ⟩σ3) = ⟨∣Ex∣2⟩ − ⟨∣Ey ∣2⟩
= A2

em,x −A2
em,y , (B.8b)

U = Tr(⟨EiE∗j ⟩σ1) = 2Re ⟨E∗xEy⟩
= 2Aem,xAem,y cos(θx − θy) , (B.8c)

V = Tr(⟨EiE∗j ⟩σ2) = 2 Im ⟨E∗xEy⟩
= 2Aem,xAem,y sin(ϕx − ϕy) . (B.8d)

I is proportional to the intensity of the radiation, Q and U
describe linear polarization as sketched in Figure B.3, and V
describes circular polarization.
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The Stokes parameters can be organized in a vector

S =
⎛
⎜⎜⎜
⎝

I
Q
U
V

⎞
⎟⎟⎟
⎠
, (B.9)

called Stokes vector. In Mueller calculus, Stokes vectors are used to describe the polariza-
tion state of radiation.

B.3.2 Mueller matrices

The Mueller matrix M for a polarization-altering device is defined as the matrix which
transforms an incident Stokes vector S into the outgoing Stokes vector S′

S′ =MS =
⎛
⎜⎜⎜
⎝

Mii Miq Miu Miv

Mqi Mqq Mqu Mqv

Mui Muq Muu Muv

Mvi Mvq Mvu Mvv

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

I
Q
U
V

⎞
⎟⎟⎟
⎠
. (B.10)

The Mueller matrix contains within its elements all of the polarization properties: diat-
tenuation, retardance and depolarization, as well as their form, either linear, circular, or
elliptical. When the Mueller matrix is known, the exiting polarization state is known for
an arbitrary incident polarization state.

The Mueller matrixM associated with a cascade of polarization elements q = 1,2, . . . ,Q
is the right-to-left product of the individual matricesMq:

M =MQMQ−1 . . .M2M1 =
Q

∏
q=1
Mq. (B.11)

Here we list a few common Mueller matrices.

Rotations By rotating the x and y axes of an angle ψ around z, the components of the
complex electric field transform as

(E
′
x

E ′y
) = ( cosψ sinψ

− sinψ cosψ
)(ExEy

) . (B.12)

Substituting these new expressions into eq. (B.8), we have that

(Q
′

U ′
) = ( cos 2ψ sin 2ψ

− sin 2ψ cos 2ψ
)(Q
U
) , (B.13)

while I and V are invariant. The Mueller matrix for a coordinate rotation is then

Rψ =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 cos 2ψ sin 2ψ 0
0 − sin 2ψ cos 2ψ 0
0 0 0 1

⎞
⎟⎟⎟
⎠
. (B.14)
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Linear polarizer In general, a polarizer is an optical filter that lets light waves of a
specific polarization pass through while blocking light waves of other polarizations. For
instance, a linear polarizer with horizontal transmission only lets linear polarization along
x pass, and it is described by the Mueller matrix

Mpol =
1

2

⎛
⎜⎜⎜
⎝

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
. (B.15)

Half-wave plate A waveplate or retarder is an optical device that alters the polarization
state of a light wave traveling through it. In particular, the half-wave plate reflects the
polarization vector with respect to the y axis, and is described by the Mueller matrix

Mhwp =
⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎟
⎠
. (B.16)

Eq. (B.16) describes the effect of an idealized HWP. In reality, there can be a number of
effects that result in deviations from the ideal Mueller matrix elements, and we can write

MHWP =
⎛
⎜⎜⎜
⎝

mii miq miu miv

mqi mqq mqu mqv

mui muq muu muv

mvi mvq mvu mvv

⎞
⎟⎟⎟
⎠
. (B.17)

We refer to deviationsMhwp − diag(1,1,−1,−1) as HWP non-idealities.

B.4 Relating Mueller to Jones parameters

Mueller and Jones calculus are two different matrix methods to describe and manipulate
polarized radiation. Mueller calculus works with intensities, while Jones calculus works
directly with the x and y components of the electric field. Any Jones matrix, J , can be
transformed into the corresponding Mueller–Jones matrixM = A (J ⊗ J∗)A−1, where

A =
⎛
⎜⎜⎜
⎝

1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

⎞
⎟⎟⎟
⎠
. (B.18)

Here, ∗ denotes the complex conjugate and ⊗ is the Kronecker product. The Jones matrix
for a non-ideal HWP is

Jhwp = (
1 + h1 ζ1eiχ1

ζ2eiχ2 −(1 + h2)eiβ
) , (B.19)



102 B. Polarized light

where h1,2 are loss parameters describing the deviation from the unitary transmission of
Ex,y; β parametrizes the deviation from π of the phase shift between Ex and Ey; ζ1,2 and ξ1,2
describe the amplitude and phase of the cross-polarization coupling. All Jones parameters
tend to zero in the ideal limit.



Appendix C

Derivations for Chapter 6

Summary: In this appendix, we provide some explicit derivations
of the results presented in Chapter 6.

Sections C.5 and C.6 are adapted from the appendix of [78].

Note that we neglect circular polarization here for the sake of compactness (and because
we ignore it in Chapter 6), but these results can be easily generalized to include V .

C.1 Mueller matrices in CMB and IAU conventions

Stokes vectors defined in CMB convention, S(CMB), can be transformed into their IAU
counterpart, S(IAU), by flipping the sign of the U parameter. In other words

S(iau) =
⎛
⎜
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎟
⎠
S(cmb) . (C.1)

Now, assume to know a HWP Mueller matrix,M(iau), that acts on Stokes vectors defined
in IAU convention. Using eq. (C.1), the identity S′

(iau)
=M(iau)S(iau) becomes

⎛
⎜
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎟
⎠
S′(cmb) =M(iau)

⎛
⎜
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎟
⎠
S(cmb) . (C.2)

By multiplying both sides by diag(1,1,−1), we get S′
(cmb)

=M(cmb)S(cmb), where

M(cmb) ≡
⎛
⎜
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎟
⎠
M(iau)

⎛
⎜
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎟
⎠
. (C.3)
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By denoting the elements of the Mueller matrixM(iau) in IAU convention as mss’, i.e.

M(iau) =
⎛
⎜
⎝

mii miq miu

mqi mqq mqu

mui muq muu

⎞
⎟
⎠
, (C.4)

and performing the scalar products of eq. (C.3), we get

M(cmb) =
⎛
⎜
⎝

mii miq −miu

mqi mqq −mqu

−mui −muq muu

⎞
⎟
⎠
. (C.5)

C.2 Derivation of eq. (6.8)

Given an incoming Stokes vector, S, the signal d detected by an ideal detector sensitive
to the polarization direction that forms an angle ξ wuith the x telescope axis can be
modelled as d = aTRξMS, where aT = 1

2
(1 1 0 0), and Rξ represents a rotation from

the telescope to the detector coordinates. As for M, its explicit form will depend on the
telescope optics. For now, let us simply denote its elements as

M =
⎛
⎜
⎝

Mii Miq Miu

Mqi Mqq Mqu

Mui Muq Muu

⎞
⎟
⎠
. (C.6)

Consider now a set of 4 detectors sensitive to different polarization directions, with 0, 90,
45 and 135 degrees offsets, and assume them to be observing the same pixel. The signals
they measure can be modeled as

⎛
⎜⎜⎜
⎝

d(0)

d(90)

d(45)

d(135)

⎞
⎟⎟⎟
⎠
= 1

2

⎛
⎜⎜⎜
⎝

Mii +Mqi Miq +Mqq Miu +Mqu

Mii −Mqi Miq −Mqq Miu −Mqu

Mii +Mui Miq +Muq Miu +Muu

Mii −Mui Miq −Muq Miu −Muu

⎞
⎟⎟⎟
⎠
S . (C.7)

Eq. (C.7) models the minimal TOD constituted by the four detector readings, and the
above matrix can be thought as a “response matrix”. For the sake of compactness, we will
denote it by A from now on.

As a concrete case, we assume an HWP to be the first optical element in the tele-
scope chain, so thatM ≡ R−ϕMhwpRϕ+ψ, whereMhwp denotes the Mueller matrix of the
HWP. We reconstruct the sky signal via a binning map-maker that neglects the HWP
non-idealities. The reconstructed Stokes vector will read

Ŝ = (ATidealAideal)−1ATidealAS , (C.8)

By evaluating Ŝ explicitly with Mathematica1, we get eq. (6.8).

1Although a bit tedious, the derivation can also be done with pen and paper. It helps noticing that
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C.3 Alternative derivation of eqs. (6.10)

Here we provide a derivation of eqs. (6.10) that does not rely on the four-detector con-
figuration. We start from eq. (3.20) for the binning map-maker, and write explicitly the
detected signal as dit = SSSTitSp:

⎛
⎜
⎝

Î

Q̂

Û

⎞
⎟
⎠
p

=
⎡⎢⎢⎢⎢⎢⎣
∑

i′t′∈{it}p

⎛
⎜
⎝

Î2 Î Q̂ ÎÛ

Q̂Î Q̂2 Q̂Û

Û Î ÛQ̂ Û2

⎞
⎟
⎠
i′t′

⎤⎥⎥⎥⎥⎥⎦

−1

∑
it∈{it}p

⎛
⎜
⎝

ÎI ÎQ ÎU

Q̂I Q̂Q Q̂U

ÛI ÛQ ÛU

⎞
⎟
⎠
it

⎛
⎜
⎝

I
Q
U

⎞
⎟
⎠
p

. (C.10)

The Stokes vector SSSit encodes the response of the detector i at time t, while ŜSSit is the
response Stokes vector assumed by the binning map-maker.

We apply eq. (C.10) to the following concrete case: a telescope provided with a non-
ideal HWP whose TOD is processed through an ideal binning map-maker. In this case, SSSit
and ŜSSit read

SSSit =
1

2

⎛
⎜
⎝

mii +mqicβ +muisβ
miqcα −miusα + (mqqcα −mqusα)cβ + (muqcα −muusα)sβ
miqsα +miucα + (mqqsα +mqucα)cβ + (muqsα +muucα)sβ

⎞
⎟
⎠
, (C.11a)

ŜSSit = [
1

2
(1 1 0)Rξi−ϕtMidealRψt−ϕt]

T

= 1

2

⎛
⎜
⎝

1
cα+β
sα+β

⎞
⎟
⎠
, (C.11b)

where we adopt the compact notation cθ = cos(2θ) and sθ = sin(2θ). By plugging these
expression into eq. (C.10), assuming that the α and β angles are sampled uniformly enough,
and using the orthogonality of sine and cosine, we obtain

⎛
⎜
⎝

Î

Q̂

Û

⎞
⎟
⎠
p

=
⎡⎢⎢⎢⎢⎢⎣
∑

i′t′∈{it}p

⎛
⎜
⎝

1 cα+β sα+β
cα+β c2α+β cα+βsα+β
sα+β sα+βcα+β s2α+β

⎞
⎟
⎠
i′t′

⎤⎥⎥⎥⎥⎥⎦

−1

∑
it∈{it}p

⎛
⎜
⎝

I Q U

cα+βI cα+βQ cα+βU
sα+βI sα+βQ sα+βU

⎞
⎟
⎠
it

⎛
⎜
⎝

I
Q
U

⎞
⎟
⎠
p

≃
⎡⎢⎢⎢⎢⎢⎣

⎛
⎜
⎝

⌊1⌉ 0 0
0 ⌊c2α+β⌉ 0

0 0 ⌊s2α+β⌉

⎞
⎟
⎠

⎤⎥⎥⎥⎥⎥⎦

−1
⎛
⎜
⎝

⌊mii⌉ 0 0
0 ⌊c2α+β⌉ (mqq −muu) /2 ⌊c2α+β⌉ (mqu +muq) /2
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⎠
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⎝
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⎟
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(C.12)

where ⌊⋅⌉ compactly denotes the sum over all the observations of the pixel p, i.e. ∑it∈{it}p .
By evaluating eq. (C.12) explictly, it reduces to eqs. (6.10).

both response matrices satisfy A = AM, with

A ≡ 1

2

⎛
⎜⎜⎜
⎝

1 1 0
1 −1 0
1 0 1
1 0 −1

⎞
⎟⎟⎟
⎠
, (C.9)

and that the ATA product reduces to diag(1,1/2,1/2).



106 C. Derivations for Chapter 6

C.4 Derivation of eq. (6.13)

By definition, the variance associated to CXY
ℓ,obs is

Var(CXY
ℓ,obs) = ⟨(CXY

ℓ,obs)
2⟩ − ⟨CXY

ℓ,obs⟩
2
. (C.13)

The first term on the right-hand side can be expressed as

⟨(CXY
ℓ,obs)

2⟩ = 1

(2ℓ + 1)2 ∑mm′
⟨XℓmY

∗
ℓmX

∗
ℓm′Yℓm′⟩ . (C.14)

Under the assumption that the Xℓm are Gaussian random variables, the expectation value
⟨XℓmY ∗ℓmX

∗
ℓm′Yℓm′⟩ can be rewritten by making use of Isserlis’ theorem [160] (also referred

to in the literature as Wick’s probability theorem):

⟨XℓmY
∗
ℓm⟩ ⟨X∗ℓm′Yℓm′⟩ + ⟨XℓmX

∗
ℓm′⟩ ⟨Y ∗ℓmYℓm′⟩ + ⟨XℓmYℓm′⟩ ⟨Y ∗ℓmX∗ℓm′⟩ , (C.15)

which, when plugged back in (C.13), gives

Var(CXY
ℓ,obs) =

1

(2ℓ + 1)2 ∑mm′
⟨XℓmX

∗
ℓm′⟩ ⟨Y ∗ℓmYℓm′⟩ +

1

(2ℓ + 1)2 ∑mm′
⟨XℓmYℓm′⟩ ⟨Y ∗ℓmX∗ℓm′⟩

= 1

(2ℓ + 1)2 ∑mm′
CXX
ℓ CY Y

ℓ δmm′δmm′ +
1

(2ℓ + 1)2 ∑mm′
(CXY

ℓ )
2
δm−m′δm−m′(−1)m−m

′

= 1

2ℓ + 1
[CXX

ℓ CY Y
ℓ + (CXY

ℓ )
2] , (C.16)

where CXY
ℓ represents the theoretical angular power spectra. Estimating

Var(CXY
ℓ,obs) ≃

1

2ℓ + 1
[CXX

ℓ,obsC
Y Y
ℓ,obs + (CXY

ℓ,obs)
2] , (C.17)

is typically a good approximation for ℓ ≳ 10, where the sample of m is large enough.

C.5 Derivation of eq. (6.16)

Taking into account the frequency dependence of both the HWP Mueller matrix elements
and the CMB signal, we write the data model of eq. (6.4) as

d = aTMdetRξ−ϕ∫ dνMhwp(ν)Rϕ+ψS(ν) + n . (C.18)
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Repeating the analysis presented in section 6.4, eq. (6.11) reads

ĈTT
ℓ ≃ ⟨mii⟩2C̄TT

ℓ,in, (C.19a)

ĈEE
ℓ ≃

⟨mqq −muu⟩2
4

C̄EE
ℓ,in +

⟨mqu +muq⟩2
4

C̄BB
ℓ,in +

⟨mqq −muu⟩⟨mqu +muq⟩
2

C̄EB
ℓ,in , (C.19b)

ĈBB
ℓ ≃

⟨mqq −muu⟩2
4

C̄BB
ℓ,in +

⟨mqu +muq⟩2
4

C̄EE
ℓ,in −

⟨mqq −muu⟩⟨mqu +muq⟩
2

C̄EB
ℓ,in , (C.19c)

ĈTE
ℓ ≃

⟨mii⟩⟨mqq −muu⟩
2

C̄TE
ℓ,in +

⟨mii⟩⟨mqu +muq⟩
2

C̄TB
ℓ,in , (C.19d)

ĈEB
ℓ ≃

⟨mqq−muu⟩2− ⟨mqu+muq⟩2
4

C̄EB
ℓ,in −

⟨mqq−muu⟩⟨mqu+muq⟩
4

(C̄EE
ℓ,in − C̄BB

ℓ,in ), (C.19e)

ĈTB
ℓ ≃

⟨mii⟩⟨mqq −muu⟩
2

C̄TB
ℓ,in −

⟨mii⟩⟨mqu +muq⟩
2

C̄TE
ℓ,in , (C.19f)

where the brackets denote frequency integrals weighted over the SED of the CMB,

⟨f⟩ ≡ ∫
dν SCMB(ν)f(ν)
∫ dν SCMB(ν)

, (C.20)

and C̄XY
ℓ,in the input angular power spectra at some reference frequency ν̄. This modifies

eq. (6.15) to

θ̂ = −1
2
arctan(∫

dν SCMB(ν) [mqu +muq] (ν)
∫ dν SCMB(ν) [mqq −muu] (ν)

) . (C.21)

C.6 Derivation of eq. (6.17)

So far, we neglected any miscalibration angles in the map-maker, i.e. we assumed the
response matrix Â to encode the true values of the telescope, HWP, and detector angles:
ψ̂ ≡ ψ, ϕ̂ ≡ ϕ, and ξ̂ ≡ ξ, where the hat denotes the values assumed by the map-maker. We
now consider a more general case by allowing for deviations: ψ = ψ̂ + δψ, ϕ = ϕ̂ + δϕ, and
ξ = ξ̂ + δξ.

Single frequency Repeating the analysis presented in section 6.4 with miscalibration
angles, eq. (6.10) reads

Î ≃miiIin , (C.22a)

Q̂ ≃ [cos(2δθ)(mqq −muu) + sin(2δθ)(mqu +muq)]Qin/2
+ [cos(2δθ)(mqu +muq) − sin(2δθ)(mqq −muu)]Uin/2 , (C.22b)

Û ≃ [cos(2δθ)(mqq −muu) + sin(2δθ)(mqu +muq)]Uin/2
− [cos(2δθ)(mqu +muq) + sin(2δθ)(mqq −muu)]Qin/2 , (C.22c)
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where δθ ≡ δξ − δψ − 2δϕ. This modifies eq. (6.15) to

θ̂ = −1
2
arctan(cos(2δθ)(mqu +muq) − sin(2δθ)(mqq −muu)

cos(2δθ)(mqq −muu) + sin(2δθ)(mqu +muq)
)

= −1
2
arctan(mqu +muq

mqq −muu

) + δθ . (C.23)

Therefore, the additional miscalibration angles simply shift θ̂, as expected.

Finite frequency bandwidth Taking into account a finite frequency bandwidth and
miscalibration angles simultaneously is slightly more complicated, but does not spoil the
analytic treatment as long as δθ is assumed to be frequency-independent. The generaliza-
tion of eq. (6.15) in this case reads

θ̂ = −1
2
arctan(∫

dν SCMB(ν) [mqu +muq] (ν)
∫ dν SCMB(ν) [mqq −muu] (ν)

) + δθ . (C.24)
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